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Abstract

Currently, the clearest evidence for physics beyond the Standard Model is provided
by observations that indicate non-zero neutrino masses. Numerous theories on how
these masses are generated give rise to additional non-standard interactions (NSI)

of neutrinos with quarks and charged leptons. Atmospheric neutrinos provide a
sensitive probe for the neutrino flavor transitions resulting from the type of NSI
investigated in this work. These comprise neutral current forward scattering of
neutrinos of all flavors on first generation charged fermions in Earth matter. In
order to maximize model independence, the NSI are parametrized using five

effective coupling strengths.
In the IceCube-DeepCore detector, atmospheric neutrinos are detected indirectly via

Cherenkov photons produced within the Antarctic glacier. The range of angles
under which neutrinos enter the detector translates into propagation baselines of

O(1 − 104)km. The data sample used in the presented analysis includes 9.3 years of
DeepCore data, covering a neutrino energy range of 5 to 100 GeV.

Accuracy and performance of event property reconstruction from observed photons
are a crucial factor for the analysis outcome. Therefore, this work includes a

thorough study of the potential and shortcomings of likelihood based DeepCore
event reconstruction algorithms.

The presented analysis relies on comparing binned observed event counts to
simulation that is generated at different hypotheses. These include the individually
considered NSI parameters as well as 17 nuisance parameters. In order to find the

hypothesis that best describes the observation, the optimum of a test statistic is
determined using a customized minimization strategy. The final analysis setup

yields sensitivities to four effective NSI couplings that are competitive compared
with existing results.
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Introduction 1
The way that neutrinos are included in the Standard Model of particle physics is not
compatible with their measured properties. Specifically, observations of oscillation
between neutrino flavor eigenstates indicate that, other than the Standard Model
description, neutrinos possess non-zero masses [1]. This observation makes it
opportune to search for NSI, which are neutrino interactions that are not included
in the Standard Model and potentially arise from mechanisms that give neutrinos
mass [2].
The variety of models that potentially give rise to NSI motivates this search to be
preferably model-independent, which is achieved by using a parametrization of NSI
through five effective coupling strengths [3]. These represent an effective matter
potential that originates from interaction of neutrinos of all flavors with all first
generation charged fermions.

Atmospheric neutrinos constitute a suitable probe for NSI, due to their sensitivity
to neutrino flavor transition probabilities. These depend on the neutrino energy,
flavor and the matter density profile they propagate through. The DeepCore low
energy extension of the IceCube detector, a Cherenkov neutrino detector built into
the Antarctic ice sheet, provides atmospheric neutrino events at an energy range of
5 GeV to 100 GeV. The data include neutrino trajectories from different directions,
which implies oscillation baselines from a few kilometers up to the Earth diameter.
The distinct signature that neutrino oscillations and NSI effects leave in DeepCore
data allow for measuring even small deviations from the no-NSI null hypothesis. This
analysis relies on the most recent DeepCore data set, which contains approximately
150000 preselected events that have been recorded within 9.3 years of detector
operation. As a first step towards the presented analysis, the performance and
potential of likelihood-based reconstructions of DeepCore events is explored.

The presented search for NSI relies on comparing binned data to simulated event rate
maps for different physics hypotheses, which is done in a frequentist fitting approach.
Bayesian sampling is explored as a supplementary or alternative technique. The
key elements to the analysis are the minimization performed when fitting as well
as the treatment of nuisance parameters. The latter describe neutrino flux and
interaction properties as well as detector characteristics. A test statistic is minimized

1



with respect to nuisance and NSI parameters in order to find the hypothesis that
best describes the observed data. In addition to this best fit value, limits are set for
each individually investigated NSI parameter.

2 Chapter 1 Introduction



Neutrinos within the Standard
Model

2
The postulation of neutrinos in 1930 by W. Pauli [4] was originally motivated by
observations of the energy spectrum of electrons produced in β−-decay. Instead
of the discrete energy expected for two-body decays these showed a continuous
energy distribution. This pointed towards an undetected third component, a light
and neutral new particle. Although originally deemed undetectable by Pauli, the first
detection of neutrinos succeeded in 1956 [5]. It was achieved in the Cowan–Reines
neutrino experiment, a measurement of reactor neutrinos undergoing inverse beta
decay within a water target [6].
The factor that impeded their detection for so long was not their scarceness - neu-
trinos originate from various sources and occur on earth in abundance, as will be
discussed in section 4.1. It was rather how rarely they interact in a detectable man-
ner, which has its origin in the fundamental neutrino properties. Their mathematical
formulation, as included in the SM, is summarized in the following. This is followed
by a discussion of the resulting detection-relevant neutrino interactions in section
2.2.

2.1 The Standard Model of Particle Physics

Mathematically, the SM is a quantum field theory, hence describing particles as exci-
tations of their respective fields and particle interactions via the field’s Lagrangian
density [1]. It is regarded as an effective field theory, as there are known effects
it fails to describe. While managing to include strong, electromagnetic and weak
interactions between elementary particles, it prominently does not describe gravity.
All elementary particles within the SM are either bosons, carrying integer spins,
or fermions with half-numbered spins to which Fermi-Dirac statistics apply. The
elementary fermions known today are shown in figure 2.1, along with their mass1

and electric charge. Their anti-particles are not shown separately as they differ only
in charge. The possible fundamental interaction vertices are shown in figures 2.2

1Throughout this thesis, natural units will be used, e.g. when indicating particle masses.
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and 2.3.
As a gauge theory, the SM includes invariance under certain symmetry transforma-
tions, leading to conservation of corresponding quantities, according to Noether’s
first theorem [7]. It can in total be described via the unitary product group
SU(3) × SU(2) × U(1) [1], which is subdivided into two parts: One is treating
the strong nuclear force through the SU(3) component, formulated as quantum
chromodynamics (QCD), where the so-called color charge is conserved.

Fig. 2.1.: Elementary fermions as included in the SM, together with their respective mass
(top right) and electric charge (bottom right). Three generations of quarks and
leptons are shown in the left and right half, respectively. All values are taken from
[8]. Note that the masses of the e and τ leptons are given with less digits then
available therein.

ℓ, q νℓ, q′

W ±

ℓ, νℓ, q ℓ, νℓ, q

Z0

ℓ̄, ν̄ℓ, q̄

ℓ, νℓ, q

Z0

Fig. 2.2.: Fundamental weak vertices including a single boson: charged current (CC) (left)
and neutral current (NC) (center) scattering and pair production (right). The time
axis is set from left to right. Charged and neutral leptons are indicated as l and
νl, respectively, and quarks as q, with q′ indicating a different quark with respect
to q. The same processes with reversed time axis or with particles interchanged
with their antiparticles are allowed as well. Quantum number conservation laws
are implicitly assumed and not explicitly visualized.

As the second part, electromagnetic (EM) and weak interactions are unified to
the electroweak force, described in a SU(2) × U(1) group. This conserves electric
charge, weak isospin and weak hyper-charge. The invariances of the electroweak
force yield four gauge bosons, mediating the weak and electromagnetic force: The
electromagnetically interacting massless photon γ, two W ± bosons that couple to
weak and electromagnetic CC interaction and the purely weakly interacting, NC Z0

boson2 [1].

2This includes electroweak symmetry breaking and the Higgs mechanism [9].
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ℓ, q ℓ, q

γ

ℓ̄, q̄

ℓ, q

γ

Fig. 2.3.: Fundamental EM vertices including a single boson: Scattering (left) and pair
production (right). Annotations from figure 2.2 apply.

Within the SM, fermions are subdivided into two categories with three so-called
generations each. The mathematical structure of the SM does not require exactly
three generations, making their number purely measurement-based [10]. The first
category of SM fermions contains six quarks. These are massive particles with
electromagnetic charge of 2/3 or −1/3 which interact via all forces. The second
category consists of six leptons, of which three (electron, muon and tau) take part
in EM, weak and gravitational interaction. Each of these shares its generation with
a corresponding neutrino, which is a neutral massless lepton that only interacts
weakly. Consequently, the Lagrangian densities that describe NC and CC neutrino
interactions are [8]

LCC = −gW√
2
∑

ℓ

ν̄ℓLγµℓ−
L W +

µ + h.c. (2.1)

LNC = −gW√
2 cos(θW )

∑
ℓ

ν̄ℓLγµνℓLZ0
µ , (2.2)

where gW is the weak coupling constant. The weak mixing angle or Weinberg
angle, θW , describes how the boson fields after electroweak symmetry breaking are a
linear combination of those before. The gamma matrices γµ correspond to fermions
satisfying the Dirac equation [1]. In equation 2.1, h.c. indicates the Hermitian
conjugate.
Note that for charged leptons and the respective neutrinos, indicated as l± and νl,
only components with negative (left) chirality are included. For massless particles,
chirality is equal to helicity, which is positive if a particle’s momentum and spin are
aligned and negative otherwise. Antiparticles with negative chirality and particles
with positive chirality do not interact. For non-zero particle masses, it is possible to
apply a Lorentz-boost into a reference frame with higher velocity than the particle,
which causes it to switch chirality. Therefore, for massive particles, chirality rather
suppresses processes than forbidding them.

2.1 The Standard Model of Particle Physics 5



2.2 Neutrino interactions

Fig. 2.4.: Cross sections of neutrino (left) and antineutrino (right) CC interaction per nu-
cleon over energy. The total cross section (solid line) is shown together with con-
tributing processes and the respective measurements. The three processes shown
here are quasi-elastic scattering (QES) (dashed line, also with measurements),
resonant scattering (RES) (dotted-dashed line) and deep inelastic scattering (DIS)
(dotted line), which become dominant at different energies. Adapted from [11].

Today’s SM knows neutrinos of three flavors, νe, νµ and ντ , which interact weakly as
shown in figure 2.2. Their relevance is reflected in the Nobel Prizes awarded for the
detection of electron neutrinos [6], muon neutrinos [12] and cosmic neutrinos [13].
The limitation to weak interaction results in overall small cross sections of neutrino
interactions, as the Fermi coupling constant (GF ) of the weak force is more than
three orders of magnitude lower than that of the EM interaction and enters cross
sections quadratically [11] (see equation 2.2).
This section focuses on the neutrino interactions relevant for their detection in
DeepCore, which are between nucleons and neutrinos with energies at the GeV scale.
The higher the energy, the more details of the nucleus are resolved. Interactions
therefore range from scattering on the entire nucleon below 1 GeV, to exciting the
nucleon in the few GeV range, and even scattering on quarks at energies above that.
Cross sections of these three processes are given in figure 2.4.
As expected from the quark-parton model [14], the total cross section shows an
approximately linear energy dependence above ∼10 GeV. The difference between
neutrinos and antineutrinos stems from the relative amount of quarks and anti-
quarks in matter, together with their chirality. cross sections also differ depending
on the neutrino flavor, mostly due to the tau mass being large with respect to
other leptons, which impedes tau neutrino interactions at low energies, as shown in
figure 2.5.

6 Chapter 2 Neutrinos within the Standard Model



Fig. 2.5.: Total cross section of muon neutrino (solid) and tau neutrino (dashed) CC inter-
actions, divided by neutrino energy. Taken from [11].

Quasi-elastic scattering (QES)

Of the three interactions mentioned above, elastic and quasi-elastic scattering are the
NC and CC interactions relevant at the lowest energies. They constitute neutrinos
scattering off an entire nucleon, undergoing

CC : νℓ + n → ℓ− + p

ν̄ℓ + p → ℓ+ + n

NC : νℓ + N → νℓ + N

ν̄ℓ + N → ν̄ℓ + N .

Here, n describes a neutron, p a proton and N any nucleon. This process is dominant
below approximately 1 GeV, as shown in figure 2.4. The differential cross section of
CC QES,

dσQES

dQ2 = G2
F M2

8πE2
ν

[
A ± 4MEν − Q2 − m2

M2 B + (4MEν − Q2 − m2)2

M4 C

]
, (2.3)

depends on the neutrino energy Eν , Fermi coupling constant GF , masses m and
M of the lighter and heavier scattering partners, as well as the squared transferred
four-momentum Q2 [11]. Neutrinos and antineutrinos differ in the sign of the
second summand, which is indicated as ±. Nucleon form factors are present in the
cross section through A, B and C. They depend on the effective axial mass MQE

A , an
empirical parameter that enters this analysis as a nuisance parameter, as discussed
in detail in section 7.3.3.

2.2 Neutrino interactions 7



Resonant scattering (RES)

Resonant pion production occurs dominantly at energies of a few GeV, producing
an excited baryonic state N∗ from the partaking nucleon. Otherwise the interaction
mechanisms are similar to QES, as can be seen in the example

CC : νℓ + N → ℓ− + N∗

→ ℓ− + π±/0 + N ′ ,

where the baryonic state produces a pion. This can, in case of a π0, further decay
into leptons, or, for π±, become the origin of a hadronic cascade.
The dependencies of the RES cross section resemble the QES ones, with an effective
axial mass MRES

A .

Deep inelastic scattering (DIS)

Fig. 2.6.: Diagram of DIS via CC (left) and NC (right) interaction, with N indicating a
nucleon and X indicating an outgoing hadronic shower. The corresponding
antineutrino processes yield respective anti-leptons. Based on [15].

The energy range above approximately 5 GeV is dominated by DIS, a process where
sufficient momentum is transferred to the nucleus to be able to break it apart,
resulting in a hadronic cascade X, as in the example

CC : νℓ + N → ℓ− + X , (2.4)

which is shown as a diagram in figure 2.6.
Due to angular momentum conservation between initial and final state, together
with the exclusion of positive-chiral neutrinos and negative-chiral anti-neutrinos,
the cross section of antineutrino-quark interactions depends on the scattering angle.
An additional factor is the difference in quark- versus antiquark-content in matter.
The DIS cross section also depends on the inelasticity or Bjorken-y of the process,
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which is the fraction of neutrino energy that goes into the hadronic cascade. These
factors are relevant for the nuisance parameter treatment in section 7.3.3.

Hadronic and electromagnetic cascades

Hadronic or EM cascades have been mentioned above to be produced in higher en-
ergy interactions. They emerge from a single interaction which causes an avalanche-
like particle production chain.
In EM cascades, photons decay into pairs of positions and electrons. These individ-
ually produce photons in bremsstrahlung, which subsequently decay into electron
positron pairs, repeating the process. The cross section of this chain of processes
is energy-dependent, with pair production ceasing below 1 MeV, giving showers a
finite length based on the energy of the initial particle [15].
Hadronic cascades comprise a larger number of different processes, in which e.g.
secondary hadrons such as pions are produced. As some of these, such as the decay
of a π0, involve electromagnetic particles, a hadronic cascade always has an EM
component.

2.2 Neutrino interactions 9





Neutrinos beyond the
Standard Model

3
Neutrinos are the particles providing the clearest evidence for physics beyond the
standard model (BSM-physics), as will be discussed in the following. Most promi-
nently, the observations connected to neutrino mixing and neutrino oscillations,
which are introduced in sections 3.1 and 3.2, indicate that neutrinos have mass1,
allowing them to transition between their eigenstates. Different possible formalisms
of how this mass is obtained entail additional BSM-physics effects, such as NSI. A
model-independent NSI formalism is introduced in section 3.3 and the phenomenol-
ogy of the parameters it comprises are discussed in section 3.4, followed by an
overview of recent measurements in section 3.5.

3.1 Neutrino masses and mixing

The observation of neutrino oscillations and matter effects indicate non-zero dif-
ferences between the neutrino mass eigenstates and hence massive neutrinos. The
evidence and consequences of the existence of massive neutrinos as well as how
they can be introduced to the SM will be discussed in the following.

3.1.1 Experimental evidence for neutrino mixing and oscillations

An early hint towards BSM-physics was the so-called solar neutrino deficit: In the
1990’s, the solar electron neutrino flux observed by the Homestake experiment was
found to be significantly below the solar standard model (SSM) prediction [18]. To
disagree with the SSM implied either to contradict the understanding of the nuclear
processes that occur inside the Sun and the resulting luminosity [19] or that electron
neutrinos vanish in some way. Measurements at the Sudbury Neutrino Observatory
(SNO) resolve both the electron neutrino and overall neutrino flux and supported

1Neutrino oscillations are theoretically possible for massless neutrinos, for instance through NSI [16].
Measurements available today however exclude the respective models as the mechanism behind
oscillations [17].

11



the hypothesis of flavor conversion rather than vanishing of electron neutrinos, as
no deficit in the total flux was found [20].
These flux observations can be explained through adiabatic flavor conversion inside
solar matter, which will be discussed in section 3.2.2, and, secondarily, neutrino
oscillations, which are presented in section 3.2. Both of these effects are connected
to mixing of neutrino states, a concept that was already postulated around 1960
by Pontecorvo [21, 22] as well as Maki, Nakagawa and Sakata [23]. Mixing
requires non-zero neutrino masses, as will be detailed in the following, and therefore
comprises BSM-physics.

3.1.2 Neutrino mixing

Neutrino properties are associated to two different bases. One is the flavor base
of νe, νµ and ντ , summarized as να, which was introduced in section 2. These
are the neutrino states that take part in interactions. Secondly, the base of mass
eigenvalues, ν1, ν2 and ν3, denoted νi. The formalism for weak interaction allows
for states, or rather the respective fields, to take part in interactions while being
linear combinations of other fields that themselves do not take part. The neutrino
flavor and mass base are connected as such a linear combination via

|να > =
∑

i

Uαi|νi > . (3.1)

The matrix connecting them is the Pontecorvo Maki Nakagawa Sakata mixing
matrix (PMNS-matrix) U[21–23], which enters equation 3.1 complex conjugated
for antineutrinos. It can be parameterized through three mixing angles θij and one
complex phase δCP as

U =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13




c12 s12 0
−s12 c12 0

0 0 1

 (3.2)

=


c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

 . (3.3)

This notation uses the abbreviations cij = cos(θij) and sij = sin(θij). Non-zero
values of the δCP phase imply violation of charge and parity conjugation (CP) sym-
metry2.

2A CP transformation corresponds to replacing a particle with its antiparticle and inverting its spacial
coordinates. CP violation was observed in kaons [8] and is possible for neutrinos.
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The mixing of neutrinos between their flavor and mass states links different observ-
able behaviors, such as neutrino oscillations and matter effects, to neutrinos being
massive.

3.1.3 Neutrino masses and mass ordering

Fig. 3.1.: Schematic overview of the mass-squared differences in normal (left) and inverted
(right) ordering, adapted from [24]. Heavier states are further at the top of
the drawing. For normal ordering, the (larger) atmospheric mass splitting and
(smaller) solar mass splitting are indicated. The neutrino flavor state content of
the individual mass eigenstates is indicated in color. The dependence on δCP is
represented for values of 0 and π at the lower and upper border, respectively, of
the individual bars, yielding tilted edges.

For the absolute masses of neutrinos, only upper limits have been set so far. The
currently lowest one amounts to mν < 0.9 eV at 90 % confidence limit (CL) and
was set in Tritium decay measurements at the Karlsruhe Tritium Neutrino (KATRIN)
experiment [25]. The necessity of non-zero mass-squared differences, however, is
based on the observations around neutrino oscillations [17, 26], which are discussed
in section 3.2.
The mass-squared differences ∆m2

31 and ∆m2
21

3 are known to be at different scales,
as is apparent from table 7.3. The smaller mass-squared difference, ∆m2

21, is also
known as the solar mass splitting, based on the origin of neutrino data that is most
sensitive to this parameter [27].
Other than the sign of ∆m2

21, which is set by convention to be positive [27], the sign
of ∆m2

31 is unknown. As a result, there are two options on which neutrino mass
eigenstate is the heaviest, as shown in figure 3.1. These two so-called neutrino mass
orderings (NMOs) are normal ordering (NO), which describes the case where ν3

3There are different conventions on which mass-squared differences to discuss. This work uses the
one that is most common in IceCube analyses, by referring to ∆m2

31 and ∆m2
21.
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is the heaviest mass eigenstate, and inverted ordering (IO) if it is the lightest. The
respective larger mass-squared difference is called the atmospheric mass splitting.
Neutrino oscillations are not sensitive to the sign of the squared-mass differences.
However, the NMO impacts them, as it changes the absolute squared-mass differences
between the mass eigenstates ν3 and ν1,2.

3.1.4 Massive neutrino extensions to the SM

While neutrinos are known to have non-zero mass differences, the origin and
theoretical basis of their mass is still unknown. It might be a consequence of BSM-
physics at some higher energy scale Λ that manifests at low energies. In order to
include this, the SM can be seen as an effective model and extended in ways that
are not disruptive with respect to SM effects [1].

The possibly most intuitive extension to the SM would be if neutrinos gained mass
through the same mechanism as other elementary particles. The corresponding
additional Dirac mass term is therefore seen as the minimal extension of the SM [28].
An alternative would be a Majorana mass term, in which neutrinos are their own
anti-particles. Such a term would for example result from a generic extension in
which the SM is considered an effective field theory with its components, the fields,
acting as operators. Including BSM-physics implies adding operators of increasing
exponent or dimension n ≥ 5 which are suppressed by Λn−4. More detail on this
can be found in [29]. At dimension six, this extension results in NSI [28, 30].
Unitarity of the neutrino mixing matrix U is given within the SM but not necessarily
in its extensions. There, unitarity depends on the mechanism through which mass is
provided. While being unitary for Dirac masses, U becomes non-unitary for Majorana
masses. Also, extending the SM with a Majorana mass term would introduce two
additional phases in U . However, these are not relevant to neutrino oscillations and
therefore left out in this description [8].
A more general extension of the SM includes a Majorana and Dirac mass term. In
such a case, the ratio between Majorana and Dirac mass eigenvalues provides the
approximate neutrino mass scales through the so-called see-saw mechanism [27].
This yields an explanation for neutrino masses being at a significantly different scale,
multiple orders of magnitude below that of charged fermions of the same particle
generation [8].
The type-II see-saw mechanism similarly applies to Majorana masses above the
vacuum expectation value of the Higgs field [1, 28]. This, like multiple other
dimension-six SM extensions [29, 31], directly leads to the existence of NSI.
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After having established that neutrinos have mass and how this might be included in
the SM, the oscillation effects that mixing of massive neutrinos entails are described
in the following. More details on neutrino mass SM extensions can be found in
Appendix A.1.

3.2 Neutrino oscillations and matter effects

Neutrino oscillations are interference effects between neutrino mass eigenstates,
leading to flavor transitions. They occur when neutrinos propagate in their mass
eigenstates and the relative phases of the individual states change. The resulting
flavor transitions require non-zero differences between neutrino masses, hence con-
stituting BSM-physics. The first detection of neutrino oscillations was accomplished
in the Super-Kamiokande experiment (Super-K)4 [26] and awarded the 2015 Nobel
Prize [32].
The theoretical formulation of neutrino oscillations and flavor conversion effects in
vacuum and in matter will be discussed in the following. A focus is set on oscillations
and matter effects on atmospheric neutrinos in Earth.

3.2.1 Neutrino oscillations in vacuum

Ultrarelativistic neutrinos in vacuum can be described as plane waves, propagating
in their mass eigenstates. Their relative phases change in propagation, which leads
to interference effects and ultimately oscillations of the overall composition.
As neutrinos interact in their flavor states, this behavior can only be observed indi-
rectly. The neutrino composition at production is given through equation 3.1 while
the composition in which a neutrino interacts after propagating changes with time, or
corresponding distance. In this section, a short introduction to neutrino oscillations
in vacuum will be given, with non-vacuum effects covered in the following section.
Assumptions and approximations that are made here for simplicity are legitimate
for the neutrinos investigated in this thesis [8]. A more detailed derivation can be
found in [1].

The time dependent behavior of a neutrino flavor eigenstate,

|να(t) > =
∑

i

U∗
αi|νi(t) > , (3.4)

4See section 4.3 for a short discussion of the detection method of Super-K and others.
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is given by the mass eigenstate with neutrino energy Ei, propagating as a plane
wave

|νi(t) > = e−iEit|νi(t = 0) > . (3.5)

In this notation, the time t is chosen as the free variable, implicitly including the
dependency on travel distance L. The plane wave function 3.5 constitutes a solution
to the Schrödinger equation

Ei|νi(t) > = i
d

dt
|νi(t) > (3.6)

= Hvac|νi(t) > (3.7)

= 1
2E

Udiag
(
m2

1, m2
2, m2

3

)
U †|νi(t) > , (3.8)

in natural units, with the vacuum Hamiltonian Hvac and the masses mi of the mass
eigenstate νi [33]. The energy Ei depends on the momentum pi through

Ei =
√

p2
i + m2

i (3.9)

≃ p + m2
i

2E
, (3.10)

→ Ei − Ej =
∆m2

ij

2E
. (3.11)

This uses the assumption that all neutrinos are ultra-relativistic, allowing for the
approximation that different mass eigenstates have the same momentum pi ≃ pj =
p ≃ E with the neutrino energy E. As the mass basis is orthogonal, < νi|νj >= δij ,
with δij the Kronecker delta. The probability Pαβ of a neutrino produced as να to
interact as the potentially different flavor νβ then amounts to

Pνα→νβ
(t) = | < νβ|να(t) > |2 = Pνα→νβ

(L, E) (3.12)

=
∑
i,j

U∗
αiUβiUαjU∗

βj exp
(

−i
∆m2

ijL

2E

)
(3.13)

= δαβ − 4
∑
i>j

Re
(
U∗

αiUβiUαjU∗
βj

)
sin2

(
∆m2

ijL

4E

)
(3.14)

+ 2
∑
i>j

Im
(
U∗

αiUβiUαjU∗
βj

)
sin
(

∆m2
ijL

2E

)
. (3.15)

This assumes unitarity of U . For antineutrinos, this derivation would yield an ex-
pression with the transition matrix U replaced with U∗ [27].
From the transition probability, it becomes clear that neutrino oscillations do not
depend on the absolute masses of the mass eigenstates but on the mass-squared
differences ∆m2

ij = m2
i − m2

j .
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The transition between Pνα→νβ
(t) and Pνα→νβ

(L, E) assumes ultrarelativistic prop-
agation velocity [1] and is motivated by the fact that in experiments, the distance
L traveled by the neutrino as well as its energy E are measured rather than its
propagation time t. Neutrino oscillations are hence commonly characterized through
their dependence on L, E or L/E.
For the interpretation of neutrino data, being aware of the oscillation length,

Losc
ij = 4πE

∆m2
ij

, (3.16)

and its relation to the oscillation baseline L can be of interest. The oscillation length
is defined as the distance at which the oscillation phase,

ϕij = −
∆m2

ijL

2E
, (3.17)

is equal to 2π.
This behavior motivates different kinds of neutrino oscillation experiments at differ-
ent baselines and neutrino energies, optimized to resolve survival-, appearance- or
disappearance-probabilities as a means to measuring oscillation parameters. The
current experimental measurements of the values of the PMNS-matrix parameters
θij , δCP as well as mass-squared differences ∆mij can be found in table 7.3. Neutri-
nos oscillations based on SM interactions will in the following be called standard
oscillations.

3.2.2 Matter effects

Neutrino oscillations are not only dependent on baseline, neutrino energy and mass-
squared differences, but also impacted by forward scattering when traversing matter.
This can be understood as an effective potential, yielding different kinds of effects
depending on the underlying density profile [1].
Matter effects are caused by coherent forward scattering of neutrinos - specifically
by how this differs between neutrino flavors. Electron neutrinos show a different
behavior in matter, as they are the only neutrino flavor that undergoes CC scattering
on surrounding electrons, which is shown in figure 3.2.

In cases where neutrino oscillations occur, this difference between flavor components
of a neutrino wave changes the oscillation behavior. The effect can be considered
interference between forward-scattered and unscattered waves, which results in a
change of phase velocity. Conceptually it is similar to vacuum oscillations, where
relative phases of neutrino states change purely due to their different masses. The
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Fig. 3.2.: Forward scattering of neutrinos on regular matter as included in the SM. While NC
scattering (right diagram) is possible for all neutrino flavors, electron neutrinos
can also undergo CC scattering (left diagram) on surrounding electrons.

impact of surrounding matter is similar to the presence of an external potential [27].
The impact of varying density profiles can be described as density dependent effective
neutrino mixing angles. Observable effects can be categorized approximately by
the profile characteristics. Density variations that are monotonous and smooth can
result in an adiabatic flavor transitions, independently of oscillation effects. Mixing,
and therefore the composition of individual states, changes with density. A neutrino
can therefore change its flavor purely by change of surrounding density, even if no
interference effects in propagation occur.
For solar matter, this resolved the solar neutrino deficit [18, 27] mentioned in section
3.1.1. A first description of this by Wolfenstein [16] was extended by Smirnov and
Mikheev [34], motivating the name Mikheyev-Smirnov-Wolfenstein (MSW) effect.
An effective angle that results in maximal disappearance of a neutrino flavor is
described as MSW resonance. The occurrence of this depends on the relative phase
between the propagating neutrino eigenstates as well as the effective external
potential.
The layer structure of Earth matter provides neighboring areas of almost constant
density [35], something that potentially leads to resonant parametric enhancement
of flavor transitions [36, 37]. In [33], a detailed review of the different matter
effects can be found. A general description of matter effects can be provided by
extending the Hamiltonian given in equation 3.8 to

Hν = Hvac + Hmat(x) (3.18)

Hν̄ = [Hvac − Hmat(x)]∗ (3.19)

for neutrinos and antineutrinos, respectively [38]. The matter Hamiltonian Hmat(x)
consists of a position dependent potential V (x) which describes coherent forward
scattering. In case of SM interactions, this is a diagonal matrix of the potentials
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Vα(x), which each solely impact neutrinos of the α flavor. For matter that consists
of protons, electrons and neutrons, only Ve(x) differs from the other potentials. As
standard oscillation effects only depend on the difference between potentials, Vµ(x)
and Vτ (x) can be set to zero without observable impact. This leaves V (x) with the
CC component only,

V (x) = diag(Ve(x), Vµ(x), Vτ (x)) (3.20)

= diag(VCC,e(x), 0, 0) (3.21)

=
√

2GF Nediag(1, 0, 0) , (3.22)

with Fermi’s coupling constant GF and the local electron number density Ne [33].
Matter effects in the Sun or Earth are what drives the sensitivity to oscillations
effects in many cases, and also to NSI in most of the existing measurements [39].

3.2.3 Earth effects on atmospheric neutrinos

This work focuses on NSI detection through Earth matter effects on atmospheric
neutrinos. The modeling of the radially symmetric Earth density profile ρ(r) thereby
affects neutrino flavor transitions.
Earth can be approximated as consisting of layers of different, constant densities,
the values of which decrease with the radius. The density profile used in this work
is adopted from the Preliminary Reference Earth Model (PREM) [35].
In atmospheric neutrino data, the zenith angle θ under which neutrinos reach a
detector corresponds to the baseline at which they traverse the individual layers [1],
as shown schematically in figure 3.4. The maximum total oscillation baseline is
∼1.3 × 104 km for Earth-crossing neutrinos.
The large and abrupt density changes between the Earth core and mantle form a
so-called castle wall profile. The resulting resonant amplification of neutrino flavor
transitions through parametric enhancement [36, 37] is depicted in figure 3.3 for
a two-flavor neutrino model. An oscillogram showcasing the energy and zenith
dependence of standard oscillations for DeepCore data can be found in section 7.1.
In addition to solid Earth matter, the atmosphere has to be taken into account. In this
and earlier IceCube NSI analyses [40], a neutrino production height of h = 20 km is
assumed [41].
The factor ultimately affecting oscillations is the electron number density (see equa-
tion 3.22) which can be derived from the matter density and material composition.
Details on how the Earth and especially its electron number density is modeled in
this analysis are given in section 7.3.2.
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Fig. 3.3.: Survival probability in vacuum (cyan) and matter (red) for a two-flavor neutrino
model. A detailed PREM Earth matter density profile is shown in gray and the
simplified castle wall profile in black. The layer thickness and effective potential
resulting from the castle wall profile are indicated as VCC,i and Li, with the index
i = 1, 2 denoting the mantle and core, respectively. The survival probability in this
matter profile is calculated for neutrino energies of 1.37 GeV, at the two-neutrino
oscillation parameter values sin2 θ = 0.01 and ∆m2 =10−3 eV2. The figure was
taken from [15].

3.2.4 Open questions on neutrino physics

As mentioned in the above sections, there is a multitude of open questions revolving
around neutrino properties, especially with regard to oscillations. These include the
NMO, the existence of CP violation through δCP ̸= 0, the octant of the atmospheric
mixing angle θ23, and the sign of the atmospheric mass-squared difference. Upcom-
ing experiments, such as the Deep Underground Neutrino Experiment (DUNE) [42],
hope to resolve these questions. This, however, relies on the current assumptions on
neutrino physics to be correct. A different open question is how neutrinos obtain
mass, which entails unknown BSM-physics.
The existence of NSI could be consequence of a neutrino mass extension to the SM
and might impact measurements of the standard oscillation parameters by intro-
ducing degeneracies in δCP , NMO and mixing angles. Single NSI scenarios5 have
been shown to reduce or fully erase the sensitivity of existing and future oscilla-
tions experiments to e.g. δCP and the θ23 octant [3]. A complete measurement
of NSI and standard oscillation parameters has also been shown perturbatively to
be impossible in counting analyses like the one in this work [43]. Consequently,
detection or exclusion of NSI is relevant for the interpretation of standard oscillation
measurements.

5Specifically, small non-zero values of the effective NSI couplings ϵ⊕
eµ and ϵ⊕

eτ were tested.
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3.3 Formalism of non-standard neutrino interactions

The concept of NSI is a very general one, including any neutrino interactions that are
not included in the SM. It was first introduced together with that of matter effects
by Wolfenstein [16]. As was discussed in section 3.1.4, NSI naturally result from
several possible extensions of the SM that are designed to accommodate non-zero
neutrino masses. The current understanding is that NSI affect flavor changes on a
scale sub-leading with respect to standard oscillations.
The focus of this analysis is on NC NSI, which are observable mostly through matter
effects. In contrast, CC NSI primarily impact neutrino detection and production [3].
In order to be independent of the specific underlying model, NC NSI can be param-
eterized as an effective matter potential with nine degrees of freedom, to eight of
which oscillation effects are sensitive. In the following, this parametrization will be
discussed as well as the phenomenology, signature and existing measurements of
the individual NSI parameters.

As an effective theory, the SM would be the manifestation of a more complex
underlying theory in the low-energy range, where BSM-physics effects of that theory
would be suppressed. The latter would be expected to gain relevance at some higher
energy scale Λ.
One commonly used way to model NSI is to assume a new mediator particle Z ′ with
mass mZ′ . This is for example applied for searches that use accelerator neutrinos,
which are directly sensitive to the mediator mass as they observe decays with Z ′ in
the final state. Such an approach induces a strong dependence on the underlying
model as well as the specific mZ′ , as the respective final state needs to be achievable
within the collider energy range [44]. For oscillations experiments, this dependence
is not necessary, and a less model oriented approach can be taken.

In order to yield the most general possible constraints in this analysis, an NSI
parametrization is used that is based on effective coupling strengths ϵ. This approach
is largely independent of the underlying model and energy scale Λ of the unknown
interactions [2].
In this analysis, NSI are assumed to comprise coherent forward scattering, assuming
negligible contributions from incoherent interactions. These can be subdivided
into CC and NC scattering. At energies below the mass scale of weak bosons,
neutrino interactions are described using dimension six operators [45]. The four-
fermion Lagrangian densities describing NSI effects can be formulated largely model-
independently [2] as

LNC
NSI = −2

√
2GF ϵfC

αβ (ναγµPLνβ)
(
fγµPCf

)
, (3.23)
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LCC
NSI = −2

√
2GF ϵff ′C

αβ (ναγµPLℓβ)
(
f

′
γµPCf

)
. (3.24)

These equations imply summation over the type of charged fermion f ̸= f ′, chirality
C = R, L and lepton flavor α, β = e, µ, τ . Chiral projection is indicated by the
operator PR,L = (1 ± γ5)/2. The fermions that neutrinos interact with in Earth
matter are first generation charged ones, namely e−, u, and d, as depicted in
figure 3.4.
Similarly to the standard model case, CC effects caused by NSI mainly impact
production and detection of neutrinos. This makes neutrino sources with well
known spectra, such as reactors, especially sensitive to them. This analysis is based
on atmospheric neutrinos, which are more sensitive to effects during neutrino
propagation and hence to NSI forward scattering from NC interactions [46].
Within equation 3.23, NSI are parameterized through the effective NC and CC
coupling strengths ϵfC

αβ and ϵff ′C
αβ . For propagation through matter only the vector

part of NSI couplings is relevant [47], which can be summarized to

ϵf
αβ ≡ ϵfL

αβ + ϵfR
αβ . (3.25)

The individual fermion components enter the overall local effective couplings ϵαβ

scaled with the position dependent number density N(x) of the respective fermion
as

ϵαβ(x) = ϵf
αβ

∑
f

Nf (x)
Ne(x) . (3.26)

The SM case is recovered for ϵαβ = 0. Coupling strengths of ϵαβ = 1 imply NSI
effects at a scale comparable to that of weak interactions [2].
In the parameter description in equation 3.26, the ratio between number densities
is motivated through ϵαβ(x) corresponding to the ratio of the respective effective
NSI matter potential VNSI,αβ(x) and the SM CC matter potential VCC(x) as

ϵαβ(x) = VNSI,αβ(x)
VCC(x) . (3.27)

While the SM matter potential purely depends on electron number density Ne, the
effective NSI matter potential,

VNSI,αβ(x) =
√

2GF

∑
f

ϵfV
αβ Nf (x) , (3.28)

includes the impact of coherent forward scattering off all three first generation
charged fermions in a linear combination.
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The overall effective coupling strengths ϵαβ(x) can be equivalently represented
through the couplings to neutrons and protons instead of their partons6 as

ϵαβ(x) =
∑

N=e,n,p

ϵN
αβ

NN (x)
Ne(x) (3.29)

=ϵe
αβ + ϵp

αβ + ϵn
αβ

Nn(x)
Ne(x) . (3.30)

Equation 3.30 assumes neutral matter, yielding Ne = Np. The ratio Y ⊕
n between

neutron and electron number densities in Earth is nearly constant [39, 40] at

Y ⊕
n ≡ ⟨Nn(x)/Ne(x)⟩ ≈ 1.051 . (3.31)

As a result, an approximate independence of x can be assumed for the NSI couplings,
yielding

ϵαβ = ϵe
αβ + ϵp

αβ + Y ⊕
n ϵn

αβ . (3.32)

The generalized matter Hamiltonian, which includes both SM and NSI effects, can
be described based on the underlying potentials analogously to that of SM matter
effects discussed in section 3.2.2 as

Hmat(x) = VCC(x) + VNSI(x) . (3.33)

Assuming Hermiticity and equations 3.28 and 3.32, it can be expressed as

Hmat(x) ≈ VCC(x)


1 + ϵee ϵeµ ϵeτ

ϵ∗
eµ ϵµµ ϵµτ

ϵ∗
eτ ϵ∗

µτ ϵττ

 . (3.34)

The top left element contains a 1, which describes SM matter effects through CC
electron neutrino scattering on electrons as shown in figure 3.2. Cases where other
components are non-zero purely represent NSI effects. Scenarios where either single
or multiple NSI parameters have non-zero values are theoretically possible.
Off-diagonal elements of the effective Hamiltonian in equation 3.34 are complex
valued with a CP violating phase δαβ, following

ϵαβ = |ϵαβ|eiδαβ |α ̸= β . (3.35)

A non-zero magnitude of such a parameter would imply direct conversion between
neutrino flavors at interaction, motivating the term flavor changing (FC) parame-
ters [3].

6Quarks constitute nucleons in the combinations u, u, d for protons and u, d, d for neutrons.
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Diagonal elements are real-valued and contain interactions where the in-going neu-
trino flavor equals the out-going one. They provide the option to break flavor univer-
sality and will in the following be called flavor diagonal (FD) parameters. As atmo-
spheric neutrino data are only sensitive to this potential flavor non-universality [3],
the effective parametrization can without observable consequences be changed by
subtracting 1 · ϵµµ, yielding

Hmat(x) ≈ VCC(x)


1 + ϵee − ϵµµ ϵeµ ϵeτ

ϵ∗
eµ 0 ϵµτ

ϵ∗
eτ ϵ∗

µτ ϵττ − ϵµµ

 . (3.36)

This leaves this analysis with a total of three complex and two real NSI parameters
to investigate. These represent a variety of possible BSM-physics effects that cause
NC forward scattering in matter.

3.4 The impact of NSI

The signal characteristics of NSI are diverse and have distinct features that will be
discussed in the following, along with the current status of NSI measurements within
and beyond IceCube and DeepCore.

3.4.1 NSI phenomenology: Global behavior and remarks

The impact of NC NSI investigated in this work becomes observable through their
change of the effective matter potential seen by passing neutrinos. The resulting
signal depends on neutrino energy and baseline and its phenomenology differs
between individual NSI parameters and parameter values. In the following, the key
features at probability level that are present in all five NSI parameters are discussed
for the DeepCore energy range, largely based on [40, 48, 49]. Properties at data
level are discussed in section 7.1.2 specifically for DeepCore.
The probabilities shown in the following are Pαβ with α ∈ e, µ, as the flux of tau
neutrinos in the atmosphere is negligible at the GeV range [41]. The selected
scenarios are realizations of single non-zero NSI parameters, varied within the
respective range that they can be constrained to based on existing measurements
(see section 3.5). A discussion of current limits can be found in section 3.5.
In all shown scenarios δCP = 0 is assumed and θ23 = 47.2 deg is set close to maximal
mixing. If not indicated otherwise, probabilities are given at a fixed zenith angle
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Fig. 3.4.: Schematic of SM and NSI based matter oscillations effects on atmospheric neu-
trinos. After being produced inside the atmosphere, neutrinos traverse Earth
matter at baselines that depend on their zenith angle θ before potentially being
detected inside IceCube. The baselines within layers of different density impact
the oscillations behavior through the local electron and nucleon density. Within
the SM, matter effects on oscillations are induced through CC scattering of elec-
tron neutrinos on electrons (see section 3.2.3). The NSI considered in this work
comprise NC forward scattering of all neutrino flavors on first generation charged
fermions.

that corresponds to cos(θ) = −0.75, which is diagonally up-going in the convention
introduced in figure 3.4. This fixes the total baseline to L ∼ 9.6 × 103 km. Under this
angle, neutrinos traverse the Earth mantle but not the core. This results in strong
but not maximal NSI effects on oscillations, constituting a case similar to what most
atmospheric neutrinos in a DeepCore data sample will undergo. Also, in this case,
almost full electron neutrino disappearance through MSW resonance is observable
in the case of no NSI at resonance energy Eres ∼ 6 GeV [40, 50].

Assuming no CP violation (δCP = 0) results in a spacial symmetry of the Earth matter,
namely V (x) = V (L − x) with L the total baseline, leading to Pαβ ≈ Pβα [40]. With
the assumed angle θ23 close to maximal mixing, electron neutrinos are converted to
tau- and muon neutrinos at similar probabilities, Peµ ≈ Peτ .
At energies above Eν ≃ 20 GeV, the evolution of electron neutrinos decouples from
the rest of the system. The decoupling occurs due to the large mass differences
between neutrino mass eigenstates [51] and yields Pee ∼ 1. This only applies for
NSI in the electron sector significantly below the electroweak scale, with ϵ⊕

ee − ϵ⊕
µµ,
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ϵ⊕
eµ, ϵ⊕

eτ << 1, as is the case in most7 scenarios shown in the following discussion.
As a result of this decoupling, the evolution of muon and tau neutrinos can be
approximated as a two neutrino case, where standard oscillations are driven purely
by ∆m2

31, θ23 and

VNSI ∝
(

0 ϵµτ

ϵ∗
µτ ϵττ − ϵµµ

)
. (3.37)

At energies where ∆m2
31/Eν << VNSI

8, flavor changing NSI effects start to dominate
over standard oscillations and flavor diagonal NSI [48].
The oscillation behavior of neutrinos differs from that of antineutrinos, as exchang-
ing them corresponds to a change of sign of the effective potential and a complex
conjugation of the PMNS-matrix. Since neutrinos and antineutrinos cannot be distin-
guished in IceCube the sensitivity to NSI at detector level stems from the combined
signal of both. The larger cross section and flux [11, 41] of neutrinos, however,
entails that NSI effects that are inverted for neutrinos and antineutrinos do not fully
cancel out.
The MSW effect, described in section 3.2.2, can create resonances in flavor transi-
tions that are pointed out in the following for individual NSI parameters. At the
corresponding energies Eres, mixing between the ν3 and ν1 mass eigenstate becomes
maximal due to the value of the effective θ13 mixing angle. This corresponds to full
disappearance of electron neutrinos into muon and tau neutrinos. Depending on the
specific NSI parameter value, the condition for MSW resonance can be fulfilled at
different Eres.
In a perturbation theoretical approach [43], which will be referred to for individual
phenomenological characteristics, all NSI parameters can be assumed to be at the
same magnitude of ϵ ∼ 10−2. Their impact can be estimated based on the order
of ϵ at which they enter oscillation probabilities in a perturbative model. This is
reflected in different orders of magnitude at which the individual NSI parameters
can be constrained, and also, different ranges at which they are varied for this study.
The full table of orders of ϵ for the individual parameters can be found in appendix
section A.2. The transition probabilities given throughout this chapter show different
realizations of individual NSI parameters. They assume the same Earth model as
the overall analysis and realistic standard oscillations parameters, as detailed in the
caption of figure 3.5.

7This is not given for some realizations of ϵ⊕
ee − ϵ⊕

µµ shown in the respective discussion in section
3.4.3.

8Under the assumptions made here this is the case at Eν ∼ 100 GeV.
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3.4.2 Phenomenology of ϵ⊕
ττ − ϵ⊕

µµ
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Fig. 3.5.: Probabilities for neutrino transitions between neutrino flavors Pαβ at different
values of the NSI parameter ϵ⊕

ττ − ϵ⊕
µµ. A zenith angle of cos(θ) = −0.75 is

assumed. The individual probabilities, given on the vertical axes of the plots,
depend on the neutrino energy, given on the horizontal axis. Values of ϵ⊕

ττ − ϵ⊕
µµ

are between −0.2 and 0.2, with negative values shown in blue and positive values
in red. The standard oscillations case at ϵ⊕

ττ −ϵ⊕
µµ = 0 is highlighted in black. Note

that all other NSI parameters are set to zero. The Earth is modeled as described in
section 7.3.2. Standard oscillation parameters are set to θ12 = 33.62◦, θ13 = 8.54◦,
θ23 = 47.2◦, δCP = 0◦, ∆m2

21 = 7.40 × 10−5 eV2, ∆m2
21 = 2.494 × 10−3 eV2 and

NO is assumed.

Non-zero values of only the flavor diagonal NSI parameter ϵ⊕
ττ − ϵ⊕

µµ conserve flavors
and introduce flavor non-universality. Figure 3.5 shows the oscillation probabilities
Pαβ at different values of ϵ⊕

ττ − ϵ⊕
µµ. As no flavor changes are introduced through this

parameter, its effect is the same as altering the standard oscillations matter potential
for 2-3 mixing, yielding the effective potential VNSI = (ϵ⊕

ττ − ϵ⊕
µµ )VCC .

The impact of some of the remarks in the previous section are visible here, such as
the decoupling of the electron flavor from the µ-τ -sector. This becomes evident from
the top three and bottom left panels in figure 3.5, where oscillation probabilities
involving the electron flavor are constant above Eν ∼ 20 GeV. As a result, Pµµ ≈
1 − Pµτ .
In this sector, the main impact of varying ϵ⊕

ττ − ϵ⊕
µµ becomes apparent, which is

damping of oscillations in the µ-τ -sector above the MSW resonance energy ER ∼
6 GeV. Above Eν ∼ 200 GeV, the impact of ϵ⊕

ττ − ϵ⊕
µµ is visibly negligible.

In figure 3.6, the effect on antineutrinos is shown. While the overall oscillation
behavior differs substantially, the same arguments as in the neutrino case apply.
Further on, this discussion of NSI phenomenology will focus on neutrinos. The
respective figures for antineutrino behavior can be found in appendix B.1.
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Fig. 3.6.: Same as figure 3.5, but for antineutrinos.

The observable signal for non-zero ϵ⊕
ττ − ϵ⊕

µµ from atmospheric neutrinos and an-
tineutrinos combined is impacted strongest in the muon neutrino survival probability,
even more so than for neutrinos and antineutrinos individually, as their impact on
the flux in the electron neutrino sector partially cancels out.
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Fig. 3.7.: Same as figure 3.5, but for cos(θ) = −1. Figures showing other zenith angles can
be found in appendix B.1.

The baselines at which neutrinos cross different layers within the Earth are fixed
through their zenith angle. In addition to the geometrical increase of the overall
baseline for zenith angles closer to cos(θ) = −1, which is shown in figure 3.7, layer
densities increase towards the Earth core. Matter effects are consequently more
pronounced, which can especially be seen at the first electron neutrino transition
maximum around 3 GeV.
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3.4.3 Phenomenology of ϵ⊕
ee − ϵ⊕
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Fig. 3.8.: Same as figure 3.5, but for ϵ⊕
ee − ϵ⊕

µµ values between −5 and 5. Note that within
the µ-τ -sector, most of the realizations of negative parameter values (shown in
blue) are at the same position as the most extreme positive ones (in dark red).

Figure 3.8 shows different scenarios where ϵ⊕
ee − ϵ⊕

µµ is the only source of NSI, with
all assumptions kept the same as in the previous section on ϵ⊕

ττ − ϵ⊕
µµ. As a flavor

diagonal parameter in the electron sector, ϵ⊕
ee − ϵ⊕

µµ can be seen as a re-scaling of
standard oscillations matter effects, since both are in the same matrix element,
1 − (ϵ⊕

ee − ϵ⊕
µµ ). As a result, ϵ⊕

ee − ϵ⊕
µµ = −1 mimics vacuum oscillations, yielding the

most significant difference in probabilities from the standard oscillations case. In
vacuum, all transitions that involve electron neutrinos are suppressed at the GeV
range. This originates from the different scales of the mass-squared differences
leading to decoupling of the individual mass eigenstates in propagation [1].
Most negative ϵ⊕

ee − ϵ⊕
µµ parameter values shown in figure 3.8 result in electron

neutrino survival probabilities close to 1, while any transition probabilities Peα

(α ∈ [µ, τ ]) approximate to zero. This is, on the one hand, a consequence of negative
ϵ⊕
ee − ϵ⊕

µµ values yielding effects close to vacuum oscillations. On the other hand,
negative ϵ⊕

ee − ϵ⊕
µµ values in general lead to a suppression of oscillations effects that

include electron neutrinos, while positive values lead to an enhancement.
The energy at which the MSW resonance criterion is satisfied can be shown to
directly depend on (ϵ⊕

ee − ϵ⊕
µµ)−1 [48]. The result is a suppression or enhancement as

well as a shift of the electron neutrino transition maximum towards lower energies
for higher values of ϵ⊕

ee − ϵ⊕
µµ [40, 49].

Probabilities that do not involve electrons experience a suppression of transitions
for the most extreme parameter values that are shown. As mentioned before, they
propagate mostly as in vacuum for Eν ≥ 20 GeV. However, a full decoupling of the
electron sector is not maintained for the larger values of ϵ⊕

ee − ϵ⊕
µµ shown here.
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Overall, the resulting signal makes atmospheric neutrinos mostly sensitive to ϵ⊕
ee −

ϵ⊕
µµ outside the muon disappearance channel. This implies reduced sensitivity in

IceCube.

3.4.4 Phenomenology of ϵ⊕
µτ
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Fig. 3.9.: Same as figure 3.5, but for |ϵ⊕
µτ |∈ [−0.05, 0.05] at δµτ = 0.

If ϵ⊕
µτ is the only non-zero coupling strength for NSI, flavor universality is conserved

while flavor changing interactions are introduced in the µ-τ -sector. The impact of
different ϵ⊕

µτ realizations, shown in figure 3.9, concentrates almost exclusively on
this sector, from which electron neutrino evolution mostly decouples. As mentioned
above, flavor changing NSI becomes the dominant source of NSI effects at energies
above Eν ∼ 100 GeV [48]. Sensitivity to ϵ⊕

µτ , especially at energies above this,
consequently lies in muon disappearance. The effect on antineutrinos is inverted
with respect to that on neutrinos, reducing the detectable signal in detectors like
IceCube, where no differentiation between neutrinos and antineutrinos is possible.
The energy range shown for ϵ⊕

µτ was chosen differently from that in other probability
plots, reflecting how the signal continues at higher energies up to the TeV scale.
While not relevant for DeepCore analyses, this energy range is available in IceCube
data and used to determine ϵ⊕

µτ in other analyses. This will be discussed in more
detail in section 3.5.

An example for a non-zero complex phase value of a flavor changing NSI parameter
is shown in figure 3.10. Only positive magnitude values are shown, as the phase
space would otherwise be covered twice, with the complex phase covering [0, 2π] and
shifting it by π corresponding to changing the sign of the magnitude value. Phase
changes, as a result, smoothly vary oscillation probabilities between these edge
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Fig. 3.10.: Same as figure 3.5, but for different magnitudes of |ϵ⊕
µτ | at δµτ = π/2. Note that

for non-zero complex phases of flavor changing NSI parameters, only positive
magnitudes are shown. Parameter magnitude values hence are the positive-
valued subset of what is shown in figure 3.9.

conditions. At δµτ = π/2, the coupling is purely imaginary. This makes MSW like
enhancement impossible, as it does not allow for maximizing the effective mixing
angle obtained from diagonalizing the Hamiltonian [33, 49, 50]. The transition
probabilities for purely imaginary ϵ⊕

µτ coupling hence only differ from standard
oscillations in the µ-τ -sector.

3.4.5 Phenomenology of ϵ⊕
eµ and ϵ⊕

eτ
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Fig. 3.11.: Same as figure 3.5, but for different magnitudes of |ϵ⊕
eµ | at δeµ = 0.

In figures 3.11 and 3.12, different realizations of the flavor violating NSI parameters
ϵ⊕
eµ and ϵ⊕

eτ are shown, respectively, at complex phases of 0◦. The transition behavior
induced by ϵ⊕

eµ compared to ϵ⊕
eτ is very similar when replacing τ with µ in the shown
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Fig. 3.12.: Same as figure 3.5, but for different magnitudes of |ϵ⊕
eτ | at δeτ = 0.

probabilities. Figures showing other complex phase values and antineutrinos can be
found in appendix B.1.
The subdominant impact of these NSI parameters can be motivated based on the
perturbation theoretical approach mentioned previously. Therein, ϵ⊕

eµ and ϵ⊕
eτ only

take part at ϵ2 in any disappearance channel, while e.g. the impact of ϵ⊕
ττ − ϵ⊕

µµ

on muon neutrino disappearance happens at first order (see appendix A.2). As
a result, these parameters are not as much the focus of atmospheric neutrino
experiments [43].

3.5 NSI measurements in IceCube and beyond

The different energy ranges of events detectable in IceCube and DeepCore allow for
two types of NSI analyses. These differ in their data processing, nuisance parameter
treatment and their simulation.
IceCube event sample energies are between 500 GeV and 10 TeV. Therefore, IceCube
data can only constrain ϵ⊕

µτ , as can be seen in the phenomenological features
discussed above. The most recent such IceCube analysis [52] currently provides the
strongest limits on this parameter, −0.0041 ≤ |ϵ⊕

µτ | ≤ 0.0031.
The DeepCore analysis preceding this work [40] was the first to provide limits on
all NSI parameters, which becomes possible due to the energy range of 5.6-100 GeV.
It includes three years of DeepCore data and is the analysis that is most directly
comparable to this work. Differences mostly stem from improvements in simulation,
nuisance parameter treatment and event selection.
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Tab. 3.1.: Current status of NSI measurements, restricted to experiments that are di-
rectly comparable to this work, obtained in DeepCore [40], IceCube [52] and
ANTARES [53]. Note that ANTARES results use a different parametrization and
are therefore re-scaled by a factor of three with respect to the published values.

90 % CL Experiment
FD NSI
ϵ⊕
ee − ϵ⊕

µµ [−2.26, −1.27]∪[−0.74, 0.32] DeepCore
ϵ⊕
ττ − ϵ⊕

µµ [−0.041, 0.042] DeepCore
ϵ⊕
ττ − ϵ⊕

µµ [−0.183, −0.042]∪[0.042, 0.243] ANTARES
FC NSI
|ϵ⊕

eµ | ≤ 0.146 DeepCore
|ϵ⊕

eτ | ≤ 0.173 DeepCore
|ϵ⊕

µτ | ≤ 0.0232 IceCube
ϵ⊕
µτ for δµτ = 0◦, 180◦ [−0.0141, 0.087] ANTARES

Beyond IceCube and DeepCore, a multitude of different approaches to measuring
NSI exists, as introduced in sections 2.2 and further on in section 4. In table 3.1,
the current 90 % ranges of all NSI parameter magnitudes are given for results that
are directly comparable with this work. No conclusive limits on NSI complex phases
have been set to this point.
The details of parameter definition may change between the compared results.
Therefore, values given here may differ from those in the respective reference.
Mostly, this concerns a factor of ∼ 3 which is introduced through defining NSI
parameters per quark instead of per electron.
The two disjoint allowed ranges for ϵ⊕

ee − ϵ⊕
µµ stem from ϵ⊕

ee − ϵ⊕
µµ = −1 mimicking

vacuum oscillations. While this hypothesis can be excluded exceedingly well, there
is less sensitivity to parameter values above or below it.
The overall tightest bounds are on ϵ⊕

µτ , due to the large energy range at which this
parameter impacts neutrinos. Similarly, as for ϵ⊕

ττ − ϵ⊕
µµ the constraints profit from

the strong signal provided in the muon neutrino disappearance channel.
A comparison to a larger number of results is given in section 7.8, including less
directly comparable global analyses and the COHERENT experiment9 as well as the
sensitivities obtained in this work. Note that experiments that can not reasonably be
compared to this analysis are not shown therein either. This excludes e.g. collider
limits, which are only valid for specific models or mediator mass ranges.

Summarizing, measurements of neutrino oscillations result in the necessity of BSM-
physics, as they point towards massive neutrinos. Many of the possible respective
extensions of the SM naturally entail NSI. Their existence could explain contradictory
observations of the Tokai to Kamioka experiment (T2K) and NuMI Off-Axis νe

9Some detail on the COHERENT experiment can be found in appendix section A.3.

3.5 NSI measurements in IceCube and beyond 33



Appearance experiment (NOνA), which yield conflicting best fit hypotheses of NMO,
the octant of θ23 and δCP [54, 55].
This work takes a mostly10 model independent approach to searching for NSI
by applying a parametrization that is based on effective matter potentials. This
only includes NSI effects through NC interactions, which mainly impact neutrino
propagation through coherent forward scattering.
Based on this, different approaches to measuring NSI will be discussed in the
following.

10In general, model independence is retained except for the assumptions mentioned above. Investigat-
ing NSI parameters singly however reduces the generality of the approach.
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Neutrino detection 4
The analysis approach taken in this work is based on comparing an expected and
observed neutrino flux. The neutrino sources therefore need to be understood
sufficiently well and their flux is required to be known with a high accuracy in order
to be sensitive to NSI effects. Such data can be obtained from different neutrino
sources which are discussed in sections 4.1 and 4.2. Corresponding to these sources,
various approaches to neutrino detection are presented in section 4.3. This analysis
uses data taken by IceCube DeepCore, an ice Cherenkov detector introduced in
section 4.4, where atmospheric neutrino interactions are detected via the Cherenkov
light produced by charged secondary particles.

4.1 Neutrino sources

Fig. 4.1.: Flux from dominant neutrino sources over neutrino energy, adapted from [56].
The GeV range, which is most important in this work, is indicated with dotted
lines.

35



Different production mechanisms and signal characteristics of sources are relevant
with respect to NSI detection. Due to the L/E dependence of oscillation effects,
NSI signal characteristics can be resolved at different energy scales, with oscillation
baselines at vastly different orders of magnitude depending on the source.
The flux for a number of relevant neutrino sources is shown in figure 4.1 which
showcases the differences in energy spectra. While the from these sources flux
decreases, the interaction cross section increases with energy, as shown in figure
2.4. This, as well as the specific flavor compositions of the respective neutrino signal,
results in diverse detection mechanisms, depending on the source.

Solar neutrinos

As shown in figure 4.2 solar neutrinos occur at energies of approximately 20 MeV
and below, with detection usually being optimized for the higher energy range,
due to the larger cross section. They propagate through solar matter and, at night,
through Earth matter, at distances up to the full Earth diameter, yielding a large
L/E range.
There are two main fusion processes in which solar neutrinos are produced, namely
the proton-proton chain (pp chain) and the Carbon-Nitrogen-Oxygen cycle (CNO
cycle) [57]. On a basic level, the processes involve proton fusion according to

4p → 4He + 2e+ + 2νe . (4.1)

The resulting signal consists purely of electron neutrinos. However, when reaching
the Earth, depending on the observed energy, a majority of these electron neutrinos
have oscillated into other flavors. This creates the electron neutrino flux deficit that
was a first evidence of neutrino oscillation.

Reactor neutrinos

Nuclear power plants provide high fluxes of MeV-range electron antineutrinos. Their
spectrum is a superposition of β-spectra of all present isotopes, with the basic decay
mechanism

n → p + e− + ν̄e . (4.2)

The resulting energy spectrum is shown in figure 4.3 to lie below ∼10 MeV. Detection
is oftentimes done via inverse β-decay (IBD)

ν̄e + p → n + e+ , (4.3)
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Fig. 4.2.: Predicted fluxes for different production processes of solar neutrinos. Neutrinos
produced in the CNO cycle are shown in red, pp chain neutrinos in black. Monoen-
ergetic fluxes are given in s−1 cm−2 and continuous spectra in MeV−1 s−1 cm−2.
This figure is taken from [57].

which has a lower detection threshold of 1.8 MeV [1].
The overall flux and its time variations are known well from reactor monitoring.
Uncertainties, for example on the energy spectrum, are addressed oftentimes by
building dedicated detectors at small distances to the nuclear facilities.

Accelerator neutrinos

Accelerators can produce neutrinos as a secondary beam: Accelerated particles,
typically protons at the GeV range, hit a target to produce charged mesons, which
in turn decay into neutrinos. The charged mesons can potentially be redirected and
selected by particle type, as a means to manipulate the beam of neutrinos that is
produced in their decay. Such a selection would for example yield a mostly pure
muon (anti-) neutrino beam, through a decay of

π+ → µ+ + νµ . (4.4)

Similarly to reactor neutrinos, the expected neutrino flux and spectrum from ac-
celerators is well known. The energy spectrum of the outgoing neutrinos depends
on their emission angle, with the highest energies and energy variations expected
on-axis (that is, parallel to the preceding meson beam). This motivates off-axis
positioning of neutrino experiments, utilizing the resulting approximately mono-
energetic signal [1].
A commonly used categorization of reactor and accelerator neutrino detectors is
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Fig. 4.3.: Interactions of electron antineutrinos in a hypothetical detector (a) based on
IBD, with the corresponding cross section (c), for a reactor neutrino flux (b).
The different units are given in the annotation. The hypothetical detector has
12 t fiducial mass and is positioned at 0.8 km distance from a reactor with 12 GW
thermal power. Figure taken from [1].

into long baseline (LBL) and short baseline (SBL) experiments, with the associated
distances differing between sources. For reactor neutrinos, a SBL is at O(10 m) and
a LBL at O(10 km). The characteristics of accelerator neutrinos motivate to set SBL
at 10 m to 1 km and LBL around 1000 km [58].
The NSI limits obtained from this analysis are not directly comparable to most
accelerator experiments, as their sensitivity to the mass of a possible new mediator
particle makes the results depend strongly on the underlying model [44].

4.2 Atmospheric neutrino production

Atmospheric neutrinos are produced in air showers that cosmic rays induce. In the
following, the relevant characteristics of Cosmic Rays are discussed, followed by an
overview of the produced neutrinos and background particles.
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Fig. 4.4.: Fluxes of different cosmic ray (CR) nuclei in number of particles per energy-per-
nucleus, plotted over energy-per-nucleus. Figure taken from [8].

Cosmic rays

Ionizing particles hitting the atmosphere are denoted CRs. Their overall energy
spectrum can be described through the derivative of the flux ϕ by the energy E as a
power law

dϕ

dE
∝ E−γ . (4.5)

The spectral index γ amounts to ∼ 2.7 [8] within the GeV range. The uncertainty
on this parameter will be introduced as a nuisance parameter in section 7.3.1.
Primary CRs, such as protons, are accelerated in astrophysical sources outside the
solar system. The details of their production are subject of ongoing research [8].
When these primary CRs interact with interstellar gas, secondary CRs are produced.
In figure 4.4, the fluxes of different CR nuclei are shown to decrease over energy.
The vast majority are protons or Hydrogen, making up ∼90 % at 10 GeV.
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In interactions of CRs within the atmosphere, cascades of secondary particles are
produced including atmospheric neutrinos and muons which can be detected in
IceCube [41].

Atmospheric neutrinos

Fig. 4.5.: Fluxes (left) and flux ratios (right) of electron and muon (anti-) neutrinos over
neutrino energy as predicted for the South Pole (SPL). Figures taken from [41].

In the range of 1 GeV to 100 GeV, CRs predominantly produce pions, with contribu-
tions of kaons. Charged pions primarily decay into neutrinos [8] in processes such
as

p + N → π+ + X (4.6)

π+ → µ+ + νµ (4.7)

µ+ → e+ + νe + ν̄µ , (4.8)

and equivalent for π−. This implies a ratio between muon (anti-)neutrinos and
electron (anti-)neutrinos of 2 : 1.
The details of atmospheric particle production and resulting flux are more complex
than what can be covered in this section. This becomes apparent from the verti-
cal neutrino flux, which is shown in figure 4.6a, showcasing the dependence on
different CR primary and secondary particles and, as a result, on the atmospheric
altitude. Figure 4.5 demonstrates the depth dependence of the muon flux. A detailed
description of the resulting features in neutrino production rates can be found in
[41].

40 Chapter 4 Neutrino detection



(a) Vertical fluxes of different particles
constituting or produced by CRs at
>1 GeV. Markers show µ− measure-
ments. Primary CR particles are pro-
tons and electrons near the top of the
atmosphere. Electrons further down
are produced in π0 decays. Neutrinos
and muons are produced in charged
lepton decays such as the one shown in
equation 4.6. Figure taken from [59].

(b) Vertical muon intensity below ground as a function
of depth in km w.e.. This includes atmospheric
muons as well as those produced below ground
level, which predominantly originate from neutrino
interactions. Figure taken from [8].

Fig. 4.6.: Characteristics of CR particles and their secondaries with respect to their vertical
position within the atmosphere or Earth.

Atmospheric muons

The atmospheric muons produced in reactions like 4.6 are a main background for
underground neutrino detectors. At sufficiently high energies (see figure 4.15),
their decay is suppressed such that they can penetrate through kilometers water
equivalent (w.e.) of material. The resulting decrease in flux underground is shown
in figure 4.6b. This illustrates that muons are not expected to enter underground
experiments at directions substantially different from vertically down-going.

.
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4.3 Detection principles

Depending on the neutrino source, there is a variety of detection techniques, all
of which measure neutrinos indirectly through their secondaries. While this work
focuses on IceCube, a basic understanding of other approaches to detecting neutrinos
that are sensitive to NSI is necessary for comparing results between experiments in
section 7.8. Although approaches differ fundamentally there are similarities between
all neutrino detection methods.
Direct detection is not feasible, as neutrinos are only known to interact weakly and
marginally gravitationally (see section 2.2). Instead, secondary particles produced
in neutrino interactions are observed. Cherenkov and scintillator based experiments
measure the light that charged secondary particles deposit within the detection
medium while traversing it. Other than that, there is a variety of different strategies,
depending on the neutrino flavor and energy, and hence their interaction cross
section, spanning from calorimetric to radio detection and time projection chamber
(TPC) approaches.
One more shared trait is that all neutrino detectors mentioned here require shielding
or veto as signatures of neutrino interaction products can be mimicked by a variety
of background sources, such as cosmic muons. Detector sites are hence commonly
chosen to be underground, below kilometers w.e. of natural shielding material.
Active veto is commonly provided using instrumented detector regions or specifically
designed veto detectors around the designated fiducial detector volume.
Approaches relevant for NSI detection can be subdivided into three main groups [19]:

Radiochemical

In the radiochemical approach neutrinos interact with atoms of the detection
medium, producing instable nuclei which are separated and counted when de-
caying. This only serves as a counting experiment, as the detection principle doesn’t
conserve properties of the neutrino such as energy or incidence angle. There are two
elements that are commonly used, the first being gallium, which forms germanium
through

71Ga + νe →71 Ge + e− (4.9)

with a threshold neutrino energy of 0.233 MeV. Examples of this are the Gallium Ex-
periment/Gallium Neutrino Observatory (GALLEX/GNO) and the Soviet–American
Gallium Experiment (SAGE) [19]. The second commonly used element is 37Cl,
similarly forming 37Ar at neutrino energies above 0.814 MeV. This was employed
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in the Homestake chlorine experiment, providing the first hints towards the solar
neutrino problem and hence towards matter effects [18].

Scintillator

Neutrino detection using scintillators is based on charged secondary particles pro-
duced in neutrino interactions. In the scintillating medium, the ionization energy
transferred from the moving charged particle gets isotropically emitted as photons,
which can be detected e.g. using photomultiplier tubes (PMTs). This has the poten-
tial to yield information on neutrino energy and direction - to the extent to which
these are preserved in its interaction. The charged particle’s light emission spectrum
and threshold energy depend on the specific scintillator, with the latter commonly
being dictated by background event rates.
Experiment designs vary strongly, depending on the usage of liquid or plastic scintil-
lators and whether these are used as detection material only or double as neutrino
target [19]. Examples for the latter are the Boron Experiment (Borexino), detecting
solar neutrinos, and the reactor neutrino experiments Kamioka Liquid Scintillator
Antineutrino Detector (KamLAND), Double-Chooz, Daya Bay and the Reactor Ex-
periment for Neutrino Oscillation (RENO). All of these constitute realizations of a
large liquid scintillator volume, surrounded by PMTs. The NOνA experiment detects
accelerator neutrinos using a segmented active volume, where light from single cells
filled with liquid scintillator is detected using avalanche photodiodes.
An example for a fundamentally different scintillator-based neutrino detector is the
Main Injector Neutrino Oscillation Search (MINOS), a sampling calorimeter built
from alternating layers of steel and plastic scintillator, detecting accelerator and
atmospheric muon neutrinos.

Cherenkov detectors

Similarly to scintillation based detectors, Cherenkov detectors observe charged
secondaries from neutrino interactions with a target material. Relevant interactions
are described in more detail in section 2.2.
The Cherenkov effect describes light emission caused by such a charged particle
when traveling through a dielectric medium at a velocity v larger than the phase
velocity of light within the medium c′ = c

n , where c is the speed of light in vacuum
and n the refractive index of the medium. As the charged particle propagates, it
momentarily polarizes the medium, which subsequently emits light as the molecules
return to a randomized polarization. For particle velocities sufficing the condition
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v > c′ the produced light interferes constructively along a cone-shaped front which
is aligned with the particle direction [60]. A schematic overview of the mechanism
is shown in figure 4.7, with the opening angle θC following

cos(θC) = c′

v
≈ 1

n
, (4.10)

with the approximation valid for v ≈ c.
This introduces a dependence of the lower light production threshold Emin of the
charged particle on its rest mass m0 and the detection medium refractive index:

Emin ≈ m0
1√

1 −
(

c′

c

)2
= m0√

1 − 1
n2

. (4.11)

In general, the choice of medium for a neutrino Cherenkov detector is strongly
based on its availability as well as its optical properties, such as the absorption
coefficient and scattering length, which predefine the potential efficiency of a light
detection based experiment. Wavelength dependence of these properties needs to be
considered with respect to the Cherenkov spectrum, the intensity of which increases
towards smaller wavelengths [60]. The Cherenkov detectors most relevant for this
work rely on water or ice. Heavy water, which is used for instance in SNO, is a
less common alternative, with the advantage that the additional neutron available
therein results in a larger number of neutrino interactions with nuclei of the target
medium.
The lower particle energy threshold for emitting Cherenkov light in water or ice
is in the MeV range for electrons and muons. Higher energies imply more light
deposition within the target material. This allows for detection of neutrinos from all
kinds of sources at different energy scales, mostly depending on the detector’s size
and, in order to resolve lower energy events, its instrumentation density.
At the MeV scale, the distance between optical units needs to be at the order of 1 m
or below. Considering cost per module as well as mean free photon paths in the
available detection media leads to experiment designs where the walls of a compact
volume are instrumented with inwards facing modules. Such a setup, found for
example in the Super-K experiment, enables detailed resolution of the Cherenkov
cone, which drives the interaction reconstruction [61]. Super-K is consequently able
to reconstruct event properties at neutrino energies of few MeV, including solar,
atmospheric and accelerator neutrinos.

The size and shape of the photon pattern as well as the number of photons produced
in an interaction depends on the energy it deposits. Hence a detector designed for
larger event energies can be instrumented more sparsely.
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Fig. 4.7.: Schematic of the Cherenkov effect: The red arrow denotes a negatively charged
particle traveling at a velocity larger than c′ which polarizes the medium sur-
rounding it, inducing light to be emitted and constructively interfere along a cone
with the Cherenkov angle θC .

Secondary muons produced in neutrino interactions have the capacity to penetrate
through matter at large lengths. Below ∼ 100 GeV, the Cherenkov light output along
the muon track is mostly constant and propagation lengths range up to O(100 m).
Estimating the energy deposited in such an event therefore requires kilometer-sized
detectors that can resolve the full track length. Above the GeV range, significant
fractions of the total energy are deposited within stochastic losses along the muon
track, as can be seen in figure 4.15 and is explained further in section 4.4.4. The
dependence of the loss intensity and number on the muon energy provides an
additional measure of the total energy.
These event signature characteristics inspire a different experiment design for high
energy neutrino detectors, using a target material that is available in high quantities
and at low cost. Examples for this are ice and water, which are used in IceCube [62]
and the Astronomy with a Neutrino Telescope and Abyss environmental Research
project (ANTARES) [63], respectively. For these, large volumes are instrumented in
a three-dimensional grid with inter-module distances at the order of 10 m.
This enables neutrino detection far beyond the TeV range [64], up to which oscilla-
tion phenomena can be observed. At these energies, the Earth becomes increasingly
opaque to neutrinos, impacting the flux of neutrinos traversing it significantly [65].

4.4 Neutrino detection in IceCube and DeepCore

IceCube [62], together with DeepCore [66], is an example for such a Cherenkov
detector, utilizing a cubic kilometer of ice at the South Pole as detection medium.
Neutrino interactions within the ice produce secondary charged particles which
in turn produce Cherenkov light. The optical properties of the instrumented ice,
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which are discussed in 4.4.3, allow for detection of this light with little loss due
to absorption and at correspondingly large distances. Ice with these properties
is uniquely available in Antarctic glaciers [67], motivating the location of the
experiment at the South Pole. As IceCube consists of a three-dimensional array of
5160 individual light detection modules, neutrino interactions (called events) are
observed as extended three-dimensional patterns of photon detections. These need
extensive triggering and processing routines in order to extract the relevant event
data.
Detector geometry and individual modules are discussed in sections 4.4.2 and 4.4.1,
respectively. An overview of the signal processing is given in section 4.4.6, with
details on event and noise characteristics presented in sections 4.4.4 and 4.4.5.

4.4.1 The Digital Optical Module

The basic detection unit of the IceCube grid is the digital optical module (DOM), a
pressure-resistant spherical detector designed around a single PMT. As shown in
figure 4.8, this PMT faces downwards, in order to increase the sensitivity to upwards
traveling photons, which are less likely to be caused by background [62].
The working principle of the PMT is shown in figure 4.9: Incident photons cause
the emission of electrons from the cathode through the photoelectric effect. These
electrons are amplified iteratively via multiple dynodes and ultimately read-out at
the anode. The outgoing signal consequently has a time-dependent shape conserving
the photon arrival time and an amplitude that depends approximately linearly1 on
the number of coincident photons [69].

Standard IceCube modules contain 252 mm R7081-02 Hamamatsu Photonics PMTs,
which are responsive to light at 300 nm to 650 nm with a quantum efficiency (QE) of
25 % at 390 nm2. The wavelength-dependent photon acceptance of a full IceCube
DOM, as is shown in figure 4.10, is significantly below these 25 %, due to the module
size as well as the optical properties of the pressure vessel and optical gel. Note that
in order to detect Cherenkov radiation, the acceptance in the lower wavelengths
that the DOM covers is of the highest importance.
Inside a DOM, as shown in figure 4.8, the PMT is shielded from magnetic field of the
Earth by a Mu-metal grid. Dedicated boards provide communication, signal process-
ing and transmission structures. Optical calibration across modules is done using
LEDs installed on the so-called flasher board. In dedicated calibration detector runs,

1The assumption of linearity can be made for the event energy range considered in this work [68].
2The QE of a PMT characterizes the number of electrons released from the cathode per incident

photon.
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Fig. 4.8.: Mechanical layout of an IceCube DOM, showing the PMT as its core component
as well as electronics for calibration, signal processing, communication and high
voltage (HV). Figure taken from [62].

Fig. 4.9.: Schematic of the functioning principle of a PMT, taken from [69].

these LEDs are pulsed and the resulting light curve is measured by all surrounding
DOMs.
Each DOM is connected to the surface for power and data transmission and is en-
capsulated in a spherical glass housing with a diameter of 330 mm and thickness of
13 mm to withstand the pressure of the ice around it. The overall detector capacity
to observe neutrino interactions in specific energy ranges, however, does depend
as much on the individual modules as on their relative distances and orientation,
which is descried in the following section.

4.4.2 The detector geometry

The 5160 DOMs that constitute IceCube an DeepCore are deployed within a cubic
kilometer of antarctic ice as shown in figure 4.11. They are arranged along 86
cables, the so-called strings, at depths of approximately 1450 m to 2450 m, with the
ice above providing shielding from particles other than neutrinos. At the surface all
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(a) Number of simulated Cherenkov photons
emitted along one meter of muon track, not
including any secondary cascades, for an
IceCube DOM with the acceptance given in
4.10b.
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(b) Wavelength-dependent photon acceptance of
an IceCube DOM with respect to the overall
module size, including PMT properties as well
as the impact of the DOM glass and optical
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Fig. 4.10.: Wavelength-dependent photon detection characteristics of an IceCube DOM.
In comparison to the respective characteristics of the PMT only, the largest
difference is a geometrical factor, as the shown DOM properties include all
photons arriving at the DOM surface. Both figures are taken from [67].

strings terminate inside the IceCube laboratory (ICL), a facility where all necessary
infrastructure, such as power supplies and data storage, but also the hardware used
for online processing (see section 4.4.6), is located.
The original IceCube detector layout is a hexagonal grid with horizontal distances
of ∼125 m between strings and vertical distances of ∼17 m between modules. Its
overall geometry is designed for imaging light patterns from neutrino events with
energies of Eν ≥100 GeV.
IceTop is a surface extension of IceCube that was designed as an array of 81 stations
which each hold four DOMs within two water tanks [62]. While being optimized for
detection of air showers, IceTop signals can also be used as a veto for IceCube.

DeepCore is the more densely instrumented region in the bottom center of IceCube
and was completed in 2011 [66]. Its horizontal and vertical instrumentation density
exceeds that of the rest of IceCube, due to eight infill strings with reduced vertical
inter-DOM distances of ∼7 m. A subset of 50 DOMs deployed along these strings are
high quantum efficiency (HQE) modules. These differ from standard IceCube DOMs
only in the type of PMT, R7081-MOD, which provides approximately 40 % higher
QE at 390 nm [66].
Deploying DeepCore at the center of IceCube allows for using the surrounding
strings as veto, while the choice of vertical position at depths of 2100 m to 2450 m is
motivated from the optical properties of the ice, which are discussed in section 4.4.3.
This situates DeepCore below the so-called dust layer where impurities from the
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Fig. 4.11.: Schematic of the IceCube neutrino observatory, including the DeepCore sub-
array. The DeepCore volume and strings are shown in blue, with the DeepCore
veto layer indicated in light gray. The orange arrow shows a possibility for muon
tracks to enter the detector without passing close to a string through a so-called
corridor. The dust layer, indicated in dark gray, is shown in figure 4.12 to impact
the optical properties of the ice. This figure is adapted from [70].

atmosphere are enclosed within the ice and impact its optical properties throughout
an extended vertical range [66]. Above the dust layer, additional IceCube DOMs are
deployed along the DeepCore strings to act as a veto cap for the DeepCore volume
below.
In the coming years, seven additional strings with multi-PMT-modules will be
deployed within the DeepCore region, constituting the IceCube-Upgrade. The more
dense instrumentation as well as photon coincidences between PMTs of the same
module will allow for individually3 detecting interactions of neutrinos with energies
of 1 GeV and increase the detection rate throughout the GeV range. This is expected
to significantly improve the sensitivity to oscillation effects [72].

4.4.3 Ice as a detection medium for Cherenkov light

The capacity of in-ice detectors to detect Cherenkov light from the mentioned signa-
tures strongly depends not only on the deployed detector hardware detailed above,
but also on the properties of the ice. These are unique in the 2.8 km thick Antarctic

3Lower energy events can not be distinguished from random background. Large numbers of coincident
low energy events, which are for example produced by Supernovae, can be detected as an excess
over the expected background [71].
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glacier, which provides a large volume of potential detection material in a setting of
extremely low background [67].
Measuring and modeling these optical properties in detail is a crucial and ongoing
endeavor. The relevant quantities are the effective scattering and absorption coeffi-
cient (or respective length), which are shown in figure 4.12 as they are implemented
in the model used for this work.

Pristine glacial ice

Fig. 4.12.: Ice scattering and absorption coefficients (left axis, in blue) and lengths (right
axis, in red) at 400 nm for the entire vertical detector range, as implemented in
current ice models [73]. Detector sections are indicated as background color.
Taken from [74].

At depths where IceCube is deployed, the ice is approximately 40000 − 100000 years
old [74]. Airborne dust particles that were present in the atmosphere at the time of
deposition of the ice result in distinct layers. Consequently, the optical ice properties
primarily vary over depth. The closer these layers are to the bedrock underneath,
the more they adapt to its shape, resulting in vertical variations and an overall slope
called the ice tilt [67], as can be seen in figure 4.13a.
A second reason for the mainly vertical variations of the ice optical properties is
their dependence on pressure. The ice forms over time from snow accumulating
in layers, with initially extremely short scattering lengths due to the contained air.
At depths where IceCube is deployed, the pressure and temperature suffices for
enclosed air bubbles to disintegrate: Their molecules get incorporated into the ice,
forming so-called craigite, the refractive index of which differs negligibly from that
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(a) Radar measurement of the Antarctic ice sheet,
showing how the deeper ice layers adapt more
to the contour of the bedrock [75].
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properties around IceCube
DOMs.

Fig. 4.13.: The Antarctic glacier ice has complex properties relevant for the performance of
IceCube.

of ice [74]. As the difference in refraction index between air and ice otherwise is
a main factor in scattering, effective scattering lengths reach up to 100 m once this
effect takes place in the depth range starting few hundreds of meters above IceCube,
as shown in figure 4.12.
Further complication in the optical properties of the ice is caused by the drift of
the Antarctic glacier towards the coast at a velocity of approximately 10 m per year.
This flow impacts the crystalline structure and its birefringent optical properties,
which ultimately causes anisotropic light attenuation [76]. A rigorous study of ice
properties and the respective detector calibration can be found in [74].

Ice properties after detector deployment

Unlike the pristine so-called bulk ice, the ice within drill holes has been re-frozen
recently and abruptly, forming what is called hole ice. This process does not pre-
serve the ice layering and changes the characteristics of air inclusions, which do
not collapse under the ambient pressure. Re-freezing of the hole ice after string
deployment starts at the boundary to the still frozen surrounding bulk ice. It is as-
sumed that consequentially, air bubbles are pushed towards its center. They form the
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so-called bubble column [67], the shape of which induces an angular dependence of
the scattering probability. Modeling of the re-frozen ice as a major measurement
uncertainty will be discussed in section 7.4.

Combining ice and hardware

To characterize detection capacities of a Cherenkov detector within the Antarctic
glacier, properties of ice and detection hardware are treated jointly. As a result,
angular module acceptance includes not only the DOM hardware and setup but also
the local ice properties, which will be discussed in more detail in section 7.4.
Other parameters need to be attuned between detector and ice. The wavelength-
dependence of the photon detection probability is impacted by the ice absorption as
well as the PMT acceptance shown in figure 4.10, which are both optimal around
400 nm [67], a range that also contributes to the Cherenkov spectrum.

4.4.4 Event characteristics

Fig. 4.14.: Photon signatures of neutrino events, with the interaction type indicated above
and the topology as seen by IceCube indicated below. Modified from [77].

Neutrino events leave different photon patterns within IceCube, depending on the
neutrino flavor and interaction type. The potential of a detector of distinguishing
between these decreases with event energy, which implies less overall light output as
well as smaller propagation distances of charged particles produced in the interaction.
In figure 4.14, event signatures are shown for interactions relevant at the GeV range
that were discussed in section 2.2.
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In NC interactions of all neutrino flavors, a hadronic cascade is produced, resulting
in an approximately spherical light deposition that is denoted as cascade-like. In
contrast, signatures of CC interactions differ between flavors. The basic principle for
all neutrino CC interactions is the same, being the production of an initial hardonic
cascade together with a lepton of the same flavor as the neutrino. The lepton induces
track-like light emission before being captured or decaying and producing a second
cascade. The decay lengths of the leptons, however, differ significantly depending
on the flavor and event energy, which results in more or less extended signatures.
In tau neutrino CC interactions, the secondary tau that is produced along with the
initial hadronic cascade decays after τ τ

life = 0.29 ps [8]. At the GeV range considered
in this work, this implies that the tau travels a mean distance of O(cm) at most
before decaying, which can not be resolved in DeepCore. Consequently, the overall
interaction signature is cascade-like, consisting of the initial cascade, the light
emitted along the tau track and the terminal hadronic or EM cascade, depending
on the decay channel of the specific tau. As these tau decay channels potentially
include secondary neutrinos, not all of the initial tau neutrino energy is necessarily
deposited within the detector. The decay channels also include the possibility of
producing charged leptons. As these carry only a fraction of the initial tau neutrino
energy, they are not expected to induce observable tracks for event energies in the
GeV range [78].
In electron neutrino CC interactions, the secondary electron is captured at a short
distance [79], leading to overlap of the initial and terminal cascade and an overall
cascade-like topology.
In contrast, the secondary muon produced in a muon neutrino CC interaction
deposits a large fraction of its energy not in its terminal EM cascade but along
an elongated path through the ice, constituting a so-called track-like signature.
When assuming the energy loss of minimum ionizing muons, which is 0.22 GeV/m,
as shown in figure 4.15, track lengths are approximately 4.5 m per GeV. This
assumption is also made for the number of photons detected in an IceCube DOM
per meter of muon track that is shown in figure 4.10a. A more realistic scenario,
especially for the higher energies considered in this work, would also need to include
secondary cascades that occur along the track, which can locally increase the energy
loss.

As a result, in the GeV range, DeepCore can differentiate between muon neutrino
CC interactions and all other types of interactions and specifically not between
neutrinos or anti-neutrinos of any flavor [66]. Especially at low energies, the
distinction between track-like and cascade-like events becomes error-prone due to
the small track lengths as well as the low number of detected photons (see section
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Fig. 4.15.: Average energy losses per distance as a function of the kinetic energy of muons
in ice. Below 100 GeV, the behavior can be described well as that of a minimum
ionizing particle. Figure taken from [80], based on [81].

5). Track-like events can therefore be selected more accurately than cascade-like
events, which makes DeepCore data sets specifically sensitive to deviations from the
expected muon neutrino CC event rate.

4.4.5 Background and noise

There are different sources of unwanted signals, originating from two basic cate-
gories: Firstly, background events, which are actual interactions producing Cherenkov
light, but caused by something else then neutrinos. Secondly, charge or light pro-
duced randomly. Characteristics of these differ depending on their source, requiring
different rejection methods.

Background events

Background events commonly originate from charged particles that have not been
produced in neutrino interactions. While the approximately 1.5 km of ice above
the detector effectively shield it from most such particles produced on or above
the surface, e.g. from cosmic or atmospheric sources, muons with sufficiently high
energies are able to enter the detector.
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Using the fact that signals of neutrino-induced events start within the ice, this kind
of background can be rejected by vetoing any events that start outside or close to
the border of the detector. This needs to take into account the detector geometry,
as it provides un-instrumented corridors where charged particles have a relevant
chance to pass through without the light they emit being detected. Such a corridor
is indicated in figure 4.11.

Random noise

A main random component in IceCube is dark noise, which describes a PMT observ-
ing a signal that was not caused by a photon but for example from thermal emission
of electrons from the cathode. The dark noise rate depends on the cathode area
and quantum efficiency of the PMT as well as the module temperature and the time
since a module was deployed.
A second component are random bursts of correlated photons which originate from
radioactivity of the glass pressure sphere [82]. Overall random noise rates in IceCube
and DeepCore are on average 510 Hz and 590 Hz, respectively [62].
This kind of noise has a rate-dependent probability of passing the coincidence-based
trigger criteria described in section 4.4.6, but can be reduced with more informed
cuts that are given in section 5.2.

4.4.6 Data aquisition and on-site signal processing

Photons detected by a PMT are initially available as a voltage waveforms. Digitizing
them, extracting information on the photon hit and combining single hits based on
their origin - or rejecting hits that are not caused by neutrinos - is done through
extensive data triggering and processing.

In-ice triggering

Once photons hit the cathode of a PMT, the produced photoelectrons are amplified
by the dynodes shown in figure 4.9. The output signal is a time-dependent voltage
curve which is captured if the observed voltage exceeds a threshold value. The
total charge produced within the PMT upon photon arrival can be determined from
integrating over the signal. It is interpreted as the number of initially released
photoelectrons and therefore commonly given in units of photoelectrons (PE)4 [62].

4PE are calibrated per DOM via the PMT operating voltage.
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The above mentioned threshold is typically set to a value corresponding to 0.25 PE.
For each threshold-exceeding waveform, a total of 6.4 µs are digitized coarsely
binned in a Fast Analog-to-Digital Converter (FADC). In parallel, the first 427 ns of
a threshold-exceeding waveform are digitized using Analog Transient Waveform
Digitizers (ATWDs) [62]. The ATWD information of a waveform is sent to the ICL
only if coincidence criteria are met. These are based on the so-called hard local
coincidence (HLC) criterion which requires that two or more DOMs that are direct
or next-nearest neighbors on the same string register hits within a time window of
±1 µs. Any other signal passing the module triggering threshold is classified as soft
local coincidence (SLC) hit.
A simple multiplicity trigger (SMT)-N requires N HLC hits within a certain time
window. In case of DeepCore, that is an SMT-3 trigger applied to DOMs within
the DeepCore fiducial volume5, with a time window of 2.5 µs. If trigger conditions
are met, all hit data is combined into an event within a time window of −4 µs to
6 µs6 with respect to the triggering HLC hit [66, 77]. The trigger frequency for
DeepCore is approximately 250 Hz and dominated by multiple magnitudes by muon
background (see section 5).

Processing and filtering within the ICL

Within the ICL, meta-information such as the calibration and status of all individual
DOMs for the respective run7 is used to extract information on single photons from
the waveforms, such as photon arrival time and charge. The latter acts as a means
to determine whether coincident photons were observed in the waveform. These
are stored per event in a so-called pulse map.
The pulse maps are run through so-called hit-cleaning to reduce unphysical SLC hits.
This is based on Radius-Time-cleaning (RT-cleaning), which is commonly seeded
with HLC hits. Hits that are outside a 125 m radius and 500 ns time range of other
hits are in this way rejected in an iterative approach [77].
Based on this cleaned pulse map, some event properties like vertex position and
direction are obtained from a basic and fast reconstruction, since they are needed
for event filtering. The DeepCore filter is designed to reject triggered dark noise and
muon background and uses DOMs outside the DeepCore fiducial volume as veto.
The filter rejects hits in veto DOMs if their vertex and time correspond to a positive
velocity close to c with respect to the center of all observed hits. The reasoning
behind this velocity cut is that such a behavior would be consistent with observing

5The volume indicated in figure 4.11, below 2100 m.
6Time windows can be extended if additional hits are triggered.
7A run commonly has a duration of 8 h.
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atmospheric muons.
The rate of events passing the DeepCore filter amounts to approximately 15 Hz [83],
which is low enough for data to be transferred north for further so-called offline
filtering. For this, the pulse maps are merged into one file per run, together with the
available meta-information and run data, which then is compressed. Based on these
files, further data selection is done as described in the following section.
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Simulation and data sample 5
In order to be sensitive to NSI effects on DeepCore data, a preferably large neutrino
event sample with low background contamination is needed. This is achieved
through nine stages of processing and filtering of pulses and events.
This analysis is performed by comparing data to expected event counts for different
physics hypotheses. Consequently, large Monte Carlo (MC) simulated sets that
capture all relevant data features are needed. In the following, the multiple steps of
the simulation process will be introduced. Subsequently, the individual processing
levels that are applied equally to data and MC sets are described.
There currently are three sub-samples based on all DeepCore data available to date.
The sets differ as they either focus on adopting well understood techniques or on
maximizing the event statistics. The latter is done in two sets that use different
reconstruction techniques. For this analysis, a high statistics sample that uses
convolutional neural network (CNN) based reconstruction is used.

5.1 Simulation

DOM
response

hole ice

ν

µ
noise
hits

Step 1 Step 2
Step 3

Fig. 5.1.: Schematic overview of the three steps of DeepCore event simulation. In step 1,
particles are generated and propagated. Signal photons and their path through
the ice are simulated in step 2. The detector response in step 3 applies to the
mentioned photons as well as random noise within the modules.
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The simulated pseudo-data sets used for DeepCore oscillations analyses are required
to include signal as well as background and noise at sufficient statistics. Conformity
with data in all relevant characteristics is needed as well, as the simulated sets are
processed using the same triggering and filtering steps that are used for data. This
agreement is mostly achieved directly in simulation, with the exception of some
event categories that are poorly modeled there. These are rejected in the course of
the subsequent event selection.
The simulation process described here is the same for the baseline set, which in-
cludes all nuisance parameters at their nominal value, and the off-nominal sets with
varied nuisance parameters. More detail on their usage and parameter settings can
be found in section 7.4.3.
Simulation of DeepCore data is split into the three steps shown in figure 5.1. Firstly
particle production and propagation, secondly photon production and propagation
and thirdly detector response. The first steps depend on whether neutrinos, atmo-
spheric muons or random noise are simulated.
The respective generated live-times differ as well, due to different requirements and
computational cost. For neutrinos, ∼70 years of detection time are simulated in the
baseline set, corresponding to approximately seven times that of the actual data
sample used for this analysis.
Due to the high frequency at which atmospheric muons are detected, for these,
simulating similarly long detection time would not be computationally feasible and
therefore, only the equivalent to the live-time of the data sample is simulated. As
atmospheric muons only contribute to the final sample at below 1 %, statistical
uncertainties originating from this reduction has negligible effect on analyses.
The homogeneous characteristics of random noise allow for a sample size with a
shorter live-time of approximately one month.

Step 1: Particle generation, propagation and interactions

In a first step, atmospheric muons and neutrinos are generated and propagated,
including production of secondary particles and energy depositions. While this is
necessary for signal and background events, random noise hits are produced directly
at detector response level in step 3.

Neutrinos are created isotropically on a cylinder surrounding the center of DeepCore
and set to interact within the DeepCore instrumented volume. The cylinder size
varies with neutrino energy such that any interactions that have a non-negligible
probability of producing a signal passing the DeepCore trigger are included.
Neutrino cross sections are pretabulated and splined based calculations done with
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the GENIE MC generator [84] (version 2.12.8). The ensuing detector response
is simulated throughout IceCube. Neutrino energies are generated up to 10 TeV,
following a E−2.0 power law spectrum. They are afterwards weighted to match the
expected atmospheric flux energy spectrum [41].
In order to keep computation time low, atmospheric muons are simulated at different
degrees of detail, depending on whether they reach a DeepCore-centered cylinder
with 500 m radius and 150 m length. This uses, directly or through pretabulated
values, a detailed simulation of cosmic rays and associated particle showers using
CORSIKA [85] and the SIBYLL2 [86, 87] model for atmospheric interactions. The
tool providing tabulation and interfaces is the IceCube-internal MuonGun framework.
Propagation of muons and taus, including stochastic energy losses, is done using the
PROPOSAL [88] tool, which includes the local ice properties.

Step 2: Light production

Proceeding from the particles produced in step 1, Cherenkov emission is calculated
using GEANT4 [89]. Due to the higher variance in particle showers at lower
energies, full GEANT4 is evaluated below 30 GeV and 100 MeV for hadronic and
electromagnetic showers, respectively. Above these energies, GEANT4 based shower
parametrizations are used [90].
Subsequently, the produced photons are propagated through the ice until they are
either absorbed or detected. This is done using the IceCube-specific OpenCL based
CLSim [91] software.

Step 3: Detection

For any photons that are observed by a DOM through photoelectrons, the module
response needs to be simulated. Properties of the DOM that enter this step are
the PMT response and module electronics, readout and triggering. In addition,
properties of the pressure vessel and the ice column directly surrounding the strings
are included, a description of which can be found in section 4.4.3. Ice characteristics
are measured through flasher calibration data and are treated together with module
properties such as the intrinsic angular acceptance [76].
In addition to photons produced in step 2, module response to random noise needs
to be simulated. This kind of noise is generated as Monte Carlo photoelectrons
(MCPEs) using the VUVUZELA tool [82]. The photoelectrons are added to existing
events or simulated separately for pure noise events.
Dark noise, such as thermal emission at the PMT, occurs at random times and
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uniformly distributed throughout the event time window. An contribution of low
energy muons that are not individually resolved is included in this as well. Contrarily,
correlated random noise is caused by photon bursts from radioactive decays in the
glass pressure sphere. This is simulated as a Poisson-drawn number of MCPE with
hit times following a log-Gaussian distribution around a random emission.
All registered pulses simulated in the aforementioned steps are subsequently pro-
cessed using the same steps that are used for data. This includes online triggers and
filters, which are discussed in section 4.4.6, as well as the offline event selection that
will be discussed in the following.

5.2 Event selection and processing

The DeepCore data sample used for this analysis consists of a selection of IceCube
runs performed between 2012 and 2021 that are assumed to be free of defects. In
general, the event selection performed on this data is similar to that of previous data
samples, the main difference being its independence of the measured charge values1

which were found to be instable [83].
On order to achieve sufficient neutrino purity of the sample, multiple levels of
increasing complexity are performed on the successively shrinking number of events.
The first levels utilize detector observables or computationally inexpensive recon-
structions, while later ones include high level reconstruction of the contained events.
In the following, after a short discussion of the run selection, levels 3 to 7 are
introduced. This is largely based on the IceCube-internal documentation in [92] as
well as on [83], where new developments with respect to previous procedures [70]
are given. More detail on the reconstruction in level 6 can be found in section 6.

5.2.1 Run selection

The DeepCore data sample includes 9.27 years of DeepCore data, as compared to
∼ 3 years in the sample used for the previous DeepCore NSI analysis [40]. Runs are
selected based on multiple criteria, yielding approximately 95 % of effective total
detector up-time. They are required to be marked as so-called good runs in detector
monitoring, which implies that they are neither calibration runs nor flawed in some
fundamental way. Additional criteria are a duration of at least 2 h with all strings

1Instead, the number of DOMs that detect e.g. > 0.1 PE is commonly used.
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and > 5035 DOMs active. A small number of runs is rejected manually for reasons
such as missing documentation or unstable behavior.

5.2.2 Levels of event selection

The sample is optimized for an analysis of PMNS-matrix parameters through νµ

disappearance. It therefore focuses on the ranges in energy and cosine of the
zenith angle (cos(θ)) where respective oscillation effects in Earth occur. This largely
coincides with regions where NSI effects are present, as described in section 7.1.
Additional criteria are neutrino purity of the sample and agreement between data
and simulation. While this agreement is tested for in numerous variables, it is most
important in the three observables: Reconstructed energy and cosine of the zenith
angle, which are obtained from event reconstruction, and particle identification
(PID), which is derived separately.

Event selection in DeepCore data samples is structured in multiple levels of increasing
complexity and computational cost per event, corresponding to the decreasing
number of events entering a level.
Incoming signals are triggered and filtered on-site as described in section 4.4.6,
constituting the first two levels of processing. The resulting data set at trigger level
is dominated by three orders of magnitude by atmospheric muon background as
well as random noise, as shown in table 5.1.
Levels 3 to 5 are equal for all three DeepCore samples and result in a sample where
event rates from neutrinos and atmospheric muons are at approximately 1 mHz and
random noise rates are more than one order of magnitude lower. In table 5.1, the
development of neutrino and background event rates over the course of this event
selection is shown.
The event selections diverge at level 6, which involves the final event reconstruction.
For the sample used in this analysis, no additional cuts are applied levels 6 to
8. Instead, on these levels, additional information is derived for each event and
variables are calculated on which the final event selection can be performed. The
latter is described in section 5.2.3, with the final sample composition discussed in
section 5.2.4.
Data and MC simulated events are processed equally through the entire selection.
Good agreement between them is only expected in the final sample, as initially,
event types that are not modeled well within the simulation are still present in the
sample.
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Tab. 5.1.: DeepCore data and simulated event rates at different levels of filtering and
selection. Numbers are taken from [92].

Rates [mHz]
L2 L3 L4 L5

Signal
νe CC 1.61 0.95 0.84 0.48
νµ CC 6.16 3.77 3.11 1.39
ντ CC 0.193 0.129 0.119 0.071
ν NC (all) 0.86 0.53 0.46 0.23
Background
MuonGun, atm. µ 7273 505 28.1 0.93
Vuvuzela, pure noise 6621 36.6 0.28 0.07
Total:
MC 13903 547 32.9 3.16
Data 16168 582 31.6 3.15

Level 3

The first offline event selection level includes cuts on available variables that aim
at reduction of muon background and random noise, especially in regions where
the agreement between data and MC sets is known to be deficient. The selection
techniques at this level are required to be computationally inexpensive, as they are
applied to a basically unselected and therefore large event sample.
The origin of regions of the event parameter space with poor agreement between
data and MC samples are effects that are modeled insufficiently in simulation, such
as coincident independent muons or muon bundles. Such events have characteristic
signatures, which allow for rejecting them effectively. Establishing good agreement
is necessary prior to application of machine learning techniques in subsequent levels.
To this end, a total of 12 variables are evaluated and cut upon. These revolve
around the number, detection time and position of signal hits. Cuts that aim at noise
reduction are based on temporal and spacial correlation between hits. As noise
hits often result in low intensity and sparse signal, a 300 ns sliding time window
is applied to observed pulses and is required to contain more than 2 hits at its
maximum.
A fiducial DeepCore DOM range is defined, which excludes the three layers of strings
closest to the detector edge. Vertically, it includes the bottom 50 and 21 DeepCore
and IceCube DOMs, respectively. For the so-called cleaned pulse selection, minimum
numbers of 6 and 3 hit DOMs are required within the overall and fiducial volume.
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Atmospheric muon cuts focus mostly on the vertical position of hits in order to
remove down-going tracks, since muons travel through the upper regions of the
detector before reaching the fiducial volume. Events are rejected if they contain ≥10
pulses observed at z > −200 m at times smaller than the DeepCore trigger time. In
addition, the vertical position of the first pulse in the cleaned pulse series must be
below −120 m.
A second approach to rejecting atmospheric muons uses the number of hits in the
veto region. The ratio between vetoed and fiducial hits is required to be below 1.5.
An upper limit of 7 is set for veto hits that are causal with respect to the event vertex
obtained from a low level reconstruction.
A temporal criterion that aims at the overall signal evolution is that the fraction of
DOMs hit during the first 600 ns of the time window needs to be larger than 0.37,
while ignoring the overall first two hit DOMs.

Cuts that specifically target coincident events use the time difference between the
first and last pulse. Signals from multiple interactions that occur at slightly different
times which are sufficiently close to be summarized as one event can be removed
in this way. This is done for the cleaned and uncleaned pulse series, with upper
thresholds of 5000 ns and 13 000 ns, respectively.
The number of hits vetoed by RT-cleaning is also cut upon in order to reduce events
with multiple hit clusters, with thresholds depending on the number of fiducial hit
DOMs.

Overall, level 3 cuts remove 95 % of atmospheric muons and >99 % of pure random
noise events with respect to level 2 while keeping >60 % of neutrino events. The
resulting overall event rate is at approximately 0.5 Hz and is dominated by atmo-
spheric muons by a factor of ∼ 10 with respect to noise and ∼ 100 with respect to
neutrino events.

Level 4

Based on the preceding rate reduction and with improved agreement between data
and MC sets, applying machine learning (ML) techniques becomes feasible. Level 4
consists of two Boosted Decision Tree (BDT) classifiers [93] which are trained to
reject random noise and atmospheric muons. Their input parameters are selected
from more than 40 variables under the objective to maximal classification power.
Training is performed on a subset of the MC simulated events and tested for over-
training on the remaining MC set.
After applying the first BDT, which focuses on random noise reduction, noise-only
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event rates are reduced by a factor of ∼ 100, to below 0.3 mHz while keeping 96 %
of neutrino events.
The second classifier includes unfiltered measured data in its training, as this consists
of >99 % atmospheric muons. It removes 94 % of atmospheric muons while keeping
87 % of neutrinos. The total fractions of kept events differ depending on the inter-
action type. As a secondary muon produced in muon neutrino CC interactions can
have a signature similar to that of an atmospheric muon, for this kind of neutrino
interaction, the smallest fraction of 82.5 % is kept. The resulting sample is still
strongly dominated by atmospheric muons, as shown in table 5.1.

Level 5

Cuts at level 5 mainly focus on the remaining atmospheric muons in order to obtain
a neutrino dominated sample. Muons that were not rejected at earlier levels are
those of which no or little light is detected in the veto regions. Starting containment
cuts target event signatures that start at the edge of the fiducial volume.
Corridor cuts apply to a scenario where muons pass largely undetected through
uninstrumented parts of the detector which exist due to its almost exactly hexagonal
geometry. An example of this is shown in figure 4.11. Such events are targeted
through the scarce hits they produce in the vicinity of possible corridors. These are
identified beforehand and compared to the approximate particle direction, which is
derived in a simplified reconstruction that assumes an infinite track.
This reduces atmospheric muons by 96 % while keeping 48 % of neutrinos, yielding
rates of approximately 1 mHz and 2 mHz, respectively, and hence achieving a sample
that dominantly contains neutrino events.

Level 6

This is the first stage to differ between the three DeepCore event samples. The sam-
ple used in this analysis was optimized to maximize its statistics. Additional criteria
are good agreement between data and simulation as well as good performance of
the applied reconstruction algorithm, FLERCNN, throughout the included range of
the observables. On this and subsequent levels, no selection criteria are applied.
Instead, high level variables are determined which allow for an analysis specific
event selection that is described in section 5.2.3.
Level 6 is restricted to calculation of computationally relatively inexpensive vari-
ables that are later on used in cuts or to determine the event PID. Some of these,
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like the number of un-scattered detected photons, are associated to the SANTA
reconstruction, which however is not executed for this sample.

Level 7

The final event reconstruction is one of the last stages of the event selection, as it is
computationally expensive and scales with the number of events. This stage is only
followed by steps that require reconstructed quantities as their input.
The most important reconstructed variables are the analysis observables, namely
energy, cosine of the zenith angle and PID. While the latter is estimated separately,
energy and cosine of the zenith angle are obtained by running the FLERCNN recon-
struction [94] which is described in more detail in section 6.4. This reconstruction
is applicable to all events that are still present at this level that meet the SMT-3
requirement discussed in section 4.4.6.
In addition to the event reconstruction, two classifications are performed in FLER-
CNN. One determines to what extent an event is track-like, corresponding to its PID.
The performance of this classifier is discussed along with the final analysis binning
in section 7.1.3. The second BDT classifies how muon-like and event is, a quantity
that is later on used to reduce muon background.

Level 8

In order to further reduce muon background events, a BDT classifier is run at this
level. The input variables of this are the reconstructed vertical position and radial
distance to string 36, at the center of DeepCore, as well as four variables determined
for muon classification in earlier stages. The latter originate from the FLERCNN
muon classification at level 7, corridor identification, and the muon identifying BDT
applied at level 4. The distinction power of the classification is shown in figure 5.2.
Including the vertex position allows to target atmospheric muons that have not
been captured in previous selection levels. Such muons typically enter the detector
through corridors along which no significant light is detected until they reach the
more densely instrumented DeepCore volume. As a result, their vertex position is
reconstructed at the edge and towards the top of the DeepCore fiducial volume.
In comparison, the vertex positions of neutrino events are distributed more evenly
throughout the detector.
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Fig. 5.2.: Rates of simulated neutrino and muon events over their muon BDT classification
values. The training and test sample are shown in dashed and solid lines, respec-
tively. At final level, events with a value below 0.8 are rejected. Plot taken from
[95].

5.2.3 Final level cuts

The various analyses that can be performed on DeepCore data differ with respect to
their signal regions and required data purity. In order to enable adopting analysis
dependent selection criteria, the event sample processing up to level 8 does not
apply all cuts that would be needed for one specific analysis. Instead, it only
applies common cuts and provides all variables that might be used for further event
selection.
The final level cuts applied on the data sample used in this analysis have been
established for a muon neutrino disappearance analysis. They are specific to the
FLERCNN reconstruction and follow two objectives. Firstly, to reject events for which
the reconstruction has poor resolution. Secondly, to constrain the data sample to
event parameter space regions with good agreement between data and simulation
in reconstructed quantities. All involved variables and the applied selection criteria
are listed in table 5.2 and will be described in the following.
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Tab. 5.2.: Final level analysis sample selection criteria along with the individual removed
fraction of the overall sample, based on [92]. Each of the fractions is calculated
with respect to a sample where all preceding cuts are applied. In the final analysis
binning, an upper limit on cosine of the zenith angle of 0.04 is implemented in
order to improve agreement between data and simulation.

Cut name Value Removed fraction [%]
Resolution based
Number of hit DOMs ≥ 7 1.05%
Radial distance < 200 m 0.09%
Vertical position -495 m < z < -225 m 5.48%
Energy 5 GeV < E < 100 GeV 20.70%
Agreement based
cosine of the zenith angle < 0.3 19.66%
Number of DOMs with direct pulses > 2.5 10.50%
Number of hits in the top 15 layers < 0.5 0.03%
Number of hits in the outer range < 7.5 0.001%
Level 8 muon BDT >= 0.8 23.90%

Resolution motivated selection criteria

In order to utilize the improved reconstruction resolution for events that are fully
contained in the densely instrumented DeepCore region, cuts are applied on the
vertical position of the starting vertex as well as on the radial distance to string 36
at the center of DeepCore.
Training of the FLERCNN energy reconstruction network is less accurate for sparsely
populated energy regions, which motivates including only events with reconstructed
energies between 5 GeV and 100 GeV. While for this analysis, higher energies would
be of interest, an improvement of the reconstruction accuracy in this range would
imply partly redeveloping the reconstruction and exceeds the scope of this work.
In addition, events within which less than seven DOMs registered hits are rejected,
as this event property was found to be strongly correlated with energy resolution.

Selection criteria to optimize agreement between data and simulation

Within the data selection obtained after level 8, event parameter space regions with
minor disagreement between data and simulation are apparent. Different event
properties have been found to be correlated with this disagreement.
The mismatch for reconstructed incidence angles above the horizon hints towards
remaining atmospheric muons that are poorly modeled within simulation. This
finding was included by masking two of the originally 10 angular analysis bins
described in section 7.1.3. The upper limit for including events correspondingly
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reconstructed energy [GeV]

(a) Agreement between data and simulation in
reconstructed energy.

reconstructed cos(zen)

(b) Agreement for cosine of the zenith angle. Note
that the final cut on angles above the horizon
is not applied here.

Fig. 5.3.: Comparisons of data and MC simulation in reconstructed observables, prior to
fitting. The binning does not correspond to the analysis binning but is chosen
significantly finer in order to resolve possible disagreement. Plots are taken from
[92].

changes from 0.3 to 0.04 in the final binning.
Similarly, coincident events are not included in the simulation. Their contribution in
the data can be reduced by rejecting events with hits in the upper- and outermost
IceCube DOM layers, as these are likely to be due to atmospheric muon tracks
coinciding with the observed neutrino event.
For events that are composed of coincident random noise hits, individual hit times
are not correlated. Such events can be rejected by requiring a minimum number
of hits that are categorized as un-scattered based on their delay with respect to
the reconstructed source position [83]. Selecting these so-called direct pulses was
initially implemented for the SANTA reconstruction, which is described in section
6.4.

5.2.4 Composition of final sample

In figures 5.3 and 5.4b, the sample is shown in the three observables in which the
analysis ultimately is performed, comparing the observed DeepCore data to the
simulated baseline set2. Since this includes simulated event rates prior to fitting,
some degree of mismatch is expected. The disagreement for angles above the

2This assumes a simpler nuisance parameter interpolation than what is described in section 7.4.3, as
this is used for the νµ disappearance analysis that this sample originally was optimized for.

70 Chapter 5 Simulation and data sample



(a) Development of the event rate over the course
of the event selection, given separately for all
neutrino interactions and background sources.

PID value

(b) Event counts over PID, compared between
data and baseline simulation. The same re-
marks as on figure 5.3 apply.

Fig. 5.4.: Rates and event count agreement at final level. Plots are taken from [92].

horizon, at cos(θ) above 0, motivates the respective cut described in the previous
section.

The event rates at individual stages are shown in figure 5.4a, with the precise final
sample event counts and rates given in table 5.3. The total signal event rate at
final level amounts to approximately 0.6 mHz, with background contamination at
∼0.65 %. In comparison to the previous NSI analysis sample [40], this represents an
increase in signal event count by a factor of three to four.
With respect to the triggered events at level 2, which are shown in table 5.1, close to
7 % of signal events are kept at final level. The largest reduction, by ∼96 %, concerns
muon neutrino CC interactions, which are rejected due to being falsely identified as
atmospheric muons. For background events, depending on their source, a reduction
by six to seven orders of magnitude is achieved.

Based on this approximately pure neutrino event sample that is obtained for both
data and simulation, the analysis approach detailed in section 7 can be implemented.
Firstly, however, more detail on the final event reconstruction is given.
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Tab. 5.3.: Event rates and counts in the final sample, prior to fitting. The listed uncertainties
on the expected event counts are based on the Poisson error of the number of
simulated events prior to weighting. At this stage, disagreement between overall
event rates for data and simulation is expected. Values are based on [92].

Selection Rate [mHz] Overall event count for 9.3 yr Sample fraction [%]
Signal
νe,CC 0.1411 41299±69 23.7
νµ,CC 0.3522 103063±113 59.1
ντ,CC 0.0348 10187±22 5.8
νNC 0.0667 19522±47 11.2
Background
µatm 0.0033 968±57 0.55
noise 0.0006 178±126 0.1
Total
MC 0.5987 175217±258 -
Data 0.5134 150257 -
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Event reconstruction 6
In the context of this work, event reconstruction denotes the derivation of physics
properties of an event from the associated spatiotemporal pattern of detected light
that it includes. For DeepCore analyses, especially neutrino energy and incidence
angle are relevant. Most reconstructions also derive the interaction time and vertex,
yielding an eight-dimensional parameter space.
One part of this work is the development of a testing framework where different
DeepCore event reconstructions can be compared with the purpose of finding the
best reconstruction method for the current DeepCore data sample. Furthermore,
the fundamental performance limits of likelihood based reconstruction methods
are investigated and potential improvements are evaluated. A separate study on
reconstruction performance within the IceCube Upgrade can be found in appendix
A.4.

6.1 Reconstruction challenges in DeepCore

Reconstructing physics properties of DeepCore events can be approached in different
ways, in all of which similar difficulties and trade-offs are present due to detector
characteristics as well as computational limitations.

An event signature is defined through the interaction time t, the position in Cartesian
coordinates x, y and z, the neutrino direction in zenith (θ) and azimuth (ϕ), and
the energy. In the following, a set of values of these parameters, either in true
or reconstructed parameter space, is denoted as event hypothesis. For neutrino
oscillation signals, the main observables are zenith, energy and PID. The latter is not
a dimension of the event parameter space but derived from reconstructed quantities.
Event properties other than these three observables are used for event selection
criteria, for example through containment within a region, temporal coincidence or
direction-dependent instrumentation characteristics, as discussed in section 5.2.
The reconstructed energy can be represented in different ways, corresponding to
the event topologies explained in section 4.4.4. Other than the total event energy,
a subdivision into cascade- and track-energy is of interest, directly or through
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reconstruction of the track length. Track energy represents the photons emitted by a
potential secondary muon while cascade energy corresponds to the initial hadronic
and potential electromagnetic cascade.

The approaches to reconstruct DeepCore events range from ones that very explicitly
relate to physics processes by fitting the Cherenkov cone to more implicit solutions
employing neural networks. While some reconstructions available for DeepCore
events attempt to restore the full eight-dimensional event hypothesis, others con-
centrate on single event properties. The reconstruction techniques relevant for this
work will be outlined in section 6.4.
A focus is set on the pegleg reconstruction, the function principle and shortcomings
of which are discussed in the following. Based on this, studies on general limits and
specific hindrances of reconstruction performance are presented.

As discussed in section 4.4.6, DeepCore data of a single event are available as a map
of timed charge pulses at DOM positions. Reconstructing event properties from this
hit pattern is increasingly challenging the less information on the event is available
in form of hits. Most of the events that trigger DeepCore consist of O(10) hits and
have energies of the order of single GeV.
In DeepCore analyses, event reconstruction is a limiting factor for the sensitivity to
oscillations effects. This is true in more than one way: Apart from the challenge of
reconstructing event properties accurately from only few hits, the size of the data
set increases over time and with improved event selection techniques. Since the
available computing resources do not scale at the same rate, the computational
effort associated with reconstruction is becoming an increasingly relevant factor
for analyses. As a result, a reconstruction needs to be fast, accurate and robust,
which implies reliability of the outcome and applicability to all observed events.
Robustness and speed are impacted by the high dimensional event parameter space.
For most reconstructions, a metric is optimized in order to find the event hypothesis
that best describes the observation. This proofs difficult due to sharp variations
in the applied metric throughout the parameter space, especially when aiming
at reconstruction of the full event hypothesis. These variations are connected to
detector features and can not be modeled analytically in full detail. They are
associated to position dependent ice properties, the quantization of space and signal
that the IceCube instrumentation entails and causality of hits with respect to tested
event hypotheses.
Consequently, robustness and speed cannot simultaneously be at arbitrarily high
levels, which motivates different strategies. There are robust and relatively slow
reconstructions available as well as faster reconstructions that are only applicable
for a fraction of the available events and concentrate on reconstructing single event
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parameters.
For likelihood-based reconstruction approaches, which are discussed in the following
section, the above mentioned trade-offs result in specific implementation choices.
One concerns the choice of minimization technique, which will be discussed in
more detail in section 6.3.4. Also, accuracy and speed contradict each other with
respect to the amount of information included on the detector. Including more
detailed information requires larger memory and more computational effort prior
to the actual reconstruction. These basic considerations concerning robustness,
accuracy and speed need to be considered in the choice of reconstruction approach
and will come up in the following descriptions of existing approaches and possible
improvements.

6.2 Likelihood based reconstruction

Most reconstruction methods mentioned in this work are likelihood based. A reason
for this is the universality and robustness of this approach. It allows to reconstruct
the full event hypothesis and, in an ideal case, has the potential of yielding the best
possible resolution.
Likelihood based reconstruction is performed through optimization of a likelihood
function with respect to the event hypothesis. Both the minimization process and
the formulation of the likelihood are non-trivial tasks which will be described in
detail further on.

The likelihood function LH(ϑ|x⃗) maps the observed hit pattern x⃗ and an event
hypothesis ϑ to a likeliness of ϑ given x⃗ [96]1. Optimizing it with respect to ϑ yields
the event hypothesis that best describes the observed data. For better numerical
stability, the logarithm of LH(ϑ|x), the logarithmized likelihood (LLH), is commonly
used. The information contained in the LLH function can be broken down to a set
of PDFs P (xi|ϑ) which connect any possible hit and event hypothesis. The LLH
function for a given event consisting of n hits x⃗ hence is

LLH(ϑ|x⃗) = log
(

n∏
i=1

P (xi|ϑ)
)

=
n∑

i=1
log (P (xi|ϑ)) . (6.1)

As P (xi|ϑ) can not be described analytically for DeepCore data, no analytical formu-
lation of the overall LLH function can be achieved. Instead, individual PDFs can be
approximated numerically based on simulation. This simulation is either executed at

1Note that LH(ϑ|x⃗) is not normalized and therefore does not return probabilities or denote as
probability density function (PDF).
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run-time, which implies large computational cost, or based on previously simulated
and tabulated events, which provide less accuracy [97].

6.3 The pegleg reconstruction

The reconstruction used for the DeepCore NSI analysis prior to this work [40] is
called pegleg [82]2. Part of this work was its maintenance as well as the evaluation
of its current and potential performance.

Pegleg reconstructs the full event hypothesis in a likelihood based approach that
is described in section 6.2. It utilizes pretabulated simulated information on hit
probabilities for different event types and characteristics (see section 6.3.2).
Based on this, an eight-dimensional parameter space is defined. In section 6.3.1
the details are given of how these dimensions represent the physical properties of
any event type. The data considered per event by pegleg are the associated hits,
specifically their hit times and the positions of the DOMs observing them. This is
discussed in section 6.3.3.
The likelihood formulation as well as different ways to optimize the parameter space
are investigated in section 6.3.4. Since commonly the negative LLH is minimized,
this optimization will further on be denoted as minimization.

6.3.1 Event representation

Neutrino interactions in IceCube and DeepCore produce different photon distribu-
tions, which are shown in figure 4.14 and discussed in section 4.4.4. Internal event
representation in preferably few dimensions is needed for the likelihood formulation
and minimization. The pegleg internal approach to this is shown in figure 6.1.

In order to represent all of the possible topologies, this event representation needs
to include cascade- and track-like events. The latter consist of an initial hadronic
cascade and outgoing muon track, the length of which depends on the muon energy.
In pegleg, this is approximated by allowing for an initial cascade-like light deposition
with variable energy and an outgoing track of variable length which is aligned with
the initial neutrino direction.
The track length is subdivided into 5 m long parts to simplify LLH calculation. Each
of these segments is assumed to deposit the same energy Emin ion = 1.11 GeV within

2The name initially implied this reconstruction to be an intermediate solution, which, however, was
used and built upon persistently through several years.
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Ecasc

Etrack∝Nsegments

angles aligned

event vertex

Fig. 6.1.: Schematic of the pegleg internal representation of a neutrino interaction with an
initial cascade at the interaction vertex and an outgoing track which is subdivided
into 5 m long segments. Cascade and track are assumed to be aligned. Only
vertical variations in ice properties are included, as these can be described in
tables.

the ice in the form of Cherenkov light. The underlying assumption is that the
secondary muon traversing the ice acts as a minimum ionizing particle, as described
in section 4.4.4, with no intermediate stochastic losses. An additional approximation
is made for the photon production times. These are assumed to be the same for all
photons produced in the same track segment or cascade.
As a result, a pegleg event hypothesis has eight dimensions:

• Two parameters, θ and ϕ, for the angle of the incoming neutrino. These are
assumed to be the same for the resulting cascade and track.

• Three parameters, x, y and z, for the position of the interaction vertex.

• One parameter, t, for the interaction time.

• One parameter, Ecasc, for the cascade energy.

• One parameter, Ntrack, for the number of track segments, from which the track
energy Etrack and length ltrack can be derived as Etrack = ltrack

0.222 GeV
m =

Ntrack · 1.11 GeV.

While this event representation is beneficial for a sufficiently simple parameter space,
it has multiple shortcomings. For both the initial cascade and track, the directional
alignment with the incident neutrino is only approximately correct at the energies
considered here [56].
The most obvious shortcoming of the track representation is the quantization into
5 m segments. Furthermore, the assumption of constant muon energy loss per
distance neglects the possibility of stochastic losses during propagation. Also, as
shown in figure 4.15, the muon energy loss changes with its kinetic energy. The

6.3 The pegleg reconstruction 77



assumed mean value of 0.22 GeV/m significantly underestimates losses within the
first segments if initial muon energies approach 100 GeV.

6.3.2 Tabulated hit probabilities

The individual hit PDF values, P (xi|ϑ), are taken from simulated events that are
tabulated beforehand. The tables contain hit probabilities at a generic IceCube DOM
for specific standard cascades and muon track segments. During reconstruction, any
event hypothesis can be approximated by linking, transposing and rotating these as
well as scaling the number of emitted photons.
In order to estimate the PDF of hits at each module, hypotheses are each simulated
100 − 1000 times [98]. Shape and amplitude of the resulting hit time distribution
are stored in separate files and spline-interpolated subsequently. Table dimensions
are the source vertical position and zenith angle, observer position relative to the
source and observation time ∆t relative to the emission [98, 99].photospline tables in a nutshell

2Marcel Usner | SpiceLea Anisotropy Photospline Tables
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Fig. 6.2.: Schematic overview of how photospline tables for cascades are generated. Typ-
ically, 1 GeV cascade are simulated on a grid of zenith angles and vertical (z)
positions. Photons from each cascade are simulated on a half-sphere, as symmetry
in azimuth is assumed. Information is stored per zenith angle of the source, its
z position and the DOM position, with the amplitudes and time profile of the
resulting charge expectation values stored separately. Figure taken from [98].

In figure 6.2, an overview of the tabulation process for cascades is shown. Hit
patterns at all DOMs for cascades (or muon track segments) at different angles
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and positions are simulated multiple times to obtain the expected hit distributions.
Simplifying assumptions are made in order to keep the resulting table file size and
simulation time at a manageable scale. Simulated cascades typically all have an
energy of 1 GeV, making re-scaling of the overall number of hits necessary during
reconstruction. For muons, track segments of few meters length are simulated and
tabulated in a similar manner, assuming minimum ionizing behavior.
In order to reduce dimensionality, the ice characteristics are assumed to be indepen-
dent of the photon direction or horizontal position. Hence, simulating cascades at
different vertical positions and zenith angles suffices to describe the entire detector.
The assumed azimuthal symmetry allows for simulating only half of the solid angle
for each cascade. Photons that are generated within this half-sphere are propagated
through the ice using ray tracing, starting from the photon source [91, 100].
Instead of tabulating the photon flux throughout the ice, which was done in earlier
approaches, tables used in pegleg only include the module response to any photons
that reach them [99, 101]. A generic module is assumed, including information on
module quantum efficiency and angular acceptance as well as local ice properties
such as hole ice, which were discussed in sections 4.4.1 and 4.4.3.

The simplifications mentioned above induce several shortcomings of the information
stored in the tables. Firstly, interpolating between a grid of event hypotheses may
reduce precision. Also, as only the vertical variations of ice properties are included,
the current understanding of the ice can not be fully represented in the tables, while
being included in simulation and analyses otherwise. Simulating only cascades of a
single energy and minimum ionizing muon track segments also induces imprecision.
However, more accurate tabulation would result in larger table files. In the current
state, table look-ups take up ∼ 70% of the total pegleg runtime and a significantly
increased reconstruction time is not computationally feasible.

6.3.3 Hit representation

The data from which pegleg derives an event hypothesis is a pattern of timed charge
pulses and the associated DOM positions.
In pegleg, charge information is not used, as its representation in the simulation is
not sufficiently correct to maintain good agreement with data. At the energy range
considered here most events consist of O(10) hits, which are predominantly caused
by single photons [77]. The mentioned mismatch between data and Monte Carlo
is more important for such low-hit events, as its stochastic nature averages out its
impact for large sets of hits.
In order to formulate a computationally feasible LLH function (see section 6.3.4),
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individual charge pulses are binned in time. In other reconstructions, the first
bin edge is set once a certain charge has accumulated [77]. With pegleg not
including charge information, instead, the first time bin starts at the first hit time
and continues for 5 ns. Since the behavior of a DOM observing additional signals
within the following 45 ns3 is not modeled well, this period is set as a dead-time
after any observed signal. Further hits are treated in the same way as the first one
and each hit bin is attributed a charge of 1PE.

A shortcoming of this hit representation is that it does not make full use of the known
charge pulse features and the detected information. It also differs from the spline
representation used in the likelihood tabulation, which is discussed in section 6.3.2.
However, the simplification it provides allows to formulate a likelihood function the
computation of which is of manageable complexity, as is discussed in the following
section.

6.3.4 Likelihood formulation and optimization

In order to find the best fitting event hypothesis, pegleg optimizes a logarithmized
Poisson likelihood function, LLH(ϑ|x⃗), which compares the measured charges x⃗ to
the expectation µ⃗ per event. The latter is derived for an internal event hypothesis ϑ,
with the expected signal read from the tables described in section 6.3.2.

LLH formulation

The logarithmized likelihood is given by

LLH(ϑ|x⃗) =
NDOMs∑

d

Td∑
t

qd,t ln(µd,t(ϑ)) − µd,t(ϑ) + ln(Γ(qd,t + 1)) . (6.2)

The first sum covers all DOMs that register hits in the observed event. The time
bins of the signal at a respective DOM are iterated over in the second sum. In
combination, this corresponds to the hit number n in equation 6.1. Hence q describes
the observed charge obtained from the measurement x⃗, which in pegleg is set to
1PE. The introduction of the Γ-function would however allow for non-integer charge
values [77].
Information on the detector and its response to light production in the ice enters

3These values have been determined from simulation [77].
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the LLH function through the hit expectation PDFs. These are read from the pre-
simulated tables described above and included in the response matrix R which
enters the expectation values as

µd,t =
S∑
s

Rtype
d,t,s(x⃗d, x⃗s, θs, ϕs, ∆td,t,s) · Es + nd,t . (6.3)

The total of S sources s can be cascades or track-segments, which is indicated
in the response matrix as type. This makes R a two-dimensional matrix with
S × (NDOMs · Td) elements, with Td the number of time bins in DOM d. The content
of the matrix depends on the position of DOM d, which is stored in data x⃗d, the
positions y⃗s of the light sources that the event hypothesis is composed of, their
azimuth and zenith angles ϕs and θs, and the differences between photon emission
and detection time ∆td,t. Energy Es is deposited in form of photons by source s. The
expected dark noise rate nd,t per DOM and time interval is drawn from calibration
information.

LLH minimization

Within pegleg, the optimum of the negative LLH described above is found using a
seeded minimization. The aim of this is to reconstruct the event hypothesis ϑ best
fitting the observed data x⃗. Minimization therefore applies to the underlying set of
light sources and their respective properties defined through ϑ within the boundaries
given based on the event representation.

Data

Seeding

Layer 1

optimizes
x, y, z, t, θ, ϕ

calls L2 for ET , EC

Layer 2

optimizes ET

fixed from L1:
x, y, z, t, θ, ϕ

calls L3 for EC

Layer 3

optimizes EC

fixed from L1:
x, y, z, t, θ, ϕ

fixed from L2: ET

Result ECET , ECx, y, z, t, θ, ϕ, ET , EC

Fig. 6.3.: Schematic overview of the three layers of minimization within the pegleg event
reconstruction. In a nested approach inner minimization layers are target func-
tions of outer ones.

For technical reasons, minimization is subdivided into three layers, in which the
energies of individual sources (layer 3), number of sources (layer 2), and other
event parameters (layer 1) are optimized in a nested implementation [102, 103].
Parametrization and seeding algorithms are provided outside the three layer opti-
mization [104]. Different fast seeding algorithms are used for the minimization in
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layer 1, some of which are fast simplified reconstructions.
The three minimization layers are schematically described in figure 6.3. Each layer
calls the subsequent one as as the target function of the minimization it performs.
Parameter values that constitute the hypothesis tested in layer i are handed over to
layer i + 1 and fixed therein.
The likelihood space in layer 1 includes the three spacial dimensions, x, y, z, inter-
action time t and angles θ and ϕ. In these dimensions, the likelihood space has
features that are hard to minimize (see section 6.6). This motivates the application
of computationally expensive global algorithms such as Multimodal Nested sam-
pling (MultiNest) [105]. Other minimization techniques have been investigated for
example in [102] and [106]. More detail on the individual layer 1 minimization
techniques can be found in section 6.6.4.
In layer 2, the track energy ET is optimized through the number of minimum ioniz-
ing 5 m segments that represent an outgoing muon track. Given the relatively small
number of possible track lengths this is done as a scan, starting at a pure cascade
hypothesis and adding segments successively. The number of segments directly
corresponds to the number of columns of the response matrix R, which has to be
adapted accordingly in each step.
Layer 3 finds the optimal cascade energy given the parameter values from layers
1 and 2 by differentiating the LLH and applying the Newton method to find its
minimum.

This way of minimizing the LLH yields reliable and reproducible results while being
computationally expensive due to the multiple minimization layers and the globally
operating algorithm in layer 1. In section 6.5, the performance of pegleg will be
compared to other reconstruction algorithms that are introduced in the following
section.

6.4 Existing alternatives

Beyond pegleg, there are multiple approaches to reconstructing DeepCore events
that were developed later or in parallel. These can be subdivided into reconstructions
that deduce the full event hypothesis in contrast to those which concentrate on a
subset of the parameters. All implementations approach the trade-off mentioned in
section 6.1, between robustness, accuracy and speed, differently. Likelihood based
reconstructions mainly differ in how the hit PDFs are obtained and stored.
A study performed as a part of this work was originally aimed at finding the best
performing reconstruction for oscillations analyses on the current DeepCore data
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sample. To this end, pegleg was compared to the RETRO and the combined SANTA
and LEERA reconstructions [97].
Since then, the FLERCNN [94] reconstruction was developed, which is used in the
data sample that this NSI analysis is based on.

6.4.1 SANTA and LEERA

The main observables for oscillations analyses are the neutrino zenith angle and total
energy. These are reconstructed by the SANTA and LEERA algorithms, respectively.
The underlying approach focuses on speed, yielding a simplified algorithm that is
only applicable to a fraction of the events in a DeepCore sample.
The principle used in SANTA is a χ2 fit to the arrival times of photons that are
assumed to lie on the Cherenkov cone, as shown in figure 6.4. Such photons are
required to be only minimally scattered, which is why only a subset of the detected
hits can be used for this reconstruction. The respective hit selection is based on the
delay that scattering induces with respect to direct hits on neighboring DOMs [97].
In cases where less then five filtered hits remain in an event SANTA is not applicable.
While SANTA is implemented with a focus on reconstructing the direction, it also
returns an estimate of the track start- and end point.
The subsequently performed LEERA reconstruction of the event energy is table based.
It optimizes a simplified likelihood that solely regards which DOMs observed any
or no hits. Its event hypothesis constitutes an initial cascade and aligned outgoing
track, with their angle and end point fixed to the values obtained beforehand [83,
92].
The fraction of events reconstructible in SANTA in comparison to pegleg strongly
depends on the event type and data sample and is between 20 % and 40 % [83].
This reduced applicability makes SANTA and LEERA not universally comparable
to reconstructions of the full event hypothesis, such as pegleg or RETRO, which is
described in the following.

6.4.2 RETRO

In contrast to SANTA and LEERA, reconstructions like RETRO and pegleg are able to
utilize scattered light. The relevance of this becomes apparent from the scattering
lengths at typical Cherenkov wavelengths, which have been shown in section 4.4.3
to be below the distances between DOMs. The reconstruction approach of RETRO is
similar to that of pegleg, both being likelihood-based and using presimulated tables.
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Fig. 6.4.: SANTA reconstructed muon neutrino CC event, where solely hits on string 81 are
considered. Hit times are those of the first pulse in the respective DOM. Figure
taken from [97].

It aims at being applicable to the same events as pegleg while being faster and more
accurate. This similarity allows for a direct comparison in section 6.5.

Details that differ between the two reconstructions are the minimization algorithms,
the fact that seeding is included in the RETRO reconstruction process, and the
tabulation generation and compression.
The tabulation process of RETRO includes similar assumptions as that of pegleg,
for example that ice properties purely change vertically. It differs mostly in being
light-source-based: Photons are traced from DOMs through the ice to their source.
In this way, only detectable photons are simulated [97].

6.4.3 FLERCNN

The FLERCNN reconstruction takes a fundamentally different approach from those
described above. Instead of tabulated likelihood values, a neural network provides
the connection between the hit pattern and the full event hypothesis [94]. A CNN is
trained to identify event patterns, similarly to how this kind of network architecture
is commonly applied for image classification in translation invariant settings [94,
107, 108]. The required network complexity is thereby correlated with the image
complexity.
Apart from its specialization on event energies below 100 GeV, FLERCNN is funda-
mentally similar to preexisting IceCube event reconstruction CNNs [109]. It consists
of multiple individual networks for different tasks, namely the regression for event
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energy, zenith angle and vertex as well as classifications of how cascade-like and
muon-like an event is [110].

6.5 Performance of pegleg with respect to other
reconstructions

Since multiple reconstruction approaches are available for current DeepCore data
samples, one part of this work was to set up an environment and decide on metrics to
optimally compare different reconstructions. As the individual reconstructions have
been developed separately, they do not all use one common interface, framework,
programming language or data format. However, an accurate comparison requires
that all considered reconstructions run on the same set of simulated events4, con-
trolled through the same software and on the same hardware, since computational
performance is evaluated as well.
To this end, the source code of all compared reconstructions was included in the
OscNext metaproject, stored in [111] within the IceCube Apache Subversion (SVN)
repository. This was set up on the IceCube high throughput (HT) Condor [112, 113]
computing cluster with modular wrapper scripts. These use a common interface and
are designed to make the available set of reconstructions easy to run, extend and
evaluate [92, 114].
The comparison metrics need to express the requirements of oscillation analyses,
which are strongly impacted by the resolution of reconstructed observables. Also,
computational capacities need to be taken into account, since current DeepCore data
sets that are optimized for high statistics contain approximately three times more
events than previous samples [40, 92].
As a measure of the reconstructed parameter resolutions the range between the
25 % and 75 % quantile in each bin is used. This is called the 50 % inter-quantile
range (IQR). A common binning scheme is applied for all reconstructions, using ten
logarithmically spaced energy bins between 1 and 100 GeV.
In addition to the resolution, the median is investigated to account for systematic
deviations. Both are regarded depending on the true neutrino energy as well as
the number of hit DOMs, called channels, since resolutions are known to depend
on these. Run-times are monitored externally for evaluation of computational
performance.

4Here, a ∼3 % subset of the muon neutrino CC events simulated as described in section 5.1 is used to
run all reconstructions on.
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(a) Run-times per event for the RETRO (in
green) and pegleg (in blue) reconstruc-
tion, with pegleg seeding (in orange)
listed separately.

(b) Relative error of the total energy reconstructed
by pegleg and how it depends on the true neu-
trino energy. Median and 50 % IQR are indi-
cated in red.

Fig. 6.5.: Evaluation of the reconstruction performance is based on computational cost
(left) and resolution in the reconstructed parameters (right).

6.5.1 Run-times

Reconstruction time becomes more relevant with growing data samples. While
SANTA and LEERA only need seconds to reconstruct single events, they are not
applicable to most DeepCore events. More complex reconstructions, such as pegleg,
take minutes per event. For the O(106) data- and Monte Carlo events within current
DeepCore samples, one minute of reconstruction time per event implies at the order
of 105 CPU hours of sample processing time. This motivates finding the fastest
reconstruction for the full event hypothesis.

Figure 6.5a shows reconstruction durations per event for RETRO compared to
pegleg and the run-time of its default seeding algorithm. The peak positions of the
distributions differ by approximately a factor of two between pegleg and RETRO. In
addition to that, the outliers towards longer reconstruction times in pegleg reaches
up to 10 min and beyond, which is not the case in RETRO. Seeding takes O(s) and
is therefore negligible.
Summarizing, reconstructions that concentrate on single event parameters are a
factor of 10 − 100 faster those that reconstruct the full event hypothesis, among
which RETRO is to be preferred.

6.5.2 Energy resolution

To compare resolutions of reconstructed parameters, the inter-quantile range is the
preferred metric. Resolutions are known to depend on true neutrino energy. This is
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apparent from figure 6.5b, where the relative error5 in reconstructed energy is given
together with its 25 %, 50 % and 75 % quantiles.
For neutrino events with energies of 10 GeV and less to enter a data sample, over-
fluctuation is likely, which means that an event contains more hits than expected on
average. This increases its probability to be reconstructed with an energy larger than
the truth. In order to represent such biases, comparisons between reconstructions
include both the median and inter-quantile range, as shown in figure 6.6a for RETRO
and pegleg.
The pegleg internal assumption that muon tracks behave as minimum ionizing
particles causes an energy-dependent under-estimation of the track energy and
corresponding over-estimation of the track length. The higher the event energy and
consequentially the muon energy, the less exact is the description as a minimum
ionizing particle. For the higher DeepCore event energies, the actual photon output
is significantly larger than what a minimum ionizing muon track of the true length
would produce. Reconstructing the correct track energy would imply a too large
track length, which contradicts the observed hit positions.
While this applies to both compared reconstructions, RETRO implements appropri-
ate corrections. As a result, larger biases are seen for pegleg. The inter-quantile
range as a bias-independent measure for the resolution is similar for both, becoming
smaller with increasing event energy as the increasing number of hits provides more
information.
An energy resolution comparison including SANTA and LEERA shows similar resolu-
tions and can be found in appendix section B.2.

6.5.3 Angular resolution

The second observable of DeepCore oscillations analyses is the zenith angle. In this
parameter, less energy dependent biases are expected and apparent from figure
6.6b6. The energy dependence of resolutions persists.
Resolutions of SANTA are less energy dependent, making them better at lower ener-
gies and worse at higher ones. The respective plot can be found in appendix B.2.

Based on run-times and the two evaluated observables discussed above, RETRO
was used to reconstruct one of the current high statistics DeepCore samples. The
third observable of oscillations analyses, PID, is not included in this comparison,

5Using the relative rather than the absolute error serves to visualize solely the energy resolution in a
way that is more easily comparable to that of other parameters, which do not directly depend on
the true energy depicted on the horizontal axis.

6For reconstructed parameters other than energy, the absolute instead of the relative error is evaluated.
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(a) Resolution comparison of reconstructed en-
ergy.

RETRO

RETRO

(b) Resolution comparison of reconstructed co-
sine of the zenith angle.

Fig. 6.6.: Comparison of the resolutions of DeepCore reconstructions of the full event
hypothesis, namely pegleg and RETRO. The quantities being compared are the
50 % IQR and median of the reconstructed values per true energy bin. The overall
50 % IQRs, including all energy bins, are shown as dashed lines. Errors on the
median are given as shaded regions, based on the standard deviation over the
square root of the number N of entries.

since it is commonly determined based on reconstructed variables that are available
independently of the specific reconstruction that is applied. Other parameters, such
as interaction vertex position or time, do not have as much impact on analyses and
are therefore not considered for this study.

The outcomes for RETRO and pegleg motivate a more fundamental study of recon-
struction performance: These two implementations rely on very similar assumptions
and approaches but perform very differently. The question arises what the the-
oretical potential of their basic approach is and whether it is already exhausted.
The study performed in section 6.6 attempts to answer this based on the pegleg
reconstruction.

6.5.4 Comparing the FLERCNN reconstruction

From the comparison of table-based reconstructions in section 6.5, the RETRO
reconstruction is clearly preferable with respect to its resolution and computational
cost. As the FLERCNN reconstruction was under development when the respective
study was conducted, it is not included in this original comparison. When compared
to RETRO, however, FLERCNN performs similarly or better in the listed aspects.
Therefore, FLERCNN is used in the event sample that this NSI search is based on. A
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(a) Comparison of muon neutrino CC interac-
tions, producing track-like events.

(b) Comparison of electron neutrino CC interac-
tions, producing cascade-like events.

Fig. 6.7.: Resolution comparison in reconstructed energy between the FLERCNN (CNN
based) and RETRO (likelihood based) reconstruction. Event selection is applied
as described in section 5.2.3, except for rejection of specific reconstructed energy
ranges. Different interaction types are shown. These figures are taken from [115].

(a) Comparison for cascade-like events. (b) Comparison for track-like events.

Fig. 6.8.: Resolution comparison in reconstructed cosine of the zenith angle between the
FLERCNN (CNN) and RETRO (likelihood) reconstruction. Event selection is
applied as described in section 5.2.3, except for rejection of specific reconstructed
energy ranges. Curving of the median is associated to oscillation effects. These
figures are adapted from [115].
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comparison between the energy and cosine of the zenith angle resolutions of the
two reconstructions is shown in figures 6.7 and 6.8. Within the energy range of
5-100 GeV that is included in this analysis, only small differences in resolution are
apparent. Depending on what subset of the sample is being considered, the relative
performance of the two reconstructions varies.
A consistent and significant improvement of FLERCNN with respect to RETRO is the
speed at which events can be reconstructed, depending on the employed hardware
and specific case. A central processing unit (CPU) based test shows improvement by a
factor of 400 [94]. This is a conservative case, since the parallelization obtainable on
a graphics processing unit (GPU) can be exploited better for the CNN architecture.

6.6 Potential and limits

In order to evaluate the potential of likelihood-based reconstructions, the details
of the pegleg reconstruction and its shortcomings are investigated in this study. In
order to locate potential improvements it is necessary to understand the impact of
individual assumptions as well as the resulting features of reconstructed values.

In a first step, the shape of the likelihood space close to the best fit value, which is
the hypothesis returned by the reconstruction, is tested as a potential benchmark for
the reconstruction accuracy. The observed likelihood shapes and behavior, however,
motivate a more detailed study of the likelihood space, as they do not conform to
Wilks’ theorem [116]. This is likely due to the different assumptions entering the
reconstruction and tabulation which were introduced in section 6.3.
Along with other effects, these assumptions result in biases and reduced resolution
in individual reconstructed dimensions. An additional factor impacting these is how
well the global likelihood minimum is located. This is approached by evaluating
different alternatives and improvements to the pegleg minimization process.

6.6.1 Likelihood modality and reconstruction performance

There are multiple applications to correlating the likelihood space shape around the
reconstructed parameter values with how accurately an event can be reconstructed.
Firstly, such a measure for the accuracy could be used to prioritize or even reject
events for an analysis. Secondly, this is a fundamental cross-check for the behavior
of the likelihood space and the included simplifications.
When assuming that Wilks’ theorem holds for the pegleg likelihood, the expected
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Gaussian behavior of the likelihood minimum translates into a parabolic shape of
the LLH around the global minimum. Stochastic uncertainties in the minimization
would result in a corresponding Gaussian distribution of reconstructed parameter
values around the respective truth. As a result, the width of the LLH minimum
is expected to be correlated with the residual |θi,reco − θi,true| of a reconstructed
parameter θi.

Figure 6.9 shows hypotheses that are evaluated during the pegleg reconstruction of
two exemplary events, projected onto the x coordinate of the vertex position. In one
of the cases shown there, the envelope of the hypotheses resembles the expected
parabolic shape. Note that regarding the envelope instead of the entire ensemble
of hypotheses is necessary due to the projection that is performed for this plot:
Individual points may differ in more dimensions than are shown.
While in this case, the assumption of a parabolic likelihood optimum seems to hold,
this could not be confirmed in other events, as shown in the second example. In
general, no correlation to the parameter value residuals could be established, due to
the non-parabolic shape found in most cases.
This behavior does not allow for correlating the width of a hypothetical parabolic
LLH minimum with the reconstruction error, as was the initial aim. Other tested
likelihood-based estimators, such as the one described in [117], also fail to provide
good correlation. A simplified way to correlate the likelihood space shape around
the best fit point with the reconstruction error without assuming a parabolic shape
is pursued in the recently developed FreeDOM reconstruction [118, 119]. This
reconstruction does not suffer from the modeling deficits in tabulation that are
described above, as it is based on a neural network instead of tabulated values. The
measure used therein is the standard deviation of the evaluated hypotheses within a
fixed LLH range with respect to the best fit value. This is used to re-weight events at
analysis level.

This observation of non-parabolic LLH minima hints at incorrectness of the un-
derlying assumptions, specifically the applicability of Wilks’ theorem. Hence, the
reconstruction resolution is assumed to include effects that are non-Gaussian.
The applicability of Wilks’ theorem to the pegleg LLH can furthermore be visualized
through the ∆LLH distribution. These differences between the LLH values of the
true and reconstructed parameter hypothesis would be expected to follow a χ2

distribution with eight DOF, corresponding to the eight reconstructed parameters.
Figure 6.10 illustrates that this is not the case for pegleg-reconstructed DeepCore
events, which can not be matched with a χ2 distribution of any DOF.
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(a) For this set of hypotheses, only the LLH range close to the optimum is shown. The envelope of the
projected hypotheses is approximately parabola-shaped, with its maximum at the true parameter
value (green cross), as would be expected if Wilks’ theorem applies. The indicated best-fit values
show a small LLH difference of ∼ 0.1 with respect to the true hypothesis. The best evaluated
hypothesis (orange cross) differs marginally from the best-fit value that pegleg returns (red cross).
Differences at this scale were observed repeatedly and are assumed to be due to pegleg-internal
numerical inaccuracies.

(b) In this case, the envelope of the evaluated hypotheses is not parabolic. For a better understanding,
one-dimensional scans through x are performed at different values of the parameters that are not
shown here. These are fixed to their best fit values and true values, respectively, for the orange and
green curve, and show some of the variation observed in the hypothesis distribution. A parabolic
fit to the hypotheses is shown as a blue dashed line. The true and best-fit values are indicated as
vertical lines.

Fig. 6.9.: Sets of all hypotheses that are evaluated to reconstruct two cascade events close
to the center of IceCube. Shown is the projection onto the x dimension and
LLH value. The color indicates the minimization step in which a hypothesis was
evaluated.
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Fig. 6.10.: Histogram of the differences between LLH values of the true and reconstructed
hypothesis. The reconstructed data set was simulated as described in section 5.1,
with cuts applied up to level 2. It contains approximately 6000 events that are
approximately 50 % νe and νµ, mostly interacting via CC. For simplification, this
assumes depth-independently homogeneous ice and no background other than
random noise. Note that the event distribution is only shown up to ∆LLH values
of 100. Other than expected if Wilks’ theorem would apply, the distribution is
not χ2 shaped. This is shown from the best fitting χ2 distribution (blue dashed
line), which does not describe the histogram well. A distribution with 8 degrees
of freedom (DOF) is shown in orange, for reference.

The origin of this behavior might hint towards deficits in modeling P (xi|ϑ), resolving
which could potentially improve the reconstruction. In investigating this, a first
step is to discern the impact of the difference in assumptions used in tabulation and
reconstruction. This is done by generating simplified events based on DeepCore
simulation, as the true PDFs are not known.
In the following, events such as the ones shown in figure 6.10, which are produced
using the full MC simulation procedure, are called simulated DeepCore events. For
these, the observed detector signal is available as time-binned charge pulses, as was
introduced in section 4.4.6. The simulated events include all current understanding
of the involved physics processes, such as detailed ice modeling. In reconstruction,
these events are compared based on the simplified event representation used in the
tabulated PDF, which introduces a mismatch.
In order to exclude this difference in representation, further sets of events are drawn
based on the tabulated expected charge distributions of a physics hypothesis. For
these, event representations in simulation and tabulation are the same. In this way,
for a simplified study, different realizations of hit patterns of single events are gen-
erated, based on the finely binned tabulated charge expectations of the associated
physics hypothesis. In figure 6.11, multiple ways to draw and bin such events are
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Fig. 6.11.: Schematic overview of the applied approaches to draw hit-patterns for single
event hypotheses. The charge associated to a generated hit is shown on the
vertical axis. The horizontal axis shows the individual DOMs, subdivided based
on the applied time binning. An example for observed PE is shown as purple
vertical lines at the respective hit time. The expected charge distributions at
individual DOMs, as tabulated for the respective even hypothesis, are shown
in blue. For this study, multiple hit pattern instances are drawn based on the
expectation values of the same event hypothesis. For Asimov events, each hit
contains the unaltered expected charge. Pseudo-events consist of hits that are
drawn from Poisson-distributions around the respective charge expectations.
The shown options for time binning are the pegleg (pl) binning described in
section 6.3.1 or an arbitrary number of uniform bins throughout the triggered
event time range.

shown schematically.
The first kind of such events are in the following called Asimov-events and are
maximally idealized. By using a reconstructed hypothesis, these events adopt the
pegleg-internal event representation. For this idealized hypothesis, the observed
charge in all DOMs and time bins is set to the tabulated expectation value. This
neglects the statistical nature of hits and that photoelectrons are an integer quantity.
These properties are present in pseudo-events, which are an additional kind of
simplified events. Other than Asimov-events, these consist of integer signal values
that are drawn based on the charge expectation values using Poisson statistics. In
the comparisons shown in the following, for each of the fully simulated DeepCore
events, one pseudo- or Asimov-event is included, respectively.
For the artificially generated Asimov- and pseudo-event sets, the ∆LLH distributions
of the reconstructed values are approximately χ2 shaped. Asimov-events match a
distribution with ∼ 8 DOF, as would be expected based on Wilks’ theorem for the
eight-dimensional event parameter space. For the pseudo-events, 9 or 10 DOF fit
best.
This supports the assumption of deficits in modeling the data, specifically such
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deficits that are associated to the tables. An alternative cause could be the finite
resolution of the MultiNest minimizer, which is caused by statistical fluctuations of
the fit result due to the random components in minimization. This has however
been ruled out as the sole origin.
The observed behavior has also been found to not be limited to the pegleg recon-
struction. Other likelihood-based reconstructions, namely RETRO, also do not result
in a χ2 distribution when applied to simulated DeepCore events.

Overall, none of the two criteria that would be expected based on Wilks’ theorem
are observed, namely the parabolic shape of the likelihood minimum and the χ2

distribution of the likelihood differences. The observed behavior leads to to the sup-
position that the factors contradicting Wilks’ theorem are due to the simplifications
applied in tabulation, which are necessary for likelihood-based reconstructions. A
more accurately modeled PDF would therefore potentially result in an improved
reconstruction performance. The differences in the assumptions made for recon-
struction and tabulation, such as the simplified ice model or hit representation,
are investigated individually in the following study, in order to identify areas in
which improvement of the modeling has significant impact on the reconstruction
outcome.

6.6.2 Potential modeling deficits and their impact

At different points throughout the reconstruction, simplifications are applied in order
to facilitate computation. The resulting ways that hits and events are represented
within tables and reconstruction potentially impact the accuracy of reconstructed
quantities, which will be assessed individually in the following.

Noise treatment

The treatment of random noise hits is one of the domains where the assumptions
used in table generation differ from what is assumed in reconstruction. For the
tabulated expectation values, noise is assumed to result in a fixed charge expectation
throughout all DOMs. This has the additional effect that the LLH function 6.2 is
defined for any number of hits taking part in an event, including 0. This treatment
is motivated from the PMTs being the origin of dark noise, as discussed in section
4.4.5. Contrarily, data processing includes cuts on hits that occur outside a fixed
radius rB from the assumed event vertex, as described in section 4.4.6, in order to
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reduce noise hits.
This mismatch between expectation and observation beyond rB ideally only results in
a constant offset of LLH values. Specifically, it is not a factor in the ∆LLH distribution,
and thus not the cause of the likelihood differences not following Wilks’ theorem.
However, noise hits worsen reconstruction uncertainty and result in causality borders
that cause sharp edges in the LLH space which can inhibit minimization.
When evaluating this in an idealized setting with no random noise, resolutions in
the reconstructed quantities improve only marginally. This is expected, since the
majority of events in low energy data samples contain no noise hits. Consequently,
while noise is not modeled ideally, this is assumed to have no large impact.

Event representation in reconstruction

The pegleg internal event representation described in section 6.3.1 contains multiple
mechanisms that induce biases in reconstructed variables.
Firstly, it includes a split of the overall energy into the initial cascade, Ecasc, and
outgoing track, Etrack. However, this does not include any knowledge on the relation
between both. Together with the limited spacial resolution of the shape of low energy
DeepCore events, this causes a preference for reconstructing 0 GeV for either Ecasc

or Etrack, attributing all observed light to just one of both. One way to resolve this
would be to introduce a Bayesian Bjorken-y prior. It however seems preferable to
find a less flawed event representation.
Secondly, the track is described as minimum ionizing. Especially for the higher
event energies considered in this work, this does not describe the muon behavior
well. It models neither stochastic losses along the muon track, nor the fact that the
starting energy of these muons is significantly larger than what would be minimum
ionizing and decreases subsequently. As a result, the relation between energy and
track length is biased, as was discussed in section 6.5.2.
This bias manifests as a mismatch between the charge expected for the actual event
and its pegleg representation. Since pegleg only considers integer PE, a matching
description does not directly improve the resolution. It however can be used as a
measure for the agreement between reconstruction and tabulation.

Two approaches were tested in order to estimate the potential of correcting this,
targeting the single components of the mismatch between track length and energy.
Firstly, increasing the muon energy from 0.22 GeV/m to 0.3 GeV/m. On average,
this matches the actual energy deposition better, as the assumption of minimum
ionizing muons with 0.22 GeV/m constitutes the smallest possible energy deposition.
This increase impacts the resolution of each reconstructed parameter differently and
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(a) Comparison between the reconstruction ac-
curacies in six reconstructed parameters for
assumed track energy losses of 0.22 GeV/m
and 0.3 GeV/m. The impact on resolutions
is characterized by the IQR relative to the
0.3 GeV/m case (upper plot). The median
(lower plot) illustrates systematic biases.

(b) Energy dependent change in IQR and median
when shifting reconstructed tracks by 15 m
along the true and reconstructed direction.
The vertical position is shown since the effect
is most prominent there.

Fig. 6.12.: Impact of different attempts to reduce the incorrect relation between track
energy and length that is induced by the pegleg internal track representation.
The events that this is based on are a representative subset of current DeepCore
MC.

no overall improvement can be concluded. The resulting summarized characteristics
of the resolutions in all reconstructed parameters are shown in figure 6.12a. More
detailed investigation shows that the resolution improves for high energy events
while declining for lower energies, as expected from the underlying issue. Imple-
menting segment energies that increase with overall track length, however, is not
compatible with the existing optimization approach, as shown in figure 6.3.
In a second study, correction of the track length is imitated by shifting the position
of the track segments along either the true or the reconstructed direction. This
results in slightly larger improvement to both of the charge agreement and the
spacial resolutions. The latter only concerns the median of the reconstructed distri-
butions and not their widths, which are evaluated through the 50 % IQR. Resolution
characteristics of the reconstructed vertical positions can be found in figure 6.12b.
Similar behavior was found when combining both approaches of positional shift and
increased energy.
The ad-hoc corrections applied for this study show that the reconstruction internal
representation has non-negligible impact on the resolution and median. While
a fundamental improvement in the representation is preferable with respect to
such corrections, this would imply fundamental changes to the reconstruction ap-
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proach and is therefore only relevant for the development of future reconstruction
algorithms.

Ice model

As discussed in section 6.3.2, the tabulated likelihood values that pegleg relies on
assume an ice model that purely depends on the vertical position and zenith angle.
However, current models, introduced in section 4.4.3, include significant deviation
from this assumption.
The impact of this was evaluated by reconstructing the same events with different
ice models, namely the South Pole ice (SPice 3.2.1) model and deep-homogeneous
ice. While the first includes all known ice effects except for birefringence, the latter
assumes homogeneous ice with the properties measured inside DeepCore.
The effect of this on the energy and angular resolution can bee seen to be negligible,
e.g. in figure B.17 in appendix B.2. This, however, is based on a reconstruction
setting where the detailed pulse signals are ignored and all charge pulses are
assumed to be 1 PE. In general, matching the ice models in reconstruction and
tabulation yields a better agreement of the charge descriptions. An example for the
disagreement is given in figure 6.13, where expected and observed charges differ
due to a spacial shift that correlates with DOM numbers. While not constituting a
large improvement in the charge-agnostic pegleg implementation, achieving better
agreement in this is expected to be a significant factor in a reconstruction that
includes the measured charge values.
Resolving this behavior would require solving further underlying reasons for the
observed charge mismatch between data and models, which are detailed in the
following section. Also, tabulating and reconstructing based on the same ice model
implies that, for the current tabulation process, the common ice model can only
include vertical dependence of ice properties, as described in section 6.3.2. Adapting
the tabulation or raising the resources for significantly larger table files are both
problems with no straight-forward solution [102].

Including charge information

Mismatches of the charge values are present in simulation with respect to data as well
as in the expectation values for different event representations within reconstruction.
This was discussed in the preceding sections as well as in the introduction of
tabulation in section 6.3.2 and motivates the pegleg internal policy of assuming any
pulses to have exactly 1 PE.
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Fig. 6.13.: The expected and observed charge as well as the difference between both,
shown per DOM for a single electron produced inside the DeepCore fiducial
volume. This exemplifies how observed and expected charge disagree due to
a spacial shift, originating from the differences between pegleg reconstruction
and tabulation.

Including charge information in the current pegleg setup is the most simple test of
the potential improvement. To this end, the likelihood function needs to be adapted
to accommodate non-integer charge values, as discussed in [77]. The charge pulses
used in this study are filtered in order to reduce noise as part of the event selection.
Only pulses with more than 0.3 PE and events with at least 8 pulses are included.
Utilizing unfiltered pulses has been found to lead to no significant change of the
reconstructed distributions.
The effect observed for including detailed charge information and filtering is shown
in figure 6.14 for reconstructed energy and zenith. In both, including charge leads to
marginal improvement of the median. The resolutions are largely unchanged, except
for the highest energy bins, which become slightly better in energy and slightly
worse in zenith. The improved energy resolution and median can intuitively be
attributed to the more accurate description of observed light. Figure 6.15 shows
summarized IQR changes for the reconstructed time and vertex. Their resolutions
improve significantly when including charge information.
As this study includes the existing charge mismatch, an idealized case where per-
fect charge information is available is investigated as well. A comparison between
reconstructed DeepCore simulated events and pseudo-events, drawn with the tab-
ulated charge expectation values, shows the impact of reconstructing events with
perfect charge information. The relation of the residuals in these cases are mostly
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(a) Resolutions of the reconstructed zenith angle.
(b) Relative resolutions of the reconstructed en-

ergy.

Fig. 6.14.: Impact of including detailed charge information on the reconstruction perfor-
mance in cosine of the zenith angle and energy. Both cases are in addition
shown with filters that were found in the RETRO reconstruction to improve
the agreement between charge description and observation. The event sample
shown here is a representative DeepCore simulated set.

energy independent at 80 % for energy and 50 % for the cosine of the zenith angle.
This significant improvement of the reconstruction resolution implies that work on
improving the charge description would be worthwhile, assuming that sufficient
agreement with data can be obtained to allow for including charge information in
the reconstruction.

During the detailed review of the charge pulses, an error in simulation was identified.
This was observed as a 25 ns time shift between timestamps of SLC and HLC hits
and could be traced back to an off-by-one error in the simulation of the FADC
readout, which is the dominant readout for SLC hits. The impact of this was found
to be significant for the current DeepCore sample, leading to a re-simulation of all
corresponding Monte Carlo sets.

Signal time binning

The time binning of charge pulses used in pegleg constitutes a compromise between
a desired high level of detail on one hand and, on the other hand, the correctness of
modeling of the detector response. The impact of more accurate pulse description
can be tested by introducing different time binning schemes.
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Fig. 6.15.: Reconstruction resolution in interaction position and time when including or
excluding charge information, for filtered and unfiltered pulses. The overall
50 % IQR is given separately for each dimension.

As described in section 6.3.3, pegleg places a first 5 ns bin at the first hit time,
followed by a 45 ns dead time bin, in which detector effects are known not to be
modeled well in simulation. While the overall low number of bins reduces how
much detail of the charge pulses this binning is able to describe, the small size of the
hit bin causes single hits to have large impact on the overall likelihood value with
respect to larger hit- or dead-time-bins, as shown in figure 6.16. This reduction of
observed pulses to short isolated 1 PE peaks causes steps in the likelihood landscape
that hinder minimization. In addition, a more detailed representation of charge
behavior would make the reconstruction less dependent on single hit times.
In an ideal case, the entire pulse duration would be subdivided into preferably many
short time bins with no dead-time. This is simulated by drawing pseudo-events as
described in section 6.6.1 with different numbers of constant length time bins. All
such events use the same pegleg internal event representation of an initial cascade
and segmented outgoing track.
A resolution comparison between pseudo-events with 5 and 20 bins shows refinement
of the 50 % IQR of typically ∼10 %, depending on the specific reconstructed events
as well as the considered parameter. With respect to the pegleg binning, these cases
show 30-50 % worse resolutions of time and position and no significant change in
other reconstructed parameters. This is expected as the signal accuracy in these
dimensions strongly depends on the bin width. This motivates more, finer time bins,
which, however, the current state of detector effect modeling does not allow.
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Fig. 6.16.: Dependence of the LLH for observing a charge of 1 PE on the expected charge
in a single bin. In the pegleg time binning, a 5 ns bin starts at the first hit time.
When using five bins of equal width throughout the event duration the individual
bins have significantly longer durations. The expected charge throughout such a
bin therefore integrates to larger values, corresponding to less extreme likelihood
values in cases where 1 PE is observed.

6.6.3 Detector geometry induced bias

The detector geometry described in section 4.4.2, especially its discrete nature, is
origin of various biases and inaccuracies within the pegleg reconstruction. The most
prominent one is a spacial shift towards DOMs that observe hits. This is visualized
in figure 6.17 for the distance between reconstructed positions and the closest
DOM. Partially, the bias is induced by the event selection, as the events at lowest
available energies are more likely to pass the cuts if their total number of hits is an
over-fluctuation with respect to the overall expectation. This behavior is more likely
for interactions at small distances to DOMs.
A second part of the spacial bias has been shown in an idealized simulation to occur
for any IceCube-like detector with a spacial quantization of the instrumentation.
With expectation values of charge per DOM below 1 PE for most hypotheses, a single
hit comprises an over-fluctuation for the DOM observing it. The LLH function, as a
result, strongly prefers positions close to the DOM. In the same way, non-observation
in surrounding DOMs constitutes an under-fluctuation which disfavors reconstruct-
ing close-by event positions.
This spacial bias impacts other reconstructed dimensions, namely interaction time
and angles. The angular bias is similar to the positional one, as it prefers hypotheses
where the event is directed towards hit positions. For positions close to DOMs, small
time differences between hits and interaction are deemed most likely, inducing a
bias towards too large reconstructed interaction times.
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(a) Event counts for true vertex positions with re-
spect to the closest string. This shows how the
event sample includes a bias towards DOM po-
sitions.

(b) Difference between event counts true and
reconstructed positions with respect to the
closest string. In addition to the sample-
induced bias towards DOMs, the recon-
struction prefers hypotheses close to hit
positions.

Fig. 6.17.: Positions of DeepCore events in the horizontal plane with respect to the closest
string in red.

A possible improvement to the reconstruction would be to introduce a Bayesian
prior [93] on the reconstructed position. In a related approach, requiring a min-
imum number of hit DOMs resulted in minor improvement. This leads to the
assumption that the introducing a prior would be of small impact compared to other
shortcomings of the pegleg reconstruction.

6.6.4 Minimization effects

The core of pegleg is its minimization process, where the optimum of the eight-
dimensional likelihood space is found in a nested three-layer approach as described
in section 6.3.4. Some of the likelihood space features discussed above complicate
this minimization, as they introduce local extrema and discontinuities. An example
for this is shown in figure 6.18, where causality induced behavior of the likelihood
function is shown.
This can be addressed by using global or specialized local minimization algorithms.
These as well as the performance and potential of the globally operating MultiNest
algorithm are discussed in the following.

6.6 Potential and limits 103



Fig. 6.18.: Scan of the x dimension of the vertex position at different times for a cascade-
like event. As the times are larger than the true event time, causality induced
edges occur. These as well as the overall non-smooth behavior of the likelihood
space can impede minimization. This figure is taken from [102].

Basic minimization concepts

The multiple minima of the likelihood space encourage the usage of a so-called
global minimization algorithm such as MultiNest, which is able to process and
compare multiple minima simultaneously. This is achieved by evaluating a large
number of hypotheses, the so-called live-points, in parallel, and clustering them in a
Bayesian nested sampling approach.
In an initial step, MultiNest live-points are drawn either randomly within a range
or with a prior around a seed hypothesis. For subsequent iterations, live-points are
clustered in ellipsoids and therein newly drawn based on the previously evaluated
hypotheses. This reduces the possible parameter space while robustly describing any
shape of the considered areas [105].
This approach reliably finds the globally best fitting hypothesis, with a low statistical
spread. It however evaluates a significantly larger number of hypotheses than
algorithms that act locally.

While there are numerous ways to implement a local minimization, the fundamental
difference to a global one is that a single hypothesis and area of the parameter space
is evaluated at a time.
Examples that were evaluated in previous studies on improving the pegleg recon-
struction [102] are gradient-based minimization techniques where each step is
determined from the LLH gradient in the preceding hypothesis. In the underlying
case, gradients can be obtained directly from the spline tables described in section
6.3.2. In order to overcome intermediate minima, a random component can be used.
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This, however, does not accomplish a reliability with respect to its outcome that is
similar to that of MultiNest.

Performance of the current implementation

The resolutions obtained when reconstructing an event sample have multiple random
components. Firstly, the distribution of events within the parameter space, who’s
random character can be eliminated by simulating the same physics hypothesis
multiple times. Secondly, the variation of hit patterns for for a given event. In
order to investigate the third factor, which originates from the minimization itself,
the same hit pattern of the same physics hypothesis can be reconstructed multiple
times. The outcome of this can, however, only be evaluated qualitatively, as it
is strongly impacted by the choice of physics hypothesis and hit pattern and the
computational capacities to reconstruct large numbers of events multiple times each
are not available.

In figure 6.19, 195 reconstructed parameter values of the same physics hypothesis
with different hit patterns are shown together with the same number of recon-
struction results of the same hit pattern. For the latter, in an ideal minimization,
a δ-distribution would be expected, as it purely includes the part of the resolution
that is induced by imperfect minimization. In contrast to this, the reconstruction
of different hit patterns also includes the random component within hit generation.
The fraction of these components associated with the reconstruction varies between
parameters and is smallest for the angles, which is expected to be different for track
events. The change in width of the distribution of LLH values at the best fit point is
expected and shows the stability of the minimization.

Resolutions vary depending on the minimization settings, as shown in figure 6.20,
where different numbers of MultiNest live-points are tested. Note that the resolutions
are not directly comparable to what is shown in figure 6.19, as they are obtained for a
single hit pattern of a different event, namely a 25 GeV cascade at the same position.
In this case, the change in the LLH distribution represents the improved capacity
of the minimization to find the globally best fitting hypothesis. Resolutions in the
individual parameters change by approximately 20 % to 30 %. The approximate
factor ≤ 5 in run-time that the increased number of live-points entails however
would make reconstruction of current sets computationally infeasible.
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Overcoming LLH features

Some features of the LLH space that render minimization difficult have already been
mentioned: Simplifications made in tabulation and signal representation, both in
tables and reconstruction, are discussed in sections 6.6.2 and 6.1. Characteristics
of the detector geometry, which are discussed in section 4.4.2, add to that. These
result in secondary minima and non-continuous changes of the LLH space. These
features occur within a small area of the parameter space, beyond which the LLH is
largely constant, inhibiting any gradient-based optimization.

One main aspect of this are causality-induced effects. Due to the finite speed of
particles and light, the time and location where a hit is observed sets one-sided
boundaries on the temporal and spacial position of the interaction causing it. This is
shown in figure 6.18. The one-sided-ness of this effect accounts for the capacity of
photons to scatter and hence prolong their traveling time.
As a result, hypotheses that are temporally and spatially similar result in strongly
differing likelihood values if one of them breaches the causality criterion for an
observed hit. For hits that are not noise, this can only occur for reconstructed times
beyond the true time value.
In figure B.15 in appendix B.2, the likelihood contributions of individual DOMs are
evaluated in a scan through a spacial dimension. This visualizes how the overall
likelihood instantly decreases when a hit is excluded through causality criteria. This
behavior mostly poses a challenge to local minimization techniques.
A previous study [102] evaluated gradient-based minimization starting at causal
hypotheses before the assumed true event time. This prevents crossing causality
edges before reaching the global optimum and hence avoid the unreliable and
extreme gradients there.
A different way to include the knowledge on this behavior in a reconstruction is
implemented in the FreeDOM reconstruction [118, 119], where seeding is performed
under mostly causality-preserving criteria.

A different aspect that challenges all minimization approaches is associated with
the pegleg internal event representation. Treating the track as multiple segments
of minimum ionizing muons results in an artificial quantization, which equally
segments the likelihood space and hinders the minimization.
As described in section 6.3.4, the track length optimization proceeds at layer 2 of the
pegleg minimization. It is implemented as a simple incrementation of the number
of track segments and subsequent call to layer 3, which returns the respective best
fitting cascade energy.
As a result, a hypothesis evaluated by the level 1 minimization may show a significant
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likelihood difference with respect to the preceding hypothesis if their best fitting track
lengths differ. This complicates the application of local minimization techniques.
In addition, in a fraction of reconstructions, the optimization in level 2 stops before
reaching the best fitting track length, due to the nested optimization approach.
A part of this study was to find an efficient way to correct this by enforcing the
evaluation of larger track lengths. However, this leads to minor improvement of the
energy resolution, while increasing the reconstruction run-time per event, due to
the larger number of evaluated track length hypotheses.

There are numerous leverage points to improve the pegleg reconstruction and
likelihood based reconstructions in general. These are mostly associated to the
simplifications made in tabulation and reconstruction that are necessary to provide
sufficient computational performance. Mismatches between the data and their de-
scription in simulation, tables and reconstruction are an additional factor that leads
to biases and inaccuracies in the reconstructed quantities.
The studies conducted in this work show in depth that the estimated potential of
each individual component is either marginal or associated with significant changes
to the framework, considerable resource requirements or uncertain success.
Some of these highlight the conceptual downsides of table based reconstructions,
such as their incapacity to represent newer ice model developments or multi-PMT op-
tical modules. This motivates the development of table-independent reconstructions
that are for example based on neural networks [97].
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Fig. 6.19.: Multiple reconstructions of the same 20 GeV cascade event, located at the center
of DeepCore. This is simulated as a pseudo-event, adopting the pegleg-internal
event representation introduced in section 6.6.1. The widths of the distributions
differ by between an approximate factor of 4 in energy to a factor of ∼ 1.3 for the
azimuth angle. Angular resolution is expected to be limited due to the cascade
character of the event.
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Fig. 6.20.: Multiple reconstructions of the same event and hit pattern. The resolution
improves when changing the number of live-points that are evaluated in parallel
in MultiNest from 60 (blue) to 300 (orange).
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Search for NSI 7
The aim of this analysis is to find the NSI parameter values for which the expected
signal best matches the DeepCore data set described in section 5. It is implemented
as a comparison between binned event rates where appearance or disappearance in
the individual neutrino channels is observed. This requires four basic elements: An
understanding and representation of the signal, a statistical approach to measuring
an expectation against data, an uncertainty treatment, and finally an optimization
algorithm that finds the best fitting hypothesis within the parameter space. In
addition, the statistical rejection significance of hypotheses throughout the NSI
parameter ranges is determined in order to set confidence limits on the individual
NSI parameters.
The signal is available as event counts per bin, with the binning defined in the
observables that best capture Earth matter effects. These are reconstructed energy,
zenith angle and interaction type. The binning as well as the expected signal features
are discussed in section 7.1.
Comparison between simulated expected bin counts and observed data is done
through calculating a test statistic between both binned signal maps. The PINGU
Simulation and Analysis (PISA)1 [120] framework implements this as re-weighting
of existing MC sets in order to yield the specific expected bin-wise event counts for
any possible tested hypothesis, as will be described in section 7.2.
Each hypothesis consists of NSI and nuisance parameter values. The latter mostly
describe systematic uncertainties on the understanding of the detector and physics
processes that can impact the expected event rates per bin. Their impact is modeled
as a continuous function either of known physics parameters or based on interpolated
simulated sets or external data, e.g. from calibration measurements. This is described
in sections 7.3 and 7.4.
Nuisance parameters that are found to have significant impact on the analysis
outcome are set free in the fitting process that determines the hypothesis for which
the expectation best matches the observed data.
In a frequentist approach, each complex or real-valued NSI parameter is considered
separately, while keeping all other NSI parameters fixed to 0. This is motivated from
computational feasibility as well as comparability to other experiments. In theory,

1This references PINGU, the Precision IceCube Next Generation Upgrade, a potential low-energy
IceCube extension.
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multiple non-zero NSI parameter values would be allowed.
With 17 nuisance parameters included and either one or two dimensions of the
respective NSI parameter, finding the global minimum of the parameter space is
a challenging task. In section 7.6, the complexity of this problem as well as the
solution implemented in this analysis are discussed. In addition to the frequentist
approach, Bayesian sampling of the overall parameter space is explored as a second
fundamentally different technique in section 7.7.
With this overall setup, the NSI parameter values best describing the data, further
on called best fit values, can be determined. A comparison between the sensitivity
of this analysis and existing results can be found in section 7.8. Furthermore, NSI
parameter regions can be excluded, by computing confidence limits within which
the true parameter values are expected to be at different confidence levels, which is
described in section 7.9. The details of how the latter can be done computationally
effectively are given in section 7.9.1.

7.1 Neutrino signal in DeepCore

The signal investigated for this analysis is that of atmospheric neutrinos of all flavors
which traverse the Earth before being detected in DeepCore. The rates at which
individual flavors are detected change depending on neutrino energies and baselines
due to oscillation and matter effects, making this approach sensitive to both PMNS-
matrix based oscillations and NSI effects. The cosine of the zenith angle is used as
an observable that is associated to the baseline as shown in figure 3.4, with up-going
events that cross the entire Earth corresponding to cos(θ) = −1.

7.1.1 Standard oscillations footprint

Oscillograms showing Pνα→νµ for the standard oscillations case can be found in
figure 7.1. This shows the expected signal as seen in true event properties, instead of
reconstructed analysis observables. The cancellation of effects due to the combined
signal of neutrinos and antineutrinos within DeepCore is not taken into account
here, as only detections of να are shown and not total of νµ + ν̄µ.
The overall signal structure corresponds to the L

E dependence of oscillations effects.
For baselines of the Earth diameter and below, the strongest oscillation signal can be
observed at few GeV, close to the lower edge of the DeepCore energy range. At the
boundary between outer Earth core and mantle, a sharp increase in electron density
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Fig. 7.1.: Probabilities of atmospheric neutrinos produced as the neutrino flavor indicated
in the panel titles to be detected in DeepCore as muon neutrinos. This assumes
the standard oscillations case with PMNS-matrix parameter values as defined in
table 7.3.

occurs. Based on the matter effects discussed in section 3.2.3, this results in the
sudden change in features visible at cos(θ) ∼ −0.85.

7.1.2 NSI signal expectation

As discussed in section 3.4, the individual variables of the NSI parametrization
investigated for this analysis vary strongly with respect to their signal. In figure 7.2,
two NSI scenarios are shown with their difference to the null hypothesis which is the
standard oscillations case that only includes PMNS-matrix parameter effects. The
NSI hypotheses are selected such that they are close to recent DeepCore limits [40].
Oscillograms of ϵ⊕

ee − ϵ⊕
µµ, ϵ⊕

eτ and ϵ⊕
ττ − ϵ⊕

µµ hypotheses can be found in the appendix
in section B.3.
For most of the NSI parameters, the signal region is similar to that of the PMNS-
matrix parameters. In contrast, a non-zero magnitude of the ϵ⊕

µτ parameter yields
a signal that exceeds this range in energy. This behavior is utilized for analyses of
IceCube data that extends to the TeV range [52], as mentioned in section 3.5.

7.1.3 Binning in reconstructed observables

The level of detail shown in the oscillograms discussed above is not available in
reconstructed parameters, due to the finite reconstruction resolution. Therefore, a
relatively coarse analysis binning is applied. The observables that the signal is binned
in are reconstructed energy, cosine of the zenith angle and PID, which represents the
neutrino flavor and interaction type. These are determined per event as described
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(a) Impact of |ϵ⊕
eµ | = 0.15 as the only source of NSI.

(b) Impact of ϵ⊕
µτ = 0.02 as the only source of NSI.

Fig. 7.2.: Difference in oscillation probabilities να → νµ, induced by NSI effects with respect
to the standard oscillations case shown in figure 7.1. The shown NSI cases each
include only one non-zero NSI parameter. Values are set approximately to the
90 % confidence limit set in a previous DeepCore NSI analysis [40], while all
other NSI parameters are set to 0. Note that the color scale does not cover the
full range between 0 and 1 and differs between figures.
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Tab. 7.1.: Analysis binning of the observables.

Start End Number Spacing / Edges
Ereco [GeV] 5 100 12 logarithmic
cos(θreco) -1 0.04 8 linear
PID 0 1 3 0.0, 0.25, 0.55, 1.0

in section 5.2. Note that, other than in the signal shown in the previous section,
neutrinos can not be differentiated from anti-neutrinos in reconstructed variables.

Fig. 7.3.: Separation of neutrino flavors and interactions based on the FLERCNN PID
classification and implemented analysis binning. Charged current interactions are
subdivided into flavors while neutral current ones are shown in total. Atmospheric
muons constitute the only relevant background source in this sample. This plot is
adapted from [92].

Reconstructed energies are subdivided into twelve logarithmically spaced bins be-
tween 5 GeV and 100 GeV, as specified in table 7.1. While the DeepCore data sample
provides data up to 300 GeV, the FLERCNN reconstruction is known to perform
poorly above 100 GeV, as discussed in section 5.2.2. As only the ϵ⊕

µτ signal is present
at energies above this, only the sensitivity to this parameter is impacted.
In reconstructed cosine of the zenith angle, eight linearly spaced bins between -1
and 0.04 are defined. This covers all directions from up-going to horizontal. Not
including most down-going events is motivated by poor agreement between data
and MC for muon-dominated regions. As apparent from the signal characteristics
presented in the previous section, this has little influence on the sensitivity to any of
the NSI parameters.
As a clean differentiation between track-like and cascade-like events is not feasible
throughout the DeepCore energy range, the binning in PID is mostly optimized
with respect to analysis performance. The three bins still represent how track-like
events are, ranging from 0 for strongly cascade-like events to 1 for strongly track-like
ones. In figure 7.3, the three bins are shown with their expected content based on
simulation.
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Individual bins with low expected event counts are masked out as invalid in order
to prevent the resulting large relative uncertainties from impacting the minimizer
stability, as can be seen in figure 7.4a. The four bins at lowest reconstructed energy
and cosine of the zenith angle are masked due to imprecision of the nuisance param-
eter treatment in this region, which is discussed in section 7.4.4.
Statistics of atmospheric muon events in the finalized sample are low, with their
overall expectation decreased to ∼ 1000. This potentially causes local fluctuations
and abrupt changes in bin counts and errors of neighboring analysis bins. To resolve
this and smooth the muon distribution, a kernel density estimation (KDE) [121, 122]
is applied on the finalized sample. This step is presented in detail in [92] and [83],
along with the tests performed to ensure that analyses are not impacted negatively
by this.
An example for the change in expected event counts due to NSI is shown in figure
7.4b, with the absolute differences amounting to O(10) at most. A comparison
to figure 7.2b, which applies the same hypothesis of |ϵ⊕

µτ |= 0.02, showcases the
impact of the limited resolution in reconstructed energy and cosine of the zenith
angle.

A detailed study of the optimal bin numbers and edge positions was performed in all
three dimensions for the NSI analysis as part of this work. Criteria to assess different
binning strategies include not only NSI sensitivity but also computational cost, which
scales with the number of individual bins. The bin numbers differ strongly between
dimensions due to the different resolution therein, which is lowest in PID. Ultimately,
the binning used for analyses of PMNS-matrix oscillation parameters on the same
sample was found to perform well, while larger numbers of bins or variations in bin
edge position only have small impact on the NSI analysis outcome.
The final analysis binning differs only slightly from the one used in the previous
DeepCore NSI analysis [40], specifically in the spacing of the energy bins and the
range considered in cosine of the zenith angle. The PID metric differs fundamentally
between the two analyses and can not be compared easily. However, using three
instead of two PID bins provides additional signal resolution.

7.2 Statistical approach

This NSI search is implemented as a comparison between binned event counts. A
histogram of observed data or pseudo-data is compared to one of expected rates
that are calculated on what will be called a template for different hypotheses.
The best fitting hypothesis is determined by minimizing a test statistic described
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(a) Event counts in the standard oscillations case. Masked bins are shown in different shades of gray
for different exclusion reasons. The final cut on cosine of the zenith angle is implemented as
masking as well.

(b) Difference in expected event counts between the null hypothesis
and a case where |ϵ⊕

µτ |= 0.02. Masked bins are shown in dark
green.

Fig. 7.4.: Binned event counts expected for the sample used for this analysis, with bins in
the reconstructed variables as shown in table 7.1.
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in section 7.2.1. Generating expectation histograms is a staged process where
a previously generated MC simulated template is re-weighted to represent the
respective tested hypothesis, as discussed in section 7.2.2.
A hypothesis consists of physics and nuisance parameters. Details on the latter are
given separately, in sections 7.3 and 7.4. The minimization process is discussed in
section 7.6.
This general analysis approach is used for current and previous generations of
DeepCore NSI [40] and oscillations [83] analyses and can be described as a forward-
folded parameter estimation [120].

7.2.1 Test statistic

In order to compare expected and observed event count histograms, their modified
Pearson’s chi-squared (χ2

mod) [40, 70] test statistic is calculated according to

χ2
mod =

∑
i∈bins

(nexp
i − nobs

i )2

nexp
i + (σexp

i )2 +
∑

j∈prior

(∆sj)2

σ2
sj

. (7.1)

Here, nobs
i is the observed event count in bin i and nexp

i the respective expected event
count, including neutrinos and antineutrinos of all flavors as well as background
events. The uncertainty on the observation is determined from the error of the
expectation as

√
(nexp

i )2.
The expected bin count depends on the tested hypothesis and is calculated from the
summed weights of all events contained within the respective bin. In addition to
these terms, which are also present in unmodified Pearson’s χ2 [96], the variance
σexp

i of the simulated bin count enters the denominator. It originates from finite
statistics in the Monte Carlo event set and is typically smaller than nexp

i . Signal and
background terms are included such that

(σexp
i )2 =

∑
i,events

w2
i + σ2

i,bg = σ2
i,ν + σ2

i,bg . (7.2)

The neutrino component of this, σi,ν , originates from the weights wi of all events
contained in bin i. For atmospheric muons, which are the only background source
relevant to this work, the variance σi,bg is based on the applied KDE.
The second modification to Pearson’s χ2 is the second sum in equation 7.1. It
constitutes a penalty term for those nuisance parameters where prior knowledge is
included in form of Gaussian constraints. Deviations ∆sj from the nominal value
are penalized based on the respective prior’s standard deviation σ2

sj
.
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While for other test statistics, such as χ2 or likelihood, the evaluation is slightly
faster, these lack the error treatment in χ2

mod and therefore do not account for
the non-negligible errors on bin counts which occur for the treatment of nuisance
parameters applied in this analysis (see section 7.4.3).

7.2.2 Staged MC re-weighting in PISA

Like other recent DeepCore analyses, this work relies on PISA [120, 123] as the
underlying software framework. The fundamental idea of this is to re-weight MC
simulated event sets such that they correspond to arbitrary physics and nuisance
parameter hypotheses. This effectively provides large MC statistics at each tested
hypothesis without the associated computational cost.
The simulated event counts that are re-weighted using PISA are generated as de-
scribed in section 5.1. The so-called baseline sets for atmospheric neutrinos and
muons assume nominal values for all nuisance parameters, which corresponds to the
current best knowledge of the involved processes. These event sets are re-weighted
in consecutive stages corresponding to the involved physics processes, as shown
schematically in figure 7.5.
A subset of nuisance parameters, which is discussed in section 7.5, has significant
impact on the analysis outcome. These parameters are included floating freely
within the final optimization, which means that the respective parameter value in a
corresponding PISA stage can be varied.

1

2
34

µ
ν

Fig. 7.5.: Schematic of the individual PISA stages. The numbers mark individual stages
of re-weighting event counts based on different effects: (1) The atmospheric
flux, (2) oscillations and matter effects during neutrino propagation, (3) neutrino
interaction characteristics and (4) impact of the ice and detector response on
the signal. Neutrinos and atmospheric muons are treated separately, with only a
subset of said stages being relevant for muons.

For both, the neutrino signal and muon background, the baseline MC event set
is re-weighted separately to fit the assumed flux in stage 1. For neutrino events,
the resulting flux is then processed according to the assumed matter- and oscilla-
tions effects in stage 2. The subsequent neutrino interactions inside the detector
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are weighted with respect to the adopted cross section model in stage 3. Then,
in stage 4, changes in detection probability of the produced light due to ice and
detector properties are calculated. An overall signal normalization is applied to
atmospheric neutrinos and muons likewise, followed by allocation of the individual
events to the histogram binning presented in section 7.1.3.
For muon events, due to the involved physics processes as well as their small contribu-
tion to the sample, the complexity of this queue is reduced to muon flux calculation
and overall normalization.
Most stages operate on individual events while the more computationally expensive
neutrino flux and oscillations calculations use internal binning to speed up compu-
tation. This reduces the number of weights that need to be calculated by a factor
of O(104) from being equal to the number of processed events to the stage-specific
number of bins. Optimizing the trade-off between computational cost and accuracy
of these calculations motivates finer stage-internal binning than that of the final
reconstructed parameters. The details of this internal binning have been evaluated
and optimized for this analysis in a respective study. In comparison to event-based
weight calculation, no significant negative impact on the analysis could be found for
the internal binnings established in other analyses of the same data sample as the
numbers of bins in all dimensions were found to be sufficient in all stages where
internal binning is applied.
All parameter settings and information on the stages are stored in configuration
files which can be found in a github repository created for this analysis [124]. The
details on neutrino event modeling and assumptions concerning individual stages
and associated sources of systematic uncertainty are given in the following.

7.3 Uncertainties in describing particles

In order to re-weight Monte Carlo sets based on a specific hypothesis, continuous
functions in all varied dimensions are required. These are of different origin,
depending on whether there are models describing a respective dimension, which is
typically the case for particle interaction related dimensions. The models used in
this analysis are discussed in the following, separated into neutrino flux modeling in
section 7.3.1, oscillation effects in section 7.3.2, cross-sections in section 7.3.3 and
overall signal and background normalization parameters in section 7.3.4.
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(a) Uncertainties on cosmic ray hadron production subdi-
vided in the space of energy of the initial hadron, Ei,
and energy fraction of the secondary hadron, xLAB =
Es/Ei, for kaon and pion production. Taken from Barr
et al. [125].

r [km]

(b) Matter density as a function of ra-
dial position from the center of the
Earth, based on the PREM [35]
scheme.

Fig. 7.6.: Depictions of assumptions going into the flux and oscillation modeling.

7.3.1 Flux modeling

In the first step of re-weighting, the atmospheric lepton flux is calculated using
the model described by Honda et al. [41] as the baseline. Uncertainties arise
based on the primary cosmic ray spectrum as well as the showers of secondary
particles that cosmic rays produce. The latter concern properties of the atmosphere
and of hadronic interactions. Multiple models are taken into account to ensure a
preferably generally valid evaluation of the associated uncertainties, by calculating
their outcome using the Matrix Cascade Equations (MCEq) [126] tool.
The main uncertainty of the primary cosmic ray spectrum [125] is modeled as a
power-law correction ∆γ that directly impacts the flux of atmospheric leptons as

Φmodν/µ
= Φν/µ

(
E

Epivot

)∆γν/µ

. (7.3)

The pivot energy is set to 24 GeV in order to reduce the impact of the correction
of the flux scale. This will compensate any normalization offset and is left as free
parameter without a prior. Note that, while the structure of the correction is the
same, neutrinos and muons are considered separately, with independent respective
nuisance parameters ∆γν and ∆γµ.
Additional uncertainties on the neutrino flux, originating from hadron production,
are described using phenomenological models [87, 125, 127]. The scheme shown in
figure 7.6a shows the approach of Barr et al. [125] to segment the space defined by
the initial hadron energy and relative secondary hadron energy into independent
nuisance parameters. These differ for pions, kaons and their respective anti-particles.
In case of pions and anti-pions, this difference amounts to a scaling factor that
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Tab. 7.2.: Flux related nuisance parameter nominal values and, if applicable, Gaussian
prior widths, based on [92]. The last column gives the status of the variable in
the final minimization configuration. Note that, while most values given for Barr
parameters use the prior ranges specified in the original paper, [125], the prior
given for barr_z_K and barr_z_antiK is increased by a factor of 5 with respect
to this, as it was found in IceCube internal simulation to be underestimating the
actual variance.

Parameter Nominal value ± prior Boundaries Status
∆γν 0.0 ± 0.1 ±3σ Free
∆γµ 0.0 ± 1.0 ±3σ Fixed
Epivot [GeV] 24.09 - Fixed
π+/π− 0.0 ± 0.05 ±5σ Fixed
barr_a_Pi 0.0 ± 0.1 ±3σ Fixed
barr_b_Pi 0.0 ± 0.3 ±3σ Fixed
barr_c_Pi 0.0 ± 0.1 ±3σ Fixed
barr_d_Pi 0.0 ± 0.3 ±3σ Fixed
barr_e_Pi 0.0 ± 0.05 ±3σ Fixed
barr_f_Pi 0.0 ± 0.1 ±3σ Fixed
barr_g_Pi 0.0 ± 0.3 ±3σ Fixed
barr_h_Pi 0.0 ± 0.15 ±3σ Free
barr_i_Pi 0.0 ± 0.122 ±3σ Free
barr_w_K 0.0 ± 0.4 ±3σ Fixed
barr_x_K 0.0 ± 0.1 ±3σ Fixed
barr_y_K 0.0 ± 0.3 ±3σ Free
barr_z_K 0.0 ± 0.61 ±3σ Free
barr_w_antiK 0.0 ± 0.4 ±3σ Fixed
barr_x_antiK 0.0 ± 0.1 ±3σ Fixed
barr_y_antiK 0.0 ± 0.3 ±3σ Fixed
barr_z_antiK 0.0 ± 0.61 ±3σ Fixed

corresponds to the pion ratio π+/π−, which allows for a reduction of the overall
number of nuisance parameters. The resulting considered flux based nuisance
parameters and their status in the final minimization are shown in table 7.2, along
with their nominal values and the widths of the associated Gaussian priors.
The boundaries for all parameters modeling pion and kaon flux are set to ±3σ,
which constitutes a difference with respect to other analyses using the same data
sample. This is motivated from the fitting performance, which increases for a smaller
parameter space. Such a change is assumed not to impact the analysis outcome,
since fitting nuisance parameter values outside of this range would in any case be
considered an indication of poor agreement between model and data and lead to
re-evaluation of the analysis.
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Tab. 7.3.: Nominal values and allowed ranges of PMNS-matrix parameters in both mass
orderings, as used for this analysis. Oscillation parameter values are based on
the NuFIT 4.0 results [130, 131] including Super-K atmospheric data.

Parameter Nominal value ± prior Boundaries Status
Y I

e 0.4656 - Fixed
Y O

e 0.4656 - Fixed
Y M

e 0.4957 - Fixed
Detector depth [km] 2.0 - Fixed
Production height [km] 20.0 - Fixed
θ23 [◦] 45.3637 [20, 70] Free
θ12 [◦] 33.82 - Fixed
δCP [◦] 0 - Fixed
∆m21 [eV2] 0.0000739 - Fixed
NO:
θ13 [◦] 8.61 ± 0.13 - Fixed
∆m31 [eV2] 0.00247996 [0.0015, 0.003] Free
IO:
sin2(θ13) [◦] 8.65 ± 0.13 - Fixed
∆m31 [eV2] −0.00247996 [−0.003, −0.0015] Free

7.3.2 Oscillation and matter effect implementation

Once the atmospheric neutrino flux is known, matter and oscillations effects on it
are calculated using an adaption of the prob3 [128] framework, which implements
the approach taken in [129].
Effects of PMNS-matrix parameters are computed using the three flavor model
introduced in section 3.2. For this analysis, they are included as nuisance parameters
with no Gaussian priors. The nominal value of each as well as the range that it is
allowed to vary in are shown in table 7.3 for both mass orderings. As the choice of
mass ordering was found to have only a small impact on the NSI analysis outcome,
all subsequent studies are shown for normal ordering.

In addition to the null hypothesis case, which includes Earth matter effects due to
electron neutrino CC interactions, NSI effects are implemented as an extension to
prob3. Their analytical formulation follows the parametrization discussed in section
3.3, which yields two real-valued FD and three complex-valued FC parameters.
The PMNS-matrix oscillations hypothesis is hence nested within the NSI parameter
space, corresponding to the case where all NSI parameter values are 0. A first
implementation of this was performed for the previous DeepCore NSI analysis [40]
and, as a part of this work, ported to the current PISA code base [132].
The electron and hence matter density profile of the Earth and atmosphere is an
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input parameter for any matter effects. Atmospheric neutrinos are assumed to be
produced at a height of 20 km [41] above ground and reach the detector at a depth
of 2 km in good approximation. The matter density profile of the Earth is modeled as
twelve concentric spherical shells with constant density each. The respective values,
adapted from the PREM scheme introduced in section 3.2.3, can be found in figure
7.6b. Note that the largest offset in density between two subsequent layers is at
the boundary of outer core and mantle, inducing the neutrino oscillation behavior
discussed in section 7.1.
The radially dependent electron number density,

Ne(r) ∝ Ye(r)ρ(r) , (7.4)

depends on the matter density ρ(r) as well as the matter composition through the
relative number density of electrons per nucleon Ye(r). This work, like previous
analyses [40], assumes an electron density that corresponds to iron Y I

e = Y O
e =

0.4656 for the inner and outer core and Y M
e = 0.4957 for the Earth mantle.

For NSI, not only the electron number density but also that of up- and down-quarks
is relevant. As the NSI parametrization applied in this analysis does not differentiate
between coupling to individual fermions, all fermion number densities can be
represented through that of electrons as shown in equation 3.30.

7.3.3 Cross section uncertainties

Neutrino interactions in the instrumented ice are subject to uncertainties concerning
the parton distribution functions within the target nucleons which are given in table
7.4. These differ for the individual processes, namely deep inelastic (DIS), resonant
(RES) and quasi-elastic scattering (QES), which are detailed in section 2.
Uncertainties in the cross sections of CC quasi-elastic scattering and resonant neu-
trino production are introduced in the GENIE [84] software through re-weighting
with the axial mass form-factors MCCQE

A and MCCRES
A . The parton distribution

function that GENIE is based on [133] is sufficiently accurate at the energies where
RES and QES are dominant.
Deviations between the parton distribution functions used in GENIE and more recent
measurements, however, need to be taken into account at energies where deep
inelastic scattering becomes relevant. Of the implementations of parton distribution
functions that were tested, the CSMS [134] model yields the largest differences
with respect to GENIE. In current analyses such as this work, a correction is applied
to interpolate between the GENIE and CSMS cross sections using the DIS CSMS
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Tab. 7.4.: Nuisance parameters considered with respect to neutrino cross sections, along
with their priors and allowed ranges as well as their status during minimization.

Parameter Nominal Value Boundaries Status
MCCQE

A (in σ) 0.0±1.0 ±2σ Free
MCCRES

A (in σ) 0.0±1.0 ±2σ Free
DIS CSMS 0.0±1.0 ±3σ Free

Tab. 7.5.: Nuisance parameters that are constant scaling factors, along with their priors
and allowed ranges as well as their status during minimization.

Parameter Nominal Value Boundaries Status
Nν 1 [ 0.5, 2 ] Free
Nµ 1 ± 0.4 [ −2.25σ, +5σ] Free
Nντ 1 [0.0, 3.0] Fixed
Nν,NC 1 ± 0.2 [0.5, 1.5] Fixed

nuisance parameter [83, 115]. In recent studies, an error in the GENIE calculation of
the charm quark fraction was found to be the origin of this behavior. The DIS CSMS
nuisance parameter will, as a result, likely not be necessary in future DeepCore
analyses.

7.3.4 Overall signal normalization

In order to account for any effects that impact all bin counts for a specific event
kind equally, constant normalization factors are introduced as nuisance parameters.
These apply to the overall neutrino event rate Nν , that of NC interactions Nν,NC and
atmospheric tau neutrinos Nντ . The cosmic muon normalization, Nµ, is found to
have negligible impact due to the muon contribution to the overall sample being
below 1 %.
The fact that the overall signal normalization is allowed to vary in the analysis makes
it sensitive to relative signal changes only. In other analyses using the same data
sample, the lower boundary of the respective nuisance parameter is at Nν = 0.1. This
was changed to 0.5 for this analysis, as allowing such an extreme parameter range is
not expected to be representative of the true uncertainty on this parameter.

7.4 Parametrizing the detector

For all DeepCore analyses, the most relevant group of systematic uncertainties and
corresponding nuisance parameters concerns the understanding of the detector itself.
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This concerns characteristics of light propagation in the different kinds of ice, such
as the pristine glacier ice, which is described in section 7.4.2. The re-frozen hole ice
is treated in a joint description with the detector instrumentation, as discussed in
section 7.4.1. The nominal values and ranges of all respective nuisance parameters
are given in table 7.6.
In contrast to modeling particle interactions, for these detector parameters, evaluat-
ing the impact in a closed functional form is computationally intractable. Instead,
Monte Carlo simulated sets are generated at hypotheses spanning the parameter
space and interpolated between. This approach is described in section 7.4.3 and
evaluated in section 7.4.4.
For the neutrino signal, the impact of the respective nuisance parameters has large
effects at the analysis level. In contrast, the contribution of atmospheric muon
events in the sample is sufficiently small to make detector related uncertainties on it
negligible.

7.4.1 Module and hole ice characteristics

Detector and ice properties are measured mostly in flasher calibration runs. The
calibration based understanding of the detector characteristics is included in the
data sets for each detector run.
The overall scale of the DOM efficiency after calibration, εdom, accounts for any
uncertainties that affect all modules alike. It is studied using minimum ionizing
muons [74] and modeled in DeepCore analyses as a nuisance parameter.
The DOMs angular acceptance is considered equal for all modules and the applicable
uncertainties are modeled as part of the hole ice parametrization. As described in
section 4.4.3, hole ice is the melted and re-frozen ice column in which DOMs have
been deployed. Its optical properties differ strongly from those of the surrounding
pristine glacial ice, especially at its center. There, the bubble column shades off
parts of the photocathode region. A hole ice model can therefore be considered a
description of the relative uncertainty on DOM angular acceptance.
The current hole ice model [83, 135] unifies multiple data sets and previous de-
scriptions by spline interpolating them and applying principal component analysis
(PCA) [136]. The features and range of all ingoing curves are found to be describ-
able at high accuracy with two parameters, p0 and p1, the variations of which are
shown in figure 7.7. Since p0 and p1 are eigenvectors of the covariance basis of the
underlying models they are uncorrelated, which makes them especially suitable as
nuisance parameters.
The behavior of p0, which mostly impacts the efficiency at incidence angles where
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Fig. 7.7.: Variations of the two free parameters of the PCA based hole ice model. For all
realizations, the resulting relative optical DOM efficiency is shown over the cosine
of the incidence angle η. The plots are adapted from [135].

cos(η) ∼ 1, suggests interpreting it as DOM acceptance in the forward direction with
respect to the cathode orientation. Detection of light under these incidence angles is
strongly impacted by hole ice properties, since the central part of it is assumed to
induce the most scattering.

7.4.2 Bulk ice

The photon absorption and scattering properties of the pristine glacial ice outside
the IceCube boreholes are modeled based on calibration data as shown in figure
4.12. The SPice 3.2.1 model which is used for this analysis is based on flasher data
and includes Mie scattering [67]. A constant optical anisotropy of 6.9 % at all depths
is assumed [73], the axis of which coincides with the ice flow direction [74]. The
main systematic uncertainties on this approach are associated to the flasher LED
light emission and DOM characteristics. To account for them, two global scaling
factors on scattering and absorption are introduced as nuisance parameters with
Gaussian priors. While the nominal ice model is produced with both scaling factors
at 1.0, further calibration studies suggest a scattering factor of 1.05 [83], which is
further on set as the nominal value.
In the SPice 3.2.1 model, anisotropy is empirically modeled purely as a direction
dependent modification. A better understanding of its origin from birefringence
effects was only achieved recently [74]. Subsequently, the birefringence ice model
(BFRv2) was constructed by including these effects ab initio with parameters derived
in fits to flasher data [76].
While it is desirable to include this new understanding of light propagation in this
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Tab. 7.6.: Detector and ice related nuisance parameter values, along with their priors and
allowed ranges where applicable.

Parameter Nominal Value Boundaries Status
ϵDOM 1.0 ± 0.1 [0.8, 1.2] Free
hole ice p0 0.101569 [−0.6, 0.5] Free
hole ice p1 −0.049344 [−0.15, 0.04] Free
bulk ice absorption 1.0 ± 0.05 [0.9, 1.1] Free
bulk ice scattering 1.05 ± 0.1 [0.85, 1.25] Free
Nbfr 0.0 [0.0, 1.0] Free

analysis, using the BFRv2 ice model as the baseline assumption in place of the SPice
3.2.1 model has multiple prerequisites that could not be met within the timeline of
this thesis. These include a detailed study of the uncertainties on parameters in the
BFRv2 ice model. Based on the outcome of this, Monte Carlo event sets would need
to be simulated.
The uncertainty within the underlying ice model is therefore included in form of an
effective nuisance parameter, Nbfr, that linearly interpolates between the bin counts
nominally expected when assuming SPice 3.2.1 and BFRv2.
The common underlying flasher data measurements used for modeling birefringence
and hole ice result in an overlap between the observed effects. This is reflected
in correlation between the respective ice nuisance parameters. The nominal ice
nuisance parameter values, which assume the SPice 3.2.1 model, can therefore be
presumed to absorb some of the birefringence induced behavior. It hence seems
plausible that the expected variation of Nbfr lies within the range defined through
the SPice 3.2.1 and BFRv2 ice models.

7.4.3 Nuisance parameter interpolation

For detector related nuisance parameters that are continuous, ab initio modeling of
the impact is computationally not feasible. In order to include them, expected event
rates are calculated based on MC sets that are generated at discrete hypotheses
throughout the detector nuisance parameter space. The parameter values at which
each set is generated can be found in the appendix in section B.4. There are multiple
ways to use these sets to obtain expectation values for the event counts at a given
set of detector nuisance parameter values, which then are applied in the detector
modeling stage of PISA.
For standard oscillations analyses, the expectation values from these simulated sets
are linearly interpolated in each nuisance parameter in every analysis bin. The
bin-wise revision is necessary as the nuisance parameter impact is known not to be
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linear and therefore needs to be evaluated locally. The result are functions of the
detector parameters for each bin in the analysis histogram. These functions return
scaling factors by which the event count has to be multiplied in order to approximate
the effect of the variations in the detector properties. In this way, event counts
are adjusted to include the understanding of the impact of the respective detector
nuisance parameter values. The functions are also referred to as hyper-surfaces [83].
This method operates on the bin counts expected at the null hypothesis and has been
found to artificially introduce correlations between detector and physics effects. This
makes it necessary to interpolate the hyper-surfaces in the relevant oscillation-related
parameters. For BSM-physics analyses with additional parameters, this approach
is computationally intractable, since it results in large hyper-surface file sizes and
accordingly large memory requirements in computation.

The alternative strategy applied in this analysis uses likelihood-free inference and is
briefly described in the following. More detail can be found in [137].
The aim of this treatment of nuisance parameters is to provide adapted weights
for the individual events. These weights describe how likely each event is for any
possible realization of detector-related nuisance parameters. This implies to find
weights wi,h for each event i in the baseline MC set such that the overall even
distribution matches a hypothetical set simulated at hypothesis h that includes
off-nominal nuisance parameter values. This needs to be done in a way that is
independent of assumptions that are made when generating the underlying MC
simulated sets, such as the physics hypothesis or values of other nuisance parameters.
In a case where the impact of all nuisance parameters was known analytically,
weights could be calculated from the probability ratio P (i|h)

P (i|h0) with respect to the null
hypothesis h0. While P (i|h) is not known, the posterior probability P (h|i) can be
obtained from a classifier that derives the probability of an event to occur in a set
of events simulated at nuisance parameter hypothesis h. Through this method of
likelihood-free inference [96], the weights can be inferred as

wi,h = P (i|h)
P (i|h0)

P (h)
P (h0) (7.5)

= P (h|i)
P (h0|i) (7.6)

with the second term in equation 7.5 serving normalization. The derivation of
equation 7.6 uses Bayes’ theorem,

P (A|B) = P (B|A)P (A)
P (B) . (7.7)
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The classification method used to calculate the posterior probabilities in equation
7.6 is the k nearest neighbors method. These derived posterior distributions allow
for the events in the baseline Monte Carlo set to be re-weighted in such a way
that they approximate the distribution of events in any of the off-nominal Monte
Carlo sets [137]. In order to be useful for the analysis, these weights need to be
interpolated between the discrete points. This interpolation is done by calculating
gradients in logarithmic space for every event with respect to the detector parameters.
These gradients are polynomials with two degrees of freedom for all nuisance
parameters except Nbfr. For this, one degree is used, as Monte Carlo sets are only
available at two points in this dimension, namely the two ice models.
The final weights are calculated as a sum of exponential functions. They are based
on gradients g at the nuisance parameter value difference ∆Θ with respect to the
nominal value as

wi(∆Θ) = exp

∑
j

∆Θjgi,j

 , (7.8)

for event i, using the total set of events j.
The Monte Carlo sets considered for this analysis are given in table B.5 in the
appendix. Not all off-nominal MC simulated sets were included in generating the
gradients used for this analysis. Nuisance parameter hypotheses that result in
expected event rates which differ too strongly from those at the baseline hypothesis
were found to introduce inconsistencies in the resulting gradients. This can be
explained through fluctuations encountered when applying large weights. As fitting
such extreme nuisance parameter values in the final analysis would in any case be
considered a sign of bad description of the data and lead to further investigation,
disregarding the respective MC sets is not concerning.
Of the sets that use the BFRv2 ice model, only the baseline set, in which all other
nuisance parameters are set to their nominal values, is included. The impact of these
choices is assessed in the following.
With this nuisance parameter treatment, the errors on expected bin counts are found
to be sufficiently large to introduce a significant difference between evaluation
based on different test statistics, namely modified and unmodified χ2, which were
introduced in section 7.2.1. This is shown in figure 7.8 for a comparison between
the baseline hypothesis and different DOM efficiency values. Due to this significant
impact of bin count errors, χ2

mod is used as the test statistic in this work.
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(a) Relative errors σexp
i (c.f. equation 7.2) on the expected bin

counts for the baseline hypothesis, including gradient-based
re-weighting. The largest relative errors occur in bins with
low statistics.
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efficiency is varied.

Fig. 7.8.: Impact of the errors on bin counts on the test statistic, given the applied nuisance
parameter treatment.

7.4.4 Evaluating the detector uncertainty treatment

In order to verify that this treatment performs as intended, multiple metrics are
assessed. Firstly, gradient results have been compared to the hyper-surface approach
as spot-checks, showing that similar bin counts are obtained. In addition, the
statistical pulls per analysis bin are evaluated as a measure of the difference between,
firstly, MC simulated off-nominal sets, and secondly, the baseline set, which is re-
weighted for the same nuisance parameter hypothesis. The pulls p are calculated
from the weighted bin counts noff−nominal and nbaseline that are expected based on
the off-nominal Monte Carlo set and the gradient-based re-weighted baseline set,
respectively. The respective Monte Carlo statistics per bin, soff−nominal and sbaseline,
are included as well, resulting in

p = noff−nominal − nbaseline√
soff−nominal + sbaseline

. (7.9)

The respective distributions for the total neutrino flux in six of the tested simulated
sets are shown in figure 7.9, including the detailed maps as well as histograms of
the pulls. The nuisance parameter values at which the shown Monte Carlo sets are
generated are listed in table 7.7. Summary plots of the distributions for all sets that
are included in interpolating the detector nuisance parameters as well as further
tested sets can be found in appendix section B.5.
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For all tested MC sets, the pull distribution standard deviations are close to 1. The
overall average is slightly negative, which is understood to originate from bins with
low statistics and does not affect the analysis, as the overall normalization is kept
free. This shows that the nuisance parameter impact is well modeled, even for
hypotheses that are not directly included in generating the interpolation.

As expected for weights that well reproduce the expectation, the pull distributions
mostly don’t show prominent clustering. One feature is present in sets such as the
shown sets 0105 and 1126, which include values below nominal of the p0 hole ice
parameter. A cluster of bins with larger event counts than expected is observed at
the lowest cosine of the zenith angle, energy and PID values. This region is where
p0 has the largest impact on the bin count, as this parameter acts as a modulation to
the DOM forwards acceptance. Further sets showing this behavior can be found in
appendix section B.5.
The observed underestimation of the p0 impact is likely an edge effect in the inter-
polation. This interpretation is supported by figure 7.10, in which the interpolated
curves in two example bins are shown for all detector nuisance parameters. The
first bin shown therein, in the panels on the left side, is located at the overall lowest
energy, cosine of the zenith angle and PID, as indicated in figure 7.9. The incorrectly
modeled impact of the lowest p0 values is visible clearly therein from the discrepancy
between Monte Carlo sets and interpolation. The bin shown in the panels on the
right-hand side is located approximately at the center in all dimensions and does
not show similar effects.
In order to circumvent that this behavior affects the analysis outcome, the four
clearly compromised bins are excluded, as shown in figure 7.4a. As the expected
bin counts in these bins are extremely small (below 100) the impact of this on the
overall sensitivity of the analysis is assumed to be small.
The gradients shown in figure 7.10 partly show extreme behavior towards the edges
of parameter ranges. This is only the case in regions where no off-nominal Monte
Carlo sets are available. Due to the calculation of the weights from a sum of expo-
nential functions given in equation 7.8, extreme behavior of the weights is possible
in unrestricted parameter ranges. For this reason, the parameter ranges allowed
in minimization within or negligibly beyond the values applied in the available off-
nominal Monte Carlo sets. An example for this is the bulk ice scattering parameter,
for which an upper limit of 1.15 is set in this analysis.

An additional feature that is apparent from figure 7.9 is that the mean values of the
pull distributions of some sets are shifted towards positive or negative values. The
extent of these shifts is significantly larger than the stochastic error of the mean.
The implications of this can be assessed based on the shift that this induces in the
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Tab. 7.7.: Nuisance parameter values at which the Monte Carlo sets shown in figure 7.9
are generated. Dashes indicate that the nominal value of a parameter is used.
The respective tables for further Monte Carlo sets can be found in section B.4 of
the appendix.

Set number Ice model ϵDOM p0 p1 Absorption Scattering
0105 - 0.93 −0.3729 0.0349 - -
0107 - 1.03 0.1244 −0.1132 - -
0500 - - - - 1.05 1.1 -
1122 spice_bfr-v2 - - - - -
1126 spice_bfr-v2 - −0.2 - - -

nuisance parameter values. For a set that is produced at a hypothesis where the off-
nominal nuisance parameters n are at value η, the value at which the interpolation is
evaluated is varied to η′ such that the interpolation prediction matches the tested set.
A schematic and realization of this is presented in section A.5 in the appendix, for
set 0500, where ice scattering and absorption are varied. Since η′ − η is significantly
below the scale of the prior of n and the fitted nuisance parameter values are no
observables in this analysis, the shift of the mean can be considered not relevant.
Apart from the above described behavior, no inconsistencies between the gradient-
based expectation and the off-nominal Monte Carlo sets are present in the tested
sets. The parameter space that the interpolated sets span is therefore considered to
be modeled well.
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Fig. 7.9.: Maps and histograms of bin-wise pulls in the total neutrino event counts for a
selection of simulated sets. All distributions are centered approximately around
0 and show a standard deviation close to 1. The clustering of positive pulls at
low PID, energy and cosine of the zenith angle values is related to inaccuracies in
the hole ice modeling and motivates excluding the respective bins. The bins for
which the gradients are shown in figure 7.10 are indicated as black rectangles in
the uppermost shown sample. All sets except 1126 were included in constructing
the interpolation. This selection of sets covers variations in all interpolated
dimensions. The nuisance parameter settings for each shown set can be found in
table 7.7. Maps for further sets can be found in section B.5 of the appendix.
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Fig. 7.10.: Detector nuisance parameter interpolation in two exemplary bins. The bin
positions are given in the titles and indicated in figure 7.9. The curves and their
standard deviation are shown in blue and light blue, respectively. Simulated
sets included in the generation are shown as vertical error bars. On-axis sets,
where only one nuisance parameter is varied, are shown in black and off-axis
ones, with two or more varied parameters, in gray.
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7.5 Impact of individual nuisance parameters

Not all of the nuisance parameters that are modeled are found to have an impact on
the analysis outcome that is significant enough to motivate leaving them free floating
in the minimization. Since each added dimension complicates the minimization
process further2, only including relevant parameters is essential.
The parameter impact is evaluated by exploring a hypothetical scenario where one
nuisance parameter is fixed to its nominal value during minimization while its
assumed true value is significantly off-nominal. The resulting impact on the fitted
NSI parameter value illustrates an extreme case of how the analysis outcome is
affected if the respective nuisance parameter is disregarded.

In order to test for this consistently for different nuisance parameters n, the off-
nominal value η to which n is fixed during the fit needs to represent the expected
variation of n. If a Gaussian prior is given, η corresponds to positive 1σ with respect
to the nominal value. In cases where only a range is set for n, η is centered between
the nominal value and the upper border of the range. If these values do not represent
the expected variation of a nuisance parameter well, η is set to what is specified in
appendix section B.6.
A set of nuisance parameters that were found in previous studies to likely be relevant
are kept free throughout the fits. Their possible correlations with n are therefore
included in the test.
At the fixed value of n, for each NSI parameter and at multiple true values thereof,
two fits are performed. For one, the so-called free fit, the NSI parameter is kept free,
while being fixed to its true value in the second, so-called null fit. The difference
between the test statistic values obtained in the two fits is the so-called mis-modeling
m, such that

m = ∆χ2
mod = χ2

mod, null fit − χ2
mod, free fit . (7.10)

In this test, the mis-modeling value is used to quantify the impact of fixing the
nuisance parameter n to its nominal value, as shown schematically in figure 7.11.
When assuming Wilks’ theorem, mis-modeling values can be interpreted directly as
significances. Nuisance parameters for which this results in a mis-modeling value
that corresponds to ≤ 0.1σ for any NSI parameter and any tested value thereof
are considered necessarily free in the final fit settings. As a result, the nuisance
parameters that are ultimately set free are a super-set of those found to be relevant
for each NSI parameter.

2In a naïve estimate, the minimization complexity scales as a power law with the number of parameter
space dimensions.
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Fig. 7.11.: Schematic of how the impact of an individual nuisance parameter n is tested.
Fits are performed at off-nominal values of n for multiple values of the tested
NSI paramter ϵ, which is shown on the horizontal axis. In the null fit, ϵ is
fixed to its true value, while floating freely in the free fit. The largest obtained
mis-modeling, indicated as ∆χ2

mod between the two fit results, describes what
impact fixing n to its nominal value hast.

Figure 7.12 shows the mis-modeling values obtained in such tests for ϵ⊕
ττ − ϵ⊕

µµ

and ϵ⊕
eτ . The values for individual nuisance parameters differ little between NSI

parameters and jointly confirm the set of nuisance parameters set free initially for
the test.
Parameters with consistently largest impact are associated to uncertainties in the un-
derstanding of the detector modules and ice properties. A second large contribution
lies within oscillation related parameters to which atmospheric neutrinos are sensi-
tive, namely θ32 and ∆m31. Including these is crucial, as they potentially introduce
effects similar to those of NSI. The overall normalization, which is a fundamental
variable in the understanding of the signal, impacts the analysis outcome at similar
significance. Only a subset of the parameters associated to neutrino flux and cross
section result in significances of ∼ 0.1σ, which motivates including them in the fit.
As the contamination of atmospheric muons in the sample is reduced to 0.55 % in
the event selection, the respective nuisance parameters have in general small impact
and are fixed.
From the super-set of all NSI parameters, a total of 17 nuisance parameters is deter-
mined that are set free-floating in all subsequent steps. These are shown in orange
in figure 7.12 and stated as free in the nuisance parameter tables.
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(a) Results for the real-valued ϵ⊕
ττ − ϵ⊕

µµ parame-
ter.

(b) Results for the complex-valued ϵ⊕
eτ parameter

Fig. 7.12.: Impact of fixing individual nuisance-parameters to their nominal value when
fitting to an off-nominal hypothesis. The figures for ϵ⊕

eµ and ϵ⊕
µτ can be found in

appendix section B.6.
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7.6 Finding the hypothesis that fits the observation best

As a consequence of the aforementioned impact of individual nuisance parameters,
the analysis parameter space is spanned by 17 nuisance parameters and the evaluated
dimensions in NSI, which are either one or two if parameters are tested individually.
The hypothesis that best fits the observed data needs to be located within this high-
dimensional space. In addition, confidence limits on NSI parameters need to be
calculated. The mechanics of this differ between the two approaches presented in
this work, namely the frequentist approach of minimizing a test statistic function
within the parameter space, which is discussed in this section, and secondly the
Bayesian approach of sampling the posterior distribution, which is presented in
section 7.7. The latter is not the focus of this analysis, but a secondary approach that
was explored in this work. In the following, challenges in evaluating the parameter
space will therefore be described with respect to minimization, although they mostly
apply similarly to both approaches.

7.6.1 Navigating the parameter space

The main challenge in minimization arises from the high dimensional parameter
space and the behavior of the test statistic function. There are known approximate
test statistic mirror symmetries around θ23 = 45◦ [27] and in the NSI parameters.
The latter are present at ϵ⊕

ττ − ϵ⊕
µµ = 0, ϵ⊕

ee − ϵ⊕
µµ = −1 and, for the complex phases

of FC parameters, at δαβ =180◦. In addition to these symmetries, the test statistic
does not progress smoothly along nuisance parameters that describe the detector.
These characteristics increase the computational resources required for finding the
test statistic minimum within the parameter space and a single iteration of the
minimization process can run for up to tens of hours. Different tests that are run
to ensure the reliability and accuracy of the analysis require O(104) repetitions in
total. Fast minimization, which implies preferably few test statistic evaluations, is
therefore necessary to stay within the resources available on the employed computing
clusters [112, 138, 139].

The approach chosen for this analysis is to consider NSI parameters individually
in a frequentist fitting method based on minimizing the test statistic described in
section 7.2.1.
Treating NSI parameters individually reduces model independence by rejecting
scenarios where multiple NSI parameters are non-zero at once. It however also
reduces the dimensionality and symmetries within the parameter space, which
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makes fitting computationally feasible. The reduced ranges of individual parameters
discussed in section 7.3 furthermore reduces the size of the parameter space that a
minimization needs to cover.
An additional factor is the treatment of errors on bin counts. These enter the applied
test statistic and depend on the expected event count which varies depending on the
evaluated hypothesis. This additional factor in the test statistic values was found to
potentially complicate minimization.
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Fig. 7.13.: Schematic overview of the minimization process. The initial population of the
first minimization step, a controled random search (CRS2), is shown as light gray
randomly distributed dots, while later iterations of the algorithm are shown in
dark gray. Colored lines denote subsequent minimizations, namely migrad and
subplex, with their start end points illustrated as dots and arrows, respectively.
Symmetry axes in the two shown dimensions are indicated as black dashed lines,
with inflections along them depicted as dashed lines in the color of the preceding
minimization.

A multitude of different minimization approaches were tested for this work. The
capacity of PISA to define recursive minimization strategies allows for combining
multiple methods with different boundary conditions [123]. The minimization strat-
egy ultimately used in this analysis is discussed in the following. It is motivated from
the outcome of different Monte Carlo based tests that are discussed in subsequent
sections.
The overall minimization process consists of two fundamental parts: First finding
a good starting point and then optimizing this point further. This separation is
motivated from the observation that no tested algorithm accomplishes both with
sufficiently good accuracy and run-time. Algorithms that are able to find an ap-
proximate solution without any previously tuned starting point require prohibitively
large computation resources to arrive at a hypothesis that fits the underlying truth
within small tolerance. Algorithms that achieve the latter do so only if they start at a
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hypothesis that is reasonably close to the global optimum. As a result, both kinds of
algorithms are combined in the approach used in this work. A schematic overview
of the minimizing procedure is shown in figure 7.13.
Finding a good starting point is addressed by using four instances of the CRS2
algorithm [140–142] that are confined to different quadrants of the parameter space.
This algorithm operates with a large number of randomly initialized points that are
evaluated in parallel in order to cover multi-modal parameter spaces. In this work,
this so-called population size is set to 250.
The ranges are defined based on the approximate symmetries found at θ23 =45◦ as
well as the NSI parameters. The four initial CRS2 instances only cover one half of
the FC parameter complex phase range, dividing it into two ranges of δαβ ∈ [0◦, 90◦]
and [90◦, 180◦], in order to reduce the size of the parameter space.
A CRS2 instance terminates once the relative or absolute tolerance of 0.002 is reached
or, in most cases, when the maximum run-time of 7000 s (∼2 h) is exceeded. The
hypothesis with the best test statistic value is returned, with the overall best result
of all individually optimized ranges being set as starting point for the subsequent
minimization.
This is followed by an unrestricted iteration of the subplex [143] algorithm which
is based on the Nelder-Mead simplex minimization [144]. It typically terminates
after ∼ 1000 evaluations, which corresponds to approximately 1 h of run-time, after
achieving relative or absolute tolerance of 0.0001. In this intermediate step, the
approximate symmetries within the parameter space are not treated separately as
this is computationally costly and therefore done only when it is necessary. This
necessity is not given in this step, which only refines the hypothesis up to a relatively
coarse level.
Subsequently, four instance of the migrad [145, 146] algorithm are executed based
on the θ23 and NSI parameter symmetries. These are not confined to specific ranges
but start at the hypothesis returned by subplex and the corresponding hypotheses
that are inflected at the respective symmetry axes. After typically 1000−3000 evalua-
tions in each instance, the accuracy requirements are reached. These are a tolerance
of 10−5, precision of 10−14 and an error3 of 10−5. The best of the four results is
returned as the overall minimization result.
This approach yields sufficiently accurate results in most cases. There are, however,
settings where the CRS2 instances are not reliably able to find a good starting point
for the subsequent steps. This is discussed in the following, based on tests that were
conducted to evaluate the minimization performance.

3A definition of these quantities can be found in [145].
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Fig. 7.14.: Test of the fit performance where pseudo-data are generated at different NSI
parameter values and attempted to recover in an Asimov approach. Due to the
random character of CRS2 as the initial fitting step, the start point of the fit is
not expected to have any impact on the fit outcome. It is indicated as a purple
dashed line for ϵ⊕

ττ − ϵ⊕
µµ and as a red dot for ϵ⊕

µτ .

7.6.2 Recovering injected NSI hypotheses

As a basic test of the minimizer performance, pseudo-data are generated at different
injected NSI hypotheses, which are attempted to recover through a fit. This is
performed with an Asimov approach, where neither nuisance parameter values nor
bin counts are fluctuated. The global optimum of the parameter space is therefore
exactly at the injected hypothesis.
The drawn hypotheses cover the entire range that the NSI parameters are allowed
to vary in while fitting, which significantly exceeds the confidence intervals given in
previous studies [40]. Differences between injected and recovered parameter values
are compared both in absolute scale and through their mis-modeling. Being the test
statistic difference between the fit result where the tested NSI parameter is free and
one where it is fixed to the injected value, the mis-modeling is required to be below
0.2σ. It measures what statistical impact the inaccuracy in recovery has, which is
of more relevance to the interpretation of analysis results than the absolute error
values.
Figure 7.14 shows the injected and fitted values exemplarily for ϵ⊕

ττ − ϵ⊕
µµ and

ϵ⊕
µτ . Respective figures for other NSI parameters as well as the corresponding mis-

modeling values for ϵ⊕
µτ can be found in section B.7 of the appendix. For all NSI

parameters except for ϵ⊕
ee − ϵ⊕

µµ, the evaluation criteria are met, as all truth values
are recovered well and the mis-modeling is below 0.2σ for all tested hypotheses.

142 Chapter 7 Search for NSI



4 2 0 2
ee true

4

3

2

1

0

1

2

3

ee
 fi

t

Fit start
Ideal case
Scan points 2.0

1.5

1.0

0.5

0.0

2 m
od

Asimov test results

(a) Fits including the commonly used 17 free nui-
sance parameters. Most scan points diverge
significantly from the optimal case that is in-
dicated as the gray diagonal line, where the
true value equals the fitted one.

4 2 0 2
ee true

4

2

0

2

ee
 fi

t

Fit start
Ideal case
Scan points

3.0

2.5

2.0

1.5

1.0

0.5

0.0

2 m
od

Asimov test results

(b) Results when including only the 8 nuisance
parameters that yield the most significant im-
pact on the analysis.

Fig. 7.15.: Test results for the real-valued ϵ⊕
ee − ϵ⊕

µµ parameter in two settings. In both,
the maximum run-time of the CRS2 instances is increased by a factor of 2 with
respect to the otherwise used setting. The points with large errors result in large
negative mis-modeling values, indicating failure of the minimization.

Small negative mis-modeling values, such as those found at some tested values of
ϵ⊕
ττ − ϵ⊕

µµ, are not considered a problem.
For ϵ⊕

ee − ϵ⊕
µµ, an improvement in performance in this test is achieved when doubling

the run-time of the CRS2 instances and decreasing the number of free nuisance
parameters to 8, as shown in figure 7.15. The reduced set of nuisance parameters
includes those that result in ≥ 0.5σ mis-modeling in a test set-up as described in
section 7.5. These are θ23, ∆m31, Nν , p0, p1, ∆γν , DOM efficiency, ice scattering,
and ice absorption.
The parameter value recovery for ϵ⊕

ee − ϵ⊕
µµ is in this way shown to slightly improve

in a case where the dimensionality is reduced and the minimization operates with
significantly more computational resources. This indicates that ϵ⊕

ee − ϵ⊕
µµ can likely

be investigated with the minimization approach applied in this analysis, if vastly
more computation time is available. Since this is currently not given, ϵ⊕

ee − ϵ⊕
µµ will

be disregarded in the following.

Reviewing the ice model

As the ice model nuisance parameter Nbfr is newly introduced in this generation of
analyses, its capacity to model the detector under different assumptions is evaluated.
To this end, the above described test is run with BFRv2 based pseudo-data and a
SPice 3.2.1 based template. The implication of such a test is that SPice 3.2.1 can be
kept as the model that this analysis is based on if that does not impede recovering
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any NSI hypotheses, even in a scenario where the detector ice is perfectly described
by BFRv2. For such a case, where the pseudo-data is generated at Nbfr = 1, fitted
assuming Nbfr = 0 and Nbfr is kept free in the fit, the truth value recovery and
the obtained mis-modeling values meet the given criteria of being positive or small
as well as corresponding to ≤ 0.02σ. If in such a setting, Nbfr is fixed for fitting,
mis-modeling values up to O(1) are found, which furthermore motivates including
this as a free-floating nuisance parameter.

7.6.3 Recovering fluctuated nuisance parameters

While the nominal values of nuisance parameters correspond to the current best
knowledge of the underlying effect, variations in them are expected within their
respective range. The capability of the minimization to recover off-nominal hypothe-
ses is tested by fitting to pseudo-data that are generated with fluctuated nuisance
parameter values and non-fluctuated bin counts. In figure 7.16, the fluctuated and
fitted values for ϵ⊕

ττ − ϵ⊕
µµ are shown for 100 trials. Respective test results for all

further investigated NSI parameters can be found in the appendix, in section B.8.
For all tested NSI parameter magnitudes, good recovery of the assumed truth values
is observed.
In this test, all free parameters are fluctuated simultaneously based on their allowed
ranges or Gaussian priors. In these cases, the global optimum is not at the pseudo-
data truth hypothesis in all dimensions, as the Gaussian priors that are applied to
a subset of the nuisance parameters result in a shift of the optimum towards the
nominal value. This can become dominant for nuisance parameters to which there
is low sensitivity. In addition, potential correlations between parameters can result
in fitted values differing from to the underlying truth.
The evaluation criterion in this test is therefore less quantitative. Requirements are
a clear and consistent correlation between injected and recovered values and few
mis-modeling values above 0.1.
The negative mis-modeling values shown as red crosses in figure 7.16 indicate that
some of the fits fail to find the global optimum: Negative values imply that the fit
that includes the tested NSI parameter yields a worse test statistic value than the
fit where this parameter is fixed. As in general, a larger number of free dimensions
allows for a better fit to the pseudo-data, the fit with more degrees of freedom must
have failed to find the global optimum. Such behavior was found to arise in cases
where the CRS2 instances return a starting point for the subsequent minimization
that is in a secondary, local optimum.
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Tab. 7.8.: Fractions of negative mis-modeling occurrences and number of trials in different
studies for all NSI parameters. A discussion of fluctuating binned event counts is
given in section 7.6.4.

Fraction / Ensemble size
Ensemble ϵ⊕

ττ − ϵ⊕
µµ ϵ⊕

eµ ϵ⊕
eτ ϵ⊕

µτ

Fluctuated parameter values 2 % / 100 1 % / 100 12 % / 100 32 % / 100
Fluctuated bin counts 2.6 % /500 0.6 % / 500 0.2 % / 497 0.6 % / 500

Negative mis-modeling

The fractions of negative mis-modeling differ between the individual NSI parameters,
as shown in table 7.8. Since the ensemble of pseudo-data trials drawn for this test
does not represent the expected behavior of DeepCore data4, the fraction of fits
yielding negative mis-modeling solely serves as an indication for parameter space
regions where the minimization does not perform well. In the test results shown
here, such cases are randomly distributed. Therefore, this behavior can likely not be
addressed by further changing the minimization strategy. This issue is also present
in other studies and makes partial repetitions necessary. For example, in order to
meaningfully evaluate the impact of individual nuisance parameters in section 7.5,
single tested hypotheses needed to be repeated. The rate at which cases of large
negative mis-modeling are expected to occur in data is discussed in the following
section.

4An ensemble representing this is discussed in section 7.6.4.
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Fig. 7.16.: Fluctuated and fitted parameter values including ϵ⊕
ττ − ϵ⊕

µµ. The absolute mis-
modeling obtained in each trial is shown in color. Red crosses mark cases of
negative mis-modeling. The nominal value of the fluctuated parameter is shown
in a purple line. For parameters with Gaussian priors, which are indicated as
gray ranges, the global best fit point for off-nominal truth hypotheses is shifted
towards the nominal value.
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7.6.4 Handling pseudo-data

Pseudo-measurements can be obtained by Poisson-fluctuating each individual bin
count based on its expectation value. This is done in the following under the
assumption of the baseline model, in which all nuisance parameters are at their
nominal values and all NSI parameters are zero. This non-Asimov approach tests
the minimization performance on trials that simulate the fluctuation found in actual
data.
For ϵ⊕

ττ − ϵ⊕
µµ, the test statistic distribution resulting from fits to the Poisson-trials is

shown in figure 7.17a. Mean values and widths are similar for the NSI parameters
not shown here, the test statistic distributions of which can be found in the appendix
in section B.9. All mean values correspond approximately to the effective number of
degrees of freedom, which is composed of the number of bins minus the number of
free parameters in the fit.
In addition, if simulation and nuisance parameters model the reality correctly, the
distribution of possible test statistic values obtained in fits to data would coincide
with that of the pseudo-data ensemble. The test statistic values obtained for the
ensemble of Poisson-trials then form a distribution within which the test statistic
value obtained in a fit on data is expected to be situated. A low p-value [96]
of the data fit test statistic is called a poor goodness of fit and implies potential
incorrectness of the model. The convention of the IceCube oscillations working
group sets a threshold of p > 0.05 for an analysis to proceed towards publication.
The p-values resulting from fits to the DeepCore data sample5 that are performed
for all NSI parameters are at ∼ 5 %6. The threshold value of p =5 % is disputable,
given that this is a comparison of an ensemble that is drawn at the null hypothesis
and a fit result that includes off-nominal parameter values. It however hints towards
possible incorrect modeling within the simulation.
This interpretation is supported by the relatively low p-value of 20% [147] found
in an unpublished muon neutrino disappearance analysis that uses the exact same
data sample as this work while including a different set of nuisance parameters. An
equivalent analysis of a DeepCore data sample that differs from what is used in this
work mostly in that it applies the RETRO reconstruction, yields a p-value of 0% at
above 3σ [147].
This tendency towards low p-values motivates further detailed investigation of the
data sample and physics modeling. The conventions of the IceCube oscillation
working group with respect to blindness of the data dictate that this analysis may

5In order to assure that the minimization succeeded, these fits were performed three times for each
NSI parameter.

6The exact values are ϵ⊕
ττ − ϵ⊕

µµ: 4.8 %, ϵ⊕
eµ: 4.4 %, ϵ⊕

eτ : 4.6 %, ϵ⊕
µτ : 5.4 %
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Fig. 7.17.: Test statistic distributions for an ensemble of pseudo-data trials where bin counts
are Poisson-fluctuated.

not proceed on experimental data until these investigations are concluded. This is
beyond the scope of the thesis presented here.
As a result, the aforementioned fits to data for all tested NSI parameters will not
be evaluated in more detail and all further tests will be performed purely based on
Monte Carlo simulation.

As shown in table 7.8, a small fraction of trials results in negative mis-modeling
values. Since this ensemble is assumed to represent the distribution of possible data
realizations, a non-zero fraction of negative mis-modeling cases implies a respective
probability of failure when fitting DeepCore data. This motivates performing multi-
ple redundant fits to the data.
In addition to the absolute test statistic values, null fits and corresponding mis-
modeling values are available for this ensemble. From figure 7.17b, it is apparent
that the mis-modeling values are not χ2 distributed, which would be expected if
Wilks’ theorem applies to the overall analysis.
The non-applicability of Wilks’ theorem could be reproduced in a toy Monte Carlo
simulation, where different signal behaviors were tested. The existence of mirror
symmetries in NSI parameters has the consequence that, broadly speaking, any non-
zero NSI magnitudes result in bin count shifts to the same direction. For fluctuations
in the overall bin count that are opposed to this shift, this results in a pile-up of fit
results at the respective symmetry axis, leading to a shift of test statistic differences
towards small values.
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For further steps of this analysis, this implies that limits that are set assuming Wilks’
theorem are conservative, and other methods are required to set representative
confidence limits. This will be discussed in more detail in section 7.9.

7.7 Sampling

In the frequentist approach that is pursued in this analysis, setting confidence limits
on NSI parameters is a separate task in which a large number of fits need to be
performed, as described in section 7.9. This motivates exploring the fundamentally
different method of sampling the parameter space, which provides both its optimum
and confidence regions in a single instance.
In the following, the Bayesian approach of Markov Chain Monte Carlo (MCMC) sam-
pling is evaluated, a technique that is known to perform well with large numbers of
dimensions [148]. In addition to the option of this to replace or complement fitting,
its potential with respect to evaluating multiple NSI parameters simultaneously is
tested, which would decrease model dependence of this analysis.

7.7.1 The mechanics of MCMC

Markov-chains are sequences drawn from a set of possible elements within which
the probability of each element solely depends on what element preceded it. In
MCMC, this implies that from each point in an initial set of hypotheses, a sequence
of steps emerges [148]. All of these so-called walkers proceed within the parameter
space in simultaneous steps that are based on the sampled function f(x). In this
analysis, f(x) is the test statistic function. Depending on the sampling mode either
each walker is a fully self-contained Markov-chain or dependencies between walkers
are introduced.
Sampling is performed such that ultimately, the set of evaluated hypotheses is
distributed according to the posterior probability density of f(x). Regions of the
parameter space that are closer to a minimum are therefore more densely populated
and confidence limits can be inferred directly from the final distribution of samples.
The aim of MCMC, sampling from f(x) at a frequency that is proportional to the
function values throughout the parameter space, is achieved through the equilibrium
function g(x) ∝ f(x). Proportionality is reached after sufficient sampling steps and
persists for further steps as a result of the metric based on which sampling steps are
accepted.
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Fig. 7.18.: Schematic illustrations of two sampling implementations.

In a simple case, this is done using the Metropolis-Hastings algorithm that is schemat-
ically shown in figure 7.18a. The equilibrium function g(x) is a sum of Gaussian
distributions around each active hypothesis, which is the current final point of a
single walker. Correspondingly, the equilibrium function depends on the distribution
of sampled hypotheses and equals the posterior probability density of f(x) when
hypotheses are distributed accordingly.
To obtain this distribution, a suggested step of a walker from current position a

to position b depends solely on a, as b is sampled from the Gaussian distribution
centered around a. The step is accepted based on the values of the sampled function
and equilibrium function at the previous and suggested position following

accept = min

(
1,

f(b)
f(a)

g(a|b)
g(b|a)

)
. (7.11)

In this way, starting from a random initial distribution, the sampling density suc-
cessively adapts to g(x) ∝ f(x). Iterations performed until this proportionality is
established are called the burn-in phase of sampling. These are not included in
subsequent interpretation of the ensemble of samples, as their prevalence does not
describe f(x).
Of the so-called moves, which are the principles based on which steps are taken,
different variants are available and can be adapted freely. The most commonly
used one, which is also implemented in the following, is the so-called stretch move.
This accelerates convergence by combining information from multiple walkers. The
current position of a randomly selected second walker is included in drawing the
suggested position b.
The adaptive parallel tempering MCMC implementation (ptemcee) implementa-
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scribed in [150, 151]. After following the
dashed diagonal line, τ stabilizes at a con-
stant value, which is the expected behavior.
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per walker look similar for the burn-in and
sampling phase. Both lie within the rec-
ommended region between 20 % and 50 %,
shown in gray.

Fig. 7.19.: Two measures for the efficiency and accuracy of sampling. This uses slightly
different settings from what is described in section 7.7.4, namely 1300 walkers
and 300 burn-in and sampling steps.

tion [149] alters f(x) in order to handle multi-modal distributions. In this approach,
the temperature T ≥ 1 is added as an additional dimension such that

f(x, T ) = f(x)1/T . (7.12)

The ability to sample f(x, T ) implies sufficient knowledge of f(x). The added
temperature however has the advantage that, for T > 1, modes in f(x) are less
pronounced and therefore easier to sample, as shown in figure 7.18b.
In addition to finding the best implementation and move for the specific requirements
of this analysis, multiple settings of the sampling can be adapted. The individual
settings and corresponding metrics are discussed in the following.

7.7.2 Finding the best settings

Multiple criteria can be used to determine whether MCMC is functioning correctly
and uses sufficiently well optimized settings. In addition to the above-mentioned
evaluation characteristics, namely the implemented move and whether f(x) is
altered to facilitate sampling, three quantities need to be adapted for the specific
use case. These are the number of walkers and the number of steps per walker, the
latter being set separately for the burn-in and the sampling phase.

Convergence of a walker towards the equilibrium function is related to its integrated
autocorrelation time. This quantifies the number of steps after which effective
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(a) Behavior of all individual walkers (colored lines) over the
burn-in and sampling step. The sampling run includes
the same parameters as shown in figure 7.21. Here,
the DOM efficiency is shown. The randomly initialized
walkers converge towards an equilibrium distribution
within the first ∼ 100 steps in this dimension.

(b) Sampling run with ϵ⊕
ee − ϵ⊕

µµ as the
only free parameter. The two min-
ima have different heights as as they
are sampled with different numbers
of walkers. The obtained optimum
and 1σ range are given at the top of
the plot.

Fig. 7.20.: Two visualizations for outcomes of different sampling runs.

independence of a subsequent step from the start point of the walker is reached.
Two different measures for autocorrelation time are shown in figure 7.19a. The first
directly implements the approach in [150]. The second is calculated per walker and
then averaged [151]. Qualitatively, this quantity is expected to increase during the
burn-in phase and stay constant for the subsequent sampling. A step independent
autocorrelation time implies that the algorithm has converged and reached the
equilibrium distribution. A small absolute autocorrelation time suggests quicker
convergence and hence more efficient sampling [148].
An associated quantity is a comparison between halves of the sampled ensemble.
If convergence is reached during the burn-in phase and kept throughout sampling,
the distributions of sampled hypotheses in the first and second half of the overall
sampled ensemble coincide within their statistical uncertainty.
A measure for the sampling efficiency that was also considered throughout this study
is the fraction of accepted steps. This should lie between 20 % and 50 % [151] to
ensure both variability of the walkers and efficiency of the overall sampling. An
example for this in a mostly finalized setting is shown in figure 7.19b.

An example for a well performing sampling run is shown in figure 7.20a. The
distribution of walker positions over steps shows first a convergence towards the
optima of the sampled space. Once it stabilizes, the burn-in phase can be terminated
and the subsequent sampling steps can be assumed to represent the posterior
distribution. This convergence criterion as a result fixes the number of burn-in steps.
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Destabilization in later steps would hint towards too few walkers. Their number, as
well as the number of sampling steps, needs to be appropriate to resolve features of
the parameter space.
A rule of thumb is to use as many walkers as computationally feasible, and necessarily
more than the number of sampled dimensions. The number of sampling steps usually
is similar to or larger than that of burn-in steps and is set such that the resulting
ensemble of sampled hypotheses resolves the detail of f(x) sufficiently well to yield
a smooth distribution.

The hypotheses where walkers are initialized are by default distributed randomly
throughout the parameter space. As this initial distribution is an optional input
parameter to the sampling algorithm, it can however also be optimized with respect
to sampling performance. A higher density at parameter space regions that are
known to be of interest can improve autocorrelation time. In this analysis, drawing
initial hypotheses according to the full or half widths of nuisance parameter priors or
their allowed regions has been shown not to improve the overall sampling runtime
or exactness significantly.

7.7.3 Challenging parameter space features

Similarly to the challenges observed with respect to minimization, intermediate min-
ima within the test statistic can impede sampling. In addition, for a large number of
simultaneously evaluated dimensions, sensitivity to individual parameters becomes
small compared to biases induced by the distribution of initial walker positions.
Features of the parameter space that are relevant with respect to sampling are
both multi-modalities and instabilities. Secondary minima of the parameter space
can „trap“ individual walkers. This is countered by re-initializing walkers after the
burn-in phase at the two thirds of previous positions with the best test statistic7

values, as shown in figure 7.22b.
When sampling all NSI parameters simultaneously and including a preliminary set of
18 nuisance parameters, the sensitivity to the complex phases of FC NSI parameters
becomes negligible. As additional dimensions make more sampling points necessary,
only the five NSI magnitudes are ultimately included in this approach.
Bimodalities, such as the symmetry in ϵ⊕

ee − ϵ⊕
µµ around −1, are hard to sample in

the standard MCMC implementation as individual walkers are unlikely to migrate
between minima of similar depth. The resulting fractions of walkers in each mini-
mum strongly depend on their initial hypotheses and therefore does not properly

7This study uses LLH, as it is based on a preliminary version of the event sample and nuisance
parameter treatment.

7.7 Sampling 153



represent the sampled function. This is shown in figure 7.20b for a case where
ϵ⊕
ee − ϵ⊕

µµ is the only sampled parameter and the relative depths of the minima are
not represented accurately.
Applying ptemcee reduces such features at a degree that can be adjusted via the
temperature setting, as described above. Due to the low sensitivity to ϵ⊕

ee − ϵ⊕
µµ,

however, too lightly pronounced features were found to result in insensitivity to
the parameter, while too little reduction of the features imply no improvement
over the original MCMC approach. The method applied further on is to subdivide
the parameter space along the ϵ⊕

ee − ϵ⊕
µµ symmetry. A description of the necessary

partitioning and merging can be found in [152].
Even for a subdivided parameter space, sampling in ϵ⊕

ee − ϵ⊕
µµ is affected by a bias

that originates from the mechanics of the stretch move, which introduces a depen-
dency between multiple walkers. As each step of a walker is not only based on
its previous steps but also on the position of a random second walker, a tendency
towards the overall mean emerges. This effect can exceed the test statistic variation
in a dimension of the sampled space if sensitivity in that dimension is low. The
equilibrium distribution as a result does not reproduce the parameter space and
instead corresponds strongly to the input distribution.
An indication to such behavior is that the sampled hypotheses don’t reach small
test statistic values in an Asimov case. This can be counteracted by increasing the
number of burn-in steps and restricting the initial distribution to parameter ranges
to which there is sensitivity. In case of ϵ⊕

ee − ϵ⊕
µµ, the issue could be partly resolved by

implementing a custom move that differs from the stretch move in that it includes
no dependence between walkers in the ϵ⊕

ee − ϵ⊕
µµ dimension.

Depending on the final set of free parameters and resulting sensitivity to ϵ⊕
ee − ϵ⊕

µµ,
in addition, separate burn-in of ϵ⊕

ee − ϵ⊕
µµ can be necessary. In this approach, the

final walker positions of a burn-in phase with ϵ⊕
ee − ϵ⊕

µµ as the only free parameter
are used to initialize the subsequent burn-in of all dimensions.
Due to the even smaller sensitivity to complex NSI parameter phases, these are not
included as sampled dimensions. The magnitudes are however sampled symmetri-
cally around 0, which corresponds to phases of 0◦ and 180◦. This is done to avoid an
additional difficulty for the sampling algorithm, which occurs if relevant parameter
regions are close to the edge of their sampled range.

7.7.4 Performance

The finalized set-up implements MCMC with a custom move that largely coincides
with the stretch move. After an initial burn-in phase with 300 steps, the 1500
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walkers are re-initialized at the two thirds of current positions with the best test
statistic values. Only the subsequent 250 sampling steps enter the determination of
the parameter space optima and confidence intervals.
All five NSI magnitudes are sampled alongside 18 nuisance parameters, resulting
in a total of 23 dimensions. Sampling of ϵ⊕

ee − ϵ⊕
µµ is subdivided into two ranges.

As this study was performed based on an earlier version of the data set, nuisance
parameters that are considered herein differ from what is found to be relevant in
section 7.5.

Fig. 7.21.: Sampling result for the MCMC settings described in the text including the
ϵ⊕

ee − ϵ⊕
µµ range above −1. Above each one-dimensional histogram, the mean

value and standard deviation are given. Only NSI parameters and oscillations-
related nuisance parameters are shown. The sampling result for the 16 additional
included nuisance parameters as well as the results from the corresponding burn-
in phase are shown in appendix section B.11.
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(a) Test statistic values of all hypotheses evalu-
ated during the burn-in (blue) and sampling
(orange) phase. Lower values occur towards
the later steps and are therefore more preva-
lent in the sampling phase. Assuming Wilks’
theorem, good representation of the param-
eter space can be verified by comparing dif-
ferent σ ranges to the percentages within
different LLH ranges.

(b) Test statistic value over the step number
throughout the entire burn-in and sampling
process. The vertical line indicates the transi-
tion from burn-in to sampling phase, where
walkers are re-initialized. The latter is show-
cased on the rejection of single walkers at
large test statistic values.

Fig. 7.22.: Characteristics of the test statistic values throughout the sampling process that
is shown in figure 7.21. The same settings as described in the text apply.

In figure 7.21, a full sampling run with the described settings is shown. The resulting
confidence limits indicated as lines are relatively smooth, which hints towards
sufficient sampling statistics. Their values coincide well with the sensitivities found
in the frequentist approach for the four NSI magnitudes that are investigated there,
which are given in section 7.8. The low sensitivity to ϵ⊕

ee − ϵ⊕
µµ is visible from the

limits as well as the reduced prominence of the peak with respect to the remaining
parameter range. Correlations between parameters are expected, as discussed in
section 7.5. They are visible as tilts or distortions in the sampled hypotheses.
The associated test statistic values throughout the burn-in and sampling phase
are shown in figure 7.22a. The fractions of samples within different σ ranges
coincide well with the expectation assuming Wilks’ theorem. The corresponding
step dependent development of the test statistic values of the ensemble of walkers
is shown in figure 7.22b. Convergence during the burn-in phase as well as re-
initialization of walkers thereafter is visible therein.

The computational cost of a single sampling run of the full parameter space with
the above described settings amounts to ∼ 800 CPU hours, as compared to ∼ 10
hours for a single frequentist fit. This is subdivided into a large number of parallel
threads through openMPI [151, 153]. Parallelization however is limited, as applying
the stretch move requires communication between walkers. Other moves are not
computable in a parallelized setting for similar reasons.
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Due to the computational cost of a single sampling run, thorough testing of the
analysis, such as it is described for the frequentist approach, can not be conducted
for MCMC. As a result, this can only serve as an additional Bayesian component to a
well understood frequentist analysis.

7.8 Expected sensitivities for the frequentist approach

For the frequentist approach, the sensitivity at the null hypothesis allows to assess
the potential of the analysis and data sample without fitting directly to the data.
Different aspects of the analysis that are described above impact what sensitivity can
be expected for the DeepCore data sample. These are mainly the resolution of the
minimization and the uncertainties modeled as nuisance parameters. An additional
factor are assumptions on neutrino characteristics, such as NMO. As presently, there
is no clear preference for a mass ordering, this analysis will ultimately be performed
separately for both.
The sensitivity to individual NSI parameters can be assessed in an Asimov approach,
including no statistical fluctuations. A template in which the respective parameter
is fixed is fitted to a map of the expected bin counts assuming the null hypothesis.
Performing this at different values of the tested parameter yields an understanding of
what parameter range could be excluded at what significance in the null hypothesis
case. This interpretation assumes Wilks’ theorem and is therefore conservative, as
will be discussed in section 7.9.
The obtained sensitivity mainly applies to the magnitudes of the tested NSI parame-
ters. While for FC parameters, dependencies on the complex phases are present, it is
not expected that the phases can be constrained in this analysis.

In figure 7.23, the sensitivities obtained for ϵ⊕
ττ − ϵ⊕

µµ and ϵ⊕
eτ are shown. For the for-

mer, the obtained confidence intervals are given at the bottom. The sensitivities for
NO differ negligibly from those obtained assuming IO. The IO sensitivity scans can
be found in appendix section B.10, preceded by NO sensitivities for NSI parameters

Tab. 7.9.: Sensitivity based 90% and 1σ confidence intervals of all tested NSI parameters.
For complex parameter magnitudes |ϵαβ |, bounds are given at δαβ = 0◦, 180◦.

NO 1σ NO 90% IO 90%
ϵ⊕
ττ − ϵ⊕

µµ [−0.023, 0.022] [−0.029, 0.028] [−0.029, 0.028]
ϵ⊕
eµ [−0.087, 0.075] [−0.106, 0.093] [−0.107, 0.093]

ϵ⊕
eτ [−0.148, 0.132] [−0.176, 0.158] [−0.176, 0.158]

ϵ⊕
µτ [−0.0066, 0.0083] [−0.0088, 0.0110] [−0.0088, 0.0110]
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Fig. 7.23.: Sensitivities for tested NSI parameters assuming the Asimov null-hypothesis case.
The NSI parameters that are not shown here can be found in appendix section
B.10.

that are not shown in this section. This does not include ϵ⊕
ee − ϵ⊕

µµ, which was not
evaluated further for this work due to limited computational resources, as discussed
in section 7.6.2.
Figure 7.24 shows a comparison between the resulting 90% confidence limits, which
are listed in table 7.9, and results obtained in different experiments. For FC param-
eters, the two-dimensional confidence intervals are evaluated at phase values of
δαβ = 0◦, 180◦.
The comparison includes recent DeepCore and IceCube analyses, which are based
on the energy ranges 5.6 − 100GeV [40] and 500 GeV−10 TeV [52], respectively.
In addition, COHERENT [154] and ANTARES [53] results are shown for such NSI
parameters where the respective confidence limits are competitive. The comparison
of COHERENT results suffers from an implicit model dependence thereof: Due to
coherent elastic neutrino-nucleus scattering (CEνNS) being the underlying process,
only NSI models with hypothetical mediator masses at or above the MeV scale are
covered.
The additionally compared global analysis [39] includes data from solar and atmo-
spheric neutrinos as well as long-baseline and medium-baseline reactor data. The
concepts of all involved experiments are discussed in section 4.
In all tested NSI parameters, the presented sensitivity is comparable with or con-
stitutes an improvement upon the limits set in other individual or global analyses.
Final results obtained with this analysis can therefore be expected to be at least
competitive in individual parameters.
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Fig. 7.24.: Comparison of the sensitivities obtained in this analysis, shown in orange, to
existing 90% confidence intervals. These are set in previous DeepCore [40] and
IceCube [52] measurements, results from ANTARES [53], COHERENT [154],
and a global analysis [39]. Limits set in these analyses which are not competitive
are not included in this figure. These are the ANTARES ϵ⊕

ττ − ϵ⊕
µµ limits as well

as the COHERENT ϵ⊕
µτ and ϵ⊕

eµ limits.

7.9 Setting limits

The sensitivities and performed tests that were discussed in previous sections demon-
strate that this analysis is in principle ready to run on DeepCore data. However, the
following steps are only shown exemplarily on pseudo-data, as completing the anal-
ysis on data exceeds the scope of this thesis. Full review and approval of the analysis
is a collaboration-wide process that, partly due to the involved review periods and
partly due to the required computational resources to perform the appropriate tests,
is expected to take several months. The pseudo-data that are therefore used in
place of the DeepCore data set are a Monte Carlo simulated realization of the null
hypothesis case where all bin counts are Poisson-fluctuated.
Since reasonable goodness of fit was obtained in a PMNS-matrix parameter analysis
performed on the same data as this work [147], the sample is not expected to involve
significant tension with respect to the null hypothesis. Therefore, no significant
rejection of the standard-oscillations case is expected and the most relevant results
of this analysis are the confidence limits that can be obtained for each tested NSI
parameter.
Commonly, limits are set by fitting to the data at multiple NSI hypotheses that sample
the full investigated NSI parameter space on a dense grid. From the resulting test
statistic differences to the global best fit points, confidence limits are deduced based
on Wilks’ theorem. The resulting limits that this analysis can place on pseudo-data
are given in table 7.10. For the realization of pseudo-data that is used here in
place of data, all confidence intervals are slightly tighter than expected based on
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Tab. 7.10.: Pseudo-data based best fit values and 90% confidence intervals of all tested NSI
parameters for both neutrino mass orderings, assuming NO and using Wilks’
theorem. Bounds for complex phases are given at δαβ = 0◦, 180◦.

confidence interval best fit
ϵ⊕
ττ − ϵ⊕

µµ [−0.0164, 0.0167] −0.002
ϵ⊕
eµ [−0.087, 0.051] −0.023

ϵ⊕
eτ [−0.159, 0.096] −0.091

ϵ⊕
µτ [−0.0047, 0.0091] 0.0022

sensitivities.
The dependency of the limits on FC NSI parameter magnitude on their complex
phases is more pronounced than in the Asimov case, which results in stronger asym-
metries of the magnitude limits at phases of 180◦ and 0◦. Such variation in the phase
dependent features are expected as these are strongly impacted by fluctuations in
event counts as well as PMNS-matrix parameter values.

Fig. 7.25.: Test statistic deltas obtained for ϵ⊕
ττ − ϵ⊕

µµ in orange and critical nσ values
assuming Wilks’ theorem in purple. At the bottom, the width of the resulting
90 % and 1σ confidence intervals are given as thin and thick orange lines. At
the upper 1σ border, an ensemble of 200 pseudo-trials is drawn, from which
a corrected critical 1σ test statistic value is derived. Both are shown in gray,
as dots and dotted line, respectively. At the bottom, the gray bar indicates the
resulting confidence limit when assuming that the corrected critical value is
constant throughout the parameter range. See appendix section B.12 for the
limits obtained for FC parameters.

As discussed in section 7.6.4, the assumption of Wilks’ theorem yields highly conser-
vative estimates for this analysis. The alternative strategy described by Feldman and
Cousins [155] involves performing ensembles of ∼ 1000 trials at each tested NSI
parameter value. For a q% confidence level, the test statistic value below which a
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fraction of q% of these trials are located replaces the respective critical test statistic
value determined through Wilks’ theorem.
In a simplified approach to evaluating the difference with respect to Wilks’ based
limits, a single ensemble is drawn at the upper 1σ border for ϵ⊕

ττ − ϵ⊕
µµ. The test

statistic delta below which 68 % of the trials are located serves as a corrected critical
1σ test statistic value that does not assume Wilks’ theorem. The 1σ or 68% fraction
of the drawn trials as well as the resulting ϵ⊕

ττ − ϵ⊕
µµ confidence interval estimated

from this is shown in figure 7.25.
The full approach by Feldman and Cousins requires such ensembles at densely
spaced hypotheses throughout the NSI parameter space, as the derived critical value
can vary depending on the parameter value. Parameter ranges that are calculated
based on a single critical test statistic value can therefore only be used as an approx-
imation. In comparison to the Wilks’ based 1σ limits of [−0.0105, 0.0107], however,
the ensemble-based limits of [−0.0076, 0.0078] confirm the previous observation that
Wilks’ based limits on this analysis are highly conservative.

7.9.1 Computing Feldman Cousins limits

For cases like this analysis, where Wilks’ theorem can not be applied without gaining
significant bias, Feldman and Cousins [155] suggested a method based on sorted
test statistic differences. This does not rely on the test statistic differences being
distributed in a specific way, as is done for Wilks’ theorem. Instead, the critical test
statistic value corresponding to the desired quantile q is determined from pseudo-
experiments at each parameter value µi that is tested with regard to being within
or outside the respective CL. The approach as described in [155] is outlined in
figure 7.26.

For a best fit result, the data are fitted with free nuisance and NSI parameters,
yielding the overall hypothesis best describing the observation as well as the corre-
sponding χ2 value. In the following, NSI parameters are denoted as µ and nuisance
parameters as α, with subscripts indicating their value to be fixed, in contrast to the
parameter being free during a fit.
In order to calculate limits in the approach by Feldman and Cousins, for each tested
NSI parameter value, a local fit to the data is performed, with free nuisance param-
eters while the NSI parameter is fixed to µi. The difference between the resulting
local χ2

mod value and the overall best fit χ2
mod yields a ∆χ2

mod value that can later-on
be compared to the ∆χ2

mod values obtained from pseudo-experiments.
An ensemble of n pseudo-experiments is drawn Poisson-distributed based on the
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expected bin counts for the best fit hypothesis (µi, αb.f. data). For each pseudo-
experiment j, a ∆χ2

mod i,j is determined from two fits: One with free nuisance
parameters and one with, in addition, free NSI parameters.
The requested quantile q of the ∆χ2

mod i,∗ for all pseudo-experiments within the
ensemble is determined, and with that a ∆χ2

mod i,q limit value to which the ∆χ2
mod

obtained from data can be compared. The NSI parameter value is within the CL
corresponding to the requested quantile if ∆χ2

mod i,data is within ∆χ2
mod i,q.

7.9.2 Making Feldman Cousins limits computationally feasible

The process described above is computationally expensive to a degree where it is not
feasible, requiring O(108) CPU-hours, given the number of hypotheses to test for all
five NSI parameters of O(105) as well as the approximately 103 trials per hypothesis.
Different approaches to reducing this are described in the following.
One alternative to fitting the same hypotheses µi for data and pseudo-experiments is
to calculate ∆χ2

mod values for the data on a grid, allowing for interpolation between
the single points, and choosing the hypotheses where ensembles are drawn in a more
informed way in order to reduce the overall computational cost. This is assumed to
reduce the computation time by approximately a factor of five, depending on the
implementation.
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Fig. 7.26.: Schematic of pseudo-experiments drawn at hypothesis H0 being re-weighted
for a different hypothesis H1. For simplicity, the count in a single bin is shown,
resulting in the pseudo-experiments being Poisson-distributed around the respec-
tive expectation value. In the re-weighted distribution, this is accomplished by
multiplying each histogram entry with a weight based on the pseudo-experiment
probabilities to be drawn for the two hypotheses.

For a given number of pseudo-experiments, the number of individual fits could be
reduced by a factor of close to two by re-weighting pseudo-experiments for different
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hypotheses µi. The basic concept is visualized in figure 7.26: Any pseudo-experiment
pej drawn assuming a hypothesis H0 with a probability P (pe|H0) has a probability
P (pej |H1) to be drawn based on a different hypothesis, H1. When re-weighting an
ensemble of pseudo-experiments based on this, with weights wpej = P (pej |H1)

P (pej |H0) , the
resulting distribution for H1 closely matches that of an ensemble directly drawn at
H1 in case that H0 and H1 differ little in their bin count expectations. For cases
where P (pej |H0) ≪ P (pej |H1), extreme weights with large errors occur, making
this approach unstable in a way that can not be handled easily, which was one
reason to discard it for this analysis. A second reason was the incompatibility with
the quantile regression method detailed below.

Quantile regression

The approaches to determining limits discussed above all rely on interpolating
between quantiles that are calculated from ensembles of pseudo-experiments drawn
at single hypotheses. Quantile regression, contrarily, assumes continuous limits
which are fitted based on pseudo-experiments drawn at hypotheses distributed
throughout the range of the tested NSI parameter, as depicted in figure 7.27. The
CL is obtained from the intercept between an interpolated grid of fits to the data
and the quantile.
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Fig. 7.27.: Visual comparison between calculating quantiles for individual hypotheses (left)
and using quantile regression (right).

This is accomplished by shaping the problem at hand into a linear regression where
the optimum solution is reached once the requested quantile is described cor-
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rectly [93, 156]. A model F (x), which describes the input values (x, y), is optimized
such that the metric PB of the absolute errors,

∑
i

PBq(yi − F (xi)) , (7.13)

given the quantile q, becomes minimal. The Pinball loss, PBq, is defined as

PBq(t) =


qt, t > 0
0 t = 0 .

(1 − q)t t < 0
(7.14)

In this way, the term specified in equation 7.13 becomes minimal when y < F (x)
for a fraction of q of the input values.
The model F (x) is a linear combination of the dimensions (or features) of x. A
simple example for this describes a linear function,

F (x) = w0 + w1x , (7.15)

where the weights wi are optimized. Different kinds of models become possible by
choosing the features respectively: The space within which F (x) is defined is linear,
but can have e.g. x2 as one of its dimensions.
In order to represent how a certain quantile varies depending on the NSI parameter
value, the model chosen here uses splines. These are functions that are partially
defined as nk + 1 polynomials of a fixed degree ndeg, which are joined at nk knots
such that the overall spline is ndeg − 1 times differentiable [157].
For stability and error assessment, the bootstrap method [93] is used: Instead of only
fitting splines to all input values and determining the CL from it, multiple randomized
subsets are fitted and their mean and standard deviation are determined. Using the
mean to obtain the CL grants less dependency of individual pseudo-experiments and
the standard deviation indicates the CL accuracy.

The number of pseudo-experiments needed can be reduced by sampling them close
to the edge of the confidence region. In an iterative approach, the intercepts between
the data grid and the individual bootstraps of iteration n are sampled and Gauss-
smeared to obtain the hypotheses for which the pseudo-experiments for iteration
n + 1 are drawn.
In order to represent these more densely populated regions in more detail in the
splines, their knots are positioned at quantiles of the hypotheses. As a result, the
uncertainty on the CL decreases quicker with the number of pseudo-experiments
than in a case where the hypotheses are drawn with less information.
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bootstrap splines

mean 90% quantile

intersections

Fig. 7.28.: Second iteration of a quantile regression using B-splines. A 90% quantile is
determined as the mean (blue line) of ten bootstrap splines (gray solid lines).
Their standard deviation is shown in light blue as a measure for the error of
the CL. The latter is obtained from the intersection of the mean and the ∆χ2

values obtained from fitting the data at different parameter values, shown in
orange. In the next iteration, new pseudo-experiments will be drawn around the
intersections with the individual bootstrap splines (gray dotted-dashed line).

In figures 7.29 and 7.28, the outcome of a simulation with a simplified ϵ⊕
ττ − ϵ⊕

µµ

signal is shown. In figure 7.28, the second iteration is shown as well as the individual
bootstrapped splines and their intersections with the data scan. In iteration three,
which can be seen in figure 7.29, pseudo-experiments are drawn around these inter-
cepts. However, the pseudo-experiments from all previous iterations enter the fitting
of the splines as well. The large density of pseudo-experiments close to intersections,
which in addition causes a larger density of knots, results in increasingly small errors
of the quantile. The lower density of knots throughout the rest of the parameter
space becomes apparent as well, without however resulting in relevant bias, as can
be seen from comparison to a BDT-based quantile that is shown purely for reference.
The CL and its error, which result from this approach, are consequently assumed to
be accurate, while needing significantly less pseudo-experiments then other methods
for obtaining Feldman Cousins limits.

For complex-valued NSI parameters, one-dimensional limits of two simultaneously
free dimensions can be determined in a way that is schematically shown in figure
7.30. All pseudo-experiments are drawn from hypotheses distributed throughout
the two dimensions of the NSI parameter. The ∆χ2

mod values originate from fits
performed with both parameters free versus both of them fixed. Quantiles are then
fitted separately to the projected pseudo-experiments in each dimension.
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tested hypotheses

Fig. 7.29.: Third iteration of the same quantile regression shown in figure 7.28, with the
blue line and range representing the same as therein. The pseudo-experiments
newly drawn in this iteration (gray) cluster around the intersection between the
splines and the ∆χ2

mod values from the data (orange). In black, a BDT-based
quantile determined from the pseudo-experiments in the first iteration is given
for reference.
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Fig. 7.30.: Illustration of how FC limits are computed for the simultaneously free phase
and magnitude of flavor-changing NSI parameters. The resulting CL is the
intersection of the ∆χ2

mod values determined from the data (orange) with the
90% quantile (black dotted line) which is fitted to the pseudo-experiments (blue)
separately for phase and magnitude.

Following this or a similarly optimized implementation of Feldman Cousins limits is
a necessary next step for this analysis, in order to compute NSI parameter limits that
are not extremely conservative.
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Conclusion 8
This work presents a search for neutrino interactions beyond the standard model of
particle physics, or NSI. It is based on atmospheric neutrino data that is detected
in the IceCube DeepCore detector [66], within which Earth matter effects on the
neutrino flavor composition can be resolved. The observed variations depend on the
neutrino energy, flavor and angle. The latter determines the Earth matter thickness
and density profile through which the neutrino traverses [27].
The sample used in this work includes reconstructed neutrino energies of 5 GeV to
100 GeV and zenith angles from up-going to horizontal trajectories. For the 9.3 y
of included DeepCore data, this amounts to a total of ∼ 150000 events, exceeding
previous samples [40] by approximately a factor of three.
The accuracy and computational requirements of DeepCore event reconstruction are
of critical importance in this sample. In a first part of this work, the existing short-
comings and hypothetical potential of likelihood-based reconstruction algorithms
for DeepCore events were explored in depth.

The main focus of this work, however, is a search for NSI originating from NC
forward scattering of all neutrino flavors on first generation fermions in Earth matter.
The utilized parametrization [2] includes two real-valued and three complex-valued
NSI parameters which differ in their signal regions and features.
For the analysis, observed event counts binned in the observables are compared to
corresponding template maps that are Monte Carlo generated based on different
hypotheses. A test statistic serves as metric for the agreement between data and
template [120]. This test statistic is optimized to find the hypothesis that best
describes the data by evaluating differences in the respective expected event counts
with respect to the observation. Each NSI parameter is treated individually in
this analysis, with the magnitude and phase of complex-valued NSI parameters
considered simultaneously. A minimization technique is presented that reliably
masters the 18 to 19 dimensional parameter space. It is also shown that a newly
developed nuisance parameter treatment that is based on likelihood-free inference
can be employed on the present sample.
In evaluating the minimization performance, it is found that for fits to ϵ⊕

ee − ϵ⊕
µµ,

the available computational resources are not sufficient to consistently find the
parameter space optimum. The resulting decision was to not further investigate this
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NSI parameter in this work. The presented analysis principle is however assumed to
be functional for ϵ⊕

ee − ϵ⊕
µµ.

For all investigated NSI parameters, the Monte Carlo based sensitivities are found
to be competitive with or exceed earlier results in IceCube and other experiments
as well as global results. A goodness of fit of p ∼ 5 % was found in fits to the data
sample for all NSI parameters. This may hint towards shortcomings in modeling
the data and prompts for further investigation. Subsequent tests of the analysis
are therefore performed on pseudo-data, including the calculation of limits based
on Wilks’ theorem [96]. This approach yields highly conservative limits, as is
exemplarily shown for pseudo-data ϵ⊕

ττ − ϵ⊕
µµ limits in a simplified Feldman and

Cousins [155] approach.

In a next step, possible reasons for the minor lack in goodness of fit need to be
evaluated further. Once either these are known or it seems certain that the data
sample is understood sufficiently well, the analysis can undergo the collaboration
internal review process before being fully performed on data, potentially including
ϵ⊕
ee − ϵ⊕

µµ. Ultimately, full Feldman and Cousins based limits need to be set, in a
resource-optimized manner that is outlined in this work. These steps require large
computational resources and therefore could not be completed within the scope of
this work. The final results for this analysis, namely limits on all NSI parameters,
are expected to be competitive compared to other experiments.
In addition to the frequentist approach, within this work, Bayesian MCMC [148]
sampling is explored and shown to be a viable secondary option, which allows to
sample all NSI magnitudes simultaneously. Once a frequentist result is available,
this can be included as a verification for the frequentist analysis and introduction of
a conceptually different analysis approach.
Beyond this analysis, DeepCore data sets spanning even larger lifetimes will be
available in the coming years. Furthermore, the IceCube upgrade [72], which is
going to be build during the next years, will increase event detection rates, especially
at the lowest detectable neutrino energies. This is expected to result in significant
improvement of sensitivity to PMNS-matrix and NSI parameters.
In this way, NSI measurements might become a key element in understanding
deficiencies of the current Standard Model of particle physics. Evidence for non-zero
NSI could potentially resolve tensions between existing PMNS-matrix parameter
measurements [55] and facilitate understanding the mechanisms behind non-zero
neutrino masses [1].
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GF Fermi coupling constant.

χ2
mod modified Pearson’s chi-squared.

ANTARES the Astronomy with a Neutrino Telescope and Abyss environmental
Research project.

ATWD Analog Transient Waveform Digitizer.

BDT Boosted Decision Tree.

BFRv2 birefringence ice model.

Borexino the Boron Experiment.

BSM-physics physics beyond the standard model.

CC charged current.

CEνNS coherent elastic neutrino-nucleus scattering.

CL confidence limit.

CNN convolutional neural network.

CNO cycle Carbon-Nitrogen-Oxygen cycle.

CP charge and parity conjugation.

CPU central processing unit.

CR cosmic ray.

CRS2 controled random search.

DIS deep inelastic scattering.

DOF degrees of freedom.

DOM digital optical module.
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DUNE Deep Underground Neutrino Experiment.

EM electromagnetic.

FADC Fast Analog-to-Digital Converter.

FC flavor changing.

FD flavor diagonal.

FLERCNN Fast Low Energy Reconstruction using Convolutional Neural Networks.

GALLEX/GNO the Gallium Experiment/Gallium Neutrino Observatory.

GPU graphics processing unit.

HLC hard local coincidence.

HQE high quantum efficiency.

HT high throughput.

HV high voltage.

IBD inverse β-decay.

ICL IceCube laboratory.

IO inverted ordering.

IQR inter-quantile range.

KamLAND Kamioka Liquid Scintillator Antineutrino Detector.

KATRIN Karlsruhe Tritium Neutrino.

KDE kernel density estimation.

LBL long baseline.

LEERA Low-Energy Energy Reconstruction Algorithm.

LLH logarithmized likelihood.

MC Monte Carlo.
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MCEq Matrix Cascade Equations.

MCMC Markov Chain Monte Carlo.

MCPE Monte Carlo photoelectron.

MINOS the Main Injector Neutrino Oscillation Search.

ML machine learning.

MSW Mikheyev-Smirnov-Wolfenstein.

MultiNest Multimodal Nested sampling.

NC neutral current.

NMO neutrino mass ordering.

NO normal ordering.

NOνA NuMI Off-Axis νe Appearance experiment.

NSI nonstandard interactions.

PCA principal component analysis.

PDF probability density function.

PE photoelectrons.

PID particle identification.

PISA PINGU Simulation and Analysis.

PMNS-matrix Pontecorvo Maki Nakagawa Sakata mixing matrix.

PMT photomultiplier tube.

pp chain proton-proton chain.

PREM Preliminary Reference Earth Model.

ptemcee adaptive parallel tempering MCMC implementation.

QCD quantum chromodynamics.

QE quantum efficiency.

QES quasi-elastic scattering.
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RAM random-access memory.

RDE relative DOM efficiencies.

RENO the Reactor Experiment for Neutrino Oscillation.

RES resonant scattering.

RETRO Reverse Table Reconstruction.

RT-cleaning Radius-Time-cleaning.

SAGE the Soviet–American Gallium Experiment.

SANTA single string ANTARES-inspired analysis.

SBL short baseline.

SLC soft local coincidence.

SM standard model of particle physics.

SMT simple multiplicity trigger.

SNO Sudbury Neutrino Observatory.

SPice 3.2.1 South Pole ice.

SSM solar standard model.

Super-K the Super-Kamiokande experiment.

SVN Apache Subversion.

T2K Tokai to Kamioka experiment.

TPC time projection chamber.

w.e. water equivalent.
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Supplementary information A
A.1 Massive neutrino extensions to the SM

In this section, some of the numerous possible neutrino mass extensions to the
standard model of particle physics will be introduced briefly, pointing out such
mechanisms that naturally produce NSI.
In general, neutrino mass extensions to the SM that rely on dimension six operators
potentially naturally include NSI. More detail on this can be found e.g. in [31].

Dirac masses

A Dirac mass term constitutes the minimal extension of the SM. While established
for charged leptons, for which both chiralities take part in interactions, a Dirac
neutrino mass term would imply a symmetry between neutrinos of opposite chirality.
To accommodate this, the existence of sterile neutrinos, in addition to active ones,
becomes necessary [1].
The mass term,

−LMν,Dirac
= MDij ν̄RiνLj + h.c. , (A.1)

generates the complex Dirac mass matrix MD after spontaneous symmetry breaking
through Yukawa coupling of the scalar Higgs doublet ϕ with the left-handed lepton
doublet LLl = (νl, l)T

L [27] via

MDij ν̄RiνLj =Y ν
ij ν̄Riϕ̃

†LLj (A.2)

=Y ν
ij

v√
2

ν̄RiνLj . (A.3)

Here, νc = Cν̄T is the charge conjugated neutrino field with C the charge conjuga-
tion matrix, Y denotes the hyper-charge and v is the Higgs field vacuum expectation
value [27].
Detecting the sterile neutrinos required in this extension would provide a strong
hint towards a Dirac mass term, while not excluding other, additional mass terms.
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Majorana masses

A Majorana mass term could be added to the SM without requiring additional
particles such as sterile neutrinos and would only break accidental SM symmetries
leading to e.g. lepton number conservation. It arises for example from a generic
extension of the SM with operators of increasing order. Such an extension assumes
a new physics energy scale Λ, with BSM-physics effects suppressed by Λ−4. New
physics would accordingly start to manifest in dimension five operators above the
energy scale Λ [1].

After spontaneous symmetry breaking, such a dimension five operator constitutes a
Majorana mass term.

−LMν,Majorana
= 1

2MMij ν̄Riν
c
Rj + h.c. (A.4)

It maintains gauge invariance as it regards left- and right-handed neutrinos as
singlets under gauge transformations. As the mass term includes direct coupling of
neutrinos to anti-neutrinos, it requires neutrinos being their own anti-particles.

The see-saw mechanism

One very general way to extend the SM Lagrangian is adding both a Dirac mass term
and a Majorana mass term with the full Lagrangian

−LMν = − LMν ,Dirac − LMν ,Majorana (A.5)

=1
2
(

¯⃗νC
L , ¯⃗νR

)( 0 MT
D

MD MM

)
︸ ︷︷ ︸

≡Mν

(
ν⃗L

ν⃗C
L

)
+ h.c. . (A.6)

The mass eigenvalues mi of the three active neutrinos ν⃗L and s sterile neutrinos ν⃗R

can be derived from diagonalizing Mν .
If the Majorana mass eigenvalues of MM are significantly larger than the vacuum
expectation value of the Higgs field v, this diagonalization divides neutrinos into
two weight groups. It yields three mostly left-handed lighter neutrinos with weights
proportional to M−1

M as well as s heavier, mostly right-handed neutrinos with their
mass proportional to MM [27]. This so-called type-I see-saw mechanism is one way
to explain the different mass-scale of neutrinos with respect to other elementary
particles.
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The type-II see-saw mechanism [31] explains the neutrino mass scale similarly to
type-I see-saw but for small non-zero Majorana masses and directly entails NSI.

A.2 Perturbation theory approach to the impact of
individual NSI parameters

The impact of individual NSI parameters can be approximated using a perturbation
theoretical approach where all NSI parameters ϵαβ are assumed to be ϵ ∼ 10−2. This
was done in [43]. The order of ϵ at which the respective parameter enters a signal
channel is shown in table A.1.

Tab. A.1.: Orders of ϵ at which individual NSI parameters enter oscillation probabilities in
ϵ perturbation theory, taken from and explained in detail in [43]. This assumes
maximal 2-3 mixing.

Channel ϵ⊕
ee − ϵ⊕

µµ ϵ⊕
eµ ϵ⊕

eτ ϵ⊕
µτ ϵ⊕

ττ − ϵ⊕
µµ

Peα (α = e, µ, τ) ϵ3 ϵ2 ϵ2 ϵ3 ϵ3

Pαβ (α, β = µ, τ) ϵ3 ϵ2 ϵ2 ϵ1(ϵ2) ϵ1(ϵ2)

A.3 Coherent Elastic Neutrino-Nucleus Scattering
(CEνNS)

The process of CEνNS is dominant typically below 50 MeV [158]. Its detection
relies on NC neutrino scattering off nuclei, measured through the recoil energy
of the nuclei, which amounts to tens of keV at most and can be achieved with
multiple complementary methods. The first detection was accomplished in 2017 in
the COHERENT experiment [159], which measures MeV neutrinos produced in a
spallation neutron source via pion and muon decays.
The sensitivity of CEνNS to NSI [160, 161] covers NSI models with hypothetical
mediator masses at the MeV scale and above [160].

A.4 Reconstruction within the IceCube Upgrade

As was introduced in section 4.4.2, the additional strings that will be deployed for
the IceCube-Upgrade contain multi-PMT modules [72]. In comparison to hypothet-

A.2 Perturbation theory approach to the impact of individual NSI
parameters
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Fig. A.1.: Widths of the LLH minima in reconstructed x position for event sets simulated at
different energies. In dashed lines, the behavior observed for unavailable PMT
information is shown and can be compared to the cases where this is available,
shown in solid lines. Vertical lines show the mean of the respective distributions.

ical IceCube DOMs with the same characteristics, such as their effective area, the
advantage of multiple PMTs covering different directions is mainly in single-module
coincidences. This is expected to facilitate triggering especially for extremely low
event energies at the order of single GeV.
The impact of this was approximately quantified in a simplified simulation and
reconstruction evaluation, based on the width of the likelihood minimum. Figure A.1
shows a comparison between including and excluding information of what specific
PMT detected a hit, clearly preferring the former.

A.5 Offset in nuisance parameter gradients

In order to test the calculated gradients, simulated sets are compared to gradient-
based predictions. They are evaluated based on the distributions of statistical pulls
between both in individual analysis bins. The distribution of these pulls ideally fits a
normal distribution around µ = 0 with a standard deviation of σ = 1.
The observed outcome includes sets with overall shifts, resulting in µ ̸= 0. Such an
overall bias between a single set and the gradient-based weights could potentially
impact the analysis outcome, depending on whether it is equivalent to a significant
shift in the respective off-nominal nuisance-parameters. In order to be significant,
such a shift would have to be at the scale of the prior or the range of the respective
nuisance parameter. The reason for that is that the exact values of the fitted nuisance
parameters only become relevant if they exceed multiple sigma. In such cases, the
fit result is considered not trustworthy.
In order to demonstrate that no significant impact is expected from the observed
shifts, set 0500, which includes off-nominal ice scattering and absorption both at
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1.05, is exemplarily modified as shown in figure A.3. The approach of this test
is shown in figure A.2. When setting the nuisance parameter values assumed for
this set to ice scattering of 1.045 and absorption of 1.039, the originally observed
mean of −0.2 shifts to −0.01. The mean values and standard deviations of all
individual neutrino flavors and interactions appear reasonable at these settings.
Based on the Gaussian priors of the nuisance parameters, their modification is at
0.05σ for scattering and 0.22σ for absorption. Since this is significantly below the
multiple sigmas that would potentially render a fit implausible, this is considered a
demonstration of how the observed shifts of the pull distributions are not relevant
to the analysis outcome.

η′ η η0

true impact
modeled impact

χ
2 m

o
d

Fig. A.2.: Schematic of the test of the gradient-based nuisance parameter interpolation
shown in figure A.3. The overall offset in gradient-based event count prediction
for a off-nominal Monte Carlo set at nuisance parameter value η can be compen-
sated for by shifting the parameter to η′. Since η′ − η is small compared to the
prior of the nuisance parameter, the overall event count offset is considered not
problematic.
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(a) Maps for the correct nuisance parameter settings in the 0500 set, namely ice scattering and
absorption of 1.05. This results in an overall shift of the statistical pulls of µ = −0.2.
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Fig. A.3.: Maps and histogram of statistical pulls for the 0500 data set. The pulls are
between the simulated set and the nominal set which is re-weighted to fit the
hypothesis assumed in the 0500 set. The weights are based on the gradients
calculated for detector nuisance parameters.
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Supplementary figures and
tables

B
B.1 NSI phenomenology

Transition probabilities at different NSI hypotheses, supplementary to what is dis-
cussed in section 3.4. The standard oscillations case is shown in black, negative
parameter values are shown in blue and positive ones in red. For non-zero phases of
FC parameters, only positive magnitudes are shown.
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Fig. B.1.: Same as figure 3.5, but for antineutrinos and cos(θ) = −1.
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Fig. B.2.: Same as figure 3.5, but for cos(θ) = −0.5.
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Fig. B.3.: Same as figure 3.5, but for antineutrinos and cos(θ) = −0.5.
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Fig. B.4.: Same as figure 3.5, but for cos(θ) = −0.25.
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Fig. B.5.: Same as figure 3.5, but for antineutrinos and cos(θ) = −0.25.

200 Appendix B Supplementary figures and tables



101 102

E (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

P e
e

SI
ee [ 5.0, 5.0]

cos = 0.75

101 102

E (GeV)

0.0
0.1
0.2
0.3
0.4
0.5

P e

101 102

E (GeV)

0.0

0.1

0.2

0.3

0.4

P e

101 102

E (GeV)

0.0
0.1
0.2
0.3
0.4
0.5

P
e

101 102

E (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

P

101 102

E (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

P

Fig. B.6.: Same as figure 3.5, but for ϵ⊕
ee − ϵ⊕

µµ and antineutrinos.
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Fig. B.7.: Same as figure 3.5, but for ϵ⊕
µτ with δµτ = 0, for antineutrinos.
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Fig. B.8.: Same as figure 3.5, but for ϵ⊕
µτ with δµτ = π/2, for antineutrinos.
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Fig. B.9.: Same as figure 3.5, but for ϵ⊕
eµ with δeµ = π/2.
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Fig. B.10.: Same as figure 3.5, but for ϵ⊕
eµ with δeµ = 0, for antineutrinos.
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Fig. B.11.: Same as figure 3.5, but for ϵ⊕
eµ with δeµ = π/2, for antineutrinos.
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Fig. B.12.: Same as figure 3.5, but for ϵ⊕
eτ with δeτ = π/2.
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Fig. B.13.: Same as figure 3.5, but for ϵ⊕
eτ with δeτ = 0, for antineutrinos.
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Fig. B.14.: Same as figure 3.5, but for ϵ⊕
eτ with δeτ = π/2, for antineutrinos.
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B.2 Reconstruction studies

Supplementary plots concerning the comparison between different reconstruction
algorithms as well as the study on potential improvement in likelihood-based recon-
structions performed in section 6.

Fig. B.15.: Contributions to the overall LLH value by the most relevant DOMs, in a scan
through the x parameter. DOMs identities are given through their key, which
consists of the number of the string, module and PMT within the module. The
same event as in figure 6.9b is shown.
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n
u
m

b
e
r 

o
f 

e
v
e
n
ts

(a) Zenith angle reconstruction performance.

n
u
m

b
e
r 

o
f 

e
v
e
n
ts

(b) Energy reconstruction performance.

Fig. B.17.: Comparison between reconstruction performances for different ice models.
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B.3 NSI signal in DeepCore

The signal of NSI in DeepCore is similar to that of oscillation effects. It depends
on which NSI parameter is varied and what value it is set to. Multiple examples
of signal maps are shown in the following for true event properties. The binning
shown here is significantly fines than the analysis binning, which is optimized for
reconstructed properties. All figures show the difference in oscillation probabilities
να → νµ, induced by the respective NSI, with respect to the standard oscillations
case.

Fig. B.18.: Oscillation probability difference for ϵ⊕
ee − ϵ⊕

µµ = −2.2 as the only source of NSI.

Fig. B.19.: Oscillation probability difference for ϵ⊕
eτ = 0.2 as the only source of NSI.
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Fig. B.20.: Oscillation probability difference for ϵ⊕
ττ − ϵ⊕

µµ = 0.04 as the only source of NSI.

B.4 Simulated sets with off-nominal nuisance parameter
values

In addition to the baseline Monte Carlo set, which is simulated at a hypothesis where
all nuisance parameters are at their nominal values, off-nominal Monte Carlo sets
are produced for detector related nuisance parameters. The set numbers and varied
nuisance parameter values are shown in the following, subdivided based on which
parameters are varied.
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Tab. B.1.: List of set numbers and the corresponding DOM efficiency for sets where this is
the only varied nuisance parameter.

Set number DOM efficiency
0000 (baseline) 1.00
0001 0.90
0002 0.95
0003 1.05
0004 1.10
0005 0.50
0006 1.20
0007 0.70
0008 0.80

Tab. B.2.: List of set numbers and the corresponding settings of DOM efficiency and the
hole ice parameters p0 and p1. The 0150, 0151 and 0152 sets are at extreme
hypotheses and probe allowed but unlikely regions of the parameter space.

Set number DOM efficiency p0 p1
0000 (baseline) 1.00 +0.101569 -0.049344
0100 1.00 -0.0648 -0.1088
0101 1.00 -0.4839 -0.0171
0102 1.00 +0.2803 -0.0754
0103 1.00 +0.1122 +0.0035
0104 0.88 -0.0498 -0.0543
0105 0.93 -0.3729 +0.0349
0106 0.97 +0.2965 -0.0363
0107 1.03 +0.1244 -0.1132
0108 1.07 -0.0355 -0.0185
0109 1.12 -0.3142 -0.0773
0150 1.00 -1.3 0.15
0151 1.00 -1 -0.1
0152 1.00 0.5 0.15
0300 1.00 -1 -0.049344
0301 1.00 -0.5 -0.049344
0302 1.00 +0.1 -0.049344
0303 1.00 +0.3 -0.049344
0305 1.00 +0.101569 -0.15
0306 1.00 +0.101569 -0.1
0307 1.00 +0.101569 +0
0308 1.00 +0.101569 +0.05
0309 1.00 +0.101569 +0.1
0310 1.00 +0.101569 +0.15
0311 1.00 -0.2 -0.049344
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Tab. B.3.: List of set numbers and the corresponding ice scattering and absorption values,
which correspond to bulk ice model used for production. For better visibility,
only the percentages by which the parameters are changed are given in this case.

Set number Scattering Absorption Ice model
0500 +5% +5% spice_3.2.1/err_s+.05_a+.05
0501 +5% -5% spice_3.2.1/err_s+.05_a-.05
0502 -5% +5% spice_3.2.1/err_s-.05_a+.05
0503 -5% -5% spice_3.2.1/err_s-.05_a-.05
0504 - +10% spice_3.2.1/err_s+.00_a+.10
0505 - -10% spice_3.2.1/err_s+.00_a-.10
0506 +10% - spice_3.2.1/err_s+.10_a+.00
0507 -10% - spice_3.2.1/err_s-.10_a+.00
0508 - +30% spice_3.2.1/err_s+.00_a+.30
0509 - -30% spice_3.2.1/err_s+.00_a-.30
0510 +30% - spice_3.2.1/err_s+.30_a+.00
0511 -30% - spice_3.2.1/err_s-.30_a+.00
0512 - +20% spice_3.2.1/err_s+.00_a+.20
0513 - -20% spice_3.2.1/err_s+.00_a-.20
0514 +20% - spice_3.2.1/err_s+.20_a+.00
0515 -20% - spice_3.2.1/err_s-.20_a+.00
0516 - +5% spice_3.2.1/err_s+.00_a+.05
0517 - -5% spice_3.2.1/err_s+.00_a-.05
0518 +5% - spice_3.2.1/err_s+.05_a+.00
0519 -5% - spice_3.2.1/err_s-.05_a+.00

Tab. B.4.: List of set numbers that use the BFRv2 ice model, along with the applied DOM
efficiency, hole ice parameters and ice absorption and scattering values. For
better visibility, only the changes to the parameter values are given.

Set number Ice model εDOM p0 p1 Absorption Scattering
1122 (BFR baseline) spice_bfr-v2 - - - - -
1124 spice_bfr-v2 +10% - - - -
1125 spice_bfr-v2 -10% - - - -
1126 spice_bfr-v2 - -0.2 - - -
1127 spice_bfr-v2 - +0.3 - - -
1128 spice_bfr-v2 - - -0.1 - -
1129 spice_bfr-v2 - - 0 - -
1130 spice_bfr-v2 - - - +5% -
1131 spice_bfr-v2 - - - -5% -
1132 spice_bfr-v2 - - - - +5%
1133 spice_bfr-v2 - - - - -5%
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B.5 Detector nuisance parameter treatment

Multiple sets have been tested in regard to whether the simulated bin counts match
what the gradient-based interpolation generates for the same hypothesis. In the
following, summary plots of these tests are shown. The detailed maps are only
given for sets where they are assumed to be relevant, since the shown sets include
off-nominal p0 values that result in clustered pulls within these maps.
In the summary plots, for each set the mean value is given as yellow vertical line,
with the 68 % and 90 % intervals indicated as a box and line, respectively. Outliers
are shown as circles. The total of all sets included in each figure is shown at the
top.
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Fig. B.21.: Summary plot for all tested sets that include BFRv2. Note that only the 1122
set was included in calculating the gradients.
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Fig. B.22.: Summary plot for all sets where the ice scattering and absorption parameters
are varied simultaneously.
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Fig. B.23.: Summary plot for all sets where only DOM efficiency is varied.
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Fig. B.24.: Summary plot for all sets where DOM efficiency and hole ice parameters are
varied simultaneously, except for sets where the value of p0 is below its nominal
value.
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Fig. B.25.: Summary plot for all sets where the value of p0 is below its nominal value.
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Fig. B.26.: Detailed maps of all sets where the value of p0 is below its nominal value,
showcasing the clustering of positive pulls in the lowest bins in all dimensions.

Tab. B.5.: Categories and numbers of MC simulated sets included in the generation of
gradients used in the detector nuisance parameter treatment for this analysis.
Detailed information on the parameter settings for all individual sets can be
found in the appendix in section B.4.

Varied parameters Set numbers
baseline SPice 3.2.1 0000
baseline BFRv2 1122
DOM efficiency 0001 0002 0003 0004
DOM efficiency, p0, p1 0100 0101 0102 0103 0104 0105 0106 0107 0109
ice scattering, absorption 0500 0501 0502 0503 0504 0505 0506 0507
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B.6 Nuisance parameter impact

In the following, results of the nuisance parameter impact test described in section
7.5 are given for NSI parameters not shown therein. In addition, the tested parameter
values that do not conform to the general rule given there are listed.

Fig. B.27.: Test result for the ϵ⊕
eµ parameter.
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Tab. B.6.: Tested parameter offsets for cases that deviate from the general rule described
in the text. These are given as differences with respect to the nominal value.

Parameter Value
Nντ 0.3
θ12 [◦] 0.77
θ13 [◦] 0.13
θ23 [◦] 5.0
∆m2

21 [eV2] 0.21 · 10−5

∆m2
31 [eV2] 0.0001

δCP [◦] 90
Nν 0.4
p0 0.3
p1 0.05
Nbfr 0.5

(a) Test result for the ϵ⊕
µτ parameter. (b) Test result for the ϵ⊕

eτ parameter.

Fig. B.28.: Nuisance parameter impact for different NSI parameters.
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B.7 Inject recovery test results

Results of fit performance tests for parameters that are not shown in section 7.6.2.

0.000 0.025 0.050 0.075 0.100 0.125
| e |

0

100

200

300

e
 [d

eg
re

e]

Truth
Fitted
Fitter start point

Asimov test results

(a) True and fitted parameter values.

0 50 100 150 200 250 300
e  [degree]

0.02

0.04

0.06

0.08

0.10

0.12

|
e

|

mis-modeling significance

0.004

0.003

0.002

0.001

2 m
od

(b) Mis-modeling values.

Fig. B.29.: Fit performance test results for ϵ⊕
eµ.
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Fig. B.30.: Fit performance test results for ϵ⊕
eτ .
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Fig. B.31.: Mis-modeling values for ϵ⊕
µτ fitting performance tests.

B.8 Fluctuating nuisance parameter values

Results of fitting fluctuated nuisance and physics parameters that are now shown in
section 7.6.3.
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Fig. B.32.: Fluctuated and fitted parameter values including ϵ⊕
eµ.
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Fig. B.33.: Fluctuated and fitted parameter values including ϵ⊕
eτ .
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Fig. B.34.: Fluctuated and fitted parameter values including ϵ⊕
µτ .
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B.9 Pseudo-data ensemble

Results of fitting Poisson-fluctuated pseudo-experiments for NSI parameters that are
now shown in section 7.6.3.
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Fig. B.35.: Test statistic behavior for fits to pseudo-experiments including ϵ⊕
eτ .
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Fig. B.36.: Test statistic behavior for fits to pseudo-experiments including ϵ⊕
eµ.
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Fig. B.37.: Test statistic behavior for fits to pseudo-experiments including ϵ⊕
µτ .

B.10 Sensitivities

Asimov-based sensitivities to NSI parameters not shown in section 7.8.

Fig. B.38.: Sensitivity for ϵ⊕
ττ − ϵ⊕

µµ at IO.
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Fig. B.39.: Sensitivity for ϵ⊕
eτ at IO.

(a) Sensitivity at NO. (b) Sensitivity at IO.

Fig. B.40.: Sensitivities of ϵ⊕
µτ at different mass orderings.

(a) Sensitivity at NO. (b) Sensitivity at IO.

Fig. B.41.: Sensitivities of ϵ⊕
eµ at different mass orderings.
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B.11 Additional figures concerning MCMC sampling

Fig. B.42.: Burn-in phase of the sampling described in section 7.7.4. The corresponding
sampling phase is shown in figure B.43.
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Fig. B.43.: Sampling phase of the sampling described in section 7.7.4.

B.12 Limits on pseudo-data

Pseudo-data based limits on NSI parameters that are not shown in section 7.9.
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Fig. B.44.: Limits on ϵ⊕
µτ .
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(a) Limits on ϵ⊕
eµ.
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(b) Limits on ϵ⊕
eτ .

Fig. B.45.: Limits on different FC NSI parameters.
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