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Abstract

In this thesis I present theoretical and experimental results concern-

ing the operation and properties of a new kind of Penning trap, the

planar trap. It consists of circular electrodes printed on an isolating

surface, with an homogeneous magnetic field pointing perpendicular

to that surface. The motivation of such geometry is to be found in

the construction of an array of planar traps for quantum informa-

tional purposes. The open access to radiation of this geometry, and

the long coherence times expected for Penning traps, make the planar

trap a good candidate for quantum computation. Several proposals

for quantum 2-qubit interactions are studied and estimates for their

rates are given.

An expression for the electrostatic potential is presented, and its fea-

tures exposed. A detailed study of the anharmonicity of the potential

is given theoretically and is later demonstrated by experiment and

numerical simulations, showing good agreement.

Size scalability of this trap has been studied by replacing the original

planar trap by a trap twice smaller in the experimental setup. This

substitution shows no scale effect apart from those expected for the

scaling of the parameters of the trap. A smaller lifetime for trapped

electrons is seen for this smaller trap, but is clearly matched to a

bigger misalignment of the trap’s surface and the magnetic field, due

to its more difficult hand manipulation.

I also give a hint that this trap may be of help in studying non-linear

dynamics for a sextupolarly perturbed Penning trap.
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Chapter 1

Introduction

The search for a physical system having the properties required for quantum

computing has been the philosopher’s stone for quite some years, as can be seen

from extensive literature (Cirac; Gershenfeld; Kane; Loss; Freedman; Makhlin;

Tombesi). Apart from condensed-matter devices such as quantum dots, Joseph-

son junctions,etc. and NMR (nuclear magnetic resonance), which has already

achieved the factorisation of the number 15, storing devices such as optical traps

and Paul and Penning traps seem to be good candidates for the short term re-

search in the field, and have been proven to be so. The relatively good isolation

of trapped particles from their environment is a major advantage and has given

already enough results to the physics community so as to be regarded a promising

branch. In the next section I’ll discuss the panorama in both quantum computa-

tion and the branch of trap physics in the sense of usable techniques for developing

a quantum processor.

1.1 Quantum Computing

Since the birth of computation as a science, mankind has seen the dawn of a new

experience; till that moment mathematicians and natural scientists had always

thought of solutions to their problems as entities which were eternally existing

and only had to be found by the human mind, sometimes in an instantaneous

flash of inspiration. With the introduction of the concept of the Turing machine

(an equivalent process took place in pure mathematics and gave place to the
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1. INTRODUCTION

famous Gödel’s theorem(Gödel)) there came a new question and perspective: the

way of getting to the solution of a mathematical problem is always, at least for

us humans- and we are beginning to suspect that it is so in principle-, a physical

process, the one in our brains, the transistors in a computer, the abacus, etc. A

little bridge between the world of ideas and that of nature has been established.

To the question: ”can this problem be solved?” there were, before computa-

tion, only two answers: yes or no. Now there can be another one: ”who knows?

a conceivable nowadays computer would need more than 20 times the age of the

Universe for the solution”. The example here makes us think what would happen

if the Universe was to last less than the time needed for the best-ever-buildable-

computer-for-this-universe to compute the answer of a given problem; and then

the matter of principle comes: does the answer of that problem exist in the world

of ideas but it’s unaccessible?, or have we proven with the above argument that

such solution exists not?

Not only a philosophical discussion can be raised at this point -i.e. ”cogniz-

ability” in this reality- but mathematical proofs have been given by Gödel (in

logical systems) Turing(Turing), and Chaitin(Chaitin) (in terms of computabil-

ity as thought by Turing) concerning the undecidability of certain propositions

inside a logical system of truths. I will not insist on these points since it is not the

subject of my thesis, but these authors have demonstrated that a system of truths

can never be complete and needs always a bigger system of truths including yours

in order to complete this lack; and that’s universal!

Of course there were always two type of scientists, those closer to the philoso-

pher, the mystic, the Michelangelo,etc, and those closer to the engineer, at the

service of the little king. Knowledge has always been a double-edged sword: on

the one hand it gives wisdom to those who are able to apprehend it, and on the

other, it gives power to crush the weak (let’s not forget that ignorance is a kind of

weakness). And that’s precisely why any new scientific knowledge has first served

war purposes, and after the war had ended, it has served the whole of mankind.

An easy example has been the discovery in the past century of nuclear reactions

and its energy liberating capacity. A new hint of this traditional reality can be

seen to be coming with the advent of quantum computing and its capacity to

uncover, when we manage to master its power, the cryptographic codes of the
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1.1 Quantum Computing

enemy. An evidence to this fact is that all first-world governments are investing

enormous amounts of money to this field, which is rather suspicious...

1.1.1 A little bit of history

Since the introduction by Turing of its ideal computing machine(1936)(Turing),

a purely mathematical and abstract field, known as information theory, the con-

cepts of logic, ”mind”, computability,etc. have been raised to a new category,

that of a physical process. From that moment on, physicists have been working

not only in the implementation of those ideas in order to physically manage their

power, but also in the understanding of its significance in terms of physical laws

and reality: is information a physical entity?

A relation between the information a physical system contains and its entropy

was given by Shannon (1948s)(Shannon) and it was proved to be a fundamental

relation. Since then, and after much effort, the science of information theory

became well established, furthermore by the modern physical implementation

of a computer, which has the universality of a Turing machine and proves its

inherent power.

The birth of quantum mechanics, at the beginning of the past century, how-

ever, added a new window through which to look at reality in terms of a whole

lot of new physical laws. The question then arose, whether this new aspect of

physical processes would make any difference regarding information theory, and

hence quantum information theory was born.

After Bell’s analysis of the EPR (Einstein-Rosen-Podolsky) paradox in 1964(Bell),

and its many experimental demonstrations in the 1970s, and also with the ex-

periment by Aspect et al.(1982)(Aspect), an important fact became obvious:

quantum mechanics allows for a new type of information encoding mechanism,

entanglement. This fact can be exposed in another fashion: it had been demon-

strated that quantum mechanics allows for a bigger amount of mutual informa-

tion between systems than that in classical information theory. Of course this

is a difference of principle and led, among other things, to the birth of a new

way of formulating the principles of quantum mechanics in terms of the amount
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1. INTRODUCTION

of information that quantum systems can exchange, i.e. physical systems be-

came nothing more than information containers and physical states are states of

knowledge (for a nice exposition of the idea see (Zeilinger)). That on the plane

of theory, but in a much more practical view of things, entanglement meant that

quantum mechanics might lead to a more powerful kind of computation than the

classical one. Anyway, it was not clear at all at the beginning how a quantum

system could be used to produce a better computation, since at the end of the

process the physicist should have to collapse the quantum state of the computer

into a chain of classical bits, thus apparently gaining nothing.

Benioff (1980)(Benioff) showed that a quantum Hamiltonian could, at least,

mimic the operation of a universal Turing machine. An this was only the begin-

ning. In 1985 Deutsch proposed a set of 2-state systems in a row, which after

being applied a specific small set of operation, could be shown to develop any

unitary evolution, and therefore the ability of this system as a quantum physi-

cal simulator(Deutsch). He also discussed how to produce Turing-like behaviour

using the same ideas.

But it was in the 1990s that computational tasks were found which could

be done more efficiently by a quantum computer than a classical one. The fac-

torization of large integers by Shor’s algorithm (1994)(Shor) based on a method

for doing fast Fourier transforms (Coppersmith 1994(Coppersmith), and Deutsch

1994 unpublished) was one of them. Grover’s algorithm (1997) for finding an el-

ement in a long list of elements(Grover), and Kitaev’s algorithm for the Abelian

stabilizer problem (1995) were others(Kitaev).

Having shown to the scientific community that quantum algorithms were pos-

sible and that some of them were much more efficient than their classical counter-

parts, added to the studies in quantum error correction, it was a matter of time

that efforts were dedicated to the experimental implementation of those ideas.

Another important fact which I haven’t discussed yet is the quest for a deeper

understanding of the nature of quantum mechanics related to the measurement

postulate. Since this postulate is an ad hoc one and no proof of principle of it

has yet been given , despite the efforts of quite a variety of physicists, in terms

of dynamical quantum laws, and given its relation to the main core of quantum

computation -entanglement-, scientists have been avid to realize experimentally a
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1.2 Trap Physics

quantum computer. The search for a better understanding of the meaning of en-

tanglement provided by a thorough experimentation and control of the quantum

regime had begun.

The need for entanglement to be conserved during the operation of a quan-

tum computer unveils a major experimental difficulty: the computer has to be

sufficiently isolated from its environment! And I say ”sufficiently” because, to

the extent of my knowledge of physics, no system is really isolated from any-

thing else in the universe (it’s a known reality that the wave function of a system

extends until infinity, and so is shared by the rest of objects in the universe).

This transforms the task of building a quantum computer into the search for

isolating methods. Such isolation has been only achieved in trapped particle sys-

tems, despite the success of fields such as NMR (nuclear magnetic resonance) in

quantum-factorizing integers. And this is the main reason that trapped-particle

physics is nowadays regarded as the best promising tool in order to implement

quantum information ideas. It’s clear, nevertheless, that operation of 100 qubits

(a qubit is the quantum equivalent of a classical bit) in a controlled and useful

way, is yet a subject for science fiction, but experimental implementation of up

to 10 qubits seems to be accessible in the near future and may prove sufficient to

understand the basics of this new tool.

In next section I will introduce the field of trap physics and it’s relation to

quantum computation, as well as its first successful realization of quantum gates.

1.2 Trap Physics

The history of trap physics began as the search to extend the lifetime of an

electrical discharge (Penning, 1936). Its natural continuation followed by the

invention of the so called Pennning trap by Hans Georg Dehmelt, and by the

invention of the Paul trap by Wolfgang Paul, who shared the Nobel Prize in 1989

together with Norman F. Ramsey for their work on ion traps.

From that point on, traps have been used as instruments of precision for

measuring quantities such as the g-factor(Werth), hyperfine structures, lifetimes

of excited states, atomic clocks, inertial mass(Dyck; Blaum), atomic transition
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1. INTRODUCTION

lines, etc. whose stringent results have confirmed quantum electrodynamics to a

great degree of accuracy.

A Penning trap consists of an ideally quadrupolar electrostatic field together

with an homogeneous magnetic field. The electrostatic field provides confinement

in one spatial direction and the magnetic field in the remaining two. The magnetic

field is required since Laplace’s electrostatic equation doesn’t permit absolute

potential minima in the absence of free charges. A roundabout for this consists

in alternating the sign of the complete potential and dispense with the magnetic

field. The latter configuration is the definition of the Paul trap1.

In Figure 1.1 we see typical schemes for both Paul and Penning configurations

of an ion trap.

Figure 1.1: Left: Hyperbolical electrodes can be used with voltage V on endcaps

and -V on ring electrode plus a magnetic field along z (Penning configuration). If

the voltage signs are changed in time and the magnetic field removed, we have a

Paul configuration. Right: Paul configuration with cylindrical electrodes. Note

that static positive voltages are needed at the extremes for trapped particles not

to be lost along the symmetry axis.

Special efforts have been dedicated along the years to improve the perfor-

mance of traps, such as perfecting cooling methods, removing trap’s electrodes

1There are other types of ion traps such as the Kingdon trap, but they are the most common.
In addition, not only ion traps exist, but also traps for neutral particles such as the optical traps
(also known as optical tweezers), which rely on dipolar forces produced by stationary laser light
waves.
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1.2 Trap Physics

imperfections, increasing the accuracy of the detection methods and studying the

effect of different radiations coupled to the motion of trapped particles.

Since the field of trap physics is broad enough to constitute in its own right

a branch of physics, I will not try to summarize it but will take the main ideas

for the operation of a Penning trap and elaborate from there our contribution to

the field by showing how a planar Penning trap is similar to the standard but at

the same time has some interesting features of its own.

As seen in Figure 1.1, a Penning trap consists of hyperbolical electrodes, ide-

ally extending to infinity, which yield an electrostatic quadrupolar potential. Its

stable eigendirection is usually named z and yields a unique eigenfrequency called

ωz. Confinement on the radial plane, perpendicular to z, is given by an homoge-

neous magnetic field ~B = Bzûz. This further radial confinement yields another

two eigenfrequencies called respectively reduced cyclotron (ω+) and magnetron

(ω−). Figure 1.2 shows the trajectory of particle trapped in such configuration

for the case of the three eigenfrequencies being similar in magnitude.

Figure 1.2: Illustration of the three eigenmotions of a particle inside a Penning

trap.

The system is equivalent to three independent harmonic oscillators. The in-

dependence of those oscillators occurs only in ideality, and the general situation

is that all oscillators are coupled. If the stored particle has a non-zero spin its

precession in the magnetic field has to be included. Several methods have been

15



1. INTRODUCTION

developed in trap physics concerning these couplings, either for reducing their

negative effects or for amplifying their positive counterparts.

1.2.1 Motion of one trapped particle

The equations of motion for a single particle trapped in a quadrupolar electrosta-

tic field φ(ρ, z) = V0

2d2
(z2 − ρ2/2) plus a homogeneous magnetic field are obtained

most easily from the Lorentz force:

~F = q( ~E + ~v × ~B) (1.1)

where q is the charge, ~v is the velocity vector, and ~B is the magnetic field. Since
~B = Bûz, the magnetic force affects only the motion on the radial plane, and

thus the motion in z is governed by

z̈ =
q

m
Ez = − qV0

md2
z (1.2)

which is just the equation for a harmonic oscillator with frequency

ωz =

√
qV0

md2
(1.3)

Notice that I didn’t define what V0 and d are. For a standard hyperbolical Penning

trap V0 is the voltage difference between ring and endcap electrodes, and d is a

parameter relating the relative positions of the electrodes. But in general they

will depend on the geometry given to the electrodes, and because of this we will

regard them as just parameters which give the scale for voltages and lengths.

Despite the axial motion being decoupled from ~B, the remaining degrees of

freedom get coupled through its influence:

ẍ =
q

m
(Bẏ − V0

2d2
x) (1.4)

ÿ = − q

m
(Bẋ+

V0

2d2
y) (1.5)

, but can be uncoupled through the new variable u = x+iy. Defining ωc = qB/m

we obtain a single equation from the two equations above:

ü+ iωcu̇+
ω2
z

2
u = 0 (1.6)
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1.2 Trap Physics

Solving this equation yields two uncoupled harmonic oscillators of frequencies

ω± =
ωc
2
±
√
ωc
4
− ω2

z

2
(1.7)

which we have already mentioned above by the name of ”reduced cyclotron” and

”magnetron” frequencies.

1.2.2 Motion of a cloud of trapped particles

The situation is however quite different when instead of a single particle, we

have a cloud of them. The idealization regarding a perfect quadrupolar potential

or a perfect homogeneous magnetic field can be achieved in a real experiment

with voltage compensation and shimming coils, respectively. That makes the

treatment above almost exactly what happens in a well devised experiment.

However, when a cloud of particles is trapped, electrons interact with each

other via Coulomb with a strength related to their spatial density. There’s no

experimental way we can avoid or compensate this fact. This makes the picture of

three independent harmonic oscillators per trapped particle become false. Since

the Coulomb interaction will couple all degrees of freedom of all trapped particles,

a new description of the situation is needed.

It is clear that we cannot expect solving the equation of motion of , let’s

say, 1000 particles Coulomb-interacting in an analytic fashion, but still, some

information can be gathered. In fact, just by modeling the cloud of particles

by a uniformly charged sphere (which is sufficiently true even for non zero tem-

peratures) we obtain a useful insight: the interaction of a single electron with

the charged sphere shifts its axial frequency to lower values in proportion to the

charge density of the sphere. Since the field seen by a particle due to that sphere

depends on its distance to the center of the sphere, each particle sees a different

space charge and its axial frequency is shifted differently. That gives a broad

resonance which is asymmetric and shifted as a whole to lower frequencies with

respect to ωz (see (Desaintfuscien) for more details).

But not only that, the cloud as a whole can be excited resonantly , as if it

where a unique particle, at the frequency ωz.
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So if we sum up both effects, the resonance of a cloud of trapped particles has

two different peaks: one broad peak centered near ωz but shifted to lower frequen-

cies, which we will call ”individual” or ”non-collective” resonance, and a narrow

peak exactly centered at ωz which represents the cloud moving as a whole, and

which we will name as ”center-of-mass” (COM) or ”collective” resonance (see

(Valenzuela) for an experimental example of this double-peak resonance struc-

ture).

1.2.3 Quantum computing with traps

The fact that a trapped particle can be stored during long times, as has been

experimentally demonstrated, gives the hope that the experimenter can use such

physical system to store a qubit. Further it has been also experimentally demon-

strated that a trapped particle can be cooled down to the subKelvin regime with

dilution refrigerators, and controlled with radiation(Gabrielse)(laser cooling of

trapped particles had been already demonstrated in (Wineland; Dehmelt)).

In the case of a Penning trap there are three harmonic oscillators, with an

infinity of quantum levels, and a spin. This gives a choice where to store the

quantum information, being the most natural that of the spin.

The universality of a quantum computer becomes proven when it is shown

that any 1-qubit rotation (remember that a qubit is a 2-level system and can be

always represented by a spin) and a CNOT gate on 2-qubit, can be performed

(Deutsch2). Therefore, by choosing from our system two different quantum states

and naming them |0 >, |1 >, we need to show that we can transform any of them

in any superposition of both. Further, we need to show that two systems like

these can be made to interact in such way that a CNOT (or XOR) gate can be

performed on them. Of course, any operation which we apply needs to conserve

our quantum systems inside the Hilbert space consisting of |0 >, |1 >, and that’s

why the spin is always the natural choice for a qubit.

Up to now there have been several experimental demonstrations that these

two operations can be done with ion traps. The state of the art, however, has

been preceded by Paul traps due to their easy access with radiation and the

facility to build a linear array of trapped ions. Two examples are to be found

18



1.3 Motivation : QUELE project

in (Wineland2) and (Blatt), where implementation of two qubit gates has been

already performed. Teleportation and other quantum information related topics

have also been addressed by these groups, so the reader can refer to them for

more information. However, the fact that linear traps use time-dependent fields

leads to heating of the trapped particles, thus limiting the coherence time.

In next section I show a proposal worked out by the QUELE network (funded

by EU) for quantum computing with several planar Penning traps containing

one trapped electron each. Each individual electron’s spin can be addressed and

have a general rotation performed on it by radiation. Furthermore, an effective

interaction between spins can be achieved and used to perform CNOT gates.

1.3 Motivation : QUELE project

As we have said, quantum computing is a field of high interest, not only at

the level of quantum information’s first principles, but also as an experimental

challenge and a possible future tool for mankind.

The basics of quantum computing has been demonstrated in linear Paul traps

and is being still enriched, but the fact that those traps work with time-dependent

voltages gives the feeling that static fields will probably provide a more coherent

control. Our main aim has been thus to provide a realistic scheme for quan-

tum computation with Penning traps and to build a tailored trap fulfilling the

requirements.

Working with electrons has the advantage of higher motional frequencies due

to their small mass. This way, the inner clock of the quantum computer would

be faster1. A scheme for quantum computation with a linear array of cylindrical

traps was given by Ciaramicoli, Marzoli and Tombesi in (Tombesi2). There,

scalability and universal computation were demonstrated. Our main development

as compared to this proposal was the idea of having a trap with open geometry.

This ensures radiation from a single source reaching every single trap of an array,

whether linear or planar, of traps. Because of this reason we designed a planar

1The logical speed of a quantum computer will not only depend on the intrinsic frequency
achieved by its physical constituents, but the latter will for sure impose a lower bound for its
speed.
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1. INTRODUCTION

trap, with electrodes printed on an isolating surface. Furthermore, this type of

trap can be machined with known techniques in chip fabrication, thus enabling

the miniaturization of a planar array of planar traps on the same substrate.

With the planar Penning trap as a tool, we aim at trapping single electrons

in these traps at a temperature of 100mK or below, with a magnetic field of

several Tesla. Such temperature regime is needed in order to have the cyclotron

motion at its ground state. The electron looses energy by synchrotron radiation,

and gains none from the environment due to the low temperature (black-body

photons at this temperature do not have enough energy to excite the cyclotron

motion). Since the damping rate for synchrotron emission is dE
dt
∝ B2 (Gabrielse),

it is important to have a high magnetic field.

A typical resonant tank-circuit of narrow bandwidth will be used for picking

up the induced voltage at the resonance frequency of the axial motion of the

electrons. The qubit is planned to be stored in the electron’s spin, which is

a natural two-level system. With a microwave generator we can manipulate

rotations on the spin, thus proving the possibility of 1-qubit operations. The

addition of a quadratic magnetic gradient (with a Nickel ring for example) shifts

the axial frequency of the electron in proportion to the projection of the spin

operator, thus enabling the measurement of the qubit information.

For 2-qubit operations, in particular the CNOT gate, we plan to couple the

spins of different electrons by mediation of their Coulomb repulsion. When a

linear magnetic gradient is applied, the spin and axial motions of an electron get

coupled. The Coulomb interaction couples the axial motion of different electrons,

and thus at the end their spins are coupled in an effective way, due to the magnetic

gradient. We also have an alternative coupling method based on the induced

image currents in the trap’s electrodes. These currents follow the oscillation

of the trapped electron, and by connecting the electrodes of different traps, we

couple the axial motions of their hosted electrons.

In Figure 1.3 we see the main setup for our project. The basic idea is to

have a 2D array of traps inside a magnetic field. Trap are loaded with electrons

coming from a ”loader” trap, whose lower endcap electrode has been perforated

according to the positions of the planar traps below it. Creation of electrons will

be done with a field emission point (FEP). Radiation of microwaves is inserted in
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1.3 Motivation : QUELE project

the setup via a wave guide. Under the array of planar traps we see the electronic

control system and the resonant tank-circuits.

Figure 1.3: Illustration of the setup of the future QUELE experiment. This is

the 100mK part of the setup containing the traps and control systems (Courtesy

of Stefan Stahl).

Apart from the sketch in fig. 1.3, there will several zones with different temper-

atures, so as to smoothen the temperature transition for electronic components.

Attached to the system, a computer-controlled collection of apparatuses will pro-

vide the necessary control.

In order to implement these ideas, it was necessary to study theoretically the
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1. INTRODUCTION

properties of our novel trap, and test it experimentally. The detection system,

based on the axial motion’s frequency shifting depending on the spin projection,

has already been used in g-factor experiments with great success(Werth). How-

ever, it very much depends on the trap’s electrostatic potential being perfectly

quadrupolar, and this had to be investigated too. The CNOT gate operation,

which relies on the effective spin-spin interaction, has to be calculated for this

type of trap and for realistic parameters.

For all these reasons, I first studied the theoretical properties of the planar

trap, the feasibility of the spin detection method and the spin-spin interaction,

which will be shown in next chapter.

I also did first experimental test with two planar traps of different sizes, to

confirm the theoretical study. This will be shown in chapter 3.
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Chapter 2

Planar Penning trap, theory

A planar Penning trap was conceived as the projection of a standard 3D Penning

trap into a plane. Its easiest realization is the one shown in Figure 2.1, with

a central disk electrode and an outer ring electrode. Another possibility could

have been with two ring electrodes, but it’s equivalent. The central disc can be

thought of as being the endcaps, and the ring as the ring electrode of a Penning

trap. The symmetry axis of the trap is perpendicular to the plane and parallel

to the magnetic field.

Figure 2.1: Planar Penning trap scheme. Electrodes (black) printed on an isolat-

ing substrate(gray).

2.1 Electrostatic Potential

In order to choose a best profile for this trap, both mathematical and experi-

mental issues have to be considered before hand. Experimentally, it’s not a good

idea to leave blank space between electrodes, since they can get charged up by
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2. PLANAR PENNING TRAP, THEORY

collision with electrons leaving the trapping volume. This charges will modify

uncontrollably the potential and will remain a long time.

In the mathematical side, leaving blank spaces between electrodes always

means solving a mixed boundary value problem, i.e. part of the boundaries will be

of Dirichlet type and part of Neumann type. This complicates the mathematical

problem extremely and will be avoided here for the sake of analyticity.

The same applies for the border of the trap, for either the trap is of finite size

(Dirichlet boundary) and the rest of the space is a Neumann boundary, or the trap

extends radially to infinity. Since the idea is to finally have an isolating substrate

covered with an array of such planar traps, the problem can be decomposed into

an individual trap surrounded by a ground electrode extending to infinity, by

the principle of superposition of electrostatics. Once we find the solution for the

potential of this trap, the solution for the whole array of traps is just the sum of

each individual solution placed one next to each other forming a lattice.

Of course, traps work in vacuum and therefore need to be isolated, which is

normally done by a metal tube which encloses the trap. This tube could be repre-

sented by a cylinder of radius Rc and length Lc having its symmetry axis aligned

along the one of the trap. However, the traps with which we are going to work

experimentally are small in comparison to this tube, and the trapping region is

smaller yet. This means that the electrostatic potential in the region we are inter-

ested in, shouldn’t change if we change a tube boundary by a boundary placed at

infinity. The general expansion for the potential in cylindrical coordinates, with

rotation symmetry around z, is:∫ ∞

0

dk(A(k)e−kz +B(k)ekz)(J0(kρ) + C(k)N0(kρ)) (2.1)

where A(k), B(k) and C(k) are coefficients which need to be adjusted to the

geometry of our problem. Pushing the metal tube to infinity means eliminating

the divergent terms above and therefore:

φ(ρ, z) =

∫ ∞

0

dkA(k)e−kzJ0(kρ) (2.2)

With all these assumptions the problem has been greatly simplified but the reader

must not forget that by simplification we loose realism in the description. In next
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2.1 Electrostatic Potential

section I will review several analytical approaches which can be taken to deal with

the complete problem, including blank spaces, finite-sized trap and the inclusion

of a cylinder at a given distance Rc. However, considering the whole realistic

picture of a planar Penning trap inside a metal grounded cylinder increases far

beyond our needs the difficulty of the mathematical problem, and will be exposed

only for the sake of completeness and not because it’s needed for our purpose.

Summarizing, the trap we will consider consists of several ring electrodes

with a disc electrode in the center, plus an outer grounded electrode extending

to infinity. An example with only two active electrodes with equal width can be

seen in Figure 2.2.

Figure 2.2: Final planar Penning trap scheme with two equally wide active elec-

trodes plus an infinite outer grounded electrode.

The choice of contiguous electrodes plus an outer one extending to infinity

reduces the statement of boundaries into a single expression:

φ(ρ, 0) = V (ρ) (2.3)

where V (ρ) is the distribution of electrodes on the plane for given applied voltages.

So, solving the electrostatic potential in our trap is equivalent to invert this
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2. PLANAR PENNING TRAP, THEORY

equation:

V (ρ) =

∫ ∞

0

dkA(k)J0(kρ) (2.4)

and find the coefficients A(k), which inserted in equation (2.2), give the complete

solution for the electrostatic potential.

Equation (2.4) can be easily inverted by a Hankel transform without being

further manipulated, and gives:

A(k) = k

∫ ∞

0

dρρV (ρ)J0(kρ) (2.5)

As V (ρ) is a piecewise function with value Vi between ρ = Ri−1 and ρ = Ri,

equation 2.5 can be integrated to yield

A(k) =
∑
i

Ai(k) (2.6)

with

Ai(k) = Vi[RiJ1(kRi)−Ri−1J1(kRi−1)] (2.7)

Now, with equation (2.2) and equation (2.7), the electrostatic potential can be

found in any point in space, either by analytical or numerical integration of

equation (2.2) and hence the problem is solved.

Integration of the equation (2.2) for all space, to the extent of my knowledge,

doesn’t yield an analytical expression and needs a numerical treatment. However,

an explicit analytical solution for the potential along the z axis can be found:

φ(0, z) ≡ φ(z) =

∫ ∞

0

dk A(k)e−kz =
∑
i

φi(z) (2.8)

,φi(z) being the contribution from each electrode whose value is:

φi(z) = Vi

 1√
1 +

R2
i−1

z2

− 1√
1 +

R2
i

z2

 (2.9)

This solution along z, plus assuming that the radial part is quadratic i.e. ideal,

yields an approximate electrostatic solution for the case of a trapped particle

sufficiently close to the z-axis. In general this is not the case, but there are

methods with which a trapped particle can get its radial motion reduced to the
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2.1 Electrostatic Potential

minimum (axialization), and thereby put close enough to the z-axis so as not to

need to worry about it.

In addition, the proposed scheme for quantum computation requires that we

are able to detect a shift in axial frequency given by the projection of the spin,

whose frequency depends only in the shape of the potential in z coordinate. In

order to demonstrate that that shift is detectable with this trap, we will need to

study the z-shape of the potential for ρ ∼ 0.

If numerical integration is performed, the complete picture of the potential

can be obtained as in Figure 2.3.

Figure 2.3: 3D plot of the potential for two electrodes configuration with V1 = 0V

and V2 = 1V , and electrode widths equal R1 (inner disk’s radius). The boundary

at z = 0 has been spuriously softened by the graphics software and can be shown

to fulfil exactly the imposed voltage at the trap’s surface.

A comparison between the analytical expansion studied above and different
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2. PLANAR PENNING TRAP, THEORY

numerical solutions will be given at the end of this chapter.

2.2 A more complete description

The proposed description of our boundary problem can be completed in several

ways, but mathematically there seems to be two straightforward ways to proceed:

to include a surrounding closed cylinder which encloses the trap, or to consider

the spacing between electrodes and finite-size of the trap. It’s clear that one can

do both at the same time, and not only that, but add realistic objects which

might be placed inside the experimental setup in the real experiment, such as a

detector, cables, etc. The first of the two mentioned possibilities requires that

the boundary we used in last section is not at infinity but at a finite distance;

the second one requires changing the type of boundaries, from purely Dirichlet

to mixed ones. I will treat both possibilities next.

Of course, there are other combinations such as considering an open-ended

cylinder with radius Rc and length Lc− > ∞, or a finite-sized trap with no

spacing between electrodes inside a cylinder, but they can be obtained from the

former two cases and thus will not be described here.

2.2.1 Trap with enclosing cylinder

The geometry that I will assume next consists of a closed cylinder with radius

Rc and length Lc oriented along z-axis. Its walls and one of its endcaps have an

applied voltage of 0V, and the other endcap will have a voltage distribution V (ρ)

(this endcap represents the trap). Since the radial eigenfunctions must vanish

at ρ = Rc, k will not be now a continuous variable but a discrete one. The z

coordinate will not be anymore expressed by e−kz, but by sinh(kz) (hyperbolical

sinus) for convenience. Since sinh(0) = 0 we will adopt an antiintuitive orienta-

tion for the cylinder: we’ll place it upside down, with the V (ρ) endcap at Lc and

the grounded one at z = 0.

The following discussion can be seen in a more general fashion in (Jackson)

but I’ll repeat the basics here and show a comparison with my own derivation

included in former section.
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2.2 A more complete description

As explained before, the values for k are discrete in this geometry since the

limiting walls in ρ direction are at a finite distance from the center, and yield

kn = x0n/Lc , n = 1, 2, 3... (2.10)

with x0n being the zeroes of the zeroth-order Bessel function of the first kind

J0(x). This is natural since the expression for the potential in this geometry

must be of the general form:

φ(z, ρ) =

∫
dk A(k)sinh(kz)J0(kρ) (2.11)

and it must vanish at ρ = 0 for any z included in the inner volume of the disk.

Then , finally we have that:

φ(z, ρ) =
∞∑
n=1

Ansinh(knz)J0(knρ) (2.12)

and by imposing the last boundary condition φ(Lc, ρ) = V (ρ) we see that

V (ρ) =
∞∑
k=1

Ansinh(knLc)J0(knρ) (2.13)

which is a well known Fourier-Bessel series and can be inverted to yield the desired

coefficients:

An =
2

R2
cJ

2
1 (knRc)

∫ Rc

0

dρ ρV (ρ)J0(knρ) (2.14)

The integral above is the same one as in equation (2.5) and therefore

An =
2

R2
cJ

2
1 (knRc)

1

kn

∑
i

Vi[RiJ1(knRi)−Ri−1J1(knRi−1)] (2.15)

where index i runs over electrode’s number.

At this point ends analyticity. The reader must observe that kn have been

defined as the zeros of the zeroth order Bessel function of first kind J0(x), which

have no general analytic expression. Only asymptotic formulae and numerical

methods to obtain them exist, and therefore even φ(z, 0) cannot be integrated

analytically. Figure 2.4 shows a 3-dimensional plot of the potential and Figure

2.5 gives a comparison with this approach and my approach, for the potential
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2. PLANAR PENNING TRAP, THEORY

Figure 2.4: 3D plot of the potential for two electrodes configuration with V1 = 0V

and V2 = 1V , and electrode widths equal R1 (inner disk’s radius). Rc = 20R1

and Lc = 400R1

30



2.2 A more complete description

along z-axis. In figure 2.5 we can see that the similarity of the potential for the

case with and without cylinder is amazing. There’s a slight difference for z near

0, most probably because the numerical calculation of the potential can never

include all k up to infinity. A difference would be seen also for big z since now

the enclosing boundaries are not at infinity, but this region has been excluded

from the plot.

This shows that we have gained no further quality in he knowledge of the po-

tential, but lost a lot of computational power. I conclude from this that including

the cylinder in calculations has been a mere curiosity and proceed studying the

next possible completion: spacing between electrodes and finiteness of trap’s size.

Figure 2.5: Same parameters as in Figure 2.4, plotted for ρ = 0. The cylinder’s

length and radius are experimentally realistic.
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2. PLANAR PENNING TRAP, THEORY

2.2.2 Mixed boundary conditions approach

To illustrate the difficulty involved in this approach, I will use the geometry of

section 2.1, but this time without the grounded electrode which extends to infinity.

I consider here only two electrodes: an inner disk, and a ring, an surrounded by

empty space. This problem can be included in the more general one usually called

”electrified disk”.

Since the boundary conditions for z → ∞ and ρ → ∞ are the same as

in section 2.1, I’ll keep the polynomial expansion in eq. (2.2). In fact, the

only difference with that section is in the boundary plane z = 0. Instead of

φ(ρ, 0) = V (ρ), with V (ρ) being the voltage distribution we apply to the different

electrodes, the condition now is:

φ(ρ, 0) = V (ρ) , 0 ≤ ρ < Rtrap (2.16)

∂

∂z
φ(ρ, z)

∣∣∣
z=0

= 0 , ρ > Rtrap (2.17)

where Rtrap is the total radius of the trap, and eq. (2.17) expresses our knowledge

of the surface charge being zero in the rest of the z = 0 plane. These equations,

when expressed in terms of the polynomial expansion become:∫ ∞

0

dkA(k)J0(kρ) = V (ρ) , 0 ≤ ρ < Rtrap (2.18)∫ ∞

0

dk k A(k)J0(kρ) = 0 , ρ > Rtrap (2.19)

The mathematical problem has changed from section 2.1 only in the sense that eq.

2.4 is now split into two equations. In order to find suitable coefficients A(k) these

must satisfy both integral relations at the same time. Even if the reader doesn’t

realize, the mathematical problem has increased hugely in difficulty. Integral

equations of this type are usually called ”dual integral equations” and constitute

a field on its own right in applied mathematics. For a general overview of the

subject and a summary of mathematical tools, see (Sneddon). We will use this

book as a reference for the remainder of this section.

The problem has been solved in several ways by different authors, but I will

only sketch the approach of Sneddon, just for the sake of illustration. In the

following section, Rtrap = 1 will be assumed for simplicity.
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2.2 A more complete description

2.2.2.1 Sneddon’s solution

A solution for the ”electrified disk” is given by Titchmarsh (1948) by a rather

complicated method, and Sneddon(Sneddon2) gets to the same solution using a

more elementary one.

The solution is sought by expressing the coefficients A(k) in terms of a generat-

ing function, which makes the former coefficients satisfy eq. (2.19) automatically.

In Sneddon’s derivation, the generating function of A(k) is given by relation

A(k) =

∫ 1

0

ψ(t)cos(kt)dt (2.20)

= ψ(1)sin(k)−
∫ 1

0

ψ′(t)sin(kt)dt (2.21)

, and he introduces the function

G(ρ) =

∫ ∞

0

kA(k)J0(kρ)dk (2.22)

which, inserting equation (2.21) in, shows that G(ρ) = 0 for ρ > 1 (remember

that Rtotal ≡ 1), after some integral manipulation. This means that equation

(2.19) is directly satisfied, as expected.

In order to find ψ(t), we substitute (2.20) into the function

F (ρ) =

∫ ∞

0

A(k)J0(kρ)dk (2.23)

and obtain

F (ρ) =

{ ∫ ρ0 ψ(t)dt√
ρ2−t2

, 0 ≤ ρ < 1

∫ 1

0
ψ(t)dt√
ρ2−t2

, ρ > 1

(2.24)

Since equation (2.18) is equivalent to F (ρ) = V (ρ) , 0 ≤ ρ < 1, it’s clear from

the upper equation in (2.24) that ψ is the solution to the integral equation∫ ρ

0

ψ(t)dt√
ρ2 − t2

= V (ρ) , 0 ≤ ρ < 1 (2.25)

whose inversion gives us ψ(t):

ψ(t) =
2

π

d

dt

∫ t

0

ρV (ρ)dρ√
t2 − ρ2

(2.26)
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From this expression for ψ(t) we can find A(k), after integration by parts and a

little manipulation:

A(k) =
2

π

(
cos(k)

∫ 1

0

uV (u)du√
1− u2

+ k

∫ 1

0

udu√
1− u2

∫ 1

0

vV (uv)sin(kv)dv

)
(2.27)

For our particular case, further simplification is possible. Due to the piecewise

nature of our V (ρ), the first integral yields:∫ 1

0

uV (u)du√
1− u2

=
∑
i

(Vi+1 − Vi)
√

1−R2
i (2.28)

with i running over electrode number. In the second integral we first integrate

the v part:∫ 1

0

vV (uv)sin(kv)dv =
∑
i

Vi+1 − Vi
k2u

[
kRicos(

kRi

u
)− u

(
kcos(k)− sin(k) + sin(

kRi

u
)

)]
(2.29)

Inserting this equation into (2.27) and completing the integration for the variable

u is only possible analytically for the part of −u(kcos(k) − sin(k)) and not for

the cos(kRi/u) and sin(kRi/u), so (2.27) becomes further split:

A(k) =
2cos(k)

π

∑
i

(Vi+1 − Vi)
√

1−R2
i

+
2

π

kcos(k)− sin(k)

k

∑
i

(Vi+1 − Vi)

(
1−

√
1−R2

i

)
+

2

kπ

∑
i

(Vi+1 − Vi)

∫ 1

Ri

1√
1− u2

(
kRicos(

kRi

u
)− usin(

kRi

u
)

)
du

The first two summands here can be simplified into one giving

A(k) =
2

π

∑
i

(Vi+1 − Vi)

{[
cos(k)− sin(k)

k

(
1−

√
1−R2

i

)]
+

1

k

∫ 1

Ri

1√
1− u2

(
kRicos(

kRi

u
)− usin(

kRi

u
)

)}
du (2.30)

We leave the u integral so for the moment, and try to integrate for k to get the

potential along z axis:

φ(0, z) ≡ φ(z) =

∫ ∞

0

A(k)e−kzdk (2.31)
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After integrating over k a surprise comes, a piece of the u integral becomes solv-

able analitically, and the potential becomes

φ(z) =
2

π

∑
i

(Vi+1 − Vi)

{
z

1 + z2
− atan(

1

z
)

(
1−

√
1−R2

i

)

+
Ri

z
√
z2 +R2

i

(
Riπ

2
−Ri atan

√
z2 +R2

i

1−R2
i

− acos(Ri)
√
z2 +R2

i

)

+

∫ 1

Ri

u√
1− u2

acot

(
uz

Ri

)
du

}
(2.32)

A difference between this method and other solutions by other authors is that

here only an integral over u remains, with a finite integration domain. In other

approaches one has to integrate in a semifinite domain, which can be tougher

numerically. The result of this study can be seen in Figure 2.6: We see that

Sneddon’s method yields the same results as my standard derivation in section

2.1, and furthermore the calculation times are hugely reduced in comparison

with other mixed boundary approaches. Hence, this method is preferable , but

still its calculation times are much longer than the ones needed by the standard

derivation.

2.2.2.2 Complete completeness

Throughout the section I have tried to give a more complete description of the real

electrostatic problem by making the boundary conditions more realistic. However,

the trial has proved unworthy of the effort, since no bigger understanding of the

behaviour of the potential has been achieved with more complete descriptions.

Nevertheless, I will try to explain what would be the most complete description

which could be given, how that problem would be solved and where its difficulty

lies.

As already discussed before, our trap consists of metal electrodes printed on an

isolating surface of finite size Rtotal. This trap has to be mounted on a holder and

afterwards isolated from atmosphere by an enclosing metal cylinder at ground.

What about having more elements inside the vacuum-cylinder? We may say that

that is too much for an analytical approach, or we can build a experimental setup

35



2. PLANAR PENNING TRAP, THEORY

Figure 2.6: Standard versus Sneddon’s solutions comparison for the case of a trap

with holder. Parameters are the same as in Figure 2.6, which we have used in

our experiment.
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such that those extra elements are far away from the trap and can be considered

negligible with respect to its influence on the trapping region.

In any case a finite-sized trap with gaps between electrodes, inside a finite-

sized enclosing cylinder already shows the difficulty of solving such electrostatic

problem, which is the goal of this subsection.

We define the electrostatic problem to be that of a voltage distribution in the

plane z = 0 with gaps ending up at ρ = Rcylinder. The electrostatic potential

needs to be solved only in the region 0 ≤ ρ ≤ Rcyl., 0 ≤ z ≤ Lcyl.. The boundary

conditions are φ(ρ, 0) = Vi for Ri−1 + di ≤ ρ ≤ Ri where Vi is the voltage applied

to electrode i, di is the gap between electrode i − 1 and electrode i and Ri is

the radius at which electrode i ends. The trap ends at Rtot. and then comes a

gap from Rtot. to Rcyl.. Then φ(Rcyl., z) = 0 (walls) and φ(r ≤ Rcyl., Lcyl.) = 0

(cylinder cap), plus stating that the normal derivative of φ(ρ, z) is zero for the

regions (ρ, 0) with Ri ≤ ρ ≤ Ri + di and for Rtot. ≤ ρ ≤ Rcyl., give the complete

statement of the boundary conditions.

It comes immediately to our memory that up to now we have been dealing

with a maximum of two regions: a region with Dirichlet-type boundary, and a

region with Neumann-type. And it becomes evident that now our problem, our

trap having N electrodes, has N +2 Dirichlet-type regions and N Neumann-type

regions. In total, the number of integral equations which the coefficients A(k)

have to satisfy is 2N + 2.

In previous sections we studied the problem of the electrified disk, which

has N = 1 and no cylinder, hence having 2 integral equations to solve. Such

problems are typically called ”dual integral equations” since the goal is to obtain

a function A(k) which satisfies both equations. The obvious difficulty of their

mathematical treatment wa proven by the fact that a numerical help was always

needed at the end. The reader can imagine how huge and challenging can be

searching for an analytical approach to a (2N +2)-al integral equations problem.

This reason automatically rules out any other possibility than directly solving

laplace’s equation numerically by different methods.
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2.3 Comparison with numerical methods

I do not want to extend much on the point of solving Laplace’s equation for our

trap with numerical techniques, for we have seen that by making a more real-

istic analytical approach to the problem no further qualitative nor quantitative

insight has been gained in a substantial amount. Therefore I will expose some

customary comparison between our standard derivation, given in section 2.1, and

purely numerical methods, taking the parameters used to compare with the mixed

boundaries approach in subsection 2.2.2 .

I will first consider a typical relaxation routine and then a finite elements

one. I will briefly summarize what they consist and compare their results to our

standard derivation.

2.3.1 Relaxation method

Relaxation, or ”finite differences”, method is a well known one. It’s normally

used in electrostatic problems given its easy implementation and despite its slow

convergence speed. The method consists in splitting the region where the poten-

tial is to be calculated into an equally spaced grid o points. Laplace’s equation

can be thence cast into a finite-difference equation which states that the value of

the potential at the point with labels ”i, j, k” is the average of the potential at

its nearest neighbour points.

The method then is implemented by the following steps:

1)making an initial guess at the values of the potential in each point of the

grid (φi,j,k).

2)stating the boundary conditions on φi,j,k.

3)substituting φi,j,k by its nearest neighbours’s averaged values for the rest of

points.

Of course, a halting criterium for the algorithm is needed, and it must be

inserted after 3):

4)if the newly calculated φi,j,k’s differ from the ones calculated in the iteration

before by less than ”dV”, halt the iteration process. (”dV” is the goal accuracy
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2.3 Comparison with numerical methods

we want to achieve for the function φ).

From the structure of this method, it can be seen that it consists in propa-

gating the values of the boundaries by the Laplace equation itself in a discrete-

grid-way. Therefore, its convergence is slow! Acceleration of the process can be

aided by changing the way we average in step 3), i.e. by replacing 3) with 3’):

3’)φ
(new)
i,j,k = λ ∗ (neigbour′s average) + (1− λ) ∗ φ(former)

i,j,k

where λ is a parameter between 0 and 1, to be chosen accordingly to the nature

of the problem. Despite its convergence slowness, this method is rather easy to

implement, and thus suited for easy boundary problems such as electrostatics.

If we use this method to calculate our potential for the geometry described in

2.2.2, Figure 2.7 is obtained. A complete agreement is observed, corroborating

the results obtained almost analytically in section 2.2.2.

2.3.2 Finite elements method

Finite element methods divide the problem of interest into a mesh of geometric

shapes called finite elements. The potential within an element is described by a

function that depends on its values at the cell corners (nodes) and parameters

defining the state of the element. Several such cells are assembled to solve the

entire problem. A total ”energy” associated with the mesh configuration is found

as part of the calculation and this is minimized by adjusting the parameters

specifying the elements. The solution can be refined by subdividing the regions

of the mesh that contribute most to the total ”energy” of the solution, or by

increasing their complexity (i.e. increasing their number of nodes).

The typical application of this method concerns mechanical stresses, thermal

and fluid flow problems, when the complexity of the boundary regions is big, and

the need for best efficiency is high.

For our problem, an axisymmetric electrostatic potential, the problem is two

dimensional (ρ, z), and can be divided into 2D elements. The easiest choice are

simple triangles. In Figure 2.8we see the mesh used to obtain our potential.
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Figure 2.7: Standard versus relaxation’s solutions comparison for the case of a

trap with holder. Parameters are the same as in Figure 2.6.
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2.3 Comparison with numerical methods

Since the trap is centered at ρ = 0 and z = 0, the tiniest triangles are around

it, and they grow in size as their distance to the trap increases. This can be

perfectly understood in terms of field gradients and is similar to adaptive size

methods for numerical calculation of physical particle trajectories (the bigger the

force, the smaller the needed time step, the bigger the field gradient the smaller

the triangles). The enclosing boundaries have been chosen to be the same as in

the relaxation method. They are 15 times bigger than the trap+holder’s radius

(Rtot. = 1) and 152 bigger than R1 (R1 = 1/15, as before). The region of interest

lies at z ∼ R1, and so the external boundaries are effectively at infinity.

Figure 2.8: Mesh used for our calculation. Triangles’s sizes are iteratively reduced

until the accuracy criterium is met.
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The comparison of the potential calculated via this method, with the stan-

dard one yields Figure 2.9, which shows a perfect agreement with our standard

derivation. As before, we conclude that our simple analytic formula (2.9), is suffi-

cient to give us both qualitative and quantitative information about the potential

shape and properties, which will be the object of interest in next section.

Figure 2.9: Comparison of finite elements method with the standard derivation.

Same parameter values as before were used.

2.3.3 Conclusion

The abundance of methods given here, despite the existence of much more meth-

ods still, shows that our standard derivation is good enough for describing the

shape of the potential. In next sections we will see some of the properties of the

potential which can be extracted from this derivation. In the experimental part

of the thesis it will be seen that our measurement confirm this, too.
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2.4 Trap’s Properties

Till now I have only discussed whether the solution equation (2.9) was sufficiently

good and which improvements could be tried. I hope to have convinced the reader

that, what I have been calling the ”standard derivation”, is not only sufficient

but enormously faster to compute and easier to analyze than any other approach.

Results have been presented for a trap with two electrodes, giving a highly

z-nonsymmetric potential. Standard Penning traps are known to have 2 active

electrodes (ring and endcaps) plus a third electrode which corrects the shape of

the potential so as to make it most quadrupolar, at least in the region of the

minimum, i.e. the trapping region. This experimental aid is needed since no

real trap is perfect, in many senses, and we aim to have the biggest realizable

precision. Our trap is by no means an exception to this fact, and the addition of

a third electrode is mandatory for our purposes. In order to state the situation

properly and leave no place for misunderstandings, I will specify once again the

geometry of our trap:

1) The trap consists in a collection of electrodes, with given applied voltages,

lying on the plane z = 0 and extending to ρ→∞.

2) The potential φ(ρ, z) is studied for the half-space z ≥ 0 and the enclosing

boundaries are at infinity, namely φ(ρ→∞, z) = 0 and φ(ρ, z →∞) = 0.

3)The voltage distribution on the plane z = 0 is piecewise, thus having

φ(ρ, 0) = Vi for Ri−1 ≤ ρ ≤ Ri, and i being the number labelling electrodes.

and in particular:

4) We are going to work with a voltage distribution with values:

V1 for 0 ≤ ρ ≤ R1

V2 for R1 ≤ ρ ≤ R2

V3 for R2 ≤ ρ ≤ R3

0 for R3 ≤ ρ <∞

(2.33)
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which is just the same conception as in Figure 2.2 plus a third electrode outside

electrode 2.

As seen previously, the potential along z-axis can be cast in the form:

φ(0, z) =
3∑
i=1

Vi

 1√
1 +

R2
i−1

z2

− 1√
1 +

R2
i

z2

 (2.34)

In Figure 2.5 we saw an example of the potential shape along z with V1 = 0V ,

V2 = 10V and electrodes of equal widths (R2 = 2 R1). To get a feeling of the

influence given by the now added third electrode, I plot the potential for the same

voltages, equal widths (R2 = 2 R1, R3 = 3 R1), and varying V3. The result is

Figure 2.101:

From the image above we deduce several things: first, that the position of

the minimum can be varied by varying the relationship V3/V2; second, that the

depth of the minimum can be varied not only by scaling all voltages, but by also

varying the relationship V3/V2; third, that the shape of the potential well gets

more symmetric for values of V3 which seem to lie around V3 ∼ −2V2; fourth,

that by adding electrode 3, we have now two extrema instead of one, and that by

adding a fourth electrode we might get three extrema, thus having two indepen-

dent trapping regions plus an unstable zone in between. All these points will be

studied in detail in the following subsections.

2.4.1 Position of the minimum

The position of the ”minimum” is defined as the position z0 on the z axis such

that ∂φ(0,z)
∂z

∣∣∣
z0

= 0. Despite eq. (2.34) being so simple, if one tries to obtain the

position of the minimum as a function of the parameters z0 = z0({Ri}, {Vi}), one

finds a ”surprise” namely that it cannot be obtained analytically by any means.

The expression defining the minimum is a sum of fractions of powers of roots

whose arguments are different. In my opinion this equation cannot be solved

1Remember that we are always referring to negatively charged particles. Hence, when I say
”minimum”, a mathematical maximum is seen, etc.
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Figure 2.10: Potential shape along z axis for equal electrodes’ widths (R2 = 2 R1,

R3 = 3 R1).

45



2. PLANAR PENNING TRAP, THEORY

except in the case of all Vi being zero except one of them. We will do the job

numerically.

We have seen in Fig. 2.10 that by going to more negative V3, the position of

the minimum is moved towards the origin in z. It can be interesting to plot the

position of the minimum for fixed parameters and varying V3. An example can

be seen in figure 2.11 for electrodes of equal widths:
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Figure 2.11: Position of the minimum changed by changing the ratio V3/V2 with

fixed geometry and V1 = 0V . A clear threshold value is seen around V3/V2 ∼ −3

It looks like the minimum can be asymptotically shifted to z = 0 if V3 →
−3 V2. It should though be realized that by shifting the minimum to 0 we are

also reducing the depth of the well, and for an effective experimental minimum

shifting to be feasible we would also need to increase both V2 and V3 gradually

to compensate such effect.

Such shifting may be of interest in decoherence studies related to interaction

with the metal surfaces. Such decoherence would be dependent on the distance

between ion and surface, which could be varied by this procedure.

2.4.2 Depth of the potential well

The definition of the well can be defined to be equal to |φ(0, z0)|. If V1 6= 0,

”depth” is a not so well defined concept, and for the sake of simplicity, and
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without loosing too much generality I will use V1 = 0V from now on. Due to the

fact that z0 has to be found numerically, also does the depth.

In Figure 2.10 we deduced that there are two factors influencing the depth of

the potential minimum: the overall scale of applied voltages, and the ratio V3/V2.

A general scaling of voltages such as Vi → α Vi will make the depth α times

bigger. And the effect of the ratio V3/V2 on the depth can be seen in Figure 2.12:

Figure 2.12: Depth of the minimum versus ratio V3/V2 with fixed geometry and

V1 = 0V .

It’s clear that for V3/V2 � 1, electrode 2 can be neglected and the depth is

proportional to V3/V2. For negative values, there’s a delicate balance between V3

and V2 which gives again a threshold at around V3/V2 = −3, which we already

mentioned regarding the shifting of the minimum’s position.

Another detail which should be pointed out is the case V3 = 0, for which the
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depth is about a fourth of the total applied voltage (V2). For V3 ≤ 0 the depth is

even smaller than a fourth of the applied voltage (V2 + V3). In short, the depth

of the potential well is always smaller or equal to around 0.25V where V is the

scale of voltages applied to the trap.

2.4.3 Curvature of the potential

The curvature of the potential at a given position z is given by its second deriva-

tive at that point. Since the potential can be approximated as a parabola around

the position of the minimum, thus giving a harmonic trapping potential around it,

the curvature at that point gives the eigenfrequency of the motion for a trapped

particle. The expression relating curvature (φ′′(z0)) and frequency (ω) is:

qφ′′(z0) = mω2 (2.35)

where q and m are the charge and mass of the trapped particle, respectively.

From a simple dimensional calculation, it can be seen that the frequency scales

proportionally to
√
V
R

, with V being the scale of voltages and R the typical size

scale. This would apply to a scaling of all voltages or all sizes.

Experimentally reasonable parameters for a trap will always have all Ri of the

same order, and the same with all Vi, and thence an estimation of the order of

magnitude of the frequency can be given. If however we are curious about the

details we may have a look again at Figure 2.10, and intuit that the curvature

gets changed by the ratio V3/V2, too.

Figure 2.13 shows the behaviour of the curvature versus the ratio V3/V2. If

we were to plot the frequency, the shape would be almost equal.

Going from 0 to more negative values of V3/V2 we squeeze the potential shape

to a maximum point near V3/V2 = −2 and after that point the depth of the

potential depth decreases too fast and thus the curvature, till it goes to 0.

The expected curvature behaviour for V3/V2 > 0 is to decrease to zero when

increasing V3/V2, since we would be broadening the potential well. However a

minimum is seen around V3/V2 = 1. The explanation is that when V3/V2 grows

too much, the potential is dominated by the third electrode and the whole poten-

tial scales with it in voltages. Since the curvature is proportional to the voltage
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scale, the curvature will scale linearly with V3/V2. This asymptotic behaviour is

corroborated in Figure 2.15.

Figure 2.13: Curvature at the minimum versus ratio V3/V2 with fixed geometry

and V1 = 0V .

Another consequence of Figure 2.15 is that by changing V3 with the rest of para-

meters fixed, we can change the curvature by a factor ∼ 1.7. This sounds useful

for a manipulation of frequencies, however the equivalent factor for frequencies is

∼ 1.2, which is not much.

2.4.4 Anharmonicity of the potential

In the preceding sections I enumerated some properties of the electrostatic po-

tential produced by the planar trap. These properties are quite general and are

useful when getting a feeling of how the potential behaves.
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Now the point is more crucial. Traps are well established among physicists

because they have proven to high-quality, high-precision tools, known to the very

minutest detail. In our case there is the plan to build an array of planar traps

in quantum regime and perform individual and CNOT gates on singly-trapped

electrons, and for such a task the spin was chosen as qubit. But I will not enter

into details for this will be explained in section 2.5.

For now it suffices to know that when a trapped electron is subject to a

quadratically inhomogeneous magnetic field, its axial eigenfrequency depends on

its spin projection along z. Whether the projections is ”up” or ”down” can be

monitored if we are able to measure the very small spin-dependence of the axial

frequency. For typical experimental parameters and detection techniques, the

relative shift of frequency between spin up and down is about 4 × 10−5. For

an axial frequency of around 100MHz, that means resolving a 4KHz frequency

difference.

Detection of axial frequencies is normally achieved by a resonant tank circuit

attached to the electrodes of the trap. The thermal voltage fluctuations across

the circuit get shortcut when its frequency coincides with the axial frequency of

the electron in the trap. This shortcut for similar electron and circuit frequencies,

gives a dip in frequency space whose width can be calculated from the properties

of the tank circuit. For typical g-factor high precision measurements (Werth), the

circuit consists in a capacitance given by the one between trap’s electrodes and

the parasitic one of cables, an inductance, and an effective resistance. For typical

values of circuit’s capacitance C ∼ 7.5pF and circuit’s quality factor Q ∼ 300, we

expect dip widths of around 1KHz for electrons having an axial frequency around

100MHz.

In principle such a dip width is sufficiently narrow to differentiate between

spin up and down. However, the electrostatic potential embedding the electron

is not perfect and therefore not parabolic in z. This causes the electron’s axial

motion to broaden its frequency width. It is most desirable that this width is

smaller than the spin frequency shift that we want to measure, so as to have best

chances to distinguish up and down spin projections.

In order to have the narrowest axial width, we need to have a most harmonic

electrostatic potential, i.e. almost perfectly parabolic in the trapping region. The
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perfectness of the potential can be quantified in a perturbative sense: the axial

frequency of the electron is known in the position of the minimum, and small

contributions come from the fact that the electron runs over a certain range in

z, namely |z| ≤ A, and the potential has different curvatures along its path.

Classically, the distance traveled by an electron with energy E in a parabolic

potential is

A(E) =

√
E

mω2
z

. (2.36)

The anharmonicity (or imperfectness of the potential) can be defined as the rel-

ative difference of frequencies of a particle with energy E and one with minimal

energy: E0 = 1
2
~ωz:

κ(E) =
ωz(E)− ωz(E0)

ωz(E0)
(2.37)

which, if we express the potential as

φ(z) =
∞∑
n=0

Cn
n!

(z − z0)
n (2.38)

, can be expressed as:

κ(E) =
∞∑
n=0

(A(E))n+1

(n+ 1)!

∣∣∣∣Cn+3

2C2

∣∣∣∣ (2.39)

where we have substituted here the z − z0 for the amplitude of the motion A(E)

as a first estimate. It should be noted that, in contrast with normal Penning

traps, the potential has non-zero odd terms in the expansion, which comes from

its z-reflection asymmetry. Therefore the most important anharmonic term is the

C3 one.

This perturbative approach is best suited for small motional amplitudes, which

happens to be the case if trapped particles are sufficiently cooled down. Tank

circuits are normally operated under a liquid helium bath at ∼ 4K so as to

detect a single trapped particle’s signal. Since the particle is coupled to this

circuit, the latter’s resistance will damp the particle’s motion till its motion gets

thermalised to the ambient temperature, in this case 4K. From eq. (2.36) and

E ∼ kBT the motional amplitude is ∼ 60µm at ωz ∼ 100MHz (which is the case
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for R1 = 2.5mm, V1 = 0V , V2 = 1V and V3 = −2.25V , with equal electrodes’

widths) and the anharmonicity , from eq. (2.39), is ∼ 6 × 10−4. This means

that for typical trap’s parameters and optimum V3/V2, the amplitude is too big

and the electron ”sees” too much anharmonicity. Luckily, dilution refrigerators

are nowadays at our disposal, being able to reach temperatures of about 100mK

(and lower). An electron thermalised to such bath, with the same parameters as

above, will have an axial amplitude of ∼ 10µm (∼ 250 times smaller than R1)

and an anharmonicity of ∼ 1.7×10−5. That’s already sufficient for differentiating

spin projections.

It should be noted that the reasoning above has been done for the case of

equally wide electrodes and by tuning V3/V2 for optimum harmonicity. Variation

of all trap’s parameters could in fact lead to an even more harmonic trap, and

this will be the subject next.

2.4.4.1 Most harmonic trap

I will study next which trap’s parameters minimize completely the anharmonic-

ity. As before we state V1 = 0V for convenience. Nevertheless the problem of

minimizing the anharmonicity is a complex one, since first : the anharmonicity is

calculated from the derivatives of φ(z) at z0 (minimum’s position) and needs a

numerical treatment; second, the space of parameters is bigger than 2, and thus

any function (such as κ) of it doesn’t lend itself to graphical representation. Pa-

rameter space consists in {Ri, Vi}, in total 5 parameters (having already stated

that V1 = 0V ), and then the anharmonicity is a function of 5 variables which

cannot be graphically represented in standard ways.

A circumvention of this problem can be done if we are to represent relative

parameters, i.e. V3/V2, R2/R1, R3/R1, meaning by this that R1 gives the size

scale and that V2 gives the voltage scale. The space of parameters then reduces to

three dimensions, and still the anharmonicity κ(V3/V2, R2/R1, R3/R1) cannot be

easily represented. A good idea is to take one of those dependences as a parameter

and the other two as variables. Then we could represent κ(R2/R1, R3/R1;V3/V2),

that is, a 3D plot of κ for each discrete value of V3/V2. Any combination like that

would do.
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I choose an arbitrary motional amplitude of R1/100 for the rest of the sub-

section. Notice that this doesn’t affect our goal, since a most harmonic trap’s

parameters will be so for any amplitude. I’ve chosen it sufficiently small so that

our perturbative expression (eq. (2.39)) is good enough.

Regarding the representation of κ, it might well be a natural choice to choose

R2/R1 as discrete parameter and then plot κ(R3/R1, V3/V2), since the natural

question is ”given a certain fixed configuration of the first two electrodes, which

produce the trapping themselves, what would the optimum size and voltage of a

corrector electrode be?”. The best weapon a scientist can hold in his/her hand

when attacking problems with many parameters is his/her intuition, and choosing

a representation of the parameters which fits well to our own perception is not

only more than justified, it is advisable.

To get the reader to intuit the nature of the anharmonicity for this trap, I first

present an example with fixed geometrical parameters R2 = 2R1, R3 = 3R1 and

V1 = 0V , so that only one free parameter remains: V3/V2. Moreover, we know

that the potential is most harmonic when the second and third electrodes have

opposite signs. Thus we restrict the range of V3/V2 to negative values. Figure

2.14 shows the result. We can see the same threshold at V3/V2 as before, which

flags the disappearance of the trapping region beyond that point. We also see

an absolute minimum of the anharmonicity at around V3 = −2.25V2 which is the

goal of our efforts.

With this picture in mind we extend the idea to a space with one more dimension,

i.e. now we make R3/R1 free too. Still, we keep the fixed parameter R2 = 2R1.

Figure 2.15 is the result:
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Figure 2.14: Order of magnitude of the anharmonicity with fixed geometry and

V1 = 0V , as a function of V3/V2. A well determined minimum is seen.
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Figure 2.15: Order of magnitude of the anharmonicity with fixed R2/R1 and

V1 = 0V , as a function of V3/V2 ad d3/R1. A valley can be seen with equal depth

all over. The parameter d3 is the width of electrode 3, and is equal to R3 −R2.
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In Figure 2.14 we can see the same as in Figure 2.15 but extended along d3/R1,

where di is defined as the width of electrode i. What we see is a valley centered

at ”position” d3
R1

= f(V3

V2
), and most important, whose depth is equal all along.

This means that it doesn’t matter how wide the corrector electrode is, we will

always find a voltage which will make the trap most harmonic. In other words,

there’s no improvement by playing with the width of the third electrode.

However, if we want to be absolutely sure of the non-importance of electrode

widths, we also have to make R2/R1 free. In order to plot everything at the same

time, I will minimize κ(R2/R1, R3/R1, V3/V2) with respect to the parameter V3/V2

for every pair of {R2/R1, R3/R1}. The result is Figure 2.18:

Figure 2.16: Order of magnitude of the anharmonicity, minimized for V3/V2, with

fixed V1 = 0V . Little bumps in the surface come from numerical errors.

In Figure 2.16 we see the geometrical dependence of κ. It decreases exponentially

for increasing d2 or d3, but much faster for d2. We would conclude that the best
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option is making d3 = d1 and d2 = 10d1 or bigger. But if we compare when both

d2 and d3 are ten times bigger than d1(≡ R1), and when both are equal to d1,

we see that κ only changes by a factor ' 2. That’s not much, and the situation

wouldn’t be better if we go for bigger d2 and d3.

To sum up we can say that by playing around with the widths of electrodes

we can just gain a factor ∼ 2 in the anharmonicity κ. This occurs for d3 = d1

and d2 ≥ 10d1.

It is therefore more advisable to have a good precision in voltages rather than

adjusting geometrical parameters. As can be seen in Figure 2.14, log10(κ) < −3

only if our precision is less than ∼ 0.5V3/V2, log10(κ) < −3.5 only if our precision

is less than ∼ 0.1V3/V2, etc.

NOTE : It should be noted that all this analysis has been done to third order

in the amplitude, i.e. taking up to C5 in the expansion of the potential around the

minimum. This has been done so because our purpose is to distinguish between

spin projections. Were we to use this trap for high precision measurements such

as mass spectrometry or g-factor experiments, higher order terms would have to

be considered.

2.4.4.2 Orthogonalization

The treatment considered up to here is based in the treatment of the anhar-

monicity as one piece, defined by equation (2.39), and not even that because

we used the truncated series up to n = 2. This truncation was enough for the

precision we established we needed in order to assure operability of the trap in

future quantum computing experimental situations. A more detailed study of the

trap as a general purpose tool would have to take into account the independent

analysis of individual terms in eq. (2.39), distinguishing first between odd and

even terms, and later analyzing every single term, up to the precision needed in

each experiment.

A typical condition which should be satisfied by standard Penning traps, either

hyperbolical, cylindrical, cylindrical without endcaps, etc., is being orthogonal-

ized. Not only must they be compensated, i.e. their anharmonicity corrected by

an extra electrode, but they must be orthogonalized. What does that mean? It
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is well-known that an axisymmetric trap with mirror symmetry about the axis

can be constructed such that its trapping axial frequency doesn’t depend on the

compensation (or correction) voltage. This means that whatever the ”width” of

the corrector electrode is, we can always find a ”width” for the other electrodes

such that the frequency will be independent of the tuning of the corrector elec-

trode’s voltage. I put ”width” in quotation marks because that’s what the case

is with our trap; every electrode is defined by its width (or equivalently its radial

position) and its voltage, however should we be talking about a cylindrical trap

the word would be ”height”, should we be talking about a hyperbolical trap the

word would be ”distance from the center of the trap”.

This conditions is highly desired by experimentalists, since the frequency win-

dow where they have to look for an axial signal is narrow, they do high precision

experiments, and finding the axial signal’s peak every time the compensation

voltage is changed is not an option. In any case, the study of a trap’s properties

is not really finished unless we have defined in which conditions it is orthogonal.

Let’s state the problem in our case: can one find a combination of geometrical

parameters d2/R1, d3/R1 such that the frequency doesn’t depend on V3?

As a fast approach we can plot the frequency vs. {V3/V2, d3/R1} for different

d2/R1 and try locate a parameter region where orthogonality holds, that is the

frequency doesn’t change along V3/V2. The result can be seen in Figure 2.17, no

”flat” region -along V3/V2- exists. We can begin here to doubt whether this trap

is at all orthogonalizable.

A further insight to the problem comes when we compare our trap with a

standard one, with z-reflection symmetry. In such traps, the potential can be

decomposed, as in our case, in two summands:

φ(z) = V0φ0(z) + Vcφc(z) (2.40)

where the first term is the potential of the trap with its corrections electrode at

0V, and the second is the potential of the trap with all electrodes at 0V except

the corrector one. The thing is that ”orthogonality” can be stated so:

[
∂2
zφ(z)

]
z=z0

≡ φ′′(z0) 6= f(Vc) (2.41)
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Figure 2.17: Array plot of ωz(
V3

V2
, d3
R1

; d2
R1

). No region of orthogonality seems to

exist.
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or
∂

∂Vc

φ′′(z0) = 0 (2.42)

and thence,
∂

∂Vc

(Vcφ
′′
c (z0)) = 0 (2.43)

The crucial point comes to sight now, when the real difference between standard

Penning trap and a planar Penning trap is perceived. Equation 2.43, for standard

Pennning traps means:

φ′′c (z0) = 0 (2.44)

since neither z0 nor φ′′c (z) depend on Vc, but for a planar Penning trap the same

equation reads:

∂

∂Vc

(Vcφ
′′
c (z0(Vc))) = φ′′c (z0(Vc)) + Vc

∂z0(Vc)

∂Vc

∂φ′′c (z0)

∂z0

= 0 (2.45)

where it should be noticed that ∂φ′′c (z0)
∂z0

is a function of Vc too. It can also be

written

φ′′c (z0(Vc)) + Vc
∂z0(Vc)

∂Vc
φ′′′c (z0(Vc)) = 0 (2.46)

It’s not surprising that in the case of standard Penning traps we can find a

combination of geometrical parameters which make an orthogonal trap, for (2.44)

doesn’t depend on Vc. Instead, equation (2.45) does depend on Vc and needs to

be fulfilled for every Vc, which is a much more restricted situation. Nevertheless,

a solution could exist. How is it that there is none?

If we reconsider (2.45) we can write

∂

∂Vc

(Vcφ
′′
c (z0(Vc))) = 0 ⇒ Vcφ

′′
c (z0(Vc)) = const. (2.47)

where ”constant” means with respect to Vc. Now we must remind the reader that

z0(Vc) cannot be expressed analytically and therefore we must suspect that (2.47)

might not be satisfied for all Vc.

The proof that this trap is not orthogonalizable has to be performed again

numerically. In Figure 2.18 I have plot the function Vcφ
′′
c (z0(Vc)) running along

V3/V2 for several pairs of d2/R1, d3/R1 (in our trap Vc ≡ V3).
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2. PLANAR PENNING TRAP, THEORY

Figure 2.18: Array plot of Vcφ
′′
c (z0(V3)).
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2.4 Trap’s Properties

What is shown there is qualitatively the same as seen in Figure 2.17, that

there’s no hope for orthogonality in this trap. Despite our complete lack of

knowledge of the analytical expression of φ′′c (z0(Vc)), since z0 has no analytical

expression, we could have hoped that it would be proportional to 1/Vc, and thus

that (2.47) would be satisfied. The conclusion is that this is not the case for a

planar Penning trap.

A deeper insight might be gained with further studies of the properties of the

function φ′′c (z0(Vc)) itself, but the major difficulty is the non analyticity of z0(Vc).

This makes this analysis rather hard and out of the scope of my thesis, perhaps

better suited for a mathematician.

A compromise between our hopes and the facts we have shown comes by

changing the sentence: we expect Vcφ
′′
c (z0(Vc)) ”not to change with Vc”, by the

sentence:we expect Vcφ
′′
c (z0(Vc)) ”not to change much with Vc”. Looking again

at Figure 2.18 we notice that this functions has an extremum along V3 for every

pair of d2, d3. This point is where minimal variation of Vcφ
′′
c (z0(Vc)) is found,

and by restricting the correcting voltage V3 to this range we make the most

orthogonal trap possible for a planar one. It should be added that this region

coincides with the region where anharmonicity is minimized, and so the pains of

an experimentalist working with a planar trap are minimized also. Whenever we

know that our trap has a V3 such that it is most harmonic, we know that its axial

frequency will not change much if we fine-tune V3. It’s not a perfect solution but

it’s a solution.

2.4.4.3 Other possible definitions of anharmonicity

Anharmonicity has been studied here in a perturbative way, which is appropriate

when dealing with small motion amplitudes. However, the trap maybe operated

at room temperature for other purposes, and without cooling the trapped par-

ticles. In such case, particles are thermalised to a temperature T > 273K (a

standard laboratory is normally never colder than 0◦C, even in Germany), and

their amplitudes are not small.

In that situation different definitions of anharmonicity can be produced by:

1) Extending the perturbative scheme to more orders
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2) Evaluating the curvature in different points of the potential and comparing

with its value at the minimum

3) Doing 2) but with a ”weight” factor for every point evaluated. The weight

factor can be defined following different criteria: time spent by a trapped particle

in that point, probability of a trapped particle to be at that point,etc.

Several of these possibilities will be investigated when I talk of the experimen-

tal results concerning anharmonicity, since I used a trap at room temperature with

no particle cooling. Comparison with experimental results will be given. Please

refer to section 3.2.5.2.

2.4.5 Double well configuration

A planar trap with two electrodes creates a trapping region, which we defined as

the ”minimum” (even if it was plot as a maximum). By adding a third electrode

we saw that a ”maximum” was created (recall Fig. 2.10). If we add a fourth

electrode, a new extremum is produced, and this time it is a new ”minimum”.

This new minimum is capable of trapping and is effectively isolated because of

the existence of the ”maximum” between both ”minima”.

Figure 2.19 shows an example of a double-well (or double-minimum) config-

uration. As can be seen, each minimum has different shape and curvature and

therefore eigenfrequencies. With this configuration we can trap particles with

different frequencies. In fact we could trap two different clouds of negatively

charged particles and a cloud of positively charged ones in between.
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Figure 2.19: Double well configuration for negatively charged particles.
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2.5 Quantum communication between different

traps

Planar traps have the disadvantage of not having z-reflection symmetry, in con-

trast with other Penning traps. However they have several features which make

them good candidates for the implementation of quantum computing: first,due

to their open geometry they can be easily accessed with radiation; second, it can

be fabricated massively with the same technology used to print circuit boards;

third, it can be minituarised to µm level with thin-layer technology, the one used

for fabricating chips, which is a typical requirement for any candidate to quantum

computation.

Because of this, it is necessary to study the possibility of communicating two

singly trapped particles (in two independent traps) in order to perform two qubit

operations. It is known that a universal quantum computer has two basic oper-

ational requirements: it should perform arbitrary rotations in individual qubits,

and it must be able to perform a CNOT gate over every pair of qubits.

A basic way of storing a qubit in a trapped particle is to use one of its quantised

degrees of freedom, preferably its spin because it is a two-level system. The

natural extension for N qubits is to have N traps with one trapped particle in

each, and a communication method between each pair of particles.

Since the normal detection scheme for a trapped particle is to pick up the

electric signal it induces in the electrodes of the trap with a resonant tank circuit,

it is most natural to use the same principle for communicating qubits. The idea

is to connect two traps with a wire and let the induced image charges of each

interact. This gives an effective interaction between the particles(Galve).

Another possibility comes from the fact that, being the trap’s geometry open,

two singly trapped particles in different adjacent traps feel a Coulomb interac-

tion between each other, and could be used to exchange information between

the spatial degrees of freedom. A slight modification of this method yields

an effective spin-spin interaction between particles, mediated by the Coulomb

interaction(Ciaramicoli).

Another possibility is to store several qubits in different degrees of freedom

of the same particle(Tombesi), for example spin and cyclotron. To exchange
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information between them we need them to be coupled, which is directly imple-

mented by inhomogeneities (anharmonicities) in the electrostatic potential and

relativistic corrections. Else, we can introduce radiation coupling both degrees of

freedom.

I will study here the first two possibilities.

2.5.1 Method of induced image charges

A particle confined in a trap induces, because of its oscillation, an oscillating

current in the electrodes of the trap confining it. This effect is caused by the

coulomb interaction of the particle with the free charges in the electrode’s metal.

This oscillation, representative of the trapped particle itself, can be ”transported”

to another trap if we connect them via a wire. In this way, two particles confined

in different traps can interact effectively.

In a planar Penning trap the idea is implemented as seen in figure 2.20. Since

the axial motion of a trapped particle is perpendicular to the surface of the trap

it yields the biggest contribution to the induced image charges. Therefore I will

study the communication channel for this degree of freedom.

Figure 2.20: Communication exchange scheme. An electronic fast switch could

turn on and off the connection through the wire.

The idea is to connect a wire to the central electrode of both traps, since this

electrode is the one closest to the trapped particle and its contribution is the

biggest. This is similar to a proposal by A.S Sørensen et al. (Sorensen), in which

they consider trapped particles with dipolar charge.

67



2. PLANAR PENNING TRAP, THEORY

Due to the principle of superposition of electromagnetism, the problem of the

trap in figure 2.20 with voltages V1, V2 plus a little fluctuation of V1 is equivalent

to the same problem with V1 = V2 = 0V . This means that we can restrict our

attention to the central disk electrode at 0V plus a fluctuation induced by the

oscillation of the trapped particle. We will consider here very thin disks.

Let the upper surfaces of the central electrodes have a common radius R and

carry charges Q1 and Q2, respectively, while the remaining system, i.e. the two

lower surfaces and the connecting wire, carries a common chargeQ3 = −(Q1+Q2).

The latter equation means that because V1 = 0V the neat charge in the system

is 0.

The classical Hamiltonian of this system is

H = H1 +H2 + q
Q1

2ε0R2
(
√
R2 + z2

1 − z1)

+q
Q2

2ε0R2
(
√
R2 + z2

2 − z2)

+
Q2

1

2C1

+
Q2

2

2C2

+
Q2

3

2C3

, (2.48)

where q is the charge of a trapped particle, Hi are the particle Hamiltonians

(which are effectively harmonic oscillators), Ci are the capacitances of the sur-

faces, and zi are the height of particles above the surfaces.

Here it has been assumed that the inductance is negligible, i.e. that the

dynamics of the system is much slower than the resonance frequency of the wire.

We further assume that the reordering of free charges inside the electrodes and

wire is much faster than the oscillation transmitted by this method, and therefore

that the charges follow adiabatically the oscillation of the trapped particle. In

such case, we can write:
dH

dQi

= 0 ∀i (2.49)

which gives us a dynamical relation between the Qi and the zi:

Q1 =
Cq

8R2ε0

(
3z1 − 3

√
R2 + z2

1 − z2 +
√
R2 + z2

2

)
Q2 =

Cq

8R2ε0

(
−z1 +

√
R2 + z2

1 + 3z2 − 3
√
R2 + z2

2

)
(2.50)
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We have taken equal disk electrodes, so C1 = C2 ≡ C, and a wire with negligible

capacitance, so C3 = C1 + C2 + Cwire ≈ 2C.

Equations (2.50) can be used to eliminate the dependence of the hamiltonian

H on the Qi. We have then a Hamiltonian which depends only on z1 and z2.

This Hamiltonian consists of a constant term −3C q2

16R2ε20
, a term which modifies the

natural eigenfrequencies of each individual electron 3Cq2zi

16R4ε2

(√
R2 + z2

i − zi

)
, and

an interaction term which we name by Hint:

Hint =
Cq2

16R4ε2

(√
R2 + z2

1 − z1

)(√
R2 + z2

2 − z2

)
(2.51)

This is an effective interaction mediated by the free charges in the wire and lower

surfaces.

Equation 2.51 can be rewritten quantum mechanically in terms of ladder op-

erators for each particle, since they are supposed to be axial harmonic oscillators.

In a harmonic oscillator the displacement with respect to the equilibrium position

is written:

ẑ =

√
~

2mω
(â+ â†) (2.52)

, which in our case would be ẑi = zi− z0. Considering that z− z0 is much smaller

than R, we can expand the interaction part of the Hamiltonian in powers of z−z0:

Ĥint ≈
q2

2R3ε
ξ(z0/R)ẑ1ẑ2 (2.53)

where the relations

Cdisk = 8ε0R

ξ(x) = 1 +
x2

1 + x2
− 2x√

1 + x2
(2.54)

were used.

If we express ẑi with ladder operators and use the rotating wave approxima-

tion, we have finally:

Ĥint = ~ωint(â†1â2 + â1â
†
2) (2.55)

with

ωint =
q2

2R3ε

1

2mωz
ξ(z0/R) (2.56)
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The rotating wave approximation (RWA) consists of neglecting operators which

oscillate too fast in interaction picture. In our case the interaction hamiltonian

operator is proportional to

(â1 + â†1)(â2 + â†2) = â1â2 + â1â
†
2 + â†1â2 + â†1â

†
2 (2.57)

The first and fourth terms oscillate with frequencies ±|ωz,1 + ωz,2| while the

remaining oscillate with ±|ωz,1 − ωz,2|. The RWA states that the former terms

can be averaged out in a time average since they oscillate much faster than the

latter.

From (2.55) we see that trapped particles are exchanging a quantum of infor-

mation at a rate ωint. How fast is this? If we assume two trapped electrons in

traps of R ∼ 1mm, then ωz ∼ 100MHz. A most harmonic planar trap has been

shown to have typically z0 ∼ R/2, and with these numbers ωint ∼ 10Hz. If we

go to the submillimeter range, R ∼ 0.1mm, then ωz ∼ 1GHz and ωint ∼ 1KHz.

A further speed up of this frequency comes from manipulating the distance

of the electron to the surface z0/R. The function ξ(x) can vary the order of

magnitude of ωint. For example ξ(0.1) ≈ 0.8, ξ(1) ≈ 0.1 and ξ(3) ≈ 0.003. This

means that we can improve an order of magnitude in ωint by decreasing z0/R to

0.1 . It was shown in previous sections that the distance z0 could be manipulated

to a certain extent, at the expense of increase the scale of voltages. Increasing

the voltages (V) augments the axial frequency thus reducing ωint proportionally

to
√
V . So at the end it is more effective to reduce the scale of R since ωint scales

with R−3ω−1
z and ωz only scales with R−1.

2.5.2 Spin-spin effective interaction

In a proposal by Wunderlich (Wunderlich) the idea of using field gradients to

couple internal degrees of freedom and consequently effectively coupling the spin

of different trapped particles was given. The extension of this idea to the case of

an array of trapped electrons, calculated by Dr. Ciaramicoli and me, was given

in (Ciaramicoli).

The scheme is simple, let two independently trapped electrons couple their ax-

ial motion to their spin dynamics. The coulomb interaction between the electrons

couples their axial motions, and indirectly their spin dynamics.
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The treatment given in (Ciaramicoli) refers to a two dimensional array of

planar traps with the addition of a linear magnetic gradient. There, the full three

dimensional equations of motions are given and the spin-spin effective coupling

calculated, considering all degrees of freedom. It is shown that the contribution of

non-axial motional degrees of freedom can be neglected. Therefore I will present

here a less detailed approach, considering only two electrons and only their axial

motion and spin.

Let’s consider two planar traps lying on the same plane but separated by a

distance L, with an inhomogeneous magnetic field whose z component is Bz =

B0 + bz. The non-Coulomb part of the Hamiltonian of these electrons is:

Ĥi = (N̂i +
1

2
)~ωz +

1

2
~ωsσ̂z,i +

1

2
~ωs

b

B0

ẑiσ̂z,i (2.58)

if we consider that the electrons are near the ground state and the trap has been

compensated for best harmonicity. It consists of an axial oscillator with eigen-

frequency ωz, a spin motion with eigenfrequency ωs and a term which obviously

couples both motions. Here we use the conventional definitions N̂ = â†â and

ẑ =
√

~
2mω

(â+ â†), in terms of the harmonic oscillator’s ladder operators1.

The coulomb interaction between each other, if both electrons’ motion are

centered at z0,1 = z0,2 ≡ z0 is:

ĤC =
e2

4πε0

1√
L2 + (ẑ1 − ẑ2)2

(2.59)

which for small z0, i.e. low electron temperature, becomes:

ĤC ≈
e2

4πε0L3
ẑ1ẑ2 (2.60)

plus a constant that we obviate.

In (2.58) the hamiltonian is that of an electron trapped in a perfectly quadrupo-

lar and with an exaclty homogeneous magnetic field, plus a term coupling axial

and spin motions. We can perform a unitary transformation Ĥ ′ = eŝĤe−Ŝ to the

total hamiltonian so that this term disappears. The adequate operator is:

Ŝ =
2∑
i=1

λ(â†i − âi)σ̂z,i (2.61)

1the zi coordinate is zi = z0 + ẑi, because the equilibrium position of the oscillator is z0,
and I’ve dropped the term 1

2~ωs
bz0
B0

σ̂z,i from Ĥi because it only shifts slightly the frequency ωs
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so that the axial ladder operators transform as:

âi → âi − λσ̂z,i (2.62)

By substituting (2.62) in (2.58) we find that the value we need is

λ =
1

2

b

B0

√
~

2mωz

ωs
ωz

(2.63)

and the Hamiltonian of both electrons is:

Ĥ = (â†1â1 +
1

2
)~ωz + (â†2â2 +

1

2
)~ωz +

1

2
~ωsσ̂z,1 +

1

2
~ωsσ̂z,2 + ĤC (2.64)

so the axial-spin self coupling has been hidden into the Coulomb part by this

unitary transformation. All the interesting information is now in ĤC . Let’s have

a look at it:

ĤC = γ
[
(â1 + â†1)(â2 + â†2)− 2λσ̂z(â1 + â†1 + â2 + â†2) + 4λ2σ̂z,1σ̂z,2

]
(2.65)

where γ = e2

4πε0
1
L3

~
2mωz

. We see a spin-spin coupling term, the last one, and several

other terms which can be investigated under the light of the RWA.

Let’s define Ĥ0 = Ĥ − ĤC , and change to interaction picture. I remind the

reader that in interaction picture â has a phase oscillating at rate ωz, and then

we can approximate ĤC by the terms which do not oscillate:

ĤC ≈ γ
(
â1â

†
2 + â†1â2 + 4λ2σ̂z,1σ̂z,2

)
(2.66)

So the basic interaction between electrons is by exchange of quanta in the axial

degree of freedom and a spin-spin coupling. If a quantum processor be made up

of an array of planar traps in such a way, and by storing information only in the

spins, the Hamiltonian is Ising type H ≈ h0

∑
i σz,i + J

∑
i6=j σz,iσz,j, and lends

itself to the same treatment as an NMR molecule for quantum computing.

For the case of an array with inter-trap distance of 1mm, magnetic field of sev-

eral tesla, b ∼ 50T/m, and an axial frequency of 100MHz, the spin-spin coupling

has a frequency of around 20Hz. These feasible numbers demonstrate that an

array of planar trap can well be treated as an NMR molecule for quantum com-

putation, but under control and without the necessity of considering ensembles

of molecules.
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Chapter 3

Planar Penning trap, experiment

After having studied the properties of the planar Penning trap, the natural follow-

ing step is to confirm experimentally every single property we have theoretically

predicted.

The objective is to demonstrate that:

1) The planar trap can store charged particles in a stable way.

2) The harmonic properties of the trap are as studied theoretically.

3) A double-well configuration exists with different eigenfrequencies.

4) This trap can be miniaturized without loss of control or change in its main

properties (apart from the scaling laws which apply to any trap’s observable de-

pendent on size).

Next, I give a sketch of the setup I used to test the properties of the trap.

3.1 Setup

A typical setup for Penning traps consists of a vacuum chamber where the trap

dwells, which is inserted into the bore of a superconducting magnet of several

Tesla. Inside the chamber there is the trap with its voltage connections, the
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mechanism for creation of particles, and a detection system which collects infor-

mation on the particles’ observables. If in addition the system needs low tem-

peratures, the vacuum chamber gets divided into a low-temperature zone, where

the trap (and typically a resonant LC tank-circuit attached to it) dwells, and a

room-temperature zone connected to the exterior of the vacuum chamber, to the

control system (whether it be a PC or just an oscilloscope).

The setup that I used, is to be seen as a preliminary test on the general

properties of this new kind of trap, and particularly on its anharmonicity. For this,

a room temperature situation and an easy detection scheme are most valuable

for their simplicity. The fact that our setup is at room temperature means that

the detection system is too, and thus we have no means to detect one singly

trapped electron in our trap. Instead, a cloud of them will be detected, with

as less electrons as permitted by the sensitivity of the detection system. For

detection, a resonant circuit could be used, but a destructive method is easier to

implement and requires less elements, accelerating thus the whole experimental

construction.

The next step, in a quantum computing context, would be to test the trap

at very low temperatures with a much more developed detection system, with

an specifically designed control system (including radiating sources for coherent

control of individual qubits). In this case, the aim would be to demonstrate

arbitrary rotations in singly trapped electrons, plus the possibility of quantum

information exchange between two different traps. Let’s not forget that after this

operations, a well designed quantum state detection scheme would be needed to

extract the resulting information.

I specify next the detailed properties of the setup. A sketch of the whole setup

can be seen in fig. 3.11.

3.1.1 Vacuum

This section is quite trivial and is intended only as a guide for PhD students and

similar, which are just beginning to build their own first vacuum system. For any

other reader I just want to state that we used a typical vacuum combination of

prepump+turbopump for initialization, and an ion getter pump for maintenance
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of a vacuum level of 10−8mbar. This level is good enough for our purposes, and

going below that would require other techniques (UHV pump system, or cryogenic

pumping).

A good vacuum condition is a must when considering trap physics. The mole-

cules of gas remaining insider the vacuum chamber will collide with trapped par-

ticles, giving them an impulse kick, and releasing them thus from their trapping

condition.

In order to avoid such particle loss, the vacuum should be as good as possi-

ble. Experiments at room temperature with a background gas pressure of about

10−8mbar have shown that particles could be stored at least several minutes, so it

will suffice. Going below 10−9mbar requires a complete new approach to vacuum

techniques since there begins the ultra high vacuum level (UHV), and thus we

avoid this complication.

A vacuum chamber is typically a metal cylinder with flanges on both ends.

This flanges are just an special ending of the cylinder which allows vacuum con-

nection to another metal conduct which also has a flange. In this way, several

pieces can be mounted next to each other so as to form a close conduct region

where vacuum is properly maintained. Of course the last elements in this vacuum

row is a series of pumps.

To achieve a vacuum level of 10−8mbar we can use the habitual setup: a

prepump, a turbopump, and an ion getter pump. A prepump is a pump which

provides the initial power. It is the first to be turned on when vacuum is to be

prepared, and is the one which produces the first stage of vacuum. The level thus

achieved is between 10−3 and 10−4mbar, depending on how many minutes it is left

working. After its work, the turbopump will be turned on. After a time of about

one day, depending on the volume of the vacuum chamber and the degassing

elements, the pressure is around 10−6mbar. At this point we can activate the ion

pump and let it stabilize. Once stabilized, we can close the vacuum chamber so

that only the ion pump has access to it.The ion pump will then work at least one

day to achieve 10−8mbar.
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3.1.2 Magnet

The highly homogeneous magnetic field which we usually write in our simplistic

hamiltonians is much easier to write than to produce, and cheaper too. In order

to have a magnetic field of several Tesla, and homogeneous at least in the trapping

volume, needs the use of superconducting coils, capable of embedding high cur-

rents without being immediately vaporized. Such coils, whose material is rather

expensive, are typically submerged in a liquid Helium bath (∼ 4K temperature).

The latter is submerged in a liquid Nitrogen bath (∼ 77K temperature) because

of its smaller evaporation rate.

The magnetic field produced by our magnet has been measured along its

symmetry axis in its most homogeneous range, i.e. in its center; but also the

fringe field was measured so as to have the complete map of the field. In figure

3.1 we see the homogeneous part of the magnetic field. It is homogeneous up to a

part in several thousands. This high homogeneity was carefully tuned for future

high precision trap experiments which will use this magnet in the near future.

Figure 3.1: Magnetic field on the axis of the magnet’s bore. It is highly homoge-

neous, changing 2× 10−4T in a range of 4cm.

The magnetic field outside the bore of the magnet was measured, and fitted

76



3.1 Setup

by Stefan Ulmer with an expression for a single coil. The result is figure 3.2.

Figure 3.2: Magnetic field outside the magnet’s bore. The fit has been done

considering the magnetic field produced by a single coil of adjusted length and

radius parameters.

The rapid variation of the magnetic field in this region allows us to change the

value of the magnetic field that we impose on our trap. By just sliding the whole

setup outwards, we can reduce the magnetic field felt by trapped particles. Of

course, a rail has to be mounted for the whole setup to be movable.

3.1.3 Trap

The traps for this experiment were designed to have some metal electrodes printed

on an Al2O3 isolating surface. The sketch is seen in figure 3.3

The technique used is thick-layer. In fig.3.3 we see two traps, which in fact are

related by a scaling factor of 2 (this is only exactly true for their respective Ris).

The big one has 5 electrodes plus an outer grounded one. Its third electrode

is split so as to have the possibility of applying quadrupolar radiation on the

electrons. The isolator border has no metal on it since we want to clamp the

whole trap from it. The trap has a small hole in the center through which
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Figure 3.3: Design of front part of the planar trap. The red circle in the center

represents a bore. The green circles represent metal contacts going to the rear part

through the isolating material. Black represents metal and white, the isolator.

The violet dashed line is a ”cut here” line.
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electrons will be injected. The green points represent contacts which connect

each electrode to the rear part of the trap.

The small one has only three electrodes plus the ground. Its total diameter

is therefore less than half of the big trap, despite its R1 being exactly half of the

big trap’s one.

The real traps can be seen in fig.3.4 and in fig. 3.5.

Figure 3.4: Real trap’s front side. The light-gray surface is metal and the dark-

gray lines and white border is isolating material.

In our designs we haven’t tried to minimize the gap between electrodes since

we didn’t want any residues to shortcircuit any pair of electrodes. Since the

potential shape has been seen not to vary too much when having gaps, the only

disadvantage to this decision if the possible charging up of this isolator space,

due to collision of electrons which leave the trapping region. A countermeasure

we thought of is to cover these gaps with a semiconductor layer so as to slowly
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Figure 3.5: Real trap’s rear side. The contact feedthroughs connect the electrodes

on the front with the lines in the rear. The contact lines end up in the border of

the trap, so as to clamp them to individual channels which go the exterior of the

vacuum chamber.
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discharge the isolator, while producing no shortcircuit. Finally, some problems of

logistics avoided that we could apply such layer and the experiment was performed

without it. However, no too important charging effects were observed; and the

ones we saw got discharged after less than half an hour.

The whole picture of trap installed on a holder and with all connections al-

ready prepared can be seen in fig.3.6.

Figure 3.6: Real trap’s complete picture. The trap is held with several pieces of

metal which are connected to a metal plate holder. The voltage connections of

the traps are taken by some clamps to the setup rails which go to the outside

world.

In the picture we see that our setup is made of a column of rods plus a holding

structure. This rods are connections to outside of the vacuum chamber. The

flange at the left of fig.3.6 is to be connected to the cylinder which closes the

vacuum volume. There is a holder plate attached to the structure, which holds
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mechanically the trap by touching only its border. The rear contacts we saw in

fig.3.5 are pressed by clamps which are connected to the rods of the structure.

The first observation I would do if I would see this picture for the first time

is: how are you going to align the trap’s surface with the magnetic field? Obvi-

ously, this is a source of future problems since misalignments of this kind produce

coupling between all three degrees of freedom of trapped particles and result in

a reduction of their storage lifetime. In our case, since we were not to do an

experiment of high precision, this alignment was done by my eye. The reader

may now be abhorring of such a procedure, but it should be said in my favor

that the human eye has a precision normally far underestimated. I would rather

affirm that my eye can align the trap with a precision of less than 2 or 3 degrees,

in both angles. Such a tilt is sure to produce coupling and to enhance trapping

instabilities, but it’s not big.

In next section I explain the creation procedure.

3.1.4 Electron creation mechanism

Electron creation is achieved by thermoionic emission from a hot wire made of

thorium and tungsten. Imposing a current of several amperes to the wire dissi-

pates power in terms of light and emitted electrons. The wire is set as a whole

on negative voltage so as to accelerate the produced electrons to the trapping

region.

Once in the trapping region, those electrons collide with the residual gas thus

ionizing it and producing secondary electrons. Secondary electrons which are

produced inside the trapping volume and have less kinetic energy than the depth

of the potential where they were born, will remain inside the trapping volume.

Since we will mostly ionize hydrogen -with an ionization energy of 13.6eV -, the

threshold acceleration needed for primary electrons is above ∼ 14V . This accel-

erator voltage can be fine tuned every time, but a voltage between 14V and 25V

was seen to be the best working range in our experiment.

The wire is connected to an independent holder made of isolating material

(makor). This can be seen in fig.3.7.

The red thick line represents the wire of thickness ∼ 0.1mm, which is hard to see
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Figure 3.7: Sight of the creation filament in the rear part of the trap. It is

also connected to the rods of the main structure, so as to provide the necessary

current. I have plotted the filament as a red thick line since it could not be seen

in the original photo. Its real thickness is ∼ 0.1mm.
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in the original picture. It is held by two screws mounted on a piece of makor, and

connected to two independent rods for current provision. The primary electrons

are created and accelerated towards the central hole in the trap, through which

they reach the trapping region. Since this hole has a radius of 0.7mm (see fig.3.3),

secondary electrons are created within a cylindrical volume of the same radius.

Considering that the length of that cylinder is L ∼ z0/2. That gives an initial

trapped cloud’s volume of ∼ 0.8mm3(for the most harmonic configuration). This

number will help determine the number of trapped electrons in a later section.

3.1.5 Detection mechanism

A simple and straightforward detection scheme is to use an electron multiplier.

The goal is to measure the eigenfrequencies of the electrons, which is done by

dipolar excitation. Such radiation is varied in frequencies to scan the whole shape

of eigenfrequency resonances. When the frequency of the radiation coincides with

an eigenfrequency, electrons will absorb energy and oscillate in an every time

wider orbit, finally leaving the trap if the radiated power is enough. So detection

of resonances can be measured by exciting the electrons and then detecting how

many of them have left the trap.

Detection of the number of trapped electrons could also be done with an at-

tached resonant tank circuit. The number of electrons remaining after radiation,

can be calculated from the height or width of the resonance dip. Such detection

doesn’t require emptying the trap.

In the case of a destructive detection scheme, for example with an electron

multiplier, trapped electrons would be radiated and then ejected from the trap

after radiation, and collide with the detector producing a current cascade. The

amount of current produced by that collision gives the relative number of electrons

which have remained in the trap after excitation.

Our creation method gives an abundant jet of electrons every time we like,

and we can afford emptying the trap every measurement cycle and filling it up

again. Hence, an electron multiplier will do.

Because we want to detect all the flux of electrons, we want to place the

detector in the homogeneous region of the magnetic field. Otherwise the electron
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flux tube would expand when coming to regions of lower magnetic field, and

electrons might escape the collision area of the detector. Therefore, electron

multipliers which can work in high magnetic fields are required.

An example commonly used is the multi-channel-plate electron multiplier

(MCP). It consists of a 2D lattice of adjacent small tubes made of resistive ma-

terial. In addition to the resistive material there is an emissive layer, responsible

for the production of secondary electrons. The resistive layer serves to distribute

the high voltage which is applied in each end of the tubes.

For detection of electrons we would set a positive high voltage at the exit

of the tubes and ground at the entrance. The incoming electrons hit the walls

and produce secondary electrons which are accelerated. This secondary electrons

collide again with the walls and produce more electrons. This process is repeated

several times till a multiplication factor of 106 is commonly achieved.The tubes

are usually manufactured with certain tilt, so as to maximize the initial electron

impact. The main idea is shown in fig.3.8.

After the flux of electrons coming from the trap has passed through the mul-

tiplier tubes, it collides with a metal plate which is connected to, let’s say, an

oscilloscope. The result is that every incoming electron cloud produces a sudden

pulse of negative voltage in the plate. This becomes a negative signal dip in the

oscilloscope.

In fig.3.9 we see the working setup used for our MCP. The MCP has a double

stage, i.e. it is like two MCP one after the other. A positive high voltage of

around 2KV is applied to electrode 3, and it is distributed to electrodes 2 and 1.

With the resistors in between we produce a voltage ladder. The plate receiving

electron impact is connected capacitively to an electronic amplifier. The signal is

afterwards processed in the oscilloscope.

Because the MCP channels are so thin (radius ∼ 10µm) and are tilted with

respect to ~B, cyclotron orbiting of electrons (with a radius of & 30nm for a field

of several tesla) will not avoid them from hitting the channels’ inner walls. So

this is the correct choice.

In order to characterize our MCP, we shot pulses of electrons from our creation

filament repeated times, and measured the resulting amplified signal for different

MCP voltages and differente magnetic fields. The variation of magnetic field on
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Figure 3.8: MCP scheme. Electron multiplication by cascade is illustrated below.
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Figure 3.9: MCP circuit setup for detection of negative particles(particles arrive

from the right. After multiplication the signal is electronically amplified and

registered in the oscilloscope.
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the MCP was done by moving the whole setup along the magnetic symmetry

axis.

The main results are shown in fig.3.10. There we see the amplification depending

on the magnetic field and the voltage applied in the MCP. The picture below

was measured by Paula Fernández for her diploma thesis, and the one above was

measured by Paula and me. The fitted curve in the picture below was obtained

by use of the theoretical curve from HamamatsuTM .

Considering that our MCP is placed in a region where the magnetic field is

around 1T , the amplification is still good. It is seen, too, that the best operating

voltage is around 2kV . Both experimental curves fit quite well with previous

characterizations of this MCP, in particular the one by Hamamatsu which is the

manufacturing company.
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Figure 3.10: Electron multiplication depending on applied MCP voltage and

magnetic field. The amplification saturates for voltage differences bigger than

∼ 2kV . The solid line in the magnetic dependence part is the curve given by

the manufacturer; the experimental data was extracted from the Diplomarbeit

of Paula Fernández. Best operation is performed at ∼ 0.5T , however enough

amplification exists for ∼ 1T , which is the actual field that our MCP ”suffers”.
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3.1.6 Complete setup

A complete scheme of the setup used for our experiment can be seen in fig.3.11:

It consists of the vacuum chamber which allocates the creation filament, planar

Figure 3.11: Scheme of the experiment. Vacuum chamber with trap, creation

filament and MCP detector is positioned in the bore of our magnet. The electronic

setup consists of an amplification stage plus visualization in the oscilloscope.

trap, and MCP detector. This vacuum chamber is inserted into the bore of

our superconducting coil magnet of 2T . The power provision for the filament

and MCP, and the voltage control for the planar trap comes from outside. The

signal produced in the MCP goes to a fast electronic preamplifier (from OrtecTM)

and is afterwards filtered for low-amplitude noise reduction through an electronic

discriminator. The remaining signal is then processed by an oscilloscope. The

oscilloscope gives basically the height of the signal, since its width in time is

almost constant independently on the amount of electrons hitting the MCP; this

is so because of the characteristic time of the MCP.

The height of the signal is proportional to the number of electrons hitting

the MCP, unless the MCP becomes saturated which is not the case since our

trapping volume cannot embed so many electrons. Of course this height gives
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only information on the relative amount of electrons. The information on exactly

how many electrons we detect could be extracted if we would calibrate the MCP

with a known electron source, thus extracting the exact amplification factor of

the MCP. However, such calibration is not needed in this experiment since we’ll

always work with relative number of electrons, for example when we scan for

eigenfrequencies.

We see in fig.3.12 a picture of the whole setup. Here the vacuum chamber is

closed and trap+filament connections can be seen in its rear part. The setup is

mounted on a rail which allows for easy extraction of the setup. This rail allowed

us to measure the MCP’s multiplication versus magnetic field; it also permitted

to scan for the cyclotron eigenfrequency, since our wave generator could not reach

the needed value at full magnetic field strength.

The vacuum chamber table has an attached ion getter pump under it, which

cannot be seen. All ground connections were attached to this table which acted

as a common ground, in order to avoid parasitic signals.
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Figure 3.12: Picture of our experimental setup. The vacuum chamber, mounted

on a rail, is inserted into the magnet. Control lines feeding the trap and filament

are seen in the rear part. The connections for the MCP cannot be seen since they

are behind the magnet, at the other end of the vacuum chamber.
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3.1.7 Measurement cycle

The measurement cycle in this experiment is rather similar to those used in

Penning trap experiments at room temperature. There is first a creation time(t1)

where the filament creates electrons and ejects them towards the trapping region.

At this stage the filament has a negative voltage so that electrons are repulsed

and go to the trap. The storage potential (V2, with V1 = 0V , and V3 fixed) is

positive so that trapping is possible.

Then a storing time (t2) where the filament stops sending electrons to the trap.

This is done by turning the filament’s voltage to positive, attracting this way all

electrons that it creates. During the storing time the electrons are trapped, and

we perform on them any operation we need to do, for example exciting them with

radiation.

Figure 3.13: Measure cycle composed of: electron creation time (t1), storage time

(t2), ejection time (t3) and waiting time (t4). Storage potential represents V2,

while V1 and V3 are kept fixed. The filament, creating electrons continuously,

ejects them to the trap or reabsorbs them depending on the sign of its voltage.
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After that comes ejection of the electrons. This is achieved by pulsing the

storing voltage (V2) to negative values during a time t3, thus forcing the electrons

out of the trapping region. Ejected electrons fly towards the detector.

After this has been done there’s a waiting time (t4), where the storage poten-

tial is restored to the trapping state, but the filament still remains in inactivity.

After that time, the cycle of creation, storage and ejection is renewed.

In fig.3.13 we can see the scheme of the cycle, which is rather simple. Typical

numbers for these times are: t1 = 50ms, t2 = 35ms, t3 = 5ms and t4 = 10ms.

They were nonetheless fine tuned every time the vacuum conditions or the trap

parameters where changed, so as to obtain the best signal to noise ratio.

The potential on the filament, as stated previously was about ≤ −14V . The

positive part was at ∼ +1V .The filament is creating electrons all the time, since

it is a bad practice to turn on and off repeatedly the high current in it. Therefore

we switch its voltage sign so that these electrons are either sent to the trapping

region or reabsorbed by the filament.

The storage potential used was V2 for the positive part, and around −7V for

the ejecting part.

All these values were also fined tuned every time the conditions were changed.
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3.2 Results

Well, of course, as in any other experiment with a new trap, the first thing is

to check whether our trap works or not. If it works, the experimenter is filled

with joy for the first time since the beginning of the whole process of trap design,

setup construction, etc. I still conserve the picture in the oscilloscope when we

first saw the electron signal confirming that our planar trap worked. It is shown

in figure 3.14. The square shape is the storage potential, positive for trapping,

Figure 3.14: First signal detection in our experiment. The narrow dip indicates

the cloud of previously trapped electrons arriving to the MCP detector. The

square signal is the storage potential. It goes to negative values for ejecting

electrons from the trap.

negative for electron ejection. The narrow dip signal shows the cloud of electrons

arriving to the MCP detector. The delay time between ejection and detection is

around 0.4µs.

Picture 3.14 shows that our setup works, electrons are trapped and detected

as expected. In order to check whether this signal was real or an artifact, we

raised the MCP to a potential higher than the cloud’s kinetic energy, so that
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electrons coming from the trap could not surmount it. In this situation no elec-

trons were detected. That confirms that our signal is really coming from the

trapped electrons. Now we can begin measuring the properties of the planar

trap1.

3.2.1 Storage time

The first I measured was the storage time. Storage time is defined as the average

time that an electron stays inside the trapping volume. The main factors induc-

ing electron loss are collision with rest gas molecules and internal mode coupling

of the electron itself. The first effect can be reduced by improving the vacuum

conditions. The second, by making the electric and magnetic fields more homo-

geneous. Since we store more than one electron each time, the Coulomb coupling

of the electrons cloud also translates into an energy transfer, which can only be

reduced by working with a less dense cloud.

The storage time thus gives an idea on how stable are electron orbits in our

trapping conditions. For standard Penning traps at similar pressures and mag-

netic field, storage times of the order of minutes or seconds are found (Paasche).

I measured the storage time with the planar trap place at highest and most ho-

mogeneous field (B ≈ 1.99T ). The resulting storage time is τ = 22± 2s.

Another measurement of the storage time at the region of B ≈ 0.3T gave a stor-

age time of τ ∼ 17 ± 8ms. A quick look at fig. 3.2 shows that in that region

the magnetic field is highly inhomogeneous, which couples the spatial degrees of

freedom of the electrons. In that situation, the magnetron motion can receive and

give energy, so it can expand its orbit till the electron comes out of the trapping

volume.

It is a known fact that the storage time effectively scales as B2, so the two

different storage times I measured are obviously not following this scaling law.

The explanation might well come from the fact that the measurements were not

at all done in the same vacuum conditions, not even in the same month! In the

lap between both measurements, the setup had to be opened several times and

therefore we can neither assure that the vacuum conditions were equal nor that the

1Part of the results in next sections has been already published in (Galve2).
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Figure 3.15: Storage time at a field of B = 1.99T and best homogeneity condi-

tions. Rest gas pressure was several times 10−8mbar.

alignment of the trap along the magnetic field was the same. Such misalignments

produce important reductions in storage times since they also lead to undesired

mode couplings.

3.2.2 Eigenfrequencies

I also measured the motional eigenfrequencies of the trapped cloud of electrons.

This was performed by dipolar excitation of their motion with an oscillating

voltage in one of the electrodes, which we previously split into four pieces(It was

split into four in order to have the possibility of applying quadrupolar excitation

too, but this feature wasn’t used at the end). This oscillating voltage forces the

harmonic oscillator which is the cloud, and when its frequency coincides with

any of the cloud’s eigenfrequencies the cloud absorbs energy till it escapes the

trapping volume.

Due to the anharmonicity of the electrostatic potential and inhomogeneities

of the magnetic field, the three eigenmotions are coupled to each other. If we

furthermore consider that the trap electronics is coupled to the cloud of electrons
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through induced image charges, the complete picture dictates that the electrons’s

cloud has an effective damping. This causes the cloud not to have strictly unique

frequencies of infinitely narrow shape, but resonance curves.

In order to plot those resonance curves, we apply an oscillating voltage in

the split electrode with a frequency which runs over a given range. For every

single step in frequencies we will measure how many electrons have been excited

by this radiation. Since the MCP signal’s height is proportional to the number

of electrons impacting against it, we can call this ”height” ”relative number of

electrons”. For every frequency we trap electrons, excite them and eject them, and

note down how many survived the excitation. If this is done for every value of the

changing excitation frequency, we end up with a plot of the resonance but inverted

(meaning by this that 1 represents that no electron was excited sufficiently, and 0

represents that all electrons were forced out of the trap because of the excitation).

Next figures show the plots obtained for the radial eigenmotions: cyclotron

and magnetron. Figure3.16 shows the scan in frequencies around the magnetron

Figure 3.16: Magnetron resonance of a cloud of electrons in the fringe field, with

B ≈ 1.2T and axial frequency ≈ 35MHz.

eigenfrequency. The measured resonance is centered at ν− ≈ 3.5KHz and has

98



3.2 Results

a width of ∆ν− ≈ 2KHz. The reason for such a big width is found in the fact

that we measured this frequency with our trap sitting in the fringe magnetic

field, which is very inhomogeneous. This inhomogeneity broadens the magnetron

signal. Figure3.17 shows the scan for cyclotron motion. This measurement was

Figure 3.17: Cyclotron resonance of a cloud of electrons in the fringe field, with

B ≈ 0.16T

done in an even less homogeneous magnetic field than the magnetron one. Our

wave generator could not provide frequencies high enough to excite the cyclotron

motion with the trap in the highest field region, so we worked in its fringe part.

The resonance is centered around ν+ = 4.416GHz and has a width of ∆ν+ ≈
18MHz. The magnetic field in this measurement was about 0.16T . A simple

calculation for this magnetic field shows that this frequency is what is expected

from the formula ω+ ≈ eB
2m

.

This two scans show that the cloud of electrons behaves as expected for any

Penning trap, at least in its radial motion, having nearly Lorentzian shapes cen-

tered at the expected values.

Next we scanned the axial frequency, and the results can be seen in figure

3.18. The scan was done with V1 = 0V , V2 = 13.6V and V3 = −33V . This con-
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figuration is most harmonic, something which is desired so that peaks are narrow

enough, and so that we are able to separate the individual and COM (center of

mass) resonances which we expected to see. These two resonances are related

to the individual motion of electrons and to the motion of the whole cloud, re-

spectively. The left peak corresponds to the individual motion of electrons. It is

wider because every electrons sees a different anharmonicity in the potential and

feels a different average Coulomb force coming from the rest of the cloud. The

resonance in the right corresponds to the COM motion, that is, the cloud acting

as one unique body. This resonance is only broadened by the inhomogeneity of

the electrostatic potential. Normally, these separation into two peaks can be most

easily seen in the 2ωz resonance, but we saw it in ωz too.

Figure 3.18: Axial resonance’s double-peak structure with V1 = 0V , V2 = 13.6V

and V3 = −33V . COM and individual motions are excited at different frequencies

due to Coulomb repulsion, being the individual resonance always centered at lower

frequencies than the COM one.

The real axial frequency associated to the trap in fig.3.18 is just the COM fre-

quency, that is νz ≈ 60MHz. Substituting the applied trap parameters into

our standard derivation of the potential, we expect an axial frequency of νz =
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61.3MHz and a width of ∆νz = 3MHz, which is what we see in this picture.

This demonstrates that our theoretical calculations were right.

Later on I will speak a little bit more about this double resonance and its

shape.

3.2.3 e− number estimation

The number of trapped electrons cam be estimated by two procedures: either

we calibrate the efficiency of our detector with a well known electron source, or

we study the shift in the individual peak of ωz. This shift is caused by the fact

that the cloud, as a whole, only sees the potential of the trap, but each individual

electron feels the Coulomb repulsion of its neighbours. This difference in the total

effective potential shifts the individual resonance with the respect to the COM

one, in proportion to the amount of electrons which are trapped. They simplest

expression for the center of the individual resonance is obtained by considering

the cloud as an uniformly charged sphere (Desaintfuscien):

ω′z = ωz

√
1−

ω2
p

3ω2
z

, ω2
p =

q2n

ε0m
(3.1)

where n is the number density of electrons, m, q their mass and charge, ε0 is the

dielectric constant of vacuum and ωp is the plasma resonance frequency. This

shift was measured for different electron densities under similar conditions to our

experiment, but with a hyperbolical Penning trap, in (Valenzuela).

I’ve reproduced here their graphic (fig.7 in their paper) for illustration, in

fig.3.19:

If we have a look at fig.3.18 we see a shift of about 8MHZ@60MHz. Introducing

this into eq.(3.1) we obtain an electron density:

n = 1.1× 104 electrons

mm3
(3.2)

In order to know how many electrons we really have, and not the density, we

need to know the trapping volume. This volume was estimated in section 3.14

to be ≈ 0.8mm3, thus the number of electrons in fig.3.18 is around 8.9 × 103.

The difference from our number of electrons and the number in fig.3.19 is due to
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Figure 3.19: Shift in individual(non-collective) axial resonance due to cloud’s

space charge, with respect to COM (collective) frequency. Figure obtained in

previous Penning trap experiments with electrons in Mainz(Valenzuela).

the different trapping volumes; in fact their trapping volume seems to be around

20mm3. This difference in volumes makes us have bigger shifts with less electrons

in our trap.

3.2.4 Double well configuration

I explained in section 2.4.5 that with 4 electrodes a double well configuration of

the potential could be obtained. In such situation we would have two different

electron clouds with different frequencies.

I tuned the voltages of our trap to V1 = 0V , V2 = 3V , V3 = −13V and

V4 = 14V , so as to have a similar shape as in fig.2.19. The expected axial fre-

quencies for these voltages are ω
(1)
z = 4.3MHz and ω

(2)
z = 24.6MHz. The result

of the scan in frequency can be seen in fig.3.20:

When I did this measurement, the stability of the signal was very bad and noth-

ing I tried made it any better. Finally I could measure two obvious peaks, which

apparently coincide with the harmonics 4ω
(1)
z and 3ω

(2)
z of the expected frequen-
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Figure 3.20: Resonance peaks in double-well configuration. Measured frequencies

are 17.5MHz and 69MHz.

cies. I do not have an explanation why it was so difficult to have a stable signal

for double-well configuration, or why I measured those particular harmonics.

In fact we could think that we have no double-well configuration at all and

therefore I have measured different harmonics of the same unique frequency. This

can be discarded if we try to match the two experimentally obtained frequencies,

since ω
(2)
z /2 = 12.3MHz doesn’t coincide with 17.5MHz and 16ω

(1)
z = 68.8MHz

is too high a harmonic to be easily measured (every higher harmonic needs more

power to get excited).

Some collective effects might be happening, such as repulsion of the different

clouds, or a combined motion. We haven’t calculated which situation (within

double-well configuration) might lead to unstable orbits of the clouds, or how

the original frequencies are shifted and broadened. Some nonlinear behaviour

could in princple explain the instability of this configuration, and maybe also the

measurement of particular harmonics. This is left as a possible study for the

future.

I would stress, before finishing over this topic, that I repeated this experiment
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more than 10 different times and was successful only once; such is the instability

of this configuration, or I was doing something wrong, the future shall judge.

3.2.5 Anharmonicity

Anharmonicity is an abstract concept which has no real observable equivalent.

However, it is tightly related to the width of the axial resonance. It is well known

that a damped forced harmonic oscillator has a Lorentzian-shaped frequency

resonance whose width has to do both with the amount of damping and with the

anharmonicities of the potential. This two effects, within my knowledge, cannot

be disentangled but numerically. If we perform a numerical simulation we can

adjust the damping (the anharmonicites are included by simulating the exact

potential) till it matches the experimental resonance widths. It is also possible

to make a simulation without damping, in which case the width of the resonance

would be fully produced by anharmonicities and we could compare them with

those obtained theoretically in previous sections.

In this section, however, I will consider the anharmonicities to be predominant,

and therefore the resonance widths being proportional to κ, the theoretical value.

In figure 3.21 we see the first test. For that measurement I used four electrodes,

so as to have more electrons inside the trap and a better measurable signal.

There we see the measured width of the axial resonance (squares+line) and the

theoretical value κωz obtained with an amplitude A = z0/5. The parameters used

for the theoretical curve are the real sizes of the trap: R1 = 2.5mm,di = 3mm.

At first sight we observe that both curves are rather similar in shape and height,

but there’s a slight shift in V3 of about 5V . This shift is quite not a surprise, since

our idealization of the trap has neglected the gaps between electrodes. It may

mean that, being the gaps non-negligible, the third electrode is further apart in

reality than in our idealization, and hence we need a more negative V3 to make

the potential harmonic. I will insist on this point in later graphics.

Another interesting point is the fact that the heights of both minima in the

curves coincide. This is due to me fitting the ratio A/z0, and so it is no big

surprise. In fact, this fit can give valuable information on the amplitude, which

in a room temperature experiment with a lot of electrons is not really related to
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Figure 3.21: Width of the axial resonance, theoretical and experimental. A quite

good qualitative and quantitative agreement is achieved, helped by fitting the

ratio A/z0.

the temperature of the setup (due to thermalization), but has more to do with

creation conditions, vacuum level, etc.

It is concluded from figure 3.21 that a careful analysis of the effective sizes

of electrodes has to be performed. It becomes logical if we think that the gaps

between electrodes contribute to sizes but not to voltages. For example, the

gap between electrode 1 and 2 makes the position of electrode 2 further apart

from ρ = 0 than in the idealization, but doesn’t contribute the potential since

it has no applied voltage at all. Putting an electrode further from ρ = 0 makes

its voltage contribute less to the potential, and therefore we can understand that

there’s a complicated balance of sizes and voltages when regarding anharmonicity

and other trap observables. In figure 3.22 I have plotted the same curves, but

changing the widths of all electrodes except the first. Instead of di = 3mm(the

real sizes), I have used di = 3.5mm. Now we see that the V3 for minimum

anharmonicity coincides for theory and experiment. This demonstrates that the

former explanation is on the right track. Therefore, in an effective way, our trap
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Figure 3.22: Width of the axial resonance, theoretical and experimental. For the

theoretical curve we have adjusted A/z0 and the electrodes’s widths di.

has dimensions R1 = 2.5mm and di = 3.5mm, instead of the real dimensions

R1 = 2.5mm and di = 3mm. Considering that the gaps are of ≈ 0.3mm each,

this slight modification in di is justified.

We can conclude that the theoretical analysis of the anharmonicity is quite

correct, except for the fact that we lack knowledge on the actual axial motion

amplitude, and that effective trap dimensions have to be used which are slightly

different to the real ones. These facts confirm that we can readily rely on our

extrapolations to low temperatures and smaller traps when building a quantum

computer made of planar traps.

3.2.5.1 More measurements on the anharmonicity

In order to show how unstable was this measurement I plot next different measure-

ments under similar electron creation conditions with the same trap parameters:

V1 = 0V , V2 = 13.6V . Figure 3.23 shows the huge variation seen in the anhar-

monicity curve. This has to do mainly with filling the trap with different amount

of electrons each time. The more electrons we have, the more electrons contribut-
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ing to this curve have a bigger A than considered previously. This affects not

only the height at which the curve is positioned but also its shape as can be seen.

In figure 3.23 we see that the experimental curves with triangles and stars have

Figure 3.23: Width of the axial resonance, theoretical and experimental. For the

theoretical curve(solid line) we have chosen A = z0/5 and the artificial widths

di = 3.5mm. The applied voltages are V1 = 0V , V2 = 13.6V . Error bars (of

about 10%) have not been drawn for clarity.

a minimum coinciding with the theoretical one. Of course, we had to previously

adjust di as done in the previous section. It is rather peculiar that the experimen-

tal curve with circles has the shape which is most similar to the theoretical one,

but at the same time their minima don’t coincide. This points in the direction

of considering other definitions of anharmonicity which are more realistic when

motional amplitudes are big enough to break the perturbative approach given in

our theory.
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3.2.5.2 Other definitions of anharmonicity

The easiest redefinition of anharmonicity for big amplitudes seems to be

κ =
∆ωz
ωz

=
|ω(z0 + A)− ωz|+ |ω(z0 − A)− ωz|

2ωz
(3.3)

where ω(x) =
√

qφ′′(x)
m

is the ”frequency” in position x. This expression is ob-

viously the average of deviations from ωz at the extrema of the axial motion of

electrons. This simple definition is however rather powerful, as can be seen in

figure 3.24. Figure 3.24 is exactly like fig.3.23 but with the theoretical curve

substituted by the new definition, which is represented here with a dashed line.

The new definition presents a shape similar to precisely the experimental curve

which didn’t fit with the standard theoretical curve, which means that in that ex-

perimental case the motional amplitudes were so big that a perturbative scheme

would not fit anymore.

Figure 3.24: Width of the axial resonance, theoretical and experimental. For the

theoretical curve(dashed) we have chosen A = z0/5 and the real widths di = 3mm.

The applied voltages are V1 = 0V , V2 = 13.6V .

We could make further definitions with a higher level of complexity, such as

averaging in more points, rather than only in z0−A and z0 +A, or averaging with
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some weight factor related to the amount of time that an electron spends near

that points. However, these other definitions don’t give any further insight in the

problem and yield a rather similar shape. Therefore they will not be presented

here.

I would like to stress the fact that these definitions are an important point

only if our cloud of particles has not been cooled down either by thermalization

to a cold environment, resistive cooling due to coupling with a tank-circuit, or by

active methods such as Doppler cooling.

The shape of the anharmonicity versus V3 should, in any case, be considered as

a qualitative description of the system’s behaviour. In order to study the problem

in a realistic way, we would need to reproduce the experiment numerically in a

computer. That means that we would have to emulate numerically the trapping,

excitation and ejection of trapped electrons for every step in frequencies, and

then note down the width of the resonance curve; and this for every single step

in V3. This procedure is implemented in next chapter.

3.2.5.3 Anharmonicity in V2, V3 space

The last measurement on the harmonic properties of our planar Penning trap

was done more for scientific curiosity than anything else. The good agreement

between theory and experiment is further confirmed if we plot the width of the

axial resonance for varying V2 and V3. In figure 3.21 we saw that the theoretical

analysis agreed with experiment for varying V3 and with an equivalent width

d1 = 2d2, thus confirming the theoretical behaviour for different electrode sizes.

So it is a matter of completeness that I checked the behaviour for varying V2 and

V3.

The result is figure 3.25 and figure 3.26, where we see that a good agreement

is also achieved when varying parameter V2 too. In figure 3.25 I’ve pointed out

the places where the anharmonic terms C3 and C4 are minimized 1. In figure 3.26

it can be seen that those lines coincide with the theoretical lines. The red points

are the theoretical curves plotted for every V2 used in the experimental curves.

1in fig.3.23 we saw the C3 minimization which gives the minimum annharmonicity and the
C4 minimization which was a slight ”bump” at around V3 = −13V , in the theoretical curve
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Figure 3.25: Width of the axial resonance measured for varied V2 and V3. As

usual we have chosen V1 = 0V . The white points are experimental values, and

the blue grid is a surface fit to guide the eye.
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Figure 3.26: Comparison of the measurement in figure 3.25 with the theoretical

curves (red points). The C3 and C4 minimization lines in green (theory) and

black (experiment) show good agreement.
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Finally we can conclude that, despite of the little shift due to the size of

electrodes being effectively bigger than their real size (remember this was due to

the gaps between them), the theoretical prediction for the width of the resonance

is quite accurate, and most important of all, it is quite trustable when searching

for the corrector voltage needed for optimum harmonicity. This ensures our

success in the manipulation of the planar trap by just using our simple theoretical

approach, without the need for further and more complex studies.
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3.2.6 2ωz resonance shape

The subject of this section is not related to the QUELE project, but is inter-

esting enough in itself so as to deserve our attention. The fact that our trap is

intrinsically asymmetric leads to an electrostatic potential whose deviation from

quadrupolar ideality is dominated by its C3 term (hexapolar contribution) rather

by its C4 term (octupole). In contrast, the rest of Penning traps, having reflection

symmetry along z-axis at the position of electrostatic minimum, have a negligible

C3.

Since we are used to seeing axial resonances at 2ωz which show COM and

individual peaks, as measured in traps with a dominating C4 I felt quite curious

to check whether any major difference could be seen in such plots. Therefore, I

performed several frequency scans not only of 2ωz but also of ωZ .

A numerical comparison with experiment was done in (Valenzuela) showing

that the expected shape for the individual resonance was that of a trapezoid, as

can be seen in fig.3.27 (fig.6 in their paper):

From all frequency scans I did, most of them resembled the shape in fig.3.27 but

were never exactly equal, and always had a particular feature which made them

singular. The first results I present here were all done for conditions of maximum

harmonicity, that is, choosing V3 so that the potential would be most harmonic,

even if the voltage configurations vary from one graphics to another1. Three of

those plots are shown in figure 3.28.

In figure 3.28 we see the individual resonance tend to a trapezoidal shape, but

with a protuberance in its right edge. In addition the third plot shows a steep

peak in the middle of the individual resonance; this third plot is not exactly the

most harmonic configuration since, if the reader remembers, for V1 = 0V and

V2 = 13.6V the best harmonicity is obtained for V3 = 33.67 and not V3 = 30V .

This discrepancy may have to do with the fact that C3 dominates our trap,

and not C4, but could also be an artifact of the frequency scan. This can only be

1The reader may wonder why, if the three plots have been made for most harmonic con-
figurations, the shapes are not similar. It should be noted that prescription of the harmonic
properties C3 and C4, only implies a characteristic of the potential shape at z0. Therefore these
three shapes have nearly equal C3 and C4 at the minimum, but their shapes need not be equal
along the trajectory of electrons. This accounts for the different individual resonance shapes.
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Figure 3.27: Frequency scan at 2ωz, experimental and numerical in (Valenzuela).

The expected individual resonance has a trapezoidal shape.
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Figure 3.28: Individual and COM axial resonances (at 2ωz) for different voltage

configurations, optimized for best harmonicity.
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analyzed if we perform a numerical simulation of the electrons trajectories.

It should be noted, however, that minimizing the anharmonicity is equivalent

to minimizing the C3 term, since it is dominant, in whose case C4 is not minimized.

An example of frequency scan with minimized C4 can be seen in figure 3.29,

which shows that the shape is more similar to a trapezoid than in fig.3.28. Fur-

thermore, a dip or cut can be seen in the middle of the individual resonance,

which claims for an explanation1.

I would like to add the fact, that I found this ”cut” or dip in several frequency

scans done for the same condition of C4 minimized.

Figure 3.29: Individual and COM axial resonances with minimum C4. The indi-

vidual resonance has a trapezoid-like shape, but with a dip in its middle.

1The asymmetric C3 term, effectively tilts the potential around z0, in such a way that its
left and right parts have effectively different curvatures. This might lead to a slight bifurcation
of the axial eigenfrequency. If this is true, the same effect should be observable in the COM
peak, if we were to scan it with more detail.
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We can conclude that the individual and COM resonances in the case of a

planar Penning trap are similar to those already found in different experiments

with standard Penning traps. However, a dip in the individual resonance was

found which lacks for an explanation.
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3.3 Small Trap

One of the standard criteria for a device to be a candidate for quantum com-

puting is scalability. A device is considered scalable if we can reduce its size

without compromising computability, but also if we can use an arbitrary num-

ber of them to increase the computational power of the computer. In the case

of classical computers, which use classical electronic elements, it is said that it

is scalable because its constituents can be made smaller and more abundant in

number without reaching any limit in principle. After some decades of computer

development, the CPUs have been every time more powerful and smaller, but

a future limit is foreseen due to the inherent quantum limits of their elemental

constituents. It is clear thus that no device is infinitely scalable, but classical

CPUs are scalable enough to be usable.

The situation is exactly the same for quantum computers: we want them to

be usable, that’s our main concern. And given the current status (a quantum

computer occupies a whole laboratory and is only able to factorize the number

15) scalability is a must.

In order to test the properties of the planar trap under miniaturization, we

built a trap which had a characteristic size half of the one used in the former

measurements. It would have been much better to build a trap an order of

magnitude smaller, but it would have been much harder to manipulate. In any

case, the QUELE project will build a trap much smaller than the one used in

this thesis for the first really quantum measurements. We can consider hence our

”small trap” as a preliminary study of the scaling behaviour of a planar trap.

3.3.1 Description

In figure 3.3 we saw the design of our small planar trap, which was built with the

same proportions as the big one but with half its characteristic size. It must be

noted that the fabrication of both traps was done with gaps between electrodes

of the same width, that is 0.3mm. Therefore, the experimental results for the

small trap are expected to differ more from the theory than for the big trap.

Apart from that, no big difference was expected, and no difference was seen,

as will be shown next.
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3.3.2 Results

The first thing I measured was the axial resonance. Its shape and positioning can

be seen in figure 3.30:

Figure 3.30: Individual and COM axial resonances in the small planar trap,

measured at the subharmonic νz/2.

The frequency scan was done with the same parameters as before, I mean creation

times, filament current, ejection time, trapping time, etc. The voltage were V1 =

0V , V2 = 2.5V and V3 = 0V . It is seen in figure 3.30 the COM and individual

peaks, as expected. No big difference with respect to the big trap is seen apart

from the fact that both peaks are further from each other. That’s not at all

a surprise since we have used the same loading parameters, being the storage

volume smaller (as the trap itself). A similar number of electrons is thus stored

in a smaller volume thus producing a higher charge density. The higher the charge

density, the further apart the peaks appear, as expected.
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I next measured the storage time to check the stability of electrons in the small

trap. The result is seen in figure 3.31. Recall that for the big trap the storage

time was of τ = 22s, and here the storage time is about τ = 2.5s. There is an

order of magnitude between both storage times, however we cannot associate it to

the size-scaling of the traps since storage times are only shortened by higher rest

gas pressures or bigger coupling of the spatial modes(field inhomogeneities). I

do not believe that this trap produces a less homogeneous electrostatic field thus

achieving axial-magnetron coupling, but rather that the alignment of the trap

parallel with the magnetic field was harder to achieve ”by eye” (or ”by hand”

if you like it more). Recall that misalignment was the responsible for motional

couplings to the magnetron motion, and thus broadening of the electron’s orbit

until the electron gets out of the trapping volume.

Figure 3.31: Storage time in the small trap for best harmonicity conditions.
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To finish with our studies, I checked the anharmonicity curve, which gives

surprisingly good results. In figure 3.32 we see that the shape is similar to the

theoretically expected one. The main differences are that the width at best har-

monicity is bigger than expected from theory, and that the points of C3 and C4

minimization are shifted leftwards in experiment. The latter fact is similar to

what we saw for the big trap, since the gap between electrodes makes the elec-

trodes effectively bigger.

Figure 3.32: Width of the axial resonance for small trap. Axial frequency for

these voltages is νz ≈ 54MHz.

3.3.3 Discussion

The main features we have presented for the small trap seem to be predictable

from our theoretical model and present no lack of scalability. In fact the only
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point where a bad scaling could have been seen is the storage time. A short

storage time always indicates low stability of the trapped electrons, which is not

the case here. I have argued that the storage time of the small planar trap is

an order of magnitude worse than in the case of the big trap because of trap

misalignment with respect to the magnetic field. This subject could be extended

and studied in more detail but I don’t see any reason why the storage time would

have to be worse for smaller traps (if we are to align those traps with better

techniques than just by eye).

Furthermore, a magnetic field of at least 7 Tesla will be used for the future

QUELE experiment, thus improving the storage time by a factor of ∼ 12.

I conclude hence the experimental studies with a positive feeling of success.

The experiment agrees quite well with the theory and supports the idea of using

the planar Penning trap as a tool for quantum computation.
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Chapter 4

Numerical simulation

The fact that experimentally searching for the eigenfrequency of an harmonic

oscillator needs the introduction of an oscillatory force, transform the system

from a simple harmonic oscillator to a forced harmonic oscillator. This is just

an example of the abstract fact that any knowledge we acquire in this material

world comes from interaction; a fact which we tend to forget. An harmonic

oscillator has naturally a unique eigenfrequency, but in the very moment that an

experimentalist wants to know what this frequency is, he/she needs to transform

the studied system in a forced harmonic oscillator system. The result of this

want for information transforms the unique eigenfrequency, a Dirac delta function

in frequency space, into a broad resonance curve of Lorentz type. This simple

fact poses no problem, since that resonance curve is centered at the original

unique eigenfrequency, and thus the wanted information can be extracted from

the system.

The case is completely different when the system under study is not any more

an harmonic oscillator, which is the case when the electrostatic trapping potential

is not perfectly quadrupolar (a parabola in the spatial direction of interest). In

that situation the inherent frequency characteristics of the system is a curve

with a certain width, given by the amount of anharmonicity of the potential.

That width is normally obtained by numerical simulation of the trajectory, which

is afterwards Fourier analyzed. The problem is that our experimental method

introduces a width in the resonance because we are transforming the original

system into a forced one. The width coming from this transformation adds to the
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intrinsic width of the original anharmonic oscillator. This fact obliges us to study

the forced anharmonic oscillator if we want to make a comparison between the

experimental results and the theoretical one. In other words, we can’t just take

the anharmonicity as defined in the theory section, κ, and compare it to what we

obtain in the experiment.

This fact alone already justifies a numerical simulation of our system, but

there is a further reason. The resonance curves obtained experimentally showed

an individual and COM peaks, whose existence must be traced to the fact that

our system is not that of a collection of harmonic oscillators, but has a Coulomb

interaction between oscillators. This repulsive Coulomb force separates the indi-

vidual and COM resonances, and gives the characteristic shape of the individual

peak. Furthermore we saw that the individual resonances we obtained had not

a shape similar to those in Penning traps with reflection symmetry along z axis,

making us suspect the possible influence of the asymmetry in the potential pro-

vided by our planar trap in this discrepancy.

For all this reasons I decided to implement a simple numerical simulation.

The objective is to serve as a link between the theory and the experiment, both

regarding the behaviour of the anharmonicity and the shape of the individual

resonance.

4.1 Description of the simulation

The numerical simulation was performed by a typical implementation of the

Runge-Kutta algorithm of fourth order for solving the trajectories of an ensemble

of N trapped electrons embedded in the potential of our actual planar trap and a

magnetic field of 2 Tesla. The potential used was the one of our standard deriva-

tion, uniformly extended in ρ since the simulation cycles were much shorter than

the characteristic period for magnetron motion, and thus this motion could be

neglected. The creation process was simulated by an initial random positioning

of electrons inside the trapping volume. The initial velocity of the electrons was

zero, since an initial velocity is equivalent to having the same particle place at

a position with higher potential. Real parameters for the Coulomb interaction

were used.
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The measurement cycle can be summarized as follows: electrons are created

randomly inside the trapping volume with zero velocity, then the system is let

evolve with a global force acting on it of the type F0cos(ωt) for a given time

τ . After that time, the amount of electrons having left the trapping volume are

recorded. This measurement is done Nstats. times for a particular ω, and we run

over ω from ωmin to ωmax.

Since the evolving algorithm for the trajectories is a fourth order Runge-Kutta

integration method, the time step has to be three to four orders of magnitude

smaller than the characteristic period of the fastest motion, in this case the cy-

clotron. So I decided to use a time step of h = 10−12s, which was the biggest

time step which allowed for a realistic trajectory. The measurement cycle was

characterized by τ = 10−7s which for an axial frequency of νz ≈ 50MHz is about

4 axial periods. This proved to be a time reasonably long enough for the forcing

term F0cos(ωt) to act.

The artificial introduction of a damping term in the motion was avoided since

it tends to broaden the resonance curve, and I wanted to study the pure effect of

the anharmonicity.

The relative slowness of computers nowadays (3.06GHz clock speed in this

case) obliged me not to simulate the actual number of trapped particles, which

as shown in the experiment section was about 9000 electrons, but rather an

amount of 10-20 electrons. This number of electrons has been seen to be enough

to describe perfectly well the separation in individual and COM resonances in

previous simulations(Blumel).

4.2 Results

I reproduced the measurement cycle described above in order to obtain the res-

onance curve of the axial motion, in which we are now interested. I did several

scans, varying the strength of F0, but also varying the length of the trapping vol-

ume Az. The trapping volume is characterized by the length along z, Az and the

length along ρ, Aρ. The radial length I chose was the actual one Aρ = R1/5 and

for axial I chose Az = 0.3z0. With those numbers I obtained the resonance curves

for a potential configuration of V1 = 0V and V2 = 13.6V , with varying V3. The
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results is seen in figure 4.1. There we see that the behaviour coincides extremely

well with the theoretically predicted one. The error bars are big because I didn’t

do much statistics (Nstats. ∼ 20), since I used my personal computer and I didn’t

want to burn it up in a few weeks. The curve obtained by simulation shows both

a coincidence in the minimum anharmonicity and also in the minimization of C4

at V3 ≈ −10V . It shows that a minimum anharmonicity of ≈ 18MHz@≈ 55MHz,

is obtained whereas the theoretical value is smaller.

To sum up I can say that the simulated aharmonicity is in the way between

the experimental and the theoretical results.

Figure 4.1: Anharmonicity curves from theory and simulation.
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4.2.1 Shape of the resonance

In order to resolve the individual (non-collective) and the COM (collective) peaks

of the axial resonance, best seen at 2ωz, the electron density has to be high enough,

since the distance between them is proportional (for low densities) to that density.

A simulation with 10 electrons might have been good for studying the harmonic

properties of the potential, but not for resolving these two peaks. Therefore, I

could either increase the number of simulated electrons, or reduce the volume of

creation. It can be at first thought that increasing the number of electrons in

the simulation slows it down, but reducing the creation volume doesn’t. This is

not true because by reducing the volume, the electron trajectories are closer and

their mutual Coulomb repulsion bigger. Being the force bigger we need a smaller

time step to simulate correctly the trajectories, and we end up with a bottleneck:

neither possibility is better than the other.

Of course this reasoning is rather qualitative and cannot be trusted. The

computability of a problem has to be calculated in terms of amount of operations

per cycle, and this is a function of the amount of electrons and the time step

needed to correctly simulate the trajectories. Since I didn’t want to enter into

the exact dependencies, I just played around with both numbers: electron number

and creation volume. I quickly realized that reducing the volume is much cheaper

in terms of CPU times.

Because the Coulomb force for electron ’i’ has to be calculated for every

j 6= i, the number of operations’ scaling is polynomial in N (N(N − 1)), which

is rather intuitive. The amount of operations is inversely proportional to h (time

step), but h2 must be inversely proportional to the applied forces in the problem.

The Coulomb force goes as 1/d2 with d being a characteristic distance between

particles, and d ∝ V
1
3 , so finally h ∝ V

1
3 . To sum up, increasing the number

of electrons increases the number of operations polynomially, and decreasing the

volume increases the operations number as V − 1
3 . It has become clear that the

best strategy is to reduce the volume.

I reduced the volume quite a lot: Aρ = R1/35 and Az = 0.025z0, which needs

an amount of 4.7 electrons to reproduce the experimentally observed density.

Hence, I used 5 electrons inside that tiny volume. Since I have reduced the
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volume by a factor 587 with respect to the anharmonicity simulation, I need to

reduce h by a factor 5871/3 ' 8.4, then I must choose h = 0.12× 10−12 1.

I used Nstats. = 40 and a voltage configuration V1 = 0V , V2 = 13.6V and

V3 = −33.67, i.e. the most harmonic configuration. The result is seen in figure

4.2.

Figure 4.2: Resonance shape at twice the expected axial frequency. The COM

peak (right), the individual peak(left) and a bistability zone in between, can be

seen.

In fig. 4.2 it is seen that the individual resonance on the left is broad and has the

expected trapezoidal shape. The region between this peak and the COM peak

(right) shows a bistability, which means that electrons are oscillating at either the

COM or individual frequencies with equal probability. In terms of an anharmonic

1A rather wonderful surprise came when I later found that with a time step 80 times bigger
the same result was obtained.
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driven oscillator, there’s a frequency bifurcation at νdrive ∼ 158MHZ.

The fact that the individual peak shows none of the peculiarities seen in the

experiment, might point the lack of more abundant statistics on the experimental

side.

A further comment on fig. 4.2 is that both peaks are overlapping (and hence

the bistable region in between), whereas in experiment they were separated by

about 10MHz.

It was seen in the experimental section that a voltage configuration which

minimizes C4 showed a dip in the middle of the individual peak. I ran a simu-

lation with that configuration and no dip was seen. I fine tuned every possible

parameter in the simulation but still no dip resulted. The conclusion is that

either my simulation cannot resolve that subtle nonlinear effect, or that the dip

is an experimental artifact. I rather believe in the first explanation, since I saw

this dip in several runs of the experiment and under different conditions. A third

possibility is that both evidences are correct, and therefore some hidden elements

has not been included in the simulation.

4.3 Conclusions

The simulation has confirmed that despite the different concepts of eigenfrequency

of an anharmonic oscillator and resonance curve of an anharmonic forced oscil-

lator, the results are qualitatively very similar and that we can trust our simple

theoretical derivation and predictions, at least regarding the compensation of

anharmonicities of the potential.

The nonlinear effects of those anharmonicities plus the inclusion of the Coulomb

perturbation in the simulation showed the expected individual+COM peaks be-

haviour, though not reproducing the surprising experimental curves. The devi-

ation in experiment from the typical trapezoid-shaped individual peak’s curve

was not seen in the simulation, probably because of a lack of precision in the

simulation1.

1One could also argue that there is a lack of experimental data points.
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It can also be hypothesized that some unknown element which was present

in the experimental situation has not been included in the simulation. I would

like to remind the reader that the simulation was done neglecting the magnetron

motion, and any nonlinear effect related to this motion would not be seen, for

example the effects of misalignment of the trap with respect to the magnetic field.

Being this topic of no big importance for the development of the QUELE project

it is left for future investigations.
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Chapter 5

Conclusions

This thesis has been devoted to the investigation of confinement in a new type of

trap, the planar Penning trap. The basis for this new concept is to be found in the

well known and since long used Penning trap, which has been a rather useful tool

for several decades. The development of this new kind of trap had a most definite

purpose, the construction of a useful tool for quantum computing with trapped

electrons, but may lead to other useful applications such as quantum information

storage, studies of the decoherence caused by a conducting surface near a quantum

system. It can further be used for typical high precision measurement such as

that of masses or g-factors. Only the future can judge whether this new tool will

prove useful or else be discarded as redundant.

In the chapter of theory I investigated the properties of this trap under the

light of an easy theoretical approach, based on the cylindrical polynomial ex-

pansion of the potential. The potential was obtained for ρ = 0, and from there

on properties such as the depth of the potential, position of the minimum, axial

eigenfrequency and harmonic properties of the axial potential were studied. The

amazingly simple expression for the potential along the z axis proved to be quite

powerful and easy to handle.

Several proposals for the quantum communication between different qubits,

qubits being stored in the axial degree of freedom of different singly-trapped

electrons, were given and their rates calculated. This showed the feasibility of

using those methods for a coherent control of the quantum states and quantum

operations between them.
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An experimental confirmation of those properties was given in chapter 3 and

also a comparison with the theoretical model. A good qualitative agreement with

the theory was shown. Quantitatively, the theory proved to be a good approx-

imation, further approaching the actual experimental results when ”equivalent”

electrode sizes were used, showing that compensation of potential’s anharmonic-

ity could be compensated with a correction voltage very close to the theoretically

predicted one. Further, a good storage time was found for a magnetic field of 2

Tesla, proving that confinement is sufficiently stable even at room temperature

and a quite improvable vacuum condition.

The possibility of a double well configuration was theoretically shown and

experimentally hinted, leaving the perfection and manipulation of such configu-

ration for future researchers which might be interested.

In chapter 4 I tried to link the experiment and the theory with a numerical

simulation. The confirmation of the anharmonicity compensation behaviour was

shown to agree rather well with theory. I also studied the shape of the 2ωz

resonance curve to check for similarities with the shapes obtained in experiment.

However, my simulation couldn’t resolve those surprising experimental results

proving that the simulation was not realistic enough, or that it may lack some

important element. This side study, not very important for quantum computing,

was therefore left for future researchers which might want to test the nonlinear

effects involved in the formation of such newly found shapes, particularly the one

where C4 was minimized, i.e. with a basic anharmonicity coming from the C3

term. Since the asymmetry of this trap under reflection in z axis lends itself to a

natural maximization of the C3 term, it might prove useful in future researches

on comparing theoretical results for the hexapolar-perturbed Penning trap with

experiments.

A briefer conclusion can be given: the planar Penning trap works, provides

stable confinement, its anharmonicites can be compensated and it can be trusted

in future implementations of quantum computing. What else can one ask for?!
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