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Abstract: Lattice QCD calculations of the hadronic vacuum polarization (HVP) have
reached a precision where the electromagnetic (e.m.) correction can no longer be neglected.
This correction is both computationally challenging and hard to validate, as it leads to ul-
traviolet (UV) divergences and to sizeable infrared (IR) effects associated with the massless
photon. While we precisely determine the UV divergence using the operator-product ex-
pansion, we propose to introduce a separation scale Λ ∼ 400 MeV into the internal photon
propagator, whereby the calculation splits into a short-distance part, regulated in the UV
by the lattice and in the IR by the scale Λ, and a UV-finite long-distance part to be treated
with coordinate-space methods, thereby avoiding power-law finite-size effects altogether.
In order to predict the long-distance part, we express the UV-regulated e.m. correction
to the HVP via the forward hadronic light-by-light (HLbL) scattering amplitude and re-
late the latter via a dispersive sum rule to γ∗γ∗ fusion cross-sections. Having tested the
relation by reproducing the two-loop QED vacuum polarization (VP) from the tree-level
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γ∗γ∗ → e+e− cross-section, we predict the expected lattice-QCD integrand resulting from
the γ∗γ∗ → π0 process.
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1 Introduction

The long-standing discrepancy between theory [1–20] and experiment [21, 22] for the muon
g−2 has recently been challenged by several precision lattice QCD calculations of the HVP
contribution (cf. figure 1) from intermediate hadronic distance scales [23–28]. One of the
lattice-QCD based calculations has already reached a subpercent-level of precision for the
full leading-order HVP contribution [24], thus becoming competitive with the data-driven
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Figure 1. Different hadronic contributions to (g − 2)µ: leading-order HVP (left), e.m. corrections
to leading-order HVP (right). The blob represents the contribution from QCD alone.

dispersive method, which has traditionally been used to evaluate this contribution. At this
level of precision, care must also be taken of the leading isospin-breaking corrections, both
the strong isospin-breaking effect stemming from the unequal u and d quark masses, and
the e.m. effect arising from the quarks carrying electric charges, as shown by the second
diagram in figure 1. These effects are taken into account by lattice collaborations (e.g.,
refs. [23, 24, 29]); however, few stringent cross-checks are possible at present. First of
all, these effects depend on the precise point in the parameter space of isospin-symmetric
QCD, which is not exactly the same in different calculations. Furthermore, it has not been
possible to rigorously compare the size of these effects to phenomenological predictions,
partly because the (QED) radiative correction to the HVP is divergent if one does not
account for the counterterms associated with the quark masses and the strong-coupling,
whose finite parts depend on the conventional choice of the ‘physical point’ in isospin-
symmetric QCD [30].

Here we propose a computational strategy that enables much more direct comparisons
between lattice QCD and hadron phenomenology. In its simplest incarnation, the idea is
to add and subtract a Pauli-Villars term [31] to the photon propagator,1

1
k2 =

( 1
k2 −

1
k2 + Λ2

)
+ 1
k2 + Λ2 , (1.1)

where k is the Euclidean four-momentum and Λ is a typical hadronic scale. The first
term leads to a UV-finite effect on the HVP and is sensitive to long-distance contributions
such as the π0γ and ηγ channels; it can be treated analogously to the HLbL contribution
to g − 2 by using coordinate-space methods [33–35], whereby power-law effects due to
the internal photon propagators are avoided. The second can be treated entirely in lattice
regularization by having the photon field defined on the same lattice as the QCD fields [30].
However, since a photon mass is now present, no issue with the photon zero-mode arises,
nor do power-law finite-size effects occur. We return to this aspect in section 6 but remark
here that a number of different methods have been used in the extensive literature on
incorporating the coupling of quarks to photons into lattice QCD calculations (see [36–49]
for a representative set of publications).

How then can one predict the leading QED correction to the HVP with a UV-regularized
photon propagator in place? We shall express it through the forward HLbL amplitude [50–

1Such a decomposition of the photon propagator has been found to be helpful in other contexts; see in
particular ref. [32].
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Figure 2. Cottingham-like formula for QCD LbL amplitude.

52], as shown in figure 2. As has been noted [52], the connection between the forward
HLbL amplitude and the e.m. correction to the HVP bears a strong resemblance with the
Cottingham formula [53–57], which expresses e.m. mass splittings in terms of the forward
Compton scattering amplitude. The analogy becomes apparent if one views light-by-light
(LbL) scattering as Compton scattering off a photon.

However, not much practical use has so far emerged from this connection. Perhaps
the main reason is that the insertion of two standard q̄qγ vertices leads to a divergence,
requiring the insertion of O(e2) counterterms to cancel it. From the standpoint of the HLbL
amplitude, the divergence appears due to the forward HLbL falling off too slowly (as 1/k2)
for one of the incoming photon momenta becoming large. However, the first term on the
right-hand side of eq. (1.1) amounts to a UV-regularization of the photon propagator, and
in this case the integral over the forward HLbL amplitude yielding an e.m. correction to the
HVP becomes finite. Therefore, with sufficient knowledge of the forward HLbL amplitude,
obtained either by using the dispersive sum rules [58] or direct lattice calculations [59], one
can make a definite prediction for this correction. The comparison can even be done in
a more differential way, at the integrand level, as we shall illustrate. Also, accumulated
knowledge on the HLbL amplitudes, for example concerning the relative importance of the
different quark Wick-contraction topologies [60, 61], can be usefully applied to the leading
QED corrections to the HVP.

The rest of this paper is organized as follows. We start in the continuum, deriving
in section 2 the relation between the forward HLbL amplitude and the e.m. correction
to the HVP. In section 3, this relation is tested against known results in a pure QED
setting. Section 4 contains a derivation of the divergence that develops when the UV-
cutoff Λ is sent to infinity and indicates in which flavor combinations the divergence partly
cancels. In section 5, we then come to the prediction for the π0 exchange in the forward
HLbL amplitude, and thereby to its contribution in the e.m. correction to the HVP and
ultimately in the muon (g−2). We then formulate a computational strategy in section 6 for
computing the leading isospin-breaking effects to the HVP in lattice QCD. The section also
discusses aspects of the coordinate-space method and presents the integrand corresponding
to the π0 exchange contribution. Finally, section 7 summarizes our findings and offers an
outlook into further possible applications of this work.
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2 A Cottingham-like formula for the radiative correction to the HVP

The first correction ∆Π(Q2) to the leading HVP2 Πe2(Q2) can be written in the form

∆Π(Q2) = lim
Λ→∞

(
Π4pt(Q2,Λ) + Πct(Q2,Λ)

)
, (2.1)

where Λ is a UV-regularization parameter. We begin by establishing a formula for
Π4pt(Q2,Λ), named in this way because it involves the four-point function of the e.m.
current, which at the same time provides the quantum field-theoretic definition of the LbL
scattering amplitude. The second term, Πct(Q2,Λ), consists of the required counterterms
and the strong-isospin breaking contribution. While its precise form is not needed here,
more details will be given in section 6.

The LbL scattering amplitude Mµ1µ2µ3µ4 depends on the four-momenta of the in-
coming (q1, q2) and outgoing (q3, q4) photons. The forward kinematics correspond to
q1 = q3 ≡ k and q2 = q4 ≡ q, see figure 2. Contracting the photon-line 1 with 3, we
obtain a contribution to the VP tensor:

Πµ2µ4
4pt (q2,Λ) = 1

2

∫
d4k

(2π)4

[ −igµ1µ3

k2 + i0+

]
Λ
Mµ1µ2µ3µ4(k, q) , (2.2)

where the factor of one-half is the symmetry factor; in square brackets is the Feynman-
gauge photon propagator, regulated at the scale Λ, for instance à la Pauli-Villars, [1/k2]Λ =
1/k2−1/(k2−Λ2). Due to gauge invariance, the VP tensor has the following general form,

Πµν(q) = Π(q2)(q2gµν − qµqν), (2.3)

and hence its scalar part can be expressed as:

Π4pt(q2,Λ) = 1
6q2

∫
d4k

(2π)4

[ −i
k2 + i0+

]
Λ
M(k, q) , (2.4)

where
M≡ gµ1µ3gµ2µ4Mµ1µ2µ3µ4(k, q) , (2.5)

is the traced LbL amplitude. The latter is a scalar function of three invariants: k2, q2, and
ν ≡ k · q. It is even in ν and symmetric under the interchange of k and q. We shall write it
asM(ν,K2, Q2), where K2 = −k2 and Q2 = −q2 will further be assumed to be positive,
i.e., the photons are spacelike.

Introducing the helicity LbL amplitudes as

Mλ1λ2λ3λ4 = εµ1
λ1

(q1) εµ2
λ2

(q2) ε∗µ3
λ3

(q3)ε∗µ4
λ4

(q4)Mµ1µ2µ3µ4 , (2.6)

with εµλ(q) the photon polarization vectors, the traced amplitude can be written as [64]:

M =
∑

λ,σ=±,0
(−1)λ+σMλσλσ = 4MTT − 2MLT − 2MTL +MLL , (2.7)

2In our notation throughout this paper, the HVP contains an additional factor e2 relative to the notation
widely used in lattice QCD calculations, for instance in refs. [62, 63].
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where

MTT = 1
2
(
M++++ +M+−+−

)
, MLL = M0000 ,

MLT = M0+0+, MTL = M+0+0 . (2.8)

For spacelike photon virtualities, the optical theorem relates the imaginary part of these
amplitudes to a γ∗γ∗-fusion cross section [58, eq. (16)], so that

ImM(ν, k2, q2) = 2
√
X σ(ν, k2, q2), (2.9)

where σ = 4σTT − 2σTL − 2σLT + σLL, and X = ν2 − q2 k2. Furthermore, the analytic
properties of the ν-dependence warrant a dispersive representation. Since all relevant LbL
amplitudes are even in ν and require one subtraction [58, section II. C], the dispersion
relation takes the form

M(ν,K2, Q2) = M(ν̄,K2, Q2) +M(ν,K2, Q2),

M(ν,K2, Q2) = 2
π

(ν2 − ν̄2)
∞∫

νthr.

dν ′
ν ′ ImM(ν ′,K2, Q2)
(ν ′ 2 − ν̄2)(ν ′ 2 − ν2) , (2.10)

where we are free to choose any subtraction point ν̄, and νthr. is the lowest particle pro-
duction threshold. For example, in QED, νthr. = 1/2(K2 + Q2) + 2m2

e is the threshold for
e+e− production; see A.1 for further details.

The dispersive representation justifies the Wick rotation in the evaluation of eq. (2.4)
and we obtain the Cottingham formula analogue:

Π4pt(Q2,Λ) = 1
6Q4(2π)3

∞∫
0

dK2
[ 1
K2

]
Λ

K2Q2∫
0

dν2
(
K2Q2

ν2 − 1
)1/2

M(ν, K2, Q2). (2.11)

We refer the reader to eq. (A.2) in appendix for the dispersive form, which, up to one
subtraction, expresses this contribution in terms of γ∗γ∗-fusion cross sections. As indicated
in eq. (2.1), this contribution must be combined with the appropriate counterterm, to which
we return in section 6, in order to obtain the first correction ∆Π(Q2) to the HVP.

At this point, let us briefly comment on the flavor structure of the HLbL amplitude
M, particularly regarding to isospin, which plays an important role at low energies. The
e.m. current carried by the quarks contains both an isovector and an isoscalar component.
The LbL amplitude can be written as the sum of the three partial contributions where (i)
all four currents are isovector; (ii) all four currents are isoscalar; and (iii) in one pair of
currents, both are isovector, while in the complementary pair, both are isoscalar, and one
sums over all six possible pairings. Pole contributions of isovector mesons such as the pion
only occur in the third contribution, while isoscalar-meson exchanges appear in all three
contributions.

3 Reproducing the two-loop QED vacuum polarization

In order to test our Cottingham analogue, eq. (2.11), we apply it to the QED VP: we
expect the one-loop LbL amplitude to provide the two-loop VP, see figure 3.

– 5 –
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Figure 3. One-loop LbL scattering (left three diagrams) and the resulting two-loop VP.

Substituting the one-loop LbL amplitude (cf. A.1) into eq. (2.11) yields a complicated
expression, which we only show here in the expanded form:

Π4pt(Q2,Λ) = α2

π2

−1
2 + 329

1620
Q2

m2
`

− 2333
75600

(
Q2

m2
`

)2

+ 43579
7938000

(
Q2

m2
`

)3

+O(Q8)


−α

2

π2 log Λ
m`

−1
2 + 1

5
Q2

m2
`

− 3
70

(
Q2

m2
`

)2

+ 1
105

(
Q2

m2
`

)3

+O(Q8)

 , (3.1)

up to terms that vanish for Λ → ∞. Hereafter m` stands for the lepton mass appearing
in the loops. In this calculation we have in fact adopted a simpler, momentum-cutoff
regularization: [ 1

k2 ]Λ = θ(Λ2−k2)
k2 . In the present context, this form of regularization is

equivalent to Pauli-Villars regularization, up to terms suppressed by 1/Λ2.
The counterterm, Πct(Q2,Λ), can be obtained by applying the standard rules of renor-

malized perturbation theory, for which we use the Pauli-Villars regularization, see A.3:

Πct(Q2,Λ) = 6 α
2

π2

(1
4 + log Λ

m`

)[1
6 −

1
κ2 + 4

κ3
√

4 + κ2
arctanh

(
κ√

4 + κ2

)]

= α2

π2

(1
4 + log Λ

m`

)[1
5κ

2 − 3
70κ

4 + 1
105κ

6 +O(κ8)
]
, (3.2)

where κ = Q/m`. Altogether [cf. eq. (2.1)], we obtain the following result for the small-Q2

expansion of the two-loop VP:

∆Π(Q2) = α2

π2

 41
162

Q2

m2
`

− 449
10800

(
Q2

m2
`

)2

+ 62479
7938000

(
Q2

m2
`

)3

+O(Q8)

 . (3.3)

Note that:
Π(Q2) ≡ Π(Q2)−Π(0), (3.4)

with Π4pt(0,Λ) given in eq. (A.13). To check this result, we use the well-known dispersion
relation:

Π(Q2) = −Q
2

π

∫ ∞
4m2

`

dt

t(t+Q2) Im Π(t). (3.5)

together with the well-known O(e4) imaginary part, first computed in 1955 [65] as well as
in [66], given for instance in [67] (eq. (5-4.200) on p. 109) and in [68]. Using this well-known
result, we reproduce eq. (3.3) obtained via the Cottingham formula. We have also checked
this numerically for arbitrary Q2.

– 6 –
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Figure 4. Anomalous magnetic moment via the Cottingham formula without the counterterm to
be compared with lattice QCD: varying the mass inside the VP. The cutoff scale is chosen to be
Λ ≡Mγ = 3mµ.

3.1 Evaluation of the fourth-order vacuum polarization contribution to the
muon (g − 2)

We now test the Cottingham-like formula beyond the small-Q2 expansion and compute the
fourth-order VP contribution to the muon (g − 2) using numerical integration. In order
to avoid numerical instabilities emerging in loop integrals, that in the case of the virtual
LbL amplitude we found out to persist in all familiar packages for one-loop numerical
integration, we choose the more elegant way and calculate the LbL amplitudeM(ν,K2, Q2)
itself via the dispersive approach; see eq. (2.10).

The imaginary part ImM(ν,K2, Q2) at the tree level in QED, as well as expressions
for the subtraction termM(ν̄,K2, Q2) for the two choices of subtraction point ν̄1 = 0 and
ν̄2 = KQ are provided in A.1.

We extracted the ‘Thomson limit’ Π4pt(0,Λ) from the first term in the series expansion
ofM, and after performing the integration over x, we arrive at eq. (A.13). In particular,
this quantity is finite for a fixed value of Λ. From here, the O(e6) contribution of the
regulated fourth-order QED VP to the anomalous magnetic moment can be computed
using the general formula [69–71]:

aVP
µ = α

π

∞∫
0

dQ2K(Q2) Π(Q2), (3.6)

where the kernel function is given by

K(Q2) = 1
2m2

µ

(v − 1)3

2v(v + 1) , v =

√
1 +

4m2
µ

Q2 , (3.7)

– 7 –
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with mµ the muon mass. The integral over the kernel function alone gives the Schwinger
term, ∆aµ = α/2π. Therefore, substituting the renormalized VP, we obtain:

aVP
µ = − α

2πΠ(0) + α

π

∞∫
0

dQ2K(Q2) Π(Q2). (3.8)

This means that the subtraction term in Π4pt(Q2,Λ) yields the contribution − α
2πΠ4pt(0,Λ)

to aVP
µ . Results obtained with a Pauli-Villars regulator and Λ = 3mµ are provided as a

function of the lepton mass m` appearing in the VP in figure 4. Furthermore, adding the
contribution of the appropriate counterterm and subsequently taking the limit Λ→∞, we
obtain the full O(e4) QED VP to aµ. For a muon in the VP loop, we obtain:

∆aµ ' 6.6× 10−10. (3.9)

The result numerically agrees with ref. [72].

4 Forward LbL amplitude at large virtuality from the Operator Product
Expansion

Since the forward HLbL amplitudeM(k, q) is finite, the divergence of eq. (2.4) as Λ→∞
can only arise from performing the k integral. The question is then, what is the large-k
behaviour of M(k, q) for fixed q. This is a typical application for the Operator Product
Expansion (OPE). In this section we work in Euclidean space and our starting point is〈

V em
µ (x)V em

ν (y)V em
σ (z)V em

λ (0)
〉

=
∫
q1,q2,q3

ei(q1x+q2y+q3z) Πµνσλ(q1, q2, q3), (4.1)

the e.m. current carried by the quarks, in units of the positron charge, being given by
V em
µ = 2

3 ūγµu −
1
3 d̄γµd − . . . We recall that the HLbL amplitude is directly related to

Πµνσλ [59]. In particular, for the forward amplitude eq. (2.5), the connection reads

M(k · q, k2, q2) = e4δµνδσλΠµνσλ(−k, k,−q), (4.2)

where the scalar products on the left-hand side are Euclidean. The large momentum k

“forces” the two vertices x and y to come close together. From a power-counting perspec-
tive, it is the dimension-four operators that can cause a logarithmically divergent behaviour
in eq. (2.4), since they contribute as O(4)/k2. It is then only necessary to know their Wilson
coefficients to order αs included, since αs(k2)2O(4)/k2 multiplied by a photon propagator
already yields a UV-finite integral.

Note that the two indices of the vector currents are contracted with each other (thus
cancelling the axial current contribution in the OPE), and that we may average the result
over the direction of k, given that we are interested in subsequently integrating over k in
eq. (2.4). The result of the OPE can then only contain operators with vacuum quantum
numbers.

From a different perspective, the divergence resulting from the integral over the photon
momentum k must be removable by the available counterterms of the theory. Moreover,

– 8 –
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since vector currents do not renormalize in QCD, the relevant counterterms are only those
associated with the parameters of the theory, which are the gauge coupling and the quark
masses. These parameters are respectively associated with the operators GaαβGaαβ and
mf ψ̄fψf for each quark flavor f .

The Wilson coefficients of scalar operators appearing in the OPE of QCD currents have
been calculated a long time ago [73]. We report only the result up to the order required
for our purposes,3

〈
∫
d4x eikx T(ψ̄f (x)γµψf (x) ψ̄f (0)γµψf (0))〉k̂ (4.3)

k2→∞= 3
k2

[
2
(

1 + αs
3π

)
mf ψ̄fψf + αs

12π

(
1 + 7

6
αs
π

)
GaαβG

a
αβ

]
.

Interpreting the gluonic operator in terms of the (renormalization group invariant) trace
anomaly θ(x) = 2β(g)

g Lg, where Lg = 1
4G

a
αβG

a
αβ is the gluonic Lagrangian density and

β(g) = µ ∂g∂µ = −g3(b0 + b1g
2 + . . .) the QCD beta function,4 we rewrite

αs
12π

(
1 + 7

6
αs
π

)
Gaαβ(x)Gaαβ(x) = −1

24π2b0

(
1 + g2( 7

24π2 −
b1
b0

)
+ O(g4)

)
θ(x) . (4.4)

Thereby we arrive at the following prediction for the asymptotic large-k2 behaviour of the
four-point amplitude∫

dΩk

2π2 〈
∫
d4x

∫
d4y eik(x−y) V em

µ (x)V em
µ (y)V (1)

σ (z)V (2)
λ (0)〉 (4.5)

k2→∞= 3
k2

∑
f

Q2
f

[
2
(

1 + αs
3π

)
mf 〈

∫
d4x ψ̄fψfV

(1)
σ (z)V (2)

λ (0)〉

− 1
24π2b0

(
1 + g2

( 7
24π2 −

b1
b0

))
〈
∫
d4x θ(x)V (1)

σ (z)V (2)
λ (0)〉

]
,

where Qf = {2/3, −1/3, . . .} are the quark electric charges. At this point, we keep the
currents V (1)

σ (z) and V (2)
λ (0) unspecified, in particular in their flavour structure.

The effect of inserting the mass operator into a correlation function is to differentiate
the latter with respect to the quark mass,

〈A
∫
d4x mψ̄xψx〉 = −m ∂

∂m
〈A〉, (4.6)

while the effect of the trace anomaly on a renormalization-group invariant correlation
function of mass-dimension n is to differentiate with respect to all scales on which the
correlation function depends,〈
A(y,z, . . . ,m1,m2, . . .)

∫
d4xθ(x)

〉
=
(
−n−yν

∂

∂yν
−zν

∂

∂zν
−·· ·+

∑
j

mj
∂

∂mj

)〈
A(y,z, . . .)

〉
,

(4.7)
3As we shall see explicitly in the following subsection, the leading term (6/k2)mf ψ̄fψf also applies to

the QED case. The other displayed terms are for the gauge group SU(3) and do not depend on the number
of quark flavors nf . The leading coefficient of mf ψ̄fψf and the leading coefficient of GaαβGaαβ are consistent
with the calculation of [74].

4In these conventions, b0 = 1
(4π)2 (11− 2

3nf ) and b1 = 1
(4π)4 (102− 38

3 nf ).
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where y and z are space-time coordinates. We now set V (1)
σ (z) = V em

σ (z) and V
(2)
λ (0) =

V em
λ (0). LetHλσ(z) be the kernel yielding the leading-order subtracted VP when integrated

over with the correlator e2〈V em
σ (z)V em

λ (0)〉 (see eqs. 6.10 and 6.11 below). Acting with the
linear operator

− e4

2

∫
d4k

(2π)4

[ 1
k2

]
Λ

∫
d4z Hλσ(z) , (4.8)

on both sides of eq. (4.5), we conclude that the asymptotic large-Λ behaviour of the four-
point amplitude contribution to the fourth-order VP is given by

Π4pt(Q2,Λ)Λ→∞= 3e2

8π2

∑
f

Q2
f

[(
log
( Λ
µIR

)
+ 1

24π2b0
log
(
αs(µIR)
αs(Λ)

))
mf

∂

∂mf
(4.9)

+ 1
48π2b0

(
log
( Λ
µIR

)
+ 1

2b0

( 7
24π2−

b1
b0

)
log
(
αs(µIR)
αs(Λ)

))(
2q2 ∂

∂q2 +
∑
f ′

mf ′
∂

∂mf ′

)]
Πe2(Q2).

4.1 Explicit OPE calculation at leading order

Consider then the OPE of two vector currents at leading order,

ψ̄xγµψx ψ̄yγνψy = ψ̄xγµS(x− y)γνψy + ψ̄yγνS(y − x)γµψx, (4.10)

with S(x) the position-space fermion propagator. Eventually one finds∫
dΩk

2π2

∫
d4y eik(x−y) ψ̄xγµψx ψ̄yγµψy = 6m

k2 ψ̄xψx + 2
k2

(1
2 ψ̄xγα(

−→
∂ α −

←−
∂α)ψx +mψ̄xψx

)
.

(4.11)
We have already noted the effect of the mass-operator insertion in terms of differentiating
the correlation function with respect to the quark mass. To understand the effect of
inserting the ‘equation of motion’ (EOM) operator appearing in brackets in eq. (4.11),
imagine multiplying the Euclidean quark action by λ, SE(λ) = λψ̄(D + m)ψ. In the
Euclidean path integral, we can take expectation values 〈A〉λ using exp(−SE(λ)) as weight:
it simply means that each quark propagator contains an additional 1/λ factor. Thus, if
computing 〈A〉λ involves np propagators,

− ∂

∂λ
〈A〉λ

∣∣∣
λ=1

= np 〈A〉λ=1. (4.12)

On the other hand, the same derivative can be expressed as

− ∂

∂λ
〈A〉λ

∣∣∣
λ=1

= 〈A
∫
d4x (1

2 ψ̄xγα(
−→
∂ α −

←−
∂α)ψx +mψ̄xψx)〉 . (4.13)

Thus the insertion of the EOM operator simply multiplies the observable with the number
of propagators np needed to compute it. Thus the leading contribution of x and y being
close together in the vector four-point function (Vµ ≡ ψ̄γµψ) is∫

dΩk

2π2

〈 ∫
d4x

∫
d4y eik(x−y) Vµ(x)Vµ(y)Vσ(z)Vλ(0)

〉
k2→∞=

(
− 6
k2m

∂

∂m
+ 4
k2

)
〈Vσ(z)Vλ(0)〉.

(4.14)
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We now move to the case of x and y simultaneously being in close vicinity of a third
current at position z. In terms of Wick contractions, the relevant case is where the connect-
ing point is z, i.e. there are propagators (y → z → x) or (x→ z → y). The cases where the
connecting point is x or y do not contribute to the O(1/k2) behaviour. A straightforward
if somewhat tedious calculation then gives∫

dΩk

2π2

∫
d4x

∫
d4y eik(x−y) ψ̄xγµψx ψ̄zγσψz ψ̄yγµψy

k2→∞= − 2
k2 ψ̄zγσψz. (4.15)

The same contribution appears when (x, y) are close to the origin, thus doubling this
contribution in the four-point function of the vector current.

Altogether, from eqs. (4.14) and (4.15), we then find in leading order of the OPE∫
dΩk

2π2

〈 ∫
d4x

∫
d4y eik(x−y) Vµ(x)Vµ(y)Vσ(z)Vλ(0)

〉
k2→∞= − 6

k2m
∂

∂m
〈Vσ(z)Vλ(0)〉.

(4.16)
The terms not leading to mass-derivatives cancel, and only the mass-derivative of the vector
two-point function determines the large-k2 asymptotics of the forward LbL amplitude.
Thus we have reproduced the very first term in eq. (4.5). Acting on both sides of eq. (4.16)
with eq. (4.8) leads to the first term in eq. (4.9) (with nf = 1 and Qf = 1).

The leading-order calculation above is equally valid for the QED as for the QCD four-
point function. In the pure QED context, one easily verifies with the help of eqs. (A.14)
and (A.15) that the textbook O(e2) mass counterterm removes the log(Λ) term in Π4pt
predicted by the OPE. We have thus verified eq. (4.9) in the pure QED case: given that
Πe2(Q2) given in eq. (A.16) only depends on Q2/m2, the effect of inserting the trace
anomaly, proportional to (2Q2 ∂

∂Q2 +m ∂
∂m), would cancel.

4.2 Cottingham-like formula for the isovector contribution to HVP

Starting from eq. (4.5) with

V (1)
ρ = V (2)

ρ := 1
2(ūγρu− d̄γρd) (4.17)

the isovector component of the e.m. current, the same steps lead to the analogue of eq. (4.9),
with Πe2 now replaced by the isovector contribution Π33

e2 (Q2) to the leading HVP, and
Πγγ33

4pt (Q2,Λ) the corresponding QED correction to that contribution. The same steps once
again could be taken with the charged isovector currents

V (1)
ρ := 1√

2
ūγρd, V (2)

ρ := 1√
2
d̄γρu, (4.18)

which leads to the quantities Π−+
e2 (Q2) and its QED correction Πγγ−+

4pt (Q2,Λ). Taking the
difference of eq. (4.5) obtained once with the choice of currents from eq. (4.17) and once with
the choice of eq. (4.18), one finds that all terms on the right-hand side cancel. This is clear
for the contribution from the insertion of isoscalar operators, whose correlation function is
identical with two members of the same isospin multiplet. For the isovector mass insertion
(ūu − d̄d), G-parity ensures that this insertion vanishes separately in the neutral and in
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Figure 5. π0-exchange contribution to the VP via Cottingham-like formula.

the charged isovector channel. In other words, all counterterms from the action cancel in
this difference,5 as has been noted in ref. [75], which contains an exploratory lattice-QCD
calculation of this quantity. However, care must be taken of the fact that, unlike the cases
considered so far, the currents of eq. (4.18) are not gauge invariant with respect to QED.
Therefore this case requires further study. We note that, in the radiative corrections to the
leptonic decay of a charged pion [76], the e.m. correction to a charged-current correlator
represents one of several contributions.

Other flavor cases may be of interest, in particular the correlator between the isovector
and the isoscalar components of the photon, which vanishes in isospin-symmetric QCD in
the absence of quark electric charges. In this case, the action counterterms do not vanish
altogether, though only the isovector mass insertion (ūu− d̄d) contributes in the analogue
of eq. (4.9).

5 The π0-exchange contribution

In this section, our goal is to present the form of the π0-exchange contribution to the
forward HLbL amplitudeM, cf. figure 5, since it is the longest-range contribution. As in
the previous section, we work in Euclidean space. We define the Fourier transform of the
four-point function of this current as in eq. (4.1) and the forward amplitude is obtained as
in eq. (4.2). The O(e4) contribution to the polarization tensor with a regularized internal
photon propagator then reads

Π4pt;µλ(q,Λ) = −e
4

2

∫
d4k

(2π)4

[ 1
k2

]
Λ

Πµσσλ(q, k,−k) = (qµqλ − δµλq2) Π4pt(q2,Λ). (5.1)

For the π0-exchange contribution, proportional to the square of its transition form
factor F , we have

Πµσσλ(q, k,−k) = −εµσαβ εσλγδ qα kβ kγ qδ F(−q2,−k2)2 (5.2)

×
[ 1

(q + k)2 +m2
π

+ 1
(q − k)2 +m2

π

]
.

We perform the angular integration by using the Gegenbauer polynomial expansion of
propagators (see for instance [77]), and the final expression is

Π4pt(q2,Λ) = −e4

16π2|q|

∫ ∞
0

d|k| |k|4
[ 1
k2

]
Λ
F(−q2,−k2)2 Zmπ|q|,|k|

(
1− 1

3(Zmπ|q|,|k|)
2
)
, (5.3)

Zm|q|,|k| = 1
2|q||k|

(
q2 + k2 +m2 −

√
(q2 + k2 +m2)2 − 4q2k2

)
. (5.4)

5A very similar observation was already made in the case of the pion e.m. mass splitting in ref. [30].
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This expression, once inserted into eq. (3.6), can be viewed as the VP analogue of the
Jegerlehner-Nyffeler relation for the π0 contribution to HLbL scattering in the muon (g −
2) [78, 79]. In the present case, the kinematics are simpler, and correspondingly ∆aπ0

µ takes
the form of a two- rather than three-dimensional integral for a yet to be specified transition
form factor F . The unsubtracted VP is UV-finite for fixed Λ, while the subtracted VP
Π4pt(q2,Λ) remains UV-finite for Λ→∞, unlike in the full QCD case, as we have seen in
section 4, when short-distance contributions from quarks are taken into account.

As an example, for the VMD parameterization of the transition form factor,

F(−q2
1,−q2

2) = F(0, 0)
(1 + q2

1/m
2
V )(1 + q2

2/m
2
V )
, (5.5)

one obtains, near the chiral limit, the singular behaviour

lim
Λ→∞

∂Π4pt
∂Q2 (Q2 = 0,Λ) = α2

6 F(0, 0)2
[
5 + log

(
m2
V

m2
π

)
+ O(m2

π/m
2
V )
]
. (5.6)

For a pion mass which is still heavy relative to the muon mass, the contribution reads ∆aµ '
αm2

µ

3π Π′4pt(0). Parametrically, this contribution behaves similarly to the π0 contribution to
the HLbL contribution to aµ [51, 80], except that in the latter case the chiral logarithm
enters quadratically.

Numerically, with F(0, 0) = (4π2fπ)−1 and fπ = 92.4MeV, mV = 0.77549GeV, and
the physical π0 mass one obtains from eq. (5.3) with the QED kernel (3.6) the following
contribution to aµ,

∆aπ0
µ = 0.370× 10−10. (5.7)

This result agrees with the value given in [51]. We note that the result is more than an order
of magnitude smaller than the contribution of the e+e− → π0γ channel in the dispersive
representation of aVP

µ ,6 however the quantity ∆aπ0
µ computed here is not precisely the

same. We finally remark that the master relation eq. (5.3) applies equally well to the other
pseudoscalar mesons, notably the η and η′.

6 Electromagnetic correction to the HVP in lattice QCD: a computa-
tional strategy

The general structure of eq. (2.1) also applies to the calculation of the isospin-breaking
contribution to the leading HVP Πe2(Q2) (from QED and strong isospin breaking) in
lattice regularization, in which case the inverse lattice spacing 1/a plays the role of the UV
cutoff. To be more specific, we note that lattice QCD admits (Nf +1) bare parameters, i.e.,
the SU(3) gauge coupling and the Nf quark masses, which we assemble into a vector ~b lat.
When correcting the isosymmetric theory for isospin breaking, the bare parameters must
be readjusted. The shifts δblat

i in the bare parameters are determined by requiring that the
6The vastly different size of the result of ref. [51] as compared to the e+e− → π0γ channel contribution

was pointed out to one of us in 2016 by Andreas Nyffeler. See also the recent ref. [81], appendix D.
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theory with isospin breaking reproduces (Nf + 1) suitable experimental observables [30];
typically, the masses of hadrons which are stable in the absence of weak interactions,

Mphys
h = M iso

h +M lat
4pt,h(a; 0) +

Nf+1∑
i=1

J lat
h

(i) δblat
i (h = 1, . . . , Nf + 1), (6.1)

where Mphys
h is the experimental hadron mass, M iso

h is its value at the chosen expansion
point in isosymmetric QCD, M lat

4pt,h(a;Mγ) is the O(e2) e.m. contribution computed with
(in general) a photon mass Mγ and J lat

h
(i) ≡ ∂Mh/∂blat

i = 〈h|O(i)
lat|h〉 is given by the

forward matrix element of the operator conjugate to parameter blat
i . Thus, given a lattice

calculation of ~M iso, ~M lat
4pt(a; 0) and the matrix J lat, the vector δ~b lat is obtained by solving

a linear system.
We are now in a position to write the lattice-regularization analogue of eq. (2.1) for

the subtracted HVP as

∆Π(Q2) = lim
a→0

(
Πlat

4pt(Q2, a; 0) + Πlat
ct (Q2, a)

)
, (6.2)

where the counterterm has the form

Πlat
ct (Q2, a) =

Nf+1∑
i=1

δblat
i

∂

∂blat
i

Πe2(Q2), (6.3)

and Πlat
4pt(Q2, a;Mγ) denotes the e.m. four-point function contribution to the HVP, com-

puted (in general) with an internal photon of mass Mγ . Massive QED has previously been
used to control photon zero modes in finite volume, with the physical limit Mγ → 0 taken
after extrapolating to infinite volume [40, 48, 82, 83]; our approach, by contrast, is to keep
Λ = Mγ fixed and use it for separating long-range contributions from UV-divergent ones.
Based on the identity of eq. (1.1) for the photon propagator with a fixed Λ ∼ 400 MeV, we
propose to perform the following decompositions,7

Πlat
4pt(Q2, a; 0) = Π4pt(Q2,Λ = Mγ) + Πlat

4pt(Q2, a;Mγ), (6.4)
~M lat

4pt(a; 0) = ~M4pt(Λ = Mγ) + ~M lat
4pt(a;Mγ). (6.5)

Up to the subtraction at Q2 = 0, the function Π4pt(Q2,Λ) is the same as in eq. (2.1). Since
Λ plays the role of the Pauli-Villars UV regularization scale, the continuum limit a→ 0 can
be taken for this quantity. Similarly, ~M4pt(Λ) represents the e.m. hadron-mass corrections
computed with the Pauli-Villars regulated photon propagator. The continuum limit can
also be taken in this case, since the same OPE, as reviewed in section 4, determines the
asymptotic behaviour of the forward Compton amplitude on hadron h [74].

Given a choice ofMγ , each term on the right-hand side of eq. (6.4) is affected by rather
different systematics on the lattice and is meant to be evaluated separately. The same
observation applies to the two terms on the right-hand side of eq. (6.5). The UV-finite part
Π4pt(Q2,Λ) of eq. (6.4) receives long-distance contributions due to the long-range photon

7Eq. (6.4) and eq. (6.5) hold up to corrections suppressed by one or two powers of the lattice spacing.
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propagator. A coordinate-space representation free of power-law finite-volume effects is
presented below in subsection 6.1. The result can be compared to an evaluation based on
our Cottingham-like formula, eq. (2.10) and eq. (2.11). For the second term of eq. (6.4),
one possible expression in the time-momentum representation [63] is

Πlat
4pt(Q2, a;Mγ) = −e

4

2
a12

L3L0

∑
z0>0

(
z2

0 −
4
Q2 sin2 |Q|z0

2

)∑
k

Glat
µν(k) (6.6)

〈∑
x,y

eik(x−y)∑
~z

V em
σ (z)V em

ν (y)V em
µ (x)V em

λ (0) + tadpoles
〉
,

where V em
ν (y) and V em

µ (x) are discretized as conserved currents and the simplest form of
the photon propagator (in Feynman gauge) is

Glat
µν(k) = δµν

k̂2 +M2
γ

, k̂2 ≡ 4
a2

3∑
µ=0

sin2 akµ
2 , (6.7)

and the tadpole terms ensure the transversality of the four-point function with respect to
contracting it with k̂µ or k̂ν . Similarly, ~M lat

4pt(a;Mγ) can be determined by well-established
methods where the (now massive) photon is treated as part of the finite-volume lattice field
theory.

We now briefly discuss how to compute the hadronic mass shifts ~M4pt(Λ) with a long-
range, but Pauli-Villars regulated photon propagator. As for Π4pt(Q2,Λ), it is possible to
avoid power-law effects in the volume [84] by using coordinate-space methods and, addi-
tionally, by explicitly correcting the elastic contribution of the forward Compton amplitude
for finite-volume effects. As a slight variation to the concrete proposal in [84], this correc-
tion could be done with the help of a separate calculation of the e.m. form factor(s) of the
hadron whose mass correction is being computed. These methods could also be applied to
the difference ofM4pt,h(Λ) between proton and neutron, a quantity that could be compared
to predictions based on the original Cottingham formula.

We remark that the currently most frequently used formulation of lattice QCD cou-
pled to photons consists in removing the photon zero-mode in every time-slice [85]. The
corresponding finite-size effects on the HVP have recently been investigated and found
to be parametrically of order 1/L3, and numerically small in the framework of scalar
QED [86]. Another recent investigation provides a systematic analysis of various finite-size
effects beyond the pointlike approximation of hadrons, in particular of pseudoscalar mesons
masses [87] (see also references therein). As an alternative method, first results (primarily
on hadron masses) based on simulating QCD+QED with C∗ boundary conditions have
recently been presented [88].

In conclusion, while the numerical practicability of the presented method remains to
be demonstrated, we have established that it is possible to avoid power-law finite-volume
effects altogether in computing ∆Π(Q2) on the lattice. How large the discretization errors
on this quantity are at finite lattice spacing with the method proposed above will need to
be explored in practice. Here we remark that the Pauli-Villars regularization of the photon
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propagator is only one of many posssible choices. For instance, with the decomposition

1
k2 =

( 1
k2 −Gsub(k2, ζ,Λ)

)
+Gsub(k2, ζ,Λ), (6.8)

Gsub(k2, ζ,Λ) = 1
1− ζ

( 1
k2 + ζΛ2 −

ζ

k2 + Λ2

)
, 0 < ζ < 1, (6.9)

which amounts to a ‘double Pauli-Villars’ regularization of the photon propagator, the
same strategy as described above can be carried out, now with the expression in brackets
in eq. (6.8) falling off as fast as 1/k6 at large k2.

6.1 Coordinate-space representation of Π4pt(Q2,Λ) free of power-law finite-
size effects

A Euclidean coordinate-space expression for the subtracted HVP is

Π(Q2) =
∫
z
Hλσ(z) Π̃σλ(z) , (6.10)

where the leading contribution is Π̃e2;σλ(z) = e2 〈V em
σ (z)V em

λ (0)〉, the relevant (Q-depen-
dent) coordinate-space kernel Hλσ(z) was derived in [89] (section II.B.2) and we have
abridged

∫
z ≡

∫
d4z. Expanding a QCD correlation function to second order in the e.m.

coupling leads to the insertion of the product of two e.m. currents, whose relative positions
are weighted by the internal photon propagator. Thus, using Feynman gauge for the latter,
we arrive at the expression

Π4pt(Q2,Λ) = −e
4

2 δµν
∫
x,y,z

Hλσ(z)
[
G0(y − x)

]
Λ

〈
V em
σ (z)V em

ν (y)V em
µ (x)V em

λ (0)
〉
, (6.11)

for the regulated contribution to the subtracted HVP. The Pauli-Villars regulated photon
propagator in position space reads[

G0(x)
]

Λ
= 1

4π2x2 −
ΛK1(Λ|x|)

4π2|x|
, (6.12)

which is only logarithmically divergent for x2 → 0. Here K1 is the modified Bessel function
of the second kind. We note a close analogy of expression (6.11) with the master relation
used for the HLbL contribution to the muon (g− 2) in refs. [35, 90, 91]. Similarly, aVP

µ can
be obtained from eq. (6.11) by replacing the kernel Hλσ by the appropriate one given in
section II.B.3 of ref. [89]. The main feature of our proposal is that no IR-regularization of
the photon propagator is needed. Thus finite-size effects are expected to be on the order
of exp(−mπL/2), as in the case of the HLbL contribution [90].

6.2 Computing aHVP
µ : π0-exchange contribution to the coordinate-space in-

tegrand

By Fourier-transforming the polarization tensor associated with eq. (5.3) (see eq. (5.1)), one
obtains the O(e4) contribution Π̃4pt;σλ(z,Λ). After insertion into eq. (6.10) and contraction
of the indices, the integrand is a scalar function of |z|. We illustrate the integrand of this
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Figure 6. Comparison between the normalized integrands from different representations of the
π0-exchange contribution to aµ for Λ = 3mµ (left panel) and Λ = 200mµ (right panel), where
‘kerO’ is obtained with the original coordinate-space kernel, ‘kerM6’ with improved kernel given
in B, with the parameter M set to 6 in eq. (B.4). The integrands are normalized such that the area
under the curves equals unity.

last scalar integral in the following. Alternatively to the proposed position-space approach,
one can reach the widely used time-momentum representation (TMR) [63] by Fourier-
transforming the polarization tensor at vanishing spatial momentum only with respect
to q0.

Choosing the same parameters as in section 5 for the VMD parameterisation of the
transition form factor, we obtain the integrands as functions of R ≡ |z| (and R ≡ z0 for
the TMR case) as shown in figure 6, where the results with the original [89] position-
space kernel (kerO) and the TMR are compared, calculated in the continuum and infinite
volume at two different Pauli-Villars masses Λ = 3mµ and 200mµ; recall that the π0-
exchange contribution by itself remains finite as Λ→∞. Both integrands are rather long-
range, an observation which implies a certain difficulty for lattice calculations if the O(e4)
contribution is to be computed with good relative precision. We remark that the integrand
displayed in figure 6 corresponds to the sum of all Wick contractions contributing to the
four-point function of the e.m. current, but, using the results in appendix A of ref. [35], it
would be fairly straightforward to adapt the prediction to individual Wick contractions of
the quark fields.

As a consequence of the Ward-Identity of the vector current, a term ∂λ [zσF (|z|)] can
be added to the position-space kernel Hλσ(z) without changing the integrated result of
eq. (6.10) in infinite volume [92]. With a judiciously chosen subtraction, one can make the
z-integrand in eq. (6.11) more peaked in the small-|z| region. As in practice, a calculation
on the lattice is limited by the degrading signal-to-noise ratio when the arguments of the
correlator are far apart in position-space, the possibility of reshaping the integrand makes
the position-space representation appealing. Such a technique has also been used for lattice
determinations of the HLbL scattering contribution to aµ [90, 93]. Figure 6 thus also shows
the result of improving the kernel (kerM6) to make the integrand shorter-range; details of
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its construction are given in B. For the Λ = 3mµ case, the partially-integrated aµ(R)
obtained with kerM6 already reaches about 70% of its final value aµ(∞) at R = 2 fm, but
only about 50% with the TMR. For Λ = 200mµ, the benefit becomes even more apparent:
95% with kerM6 and merely about 65% with the TMR. We thus expect that the position-
space method with an improved kernel should offer a good opportunity to compute the
e.m. correction to aHVP

µ on the lattice, with better controlled finite-volume effects.

7 Conclusion

We have written a Cottingham-like formula for the leading QED correction to the HVP,
mainly in terms of the traced forward HLbL scattering amplitude. While the latter is
a physical amplitude, when contracting an incoming with an outgoing photon line, the
corresponding momentum integral diverges logarithmically in the UV. The required coun-
terterms that remove that divergence have been worked out in section 4 with the help of
the OPE: they involve the derivatives with respect to the quark masses and the virtuality
of the leading HVP. The finite part of the counterterms, however, depends on the precise
choice of the point in the parameter-space of isospin-symmetric QCD around which the
isospin-breaking effects are computed.

At present, it appears that the most promising application of the Cottingham-like for-
mula is to implement it with a finite regulator on the order of a few hundred MeV. The
regularization amounts to replacing the internal photon line by a Pauli-Villars regulated
propagator, or any other convenient form of propagator regularization. The leading QED
correction to the HVP with such a regularized photon propagator in place can be computed
in lattice QCD using coordinate-space techniques similar to the calculation of the HLbL
contribution to the muon (g − 2), without incurring power-law finite-size effects. When
working on very large lattices, as realized in master-field simulations [94, 95], these tech-
niques are particularly natural [96]. Irrespective of whether one uses this new approach or
the more established method involving the removal of the spatial zero-mode of the pho-
ton, a direct comparison becomes possible between the lattice-QCD calculation and the
prediction based on the Cottingham-like formula. For the latter, we recall that the traced
forward HLbL amplitude can be represented dispersively in terms of the γ∗γ∗ → hadrons
fusion cross-section, up to one subtraction term. The complementary part, i.e. the second
term in eq. (1.1), involves a massive photon propagator in the case of the Pauli-Villars
regularization choice. For this part, the lattice provides a natural UV-regularization, and a
prescription for handling the photon zero mode on a finite lattice is then no longer needed,
owing to the photon mass.

Finally, in the context of the original Cottingham formula, it could be interesting
to compute the e.m. contribution to the proton-neutron mass difference with a regularized
photon propagator, which could then be compared in detail and without scheme uncertainty
to predictions based on the (rather mature) dispersive treatment of the forward Compton
amplitude (see [56] and refs. therein).
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A Applying the Cottingham-like formula to the QED vacuum polariza-
tion

Here we give more details on how the two-loop QED contribution to vacuum polarization is
reproduced via the Cottingham-like formula. We begin with eq. (2.11), which by a variable
change, ν = KQx, is cast into:

Π4pt(Q2,Λ) = 1
3(2π)3Q2

∞∫
0

dK2
1∫

0

dx
√

1− x2M(KQx, K2, Q2), (A.1)

where Λ is the scale regularizing the integral over K2 in the ultraviolet. We keep the regu-
larization implicit throughout this appendix. Substituting the dispersive representation of
the LbL amplitude and the optical theorem, we obtain

Π4pt(Q2,Λ) = 1
3(2π)3Q2

∞∫
0

dK2
[
π

4M(ν̄,K2, Q2)

+
∞∫

νthr.

dν

( 2
ν +
√
X
− ν

ν2 − ν̄2

)√
X σ(ν,K2, Q2)

]
, (A.2)

where X = ν2−Q2K2, and ν̄ is the subtraction point (below we use ν̄ = 0 and ν̄ = KQ and
verify that the results are equivalent). We next provide the ingredients needed to evaluate
the vacuum polarization to two-loops in QED, including the necessary counterterms.

A.1 Polarized γγ fusion cross sections

We start with the tree-level cross sections for the QED process γ∗γ∗ → `` (` denote spinor
QED fermions) with polarized virtual photons. The conventions are the same as in refs. [58]
and [97]:

L ≡ log
(

1 +
√
a√

1− a

)
, a ≡ X

ν2

(
1− 4m2

s

)
, X = ν2 −Q2K2, (A.3)
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where s = (k + q)2 = 2ν −K2 −Q2, ν = k · q; Q2 = −q2 and K2 = −k2 are the spacelike
photon virtualities. The threshold energy in this case is given by νthr. = 2m2+1/2(K2+Q2).
The cross sections corresponding to the fusion of two polarized photons, either transverse
(T ) or longitudinal (L), read:

σTT (ν,Q2,K2) = 1
2
(
σ‖ + σ⊥

)
= α2π

2
s2ν3

X3

{
√
a

[
− 4

(
1− X

sν

)2
− (1− a) + K2Q2

ν2

(
2− 1

(1− a)
4X2

s2ν2

)]

+
[
3− a2 + 2

(
1− 2X

sν

)2
− 2K2Q2

ν2 (1 + a)
]
L

}
. (A.4)

σLT (ν,Q2,K2) = σTL(ν,K2, Q2)

= α2πQ2 s

νX2

{[(
ν −K2

)2
(
− 2(1− a)− (3− a)Q

2K2

X

)
+ 2νK2(1 + a)

−K4(3 + a)
]
L+
√
a

[ (
ν −K2

)2
(

2 + 3Q2K2

X

)
− 2νK2 +K4 3− a

1− a

]}
.

(A.5)

σLL(ν,Q2,K2) = 2α2πQ2K2 s2

νX2

{
√
a

[
− 2− 3− 2a

1− a
Q2K2

X

](
2 + 3Q2K2

X

)
L

}
. (A.6)

The optical theorem connects the absorptive cross sections with the imaginary part of
the corresponding forward LbL amplitudes,

ImMPP ′ = 2
√
X σPP ′ , P, P ′ ∈ {L, T}. (A.7)

The total cross section requied in the Cottingham formula is given by8

σ = 4σTT − 2σLT − 2σTL + σLL = 8πα2

ν

{
2ν
√
X

4 +K2 +Q2 − 2ν
K2 +Q2 − 2ν

×2ν[K2Q2 + 2 + ν]−K2[K2(Q2 − 1) + 2(1 + ν)]−Q2[Q2(K2 − 1) + 2(1 + ν)]
K2Q2(4− 2ν +K2 +Q2)− 4ν2

+
[
(K2 +Q2 − ν)2 + ν2 + 4(ν − 1)

]
log

1 +
√

X
ν2

4+K2+Q2−2ν
K2+Q2−2ν√

1− X
ν2

4+K2+Q2−2ν
K2+Q2−2ν

}
. (A.8)

8Hereafter, until the end of A.2, we set m = 1, without loss of generality.
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A.2 The one-loop LbL amplitudes and subtraction functions

The forward one-loop LbL amplitude has been derived with the help of Package-X [98, 99]
and is given by:

M(ν,K2,Q2)

= 16α2
(

6−
{2log

[
1
2Q
(√

Q2+4+Q
)

+1
]

√
Q2+4

×
(
−4ν2Q2

[(
K2−2

)(
K2+1

)
Q4+

(
K2+2

)(
7K2−2

)
Q2+6K4+52K2+16

]
+K2Q4

(
K2+Q2+4

)2 [
K2

(
Q2+4

)
−2Q2+4

]
+96ν4

)/(
K4Q5

(
K2+Q2+4

)2

+16ν4Q−4K2ν2Q3
[
K2

(
Q2+2

)
+2
(
Q2+4

)])
+
{
K↔Q

}}

+
{2
√

1+ 4
K2+2ν+Q2 log

[
1
2

(√
(K2+2ν+Q2)(K2+2ν+Q2+4)+K2+2ν+Q2+2

)]
K2Q2 (K2+Q2+2ν+4)−4ν2

×
(
K2Q2(K2+Q2+2ν)−2(K2+Q2)(ν−1)−(K4+Q4)−2ν(ν+2)

)
+(K2+Q2)2+2ν(K2+Q2)+2ν(ν−2)−4

ν
C0
(
−K2,−Q2,−K2−2ν−Q2;1,1,1

)
+
{
ν→−ν

}})
, (A.9)

where C0(p2
1, p

2
2, (p1+p2)2;m2

1,m
2
2,m

2
3) is the scalar one-loop integral in the LoopTools [100]

notation. The expressions for the subtraction function for the cases of ν̄ = 0 and ν̄ = KQ

are, respectively:

M(0,K2, Q2) = −32α2
{
Q6 +Q4 (3K2 + 2

)
+ 2Q2 (K4 + 7K2 − 4

)
+ 4K2(2K2 + 5)

K2Q
√
Q2 + 4 (K2 +Q2 + 4)

× log
[1

2Q
(√

Q2 + 4 +Q

)
+ 1

]
+K6 +K4 (3Q2 + 2

)
+ 2K2 (Q4 + 7Q2 − 4

)
+ 4Q2 (2Q2 + 5

)
Q2K

√
K2 + 4 (K2 +Q2 + 4)

× log
[1

2K
(√

K2 + 4 +K
)

+ 1
]

−Q
6 +K6 − 2(Q4 +K4) + 5Q2K2(Q2 +K2)

K2Q2
√

(K2 +Q2) (K2 +Q2 + 4)

× log
[1

2

(
K2 +

√
(K2 +Q2) (K2 +Q2 + 4) +Q2 + 2

)]

−2
(
K2 +Q2 − 2

)
C0
(
−Q2,−K2,−K2 −Q2; 1, 1, 1

)
− 3

}
, (A.10)
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M(KQ,K2, Q2) = −16α2
{
− 6 +

(
K2 +Q2 − 2

) [
(K +Q)2 + 4

]3/2
K2Q2(K +Q)

× log
[1

2(K +Q)
(√

(K +Q)2 + 4 +K +Q

)
+ 1

]

+
(
K2 +Q2 − 2

) [
(K −Q)2 + 4

]3/2
K2Q2|K −Q|

× log
[1

2 |K −Q|
(
|K −Q|+

√
(K −Q)2 + 4

)
+ 1

]
−2

[(
K4 + 2K2 + 28

)
Q2 +K6 + 6K4 − 32

]
KQ2

√
K2 + 4 (K2 −Q2)

× log
[1

2K
(√

K2 + 4 +K
)

+ 1
]

−2
[(
Q4 + 2Q2 + 28

)
K2 +Q6 + 6Q4 − 32

]
K2Q

√
Q2 + 4 (Q2 −K2)

× log
[1

2Q
(√

Q2 + 4 +Q

)
+ 1

]}
. (A.11)

The vacuum polarization at Q2 = 0, needed for renormalization, is, in general, given by:

Π4pt(0,Λ) = 1
3(2π)3

∞∫
0

dK2
∫ 1

0
dx
√

1− x2 M(KQx,K2, Q2)
Q2

∣∣∣
Q2=0

. (A.12)

In the case of two-loop QED, we obtain:

Π4pt(0,Λ) = − α2

4π2

∞∫
0

dK2

12
(
K2 + 2

)
log

[
1
2K

(√
K2 + 4 +K

)
+ 1

]
K3 (K2 + 4)5/2

−
(
K2 + 2

)2 + 8
K2 (K2 + 4)2

}
, (A.13)

which is finite upon any regularization set by Λ.

A.3 QED counterterm in the Pauli-Villars regularization

The counterterm can be obtained in the following way

Πct(q2,Λ) = − [mδ2 − δm] ∂

∂m
Πe2(q2), (A.14)

where in the on-shell renormalization scheme9 and in Minkowski-space notation

mδ2 − δm = Σ2(p/ = m) = δm = 3m α

2π

[1
4 + log Λ

m

]
, (A.15)

Πe2(q2) = −2α
π

∫ 1

0
dx(1− x)x log m2

m2 − x(1− x)q2 , (A.16)

leading to eq. (3.2).
9See ref. [101], whose notation we borrow, in particular their eqs. (7.28) and (7.91).

– 22 –



J
H
E
P
0
3
(
2
0
2
3
)
1
9
4

B Properties of the coordinate-space kernel for aµ

B.1 A modified kernel based on the ρ-meson exchange

In the coordinate-space formulation of eq. (6.10), as a consequence of the conservation of
the e.m. current one can subtract a total derivative [92]

∂λ [zσF (|z|)] = δλσF (|z|) + zλzσ
|z|

F ′(|z|) , (B.1)

from the original [89] QED kernel Hλσ(z), without changing the final integrated result.
The smooth function F is arbitrary, as long as it does not generate boundary terms upon
integrating by parts. More precisely, the kernel Hλσ(z) has the following structure

Hλσ(z) = −δλσH1(|z|) + zλzσ
|z|2
H2(|z|) . (B.2)

After the subtraction, the functions Hi, henceforth referred to as form factors, are modi-
fied to

H̄1(r) = H1(r)− F (r) , H̄2(r) = H2(r) + rF ′(r) . (B.3)

As the coordinate-space formulation for aµ is obtained by a simple substitution of the
e.m. kernel appearing in eqs. (6.10) and (6.11), we will not introduce new notations in
the following discussion. Throughout this appendix, the e.m. kernel and form factors refer
implicitly to the ones related to aµ.

To avoid the long-distance region where lattice calculations perform less well, we aim
at reshaping the integral representation of aµ into a shorter-ranged one by introducing a
phyiscally motivated subtraction to the e.m. kernel. In the leading-order HVP calculation,
the contribution of the ρ-meson is dominates over a large distance interval. The simplest
way to model the ρ-meson is to represent it as a δ-function in the spectral function (see
eq. (67) of ref. [89]). Based on the behaviour of the correlator at large separations in this
simple model, we can choose a one-parameter subtraction function

FM (r) = H1(r)
(
a+ b

1 +mµr
+ c

1 + (mµr)2

)
, (B.4)

where
a = 1 , b = 12

5M , c = 750 + 1772M
125M2 . (B.5)

The subtraction term eq. (B.4) preserves the behavior of the kernel near the origin and
at long distances. This subtraction ensures that the ρ-meson contribution from our model
with a mass of M times that of the muon falls at least faster then re−Mmµr log(mµr) at
large r.

B.2 Approximants for the form factors

The form factors require evaluating Meijer’s G-functions, which are in general computa-
tionally costly. Fortunately, as the asymptotic behaviors of the form factors are known,
one can efficiently approximate them according to the size of the argument. For the typical
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size of the boxes that we include in lattice calculations to approach the physical point, the
maximal separation between the two vector-current insertion is ∼ 6 fm. Eventually, one
would also want to have good control over the wrap-around effects of light intermediate
states due to periodic boundary conditions. Accounting for these considerations, useful
approximants of the form factors should be accurate up to about a distance of mµr ∼ 13 .
The approximants that we choose are of the form

Happr.
i (r) = 8α2

3m2
µ

f̄i(r)r̂4 , where r̂ ≡ mµr . (B.6)

For r̂ ≤ 2, we use

f̄i(r) =
6∑
j=0

a
(i)
j+1

(
r̂

2

)2j
+

5∑
j=0

b
(i)
j+1

(
r̂

2

)2j+2
log

(
r̂

2

)
, (B.7)

and for 2 ≤ r̂ ≤ 13, rational approximations are used:

f̄i(r) =
∑4
j=0 p

(i)
j+1r̂

j

1 +
∑4
j=1 q

(i)
j+1r̂

j
, (B.8)

where the coefficients a(1,2)
j , b(1,2)

j , p(1,2)
j and q(1,2)

j are tabulated in tables 1–4.
For completeness, it is convenient to have a similar type of approximant for the deriva-

tive of the form factor H1, as it is required in the implementation of the subtracted kernel
introduced in the previous subsection. To this end, we consider the approximant

[
d

dr

(
r̂−4H1(r)

)]appr.
= 8α2

3m2
µ

f̄3(r) , (B.9)

where, for r̂ ≤ 2

f̄3(r) =
6∑
i=0

[(
a

(3)
i+1 + b

(3)
i+1 log

(
r̂

2

))(
r̂

2

)2i+1
]
, (B.10)

and for 2 ≤ r̂ ≤ 13,

f̄3(r) =
∑4
i=0 p

(3)
i+1r̂

i

1 +
∑4
i=1 q

(3)
i+1r̂

i
, (B.11)

where the coefficients a(3)
j , b(3)

j , p(3)
j and q(3)

j are tabulated in tables 1–4.
In the considered region r̂ ∈ [0, 13], these approximations are accurate up to a relative

precision of 5× 10−6.
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j a
(1)
j a

(2)
j a

(3)
j

1 0.000759549 0.000434028 0.0000670547
2 −0.000128258 −0.0000710376 −0.000128956
3 −0.0000943174 −0.0000656352 −0.0000493386
4 −0.0000195809 −0.0000147283 −8.51914× 10−6

5 −2.37199× 10−6 −1.87175× 10−6 −9.14652× 10−7

6 −1.97309× 10−7 −1.60997× 10−7 −6.89663× 10−8

7 −1.21714× 10−8 −1.01821× 10−8

Table 1. The coefficients a(i)
j for eq. (B.7) and eq. (B.10).

j b
(1)
j b

(2)
j b

(3)
j

1 0.000390625 0.000260417 0.000390625
2 0.000119358 0.0000868056 0.000238715
3 0.0000188079 0.0000144676 0.0000564236
4 1.93762× 10−6 1.5501× 10−6 7.7505× 10−6

5 1.43784× 10−7 1.1841× 10−7 7.1892× 10−7

6 8.12427× 10−9 6.84149× 10−9 4.87456× 10−8

Table 2. The coefficients b(i)
j for eq. (B.7) and eq. (B.10).

i p
(1)
i p

(2)
i p

(3)
i

1 0.000758753 0.000428977 −0.0000396871
2 0.00104081 0.00071103 −0.000390356
3 0.000126642 0.0000476469 −3.31526× 10−6

4 −1.2882× 10−8 −3.88032× 10−8 9.09887× 10−8

5 2.70969× 10−10 4.99942× 10−10 −1.18082× 10−9

Table 3. The coefficients p(i)
j for eq. (B.8) and eq. (B.11).

i q
(1)
i q

(2)
i q

(3)
i

2 1.39604 1.63492 1.43041
3 0.4842 0.534896 0.518476
4 0.0867795 0.0993416 0.102334
5 0.00487635 0.00444518 0.00905763

Table 4. The coefficients q(i)
j for eq. (B.8) and eq. (B.11).
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