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We investigate several aspects of chiral symmetry in QCD at a temperature of T ¼ 128 MeV. The study
is based on a 24 × 963 lattice-QCD ensemble with OðaÞ-improved Wilson quarks and physical up, down
and strange quark masses. The pion quasiparticle turns out to be significantly lighter than the zero-
temperature pion mass, even though the corresponding static correlation length is shorter. We perform a
quantitative comparison of our findings to predictions of chiral perturbation theory. Among several order
parameters for chiral symmetry restoration, we compute the difference of the vector- and axial-vector time-
dependent correlators and find it to be reduced by a factor ∼2=3 as compared to its vacuum counterpart.
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I. INTRODUCTION

Quark matter under extreme conditions (high temper-
atures and densities) is interesting both from the exper-
imental and theoretical point of view. In the early Universe
[on a timescale of OðμsÞ], the strongly interacting con-
stituents (quarks and gluons) were in a hot and dense phase
called quark-gluon plasma (QGP). Heavy ion colliders
enable similar conditions to be reached in the lab. As a
result of its expansion, the universe gradually cooled down,
undergoing a phase transition to a hadronic phase in which
we now find ourselves. Note that at physical quark masses
the transition is actually a crossover characterized by a
pseudocritical temperature Tpc ¼ 156.5ð1.5Þ MeV [1]. In
the limit of massless quarks, the QCD Lagrangian has a
global symmetry in flavor space, SUðNfÞL × SUðNfÞR,
corresponding to two independent rotations of the left-
and right-handed components of the Dirac fields. This
symmetry is spontaneously broken to SUðNfÞV and should
be restored in the high-temperature phase (chiral symmetry
restoration). A nonvanishing value of the scalar den-
sity hψ̄ψiðTÞ characterizes the low-temperature phase

(0 ≤ T ≤ Tc ≈ 132 MeV [2]). On the contrary, hψ̄ψiðTÞ ¼
0 for T > Tc, indicating that chiral symmetry is restored.
Thus, the quark condensate hψ̄ψi is a true order parameter for
chiral symmetry breaking.Adirect consequence of a restored
chiral symmetry would be a coincidence of vector and axial-
vector spectral function (see Sec. V C).
Starting in the QCD vacuum, increasing the temperature

initially leads to a dilute gas of pions. As the temperature is
further increased, other hadron species also begin to
contribute. At the same time, one expects the excitations
of the medium to be quasiparticles with somewhat modified
properties as compared to the standard hadrons, which are
excitations of the vacuum. A natural starting point in the
investigation of the medium’s quasiparticles is to examine
the properties of the pion in the thermal environment [3,4].
The pion mass and the pion decay constant have been
studied to one loop in a thermal chiral perturbation theory
(ChPT) approach [5]. Additionally, the energy density, the
pressure and the quark condensate have been investigated
up to Oðp8Þ in a chiral expansion below the phase
transition [6]. In Ref. [7] the shift in the pion pole was
calculated as a function of temperature up to second order
in the density. Toublan [8] calculated also the pion decay
constant within thermal ChPT to two loops and additionally
examined the validity of the Gell-Mann-Oakes-Renner
(GOR) relation at finite temperature. Unfortunately, it is
unclear how far up in the temperature this expansion is
applicable, since the partition function is certainly no
longer dominated by the pions for T ≳ 100 MeV [3,6].
However, the Goldstone-boson nature of pions guarantees
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the existence of a divergent static correlation length for
vanishing quark masses [9].
In standard thermal ChPT, the quark mass as well as the

temperature are treated as small parameters, resulting in an
expansion around mq ¼ 0 and T ¼ 0. In Refs. [10,11],
however, Son and Stephanov investigated perturbations
only around mq ¼ 0, keeping the temperature T fixed to
any value in the chirally broken phase. Although an explicit
relation of parameters like the quark condensate and pion
decay constant to their T ¼ 0 counterparts is no longer
possible in this framework, the validity of their results is
extended to a regime where neither ChPT nor perturbative
QCD is usable. Since lattice simulations rely on the imagi-
nary-time formalism and due to the lack of Lorentz invari-
ance at finite temperature, extracting real-time observables
such as “polemasses” out of lattice quantities (e.g. Euclidean
correlators) is a nontrivial task. Nevertheless, within the
chiral effective theory approach of Son and Stephanov, the
real part of the dispersion relation of soft pions can be
obtained in terms of static Euclidean correlators. For the
Nf ¼ 2 case this has been done in Refs. [12,13].
The paper is structured as follows: In Sec. II we start with

the introduction of some basic definitions which have a key
role in the description of the pion quasiparticle.We continue
with the implementation of the lattice correlators, followed
by a brief description of the numerical setup. Our results,
divided into subsections, are presented in Sec. III. First we
extract the mass and decay constant of the screening pion
(Secs. III A and III B). Next, we determine the pion velocity
u and examine its dependence on a finite pion thermal width
ΓðTÞ (Secs. III C and III D). Subsequently, we reconstruct a
smeared and rescaled version of the axial spectral function
and compare our results with the literature (Secs. III E and
III F). Thereafter, we compare our lattice estimate for the
quark number susceptibility with the prediction from the
hadron resonance gas model (HRG) in Sec. IV. We also
investigate in that section the effect of a modified dispersion
relation for the pion in the HRG. Finally, we look at several
order parameters for chiral symmetry restoration in Sec. V
and give our conclusions in Sec. VI.

II. PRELIMINARIES

In this section we introduce the notation and some basic
definitions as well as the key quantities for the pion
quasiparticle that we will use throughout the paper.
Furthermore, the lattice implementation of the correlators
and the numerical setup are described briefly.

A. Definition of operators and correlation functions

The notation and conventions used in this work are
adapted from Ref. [12]. Our framework is the light-quark
sector of Euclideanized QCD on the space S1 ×R3, S1

denoting the Matsubara cycle of length β≡ 1=T. We de-

fine the pseudoscalar density, the vector current and the
axial-vector current as

PaðxÞ ¼ ψ̄ðxÞγ5
τa

2
ψðxÞ; Va

μðxÞ ¼ ψ̄ðxÞγμ
τa

2
ψðxÞ;

Aa
μðxÞ ¼ ψ̄ðxÞγμγ5

τa

2
ψðxÞ; ð1Þ

where a ∈ f1; 2; 3g is an adjoint SUð2Þisospin index, τa is a
Pauli matrix and ψðxÞ is a Dirac field flavor doublet. The
partially conserved axial current (PCAC) relation is an
operator identity that holds in Euclidean space when
inserted in expectation values. It relates the divergence
of the axial vector current Aa

μðxÞ to the pseudoscalar
density PaðxÞ,

∂μAa
μðxÞ ¼ 2mPCACPaðxÞ: ð2Þ

In the path integral formulation, this relation results from
performing a chiral rotation δaAψðxÞ ¼ τa

2
γ5ψðxÞ of the

fields (see Ref. [14]). Applying the pseudoscalar density
operator on both sides and taking the expectation value one
can solve for the bare PCAC quark mass,

mPCAC ¼ 1

2

∂μhAa
μðxÞPað0Þi

hPbðxÞPbð0Þi : ð3Þ

Since the PCAC relation is an operator identity, we are free
to choose the direction in which we define the quark mass.
In our thermal system, the spatial direction is four times
larger than the temporal one. As a consequence, measuring
along the spatial direction results in a longer plateau and
thus, smaller errors. Therefore, we will extract the PCAC
quark mass from the relation

mPCACðx3Þ¼
1

2

R
dx0d2x⊥he∂3Aa

3ðxÞPað0ÞiR
dx0d2x⊥hPbðxÞPbð0Þi ; x⊥¼ðx1;x2Þ:

ð4Þ

We introduce the static screening axial correlator,
given by

δabGs
Aðx3;TÞ

¼
Z

dx0d2x⊥hAa
3ðxÞAb

3ð0Þi ¼jx3j→∞
δab

f2πmπ

2
e−mπ jx3j; ð5Þ

where we have specified the asymptotic form of the
correlator, which defines the screening pion mass mπ

and decay constant fπ . Analogously, we define the follow-
ing static screening correlators:

δabGs
Pðx3; TÞ ¼

Z
dx0d2x⊥hPaðxÞPbð0Þi; ð6Þ

δabGs
APðx3; TÞ ¼

Z
dx0d2x⊥hAa

3ðxÞPbð0Þi: ð7Þ
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The PCAC relation [see Eq. (2)] implies the relation

Gs
Pðx3; TÞ ¼ −

1

4m2
PCAC

∂
2

∂x23
Gs

Aðx3; TÞ: ð8Þ

In order to probe the dynamical properties of the thermal
system, we define time-dependent correlators, projected to
a definite spatial momentum,

δabGA0
ðx0; TÞ ¼

Z
d3xhAa

0ðxÞAb
0ð0Þi; ð9Þ

δabGPðx0; TÞ ¼
Z

d3xhPaðxÞPbð0Þi; ð10Þ

δabGPA0
ðx0; TÞ ¼

Z
d3xhPaðxÞAb

0ð0Þi

¼ −
Z

d3xhAa
0ðxÞPbð0Þi; ð11Þ

δabGAðx0;p;TÞ¼−
1

3

X3
i¼1

Z
d3xe−ip·xhAa

i ðxÞAb
i ð0Þi; ð12Þ

δabGVðx0;p;TÞ¼−
1

3

X3
i¼1

Z
d3xe−ip·xhVa

i ðxÞVb
i ð0Þi: ð13Þ

The time-dependent axial correlator GAðx0; TÞ [see
Eq. (12)] can be obtained from the spectral function
ρAðω; T;pÞ (see e.g. the review [15]):

GAðx0; T;pÞ ¼
Z

∞

0

dωρAðω;p; TÞ
coshðωðβ=2 − x0ÞÞ

sinhðωβ=2Þ :

ð14Þ

In Sec. III E we will analyze the axial spectral function
using the Backus-Gilbert method. Relations analogous to
Eq. (14) hold for the correlators GA0

ðx0; TÞ, GPðx0; TÞ
and GVðx0;p; TÞ.

B. Pion properties at finite temperature

It has been established within several frameworks
[10,11] that at temperatures well below the chiral phase
transition a pion quasiparticle persists, with the real part of
the dispersion relation of sufficiently soft pions given by

ωp ¼ uðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2

q
; for any T ≲ Tc: ð15Þ

In the chiral limit it can be interpreted as the group velocity
of a massless pion excitation. While the quasiparticle mass
ω0 is the real-part of a pole of the retarded correlator
GR

Pðω;p ¼ 0; TÞ of the pseudoscalar density in the fre-
quency variable, the screening mass mπ is a pole of

GR
Pðω ¼ 0;p; TÞ in the spatial momentum jpj and repre-

sents an inverse spatial correlation length. A simple
interpretation of the dispersion relation (15) was given in
Ref. [13] in terms of the poles of the screening and the time-
dependent correlators. Son and Stephanov [10,11] showed
that the pion velocity u in the chiral limit is the ratio of two
static quantities,

u2 ¼ f2πR β
0 dx0GA0

ðx0; TÞ
: ð16Þ

As noted in Ref. [12], the axial susceptibility appearing in
the denominator of Eq. (16) contains an ultraviolet diver-
gence at any nonvanishing quark mass and is therefore not
practical for lattice calculations. As an alternative, in
Refs. [12,13] the parameter u was determined using lattice
correlation functions at vanishing spatial momentum via
the two estimators,

um ¼
�
−
4m2

q

m2
π

GPðx0; TÞ
GA0

ðx0; TÞ
����
x0¼β=2

�
1=2

; ð17Þ

uf ¼
f2πmπ

2GA0
ðβ=2; TÞ sinhðufmπβ=2Þ

; ð18Þ

which we will adopt. In doing so, for the estimator um, the
parametric dominance of the pion in the time-dependent
Euclidean axial as well as the pseudoscalar density corre-
lator at small quark masses is exploited. The estimator uf
exploits only the parametric dominance of the axial
correlator; on the other hand, it relies on the residue
determined from the static screening correlator. The pion
contribution to the spectral function ρA0

is expected to take
the form of a sharp peak,

ρA0
ðω; TÞ ¼ sgnðωÞResðω0Þδðω2 − ω2

0Þ þ…; ð19Þ

where in Ref. [11] (see also Ref. [13]) the residue was
predicted to have the form

Resðω0Þ≡ ðftπÞ2ω2
0 ¼ f2πm2

π; ð20Þ

such that we can access the quasiparticle decay constant
via ftπ ¼ fπ=um.

C. Lattice implementation of the correlators

In this work we use exclusively the local discretizations
of the operators introduced in the previous subsection.
Therefore, the expression of the bare operators in the lattice
theory is the same as in Eq. (1). These bare operators are
first OðaÞ improved and then renormalized. While the bare
pseudoscalar density is by itself OðaÞ improved, the
improvement of the vector and axial-vector currents takes
the form
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Aimp;b
μ ðxÞ ¼ Ab

μðxÞ þ acAðg20Þe∂μPbðxÞ; ð21Þ

V imp;b
μ ðxÞ ¼ Vb

μðxÞ þ acVðg20Þe∂νTμνðxÞ; ð22Þ

where Ta
μνðxÞ≡ − 1

2
ψ̄ ½γμ; γν� τa2 ψ is the tensor current. For

the derivative e∂μ, we use the symmetrized version of the
lattice discretized derivative, namely

e∂μfðxÞ ¼ 1

2a
ðfðxþ aμ̂Þ − fðx − aμ̂ÞÞ: ð23Þ

The nonperturbatively calculated coefficient cA was taken
from Ref. [16], and the coefficient cV from Ref. [17].
The finite renormalization of the vector and the axial-

vector currents is performed with the nonperturbatively
determined renormalization factors ZVðg20Þ and ZAðg20Þ,
supplemented by a quark-mass dependent factor in order to
fully realize OðaÞ improvement; details are provided in
Appendix A.
The pseudoscalar density PaðxÞ acquires a scale (and

scheme) dependence via the process of renormalization.
The renormalization factor is notated ZPðg20; aμÞ. Here, we
renormalize PaðxÞ in the (nonperturbative) gradient-flow
(GF) scheme at the renormalization scale μ where the
corresponding coupling ḡ2GF ¼ 9.25; this corresponds to a
low scale of μ ≈ 230 MeV [18]. While none of our physics
applications relies on the choice of a specific scheme, we
note that in the latter publication, the scale dependence of
the renormalization factor has been computed up to
perturbative scales μ; thereby the connection to the
renormalization-group invariant operator is known.
The renormalization of the PCAC mass is defined to

preserve the axial Ward identity (2). Thus, all renormaliza-
tion-scale dependent quantities in this paper are quoted in
the aforementioned gradient-flow scheme. In particular the
PCAC mass is renormalized by multiplying it with ZA=ZP,
and the combination m2

πf2π=mPCAC considered in Sec. VA
via the factor ZAZP. The numerical values of the renorm-
alization factors are collected in Appendix A.

D. Numerical setup

Our calculations are performed on an Nf ¼ 2þ 1

ensemble with tree-level Oða2Þ-improved Lüscher-Weisz
gauge action and nonperturbativelyOðaÞ-improvedWilson
fermions [19]. The action corresponds to the choice of the
Coordinated Lattice Simulations (CLS) initiative [20] and
the bare parameters match those of the CLS zero-temper-
ature ensemble E250 [21]. The latter are listed in Table I,
together with the lattice spacing as determined in Ref. [22].
The time direction admits thermal boundary conditions
with Nτ ¼ 24, which is the only difference relative to the
zero-temperature ensemble, resulting in a temperature

T ¼ 1

β
¼ 1

24a
¼ 127.9ð1.5Þ MeV: ð24Þ

Note that, assuming a pseudocritical temperature Tpc ¼
156.5ð1.5Þ MeV in (2þ 1)-flavor QCD [1], our temper-
ature corresponds to T=Tpc ≈ 0.82. For reference, we also
quote the zero-temperature pseudoscalar masses and pion
decay constant, determined in Ref. [23],

T ¼ 0∶ m0
π ¼ 128.1ð1.3Þð1.5Þ MeV;

m0
K ¼ 488.98ð0.3Þð5.8Þ MeV; ð25Þ

f0π ¼ 87.4ð0.4Þð1.0Þ MeV; ð26Þ

where the first error is from the corresponding quantity in
lattice units, and the second is from the lattice spacing
determination of Ref. [22].
The ensemble has been generated using version 2.0 of the

openQCD package [24], applying a small twisted mass to the
light quark doublet for algorithmic stability. The correct
QCDexpectationvalues are obtained including the reweight-
ing factors1 for the twisted mass and for the Rational Hybrid
Monte Carlo (RHMC) algorithm approximation used to
simulate the strange quark. Measurements are performed on
a single chain of 1200 configurations, each separated by four
Molecular Dynamics Units (MDUs).

III. RESULTS ON THE PSEUDOSCALAR SECTOR

In this section, we present our lattice results on observ-
ables in the pseudoscalar sector, i.e. those related to pion
properties. As an important reference quantity, we begin
with the determination of the average ðu; dÞ PCAC mass.

A. The PCAC mass

The extraction of the PCAC mass as defined in Eq. (4) is
carried out by performing a fit to a constant in the range
where a plateau is observed; see Fig. 1. Due to the longer
plateau, the fit is performed along the x3 direction. We
obtain

mPCAC

T
¼ 0.035ð1Þ: ð27Þ

The PCAC mass obtained from the x0 direction is com-
patible with the one obtained from the x3 direction, pointing

TABLE I. Parameters and lattice spacing of the ensemble
analyzed in this paper. The lattice spacing determination is from
Ref. [22].

β=a L=a 6=g20 κl κs a ½fm�
24 96 3.55 0.137232867 0.136536633 0.06426(76)

1We have not found any negative reweighting factors.
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to cutoff effects at this value of the lattice spacing
being small.

B. Static correlators: The pion screening
mass and decay constant

In this subsection, we describe how the screening pion
mass mπ and the screening decay constant fπ can be
calculated. In order to accomplish this, we make use of the
asymptotic behavior of the axial-current screening corre-
lator, Eq. (5).
Making use of the PCAC-based relation (8) and of the

symmetry of the correlators around x3 ¼ L=2, a one-state
fit ansatz for the corresponding correlation functions can be
formulated in the form

Gs
Aðx3; TÞ ¼

A2
1m1

2
cosh½m1ðx3 − L=2Þ�; ð28Þ

Gs
Pðx3; TÞ ¼ −

A2
1m

3
1

8m2
PCAC

cosh½m1ðx3 − L=2Þ�; ð29Þ

Gs
APðx3; TÞ ¼ −

A2
1m

2
1

4mPCAC
sinh½m1ðx3 − L=2Þ�: ð30Þ

The pion screening mass mπ and fπ are obtained from the
fit parameters m1 and A1 (derived in Appendix B) via

mπ ¼ m1; fπ ¼ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðm1L=2Þ

p
: ð31Þ

The “cosh mass” with argument ðx3 þ a=2Þ is defined as
the positive root of the following equation,

Gs
Pðx3; TÞ

Gs
Pðx3 þ a; TÞ ¼

cosh½mcoshðx3 þ a=2Þ · ðx3 − L=2Þ�
cosh½mcoshðx3 þ a=2Þ · ðx3 þ a − L=2Þ� :

ð32Þ

It is visualized in Fig. 2. Note that there is a different
equation and a different solution for mcosh for each value of
x3. The fits are performed using the Levenberg-Marquardt’s
method [25] and the results are shown in Fig. 3.
Due to its better signal-to-noise ratio, the screening pion

mass mπ was first extracted using Gs
Pðx3; TÞ. Since neigh-

boring correlator points are highly correlated, we have fitted
only every second point (see also the procedure in Ref. [26]).
Proceeding in this way, the dimension of the covariance
matrix is reduced, enabling us to perform correlated fits over
a longer physical range of distances. We have checked that
fitting the complementary set of points in the interval gives a
compatible result and averaging these two fit results does not
lead to a smaller error (see Appendix E). In order to be sure
that the ground state is isolated,we have repeated the fit to the
correlation function for different fit windows, leaving out
points that are furthest away from the correlator middle point
x3 ¼ L=2. Our final result

mπ=T ¼ 1.121ð21Þ; ð33Þ

corresponds to mπ ¼ 143ð3Þ MeV. It is reported in Table II
and is stable under small variations of the fit interval and
corresponds to a correlated χ2=d:o:f: ¼ 1.05, where the
degrees of freedom ðd:o:f:Þ ¼ 9. Furthermore, our final
value for mπ is in very good agreement with the averaged

FIG. 1. Renormalized PCAC mass in the E250 ensemble along
the x3 direction. The final result—obtained from a fit along the x3
direction—is also shown with a 1-σ band. We have used the
improved axial current together with the symmetrized derivative
[see Eqs. (21)–(23)].

FIG. 2. Effective mass plot for the cosh mass mcoshðx3Þ as a
function of the x3 coordinate, obtained from the pseudoscalar
screening correlation function at zero spatial momentum
Gs

Pðx3; TÞ. It is assumed that the effective mass plateau starts
at x3=a ¼ 18. The result of the fit to the effective mass values is
represented by a 1-σ band. For comparison the value for the
screening pion massmπ , obtained from the fit of the pseudoscalar
correlator is also included.
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value of the “cosh mass”mcosh ¼ 1.123ð20Þ; see Fig. 2. The
obtained fit parameters ofGs

Pðx3; TÞ are then used as a prior
to fit Gs

Aðx3; TÞ and Gs
APðx3; TÞ.

By repeating the procedure for different fit windows in an
analogous manner, we note that the mean value is stable
under small variations of the fit window and we select the
final value for A1 by choosing a fit which has a correlated
χ2=d:o:f: ¼ 1.14 (d:o:f: ¼ 9) forGs

Aðx3; TÞ and χ2=d:o:f: ¼
0.98 (d:o:f: ¼ 15) for Gs

APðx3; TÞ. Employing Eq. (B5) the
value fπ=T ¼ 0.558ð14Þ, respectively, fπ=T ¼ 0.559ð11Þ
can be extracted for the screening pion decay constant. The
latter value is selected as the final one and reported inTable II.
The screening pion decay constant fπ ¼ 72ð1Þ MeV is
significantly lower than the pion decay constant f0π ¼
87.4ð1.0Þ MeV [27] on the corresponding zero temperature
ensemble.2 The procedure for calculating the statistical error
of the screening quantities mπ and fπ is described in
Appendix D.

C. Properties of the pion quasiparticle

The results for the estimators um and uf defined in
Eqs. (17) and (18) together with the estimators for the
screening quantities are presented in Table II. Good agree-
ment is found for the two independent estimators uf and um
of the pion velocity. Both of them differ significantly from
unity, which clearly represents a breaking of Lorentz
invariance due to thermal effects. Additionally, we found
that the zero-temperature pionmass given in Eq. (25) “splits”
into a lower pionquasiparticlemass,ω0 ¼ 113ð3Þ MeV, and
a higher pion screening mass, mπ ¼ 143ð3Þ MeV. The
quasiparticle decay constant ftπ ¼ fπ=um ¼ 91ð2Þ MeV is
much closer to the vacuum decay constant f0π.

D. Dependence of the pion velocity uf
on a finite pion thermal width ΓðTÞ

The analysis of Son and Stephanov [10,11] concluded
that at temperatures below the chiral phase transition, the
imaginary part of the pion pole is parametrically small
compared to its real part. In this subsection, we investigate

FIG. 3. Top panel: renormalized screening correlation function
Gs

Pðx3; TÞ=T3 and the result of the fit. The chosen fit interval is
x3=a ∈ ½21; 41�. Middle panel: renormalized screening correlation
function Gs

Aðx3; TÞ=T3 and the result of the fit with a prior from
Gs

Pðx3; TÞ. The chosen fit interval in this case is x3=a ∈ ½37; 48�.
Bottom panel: renormalized screening correlation function
Gs

APðx3; TÞ=T3 and the result of the fit with a prior from
Gs

Pðx3; TÞ. The chosen fit interval in this case is x3=a ∈ ½12; 46�.

TABLE II. Summary of the results of the E250 thermal
ensemble with Nτ ¼ 24. The pion quasiparticle mass ω0 is
calculated using ω0 ¼ ummπ .

mπ=T 1.121(21)
fπ=T 0.559(11)
uf 0.787(16)
um 0.786(18)
uf=um 1.001(27)
ω0=T 0.881(23)
ftπ=T 0.710(16)
Resðω0Þ=T4 0.392(21)

2Note that in this work a different convention for the
pion decay constant is followed resulting in an additional
factor

ffiffiffi
2

p
.
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the sensitivity of our results for the pion quasiparticle mass
and velocity parameter u to the assumption of a negligible
thermal width of this quasiparticle. In order to examine the

consequences of a finite thermal pion width on the pion
velocity u we replace the δ distribution in Eq. (19) by a
Breit-Wigner peak of width ΓðTÞ resulting in

ρA0
ðω; TÞ ¼ f2πm2

π
ΓðTÞ
π

1

2ω0

�
1

ðω − ω0Þ2 þ ΓðTÞ2 −
1

ðωþ ω0Þ2 þ ΓðTÞ2
�
þ…; ð34Þ

where the second term is needed to ensure the antisym-
metry of the spectral function in ω [15]. Expressing the
correlator midpoint of the time-dependent Euclidean cor-
relator GA0

ðβ=2; TÞ in terms of the spectral function ρA0

with the help of Eq. (14) and using ω0 ¼ ufmπ one can
extract the pion velocity uf for different thermal pion
widths ΓðTÞ ∈ f15; 30; 60g MeV. The results are shown in
Table III.
We find that the extracted estimator of the pion velocity

uf ¼ 0.787ð16Þ (assuming the presence of a discrete delta
term in the spectral function) is consistent with a Breit-
Wigner approach up to pion thermalwidthsΓðTÞ ≈ 30 MeV.

E. Spectral function reconstruction
with the Backus-Gilbert method

In order to extract the spectral function ρA0
ðωÞ at zero

momentum from the corresponding temporal Euclidean
correlator, GA0

ðτi; TÞ; τ≡ x0, one has to invert the analog
for GA0

of Eq. (14) with a kernel Kðτi;ωÞ ¼ coshðωðβ=2−
τiÞÞ= sinhðωβ=2Þ, encountering a numerically ill-posed
problem. A possible approach dealing with this task is the
Backus-Gilbert method [28]. We adopt the notation of
Ref. [13], where the method has first been applied to lattice
QCD. It should be emphasized that, with this approach, no
particular ansatz needs to be made for the spectral function.
The Backus-Gilbert method provides an estimator for the
smeared axial spectral function,

ρ̂A0
ðω̄Þ ¼

XNτ

i¼1

qiðω̄ÞGA0
ðτiÞ

¼
XNτ

i¼1

qiðω̄Þ
Z

∞

0

dωKðτi;ωÞρA0
ðωÞ; ð35Þ

built from the lattice correlator data GA0
ðτiÞ. Note that the

coefficients qi depend on some reference value ω̄ around
which the so-called resolution function (or averaging kernel),

δ̂ðω̄;ωÞ ¼
XNτ

i¼1

qiðω̄ÞKðτi;ωÞ; ð36Þ

is concentrated. It is normalized according to

Z
∞

0

dω δ̂ðω̄;ωÞ ¼ 1: ð37Þ

Since the kernelKðτi;ωÞ has a singularity in the limitω → 0,
it is advantageous to introduce a rescaling function

fðωÞ ¼ tanhðωβ=2Þ; ð38Þ

redefining the regularized kernel to be Kfðτi;ωÞ ¼
fðωÞKðτi;ωÞ. This allows us to rewrite Eq. (35) for the
smeared and rescaled spectral function as

ρ̂A0
ðω̄Þ

fðωÞ ¼
Z

∞

0

dω δ̂ðω̄;ωÞ ρA0
ðωÞ

fðωÞ : ð39Þ

Inspecting Eq. (39), the desirable resolution function would
be a Dirac delta distribution centered at ω̄. However, it has to
satisfy Eq. (36) at the same time. In order to make the
resolution function as sharply centered around ω̄ as possible,
we minimize the second moment of its square subject to the
constraint in Eq. (37). Therefore we minimize the following
functional,

F ½qiðω̄Þ�

¼
Z

∞

0

dωðω− ω̄Þ2½δ̂ðω̄;ωÞ�2 − α

�Z
∞

0

dωδ̂ðω̄;ωÞ− 1

�
;

¼
XNτ

i;j¼1

qiðω̄Þ
�Z

∞

0

dωKiðτi;ωÞðω− ω̄Þ2Kjðτj;ωÞ
�
qjðωÞ

−
XNτ

i¼1

α

�
qiðω̄Þ

Z
∞

0

dωKiðτi;ωÞ− 1

�
;

≡ XNτ

i;j¼1

qiðω̄ÞWijðω̄Þqjðω̄Þ−
XNτ

i¼1

αðqiðω̄ÞRiðω̄Þ− 1Þ; ð40Þ

with α being a Lagrange multiplier. In practice the matrix
Wijðω̄Þ is very close to being singular and needs a regulari-
zation procedure,

TABLE III. Dependence of the pion velocity uf on a finite pion
thermal width ΓðTÞ.

ΓðTÞ [MeV] uf

15 0.783(19)
30 0.762(18)
60 0.671(21)
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Wijðω̄Þ → Wreg
ij ðω̄Þ ¼ λWijðω̄Þ þ ð1 − λÞCov½GA0

�ij;
0 < λ < 1: ð41Þ

The resulting coefficients that minimize Eq. (40) are then
given by

qjðω̄Þ ¼
PNτ

k¼1 ðWregðω̄Þ−1ÞjkRkPNτ
i;l¼1 RiðWregðω̄Þ−1ÞilRl

: ð42Þ

The values of λ quoted below refer to units in which all
dimensionful quantities are turned into dimensionless ones
by appropriate powers of temperature. Some examples for
the resolution function Tδ̂ðω̄;ωÞ for different values of λ are
shown in the left panel of Fig. 4. The right panel of Fig. 4
shows the smeared and rescaled axial spectral function
ρ̂A0

ðω̄; TÞ=T2 with λ ¼ 10−3. It demonstrates model inde-
pendently that the axial-charge correlator is dominated by
low frequencies. Furthermore, the predicted position of the
quasiparticle mass ω0 is close to the peak of the smeared
spectral function.

F. Comparison with results from the literature

Comparing our pion quasiparticle mass ω0ðTÞ and quasi-
particle decay constant ftπðTÞ at T ¼ 128 MeV to the
matching quantities at the corresponding zero temperature
ensemble we get ω0ðTÞ=m0

π ¼ 0.880ð25Þ and ftπðTÞ=f0π ¼
1.039ð26Þ. Thus, the quasiparticle mass decreases at finite
temperaturewhile the quasiparticle decay constant increases.
This behavior is similar to what is found in a ChPT
calculation at two loops (see Ref. [8], Figs. 3 and 4). The
reduction of the quasiparticle mass therein is ≈0.9. On the
other hand the quasiparticle decay constant increases by a
factor of approximately 1.06.

Regarding the screening pion mass mπ, we found that it
increases with temperature compared to m0

π . The ratio is
mπ=m0

π ¼ 1.125ð27Þ. This statement is also supported by
the study of Son and Stephanov near the chiral phase
transition [10]. The screening mass that we obtained is
larger than what one would expect based on a short linear
extrapolation to T ¼ 128 MeV using the continuum
extrapolated data presented in a study with Nf ¼ 2þ 1
highly improved staggered fermions in Ref. [26]. However,
we note that their study does not have any lattice data for
the temperature that we used.
In the recent publication [29], the authors work out the

pion damping width and the pion spectral function in the
framework of a SUð2Þ Nambu-Jona-Lasinio (NJL) model
for a few temperatures below the critical temperature
TNJL
c ¼ 190 MeV. They observe that the position of the

peak of the pion spectral function at vanishing momentum
p is moving to the right for increasing temperatures
T=TNJL

c ∈ f0; 0.79; 0.89; 0.97g [see Fig. 3 in [29]]. This
contradicts our observation of the pion pole mass being
reduced at finite temperature.

IV. QUARK NUMBER SUSCEPTIBILITY

WithN q ¼
R
d3xV0ð0;xÞ, V0 being the time component

of the local vector current,3 the usual definition of the quark
number susceptibility (QNS) for a given flavor is given by

χqðTÞ ¼
∂ρq
∂μq

����
μq¼0

: ð43Þ

It measures the response of the quark number density,

FIG. 4. Left panel: some examples of resolution functions for different values of λ, centered around ω̄=T. Right panel: estimator of the
spectral function ρ̂A0

ðω; TÞ=T2. The blue dashed line corresponds to the location of the expected position of the pole ω0 according
to Eq. (15).

3Note the additional normalization factor 1=2 resulting in an
overall factor of 1=2 for the correlator and therefore also for
the QNS.

CÈ, HARRIS, KRASNIQI, MEYER, and TÖRÖK PHYS. REV. D 107, 054509 (2023)

054509-8



ρq ¼
1

V

Tr½N qe−βðH−μqN qÞ�
Tr½e−βðH−μqN qÞ� ¼ hN qi

V
; ð44Þ

to an infinitesimal change in the quark chemical potential
μq → μq þ δμq.
On the lattice, we define the quark number suscepti-

bility as

χqðx0;TÞ ¼ Z2
Vðg20Þβ

Z
d3xhVa

0ðx0;xÞVa
0ð0;0Þi; x0 ≠ 0:

ð45Þ

Note, that for the QNS no improvement of the vector current
is needed.
The result is shown in Fig. 5 in temperature units. Please

note that we are not including any contributions from
disconnected diagrams in our result for the QNS and in this
approximation it is proportional to the isospin susceptibil-
ity. In Ref. [30] (see Table I) the quark number suscep-
tibility was determined as a function of the temperature
using 2þ 1 dynamical staggered quark flavors and, addi-
tionally, a continuum extrapolation was done. Taking into
account the different normalization factor, their results are
χqðTÞ=T2 ¼ 0.216ð46Þ and χqðTÞ=T2 ¼ 0.241ð44Þ for the
temperatures T ¼ 125 MeV and T ¼ 130 MeV, respec-
tively (see Table I of Ref. [30]). Our result, χqðTÞ=T2 ¼
0.2293ð47Þ is compatible with both of these results.
Although we did not perform a continuum extrapolation,
our lattice spacing is around 2=3 of the finest lattice spacing
employed in Ref. [30], so beside the larger errors of the
results from Ref. [30], the presence of only small cutoff
effects may also explain the good agreement. Next, we are
going to compare our lattice estimate for the QNS with the
HRG model and also test an alternative HRG employing
our modified dispersion relation for the pion quasiparticle.

A. Comparison with the hadron resonance gas model

The HRG model [31,32] describes the thermodynamic
properties and the quark number susceptibilities of the low-
temperature phase rather well. It assumes that the thermo-
dynamic properties of the system are given by the sum of the
partial contributions of noninteracting hadron species, i.e.

ln½ZðT; VÞ� ¼ −
V
2π2

X
i

Z
∞

0

dpp2 ln

�
1 − ηie

−
ffiffiffiffiffiffiffiffiffiffi
m2

iþp2
p

=T

�
;

ð46Þ

where ηi ¼ �1 takes into account bosons and baryons,
respectively. The sum extends over all resonances up to a
mass of 2.0GeV, since for most of them thewidth is not large
compared to the temperature.
The quark number susceptibility can be obtained as the

sum [33]

χqðTÞ ¼ ðχqÞmesons þ ðχqÞbaryons; ð47Þ

where

ðχqÞmesons

T2
¼ 2β3

3

X
multiplets

ð2J þ 1ÞIðI þ 1Þð2I þ 1Þ

×
Z

d3p
ð2πÞ3 f

B
pð1þ fBpÞ; ð48Þ

ðχqÞbaryons
T2

¼ 2β3

3

X
multiplets

ð2J þ 1ÞIðI þ 1Þð2I þ 1Þ

×
Z

d3p
ð2πÞ3 f

F
pð1 − fFpÞ; ð49Þ

and fB=Fp ¼ 1=½eβωp ∓ 1� are the Bose-Einstein and Fermi-
Dirac distributions. The sums are carried out over all
multiplets of spin J and isospin I that are not identical.
Especially particles and antiparticles have to be considered
separately. This results in an additional factor of two in the
baryon case and for mesons with strange quark constitu-
ents. An alternative to the HRGmodel is to only include the
pion contribution, however taking into account the modi-
fied dispersion relation (15) at low momenta,

χq
T2

¼ 4β3
Z
jpj<Λp

d3p
ð2πÞ3 f

B
pðωpÞð1þ fBpðωpÞÞ; ð50Þ

where Λp ¼ 400 MeV is about the momentum scale at
which the predictions of the thermal chiral effective theory
were seen to break down in Ref. [13]. Note that in this
model the sum over the resonances is absent. The con-
tributions of the other hadrons are taken into account
indirectly via the modified dispersion relation, since the
collisions of the pions among themselves and with other

FIG. 5. Quark number susceptibility extracted from the local
vector current correlator, Eq. (45). The mean and error have been
obtained from a correlated fit in the range [3,21].
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hadrons give rise to the modified pion dispersion relation.
Employing Eqs. (48) and (49) within the HRG model,
summing all resonances up to a mass of 2 GeV, one obtains
χqðTÞ=T2 ¼ 0.2428, which is 5.8% above our lattice
estimate χqðTÞ=T2 ¼ 0.2293ð47Þ.
In the HRG model the pion contributes χq=T2jpion ¼

0.1890 corresponding to 77.9% of the total QNS followed
by a contribution of 15.4% of the vector and pseudoscalar
meson octets (7.3% of this is attributable to the ρ vector
meson). The baryon octet and decuplet contributes 3.8%,
the largest portion (2.5%) stemming from the Δ resonance
due to the large spin degeneracy factor. Heavier meson and
baryon resonances up to a mass of 2 GeV contribute the
remaining 2.9% to the final result (Fig. 6). It is questionable
whether resonances whose full width is higher than the
temperature should be taken into account. For instance the
K�

0ð700Þ resonance has a full Breit-Wigner width ð478�
50 MeVÞ of nearly four times the temperature and has
therefore been neglected.
Making use of Eq. (50) with um ¼ 0.786 and a screening

pion mass mπ ¼ 143 MeV one obtains χqðTÞ=T2 ¼
0.2163 which is 5.3% below the lattice estimate. At this
point we have only integrated up to the momentum cutoff
Λp ¼ 400 MeV since it is not clear if the thermal width of
the pion is still negligible for jpj > Λp and, as a conse-
quence, including contributions from higher momenta may
not be justified. However, this model is not very predictive
as it depends very strongly on the choice of the momentum
cutoff.

V. ORDER PARAMETERS FOR CHIRAL
SYMMETRY RESTORATION

In this section, several order parameters for chiral
symmetry restoration are investigated. Based on the screen-
ing pion quantities m2

π and f2π presented in Sec. III, we
first evaluate an “effective chiral condensate” based on the

Gell-Mann-Oakes-Renner relation. Additionally, we ex-
plore two Euclidean-time dependent thermal correlation
functions that are order parameters for chiral symmetry and
compare them to their zero-temperature counterparts. We
begin with the ðPA0Þ correlator, which contains the pion
pole that we have studied in Sec. III. We then consider the
difference of the (isovector) vector and axial-vector corre-
lators. In the QCD vacuum, the corresponding spectral
functions are measured experimentally in τ decays [34].
They become degenerate in the chirally restored phase of
QCD. Their temperature dependence in the chirally broken
phase has been studied extensively in the framework of
hadronic models supplemented by sum rules [35–37].

A. The GOR relation

Following Ref. [12], we introduce a “effective chiral
condensate” based on the GOR relation,

hψ̄ψiGFGOR ≡ −
f2πm2

π

mq
: ð51Þ

For mq → 0 it matches the actual chiral condensate.
Additionally, since above Tc, mπ ∼ T and fπ ∼mq,
hψ̄ψiGFGOR is of OðmqT2Þ. Thus, it serves as an order
parameter for chiral symmetry. Using mq ¼ mPCAC and
the screening quantities of Table II we obtain

jhψ̄ψiGFGORj1=3 ¼ 286ð5Þ MeV: ð52Þ

The value of the chiral condensate has been extracted in the
gradient flow scheme just like the PCACmass (see Sec. II C).
Comparing with the chiral condensate on the corresponding
zero-temperature ensemble [23], we get

�hψ̄ψiT≈128 MeV

hψ̄ψiT≈0 MeV

�
GOR

≡ ðf2πm2
πÞT≈128 MeV

ðf2πm2
πÞT≈0 MeV

¼ 0.84ð5Þ; ð53Þ

FIG. 6. Relative composition of the total quark number susceptibility predicted by the hadron resonance gas model.
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which corresponds to a reduction by 16%. This reduction is
compatible within the scope of the error with a three-loop
result of Gerber and Leutwyler (see Ref. [6], Fig. 5).

B. The ðPA0Þ correlator
In Ref. [12] it was shown that the temporal ðPA0)

correlator can be predicted exactly in the chiral limit,

GPA0
ðx0; TÞ ¼

hψ̄ψi
2β

�
x0 −

β

2

�
: ð54Þ

As can be seen from Eq. (54) the ðPA0Þ correlator is
antisymmetric around β=2. Consequently, we set the point
x0 ¼ 12a to zero. In our analysis we have averaged over the
ðPA0Þ and ðA0PÞ correlator. The latter can be obtained
interchanging source and sink. The estimator based on the
last expression of Eq. (11) has the better signal-to-noise
ratio. Since this correlator is proportional to the chiral
condensate hψ̄ψi, it can serve as an order parameter for
chiral symmetry restoration as well. Looking at the ratio of
the thermal over reconstructed correlator [see Eq. (60)], we
observe a slightly more pronounced reduction (Fig. 7) by a
factor of ≈0.80ð2Þ compared to the reduction by a factor of
0.84(5) that we had estimated using the Gell-Mann-Oakes-
Renner reaction [see Eq. (53)].

C. Dey-Eletsky-Ioffe mixing theorem
at finite quark mass

Let us consider the following real-time correlators at
finite temperature T:

CJ;a;b
μν ðq;TÞ¼ iδab

R
d4xeiqx

P
nhnjTfJaμðxÞJbνð0Þge−H=T jniP
nhnje−H=T jni

ðJ∈ fV;AgÞ; ð55Þ

where the sum is over the full set of the eigenstates of the
Hamiltonian H and fa; bg are isospin indices. To order T2

it is sufficient to account only for the contributions of the
two lowest states in Eq. (55)—vacuum and one pion state.
In Refs. [38–40] it was demonstrated, using PCAC current
algebra, that the finite-temperature vector and axial-vector
correlators can be described with the help of their vacuum
counterparts. In terms of the corresponding spectral func-
tions this statement reads

ρVðω;p; TÞ ¼ ð1 − ϵÞρVðω;p; T ¼ 0Þ þ ϵρAðω;p; T ¼ 0Þ;
ð56Þ

ρAðω;p; TÞ ¼ ð1 − ϵÞρAðω;p; T ¼ 0Þ þ ϵρVðω;p; T ¼ 0Þ;
ð57Þ

where ϵ≡ T2=ð6ðf0πÞ2Þ is a temperature dependent expan-
sion parameter in powers of the pion density. Notice that as

a consequence of Eqs. (56) and (57) the sum of the vector
and axial-vector spectral function does not change when the
temperature is switched on. Furthermore, the difference is
proportional to its zero-temperature equivalent:

ρVðω;p; TÞ − ρAðω;p; TÞ
¼ ð1 − 2ϵÞ½ρVðω;p; T ¼ 0Þ − ρAðω;p; T ¼ 0Þ�: ð58Þ

As a consequence the above quantity serves as an order
parameter for chiral symmetry restoration. Thus, in the
following we will investigate its behavior even for nonzero
quark mass. To do so, we consider the difference “V − A”
of the corresponding OðaÞ-improved temporal correlators
projected to zero momentum

δab½GVðx0; T;p ¼ 0Þ −GAðx0; T;p ¼ 0Þ�

≡ −
1

3

Z
d3x

X3
i¼1

½hVa
i ðxÞVb

i ð0Þi − hAa
i ðxÞAb

i ð0Þi�: ð59Þ

In order to obtain a comparable effectively zero-
temperature quantity, we use the corresponding quasi
zero-temperature E250 ensemble of size 192 × 963. This
is achieved by calculating the “reconstructed” correlator
Grec

V − Grec
A for the difference, i.e. the thermal Euclidean

correlator that would be realized if the spectral function was
unaffected by thermal effects. Following a method first
proposed in Ref. [41], we define our reconstructed correla-
tors as

Grec
J ðx0; T;pÞ ¼

X
m∈Z

GJðjx0 þmβj; 0;pÞ ðJ ∈ fV; AgÞ:

ð60Þ

It is based on the identity of the kernel function

FIG. 7. Ratio of the temporal thermal ðPA0Þ correlator and the
reconstructed correlator ðPA0Þ correlator. The errors on the ratio
have been estimated using the jackknife method. The blue band
shows the result from a correlated fit to the plateau.
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coshðωðβ=2 − x0ÞÞ
sinhðωβ=2Þ ¼

X
m∈Z

e−ωjx0þmβj: ð61Þ

The top and middle panel of Fig. 8 shows the difference
“V − A” for the thermal ensemble and the same quantity for

the reconstructed correlator. Their ratio is shown in the
bottom panel of Fig. 8. For vanishing quark masses one
would expect it to be flat consistent with Eq. (58) obtained in
the chiral limit. However, since chiral symmetry restoration
is a long-distance effect, one expects that for physical quark
masses the suppression of the (V − A) spectral function
happens mostly at low energies which translates to the
longest (Euclidean) time accessible. This is consistent with
the dip that we observe around the midpoint ðx0 ¼ 12Þ in
Fig. 8. Furthermore, the difference “V − A” shows a sig-
nificant reduction by a factor of approximately 0.68 at
T ≈ 128 MeV. Therefore, chiral symmetry restoration is
already at an advanced stage in the spectral function.
Summarizing our results, we find that the “effective

chiral condensate,” which is extracted from static screening
quantities, is reduced by a factor of 0.84(5). This value is
compatible within errors with the reduction of 0.80(2) seen
in the temporal ðPA0Þ correlator, which, in the chiral limit, is
proportional to the chiral condensate. On the other hand, the
reduction of the temporal (V − A) correlator, 0.68(4), ismore
pronounced. The different rate at which different order
parameters of chiral symmetry breaking approach zero
already shows up in predictions from chiral perturbation
theory at vanishing quark masses. Specifically the suppres-
sion of the chiral condensate to leading order in T2 goes like
1 − T2

8ðf0πÞ2 (see Refs. [6,42]) and is therefore less pronounced

relative to Eq. (58) with 1 − 2ϵ ¼ 1 − T2

3ðf0πÞ2 [38].

VI. CONCLUSION

In this work we have found that the zero-temperature
pion mass “splits” into a lower pion quasiparticle mass ω0
and a higher pion screening mass mπ at finite temperature,
confirming the findings of Ref. [13] in QCDwith two quark
flavors (u, d). Our results are also in good quantitative
agreement with existing predictions of chiral perturbation
theory: see Secs. III F and VA. Additionally, we have
computed the two temperature-dependent parameters
which determine the modified dispersion relation of the
pion quasiparticle in the low-temperature phase of QCD
[see Eq. (15)]. An assumption in determining the pion-
velocity parameter u was a discrete peak structure in the
axial spectral function. Using instead a Breit-Wigner ansatz
with a finite thermal width, we could confirm that—within
the statistical error—our estimator of the pion velocity uf is
stable within about three percent up to a finite pion width
ΓðTÞ ≈ 30 MeV. We have further employed the Backus-
Gilbert method to show, independently of any model, that
the axial correlator is indeed dominated by low frequencies.
The quark number susceptibility computed on the lattice

has been compared to the predictions of the hadron
resonance gas model as well as to the estimate where only
pions are taken into account, however using their modified
dispersion relation. The lattice estimate is found to lie
approximately in the middle between these two predictions.

FIG. 8. Top panel: the reconstructed correlator for the difference
“V − A.”Middle panel: the difference of “V − A” atT ≈ 128 MeV.
Bottom panel: ratio of the difference “V − A” and the difference of
the reconstructed correlator “ðV − AÞrec” The errors on the ratio
have been estimated using the jackknife method. The blue band
shows the result from a correlated fit to the plateau.
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Nonetheless, one should keep in mind the strong depend-
ence on the momentum cutoff of the last approach. Hence,
an analysis at nonvanishing momentum with a high
resolution would be desirable in order to narrow down
the validity of the chiral effective theory and, as a
consequence, determine an appropriate value of the
momentum cutoff Λp more precisely.
Finally, we have investigated the degree of restoration of

chiral symmetry in two different channels, namely the
pseudoscalar one and in the difference of the (isovector)
vector and axial-vector correlators V − A. We have done
this by forming the ratio of the thermal correlator to the one
reconstructed from the zero-temperature simulation.
Quantitatively, we found the V − A channel to exhibit a
higher degree of chiral symmetry restoration.
Looking ahead, one might further ask if the relatively

strong change in the pion screening quantities is due to its
Goldstone-boson nature or if non-Goldstone hadrons are
similarly modified by thermal effects [43]. We are gen-
erating a thermal ensemble with Nτ ¼ 20 and otherwise
identical parameters. This choice corresponds to a temper-
ature T ¼ 154 MeV, just below the crossover regime.
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APPENDIX A: RENORMALIZATION PROCESS

Following [47], we renormalize the correlators in the
following way:

Gren
V ¼ Z2

Vðg20Þð1þ 2amqbVðg20ÞÞGV; ðA1Þ

Gren
A ¼ Z2

Aðg20Þð1þ 2amqbAðg20ÞÞGA; ðA2Þ

Gren
A0

¼ Z2
Aðg20Þð1þ 2amqbAðg20ÞÞGA0

; ðA3Þ

Gren
PA0

¼ ZPðg20ÞZAðg20Þð1þ amqbAðg20ÞÞGPA0
; ðA4Þ

Gren
P ¼ Z2

Pðg20ÞGP; ðA5Þ

with g20 ¼ 6=β being the bare gauge coupling and

amq ¼
1

2

�
1

κl
−

1

κcr

�
ðA6Þ

being the bare subtracted quark mass. The values for the
renormalization constants ZJ and the finite quark mass
parameters bJ are given in Table IV.

APPENDIX B: EXTRACTING f π OUT OF A1

Let us denote the correlation function of a single state
propagating forward as

cfðx3Þ ¼ c0fe
−m1x3 ; ðB1Þ

and analogously we denote the backward contribution as

cbðx3Þ ¼ c0be
−m1ðL−x3Þ: ðB2Þ

Including the (tiny) contributions warping around the
lattice the forward contribution becomes

cfðx3Þ ¼ c0fðe−m1x3 þ e−m1ðLþx3Þ þ…Þ;

¼ c0fe
−m1x3

X∞
n¼0

e−nm1L;

¼ c0fe
−m1x3

1

1 − e−m1L
: ðB3Þ

Combining forward and backward contributions and com-
paring with Eq. (28) we obtain

TABLE IV. Summary of the renormalization parameters.

ZVðg20Þ [17] 0.73453(6)
ZAðg20Þ [48] 0.76900(42)
ZPðg20Þ [18] 0.34768
bVðg20Þ [17] 1.551(10)
bAðg20Þ [47] 1.38(6)
κcr: [17] 0.1371726(13)
κl [27] 0.137232867
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Gs
Aðx3; TÞ ¼

A2
1m1

2
cosh½ðm1ðx3 − L=2Þ�

¼ c0
1 − e−m1L

�
e−m1x3 þ e−m1ðL−x3Þ

	
: ðB4Þ

Pulling out a factor of e−m1L=2 and reading off c0 ¼ 1
2
f2πm1

from Eq. (5) we can finally link the screening pion decay
constant fπ with the fit parameter A1 as follows:

fπ ¼ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ðm1L=2Þ

p
: ðB5Þ

APPENDIX C: CHIRAL EFFECTIVE THEORY
LAGRANGIAN OF SON AND STEPHANOV

In the chiral effective theory approach of Son and
Stephanov [10,11] the dynamics of the pions at finite
temerpature is described by the Lagrangian,

Leff ¼
f2t
4
h∇0Σ∇0Σ†i− f2π

4
h∂iΣ∂iΣ†i þm2

πf2π
2

RehΣi; ðC1Þ

where Σ denotes an SUð2Þ matrix whose phase describes
the pions, ∇0Σ ¼ ∂0Σ − i

2
μI5ðτ3Σþ Στ3Þ is the covariant

derivative, μI5 denotes the axial isospin chemical potential
and the trace is taken in flavor space. Note that in the
presence of a thermal medium Lorentz invariance is broken
resulting in two independent decay constants which are
related through the pion velocity [10],

u ¼ fπ
ft

: ðC2Þ

APPENDIX D: ERROR ANALYSIS

If Ncon ¼ 1200 denotes the number of configurations,
then the mean value Ō of any lattice observable O can be
obtained via

Ō ¼ 1

Ncon

XNcon

i¼1

Oi: ðD1Þ

All errors quoted in this work are purely statistical and
estimated using jackknife resampling [49], where one first
generates Ncon jackknife replica

OJ
i ¼

1

Ncon − 1

XNcon

j≠i
Oj: ðD2Þ

Employing this procedure the error on the mean of any
lattice observable can be calculated as

σŌ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ncon − 1

Ncon

X
i

ðOJ
i − ŌÞ2

s
; ðD3Þ

where the additional factor ðNcon − 1Þ arises due to the fact
that the jackknife replicas are not statistically independent.
Furthermore Eq. (D3) assumes uncorrelated jackknife
replicas. However, since the configurations are obtained
from Monte Carlo simulations the number of effectively
independent jackknife replicas is [50]

Nind ¼
Ncon

2τO;int
: ðD4Þ

FIG. 9. Left panel: normalized variance σ2mπ
½S�=σ2mπ

½1� of the screening pion mass mπ in dependence of the bin size S. Right panel:
normalized variance σ2fπ ½S�=σ2fπ ½1� of the screening decay constant fπ in dependence of the bin size S. In both cases the fit function as
well as its “infinite bin size extrapolation” for the integrated autocorrelation time 2τint is shown.
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Following Ref. [51], we estimate the integrated autocorre-
lation time 2τO;int as a fit parameter for the normalized
variance using the fit ansatz

σ2O½S�
σ2O½1�

¼ 2τO;int

�
1 −

c
S
þ d
S
e
− S
τO;int

�
; O ∈ fmπ; fπg:

ðD5Þ

It corresponds to an asymptote for infinite bin size S
(see Fig. 9). Therefore—to avoid an underestimation of the
error—we quote

σ̂Ō ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2τO;int

p
σŌ; O ∈ fmπ; fπg ðD6Þ

as our final result. For the remaining observables discussed
in this work, autocorrelation effects were taken into account
using binning, i.e. averaging the data samples over a bin
size Nbin ¼ 20,

OB
i ¼ 1

Nbin

XiNbin

j¼Nbinði−1Þþ1

Oj; i ∈


1;…;

Ncon

Nbin
¼ 60

�
;

ðD7Þ

before building the jackknife replicasOJ
i . Therefore, in this

case, one has to replace Oj → OB
j and Ncon → Ncon=Nbin

in Eq. (D2).

APPENDIX E: SYSTEMATICS FOR THE
EXTRACTION OF THE SCREENING

PION MASS mπ

In this appendix we examine the systematics of choosing
the fit range for the extraction of the screening pion mass
mπ . Figure 10 shows the extracted screening masses for
different starting points of the fit interval. Our quoted value
mπ=T ¼ 1.121ð21Þ (see blue band in Fig. 10) obtained
from the fit range [21,41] is compatible with all the results
obtained using different fit ranges.

FIG. 10. Extracted screening masses mπ (top) and the corresponding correlated χ2=d:o:f: (bottom) for different fit ranges. The three
blocks show the results of the fits with fit range lengths of 15, 21, and 25, respectively. In all cases only every second point is fitted as
explained in Sec. III B.
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APPENDIX F: NUMERICAL VALUES FOR TEMPORAL CORRELATORS

In this appendix we list the means and errors of the (anti)symmetrized temporal correlators used in this work (see
Table V).
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[27] M. Cè, A. Gérardin, G. von Hippel, H. B. Meyer, K. Miura,

K. Ottnad, A. Risch, T. San José, J. Wilhelm, and H. Wittig,
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