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Abstract: Hadronic light-by-light scattering is one of the virtual processes that causes
the gyromagnetic factor g of the muon to deviate from the value of two predicted by
Dirac’s theory. This process makes one of the largest contributions to the uncertainty
of the Standard Model prediction for the muon (g − 2). Lattice QCD allows for a first-
principles approach to computing this non-perturbative effect. In order to avoid power-
law finite-size artifacts generated by virtual photons in lattice simulations, we follow a
coordinate-space approach involving a weighted integral over the vertices of the QCD four-
point function of the electromagnetic current carried by the quarks. Here we present in
detail the semi-analytical calculation of the QED part of the amplitude, employing position-
space perturbation theory in continuous, infinite four-dimensional Euclidean space. We also
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provide some useful information about a computer code for the numerical implementation
of our approach that has been made public at https://github.com/RJHudspith/KQED.
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1 Introduction

The anomalous magnetic moment of the muon, aµ ≡ (g−2)µ/2, characterizes its response to
a magnetic field, and is one of the most precisely known quantities in fundamental physics.
Currently, the experimental world average [1, 2] is in tension with the theoretical evaluation
based on the Standard Model (SM) of particle physics. On the basis of the Muon g − 2

– 1 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

Theory Initiative’s 2020 White Paper (WP) [3] with input from refs. [4–23], the tension is
at the 4.2σ level. Theoretical and experimental uncertainties are practically equal and just
under the level of 0.4 ppm. While a tension between theory and experiment has persisted
for about twenty years, the 2021 result of the Fermilab Muon (g − 2) experiment [1] has
increased this tension and thereby revived the general interest in possible explanations
involving beyond-the-Standard-Model physics, see e.g. [24].

The leading prediction for aµ in QED is α
2π [25], where α is the fine-structure constant.

Effects of the strong interaction enter at O(α2). Due to the low mass scale of the muon,
strong-interaction effects in the muon (g−2) must be treated in their full, non-perturbative
complexity. As a result, the theory uncertainty of this precision observable is entirely
dominated by the hadronic contributions.

The leading hadronic contribution goes under the name of hadronic vacuum polariza-
tion (HVP). The situation around the muon (g − 2) has become more intricate with the
publication of a lattice-QCD based calculation [26] of the HVP contribution, which finds
a larger value than the dispersion-theory based estimate of the WP and would bring the
overall theory prediction into far better agreement with the experimental value of aµ. Thus
it will be crucial to resolve the tension between the different determinations of the HVP
contribution in order to capitalize on the expected improvements in the experimental de-
terminations of aµ: a reduction by more than a factor of two is expected from the Fermilab
Muon g − 2 experiment [27], and further measurements are planned at J-PARC [28] and
considered at PSI [29].

An O(α3) hadronic contribution to aµ, known as the hadronic light-by-light (HLbL)
contribution, also adds significantly to the error budget of the SM prediction. It can be
represented as the Feynman diagram depicted in figure 1. In the WP error budget for
aµ, its assigned uncertainty is 0.15 ppm. Therefore, anticipating error reductions in the
HVP contribution and in the experimental measurements, it is crucial to further reduce
the uncertainty on the HLbL contribution by at least a factor of two.

The HLbL contribution is conceptually more complex than the HVP contribution. On
the other hand, being suppressed by an additional power of the fine-structure constant α,
the requirements on its relative precision are far less stringent: the uncertainty quoted in
the WP corresponds to 20%. In recent years, the HLbL contribution has been evaluated
using either dispersive methods, for which a full result can be found in the WP [3] based
on refs. [15–21, 23, 30–35], or lattice QCD ([22] and [36]–[37]). Good agreement is found
among the three evaluations within the quoted uncertainties.

The purpose of the present paper is to provide a detailed account of the computational
strategy underlying our recent calculation [36, 37]. Its full development spanned several
years, with progress reported in a number of conferences since 2015 [38–43]. The basic
idea is to treat the muon and photon propagators of figure 1 in position-space perturbation
theory, in the continuum and in infinite-volume, while the ‘hadronic blob’ is to be treated
in lattice QCD on a spatial torus. Thus much of this paper is concerned with the semi-
analytical calculation of the QED part of the amplitude.

The idea to compute the HLbL contribution to aµ was first proposed in 2005 [44], with
a follow-up three years later [45]. These initial methods finally led to the 2014 publica-
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Figure 1. Hadronic light-by-light scattering diagram in the muon (g − 2).

tion [46]. In parallel to the development of our strategy, the RBC/UKQCD collaboration
then also worked on improving its computational methods [47], with a first exploratory cal-
culation at physical quark masses published in [48]. These methods are based on treating
the QED parts of figure 1 within the lattice field theory set up on a finite torus. Starting
with ref. [49], the RBC/UKQCD collaboration also developed its own tools to treat the
muon and photon propagators in infinite volume. We will return in section 8.1 to some
aspects of the cross-fertilization that occurred between the two groups.

It is also worth pointing out other, less direct approaches that have been pursued to-
wards better determining the HLbL contribution to the muon (g − 2) using lattice QCD.
Of all meson exchanges, the neutral-pion pole contribution is by far the largest, and we
have published two lattice calculations of its transition form factor describing its coupling
to two (in general) virtual photons [19, 50]. Since the π0 contribution is the numerically
dominant one at long distances, having a dedicated determination thereof also helps con-
trol systematic errors at long distances in the direct lattice calculation [51] based on the
formalism presented in this paper. As a separate line of study, we have investigated the
HLbL scattering amplitude at Euclidean kinematics [52], particularly its eight indepen-
dent forward-scattering components, which depend on three invariant kinematic variables.
Knowing these amplitudes allows one to constrain the contributions of various meson ex-
changes [52, 53] by parametrizing their transition form factors, information which may
subsequently be used to estimate the HLbL contribution to the muon (g − 2).

This manuscript is organized as follows. Section 2 presents the general features of our
position-space approach and the master-formula for aHLbL

µ . The ingredients necessary for
the evaluation of the ‘QED kernel’ describing all purely QED elements of the amplitude
depicted in figure 1 are collected in section 3, at the end of which the averaging over
the direction of the muon momentum is performed. A relatively straightforward method
of evaluating the final convolution integral yielding the weight functions parametrizing
the QED kernel is described in section 4. An alternative, ultimately favored method
based on the multipole expansion of the photon propagator in Gegenbauer polynomials is
presented in section 5. Some technical aspects of the numerical implementation are given
in section 6. Then several models are used in section 7 to compute various contributions
to the four-point function of the electromagnetic current in QED and QCD. Since these
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contributions to the muon (g−2) have been computed previously (using analytical methods
in momentum-space), we use them to perform tests of our position-space QED kernel in
section 8. Published results obtained in lattice QCD by the present methods for the quark-
connected contribution are also reviewed in that section. Section 9 collects our concluding
remarks. The appendices contain additional material useful for numerical implementations,
providing in particular the kernel asymptotics for various special kinematic regimes. The
final appendix (E) provides some information about a computer code available for the
numerical implementation of our approach based on the results of section 5.

2 Master formula for aHLbL
µ in position space

We are interested in the hadronic light-by-light (HLbL) scattering contribution to the
anomalous magnetic moment of the muon, see figure 1. The basic idea of our approach is
to treat the four-point function of hadronic electromagnetic currents, represented by the
blob in figure 1, in lattice QCD regularization, while for the remaining QED part with
photons and muons, we use continuum, Euclidean position-space perturbation theory in
infinite volume [38–40]. As we will show, this allows a Lorentz covariant, semi-analytical
calculation of the QED part which avoids power-law finite-volume corrections 1/L2 in
aHLbL
µ due to the massless photons. An approach in position space is most natural, since

in lattice QCD one obtains the four-point correlation function directly in position space.
Furthermore, it will be possible to get directly the HLbL contribution aHLbL

µ as a spatial
moment of the four-point correlation function, i.e. no extrapolation of the Pauli form factor
F2(k2) for k2 → 0 is needed as tried in earlier attempts in ref. [46].

The HLbL contribution to the muon (g − 2) from the light quarks can be obtained
from the matrix element of the electromagnetic current

jρ(x) = 2
3(ūγρu)(x)− 1

3(d̄γρd)(x)− 1
3(s̄γρs)(x), (2.1)

between muon states, which can be parametrized by two form factors (assuming Lorentz
symmetry, current conservation as well as parity and charge conjugation invariance)

(ie)〈µ−(p′)|jρ(0)|µ−(p)〉 = −(ie)ū(p′)
[
γρF1(k2) + σρσkσ

2m F2(k2)
]
u(p), (2.2)

where e is the electric charge of the electron, m is the muon mass, σρσ ≡ i
2 [γρ, γσ] and we

use γ-matrices in Euclidean space with {γµ, γν} = 2δµν that are Hermitian, γ†µ = γµ. The
on-shell momenta in Euclidean space fulfill p2 = p′2 = −m2 and the momentum transfer
from the external photon is denoted by kµ = p′µ− pµ. The anomalous magnetic moment is
then given by the Pauli form factor at vanishing momentum transfer aµ = F2(0).

From the expression for the HLbL diagram in figure 1 in Minkowski space given in
ref. [54], we obtain the corresponding result in Euclidean space by performing a Wick
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rotation (
∫
q ≡

∫ d4q
(2π)4 )

(ie)〈µ−(p′)|jρ(0)|µ−(p)〉 = (−ie)3 (ie)4
∫
q1,q2

1
q2

1q
2
2(q1 + q2 − k)2

× −1
(p′ − q1)2 +m2

−1
(p′ − q1 − q2)2 +m2

× ū(p′)γµ(i/p′ − i/q1 −m)γν(i/p′ − i/q1 − i/q2 −m)γλu(p)
× Πµνλρ(q1, q2, k − q1 − q2), (2.3)

with the QCD four-point correlation function (
∫
x ≡

∫
d4x)

Πµνλρ(q1, q2, q3) =
∫
x,y,z

e−i(q1·x+q2·y+q3·z)
〈
jµ(x)jν(y)jλ(z)jρ(0)

〉
QCD

. (2.4)

The issue of the Wick rotation in general requires some care. Starting from the time-ordered
correlation function with interpolating operators for the muon initial and final states, the
standard recipe requires one to Wick rotate the loop momenta, here q1 and q2 in eq. (2.3),
and the external momenta, here p and p′; see the derivation for a general Feynman diagram
in ref. [55]. The expression for the loop integral is initially valid for real Euclidean vectors
p, p′ and one needs, in principle, to perform an analytic continuation of the final result after
all loop integrations have been performed from p′2, p2 > 0 to p2 = p′2 = −m2 to recover
the result for an on-shell momentum. In eq. (2.3), we have declared the Euclidean norm of
p and p′ to be −m2 from the outset, and return to the issue around eq. (2.21) below.

Since the electromagnetic current is conserved, the tensor Πµνλρ(q1, q2, q3) satisfies the
Ward identities (momentum conservation entails q1 + q2 + q3 + q4 = 0)

{q1µ; q2ν ; q3λ; (q1 + q2 + q3)ρ}Πµνλρ(q1, q2, q3) = 0. (2.5)

This implies the relation [56]

Πµνλρ(q1, q2, k − q1 − q2) = −kσ
∂

∂kρ
Πµνλσ(q1, q2, k − q1 − q2), (2.6)

which allows one to pull out the factor kσ from the vertex function in eq. (2.3) to obtain
the needed form factor F2(0) with the projection operator [56]

aHLbL
µ = F2(0) = −i

48m Tr{[γρ, γσ](−i/p+m)Γρσ(p, p)(−i/p+m)}
∣∣∣∣
p2=−m2

. (2.7)

The HLbL contribution to the vertex function reads for non-vanishing momentum
transfer

Γρσ(p′, p) = −e6
∫
q1,q2

1
q2

1q
2
2(q1 + q2 − k)2

1
(p′ − q1)2 +m2

1
(p′ − q1 − q2)2 +m2

×
(
γµ(i/p′ − i/q1 −m)γν(i/p′ − i/q1 − i/q2 −m)γλ

)
× ∂

∂kρ
Πµνλσ(q1, q2, k − q1 − q2). (2.8)
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In order go over to a position-space representation for aHLbL
µ , we insert into eq. (2.8)

the expression for the four-point function from eq. (2.4) and interchange the integrals over
momenta and positions. One can then write the momenta /q1 and /q2 in the numerator as
derivatives with respect to x and y of the exponential function in eq. (2.4) and also perform
the derivative with respect to kρ to obtain a factor zρ.

In this way one gets the following expression for the vertex function at vanishing
momentum transfer that enters in the projector in eq. (2.7) in terms of position-space
functions

Γρσ(p, p) = −e6
∫
x,y
Kµνλ(p, x, y) Π̂ρ;µνλσ(x, y), (2.9)

with the QED kernel1

Kµνλ(p, x, y) = γµ(i/p+ /∂
(x) −m)γν(i/p+ /∂

(x) + /∂
(y) −m)γλ I(p, x, y)IR reg. , (2.10)

I(p, x, y)IR reg. =
∫
q,k

1
q2 k2 (q + k)2

1
(p− q)2 +m2

1
(p− q − k)2 +m2 e

−i(q·x+k·y) . (2.11)

The kernel Kµνλ(p, x, y) in eqs. (2.9) and (2.10) is understood to be a function, not a
differential operator.

The function

Π̂ρ;µνλσ(x, y) =
∫
z
izρ

〈
jµ(x)jν(y)jσ(z)jλ(0)

〉
QCD

(2.12)

in eq. (2.9) is a spatial moment of the four-point function in QCD. Note the order of the
indices λσ on left-hand side and the order of the currents jσ(z)jλ(0) on the right-hand
side. We have frequently used the translation invariance of the four-point function to shift
the integration variables x, y or to reverse their direction z → −z. The most important
properties of Π̂ (Bose and reflection symmetries, transversality from current conservation)
are reviewed in subsection 7.1.

Note that the function I(p, x, y)IR reg. in eq. (2.11) has a logarithmic infrared diver-
gence for on-shell muon momentum p2 = −m2 inside the loop integration, i.e. for small
q, k with the three massless photon propagators and the two on-shell massive muon prop-
agators. The IR divergence disappears in the kernel Kµνλ(p, x, y), after the projection on
aHLbL
µ in eq. (2.7), as it should be, since the latter is well defined. After the projection, only

terms with derivatives with respect to x and / or y remain, which bring down additional
factors of k and / or q from the exponential in eq. (2.11). However, since it is convenient to
first compute the scalar function I(p, x, y)IR reg., we will regulate the infrared divergence,
see details below. After projecting on aHLbL

µ the regulator can be removed.
We insert eq. (2.9) into eq. (2.7), evaluate the trace of the Dirac matrices and obtain

the expression

aHLbL
µ = me6

3

∫
x,y
L[ρ,σ];µνλ(p, x, y) iΠ̂ρ;µνλσ(x, y), (2.13)

1Now that the momentum transfer has been set to zero, we use the letter k to denote an integration
variable in eq. (2.11).
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where the QED kernel is given by

L[ρ,σ];µνλ(p, x, y)

= 1
16m2 Tr

{
(−i/p+m)[γρ, γσ](−i/p+m)Kµνλ(p, x, y)

}
(2.14)

= − i

8mTr
{(
/p[γρ, γσ] + 2(pσγρ − pργσ)

)
γµγαγνγβγλ

}
∂(x)
α (∂(x)

β + ∂
(y)
β ) I

+ 1
4mTr

{(
/p[γρ, γσ] + 2(pσγρ − pργσ)

)
γµγαγν

}
pλ ∂

(x)
α I

+ 1
4mTr

{(
/p[γρ, γσ] + 2(pσγρ − pργσ)

)
γµ(pλγνγβ − pβγνγλ + pνγβγλ)

}
(∂(x)
β + ∂

(y)
β ) I,

(2.15)

and where we used /p/p = p2 = −m2 and (−i/p+m)(i/p+m) = 0. The use of an IR regulator
in the function I(p, x, y)IR reg. is always understood. As noted above, only terms with
derivatives acting on I(p, x, y)IR reg. survive after projecting on aHLbL

µ .
It may be worth pointing out some discrete symmetries of the quantities introduced

above. First, we note that, for a general vector p,

I(p, x, y)IR reg. = I(−p,−x,−y)IR reg.. (2.16)

Second, it is easy to show that

I(p, x, y)IR reg. = (I(−p∗, x, y)IR reg.)∗, (2.17)
I(p, x, y)IR reg. = I(p, x, x− y)IR reg., (2.18)

whence it follows that
Kλνµ(p, x, x− y) = Kµνλ(−p∗, x, y)†. (2.19)

Finally, the latter equation entails the following property for the full kernel,

L[ρ,σ];λνµ(p, x, x− y) = −L[ρ,σ];µνλ(−p∗, x, y)∗. (2.20)

Our goal is to perform as many integrations of the 8-dimensional integral over x, y
in eq. (2.13) as possible (semi-) analytically to have full control over the QED kernel
function L[ρ,σ];µνλ(p, x, y). To achieve this, we will rewrite the function I(p, x, y)IR reg. in
eq. (2.11) in terms of position-space propagators [57–59] and use the method of Gegenbauer
polynomials [60–69] to perform the angular integrals and average over the direction of the
muon momentum [70] (see also refs. [69, 71]). We will show the details of this calculation in
the next sections, but present here first the structure of the final result, our master formula
for aHLbL

µ in position space.
As mentioned earlier, we adopt an approach where the Euclidean vector p obeys p2 =

−m2 from the outset, exploiting the fact that the muon is the ground state in the channel
of its symmetry. In the context of the use of Gegenbauer polynomials for loop integrals in
momentum space in refs. [63, 64] this procedure only works in a straightforward way, if the
integrand is a meromorphic function of all the integration variables and all the external
invariants, like p2. Fortunately, in our case one can show that the relevant p-dependent part
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of the integrand is a meromorphic function and the analytical continuation to p2 = −m2

can be performed without problems. Aiming at keeping the absolute size of the imaginary
components as small as possible, we thus parametrize the on-shell momentum as follows,

p = imε̂, ε̂2 = 1, p2 = −m2, (2.21)

where the unit vector ε̂ parametrizes the direction of the muon momentum. From eq. (2.17),
for a vector p with purely imaginary components, I(p, x, y)IR reg. is real, and so is2

L[ρ,σ];µνλ(p, x, y). Furthermore, the general property eq. (2.20) becomes

L[ρ,σ];λνµ(p, x, x− y) = −L[ρ,σ];µνλ(p, x, y), p = imε̂. (2.22)

Since aHLbL
µ is a Lorentz scalar, the expression in eq. (2.13) can be averaged over the

direction ε̂ of the muon momentum (
∫
dΩε̂ = 2π2),

L̄[ρ,σ];µνλ(x, y) = 1
2π2

∫
dΩε̂ L[ρ,σ];µνλ(p, x, y) ≡

〈
L[ρ,σ];µνλ(p, x, y)

〉
ε̂
. (2.23)

In this way we obtain

L̄[ρ,σ];µνλ(x, y) = GI
δ[ρ,σ]µανβλ 〈ε̂δ∂

(x)
α (∂(x)

β + ∂
(y)
β )I〉ε̂

+mGII
δ[ρ,σ]µανβλ〈ε̂δ ε̂β ∂

(x)
α I〉ε̂

+mGIII
δ[ρ,σ]µανβλ 〈ε̂αε̂δ(∂

(x)
β + ∂

(y)
β )I〉ε̂, (2.24)

where we have defined

GI
δ[ρ,σ]µανβλ ≡

1
8Tr

{(
γδ[γρ, γσ] + 2(δδσγρ − δδργσ)

)
γµγαγνγβγλ

}
, (2.25)

GII
δ[ρ,σ]µανβλ ≡ −

1
4Tr

{(
γδ[γρ, γσ] + 2(δδσγρ − δδργσ)

)
γµγαγν

}
δβλ, (2.26)

GIII
δ[ρ,σ]µανβλ ≡ −

1
4Tr

{(
γδ[γρ, γσ] + 2(δδσγρ − δδργσ)

)
γµ(δαλγνγβ − δαβγνγλ + δανγβγλ)

}
.

(2.27)

The tensors GA
δ[ρ,σ]µανβλ are sums of products of Kronecker deltas from the traces of the

Dirac matrices in Euclidean space. The QED kernel L̄[ρ,σ];µνλ(x, y) inherits from the kernel
L[ρ,σ];µνλ(p, x, y) the antisymmetry property

L̄[ρ,σ];λνµ(x, x− y) = −L̄[ρ,σ];µνλ(x, y) (2.28)

under the transformation (µ↔ λ, y → x− y) upon averaging both sides of eq. (2.22) over
the direction of the muon momentum.

We thus arrive at our master formula for aHLbL
µ in position space (which we have

already presented previously in refs. [38–40])

aHLbL
µ = me6

3

∫
x,y
L̄[ρ,σ];µνλ(x, y) iΠ̂ρ;µνλσ(x, y), (2.29)

L̄[ρ,σ];µνλ(x, y) =
∑

A=I,II,III
GA
δ[ρ,σ]µανβλT

A
αβδ(x, y), (2.30)

iΠ̂ρ;µνλσ(x, y) = −
∫
z
zρ
〈
jµ(x) jν(y) jσ(z) jλ(0)

〉
QCD

. (2.31)

2Indeed, the trace of a product of linear combinations of Euclidean Dirac matrices with real coefficients
is real.
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Figure 2. Hadronic light-by-light scattering diagram in the muon (g− 2) with the locations of the
vertices x, y, z, 0 in the master formula in eq. (2.29).

After contracting the Lorentz indices in eq. (2.29), the integration reduces to a 3-dimensional
integral over |x|, |y| and x · y. For illustration we depict in figure 2 the HLbL diagram in
the muon (g − 2) indicating the positions x, y, z, 0 of the four vector currents (attached
to the photons) in the master formula in eq. (2.29). We emphasize at this point that the
kernel L̄ is far from being unique. A significant amount of freedom remains to adjust the
kernel to the needs of practical calculations, without modifying the final value of aHLbL

µ .
We return to this aspect in subsection 8.1.

The tensors TA
αβδ(x, y) in eq. (2.30) can be decomposed into a scalar S, a vector Vδ

and a tensor part Tβδ:

T I
αβδ(x, y) = ∂(x)

α (∂(x)
β + ∂

(y)
β )Vδ(x, y), (2.32)

T II
αβδ(x, y) = m∂(x)

α

(
Tβδ(x, y) + 1

4δβδS(x, y)
)
, (2.33)

T III
αβδ(x, y) = m(∂(x)

β + ∂
(y)
β )

(
Tαδ(x, y) + 1

4δαδS(x, y)
)
. (2.34)

These parts are given in terms of the function I(p, x, y)IR reg. from eq. (2.11) as follows
(see eq. (2.24)):

S(x, y) =
〈
I(p, x, y)IR reg.

〉
ε̂
, (2.35)

Vδ(x, y) =
〈
ε̂δ I(p, x, y)IR reg.

〉
ε̂
, (2.36)

Tβδ(x, y) =
〈(
ε̂β ε̂δ −

1
4δβδ

)
I(p, x, y)IR reg.

〉
ε̂
. (2.37)

From the property (2.16) of the scalar function I(p, x, y)IR reg., it follows that S(x, y) and
Tβδ(x, y) are even under the simultaneous sign reflection of both their arguments, while
Vδ(x, y) is odd. From here, it follows that the TA

αβδ(x, y) are all odd under (x, y) →
(−x,−y), so that the QED kernel is too,

L̄[ρ,σ];µνλ(x, y) = −L̄[ρ,σ];µνλ(−x,−y). (2.38)

Since the function I(p, x, y)IR reg. is ultraviolet finite by power-counting (including at x =
y = 0), we conclude that so is the QED kernel, and eq. (2.38) then implies the property

L̄[ρ,σ];µνλ(0, 0) = 0. (2.39)
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The quantity S(x, y) can only be a scalar function ḡ(0) of the three invariants |x|, x ·
y, |y|; we call this a weight function. The vector and tensor functions will be parametrized
by respectively two and three weight functions:

S(x, y) = ḡ(0)(|x|, x · y, |y|), (2.40)

Vδ(x, y) = xδḡ
(1)(|x|, x · y, |y|) + yδḡ

(2)(|x|, x · y, |y|), (2.41)

Tαβ(x, y) =
(
xαxβ −

x2

4 δαβ

)
l̄(1)(|x|, x · y, |y|) +

(
yαyβ −

y2

4 δαβ

)
l̄(2)(|x|, x · y, |y|)

+
(
xαyβ + yαxβ −

x · y
2 δαβ

)
l̄(3)(|x|, x · y, |y|). (2.42)

In total, the QED kernel L̄[ρ,σ];µνλ(x, y) in eq. (2.30) is thus parametrized by six weight
functions and their derivatives. See appendix A for the explicit expressions of the ten-
sors TA

αβδ(x, y). As we will see in the explicit calculation later, the IR divergence of
I(p, x, y)IR reg. will only be important in the scalar weight function ḡ(0)(|x|, x ·y, |y|), before
performing the derivatives in eqs. (2.33) and (2.34).

It is clear that the tensors S(x, y), Vδ(x, y) and Tβδ(x, y) inherit from I(p, x, y)IR reg.
the invariance under y → (x− y). In turn, their invariance implies the following symmetry
properties for the weight functions,

ḡ
(0)
∗ = ḡ(0), (2.43)

ḡ
(1)
∗ = ḡ(1) + ḡ(2), (2.44)

ḡ
(2)
∗ = −ḡ(2), (2.45)
l̄
(1)
∗ = l̄(1) + l̄(2) + 2̄l(3), (2.46)
l̄
(2)
∗ = l̄(2), (2.47)
l̄
(3)
∗ = −l̄(2) − l̄(3). (2.48)

Unstarred functions have as argument (|x|, x · y, |y|), while starred functions refer to the
same weight functions but with argument (|x|, x · (x− y), |x− y|). Furthermore, the rank-
three tensors contributing to the QED kernel satisfy3

T I
βαδ(x, x− y) = T I

αβδ(x, y), (2.49)
T III
βαδ(x, x− y) = T II

αβδ(x, y). (2.50)

We already know that the QED kernel as a whole obeys the antisymmetry property
eq. (2.28) under the transformation (µ ↔ λ, y → x − y). Eq. (2.49), combined with
the fact that GI is antisymmetric under the simultaneous index exchanges µ ↔ λ and
α ↔ β, implies that the contribution to the QED kernel GIT I by itself is antisymmetric
under the transformation (µ↔ λ, y → x− y).

3In fact, the contributions S(x, y) and Tβδ(x, y) to the rank-three tensors separately satisfy eq. (2.50).
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←
p

e−ip·w ←
p

eip·v

G0(x − w) G0(y − u) G0(v − 0)

Gm(w − u) Gm(u − v)

x y 0

w u v

Figure 3. Feynman diagram of the QED part of the HLbL contribution in the muon g − 2 in
position space, see figure 2, corresponding to the scalar function I(p, x, y)IR reg. in eq. (2.11). Note
that the arrows on the muon line are only meant for illustration; all propagators are scalar functions.
In the derivation, the Euclidean momentum p flowing through the diagram was assumed to be real.

3 Preparatory steps for the calculation of the QED weight functions in
position space

In this section, we present some (partly known) results on propagators and their expansion
in Gegenbauer polynomials. These preliminaries will allow us to provide the expansion in
Gegenbauer polynomials of the function J(ε̂, u), defined in eq. (3.5), which plays a crucial
role in the entire calculation. Then, starting in subsection 3.4, we perform the average over
the direction of the muon momentum analytically. The final convolution integrals yielding
the tensors S, Vδ and Tβδ are treated in sections 4 and 5.

3.1 Starting point for the calculation of I(p, x, y)IR reg.

To obtain a convenient expression for the scalar function I(p, x, y)IR reg. in eq. (2.11), we
translate the momentum integrals into position-space perturbation theory integrals, where
the integration variables correspond to the positions of the vertices, see figure 3.

The relevant Fourier transforms can be performed by using the well-known expressions
for the massless and massive propagators in position space [72]:4

G0(x− y) =
∫
k

eik·(x−y)

k2 = 1
4π2(x− y)2 , (3.1)

Gm(x− y) =
∫
k

eik·(x−y)

k2 +m2 = m

4π2|x− y|
K1(m|x− y|) , (3.2)

where K1 is a modified Bessel function and we use the conventions from ref. [73]. The
propagators in position space are Green’s functions of the ‘Euclidean Klein-Gordon’ equa-
tion,

(−4(x) +m2)Gm(x− y) = δ(4)(x− y), (3.3)

and analogously for m = 0. Here 4(x) =
∑3
µ=0 ∂

(x)
µ ∂

(x)
µ is the four-dimensional Laplacian.

These position-space representations of propagators have been used for a long time to
evaluate Feynman diagrams, see for instance refs. [57–59, 67, 68]. However, these calcula-
tions were mostly dealing with loop integrals, not their Fourier transform as in eq. (2.11);

4The positions x, y in the definitions of the propagators are generic Euclidean four-vectors and do not
correspond to the vertices in the Feynman diagrams in figures 2 and 3.
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they involved massless particles (relevant for QCD) and were either aimed at evaluating
renormalization constants at higher loop order, or treated Feynman diagrams with a special
topology, e.g. of the sun-rise type, where L+ 1 propagators connect the two points x and y
in a L-loop diagram. Thus our goal required the development of additional computational
methods.

We then obtain as the starting point for the evaluation of the weight-functions of the
QED kernel in position space the following representation of the scalar function
I(p, x, y)IR reg. for p = imε̂:

I(p, x, y)IR reg. =
∫
u
G0(y − u) J(ε̂, u) J(ε̂, x− u) , (3.4)

J(ε̂, u) =
∫
ũ
G0(u− ũ)emε̂·ũGm(ũ) . (3.5)

Recall again the need to regulate the IR divergence of the function I(p, x, y)IR reg., which is
related in position space to the behavior of the integrand in the final integration in eq. (3.4)
for large |u|, i.e. at long distances. Below we will show that J(ε̂, u) ∼ 1/|u| for large |u|
and therefore the integral for I(p, x, y)IR reg. is logarithmically divergent for large |u|, since∫
u ≡

∫∞
0 d|u||u|3dΩû (with unit-vector û = u/|u|) and G0(y − u) ∼ 1/u2.

In the derivation of eq. (3.4) we encounter the integral

∫
k

eik·x

(k − p)2 +m2 = eix·pGm(x) = e−mε̂·xGm(x) . (3.6)

The first equality follows, formally, by shifting the integration variable k → k − p. The
derivation is formal because with our parametrization of the on-shell momentum p = imε̂

in the integrand, p is a complex Euclidean vector, while the shift in the integration variable
assumes that p is a real Euclidean vector. The final result, also used in eq. (3.5), follows
by analytical continuation of the expression from a real off-shell vector p to a complex
on-shell vector p. The second equality with the on-shell momentum p can be derived
directly by using the Schwinger representation of the propagator ((k − p)2 + m2)−1 =∫∞

0 dα exp(−α((k − p)2 + m2)) and then, after the dependence on the components of kµ
has been factorized, performing four simple Gaussian integrals.

Note that although the Feynman diagram from figure 3 is only a tree-level diagram and
thus trivial in momentum space, the expression in position space in eq. (3.4) is a non-trivial
convolution of propagators and exponentials.

3.2 Gegenbauer method for angular integrals in position space in four dimen-
sions

We summarize first some basic properties of Gegenbauer polynomials which have been
used since a long time ago to perform the angular integrations of Feynman loop integrals
(hyperspherical approach) in momentum space [63, 64] and in position space [67, 68]. Since
we work in d = 4 dimensions, we only need the special case of the Gegenbauer polynomials
Cn(ξ) ≡ C(α=1)

n (ξ) ≡ Un(ξ), which are actually equal to the Chebyshev polynomials of the
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second kind, see ref. [73].5 The corresponding generating function is given by

1
τ2 − 2ξτ + 1 =

∞∑
n=0

τnCn(ξ), −1 ≤ ξ ≤ 1, |τ | < 1. (3.7)

Some low-order Gegenbauer polynomials are given by C0(ξ) = 1, C1(ξ) = 2ξ, C2(ξ) =
4ξ2 − 1 and therefore ξ = C1(ξ)/2, ξ2 = (C2(ξ) + C0(ξ)) /4.

Some simple properties of the Gegenbauer polynomials (Chebyshev polynomials of the
second kind) are [73]

Cn(cos θ) = sin((n+ 1)θ)
sin(θ) , (3.8)

Cn(−ξ) = (−1)nCn(ξ), (3.9)
Cn(1) = n+ 1, (3.10)

ξ Cn(ξ) = 1
2
[
Cn+1(ξ) + (1− δn0)Cn−1(ξ)

]
, n ≥ 0, (3.11)

ξ2Cn(ξ) = 1
4
[
Cn+2(ξ) + (2− δn0)Cn(ξ) + Cn−2(ξ)

]
, n ≥ 0, (3.12)

where we adopt in eqs. (3.11) and (3.12) the convention that Cn(ξ) ≡ 0 for n ≤ −1. The
property (3.9) under parity transformations and the normalization (3.10) follow easily from
the generating function in eq. (3.7).

For the evaluation of angular integrals in Feynman diagrams one makes use of the fact
that the Gegenbauer polynomials (hyperspherical polynomials) are the polynomials that
obey the orthogonality relations〈

Cn(ε̂ · x̂) Cm(ε̂ · ŷ)
〉
ε̂

= δnm
n+ 1 Cn(x̂ · ŷ),〈

Cn(ε̂ · x̂) Cm(ε̂ · x̂)
〉
ε̂

= δnm, (3.13)

on the unit sphere, where we denote unit four-vectors as x̂ = x/|x|, ŷ = y/|y|.

3.3 Expansion in Gegenbauer polynomials of propagators in position space,
of the exponential function and of the function J(ε̂, y)

For our goal to perform the angular integrations in the function I(p, x, y)IR reg. in eq. (3.4)
and the averages in eqs. (2.35), (2.36) and (2.37), it is important to note that if we have a
function f = f(ε̂ · x, x2), its dependence on the angle between the vectors ε̂ and x can be
expanded in Gegenbauer polynomials as follows

f(ε̂ · x, x2) =
∞∑
n=0

ζn(x2)Cn(ε̂ · x̂), (3.14)

ζn(x2) =
〈
f(ε̂ · x, x2)Cn(ε̂ · x̂)

〉
ε̂
, (3.15)

where one uses the orthogonality relations in eq. (3.13) to derive the expression for ζn(x2).
5Note that in some references Cn(ξ) denotes a dilated Chebyshev polynomial of the first kind.
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For later reference we write down the expansions into Gegenbauer polynomials for the
massless and massive propagators in position space, the exponential function and the func-
tion J(p, y) from eq. (3.5) (again, the vectors x, y in the propagators and in the exponential
function are meant to be generic Euclidean four-vectors)

4π2G0(x− y) ≡ 1
(x− y)2 =

∞∑
n=0

dn(x2, y2)Cn(x̂ · ŷ), (3.16)

dn(x2, y2) = θ(x2 − y2) |y|
n

|x|n+2 + θ(y2 − x2) |x|
n

|y|n+2 , (3.17)

Gm(x− y) =
∞∑
n=0

γn(x2, y2)Cn(x̂ · ŷ), (3.18)

γn(x2, y2) = n+ 1
2π2|x||y|

(
θ(x2 − y2) In+1(m|y|)Kn+1(m|x|)

+ θ(y2 − x2) In+1(m|x|)Kn+1(m|y|)
)
, (3.19)

eε̂·x ≡ exε̂·x̂ = 2
∞∑
n=0

(n+ 1)In+1(|x|)
|x|

Cn(ε̂ · x̂), x ∈ R4, (3.20)

J(ε̂, u) =
∞∑
n=0

zn(u2)Cn(ε̂ · û), (3.21)

zn(u2) = 1
4π2

[
In+2(m|u|)K0(m|u|)

n+ 1 + In+1(m|u|)
(
K1(m|u|)
n+ 1 + K0(m|u|)

m|u|

)]
,

(3.22)

where In is another modified Bessel function, see ref. [73]. For integrals involving modified
Bessel functions, we have also found the further references [74–77] useful.

The expansion of the massless propagator G0(x − y) in position space in eqs. (3.16)
and (3.17) is formally equal to the corresponding expansion in momentum space and follows
immediately from the use of the generating function of the Gegenbauer polynomials in
eq. (3.7) to write down the expansion of the massive propagator in Euclidean momentum
space and then performing the limit m→ 0 [54].

The expansion into Gegenbauer polynomials for the massive propagator Gm(x−y) can
be derived as follows. It satisfies the differential equation from eq. (3.3). Since Gm(x− y)
is a scalar function, we can choose the coordinate system such that y lies along the positive
ê0 axis, so that x has coordinates (|x| cosφ1, |x| sinφ1, 0, 0) and cosφ1 coincides with x̂ · ŷ.
The four-dimensional Laplacian operator for a function of |x| and cosφ1 reads

4(x) = ∂2

∂|x|2
+ 3
|x|

∂

∂|x|
+ 1
|x|2 sin2 φ1

∂

∂φ1

(
sin2 φ1

∂

∂φ1

)
. (3.23)

The important fact is that the Gegenbauer polynomials (Chebyshev polynomials of the
second kind) are eigenfunctions of the angular part of the Laplacian operator

1
sin2 φ1

∂

∂φ1

(
sin2 φ1

∂

∂φ1
Cn(cosφ1)

)
= −n(n+ 2)Cn(cosφ1). (3.24)
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Thus inserting the expansion of Gm(x− y) in eq. (3.18) into the Klein-Gordon equation in
eq. (3.3) and applying the differential operator term by term yields the condition

∞∑
n=0

{
− ∂2

∂|x|2
− 3
|x|

∂

∂|x|
+m2 + n(n+ 2)

|x|2

}
γn(x2, y2)Cn(x̂ · ŷ) = δ(4)(x− y). (3.25)

Using the general expression

δ(4)(x− y) = 1
|x|3

δ(|x| − |y|) 1
sin2 φ1

δ(φ1 − φy1) 1
sinφ2

δ(φ2 − φy2)δ(φ3 − φy3), (3.26)

we integrate both sides of eq. (3.25) over
∫ π

0 dφ2 sinφ2
∫ 2π

0 dφ3 and use the completeness
relation of the Gegenbauer polynomials,

2
π

∞∑
n=0

Cn(cosφ1)Cn(cosφy1) = 1
sin2 φ1

δ(φ1 − φy1) (3.27)

to obtain

4π
∞∑
n=0

{
− ∂2

∂|x|2
− 3
|x|

∂

∂|x|
+m2 + n(n+ 2)

|x|2

}
γn(x2, y2)Cn(x̂ · ŷ)

= 1
|x|3

δ(|x| − |y|) 2
π

∞∑
n=0

Cn(cosφy1)Cn(cosφ1). (3.28)

Choosing again y to lie along the ê0 direction, we have φy1 = 0, x̂ · ŷ = cosφ1 and
Cn(cosφy1) = (n+1); comparing the series term by term we obtain the differential equation{

− ∂2

∂|x|2
− 3
|x|

∂

∂|x|
+m2 + n(n+ 2)

|x|2

}
γn(x2, y2) = n+ 1

2π2|x|3
δ(|x| − |y|). (3.29)

Two solutions of the homogeneous equation are Kn+1(m|x|)/|x| and In+1(m|x|)/|x|. This
then leads to the expression for γn(x2, y2) given in eq. (3.19).

We are not aware of any paper, where the expansion into Gegenbauer polynomials of
the massive propagator in position space in eqs. (3.18) and (3.19) has been given, even
though it is a special case of Gegenbauer’s Addition Theorem (see p. 365 of ref. [76]). Note
that at |x| = |y|, the function γn(x2, y2) is continuous, but not differentiable - there is a
cusp. For m→ 0 we recover from the expansion of the massive propagator the expansion
for the massless propagator.

The expansion into Gegenbauer polynomials for the exponential function in eq. (3.20)
follows from the generating function of the Bessel functions In and the associated series
given in ref. [73]

ez cos θ = I0(z) + 2
∞∑
n=1

In(z) cos(nθ), z ∈ C, (3.30)

by taking the derivative with respect to θ of both sides of eq. (3.30) and then using eq. (3.8),
z = |x| and cos θ = ε̂ · x̂ for x ∈ R4. Similar expressions have already been given in
refs. [57, 65–68].
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For the derivation of the expansion into Gegenbauer polynomials of J(ε̂, u) in eqs. (3.21)
and (3.22) we start from the definition of the function in eq. (3.5)

J(ε̂, u) =
∫
v
G0(u− v) emε̂·vGm(v) =

∞∑
n=0

zn(u2)Cn(ε̂ · û). (3.31)

Inserting the expansions of the massless propagator G0(u− v) from eqs. (3.16) and (3.17)
and of the exponential emε̂·v from eq. (3.20), we can use the orthogonality properties of the
Gegenbauer polynomials from eq. (3.13) to project on the coefficients zn(u2) as in eq. (3.15)
to obtain the intermediate result

zn(u2) = 1
4π2

[
1

(m|u|)n+2

∫ m|u|

0
dt tn+1In+1(t)K1(t) + (m|u|)n

∫ ∞
m|u|

dt
In+1(t)
tn+1 K1(t)

]
.

(3.32)
For the first integral, we use integration by parts, starting from the observation K1(t) =
−K ′0(t), and then using the well-known identity d

dt(t
n+1In+1(t)) = tn+1In(t). We then use

the following primitives:

d

dt

{
tn+2

(
K0(t)In(t) +K1(t)In+1(t)

)}
= 2(n+ 1)tn+1In(t)K0(t), (3.33)

d

dt

{ 1
tn

(
K0(t)In(t) +K1(t)In+1(t)

)}
= −2(n+ 1)

tn+1 In+1(t)K1(t), (3.34)

to obtain the result in eq. (3.22) after some slight rearrangements.
It is worth recording the asymptotics of the coefficients zn(u2) for fixed n. Using the

known asymptotics of the modified Bessel functions, one finds

zn(u2) u2→0= − (m|u|)n

2n+3π2Γ(n+ 2)

[
log

(
m|u|

2

)
+ γE −

1
n+ 1

]
+ O

(
|u|n+2

)
(3.35)

zn(u2) u2→∞= n+ 1
4π2m|u|

( 1
(n+ 1)2 −

1
2m|u| + O(u−2)

)
. (3.36)

Furthermore, it is worth noting that

d

d|u|
(|u|zn(u2)) = (n+ 1)In+1(m|u|)K0(m|u|)

4π2m|u|
, (3.37)

and therefore, resumming the expansion in the angular variable using eq. (3.20),

d

d|u|
(|u|J(ε̂, u)) = 1

8π2 e
mε̂·uK0(m|u|). (3.38)

Since J(ε̂, u) is logarithmically divergent for |u| → 0, as can be seen from the definition in
eq. (3.5), we have lim|u|→0(|u|J(ε̂, u)) = 0. Therefore we can solve this differential equation
by simple integration to obtain the integral representation6

J(ε̂, u) = 1
8π2m|u|

∫ m|u|

0
dt etε̂·û K0(t). (3.39)

From here it is straightforward to obtain the asymptotics of J(ε̂, u) at small and large |u|.
6A very similar function appears in ref. [49].
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As already mentioned, around the origin |u| → 0, the function J(ε̂, u) is logarithmically
divergent. The precise behavior reads:

J(ε̂, u) |u|→0∼ − 1
16π2 log(m2u2) + 1

8π2 (1− γE + log(2)) + O(|u| log |u|). (3.40)

We note the exactly computable special case if the vector u is collinear with ε̂

J(ε̂,±|u|ε̂) = 1
8π2

(
e±m|u|(K0(m|u|)±K1(m|u|))∓ 1

m|u|

)
. (3.41)

In this case, the behavior for large |u| reads

J(ε̂,+|u|ε̂) |u|→∞∼ 1
4π
√

2πm|u|
, J(ε̂,−|u|ε̂) |u|→∞∼ 1

8π2m|u|
. (3.42)

For a generic direction of u, we obtain for large |u|:

J(ε̂, u) |u|→∞∼ 1
8π2m|u|

π − θ
sin θ , cos θ = ε̂ · û, 0 < θ < π. (3.43)

This behavior at large |u| is obtained from eq. (3.39) by writing the integral
∫m|u|

0 =∫∞
0 −

∫∞
m|u|. The first term then yields eq. (3.43). The second, using the large-argument

expansion of the Bessel function, yields a correction suppressed by exp(−2 sin2(θ/2)m|u|).
In particular, the special ‘collinear’ sector around θ = 0, in which the function J(ε̂, u) only
falls off like (m|u|)−1/2, has an angular size ∆θ ∼ (m|u|)−1/2.

3.4 Average over the direction of the muon momentum

The product J(ε̂, u)J(ε̂, x−u) can be viewed as a function of ε̂ on the unit three-sphere, and
can therefore be expanded in scalar, vector, rank-two traceless tensor, etc. components.
Computationally, in order to compute S, Vδ and Tβδ in eqs. (2.35)–(2.37), it is simpler
to first extract these components before performing the convolution with the massless
propagator. We therefore introduce the notation

s(x, u) =
〈
J(ε̂, u)J(ε̂, x− u)

〉
ε̂
, (3.44)

vδ(x, u) =
〈
ε̂δ J(ε̂, u)J(ε̂, x− u)

〉
ε̂
, (3.45)

tβδ(x, u) =
〈(
ε̂β ε̂δ −

1
4δβδ

)
J(ε̂, u)J(ε̂, x− u)

〉
ε̂
, (3.46)

so that

S(x, y)IR reg. =
∫
u
G0(u− y) s(x, u), (3.47)

Vδ(x, y) =
∫
u
G0(u− y) vδ(x, u), (3.48)

Tβδ(x, y) =
∫
u
G0(u− y) tβδ(x, u). (3.49)
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3.5 Calculation of s(x, u)

Inserting into eq. (3.44) the expansions of J(ε̂, u) and J(ε̂, x−u) in Gegenbauer polynomials
from eq. (3.21) and using the orthogonality relations in eq. (3.13), the angular average yields

s(x, u) =
∞∑
n=0

zn(u2)zn((x− u)2) Cn(û · x̂− u)
n+ 1 . (3.50)

We remark that the symmetry s(x, u) = s(x, x−u), obvious in eq. (3.44), remains manifest
in eq. (3.50). At x = 0, we have

s(0, u) =
∞∑
n=0

(−1)n zn(u2)2 |u|→∞∼ 1
(4π2m)2u2

∞∑
n=0

(−1)n

(n+ 1)2 = 1
192π2m2u2 , (3.51)

where we used the first term in the large-argument expansion (3.36) of zn(u2). Eq. (3.51)
provides the leading behavior of s(x, u) at large |u| that will be important to deal with
the IR divergence in S(x, y). We remark that the asymptotic prediction of eq. (3.51) for
s(x, u) can also be obtained directly from its definition (3.44), employing the asymptotic
form (3.43) of the function J(ε̂, u).

3.6 Calculation of vδ(x, u)

We parametrize the vector components in eq. (3.45) as follows:

vδ(x, u) = xδ f
(1)(x2, x · u, u2) + uδ f

(2)(x2, x · u, u2). (3.52)

Multiplying with xδ and uδ and solving the system of two equations, we get

(
f(1)

f(2)

)
= 1
x2u2 − (x · u)2

(
u2 −u · x
−u · x x2

)(
〈(x · ε̂)J(ε̂, u)J(ε̂, x− u)〉ε̂
〈(u · ε̂)J(ε̂, u)J(ε̂, x− u)〉ε̂

)
. (3.53)

Using eq. (3.11) and the orthogonality relations (3.13) we obtain the results

〈(x · ε̂)J(ε̂, u)J(ε̂, x− u)〉ε̂ = |u|2

∞∑
n=0

(zn−1(u2) + zn+1(u2)) zn((x− u)2)
n+ 1 Cn(û · x̂− u)

+ |x− u|2

∞∑
n=0

(zn−1((x− u)2) + zn+1((x− u)2)) zn(u2)
n+ 1 Cn(û · x̂− u), (3.54)

〈(u · ε̂)J(ε̂, u)J(ε̂, x− u)〉ε̂ = |u|2

∞∑
n=0

(zn−1(u2) + zn+1(u2)) zn((x− u)2)
n+ 1 Cn(û · x̂− u),

(3.55)

– 18 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

with the convention that zn(u2) = zn((x− u)2) = 0 for n ≤ −1. In the end we get

f(1)(x2, x · u, u2) = 1
2(x2u2 − (x · u)2)

×
∞∑
n=0

(
u2|x− u|(zn−1((x− u)2) + zn+1((x− u)2))zn(u2)

+|u|(u2 − u · x)(zn−1(u2) + zn+1(u2)) zn((x− u)2)
)Cn(û · x̂− u)

n+ 1 , (3.56)

f(2)(x2, x · u, u2) = 1
2(x2u2 − (x · u)2)

×
∞∑
n=0

(
− |x− u| (u · x)(zn−1((x− u)2) + zn+1((x− u)2))zn(u2)

+|u|(x2 − u · x)(zn−1(u2) + zn+1(u2)) zn((x− u)2)
)Cn(û · x̂− u)

n+ 1 . (3.57)

We now want to study the large-|u| behavior of f(i)(x2, x · u, u2). Expanding zn(u2)
and zn((x− u)2) for fixed n and large |u|, one finds the result in eq. (3.36) and

zn
(
(x− u)2

)
− zn(u2) = û · x

4π2m (n+ 1)u2 + O(u−3). (3.58)

We note that

Cn(û · x̂− u)
n+ 1 = (−1)n

(
1 + n(n+ 2)

(
(x̂ · û)2 − 1

) x2

6u2

)
+ O(u−3). (3.59)

One then sees that 〈(u · ε̂)J(ε̂, u)J(ε̂, x− u)〉ε̂ vanishes for x = 0. For this reason, we may
rewrite

〈(u · ε̂)J(ε̂, u)J(ε̂, x− u)〉ε̂ (3.60)

= |u|2

∞∑
n=0

(
zn−1(u2) + zn+1(u2)

)
(−1)n

(
zn
(
(x− u)2

)
(−1)nCn(û · x̂− u)

n+ 1 − zn(u2)
)
.

The second factor in the sum is given in leading order by û·x
4π2m (n+1)u2 for large u, and since

the series is then still absolutely convergent, one finds that 〈(u · ε̂)J(ε̂, u)J(ε̂, x− u)〉ε̂ falls
off at least as fast as 1/|u|3. In fact, at little more work reveals that the coefficient of the
1/|u|3 term vanishes. The same argument shows that 〈(x · ε̂)J(ε̂, u)J(ε̂, x − u)〉ε̂ goes like
|u|−3 for large |u|, thus showing that

〈
ε̂δJ(ε̂, u)J(ε̂, x−u)

〉
ε̂
falls off at least as fast as |u|−3

for large |u|.

3.7 Calculation of tαβ(x, u)

First, calculate at x = 0:

tαβ(0, u) = 〈
(
ε̂αε̂β −

1
4δαβ

)
J(ε̂, u)J(ε̂,−u)〉ε̂ =

(
uαuβ −

u2

4 δαβ

)
b(u2), (3.61)
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Contracting with uαuβ and using the identity from eq. (3.12) and the orthogonality rela-
tions (3.13) within the angular average 〈. . .〉ε̂, we get

b(u2) = 1
3u2

∞∑
n=0

(−1)n (zn−2(u2) + zn(u2)(1− δn0) + zn+2(u2)) zn(u2) (3.62)

= 1
3u2

∞∑
n=0

(−1)n zn(u2)(zn(u2)(1− δn0) + 2zn+2(u2))

|u|→∞∼ 1
96π2m2|u|4

(
− 1
π2 + 1

6

)
. (3.63)

For the general case we have with v = x− u the decomposition:

tαβ(x, u) =
(
uαuβ −

u2

4 δαβ

)
ĥ(1)(u2, u · v, v2) (3.64)

+
(
vαvβ −

v2

4 δαβ

)
ĥ(2)(u2, u · v, v2)

+
(
uαvβ + vαuβ −

1
2δαβ(u · v)

)
ĥ(3)(u2, u · v, v2).

Multiplying with uαuβ , vαvβ and uαvβ + vαuβ and solving the system of three equations,
we get as intermediate result for the scalar functions ĥ(k) ĥ(1)

ĥ(2)

ĥ(3)

 = 1
2Du,v

 3(v2)2 u2v2 + 2(u · v)2 −3v2(u · v)
u2v2 + 2(u · v)2 3(u2)2 −3u2(u · v)
−3v2(u · v) −3u2(u · v) u2v2 + 2(u · v)2


 s1
s2
s3

 (3.65)

with Du,v = (u2v2 − (u · v)2)2 and

s1 = 〈((u·ε̂)2−u2/4)J(ε̂,u)J(ε̂, v)〉ε̂

= u2

4

∞∑
n=0

(
zn−2(u2)+zn(u2)(1−δn0)+zn+2(u2)

)
zn(v2)·Cn(û·v̂)

n+1 , (3.66)

s2 = 〈((v ·ε̂)2−v2/4)J(ε̂,u)J(ε̂, v)〉ε̂

= v2

4

∞∑
n=0

zn(u2)
(
zn−2(v2)+zn(v2)(1−δn0)+zn+2(v2)

)
·Cn(û·v̂)
n+1 , (3.67)

s3 = 〈
(

2(ε̂·u)(ε̂·v)− 1
2(u·v)

)
J(ε̂,u)J(ε̂, v)〉ε̂

= 1
2 |u||v|

∞∑
n=0

[
(zn−1(u2)+zn+1(u2))(zn−1(v2)+zn+1(v2))−(û·v̂)zn(u2)zn(v2)

]Cn(û·v̂)
n+1 .

(3.68)

The point now is that 〈(ε̂αε̂β − 1
4δαβ)J(ε̂, u)J(ε̂, x − u)〉ε̂ is of order (1/u2) at large u, but

with a tensor structure proportional to (ûβûδ − 1
4δβδ). The average over û in the next step

will cancel this leading contribution, so that Tαβ(x, y) is finite. Anticipating the numerical
implementation, we remark that it can be advantageous to subtract a term which vanishes
upon the û integration and makes the integrand fall off faster at large u.
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The leading asymptotic behavior of the scalar functions si(u2, u · x, x2) for |u| → ∞ is

s1 ∼ s2 ∼ −
1
2s3

|u|→∞∼ 1
128π2m2

(
− 1
π2 + 1

6

)
. (3.69)

One also finds that, expanding in x around x = 0, and for arbitrary |u|,

s1
∣∣∣
x=0

= s2
∣∣∣
x=0

= −1
2s3

∣∣∣
x=0

= 3
4u

4b(u2). (3.70)

Furthermore, one finds
s1 + s2 + s3 = O(x2). (3.71)

Equations (3.70) and (3.71) can be shown without using the explicit expression of zn(u2).

4 Direct evaluation of the final convolution integral

In this section, we treat the final convolution integral yielding the tensors S, Vδ and Tβδ
(see eqs. (3.47)–(3.49)) by performing two angular integrations analytically, while the third
angular integral as well as the integral over the modulus are left to be done numerically.
Since this straightforward method leads to some numerical difficulties pointed out below,
our final weight functions have been computed with the alternative method presented in
section 5. Nevertheless, this method, which was implemented as part of ref. [78], provided
important cross-checks (discussed in section 6) for the final QED kernel. The expressions
obtained for the weight functions are also used as the starting point for the multipole-
expansion method of section 5; see the text around eqs. (5.1)–(5.3).

In order to perform the angular integrations in
∫
u in eqs. (3.47)–(3.49), we choose a

coordinate system where x is pointing in the direction ê0 and y is in the (ê0, ê1) plane and
we introduce the angle β between those two vectors

x = |x|(1, 0, 0, 0), (4.1)
y = (y0, y1, 0, 0), y1 ≥ 0, (4.2)

x̂ · ŷ = cosβ, 0 ≤ β ≤ π, (4.3)
y0 = |y| cosβ, (4.4)
y1 = |y| sin β. (4.5)

The vector u is parametrized as follows

u0 = |u| cosφ1,

u1 = |u| sinφ1 cosφ2,

u2 = |u| sinφ1 sinφ2 cosφ3,

u3 = |u| sinφ1 sinφ2 sinφ3, (4.6)

with φ1, φ2 ∈ [0, π], φ3 ∈ [0, 2π] and the angular integration measure is given by∫
dΩû =

∫ π

0
dφ1 sin2 φ1

∫ 1

−1
dĉ2

∫ 2π

0
dφ3 (4.7)

where ĉ2 ≡ cosφ2.
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From the above definitions of the vectors we get

x · u = |x||u| cosφ1, (4.8)
u · y = |u|(y0 cosφ1 + y1 sinφ1 ĉ2), (4.9)

(u · y)2 = u2(y2
0 cos2 φ1 + 2y0y1 cosφ1 sinφ1 ĉ2 + y2

1 sin2 φ1 ĉ
2
2), (4.10)

(u− y)2 = u2 − 2u · y + y2 = y2 + u2 − 2|u|y0 cosφ1 − 2|u|y1 sinφ1 ĉ2. (4.11)

We will need the following angular integrals, where f(x, u) ≡ f(x2, x · u, u2) =
f(x2, |x||u| cosφ1, u

2) is a generic scalar function of the vectors x and u:〈 1
(u− y)2 f(x, u)

〉
û
≡ 1

2π2

∫
dΩû

1
(u− y)2 f(x, u)

= 1
π

∫ π

0
dφ1 sin2 φ1f(x2, |x||u| cosφ1, u

2)

×
∫ 1

−1

dĉ2
y2 + u2 − 2|u|y0 cosφ1 − 2|u|y1 sinφ1 ĉ2

= −1
2π|u||y| sin β

∫ π

0
dφ1 sinφ1f(x2, |x||u| cosφ1, u

2) Log, (4.12)

where we introduced the abbreviation

Log ≡ ln
[
y2 + u2 − 2|u||y| cos(β − φ1)
y2 + u2 − 2|u||y| cos(β + φ1)

]
. (4.13)

In a similar way one obtains

〈 1
(u− y)2 (x · u)f(x, u)

〉
û

= − |x|
2π|y| sin β

∫ π

0
dφ1 sinφ1 cosφ1f(x2, |x||u| cosφ1, u

2) Log,

(4.14)〈 1
(u− y)2 (y · u)f(x, u)

〉
û

= −1
π

∫ π

0
dφ1 sin2 φ1f(x2, |x||u| cosφ1, u

2)

×
(

1 + y2 + u2

4|u||y| sin β sinφ1
Log

)
, (4.15)

〈 (y · u)2

(u− y)2 f(x, u))
〉
û

= −1
8π|u||y| sin β

∫ π

0
dφ1 sinφ1f(x2, |x||u| cosφ1, u

2)

×
[
4|u||y| sin β sinφ1

(
u2 + y2 + 2|u||y| cosβ cosφ1

)
+(u2 + y2)2 Log

]
. (4.16)

The integration over φ3 is always trivial and the integrations over ĉ2 lead to simple ele-
mentary integrals.

4.1 Calculation of the weight function ḡ(0)

Exploiting the behavior of s(x, u) for large |u| from eq. (3.51), we can introduce a fixed
vector w and modify the integrand of S(x, y) in eq. (3.47) to get an IR-regulated function
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as follows

ḡ(0)(|x|,x·y, |y|) = S(x,y)IR reg.≡
∫
u

(
G0(u−y)s(x,u)−G0(u)θ(u2−w2)

192π2m2u2

)
(4.17)

= − 1
4π|y|sinβ

∫ ∞
0

duu2
∫ π

0
dφ1 sinφ1 (4.18)

×
[
|y|sinβ θ(u2−w2)

192πm2u3 +Log ·
∞∑
n=0

zn(u2)zn
(
(x−u)2

) Cn(û·x̂−u)
n+1

]
,

where we used the result from eq. (4.12) for the angular integration. The term with
θ(u2−w2) in eq. (4.17) is independent of x and y, therefore it will not affect the final result
for the QED kernel, in which only the derivatives of the weight function ḡ(0)(|x|, x · y, |y|)
with respect to xα and yα enter; see eq. (2.30), (2.33)–(2.34) and (2.40).

4.2 Calculation of the weight functions ḡ(1,2)

Starting from the definition of Vδ(x, y) in eq. (2.36), we split off the integration over the
length of the vector u and parametrize the angular average as follows:〈 1

(u− y)2
〈
ε̂δJ(ε̂, u)J(ε̂, x− u)

〉
ε̂

〉
û

= xδ g
(1)
u (x2, x · y, y2) + yδ g

(2)
u (x2, x · y, y2). (4.19)

From this we get the vector weight functions in eq. (2.41) via

ḡ(i)(x2, x · y, y2) = 1
2

∫ ∞
0

duu3g(i)
u (x2, x · y, y2), i = 1, 2. (4.20)

Multiplying eq. (4.19) by xδ and yδ we then obtain in a similar way as before(
g

(1)
u

g
(2)
u

)
= 1
x2y2 − (x · y)2

(
y2 −x · y
−x · y x2

)

×


〈

1
(u−y)2 (x2 f(1)(x, u) + (x · u) f(2)(x, u))

〉
û〈

1
(u−y)2 ((x · y) f(1)(x, u) + (y · u) f(2)(x, u))

〉
û

 . (4.21)

Using the results of the angular integrals from eqs. (4.12), (4.14) and (4.15), we get
the following results for the weight functions

ḡ(2)(x2,x·y,y2) = 1
8πy2|x|sin3β

∫ ∞
0

duu2
∫ π

0
dφ1

×
{

2sinβ+
(y2+u2

2|u||y| −cosβ cosφ1
) Log

sinφ1

}
×
∞∑
n=0

(
zn(u2)zn+1

(
(x−u)2

)[
|x−u|cosφ1

Cn
n+1 +(|u|cosφ1−|x|)

Cn+1
n+2

]

+zn+1(u2)zn
(
(x−u)2

)[
(|u|cosφ1−|x|)

Cn
n+1 +|x−u|cosφ1

Cn+1
n+2

])
,

(4.22)
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ḡ(3)(x2,x·y,y2) = −1
8πx2|y|sinβ

∫ ∞
0

duu2
∫ π

0
dφ1 sinφ1 Log

×
∞∑
n=0

(
zn(u2)zn+1

(
(x−u)2

)(
|x−u| Cn

n+1 +|u|Cn+1
n+2

)

+zn+1(u2)zn
(
(x−u)2

)(
|u| Cn
n+1 +|x−u|Cn+1

n+2

))
, (4.23)

and

ḡ(1)(x2, x · y, y2) = ḡ(3)(x2, x · y, y2)− |y|
|x|

cosβ ḡ(2)(x2, x · y, y2). (4.24)

We choose to first compute the scalar function ḡ(3) because the integrand simplifies and is
collinear safe for sinφ1 → 0. The argument of the Gegenbauer polynomials Cn and Cn+1
is given by

û · x̂− u = −|u| − |x| cosφ1
|u− x|

. (4.25)

We note that there is a large cancellation inside the curly bracket of eq. (4.22). If we
call A = 2|u||y|/(u2 + y2), such that 0 ≤ A ≤ 1, then Taylor-expanding the logarithm in
A shows that the curly bracket is of order A2 at small A (small A corresponds to both
|u| � |y| and |u| � |y|).

4.3 Calculation of the weight functions l̄(1,2,3)

Upon integrating over the angular variables of u in eq. (2.37), the tensor decomposition
reads 〈 1

(u− y)2 〈
(
ε̂αε̂β −

1
4δαβ

)
J(ε̂, u) J(ε̂, x− u)〉ε̂

〉
û

=
(
xαxβ −

x2

4 δαβ

)
l(1)
u +

(
yαyβ −

y2

4 δαβ

)
l(2)
u +

(
xαyβ + yαxβ −

x · y
2 δαβ

)
l(3)
u .

(4.26)

where the scalar functions l
(1)
u depend on x2, x · y, y2, as well as on |u|. From this we get

the tensor weight functions in eq. (2.42) via

l̄(i)(x2, x · y, y2) = 1
2

∫ ∞
0

du u3 l(i)u (x2, x · y, y2), i = 1, 2, 3. (4.27)

Again, multiplying eq. (4.26) with xαxβ , yαyβ and xαyβ + yαxβ and solving as before,
the weight functions l(i)u are given by

l
(1)
u

l
(2)
u

l
(3)
u

= 1
2Dx,y

 3(y2)2 x2y2 + 2(x · y)2 −3y2(x · y)
x2y2 + 2(x · y)2 3(x2)2 −3x2(x · y)
−3y2(x · y) −3x2(x · y) x2y2 + 2(x · y)2


 v1,u
v2,u
v3,u

 , (4.28)
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with Dx,y = (x2y2 − (x · y)2)2 and

v1,u =
〈 1

(u− y)2

{
[(u · x)2 − u2x2/4]ĥ(1) + [((x− u) · x)2 − (x− u)2x2/4]ĥ(2)

+ [2(u · x)((x− u) · x)− x2(u · (x− u))/2]ĥ(3)
}〉

û
, (4.29)

v2,u =
〈 1

(u− y)2

{
[(u · y)2 − u2y2/4]ĥ(1) + [((x− u) · y)2 − y2(x− u)2/4]ĥ(2)

+ [2(u · y)((x− u) · y)− y2(u · (x− u))/2]ĥ(3)
}〉

û
, (4.30)

v3,u =
〈 1

(u− y)2

{
[2(x · u)(y · u)− u2(x · y)/2]ĥ(1)

+ [2(x · (x− u))(y · (x− u))− (x · y)(x− u)2/2]ĥ(2)

+ [2(u · x)(y · (x− u)) + 2(u · y)(x · (x− u))− (u · (x− u))(x · y)]ĥ(3)
}〉

û
, (4.31)

where the ĥ(i)(u2, u · v, v2) are given in eq. (3.65).
Using the results of the angular integrations in eqs. (4.12), (4.14)–(4.16), we get more

explicitly the following intermediate result

v1,u = −x2

2πuy sin β

∫ π

0
dφ1 sinφ1 Log

{
u2
[
cos2 φ1 −

1
4

]
ĥ(1)

+
[3

4x
2 − 3

2ux cosφ1 + u2
(

cos2 φ1 −
1
4

)]
ĥ(2)

+
[3

2ux cosφ1 − 2u2
(

cos2 φ1 −
1
4

)]
ĥ(3)

}
, (4.32)

v2,u = −1
8πuy sin β

∫ π

0
dφ1 sinφ1

[
4uy sin β sinφ1(u2 + y2 + 2uy cosβ cosφ1)

+(u2 + y2)2 Log
]{

ĥ(1) + ĥ(2) − 2ĥ(3)
}

− x

2πu tan β

∫ π

0
dφ1 sinφ1

[
4uy sin β sinφ1 + (u2 + y2) Log

]{
− ĥ(2) + ĥ(3)

}
− y

2πu sin β

∫ π

0
dφ1 sinφ1 Log

{
[−u2/4] ĥ(1)

+
[
x2 cos2 β − 1

4(x2 − 2ux cosφ1 + u2)
]
ĥ(2) − u

2 [x cosφ1 − u]ĥ(3)
}
, (4.33)

v3,u = −x
2πu tan β

∫ π

0
dφ1 sinφ1 Log

{
[−u2/2]ĥ(1)

+[3x2/2− xu cosφ1 − u2/2]ĥ(2) + [u2 + ux cosφ1]ĥ(3)
}

− 1
4πuy sin β

∫ π

0
dφ1 sinφ1

[
4uy sin β sinφ1 + (y2 + u2) Log

]
×
{

2xu cosφ1ĥ
(1) − 2(x2 − xu cosφ1)ĥ(2) + 2(x2 − 2ux cosφ1)ĥ(3)

}
. (4.34)
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Similar to eq. (4.27), we define weight functions v̄(i) after the integration of vi,u over
the length of the vector u:

v̄(i)(x2, x · y, y2) = 1
2

∫ ∞
0

du u3 vi,u(x2, x · y, y2), i = 1, 2, 3. (4.35)

Schematically, we have the following structure,
−→
l u = M(x, y) N M(u, x− u) −→s , (4.36)

where
−→
l u, −→s ∈ R3, the components of −→s are given by eqs. (3.66)–(3.68), and M is

the symmetric 3 × 3 matrix given in eqs. (3.65) and (4.28), which is a function of two
vectors. In particular,

−→
ĥ = M(u, x − u)−→s . The linear operator N corresponds to the

relations (4.32)–(4.34), −→v u = N
−→
ĥ .

The linear operator M(x, y) N M(u, x − u) leads to fairly long algebraic expressions.
We note that the final step, going from the −→v u to the

−→
l u, is a purely algebraic one. If

there are linear combinations of the −→v u that lead to simpler integrands, those can be used
and the linear combinations can be resolved in terms of the

−→
l u at the end. We find that

the following linear combinations have manageable expressions,7

v̄(1) = −1
4πy sin β

∫ ∞
0

duu2
∫ π

0
dφ1 sinφ1 Log ·

(
s1 + s2 + s3

)
, (4.37)

l̄(4) ≡ 1
sin2 β

(
v̄(3) − 2|y|

|x|
cosβ v̄(1)

)
= 1

4π|x| sin3 β

∫ ∞
0

duu

∫ π

0
dφ1

×
{

2 sin β +
(
u2 + y2

2uy − cosβ cosφ1

)
Log

sinφ1

}

×
(
2(u cosφ1 − x) s1 + 2u cosφ1 s2 + (2u cosφ1 − x) s3

)
, (4.38)

l̄(2) = − 1
64πx2y5 sin5 β

∫ ∞
0

du

u2

∫ π

0

dφ1
sin3 φ1

×
{(

3u4 + 8u2y2 + 3y4 + 4u2y2 cos(2β)− 6uy(u2 + y2) cos(β − φ1)

+u2y2 cos (2(β − φ1)) + 4u2y2 cos(2φ1)− 6u3y cos(β + φ1)− 6uy3 cos(β + φ1)

+u2y2 cos (2(β + φ1))
)

Log + 12uy sin β sinφ1(u2 + y2 − 2uy cosβ cosφ1)
}

×
(
[2u2 + 3x2 − 6ux cosφ1 + u2 cos(2φ1)] s1 + u2[2 + cos(2φ1)] s2

+u[−3x cosφ1 + u(2 + cos(2φ1))] s3
)
. (4.39)

Once v̄(1), l̄(4) and l̄(2) have been computed, l̄(1) and l̄(3) are recovered by taking successively
the linear combinations

l̄(3) = 1
2x2y2 l̄

(4) − y

x
cosβ l̄(2) (4.40)

7The idea is that instead of directly applying the matrix M(x, y) on −→v u, we first triangularize the linear
system: compute l̄(2) and l̄(4) = 2xy2(y cosβ l̄(2) + x l̄(3)) and v̄(1) = 3

4x
4 l̄(1) + x2y2(cos2 β − 1

4 ) l̄(2) +
3
2x

3y cosβ l̄(3).
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and

l̄(1) = 4
3x4

(
v̄(1) − x2y2

(
cos2 β − 1

4

)
l̄(2) − 3

2x
3y cosβ l̄(3)

)
. (4.41)

Next, we study the behavior of the integrands at large u. The curly bracket in eq. (4.38)
is of order 1/u2, and the bracket containing the si is at most of order 1/u, based on the
properties (3.70)–(3.71). Therefore the integrand in eq. (4.38) is at most of order 1/u2

and the integral is absolutely convergent (numerically, it appears to fall off even faster,
perhaps as 1/u3). Similarly, in eq. (4.39) the curly bracket is of order 1/u, and the bracket
containing the si is at most of order unity. Therefore the integrand of eq. (4.39) is at most
of order 1/u3 and the integral is absolutely convergent.

The case of the integrand in eq. (4.37) is a bit more subtle. It is helpful to consider
what happens at either x = 0 or y = 0 from the beginning. At y = 0, starting from
eq. (3.64) one finds that

Tαβ(x, 0) = 4
3πx2

(
x̂αx̂β −

1
4δαβ

)∫ ∞
0

du u

∫ π

0
dφ1 sin2 φ1 (s1 + s2 + s3). (4.42)

Now, it is obvious that when x = y = 0,
∫
d4u G0(u) 〈(εαεβ − 1

4δαβ)J(ε̂, u)J(ε̂,−u)〉ε̂
vanishes, because 〈uαuβ − 1

4u
2δαβ〉û = 0. How does this result emerge from eq. (4.42) ?

We have already seen that (s1 + s2 + s3) vanishes to linear order (included) in |x|. One
then finds that the quadratic order does not vanish, however it vanishes upon performing
the φ1 integral in eq. (4.42),

lim
x→0

1
πx2

∫ π

0
dφ1 sin2 φ1 (s1 + s2 + s3) = 0. (4.43)

It turns out that expanding the summand of the si in a Taylor series for small x, the Taylor
coefficients fall off with increasing powers of 1/u. This would be obvious on dimensional
grounds if the muon mass did not enter the expression. On close inspection, the only
factor that could spoil this property are the factors zn(u2 − 2|u||x| cosφ1 + x2), which are
dimensionless functions of m

√
u2 − 2|u||x| cosφ1 + x2. However, for large argument these

functions go like zn(u2) ∼ 1
4π2(n+1)m|u| , so that the dependence on the mass factors out and

the dimensional argument applies; note that for this leading behavior, the sum over n is
still absolutely convergent. The fact that the Taylor series of

∫ π
0 dφ1 sin2 φ1 (s1 +s2 +s3) at

small |x| starts at order |x|3 (at the earliest) thus implies that the expression is at most of
order |x|3/(m2|u|3) at large |u|; the integrals over |u| in eq. (4.37) and in eq. (4.42) is then
absolutely convergent. For the numerical implementation, one option is then to subtract
the O(x2) term from (s1 + s2 + s3); this has the advantage of making the u-integrand
absolutely convergent in the infrared prior to the φ1 integral.

For completeness, let us also treat the case where first x is set to zero. For x = 0, we
can use eq. (3.61), the expansion of the massless propagator in Gegenbauer polynomials in
eqs. (3.16) and (3.17) and the property (3.12) to find

Tαβ(0, y) = 1
6

(
ŷαŷβ −

1
4δαβ

)∫ ∞
0

du u5 b(u2) d2(u2, y2). (4.44)
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5 Final convolution integral via the multipole expansion of the massless
propagator

While the method presented in the previous section can be used to numerically calculate the
QED weight functions, certain difficulties arise in special kinematic configurations of the
vectors x and y. Especially the regime where x and y are near-collinear can be challenging,
in view of the inverse powers of sin β present for instance in eqs. (4.22) or (4.39). Recall
the definition cosβ = x̂ · ŷ.

We therefore explore a different method to obtain the QED weight functions numer-
ically. The idea is to use the multipole expansion of the massless propagator to obtain
the weight functions in the form of a series of polynomials in cosβ, times a function of
(|x|, |y|). The relevant polynomials, as it turns out, are either the Gegenbauer polynomials
themselves, or their derivatives.

Let f(x̂·û) be a smooth test function. Directly integrating the expression 1
(u−y)2 f(x̂·û)

over two of the three angles parametrizing u yields a logarithm (see eq. (4.12)), which is
found in the expressions for ḡ(0) (eq. 4.17), ḡ(3) (eq. 4.23) and v̄(1) (eq. 4.37). As before
we will introduce cosφ1 = x̂ · û. If instead one makes use of the multipole expansion
of the propagator, as well as of the completeness and orthogonality of the Gegenbauer
polynomials, one obtains for the same integral a sum over these polynomials. Matching
the two expressions leads to the result

− 1
4|u||y| sin β sinφ1

Log =
∞∑
n=0

dn(u2, y2)
n+ 1 Cn(cosβ)Cn(cosφ1), (5.1)

which we will use in the sense of distributions, i.e. inserted in an integral over φ1. The
function dn(u2, y2) has been defined in eq. (3.17). Further useful results emerge from
integrating the expressions (û·ŷ) f(x̂·û)

(u−y)2 and (û·ŷ)2 f(x̂·û)
(u−y)2 in the two different ways described

above, thus leading to the equalities

S1 ≡ −
1

4|u||y| sin β
(
2 sin β +

(u2 + y2

2|u||y| − cosβ cosφ1
) Log

sinφ1

)
= sin2 β sin2 φ1

∞∑
n=1

dn(u2, y2)C ′n(cosβ) C ′n(cosφ1)
n(n+ 1)(n+ 2) , (5.2)

S2 ≡ −
1

8u3y3 sin β sinφ1
·{(

3u4 + 8u2y2 + 3y4 + 4u2y2 cos(2β)− 6uy(u2 + y2) cos(β − φ1) + u2y2 cos(2(β − φ1))

+4u2y2 cos(2φ1)− 6u3y cos(β + φ1)− 6uy3 cos(β + φ1) + u2y2 cos(2(β + φ1))
)

Log

+12uy sin β sinφ1(u2 + y2 − 2uy cosβ cosφ1)
}

= 4 sin4 β sin4 φ1

∞∑
n=2

dn(u2, y2)C ′′n (cosβ)C ′′n (cosφ1)
(n− 1)n(n+ 1)(n+ 2)(n+ 3) . (5.3)

Equality (5.2) show that two powers of sin2 β can be extracted explicitly from the angular
integrals for ḡ(2) (eq. 4.22) and l̄(4) (eq. 4.38). Similarly, eq. (5.3) shows that four powers of
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sin2 β can be extracted from the angular integral for l̄(2) (eq. 4.39), allowing one to cancel
analytically otherwise numerically problematic inverse powers of sin β. In this way, the
case where x and y are exactly collinear can be calculated directly, without the use of an
extrapolation to sin β = 0. The price one pays for this cancellation is that the sum over the
derivatives of the Gegenbauer polynomials converges somewhat less rapidly: for instance,
Cn(1) = n+ 1, while C ′n(1) = n

3 (n+ 1)(n+ 2).

5.1 Derivation of eqs. (5.1)–(5.3)

Let f(x̂ · û) be a smooth test function. As given in eq. (4.12), explicit integration over the
spherical-coordinate angles φ2 and φ3 yields

〈 1
(u− y)2 f(x̂ · û)

〉
û

= − 1
4|u||y| sin β

〈 Log
sinφ1

· f(cosφ1)
〉
û
. (5.4)

On the other hand, using the expansion of the massless propagator in eq. (3.16) and
of the function f in Gegenbauer polynomials in eq. (3.14), as well as the orthogonality
property (3.13), one finds

〈 1
(u− y)2 f(x̂ · û)

〉
û

=
∞∑
n=0

dn(u2, y2) Cn(cosβ)
n+ 1 〈Cn(cosφ1)f(cosφ1)〉û. (5.5)

Comparing the expressions yields eq. (5.1).
In the same way, consider the two treatments of the following angular average,

〈 û · ŷ − (x̂ · ŷ)(x̂ · û)
(u− y)2 f(x̂ · û)

〉
û

= − 1
4|u||y| sin β 〈

(
2 sin β +

(
u2 + y2

2|u||y| − cosβ cosφ1

)
Log

sinφ1

)
f(cosφ1)〉û

=
∞∑
n=0

Cn(cosβ)
n+ 1 〈Cn(cosφ1)

(1
2(dn+1 + dn−1)− cosβ cosφ1dn

)
f(cosφ1)〉û. (5.6)

We are using the convention dn ≡ 0 for n < 0 and the argument of the dn coefficients
is (u2, y2) throughout this subsection. Comparing the two equations yields an expression
for S1,

S1 =
∞∑
n=0

Cn(cosβ)
n+ 1 Cn(cosφ1)

(1
2(dn+1 + dn−1)− cosβ cosφ1dn

)
. (5.7)

We can now manipulate the sum in the following way. First apply the cosine factors on
the Gegenbauer polynomials, using eq. (3.11),

S1 =
∞∑
n=0

1
n+ 1

(
Cn(cosβ)Cn(cosφ1)1

2(dn+1 + dn−1) (5.8)

−dn4 (Cn+1(cosβ) + Cn−1(cosβ))(Cn+1(cosφ1) + Cn−1(cosφ1))
)
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Next, shift the summation index in the second term so as to factorize Cn(cosφ1), and then
collect the terms multiplying dn+1 and those multiplying dn−1,

S1 = 1
4

∞∑
n=0

Cn(cosφ1)
n+ 1

[
dn+1
n+ 2

(
(n+ 3)Cn(cosβ)− (n+ 1)Cn+2(cosβ)

)
(5.9)

+dn−1
n

(
(n− 1)Cn(cosβ)− (n+ 1)Cn−2(cosβ)

)]
.

Note that dn−1
n should be interpreted as zero for n = 0. Now we notice that the combina-

tion appearing in the brackets can be expressed through the derivative of the Gegenbauer
polynomials,

(n+ 2)Cn−1(z)− nCn+1(z) = 2(1− z2)C ′n(z), n ≥ 0. (5.10)

Then shifting again the summation index so as to factorize C ′n(cosβ), we arrive at

S1 = 1− cos2 β

2

∞∑
n=1

dn
C ′n(cosβ)
n+ 1

(
Cn−1(cosφ1)

n
− Cn+1(cosφ1)

n+ 2

)
(5.11)

(we have used the fact that C ′n=0(cosβ) = 0 to drop the n = 0 term); and finally, identifying
again the expression for the derivative of Cn in the bracket, we obtain eq. (5.2).

Thirdly, one finds by the same method as above

〈 (û·ŷ)2

(u−y)2 f(x̂·û)
〉
û

=− 1
16u3y3 sinβ

〈(
4uy sinβ sinφ1(u2+y2+2uy cosβ cosφ1)+(u2+y2)2Log

)f(cosφ1)
sinφ1

〉
û

= 1
4

∞∑
n=0

Cn(cosβ)
n+1 (dn−2+(2−δn0)dn+dn+2)

〈
Cn(cosφ1) f(cosφ1)

〉
û
, (5.12)

which provides us with a new identity. The specific linear combination appearing in the
QED weight function l̄(2) in eq. (4.39) is

S2 ≡ −
1

8u3y3 sinβ sinφ1
·{(

3u4+8u2y2+3y4+4u2y2 cos(2β)−6uy(u2+y2)cos(β−φ1)+u2y2 cos(2(β−φ1))

+4u2y2 cos(2φ1)−6u3y cos(β+φ1)−6uy3 cos(β+φ1)+u2y2 cos(2(β+φ1))
)

Log

+12uy sinβ sinφ1(u2+y2−2uy cosβ cosφ1)
}

=
∞∑
n=0

Cn(cosβ)
n+1 Cn(cosφ1)

[
2dn

(1
2 +cos(2β)+cos(2φ1)+ 1

2 cos(2β)cos(2φ1)
)

−6cosβ cosφ1(dn+1+dn−1)+ 3
2(dn+2+(2−δn0)dn+dn−2)

]
, (5.13)
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where we have used eqs. (5.1), (5.2) and (5.12) in obtaining the second equality. Manipu-
lations on expression (5.13) similar to those yielding eq. (5.2), including the use of

−2
(
(n+ 3)(n− 1) + 3δn0

)
Cn(z) + (n+ 2)(n+ 3)Cn−2(z) + n(n− 1)Cn+2(z)

= 4(1− z2)2C ′′n (z), n ≥ 0, (5.14)

lead to eq. (5.3).

5.2 Gegenbauer expansion of the QED weight functions

Using the relations above, we provide alternative expressions to compute the six required
weight functions and their derivatives. Using eq. (5.1), one derives the following represen-
tation for three of the weight functions with argument (|x|, ĉβ , |y|), where ĉβ = cosβ,

 ḡ(0)

ḡ(3)

v̄(1)

 =
∞∑
n=0

Cn(ĉβ)

 1
|y|n+2


α

(0)
n−
α

(3)
n−
α

(1)
n−

+ |y|n


α

(0)
n+
α

(3)
n+
α

(1)
n+


 . (5.15)

Here the coefficients α(k)
n±, for k = 0, 1, 3, have argument (|x|, |y|), and their functional

form is

α
(k)
n−(|x|, |y|) =

1− 1
2δk3

π(n+ 1)

∫ |y|
0
un+3du

∫ π

0
dφ1 ŝ

2
1 Cn(ĉ1) σk(|x|, ĉ1, |u|), (5.16)

α
(k)
n+(|x|, |y|) =

1− 1
2δk3

π(n+ 1)

∫ ∞
|y|

du

un−1

∫ π

0
dφ1 ŝ

2
1 Cn(ĉ1) σk(|x|, ĉ1, |u|), (5.17)

where ĉ1 = cosφ1 and ŝ1 = sinφ1. The functions σk(|x|, ĉ1, |u|) appearing in the coefficients
α

(k=0,1,3)
n± , as well as those appearing in β(k=2,4)

n± and γ(2)
n± below, are given explicitly at the

end of this subsection, eqs. (5.24)–(5.31). As a remark, we have already noted that ḡ(0)

contains a logarithmic infrared divergence. In the present representation, that divergence
is entirely contained in the coefficient α(0)

0+, which makes a constant contribution to ḡ(0),
independent of x and y. Since only derivatives of ḡ(0) with respect to x or y appear in the
QED kernel, the coefficient α(0)

0+ is never actually needed.
Next, starting from eqs. (4.22) and (4.38), and using eq. (5.2), one obtains the repre-

sentation (
ḡ(2)

l̄(4)/y2

)
=
∞∑
n=1

C ′n(ĉβ)
[

1
|y|n+3

(
β

(2)
n−
β

(4)
n−

)
+ |y|n−1

(
β

(2)
n+
β

(4)
n+

)]
. (5.18)

with (for k = 2, 4)

β
(k)
n−(|x|, |y|) =

−(1− 1
2δk2)

π n(n+ 1)(n+ 2)

∫ |y|
0

duun+3
∫ π

0
dφ1 ŝ

2
1 C

′
n(ĉ1) σk(|x|, ĉ1, |u|), (5.19)

β
(k)
n+(|x|, |y|) =

−(1− 1
2δk2)

π n(n+ 1)(n+ 2)

∫ ∞
|y|

du

un−1

∫ π

0
dφ1 ŝ

2
1 C

′
n(ĉ1) σk(|x|, ĉ1, |u|). (5.20)
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Finally, using eqs. (4.39) and (5.3), we obtain the form

l̄(2)(|x|, ĉβ , |y|) =
∞∑
n=2

C ′′n (ĉβ)
( 1
|y|n+4 γ

(2)
n−(|x|, |y|) + |y|n−2γ

(2)
n+(|x|, |y|)

)
, (5.21)

γ
(2)
n−(|x|, |y|) = 1

2π (n− 1)n (n+ 1)(n+ 2)(n+ 3) · (5.22)

·
∫ |y|

0
du un+3

∫ π

0
dφ1 ŝ

2
1 C

′′
n (ĉ1) σ5(|x|, ĉ1, |u|)

γ
(2)
n+(|x|, |y|) = 1

2π (n− 1)n (n+ 1)(n+ 2)(n+ 3) · (5.23)

·
∫ ∞
|y|

du

un−1

∫ π

0
dφ1 ŝ

2
1 C

′′
n (ĉ1) σ5(|x|, ĉ1, |u|).

We now give the explicit expressions for the sums σk(|x|, ĉ1, |u|), k = 0, . . . , 5. They
involve the modified Bessel functions and the Gegenbauer polynomials. The argument of
the Cn and C ′n polynomials is always (û · x̂− u); this is only indicated explicitly in the
relatively compact expression for σ0, which in fact coincides with s(x, u). For the weight
functions expanded in Cn(ĉβ) in eq. (5.15), the sums are

σ0 =
∞∑
n=0

zn(u2) zn((x− u)2) Cn(û · x̂− u)
n+ 1 , (5.24)

σ3 = 1
|x|2

∞∑
n=0

{
zn(u2)zn+1((x− u)2)

[
|x− u| Cn

n+ 1 + |u|Cn+1
n+ 2

]
(5.25)

+zn+1(u2)zn((x− u)2)
[
|u| Cn
n+ 1 + |x− u|Cn+1

n+ 2

]}

= 1
|x|

∞∑
n=0

{
zn(u2)zn+1((x− u)2)

n+ 2

[
|x|ŝ2

1
|x− u|

C ′n+1
n+ 1 + ĉ1Cn+1

]
(5.26)

+zn+1(u2)zn((x− u)2)
n+ 1

[
− |x|ŝ

2
1

|x− u|
C ′n
n+ 2 + ĉ1Cn

]}
,

and

σ1≡ s1+s2+s3 =−x
2

4

∞∑
n=0

zn(u2)zn((x−u)2) Cn
n+1 (5.27)

+u2

4

∞∑
n=0

zn((x−u)2)
(
zn−2(u2)+(2−δn0)zn(u2)+zn+2(u2)

) Cn
n+1

+(x−u)2

4
∑
n≥0

zn(u2)
(
zn−2((x−u)2)+(2−δn0)zn((x−u)2)+zn+2((x−u)2)

) Cn
n+1

+ |u||x−u|4

∞∑
n=0

{(
zn(u2)zn+2((x−u)2)+2zn(u2)zn((x−u)2)+zn+2(u2)zn((x−u)2)

)Cn+1
n+2

+
(
zn−2(u2)zn((x−u)2)+2zn(u2)zn((x−u)2)+zn(u2)zn−2((x−u)2)

)Cn−1
n

}
.
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For the weight functions expanded in C ′n(ĉβ) in eq. (5.18), the sums are

σ2 = 1
|x|

∞∑
n=0

g{zn(u2)zn+1((x− u)2)
[
|x− u|ĉ1

Cn
n+ 1 + (|u|ĉ1 − |x|)

Cn+1
n+ 2

]
(5.28)

+zn+1(u2)zn((x− u)2)
[
(|u|ĉ1 − |x|)

Cn
n+ 1 + |x− u|ĉ1

Cn+1
n+ 2

]
g}

= ŝ2
1

∞∑
n=0

g{zn(u2)zn+1((x− u)2)
n+ 2

[
|x|ĉ1
|x− u|

C ′n+1
n+ 1 − Cn+1

]
(5.29)

−zn+1(u2)zn((x− u)2)
n+ 1

[ |x|ĉ1
|x− u|

C ′n
n+ 2 + Cn

]
g}.

and

σ4 = 1
|u|

((
2 |u|
|x|
ĉ1 − 1

)
σ1 + s2 − s1

)
. (5.30)

Finally, the sum appearing in l̄(2) is

σ5 = 1
u2

(
|u|
x2 (|u|(1 + 2ĉ2

1)− 3|x|ĉ1)σ1 + 3 |u|
|x|
ĉ1(s2 − s1) + 3s1

)
. (5.31)

The sums s1 and s2 are evaluated as indicated in eqs. (3.66) and (3.67).
For numerical purposes, it is usually preferable to evaluate the derivative of an inte-

grand with respect to a parameter before the integral is performed numerically. Therefore,
for completeness, we provide in appendix B the expressions of the |x|-derivative of the sums
defining the weight functions, namely the {σk}5k=0 as well as s1 and s2. In the expressions
provided in appendix, the first two derivatives of the functions zn(u2) appear. Thanks to
eq. (3.37), they can be computed practically in an iterative fashion as follows,

∂zn
∂|u|

= n+ 1
4π2mu2 K0(mu)In+1(m|u|)− zn(u)

|u|
, (5.32)

∂2zn
∂|u|2

= −3
u

( ∂zn
∂|u|

)
+ n(n+ 2)

u2 zn(u)− n+ 1
2π2u2 K1(m|u|)In+1(m|u|). (5.33)

Appendix C provides the relevant expressions to obtain the QED weight functions and
the full kernel at x = 0 or at y = 0. The motivation for investigating these special cases is
twofold. First, the expressions simplify compared to the general case in that they have one
fewer integral or infinite sum. Thus, their evaluation is significantly faster and provides a
cross-check for the numerics of the general case, which should approach the special cases
in the appropriate limits. Second, when we consider modifications of the QED kernel via
subtractions in section 8.1, the kernel at x = 0 or y = 0 will be needed explicitly. The
QED kernel for y = x can be obtained from the case y = 0 using the property (2.22).

6 Numerical evaluation of the QED kernel

The basic idea of our approach is to precompute and store the weight functions, since by
O(4) symmetry they are functions of three variables. This stands in stark contrast with
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the QED kernel itself, which is a function of eight real variables and has 384 independent
components. Since up to two derivatives with respect to components of x and y act on
the tensors S(x, y), Vδ(x, y) and Tβδ(x, y), chain rules are used to convert these deriva-
tives, when they act on the weight functions, into derivatives with respect to the variables
(|x|, ĉβ ≡ x̂ · ŷ, |y|), for instance

∂(x)
α = x̂α

∂

∂|x|
+ 1
|x|

(ŷα − ĉβx̂α) ∂

∂ĉβ
. (6.1)

The chain-rule based expressions for the tensors TA
αβδ(x, y) in terms of the weight functions

are given in appendix A (A = I, II, III). With these rank-three tensors at hand, and with
the Dirac traces GA computed upon initialization, the QED kernel is obtained via a simple
linear combination, eq. (2.30).

We have pursued two strategies to numerically compute the QED weight function.
The first is based on eqs. (4.18), (4.22), (4.23), (4.37), (4.38), (4.39), followed by taking
the appropriate linear combinations. In this strategy, the weight functions are computed
on a three-dimensional grid, each direction representing one of the variables |x|, ĉβ and |y|.
While we will not describe this implementation in detail (see [78] for more information),
it is worth mentioning that the logarithm appearing in each of the six equations refer-
enced above required a dedicated treatment in the regions where its argument vanishes.
The second strategy, which is the one we opted for in our subsequent tests and lattice
QCD calculations, consists in calculating the coefficients of the weight-function expansion
in Gegenbauer polynomials according to eqs. (5.15), (5.18), (5.21). The coefficients are
functions of |x| and |y| and carry an index corresponding to the order of the polynomial in
ĉβ which they multiply. Implementing both strategies with two independent codes allowed
us to have a valuable cross-check of our results. In the following, we describe a sample of
the results obtained with the second strategy and the most important technical aspects
involved in the numerical calculation. It is worth mentioning at this point the order-of-
magnitude computational cost of precomputing the required weight functions provided
at [96]: it amounted in total to about three weeks on a dual-core laptop.

The three tensor weight functions as well as the derivatives of the scalar weight function
appearing in the kernel L̄[ρσ];µνλ(x, y) for given values of |x| and ĉβ are displayed in figure 4.
The result of the numerical integration is shown as a curve. At y = 0, we confront the
numerical results with the Taylor expansion of the weight functions obtained in appendix C
and observe good agreement.8 In addition, the large-|y| asymptotics for the derivatives of
the scalar function ḡ(0) are determined in appendix D and displayed for m|y| > 5 in the
three left panels of figure 4. Similarly, figure 5 shows the two vector weight functions. The
scalar and tensor weight functions have unit of GeV−2, while the vector ones have unit of
GeV−1. It is natural to use the muon mass to build dimensionless combinations. We note
that all weight functions are smooth functions of |y|, and that they have rather different
magnitudes in units of the muon mass. The scalar and the first vector weight function are
largest, the other weight functions being at least an order of magnitude smaller. We have

8For l̄(2), we did not derive a prediction at y = 0 because it is not needed for the QED kernel.
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found this hierarchy to be fairly generic. For the reader’s convenience, we have collected
a few numerical values of the weight functions in table 1. Quantitative checks have been
performed against the weight functions resulting from the first computational strategy
described in the previous paragraph. For instance, at the reference point mµ|x| = 0.436,
ĉβ = −0.59375 and mµ|y| = 0.654, all derivatives required for the QED kernel have been
compared; with mµ set to unity, the largest absolute difference was found in ∂2g1

∂|x|∂ĉβ , and
amounted to 7× 10−9.

We next describe some of the numerical techniques we have used to arrive at the results
presented in figure 4 and 5. We first note that we have worked in double precision through-
out, and have not found it necessary to employ further enhanced arithmetic precision. In
the representation of eqs. (5.15), (5.18), (5.21) of the weight functions, one has to carry
out a two-dimensional integral of an integrand which is represented as an infinite sum over
products of modified Bessel functions and a Gegenbauer polynomial or its derivatives. One
integration variable represents the angle between the position vectors x and u, the other
is the norm of u. The most important numerical task is thus to evaluate efficiently a sum
involving the modified Bessel functions and the Gegenbauer polynomial or its derivatives.

We have evaluated strings of modified Bessel functions (e.g. K0, K1, . . . , Knmax) using
routines inspired by those given in [79]. The most important aspect is that the modified
Bessel functions of the second kind (Kn) can be evaluated using the recursion relation
among them in the direction of increasing index n, while those of the first kind (In) must
be evaluated in a downward recursion, starting from a sufficiently large n. Since we need
these functions for a wide range of n, we store them on the fly during the recursion.

Next, we use the Clenshaw algorithm (see for instance [79]) to perform the sum, ex-
ploiting the recursion relations

Cn+1(z) = 2zCn(z)− Cn−1(z) (n ≥ 1), (6.2)

C ′n+1(z) = 2z n+ 1
n

C ′n(z)− n+ 2
n

C ′n−1(z) (n ≥ 1), (6.3)

C ′′n+1(z) = 2z n+ 1
n− 1C

′′
n (z)− n+ 3

n− 1C
′′
n−1(z) (n ≥ 2) (6.4)

among the polynomials. Thus none of the Cn, C ′n and C ′′n are evaluated explicitly in the
calculation of the sums.

We have performed the integration using the integrator cubature [80]. This integrator
is able to perform numerical integrals on a multi-dimensional rectangular region. For
calculating the weight functions, we have mostly used the p-adaptive cubature routine,
which uses a tensor product of Clenshaw-Curtis quadrature rules; the degree of the rules is
doubled along each dimension until convergence is achieved. An advantage of the cubature
package is that it allows for a vector of integrands. Since it is the different coefficients
α

(k)
m (|x|, |y|) (k = 0, 1, 3), β(k)

m (|x|, |y|) (j = 2, 4) and γ(2)
m (|x|, |y|) that are being calculated,

and that they all involve the same sums (one of the σi (i = 0, . . . , 5)), only the Gegenbauer
polynomial Cm(û · x̂) (or its derivative) must be reevaluated for different values of the index
m. This saves a significant amount of computations. Because the Gegenbauer polynomial
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is strongly oscillating for large m, the calculation of the large-order coefficients to a given
relative precision dominates the computing time.

We have turned the integral over |u| from |y| to ∞ into an integral from 0 to 1/|y| by
making the change of variables u1 = 1/|u|. Given that we want to compute the coefficients
of the Gegenbauer-polynomial expansion for all |y|, a considerable amount of computing
time is saved by simply observing that

α
(k)
m−(|x|, |y|+ ∆|y|) = α

(k)
m−(|x|, |y|) (6.5)

+
1− 1

2δk3
π(m+ 1)

∫ |y|+∆|y|

|y|
um+3du

∫ π

0
dφ1 ŝ

2
1 Cm(ĉ1) σk(|x|, ĉ1, |u|),

α
(k)
m+(|x|, |y| −∆|y|) = α

(k)
m+(|x|, |y|) (6.6)

+
1− 1

2δk3
π(m+ 1)

∫ |y|
|y|−∆|y|

du

um−1

∫ π

0
dφ1 ŝ

2
1 Cm(ĉ1) σk(|x|, ĉ1, |u|),

and similarly for the other coefficients. In this way, the cost of increasing the resolution
1/∆|y| with which the coefficients are computed is very low. We also recall that the
derivative of the coefficients with respect to |y| are needed to obtain the QED kernel. We
have used the fact that one can easily obtain these |y|-derivatives analytically at practically
zero computational cost. Indeed, since

1
|y|m+2

∂

∂|y|
α

(k)
m−(|x|, |y|) + |y|m ∂

∂|y|
α

(k)
m+(|x|, |y|) = 0, (6.7)

we have for instance

∂

∂|y|
ḡ(0) =

∑
m≥0

Cm(ĉβ)
[
−(m+ 2) 1

|y|m+3α
(0)
m− +m|y|m−1α

(0)
m+

]
, (6.8)

and similar expressions apply to all six weight functions. The derivatives with respect to ĉβ
are of course simply obtained by analytically deriving the Gegenbauer polynomial. Finally,
the |x| dependence of the weight functions appears only in the sums σk(|x|, ĉ1, |u|). Their
first |x|-derivative is given analytically in appendix B. Only the second |x|-derivative of
the sums σ2 and σ3 was computed numerically by taking a finite difference (with step size
mδ|x| = 10−3) of the analytically obtained first derivative.

An important question in the method based on the series in Gegenbauer polynomials
is, how many terms are needed to reach a good approximation to the weight function. The
answer obviously depends on |x| and |y|. Consider the case of the scalar weight function,
which is given by the integral of the massless propagator G0(y−u) multiplied with s(x, u),
for fixed vectors x and y. If one used the expansion of s(x, u) in Cn(x̂ · û), together with
the expansion of G0(y−u) in Cn(ŷ · û), the result of the angular integration (see eq. (3.13))
would be to give the expansion of the scalar weight function in Cn(x̂ · ŷ), with coefficients
proportional to the product of the coefficients in the two series appearing in the integrand.
The expansion of the scalar weight function in Cn(x̂ · ŷ) is precisely the series whose
coefficients we compute numerically. Thus, for that series to converge rapidly, it is sufficient
that for all u, of the multipole expansion of the massless propagator and the expansion of
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Figure 4. Left panels: the derivatives of the scalar weight function ḡ(0) appearing in the QED
kernel for given values of |x| and cosβ ≡ x̂ · ŷ. The analytic predictions for the large-y asymptotics
are displayed as thick solid lines. Right panels: the three tensor weight functions l̄(1), l̄(2), l̄(3).
The leading term of the Taylor expansion around the origin, which is O(|y|0) except for the top
left panel, is indicated for all cases but l̄(2); note that the latter weight function is multiplied by a
tensor of order |y|2 in the QED kernel.
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Figure 5. The vector weight functions ḡ(1) and ḡ(2) appearing in the QED kernel for given values
of |x| and ĉβ ≡ x̂ · ŷ, the muon mass being denoted by mµ. The leading term of the Taylor expansion
around the origin (O(|y|0)) is indicated as a short horizontal line.

105× weight fct. |y| = 0.532889 |y| = 0.872000 |y| = 2.39800
dḡ(0)/d cosβ 2.023 2.099 1.465
dḡ(0)/d|x| -1.489 0.2071 1.393
dḡ(0)/d|y| -7.317 -8.443 -6.713

ḡ(1) 2.958 2.723 1.870
ḡ(2) -0.007883 -0.01357 -0.01197
l̄(1) 0.1653 0.1448 0.07812
l̄(2) 0.07271 0.06462 0.03633
l̄(3) -0.03674 -0.03297 -0.01867

Table 1. The weight functions (multiplied by 105) for |x| = 0.4, cosβ = 0.6 and three different
values of |y|. The muon mass is set to unity throughout this table.

s(x, u) in Cn(x̂ · û), at least one converges rapidly. The multipole expansion of G0(y − u)
converges poorly when |u| = |y|; the expansion of s(x, u) in Cn(x̂ · û) converges poorly when
|u| = |x|. Thus to guarantee that the series in Cn(x̂ · ŷ) converges rapidly, one must avoid
the case |x| ≈ |y|. The latter condition however defines a surface of codimension one in the
space of (x, y), and the poor convergence thus affects a substantial fraction of the sampled
(x, y) points. However, we can use the symmetry (2.43) to compute the weight function
with the argument y exchanged for (x−y), which in general will improve the convergence of
the series in Cn(x̂ · ŷ), since the value of |x| is then substantially different from |x−y|. The
only case where the convergence cannot be improved by using the symmetry property of
the weight function is when the points (0, x, y) form an equilateral triangle. The condition
for this to happen however is a subset of codimension two. Thus if the convergence of the
series cannot be controlled in a region ||x|−|y|| < ∆ and ||x|−|x−y|| < ∆, an integral over
the QED kernel with a function which is smooth for an equilateral-triangle constellation
of (0, x, y) will suffer an error of order ∆2. To guarantee an accurate computation of
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the QED kernel in the equilateral-triangle constellation, additional computations would be
required. In the practical applications of the QED kernel, we have not found it necessary to
improve further the quality of its evaluation for an overall accuracy on aHLbL

µ on the order
of one percent. The considerations above apply to all weight functions, and the symmetry
relations (2.43)–(2.48) can be exploited to always compute the weight functions with the
most favorable arguments for the purpose of the expansion in Gegenbauer polynomials.

Some trial-and-error was necessary to find out an appropriate extent and step size9 for
the grid in |x| and |y|. Both variables were sampled up to |x|max = |y|max = 6.54m−1. For
the variable m|y|, which is cheap to sample finely, we use a step size of δg = 0.0242222.
For the variable m|x|, we use the same fine step size for small m|x| up to m|x| = 0.363333,
and a step size three times bigger for the larger m|x|. The number of coefficients of the
Gegenbauer-polynomial expansion computed for a given pair (|x|, |y|) was chosen10 to be
(8+floor(5m|x|)). Form|y| < δg, we use the Taylor-expansion given in appendix C in order
to interpolate the QED kernel between the point at m|y| = 0 and the first point of the
grid at m|y| = δg. We proceed similarly in the case m|x| < δg. The large-|y| asymptotics
derived in appendix D were not used in the numerical implementation, they only served to
acquire a qualitative understanding of the large-distance behavior of the QED kernel.

As sketched at the beginning of this section, given precomputed coefficients of the
Gegenbauer polynomial expansion of the weight functions on a grid in |x| and |y|, the
remaining computational tasks to obtain the QED kernel at a given (x, y) point are: to
evaluate the sums yielding the weight functions (again using the Clenshaw algorithm),
interpolate the weight functions (and their derivatives), apply the chain rules to obtain the
T

(A)
αβδ tensors and finally to perform the contraction of these with the GA

δ[ρ,σ]µανβλ tensors.
We have written a code in the C programming language to perform these tasks. Some
implementation details and a link to the code can be found in appendix E.

7 Example calculations of the four-point amplitude iΠ̂

In this section we derive explicit expressions for iΠ̂ρ;µνλσ(x, y) in several models that are
relevant for understanding the corresponding tensor in QCD. Our primary goal is to use
these four-point functions to test (in section 8) the validity of the coordinate-space approach
to aHLbL

µ developed here. In addition, we will gain insight into the shape and range of the
integrand, information which is valuable in preparing the lattice-QCD calculation.

But first, we review the most important properties of the tensor iΠ̂ρ;µνλσ(x, y).

9The required extent of the grid is dictated by the physics entering the correlation function iΠ̂; it was
chosen large enough for the π0 exchange to be reproduced with subpercent precision at mπ = 135MeV.
The step size should be small enough that the achieved precision on the grid points does not get ‘spoiled’
entirely by the interpolation. Since the weight functions vary more rapidly at small arguments |x| and |y|,
a relatively small step size was chosen in this region.

10The stability of the resulting weight functions was tested by varying the number of terms in the
Gegenbauer-polynomial series.
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7.1 General properties of iΠ̂

The rank-five tensor has the Bose symmetries

Π̂ρ;µνλσ(x, y) = Π̂ρ;νµλσ(y, x) = Π̂ρ;λνµσ(−x, y − x). (7.1)

Combining the two generators of Bose symmetries from eq. (7.1), we obtain a finite sym-
metry group with 3! elements. Note that while the first equality in eq. (7.1) follows im-
mediately from the definition of Π̂, the second one requires translation symmetry and the
property that ∫

d4z 〈jµ(x)jν(y)jσ(z)jλ(0)〉 = 0, (7.2)

which holds in infinite volume as a consequence of the observation that a conserved current
can be written as a total divergence,

jσ(z) = ∂(z)
α (zσjα(z)), (7.3)

and Gauss’s theorem.
The tensor Π̂ has the further discrete symmetry

Π̂ρ;µνλσ(−x,−y) = −Π̂ρ;µνλσ(x, y) (7.4)

as a consequence of the space and Euclidean-time reversal symmetries of QCD. Current
conservation implies

∂(x)
µ Π̂ρ;µνλσ(x, y) = 0, (7.5)
∂(y)
ν Π̂ρ;µνλσ(x, y) = 0, (7.6)

(∂(x)
λ + ∂

(y)
λ )Π̂ρ;µνλσ(x, y) = 0. (7.7)

For the last result, we have again assumed infinite volume and translation symmetry, and
made use of eq. (7.2). For the same reasons, we have the properties∫

x
Π̂ρ;µνλσ(x, y) =

∫
y

Π̂ρ;µνλσ(x, y) = 0, (7.8)

which will be exploited in the numerical tests of section 8.1. These properties hold in the
continuum formulation of QED or QCD. In a theory like scalar QED (see subsection 7.4
below), the appropriate contact terms, as predicted by the Ward identities of current
conservation, must be included into the definition of iΠ̂ in order for eq. (7.8) to be satisfied.

We finally give the representation of iΠ̂ in terms of the Euclidean momentum-space
HLbL amplitude. The latter is related to the position-space four-point function of the
electromagnetic current via a triple Fourier transform,〈

jµ(x)jν(y)jσ(z)jλ(0)
〉

=
∫
q1,q2,q3

ei(q1·x+q2·y+q3·z)Πµνσλ(q1, q2, q3). (7.9)

The quantity of interest, iΠ̂ρ;µνλσ(x, y), can then be calculated using the equation

iΠ̂ρ;µνλσ(x, y) = −i
∫
q1,q2

ei(q1·x+q2·y) ∂

∂q3ρ
Πµνσλ(q1, q2, q3)

∣∣∣
q3=0

. (7.10)

This relation is particularly useful when form factors are introduced to describe the coupling
of mesons to photons, as in the case of the pion-pole contribution.
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7.2 Pion-pole contribution to hadronic light-by-light scattering in the VMD
model

As a starting point for calculating the contribution of the pion pole, we take the Minkowski-
space expression for the HLbL amplitude given in [54]. To convert it to Euclidean space,
we use the prescription given in [53], whereby we arrive at

Πµνσλ(q1, q2, q3)
∣∣∣
π0

= F(−q2
1,−q2

2)F(−q2
3,−(q1+q2+q3)2)

(q1+q2)2+m2
π

εµναβ q1α q2β εσλγδ q3γ (q1+q2)δ

+F(−q2
1,−(q1+q2+q3)2)F(−q2

2,−q2
3)

(q2+q3)2+m2
π

εµλαβ q1α (q2+q3)β ενσγδ q2γ q3δ

+F(−q2
1,−q2

3)F(−q2
2,−(q1+q2+q3)2)

(q1+q3)2+m2
π

εµσαβ q1α q3β ενλγδ q2γ (q1+q3)δ. (7.11)

From here the required derivative ∂
∂q3ρ

Πµνσλ(q1, q2, q3)|q3=0 is obtained straightforwardly.
Before Fourier transforming it with respect to q1 and q2, we choose a specific parametriza-
tion of the form factor.

7.2.1 Vector-meson dominance parametrization of the form factor

In the following, we use the vector-meson dominance (VMD) model for the transition form
factor,

F(−q2
1,−q2

2) = cπ
(q2

1 +m2
V )(q2

2 +m2
V )
, (7.12)

its normalization cπ = − Ncm4
V

12π2Fπ
being determined by the axial anomaly. Inserting this form

into the expression for ∂
∂q3ρ

Πµνσλ(q1, q2, q3)|q3=0, and the latter into (7.10), and rewriting
the expression using coordinate-space propagators, one finds the master expression

iΠ̂ρ;µνλσ(x, y) = c2
π

m2
V (m2

V −m2
π)

∂

∂xα

∂

∂yβ

{
εµναβεσλργ

( ∂

∂xγ
+ ∂

∂yγ

)
Kπ(x, y)

+εµλαβενσγρ
∂

∂yγ
Kπ(y − x, y) + εµσαρενλβγ

∂

∂xγ
Kπ(x, x− y)

}
, (7.13)

where

Kπ(x, y) ≡
∫
u

(
Gmπ(u)−GmV (u)

)
GmV (x− u)GmV (y − u) = Kπ(y, x). (7.14)

We remind the reader that we denote by GM the scalar propagator with mass M ; see
eq. (3.2).

Thus the main task is to compute the scalar function Kπ(x, y), which depends on three
scalar quantities, |x|, cosβ ≡ x̂ · ŷ and |y|. The three derivatives that must be applied onto
the function Kπ(x, y) are computed using a lengthy chain rule.

The goal is therefore to compute Kπ(x, y) and the derivatives with respect to the scalar
variables analytically as far as possible. Using the expansion of the scalar propagator in
Gegenbauer polynomials and exploiting their orthogonality property, one obtains immedi-
ately an expansion of Kπ(x, y) in Cn(x̂· ŷ). Via the change of integration variable u→ x−u
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in eq. (7.14) and the subsequent Gegenbauer expansion of the propagators, one arrives at
the alternative expansion

Kπ(x, y) =
∑
n≥0

Cn(x̂− y · x̂) bn(|x|, |x− y|), (7.15)

bn(|x|, |x− y|) = 2π2

n+ 1

∫ ∞
0

d|u| |u|3GmV (u) δγn(x2, u2) γn((x− y)2, u2), (7.16)

with δγn(x2, u2) = γn(x2, u2)|mπ−γn(x2, u2)|mV the difference of the expansion coefficients
of two massive propagators with different masses in Gegenbauer polynomials; see eq. (3.19)
for the explicit expression for γn(x2, u2). Because the difference of two propagators is
only logarithmically divergent at the origin, the convergence of the multipole expansion
is improved. A further, analogous expression for Kπ(x, y) expanded in Cn(x̂− y · ŷ) is
obtained by interchanging x and y on the right-hand side of eq. (7.15).

An important consideration in the evaluation of Kπ(x, y), very similar to the discussion
in the penultimate paragraph of section 6, is the following. For the sum in eq. (7.15) to
be rapidly convergent, at least one of the δγn(x2, u2) and γn((x− y)2, u2) should decrease
rapidly with n, for all u. This works when the ratio of |x| and |x − y| is not too close
to unity. If this is not the case, the expansion in Cn(x̂− y · ŷ) can be used. The only
problematic constellation is when the points (0, x, y) form an equilateral triangle; in this
case, a more sophisticated technique would be required. However, in an integral over x at
fixed y for instance, this case represents a set of codimension 2. In practice, this means
that if the sum, truncated at nmax, does not provide an accurate estimate of Kπ(x, y) in
a range |x| = |y|(1 ± ε) and cosβ = π

3 (1 ± ε), where ε shrinks when nmax increases, the
error on the resulting integral is of order ε2, since the integrand is regular in the equilateral
constellation. In our numerical implementation, we chose nmax = 64.

Explicitly, the form of the coefficients is

bn(|x|,∆) ∆≤|x|= (n+1)mV

8π4|x|∆ (7.17){
Kn+1(mV ∆)

(
Kn+1(mπ|x|)G1

n(mπ,mV ,∆)−Kn+1(mV |x|)G1
n(mV ,mV ,∆)

)
+In+1(mV ∆)

(
Kn+1(mπ|x|)(G2

n(mπ,mV ,∆)−G2
n(mπ,mV , |x|))

−Kn+1(mV |x|)(G2
n(mV ,mV ,∆)−G2

n(mV ,mV , |x|))
)

+In+1(mV ∆)
(
In+1(mπ|x|)G3

n(mπ,mV , |x|)−In+1(mV |x|)G3
n(mV ,mV , |x|)

)}
,

bn(|x|,∆) |x|≤∆= (n+1)mV

8π4|x|∆ (7.18){
Kn+1(mV ∆)

(
Kn+1(mπ|x|)G1

n(mπ,mV , |x|)−Kn+1(mV |x|)G1
n(mV ,mV , |x|)

)
+Kn+1(mV ∆)

(
In+1(mπ|x|)(G2

n(mV ,mπ, |x|)−G2
n(mV ,mπ,∆))

−In+1(mV |x|)(G2
n(mV ,mV , |x|)−G2

n(mV ,mV ,∆))
)

+In+1(mV ∆)
(
In+1(mπ|x|)G3

n(mπ,mV ,∆)−In+1(mV |x|)G3
n(mV ,mV ,∆)

)}
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with

G1
n(m1,m2, |x|) =

∫ |x|
0

du K1(mV u)In+1(m1u)In+1(m2u), (7.19)

G2
n(m1,m2, |x|) =

∫ s

|x|
du K1(mV u)In+1(m1u)Kn+1(m2u), (7.20)

G3
n(m1,m2, |x|) =

∫ ∞
|x|

du K1(mV u)Kn+1(m1u)Kn+1(m2u). (7.21)

As a reminder, In and Kn denote the modified Bessel functions. Note that the dependence
of G2

n on the upper limit s of integration drops out in the functions bn. In our approach to
the numerical implementation, the values of the functions G1,2,3

n are computed and stored
on a regular one-dimensional grid. Then, when the function Kπ(x, y) and its derivatives
are needed at a certain target point, the more favorable expansion in Cn(x̂− y · x̂) and
Cn(x̂− y · ŷ) is chosen, and an interpolation is performed in the variables |x| and |x−y|, at
the target value of cosα = x̂− y · x̂. A chain rule relates the derivatives with respect to one
of the variables (|x|, cosβ, |y|) to those with respect to one of the variables (|x|, cosα, |x−y|).
With up to three derivatives involved, the chain rule is best generated with a symbolic
manipulation program. A further element used in the evaluation of the derivatives is based
on the observation

(−4(y) +M2
V )Kπ(x, y) = GmV (x− y)

(
Gmπ(y)−GmV (y)

)
. (7.22)

This equation is used to express the second and higher derivatives with respect to |y| in
terms of the derivatives with respect to cosβ of the same order and in terms of lower
derivatives.

7.2.2 Tests performed

From the momentum-space expression

Kπ(x, y) = (m2
V −m2

π)
∫
q1,q2

ei(q1·x+q2·y)

[(q1 + q2)2 +m2
π](q2

1 +m2
V )(q2

2 +m2
V )[(q1 + q2)2 +m2

V ]
,

(7.23)
one easily obtains ∫

x,y
Kπ(x, y) = m2

V −m2
π

m2
πm

6
V

, (7.24)

which provides a test of the numerical implementation of Kπ(x, y). More differential infor-
mation can also be obtained,∫

y
Kπ(x, y) = 1

m2
V

( 1
m2
V −m2

π

(Gmπ(x)−GmV (x))− K0(mV |x|)
8π2

)
. (7.25)

Also, using integration by parts and the result (7.24), one shows that∫
x,y
δµνxλ(xρyσ − yρxσ)iΠ̂ρ;µνλσ(x, y) = −

∫
x,y
δµνyλ(xρyσ − yρxσ)iΠ̂ρ;µνλσ(x, y)

= 1
2

∫
x,y

(δνλxµ − δµλyν)(xρyσ − yρxσ)iΠ̂ρ;µνλσ(x, y) = 3
π4m2

πF
2
π

. (7.26)
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The three integrals test respectively the third, second and first term of eq. (7.13), which
contains three terms in total.

7.3 Lepton-loop contribution to light-by-light scattering in QED

In this subsection, we present the perturbative calculation of the fermion loop contribution
to iΠ̂ρ;µνλσ(x, y).

7.3.1 The coordinate-space four-point function of the electromagnetic current

We start out by writing out the expression for the quark-connected contribution of the
unintegrated coordinate-space four-point function of the electromagnetic current, valid in
an arbitrary U(Nc) gauge field background. We note the important property

S(x, y) = γ5S(y, x)†γ5 (7.27)

of the fermion propagator, where the dagger acts on the Dirac indices. This property holds
in an arbitrary background gauge field.

Performing the six fully-connected Wick contractions, we note that due to the prop-
erty (7.27) they pair up, corresponding to the fermion number flowing in opposite directions.
One obtains

〈jµ(x) jν(y) jσ(z) jλ(0)〉 = −2Re{I(1)
µνσλ(x, y, z, 0) + I

(2)
µνσλ(x, y, z, 0) + I

(3)
µνσλ(x, y, z, 0)},

(7.28)
with

I
(1)
µνσλ(x, y, z, w) = Tr{γµS(x, y)γνS(y, z)γσS(z, w)γλS(w, x)}, (7.29)

I
(2)
µνσλ(x, y, z, w) = Tr{γµS(x, y)γνS(y, w)γλS(w, z)γσS(z, x)} = I

(1)
µνλσ(x, y, w, z), (7.30)

I
(3)
µνσλ(x, y, z, w) = Tr{γλS(w, y)γνS(y, z)γσS(z, x)γµS(x,w)} = I

(1)
λνσµ(w, y, z, x). (7.31)

7.3.2 Vanishing background gauge field: the QED case

Recall the free Dirac fermion propagator S(x, y) in Euclidean position space,

S(w + x,w) ≡
∫

d4p

(2π)4
−ipµγµ +m

p2 +m2 eip·x = m2

4π2|x|

[
γµxµ

K2(m|x|)
|x|

+K1(m|x|)
]
, (7.32)

with

S(w + x,w) = xµ γµ
2π2(x2)2 (m = 0) (7.33)

in the massless case. In the free theory, the propagator is actually Hermitian with respect
to the Dirac indices, so that the general property (7.27) holds even without the dagger.
From here on, the expressions in this section assume a single fermion flavor with unit
electric charge. Thus the calculation can be interpreted as a treatment of the contribution
of a lepton of mass m to light-by-light scattering in aµ. Also, in a vanishing background
field, we note the translation-invariance property

I
(j)
µνσλ(x, y, z, w) = I

(j)
µνσλ(x− w, y − w, z − w, 0), j = 1, 2, 3, (7.34)
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which can be combined with the Bose symmetry of the photons to write

I
(2)
µνσλ(x, y, z, 0) = I

(1)
µνλσ(x, y, 0, z) = I

(1)
µνλσ(x− z, y − z,−z, 0), (7.35)

I
(3)
µνσλ(x, y, z, 0) = I

(1)
λνσµ(0, y, z, x) = I

(1)
λνσµ(−x, y − x, z − x, 0). (7.36)

Furthermore, the expression inside the curly bracket in eq. (7.28) is already real. In the
free massless case, one thus obtains

I
(1)
µνσλ(x, y, z, 0) = (−xα)(x− y)β(y − z)γzδ

(2π2)4|x|4|x− y|4|y − z|4|z|4
Tr{γαγµγβγνγγγσγδγλ}, (7.37)

I
(2)
µνσλ(x, y, z, 0) = yα(−zβ)(z − x)γ(x− y)δ

(2π2)4|y|4|z|4|x− z|4|x− y|4
Tr{γνγαγλγβγσγγγµγδ}, (7.38)

I
(3)
µνσλ(x, y, z, 0) = (y − z)α(z − x)β xγ (−yδ)

(2π2)4|y − z|4|z − x|4|x|4|y|4
Tr{γνγαγσγβγµγγγλγδ}. (7.39)

In the free massive case, the result is

I
(1)
µνσλ(x, y, z, 0) =

(m
2π
)8[

(−xα)(x− y)β(y − z)γzδ K2(m|x|)K2(m|x− y|)K2(m|y − z|)K2(m|z|)
|x|2|x− y|2|y − z|2|z|2

·

·Tr{γαγµγβγνγγγσγδγλ} (7.40)

+K1(m|x|)K1(m|x− y|)K1(m|y − z|)K1(m|z|)
|x||x− y||y − z||z|

Tr{γµγνγσγλ}

+(−xα)(x− y)β K2(m|x|)K2(m|x− y|)K1(m|y − z|)K1(m|z|)
|x|2|x− y|2|y − z||z|

Tr{γαγµγβγνγσγλ}

+(−xα)(y − z)γ K2(m|x|)K1(m|x− y|)K2(m|y − z|)K1(m|z|)
|x|2|x− y||y − z|2|z|

Tr{γαγµγνγγγσγλ}

+(−xα)zδ K2(m|x|)K1(m|x− y|)K1(m|y − z|)K2(m|z|)
|x|2|x− y||y − z||z|2

Tr{γαγµγνγσγδγλ}

+(x− y)β(y − z)γ K1(m|x|)K2(m|x− y|)K2(m|y − z|)K1(m|z|)
|x||x− y|2|y − z|2|z|

Tr{γµγβγνγγγσγλ}

+(x− y)βzδ K1(m|x|)K2(m|x− y|)K1(m|y − z|)K2(m|z|)
|x||x− y|2|y − z||z|2

Tr{γµγβγνγσγδγλ}

+(y − z)γzδ K1(m|x|)K1(m|x− y|)K2(m|y − z|)K2(m|z|)
|x||x− y||y − z|2|z|2

Tr{γµγνγγγσγδγλ}
]
.

To evaluate the coordinate-space four-point function, it is thus sufficient to program the
function I

(1)
µνσλ(x, y, z, 0), and call it three times to compute the four-point function

〈jµ(x) jν(y) jσ(z) jλ(0)〉. As for the Dirac traces, it is straightforward to compute and
store the 65536 components of Tr{γαγµγβγνγγγσγδγλ} once for all times.

7.3.3 Calculation of iΠ̂ρ;µνλσ(x, y)

From eq. (7.28), in order to compute

iΠ̂ρ;µνλσ(x, y) = 2
∫
z
zρ Re{I(1)

µνσλ(x, y, z, 0) + I
(2)
µνσλ(x, y, z, 0) + I

(3)
µνσλ(x, y, z, 0)}, (7.41)
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it is sufficient to compute the two integrals

Π̂(1)
ρ;µνλσ(x, y) ≡ 2 Re

∫
d4z zρ I

(1)
µνσλ(x, y, z, 0), (7.42)

Π(r,1)
µνλσ(x, y) ≡ 2 Re

∫
d4z I

(1)
µνσλ(x, y, z, 0). (7.43)

Indeed, for the second term, we make use of the property

I
(2)
µνσλ(x, y, z, 0) = I

(1)
µνλσ(x, y, 0, z) = I

(1)
νλσµ(y, 0, z, x) = I

(1)
νλσµ(y − x,−x, z − x, 0) (7.44)

(where we have performed a cyclic permutation of the arguments in the second equality),
from which there follows

2
∫
d4z zρ I

(2)
µνσλ(x, y, z, 0) = 2

∫
d4z (zρ + xρ)I(1)

νλσµ(y − x,−x, z, 0) (7.45)

= Π̂(1)
ρ;νλµσ(y − x,−x) + xρ Π(r,1)

νλµσ(y − x,−x).

Similarly, the third term can be expressed as

I
(3)
µνσλ(x, y, z, 0) = I

(1)
λνσµ(0, y, z, x) = I

(1)
λνσµ(−x, y − x, z − x, 0), (7.46)

so that

2
∫
d4z zρ I

(3)
µνσλ(x, y, z, 0) = 2

∫
d4z (zρ + xρ)I(1)

λνσµ(−x, y − x, z, 0) (7.47)

= Π̂(1)
ρ;λνµσ(−x, y − x) + xρ Π(r,1)

λνµσ(−x, y − x).

Thus iΠ̂ρ;µνλσ(x, y) can be expressed through the functions Π̂(1)
ρ;µνλσ(x, y) and Π(r,1)

νλµσ(x, y) via

iΠ̂ρ;µνλσ(x, y) = Π̂(1)
ρ;µνλσ(x, y) (7.48)

+Π̂(1)
ρ;νλµσ(y − x,−x) + xρ Π(r,1)

νλµσ(y − x,−x)

+Π̂(1)
ρ;λνµσ(−x, y − x) + xρ Π(r,1)

λνµσ(−x, y − x).
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It remains to perform the required integrals. The result is

Π̂(1)
ρ;µνλσ(x, y) (7.49)

= 2
(m

2π
)8[(−xα)(x− y)βK2(m|x|)K2(m|x− y|)

|x|2|x− y|2
· fρδγ(y) · Tr{γαγµγβγνγγγσγδγλ}

+K1(m|x|)K1(m|x− y|)
|x||x− y|

· fρδγ(y) · Tr{γµγνγγγσγδγλ}

+K1(m|x|)K1(m|x− y|)
|x||x− y|

gρ(y) · Tr{γµγνγσγλ}

+(−xα)(x− y)β K2(m|x|)K2(m|x− y|)
|x|2|x− y|2

gρ(y) · Tr{γαγµγβγνγσγλ}

+(−xα) K2(m|x|)K1(m|x− y|)
|x|2|x− y|

hργ(y) · Tr{γαγµγνγγγσγλ}

+(x− y)β K1(m|x|)K2(m|x− y|)
|x||x− y|2

hργ(y) · Tr{γµγβγνγγγσγλ}

+(−xα) K2(m|x|)K1(m|x− y|)
|x|2|x− y|

f̂ρδ(y) · Tr{γαγµγνγσγδγλ}

+(x− y)β K1(m|x|)K2(m|x− y|)
|x||x− y|2

f̂ρδ(y) · Tr{γµγβγνγσγδγλ}
]

(7.50)

and

Π(r,1)
µνλσ(x, y) (7.51)

= 2
(m

2π
)8[(−xα)(x− y)β K2(m|x|)K2(m|x− y|)

|x|2|x− y|2
· lγδ(y) · Tr{γαγµγβγνγγγσγδγλ}

+K1(m|x|)K1(m|x− y|)
|x||x− y|

· p(|y|) · Tr{γµγνγσγλ}

+(−xα)(x− y)β K2(m|x|)K2(m|x− y|)
|x|2|x− y|2

· p(|y|) · Tr{γαγµγβγνγσγλ}

+(−xα) K2(m|x|)K1(m|x− y|)
|x|2|x− y|

· qγ(y) · Tr{γαγµγνγγγσγλ}

+(x− y)β K1(m|x|)K2(m|x− y|)
|x||x− y|2

· qγ(y) · Tr{γµγβγνγγγσγλ}

+(−xα) K2(m|x|)K1(m|x− y|)
|x|2|x− y|

· qδ(y) · Tr{γαγµγνγσγδγλ}

+(x− y)β K1(m|x|)K2(m|x− y|)
|x||x− y|2

· qδ(y) · Tr{γµγβγνγσγδγλ}

+K1(m|x|)K1(m|x− y|)
|x||x− y|

· lγδ(y) · Tr{γµγνγγγσγδγλ}
]
.

– 47 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

The functions appearing in the expressions above are

f̂ρδ(y) ≡
∫
z
zρzδ

K1(m|y − z|)
|y − z|

K2(m|z|)
|z|2

= π2

m3

{
ŷρŷδ m|y|K1(m|y|) + δρδK0(m|y|)

}
,

(7.52)

fρδγ(y) ≡
∫
z
zρ zδ (y − z)γ

K2(m|y − z|)
|y − z|2

K2(m|z|)
|z|2

= − 1
m

∂

∂yγ
f̂ρδ(y) (7.53)

= π2

m3

{
ŷγ ŷδŷρm|y|K2(m|y|) + (δρδŷγ − δγρŷδ − δγδŷρ)K1(m|y|)

}
, (7.54)

gρ(y) ≡
∫
d4z zρ

K1(m|y − z|)
|y − z|

K1(m|z|)
|z|

= π2

m2 yρK0(m|y|), (7.55)

hργ(y) ≡
∫
d4z zρ (y − z)γ

K2(m|y − z|)
|y − z|2

K1(m|z|)
|z|

= − 1
m

∂

∂yγ
gρ(y) (7.56)

= π2

m3

(
ŷγ ŷρm|y|K1(m|y|)− δγρK0(m|y|)

)
, (7.57)

lγδ(y) ≡
∫
d4z zδ(y − z)γ

K2(m|y − z|)K2(m|z|)
|y − z|2|z|2

(7.58)

= 2π2

m2

(
ŷγ ŷδK2(m|y|)− δγδ

K1(m|y|)
m|y|

)
, (7.59)

p(|y|) ≡
∫
d4z

K1(m|y − z|)
|y − z|

K1(m|z|)
|z|

= 2π2

m2 K0(m|y|), (7.60)

qγ(y) ≡
∫
d4z (y − z)γ

K2(m|y − z|)
|y − z|2

K1(m|z|)
|z|

= − yγ
m|y|

p′(|y|) = 2π2

m2 ŷγ K1(m|y|).

(7.61)

The integrals are performed by using the Gegenbauer expansion of the massive scalar
propagator, eq. (3.18). Then, in the case of p(|y|), which is proportional to the convolution
of two scalar propagators, one makes use of the integrals [77]11

∫ r

0
dz zKλ(mz) Iλ(mz) = r2

2

[(
1 + λ2

m2r2

)
Iλ(mr)Kλ(mr)− I ′λ(mr)K ′λ(mr)

]
− λ

2m2 ,

(7.62)∫ ∞
r

dz zKλ(mz)2 = r2

2 (K ′λ(mr))2 − 1
2

(
r2 + λ2

m2

)
Kλ(mr)2. (7.63)

In other radial integrals, one can first reduce the order of the Bessel functions using inte-
gration by parts.

7.4 Pion-loop contribution to light-by-light scattering in scalar QED

In this subsection we present in some detail the calculation of the charged-pion-loop contri-
bution to iΠ̂ in the framework of scalar QED. In this framework, the pions are approximated
as point particles; it should be noted that the absence of form factors associated with the

11In eq. (7.62), Re(λ) > −1 is assumed and in eq. (7.63), Re(m) > 0 is assumed. The prime denotes the
derivatives of the Bessel function with respect to their argument, e.g. K′0(mr) = −K1(mr).
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γππ vertex leads to an aHLbL
µ contribution almost three times larger than the dispersively

evaluated “pion box” (see ref. [17]).
Since some expressions are quite long and only one mass appears in the entire calcula-

tion, we denote the pion propagator simply by G rather than Gmπ . Also, the position-space
vectors of the four vertices of the light-by-light amplitude will generally be denoted by
(X1, X2, X3, X4), rather than (x, y, z, 0), in order to notationally exploit the high degree
of permutation symmetry of the amplitude.

The Euclidean Lagrangian for a massive complex scalar field minimally coupled to an
external gauge field is

L = (∂µ + ieAµ)φ∗(∂µ − ieAµ)φ+m2
πφ
∗φ. (7.64)

It is convenient to introduce the generating functional

Z[Aµ] =
∫
DφDφ∗ e−S[φ,φ∗,Aµ]. (7.65)

We want to compute the connected four-point function of the gauge field Aµ(x),

Π̃µ1µ2µ3µ4(X1, X2, X3, X4) ≡ δ4 logZ
δAµ1(X1)δAµ2(X2)δAµ3(X3)δAµ4(X4)

∣∣∣∣∣
Aµ=0

. (7.66)

Its relation to the desired function iΠ̂ is given below in eq. (7.86).
Let

jµ(x) = i(φ∗∂µφ− φ∂µφ∗) (7.67)

be the electromagnetic current (in units of e) associated with the complex scalar field φ.
We split up the calculation of Π̃ into three contributions,

Π̃µ1µ2σµ3(X1, X2, z,X3) =
∑

n=0,1,2
Π̃(n)
µ1µ2σµ3(X1, X2, z,X3), (7.68)

where Π̃(n) is the contribution to Π̃ resulting from n insertions of the Lagrangian term
∆L = e2φ∗φAµAµ and (4− 2n) insertions of the electromagnetic current.

7.4.1 Four-point function of the current

As the main contribution to the four-point function of the gauge field Aµ(x), we compute
the four-point function of the electromagnetic current

Π̃(0)
µ1µ2µ3µ4(X1, X2, X3, X4) ≡

〈
jµ1(X1)jµ2(X2)jµ3(X3)jµ4(X4)

〉
(7.69)

=
∑

A=I,II,III
Π̃(0),A
µ1µ2µ3µ4(X1, X2, X3, X4). (7.70)

There are 16 individual four-point functions generated by the two terms of each current.
Each one gives rise to 6 Wick contractions. Thus there are 96 Wick contractions in total.
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The three types of terms that we distinguish in eq. (7.70) differ by the number of
derivatives acting on φ and on the φ∗ respectively,

Π̃(0),I
µ1µ2µ3µ4(X1, X2, X3, X4) =

〈 4∏
k=1

φ(Xk)∗∂µkφ(Xk)
〉

+
〈
herm. conjug.

〉
, (7.71)

Π̃(0),II
µ1µ2µ3µ4(X1, X2, X3, X4) = −

4∑
l=1

{〈
φ(X l)∂µlφ(X l)∗

4∏
k 6=l

φ(Xk)∗∂µkφ(Xk)
〉
(7.72)

+
〈
herm. conjug.

〉}
,

Π̃(0),III
µ1µ2µ3µ4(X1, X2, X3, X4) =

4∑
k<l

〈
φ(Xk)∂µkφ(Xk)∗ · φ(X l)∂µlφ(X l)∗ · (7.73)

·
4∏

j 6=k,l
φ(Xj)∗∂µjφ(Xj)

〉
.

We note that Π̃(0),I,II,III contain respectively 12, 48 and 36 Wick contractions.
We set (X3, µ3) := (z, σ) and then (X4, µ4) := (X3, µ3), and write out the z-dependence

explicitly, since we want to integrate over z at a later stage. We use the group of permu-
tations Sn, which contains n! elements. The result of the Wick contractions is

Π̃(0),I
µ1µ2σµ3(X1,X2,z,X3) = 2

∑
π∈S3

∂zσG(z−Xπ(3)) ∂Xπ(3)
µπ(3)

G(Xπ(3)−Xπ(2)) (7.74)

∂X
π(2)

µπ(2)
G(Xπ(2)−Xπ(1)) ∂Xπ(1)

µπ(1)
G(Xπ(1)−z),

and

Π̃(0),II
µ1µ2σµ3(X1,X2,z,X3) = 2

∑
π∈S3

{
(7.75)

∂zσ∂
z
µπ(3)

G(z−Xπ(3)) G(Xπ(3)−Xπ(2)) ∂Xπ(2)
µπ(2)

G(Xπ(2)−Xπ(1)) ∂Xπ(1)
µπ(1)

G(Xπ(1)−z)

+∂Xπ(3)
µπ(3)

∂X
π(3)

σ G(Xπ(3)−z) G(z−Xπ(2)) ∂Xπ(2)
µπ(2)

G(Xπ(2)−Xπ(1)) ∂Xπ(1)
µπ(1)

G(Xπ(1)−Xπ(3))

+∂Xπ(3)
µπ(3)

∂X
π(3)

µπ(2)
G(Xπ(3)−Xπ(2)) G(X(2)−z) ∂zσG(z−Xπ(1))∂Xπ(1)

µπ(1)
G(Xπ(1)−Xπ(3))

+∂Xπ(3)
µπ(3)

∂X
π(3)

µπ(2)
G(Xπ(3)−Xπ(2)) G(Xπ(2)−Xπ(1)) ∂Xπ(1)

µπ(1)
G(Xπ(1)−z) ∂zσG(z−Xπ(3))

}
,

as well as

Π̃(0),III
µ1µ2σµ3(X1,X2,z,X3) = 2

∑
π∈S3

{
(7.76)

∂zσ∂
z
µπ(3)

G(z−Xπ(3)) ∂Xπ(1)
µπ(1)

∂X
π(1)

µπ(2)
G(Xπ(1)−Xπ(2)) G(Xπ(3)−Xπ(1)) G(Xπ(2)−z)

+∂zµπ(3)
G(z−Xπ(3)) ∂Xπ(2)

σ ∂X
π(2)

µπ(2)
G(Xπ(2)−z) ∂Xπ(1)

µπ(1)
G(Xπ(1)−Xπ(2)) G(Xπ(3)−Xπ(1))

+∂Xπ(1)
σ G(Xπ(1)−z) ∂Xπ(3)

µπ(1)
∂X

π(3)
µπ(3)

G(Xπ(3)−Xπ(1)) ∂Xπ(2)
µπ(2)

G(Xπ(2)−Xπ(3)) G(z−Xπ(2))
}
.
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7.4.2 One-tadpole contributions

Now to the contributions of the four-point function of Aµ(x) involving exactly one tadpole,
coming from the term ∆L = e2φ∗φAµAµ in the Lagrangian. Note that a factor two appears
because the term is quadratic in Aµ.

Π̃(1)
µ1µ2µ3µ4(X1, X2, X3, X4) = −2

∑
k<l

δµkµlδ(X
k −X l)

〈
φ∗(Xk)φ(Xk)

∏
j 6=k,l

jµj (Xj)
〉

= 2
∑
k<l

δµkµlδ(X
k −X l)

{〈
φ∗(Xk)φ(Xk)

∏
j 6=k,l

φ(Xj)∗∂µjφ(Xj)
〉

+
〈
herm. conjug.

〉
−
〈
φ∗(Xk)φ(Xk)

∑
j 6=k,l

φ(Xj)∗∂µjφ(Xj)
(
φ(Xm)∂µmφ(Xm)∗

)
m=10−(j+k+l)

〉}
. (7.77)

Disregarding the overall factor of two, there are six permutations (k < l) and each gives rise
to eight Wick contractions, yielding a total of 48 such contractions. Now set (X3, µ3) :=
(z, σ) and (X4, µ4) := (X3, µ3). There are three permutations in which z appears in the
delta function, and three where it does not.

Π̃(1)
µ1µ2σµ3(X1, X2, z,X3) = 2

∑
π∈S3

{
δσµπ(1)δ(z −X

π(1)) (7.78)

·
(
∂X

π(3)
µπ(3)

G(Xπ(3) −Xπ(2)) G(Xπ(1) −Xπ(3)) ∂Xπ(2)
µπ(2)

G(Xπ(2) −Xπ(1))

+G(Xπ(1) −Xπ(2)) ∂Xπ(3)
µπ(3)

G(Xπ(3) −Xπ(1)) ∂Xπ(2)
µπ(2)

G(Xπ(2) −Xπ(3))

+∂Xπ(3)
µπ(3)

∂X
π(3)

µπ(2)
G(Xπ(3) −Xπ(2)) G(Xπ(1) −Xπ(3)) G(Xπ(2) −Xπ(1))

+∂Xπ(1)
µπ(2)

G(Xπ(1) −Xπ(2)) ∂Xπ(3)
µπ(3)

G(Xπ(3) −Xπ(1)) G(Xπ(2) −Xπ(3))
)

+δµπ(1)µπ(2)δ(X
π(1) −Xπ(2))

·
(
∂X

π(3)
µπ(3)

G(Xπ(3) − z) G(Xπ(1) −Xπ(3)) ∂zσG(z −Xπ(1))

+G(Xπ(1) − z) ∂Xπ(3)
µπ(3)

G(Xπ(3) −Xπ(1)) ∂zσG(z −Xπ(3))

+∂Xπ(3)
µπ(3)

∂X
π(3)

σ G(Xπ(3) − z) G(Xπ(1) −Xπ(3)) G(z −Xπ(1))

+∂Xπ(1)
σ G(Xπ(1) − z) ∂Xπ(3)

µπ(3)
G(Xπ(3) −Xπ(1)) G(z −Xπ(3))

)}
.

7.4.3 Two-tadpole contributions

Finally, the contribution containing two tadpoles has the form

Π̃(2)
µ1µ2µ3µ4(X1, X2, X3, X4) (7.79)

= 4
3∑
l=1

δµ4µl δ(X
4 −X l) δµjµk δ(X

j −Xk)
〈

(φ∗φ)(X4) (φ∗φ)(X l)
〉
,

where it is understood that (j, k, l) form a permutation of (1, 2, 3). The expression can also
be written as

Π̃(2)
µ1µ2µ3µ4(X1, X2, X3, X4) (7.80)

= 2
∑
π∈S3

δµ4µπ(1) δ(X
4 −Xπ(1)) δµπ(2)µπ(3) δ(X

π(2) −Xπ(3))
〈

(φ∗φ)(X4) (φ∗φ)(Xπ(2))
〉
,
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Performing the contractions, one obtains

Π̃(2)
µ1µ2σµ3(X1, X2, z,X3) (7.81)

= 2
∑
π∈S3

δσµπ(1) δ(z −X
π(1)) δµπ(2)µπ(3) δ(X

π(2) −Xπ(3))G(Xπ(1) −Xπ(2))2.

7.4.4 Test of the Ward identity

The Ward identity for current conservation reads

∂zσ(Π̃(0)
µ1µ2σµ3 + Π̃(1)

µ1µ2σµ3 + Π̃(2)
µ1µ2σµ3)(X1, X2, z,X3) = 0. (7.82)

Taking into account the Green’s function property (3.3) of the scalar propagator as well
as the identity δ′(z − x1)f(z) = δ′(z − x1)f(x1) − δ(z − x1)f ′(x1), a straightforward but
tedious calculation yields

∂zσΠ̃(0)
µ1µ2σµ3(X1, X2, z,X3) = −2

∑
π∈S3

∂zµπ(1)
δ(z −Xπ(1))

{
(7.83)

G(Xπ(1) −Xπ(2)) ∂X2
µ2 G(X2 −X3) ∂X3

µ3 G(Xπ(3) −Xπ(1))

+G(Xπ(1) −Xπ(2)) ∂X2
µπ(2)

G(Xπ(2) −Xπ(3)) ∂X3
µπ(3)

G(Xπ(3) −Xπ(1))

+∂Xπ(1)
µπ(3)

G(Xπ(1) −Xπ(3)) ∂X2
µπ(2)

G(Xπ(2) −Xπ(1)) G(Xπ(3) −Xπ(2))

+∂Xπ(3)
µπ(3)

∂X
π(3)

µπ(2)
G(Xπ(3) −Xπ(2)) G(Xπ(1) −Xπ(3)) G(Xπ(2) −Xπ(1))

}
.

Similarly, using again eq. (3.3), one finds

∂zσΠ̃(1)
µ1µ2σµ3(X1, X2, z,X3) = 2

∑
π∈S3

{
∂zµπ(1)

δ(z −Xπ(1)) (7.84)

·
(
∂X

π(3)
µπ(3)

G(Xπ(3) −Xπ(2)) G(Xπ(1) −Xπ(3)) ∂Xπ(2)
µπ(2)

G(Xπ(2) −Xπ(1))

+G(Xπ(1) −Xπ(2)) ∂Xπ(3)
µπ(3)

G(Xπ(3) −Xπ(1)) ∂Xπ(2)
µπ(2)

G(Xπ(2) −Xπ(3))

+∂Xπ(3)
µπ(3)

∂X
π(3)

µπ(2)
G(Xπ(3) −Xπ(2)) G(Xπ(1) −Xπ(3)) G(Xπ(2) −Xπ(1))

+∂Xπ(1)
µπ(2)

G(Xπ(1) −Xπ(2)) ∂Xπ(3)
µπ(3)

G(Xπ(3) −Xπ(1)) G(Xπ(2) −Xπ(3))
)

−δµπ(1)µπ(2)δ(X
π(1) −Xπ(2)) ∂zµπ(3)

δ(Xπ(3) − z) G(Xπ(3) −Xπ(1))2
}
.

Finally,

∂zσΠ̃(2)
µ1µ2σµ3(X1, X2, z,X3) = (7.85)

= 2
∑
π∈S3

∂zµπ(1)
δ(z −Xπ(1)) δµπ(2)µπ(3) δ(X

π(2) −Xπ(3))G(Xπ(1) −Xπ(3))2.

Thus one verifies that the Ward identity eq. (7.82) is satisfied: the terms with two delta
functions cancel between Π̃(1) and Π̃(2), while the terms with a single delta function cancel
between Π̃(0) and Π̃(1).
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7.4.5 The expression for iΠ̂ρ;µ1µ2µ3σ(X1, X2)

We recall the relation

iΠ̂ρ;µ1µ2µ3σ(X1, X2) = −
∫
d4z zρ Π̃µ1µ2σµ3(X1, X2, z,X3)

∣∣∣
X3=0

, (7.86)

and decompose the rank-five tensor according to

iΠ̂ρ;µ1µ2µ3σ(X1, X2) =
∑

n=0,1,2
iΠ̂(n)

ρ;µ1µ2µ3σ(X1, X2), (7.87)

iΠ̂(n)
ρ;µ1µ2µ3σ(X1, X2) ≡ −

∫
d4z zρ Π̃(n)

µ1µ2σµ3(X1, X2, z,X3)
∣∣∣
X3=0

. (7.88)

We will make use of the integral

Hρ(X1, X3) =
∫
d4z zρG(z −X3)G(z −X1) (7.89)

=
(
mπ

4π2

)2 [
gρ(X3 −X1) +X1

ρ p(|X3 −X1|)
]
, (7.90)

where

gρ(y) ≡
∫
d4z zρ

K1(mπ|y − z|)
|y − z|

K1(mπ|z|)
|z|

= π2

m2
π

yρK0(mπ|y|), (7.91)

p(|y|) ≡
∫
d4z

K1(mπ|y − z|)
|y − z|

K1(mπ|z|)
|z|

= 2π2

m2
π

K0(mπ|y|). (7.92)

Simplifying, one finds

Hρ(X1, X3) = 1
16π2K0(mπ|X3 −X1|) (X1

ρ +X3
ρ). (7.93)

What is needed in the following is the antisymmetrized derivative

∂X
3

[σ Hρ](X1, X3) = −1
4G(X3 −X1) [X1

ρ , X
3
σ], (7.94)

where we have introduced the notation [X1
ρ , X

3
σ] ≡ X1

ρX
3
σ −X3

ρX
1
σ.
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A straightforward but lengthy calculation then leads to the expressions

iΠ̂(0)
[ρ;µ1µ2µ3σ](X

1,X2) (7.95)

=
∑
π∈S3

{
G(Xπ(3)−Xπ(2)) ∂X

π(2)

µπ(2)
G(Xπ(2)−Xπ(1)) ∂X

π(1)

µπ(1)
∂X

π(3)

µπ(3)
G(Xπ(1)−Xπ(3)) [Xπ(1)

ρ ,Xπ(3)
σ ]

+G(Xπ(3)−Xπ(2)) ∂X
π(2)

µπ(2)
G(Xπ(2)−Xπ(1)) G(Xπ(1)−Xπ(3))(δµπ(1)ρδσµπ(3)−δρµπ(3)δσµπ(1))

+G(Xπ(3)−Xπ(2)) ∂X
π(2)

µπ(2)
G(Xπ(2)−Xπ(1)) ∂X

π(1)

µπ(1)
G(Xπ(1)−Xπ(3)) (δσµπ(3)X

π(1)
ρ −δρµπ(3)X

π(1)
σ )

+G(Xπ(3)−Xπ(2)) ∂X
π(2)

µπ(2)
G(Xπ(2)−Xπ(1)) ∂X

π(3)

µπ(3)
G(Xπ(1)−Xπ(3)) (δρµπ(1)X

π(3)
σ −δσµπ(1)X

π(3)
ρ )

+1
2∂

Xπ(2)

µπ(2)
G(Xπ(2)−Xπ(1)) ∂X

π(1)

µπ(1)
G(Xπ(1)−Xπ(3))∂X

π(3)

µπ(3)
G(Xπ(2)−Xπ(3)) [Xπ(3)

ρ ,Xπ(1)
σ −Xπ(2)

σ ]

+1
2∂

Xπ(3)

µπ(3)
G(Xπ(3)−Xπ(2)) ∂X

π(2)

µπ(2)
G(Xπ(2)−Xπ(1))G(Xπ(3)−Xπ(1))(δσµπ(1)X

π(3)
ρ −δρµπ(1)X

π(3)
σ )

+1
2G(Xπ(3)−Xπ(2)) ∂X

π(2)

µπ(2)
G(Xπ(2)−Xπ(1))∂X

π(1)

µπ(1)
G(Xπ(3)−Xπ(1))(δσµπ(3)X

π(2)
ρ −δρµπ(3)X

π(2)
σ )

+∂X
π(3)

µπ(3)
∂X

π(3)

µπ(2)
G(Xπ(3)−Xπ(2)) G(Xπ(2)−Xπ(1)) ∂X

π(1)

µπ(1)
G(Xπ(1)−Xπ(3)) [Xπ(1)

ρ ,Xπ(2)
σ −Xπ(3)

σ ]

+∂X
π(3)

µπ(3)
∂X

π(3)

µπ(2)
G(Xπ(3)−Xπ(2)) G(Xπ(2)−Xπ(1)) G(Xπ(1)−Xπ(3))(δσµπ(1)X

π(3)
ρ −δρµπ(1)X

π(3)
σ )

}
,

iΠ̂(1)
[ρ;µ1µ2µ3σ](X

1,X2)+iΠ̂(2)
[ρ;µ1µ2µ3σ](X

1,X2) =
∑
π∈S3

{
(δρµπ(1)X

π(1)
σ −δσµπ(1)X

π(1)
ρ ) (7.96)

·
(

2G(Xπ(1)−Xπ(2)) ∂X
π(3)

µπ(3)
G(Xπ(3)−Xπ(1)) ∂X

π(2)

µπ(2)
G(Xπ(2)−Xπ(3))

+∂X
π(1)

µπ(2)
G(Xπ(1)−Xπ(2)) ∂X

π(3)

µπ(3)
G(Xπ(3)−Xπ(1)) G(Xπ(2)−Xπ(3))

+∂X
π(3)

µπ(3)
∂X

π(3)

µπ(2)
G(Xπ(3)−Xπ(2)) G(Xπ(1)−Xπ(3)) G(Xπ(2)−Xπ(1))

+δµπ(2)µπ(3)δ(X
π(2)−Xπ(3)) G(Xπ(2)−Xπ(1))2

)
+δµπ(2)µπ(3)δ(X

π(2)−Xπ(3)) G(Xπ(2)−Xπ(1))2(δσµπ(1)X
π(2)
ρ −δρµπ(1)X

π(2)
σ )

}
.

The setting of X3 to zero is implied in the two equations above (see eq. (7.86)). In sum-
mary, the charged-pion-loop contribution to the function iΠ̂ is given by eqs. (7.87), (7.95)
and (7.96).

A final step is required if one wants to perform numerical integrations over iΠ̂ in order
to obtain aHLbL

µ , namely to isolate the delta-function-like contributions, which we also call
contact contributions. The last two terms of eq. (7.96) are explicitly contact contributions.
Eq. (7.95), however, also contributes contact terms, because second derivatives of the scalar
propagator appear. Using the defining property (3.3) of the propagator, these second-
derivative terms can be written as

∂µ∂νG(x) =
(
δµν − 4xµxν

x2

)
G′(x)
|x|

+ xµxν
x2 m2

π G(x)− 1
4δµν δ(x), (7.97)

where G′(x) = d
d|x|G(x) = −m2

π
4π2

K2(mπ |x|)
|x| . We have taken into account the fact that,

applied to smooth test functions,
(
δµν − 4xµxν

x2

)
δ(x) = 0, so that xµxν

x2 δ(x) can be sub-
stituted by 1

4δµνδ(x). Collecting all the contributions proportional to a delta function in
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iΠ̂[ρ;µ1µ2µ3σ](X1, X2), we find in total

iΠ̂[ρ;µ1µ2µ3σ](X1, X2)contact = 3
2
[
δµ2µ3 δ(X2)G(X1)2 (δρµ1X

1
σ − δσµ1X

1
ρ) (7.98)

−δµ1µ2 δ(X1 −X2)G(X2)2 (δρµ3X
2
σ − δσµ3X

2
ρ)

+δµ1µ3 δ(X1)G(X2)2 (δρµ2X
2
σ − δσµ2X

2
ρ)
]
.

We note that these terms are integrable; for instance, the first term goes like 1/|X1|3 for
small |X1|.

8 Applications and tests of the QED kernel

In this section, we combine the QED kernel as computed in section 5 with the four-point
functions iΠ̂ given explicitly in section 7 in order to check whether the coordinate-space
method developed here reproduces known results. Furthermore, the method is tested for
the case that the QED fermion loop is computed on the lattice, reproducing the known
result after taking the continuum limit. Finally, in subsection 8.4 an overview of results
obtained for the fully connected part of the lattice QCD four-point function is presented.

8.1 Improved kernels

The master formula, given by eq. (2.29), can be written in a slightly different way to op-
timize the lattice QCD calculation. First, as already noted in ref. [49], the QED weight
function is not uniquely defined. This freedom can be used to obtained a better behaved
integrand with smaller statistical and systematic uncertainties. As shown below, it turns
out to be a crucial ingredient for practical lattice QCD calculations. The idea is to remove
large fluctuations or large cancellations in the integrand that do not affect the central value
in the continuum and infinite volume but increase the statistical error and/or systematic
effects in the estimator. Second, a naive implementation of the master formula in lat-
tice QCD calculations is rather expensive. But the numerical cost can be considerably
reduced by using a different formula, equivalent in the infinite volume limit. These two
improvements are discussed next.

In the continuum and in infinite volume, the conservation of the electromagnetic cur-
rent implies eq. (7.8), namely that the integral of the four-point function iΠ̂ρ;µνλσ(x, y)
over x without any x-dependent weight-factor vanishes. The same observation applies to
the integral over the coordinate-vector y. Therefore, in infinite volume, any function which
depends only on x or y can be added to the QED kernel without affecting the final result.
On the infinite lattice, and with Wilson fermions, this property still holds at finite lattice
spacing if one uses the conserved vector current, see eq. (8.10b). When using local vector
currents, the result holds once the continuum limit has been taken. We will consider four
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Figure 6. Wick contractions for the connected contribution in Method 1.

kernels L(n) which differ only by such subtractions,

L(0)
[ρ,σ],µνλ(x, y) = L[ρ,σ],µνλ(x, y) , (8.1a)

L(1)
[ρ,σ],µνλ(x, y) = L[ρ,σ],µνλ(x, y)− 1

2L[ρ,σ],µνλ(x, x)− 1
2L[ρ,σ],µνλ(y, y) , (8.1b)

L(2)
[ρ,σ],µνλ(x, y) = L[ρ,σ],µνλ(x, y)− L[ρ,σ],µνλ(0, y)− L[ρ,σ],µνλ(x, 0) , (8.1c)

L(3)
[ρ,σ],µνλ(x, y) = L[ρ,σ],µνλ(x, y)− L[ρ,σ],µνλ(x, x) + L[ρ,σ],µνλ(0, x)− L[ρ,σ],µνλ(0, y) .

(8.1d)

In addition to vanishing when both arguments vanish,

L(n)
[ρ,σ],µνλ(0, 0) = 0, (n = 0, 1, 2, 3), (8.2)

(see eq. (2.39) for the non-trivial cases n = 0 and n = 2), the subtracted kernels vanish in
various special configurations,

L(1)(x, x) = 0 , L(2)(x, 0) = L(2)(0, y) = 0 , L(3)(x, 0) = L(3)(x, x) = 0 . (8.3)

In [43, 51] we introduced a kernel tuneable by an arbitrary parameter Λ that approaches
L(0) when Λ→∞ and L(2) when Λ→ 0,

L(Λ)
[ρ,σ];µνλ(x, y) = L[ρ,σ];µνλ(x, y)

− ∂(x)
µ (xαe−Λm2x2/2)L[ρ,σ];ανλ(0, y)− ∂(y)

ν (yαe−Λm2y2/2)L[ρ,σ];µαλ(x, 0),
(8.4)

as we empirically found that with L(2) and L(3), the integrand was too long-ranged, while
with L(0) and L(1) it was too peaked at short distances. In our most recent works [36, 37],
we presented results exclusively with Λ = 0.4.

For each quark flavour f , the quark-connected part of the hadronic four-point function
Π involves three different Wick contractions. Each of those appears twice, with oppo-
site fermion-number flow, resulting in a purely real contribution; see eq. (7.28) and fig-
ure 6. Computing explicitly all three contractions, and using the master formula given by
eq. (2.29), amounts to what we call Method 1 [51]. To estimate all three contractions, we
first compute point-to-all propagators with sources located at the origin and at the site y.
Then, we perform sequential inversions using the propagators, summed over z and with
the weight factor zρ, as sequential sources to finally contract both results and summing
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over x. Since one needs to anti-symmetrize between ρ and σ, it amounts to 6 sequential
inversions for each primary inversion.

Alternatively, we could choose the first Wick contraction, I(1)
µνσλ(x, y, z, w) of eq. (7.29)

corresponding to the leftmost diagram in figure 6, as a reference and swap the vertices
at the level of the muon line — an idea that was already exploited in [47]. Defining the
gauge-field average of the three Wick contractions as follows,

Π̃(j)
µνσλ(x, y, z) ≡ 〈−2 Re I(j)

µνσλ(x, y, z, 0)〉, (j = 1, 2, 3), (8.5)

we obtain the Method 2 [51] estimator (A = 0, 1, 2, 3 or Λ)

aHLbL
µ = − me6

3

∫
d4y

∫
d4x{(

L(A)
[ρ,σ],µνλ(x, y) + L(A)

[ρ,σ],νµλ(y, x)− L(A)
[ρ,σ],λνµ(x, x− y)

) ∫
d4z zρ Π̃(1)

µνσλ(x, y, z)

+ L(A)
[ρ,σ],λνµ(x, x− y)xρ

∫
d4z Π̃(1)

µνσλ(x, y, z)
}
. (8.6)

For the quark-connected contribution, and with A .= Λ, this equation is the starting point
for all our lattice-QCD results in refs. [36, 37], as well as the final results in ref. [51].
The advantage of this representation is that all propagators can be expressed in terms
of the two point-to-all propagators with sources located at the origin and on site y by
exploiting the γ5-hermiticity relation (7.27). Eq. (8.6) can be proven starting from the
master formula (2.29) and using the identities

Π̃(2)
µνσλ(x, y, z) = Π̃(1)

νµσλ(y, x, z) , (8.7a)

Π̃(3)
µνσλ(x, y, z) = Π̃(1)

λνσµ(−x, y − x, z − x) (8.7b)

as well as eq. (2.38). In practice, we reduce the master formulae to a one-dimensional
integral over the variable |y|; the integrand then differs between Method 1 and Method 2,
even in the continuum limit. The advantage of Method 2 is that only one additional
propagator needs to be computed for each value of y: for N values of |y|, the number of
quark propagators that need to be computed is N + 1 compared to 7(N + 1) for Method 1,
where sequential inversions are used. In addition, combining all possible pairs of quark
propagators allows one to compute O(N2) independent data, which may include multiple
statistical samples of the same |y|.

In general, the last term in eq. (8.6) does not vanish, in spite of eq. (7.2) holding,
because Π(1)

µνσλ(x, y, z) is only one of three contributing Wick contractions to the four-point
function. In fact, as a Ward identity following from current conservation, one can show
that ∫

d4z Π̃(1)
µνσλ(x, y, z) = (−2yσ)

〈
Re Tr{γµS(x, y)γνS(y, 0)γλS(0, x)}

〉
. (8.8)

However, for a pseudoscalar-pole contribution, this term vanishes,∫
d4zΠ(1);π0

µνσλ (x, y, z) = 0 , (8.9)
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Figure 7. The integrand with respect to the variable |y| leading to aHLbL
µ for the neutral pion-pole

with a VMD form factor and a pion mass of 135MeV. The integrals over |x| and cosβ have already
been performed at this stage. The different curves correspond to the kernels introduced in eq. (8.1)
and eq. (8.4). Left: Method 1. Right: Method 2. Note that for method 2, the kernel L(2) and L(3)

yield identical curves.

because12 the Fourier-transform of Π(1);π0

µνσλ (x, y, z) contains an explicit factor of q3, the
momentum dual to z. As a consequence, we expect smaller finite-size effect on this term.

In summary, Method 2 is numerically far cheaper to apply. It leads to a mild broaden-
ing of the overall integrand in |y| (see figure 7, as well as figures 18 and 19 of ref. [51]), which
a suitable tuning of the parameter Λ can counteract. Thus the combination of Method 2
and the kernel L(Λ) was invaluable to our lattice QCD results in refs. [36, 37, 51].

8.2 Tests in the continuum

As a first check of our master formula, and to gain some insight on the shape of the
integrand, we compute several contributions to aLbL

µ using the expressions for Π̂ derived
in the previous section, and compare them with the known results obtained in momentum
space.

8.2.1 The pion-pole contribution to aHLbL
µ

The pion-pole contribution is estimated using the expression of Π̂ derived in section 7.2,
assuming a VMD transition form factor. We note that, when using Method 2, one needs to
find the correct mapping between the three contractions in momentum space (see eq. (7.11))
and the reference contraction in position space. This can be done using partially-quenched
chiral perturbation theory and we refer the reader to ref. [36] for more details. After
integration over |x| and cosβ, the integrand, as a function of |y|, is displayed in figure 7
for both Methods 1 and 2 and all four kernels L(n) with a pion mass of mπ = 135MeV.
For pion masses in the range [135 - 600] MeV, we reproduce the results, obtained from the

12As noted in [36, 43], the quark-level Wick contraction Π(1)
µνσλ(x, y, z) does not contain the diagram in

which the π0 propagates between the pair (0, y) and the pair (x, z) of vertices, which corresponds to the
third (and last) term in eq. (7.11). The first two terms, which do contribute, vanish at q3 = 0, leading to
the conclusion (8.9).
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mπ [MeV] aHLbL
µ [70] Method 1 deviation Method 2 deviation

135 57.00 57.21 +0.37% 57.33 +0.57%
200 42.84 42.91 +0.16% 42.83 −0.02%
300 29.64 29.63 −0.03% 29.64 +0.00%
400 21.75 21.71 −0.18% 21.71 −0.18%
600 13.10 13.07 −0.22% 13.07 −0.22%

Table 2. Results for the pion-pole contribution to aHLbL
µ in units of 10−11 assuming a VMD

transition form factor as discussed in the text. We use mV = 775.49 MeV and Fπ = 92.4 MeV. The
results are obtained using the standard kernel L(0) and for both methods 1 and 2. We also provide
the deviation to the results obtained from the expressions in ref. [70].
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Figure 8. The integrand with respect to the variable |y| leading to aLbL
µ for the lepton-loop

contribution with ml/m = 1 (full lines) and ml/m = 2 (dashed lines). The integrals over |x| and
cosβ have already been performed at this stage. The different curves correspond to the kernels
introduced in eq. (8.1) and eq. (8.4). Left: Method 1. Right: Method 2.

three-dimensional integral representation in momentum space in ref. [70], at the percent
level. The results are summarized in table 2. Using the standard kernel, one observes that
this contribution is remarkably long-range with a negative tail at large |y|. In particular,
one needs a very large lattice L � 5 fm to capture the negative tail at the physical pion
mass. When using the method 1, the integrands corresponding to the kernel 2 and 3 are
less peaked at short distances, approach zero faster at long distances and remain positive.
When using Method 2, the integrand for both kernels 2 and 3 are identical but also more
long range. Since this setup is considerably cheaper for practical lattice QCD calculations,
one can attempt to correct for finite-size effects on this contribution by computing the
pion-transition form factor on the same set of ensembles, as done in ref. [19]. See ref. [36]
for a practical implementation.

8.2.2 The lepton-loop contribution to aLbL
µ

The lepton-loop contribution to aLbL
µ is estimated using the expression of Π̂ derived in

section 7.3 with ml/mµ = 1/2, 1, 2 where ml is the mass of the lepton in the loop. The
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ml/mµ aLbL
µ (exact) aLbL

µ precision deviation
1/2 1229.07 1257.5(6.2)(2.4) 0.5% 2.3%
1 464.97 470.6(2.3)(2.1) 0.7% 1.2%
2 150.31 150.4(0.7)(1.7) 1.2% 0.06%

Table 3. Results, precision and deviation of the lepton-loop contribution to aLbL
µ (in units of

10−11) computed in the continuum with kernel L(0) compared to the known results [81, 82]. The
first uncertainty originates from the three-dimensional numerical integration, the second from the
extrapolation of the integrand to small |y|.

results are summarized in table 3 and the shape of the integrand, as a function of |y|, is
shown in figure 8. For ml = m, 2m we reproduce the analytically known results for aLbL

µ in
QED [81, 82] with a precision of about 1%. As can be seen from the plots, the integrand
is quite steep close to the origin and we probe the QED kernel at short distances. We
observe that the height of the peak grows for smaller masses of the lepton in the loop.
For ml = m/2 this rise to the peak is very steep, and we observe a 2.3% deviation from
the exact result. It thus appears difficult to obtain aLbL

µ at the percent level with our
implementation of the QED kernel for such a long-range contribution. As for the pion, the
integrand resulting from the standard kernel also exhibits a long negative tail. Again, the
kernel 2 and 3 are peaked at short ranges when using Method 1, a feature that does not
hold when switching to Method 2.

8.2.3 The charged-pion loop contribution to aHLbL
µ

Using the master formula (2.29) with kernel L(2) defined in eq. (8.1) and iΠ̂ given by
eqs. (7.87), (7.95) and (7.96), we compute the contribution of a physical-mass charged
pion to aHLbL

µ in the scalar QED framework. After the x integral has been performed,
no contributing delta-function contributions are left, so that the integrand can be dis-
played straightforwardly; see figure 9. With aHLbL

µ = −43.9 × 10−11 we reproduce the
result −43.86(5)× 10−11 obtained analytically in ref. [83] with a rapidly converging series
expansion in (m/mπ+)2 = 0.573092 at the per-mille level.

8.3 The lepton-loop on the lattice

We will now show the results of performing a full lattice calculation of the lepton loop
contribution using both Methods 1 and 2. This was a first step towards the full lattice
QCD calculations, and an important benchmark of our implementation of the position-
space approach.

The correlation function is computed on a L4 lattice using unit gauge links, (anti-)
periodic boundary conditions in (time-)space and Wilson fermions. For a fixed vertex
position y, the sums over the sites x and z in eq. (2.29) are performed explicitly. After
which we have a one-dimensional integral that can be sampled sufficiently finely using the
variable |y|, for all values of y = (n, n, n, n) with 0 < n < L/2. We also consider both the
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Figure 9. The integrand with respect to the variable |y| leading to aHLbL
µ for the charged-pion loop

computed in scalar QED, together (for comparison) with the integrand for the neutral pion-pole
computed with a VMD form factor. The integrals over |x| and cosβ have already been performed
at this stage. Here Method 1 is used with kernel L(2).

local (l) and the conserved (c) vector currents, which have different discretization effects,

j(l)
µ (x) = ψ(x)γµQψj(x) , (8.10a)

j(c)
µ (x) = 1

2
(
ψ(x+ aµ̂)(1 + γµ)U †µ(x)Qψ(x)− ψ(x)(1− γµ)Uµ(x)Qψ(x+ aµ̂)

)
. (8.10b)

Here, Q is the lepton charge in units of e. Let m0 be the bare subtracted lepton mass,
related to the hopping parameter κ` via am0 = (1/κ`−1/κcr)/2 with κcr = 1/8. In the free
theory, the local vector current has the advantage of being automatically O(a)-improved,
if one uses as multiplicative renormalization factor (1 + bVam0) with bV = 1 [84]. While
no multiplicative renormalization of the conserved vector current is needed, an additive
improvement term with a coefficient cV = 1/2 is required to remove ‘on-shell’ O(a) lattice
artifacts, but not included here (see e.g. [85]). Indeed, for both current discretizations,
additional lattice artifacts scaling linearly with the lattice spacing are expected to arise
from the region where two or more currents are separated by a distance on the order of the
lattice spacing. Our line of constant physics is defined by a constant renormalized mass of
the lepton in the loop, m` = cst. Including O(a) effects, one has m` = Zmm0(1 + bmam0),
with Zm = 1 and bm = −1/2 [84], so that the bare subtracted quark mass has to be
adjusted in the simulation. Finally, we are working with the QCD code and the result
must be divided by Nc = 3, the number of colors.
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Figure 10. Continuum extrapolation of the lepton-loop contribution using the kernel L(0) (left
panel) and L(2) (right panel) using Method 1. We use ml = 2mµ. The colors correspond to different
discretizations of the correlation function. The horizontal dashed line represents the exact result.

ml = 2mµ ll lc cl cc
Kernel L(0) 157.8 148.5 152.0 136.3
Kernel L(2) 149.5 147.9 149.1 147.1

Table 4. Results for aLbL
µ in units of 10−11 from the lepton loop of mass ml = 2mµ obtained with

Method 1 by extrapolating the lattice results displayed in figure 10 to the continuum. Two different
kernels and four different discretizations of iΠ̂ are used. The exact result is aLbL

µ = 150.31 [81, 82].

We have used seven lattices, with the same physical volume Lml = 7.2, and the
continuum extrapolation is performed assuming the simple functional form

aLbL
µ (a) = aLbL

µ (0) + αa+ β a2 , (8.11)

where only the four lattices with the smallest lattice spacings are included in the fit. The
result using the first strategy with ml = 2mµ is shown in figure 10 for the kernel L(0) (left
panel) and for the subtracted kernel L(2) (right panel);

Note the very different ranges on the y-axis. In both cases, we use four different
discretizations of the correlation function (all combinations of local and conserved vector
currents at sites x and z). The continuum extrapolation, at fixed volume, is given by
the dashed lines. To estimate the correction due to finite-size effects, a new set of two
lattices, with larger volumes, are used. The finite-size effect correction is assumed to be
independent of the lattice spacing and is estimated as the difference between the small and
the large volumes at a given lattice spacing. The corrected results are finally given by the
plain lines. One observes much smaller discretization effects for the kernel L(2) in the right
panel where one only has to extrapolate aLbL

µ × 1011 from about 100 to 140, compared to
rather large extrapolations with kernel L(0) in the left panel (even from negative values).
The results of the continuum extrapolations are collected in table 4. The same observation
applies to the following two figures. We also note that very similar results are obtained
with the kernel L(3).
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Figure 11. Continuum extrapolation of the lepton loop contribution for the two kernels L(0) (left
panel) and L(2) (right panel) using Method 2. We use ml = 2mµ. The colors correspond to different
discretizations of the correlation function. The horizontal dashed line represents the exact result.
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Figure 12. Same as figure 11 but with ml = mµ.

The results using Method 2 are shown in figures 11 and 12 for ml = 2mµ and ml = mµ

respectively. As before, the left panel corresponds to the standard kernel L(0) and the right
panel to the subtraction L(2). Again, the continuum extrapolation is much easier using
the subtracted kernel. The resuls of the continuum extrapolations are collected in table 5.
Further results for the lepton loop, computed on the lattice with the kernel L̄(Λ), can be
found in appendix B of ref. [51].

8.4 Overview of lattice QCD results for the quark-connected contribution

In this section, we briefly review a subset of the results obtained to date for the hadronic-
light-by-light contribution aHLbL

µ using the QED kernel derived above, restricting ourselves
to the quark-connected contribution. The relevant publications are [36, 37, 51], and some
preliminary results can also be found in the earlier proceedings contributions [43, 86].
All these calculations have been performed on gauge ensembles provided by the Coor-
dinated Lattice Simulations (CLS) initiative [87]. The ensembles were generated using
three flavours of non-perturbatively O(a)-improved Wilson fermions and with the tree-
level O(a2)-improved Symanzik gauge action.

Reference [51] focuses on QCD with degenerate u, d, s quark, corresponding to mπ =
mK ' 420MeV. It contains results for the connected contribution obtained either with
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ml = 2mµ ll lc cl cc
Kernel L(0) 105.2 122.1 107.7 129.0
Kernel L(2) 149.1 148.6 151.3 151.5

ml = mµ ll lc cl cc
Kernel L(0) 329.3 368.3 333.0 386.2
Kernel L(2) 458.2 457.3 466.1 466.9

Table 5. Results for aLbL
µ in units of 10−11 from the lepton loop of mass ml = 2mµ or ml = mµ

obtained with Method 2 by extrapolating the lattice results displayed in figures 11 and 12 to the
continuum. Two different kernels and four discretizations of iΠ̂ employing different combinations
of local (l) and conserved (c) vector currents are used. The exact results are aLbL

µ = 150.31 and
464.97 respectively [81, 82].

Method 1 or Method 2. Focussing first on Method 1 with the kernel choice L(Λ=0.16), the
difference in the integrand between choosing a conserved or a local lattice vector current at
vertex x was tested and found to be modest.13 The cutoff effect on aHLbL

µ for an ensemble
with lattice spacing of 0.076 fm turned out to be on the order of 10%, with a significant
uncertainty on this estimate. Finite-size effects were probed directly by comparing two
ensembles differing only by their volume, mπL = 4.4 and 6.4, and their size found to be
roughly consistent with the finite-size effects expected for the π0 pole contribution. As for
Method 2, the kernel L(Λ=0.40) was found to be a good choice, and the use of local and
conserved currents was investigated as well. The final choice fell on four local currents,
although the final integrand with respect to the variable |y| was found to be similar if the
current at vertex z was replaced by a conserved current. The size of both cutoff effects
and finite-size effects was similar to Method 1. Hence, given the lower computational cost
of Method 2, the latter method was selected for all subsequent calculations.

Figure 13 shows the integrand for the quark-connected contribution within Method 1
obtained in lattice QCD with degenerate u, d, s quarks. It is compared to predictions based
on the calculations of section 7: the quark loop with a ‘constituent mass’ of 350MeV, the π0

and η pole contributions, as well as the charged pion loop. For the latter two contributions,
a modification of the prediction applicable to the full HLbL amplitude must be applied in
order to account for the fact that only the quark-connected contribution is considered. This
leads to an enhancement of the combined π0 and η contribution by a factor of three [53, 89].
The combined contribution of pion and kaon loops, computed in the framework of scalar
QED, must instead be divided by a factor of three [51] to match the contribution of quark-
connected diagrams. Figure 13 illustrates that a semi-quantitative understanding of the
integrand can be gained via these fairly simple calculations.

Analogous plots (based on Method 2 with Λ = 0.40) at lighter pion masses can be found
in [36], for which similar qualitative observations can be made. The π0 pole contribution
becomes increasingly dominant as the pion mass is lowered towards its physical value. In

13See figure 8 of ref. [51]. The difference is about 10% around the peak of the integrand, at |y| ' 0.4 fm,
and not statistically significant for |y| > 0.6 fm.
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Figure 13. Integrand for the connected contribution using Method 1 with L(Λ=0.16) on ensemble
N202 of size 483×128, lattice spacing 0.064 fm [88] with mπ = mK = 421MeV. The lattice data use
a point-split current at x. The integrand is compared to the prediction for the pole contributions
of the π0 and η mesons with a VMD transition form factor, which is expected to provide a good
approximation to the tail. In addition, an attempt to describe the short-distance contribution with
a constituent-quark loop with a quark mass of 350MeV is made. Figure reproduced from [51].

the case of a heavy quark propagating in the loop [37], the upward trend as a function of
the lattice spacing is seen most clearly. The latter calculation allowed for a state-of-the-art
estimate of the charm-quark contribution to aHLbL

µ .

9 Conclusions

In this paper we have presented extensive details of our calculation of the ‘QED kernel’
needed in the Lorentz-covariant coordinate-space method for computing the hadronic light-
by-light contribution to the muon (g−2) in lattice QCD. At the core of this QED kernel is
the amplitude represented by the graph of figure 3. It is an unusual amplitude in particle
physics in that it involves both the plane-wave propagation of the muon in the initial and
final state, and the emission by the muon of massless particles (photons) propagating to
definite coordinate-space positions. It is thereby a mixed momentum-space and coordinate-
space amplitude. We remark that such mixed amplitudes, although quite complex, may
have further interesting applications in quantum-field theoretic calculations [58, 59, 90].

We were able to carry out the calculation analytically up to and including the averaging
over the direction of the muon momentum. Numerical methods were used only in the final
convolution integral, which can be interpreted as yielding the static potential generated by
a certain (analytically known) electric charge distribution in four space dimensions. While
the angular integral of this final convolution can perhaps still be handled analytically, and
we have made some progress in this direction [91], one angular integral still had to be
performed numerically in our two implementations of sections 4 and 5.
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For the practical purpose of computing aHLbL
µ on the lattice, we have tested the ro-

bustness of the numerics by reproducing a number of known light-by-light contributions,
typically at the one-percent level. Such a precision is sufficient for the foreseeable future,
given that the current precision goal for aHLbL

µ is to reach the 10% level. As noted in the
introduction, our implementation of the QED kernel has already been applied in lattice
QCD calculations of aHLbL

µ [36, 37, 51]. Given the phenomenological importance of the
muon (g− 2), the present paper serves to document and underpin a central aspect of these
results.

The idea of treating photon propagators in the continuum, infinite-volume theory has
been applied in other contexts as well, most recently in ref. [92]. One simpler application
is the fully covariant coordinate-space method for the HVP contribution to the muon
(g − 2) [93]. Another interesting application concerns the calculation of the QED self-
energy of stable hadrons without power-law finite-size effects [94]. Further applications
will probably follow in the future.
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A The tensors TA
αβδ(x, y) in terms of the weight functions

In this appendix, we consider the weight functions ḡ(0), ḡ(1), ḡ(2), l̄(1), l̄(2), l̄(3) as being
functions of (|x|, ĉβ ≡ x̂ · ŷ, |y|) and use the notation ∂[j] to denote the derivative of a weight
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function with respect to its j’th argument. The chain rule for T (I)
αβδ(x, y) reads

T I
αβδ(x, y) = δβδ

xα
|x|

{
∂[1]ḡ(1) + ∂[1]ḡ(2) − ĉβ

|x|

(
∂[2]ḡ(1) + ∂[2]ḡ(2)

)}
+δβδ

yα
|x||y|

{
∂[2]ḡ(1) + ∂[2]ḡ(2)

}
+(δαδxβ + δαβxδ)

1
|x|

{
∂[1]ḡ(1) +

( 1
|y|
− ĉβ
|x|

)
∂[2]ḡ(1)

}
+δαδ

yβ
|y|

{
∂[3]ḡ(1) +

( 1
|x|
− ĉβ
|y|

)
∂[2]ḡ(1)

}
+δαβ

yδ
|x|

{
∂[1]ḡ(2) +

( 1
|y|
− ĉβ
|x|

)
∂[2]ḡ(2)

}
+xαxβxδ

x2

{
∂[1]∂[1]ḡ(1) +

( 1
|y|
− 2 ĉβ
|x|

)
∂[1]∂[2]ḡ(1) − ĉβ

|x|

( 1
|y|
− ĉβ
|x|

)
∂[2]∂[2]ḡ(1)

− 1
|x|
∂[1]ḡ(1) + 1

|x|

(3ĉβ
|x|
− 1
|y|

)
∂[2]ḡ(1)

}
+yαyβyδ
|x| y2

{
∂[2]∂[3]ḡ(2) +

( 1
|x|
− ĉβ
|y|

)
∂[2]∂[2]ḡ(2) − 1

|y|
∂[2]ḡ(2)

}
+xαxβyδ
|x|2

{
∂[1]∂[1]ḡ(2) +

( 1
|y|
− 2 ĉβ
|x|

)
∂[1]∂[2]ḡ(2) − ĉβ

|x|

( 1
|y|
− ĉβ
|x|

)
∂[2]∂[2]ḡ(2)

− 1
|x|
∂[1]ḡ(2) + 1

|x|

(3ĉβ
|x|
− 1
|y|

)
∂[2]ḡ(2)

}
+yαyβxδ
|x| |y|2

{
∂[2]∂[3]ḡ(1) +

( 1
|x|
− ĉβ
|y|

)
∂[2]∂[2]ḡ(1) − 1

|y|
∂[2]ḡ(1)

}
+yαxβxδ
|x|2|y|

{
∂[1]∂[2]ḡ(1) +

( 1
|y|
− ĉβ
|x|

)
∂[2]∂[2]ḡ(1) − 1

|x|
∂[2]ḡ(1)

}
+xαyβyδ
|x||y|

{
∂[1]∂[3]ḡ(2) − ĉβ

|x|
∂[2]∂[3]ḡ(2) +

( 1
|x|
− ĉβ
|y|

)
∂[1]∂[2]ḡ(2)

− ĉβ
|x|

( 1
|x|
− ĉβ
|y|

)
∂[2]∂[2]ḡ(2) + 1

|x|

( ĉβ
|y|
− 1
|x|

)
∂[2]ḡ(2)

}
+xαyβxδ
|x||y|

{
∂[1]∂[3]ḡ(1) − ĉβ

|x|
∂[2]∂[3]ḡ(1) +

( 1
|x|
− ĉβ
|y|

)(
∂[1]∂[2]ḡ(1) − ĉβ

|x|
∂[2]∂[2]ḡ(1)

)
+ 1
|x|

( ĉβ
|y|
− 1
|x|

)
∂[2]ḡ(1)

}
+yαxβyδ
|x|2|y|

{
∂[1]∂[2]ḡ(2) +

( 1
|y|
− ĉβ
|x|

)
∂[2]∂[2]ḡ(2) − 1

|x|
∂[2]ḡ(2)

}
. (A.1)
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Similarly, the chain rule for T II
αβδ and T III

αβδ read

1
m
T II
αβδ(x, y) = δβδ

xα
|x|

{
1
4

(
∂[1]ḡ(0) − ĉβ

|x|
∂[2]ḡ(0)

)
− x2

4

(
∂[1]̄l(1) − ĉβ

|x|
∂[2]̄l(1)

)

−y
2

4

(
∂[1]̄l(2) − ĉβ

|x|
∂[2]̄l(2)

)
− |x||y|ĉβ2

(
∂[1]̄l(3) − ĉβ

|x|
∂[2]̄l(3)

)
− |x|2 l̄(1)

}

+δβδ
yα
|x||y|

{
1
4∂

[2]ḡ(0) − x2

4 ∂
[2]̄l(1) − y2

4 ∂
[2]̄l(2) − |x||y|ĉβ2 ∂[2]̄l(3) − |x||y|2 l̄(3)

}
+ (δαβxδ + δαδxβ)

{̄
l(1)
}

+ (δαβyδ + δαδyβ)
{̄
l(3)
}

+xαxβxδ
|x|

{
∂[1]̄l(1) − ĉβ

|x|
∂[2]̄l(1)

}
+yαyβyδ
|x||y|

{
∂[2]̄l(2)

}
+yαxβxδ
|x||y|

{
∂[2]̄l(1)

}
+xαyβxδ
|x|

{
∂[1]̄l(3) − ĉβ

|x|
∂[2]̄l(3)

}
+xαxβyδ
|x|

{
∂[1]̄l(3) − ĉβ

|x|
∂[2]̄l(3)

}
+xαyβyδ
|x|

{
∂[1]̄l(2) − ĉβ

|x|
∂[2]̄l(2)

}
+yαxβyδ
|x||y|

{
∂[2]̄l(3)

}
+yαyβxδ
|x||y|

{
∂[2]̄l(3)

}
(A.2)

and
1
m
T III
αβδ(x, y) = (δβδxα + δαβxδ)

{̄
l(1) + l̄(3)

}
+ (δβδyα + δαβyδ)

{̄
l(2) + l̄(3)

}
+δαδ

xβ
|x|

{1
4

(
∂[1]ḡ(0) +

( 1
|y|
− ĉβ
|x|

)
∂[2]ḡ(0)

)
−x

2

4

(
∂[1]̄l(1) +

( 1
|y|
− ĉβ
|x|

)
∂[2]̄l(1)

)
−y

2

4

(
∂[1]̄l(2) +

( 1
|y|
− ĉβ
|x|

)
∂[2]̄l(2)

)
−|x||y|ĉβ2

(
∂[1]̄l(3) +

( 1
|y|
− ĉβ
|x|

)
∂[2]̄l(3)

)
− |x|2

(̄
l(1) + l̄(3)

)}
+δαδ

yβ
|y|

{1
4

(
∂[3]ḡ(0) +

( 1
|x|
− ĉβ
|y|

)
∂[2]ḡ(0)

)
−x

2

4

(
∂[3]̄l(1) +

( 1
|x|
− ĉβ
|y|

)
∂[2]̄l(1)

)

– 68 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

−y
2

4

(
∂[3]̄l(2) +

( 1
|x|
− ĉβ
|y|

)
∂[2]̄l(2)

)
−|x||y|ĉβ2

(
∂[3]̄l(3) +

( 1
|x|
− ĉβ
|y|

)
∂[2]̄l(3)

)
− |y|2

(̄
l(2) + l̄(3)

)}
+xαxβxδ
|x|

{
∂[1]̄l(1) +

( 1
|y|
− ĉβ
|x|

)
∂[2]̄l(1)

}
+yαyβyδ
|y|

{
∂[3]̄l(2) +

( 1
|x|
− ĉβ
|y|

)
∂[2]̄l(2)

}
+xαyβxδ
|y|

{
∂[3]̄l(1) +

( 1
|x|
− ĉβ
|y|

)
∂[2]̄l(1)

}
+yαxβxδ
|x|

{
∂[1]̄l(3) +

( 1
|y|
− ĉβ
|x|

)
∂[2]̄l(3)

}
+xαxβyδ
|x|

{
∂[1]̄l(3) +

( 1
|y|
− ĉβ
|x|

)
∂[2]̄l(3)

}
+yαxβyδ
|x|

{
∂[1]̄l(2) +

( 1
|y|
− ĉβ
|x|

)
∂[2]̄l(2)

}
+yαyβxδ
|y|

{
∂[3]̄l(3) +

( 1
|x|
− ĉβ
|y|

)
∂[2]̄l(3)

}
+xαyβyδ
|y|

{
∂[3]̄l(3) +

( 1
|x|
− ĉβ
|y|

)
∂[2]̄l(3)

}
. (A.3)

B Derivatives of the integrands for the six weight functions with respect
to |x|

In this appendix, we provide the expressions of the |x|-derivatives of the relevant sums (see
eqs. (3.66)–(3.68) as well as eqs. (5.24)–(5.31)) entering the expression for the six weight
functions parametrizing the QED kernel.

A few notational remarks are in order. In this appendix, we write the argument of zn
as the four-vector u instead of u2 and use the notation z′n ≡ ∂

∂|u|zn, not
∂

∂|u|2 . Also, we
set v = x − u. The argument of the Gegenbauer polynomials Cn and their derivatives is
always (û · x̂− u).

We obtain

∂

∂|x|
σ0 = |x| − |u|ĉ1

|u− x|

∞∑
n=0

zn(u)z′n(v) Cn
n+ 1 (B.1)

+ |u||x||ŝ
2
1

|x− u|3
∞∑
n=0

zn(u)zn(v) C ′n
n+ 1 ,

∂σ3

∂|x|
= ĉ1
|x|

∞∑
n=0

{
zn(u)

[
− zn+1(v)

|x|
+ |x| − |u|ĉ1
|x− u|

z′n+1(v)
]Cn+1

n+ 2 (B.2)

+zn+1(u)
[
− zn(v)
|x|

+ |x| − |u|ĉ1
|x− u|

z′n(v)
] Cn
n+ 1

}
+ ŝ2

1
|x− u|2

∞∑
n=0

{([
|u|ĉ1 −

(|x| − |u|ĉ1)
n+ 1

]zn(u)zn+1(v)
|x− u|

+ |x| − |u|ĉ1
n+ 1 zn(u)z′n+1(v)

)C ′n+1
n+ 2

– 69 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

+
([
|u|ĉ1 + |x| − |u|ĉ1

n+ 2

]zn+1(u)zn(v)
|x− u|

− |x| − |u|ĉ1
n+ 2 zn+1(u)z′n(v)

) C ′n
n+ 1

}
+ |x||u|ŝ

4
1

|x− u|4
∞∑
n=0

1
(n+ 1)(n+ 2)

{
zn(u)zn+1(v)C ′′n+1 − zn+1(u)zn(v)C ′′n

}
,

1
ŝ2

1

∂

∂|x|
σ2 = −|x| − |u|ĉ1

|x− u|

∞∑
n=0

{
zn(u)z′n+1(v)

n+ 2 Cn+1 + zn+1(u)z′n(v)
n+ 1 Cn

}
(B.3)

+x2 |u|ĉ1ŝ2
1

|x− u|4
∞∑
n=0

1
(n+ 1)(n+ 2)

{
zn(u)zn+1(v)C ′′n+1 − zn+1(u)zn(v)C ′′n

}
+ 1
|x− u|3

∞∑
n=0

1
(n+ 1)(n+ 2)

{
[
|x||x− u|ĉ1(|x| − |u|ĉ1)z′n+1(v) + |u|

(
|u|ĉ1 − |x|ĉ21 − (n+ 1)|x|ŝ2

1

)
zn+1(v)

]
zn(u)C ′n+1

−
[
|x||x− u|ĉ1(|x| − |u|ĉ1)z′n(v) + |u|

(
|u|ĉ1 − |x|ĉ21 + (n+ 2)|x|ŝ2

1

)
zn(v)

]
zn+1(u)C ′n

}
,

∂

∂|x|
σ1 = −|x|2

∞∑
n=0

zn(u)zn(v) Cn
n+ 1 (B.4)

−x
2

4
|x| − |u|ĉ1
|x− u|

∞∑
n=0

zn(u)z′n(v) Cn
n+ 1

+u2

4
|x| − |u|ĉ1
|x− u|

∞∑
n=0

z′n(v)
(
zn−2(u) + (2− δn0)zn(u) + zn+2(u)

) Cn
n+ 1

+(x− u)2

4
|x| − |u|ĉ1
|x− u|

∞∑
n=0

zn(u)
(
z′n−2(v) + (2− δn0)z′n(v) + z′n+2(v)

) Cn
n+ 1

+(|x| − |u|ĉ1)
2

∞∑
n=0

zn(u)
(
zn−2(v) + (2− δn0)zn(v) + zn+2(v)

) Cn
n+ 1

+ |u|(|x| − |u|ĉ1)
4|x− u|

∞∑
n=0

{(
zn(u)zn+2(v) + 2zn(u)zn(v) + zn+2(u)zn(v)

)Cn+1

n+ 2

+
(
zn−2(u)zn(v) + 2zn(u)zn(v) + zn(u)zn−2(v)

)Cn−1

n

}
+ |u|4 (|x| − |u|ĉ1)

∞∑
n=0

{(
zn(u)z′n+2(v) + 2zn(u)z′n(v) + zn+2(u)z′n(v)

)Cn+1

n+ 2

+
(
zn−2(u)z′n(v) + 2zn(u)z′n(v) + zn(u)z′n−2(v)

)Cn−1

n

}
+ |x||u|ŝ

2
1

|x− u|3

{
− x2

4

∞∑
n=0

zn(u)zn(v) C ′n
n+ 1

+u2

4

∞∑
n=0

zn(v)
(
zn−2(u) + (2− δn0)zn(u) + zn+2(u)

) C ′n
n+ 1

+(x− u)2

4
∑
n≥0

zn(u)
(
zn−2(v) + (2− δn0)zn(v) + zn+2(v)

) C ′n
n+ 1

+ |u||x− u|4

∞∑
n=0

{(
zn(u)zn+2(v) + 2zn(u)zn(v) + zn+2(u)zn(v)

)C ′n+1
n+ 2

+
(
zn−2(u)zn(v) + 2zn(u)zn(v) + zn(u)zn−2(v)

)C ′n−1
n

}}
,
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∂s1

∂|x|
= u2

4
|x| − |u|ĉ1
|x− u|

∞∑
n=0

(
zn−2(u) + (1− δn0)zn(u) + zn+2(u)

)
z′n(v) Cn

n+ 1 (B.5)

+ |u|
3|x|ŝ2

1
4|x− u|3

∞∑
n=0

(
zn−2(u) + (1− δn0)zn(u) + zn+2(u)

)
zn(v) C ′n

n+ 1 ,

∂s2

∂|x|
= |x| − |u|ĉ12

∞∑
n=0

zn(u)
(
zn−2(v) + (1− δn0)zn(v) + zn+2(v)

) Cn
n+ 1 (B.6)

+ |x− u|(|x| − |u|ĉ1)
4

∞∑
n=0

zn(u)
(
z′n−2(v) + (1− δn0)z′n(v) + z′n+2(v)

) Cn
n+ 1

+ |x||u|ŝ
2
1

4|x− u|

∞∑
n=0

zn(u)
(
zn−2(v) + (1− δn0)zn(v) + zn+2(v)

) C ′n
n+ 1 ,

∂σ4

∂|x|
= 1
|u|

(
− 2|u|

x2 ĉ1σ1 + (2 |u|
|x|
ĉ1 − 1) ∂σ1

∂|x|
+ ∂s2

∂|x|
− ∂s1

∂|x|

)
, (B.7)

∂σ5

∂|x|
= 1
u2

( |u|
|x|3

(−2|u|(1 + 2ĉ21) + 3|x|ĉ1)σ1 + |u|
x2 (|u|(1 + 2ĉ21)− 3|x|ĉ1) ∂σ1

∂|x|
(B.8)

−3 |u|
x2 ĉ1(s2 − s1) + 3 |u|

|x|
ĉ1( ∂s2

∂|x|
− ∂s1

∂|x|
) + 3 ∂s1

∂|x|

)
.

C Expansion of the kernel for small arguments

This appendix provides the relevant expressions to obtain the QED weight functions and
the full kernel at x = 0 or at y = 0. In the following, we refer to various functions defined
mainly in subsection 5.2.

C.1 The regime of small |x|

In this subsection, the argument of the zn is always u2 if not explicitly specified. As in
appendix B, z′n means ∂

∂|u|zn, not the derivative with respect to u2. As for the sums σk
(1 ≤ k ≤ 5), we recall that their generic arguments are (|x|, ĉ1 ≡ x̂ · û, |u|).

We begin by giving the first terms of the Taylor expansion of the sums σk that enter
the calculation of the QED weight functions ḡ(0), ḡ(1), ḡ(2), l̄(1), l̄(2), l̄(3). In several cases,
we express the result in terms of auxiliary sums collected below in eqs. (C.15)–(C.22). We
obtain

σ0
∣∣
x=0 =

∞∑
n=0

(−1)n z2
n , (C.1)

σ3
∣∣
x=0 = ŝ2

1

∞∑
n=0

(−1)n
(

1 + 2n
3

)
znzn+1
|u|

+ ĉ2
1

∞∑
n=0

(−1)n
(
znz
′
n+1 − zn+1z

′
n

)
, (C.2)

lim
|x|→0

σ1
x2 = 4ĉ2

1 − 1
12 σ

(2,2)
1 (u), (C.3)

lim
|x|→0

σ2
|x|

= ĉ1ŝ
2
1σ

(1,2)
2 (u), (C.4)

lim
|x|→0

σ4
|x|

= −2
3 ĉ1ŝ

2
1 σ

(1,2)
4 (u), (C.5)

σ5
∣∣
x=0 = 2

3 ŝ
4
1σ

(0,2)
5 (u). (C.6)
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In addition, the following intermediate results are needed,

lim
|x|→0

s2 − s1
|x|

= −|u|ĉ1
2 σ

(2,2)
1 (u), (C.7)

s1
∣∣
x=0 = u2

4 σ
(2,2)
1 (u). (C.8)

For some of the sums, we will need the expansion to one order higher. In particular,
we record

1
2
∂2(s2 − s1)

∂|x|2
∣∣∣
x=0

= 1
4σ

(2,2)
1 (u) + |u|ĉ

2
1

2 σ(1,1)
s1 (u), (C.9)

∂s1
∂|x|

∣∣∣
x=0

= − ĉ1u
2

4 σ(1,1)
s1 (u), (C.10)

as well as the results

∂σ3
∂|x|

∣∣∣
x=0

= ĉ3
1

∞∑
n=0

(−1)n
(
−
znz
′′
n+1 − zn+1z

′′
n

2

)
(C.11)

+ĉ1ŝ
2
1

∞∑
n=0

(−1)n
(

(2n+ 3)znzn+1
2u2 −

(2n+ 9)znz′n+1
6|u| + (3− 2n)zn+1z

′
n

6|u|

)
,

1
6
∂3σ1
∂|x|3

∣∣∣
x=0

= 2
(
C1(ĉ1) t̂(3,1)

σ1 (u) + C3(ĉ1) û(3,1)
σ1 (u)

)
, (C.12)

1
2
∂2σ2
∂|x|2

∣∣∣
x=0

= ŝ4
1

∞∑
n=0

(−1)n
(
−(2n+ 3)znzn+1

6u2 +
znz
′
n+1 − zn+1z

′
n

2|u|

)

+ŝ2
1ĉ

2
1

∞∑
n=0

(−1)n
(

(2n+ 3)znzn+1
3u2 −

(n+ 3)znz′n+1
3|u| − nzn+1z

′
n

3|u|

+
znz
′′
n+1 − zn+1z

′′
n

2

)
, (C.13)

∂σ5
∂|x|

∣∣∣
x=0

= 2ĉ1ŝ
4
1

3 σ
(1,3)
5 (u). (C.14)

The auxiliary sums appearing in the results above are defined as follows,

σ
(2,2)
1 (u) =

∞∑
n=0

(−1)nzn
(
(1− δn0)zn + 2zn+2

)
= 3u2b(u2), (C.15)

σ
(1,2)
2 (u) =

∞∑
n=0

(−1)n
(
zn+1z

′
n − znz′n+1 + (1 + 2n

3 ) znzn+1
|u|

)
, (C.16)

σ
(1,2)
4 (u) = σ

(2,2)
1 (u), (C.17)

σ
(0,2)
5 (u) = σ

(2,2)
1 (u), (C.18)

σ(1,1)
s1 (u) =

∞∑
n=0

(−1)n
[
(1− δn0)znz′n + znz

′
n+2 + zn+2z

′
n

]
, (C.19)

t̂(3,1)
σ1 (u) = − 1

24|u|σ
(2,2)
1 (u)− 1

48σ
(1,1)
s1 (u), (C.20)
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û(3,1)
σ1 (u) = 1

48σ
(1,3)
5 (u), (C.21)

σ
(1,3)
5 (u) = σ

(2,2)
1 (u)
|u|

− σ(1,1)
s1 (u). (C.22)

We recall that b(u2) was first introduced in eqs. (3.61)–(3.62).

C.1.1 The scalar weight function

The behavior of ḡ(0) around x = 0 is determined by a small number of coefficients α(0)
m±;

see eq. (5.15). All α(0)
m± vanish at |x| = 0, except

α
(0)
0−(0, |y|) = 1

2

∞∑
n=0

(−1)n
∫ |y|

0
d|u| |u|3 z2

n (C.23)

and α(0)
0+; the latter, whose integral is infrared divergent at large |u|, is however not needed.

As for the |x|-derivative of the coefficients at the origin, they all vanish except

∂α
(0)
1+

∂|x|

∣∣∣
|x|=0

= lim
|x|→0

α
(0)
1+(|x|, |y|)/|x| = −1

8

∞∑
n=0

(−1)n
∫ ∞
|y|

d|u| znz′n (C.24)

= 1
16

∞∑
n=0

(−1)nzn(y2)2,

∂α
(0)
1−

∂|x|

∣∣∣
|x|=0

= lim
|x|→0

α
(0)
1−(|x|, |y|)/|x| = −1

8

∞∑
n=0

(−1)n
∫ |y|

0
d|u| |u|4 znz′n (C.25)

= 1
2α

(0)
0−(|x| = 0, |y|)− |y|4 lim

|x|→0
α

(0)
1+(|x|, |y|)/|x|.

Combining these observations, one finds for the actually needed derivatives of the scalar
weight function

∂

∂|x|
ḡ(0)

∣∣∣∣
x=0

= 2ĉβ
( 1
|y|3

α
(0)
1−(|x|, |y|)
|x|

+ |y|
α

(0)
1+(|x|, |y|)
|x|

)
x=0

, (C.26)

∂

∂ĉβ
ḡ(0)

∣∣∣∣∣
x=0

= 2|x|
( 1
|y|3

α
(0)
1−(|x|, |y|)
|x|

+ |y|
α

(0)
1+(|x|, |y|)
|x|

)
x=0

+ O(x2), (C.27)

∂

∂|y|
ḡ(0)

∣∣∣∣
x=0

= − 2
|y|3

α
(0)
0−(|x| = 0, |y|). (C.28)

From eqs. (C.26)–(C.27) one sees that

∂

∂|x|
ḡ0 − ĉβ

|x|
∂

∂ĉβ
ḡ0 = O(|x|).

This and further similar relations for the other weight functions will be exploited to arrive
at the final expressions of the tensors TA

αβδ(x, y), eqs. (C.56)–(C.58) below.

– 73 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

C.1.2 The vector weight functions

In the Taylor expansion of a QED weight function ḡ(k), we denote by ḡ(k,n) the term of
order |x|n. For ḡ(2), one finds ḡ(2,0) = 0 and

ḡ(2,1) = −|x|ĉβ12

[ 1
|y|5

∫ |y|
0

d|u| |u|5 σ(1,2)
2 (u) + |y|

∫ ∞
|y|

d|u|
|u|

σ
(1,2)
2 (u)

]
, (C.29)

and

ḡ(2,2) = −x
2

6

[ 1
|y|4

∫ |y|
0

d|u| |u|4σ(2,1)
2 (u) +

∫ ∞
|y|

d|u|σ(2,1)
2 (u)

]
(C.30)

−x
2

30(6ĉ2
β − 1)

[ 1
|y|6

∫ |y|
0

d|u| |u|6σ(2,3)
2 (u) + |y|2

∫ ∞
|y|

d|u|
|u|2

σ
(2,3)
2 (u)

]
,

σ
(2,1)
2 (u) = −1

48u2

∞∑
n=0

(−1)n
{
|u|zn+1

(
(2n+ 15)z′n + 3|u|z′′n

)
(C.31)

+zn
(

(9 + 6n)zn+1 + |u|((2n− 9)z′n+1 − 3|u|z′′n+1)
)}

,

σ
(2,3)
2 (u) = 5

96u2

∞∑
n=0

(−1)n
{
|u|zn+1

(
(3− 2n)z′n − 3|u|z′′n

)
(C.32)

+zn
(

(9 + 6n)zn+1 + |u|(3|u|z′′n+1 − (9 + 2n)z′n+1)
)}

.

Similarly for ḡ(3):

ḡ(3,0) = 1
2

[
1
|y|2

∫ |y|
0

d|u| |u|3σ(0,0)
3 (u)+

∫ ∞
|y|

d|u| |u|σ(0,0)
3 (u)

]
(C.33)

+
4ĉ2β−1

6

[
1
|y|4

∫ |y|
0

d|u| |u|5σ(0,2)
3 (u)+y2

∫ ∞
|y|

d|u|
|u|

σ
(0,2)
3 (u)

]
,

σ
(0,0)
3 (u) = 1

8|u|

∞∑
n=0

(−1)n
{
−|u|zn+1z

′
n+zn((2n+3)zn+1+|u|z′n+1)

}
, (C.34)

σ
(0,2)
3 (u) = −1

8σ
(1,2)
2 (u) (C.35)

(with σ(1,2)
2 (u) defined in eq. (C.16)), as well as

ḡ(3,1) = |x|ĉβ2

[
1
|y|3

∫ |y|
0

d|u| |u|4σ(1,1)
3 (u)+|y|

∫ ∞
|y|

d|u|σ(1,1)
3 (u)

]
(C.36)

+
|x|ĉβ(2ĉ2β−1)

2

[
1
|y|5

∫ |y|
0

d|u| |u|6σ(1,3)
3 (u)+|y|3

∫ ∞
|y|

d|u|
|u|2

σ
(1,3)
3 (u)

]
,

σ
(1,1)
3 (u) = 1

48u2

∞∑
n=0

(−1)n
{
|u|zn+1((3−2n)z′n+3|u|z′′n) (C.37)

+zn((6n+9)zn+1−|u|((2n+9)z′n+1+3|u|z′′n+1))
}
,

σ
(1,3)
3 (u) = −1

5σ
(2,3)
2 (u) (C.38)
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(with σ(2,3)
2 (u) given in eq. (C.32)). These results imply, for the actually needed weight function ḡ(1),

ḡ(1,0) = 1
2

[
1
|y|2

∫ |y|
0

d|u| |u|3σ(0,0)
3 (u)+

∫ ∞
|y|

d|u| |u|σ(0,0)
3 (u)

]
(C.39)

+ 1
48

[
1
|y|4

∫ |y|
0

d|u| |u|5σ(1,2)
2 (u)+y2

∫ ∞
|y|

d|u|
|u|

σ
(1,2)
2 (u)

]
,

ḡ(1,1) = |x|ĉβ
[

1
2

(
1
|y|3

∫ |y|
0

d|u| |u|4 (σ(1,1)
3 (u)+ 1

3σ
(2,1)
2 (u))+|y|

∫ ∞
|y|

d|u|(σ(1,1)
3 (u)+ 1

3σ
(2,1)
2 (u))

)
+ 1

15

(
1
|y|5

∫ |y|
0

d|u| |u|6σ(2,3)
2 (u)+|y|3

∫ ∞
|y|

d|u|
|u|2

σ
(2,3)
2 (u)

)]
. (C.40)

C.1.3 The tensor weight functions

Similar to above, in the Laurent series of a QED weight function l̄(k), we denote by l̄(k,n)

the term of order |x|n. First, using the same notation for the auxiliary weight function
v̄(1), we find

v̄(1,2) =
x2(4ĉ2

β − 1)
72

( 1
|y|4

∫ |y|
0

d|u| |u|5 σ(2,2)
1 (u) + y2

∫ ∞
|y|

d|u|
|u|

σ
(2,2)
1 (u)

)
, (C.41)

v̄(1,3) = |x|
3C1(ĉβ)

2

( 1
|y|3

∫ |y|
0

d|u| |u|4 t̂(3,1)
σ1 (u) + |y|

∫ ∞
|y|

d|u| t̂(3,1)
σ1 (u)

)
(C.42)

+ |x|
3C3(ĉβ)

4

( 1
|y|5

∫ |y|
0

d|u| |u|6û(3,1)
σ1 (u) + |y|3

∫ ∞
|y|

d|u|
|u|2

û(3,1)
σ1 (u)

)
.

We can now proceed to determining the first two non-trivial terms for weight function l̄(4),

l̄(4,1) = |x| ĉβ9

[ 1
|y|3

∫ |y|
0

d|u| |u|5 σ(1,2)
4 (u) + |y|3

∫ ∞
|y|

d|u|
|u|

σ
(1,2)
4 (u)

]
, (C.43)

l̄(4,2) = −x
2

3

( 1
y2

∫ |y|
0

d|u| |u|4σ(2,1)
4 (u) + y2

∫ ∞
|y|

d|u|σ(2,1)
4 (u)

)
(C.44)

−
x2(6ĉ2

β − 1)
15

( 1
|y|4

∫ |y|
0

d|u| |u|6 σ(2,3)
4 (u) + |y|4

∫ ∞
|y|

d|u|
|u|2

σ
(2,3)
4 (u)

)
,

σ
(2,1)
4 (u) = −4t̂(3,1)

σ1 (u), (C.45)

σ
(2,3)
4 (u) = − 5

24σ
(1,3)
5 (u). (C.46)

Next come the first two terms for weight function l̄(2),

l̄(2,0) = 1
18

( 1
|y|6

∫ |y|
0

d|u| |u|5 σ(0,2)
5 (u) +

∫ ∞
|y|

d|u|
|u|

σ
(0,2)
5 (u)

)
, (C.47)

l̄(2,1) = |x|ĉβ24

( 1
|y|7

∫ |y|
0

d|u| |u|6σ(1,3)
5 (u) + |y|

∫ ∞
|y|

d|u|
|u|2

σ
(1,3)
5 (u)

)
. (C.48)

Now from eq. (4.40), we obtain l̄(3) via

l̄(3) = 1
2x2y2 l̄

(4) − |y|
|x|

ĉβ l̄(2), (C.49)
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so that the O(1/|x|) contribution cancels out,

l̄(3,−1) = 1
2x2y2 l̄

(4,1) − |y|
|x|

ĉβ l̄(2,0) = 0. (C.50)

The leading contribution is finite,

l̄(3,0) = 1
2x2y2 l̄

(4,2) − |y|
|x|

ĉβ l̄(2,1) (C.51)

= −1
6

[ 1
|y|4

∫ |y|
0

d|u| |u|4σ(2,1)
4 (u) +

∫ ∞
|y|

d|u|σ(2,1)
4 (u) (C.52)

+ 1
24

( 1
|y|6

∫ |y|
0

d|u| |u|6σ(1,3)
5 (u) + y2

∫ ∞
|y|

d|u|
|u|2

σ
(1,3)
5 (u)

)]
.

Similarly, one finds that the O(1/x2) contribution to (see eq. (4.41))

l̄(1) = 4
3x4

(
v̄1 − x2y2

(
ĉ2
β −

1
4

)
l̄(2) − 3

2x
3yĉβ l̄(3)

)
(C.53)

vanishes,
l̄(1,−2) = 0. (C.54)

For the contribution of order 1/|x|, it is useful to decompose the expression in the basis of
the Cm(ĉβ), calculating the coefficient l̄(1,−1,m) of Cm(ĉβ) using
l̄(1,−1,m) = 2

π

∫ π
0 dβ sin2 β Cm(ĉβ )̄l(1,−1). Before forming the linear combination (C.53), we

find that there arem = 1 andm = 3 components, but they cancel in the linear combination,
l̄(1,−1,1) = l̄(1,−1,3) = 0, so that

l̄(1,−1) = 0. (C.55)

Thus l̄(1) is finite in the limit |x| → 0.

C.1.4 The limit |x| → 0 for the tensors TA
αβδ(x, y)

With the help of the chain rules for the tensors TA
αβδ(x, y) given in appendix A, we find the

following, finite expressions for these three tensors at |x| → 0,

T I
αβδ(0, y) = (δαδŷβ + δβδ ŷα)

(
∂ḡ(1)

|x|∂ĉβ

)
+ δαβyδ

(
∂2ḡ(2)

∂|x|2
− ĉ2

β

∂2ḡ(2)

x2∂ĉ2
β

)
(C.56)

+δαδŷβ
(∂ḡ(1)

∂|y|

)
+ (δβδ ŷα + δαβ ŷδ)

( ∂ḡ(2)

|x|∂ĉβ

)
+ŷαŷβ ŷδ

1
|x|

( |y|
|x|

∂

∂ĉβ
+ |y| ∂

∂|y|
− 1

)∂ḡ(2)

∂ĉβ
,

1
m
T II
αβδ(0, y) =

(
δαβyδ + δαδyβ −

yα
2 δβδ

)̄
l(3) +

(
yβyδ −

y2

4 δβδ
)
ŷα

(
∂ l̄(2)

|x|∂ĉβ

)
(C.57)

+δβδ
4 ŷα

(
∂ḡ(0)

|x|∂ĉβ

)
,

1
m
T III
αβδ(0, y) =

(
δβαyδ + δβδyα −

yβ
2 δαδ

)(̄
l(2) + l̄(3)

)
(C.58)

+
(
yαyδ −

y2

4 δαδ
)
ŷβ

(
∂ l̄(2)

|x|∂ĉβ
+ ∂ l̄(2)

∂|y|

)
+ δαδ

4 ŷβ

(
∂ḡ(0)

|x|∂ĉβ
+ ∂ḡ(0)

∂|y|

)
.
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The right-hand side should be evaluated in the limit |x| → 0. Using the results respectively
in eqs. (C.29), (C.40), (C.30), (C.39), (C.51), (C.48), (C.27) and (C.47), (C.51), (C.48),
(C.27), (C.28) the evaluation of the three tensors is easily performed. We remark that the
ĉβ dependence cancels everywhere, in particular in the second term of eq. (C.56), which
contains an explicit factor of ĉ2

β .

C.2 The regime of small |y|

In the following, we give without further comment the relevant expressions for the weight
functions in the limit of |y| → 0.

C.2.1 The scalar weight function

∂ḡ(0)

∂|x|

∣∣∣∣
y=0

= 1
π

∫ ∞
0

d|u| |u|
∫ π

0
dφ1 ŝ

2
1
∂σ0
∂|x|

(|x|, ĉ1, |u|) =
∂α

(0)
0+(|x|, 0)
∂|x|

, (C.59)

∂ḡ(0)

∂ĉβ

∣∣∣∣
y=0

= |y|
π

∫ ∞
0

d|u|
∫ π

0
dφ1 ŝ

2
1 C1(ĉ1)σ0(|x|, ĉ1, |u|) = 2|y|α(0)

1+(|x|, 0), (C.60)

∂ḡ(0)

∂|y|

∣∣∣∣
y=0

= C1(ĉβ)α(0)
1+(|x|, 0). (C.61)

C.2.2 The vector weight functions

ḡ(1)
∣∣∣∣
y=0

= 1
2π

∫ ∞
0

d|u| |u|
∫ π

0
dφ1 ŝ

2
1 σ3(|x|, ĉ1, |u|) = α

(3)
0+(|x|, 0), (C.62)

ḡ(2)
∣∣∣∣
y=0

= −1
3π

∫ ∞
0

d|u|
∫ π

0
dφ1 ŝ

2
1 σ2(|x|, ĉ1, |u|) = 2β(2)

1+(|x|, 0), (C.63)

∂ḡ(1)

∂|y|

∣∣∣∣
y=0

= C1(ĉβ)
[
− 1

2|x| ḡ
(2)
∣∣∣∣
y=0

+ 1
2π

∫ ∞
0

d|u|
∫ π

0
dφ1 ŝ

2
1 ĉ1 σ3(|x|, ĉ1, |u|)

]
(C.64)

= C1(ĉβ)
[
−
β

(2)
1+(|x|, 0)
|x|

+ α
(3)
1+(|x|, 0)

]
. (C.65)

C.2.3 The tensor weight functions

l̄(1)
∣∣∣∣
y=0

= 4
3π|x|4

∫ ∞
0

d|u| |u|
∫ π

0
dφ1 ŝ

2
1 σ1(|x|, ĉ1, |u|) = 4

3|x|4α
(1)
0+(|x|, 0), (C.66)

l̄(3)
∣∣∣∣
y=0

= −1
3π x2

∫ ∞
0

d|u|
∫ π

0
dφ1 ŝ

2
1 σ4(|x|, ĉ1, |u|) =

β
(4)
1+(|x|, 0)
x2 , (C.67)

∂ l̄(1)

∂|y|

∣∣∣∣
y=0

= C1(ĉβ)
|x|

[ 4
3π|x|3

∫ ∞
0

d|u|
∫ π

0
dφ1 ŝ

2
1 ĉ1 σ1(|x|, ĉ1, |u|)− l̄(3)

∣∣∣∣
y=0

]
(C.68)

= C1(ĉβ)
[ 4

3|x|4α
(1)
1+(|x|, 0)− 1

|x|3
β

(4)
1+(|x|, 0)

]
. (C.69)
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C.2.4 The limit |y| → 0 for the tensors TA
αβδ(x, y)

We find the finite result

T I
αβδ(x, 0) =

(
δαδx̂β + δβδx̂α + δαβx̂δ − x̂αx̂βx̂δ

)(
∂ḡ(1)

∂|x|

)
+ x̂αx̂βxδ

(
∂2ḡ(1)

∂|x|2
)

(C.70)

+
(
δαδx̂β + δαβx̂δ − x̂αx̂βx̂δ

)(
∂ḡ(1)

|y|∂ĉβ

)
+ x̂αx̂βxδ

(
∂2ḡ(1)

|y|∂|x|∂ĉβ

)
+ δβδ x̂α

(
∂ḡ(2)

∂|x|

)
,

1
m
T II
αβδ(x, 0) = δβδ x̂α

4

(
∂ḡ(0)

∂|x|

)
(C.71)

+
(
δαβxδ + xβδαδ −

xα
2 δβδ

)
l̄(1) +

(
xβxδ −

x2

4 δβδ
)
x̂α

(
∂ l̄(1)

∂|x|

)
,

1
m
T III
αβδ(x, 0) = δαδ

4 x̂β

(
∂ḡ(0)

∂|x|
+ ∂ḡ(0)

|y|∂ĉβ

)
(C.72)

+
(
δαβxδ + xαδβδ −

xβ
2 δαδ

)(̄
l(1) + l̄(3)

)
+
(
xαxδ −

x2

4 δαδ
)
x̂β

(
∂ l̄(1)

∂|x|
+ ∂ l̄(1)

|y|∂ĉβ

)
,

where the right-hand side should be evaluated in the limit |y| → 0. Using the results above
in this subsection, this evaluation is easily performed.

D Contribution of the scalar function S(x, y) to the QED kernel: large-|y|
asymptotics

The scalar weight function is given by

S(x, y) =
∫
u,IR−reg.

G0(y − u)s(x, u), (D.1)

with s(x, u) ∼ |u|−2 at large |u|, see eq. (3.51). Thus the y-dependence of S(x, y) corre-
sponds to the static potential induced (in four space dimensions) by a charge distribution
given by s(x, u), x playing the role of a fixed position vector. The function S(x, y) itself is
logarithmically infrared-divergent, however − ∂

∂|y|S(x, y), which corresponds to the radial
electric field, is finite. The electric field generated by a charge distribution falling like |u|−2

is of order |y|−1, in any number of dimensions greater than two. This is easiest obtained
by applying Gauss’ law to a sphere of radius |y| and one finds

− ∂

∂|y|
S(x, y) |y|→∞= 1

384π2m2|y|
, (D.2)

independent of x, which is kept fixed. Although we have obtained this from the region of
large u, it is clear that the integral over |u| from 0 to a finite |u|max cannot generate an
electric field falling off as slowly as |y|−1; instead it generates an O(|y|−3) field.
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We now proceed to determining the leading behavior of ∂
∂|x|S(x, y) and ∂

∂ĉβ
S(x, y) at

large |y|. For this purpose it is useful to write (similarly to eq. (3.60))

s(x, u)− s(0, u) =
∑
n≥0

(−1)nzn(u2)
[
zn((x− u)2)(−1)nCn(û · x̂− u)

n+ 1 − zn(u2)
]
, (D.3)

and to realize that the expression inside the square bracket has the asymptotic large-|u|
behavior û·x

4π2m (n+1)u2 . The series is then still absolutely convergent and one finds

s(x, u)− s(0, u) |u|→∞= 1
192π2m2|u|3

x · û. (D.4)

Thus we get, using eq. (D.1) and the multipole expansion (3.16)–(3.17) of the photon
propagator G0(y − u),

∂ḡ(0)

∂|x|
= ĉβ

768π2m2|y|
, (D.5)

∂ḡ(0)

∂ĉβ
= |x|

768π2m2|y|
. (D.6)

Therefore the scalar contribution to the tensors T II
αβδ(x, y) and T III

αβδ(x, y) is respectively

m

4 δβδ∂
(x)
α S(x, y) |y|→∞= δβδ ŷα

3072π2m|y|

(
1 + O

(
(m|y|)−1

))
, (D.7)

m

4 δαδ(∂
(x)
β + ∂

(y)
β )S(x, y) |y|→∞= −δαδ ŷβ

3072π2m|y|

(
1 + O

(
(m|y|)−1

))
. (D.8)

We note that this result is consistent with the scalar contribution to the rank-three tensors
satisfying eq. (2.50).

E Our version of the kernel code

Our implementation of the QED kernel KQED can be found in [96], it is licensed under
version 3 of the GNU public license [97]. The library is built using GNU automake and is
intended to be linked as a static library. An example for integrating the lepton loop using
hcubature [80] can be found in the companion code KAMU [98], which illustrates how to
link to KQED and initialize it.

KQED includes a look-up-table of the Chebyshev coefficients as a file in single precision,
which is entirely read upon initialization (and the crc32c of it is computed for correctness),
although all computations are performed in double precision. The code can be compiled
with OpenMP to use multi-threading whereby the kernel at coordinates x and y can be
called safely within a parallel region. The code makes heavy use of AVX/FMA intrinsics
to speed up the calculation of the various terms S(x, y), Vδ(x, y), and Tβδ(x, y), particularly
in the Clenshaw recurrences (eqs. (6.2), (6.3) and (6.4)). Where possible, loop-fusion is
performed on all necessary weight-function derivatives (see section 6), as well as an internal
re-mapping of neighboring elements on the grid to SIMD lanes.
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The code compiles a binary which performs some simple unit tests and provides a
stress-test for the time taken to compute a fixed number of expensive kernel calls. A script
is also included in the package to regression-test the kernel against various x and y, and
to check the multi-threading equivalence. Heavily loop-unrolled and optimised versions of
the subtracted kernels (with 4 arbitrary Λ terms eq. (8.4)) are available as this was one of
the most costly parts of our calculation in [36, 51] and [37].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment
to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

[2] Muon g-2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment
Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

[3] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model,
Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

[4] T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED
Contribution to the Muon g-2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370]
[INSPIRE].

[5] T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the
Electron, Atoms 7 (2019) 28 [INSPIRE].

[6] A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to
the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73
(2006) 119901] [hep-ph/0212229] [INSPIRE].

[7] C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to
(g − 2)µ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005
[arXiv:1306.5546] [INSPIRE].

[8] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum
polarisation contributions to the Standard Model predictions of the muon g − 2 and α(m2

Z)
using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827
[arXiv:1706.09436] [INSPIRE].

[9] A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(M2
Z): a new data-based

analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].

[10] G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum
polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].

[11] M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum
polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].

[12] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum
polarisation contributions to the muon anomalous magnetic moment and to α(m2

Z), Eur.
Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].

– 80 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.126.141801
https://arxiv.org/abs/2104.03281
https://inspirehep.net/literature/1856627
https://doi.org/10.1103/PhysRevD.73.072003
https://arxiv.org/abs/hep-ex/0602035
https://inspirehep.net/literature/710962
https://doi.org/10.1016/j.physrep.2020.07.006
https://arxiv.org/abs/2006.04822
https://inspirehep.net/literature/1800513
https://doi.org/10.1103/PhysRevLett.109.111808
https://arxiv.org/abs/1205.5370
https://inspirehep.net/literature/1115845
https://doi.org/10.3390/atoms7010028
https://inspirehep.net/literature/1756917
https://doi.org/10.1103/PhysRevD.67.073006
https://arxiv.org/abs/hep-ph/0212229
https://inspirehep.net/literature/604695
https://doi.org/10.1103/PhysRevD.88.053005
https://arxiv.org/abs/1306.5546
https://inspirehep.net/literature/1239669
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://arxiv.org/abs/1706.09436
https://inspirehep.net/literature/1608028
https://doi.org/10.1103/PhysRevD.97.114025
https://arxiv.org/abs/1802.02995
https://inspirehep.net/literature/1653992
https://doi.org/10.1007/JHEP02(2019)006
https://arxiv.org/abs/1810.00007
https://inspirehep.net/literature/1696451
https://doi.org/10.1007/JHEP08(2019)137
https://arxiv.org/abs/1907.01556
https://inspirehep.net/literature/1742686
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://arxiv.org/abs/1908.00921
https://inspirehep.net/literature/1747772


J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

[13] A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(M2
Z) , and the

hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367]
[INSPIRE].

[14] A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon
anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144
[arXiv:1403.6400] [INSPIRE].

[15] K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon
anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226]
[INSPIRE].

[16] P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the (gµ − 2): a
rational approach, Phys. Rev. D 95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].

[17] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic
light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161 [arXiv:1702.07347]
[INSPIRE].

[18] M. Hoferichter et al., Dispersion relation for hadronic light-by-light scattering: pion pole,
JHEP 10 (2018) 141 [arXiv:1808.04823] [INSPIRE].

[19] A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form
factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D 100 (2019) 034520 [arXiv:1903.09471]
[INSPIRE].

[20] J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints
for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B 798
(2019) 134994 [arXiv:1908.03331] [INSPIRE].

[21] G. Colangelo et al., Longitudinal short-distance constraints for the hadronic light-by-light
contribution to (g − 2)µ with large-Nc Regge models, JHEP 03 (2020) 101
[arXiv:1910.13432] [INSPIRE].

[22] T. Blum et al., Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous
Magnetic Moment from Lattice QCD, Phys. Rev. Lett. 124 (2020) 132002
[arXiv:1911.08123] [INSPIRE].

[23] G. Colangelo et al., Remarks on higher-order hadronic corrections to the muon g−2, Phys.
Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].

[24] P. Athron et al., New physics explanations of aµ in light of the FNAL muon g − 2
measurement, JHEP 09 (2021) 080 [arXiv:2104.03691] [INSPIRE].

[25] J.S. Schwinger, On Quantum electrodynamics and the magnetic moment of the electron,
Phys. Rev. 73 (1948) 416 [INSPIRE].

[26] S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice
QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].

[27] Muon g-2 collaboration, Muon (g-2) Technical Design Report, arXiv:1501.06858
[INSPIRE].

[28] M. Abe et al., A New Approach for Measuring the Muon Anomalous Magnetic Moment and
Electric Dipole Moment, PTEP 2019 (2019) 053C02 [arXiv:1901.03047] [INSPIRE].

[29] M. Aiba et al., Science Case for the new High-Intensity Muon Beams HIMB at PSI,
arXiv:2111.05788 [INSPIRE].

– 81 –

https://doi.org/10.1103/PhysRevD.101.014029
https://arxiv.org/abs/1911.00367
https://inspirehep.net/literature/1762580
https://doi.org/10.1016/j.physletb.2014.05.043
https://arxiv.org/abs/1403.6400
https://inspirehep.net/literature/1287074
https://doi.org/10.1103/PhysRevD.70.113006
https://arxiv.org/abs/hep-ph/0312226
https://inspirehep.net/literature/635797
https://doi.org/10.1103/PhysRevD.95.054026
https://arxiv.org/abs/1701.05829
https://inspirehep.net/literature/1510073
https://doi.org/10.1007/JHEP04(2017)161
https://arxiv.org/abs/1702.07347
https://inspirehep.net/literature/1515024
https://doi.org/10.1007/JHEP10(2018)141
https://arxiv.org/abs/1808.04823
https://inspirehep.net/literature/1687430
https://doi.org/10.1103/PhysRevD.100.034520
https://arxiv.org/abs/1903.09471
https://inspirehep.net/literature/1726418
https://doi.org/10.1016/j.physletb.2019.134994
https://doi.org/10.1016/j.physletb.2019.134994
https://arxiv.org/abs/1908.03331
https://inspirehep.net/literature/1748671
https://doi.org/10.1007/JHEP03(2020)101
https://arxiv.org/abs/1910.13432
https://inspirehep.net/literature/1761991
https://doi.org/10.1103/PhysRevLett.124.132002
https://arxiv.org/abs/1911.08123
https://inspirehep.net/literature/1766090
https://doi.org/10.1016/j.physletb.2014.06.012
https://doi.org/10.1016/j.physletb.2014.06.012
https://arxiv.org/abs/1403.7512
https://inspirehep.net/literature/1287744
https://doi.org/10.1007/JHEP09(2021)080
https://arxiv.org/abs/2104.03691
https://inspirehep.net/literature/1856811
https://doi.org/10.1103/PhysRev.73.416
https://inspirehep.net/literature/3363
https://doi.org/10.1038/s41586-021-03418-1
https://arxiv.org/abs/2002.12347
https://inspirehep.net/literature/1782626
https://arxiv.org/abs/1501.06858
https://inspirehep.net/literature/1341289
https://doi.org/10.1093/ptep/ptz030
https://arxiv.org/abs/1901.03047
https://inspirehep.net/literature/1713023
https://arxiv.org/abs/2111.05788
https://inspirehep.net/literature/1965288


J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

[30] V. Pauk and M. Vanderhaeghen, Single meson contributions to the muon‘s anomalous
magnetic moment, Eur. Phys. J. C 74 (2014) 3008 [arXiv:1401.0832] [INSPIRE].

[31] I. Danilkin and M. Vanderhaeghen, Light-by-light scattering sum rules in light of new data,
Phys. Rev. D 95 (2017) 014019 [arXiv:1611.04646] [INSPIRE].

[32] F. Jegerlehner, The Anomalous Magnetic Moment of the Muon, Springer Tracts Mod. Phys.
274 (2017) 1 [INSPIRE].

[33] M. Knecht, S. Narison, A. Rabemananjara and D. Rabetiarivony, Scalar meson contributions
to aµ from hadronic light-by-light scattering, Phys. Lett. B 787 (2018) 111
[arXiv:1808.03848] [INSPIRE].

[34] G. Eichmann, C.S. Fischer and R. Williams, Kaon-box contribution to the anomalous
magnetic moment of the muon, Phys. Rev. D 101 (2020) 054015 [arXiv:1910.06795]
[INSPIRE].

[35] P. Roig and P. Sanchez-Puertas, Axial-vector exchange contribution to the hadronic
light-by-light piece of the muon anomalous magnetic moment, Phys. Rev. D 101 (2020)
074019 [arXiv:1910.02881] [INSPIRE].

[36] E.-H. Chao et al., Hadronic light-by-light contribution to (g − 2)µ from lattice QCD: a
complete calculation, Eur. Phys. J. C 81 (2021) 651 [arXiv:2104.02632] [INSPIRE].

[37] E.-H. Chao et al., The charm-quark contribution to light-by-light scattering in the muon
(g − 2) from lattice QCD, Eur. Phys. J. C 82 (2022) 664 [arXiv:2204.08844] [INSPIRE].

[38] N. Asmussen et al., Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic
Moment on the Lattice, talk by N. Asmussen at the Spring Conference of the Deutsche
Physikalische Gesellschaft, Heidelberg, 23–27 March, 2015.

[39] J. Green et al., Direct calculation of hadronic light-by-light scattering, PoS LATTICE2015
(2016) 109 [arXiv:1510.08384] [INSPIRE].

[40] N. Asmussen, J. Green, H.B. Meyer and A. Nyffeler, Position-space approach to hadronic
light-by-light scattering in the muon g − 2 on the lattice, PoS LATTICE2016 (2016) 164
[arXiv:1609.08454] [INSPIRE].

[41] N. Asmussen, A. Gérardin, H.B. Meyer and A. Nyffeler, Exploratory studies for the
position-space approach to hadronic light-by-light scattering in the muon g − 2, EPJ Web
Conf. 175 (2018) 06023 [arXiv:1711.02466] [INSPIRE].

[42] N. Asmussen et al., Hadronic light-by-light scattering contribution to the muon g – 2 on the
lattice, EPJ Web Conf. 179 (2018) 01017 [arXiv:1801.04238] [INSPIRE].

[43] N. Asmussen et al., Developments in the position-space approach to the HLbL contribution to
the muon g − 2 on the lattice, PoS LATTICE2019 (2019) 195 [arXiv:1911.05573]
[INSPIRE].

[44] M. Hayakawa, T. Blum, T. Izubuchi and N. Yamada, Hadronic light-by-light scattering
contribution to the muon g-2 from lattice QCD: Methodology, PoS LAT2005 (2006) 353
[hep-lat/0509016] [INSPIRE].

[45] S. Chowdhury et al., Calculating the light by light contribution to the muon anomalous
magnetic moment using lattice QED, PoS LATTICE2008 (2008) 251 [INSPIRE].

[46] T. Blum, S. Chowdhury, M. Hayakawa and T. Izubuchi, Hadronic light-by-light scattering
contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett.
114 (2015) 012001 [arXiv:1407.2923] [INSPIRE].

– 82 –

https://doi.org/10.1140/epjc/s10052-014-3008-y
https://arxiv.org/abs/1401.0832
https://inspirehep.net/literature/1276123
https://doi.org/10.1103/PhysRevD.95.014019
https://arxiv.org/abs/1611.04646
https://inspirehep.net/literature/1498099
https://doi.org/10.1007/978-3-319-63577-4
https://doi.org/10.1007/978-3-319-63577-4
https://inspirehep.net/literature/1616770
https://doi.org/10.1016/j.physletb.2018.10.048
https://arxiv.org/abs/1808.03848
https://inspirehep.net/literature/1686755
https://doi.org/10.1103/PhysRevD.101.054015
https://arxiv.org/abs/1910.06795
https://inspirehep.net/literature/1759277
https://doi.org/10.1103/PhysRevD.101.074019
https://doi.org/10.1103/PhysRevD.101.074019
https://arxiv.org/abs/1910.02881
https://inspirehep.net/literature/1757756
https://doi.org/10.1140/epjc/s10052-021-09455-4
https://arxiv.org/abs/2104.02632
https://inspirehep.net/literature/1856326
https://doi.org/10.1140/epjc/s10052-022-10589-2
https://arxiv.org/abs/2204.08844
https://inspirehep.net/literature/2069237
https://arxiv.org/abs/1510.08384
https://inspirehep.net/literature/1401230
https://doi.org/10.22323/1.256.0164
https://arxiv.org/abs/1609.08454
https://inspirehep.net/literature/1488285
https://doi.org/10.1051/epjconf/201817506023
https://doi.org/10.1051/epjconf/201817506023
https://arxiv.org/abs/1711.02466
https://inspirehep.net/literature/1634850
https://doi.org/10.1051/epjconf/201817901017
https://arxiv.org/abs/1801.04238
https://inspirehep.net/literature/1647956
https://doi.org/10.22323/1.363.0195
https://arxiv.org/abs/1911.05573
https://inspirehep.net/literature/1764771
https://doi.org/10.22323/1.020.0353
https://arxiv.org/abs/hep-lat/0509016
https://inspirehep.net/literature/691579
https://doi.org/10.22323/1.066.0251
https://inspirehep.net/literature/844747
https://doi.org/10.1103/PhysRevLett.114.012001
https://doi.org/10.1103/PhysRevLett.114.012001
https://arxiv.org/abs/1407.2923
https://inspirehep.net/literature/1305630


J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

[47] T. Blum et al., Lattice Calculation of Hadronic Light-by-Light Contribution to the Muon
Anomalous Magnetic Moment, Phys. Rev. D 93 (2016) 014503 [arXiv:1510.07100]
[INSPIRE].

[48] T. Blum et al., Connected and Leading Disconnected Hadronic Light-by-Light Contribution to
the Muon Anomalous Magnetic Moment with a Physical Pion Mass, Phys. Rev. Lett. 118
(2017) 022005 [arXiv:1610.04603] [INSPIRE].

[49] T. Blum et al., Using infinite volume, continuum QED and lattice QCD for the hadronic
light-by-light contribution to the muon anomalous magnetic moment, Phys. Rev. D 96 (2017)
034515 [arXiv:1705.01067] [INSPIRE].

[50] A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form
factor π0 → γ∗γ∗, Phys. Rev. D 94 (2016) 074507 [arXiv:1607.08174] [INSPIRE].

[51] E.-H. Chao et al., Hadronic light-by-light contribution to (g − 2)µ from lattice QCD with
SU(3) flavor symmetry, Eur. Phys. J. C 80 (2020) 869 [arXiv:2006.16224] [INSPIRE].

[52] J. Green et al., Lattice QCD calculation of hadronic light-by-light scattering, Phys. Rev. Lett.
115 (2015) 222003 [arXiv:1507.01577] [INSPIRE].

[53] A. Gérardin et al., Hadronic light-by-light scattering amplitudes from lattice QCD versus
dispersive sum rules, Phys. Rev. D 98 (2018) 074501 [arXiv:1712.00421] [INSPIRE].

[54] M. Knecht and A. Nyffeler, Hadronic light by light corrections to the muon g-2: The Pion
pole contribution, Phys. Rev. D 65 (2002) 073034 [hep-ph/0111058] [INSPIRE].

[55] G.F. Sterman, An Introduction to Quantum Field Theory, Cambridge University Press
(1993).

[56] J. Aldins, T. Kinoshita, S.J. Brodsky and A.J. Dufner, Photon-photon scattering contribution
to the sixth order magnetic moments of the muon and electron, Phys. Rev. D 1 (1970) 2378
[INSPIRE].

[57] E. Mendels, Feynman Diagrams Without Feynman Parameters, Nuovo Cim. A 45 (1978) 87
[INSPIRE].

[58] S. Groote, J.G. Korner and A.A. Pivovarov, On the evaluation of a certain class of Feynman
diagrams in x-space: Sunrise-type topologies at any loop order, Annals Phys. 322 (2007) 2374
[hep-ph/0506286] [INSPIRE].

[59] S. Groote and J.G. Körner, Coordinate space calculation of two- and three-loop sunrise-type
diagrams, elliptic functions and truncated Bessel integral identities, Nucl. Phys. B 938
(2019) 416 [arXiv:1804.10570] [INSPIRE].

[60] K. Johnson, M. Baker and R. Willey, Selfenergy of the electron, Phys. Rev. 136 (1964)
B1111 [INSPIRE].

[61] K. Johnson, R. Willey and M. Baker, Vacuum polarization in quantum electrodynamics,
Phys. Rev. 163 (1967) 1699 [INSPIRE].

[62] J.L. Rosner, Higher-order contributions to the divergent part of Z(3) in a model quan tum
electrodynamics, Annals Phys. 44 (1967) 11 [INSPIRE].

[63] M.J. Levine and R. Roskies, Hyperspherical approach to quantum electrodynamics -
sixth-order magnetic moment, Phys. Rev. D 9 (1974) 421 [INSPIRE].

[64] M.J. Levine, E. Remiddi and R. Roskies, Analytic contributions to the g factor of the
electron in sixth order, Phys. Rev. D 20 (1979) 2068 [INSPIRE].

– 83 –

https://doi.org/10.1103/PhysRevD.93.014503
https://arxiv.org/abs/1510.07100
https://inspirehep.net/literature/1400808
https://doi.org/10.1103/PhysRevLett.118.022005
https://doi.org/10.1103/PhysRevLett.118.022005
https://arxiv.org/abs/1610.04603
https://inspirehep.net/literature/1492108
https://doi.org/10.1103/PhysRevD.96.034515
https://doi.org/10.1103/PhysRevD.96.034515
https://arxiv.org/abs/1705.01067
https://inspirehep.net/literature/1597570
https://doi.org/10.1103/PhysRevD.94.074507
https://arxiv.org/abs/1607.08174
https://inspirehep.net/literature/1478195
https://doi.org/10.1140/epjc/s10052-020-08444-3
https://arxiv.org/abs/2006.16224
https://inspirehep.net/literature/1803555
https://doi.org/10.1103/PhysRevLett.115.222003
https://doi.org/10.1103/PhysRevLett.115.222003
https://arxiv.org/abs/1507.01577
https://inspirehep.net/literature/1381528
https://doi.org/10.1103/PhysRevD.98.074501
https://arxiv.org/abs/1712.00421
https://inspirehep.net/literature/1640283
https://doi.org/10.1103/PhysRevD.65.073034
https://arxiv.org/abs/hep-ph/0111058
https://inspirehep.net/literature/565731
https://doi.org/10.1103/PhysRevD.1.2378
https://inspirehep.net/literature/60817
https://doi.org/10.1007/BF02729917
https://inspirehep.net/literature/135012
https://doi.org/10.1016/j.aop.2006.11.001
https://arxiv.org/abs/hep-ph/0506286
https://inspirehep.net/literature/686131
https://doi.org/10.1016/j.nuclphysb.2018.11.023
https://doi.org/10.1016/j.nuclphysb.2018.11.023
https://arxiv.org/abs/1804.10570
https://inspirehep.net/literature/1670637
https://doi.org/10.1103/PhysRev.136.B1111
https://doi.org/10.1103/PhysRev.136.B1111
https://inspirehep.net/literature/3325
https://doi.org/10.1103/PhysRev.163.1699
https://inspirehep.net/literature/51307
https://doi.org/10.1016/0003-4916(67)90262-X
https://inspirehep.net/literature/52472
https://doi.org/10.1103/PhysRevD.9.421
https://inspirehep.net/literature/93140
https://doi.org/10.1103/PhysRevD.20.2068
https://inspirehep.net/literature/147747


J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

[65] W. Celmaster and R.J. Gonsalves, Fourth Order QCD Contributions to the e+ e-
Annihilation Cross-Section, Phys. Rev. D 21 (1980) 3112 [INSPIRE].

[66] A.E. Terrano, A Method for Feynman Diagram Evaluation, Phys. Lett. B 93 (1980) 424
[INSPIRE].

[67] K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, New Approach to Evaluation of Multiloop
Feynman Integrals: The Gegenbauer Polynomial x Space Technique, Nucl. Phys. B 174
(1980) 345 [INSPIRE].

[68] K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Progress In Multiloop Renormalization
Group Calculations, preprint IYaI-P-0200 (1981).

[69] R.Z. Roskies, M.J. Levine and E. Remiddi, Analytic evaluation of sixth order contributions to
the electron’s g factor, Adv. Ser. Direct. High Energy Phys. 7 (1990) 162 [INSPIRE].

[70] F. Jegerlehner and A. Nyffeler, The Muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360]
[INSPIRE].

[71] R. Barbieri and E. Remiddi, Electron and Muon 1/2(g-2) from Vacuum Polarization
Insertions, Nucl. Phys. B 90 (1975) 233 [INSPIRE].

[72] N.N. Bogolyubov and D.V. Shirkov, Introduction to the theory of quantized fields,
Wiley-Interscience, New York (1959) [INSPIRE].

[73] M. Abramowitz and I.A. Stegun eds., Handbook of Mathematical Functions, Dover
Publications, New York (1965).

[74] F.W.J. Olver and L.C. Maximon, Chapter 10 Bessel Functions, https://dlmf.nist.gov/10.

[75] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Elsevier Science
(2014).

[76] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press
(1944).

[77] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series. Volume 2: Special
functions, Gordon and Breach Science Publishers (1986).

[78] N. Asmussen, Position-Space Approach to the Hadronic Light-by-Light Scattering
Contribution to the Anomalous Magnetic Moment of the Muon on the Lattice, Ph.D. thesis,
Johannes Gutenberg University Mainz (2018).

[79] Numerical Recipes in C: The Art of Scientific Computing, 2nd edition, Cambridge University
Press (1992).

[80] S.G. Johnson, Cubature, version 1.02 https://github.com/stevengj/cubature.

[81] M. Passera, private communication.

[82] S. Laporta and E. Remiddi, The Analytical value of the electron light-light graphs
contribution to the muon (g-2) in QED, Phys. Lett. B 301 (1993) 440 [INSPIRE].

[83] J.H. Kuhn, A.I. Onishchenko, A.A. Pivovarov and O.L. Veretin, Heavy mass expansion, light
by light scattering and the anomalous magnetic moment of the muon, Phys. Rev. D 68
(2003) 033018 [hep-ph/0301151] [INSPIRE].

[84] S. Sint and P. Weisz, Further results on O(a) improved lattice QCD to one loop order of
perturbation theory, Nucl. Phys. B 502 (1997) 251 [hep-lat/9704001] [INSPIRE].

– 84 –

https://doi.org/10.1103/PhysRevD.21.3112
https://inspirehep.net/literature/8867
https://doi.org/10.1016/0370-2693(80)90357-3
https://inspirehep.net/literature/152339
https://doi.org/10.1016/0550-3213(80)90289-8
https://doi.org/10.1016/0550-3213(80)90289-8
https://inspirehep.net/literature/159610
https://doi.org/10.1142/9789814503273_0006
https://inspirehep.net/literature/305152
https://doi.org/10.1016/j.physrep.2009.04.003
https://arxiv.org/abs/0902.3360
https://inspirehep.net/literature/813721
https://doi.org/10.1016/0550-3213(75)90645-8
https://inspirehep.net/literature/90420
https://inspirehep.net/literature/158768
https://dlmf.nist.gov/10
https://github.com/stevengj/cubature
https://doi.org/10.1016/0370-2693(93)91176-N
https://inspirehep.net/literature/341623
https://doi.org/10.1103/PhysRevD.68.033018
https://doi.org/10.1103/PhysRevD.68.033018
https://arxiv.org/abs/hep-ph/0301151
https://inspirehep.net/literature/611900
https://doi.org/10.1016/S0550-3213(97)00372-6
https://arxiv.org/abs/hep-lat/9704001
https://inspirehep.net/literature/441735


J
H
E
P
0
4
(
2
0
2
3
)
0
4
0

[85] A. Gerardin, T. Harris and H.B. Meyer, Nonperturbative renormalization and
O(a)-improvement of the nonsinglet vector current with Nf = 2 + 1 Wilson fermions and
tree-level Symanzik improved gauge action, Phys. Rev. D 99 (2019) 014519
[arXiv:1811.08209] [INSPIRE].

[86] N. Asmussen, A. Gérardin, A. Nyffeler and H.B. Meyer, Hadronic light-by-light scattering in
the anomalous magnetic moment of the muon, SciPost Phys. Proc. 1 (2019) 031
[arXiv:1811.08320] [INSPIRE].

[87] M. Bruno et al., Simulation of QCD with Nf = 2 + 1 flavors of non-perturbatively improved
Wilson fermions, JHEP 02 (2015) 043 [arXiv:1411.3982] [INSPIRE].

[88] M. Bruno, T. Korzec and S. Schaefer, Setting the scale for the CLS 2 + 1 flavor ensembles,
Phys. Rev. D 95 (2017) 074504 [arXiv:1608.08900] [INSPIRE].

[89] J. Bijnens and J. Relefors, Pion light-by-light contributions to the muon g − 2, JHEP 09
(2016) 113 [arXiv:1608.01454] [INSPIRE].

[90] J. Parrino, The Two-Loop Vacuum Polarization in Euclidean Coordinate Space, Master
Thesis, Joh. Gutenberg Universität Mainz (Nov. 2019).

[91] Ch. L. Schröder, The Gegenbauer polynomial coordinate space technique applied to massive
Feynman integrals, B.Sc. Thesis, Joh. Gutenberg Universität Mainz (Aug. 2019).

[92] V. Biloshytskyi et al., Forward light-by-light scattering and electromagnetic correction to
hadronic vacuum polarization, JHEP 03 (2023) 194 [arXiv:2209.02149] [INSPIRE].

[93] H.B. Meyer, Lorentz-covariant coordinate-space representation of the leading hadronic
contribution to the anomalous magnetic moment of the muon, Eur. Phys. J. C 77 (2017) 616
[arXiv:1706.01139] [INSPIRE].

[94] X. Feng and L. Jin, QED self energies from lattice QCD without power-law finite-volume
errors, Phys. Rev. D 100 (2019) 094509 [arXiv:1812.09817] [INSPIRE].

[95] M. Luscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass
reweighting, Comput. Phys. Commun. 184 (2013) 519 [arXiv:1206.2809] [INSPIRE].

[96] KQED, https://github.com/RJHudspith/KQED.

[97] GNU General Public License, https://www.gnu.org/licenses/gpl-3.0.en.html.

[98] KAMU, https://github.com/RJHudspith/KAMU.

– 85 –

https://doi.org/10.1103/PhysRevD.99.014519
https://arxiv.org/abs/1811.08209
https://inspirehep.net/literature/1704298
https://doi.org/10.21468/SciPostPhysProc.1.031
https://arxiv.org/abs/1811.08320
https://inspirehep.net/literature/1704303
https://doi.org/10.1007/JHEP02(2015)043
https://arxiv.org/abs/1411.3982
https://inspirehep.net/literature/1328089
https://doi.org/10.1103/PhysRevD.95.074504
https://arxiv.org/abs/1608.08900
https://inspirehep.net/literature/1484681
https://doi.org/10.1007/JHEP09(2016)113
https://doi.org/10.1007/JHEP09(2016)113
https://arxiv.org/abs/1608.01454
https://inspirehep.net/literature/1479465
https://doi.org/10.1007/JHEP03(2023)194
https://arxiv.org/abs/2209.02149
https://inspirehep.net/literature/2147041
https://doi.org/10.1140/epjc/s10052-017-5200-3
https://arxiv.org/abs/1706.01139
https://inspirehep.net/literature/1602622
https://doi.org/10.1103/PhysRevD.100.094509
https://arxiv.org/abs/1812.09817
https://inspirehep.net/literature/1711197
https://doi.org/10.1016/j.cpc.2012.10.003
https://arxiv.org/abs/1206.2809
https://inspirehep.net/literature/1118167
https://github.com/RJHudspith/KQED
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/RJHudspith/KAMU

	Introduction
	Master formula for a(mu)**(HLbL) in position space
	Preparatory steps for the calculation of the QED weight functions in position space
	Starting point for the calculation of I(p,x,y)(IR reg.)
	Gegenbauer method for angular integrals in position space in four dimensions
	Expansion in Gegenbauer polynomials of propagators in position space, of the exponential function and of the function J(hat epsilon,y)
	Average over the direction of the muon momentum 
	Calculation of s(x,u)
	Calculation of v**(delta)(x,u)
	Calculation of t(alpha beta)(x,u)

	Direct evaluation of the final convolution integral
	Calculation of the weight function g**0
	Calculation of the weight functions g**(1,2)
	Calculation of the weight functions l**(1,2,3)

	Final convolution integral via the multipole expansion of the massless propagator
	Derivation of eqs. (5.1)-(5.3)
	Gegenbauer expansion of the QED weight functions

	Numerical evaluation of the QED kernel
	Example calculations of the four-point amplitude i Pi
	General properties of i Pi
	Pion-pole contribution to hadronic light-by-light scattering in the VMD model 
	Vector-meson dominance parametrization of the form factor
	Tests performed 

	Lepton-loop contribution to light-by-light scattering in QED 
	The coordinate-space four-point function of the electromagnetic current
	Vanishing background gauge field: the QED case
	Calculation of i Pi(rho;mu nu lambda sigma)(x,y) 

	Pion-loop contribution to light-by-light scattering in scalar QED
	Four-point function of the current
	One-tadpole contributions
	Two-tadpole contributions
	Test of the Ward identity 
	The expression for i Pi(rho;mu1 mu2 mu3 sigma)(X1,X2)


	Applications and tests of the QED kernel 
	Improved kernels 
	Tests in the continuum
	The pion-pole contribution to a(mu)**(HLbL)
	The lepton-loop contribution to a(mu)**(LbL)
	The charged-pion loop contribution to a(mu)*(HLbL)

	The lepton-loop on the lattice
	Overview of lattice QCD results for the quark-connected contribution

	Conclusions
	The tensors T(alpha beta delta)**(A) (x,y) in terms of the weight functions 
	Derivatives of the integrands for the six weight functions with respect to |x| 
	Expansion of the kernel for small arguments
	The regime of small |x|
	The scalar weight function
	The vector weight functions
	The tensor weight functions
	The limit |x| to 0 for the tensors T**A(alpha beta delta)(x,y)

	The regime of small |y|
	The scalar weight function
	The vector weight functions
	The tensor weight functions
	The limit |y| to 0 for the tensors T**A(alpha beta delta)(x,y)


	Contribution of the scalar function S(x,y) to the QED kernel: large-|y| asymptotics
	Our version of the kernel code

