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Abstract 

Ligand-based virtual screening is a widespread method in modern drug design. It allows for a rapid screening of large 
compound databases in order to identify similar structures. Here we report an open-source command line tool which 
includes a substructure-, fingerprint- and shape-based virtual screening. Most of the implemented features fully rely 
on the RDKit cheminformatics framework. VSFlow accepts a wide range of input file formats and is highly customiz-
able. Additionally, a quick visualization of the screening results as pdf and/or pymol file is supported.
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Graphical Abstract

Introduction
Virtual screening approaches are extensively used com-
putational methods in modern drug discovery projects 
and they often replace or help to reduce more expensive 
and time-consuming high-throughput screenings nowa-
days [1]. There are two major categories of screening 
approaches: ligand-based and structure-based methods 
[2].
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Ligand-based methods are typically used if no X-ray 
structure of the target receptor is available. A single com-
pound or a set of compounds known to bind to a specific 
target or to be active in a functional assay is typically 
used as the template to identify similar compounds in a 
large virtual database. In general, similarity can be evalu-
ated on the basis of 2D and 3D molecular representations 
[3]. The classical 2D chemical similarity representations 
is based on molecular fingerprints (e.g. circular finger-
prints, topological fingerprints, substructure finger-
prints) transforming the molecular representation into 
a bit vector. The similarity between two vectors is then 
calculated with various similarity measures, most com-
mon is the Tanimoto coefficient. 3D similarity methods 
mainly consider the shape comparison of two molecules, 
typically extended by 3D pharmacophoric features, e.g. 
ROCS is considered the industry-leading commercial 
program for shape-based screenings [4].

Structure-based approaches, in most cases classi-
cal docking methods, are typically preferred if the tar-
get 3D structure information is available [5]. However, 
2D ligand-based methods often require only a frac-
tion of second for a single structure comparison task 
which allows to perform large screenings within a few 
hours even on a single, standard CPU. In contrast, dock-
ing methods are already considerably more resource 
demanding and time-consuming, not to mention more 
elaborated methods such as molecular dynamics simu-
lations [6]. As a consequence, ligand-based methods are 
very attractive options for initial attempts to identify or 
filter relevant compounds in large and ultra-large virtual 
databases [7]. Furthermore, they are valuable tools to 
identify close analogues of known active compounds in a 
time efficient manner. In the last couple of years, several 
methods have been developed to screen non-enumerated 
chemical spaces up to 1015 compounds and beyond in 
seconds to minutes on standard hardware [8]. The most 
elaborated technique for large space screening are chemi-
cal fragment spaces with corresponding connection 
rules, e.g. BioSolveIT’s fragment spaces in connection 
with FTrees similarity implemented in their infiniSee 
software allows the screening of huge chemical spaces 
(e.g. Enamine REAL space) in seconds on standard hard-
ware [9, 10].

There are many open-source web servers available for 
the screening of enumerated compound libraries using 
a variety of different structure- and ligand-based meth-
ods, recently reviewed by Singh et al. [11]. For example, 
many well-known databases such as ChEMBL, PubChem 
or ZINC include ligand-based similarity search function-
alities with molecular fingerprints and/or substructure 
searches [12–14]. The web tool SwissSimilarity allows for 
the 2D fingerprint and 3D shape screening of common 

public databases and compound libraries of most com-
mercial vendors such as Enamine or ChemDiv [15, 16]. 
Pharmit additionally offers the possibility to screen large 
databases based on pharmacophore queries [17].

Several standalone tools focusing on enumerated 
2D ligand-based screening approaches are available, 
most of which are commercial products [8]. Prominent 
examples are Schrödinger‘s GPUSimilarity integrated 
in their LiveDesign suite using a GPU-powered server 
in the background, Arthor‘s NextMove software with a 
SMARTS-based pattern matcher and Andrew Dalke‘s 
chemfp command line tool [18–20].

To the best of our knowledge, there is no open-source 
command  line tool available which is similar to the 
SwissSimilarity or Pharmit web server and which allows 
for the comprehensive screening of databases and library 
files using different 2D and 3D ligand-based screening 
approaches, all combined in one tool.

In the following, we report an open-source command-
line tool called “Virtual Screening WorkFlow” (VSFlow) 
written in Python and containing three different ligand-
based screening modes. It relies on the open-source 
cheminformatics sofware RDKit [21]. VSFlow includes 
a substructure-based and fingerprint-based screening 
mode (2D) as well as a 3D shape-based screening mode 
(Fig. 1). Additionally, it possesses two tools for preparing 
and managing compound databases for virtual screening.

Implementation
VSFlow is written in Python, is open-source and can be 
downloaded from https://​github.​com/​czodr​owski​lab/​
VSFlow. It is licensed under the MIT license. As a prereq-
uisite, a working installation of Anaconda or Miniconda 
is needed [22]. VSFlow including all dependencies can 
then be installed with the provided yml file as follows: 

conda env create --quiet --force --file environment.yml

conda activate vsflow

pip install .

 The Python dependencies are rdkit, xlrd, xlsxwriter, 
pdfrw, fpdf, pymol-open-source, molvs and matplotlib 
[23, 24]. VSFlow requires Python version 3.7 or higher.

VSFlow includes 5 separate tools: preparedb, substruc-
ture, fpsim, shape and managedb (Fig.  1). All function-
alities of VSFlow can also be run in parallel on multiple 
cores/threads. Parallelization is implemented via Python’s 
built-in multiprocessing module.

preparedb: prepare databases
VSFlow contains a tool to prepare compound libraries 
for virtual screening (preparedb). It allows for stand-
ardization of the molecules, generation of fingerprints 
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and generation of multiple conformers (Fig.  2). The 
output file is a “virtual screening database” (.vsdb) file. 
The vsdb file is a Python pickle file containing all infor-
mation in a special Python dictionary format which 
significantly enhances loading speed compared to SD 
files, particularly relevant for larger databases. Stand-
ardization is done on the basis of the MolVS rules 
and includes charge neutralization, salt removal and 
optionally tautomer canonicalization [23]. Fingerprints 
are generated with the RDKit chemistry framework. 
Conformers are generated with the RDKit ETKDGv3 
method and optimized with the MMFF94 forcefield 
[25]. The following options are available:

•	 standardize: standardizes molecules, removes salts 
and associated charges

•	 conformers: generates multiple 3D conformers for 
database molecules

•	 canonicalize: adds the canonical tautomer to the 
database

•	 fingerprint: generates the respective fingerprint for 
each molecule and stores it in the database

It is also possible to directly download the PDB ligands 
and the chembl database and store them as  vsdb data-
bases, e.g. 

vsflow preparedb -d pdb -s -f ecfp -r 2 -o pdb_ligands.vsdb

The above command will download all pdb ligands, 
standardize the molecules (-s argument), calculate the 
ECFP2 fingerprint (-f and -r argument) for every mole-
cule and store it along with the molecule in the database 
(-o argument). You can repeat this for the ChEMBL data-
base, e.g. with a different fingerprint: 

vsflow preparedb -d chembl -s -f fcfp -r 4 -o chembl_cpds.vsdb

substructure: substructure search
The substructure search (substructure) is performed 
based on the GetSubstructMatches() functionality avail-
able for RDKit Mol objects.

fpsim: fingerprint similarity search
The fingerprint generation relies on the RDKit frame-
work. All fingerprints currently implemented in the 

Fig. 1  Different screening functionalities of VSFlow

Fig. 2  Preparedb functionality of VSFlow: prepare compound libraries for virtual screening



Page 4 of 10Jung et al. Journal of Cheminformatics           (2023) 15:40 

RDKit (Morgan, RDKit, Topological Torsion and Atom 
Pairs fingerprint and MACCS keys) are supported and 
different similarity measures (Tanimoto, Tversky, Cosine, 
Dice, Sokal, Russel, Kulczynski and McConnaughey simi-
larity) can be used.

shape: shape‑based screening
Several functionalities of RDKit were combined to per-
form a screening based on a compounds’ molecular 
shape (Fig.  3). First, generation of conformers (RDKit 
ETKDGv3 and MMFF94 forcefield) is done for 2D query 
structures. Conformers for database compounds can 
be generated using the preparedb functionality. Then, 
conformers of each query molecule are aligned to all 
conformers of each database molecule with the RDKit 
Open3DAlign functionality, either using MMFF94 force 
field parameters or Crippen atomic logP contributions 
(user-defined). In the next step, for every conformer pair 
the shape similarity is calculated (TanimotoDist, Tver-
skyShape or ProtrudeDist) and the most similar con-
former pair for every query/database molecule pair is 
selected (RDKit rdShapeHelpers). For the selected most 
similar conformer pair a 3D pharmacophore fingerprint 
is generated (RDKit Pharm2D) and the fingerprint simi-
larity is calculated. By default, a combined score (combo 
score), the average of shape similarity and 3D finger-
print similarity, is used to rank the database molecules. 
The intended use case of the shape screening mode is to 

screen a database of compounds with multiple conform-
ers (prepared e.g. using the preparedb functionality of 
VSFlow) and to use a query ligand in a single, bioactive 
conformation, e.g. from the pdb database.

managedb: manage databases
The mode managedb is a convenience tool to update 
and manage compound databases which are integrated 
into VSFlow. A detailed description can be found in the 
VSFlow wiki [26].

Results and discussion
In the following section, the intended usage of VSFlow 
including some example commands are presented. A 
detailed description of the multiple possibilities to use 
VSFlow along with specific examples can be found in the 
VSFlow GitHub wiki [26].

In order to demonstrate the three main functionali-
ties of VSFlow together with both its versatile input and 
output formats, we took the tyrosine-kinase inhibitor 
dasatinib as query molecule. As database, an SD file of 
the FDA-approved drugs generated from the ZINC data-
base was used, comprising over 1600 molecules [14]. This 
database is also available in our GitHub repository.

Substructure search
For the substructure search, a SMARTS representation 
of the thiazole function of dasatinib was taken as input 
to see how many other drugs might have that specific 
group. Besides the 36 hits (one of them, of course, dasat-
inib itself ) in which the thiazole group was found, three 
molecules even have two thiazole groups, namely cefdi-
toren, cobicistat and ritonavir. A pdf (supporting infor-
mation) was generated displaying a table of the found hits 
with the 2D structures and the found substructure match 
highlighted in red as well as the information of the hit (e. 
g. ID, SMILES, Fig. 4). It should be mentioned that a pdf 
can only be generated in addition to an sdf, excel or csv 
file. 

vsflow substructure -sma "s:1:c:n:c:c:1" -d fda.sdf

-o substructure.sdf --pdf

Fingerprint similarity
For the fingerprint similarity function fpsim, a SMILES 
input of the molecule was used with default param-
eters, i. e. an FCFP4-like Morgan 2048 bits of radius 2 
for which the Tanimoto coefficient was calculated. A pdf 
file was selected as output format as well as an Excel file. 
The simmap parameter will generate a similarity map 
that visualizes the contribution of the specific atoms to 

Fig. 3  Different steps and RDKit functionalities which were 
combined to perform a screening based on pharmacophore 
alignment and shape similarity
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Fig. 4  Examplary page of the pdf file generated after substructure search. The left column shows the hits with the substructure matches 
highlighted in red, the right column the ID of the hits as well as the SMILES and the query SMARTS
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the similarity between the molecules in the database and 
dasatinib (Fig. 5) [27]. 

vsflow fpsim -d fda.sdf -o fingerprint.xlsx --pdf --simmap

-smi "Cc1cccc(c1NC(=O)c2cnc(s2)Nc3cc(nc(n3)C)N4CCN(CC4)CCO)Cl"

Shape similarity
In order to perform a shape screening, a new database, 
containing a maximum of 20 conformers, was generated 
with the -c argument because the original database only 
had one conformer per compound. 

vsflow preparedb -i fda.sdf -np 8 -c 20

-o fda_multiple_confs.vsdb

Since that is a rather resource-intensive step, mul-
tiprocessing was carried out with the help of the -np 
parameter. The following shape search, also multi-
processed, was then done with the previously prepared 
vsdb pickle file using the instance coordinates of dasat-
inib in complex with tyrosine protein kinase ABL1 (PDB: 
2GQG). 

vsflow shape -i 2gqg_C_1N1.sdf -np 8

-d fda_multiple_confs.vsdb -o shape.sdf --pymol

More than half of the top 10 hits were other kinase 
inhibitors. By default, the shape functionality creates two 
sd files, one with the query molecule (shape_1_query.sdf ) 
and the found hits as a second file (shape_1.sdf ). Addi-
tionally, a PyMOL session file was generated (--pymol 
parameter) so that the aligned structures could be visu-
ally inspected directly (Fig. 6).

The RMSD spread of the conformer generation process 
(ETKDG3 followed by MMFF94 minimization) is given 
in Fig. 7). It shows a clear upwards trend: the more rotat-
able bonds, the larger the RMSD.

Runtime performance
To give the user an idea of the expected runtime perfor-
mance, we performed a substructure and 2D similarity 
search in the pdb and ChEMBL28 database [12, 28]. We 
performed the searches on up-to-date standard note-
book hardware, namely a 12th Gen Intel(R) Core(TM) 
i7-12700 H with 2.70 GHz and 20 cores and 32GB RAM 
running Windows 11. To get an idea of the performance 
on your own system, you may execute the following com-
mands accordingly. Both ChEMBL and pdb database can 
be downloaded and prepared directly within VSFlow:

vsflow preparedb -d pdb -o pdb_ecfp4 -f ecfp -np 6

vsflow preparedb -d chembl -o chembl_ecfp4 -f ecfp -np 6

 With the above calls, the pdb and chembl databases 
are downloaded into VSFlow and 2048-bit ECFP4 fin-
gerprints are generated for each compound and stored 
within the output vsdb file. Preparation of the pdb 
database (containing 36,796 unique compounds at 
22/05/2022) took 11 s on our system, preparation of the 
chembl28 database (2066377 compounds) took 511  s. 
Now, we performed a substructure and similarity screen-
ing using a SMILES as query, once in single-core mode 
and once on 6 cores: 

vsflow substructure -smi "C(C1=CC=CC=C1)C1=CC=NC=C1" -d pdb_ecfp4.vsdb

-o pdb_subsearch.sdf

vsflow substructure -smi "C(C1=CC=CC=C1)C1=CC=NC=C1" -d pdb_ecfp4.vsdb

-o pdb_subsearch.sdf -np 6

vsflow fpsim -smi "C(C1=CC=CC=C1)C1=CC=NC=C1" -d pdb_ecfp4.vsdb

-o pdb_fpsim.sdf -f from_db

vsflow fpsim -smi "C(C1=CC=CC=C1)C1=CC=NC=C1" -d pdb_ecfp4.vsdb

-o pdb_fpsim.sdf -f from_db -np 6

vsflow substructure -smi "C(C1=CC=CC=C1)C1=CC=NC=C1" -d chembl_ecfp4.vsdb

-o chembl_subsearch.sdf

vsflow substructure -smi "C(C1=CC=CC=C1)C1=CC=NC=C1" -d chembl_ecfp4.vsdb

-o chembl_subsearch.sdf -np 6

vsflow fpsim -smi "C(C1=CC=CC=C1)C1=CC=NC=C1" -d chembl_ecfp4.vsdb

-o chembl_fpsim.sdf -f from_db

vsflow fpsim -smi "C(C1=CC=CC=C1)C1=CC=NC=C1" -d chembl_ecfp4.vsdb

-o chembl_fpsim.sdf -f from_db -np 6

 Table 1 summarizes the overall runtime for each call, e.g. 
it contains the loading time for the database file, the sub-
structure or similarity search and the generation of the 
output file.

Virtual screening performance
To give the user an idea about the performance of the 
tool in virtual screening practice, i.e. whether it could 
identify active compounds, we did some basic simu-
lated screenings using the maximum unbiased valida-
tion (MUV) dataset [29]. The MUV dataset is based on 
PubChem bioactivity data and consists of 17 targets, 
each with 30 actives and 15,000 decoys. The choice of 
actives and decoys is done based on confirmatory and 
primary screens, which makes the dataset very diffi-
cult for virtual screening methods. We performed sam-
ple screenings based on 2D fingerprint and 3D shape 
similarity (mode fpsim and shape). The general perfor-
mance of 2D fingerprints implemented in RDKit has 
been studied extensively before, with the MUV dataset 
being part of a larger evaluation set [30]. We adapted 
a simplified version of the workflow described before 
by Rohrer [29] and Riniker [30]. In short, for each of 
the 17 subsets in the MUV dataset, one of the 30 active 
compounds was selected as query molecule and the 
remaining 29 actives were pooled together with the 
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Fig. 5  Examplary page of the pdf file generated after fpsim search. The fingerprint similarity (FCFP4-like Morgan 2048 bits) of the molecules with 
the query molecule dasatinib is visualized in the left column, the right column shows IDs of the molecule as well as the search parameters and the 
calculated Tanimoto similarity
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15,000 decoys and used as validation set. This query/
validation split was done for all 30 actives. For the 
resulting 30 query/validation test splits per subset the 

virtual screening performance was measured by the 
area under the receiver operating curve (AUC, example 
curve shown in Fig.  8) and the mean value was calcu-
lated for each subset (mean AUC). The screening con-
sisted of two steps: (1) generation of a vsdb database 
with standardized molecules and pre-computed finger-
prints or conformers for the validation set; (2) 2D or 
3D similarity screening of the validation set against the 
query molecule.

Fig. 6  Screenshot from the PyMOL session file generated after shape similarity screening. By default, the first ten hits (one of them shown here in 
blue) are aligned with the query molecule dasatinib (green)

Fig. 7  RMSD spread of the conformer generation process (ETKDG3 
followed by MMFF94 minimization) for the search of the bioactive 
conformation (Platinum data set)

Table 1  Runtime performance of substructure and similarity 
search on 12th Gen Intel(R) Core(TM) i7-12700 H with 2.70 GHz 
and 20 cores and 32GB RAM running Windows 11

pdb database ChEMBL database cores

Substructure 1 s 162 s 1

0.8 s 89 s 6

Similarity 1 s 157 s 1

0.75 s 77 s 6
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The results for 2D similarity screening with vari-
ous descriptors is summarized in Fig.  9. They follow, in 
general, the trend observed by Riniker et  al. for 2D fin-
gerprints on the MUV dataset [30]. For some targets, a 
significant enrichment of actives (e.g. meanAUC = 0.74 
for ECFP3 fingerprint for target FactorXIa [MUV_846]) 
is observed, whereas for other targets no enrich-
ments could be observed based on simple 2D similarty 
calculations.

Fig. 10 summarizes the results for the 3D shape-based 
virtual screenings. Best performance is observed when 

using the combo score for result ranking for most MUV 
subsets. However, for MUV_737 (estrogen receptor 
alpha) and MUV_832 (cathepsin G) scoring with 3D fin-
gerprint yields a better overall enrichment.

Conclusions
VSFlow is a versatile command-line tool to perform 
ligand-based virtual screenings in large compound data-
bases on the basis of the RDKit cheminformatics frame-
work. It allows to perform a substructure search, a 2D 
fingerprint-based and a 3D shape-based similarity search 
based on the respective functionalities implemented in 
RDKit. Screenings can be easily parallelized to multiple 
cores and the screening results can be directly visualized 
as pdf or pymol file. The integration of VSFlow in existing 
virtual screening setups is straightforward because the 
entire  code is open source.

Availability and requirements

•	 Project name: VSFlow - Virtual Screening Workflow
•	 Project home page: https://​github.​com/​czodr​owski​

lab/​VSFlow
•	 Operating system(s): Platform independent
•	 Programming language: Python
•	 Other requirements: Anaconda or Miniconda
•	 License: MIT
•	 Any restrictions to use by non-academics: no.
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Fig. 9  Results of virtual screening validation with the MUV dataset 
for 2D fingerprint similarity. The expectation of mean AUC of 0.5 for 
random rankings is indicated by the blue dashed line

Fig. 10  Results of virtual screening validation with the MUV dataset 
for 3D shape-based screenings. The expectation of mean AUC of 0.5 
for random rankings is indicated by the blue dashed line
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