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Abstract 

Background: Recent years have seen a surge of novel neural network architectures 
for the integration of multi-omics data for prediction. Most of the architectures include 
either encoders alone or encoders and decoders, i.e., autoencoders of various sorts, to 
transform multi-omics data into latent representations. One important parameter is 
the depth of integration: the point at which the latent representations are computed 
or merged, which can be either early, intermediate, or late. The literature on integration 
methods is growing steadily, however, close to nothing is known about the relative 
performance of these methods under fair experimental conditions and under consid-
eration of different use cases.

Results: We developed a comparison framework that trains and optimizes multi-
omics integration methods under equal conditions. We incorporated early integration, 
PCA and four recently published deep learning methods: MOLI, Super.FELT, OmiEmbed, 
and MOMA. Further, we devised a novel method, Omics Stacking, that combines the 
advantages of intermediate and late integration. Experiments were conducted on 
a public drug response data set with multiple omics data (somatic point mutations, 
somatic copy number profiles and gene expression profiles) that was obtained from 
cell lines, patient-derived xenografts, and patient samples. Our experiments confirmed 
that early integration has the lowest predictive performance. Overall, architectures that 
integrate triplet loss achieved the best results. Statistical differences can, overall, rarely 
be observed, however, in terms of the average ranks of methods, Super.FELT is con-
sistently performing best in a cross-validation setting and Omics Stacking best in an 
external test set setting.

Conclusions: We recommend researchers to follow fair comparison protocols, as 
suggested in the paper. When faced with a new data set, Super.FELT is a good option 
in the cross-validation setting as well as Omics Stacking in the external test set setting. 
Statistical significances are hardly observable, despite trends in the algorithms’ rank-
ings. Future work on refined methods for transfer learning tailored for this domain may 
improve the situation for external test sets. The source code of all experiments is avail-
able under https:// github. com/ krame rlab/ Multi- Omics_ analy sis
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Background
Data analysis in the life sciences often involves the integration of data from multiple 
modalities or views. Integration is necessary to obtain models with improved predictive 
performance or explanatory power. One currently popular approach to integrate multi-
ple views is to take advantage of latent representations as computed by neural network 
architectures. Views are usually defined as (potentially very large) groups of variables 
that originate from one measurement technology. In bioinformatics and computational 
biology, views often originate from different omics platforms, e.g., from genomics, tran-
scriptomics, proteomics, and so forth.

Frequently, views from different omics platforms are collected by different research 
groups, which then evaluate them separately. This independent analysis of views can 
lead to inconsistent conclusions, which are hard to interpret when combined [1]. The 
problem is aggravated with data about complex diseases like cancer, which are impos-
sible to understand by a single view only [2].

Each view provides distinct, complementary information about a phenomenon of 
interest, and integrating them can lead to an improved understanding of the underlying 
biology [3]. Previous studies compared single-omics and multi-omics approaches and 
indicated that an increased predictive performance for cancer classification and survival 
analysis is achieved by using multi-omics approaches [1, 2, 4, 5].

Given several views, there exist mainly three different paradigms of how to integrate 
them: early, late, and intermediate integration. They depend on the point at which infor-
mation of distinct views is combined [6].

In early integration, the view’s features are concatenated into a single representation 
and analyzed with traditional methods. This has the advantage of being simple, but the 
disadvantage of creating a higher-dimensional and sparse feature space. Early integra-
tion methods assume a high dependency between omics. Furthermore, they are not suit-
able for combining non-tabular views as for example visual data or text.

Late integration, on the other hand, combines the results of models, which are trained 
independently on a single view, to obtain the final prediction. It models interaction 
between views only by weighting the single-view results differently. Late integration 
allows the combination of heterogeneous views, as only the output of a model is essen-
tial and view-specific models can be trained.

Whereas early integration assumes a high dependency between views and late integra-
tion a low dependency [6], intermediate integration represents a trade-off between the 
both. In intermediate integration, the views are first transformed to a lower dimensional 
representation with a suitable encoder. Only then the transformed representations are 
concatenated and evaluated.

The encoding of a view into the latent feature space is widely performed with neural 
networks. The neural network architectures include either just encoders or encoders and 
decoders, as in autoencoder-type architectures. A myriad of architectures is possible for 
the integration of multi-omics data: encoders only, encoders-decoders (autoencoders of 
various sorts), integration either early (already for the computation of a joint latent rep-
resentation), intermediate (concatenating latent representations following their compu-
tation), or late (combining the results of individual latent representations) [7], and using 
different loss functions.
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As the literature on the topic is growing, one would expect that a more recent publica-
tion would improve upon a previous publication in terms of performance, or, at least, 
that a specific use case with superior performance has been identified then. However, 
as it turns out, various approaches have been optimized and tested with different sets 
of hyperparameters (some of them fixed, some of them optimized), with different val-
ues for hyperparameters, and with different test protocols. Further, performance can be 
very different for cross-validation (assuming a similar distribution of data for each test 
set) and so-called external test sets. Thus, it is at this point far from clear which method 
performs best overall, and, specifically, which method is to be preferred in which set-
ting, e.g., in a cross-validation-like setting or with an external test set from an unknown 
distribution.

In this paper, we level the playing field, establish a uniform, basic protocol for vari-
ous existing methods, and test the methods with a state-of-art statistical method for the 
comparison of machine learning algorithms [8]. As a side product, we derive a method 
that integrates intermediate and late integration and fares well in settings where the pre-
dictive performance on external test sets is favored.

We study the prediction performance of the various algorithms on data sets for drug 
response prediction, which have been used widely in the literature in past few years [4]. 
The ultimate goal of such studies is to detect drug response biomarkers, which would 
help to develop personalized treatments of patients and improve clinical outcomes [9]. 
Drug screening studies on large patient cohorts are rarely performed, because it is ethi-
cally not feasible to change the chemotherapeutic regime and to cause a suboptimal 
therapy [9, 10]. On the other hand, large-scale drug-screening efforts using human can-
cer cell line models have begun to establish a collection of gene-drug associations and 
have uncovered potential molecular markers predictive of therapeutic responses [11]. A 
critical challenge that remains is the clinical utility of the results, i.e., the translatability 
from in vitro to in vivo [4].

In summary, the contributions of this paper are as follows:

• A fair comparison of recent deep multi-omics integration algorithms for drug 
response prediction,

• A new combined intermediate and late architecture for multi-omics integration, and
• A thorough validation study of the methods’ predictions on external test sets.

The remainder of the paper is organized as follows: First, we interpret the methods’ 
results on the test and external sets and test significance in the observed differences. An 
in-depth discussion and the conclusions follow. Next, we give an overview of the used 
data sets and the design of the fair comparison framework. Towards the end of the arti-
cle, we still give details of the included integration architectures.

Results
Architecture comparison

At first, we analyzed the results on the five cross-validation test sets (Tables  1, 2). 
Super.FELT and Omics Stacking achieved for two drugs the highest AUROCs, but for 
four drugs Super.FELT was the second best and Omics Stacking for one drug. MOLI, 
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OmiEmbed and MOMA each achieved for one drug the highest AUROC, and EI and 
PCA not once. EI (mean rank = 5.71) and PCA (mean rank = 6.14) perform worse 
than the other methods. PCA reduces the view dimensions, but without taking into 
account the outcome, which can lead to poor results. The high-dimensional and 
sparse space of EI reduced its predictive performance.

OmiEmbed ranks in the midpoint, showing the difficulty of optimizing its varia-
tional autoencoder (VAE).

No method clearly outperforms the others, but Omics Stacking and Super.FELT 
performed slightly better, according to their mean ranks of 2.86 and 2.43, respectively.

The AUPRC results are similar, but the three algorithms that use triplet loss achieved 
the best result for five out seven drugs and EI was the the worst performing algorithm. 
The positive trend for methods using triplet loss shows its regularization benefit on dis-
criminating responders and non-responders.

All architectures have a high standard deviation for AUROC and AUPRC, which 
underlines the importance of stratified cross-validation to alleviate the influence of data 
splitting.

The visualization of the mean ranks and the critical differences (Fig. 1) supports our 
analysis. EI is, for AUROC as well as AUPRC, significantly worse than the best perform-
ing method. The mean ranks for AUPRC contain a visible gap between methods that 
use triplet loss (Omics Stacking, Super.FELT and MOLI) and methods without (MOMA, 
OmiEmbed and EI), but without significance.

Next, we analyzed the results on the external test sets (Tables 3, 4). Here, the method 
is trained to predict the in vitro response, but at the same time, has to learn general fea-
tures that can predict drug response on an unknown in vivo distribution.

Again, no single method performed best with all drugs, but Omics Stacking had the 
lowest mean rank in both metrics, achieving the best results in more than half of the 

(a) AUROC

(b) AUPRC

Fig. 1 Mean rank and critical difference of the AUROC and AUPRC on the test sets from cross-validation. The 
mean values of the outer cross-validation results are compared. The Nemenyi test with α = 0.05 was used to 
compute significant differences
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data sets for AUROC and AUPRC. Additionally, it achieved the lowest mean rank (see 
Fig. 2 for the critical differences) for AUROC and AUPRC. The results confirm the ben-
efit of classifying both individual and integrated features for the translatability.

EI achieved the second best AUPRC and AUROC for Erlotinib, but classified worse in 
general. Surprisingly, OmiEmbed performed worst on the external data. One possible 
explanation may be that the regularization of the VAE narrows its capabilities to per-
form similarly on a shifted distribution without retraining.

PCA’s performance was better on the external data set than on the test set, where 
it was the worst method. We argue that PCA method did not overfit strongly on 
the train data, which increases its performance on the external data set and even 
achieved the best results for two drugs, but not enough to achieve acceptable predic-
tions on all data sets.

Differences occurred between AUROC and AUPRC: Super.FELT had the second 
best mean rank for AUROC, but was only fourth for AUPRC. No method was signif-
icantly better regarding the AUPRC, however, OmiEmbed and EI had similarly low 
mean ranks. Omics Stacking performed best for the AUPRC and AUROC.

Omics stacking ablation study

We performed an ablation study to test the impact of different components of Omics 
Stacking, our newly developed integration architecture. We wanted to measure in par-
ticular the influence of different numbers of stacked classification layers and the triplet 
loss on the predictive performance. The hyperparameter optimization framework and 
data sets were the same as in the architecture comparison.

The first altered architecture—Omics Stacking without Integration—omits the subnet-
work that classifies the concatenated omics features, which results in a late integration 
neural network. The second one—Omics Stacking Complete—adds additional classifiers 

(a) AUROC

(b) AUPRC

Fig. 2 Mean rank and critical difference of the AUROC and AUPRC on the external test set. The mean values 
of the outer cross-validation results are compared. The Nemenyi test with α = 0.05 was used to compute 
significant differences
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Fig. 3 Mean rank and critical difference of the AUROC and AUPRC on the test sets from cross-validation for 
the ablation study. The mean values of the outer cross-validation results are compared. The Nemenyi test with 
α = 0.05 was used to compute significant differences

Fig. 4 Mean rank and critical difference of the AUROC and AUPRC on the external test data for the ablation 
study. The mean values of the outer cross-validation results are compared. The Nemenyi test with α = 0.05 
was used to compute significant differences

Table 5 Mean AUROC on test sets from cross-validation for the ablation study

Best results are shown in bold and second best are italic. The values represent the means and standard deviations over five 
iterations

Drug Omics stacking

Complete integration Without integration Integration Without triplet loss

Gemcitabine TCGA 0.630 ± 0.055 0.605 ± 0.076 0.646 ± 0.045 0.601 ± 0.084

Gemcitabine PDX 0.640 ± 0.089 0.656 ± 0.062 0.651 ± 0.071 0.593 ± 0.044

Cisplatin 0.742 ± 0.050 0.757 ± 0.061 0.722 ± 0.066 0.734 ± 0.091

Docetaxel 0.775 ± 0.089 0.759 ± 0.031 0.772 ± 0.077 0.813 ± 0.024
Erlotinib 0.696 ± 0.101 0.744 ± 0.098 0.754 ± 0.114 0.662 ± 0.112

Cetuximab 0.748 ± 0.048 0.679 ± 0.052 0.731 ± 0.090 0.721 ± 0.055

Paclitaxel 0.695 ± 0.104 0.634 ± 0.114 0.667 ± 0.138 0.522 ± 0.085

Rank 2.00 2.57 2.14 3.29
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for the integration of two omics, which adds three classification subnetworks: expres-
sion and mutation, expression and CNA, and mutation and CNA. At last, we also tested 
Omics Stacking without triplet loss.

The AUROCs, AUPRCs and mean ranks are given in Tables 5, 6, 7 and 8 and the visu-
alization of them in Figs. 3 and 4.

Table 6 Mean AUPRC on test sets from cross-validation for the ablation study

Best results are shown in bold and second best are italic. The values represent the means and standard deviations over five 
iterations

Drug Omics stacking

Complete integration Without integration Integration Without triplet loss

Gemcitabine TCGA 0.143 ± 0.053 0.136 ± 0.054 0.161 ± 0.053 0.149 ± 0.074

Gemcitabine PDX 0.138 ± 0.046 0.204 ± 0.092 0.151 ± 0.085 0.119 ± 0.046

Cisplatin 0.288 ± 0.072 0.293 ± 0.074 0.293 ± 0.089 0.277 ± 0.084

Docetaxel 0.317 ± 0.064 0.262 ± 0.072 0.316 ± 0.083 0.358 ± 0.046
Erlotinib 0.422 ± 0.704 0.440 ± 0.149 0.479 ± 0.153 0.352 ± 0.111

Cetuximab 0.379 ± 0.102 0.264 ± 0.042 0.376 ± 0.104 0.350 ± 0.049

Paclitaxel 0.186 ± 0.076 0.188 ± 0.103 0.220 ± 0.108 0.090 ± 0.024

Rank 2.57 2.57 1.71 3.14

Table 7 Mean AUROC on external test set for the ablation study

Best results are shown in bold and second best are italic. The values represent the means and standard deviations over five 
iterations

Drug Omics stacking

Complete integration Without integration Integration Without triplet loss

Gemcitabine TCGA 0.646 ± 0.048 0.641 ± 0.056 0.655 ± 0.029 0.624 ± 0.068

Gemcitabine PDX 0.656 ± 0.049 0.630 ± 0.066 0.714 ± 0.089 0.665 ± 0.078

Cisplatin 0.668 ± 0.046 0.685 ± 0.078 0.644 ± 0.087 0.680 ± 0.063

Docetaxel 0.613 ± 0.058 0.597 ± 0.046 0.584 ± 0.101 0.600 ± 0.090

Erlotinib 0.704 ± 0.141 0.715 ± 0.193 0.744 ± 0.065 0.741 ± 0.077

Cetuximab 0.529 ± 0.052 0.599 ± 0.173 0.575 ± 0.049 0.466 ± 0.122

Paclitaxel 0.511 ± 0.106 0.432 ± 0.087 0.619 ± 0.152 0.419 ± 0.082

Rank 2.57 2.57 2.00 2.86

Table 8 Mean AUPRC on the test sets from cross-validation for the ablation study

Best results are shown in bold and second best are italic. The values represent the means and standard deviations over five 
iterations

Drug Omics stacking

Complete integration Without integration Integration Without triplet loss

Gemcitabine TCGA 0.537 ± 0.040 0.545 ± 0.088 0.581 ± 0.074 0.489 ± 0.070

Gemcitabine PDX 0.522 ± 0.087 0.455 ± 0.072 0.510 ± 0.132 0.483 ± 0.109

Cisplatin 0.954 ± 0.009 0.953 ± 0.022 0.942 ± 0.027 0.955 ± 0.012
Docetaxel 0.571 ± 0.028 0.644 ± 0.048 0.560 ± 0.051 0.568 ± 0.056

Erlotinib 0.400 ± 0.171 0.482 ± 0.251 0.440 ± 0.075 0.421 ± 0.126

Cetuximab 0.107 ± 0.012 0.188 ± 0.164 0.125 ± 0.018 0.102 ± 0.024

Paclitaxel 0.176 ± 0.094 0.127 ± 0.027 0.256 ± 0.147 0.121 ± 0.017

Rank 2.43 2.14 2.29 3.14
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Both Omics Stacking Complete Integration and Omics Stacking without Integration 
achieved the best rank once and Omics Stacking without triplet Loss always had the 
lowest mean rank. Omics Stacking achieved twice the first place in the ranking and was 
never worse than second place.

In the end, none of the different configurations achieved a significantly better or 
worse performance, but the trend indicates that triplet loss and multi-omics integration 
increases the prediction, because removing them always decreased the mean ranking.

Triplet loss ablation study

The architecture comparison indicated a trend favoring architectures that were trained 
with triplet loss. We performed an ablation study in which we evaluated the impact of 
triplet loss separately, for each architecture. For the study we removed the triplet loss 
from architectures that already used it and added it to the others.

Removing the triplet loss from MOLI and Omics Stacking is easily done by omitting 
the term from the loss computation. To remove the triplet loss from Super.FELT, we 
exchanged the supervised encoder of the first phase with unsupervised autoencoders.

For MOMA, we computed the triplet loss on the concatenated vectors before the 
attention mechanism and for OmiEmbed, on the concatenated vectors before the com-
putation of µ and σ . We left out PCA, as the principal components need not be com-
puted by gradient descent.

We calculated the paired samples differences and counted the number of times the dif-
ference was positive, which means that triplet loss improved the result, to see whether 
there exists a general trend. Additionally, we performed a two-sided Wilcoxon signed-
rank test, with α < 0.05 for significance, on the paired results per architecture (Table 9). 
The Wilcoxon signed-rank test includes the differences of the paired samples, which 
has the advantage that it also incorporates the improvement or degradation of the test 
metric.

Table 9 Comparison of p values for all architectures computing the triplet loss or not

The p values are from a Wilcoxon signed-rank test, where an α < 0.05 was regarded as significant. Additionally, we counted 
the number of times the method was better using the triplet loss and added it in parentheses. The methods are sorted in 
descending order with the criterion of the times the triplet loss improved the results separately for test and external data

Data Method AUROC AUPRC

Test Early integration 0.047 (6/7) 0.016 (7/7)

Omics stacking 0.156 (5/7) 0.156 (6/7)

Super.FELT 0.219 (5/7) 0.813 (4/7)

MOLI 0.813 (4/7) 0.813 (3/7)

OmiEmbed 0.938 (3/7) 0.578 (4/7)

MOMA 0.296 (2/7) 0.078 (1/7)

External Omics stacking 0.219 (5/7) 0.078 (5/7)

MOLI 0.463 (4/7) 0.297 (6/7)

Super.FELT 0.578 (4/7) 0.938 (4/7)

OmiEmbed 0.578 (4/7) 0.938 (4/7)

MOMA 0.375 (2/7) 0.578 (2/7)

Early integration 0.156 (1/7) 0.219 (1/7)
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Additional file 1 presents the detailed results of the adapted architectures.
In the case of EI, adding the triplet loss improves the results with regard to the 

AUROC in six out of seven cases, and for the AUPRC, in all cases. For the test data, the 
improvements were statistically significant across the board. For external data, the trend 
is reversed and no statistically significant different can be observed. The regularization 
helped EI to distinguish elements of the test data, but did not learn generalizable fea-
tures, which reduced its capabilities to predict the response on external data.

Omics Stacking profited in both cases from the triplet loss, but not with significant 
differences. For MOLI and Super.FELT, the results were in half or slightly more than 
half of the cases improved. The results for MOMA and OmiEmbed were the other way 
around: In half or less than half of the cases they improved with triplet loss. Both meth-
ods already have a composed loss function and adding another term increases the dif-
ficulty improving upon it.

Interpretability

For all of the above models and architectures, it would be desirable to compute the 
importance and contribution of individual variables to the outcome of a prediction 
model. This problem is addressed in the field of explainable AI (XAI) by so-called attri-
bution methods. Attribution methods for architectures computing and concatenating 
latent representations from thousands of variables are, however, still in their infancy 
[12]. Therefore, we instead focus on the attribution of views (omics), not individual fea-
tures. In the following, we analyze the sum of attributions as well as the mean attribution 
of features from various views.

To train the final model we computed the final hyperparameter set for an architec-
ture with a 5-fold cross-validation and the same hyperparameter optimization. The final 
model was trained on the complete GDSC data and the Shapley values [13] were com-
puted on the external data.

Shapley values are a concept from cooperative game theory and can be used to inter-
pret the predictions of a machine learning model. The Shapley value of a feature rep-
resents its attribution to the prediction. Shapley values are usually computed in a 
model-agnostic manner, by changing the inputs and measuring the changes in the mod-
els’ output.

For the Shapley value combination, we employ a perturbation based approach, where 
features are added one by one to a baseline. The order in which features are added is 
changed randomly in every iteration, and the mean of all attributions represents the 
final attribution of a feature [13]. In the following, we refer to this method as Shapley 
sampling.

The Shapley values of an architecture for one drug were normalized so that they sum 
up to one. We took the sum of an omics’ attributions to analyze its influence on the drug 
response prediction and the mean of an omics’ attributions to evaluate the average influ-
ence of its features on the result. Subsequently, the mean of both values over all drug 
data sets were calculated.

It is important to notice that after the variance threshold, the number of features for 
mutation (10–15 thousand) and CNA (18–22 thousand) were one magnitude higher 
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than for expression (around three thousand). Additional files 2, 3, 4, 5, 6, 7 and 8 list the 
gene level attributions per drug for all architectures.

For EI, Shapley sampling assigns the highest attribution to the CNA view (0.642), and 
less to the expression (0.155) and the mutation view (0.203). However, the mean influ-
ence of an expression feature is greater than the mean influence of a copy number or 
mutation feature (0.00005 vs. 0.00003 resp. 0.00001). This indicates that EI learns that 
the gene expression is an important indicator for the drug response [9, 14], but in gen-
eral the other views have a higher influence.

MOMA focuses mostly on two omics (mutation = 0.442, expression = 0.462), due its 
attention mechanism, and less on CNA (0.094). PCA is the only architecture that uses 
expression (0.496) and CNA (0.467) equally.

The attributions for MOLI, Super.FELT and OmiEmbed show similar tendencies. The 
sum of the attributions of expression makes up more than half of the whole attribu-
tion. The mean attribution of an expression feature is up to approximately twenty times 
higher than that of a copy number or mutation feature. The intermediate integration 
does not favor views with many features and learns which inputs are not relevant for the 
drug response prediction.

Omics Stacking distributes the attribution more evenly on expression (0.518), muta-
tion (0.210) and CNA (0.272). Its summarized attribution has a high variance, indicating 
that the meta learner learns individually for each data set to focus on the most important 
omics. Similar to the other intermediate integration architectures, the averaged attribu-
tions for expression features are considerably higher than the others.

The diagrams in Additional file 9 visualize the summarized and averaged attributions.

Discussion
The emerging interest in multi-omics integration with neural networks produces an 
increasing number of different architectures. In this work, we compared a subset of 
recently published methods as fairly as possible to validate their predictive capabilities. 
Our experiments focused on drug response prediction, a high-dimensional problem, 
with the added complexity of having few samples.

The performance was only tested on data sets from cancer research mainly due to two 
reasons: First, the availability of multi-omics data, as cancer samples are more common 
compared to other diseases and data sets for other diseases with enough samples and 
a high enough quality are still rare. The second reason is that the extensive hyperpa-
rameter optimization with an inner and outer cross-validation increases the hardware 
requirements greatly and combined with the sheer amount of different, recently pub-
lished algorithms made it necessary to focus on just a single field.

We focused our research on the comparison of the predictive performance and the 
summarized attributions, but another important aspect is to analyze the attribution on a 
more fine-granular level, i.e., on the level of genes. As this is a research topic of its own, 
especially in the context of high-dimensional data and autoencoder-type architectures, 
we have to leave that for future work.

Current drug response methods are trained on cell lines only and applied directly 
to patient samples without adaptation. A different strategy is transfer learning, where 
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information from source data is transferred to target data for improved prediction [15]. 
This can be useful for transferring information from in vitro to in vivo samples. However, 
larger in vivo or ex vivo data sets would be necessary for this to succeed.

Our experiments validate results that using EI results in worse predictions than inter-
mediate integration, because concatenating the views creates a higher-dimensional 
sparse feature space that further increases the issue of having only few samples. EI is 
suitable to be used as simple and fast to implement baseline, but at least one intermedi-
ate integration architecture should be validated. However, making a recommendation 
for one of them is difficult, as none of them performed significantly better.

Conclusions
In this paper we showed that none of the current multi-omics integration methods 
excels at drug response prediction, however, Early Integration and PCA performed sig-
nificantly worse.

Researchers should not rely on a single method, but rather consider more than one 
method for their task at hand. If the number of experiments is limited or translatability 
is wanted, we recommend to use the newly introduced method, Omics Stacking, as it 
achieved good results on test and external data. When faced with a new data set in a 
cross-validation like setting, Super.FELT is another good option.

Our experiments also suggest that a fair experimental is necessary to see the strengths 
and weaknesses of various algorithms, which were not visible from the publications 
alone. We hope that this comparison has shed some light on the relative performance of 
multi-omics integration methods, has produced valuable insights for their application, 
and that it encourages further research.

Methods
Drug response data

For our experiments, we used a publicly available drug response data set containing 
responses for six drugs: Docetaxel, Cisplatin, Gemcitabine, Paclitaxel, Erlotinib, and 
Cetuximab [16]. The data set was chosen, because it had patient-derived xenograft 
(PDX) or patient data necessary to test the method’s translatability [4]. Two external test 
sets are available for Gemcitabine.

The data set contains the drug response as target and data for three omics: somatic 
point mutations, somatic copy number profiles and gene expression profiles. Gene 
expressions are standardized and pairwise homogenized. Gene-level copy number esti-
mates are binarized, representing copy-neutral genes as zeroes and genes with overlap-
ping deletions or amplifications as ones. Somatic point mutations are also in a binary 
format: one for mutated genes and zero for genes without a mutation [4]. For a fair com-
parison, the same data processing and training procedures were used for all methods. 
We used a variance threshold to filter genes with a small variance, as they hardly provide 
additional information. We set the variance thresholds in the same way as Park et  al.   
[17]. After the variance threshold around three thousand features for gene expression 
remained, around 14–18 thousand for mutation and around 15 up 22 thousand for CNA 
depending on the used data set.



Page 16 of 25Hauptmann and Kramer  BMC Bioinformatics           (2023) 24:45 

Sharifi-Noghabi et  al.  acquired the data from PDX mice models [18], The Cancer 
Genome Atlas (TCGA) [19] and Genomics of Drug Sensitivity in Cancer (GDSC) [20]. 
GDSC consists of cell line data and was used for training, validation and testing because 
of its high number of samples. The trained neural networks were additionally tested on 
either PDX or TCGA to validate the algorithms’ translatability.

The characteristics of the data set per drug are summarized in Table 10.

Comparison framework

To compare the algorithms fairly, different precautions were taken: First, the same pre-
processing was performed in all experiments to provide the same input data, and sec-
ond, the hyperparameters of the algorithms were optimized with an equal number of 
iterations by random search from a fixed grid. All algorithms draw parameters from the 
same grids (Table 11).

Table 10 Characteristics of the drug response multi-omics data set

NR, non-responder; R, responder

Drug Resource Number of Samples Usage

Cetuximab GDSC 856 (NR:735, R:121) Train & test

Cisplatin GDSC 829 (NR:752, R:77) Train & test

Docetaxel GDSC 829 (NR:764, R:65) Train & test

Erlotinib GDSC 362 (NR:298, R:64) Train & test

Gemcitabine GDSC 844 (NR:790, R:54) Train & test

Paclitaxel GDSC 389 (NR:363, R:26) Train & test

Cetuximab PDX 60 (NR:55, R:5) External test

Cisplatin TCGA 66 (NR:6, R:60) External test

Docetaxel TCGA 16 (NR:8, R:8) External test

Erlotinib PDX 21 (NR:18, R:3) External test

Gemcitabine PDX 25 (NR:18, R:7) External test

Gemcitabine TCGA 57 (NR:36, R:21) External test

Paclitaxel PDX 43 (NR:38, R:5) External test

Table 11 The hyperparameter grid used in the hyperparameter optimization

Parameter Values

Batch size {8, 16, 32}

Dropout rate {0.1, 0.3, 0.5, 0.7}

Epochs {2..20}

Gamma {0.0, 0.1, 0.3, 0.5}

Layer dimension {32, 64, 128, 256, 512, 1024}

Learning rate {0.001, 0.01}

Margin {0.2, 0.5, 1}

Weight decay {0.0001, 0.001, 0.01, 0.05, 0.1}

PCA variance threshold {0.9, 0.95, 0.975, 0.99}
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A 5× 5 stratified cross-validation was performed to reduce the dependence on the 
data splitting. 200 hyperparameter sets were created for each iteration of the outer 
cross-validation and each set was used for training in the inner cross-validation. The 
mean area under the receiver operating characteristic (AUROC) was used as perfor-
mance measure. The algorithm was retrained with the best hyperparameter set on 
the combined train and validation sets. The trained network was used to compute 
the final results on the test sets from cross-validation and the external test set.

The data sets are imbalanced as they contain only few responders. In the drug dis-
covery process, researchers are mainly interested in the positive samples to find an 
effective drug. To account for this requirement, the area under precision recall curve 
(AUPRC) [21] was additionally computed.

One requirement to use these methods is for them to work on patient data sets 
which are normally too small for transfer learning and still detect positive samples. 
This was covered by using the final model of an outer cross-validation iteration on 
an external patient or PDX data set.

The comparison of multiple algorithms on multiple data sets can lead to ambig-
uous results, if none of them performs significantly better. We compute the mean 
ranking as single value for a better comparison. Additionally, we compute the critical 
difference (CD) [8] with the Nemenyi significance test with α = 0.05.

Expression

Mutation

CNA

Concatenate Classifier y'Encoder

Fig. 5 Schematic architecture of early integration with three input omics

PCAExpression

Mutation

CNA

Concatenate Classifier y'PCA

PCA

Fig. 6 Schematic architecture of PCA integration with three input omics
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Multi‑omics integration architectures

Most deep learning algorithms for multi-omics integration are based upon the concept 
of encoding the feature space into a lower-dimensional latent space. The encoded rep-
resentation of features in the latent space is commonly called latent features. The sub-
network that computes the latent features is called encoder and computes a non-linear 
dimensionality reduction. The smaller dimension of the latent representation assures 
that the encoder does not simply learn the identity function. An autoencoder trans-
forms an input first into the latent representation and then decodes it back into the input 
dimension. The reconstructed sample should resemble the input as far as possible. The 
difference between input and reconstruction is measured and used as loss function [22].

Next, we explain briefly the seven multi-omics integration architectures we compared. 
The first one is Early integration (EI), which serves as baseline in our experiments. EI 
concatenates the omics before they serve as single input of a neural network, which con-
sists of an encoding subnetwork and a classifier layer. The network is trained by mini-
mizing the binary cross-entropy loss function, given that our target is to classify subjects 
into responders and non-responders.

The schematic architecture for three omics in visualized in Fig. 5.
An architecture based on principal components analysis (PCA) for intermediate inte-

gration was tested. After computing the PCA for each view individually, the resulting 
principal components are concatenated to obtain a feature representation. Subsequently, 
this feature representation is used to train a classifier. The scheme of PCA intermediate 
integration is visualized in Fig. 6.

The next method is Multi-Omics Late Integration (MOLI) developed by Sharifi-
Noghabi et  al.  [4], which is, notwithstanding its name, an intermediate integration 
method. MOLI uses an individual encoder for each omics to compute the latent repre-
sentations, which are concatenated and used as input for the classifier (Fig. 7).

Due to the small sample size, the neural network is prone to overfitting, so MOLI uses 
the triplet loss [23] for regularization. The rationale behind triplet loss is that instances 
of the same class should have shorter distance between them than instances of differ-
ent classes. To calculate the loss value, the triplet loss uses the embedding f (x) ∈ R

d of 

Expression
EncoderExpression

Mutation

CNA

Concatenate Classifier y'Mutation
Encoder

CNA
Encoder

Triplets

Fig. 7 Schematic architecture of MOLI with three input omics
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three samples. The first one is the anchor sample xai  , the second xpi  belongs to the same 
class, and at last a sample xni  is of the opposite class.

With them, the following loss function is minimized:

where α is a margin that defines the minimum distance between pairs of different classes. 
In MOLI the concatenated latent representations are used as embeddings. The final loss 
function is the sum of classification loss and triplet loss:

where the influence of the triplet loss is weighted by the hyperparameter γ and 
LClassification is the binary cross-entropy. Supervised Feature Extraction Learning using 
triplet loss (Super.FELT) is a variation of MOLI, in which the encoding and classifica-
tion is not performed jointly, but in two different phases [17]. The first phase trains a 
supervised encoder with triplet loss for each omics to extract latent features of the high-
dimensional omics data to avoid overfitting. The latent features are concatenated and 
used to train a classifier. Figure 8a shows the encoding phase and (b) the classification 

(1)Ltriplet =

N

i

||f (xai )− f (x
p
i )||

2
2 − ||f (xai )− f (xni )||

2
2 + α

+
,

(2)LMOLI = LClassification + γLtriplet ,

Fig. 8 Schematic architecture of Super.FELT with three input omics
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phase of Super.FELT. A distinct neural network need to be trained for encoding an omics 
samples and another one for the classification of the integrated latent features, which 
increases in comparison to MOLI the training time.

Super.FELT added a variance threshold in the feature selection to remove features 
with a low variance [17]. It is based on the assumption that genes with a low variance 
might contain less important information and can be safely removed to reduce the 
dimensionality, hence increasing the focus on the more variable genes.

Additionally, we developed a novel extension of MOLI, which we call Omics Stack-
ing. It is inspired by stacking and a combination of intermediate and late integration. 
The method stacks the results of different neural network classifier layers that use dif-
ferent latent features as input, with a meta-learner. The meta-learner can be any clas-
sifier, but we opted for a fully connected layer to train the neural network end-to-end.

The omics are transformed to the latent space with individual encoders, but instead 
of only classifying the concatenated features, Omics Stacking trains a separate clas-
sifier for each omics and the concatenated omics (Fig. 9). The triplet loss is still used 
on the concatenated embeddings to regularize. The outputs of the classifiers are com-
bined by a meta-learner that enables the weighting of different results to emphasize 
the most accurate one.

Omics Stacking combines the advantages of intermediate and late integration. 
It models the interaction between omics and retains the weak signals of individual 
omics, hence, capturing shared and complementary information. It relies not only on 
the combined omics, but also on the individual omics and so fosters generalization.

The former methods were developed and tested on drug response prediction, but in 
fact can be used for other tasks as well. Next we present two methods that were vali-
dated for the prediction of a tumor’s type or stage.

The first of these methods, Multi-task Attention Learning Algorithm for Multi-omics 
Data (MOMA) [24], uses a geometrical representation and an attention mechanism 
[25]. It is composed of three components: First, it builds a module for each omics using 
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a module encoder. Each omics has its own module encoder consisting of two fully con-
nected layers that convert omics features to modules. A module is represented by a nor-
malized two-dimensional vector.

Second, it focuses on important modules between omics using a module attention 
mechanism. This mechanism is designed to act as a mediator to identify modules with 
high similarity among multiple omics. The relevance between modules is measured 
by the cosine similarity and is converted to a probability distribution with the softmax 
function. The distributions are then used to create an attention matrix that stores the 
relationship information between modules of different omics. To highlight important 
modules, the module vectors are multiplied by the attention matrix (Fig. 10).

Subsequently, fully connected layers and the logistic function are applied to flatten the 
multidimensional vectors and to compute the final probabilities for each omics [24].
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MOMA is trained with cross-entropy loss between the true label and the omics spe-
cific outputs. After the training of the neural network, a logistic regression is fit on the 
omics specific outputs to generate the combined prediction.

The last architecture we tested OmiEmbed [26], which is based on a supervised vari-
ational autoencoder [27]. OmiEmbed was developed as a unified end-to-end multi-view 
multitask deep learning framework for high-dimensional multi-omics data. The method 
learns the latent features with the auxiliary unsupervised task of reconstructing the 
input omics. The trained latent features can be used for one or more supervised tasks. 
The overall architecture of OmiEmbed comprises a deep embedding module and one or 
multiple downstream task modules (Fig. 11).

The loss function of OmiEmbed is the sum of two parts: the reconstruction loss and the 
downstream task loss. Lembed is the unsupervised loss function of the VAE:

BCE is the binary cross-entropy to measure the differences between the input x and 
the reconstruction x′ and is computed individually for each of the M omics. DKL is the 
Kullback–Leibler divergence between the learned distribution and a standard normal 
distribution.

The embedding loss function is used together with the loss of the downstream task, 
which is in our case classification:

where LCE is the cross-entropy loss and � a balancing weight.
Instead of training all layers at the same time, the network learns in three phases: First, 

only the VAE is trained. In the second phase, the VAE weights are fixed and only the 
downstream network is trained and in the last phase the complete network is fine-tuned.

Table 12 summarizes the components and architectures of the described methods.

Implementation details

The algorithms were implemented in PyTorch 1.11.0 and NumPy 1.22.4 was used to 
compute the AUROC and AUPRC. The critical differences were computed and visual-
ized with Orange3 3.32.0. The Shapley values were computed with Shapley value sam-
pling with 50 permutations of Captum 0.5.0.

(3)Lembed =
1

M

M
∑

i=1

BCE(xi, x
′
i)+ DKL(N (µ, σ)||N (0, 1)).

(4)Ltotal = �Lembed + LCE ,

Table 12 Characteristics of the multi-omics integration methods

Architecture Training Triplet loss Integration type Encoding

Early integration End-to-end – Early Supervised encoder

MOLI End-to-end + Intermediate Supervised encoder

Super.FELT Encoding and classifying + Intermediate Supervised encoder

Omics stacking End-to-end + Intermediate + late Supervised encoder

MOMA End-to-end – Intermediate + late Vector encoding

OmiEmbed Three phases – Intermediate Variational supervised 
autoencoder

PCA PCA and classifier – Intermediate Principal components
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The triplets were generated online with an all-triplets scheme, which creates all pos-
sible triplets of a batch, as in the experiments of the corresponding paper of MOLI and 
Super.FELT. An open source implementation of triplet loss and triplet creation was 
used.1 Adagrad [28] was used to update the neural network weights.

Early Integration and Omics Stacking were implemented by the authors. For MOMA 
we used the provided example source code2 and adapted it to three omics, made the 
number of modules a hyperparameter and combined the individual probability out-
puts with a logistic regression. For OmiEmbed,3 MOLI4 and Super.FELT,5 the published 
source code was used.

To reduce the optimization runtime, we applied an early stopping scheme in the inner 
cross-validation. If it was not possible anymore to improve on the currently best mean 
AUROC for a hyperparameter set – even with best results (an AUROC of 1) on all 
remaining sets – the inner cross-validation terminates early and the optimization con-
tinues with the next hyperparameter set.
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