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Abstract
This thesis investigates the formalism of matching in the electroweak sector of
the Standard Model in the minimal modified subtraction scheme. Two different
effective models are used to derive an expression of the weak mixing angle
below the particle threshold of the W-boson at one-loop order. One model
is based on a four-fermion contact interaction, while the other one resembles
the electroweak sector of the Standard Model due to the introduction of a
pseudo gauge boson Z ′, whose mass is not generated by the Higgs mechanism.
The findings are compared to already published results and shortcomings in
the existing literature are pointed out. It is demonstrated that the previously
published matching condition of the weak mixing angle for integrating out the
W-boson is not based on a well-defined effective theory and needs to be replaced,
for example by a formula derived in this thesis.

The related concept of running coupling parameters in terms of the renor-
malization group equation is discussed in addition. The perturbative treatment
of the running electromagnetic coupling as can be found in the literature is
presented in detail.

The overarching goal is the precise determination of the parity violating
interaction at zero momentum transfer for which electroweak one-loop corrections
are discussed including the role of the weak mixing angle. It can be used to
derive the parity violating asymmetry of elastic electron-proton–scattering which
is going to be measured in the P2 experiment in Mainz to determine the weak
mixing angle.
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Zusammenfassung
In dieser Arbeit wird der Formalismus des „Matching“ im elektroschwachen Sek-
tor des Standardmodells in MS-Renormierung untersucht. Zwei verschiedene ef-
fektive Modelle werden verwendet um einen Ausdruck des schwachen Mischungs-
winkels unterhalb der Teilchenschwelle des W-Bosons in Einschleifenordnung her-
zuleiten. Das eine Modell basiert auf einer vier-Fermion-Kontaktwechselwirkung,
während das andere dem elektroschwachen Sektor des Standardmodells auf-
grund der Einführung eines Pseudo-Eichbosons Z ′, dessen Masse nicht durch den
Higgs-Mechanismus generiert wird, ähnelt. Die Ergebnisse werden mit bereits pu-
blizierten Resultaten verglichen und Mängel in der bestehenden Literatur werden
benannt. Es wird aufgezeigt, dass die zuvor publizierte „Matching“-Bedingung
des schwachen Mischungswinkels für das Ausintegrieren des W-Bosons nicht auf
einer wohldefinierten effektiven Theorie basiert und ersetzt werden muss, zum
Beispiel durch eine in dieser Arbeit hergeleitete Formel.

Das verwandte Konzept der laufenden Kopplung im Rahmen der Renormie-
rungsgruppengleichung wird diskutiert. Die störungstheoretische Behandlung
der laufenden elektromagnetischen Kopplung, wie sie in der Literatur zu finden
ist, wird im Detail dargelegt.

Das übergeordnete Ziel ist die präzise Bestimmung der paritätsverletzenden
Wechselwirkung bei verschwindendem Impulsübertrag für welche elektroschwa-
che Einschleifen-Korrekturen inklusive der Rolle des schwachen Mischungswin-
kels diskutiert werden. Diese kann verwendet werden um die paritätsverletzende
Asymmetrie der elastischen Elektron-Proton–Streuung zu berechnen, welche
am Mainzer P2 Experiment zur Bestimmung des schwachen Mischungswinkels
gemessen werden soll.
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1. Introduction

1.1. Experimental Motivation
In the past century, particle physicists made great progress in describing the
behavior of particles that are thought to be fundamental. The discovery of
quarks and the development of the associated gauge theory of the strong
interaction, quantum chromodynamics (QCD), as well as the discovery of the
heavy W±- and Z-bosons and the unification of the electromagnetic and weak
forces led to a compound theory of elementary particles. This theory was
successful in describing virtually all phenomena occurring in high energy physics
and hence established as the Standard Model of particle physics over the course
of the years. The Higgs particle that was detected in 2012 at the Large Hadron
Collider was said to be the last missing piece predicted by the Standard Model
and required for its completion, as the masses of all other particles are generated
via the Higgs mechanism.

Besides its great success in describing experimental observations, people hope
for a grand unification of the three distinct gauge groups SU(3), SU(2) and U(1).
In particular, the unification of the electromagnetic and weak sector in terms
of the electroweak gauge group SU(2)×U(1) was a great theoretical success
and a lot of effort was made in order to find a grand unification consistent
with observations. This led to an uncounted number of unifying theories of
which Supersymmetry, for example, is probably one of the most known ones. A
unification of the gauge groups would reduce the number of free parameters,
as the current gauge couplings would be related to a set of group theoretical
constants. Despite the theoretical beauty of some of these theories, no reliable
experimental evidence was found for any of the proposed extensions of the
Standard Model up to date.
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1. Introduction

Extensions and alternative models were not more successful than the Stan-
dard Model itself, but the Standard Model is not the end of the story. Even
though it predicts almost all observations in experiment, it is known to be
incomplete. A wide range of experiments confirmed that neutrino oscillations,
predicted already in 1957 by Bruno Pontecorvo, occur. That is, a neutrino of
a given flavor may alter to a neutrino of another flavor when propagating at
macroscopic distances. The physical mechanism describing this effect requires
a non-vanishing mass difference between the three neutrino flavors, while the
Standard Model describes neutrinos as massless particles. The masses of the
neutrinos may be incorporated into the Standard Model easily, but other devia-
tions, like the anomalous magnetic moment of the muon hint at the necessity
of a new theory. In addition, certain observations like the matter–antimatter
asymmetry in the observable universe can not be explained within the Standard
Model.

On top of that, the Standard Model does not contain a description of gravity.
When matter is in a state of ultra-high density, for instance shortly after the big
bang or in neutron stars or black holes, gravitational effects become significant
on the scale of particle physics. In this regime, the Standard Model can not be
applied and hence needs to be understood as an effective model with a particular
scope of applicability. Furthermore, there is no explanation of dark matter or
the hypothetical dark energy within the Standard Model, up to now. Although
there is no satisfying explanation for dark matter, ultra-precise experiments
probing the Standard Model might be sensitive to some kind of proposed force
between dark and visible matter, like a dark photon.

All these flaws of the existing model, commonly summarized as “New Physics”,
suggest that the Standard Model is just an effective part of a greater unified
theory. In order to search for or get a better understanding of new physics,
it is necessary to probe the Standard Model to the greatest possible extent,
to see at which point – if at all – its predictions fail. One possibility to do
so is by performing scattering experiments at high energies, to be sensitive to
resonances of hypothetical new heavy particles. One famous facility performing
high energy experiments is the CERN at which the Higgs boson was discovered
in 2012, and the W± and Z bosons in the eighties of the past century.
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1.2. Theoretical Motivation

Measurements at the Z-pole also allowed to obtain a precise value of the weak
mixing angle, which parametrizes the relation between the fields of the physically
observable photon and Z-boson and the fundamental SU(2)×U(1)-gauge fields.
The value obtained at the Large Electron-Positron Collider, that is in the high
energy regime, is the most precise determination of the weak mixing angle to
date. This value also fixes the prediction of the Standard model for the weak
mixing angle at low energies. However, some types of new interactions (like a
dark photon) might give a measurable contribution to the weak mixing angle at
low energies only and thus evade the discovery of new physics at high energies.
This makes the low energy regime an excellent place to look for new physics.

Thus, a complementary approach to experimental high energy physics is, to
study new physics at medium or low energies. Since, the effects of new physics
are still small, low energy measurements have to be exceedingly precise in order
to be sufficiently sensitive. A particular example of a low energy precision
experiment is the upcoming P2 experiment in Mainz. Its aim is to measure
the weak mixing angle at low momentum transfer (Q2 ≈ 4.5 · 10−3 GeV2) with
much higher precision than previous low energy experiments. The goal is to
obtain a value with 0.15 % relative accuracy [1].

1.2. Theoretical Motivation

The accuracy of an experiment is meaningless without a precise theoretical
prediction of the measured observable within the Standard Model to see whether
the Standard Model fails and if one of its extensions or a different model is in
better agreement with the experimental outcome. Precise theoretical predictions
require the calculation of loop diagrams; in this context, the renormalization
group equation is a particularly useful tool, as it allows resumming large
logarithmic corrections up to any order by solving a differential equation. The
corresponding solution describes the running of coupling parameters with respect
to the energy scale. This formalism can be used to obtain a low energy prediction
within the Standard Model itself. However, at low energies it is more convenient
to use an effective model that does not incorporate heavy particles which are
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1. Introduction

insignificant at low energies. The parameters of the effective model can be
obtained by matching it with the Standard Model, the corresponding equations
are called matching conditions.

By construction, the matching conditions depend on the formulation of the
effective model and are not applicable without a precise definition thereof. In
QCD, the construction of an effective model is apparent since one can omit heavy
fermions without altering the fundamental properties of the strong interaction.
This is a consequence of the gluons being massless and avoids a model ambiguity
in the context of matching conditions. In the electroweak sector of the Standard
Model on the other hand, the gauge bosons carry a mass and should be removed
in the transition to an effective model, too. This does change the underlying
forces and allows choosing different types of effective models that correspond
to potentially unequal matching conditions. All these matching conditions are
valid within their respective model, but a direct comparison is inadequate.

In addition, the weak mixing angle is a property of the fundamental gauge
group of the Standard Model SU(2)×U(1) and its definition within an effective
model is not evident, initially. It is easy to write down an effective parameter
and the relation to the weak mixing angle in the Standard Model is obtained via
the matching. However, the physical interpretation of the effective parameter
remains unobvious, as the fundamental fields that are mixed according to the
weak mixing angle are not present in the effective model.

In this thesis, the matching condition of the weak mixing angle is studied
within the minimal modified subtraction scheme MS in two different effective
models. This requires a discussion of the renormalization group equation of the
weak mixing angle and the electromagnetic coupling in addition. A detailed
outline of the following chapters is given in Section 1.3.

1.3. Outline

Chapter 2 defines the Lagrangian of the Standard Model’s electroweak sector
in Section 2.1 and gives a brief introduction to the concept of renormalization
in Section 2.2. Conventions used throughout the thesis are defined in Sec-
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1.3. Outline

tion 2.3. Finally, Section 2.5 gives a short introduction to the basic ideas of
running coupling parameters, the renormalization group equation and matching
conditions.

In Chapter 3, the running of the MS-renormalized electromagnetic coupling α̂
is discussed, as it is required for a calculation of the weak mixing angle at
low energies. This chapter includes the derivation of the coupling above the
non-perturbative regime using an unsubtracted dispersion relation approach
in Section 3.1 and its running in terms of the electromagnetic renormalization
group equation in Section 3.4. Eventually, a simple derivation of the matching
condition of the electromagnetic coupling is presented in Section 3.5, which is
based on a calculation of the vacuum polarization in perturbation theory in
Section 3.3.

In Chapter 4, the parity violating interaction required for the measurement
in the P2 experiment is calculated within the Standard Model, with the final
result given in Section 4.2. This requires the derivation of the irreducible vertex
functions in Section 4.1 that also serve as a basis for the matching conditions
later on. The chapter is closed by a discussion of the β-function of the weak
mixing angle in Sections 4.3 and 4.4, which builds upon the running of the
electromagnetic coupling discussed in Chapter 3.

Chapter 5 is dedicated to a concise derivation of the matching conditions
of the electromagnetic coupling and the weak mixing angle. First, basic ideas
and previously published results are presented in Sections 5.1 and 5.2. The
matching condition of the weak mixing angle found in the literature is based
on a method that is not convincing when applied to the electroweak sector
of the Standard Model; the shortcomings are pointed out. In Section 5.3 the
matching conditions are calculated for an effective model in which the Higgs
and W-boson are missing, but neutral current interactions are mediated by a
pseudo gauge boson. This calculation is repeated in Section 5.4 in the context of
an effective contact interaction model, in which the neutral current interactions
of the Standard Model are effectively described by a four-fermion vertex.

Finally, the thesis is summarized in Section 6.1 in which the main results of
the previous chapters are highlighted. An outlook over possible future work
and improvements is given in Section 6.3.
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2. Theoretical Background

2.1. Electroweak Sector of the Standard Model

The Standard Model of particle physics is a non-abelian quantum field theory
that is invariant under a transformation according to its fundamental gauge
group SU(3)×SU(2)×U(1). The subgroup SU(3) is the gauge group associated
with the sector of the strong interaction, while the remaining SU(2)×U(1) is
the unbroken gauge group of the weak sector that historically emerged from the
effective Fermi interaction theory. The gauge groups determine the number of
gauge bosons that mediate the interaction of the three forces that are combined
in the Standard Model. There are eight bosons in the strong sector, the gluons,
and 3+1 bosons in the electroweak sector. The gauge bosons of the electroweak
sector are organized in an isotriplet and one isosinglet, commonly referred to
as W a

µ , a = 1, 2, 3 and Bµ, respectively. A quantum field theory with SU(N)
as the fundamental gauge group is called a Yang-Mills theory, for which the
Lagrangian of the self-interacting gauge fields Aa

µ reads

LYM = −1
4

⎛⎝∂µA
a
ν − ∂νA

a
µ + gYM

∑︂
b,c

fabcAb
µA

c
ν

⎞⎠2

, a, b, c = 1, . . . , N2 − 1.

(2.1)
The number of fields N2 − 1 of the theory is the number of generators of
the Lie-group and gYM is the coupling constant of the theory. The structure
constants fabc are not present in a theory with an abelian gauge group, but
give rise to the self-interaction in theories with non-abelian gauge groups via
three- and four-point interaction terms; ultimately, this self-interaction is the
reason for confinement and asymptotic freedom in quantum chromodynamics.
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2. Theoretical Background

The dynamics of the gluon fields and the isotriplet in the electroweak sector
are determined by two different Yang-Mills terms of the form (2.1), while the
isosinglet is described by a term of the non-selfinteracting field Bµ,

LB = −1
4 (∂µBν − ∂νBµ)2 , (2.2)

similar to the photon field in quantum electrodynamics. The part of the
Standard Model that describes the dynamics of the gauge bosons is the sum of
these three pieces,

LBosons = LB − 1
4

⎛⎝∂µÃ
a
ν − ∂νÃ

a
µ + g̃

8∑︂
b,c=1

fabcÃ
b
µÃ

c
ν

⎞⎠2

− 1
4

⎛⎝∂µW
i
ν − ∂νW

i
µ + g2

3∑︂
j,k=1

εijkW j
µW

k
ν

⎞⎠2

,

(2.3)

with i = 1, 2, 3; a = 1, . . . , 8 and where Ã refers to the gluon field. The
tensors fabc and εabc are the structure constants of the gauge groups SU(3)
and SU(2), respectively, and g̃ and g2 are the corresponding coupling constants.
As local gauge invariance prohibits the insertion of mass terms for the gauge
bosons, the masses of the physical W- and Z-bosons are generated by the Higgs
mechanism. The Higgs field Φ(x) is a complex scalar doublet and the associated
Lagrangian of the Higgs sector reads

LHiggs = (DµΦ)† (DµΦ) − V (Φ), (2.4)

with the covariant derivative

Dµ = ∂µ − ig2
σi

2 W
i
µ + ig1

Y

2 Bµ (2.5)

and the Higgs potential

V (Φ) = λ

4 |Φ|4 − µ2 |Φ|2 , λ, µ2 > 0, (2.6)
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2.1. Electroweak Sector of the Standard Model

where σi, i = 1, 2, 3 are the Pauli matrices, Y is the hypercharge and g1 is the
coupling constant of the U(1) gauge group. Equation (2.6) defines a Mexican
hat potential with a continuous global minimum off the origin. Following the
notation of Reference [2], the Higgs doublet Φ(x) may be parametrized as

Φ(x) = ⟨Φ⟩ +

⎛⎝ ϕ+(x)
1√
2 (η(x) + iξ(x))

⎞⎠ , (2.7)

where ⟨Φ⟩† =
(︂
0, v√

2

)︂
is a vacuum expectation value of the Higgs field, whose

absolute value is determined by v = 2µ√
λ

. The value v is fixed by the minimum of
the Higgs potential, but the orientation of ⟨Φ⟩† in the SU(2) space is arbitrary.
Inserting the parametrization (2.7) into Equation (2.4) yields kinetic and various
interaction terms for the fields ϕ+(x), η(x) and ξ(x) as well as the mass terms

[︂
(Dµ ⟨Φ⟩)† (Dµ ⟨Φ⟩)

]︂
mass terms

= v2

8

[︃
g2

2

(︂
W 1

µ + iW 2
µ

)︂ (︂
W 1µ − iW 2µ

)︂
+
(︂
g1Bµ + g2W

3
µ

)︂ (︂
g1B

µ + g2W
3µ
)︂ ]︃

= 1
2M

2
WW †µW

µ + 1
2M

2
ZZ
†
µZ

µ.

(2.8)
The masses of the physical W- and Z-boson emerge from the vacuum expectation
value of the Higgs field; they read MW = 1

2vg2 and MZ = 1
2v
√︂
g2

1 + g2
2 in terms

of the fundamental coupling constants and the vacuum expectation value of the
Higgs field. The corresponding fields are defined as

W±µ = 1√
2

(︂
W 1

µ ∓ iW 2
µ

)︂
, (2.9a)

Zµ = 1√︂
g2

1 + g2
2

(︂
g2W

3
µ + g1Bµ

)︂
= cos θWW 3

µ + sin θWBµ (2.9b)
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2. Theoretical Background

in terms of the weak mixing angle θW . It is defined by a ratio of the fundamental
gauge couplings,1

sin2 θW = g2
1

g2
1 + g2

2
, (2.10)

and serves as a parametrization of the mixing of the W 3
µ and Bµ gauge fields

into the physical Zµ and Aµ fields. The latter one remains massless after the
spontaneous symmetry breaking and reads

Aµ = 1√︂
g2

1 + g2
2

(︂
−g1W

3
µ + g2Bµ

)︂
= − sin θWW 3

µ + cos θWBµ. (2.11)

Solving Equation (2.10) for the weak mixing angle, one finds at tree-level

cos2 θW = M2
W

M2
Z

, sin2 θW = 1 − M2
W

M2
Z

(2.12)

as the relation between weak mixing angle and masses of the massive gauge
bosons. The cosine and sine of the weak mixing angle are commonly abbreviated
with c and s, respectively. A definition including arguments and accents will be
given in Section 2.3.

The previous introduction covers the essential properties of the Standard
Model in the fundamental basis of the W i

µ- and Bµ-fields and is required to
understand the origin of the weak mixing angle. For the discussion of matching
conditions later on, it is convenient to work in the physical basis of the W±µ -,
Zµ- and Aµ-fields. And since the strong interaction is not directly relevant
for the matching of electroweak parameters, it is sufficient to only discuss
the electroweak sector of the Standard Model (EWSM). The results of QCD
calculations are taken from the literature where needed, but the strong sector
of the Standard Model will not be discussed.

The starting point for the discussion of matching conditions is the Lagrangian
of the EWSM in terms of the physical fields. For brevity, terms involving

1Although less precise, the term “weak mixing angle” is often used as a synonym for sin2 θW ,
too.
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2.1. Electroweak Sector of the Standard Model

the physical Higgs boson η and interaction terms that do not contain either
the photon or Z-boson are not given explicitly, as these are not required for
the calculation of the parity violating interaction at one-loop order, which
is the main goal of this thesis. The WW-box graph does contribute to the
parity violating interaction, but the corresponding terms can not be absorbed
into universal parameters and do not contribute to the matching conditions,
consequently. The full EWSM Lagrangian may be separated into several pieces
according to

L = Lf + Lb + Lbs + LH + LY + Lfix + Lg, (2.13)

where Lf contains the kinetic terms of fermions and their interaction with the
gauge bosons and Lb constitutes the free gauge boson Lagrangian as well as
the couplings among gauge bosons. The kinetic terms of the scalar fields and
the interaction terms that involve gauge bosons and scalar fields are combined
in Lbs. The pieces LH and LY describe the interaction between the scalar fields
and the Yukawa couplings, respectively; they contribute to the gauge boson’s
self-energies only at higher loop order. The two remaining pieces Lfix and Lg

are the gauge-fixing Lagrangian and the Lagrangian of the Faddeev–Popov
ghosts, respectively. The exact definition of all pieces except for LH and LY is
given in the following.

The fermionic piece reads [3]

Lf = LfW +
∑︂

f

[︂
f
(︁
i/∂ −mf

)︁
f − eQffγ

µfAµ

]︂
+
∑︂

f

gZ

[︂
T 3

f f
L
i γ

µfL
i − s2Qffγ

µf
]︂
Zµ,

(2.14)

where LfW describes the interaction between fermions and the W-bosons
and gZ = e

cs is used as an abbreviation for the coupling constant of the Z-boson.
Conventionally, the masses of the fermions are generated by introducing a
Yukawa-coupling between Higgs and fermion fields. Here, they are introduced
as independent parameters of the theory for simplicity. The purely gauge bosonic
terms in the Lagrangian are
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2. Theoretical Background

Lb = − 1
4
⃓⃓⃓
∂µAν − ∂νAµ − ie

(︂
W−µ W

+
ν −W−ν W

+
µ

)︂⃓⃓⃓2
− 1

4
⃓⃓⃓
∂µZν − ∂νZµ + igZ

(︂
W−µ W

+
ν −W−ν W

+
µ

)︂⃓⃓⃓2
− 1

2
⃓⃓⃓
∂µW

+
ν − ∂νW

+
µ − ie

(︂
W+

µ Aν −W+
ν Aµ

)︂
+ igZ

(︂
W+

µ Zν −W+
ν Zµ

)︂⃓⃓⃓2
(2.15)

and Lbs is given by

Lbs = 1
2

⃓⃓⃓⃓
i∂µχ− i

e

s
W−µ ϕ

+ + iMZZµ − gZ

2 Zµχ

⃓⃓⃓⃓2
+
⃓⃓⃓⃓
⃓∂µϕ

+ + ieAµϕ
+ − ie

c2 − s2

2cs Zµϕ
+ − iMWW+

µ + e

2sW
+
µ χ

⃓⃓⃓⃓
⃓
2

+ . . . ;

(2.16)
the ellipsis represents kinetic and interaction terms of the physical Higgs η. The
gauge-fixing Lagrangian in ’t Hooft gauge reads

Lfix = − 1
2ξA

(∂µAµ) (∂νAν) − 1
2ξZ

(∂µZµ) (∂νZν) +MZ∂
µZµχ

− ξZ

2 M2
Zχ

2 − 1
ξW

(︂
∂µW+

µ

)︂ (︁
∂νW−ν

)︁
− iMW

(︂
∂µW+

µ ϕ
− − ∂µW−µ ϕ

+
)︂

− ξWM2
Wϕ+ϕ−,

(2.17)

where ξA, ξZ and ξW are the gauge fixing parameters, and the Lagrangian of
the Faddeev-Popov ghosts is

Lg = − u+
(︂
∂µ∂µ +M2

W

)︂
u+ − u−

(︂
∂µ∂µ +M2

W

)︂
u−

+ ie
(︂
∂µu+

)︂(︃
Aµ − c

s
Zµ

)︃
u+ − ie

(︁
∂µu−

)︁ (︃
Aµ − c

s
Zµ

)︃
u− + . . . .

(2.18)
The ellipsis stands for the kinetic terms of uA and uZ and for interaction terms
between the ghost particles and scalars and W-bosons.
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The Lagrangian defined above is not yet renormalized even though a special
index indicating bare quantities was omitted for readability. Calculations beyond
tree-level require a renormalization of the Standard Model, which is obtained by
replacing the bare fields and parameters by renormalized ones. For the following
discussion, it is sufficient to only introduce renormalization of the neutral gauge
and fermion fields by means of the replacement(︄

Aµ

Zµ

)︄
→
(︄
Aµ

0
Zµ

0

)︄
= X

(︄
Aµ

Zµ

)︄
, X =

(︄√
1 + δZA δZAZ

δZZA

√
1 + δZZ

)︄
,

f
L/R
i → f

L/R
i

√︃
1 + δZf

L/R.

(2.19)

Masses need to be renormalized, too, but will be expressed in terms of the bare
masses denoted by a subscript “0” in the following.

2.2. Regularization and Renormalization

The above definitions determine the theory unambiguously only at tree-level.
The computation of diagrams containing loops requires an integration over
all possible loop momenta, which diverges due to the lack of an upper bound
of the integration variable. Since the divergences stem from the integration
over unbounded momenta, they are commonly referred to as ultraviolet diver-
gences (UV-divergences). Regularization techniques can be used to quantify
the divergence which is a mandatory step for making physically meaningful
predictions.

The most common technique for regularizing the integrals is dimensional
regularization, as it preserves all the symmetries of the underlying theory,
including gauge symmetry. The divergent integrals are dimensionally regularized
by replacing the four-dimensional integration with a D-dimensional one,

∫︂ d4q

(2π)4 → µ4−D
∫︂ dDq

(2π)D
, (2.20)
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2. Theoretical Background

where µ is an arbitrary mass scale that is introduced to keep the mass dimension
of the integral fixed. This way, the integral becomes a meromorphic function
with a pole at D = 4. The one-loop divergences that occur after integration are
of the form

∆M = ∆ + log µ2

M2 , (2.21a)

∆ = 2
4 −D

− γEM + log 4π, (2.21b)

where M is a particle mass and γEM = 0.577 215 . . . is the Euler–Mascheroni
constant. Only the first term in the definition of ∆ is divergent in the physical
limit D = 4, but conventionally, the entire expression ∆ is referred to as a
UV-singular piece.

The constants and fields that appear in the Lagrangian have no precise physical
meaning as they are not measurable. The observable quantities like cross sections
are functions of these constants and fields as well as the meromorphic loop
functions in the limit D = 4. Since the observables have to be finite, the terms
that arise from the constants and fields of the Lagrangian have to cancel the
poles of the loop integrals such that the theoretical prediction of the observable
is finite, eventually. In addition, different choices of regularization will lead
to different results for the loop integrals that may or may not depend on an
unphysical scale parameter or cutoff. However, physical observables and the
theoretical predictions for these observables must not depend on an unphysical
scale or a particular choice of regularization prescription. To work around these
issues, the theory needs to be renormalized, which allows obtaining physical
meaningful predictions.

The theory is renormalized by rescaling the bare fields and constants with
appropriate renormalization constants and requiring that these renormalization
constants cancel the divergences of the space-time integrals. This requirement
fixes the singular parts of the renormalization constants; however, the finite
parts of the renormalization constants are arbitrary and one particular choice
of a system of equations that determines all renormalization constants is called
a renormalization scheme.
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2.2. Regularization and Renormalization

The on-shell renormalization scheme (OS) constrains the renormalization
constants such that the renormalized coupling constants and masses coincide
with the experimentally measured ones. The fields are renormalized by setting
the residue of the corresponding particle’s propagator to unity. This is not
strictly necessary but allows avoiding the computation of self interactions of
the external particles when calculating matrix elements. The OS scheme is
appealing, as it gives physical meaning to the constants in the theory, but is not
universally applicable. For instance, the mass parameters are set equal to the
experimentally determined pole masses, but since light quarks do not exist as
free particles at low energy due to confinement, the OS scheme is not applicable
to QCD.

In the minimal subtraction scheme (MS), the renormalization constants do not
contain any finite terms, but only the terms proportional to (4 −D)−1. They
are defined such that they cancel precisely the corresponding poles emerging
from the loop integrals. The MS renormalization constants can be obtained
from the OS ones by keeping only the 2

4−D -terms and correspondingly, the
renormalized MS loop expressions are derived from the unrenormalized ones
by removing these singular terms. A similar scheme is the modified minimal
subtraction scheme (MS), in which the renormalization constants also include
the finite terms −γEM + log 4π (see Section 2.3.1). The MS and MS scheme are
particularly useful in QCD, as the OS scheme can not be applied. Due to the
simplicity of the renormalization prescription, it is technically possible to avoid
renormalization constants altogether and just omit the UV singular terms when
evaluating Feynman loops.

The bare parameters of an unrenormalized theory are unphysical, as they can
not be determined in experiments. The measurable quantities are combinations
of the bare parameters and parts of the singular loop corrections. As these
combinations are finite, the bare parameters need to be singular themselves,
in order to cancel the singularities of the loop corrections. The process of
renormalization replaces the combination of loop singularities and bare parame-
ters by a new set of renormalized parameters such that all singularities in the
renormalized theory cancel. Eventually, all observable quantities are rendered
finite.
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2. Theoretical Background

The scale dependent logarithms log µ2

M2 arising in dimensional regularization
are absorbed into the renormalization constants in the on-shell scheme the
same way the singular terms are absorbed. Consequently, the OS-renormalized
parameters are independent of the renormalization scale. In schemes like MS
and MS, in which the logarithms are not separated from the one-loop correc-
tions, the logarithms remain a part of the renormalized theory, rendering the
renormalized parameters scale dependent.

2.3. Notation
The physical setup described above closely follows the one outlined in Refer-
ence [2]. Accordingly, the one-loop results presented therein can be adopted.
The notation that differs and other conventions are described in the following
subsections.

2.3.1. MS Renormalization
The MS-renormalized one-loop functions are obtained from the unrenormalized
ones by subtracting the UV-divergent terms 2

4−D , where D is the dimension
of space-time in dimensional regularization, as well as the Euler-Mascheroni
constant and log 4π that arise with every UV-divergent term. MS-renormalized
quantities can be obtained from the unrenormalized ones by applying the
following rule to the singular quantities ∆M introduced above,

∆M = 2
4 −D

− γEM + log 4π + log µ2

M2
MS−→ ∆̂M = log µ2

M2 . (2.22)

As in case of ∆̂M , the MS-renormalization of one-loop functions is indicated by
a hat in the following.

2.3.2. Matching
Matching is the process of determining effective model parameters by comparison
with a theory that is less approximate than the effective model; the details are
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2.3. Notation

laid out in Chapter 5. Since the more complete theory could be an effective
one itself and because the Standard Model is considered an effective theory
nowadays, it is misleading to refer to the two models as effective and complete
ones. Instead, the model with reduced degrees of freedom will be referred to as
child theory; in analogy, the other model is called parent theory. This reflects
the fact that the child model inherits some properties regarding renormalization
when performing the matching.

2.3.3. Abbreviations
• As will be described in Section 2.5.4, subsequently integrating out particles

from a theory allows defining the MS-renormalized quantities as piecewise
functions. These functions exhibit discontinuities in the scale parameter µ
at matching thresholds. Consequently, α̂(M) is ambiguous if M is a point
of discontinuity. To avoid ambiguity, the superscripts “+” and “−” are
commonly used in the literature to denote the right- and left-handed limits
of the MS-renormalized coupling parameters, respectively. This shadows
the fact that the two limits are not calculated within the same model of
the interacting theory. In light of the findings of Chapter 5, the notation

α̂p(M) = lim
ε→0

α̂(M + ε), α̂c(M) = lim
ε→0

α̂(M − ε) (2.23)

is used to highlight that the two numbers stem from a child (c) and a
parent (p) model.

• When appropriate, a is used as a short form of the fraction α
π ,

a = α

π
. (2.24)

Super- and subscripts as well as arguments are understood as decorations
of α; for instance, âs(µ) denotes the MS-renormalized strong coupling
constant αs at scale µ divided by π.

• The common short notation c and s for cos θW and sin θW , respectively,
is used. Similarly, ŝ2(µ) reads sin2 θ̂W (µ) and so forth.
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2. Theoretical Background

• Transverse and longitudinal parts of self-energy and irreducible two-point
functions are denoted by a subscript “T ” and “L”. The applied convention
for the decomposition reads

Σµν(q2) =
(︃

−gµν + qµqν

q2

)︃
ΣT (q2) − qµqν

q2 ΣL(q2) (2.25)

for a generic self-energy function.

• A subscript “fin” is used to denote finite terms of a self-energy function,
that is all terms remaining when dropping the ∆M defined in Equa-
tion (2.21). The piece ∆M contains finite terms which are also not part
of a self-energy with subscript “fin”.

• The operators ℜ and ℑ are used to denote the real and imaginary parts
of complex numbers, respectively.

2.3.4. Neutral Current Interactions and Vector-Axial Vector
Coupling Constants

There are different options to parametrize the coupling of the neutral current.
In Reference [2], the coupling of a fermion to the Z-boson is expressed in terms
of the electric charge e =

√
4πα and the vector and axial vector couplings

vBHS
f = T f

3 − 2s2Qf

2cs and aBHS
f = T f

3
2cs , (2.26)

where Qf and T f
3 denote the charge and the third component of the weak

isospin of a fermion, respectively. As will be described later, in Section 4.2.3,
one can absorb certain loop corrections in the weak mixing angle that occurs
in the numerator of the vector coupling constant. However, these correction
terms leave the denominator of Equation (2.26) unaltered, making it more
difficult to redefine sin2 θW consistently. Therefore, it is convenient to express
the fermion–neutral current interaction in terms of the Fermi constant

GF = πα√
2c2s2M2

Z

+ O
(︁
α2)︁. (2.27)
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2.4. Fermi Constant

Using the Fermi constant is also favorable, as it s known much more precisely
than the mass of the W-boson. The Feynman rule of the fermion–Z-boson
vertex that reads ieγµ

(︂
vBHS

f − aBHS
f γ5

)︂
in Reference [2] then changes to

Z

f

f

ˆ︁= iMZ

√︂√
2GFγµ (vf − afγ5) , (2.28)

where

vf = T f
3 − 2s2Qf , (2.29a)

af = T f
3 (2.29b)

are the vector and axial vector coupling constants that are used instead of the
ones in Equation (2.26) in the following.

2.4. Fermi Constant
As stated before, using the Fermi constant GF is beneficial, as it can be
determined accurately by measuring the lifetime of the muon. The Fermi
constant is defined by the relation

1
τµ

=
G2

Fm
5
µ

192π3

(︄
1 − 8m

2
e

m2
µ

)︄[︄
1 − 3

5
m2

µ

M2
W

+ α

2π

(︃25
4 − π2

)︃]︄
, (2.30)

where τµ is the muon’s lifetime and me and mµ are the masses of the electron and
muon, respectively. This formula stems from a leading order calculation of the
muon decay in the Fermi interaction model plus photonic one-loop corrections
that could already be calculated within this model. These corrections include
the emission of real bremsstrahlung photons and a virtual photon line between

29



2. Theoretical Background

the muon and the electron. For historical reasons, these photonic corrections are
part of the definition of GF . At one-loop order, the Fermi model is insufficient
to describe the muon decay properly and several additional diagrams have to
be taken into account in the Standard Model.

In the Standard Model, the virtual photon correction that is included in
Equation (2.30) is in fact a part of the γW -box graph. The remaining part of
this box graph has to be combined with the vertex and external leg corrections
as well as the massive box diagrams and the W-boson’s self-energy diagram.
This calculation was first done in Reference [4], where it was shown that the
combination of all one-loop corrections factorize as

GF = πα√
2c2s2M2

Z

1
1 − ∆r , (2.31)

where ∆r accounts for the corrections. In the OS scheme, the correction reads [5]

∆r = ΠW W
T (0) + α

4πs2

(︄
6 + 7 − 4s2

2s2 log c2
)︄
, (2.32)

where ΠW W
T (0) is the transverse part of the OS renormalized self-energy of

the W-boson evaluated at zero momentum transfer. In the MS scheme, the
relation (2.31) holds with a different correction term ∆r̂. The corresponding
calculation of ∆r̂ in the MS scheme was performed some time later [6] with the
result2 [7]

∆r̂ = ℜ

⎛⎝ Σ̂W W
T (0)
M̂

2
W

−
Σ̂ZZ

T

(︁
M̂

2
Z

)︁
M̂

2
Z

⎞⎠
− 2δê

ê
+ α

4πŝ2

[︄
4 log µ2

M2
Z

+
(︃ 7

2ŝ2 − 6
)︃

log ĉ2 + 6
]︄
.

(2.33)

Equation (2.33) is expressed in terms of the MS renormalization constant of the
electric charge δê

ê . Due to the simple prescription of MS, the renormalization
2Note that the expression given explicitly in Reference [6] was obtained using µ = MZ and

is less general than Equation (2.33)
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constant can be obtained from the OS one by dropping the UV divergent pieces
according to Equation (2.22); It reads [2]

−2 δê

ê

⃓⃓⃓⃓
µ=MZ

= α

4π

⎡⎣4
3
∑︂

f

Q2
f log

m2
f

M2
Z

− 7 log c2

⎤⎦ . (2.34)

As the Fermi constant is an observable, the one-loop expressions of ∆r or ∆r̂
can be used with Equation (2.31) and the mass of the Z-boson to determine
the mass of the W-boson, for which the experimentally determined value is less
precise than the value of the other observables.

2.5. Coupling Parameters

This section is dedicated to an introduction of the concept of running coupling
parameters, the renormalization group equation and matching conditions. The
following subsections are organized as follows: The energy dependence, that
is the “running” of coupling parameters, is discussed in Section 2.5.1, which
is followed by an introduction of the renormalization group equation in Sec-
tion 2.5.2. The latter can be used to rescale a coupling parameter by solving a
differential equation as discussed in Section 2.5.3. Last, the concept of matching
two different theories to integrate out heavy particles and create effective low
energy models is presented in Section 2.5.4. An example of how to apply the
methods described in the following can be found in Appendix A.

2.5.1. Running Coupling Parameters

Coupling parameters, as all other parameters of a given model, are obtained by
measurements of an observable at a certain energy scale, making them momen-
tum transfer dependent. “Coupling constant” refers to such a parameter for a
fixed momentum transfer, which could in principle be addressed as normalization
scale or normalization point of the theory. For instance, the electromagnetic
coupling constant α is measured in the Thomson limit; experimental difficulties
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Figure 2.1.: Leading order and next-to-leading order Feynman diagrams of
electron-electron scattering.

left aside, it could also be obtained from scattering experiments with momen-
tum transfer close to the Z-pole. But regardless of whether α ≡ α(q2 = 0)
or α(q2 = −M2

Z) is used, the theoretical predictions for any observable need
to agree up to a certain level of precision. In a less precise manner, “coupling
constant” is also used for parameters that “run” due to the momentum depen-
dence. To avoid ambiguities, “coupling constant” is to be understood as usual,
while “coupling parameter” refers to the more general momentum dependent
coupling strength in this section.

Linking the initially undetermined coupling parameter of a given theory
with experimental data requires a theoretical prediction for the outcome of the
experiment, which can be inverted in order to compute the coupling parameter
within this theory. For instance, the electromagnetic fine-structure constant
in QED can be measured in an electron–electron scattering experiment. The
leading order diagram of Møller scattering is depicted in Figure 2.1a; the corre-
sponding theoretical cross section σMøller

(0) (q2) can be obtained using Feynman
rules, depends on the squared momentum transfer q2 and is proportional to the
coupling constant α2

(0), where the subscript “(0)” indicates that α(0) and σMøller
(0)

are tree-level quantities.
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2.5. Coupling Parameters

Initially, α(0) is undetermined; it can be obtained at a certain energy scale q2

by equating the theoretical cross section with the experimentally measured one.
This yields

α2
(0)
(︁
q2)︁ =

σexp
(︁
q2)︁

σth
(0)
(︁
q2)︁ , (2.35)

where σexp
(︁
q2)︁ refers to a cross section measurement at momentum transfer q2

and

σth
(0)
(︁
q2)︁ :=

σMøller
(0)

(︁
q2)︁

α2
(0)

(2.36)

is introduced to separate α(0) from the cross section. The common fine-structure
constant α that accounts for the coupling strength of charged leptons in the
Thomson limit is defined by α := α(0)

(︁
q2 = 0

)︁
.

At next to leading order, it is necessary to take into account the one-loop
diagrams depicted in Figure 2.1b. The self-energy is a tensor that may be
decomposed according to Equation (2.25). Using the Feynman rules (B.1)
and (B.3), the concatenation of a propagator, the self-energy and another
propagator reads(︃

−gµν + qµqν

q2

)︃ −i
q2 Πγγ

T,R

(︁
q2)︁− qµqν

q2
−i
q2 Πγγ

L,R

(︁
q2)︁, (2.37)

where Πγγ
T/L,R

(︁
q2)︁ =

Σγγ
T/L,R

(︁
q2
)︁

q2 denotes the vacuum polarization function. The
subscript R denotes a certain renormalization scheme, as the evaluation of the
loop integral in the self-energy requires the introduction of a regularization
and renormalization prescription that cancels the occurring singularities. The
terms proportional to qµqν do not contribute to matrix elements due to the
conservation of the electromagnetic current. Consequently, the sum of the
propagator and the previously determined concatenation may be written only
in terms of the transverse piece,

−igµν

q2

(︂
1 − Πγγ

T,R

(︁
q2)︁)︂ . (2.38)
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Incorporating Diagram 2.1b and omitting terms quadratic in Πγγ
T ;R, Equa-

tion (2.35) becomes3

α2
R

(︁
q2, µ2)︁ =

σexp
(︁
q2)︁

σth
(0)
(︁
q2)︁ 1

1 − 2Πγγ
T,R

(︁
q2, µ2)︁ =

α2
(0)
(︁
q2)︁

1 − 2Πγγ
T,R

(︁
q2, µ2)︁ , (2.39)

where µ refers to the renormalization scale and Πγγ
T,R ∝ αR implicitly contains a

factor αR. In case of on-shell renormalization, the renormalization conditions are
imposed such that the coupling constant is identical to the tree-level constant,

αOS := αOS
(︁
q2 = 0, µ2)︁ != α(0) ⇔ Πγγ

T,OS

(︁
q2 = 0, µ2)︁ = 0. (2.40)

It is common to use α without any subscripts to denote the OS coupling
constant, which will also be used in the following. On the other hand, the
modified minimal subtraction scheme requires subtracting a certain set of
terms from the regularized self-energy. Following the prescription outlined in
Section 2.3.1, one finds

Π̂γγ
T

(︁
q2 = 0, µ2)︁ =

α̂
(︁
µ2)︁

3π log µ2

m2
e

, (2.41)

which leads to

α̂2(︁µ2)︁ := α̂2(︁q2 = 0, µ2)︁ = α2
(︄

1 −
2α̂
(︁
µ2)︁

3π log µ2

m2
e

)︄−1

, (2.42)

with an implicit squared charge factor Q2
e = 1. The MS-renormalization process

removed the singularities from the loop integrals but left behind a scale depen-
dence. This dependence of the renormalized coupling constant is necessary, as
it precisely cancels the ones of the loop corrections.

The one-loop cross sections in the OS and MS-scheme read

σOS
(︁
q2)︁ = α2σth

(0)
(︁
q2)︁ [︂1 + Πγγ

T,OS

(︁
q2)︁]︂−2

, (2.43a)
3This is not Dyson resummed, as the contribution of Diagram 2.1b is added to the theoretical

cross section.
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Πγγ
T,OS

(︁
q2)︁ =

Σγγ
T,fin

(︁
q2)︁

q2 (2.43b)

and

σMS
(︁
q2)︁ = α̂2(︁µ2)︁σth

(0)
(︁
q2)︁ [︂1 + Π̂γγ

T

(︁
q2, µ2)︁]︂−2

, (2.44a)

Π̂γγ
T

(︁
q2, µ2)︁ = α

3π log µ2

m2
e

+
Σγγ

T,fin
(︁
q2)︁

q2 (2.44b)

after Dyson resumming the reducible higher order contributions, where Σγγ
T,fin

is the finite part of the self-energy given in Reference [2]. Inserting Equa-
tion (2.42) into Equation (2.44) and expanding the fractions in Equations (2.43)
and (2.44), one finds that the scale dependence cancels at one-loop order in the
MS-prediction,

σMS
(︁
q2)︁ = α2σth

(0)

(︄
1 − 2

Σγγ
T,fin

(︁
q2)︁

q2

)︄
+ O

(︁
α4)︁, (2.45)

and that the OS and MS cross sections are identical, when terms of order O
(︁
α4)︁

are neglected,

σOS
(︁
q2)︁ = α2σth

(0)
(︁
q2)︁(︄1 − 2

Σγγ
T,fin

(︁
q2)︁

q2

)︄
+ O

(︁
α4)︁. (2.46)

The electromagnetic coupling constant is defined as the coupling strength
in the Thomson limit; consequently it does not depend on the energy scale q2.
However, Equations (2.45) and (2.46) illustrate that the change in the vacuum
polarization corresponding to a change in momentum transfer can be described
by an observable modification of the coupling strength, which may be referred
to as a running coupling parameter,

σOS/MS

(︁
q2)︁ = α2

run
(︁
q2)︁σth

(0)
(︁
q2)︁+ O

(︁
α4)︁, (2.47a)

α2
run
(︁
q2)︁ = α2

(︄
1 − 2

Σγγ
T,fin

(︁
q2)︁

q2

)︄
. (2.47b)
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2.5.2. Renormalization Group Equation
The previous section showcased the scale independence of an observable when
combining the coupling with the self-energy function. In the simple example in
Section 2.5.1 the renormalization scale µ was arbitrary but fixed; the scale that
was used when determining α̂

(︁
µ2)︁ from experiment was the same as the one

used in making the prediction (2.44). If two different scales are used, the scale
dependent terms do not cancel as before. Using µ1 to denote the scale that was
used to determine coupling parameter α̂

(︁
µ1
)︁

by comparison with experimental
data and µ2 as the scale for which the cross section should be computed yields

σMS
(︁
q2)︁ = α̂2(︁µ2

1
)︁
σth

(0)
(︁
q2)︁ [︂1 + Π̂γγ

T

(︁
q2, µ2

2
)︁]︂−2

= α2σth
(0)

(︄
1 − 2α

π
log µ

2
2
µ2

1
− 2

Σγγ
T,fin

(︁
q2)︁

q2 + O
(︁
α2)︁)︄ (2.48)

in a naive calculation. The scales do not cancel, and the result depends on a
logarithm of the ratio µ2

µ1
. Equation (2.48) is incorrect, as α̂2(︁µ2

2
)︁

must be used
instead of α̂2(︁µ2

1
)︁

as first factor. Accordingly, it is necessary to obtain α̂
(︁
µ2

2
)︁

from experimental data itself or derive its value from the experimentally de-
termined α̂

(︁
µ2

1
)︁
, that is to rescale the coupling constant. In this section, the

renormalization group equation is introduced, which can be used to rescale a
coupling parameter and resolve the problem sketched in Equation (2.48). The
concrete application of this new technique will be presented in Section 2.5.3.

The starting point for rescaling the coupling is the fact that physical observ-
ables must not depend on the particular choice of the scale µ. This can be
expressed as

µ2 d
dµ2 O

(︁
α,m, µ2)︁ = 0, (2.49)

where O is an observable whose expression depends on the coupling, a mass
and the renormalization scale. Equation (2.49) is based on the assumption
that the theory involves only a single mass m and a single coupling constant α.
More general discussions also including anomalous dimensions can be found in
textbooks [3, 8]. As shown in Section 2.5.1, the coupling parameter generally
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depends on the scale µ, but also on the mass and the coupling itself. The same
applies to the renormalized mass, so that the parameters in Equation (2.49)
need to be understood as functions of three parameters,

αR = αR

(︁
α,m, µ2)︁, mR = mR

(︁
α,m, µ2)︁. (2.50)

The subscript R denoting the renormalization scheme is used to highlight
that αR and mR are functions instead of constants. This allows rewriting
Equation (2.49) as

µ2
(︃
∂

∂µ2 + dαR

dµ2
∂

∂α
+ dmR

dµ2
∂

∂m

)︃
O
(︁
αR,mR, µ

2)︁ = 0, (2.51)

which contains the two important derivatives

β
(︁
α,m, µ2)︁ := µ2 d

dµ2αR

(︁
α,m, µ2)︁, (2.52)

γ
(︁
α,m, µ2)︁ := µ2 d

dµ2mR

(︁
α,m, µ2)︁. (2.53)

Equation (2.51) is called renormalization group equation (RGE) and implies
that a change of the renormalization scale µ induces a shift of the renormalized
coupling parameter and mass that compensates for the change in the expression
of O, which is required as the observable must not depend on the unphysical
scale, ultimately. This shift is governed by the β- and γ-functions defined in
Equations (2.52) and (2.53). Given an expression for β and γ, which can be
readily obtained once the theory is properly renormalized, one can solve the
differential equations4 to find the running mass and coupling parameter.

In a perturbative approach it is convenient to expand Equations (2.52)
and (2.53) as a power series in the coupling parameter. This also allows
systematically taking into account strong interaction effects that enter via

4The associated differential equations are called characteristic equations but will also be
referred to as β- and γ-functions throughout this thesis.
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quark loops. For instance, the MS-β-function describing the running of the
electromagnetic coupling constant in the Standard Model reads [9]

β̂ = − α̂2

π

∞∑︂
i=0

[︄
β̂i

(︃
α̂

π

)︃i

+ δ̂i

(︃
α̂s

π

)︃i
]︄

+ O
(︁
α̂3α̂s

)︁
(2.54)

when neglecting mixed terms of the order α̂α̂s within the brackets. Since the
β-function is unambiguously defined as the derivative of the coupling parameter,
Equation (2.54) serves as a definition for the coefficients on the right-hand
side. Inserting Equation (2.42) into (2.52) allows obtaining the leading order
coefficient

β̂0 = −1
3 . (2.55)

The n-th coefficient of the β-function is determined by the result of an n+1-loop
calculation. The coefficients are fixed by the scale dependent logarithms, only.
Therefore, they can be obtained without evaluating the full integrals.

2.5.3. Renormalization Group Evolution

The scaling behavior of the coupling is given by the RGE introduced in Sec-
tion 2.5.2 and is a consequence of observables being independent of the scale.
In this section, the RGE will be used to rescale the electromagnetic coupling
and resolve the issue that was posed in Equation (2.48). To the lowest order in
perturbation theory, all terms in the β-function except one may be neglected
and one obtains

µ2 dα̂
dµ2 = − α̂2

π
β̂0 + O

(︁
α3)︁, (2.56)

with the leading coefficient β̂0 given in Equation (2.55). Equation (2.56) is an
ordinary differential equation that can be solved by imposing an initial value
condition, α̂

(︁
µ2

0
)︁
, where µ2

0 is the initial scale. The solution reads

π

α̂
(︁
µ2)︁ = π

α̂
(︁
µ2

0
)︁ + β̂0 log µ

2

µ2
0
. (2.57)
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and does not make use of any additional approximations. It can be used to
express α̂2(︁µ2

2
)︁

in terms of α̂
(︁
µ2

1
)︁
,

α̂2(︁µ2
2
)︁

=
[︄

1
α̂
(︁
µ2

1
)︁ + β̂0

π
log µ

2
2
µ2

1

]︄−2

= α̂2(︁µ2
1
)︁(︄

1 − 2
α̂
(︁
µ2

1
)︁

π
β0 log µ

2
2
µ2

1

)︄
+ O

(︁
α4)︁. (2.58)

As stated before, Equation (2.48) is incorrect, as it mixes the coupling parameter
at scale µ1 with the self-energy function at scale µ2. The correct cross section
in which µ2 is used in the electromagnetic coupling parameter as well as the
self-energy function can now be obtained using Equation (2.58). Combining all
pieces, one finds

σMS
(︁
q2)︁ = σth

(0)
(︁
q2)︁ α̂2(︁µ2

2
)︁[︂

1 − Π̂γγ
T

(︁
q2, µ2

2
)︁]︂2

= σth
(0)
(︁
q2)︁α̂2(︁µ2

1
)︁ [︄

1 − 2α
π
β0 log µ

2
2
µ2

1

]︄

·
[︄
1 + 2α

3π log m
2
e

µ2
2

− 2
Σγγ

T,fin
(︁
q2)︁

q2

]︄
+ O

(︁
α4)︁

= α2σth
(0)
(︁
q2)︁ [︄1 − 2

Σγγ
T,fin

(︁
q2)︁

q2

]︄
+ O

(︁
α4)︁,

(2.59)

where Equation (2.42) was applied to α̂
(︁
µ2

1
)︁

on the last line. The final expression
when combining the electromagnetic coupling and self-energy function with the
same scale µ2 is identical to the result of Section 2.5.1 that was obtained using
only one scale. This shows that the scale µ is arbitrary to some extent, but one
has to be careful to only use quantities with the same scale. The RGE can be
used to relate the matching parameter at different scales. Another important
observation can be made: The exact solution of the RGE on the first line of
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Equation (2.58) contains not only the leading term that is given explicitly on
the second line. Expanding the denominator of Equation (2.58) in α̂

(︁
µ2

1
)︁

yields

α̂2(︁µ2
2
)︁

= α̂2(︁µ2
1
)︁ ∞∑︂

n=0
n

(︄
α̂2(︁µ2

1
)︁

π
β0 log µ

2
1
µ2

2

)︄n

, (2.60)

which also contains higher order contributions of the scale dependent logarithm.
These additional terms correspond to reducible n-loop diagrams that contribute
to the photon propagator and are automatically accounted for when the RGE
is solved analytically. If the difference of the scales spans several orders of mag-
nitudes, the logarithm becomes large itself leading to a more slowly converging
perturbation series. This is the reasons why the use of the RGE is advantageous,
as it automatically resums the large logarithms.

Although the coupling parameter as a function of µ is not an observable and
the relation to (2.47) is not obvious, it is also referred to as running coupling
parameter in the literature. It turns out that the RGE-running as described
in this section contains a relevant part of the momentum dependent coupling
parameter introduced in Section 2.5.15.

2.5.4. Matching Conditions

The scattering of particles at low energy is dominated by light particles that
are sufficiently light to be produced as real particles in the process. Heavier
particles may occur in the scattering cross section as virtual particles in loops
but play a secondary role, as their numerical contributions are small compared
to that of the light particles. This has been proven for any renormalizable theory
in terms of the “decoupling theorem” [11], given that the mass of the heavy
particle is sufficiently large: The effective theory without the heavy particle is
accurate up to order p

M , where p is an energy scale and M is the mass of the
decoupling particle.

5This can be seen when comparing the weak mixing angles as defined in References [9]
and [10].
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Accordingly, it is desirable to describe scattering processes at low energy
using a theory that does not contain the heavy particles, in order to simplify
calculations and theoretical predictions for physical observables. The framework
of effective theories is the appropriate tool in this context. The effective
Lagrangian is derived from the “complete” one by omitting the heavy particle
but using a different set of parameters (coupling constants and particle masses)
for the effective theory [12]. Then, one has to relate the parameters of both
theories in order to construct a physically meaningful effective theory. As will
be shown later, the effective model will inherit the renormalization prescription
of the “complete” theory. Since the Standard Model has to be considered
incomplete and because this concept can also be applied to the removal of heavy
particles from an effective model, the term “complete theory” is unsuitable.
To highlight the relation between the model including the heavy particles and
the one with only light particles, they will be called parent and child model,
respectively.

By construction, the child theory will fail at high energies where the heavy
particles become active degrees of freedom and can be produced as real particles.
However, it needs to be in agreement (up to the accuracy dictated by the
perturbative expansion) with the parent theory below the creation threshold of
the heavy particles in order to be physically relevant. This requirement allows
determining the parameters of the effective theory by equating (matching) it
with the parent theory, yielding the so-called “matching conditions”, relations
between the parameters of both models.

The derivation of matching conditions in pure QCD has been extensively
studied (see References [13–15] and citations therein). While the applicability
to the electroweak sector of the Standard Model is not obvious, these results can
be directly used in QED. However, in case of the electromagnetic coupling, the
matching conditions can be derived in a less systematic but more simple way,
which will be briefly illustrated in the following. A more systematic approach
to the matching including the weak interaction will be discussed in Chapter 5.

The momentum dependent coupling parameter (2.39) reads

α
c/p
R

(︁
q2, µ2)︁ = α

(︂
1 + Πc/p

T,R

(︁
q2, µ2)︁)︂ , (2.61)
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where the superscript “c/p” refers to the parent (p) or child (c) theory, re-
spectively. For readability, the superscript “γγ” is omitted here and in the
remainder of this section. In case of the MS-renormalized QED of an electron
and a muon, the vacuum polarization function at one-loop order is given by

Π̂e,µ
T

(︁
q2, µ2)︁ = α

3π

(︄
log µ2

m2
e

+ log µ2

m2
µ

)︄
+ Πe

T,fin
(︁
q2)︁+ Πµ

T,fin
(︁
q2)︁, (2.62)

where the terms are separated into pieces originating from the electron and
muon, respectively. The effective one-lepton QED can be derived from the
two-lepton theory by decoupling the muon. Using αp

R and αc
R as an abbreviation

for the coupling parameters of the two-lepton and one-lepton QED, respectively,
and inserting Equation (2.61) yields

α̂p(︁q2, µ2)︁− α̂c(︁q2, µ2)︁ = α2

3π log µ2

m2
µ

+ α2Πµ
T,fin

(︁
q2)︁+ O

(︁
α3)︁ (2.63)

for the difference of the coupling parameters, confirming that the coupling
parameters of both theories are identical at tree-level. The first term on the right-
hand side of Equation (2.63) carries the scale dependence, while the remaining
part of the vacuum polarization function contains all terms independent of µ.
The electromagnetic coupling constant is determined in the Thomson limit,
that is q2 = 0, in which case Equation (2.63) simplifies to

α̂p(︁µ2)︁− α̂c(︁µ2)︁ = α2

3π log µ2

m2
µ

+ O
(︁
α3)︁, (2.64)

as Πµ
T,fin

(︁
q2)︁ vanishes at zero momentum transfer.

A common technique is to define a coupling parameter as a piecewise function
of the form

α̂
(︁
µ2)︁ =

{︄
α̂p(︁µ2)︁, µ ≥ mµ

α̂c(︁µ2)︁, µ < mµ

(2.65)

and with additional pieces if more particles exist that are removed successively.
The definition (2.65) spans several effective models, is discontinuous in general
and usually also referred to running coupling parameter.
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The scale µ∗ at which the theories are matched, that is the scale that de-
termines α̂c in terms of α̂p, has to be fixed. While the particular choice of
the matching scale for each particle is arbitrary, it has a small effect on the
numerical value of the coupling parameter at the final scale. In case of QCD, it
was shown that a variation of the matching scale by approximately one order of
magnitude alters the strong coupling constant at the final scale by less than
one percent [15, 16]. It is reasonable to choose µ∗ such that no large logarithms
occur, µ∗ ∼ mµ, to fully exploit the resumming properties of the RGE. A
convenient choice is µ∗ = mµ as all scale dependent logarithms vanish in this
case and the matching condition is determined by the finite terms, solely. Here,
this leads to a continuous coupling parameter (2.65), as the finite part of the
vacuum polarization vanishes at one-loop order; at two-loop order, the vacuum
polarization contributes to Equation (2.64) inducing a discontinuity at each
particle threshold.

A second choice of µ∗ that is worth mentioning is the one that is determined
by equality of the coupling parameters at the matching scale, α̂p(︁µ∗2)︁ = α̂c(︁µ∗2)︁.
Since Πµ

fin
(︁
q2)︁ is independent of µ, it is possible to tune µ∗ such that the terms

on the right-hand side of Equation (2.63) cancel. In case of Equation (2.64)
it coincides with µ∗ = mµ but will differ when two-loop effects are taken into
account. This choice is more laborious but has been used for the running
of the weak mixing angle in a region where the coupling parameter can be
constrained only phenomenologically due to strong interaction effects that break
perturbation theory [17, 18].

The matching was introduced in order to decouple a heavy particle, that is to
remove a particle and switch over to an effective theory. As indicated before, the
matching conditions also need to be applied when switching from an effective
theory to another effective theory; both for adding or removing a particle. This
allows finding the appropriate coupling parameter of a theory including heavy
particles when the parameters have been obtained from experiment using an
effective theory without those heavy particles.

The steps that are necessary for the renormalization group evolution of a
single coupling parameter including the application of appropriate matching
conditions are outlined in the following:
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1. Obtain a numerical value for the coupling constant by comparing a the-
oretical prediction with experimental data similar to Equations (2.39)
and (2.42).

2. Use the RGE to evolve the parameter close to an appropriate matching
scale of the next lighter (heavier) particle as done in Equation (2.58).

3. Use the matching conditions to determine the coupling parameter of the
theory without (including) this particular particle by equating observables
or Green functions similar to Equations (2.61) and (2.64). Go to Step 2
if additional particles need to be decoupled (incorporated).

4. After crossing the last particle threshold, use the RGE to evolve the
coupling parameter to the final scale.

Since fermionic matching conditions in QED at one-loop order do not cause a
discontinuity at threshold, two-loop effects need to be taken into account to
demonstrate above steps in a simple example. The required two-loop expressions
are introduced in Chapter 3 so that the applied illustration of this section is
postponed till Appendix A.
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3. Electromagnetic Coupling in the
Modified Minimal Subtraction
Scheme

The electromagnetic coupling constant is required for a prediction of the parity
violating asymmetry APV at tree-level which is needed to determine the weak
mixing angle in low energy experiments like P2. Since the electromagnetic
coupling constant is measured as the strength of charged particle couplings in
the Thomson limit, that is at zero momentum transfer, there is no difficulty in
obtaining a precise value for the theoretical prediction of the parity violating
asymmetry. The most precise determination of the weak mixing angle on the
other hand stems from measurements at the Z-pole which can not be directly
used in the calculation of a low energy observable. In principle, the weak mixing
angle at low energies can be obtained by solving the β-function as shown in
Section 2.5.3, but this requires a value of the electromagnetic coupling constant
at the same scale as will be seen later. In order to find a prediction of the weak
mixing angle at low energies one has to calculate the electromagnetic coupling
constant at high energy scales in a first step.

Difficulties arise due to hadronic effects in the low energy regime that can not
be treated perturbatively. The electromagnetic coupling is defined unambigu-
ously at tree-level, but becomes renormalization scheme dependent at higher
loop orders as described in Section 2.5.1. While the OS scheme is defined
such that the vacuum polarization vanishes in the Thomson limit (Πγγ

T (0) = 0),
leaving the OS coupling α the same for all orders of perturbation theory, the
coupling in the MS-scheme acquires a loop correction and a dependence on
the renormalization scale µ induced by Π̂γγ

T (0) ̸= 0. The vacuum polarization
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at zero momentum transfer can be perturbatively derived in the electroweak
sector of the Standard Model, but hadronic effects render it impossible to treat
quarks and the strong interaction the same way at energy scales less than
roughly 1.2 GeV.

One possible solution is the application of an unsubtracted dispersion relation
approach allowing the computation of the vacuum polarization - and thus
the calculation of the electromagnetic coupling constant - by integrating over
experimental data. Choosing appropriate data allows deriving the EM coupling
in an energy region, where the strong interaction may be treated perturbatively,
too. Utilizing the renormalization group equation, one can then evolve the
coupling constant to higher energy scales.

In this chapter, the renormalization group running of the electromagnetic
coupling is discussed based on Reference [9]. The starting point is the relation
between the electromagnetic coupling in the OS and MS-schemes in terms of
the vacuum polarization function, which will be computed in the following.
Using Equation (2.39), the relation at leading order, that is without Dyson
resumming reducible diagrams, reads1

α̂ (µ) = α

1 − Π̂γγ
T

(︁
q2 = 0, µ2)︁ . (3.1)

Apart from Section 3.1.2, this chapter reproduces and verifies the results of
Reference [9]. It is organized as follows: An unsubtracted dispersion relation
approach to work around hadronic effects is described in Section 3.1 and the non-
hadronic effects are discussed in Section 3.2. The results of these two sections are
needed to obtain a theoretical value of the electromagnetic coupling just above
the non-perturbative energy regime using Equation (3.1). This value can be
used as a starting point for the RGE evolution of α̂(µ) towards the Z-pole. The
evolution of the coupling follows the ideas laid out in Sections 2.5.3 and 2.5.4 and
requires a solution of the RGE, which is described in Section 3.4. A perturbative
expression of the vacuum polarization at large energy scales needed for the RGE

1The notation of Reference [19] which is used as a source for perturbative QCD expressions
and Reference [9] differs from the present one in that a factor of 4πα is separated from the
vacuum polarization function.
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as well as the matching conditions is derived in Section 3.3. Based on this, the
matching condition for integrating out the W-boson is presented in Section 3.5.
A treatment of the non-perturbative regime is required to obtain values of the
electromagnetic coupling for scales between the pion creation threshold and
the hadronic scale. This is a necessity for the calculation of the weak mixing
angle at low energy, as it depends on the electromagnetic coupling at low energy.
A method to constrain the electromagnetic coupling phenomenologically and
avoid perturbation theory in the non-perturbative regime was investigated in
References [9, 18] but will not be discussed in this thesis.

3.1. Dispersion Relation Approach to the Vacuum
Polarization Function

As mentioned before, the hadronic contribution Π̂γγ
T,had to the vacuum polar-

ization function can not be calculated perturbatively. In this section, the
unsubtracted dispersion relation approach as applied in Reference2 [9] is dis-
cussed that allows deriving a numerical value of the electromagnetic coupling
constant for the scale µ just above the non-perturbative regime. As this section
deals with hadronic effects only, the subscript “had” is omitted in the following
and will be put back in Section 3.2. The superscript “γγ” and subscript “T”
will be omitted in the entire chapter, as no other self-energies contribute to the
electromagnetic coupling when neglecting electroweak two-loop effects.

Employing the analyticity of the vacuum polarization function, its value at
the origin can be obtained by means of Cauchy’s integral formula. Avoiding
large values of the momentum, Π̂ can be written as3

Π̂(0) = 1
2πi

∮︂
|s|=s0

ds Π̂(s)
s

, s0 < 4m2
π± , (3.2)

with s0 < 4m2
π± arbitrary. The vacuum polarization function contains a branch

cut on the real axis above the creation threshold of the pions. Accordingly,
2The dispersion relation approach using subtraction is much older [20].
3The µ dependence is left out for readability in this section.
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4m2
π

s0

ℑ(s)

ℜ(s)

1Figure 3.1.: Schematic view of the integration contour for the integral in Equa-
tion (3.3). The real axis is excluded for ℜ

(︁
q2)︁ ≥ 4m2

π and the
distance between the two horizontal contour lines is infinitesimal.
The arrow on the top right arc indicates the integration direction.

Equation (3.2) only holds for4 s0 < 4m2
π± . For values of s0 above this threshold,

the integration contour has to be changed in order to exclude the discontinuity
on the real axis. Since Cauchy’s integral formula can be generalized to non-
circular integration contours, this can be achieved by using the integration
contour depicted in Figure 3.1, which translates to the contour integral

Π̂(0) = 1
2πi

∮︂
|s|=s0

ds Π̂(s)
s

+ 1
2πi

∫︂ s0

4m2
π±

ds
(︄

Π̂(s+ iϵ)
s+ iϵ

− Π̂(s− iϵ)
s− iϵ

)︄
.

(3.3)
4The correct threshold is s0 < m2

π0 , but the contributions of the process γ∗ → π0γ are tiny
and negligible compared to the experimental error of the measured cross section.
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The terms in parentheses account for the part of the integration contour that
bends around the branch cut. They can be combined according to

(. . .) =
s
(︂
Π̂(s+ iϵ) − Π̂(s− iϵ)

)︂
− iϵ

(︂
Π̂(s+ iϵ) + Π̂(s− iϵ)

)︂
s2 + ϵ2

= 2isℑΠ̂(s+ iϵ)
s2 + ϵ2

+ O (ϵ) ≈ 2iℑΠ̂(s+ iϵ)
s

,

(3.4)

where the property Π̂∗(z) = Π̂(z∗) was used implicitly, by using the relation
Π̂(s− iϵ) = ℜΠ(s+ iϵ) − iℑΠ̂(s+ iϵ). Inserting the argument of the branch cut
integration (3.4) into Equation (3.3) yields5

Π̂(0) = 1
π

lim
ϵ→0

∫︂ s0

4m2
π±

ds ℑΠ̂(s+ iϵ)
s

+ 1
2πi

∮︂
|s|=s0

ds Π̂(s)
s

. (3.5)

As mentioned previously, the strong interaction prevents a calculation of the
hadronic vacuum polarization in perturbation theory. Accordingly, the first
integration of Equation (3.5) has to be evaluated using input from experiments,
while the second integral can be treated within the framework of perturbation
theory, provided s0 is well above the hadronic scale. The integration along the
real axis can be rewritten using the optical theorem

R(s) = lim
ϵ→0

12πℑΠ̂(s+ iϵ), (3.6)

where
R(s) = σtot

(︁
e+e− → hadrons

)︁
σ0
(︁
e+e− → µ+µ−

)︁ . (3.7)

is the observable hadronic production rate defined as a ratio of cross sections.
In the following, I will be used as an abbreviation for the second integral. Using

5The author of Reference [9] substituted s with s − iϵ but omitted the corresponding change
of the integration boundaries. The limit of the integral had been omitted before for the
sake of readability, but was introduced back now, to emphasize that Π̂(0) does not depend
on the auxiliary ϵ.

49



3. Electromagnetic Coupling in the Modified Minimal Subtraction Scheme

the substitution s = s0e
iθ, ds = is dθ, with the angle θ bounded by 0 ≤ θ < 2π,

to rewrite the contour integration yields

Π̂(0) = ˜︁R+ I, (3.8a)

˜︁R = α

3π

∫︂ s0

4m2
π±

ds R(s)
s

, (3.8b)

I = 1
2π

∫︂ 2π

0
dθ Π̂

(︁
s0e

iθ)︁. (3.8c)

A particular choice of s0 allows computing the contour integral perturbatively,
which is done in Section 3.1.1. The first term of Equation (3.8), the integrated
hadronic production rate ˜︁R, can be evaluated using data from experiments. With
the integration boundary s0 = (2 GeV)2, a similar quantity can be obtained [18],

˜︁R ≈ αM2
Z

3π

∫︂ 4 GeV2

4m2
π±

ds R(s)
s
(︁
M2

Z − s
)︁ = (58.71 ± 0.45) · 10−4, (3.9)

which is based on results from References [21] and [22]. The difference of
Equation (3.9) and ˜︁R as defined in Equation (3.8) is [9]

α

3π

∫︂ s0

4m2
π

ds R(s)
[︄

1
s

− M2
Z

s
(︁
M2

Z − s
)︁]︄ ≈ −6 · 10−7, (3.10)

which is well below the uncertainty of 4.5 · 10−5 given in Equation (3.9).

3.1.1. Fixed-Order Integration of the Contour Integral
The contour integration of Equation (3.8) requires an analytic expression of
the vacuum polarization function Π̂(q) as a function of q2 = −s0 = − (2 GeV)2.
The exact value is determined by the choice of the boundary for the evaluation
of the integrated hadronic production rate that was made above. Because the
particular choice s0 = (2 GeV)2 is smaller than the charm production-threshold,
the vacuum polarization can be computed in an effective QCD with only three
light quarks. On the other hand, s0 is much larger than the masses of the light
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3.1. Dispersion Relation Approach to the Vacuum Polarization Function

quarks, so that an expansion of Π̂(q2) in m̂2
u,d,s

q2 is sufficient for the treatment
of the light quarks. The vacuum polarization function was derived for a single
massive quark up to order m̂4

q

q4 in Reference [19], with the subscript 1q used as
an index to indicate that the quantities refer to the contribution of a single
quark coupling to the photon. The full vacuum polarization function is then
obtained by summing over all quarks of the effective theory and neglecting the
mass terms of the quarks that are considered massless. In the three-loop case,
the expressions implicitly contain the sum over all quarks in the inner loop,
but the masses of these quarks were neglected. The relation between Π̂1q(q2)
and the full vacuum polarization function of an effective three-quark QCD is
worked out below. The three-loop terms need additional work in order to be
applied in the present context and will be discussed in detail, while the one-
and two-loop results will be given without comments. Following the notation of
Reference [19], a superscript (n) is used to denote terms of (n+ 1)-loop order.
The relevant equations in terms of the MS mass read [19]

Π̂1q
(︁
q2)︁ = Π̂(0)

1q

(︁
q2)︁+

αs
(︁
µ2)︁
π

CF Π̂(1)
1q

(︁
q2)︁+

(︄
αs
(︁
µ2)︁
π

)︄2

Π̂(2)
1q

(︁
q2)︁+ O

(︄
α̂3

s

π3

)︄
,

(3.11a)

Π̂(0)
1q = 3α

4π

[︄
20
9 − 4

3L+
8m̂2

q

q2 + O

(︄
m̂4

q

q4

)︄]︄
, (3.11b)

Π̂(1)
1q = 3α

4π

[︄
55
12 − 4ζ(3) − L+

4m̂2
q

q2 (4 − 3L) + O

(︄
m̂4

q

q4

)︄]︄
, (3.11c)

with the three-loop order terms

Π̂(2)
1q (q2) = C2

F Π̂(2)
1q,A + CACF Π̂(2)

1q,NA + CFTFnlΠ̂
(2)
1q,l + CFTF Π(2)

1q,F (3.12a)

categorized into the four pieces Π̂(2)
1q,A, Π̂(2)

1q,NA, Π(2)
1q,F and Π̂(2)

1q,l. The group
theoretical constants of SU(3) read CF = 4

3 , CA = 3, TF = 1
2 , respectively,

and nl = nq −1 denotes the number of light quarks, where nq is the number of all

51
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(a) (b) (c)

Figure 3.2.: Examples for some of the Feynman diagrams that belong to the
three-loop vacuum polarization. The photons coupling to the quark
loop at the small crosses are left out. Figure 3.2c stands for all
diagrams with an internal quark loop that sum up to Π(2)

1q,F + Π̂(2)
1q,l,

while Figures 3.2a and 3.2b represent the “abelian” and “non-
abelian” diagrams that give rise to Π̂(2)

1q,A and Π̂(2)
1q,NA, respectively.

quarks in the effective theory. The first two pieces correspond to the three-loop
Feynman diagrams without internal quark loop, that is diagrams with two gluon
lines connected to the outer quark loop and diagrams with an internal gluon
loop or a single gluon vertex, respectively. One example of a diagram with two
independent gluon lines and no internal quark loop is depicted in Figure 3.2a.
These diagrams are part of the abelian part of QCD, as the same diagrams with
photons instead of gluons exist and account for the piece Π̂(2)

1q,A
6. The “non-

abelian” diagrams that contain gluon-gluon interactions, like Diagram 3.2b, sum
up to Π̂(2)

1q,NA. The remaining diagrams contain an internal quark loop like the
one shown in Figure 3.2c. They are separated into diagrams in which the inner
and outer quark have the same mass m̂q and diagrams in which the mass m̂l

of the inner quark is negligible. Π(2)
1q,F corresponds to the first set of diagrams,

6The diagrams with an inner quark loop, as the one shown in Figure 3.2c belong to the
“abelian” part of QCD, too, but are not included in Π̂(2)

1q,A.
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while Π̂(2)
1q,l corresponds to the second. Accordingly, the functions Π̂(2)

1q,F and Π̂(2)
1q,l

are identical in the limit m̂q = 0. Diagrams with a massive quark in the inner
loop and a massless quark in the outer loop were not considered in Reference [19].
For this reason, strange-quarks in the inner loop are considered massless, too,
and the contribution of charm- and bottom-quarks that may occur in the inner
loop is discussed later on. The explicit expressions for the individual pieces read

Π̂(2)
1q,A = 3α

4π

[︄
− 143

72 − 37
6 ζ(3) + 10ζ(5) + 1

8L

+
4m̂2

q

q2

(︃1667
96 − 5

12ζ(3) − 35
6 ζ(5) − 51

8 L+ 9
4L

2
)︃

+O

(︄
m̂4

q

q4

)︄]︄
,

(3.12b)

Π̂(2)
1q,NA = 3α

4π

[︄
44215
2592 − 227

18 ζ(3) − 5
3ζ(5) − 41

8 L+ 11
24L

2 + 11
3 ζ(3)L

+
4m̂2

q

q2

(︃1447
96 + 4

3ζ(3) − 85
12ζ(5) − 185

24 L+ 11
8 L

2
)︃

+O

(︄
m̂4

q

q4

)︄]︄
,

(3.12c)

Π̂(2)
1q,l = 3α

4π

[︄
− 3701

648 + 38
9 ζ(3) + 11

6 L− 1
6L

2 − 4
3ζ(3)L

+
4m̂2

q

q2

(︃
−95

24 + 13
16L− 1

2L
2
)︃

+ O

(︄
m̂4

q

q4

)︄
+ O

(︄
m̂l

m̂q

)︄]︄
,

(3.12d)

Π(2)
1q,F = 3α

4π

[︄
− 3701

648 + 38
9 ζ(3) + 11

6 L− 1
6L

2 − 4
3ζ(3)L

+
4m̂2

q

q2

(︃
−223

24 + 4ζ(3) + 13
16L− 1

2L
2
)︃

+ O

(︄
m̂4

q

q4

)︄]︄
,

(3.12e)

53



3. Electromagnetic Coupling in the Modified Minimal Subtraction Scheme

where the abbreviation L = log −q2

µ2 was introduced, terms of order m̂4
q

q4 were
neglected and m̂l was used to denote the mass of a quark that is light compared
to the heaviest one.

Equation (3.12) accounts for the contribution of a single massive quark in
the outer loop and nl = nq − 1 massless quarks in inner loops to the vacuum
polarization function. Due to the choice of s0 = 2 GeV, it is safe to neglect the
masses of the up- and down-quark, which yields

Π̂(2)
u/d =

[︃
C2

F Π̂(2)
1q,A + CACF Π̂(2)

1q,NA + CFTF

(︃
nlΠ̂

(2)
1q,l + Π(2)

1q,F

)︃]︃
m̂q=0

=
[︃
C2

F Π̂(2)
1q,A + CACF Π̂(2)

1q,NA + CFTF (nl + 1)Π̂(2)
1q,l

]︃
m̂q=0

(3.13)

for the contribution of the first generation quarks. The third term accounts for
three massless quarks in the inner loop, because a strange-quark in the inner
loop is treated as a massless quark as mentioned above. Similarly, the individual
contribution of the strange-quarks reads

Π̂(2)
s

(︁
q2)︁ =

[︃
C2

F Π̂(2)
1q,A + CACF Π̂(2)

1q,NA + CFTFnlΠ̂
(2)
1q,l + CFTF Π(2)

1q,F

]︃
m̂q=m̂s

.

(3.14)
The polarization function given in (3.11) does not include the electromagnetic

charge of the outer quark that stems from the coupling to the photon. Hence, the
full three-loop vacuum polarization for all three quarks is obtained by summing
the products of the one-quark functions in Equations (3.13) and (3.14) and the
appropriate charge factors,

Π̂(2)
3q = Q2

uΠ̂(2)
u

(︁
q2)︁+Q2

dΠ̂(2)
d

(︁
q2)︁+Q2

sΠ̂(2)
s

(︁
q2)︁

= 2
3

[︃
C2

F Π̂(2)
1q,A + CACF Π̂(2)

1q,NA + CFTF (nl + 1)Π̂(2)
1q,l

]︃
m̂q=0

+ m̂2
s

9
d

dm̂2
q

[︃
C2

F Π̂(2)
1q,A + CACF Π̂(2)

1q,NA

+ CFTFnlΠ̂
(2)
1q,l + CFTF Π(2)

1q,F

]︃
.

(3.15)

54
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The first bracket in Equation (3.15), which is proportional to 2
3 = Q2

u +Q2
d +Q2

s,
accounts for the terms of all three quarks that are independent of mass; the
terms on the last line are proportional to m2

q . Following the approximations
of Reference [9], terms of order m̂4

q

q4 were neglected, which allows expressing
the terms on the last line in terms of a derivative with respect to m̂2

q , which
automatically removes all terms that are independent of the quark mass.

The integration of I defined in Equation (3.8) requires integrating logarithms
of the form log

(︂
− s0

µ2 e
iθ
)︂
. The branch cut of the logarithm is not crossed

because of 0 < θ < 2π, allowing to simplify the logarithmic terms by using
log
(︂
− s0

µ2 e
iθ
)︂

= log s0
µ2 + i(θ − π), with a trivial dependence on the integration

variable θ. The real part, log s0
µ2 , does not depend on the integration variable θ,

vanishes when assigning µ2 → s0, eventually. For this reason, it can be left
out immediately. However, the strong coupling constant α̂s depends on the
scale µ, too. Substituting µ2 with q2 after the integration, that is assuming α̂s

is constant along the integration contour, is called fixed order perturbation
theory (FOPT). Replacing µ2 with q2 before the integration and taking into
account the running of α̂s when integrating corresponds to the contour improved
perturbation theory (CIPT). The two different integrals are defined as

IFOPT = 1
2π

[︃∫︂ 2π

0
dθ Π̂

(︁
q2 = s0e

iθ, µ2)︁]︃
µ2=s0

, (3.16)

ICIPT = 1
2π

∫︂ 2π

0
dθ Π̂

(︁
q2 = s0e

iθ, µ2 = s0e
iθ)︁. (3.17)

The FOPT integral can be readily evaluated using the vacuum polarization given
above, while the CIPT formalism requires substituting α̂(µ) with its analytical
expression before carrying out the integration. Following the prescription of
Reference [9], FOPT is used in this section, but the integration in CIPT and a
comparison are given in Section 3.1.2.

The integration of the vacuum polarization function in Equation (3.11) can
be divided into three different integrals I0, I1 and Ĩ2, corresponding to the
integration of the pieces Π̂(0)

1q , Π̂(1)
1q and Π̂(2)

3q , respectively. Since the vacuum
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polarization Π̂1q only accounts for diagrams in which a single quark couples to
the photon, one has to sum over all quarks and multiply each term with the
appropriate charge factor Q2

q . As described above, the correct summation of
the three-loop vacuum polarization functions is more involved; making use of
the expression in Equation (3.15) one can write

IFOPT =
∑︂

q=u,d,s

Q2
q

[︁
I0(m̂q) + I1(m̂q)

]︁
+ Ĩ2. (3.18)

Here, the quark sum in the last term is implicitly included in the definition
of Π̂(2)

3q , which is the integrand of the integral Ĩ2,

Ĩ2 = 1
2π

[︃∫︂ 2π

0
dθ Π̂(2)

3q

(︁
q2 = s0e

iθ, µ2)︁]︃
µ2=s0

. (3.19)

The integrations can be carried out using
∫︁ 2π

0 dθ(θ − π) =
∫︁ 2π

0 dθe−iθ = 0.
Inserting the explicit expressions given above, one finds

I0 = 3α
4π

20
9 − 1

8π3 i

∫︂ 2π

0
dθ(θ − π) + 3

4π3
m̂2

q

s0

∫︂ 2π

0
dθe−iθ = α

π

5
3 , (3.20)

I1 = α

π

αs

π

(︄
55
12 − 4ζ(3) − 12i

m̂2
q

s0

1
2π

∫︂ 2π

0
dθ θe−iθ

)︄

= α

π

αs

π

(︄
55
12 − 4ζ(3) + 12

m̂2
q

s0

)︄
,

(3.21)

Ĩ2 = 2α
3π

α2
s

π2

[︄
118379
2592 − 31

12ζ(2) − 791
18 ζ(3) + 25

3 ζ(5) + 403
36

m̂2
s

s0

+ nl

(︄
−3701

1296 + 1
6ζ(2) + 19

9 ζ(3) − 7
18
m̂2

s

s0

)︄]︄

= 2α
3π

α2
s

π2

(︄
34525
864 − 9

4ζ(2) − 715
18 ζ(3) + 25

3 ζ(5) + 125
12

m̂2
s

s0

)︄
,

(3.22)

where nl = 2 was used for the number of light quarks on the last line to combine
the terms that stem from the Feynman diagrams with an inner quark loop with
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the remaining ones. The final result of the integration following the FOPT
prescription can be found by inserting Equations (3.20), (3.21) and (3.22) into
Equation (3.18), which yields7

IFOPT = 2α
3π

{︄
5
3 + αs

π
K

(2)
FOPT + α2

s

π2K
(3)
FOPT

}︄
,

K
(2)
FOPT = 55

12 − 4ζ(3) + 2m̂
2
s

s0
,

K
(3)
FOPT = 34525

864 − 9
4ζ(2) − 715

18 ζ(3) + 25
3 ζ(5) + 565

48
m̂2

s

s0
.

(3.23)

The two-loop order terms denoted by K(2)
FOPT stem from a Feynman diagram, in

which the quark–antiquark pair exchanges a gluon. The corresponding diagram
with a photon instead of a gluon gives the same result but with the coupling αs

π
substituted by α̂

4π [23] (see also Section 3.3). The additional factor 1
4 arises,

since CQCD
F = 4

3 has to be replaced by CQED
F = 1 and the squared charge sum∑︁

q=u,d,sQ
2
q = 2

3 by ∑︁q=u,d,sQ
4
q = 2

9 . Modifying Equation (3.23) accordingly to
also account for the virtual photon within the fermion loop, the final expression
for the nonperturbative part of the vacuum polarization function in fixed order
perturbation theory reads [9]

Π̂
(︁
q2 = 0, s0

)︁
= ˜︁R+ 2α

3π

{︄
5
3 +

(︃
αs

π
+ α̂

4π

)︃
K

(2)
FOPT

+ α2
s

π2

[︄
K

(3)
FOPT + F

(︄
s0

m̂2
c

)︄]︄}︄
,

(3.24)

where F is used to parametrize the effect of massive charm-quarks that may
occur in inner loops of Feynman diagrams of the type 3.2c. The corresponding
contribution of a heavy quark to a fermion vertex was calculated exactly in
Reference [24] and the contribution to the vacuum polarization was given as an

7The mass term at two-loop order is neglected in Reference [9].
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expansion in terms of the strong coupling constant α̂s in Reference [25]. The
explicit expression for F is given in Reference [9] as

F (x) ≈ log x
[︃2

3ζ(3) − 11
12 + log x

12

]︃
− x

[︃ 2
25 − 2

135 log x
]︃

+ x2
[︃ 1513

2116800 − log x
5040

]︃
− x3

[︃ 1853
80372250 + log x

127575

]︃
.

(3.25)

3.1.2. Contour Improved Perturbation Theory
As described in Section 3.1.1, the µ-dependence of α̂s can optionally be taken into
account when carrying out the integration of Equation (3.17), which corresponds
to the CIPT formalism. It is convenient to express the strong coupling in terms
of a power series, as it leads to a straightforward evaluation of the contour
integration. The strong coupling constant can be expanded in a power series
by solving the β-function iteratively. A higher order solution of the β-function
of QCD will be discussed in Section 3.4.2, but the integration in this section
will be calculated with the leading solution of the β-function, only. Using the
abbreviation âs = α̂s

π , the β-function of the strong coupling constant reads [26]

d
dµ2 âs

(︁
µ2)︁ = −

∞∑︂
k=1

β̂
s
k−1
µ2 âk+1

s

(︁
µ2)︁ = − β̂

s
0
µ2 â

2
s

(︁
µ2)︁+ O

(︁
â3

s

)︁
(3.26)

and can be solved by separation of variables. The leading order solution of the
strong coupling constant reads8

âs
(︁
µ2)︁ =

(︄
π

α̂s
(︁
µ2

0
)︁ + βQCD

0 log µ
2

µ2
0

)︄−1

(3.27)

when neglecting higher order contributions beyond the β0-term. Expanding
Equation (3.27) yields

âs
(︁
µ2)︁ = âs

(︁
µ2

0
)︁

− â2
s

(︁
µ2

0
)︁
β̂

s
0 log µ

2

µ2
0

+ O
(︁
â3

s

)︁
, (3.28)

8Terms of order O
(︁
a3

s

)︁
were neglected in the β-function, but the solution (3.27) is exact in

that sense that it solves the approximated β-function exactly.
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which will be used for the integration in the following. To that end, µ2
0 = s0

is used as initial value condition and µ2 = s0e
iθ according to the definition of

Equation (3.17).
The integral I0 defined in Equation (3.18) does not contain α̂s and is the same

in FOPT and CIPT, accordingly. I2 is proportional to α2
s, for which reason

the additional terms arising from CIPT are of order α̂3
s and may be neglected.

Evaluating I1 requires the previously used auxiliary integrals∫︂ 2π

0
dθ i (θ − π) = 0, (3.29)∫︂ 2π

0
dθ e−iθ = 0, (3.30)∫︂ 2π

0
dθ i (θ − π) e−iθ = −2π, (3.31)

as well as ∫︂ 2π

0
dθ i2 (θ − π)2 = −2

3π
3, (3.32)∫︂ 2π

0
dθ i2 (θ − π)2 e−iθ = −4π (3.33)

and yields terms of order α2
s that have to be added to I2. The additional terms

that arise when taking into account the µ-dependence of αs read

∆I1 = −2α
3π

α2
s

π
β̂

s
0

(︄
12m

2

s0
+ 3ζ(2)

)︄
= −2α

3π
α2

s

π

(︄
27m

2

s0
+ 27

4 ζ(2)
)︄
, (3.34)

where β̂s
0 = 1

4

(︂
11 − 2

3nf

)︂
= 9

4 , was obtained for nf = 3. Summing over the
three light quarks results in an additional factor of 2

3 (or 1
9 in case of the mass

term), leading to the final expression of Equation (3.23) in CIPT. Using K(2)
FOPT

to highlight the deviation from the previous calculation, it becomes

I(3) =
2∑︂

i=0
Ii = 2α

3π

{︄
5
3 + αs

π
K

(2)
FOPT + α2

s

π2

[︄
K

(2)
FOPT − 9

2ζ(2) + 209
48

m̂2
s

s0

]︄}︄
.

(3.35)

59



3. Electromagnetic Coupling in the Modified Minimal Subtraction Scheme

Order FOPT CIPT Ratio CIPT
FOPT

LO 2.81 · 10−2 2.81 · 10−2 1
NLO −0.037 · 10−2 −0.037 · 10−2 1
NNLO −0.048 · 10−2 −0.173 · 10−2 3.63

sum 2.73 · 10−2 2.6 · 10−2 0.95

Table 3.1.: Numerical comparison of Equations (3.23) and (3.35), corresponding
to FOPT and CIPT integration of Equation (3.11). The input for the
numerical evaluation is α̂s = 0.1π, m̂s = 0.1 GeV and s0 = (2 GeV)2.

The two formalisms are compared numerically in Table 3.1, where the ratio of
the two-loop terms is dominated by the ζ(2)-term, as the strange quark mass is
much smaller than s0 and all other terms are identical in either formalism. The
overall relative difference between the vacuum polarization function obtained
using CIPT and FOPT is roughly 4.6 %.

3.2. Non-hadronic Contributions
Section 3.1 dealt with the calculation of the hadronic part of the vacuum
polarization function that enters the expression (3.1) of the MS-renormalized
electromagnetic coupling. The vacuum polarization also obtains a contribution
from charged leptons that needs to be added to the previously determined
hadronic contribution and which will be presented in the following.

As mentioned previously, the non-hadronic contributions to the vacuum
polarization function can be computed perturbatively. The one-loop expression
can be readily obtained from Reference [2] and is given in Appendix C. It reads

Π̂lep
(︁
q2 = 0, µ

)︁
= α

π

{︄
1
3

(︄∑︂
l

Q2
l log µ2

m2
l

)︄
− 3

4 log µ2

M2
W

− 1
6

}︄
+ O

(︁
α2)︁,

(3.36)
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where the fermion sum is over leptons, only. In order to evaluate this sum
within an effective theory at a certain energy scale µ, particles that have been
integrated out must not contribute to equation (3.36). For µ ≲ 2 GeV, it is
reasonable to not include the contributions of the W-boson; as the scale at
which a particle is included into the theory is ambiguous, the terms arising
because of the τ -lepton may be included or left out. Following Reference [9],
the τ is not included, and one obtains

Π̂lep
(︁
q2 = 0, µ

)︁
= α

3π

(︄
log µ2

m2
e

+ log µ2

m2
µ

)︄
+ O

(︁
α2)︁. (3.37)

The first calculation of leptonic two-loop contributions to the vacuum polar-
ization function was published in Reference [23]. These contributions can also
be obtained from the results of Reference [19], in which the contribution of a
single heavy quark to vacuum polarization is given. Dividing the expression
in terms of the on-shell mass by three to remove the implicit color factor, the
leading terms are9

Π̂lep
(︁
q2 = 0, µ

)︁
= α

π

[︄
1
3 log µ2

m2 + α̂

4π

(︄
15
4 + log µ2

m2

)︄]︄
+ O

(︁
α3)︁, (3.38)

where CF = 1 and Q2
f = 1 was used to adopt the expression to the leptonic

case and the strong coupling constant α̂s was replaced with the electromagnetic
coupling α̂. Equation (3.38) describes the contribution of a single lepton with
its mass defined according to the OS definition. Adding the contributions of
the electron and muon yields10 [9]

Π̂lep
(︁
q2 = 0, µ

)︁
= α

π

[︄(︃1
3 + α̂

4π

)︃(︄
log µ2

m2
e

+ log µ2

m2
µ

)︄
+ 15

8
α̂

π

]︄
+ O

(︁
α3)︁. (3.39)

The last term contributes to the matching conditions which will be discussed in
Section 3.5, so it is important to highlight that it is the sum of the identical
contributions of the electron and muon.

9The complete equation for QCD is given in Equation (3.46).
10It should read 15

8
α
π

instead of 15
8 in Reference [9].
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The relation between the MS-renormalized coupling α̂ and the vacuum polar-
ization was given in Equation (3.1). With the hadronic contributions to the
vacuum polarization function given in Equation (3.24) and the leptonic terms
given in Equation (3.39), the electromagnetic coupling constant for µ ≳ 1.2 GeV
can be derived using

α̂(µ) = α

1 − Π̂had
(︁
q2 = 0, µ

)︁
− Π̂lep

(︁
q2 = 0, µ

)︁ . (3.40)

In a next step, the electromagnetic RGE can be used to evolve the coupling
parameter α̂ to larger scales µ2 > s0; one possible solution of the β-function is
discussed in Section 3.4.

3.3. Perturtbative Expression of the Vacuum Polarization
Function

The previous sections dealt with the calculation of the electromagnetic coupling
above the non-perturbative regime. This required a perturbative expression
of the leptonic part of the vacuum polarization function which was derived
in Section 3.2 as well as the unsubtracted dispersion relation approach of
Section 3.1 to handle hadronic effects. In order to obtain a value for the
electromagnetic coupling at higher scales, one can make use of the RGE to evolve
the coupling by solving the differential equation associated with the β-function.
The β-function is determined within the framework of perturbation theory and
requires a power series of the vacuum polarization as input, accordingly. The
leptonic contribution to this power series was already derived in Section 3.2 but
the hadronic contribution needs to be determined in addition. The hadronic
contributions that were derived in Section 3.1.1 for the contour integration were
obtained assuming small quark masses compared to the momentum transfer,
that is the expressions are the leading terms of a power series in m2

q

q2 . This power
series can not be used for the derivation of the β-function that requires the
contribution to the renormalization constant, which is determined at vanishing
momentum transfer. This section deals with the perturbative contribution
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3.3. Perturtbative Expression of the Vacuum Polarization Function

of quarks to the vacuum polarization at zero momentum transfer, which is
required not only for the β-function but also for the derivation of the matching
conditions of the heavier quarks.

The vacuum polarization function can be found in Reference [19] in terms of
the on-shell mass, but in order to obtain an expression in terms of the MS-mass,
one has to express the on-shell mass in terms of the MS-mass as a first step.
The relation between the two different mass parameters reads

m = m̂(µ) +m
α̂s(µ)
π

CF

(︃
1 + 3

4L
)︃

−m
α̂2

s(µ)
π2 N2 + O

(︁
α̂3

s

)︁
, (3.41)

where L = log µ2

m2 depends on the scale and the on-shell mass and the second
order coefficient is

N2 = CFT

(︃3
4 − 3

2ζ(2)
)︃

+ CFTnq

(︃71
96 + 1

2ζ(2) + 13
24L+ 1

8L
2
)︃

+ C2
F

(︃ 7
128 − 15

8 ζ(2) − 3
4ζ(3) + 21

32L+ 9
32L

2 + 3ζ(2) log(2)
)︃

+ CFCA

(︃
−1111

384 + 1
2ζ(2) + 3

8ζ(3) − 185
96 L− 11

32L
2 − 3

2ζ(2) log(2)
)︃
.

(3.42)
Neglecting terms of order α̂2

s, it is easily solved for the on-shell mass by re-
placing the on-shell mass m with the MS-mass m̂ on the right-hand side of
Equation (3.41). The result in terms of a mass ratio reads

m

m̂(µ2) = 1 + α̂s(µ)
π

CF

(︄
1 + 3

4 log µ2

m̂2

)︄
+ O

(︁
α̂2

s

)︁
, (3.43)

which can now be used to express the logarithm log µ2

m2 in terms of the MS-mass;
the result is

log µ2

m2 = log µ2

m̂2 − α̂s(µ)
π

CF

(︄
2 + 3

2 log µ2

m̂2

)︄
+ O

(︁
α̂2

s

)︁
. (3.44)
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Substituting equations (3.43) and (3.44) into Equation (3.41) and neglecting
terms of order α̂3

s, results in the expression for the OS mass m in terms of the
MS mass m̂ up to order α̂2

s,
m

m̂(µ2) = 1 + α̂s(µ)
π

CF

4
[︂
4 + 3L̂

]︂
+
α̂2

s

(︁
µ2)︁
π2

[︄
C2

F

16
(︂
−8 + 6L̂+ 9L̂2)︂−N2

]︄
+ O

(︁
α̂3

s

)︁
,

(3.45)

with the scale dependent logarithms abbreviated as L̂ = log µ2

m̂2 . Here, the
explicit C2

F -term stems from the substitution of Equations (3.43) and (3.44)
into the term of order O(α̂s) in Equation (3.41). With Equation (3.45) at hand,
it is now possible to derive the vacuum polarization function in terms of the
MS-mass.

The vacuum polarization of a single heavy quark with charge Qf is given in
Reference [19], with the mass m as defined in the OS renormalization scheme
and reads
Π̂(0)
Nf

c Q2
f

= α

4π

{︄
4
3 log µ2

m2 + CF
α̂s
(︁
µ2)︁
π

(︄
15
4 + log µ2

m2

)︄
+
α̂2

s

(︁
µ2)︁
π2 K2 + O

(︁
α̂3

s

)︁}︄
.

(3.46a)
The coefficient of the α̂2

s-term is

K2 = CFT

(︃
−23

8 + 4ζ(2) + 7
16ζ(3)

)︃
+ CFTnq

(︃
−917

648 − 4
3ζ(2) − 14

9 L− 1
6L

2
)︃

+ C2
F

(︃ 77
144 + 5ζ(2) − 8ζ(2) log (2) − 1

8L+ ζ (3)
48

)︃
+ CFCA

(︃14977
2592 − 4

3ζ(2) + 4ζ(2) log 2 + 127
96 ζ(3) + 157

36 L+ 11
24L

2
)︃
,

(3.46b)
where the abbreviation L = log µ2

m2 for logarithms in terms of the OS mass was
used as before. As mentioned in Section 3.2, Equation (3.46) can be also used
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3.3. Perturtbative Expression of the Vacuum Polarization Function

to derive the vacuum polarization function (3.38) of a single lepton; this is done
by dividing by the implicit color factor Nf = 3 and inserting CF = 1. Utilizing
the mass ratio (3.45), Equation (3.46) can be written up to order α̂2

s in terms
of the MS mass m̂,

12π2

Nf
c Q2

f

Π̂(0)
4πα = L̂−

α̂s

(︁
µ2)︁
π

CF

(︃3
4 L̂− 13

16

)︃
+
α̂2

s

(︁
µ2)︁
π2 K̃2 + O

(︁
α̂3

s

)︁
, (3.47a)

where the third-order coefficient in terms of L̂ = log µ2

m̂2
(︁

µ2
)︁ reads

K̃2 = CFT

(︃
−21

8 + 21
16ζ(3)

)︃
+ CFTnq

(︃1
2 L̂

2 − 1
3 L̂+ 361

216

)︃
+ C2

F

(︃27
8 L̂+ 97

24 − 95
16ζ(3)

)︃
+ CFCA

(︃
−11

8 L̂
2 − 7

3 L̂+ 223
32 ζ(3) − 5021

864

)︃
.

(3.47b)

Equation (3.47) is the vacuum polarization function for a heavy quark coupling
to the photon and quarks inside the inner quark loop of the double bubble
diagrams11 are treated massless. This expression is required not only in the
calculation of the β-function, but also in the derivation of the matching condition
for integrating out the heavy quark. Since the quarks in the inner loop are all
treated massless, it is not sufficient in this regard. Heavy quarks also appear in
the inner loop of a double bubble diagram in which a light quark couples the
photon and the vacuum polarization associated with these diagrams enters the
matching, too. The corresponding contribution can be reversely extracted from
the results of Reference [27], in which the matching condition12 for integrating
out a heavy quark is given. Replacing CF , CA and T with their respective
numeric values, that is 4

3 , 3 and 1
2 , yields the final expression for the perturbative

vacuum polarization function that accounts for all Feynman diagrams containing
at least a single heavy quark. Using Rl (Rh) to denote the contributions of
11A double bubble diagram is shown in Figure 3.2c.
12The authors of Reference [27] use the term decoupling relation.
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3. Electromagnetic Coupling in the Modified Minimal Subtraction Scheme

three-loop Feynman diagrams in which a light (heavy) quark couples to the
photon, it reads [9]

Π̂(0) = α

3π2N
f
c Q

2
f

{︄
L̂+

α̂s

(︁
µ2)︁
π

(︃13
12 − L̂

)︃
+
α̂2

s

(︁
µ2)︁
π2 (Rh +Rl) + O

(︁
α̂3

s

)︁}︄
,

Rh = 655
144ζ(3) − 3847

864 − 5
6 L̂− 11

8 L̂
2 + nq

(︃ 361
1296 − 1

18 L̂+ 1
12 L̂

2
)︃
,

Rl =
∑︂

l

Q2
l

(︃ 295
1296 − 11

72 L̂− 1
12 L̂

2
)︃
,

(3.48)
with the sum evaluated for all nl = nq − 1 light quarks that are treated massless.

3.4. Electromagnetic Renormalization Group Equation
Using Equation (3.40), the results of Sections 3.1 and 3.2 allow determining
the MS-renormalized electromagnetic coupling for scales at the lower end of
the perturbative regime µ ≳ 1.2 GeV; here the particular choice µ = 2 GeV was
made. As described in Section 2.5.2, a solution of the β-function can be used
to calculate a value at higher energy scales. The derivation of the coefficients
in the β-function requires a perturbative expression of the vacuum polarization
function that was derived in Section 3.3. In this section, the β-function of the
electromagnetic coupling is introduced and the solution of the corresponding
differential equation is presented in Section 3.4.1. The solution depends on an
auxiliary integral parametrizing strong interaction effects, which is discussed
in Section 3.4.3, based on a solution of the β-function of QCD derived in
Section 3.4.2.

The β-function describing the running of the electromagnetic coupling con-
stant α̂ including higher order terms is determined by the derivative of the
coupling with respect to the scale µ. Using the relation between vacuum polar-
ization function and electromagnetic coupling given in Equation (3.1), it may
be written as

β̂ = − α̂2

π
µ2 d

dµ2

[︃
−π

α
Π̂
(︁
q2 = 0, µ

)︁]︃
. (3.49)
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The definition of the coefficients of the power series of Equation (3.49) is given
in Equation (2.54). Since the one-loop diagram is purely electromagnetic,
the leading coefficient parametrizing strong interaction effects denoted by δ̂0,
vanishes. The leading β̂i-coefficients can be obtained by differentiating the
expressions in Section 3.2. Keeping in mind that Equation (3.39) contains
the implicit charge factors Q2

l and Q4
l , corresponding to the one and two-loop

diagrams, one finds

β̂0 = −1
3
∑︂

f

NfQ
2
f , β̂1 = −1

4
∑︂

f

NfQ
4
f , δ̂0 = 0, (3.50)

where the sum includes all fermions and the color factor Nf was introduced to
account for the multiplicity of quarks.

The higher order coefficients parametrizing strong interaction effects, δ̂i, i > 0,
can be obtained by differentiating the contribution of quarks to the hadronic
vacuum polarization with respect to µ2. The contribution of a single massive
quark is given by the vacuum polarization in Equation (3.48). Computing its
derivative also requires differentiating the coupling α̂s and the mass m̂ with
respect to µ2; α̂s is the expansion parameter and the mass occurs in logarithms L̂.
The derivatives are the β- and γ-functions of the strong interaction, which can
also be expanded as a power series in α̂s. The generic power series in terms of the
coefficients βQCD

i and γQCD
i are similar to the expansion of the electromagnetic

beta function. They read [27]

µ2 d
dµ2

α̂s

π
= −

∞∑︂
i=0

βQCD
i

(︃
α̂s

π

)︃i+2
= −βQCD

0
α̂2

s

π2 + O
(︁
α̂3

s

)︁
, (3.51)

1
m̂
µ2 d

dµ2 m̂ = −
∞∑︂

i=0
γQCD

i

(︃
α̂s

π

)︃i+1
= −γQCD

0
α̂s

π
− γQCD

1
α̂2

s

π2 + O
(︁
α̂3

s

)︁
, (3.52)

where only the leading terms that are relevant in the following are kept on the
right-hand side. These leading coefficients read [25]

βQCD
0 = 11

4 − 1
6nq, γQCD

0 = 1, γQCD
1 = 1

16

(︃202
3 − 20

9 nq

)︃
, (3.53)
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with the number of quark flavors denoted by nq. Neglecting terms of order α3
s,

the derivative of the scale dependent logarithm is

µ2 d
dµ2 log µ2

m̂2 = 1 + 2
[︄
α̂s

π
+
(︃
α̂s

π

)︃2 (︃101
24 − 5

36nq

)︃]︄
, (3.54)

which can be used to find

− α̂2

π
µ2 d

dµ2

[︃
−π

α
Π̂
(︁
q2 = 0, µ

)︁]︃
= − α̂2

π
Q2

f

{︄
−1 − α̂s

π
+ α̂2

s

π2

[︃11
72nq − 125

48

]︃}︄
(3.55)

for the derivative of the vacuum polarization function in Equation (3.48). The
leading term accounts for the coefficient β̂0 that was already given above, while
the remaining ones determine δ̂1 and δ̂2. Comparing Equations (2.54) and (3.55)
yields

δ̂1 = −
∑︂

q

Q2
q = −NcCF

∑︂
q

Q2
q

4 , (3.56)

δ̂2 =
∑︂

q

Q2
q

[︃11
72nq − 125

48

]︃
= NcCF

∑︂
q

Q2
q

[︃ 11
144TFnq − 125

192

]︃
(3.57)

for the coefficients parametrizing the strong interaction effects on the electro-
magnetic coupling in agreement with the expressions given in Reference [9].

In order to make use of the renormalization group evolution as was sketched in
Section 2.5.3, one has to find a solution of the differential Equation (2.52). Since
the coefficients of the β-function can only be obtained perturbatively, one has
to restrict the discussion to leading terms in the power series of the β-function.
The differential equation that will be discussed in the following accounts for
diagrams up to four-loop order and reads13

µ2 d
dµ2 α̂ = − α̂2

π

(︄
β̂0 + β̂1

α̂

π
+ β̂2

α̂2

π2 + δ̂1
α̂s

(︁
µ2)︁
π

+ δ̂2
α̂2

s

(︁
µ2)︁
π2 + δ̂3

α̂3
s

(︁
µ2)︁
π3

)︄
,

(3.58)
13Equation (3.58) includes the β̂2-term but is otherwise identical to the differential equation

solved in Reference [9].
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with the electromagnetic three-loop coefficient β̂2 and the third strong interaction
coefficient δ̂3 given in Reference [9].

Depending on the number of coefficients taken into account, it could be impos-
sible to find a solution in terms of elementary functions, but a series expansion of
the solution up to any order14 can always be obtained by solving the differential
equation iteratively. In case of Equation (3.58), it is possible to separate the
variables and integrate either side analytically when omitting terms of order α̂α̂s

relative to the β̂0-term that correspond to a product of β̂1- and δ̂1-terms. The
result is an implicit function of the electromagnetic coupling which can be
used for numerical evaluations. An explicit series expansion of the coupling
parameter up to any order can then be constructed by iteratively inserting the
implicit function into itself.

The differential equation of the electromagnetic coupling depends on the
strong coupling due to the non-vanishing coefficients δ̂i, i > 0. As a consequence,
the β-function can only be solved with an expression of the strong coupling
at hand, which requires a solution of the β-function of QCD, in turn. It can
be obtained from the solution of Equation (3.58), since the β-function of QCD
exhibits a similar structure. Therefore, the following discussion is split into three
parts: The separation of variables and integration of Equation (3.58) is outlined
in Section 3.4.1. The intermediate result will depend on an auxiliary integral
of the strong coupling as explained above. In Section 3.4.2, this intermediate
result is used to determine an expression of the strong coupling that solves the
β-function of QCD. Eventually, the auxiliary integral is solved in Section 3.4.3
by inserting the outcome of Section 3.4.2; the solution can be inserted into the
intermediate result of Section 3.4.1 to find the final solution of Equation (3.58).

3.4.1. Intermediate Solution

Terms of order O (α̂α̂s) relative to the β̂0-term in Equation (3.58) are denoted
by ϵi in Reference [9] and account for higher order Feynman diagrams in which
14The solution may include logarithmic terms stemming from reducible Feynman diagrams up

to any order, but will only account for the β-function coefficients that were not omitted in
the differential equation.
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photons and gluons appear side by side. Since these terms were neglected
in the differential equation, the product of β̂1 and any δ̂i can be dropped
when solving the differential equation without loosing accuracy. This allows
separating the variables α̂ and µ2. Dividing both sides by the sum of the purely
electromagnetic coefficients β̂i times the appropriate power of the coupling
constant and dropping β̂1 and β̂2 in the denominator on the right-hand side
yields

dα̂
α̂2
(︂
β0 + β1

α̂
π + β2

α̂2

π2

)︂ = − 1
π

[︄
1 + µ2

β̂0

d
dµ2F (α̂s) + O

(︄
α̂α̂s

π2 ,
α̂4

s

π4

)︄]︄
dµ2

µ2 ,

(3.59)
where the auxiliary function F defined as

F (α̂s) =
∫︂ µ2

µ2
0

dµ2

µ2

(︄
δ̂1
α̂s

(︁
µ2)︁
π

+ δ̂2
α̂2

s

(︁
µ2)︁
π2 + δ̂3

α̂3
s

(︁
µ2)︁
π3

)︄
(3.60)

accounts for the contribution of the strong interaction coefficients δ̂i. As
explained before, solving the integral in Equation (3.60) requires an expression
of the strong coupling constant in terms of the scale µ2, which will be derived
from an intermediate solution of Equation (3.58) in Section 3.4.2. For the time
being, the integral F (α̂s) is kept as an unknown function and will be calculated
in Section 3.4.3, eventually.

Both sides of Equation (3.59) can now be integrated independently. It is
convenient to introduce the abbreviations

χ1 = β2
1 − 2β0β2, (3.61a)

χ2 = β2
1 − 4β0β2, (3.61b)

B± = −β1 ±
√︂
β2

1 − 4β0β2
β2

1 − 2β0β2
β2

1 − 4β0β2
= −β1 ± χ1√

χ2
(3.61c)

for combinations of the β-function coefficients that appear in the final solution.
The parameters χ1 and χ2 are positive because of β0 < 0 and β2 > 0, and as a
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consequence, B± is real valued. Using C to denote the integration constant,
the integral of Equation (3.59) can now be written as

− 1
β0α̂

(︁
µ2)︁ − B+

2πβ2
0

log
(︄

1
α̂
(︁
µ2)︁ + 1

πχ1

(︄
β1β2 + 2β2B

+ − β2
1

2β0
B+

)︄)︄

− B−

2πβ2
0

log
(︄

1
α̂
(︁
µ2)︁ + 1

πχ1

(︄
β1β2 + 2β2B

− − β2
1

2β0
B−

)︄)︄

= C − 1
π

log µ
2

µ2
0

− F (α̂s)
πβ0

.

(3.62)

Since the solution of the differential equation is used to relate the coupling
parameter at two different scales, a reasonable choice for the initial value
condition is limµ2→µ2

0
α̂
(︁
µ2)︁ = α̂

(︁
µ2

0
)︁
, which directly leads to

C = − 1
β0α̂

(︁
µ2

0
)︁ − B+

2πβ2
0

log
(︄

1
α̂
(︁
µ2

0
)︁ + 1

πχ1

(︄
β1β2 + 2β2B

+ − β2
1

2β0
B+

)︄)︄

− B−

2πβ2
0

log
(︄

1
α̂
(︁
µ2

0
)︁ + 1

πχ1

(︄
β1β2 + 2β2B

− − β2
1

2β0
B−

)︄)︄
.

(3.63)
The logarithms that occur explicitly in Equation (3.62) can be combined with
the ones in the integration constant. Introducing ˜︁L± (︁α̂(︁µ2)︁)︁ as an abbreviation
for the combination of the logarithms as a function of α̂

(︁
µ2)︁,

˜︁L±(︂α̂(︁µ2)︁)︂ := log

⎛⎜⎜⎜⎝
α̂
(︁

µ2
0

)︁
α̂
(︁

µ2
)︁ + α̂

(︁
µ2

0

)︁
πχ1

(︂
β1β2 + 2β2B

± − β2
1

2β0
B±

)︂
1 + α̂

(︁
µ2

0

)︁
πχ1

(︂
β1β2 + 2β2B± − β2

1
2β0

B±
)︂

⎞⎟⎟⎟⎠ , (3.64)

the particular implicit solution reads
α̂
(︁
µ2

0
)︁

α̂
(︁
µ2)︁ = 1 + F (α̂s) +

α̂
(︁
µ2

0
)︁

π
β0 log µ

2

µ2
0

−
α̂
(︁
µ2

0
)︁

2πβ0

[︂
B+ ˜︁L+

(︂
α̂
(︁
µ2)︁)︂+B− ˜︁L−(︂α̂(︁µ2)︁)︂]︂ . (3.65)
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When inserting the leading term α̂
(︁

µ2
0

)︁
α̂
(︁

µ2
)︁ = 1 into Equation (3.64), the logarithm

vanishes, showing that ˜︁L± is of order O
(︁
α
)︁
. This allows deriving an explicit

power series of Equation (3.65) by performing a fixed-point iteration up to
the desired order. The explicit expression will contain a chain of logarithms,
but a simpler expression can be obtained by calculating the corresponding
series expansion. Including terms up to four-loop order, the explicit solution of
Equation (3.58) reads

α̂
(︁
µ2

0
)︁

α̂
(︁
µ2)︁ = 1 +

(︄
α̂
(︁
µ2

0
)︁

π

)︄(︂
β̂0L+ F (α̂s)

)︂
+
(︄
α̂
(︁
µ2

0
)︁

π

)︄2

β̂1L

+
(︄
α̂
(︁
µ2

0
)︁

π

)︄3

L

(︄
β̂2 − β̂0β̂1

2 L

)︄

+
(︄
α̂
(︁
µ2

0
)︁

π

)︄4

L2

⎛⎝− β̂
2
1

2 − β̂0β̂2L+ β̂
2
0β̂1
3 L2

⎞⎠+ O
(︁
α̂5)︁,

(3.66)

where
L := log µ

2

µ2
0

(3.67)

is used as an abbreviation for the scale dependent logarithms. The terms of
order O

(︂
α̂4(︁µ2

0
)︁)︂

contain only logarithms stemming from reducible diagrams,
as the coefficient β̂3 was omitted in Equation (3.58). Since Equation (3.66) is
an expression of the inverse coupling α̂−1(︁µ2)︁, calculating the coupling using
this series expansion will include resummed terms beyond the four-loop order.

3.4.2. Running of the Strong Coupling

The expression of the electromagnetic coupling in Equation (3.66) is not com-
plete, as the terms arising from QCD corrections to the vacuum polarization
function were collected in the yet undetermined function F (α̂s) defined in
Equation (3.60). Carrying out the integration is only possible when the strong
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coupling as a function of the scale parameter µ is known. In order to obtain
an expression for α̂s

(︁
µ2)︁ one has to solve the β-function of QCD, which is

addressed in this section. The final expression of the auxiliary integral will then
be determined in Section 3.4.3.

The β-function of QCD reads up to four-loop order [26]

µ2 d
dµ2

α̂s
(︁
µ2)︁
π

= − α̂2
s

π2

(︄
β̂

s
0 + β̂

s
1
α̂s

π
+ β̂

s
2
α̂2

s

π2 + β̂
s
3
α̂3

s

π3

)︄
, (3.68)

with the leading coefficients

β̂
s
0 = 1

4

(︃
11 − 2

3nq

)︃
, (3.69)

β̂
s
1 = 1

16

(︃
102 − 38

3 nq

)︃
. (3.70)

The variable nq denotes the number of quarks in the theory and changes when
decoupling the heaviest quark. A superscript “s” is used to denote β-function
coefficients of QCD in line with the subscript of the strong coupling constant α̂s.
The solution of the QCD-β-function is conventionally expressed in terms of
the so-called asymptotic scale parameter Λ [28]; it is obtained by performing
a series expansion but the final expression of α̂s

(︁
µ2)︁ is not given in terms of

an initial value α̂s
(︁
µ2

0
)︁
. For the present case, it is more convenient to derive

a series expansion of the strong coupling constant similar to Equation (3.66),
which is done in the following. The series expansion can then be integrated
trivially, as the entire scale dependence is carried by positive powers of the
logarithm (3.67).

Equation (3.68) is similar to the β-function of the electromagnetic coupling
constant without the QCD terms parametrized by δ̂i. Not taking into account the
four-loop order term β̂

s
3 , Equation (3.68) can be obtained from Equation (3.58)

using the substitutions δ̂i → 0, α̂ → α̂s and β̂i → β̂
s
i . Accordingly, the

three-loop solution may be derived from Equation (3.66) by making the same
substitutions. In order to facilitate the integration in Equation (3.60), it is
convenient to find a solution of α̂s

(︁
µ2)︁ instead of the inverse 1

α̂s

(︁
µ2
)︁ . Expanding
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the inverse of Equation (3.66), applying the substitutions mentioned above and
neglecting terms of order O

(︁
α̂5

s

)︁
yields

α̂s
(︁
µ2)︁

α̂s
(︁
µ2

0
)︁ = 1 −
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(︁
µ2

0
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π

)︄2

L

[︃
β̂

s
1 −

(︂
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s
0

)︂2
L

]︃

−
(︄
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(︁
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0
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π

)︄3

L

[︃
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s
0 β̂

s
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s
0

3
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−
(︄
α̂s
(︁
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0
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3 − 3β̂s

0 β̂
s
2L− 3

2 β̂
s
1

2
L

+13
3 β̂

s
0

2
β̂

s
1L

2 − β̂
s
0

4
L

]︃
+ O

(︁
α̂5

s

)︁
.

(3.71)

The β̂s
3-term on the last line can be guessed by looking at the logarithmic terms

stemming from irreducible diagrams at lower orders in the series expansion,
but was verified explicitly by inserting the solution (3.71) into the differential
Equation (3.68).

3.4.3. Solution of the Auxiliary Function Parametrizing the Strong
Interaction

In Section 3.4.1, the solution (3.66) of the electromagnetic β-function was given
in terms of the undetermined auxiliary function F (α̂s), only. Section 3.4.2
was dedicated to the solution of the β-function of QCD in terms of a power
series, which is required for the integration of the auxiliary function defined
in Equation (3.60). In this section, the result of Section 3.4.2 is utilized to
perform the integration, which is the last step required for the final solution of
Equation (3.58).

Since the expression of the strong coupling parameter was constructed as
a power series that is polynomial in the scale dependent logarithms, the only
integral required in this section is∫︂ µ2

µ2
0

dµ2

µ2 logn µ
2

µ2
0

= 1
n+ 1 logn+1 µ

2

µ2
0
. (3.72)
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Inserting the expansion of the strong coupling (3.71) into the definition of F (α̂s)
in Equation (3.60) and neglecting terms of order O

(︂
α̂6

s

)︂
yields

F (α̂s) =
(︄
α̂s
(︁
µ2

0
)︁

π

)︄
δ̂1L+

(︄
α̂s
(︁
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0
)︁

π

)︄2

L

[︃
δ̂2 − 1

2 β̂
s
0 δ̂1L

]︃

+
(︄
α̂s
(︁
µ2

0
)︁

π

)︄3

L

⎡⎣δ̂3 − β̂
s
0 δ̂2L− β̂

s
1 δ̂1
2 L+ β̂

s
0

2
δ̂1

3 L2

⎤⎦
+
(︄
α̂s
(︁
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0
)︁

π

)︄4

L2c4 +
(︄
α̂s
(︁
µ2

0
)︁

π

)︄5

L2c5 + O
(︁
α̂6

s

)︁
,

(3.73a)

where the coefficients of the fourth and fifth order are

c4 = −3
2 β̂

s
0 δ̂3 − β̂

s
1 δ̂2 − β̂

s
2 δ̂1
2 + β̂

s
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2
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6 β̂
s
0 β̂

s
1 δ̂1L− β̂

s
0

3
δ̂1

4 L2,

c5 = − 3
2 β̂
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1 δ̂3 − β̂

s
2 δ̂2 − β̂

s
3 δ̂1
2 + 2β̂s

0
2
δ̂3L+ 7

3 β̂
s
0 β̂

s
1 δ̂2L+ β̂

s
1

2
δ̂1

2 L

+ β̂
s
0 β̂

s
2 δ̂1L− β̂

s
0

3
δ̂2L

2 − 13
12 β̂

s
0

2
β̂

s
1 δ̂1L

2 + β̂
s
0

4
δ̂1

5 L3.

(3.73b)

Equation (3.73) coincides with the series expansion of the QCD terms of the
solution in Reference [9] when neglecting terms of order O

(︁
α̂5

s

)︁
. It can be

inserted into (3.66) to obtain the final solution of Equation (3.58).

3.5. Matching Conditions
The concept of matching a child theory onto its parent theory has been outlined
in a simplified manner in Section 2.5.4. A more sophisticated formalism will
be introduced in Chapter 5, but when neglecting weak interaction effects, the
previous concept is sufficient. This section is based on the simplified ansatz in
order to reproduce the matching condition for integrating out a heavy fermion
that was published in Reference [17].
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The relation between coupling constant and vacuum polarization function
is given in Equation (3.1) and allows expressing the difference of the inverted
coupling constants in terms of Π̂c/p,

1
α̂p(︁µ2)︁ − 1

α̂c(︁µ2)︁ = −Π̂p(0) − Π̂c(0)
α

. (3.74)

The superscript p (c) introduced in Section 2.5.4 is used to denote the coupling
parameter and vacuum polarization of the parent (child) theory. Feynman
diagrams that do not contain the heavy fermion are the same in either theory so
that the numerator on the right-hand side of Equation (3.74) is precisely given
by Equation (3.48) when omitting non-hadronic two-loop effects. The purely
electromagnetic terms at two-loop order induced by a single fermion were given
in Equation (3.38) and should be added in line with Equation (3.40). The final
matching condition becomes [17]

π

α̂p(︁m2
f

)︁ − π

α̂c(︁m2
f

)︁ = − α̂

π
Nf

c Q
4
f

15
16 − α̂s

π
Q2

f

13
12 − α̂2

s

π2
295
1296

∑︂
l

Q2
l

− α̂2
s

π2Q
2
f

[︃655
144ζ(3) − 3847

864 + 361
1296nq

]︃
(3.75)

when choosing µ = mf as the matching scale to drop all logarithms and where
the terms proportional to α̂s must be omitted for leptons.

The derivation of Equation (3.75) is simplified by the fact that the strong
coupling does not change at fermion threshold when neglecting two-loop contri-
butions. This is used when cancelling the terms stemming from light fermions
in Equation (3.74), and it is the reason for omitting the argument of α̂s in
Equation (3.75). To be more precise, the term

−4π
Nf

c Q
2
f

12π2

(︄
α̂p

s

(︁
m2

f

)︁
π

−
α̂c

s

(︁
m2

f

)︁
π

)︄
13
12 (3.76)

was silently omitted. Since the matching of the strong coupling at one-loop
order is proportional to a logarithm of the ratio of fermion mass and scale µ [14],
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Equation (3.75) is indeed justified. However, the threshold effects of QCD have
to be taken into account at higher loop order. In a sophisticated approach,
the child and parent model could be defined including QCD and the matching
conditions for the electromagnetic and strong coupling parameters would then
be obtained simultaneously. A more systematic ansatz for deriving matching
conditions is worked out in Chapter 5, but restricted to a discussion at one-loop
order where threshold effects of QCD do not play a role.
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4. Parity Violating Interaction and the
Weak Mixing Angle

Probing the weak force at low energies is a difficult task due to the suppression
of amplitudes by the inverse mass of one of the heavy gauge bosons. Compared
to the exchange of a photon, the exchange of a heavy gauge boson is hardly
distinguishable from background noise. Hence, the measurement of weak effects
on observables at zero or small momentum transfer requires a sophisticated
suppression of the electromagnetic interactions, as these dominate parity con-
serving interactions. A practical solution to this problem is to take advantage
of the parity violating property of the weak force. Probing observables that are
sensitive to a parity transformation allows discriminating between the weak and
the parity conserving electromagnetic force. Measuring a cross section or count
rate by scattering particles of opposite polarizations (left- and right-handed)
yields tiny differences in a polarization dependent observable. This variation is
tiny, but subtracting the “left-handed observable” and “right-handed observ-
able” will cancel all parity conserving effects and the remainder quantifies the
parity violation of the observable. An important example is the parity violating
left–right asymmetry of electron–proton scattering1 that is investigated in the
P2 experiment to determine the weak mixing angle.

The one-loop corrections to the charged current interaction of muon decay
give rise to correction terms that need to be taken into account when expressing
neutral-current amplitudes in terms of the Fermi constant. These correction
terms may be absorbed in the Fermi constant as described in Section 2.4.
Similarly, higher order corrections to the neutral current interaction between

1In the following, parity violating asymmetry will always refer to the left–right asymmetry
of electron–proton scattering.
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two fermions contribute to the neutral current interaction and give a correction
to the overall coupling strength and the weak mixing angle as will be shown in
Section 4.2. Originally, this was used to define an effective weak mixing angle
that contains the renormalized one-loop corrections, but will also be used as a
basis for the derivation of matching conditions in Chapter 5.

In this chapter, the parity violating interaction is derived in the Standard
Model. The Lagrangian of the Standard Model was introduced in Section 2.1,
but as described in Section 2.2 the calculation of loop effects requires a renor-
malization of the theory. In Section 4.1, the irreducible two- and three-point
vertex functions of the EWSM are derived, which are required for a systematic
renormalization of the model. The renormalized vertex functions are used in
the second part, in Section 4.2, to derive the MS-renormalized parity violating
interaction. The β-function of the weak mixing angle is derived in Section 4.3
and a possible solution published in Reference [17] is presented in Section 4.4.

4.1. Irreducible Vertex Functions

4.1.1. Bosonic Two-Point Functions

The tree-level two-point functions are determined by the terms in the Standard
Model Lagrangian that are bilinear in the respective fields. In case of the
bosonic fields, these terms read

Lbb = −1
4FµνF

µν − 1
4ZµνZ

µν + 1
2M0,Z

2ZµZ
µ − 1

2ξA
(∂µA

µ
0 )2 − 1

2ξZ
(∂µZ

µ
0 )2

.

(4.1)
The propagator is the two-point function

Gab
µν

(︁
x1, x2

)︁
= (−i)2δ2

δJµ
a
(︁
x1
)︁
δJν

b

(︁
x2
)︁ ∫︁ D [. . .] exp

(︂
i
∫︁

d4x
[︂
L + Jµ

γAµ + Jµ
ZZµ

]︂)︂
∫︁

D [. . .] exp(iS) ,

(4.2)
where

∫︁
D [. . .] denotes the functional integration over all degrees of freedom

and a, b = γ, Z. In order to evaluate the functional derivative, it is convenient,
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to rewrite Equation (4.1) in terms of a matrix multiplication, in which the
derivatives of the kinetic terms and counter terms are sandwiched between a
vector of the gauge fields. Using X to denote the matrix of renormalization
constants defined in Equation (2.19), Equation (4.1) can be written as

Lbb = − i

2
(︂
Aµ Zµ

)︂
Γ̃µν

(︄
Aν

Zν

)︄
, (4.3)

with
Γ̃µν = iXT GX,

G =

⎛⎝gµν∂2 − ∂µ∂ν
(︂
1 − 1

ξA

)︂
0

0 gµν
(︂
∂2 +M0,Z

2
)︂

− ∂µ∂ν
(︂
1 − 1

ξZ

)︂⎞⎠ . (4.4)

The Lagrangian (4.3) is now expressed in terms of the renormalized fields and
the renormalization constants δZX are absorbed into the definition of Γ̃µν . The
bosonic two-point Green function is related to the inverse ∆µν(x, x′) of Γ̃µν ,
defined by

Γ̃µν∆ν
ρ(︁x, x′)︁ = δ(4)(︁x− x′

)︁
gµρ, (4.5)

which allows determining the Green function by inverting the matrix in Equa-
tion (4.4). With the shifted fields(︄

Ãµ

Z̃µ

)︄
=
(︄
Aµ

Zµ

)︄
+ i

∫︂
d4x′ ∆µρ

(︁
x, x′

)︁(︄Jρ
A

(︁
x′
)︁

Jρ
Z

(︁
x′
)︁)︄ , (4.6)

where Jµ
A and Jµ

Z are the sources, the bilinear terms read∫︂
d4x

(︁
Lbb + Jµ

AAµ + Jµ
ZZµ

)︁
= − i

2

∫︂
d4x

(︂
Ãµ Z̃µ

)︂
Γ̃µν

(︄
Ãν

Z̃ν

)︄

− i

2

∫︂
d4x d4x′

(︂
Jρ

A

(︁
x′
)︁

Jρ
Z

(︁
x′
)︁)︂

∆µρ
(︁
x, x′

)︁(︄Jµ
A(x)
Jµ

Z(x)

)︄
.

(4.7)
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Due to translational invariance of the path integral, the fields Ãµ and Z̃µ can
be replaced by Aµ and Zµ. Equation (4.5) is equivalent to the momentum space
expression

Γ̃µν(︁
q2)︁∆ν

ρ(︁q2)︁ = gµρ, (4.8)
where ∆ν

ρ(︁q2)︁ is the Fourier transform of ∆ν
ρ(︁x1, x2

)︁
,

∆ν
ρ(︁x1, x2

)︁
=
∫︂ d4q

(2π)4 e
−iq(x1−x2)∆ν

ρ(︁q2)︁, (4.9)

and

Γ̃µν(︁
q2)︁ = −iXT G

(︁
q2)︁X,

G
(︁
q2)︁ =

⎛⎝gµνq2 − qµqν
(︂
1 − 1

ξA

)︂
0

0 gµν
(︂
q2 −M0,Z

2
)︂

− qµqν
(︂
1 − 1

ξZ

)︂⎞⎠ .
(4.10)

Inserting the bilinear Lagrangian (4.3) instead of the complete Lagrangian of the
EWSM into Equation (4.2) yields the tree-level propagator (in matrix notation)

Gtree
µν

(︁
x1, x2

)︁
= −∆µν

(︁
x1, x2

)︁
, (4.11)

which implies
Γ̃µν(︁

q2)︁Gtree
νρ

(︁
q2)︁ = −gµ

ρ (4.12)
for the tree-level propagator Gtree

νρ

(︁
q2)︁ in momentum space. By construction,

the tree-level propagator Gtree
νρ

(︁
q2)︁ contains the full dependence on the renor-

malization constants δZX . The solution to Equation (4.12) can be easiest found
by separating Γ̃µν into transverse and longitudinal parts. However, for the
calculation of the irreducible two-point vertex function, the explicit expression
of Gtree

νρ

(︁
q2)︁ is not required. The complete propagator including all possible

Feynman diagrams can be derived in terms of the self-energy functions Σµν
ab

(︁
q2)︁.

Using the matrix
(︂
Σ̃µν(︁

q2)︁)︂
ab

= Σµν
ab

(︁
q2)︁ and omitting the argument q2 for

simplicity, the propagator in matrix notation reads

Gµν = Gtree
µν +Gtree

µα iΣ̃αβ
Gtree

βν +Gtree
µα iΣ̃αβ

Gtree
βγ iΣ̃γδ

Gtree
δν + . . . . (4.13)
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For the summation, it is convenient, to decompose tree-level propagator and
self-energy into transverse and longitudinal parts according to Equation (2.25).
Then, the Dyson series (4.13) becomes

Gµν =
(︃

−gµν + qµqν

q2

)︃
Gtree

T

(︂
1 − iΣ̃TG

tree
T

)︂−1

−qµqν

q2 Gtree
L

(︂
1 − iΣ̃LG

tree
L

)︂−1
.

(4.14)

The irreducible two-point vertex function Γµν(q2) is the inverse of the propagator,
defined by

Γµν(︁q2)︁Gν
ρ = −gµρ, (4.15)

and can be readily obtained from Equation (4.14). According to Equation (4.12),
the inverse of the tree-level propagator can be expressed in terms of Γ̃µν , which
yields

Γµν =
(︃

−gµν + qµqν

q2

)︃ [︂
Γ̃T + iΣ̃T

]︂
− qµqν

q2

[︂
Γ̃L + iΣ̃L

]︂
. (4.16)

Using the same separation into transverse and longitudinal parts as before, the
matrix elements of Γµν in the Standard Model are given by

Γγγ
T = iq2(1 + δZA) + i(q2 −M2

0,Z)δZ2
ZA + iΣγγ

T

(︁
q2)︁, (4.17a)

Γγγ
L = i

q2

ξA
(1 + δZA) + i

(︄
q2

ξZ
−M2

0,Z

)︄
δZ2

ZA + iΣγγ
L

(︁
q2)︁, (4.17b)

ΓZZ
T = i

(︂
q2 −M2

0,Z

)︂
(1 + δZZ) + iq2δZ2

AZ + iΣZZ
T

(︁
q2)︁, (4.17c)

ΓZZ
T = i

(︄
q2

ξZ
−M2

0,Z

)︄
(1 + δZZ) + i

q2

ξA
δZ2

AZ + iΣZZ
L

(︁
q2)︁, (4.17d)

ΓγZ
T = iq2δZAZ

√︁
1 + δZA + i

(︂
q2 −M2

0,Z

)︂
δZZA

√︁
1 + δZZ + iΣγZ

T

(︁
q2)︁,

(4.17e)

ΓγT
L = i

q2

ξA
δZAZ

√︁
1 + δZA + i

(︄
q2

ξZ
−M2

0,Z

)︄
δZZA

√︁
1 + δZZ + iΣγZ

L

(︁
q2)︁,
(4.17f)
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4. Parity Violating Interaction and the Weak Mixing Angle

and ΓZγ
µν = ΓγZ

µν due to the symmetry of the γZ-mixing. Equation (4.17) was
derived without approximations and is valid to all orders of perturbation theory.

Equation (4.17) also motivates the particular choice of X in (2.19): If the off-
diagonal elements in X had been defined using a square root, the factors δZ2

AZ

and δZ2
ZA would be replaced by δZAZ and δZZA, respectively. This would

be counter-intuitive, as the γZ-mixing terms in Γγγ
µν and ΓZZ

µν are clearly of
two-loop order.

4.1.2. Fermionic Two-Point Functions

The terms in the Standard Model Lagrangian determining the tree-level propa-
gator of a single fermion f read

Lfb = f0,i

(︁
i/∂ −m0,f

)︁
f0,i, (4.18)

where f0 = fL
0 + fR

0 . One needs to introduce renormalization constants for
the left- and right-handed fields separately as given in Equation (2.19)), which
yields the expression

Lfb = f

[︃
i/∂

(︃
1 + 1 − γ5

2 δZf
L + 1 + γ5

2 δZf
R

)︃
−m0,f

√︂
1 + δZf

L

√︂
1 + δZf

R

]︃
f

(4.19)
in terms of the renormalized fields. The remaining derivation of the fermion
propagator is similar to the calculation of the bosonic propagator. The tree-level
propagator S(0)

f (q) equals i times the inverse of the terms in the square brackets
in Equation (4.19) and the corresponding equation in momentum space reads

i
(︂
S

(0)
f (q)

)︂−1
= /q

(︃
1 + 1 − γ5

2 δZf
L + 1 + γ5

2 δZf
R

)︃
−m0,f

√︂
1 + δZf

L

√︂
1 + δZf

R.

(4.20)

As in case of the bosonic two-point functions, the propagator including the self
energy insertion can be resummed in terms of a Dyson sum. Using Σf (q) to
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4.1. Irreducible Vertex Functions

denote the self-energy function of the fermion and omitting the momentum
dependence, it reads

Sf = S
(0)
f + S

(0)
f iΣfS

(0)
f + S

(0)
f iΣfS

(0)
f iΣfS

(0)
f + . . . = S

(0)
f

[︂
1 − iΣfS

(0)
f

]︂−1
.

(4.21)
The self energy is a Dirac matrix and can be decomposed into vector, axial
vector and scalar parts according to

Σf (q) = /qΣf
V

(︁
q2)︁+ /qγ5Σf

A

(︁
q2)︁+m0,f Σf

S

(︁
q2)︁. (4.22)

The irreducible two-point vertex function Γf is the inverse of the propagator.
Inserting Equations (4.20) to (4.22) yields

iΓf (q) = i
(︂
S

(0)
f (q)

)︂−1
+ Σf (q)

= /q

[︃
1 + 1 − γ5

2
(︂
δZf

L + Σf
V

(︁
q2)︁− Σf

A

(︁
q2)︁)︂

+1 + γ5
2

(︂
δZf

R + Σf
V

(︁
q2)︁+ Σf

A

(︁
q2)︁)︂]︃

−m0,f

(︃√︂
1 + δZf

L

√︂
1 + δZf

R − Σf
S

(︁
q2)︁)︃ .

(4.23)

For later use, it is convenient to group the terms of Equation (4.23) in terms
of scalar, vector and axial vector parts. Using the vector and axial vector
renormalization constants

δZf
V = δZf

L + δZf
R

2 and δZf
A = δZf

R − δZf
L

2 (4.24)

as an abbreviation, the irreducible vertex function can be written as

iΓf (q) = /q
(︂
1 + δZf

V + Σf
V

(︁
q2)︁)︂+ /qγ5

(︂
δZf

A + Σf
A

(︁
q2)︁)︂

−m0,f

(︃√︂
1 + δZf

L

√︂
1 + δZf

R − Σf
S

(︁
q2)︁)︃ . (4.25)

85



4. Parity Violating Interaction and the Weak Mixing Angle

4.1.3. Three-Point Functions
At leading order, the one-particle irreducible vertex functions are simply the
Feynman rules for the interaction vertices. In the Standard Model, they are
determined by the terms

−e0Qff0γµf0A
µ
0 + g0,Zf0

(︃
T 3

f γµ
1 − γ5

2 − s0
2Qfγµ

)︃
f0Z

µ
0

= fγµ

[︃
− e0Qf

(︂
1 + δZf

V + δZf
Aγ5

)︂√︁
1 + δZA

+g0,Z

2
(︂
v∗f − a∗fγ5

)︂
δZZA

]︃
fAµ

+ fγµ

[︃
g0,Z

2
(︂
v∗f − a∗fγ5

)︂√︁
1 + δZZ

−e0Qf

(︂
1 + δZf

V + δZf
Aγ5

)︂
δZAZ

]︃
fZµ

(4.26)

in the Lagrangian density, in which the constants

v∗f = T 3
f

(︂
1 + δZf

V − δZf
A

)︂
− 2s0

2Qf

(︂
1 + δZf

V

)︂
, (4.27a)

a∗f = T 3
f

(︂
1 + δZf

V − δZf
A

)︂
+ 2s0

2QfδZ
f
A (4.27b)

are used as abbreviations for vector- and axial vector coupling constants con-
taining the fermionic renormalization constants. Equation (4.26) indicates that
the off-diagonal renormalization constants δZAZ and δZZA do not only induce
a mixing of gauge boson propagators at higher loop order, but also play an im-
portant role in the renormalization of the coupling constants, as they affect the
interaction vertices, too. Higher order corrections may be separated according
to transformation behavior with respect to Lorentz transformations. Following
the notation of Reference [3], the tensor structure of the vertex functions can
be decomposed according to

Λffa
µ

(︁
q2)︁ = γµΛffa

V

(︁
q2)︁+ γµγ5Λffa

A

(︁
q2)︁

+
(p+ p′)µ

2m̃f
Λffa

S

(︁
q2)︁+ γ5

(p− p′)µ

2m̃f
Λffa

P

(︁
q2)︁, a = γ, Z,

(4.28)
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where Λffa
X

(︁
q2)︁ with a = γ, Z and X = V,A, S, P are used to parametrize the

vector, axial vector, scalar and pseudo-scalar contributions, respectively. The
irreducible fermion-photon and fermion-Z vertices in terms of Λffa

µ

(︁
q2)︁ read

Γffγ
1PI,µ

(︁
p, p′

)︁
= − ie0Qfγµ

(︂
1 + δZf

V + δZf
Aγ5

)︂√︁
1 + δZA

+ i
g0,Z

2 γµ

(︂
v∗f − a∗fγ5

)︂
δZZA − ie0Λffγ

µ

(︁
q2)︁, (4.29)

ΓffZ
1PI,µ

(︁
p, p′

)︁
= + i

g0,Z

2 γµ

(︂
v∗f − a∗fγ5

)︂√︁
1 + δZZ

− ie0Qfγµ

(︂
1 + δZf

V + δZf
Aγ5

)︂
δZAZ + i

g0,Z

2 ΛffZ
µ

(︁
q2)︁ (4.30)

and serve as a definition for the Λffa
X -functions. The numerators of the coef-

ficients of ΛffX
S and ΛffX

P are expressed in terms of the pole mass2 m̃, as it
avoids the occurrence of mass ratios when applying the Gordon identity. Since
the vertex functions are loop corrections themselves, the choice of the pole
mass instead of the bare or renormalized mass has no practical consequence
at one-loop order. Comparing Equations (4.29) and (4.30) with Reference [2]
yields the explicit one-loop expressions that are given in Appendix C.

The electromagnetic coupling constant is determined by the fermion–photon
interaction. In order to renormalize the coupling constant or derive the electro-
magnetic coupling in an effective theory in terms of matching conditions, one
has to calculate the fermion–photon interaction at zero momentum transfer.
The corresponding Green function in position space defined by means of the
functional integral reads

Gffa,ν(︁x1, x2, x3
)︁

= (−i)2iδ3

δJν
a

(︁
x1
)︁
δηf

(︁
x2
)︁
δηf

(︁
x3
)︁

·
∫︁

D [. . .] exp
{︂
i
∫︁

d4x [L + LJ ]
}︂

∫︁
D [. . .] exp(iS) , a = γ, Z,

(4.31)

2The definition of the pole mass is intricate in case of unstable particles and confined quarks
do not possess a pole mass at all. The notation of Equations (4.29) and (4.30) is still
valid, as the factor m̃−1

f can be cancelled by an appropriate normalization of the vertex
functions.
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4. Parity Violating Interaction and the Weak Mixing Angle

where the source term Lagrangian in the exponential function in the numerator
is defined as

LJ = Jµ
γAµ + Jµ

ZZµ +
∑︂

f

(︂
ηff + fηf

)︂
. (4.32)

The function Gffa,ν
(︁
p, p′

)︁
is used to denote the Fourier transform of the ffγ-

Green function in the following, p and p′ refer to the incoming and outgoing
fermion momenta, respectively, and

q = p− p′ (4.33)

is the momentum of the outgoing photon. The interaction described by (4.31)
includes the one-particle irreducible fermion–photon vertex derived above, as
well as the fermion–Z coupling paired with a γZ-mixing propagator. Due to
charge universality, the particular choice of the charged fermion f is irrelevant.
The family index i is omitted for brevity.

The Green function Gffγ,µ
(︁
p, p′

)︁
is represented by the sum of the Feynman

diagrams shown in Figure 4.1. The white circular disks at the vertices are
the one-particle irreducible functions denoted by Γffγ

1PI,µ
(︁
p, p′

)︁
and ΓffZ

1PI,µ
(︁
p, p′

)︁
.

The filled blobs inserted in the external propagators denote all loop corrections
including the reducible ones; that is, the attached propagators represent the
two-point functions defined by the functional derivative (4.2). Translating the
diagrams yields

Gffγ
µ

(︁
p, p′

)︁
= Sf

(︁
p′
)︁
Γffγ,ν

1PI
(︁
p, p′

)︁
Sf (p)Gγγ

νµ

(︁
q2)︁

+ Sf

(︁
p′
)︁
ΓffZ,ν

1PI
(︁
p, p′

)︁
Sf (p)GZγ

νµ

(︁
q2)︁ (4.34)

in terms of the irreducible vertex functions, where Gaa
µν and Sf are defined in

Section 4.1. Like before, it is easier to deal with the amputated vertex function.
Multiplying with the inverse propagators of the external particles yields

u
(︁
p′
)︁
Γffγ

µ

(︁
p, p′

)︁
u(p)εµ = u

(︁
p′
)︁
Γffγ

1PI,µ
(︁
p, p′

)︁
u(p)εµ

+ u
(︁
p′
)︁
ΓffZ

1PI,µ
(︁
p, p′

)︁
u(p)

GZγ
T

(︁
q2)︁

Gγγ
T

(︁
q2)︁ εµ,

(4.35)
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γ γ

f

f

µΓffγ
1PI

Z γ

f

f

µΓffZ
1PI

Figure 4.1.: Diagrammatic representation of the terms that make up the Green
function Gffγ,µ

(︁
p, p′

)︁
. The contribution of the irreducible ffZ-

vertex arises due to the γZ-mixing.

where Gab
T (a, b = γ, Z) are the transverse parts of the bosonic propagators. In

the on-shell scheme, the renormalized γZ-propagator vanishes at zero momentum
transfer, simplifying Equation (4.35). In the general case, however, the second
term needs to be taken into account. Using the subscript T to denote the
transverse parts of the irreducible vertex functions (4.16) and (4.17), too, the
ratio of the propagators reads

GZγ
T

(︁
q2)︁

Gγγ
T

(︁
q2)︁ = −

ΓZγ
T

(︁
q2)︁

ΓZZ
T

(︁
q2)︁ . (4.36)

The amputated vertex function Γffγ
µ is obtained by inserting Equations (4.36),

(4.17), (4.29) and (4.30) into (4.35).
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In order to compute the renormalization constant of the electromagnetic
coupling, it is necessary to determine the projection u

(︁
p′
)︁
Γffγ

µ

(︁
p, p′

)︁
u(p) for on-

shell fermions in the limit p′ → p. Sandwiching the first term of Equation (4.35)
between Dirac spinors and making use of the Gordon identity yields3

u(p)Γffγ
1PI,µ(p, p)u(p) = −ieu(p)γµu(p) (V − γ5A)u(p),

V = Qf

(︂
1 + δZf

V

)︂√︁
1 + δZA − gZ

2e v
∗
fδZZA + Λffγ

V (0) + Λffγ
S (0),

A = −QfδZ
f
A

√︁
1 + δZA − gZ

2e a
∗
fδZZA − Λffγ

A (0).

(4.37)

The projection of the second term in Equation (4.35) is similar, but also includes
the propagator ratio,

u(p)ΓffZ
1PI,µ(p, p)u(p)G

Zγ
T (0)

Gγγ
T (0) = −igZ

2 u(p)γµ (V − γ5A)u(p) ΓZγ
T (0)

ΓZZ
T (0)

,

V = v∗f
√︁

1 + δZZ − 2 e

gZ
Qf

(︂
1 + δZf

V

)︂
δZAZ + ΛffZ

V (0) + ΛffZ
S (0),

A = a∗f
√︁

1 + δZZ + 2 e

gZ
QfδZ

f
AδZAZ − ΛffZ

A (0).

(4.38)

4.2. Parity Violating Fermion–Fermion Interaction

With the derivation of the two- and three-point functions in the previous section,
it is now possible to derive the parity violating interaction excluding box-graph
contributions in the Standard Model. The first derivation of the parity violating
interaction at one-loop order was done in Reference [29] for the scattering of
electrons and quarks. In this section, the findings therein are generalized to
fermion–fermion scattering with no particular choice for the scale µ. The result
of this section also serves as a base for the derivation of matching conditions for

3Applying the Gordon identity also yields a term proportional to σµνqν which corresponds
to the fermion’s magnetic moment. This piece is irrelevant for the renormalization as it is
UV finite and will not be discussed in the following.

90



4.2. Parity Violating Fermion–Fermion Interaction

a = {γ, Z} b = {γ, Z}

f1

f1

f2

f2

Γffa
1PI Γffb

1PI

Figure 4.2.: One-particle reducible Feynman diagrams of neutral current
fermion–fermion scattering. The dark grey blobs depict the sum of
all reducible and irreducible self-energy diagrams.

the parameters describing electroweak phenomena in an effective model, which
will be discussed in Chapter 5.

The parity violating amplitude of fermion–fermion scattering contains terms
that are process dependent, that is they depend on the type of the scattering
fermions, and universal terms that are the same for all external fermions. In
order to separate the universal terms, box diagrams do not need to be treated
explicitly in this section, as they only contribute to the process dependent
terms. The contribution of these diagrams at zero momentum transfer will be
abbreviated by □ = □γγ + □γZ + □ZZ + □W W , which is understood to also
include crossed diagrams. Explicit expressions for the box diagrams can be
found in Reference [29]. The remaining terms of the parity violating interac-
tion are determined by the four Feynman diagrams that are obtained when
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4. Parity Violating Interaction and the Weak Mixing Angle

inserting photons and Z-bosons for the mediators in Figure 4.2. The parity
violating interaction can be parametrized in terms of scalar functions C̃f2

1f1

(︁
q2)︁

and C̃
f2
2f1

(︁
q2)︁ that depend on the squared momentum transfer and the type of

the scattering fermions. Separating the Fermi constant GF and a factor i√
2 ,

the parity violating matrix element reads

MPV
(︁
q2)︁ = i

GF√
2

[︂
C̃

f2
1f1

(︁
q2)︁u1γµu1 u2γ

µγ5u2

+ C̃
f2
2f1

(︁
q2)︁u1γµγ5u1 u2γ

µu2
]︂

+ O
(︁
q2)︁, (4.39)

where u1 (u2) is the spinor of fermion f1 (f2). This general structure will be
reasoned in the following subsections. As indicated by the big O notation, there
may be additional momentum transfer dependent terms that stem from the
contraction of scalar and pseudo-scalar terms which do not fit the parametrization
in terms of C̃1f1 due to a differing Dirac structure; these do not contribute at
zero momentum transfer as will be shown in Section 4.2.1. At zero momentum
transfer, this parametrization corresponds to the effective contact interaction
constants Ciq = C̃

e
iq(0), i = 1, 2, q = u, d, introduced in Reference [29]. Without

further specification of the fermions, the set of Feynman diagrams in Figure 4.2
is symmetric under the exchange f1 ↔ f2, so that the remainder of the section
is restricted to the discussion of C̃f2

1f1

(︁
q2)︁.

4.2.1. Contribution of Scalar and Pseudo-Scalar Terms

It is not obvious that Equation (4.39) is a valid parametrization of the parity
violating matrix element, as the vertex corrections (4.29) and (4.30) also contain
scalar and pseudo-scalar terms in which the Lorentz index is carried by the
fermion momenta. These terms are parametrized by the scalar functions ΛffA

S

and ΛffA
P , respectively, where A = γ, Z. Additional treatment is required in

order to derive the contribution of those pieces to the effective coupling Cf2
1f1

and show that no other terms exist beside Cf2
1f1

. Since the scalar term does
not contain a γ5-matrix, it may only contribute to the vertex correction of the
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4.2. Parity Violating Fermion–Fermion Interaction

fermion f1, for which the vector terms are required. On the other hand, the
pseudo-scalar term contributes to the vertex correction of the fermion f2 only,
because of the presence of γ5.

At one-loop order, the pseudo-scalar term can only contribute when contracted
with a vector term u1

(︁
p′1
)︁
γµu1(p1). Using the Dirac equation and identical

masses for initial and final fermionsf1 and f ′1, one finds

u1
(︁
p′1
)︁
γµu1(p1)u2

(︁
p′2
)︁
qµγ5u2(p2)

= u1
(︁
p′1
)︁

(m̃f1 − m̃f1)u1(p1) u2
(︁
p′2
)︁
γ5u2(p2) = 0,

(4.40)

where qµ = pµ
1 − p′µ1 = p′µ2 − pµ

2 is the four-momentum transfer. It remains to
derive the contribution of the scalar term to the low energy coupling constants.
When terms of two-loop order are neglected, the Dirac structure of the only
matrix element in which the scalar term can enter reads

MSA = u1
(︁
p′1
)︁
qµu1(p1) u2

(︁
p′2
)︁
γµγ5u2(p2) = u1

(︁
p′1
)︁
u1(p1) u2

(︁
p′2
)︁
/qγ5u2(p2),

(4.41)
in which the pseudo scalar term is contracted with the tree-level axial vector term
as indicated by the subscript “SA”. Equation (4.41) does not contribute to Cf2

1f1
,

which can be seen when calculating the square of the matrix element MSA and
the product of MSA and

MV A = u1
(︁
p′1
)︁
γµu1(p1) u2

(︁
p′2
)︁
γµγ5u2(p2). (4.42)

Using /qγ5 = /p′2γ5 + γ5/p2, Equation (4.41) can also be written as

MSA = 2m̃f2u1
(︁
p′1
)︁
u1(p1) u2

(︁
p′2
)︁
γ5u2(p2), (4.43)

which yields
|MSA|2 = −4m̃2

f2 Tr
{︁
ρ1ρ
′
1
}︁

Tr
{︁
ρ2γ5ρ

′
2γ5
}︁
, (4.44)

where ρi and ρ′i are the fermion density matrices of the incoming and outgoing
fermions fi and f ′i , respectively. The contribution to the asymmetry is obtained
by inserting ρ2 = γ5/s2

(︂
/p2 +mf2

)︂
and ρ′2 = /p′2 + mf2 , where s2 is the spin
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four-vector of the incoming fermion f2. Two of the γ5-matrices cancel and the
second trace becomes

Tr
{︂
/s2

(︂
/p2 +mf2

)︂
γ5
(︂
/p
′
2 +mf2

)︂}︂
. (4.45)

Since the number of independent four-vectors is less than four, the trace van-
ishes and |MSA|2 does not contribute to the parity violating asymmetry. The
product M †

SAMV A reads

M †
SAMV A = 2m̃f2 Tr

{︁
ρ1ρ
′
1γµ

}︁
Tr
{︁
ρ2γ5ρ

′
2γ

µγ5
}︁
, (4.46)

where the contribution of the second trace vanishes when inserting the density
matrix ρ2 = γ5/s2

(︂
/p2 +mf2

)︂
due to the same reason as before. This completes

the proof that the scalar and pseudo scalar terms do not contribute to the parity
violating asymmetry at one-loop order.

4.2.2. General Structure
As shown in Section 4.2.1, the only relevant terms that stem from the sum of
the vertex functions on the second lines of Equations (4.29) and (4.30) are the
vector and axial vector parts and read

ui
(︁
p′i
)︁ [︂
γµΛffX

V

(︁
q2)︁+ γµγ5ΛffX

A

(︁
q2)︁]︂ui(pi), (4.47)

where i = 1, 2 denotes the fermion and X = γ, Z the gauge boson. This allows
decomposing the one-particle irreducible vertices in Equations (4.29) and (4.30)
according to

u
(︁
p′
)︁
Γffa

1PI,µ
(︁
p, p′

)︁
u(p) = u

(︁
p′
)︁ (︂
γµΓffa

1PI,V
(︁
q2)︁+ γµγ5Γffa

1PI,A
(︁
q2)︁)︂u(p) + . . . ,

(4.48)
with

Γffγ
1PI,V

(︁
q2)︁ = − ieQf

(︂
1 + δZf

V

)︂√︁
1 + δZA + i

gZ

2 v∗f δZZA − ieΛffγ
V

(︁
q2)︁,

(4.49a)
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Γffγ
1PI,A

(︁
q2)︁ = − ieQfδZ

f
A

√︁
1 + δZA − i

gZ

2 a∗f δZZA − ieΛffγ
A

(︁
q2)︁ (4.49b)

and

ΓffZ
1PI,V

(︁
q2)︁ = i

gZ

2 v∗f
√︁

1 + δZZ − ieQf

(︂
1 + δZf

V

)︂
δZAZ + i

gZ

2 ΛffZ
V

(︁
q2)︁,

(4.50a)

ΓffZ
1PI,A

(︁
q2)︁ = −igZ

2 a∗f
√︁

1 + δZZ − ieQfδZ
f
AδZAZ + i

gZ

2 ΛffZ
A

(︁
q2)︁, (4.50b)

where the ellipsis in Equation (4.48) represents the terms that do not contribute
to the parity violating interaction. It is convenient, to define an effective vertex
to also account for normalization factors that stem from the LSZ theorem. As
shown in Appendix D, the matrix element is obtained by amputating the Green
function and inserting the LSZ factors. A fermion line with a single γ- or
Z-interaction vertex denoted by a = γ, Z becomes

u
(︁
p′
)︁ (︃

1 − 1
2δZV + 1

2γ5δZA

)︃
Γffa

1PI,µ
(︁
p, p′

)︁ (︃
1 − 1

2δZV − 1
2γ5δZA

)︃
u(p), (4.51)

where δZV and δZA are given in Equation (D.23) in terms of fermionic
self-energy functions. At one-loop order, the product of LSZ normalization
factors and loop corrections may be neglected, which allows writing the fermion
lines as

u
(︁
p′
)︁ (︃
γµΓ̆ffa

1PI,V
(︁
q2)︁+ γµγ5Γ̆ffa

1PI,A
(︁
q2)︁)︃u(p) + . . . (4.52)

in terms of effective interaction vertices denoted by Γ̆ that are defined as

Γ̆ffγ
1PI,V

(︁
q2)︁ = Γffγ

1PI,V
(︁
q2)︁+ ieQfδZV , (4.53a)

Γ̆ffγ
1PI,A

(︁
q2)︁ = Γffγ

1PI,A
(︁
q2)︁+ ieQfδZA (4.53b)

and

Γ̆ffZ
1PI,V

(︁
q2)︁ = ΓffZ

1PI,V
(︁
q2)︁+ i

gZ

2 (−vfδZV + afδZA) , (4.54a)
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Γ̆ffZ
1PI,A

(︁
q2)︁ = ΓffZ

1PI,A
(︁
q2)︁+ i

gZ

2 (−vfδZA + afδZV ) . (4.54b)

As before, the ellipses in Equation (4.52) represents terms not contributing to
the parity violating interaction.

Using these definitions, the invariant amplitude that corresponds to the
C̃

f2
1f1-piece of Diagram 4.2 reads

M PV
VA = −u1

(︁
p′1
)︁
γµu1(p1) u2

(︁
p′2
)︁
γµγ5u2(p2)

·
∑︂

a,b=γ,Z

Γ̆f1f1a
1PI,V

(︁
q2)︁Gab

T

(︁
q2)︁Γ̆f2f2b

1PI,A
(︁
q2)︁, (4.55)

where the subscript VA refers to the vector–axial vector type of interaction.
The qµqν-terms in the gauge boson propagators drop out due to current con-
servation, so that the amplitude can be expressed in terms of the transverse
parts of the propagators. In the limit q2 = 0, the second line in Equation (4.55)
can be written in terms of an effective coupling constant Cf2

1f1
. Adopting the

notation

M PV
VA = −iGF√

2
Cf2

1f1
u1(p1)γµu1(p1) u2(p2)γµγ5u2(p2) (4.56)

of Reference [29], the effective contact interaction strength Cf2
1f1

for arbitrary
fermions f1 and f2 reads4

Cf2
1f1

= −i
√

2
GF

lim
q2→0

∑︂
a,b=γ,Z

Γ̆f1f1a
1PI,V

(︁
q2)︁Gab

T

(︁
q2)︁Γ̆f2f2b

1PI,A
(︁
q2)︁+ □, (4.57a)

Cf2
2f1

= Cf1
1f2
, (4.57b)

where GF is the Fermi constant and □ denotes the contribution of box diagrams
as mentioned before. The parameters Cf2

1f1
and Cf2

2f1
also include the tree-level

interaction and the second relation is a consequence of the symmetry mentioned
above. The limit in Equation (4.57) must not be commuted with the sum, as

4The authors of Reference [29] restricted the discussion to f2 = e and omitted the superscript.
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some terms in the sum are individually singular in q2 = 0, but the poles cancel
in the sum, eventually.

If one of the fermions is a quark, Equation (4.57) needs to be understood
as a component of a scattering hadron. One has to be careful to not double
count vertex corrections on the hadron side, as these may already be part of
the experimentally determined form factor. A brief discussion is given at the
end of Section 4.2.3. In the following, all contributions are treated as if the
fermions were free particles.

4.2.3. MS-Coupling Parameters in the Standard Model
The calculation of Cf2

1f1
in the Standard Model can be simplified by inserting

MS-renormalized loop expressions and dropping all renormalization constants,
as these account for the UV-divergent pieces in the loop integrals, only. The
definition of Cf2

1f1
includes a factor G−1

F , which is introduced for convenience,
to write the parity violating amplitude (4.55) in terms of the Fermi constant
instead of the Z-boson mass. This way, the inverse Fermi constant cancels
with the fundamental coupling constants that occur in Feynman rules up to
loop corrections. The relation between coupling constants and the Fermi
constant at one-loop order is conventionally given in terms of ∆r. It was first
derived in Reference [4] and the corresponding MS-expression ∆r̂ was given in
Equation (2.33).

Here and in the following, a hat is used to denote MS-quantities, while the
tilde symbol refers to OS-renormalized quantities as before. This allows writing

√
2

GF
= 8M̃

2
Z

ẽ2 ĉ2ŝ2 (1 − ∆r̂) , (4.58)

which is expressed in terms of the on-shell Z-mass and electromagnetic coupling
constant and where ∆r̂ is given in Equation (2.33). In order to obtain a relation
in terms of the corresponding MS-parameters, one has to express the OS mass
in terms of the MS-mass via M̃2

Z = M̂
2
Z − ℜΣ̂ZZ

T

(︁
M̃

2
Z

)︁
, and use [7]

1
ẽ2 = 1

ê2

[︃
1 − 2δê

ê

]︃
MS

+ O
(︁
δe2)︁ (4.59)
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to also rewrite the electromagnetic coupling in terms of its MS-definition.
Equation (4.59) is valid at one-loop order only, but is sufficient within the
present approximation. Eventually, Equation (4.58) becomes

√
2

GF
= 8M̂

2
Z

ĝ2
Z

{︄
1 − Σ̂W W

T (0)
M̂

2
W

− α

4πs2

[︃(︃ 7
2ŝ2 − 6

)︃
log ĉ2

+ 4 log µ2

M2
Z

+ 6
]︃

+ O
(︁
α2)︁}︄,

(4.60)

where the operator ℜ was omitted, because Σ̂W W
T is real valued at zero momen-

tum transfer and the coupling constants were expressed in terms of ĝ2
Z = ê2

ĉ2ŝ2 .
Equations (4.58) and (4.60) account for radiative corrections to the muon decay
at one-loop order. These diagrams do not enter the parity violating interaction,
but need to be taken into account to make use of the Fermi constant, which is
determined by measuring the muon’s lifetime.

To facilitate the discussion of Cf2
1f1

, the loop contributions are split up into
four distinct pieces5:

• Omitting the arguments of the propagator and vertex functions, the first
piece is

C
f2(A)
1f1

= −i
√

2
GF

[︃
Γ̆f1f1Z

1PI,V G
ZZ
T Γ̆f2f2Z

1PI,A

]︃
tree-level

(4.61a)

and accounts for the tree-level expression including LSZ factors.

• The second piece contains all terms with a photon propagator but without
γZ-mixing and reads

C
f2(B)
1f1

= −8iM̂
2
Z

ĝ2
Z

Γ̆f1f1γ
1PI,V G

γγ
T Γ̆f2f2γ

1PI,A. (4.61b)

5The second and fourth pieces are functions of q2, as they contain q−2-terms that were
mentioned above. However, the poles cancel in the sum, which is independent of q2.
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The Fermi constant was expressed in terms of M̂
2
Z

ĝ2
Z

at tree-level only, since
two-loop effects are neglected in the present calculation.

• Terms with a Z-vertex on either side but without the tree-level expression
are combined in the third piece,

C
f2(C)
1f1

= −8iM̂
2
Z

ĝ2
Z

(︃
Γ̆f1f1Z

1PI,V G
ZZ
T Γ̆f2f2Z

1PI,A −
[︃
Γ̆f1f1Z

1PI,V G
ZZ
T Γ̆f2f2Z

1PI,A

]︃
tree-level

)︃
.

(4.61c)

• The fourth piece includes all γZ-mixing contributions,

C
f2(D)
1f1

= −8iM̂
2
Z

ĝ2
Z

(︃
Γ̆f1f1γ

1PI,V G
γZ
T Γ̆f2f2Z

1PI,A + Γ̆f1f1Z
1PI,V G

Zγ
T Γ̆f2f2γ

1PI,A

)︃
. (4.61d)

These pieces are labelled with a superscript (x), x = A,B,C,D and sum up to
the effective coupling Cf2

1f1
,

Cf2
1f1

= C
f2(A)
1f1

+ C
f2(B)
1f1

+ C
f2(C)
1f1

+ C
f2(D)
1f1

. (4.62)

Following the notation of Reference [29], the goal is to write the effective
coupling Cf2

1f1
in the form

Cf2
1f1

= −af2ϱ
[︂
2T 3

f1 − 4Qf1κŝ
2
]︂

+ □, (4.63)

where the parameters ϱ and κ are used to collect all one-loop order effects
except for the box graph contributions that are denoted by □. The parame-
ter ϱ is defined as a coefficient of the vector coupling constant vf1 instead of
the weak isospin component T 3

f1
for convenience, as the product of ϱ and κ

accounts for reducible two-loop effects that stem from a simultaneous one-loop
correction of the overall amplitude and the diagrams contributing to κ. How-
ever, a complete two-loop calculation is required to see if the product terms
contained in Equation (4.63) correctly describe all two-loop effects that stem

99



4. Parity Violating Interaction and the Weak Mixing Angle

from reducible two-loop Feynman diagrams. At tree-level, one has ϱ = κ = 1,
which yields Cf2

1f1
= −2vf1af2 for the leading order coefficient when inserted into

Equation (4.63). In the following, the four pieces will be calculated at one-loop
order.

The first piece is obtained by calculating fermion–fermion scattering at
tree-level including the appropriate LSZ factors given in Equation (4.54). In
addition, Equation (4.60) needs to be inserted to account for the relation of the
Fermi constant that enters via the definition (4.57) and the heavy gauge boson
mass stemming from the propagator. Omitting terms of two-loop order, the
first piece in MS reads

C
f2(A)
1f1

= −i
√

2
GF

i
ĝZ

2
[︂
vf1(1 − δZ f1

V ) + af1δZ
f1

A

]︂(︄
− i

M̂
2
Z

)︄

· i ĝZ

2
[︂
−af2(1 − δZ f2

V ) − vf2δZ
f2

A

]︂
= −2vf1af2

{︄
1 − α

4πs2

[︄
4 log µ2

M2
Z

+
(︃ 7

2ŝ2 − 6
)︃

log ĉ2 + 6
]︄

− Σ̂W W
T (0)
M2

W

− δZ f1
V − δZ f2

V + af1

vf1

δZ f1
A + vf2

af2

δZ f2
A

}︄
.

(4.64a)
The electromagnetic tree-level interaction is parity conserving. Hence, the only
contribution to the second piece stems from a vertex correction to the fermion
line of fermion f2, which is encoded in Γf2f2γ

1PI,A. Due to the presence of the inverse
squared momentum transfer in the photon propagator, one needs to take into
account the derivative of Γf2f2γ

1PI,A, too. The LSZ factors in Equation (4.64a) stem
from the effective ffZ-vertex (4.54); here, they appear again as part of the
effective photon vertex (4.53). Inserting Equations (4.53), (4.29) and replacing
the LSZ factors using (D.23) yields

C
f2(B)
1f1

= −8iM̂
2
Z

ĝ2
Z

(−ieQf1) i

q2 ie

[︃
Qf2Σ̂f2

A

(︁
m̃2

f2

)︁
− Λ̂f2f2γ

A (0) − q2Λf2f2γ′
A (0)

]︃
.
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Rewriting the trivial factors to facilitate the discussion with respect to the
notation of Equation (4.63), the second piece becomes

C
f2(B)
1f1

= −2
(︂
−2ŝ2Qf1

)︂
af2

⎛⎝−2 ĉ
2

T 3
f2

M̂
2
Z

q2

⎞⎠
·
[︃
−Qf2Σ̂f2

A

(︁
m̃2

f2

)︁
+ Λ̂f2f2γ

A (0) + q2Λf2f2γ′
A (0)

]︃
.

(4.64b)

The first two terms in brackets in Equation (4.64b) on their own are not well-
defined in the limit of vanishing momentum transfer, due to the inverse factor
of the squared momentum. These terms appear as the corresponding Feynman
diagrams are not individually gauge invariant and cancel with the corresponding
singular terms in the γZ-mixing self-energy as will be shown later. The third
piece obtains corrections from three different sources: each of the two vertices
and the propagator; the sum of these three contributions is

C
f2(C)
1f1

= −8iM̂
2
Z

ĝ2
Z

(︃
i
ĝZ

2 vf1

)︃(︄
− i

M̂
2
Z

)︄(︃
i
ĝZ

2 Λ̂f2f2Z

A (0)
)︃

− 8iM̂
2
Z

ĝ2
Z

(︃
i
ĝZ

2 vf1

)︃⎛⎝−i Σ̂
ZZ
T (0)
M̂

4
Z

⎞⎠(︃−i ĝZ

2 af2

)︃

− 8iM̂
2
Z

ĝ2
Z

(︃
i
ĝZ

2 Λ̂f1f1Z

V (0)
)︃(︄

− i

M̂
2
Z

)︄(︃
−i ĝZ

2 af2

)︃
,

which can be combined to

C
f2(C)
1f1

= −2vf1af2

⎡⎣ Σ̂ZZ
T (0)
M̂

2
Z

− 1
T 3

f2

Λ̂f2f2Z

A (0)

⎤⎦− 2af2Λ̂f1f1Z

V (0). (4.64c)

The remaining piece is the one that contains the γZ-mixing self-energy. Due
to the presence of the photon propagator, the expression at zero momentum
transfer contains a derivative of the self-energy and the Z-boson’s propagator.
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In addition, a term proportional to q−2 arises that corresponds to the singular
terms in equation (4.64b). One finds6

C
f2(D)
1f1

= −8iM̂
2
Z

ĝ2
Z

(−ieQf1) i

⎡⎣ Σ̂γZ
T (0)
q2M̂

2
Z

+ Σ̂γZ
T (0)
M̂

4
Z

+ Σ̂γZ′
T (0)
M̂

2
Z

⎤⎦(︃−i ĝZ

2 af2

)︃

= −2
(︂
−2ŝ2Qf1

)︂
af2 ·

(︃
− ĉ

ŝ

)︃⎡⎣ Σ̂γZ
T (0)
q2 + Σ̂γZ

T (0)
M̂

2
Z

+ Σ̂γZ′
T (0)

⎤⎦ .
(4.64d)

Apart from box graphs, the four Equations (4.61a) to (4.61d) account for all
loop corrections to the MS-renormalized parity violating interaction at one-loop
order. Instead of summing all pieces and inserting explicit expressions for
the self-energy functions and LSZ factors, it is more convenient, to group the
different terms according to their contribution to the tree-level amplitude.

Due to the presence of the factor vf1af2 , the loop contributions in Equa-
tion (4.64a) and the terms in brackets in Equation (4.64c) can be absorbed into
a global correction factor that is multiplied with the tree-level expression. On
the other hand, Equations (4.64b) and (4.64d) may be understood as corrections
to the weak mixing angle due to the charge factor Qf1 that allows absorbing the
expressions in the second term of the vector coupling constant vf1 = T 3

f1
−2ŝ2Qf1 .

This facilitates combining all loop corrections derived above in two different
constants, ϱ and κ. With Equation (4.63) in mind, one finds

ϱ = 1 +

⎛⎝ Σ̂ZZ
T (0)
M̂

2
Z

− Σ̂W W
T (0)
M2

W

⎞⎠− α

4πs2

[︄
4 log µ2

M2
Z

+
(︃ 7

2ŝ2 − 6
)︃

log ĉ2 + 6
]︄

− δZ f1
V + af1

vf1

δZ f1
A + Λ̂f1f1Z

V (0)
vf1

− δZ f2
V + vf2

af2

δZ f2
A − Λ̂f2f2Z

A (0)
T 3

f2

,

(4.65)
6The terms in brackets are the first two orders in the Laurent series of the γZ-propagator at

one-loop order. The second term accounts for the derivative of the tree-level Z-propagator
with respect to q2.
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κ = 1 − ĉ

ŝ

⎡⎣ Σ̂γZ
T (0)
q2 + Σ̂γZ

T (0)
M̂

2
Z

+ Σ̂γZ′
T (0)

⎤⎦
− 2 ĉ

2

T 3
f2

M̂
2
Z

q2

[︂
−Qf2Σ̂A

f2(m̃2
f2) + Λf2f2γ

A (0) + q2Λf2f2γ′
A (0)

]︂
.

(4.66)

Equations (4.63), (4.65) and (4.66) are of limited use, as ϱ and κ are no universal
corrections, since they depend on the charges and weak isospins of the external
fermions f1 and f2. To obtain a more convenient form, in which terms that are
independent of Qf and T 3

f are separated from the process dependent terms, one
has to insert the explicit expressions of the loop functions occurring therein.
As mentioned earlier, the sum of the q−2-terms in the parameter κ vanishes,
when inserting the explicit one-loop expressions given in Equations (C.3), (C.12)
and (C.18). The remaining terms are

κ = 1 − ĉ

ŝ

Σ̂γZ
T (0)
M̂

2
Z

− ĉ

ŝ
Σ̂γZ′

T (0) − 2 ĉ
2

T 3
f2

M̂
2
ZΛf2f2γ′

A (0), (4.67)

with the corresponding one-loop expressions given in Equations (C.3), (C.4)
and (C.31). Using Qf ′ = Qf − 2T 3

f to express the charge of the weak isospin
partner f ′2 in terms of quantum numbers of fermion f2, the parameter κ can be
written as

κ = 1 − α

2πs2

⎧⎨⎩
(︃5

2c
2 + 1

12

)︃
log µ2

M̂
2
W

+ 7
9 − s2

3 − 1
3
∑︂

f

NfQfvf log µ2

m2
f

⎫⎬⎭
+ α

4πs2

⎧⎨⎩Qf2vf2

9

(︄
1 − 6 log

m2
f2

M̂
2
Z

)︄
+
Qf2 − 2T 3

f2

18T 3
f2

⎛⎝1 − 6 log
m2

f ′
2

M̂
2
W

⎞⎠⎫⎬⎭ .
(4.68)

In order to compute the parameter ϱ, it is helpful to derive the explicit one-loop
expressions of the fermion residue first. It is determined by Equation (D.23),
with the corresponding one-loop functions given in Equations (C.11), (C.12),
(C.14) and (C.16). The axial vector piece δZ f

A is identical to the self-energy
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in Equation (C.12); neglecting the fermion mass compared to the mass of the
heavy gauge bosons, the vector piece becomes

δZ f
V = α

4π

{︄
Q2

f

(︄
4 + log µ2

m̃2
f

+ 2 log λ2

m̃2
f

)︄

+
v2

f + a2
f

4c2s2

(︄
−1

2 + log µ2

M̂
2
Z

)︄
+ 1

4s2

(︄
−1

2 + log µ2

M̂
2
W

)︄}︄ (4.69)

The terms on the second line of Equation (4.65) cancel to some extent. Inserting
Equations (4.69), (C.12) and (C.20) yields the f2-correction terms

−δZ f2
V + vf2

af2

δZ f2
A − 1

T 3
f2

Λ̂f2f2Z

A (0) = α

4π2c
2

s2 log µ2

M̂
2
W

− α

4π2Q2
f2 . (4.70)

Similarly, the terms on the second line of Equation (4.65) that stem from
fermion f1 are determined by Equations (4.69), (C.12) and (C.19) and read

−δZ f1
V + af1

vf1

δZ f1
A + 1

vf1

Λ̂f1f1Z

V (0) = α

4π

(︄
2 + 4s2Qf1

vf1

)︄
c2

s2 log µ2

M̂
2
W

− α

4π2Q2
f1 .

(4.71)
Combining Equations (4.70), (4.71) and (C.10) leads to the final result

ϱ = 1 + α

4π

⎧⎪⎨⎪⎩ 1
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(︃ 3
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+ 16 − 19s2

4c2s2 log µ2
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2
W

− 4
s2 log µ2

M2
Z

+ 4s2Qf1

vf1

c2

s2 log µ2

M̂
2
W

− 2
(︂
Q2

f1 +Q2
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)︂

− 3
4s2

c2 log µ2
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2
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− ξ log µ2
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log µ2
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2
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− ξ log µ2

M2
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1 − ξ

⎫⎪⎬⎪⎭ ,
(4.72)
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where ξ = M̂
2
H

M̂
2
Z

and M̂W = cM̂Z + O (α) were used. Equation (4.72) can be
greatly simplified by combining the scale dependent logarithms, in which case
the µ-dependency drops out almost entirely, with the term proportional to Qf1

being the only remnant. Eventually, one finds the much simpler expression

ϱ = 1 + α

4π

⎧⎨⎩ 3
4s4 log c2 − 7

4s2 + 3
4s2

m2
t

M2
W

+ 3ξ
4s2

⎡⎣ log c2

ξ

c2 − ξ
+ log ξ
c2(1 − ξ)

⎤⎦⎫⎬⎭
+ α

π

c2Qf1

vf1

log µ2

M2
W

− α

4π2
(︂
Q2

f1 +Q2
f2

)︂
.

(4.73)
It is clear that the first two terms of the parameter ϱ and the first line of
Equation (4.68) are independent of the particular choice of the scattering
fermions f1 and f2, while the last term in Equation (4.73) and the second
line in Equation (4.68) are not. The third term in Equation (4.73) depends
on the charge and vector coupling of fermion f1, but may be rewritten as an
f1-independent correction to κ. It is reasonable to define universal parameters ρ
and κ that are completely independent of f1 and f2 and keep all process
dependent terms separate. To that end, the symbols ρ and κ are used to denote
the expressions that were given in Reference [29]7. They read

ρ = 1 + α

4π

⎧⎨⎩ 3
4s4 log c2 − 7

4s2 + 3
4s2

m2
t

M2
W

+ 3ξ
4s2

⎡⎣ log c2

ξ

c2 − ξ
+ log ξ
c2(1 − ξ)

⎤⎦⎫⎬⎭ ,
(4.74)

κ = 1 − α

2πs2

⎧⎨⎩
(︃7

2c
2 + 1

12

)︃
log µ2

M2
W

+ 7
9 − s2

3 − 1
3
∑︂

f

NfQfvf log µ2

m2
f

⎫⎬⎭
(4.75)

7The choice µ = MW was made in Reference [29]. Here, the terms proportional to log µ2

M2
W

(including the third term of Equation (4.73)) in κ are kept, as these reproduce the correct
β-function-coefficient of the weak mixing angle.
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and allow writing the effective coupling Cf2
1f1

similar to Equation (4.63), but
with the process dependent terms separated. Appending the process dependent
terms that do not stem from box diagrams at the end, it reads

Cf2
1f1

= −af2ρ
[︂
2T 3

f1 − 4Qf1κs
2
]︂

+ □ + 4af2vf1
α

4π
(︂
Q2

f1 +Q2
f2

)︂
+ α

9πQf1af2

⎡⎣Qf2vf2

(︄
1 − 6 log

m2
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M2
Z

)︄
+
Qf2 − 2T 3

f2

2T 3
f2

⎛⎝1 − 6 log
m2

f ′
2

M2
W

⎞⎠⎤⎦ .
(4.76)

For the particular choice f1 = u, f2 = e and µ = M̂W , these process dependent
terms in Equation (4.76) read

− α

4π
(︂
1 +Q2

u

)︂(︃
1 − 8

3s
2
)︃

− α

9π
(︂
1 − 4s2

)︂(︄1
6 − log m2

e

M̂
2
Z

)︄
. (4.77)

The term proportional to Q2
u stems from a photonic correction of the quark

vertex and naturally occurs along with the Q2
f1

-term of the charged lepton in a
free-quark calculation. The obvious question is how one should use the result
of a free-quark calculation to compute low energy observables of semileptonic
processes that depend on the hadronic structure. Hadronic structure effects can
not be calculated perturbatively and a comprehensive theoretical prediction of
an observable requires experimental input in terms of form factors or particle
distribution functions. An in-depth discussion of the combination of radiative
corrections and form factors can be found in Reference [30]. After all, the
correct treatment of the radiative corrections depends on the determination
of the form factors, as various radiative corrections may or may not have
been subtracted from the measured cross section before fitting the form factor
functions. The Q2

u-term mentioned above is universal as it does not depend on
leptonic properties and may be absorbed into the electromagnetic form factors
of the scattering hadron. According to References [31, 32], the electromagnetic
form factors of the proton given therein were obtained using the results of
Reference [33] which include contributions of the photonic vertex correction
that gives rise to the Q2

u-term. To not double count this correction, the term
should be omitted which confirms the long known result [29].
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4.3. The β-Function of the Weak Mixing Angle

Just as in the case of the electromagnetic coupling, the running of the weak
mixing angle is governed by its renormalization group equation. The coefficients
of the corresponding β-function are determined by the logarithms of the scale µ
that contribute to the weak mixing angle. These are fixed by the renormalization
scheme and can be obtained from the counter term associated with the weak
mixing angle. Instead of calculating the counter term in a separate step, it
is also possible to derive the β-function from the result of Section 4.2.3, in
which all one-loop contributions to the weak mixing angle were collected in the
effective constant κ. Differentiating Equation (4.75) with respect to µ2 yields
the β-function of the weak mixing angle in the MS-scheme,

µ2 d
dµ2 ŝ

2κ
(︁
µ2)︁ = α

π

⎛⎝1
6
∑︂

f

N c
fQfvf − 43

24 + 7
4s

2

⎞⎠ . (4.78)

The two rightmost terms are now expressed in terms of the squared sine s2

instead of c2 = 1 − s2 and stem from W-boson loops in the γZ-self-energy
function and vertex corrections.

The subscript f in Equation (4.78) indicates a sum over all Dirac fermions,
but can be transformed into a sum over all chiral degrees of freedom, which
is convenient for solving the differential equation. Since the weak isospin of
the right-handed fermions vanishes, but the charges of left- and right-handed
fermions are identical, the vector coupling constant vf of a Dirac fermion is
given by

vf = T 3
f − 2s2Qf =

∑︂
i=lf ,rf

(︂
T 3

i − s2Qi

)︂
. (4.79)

Here, the indices lf and rf denote the left- and right-handed chiral fermions
of flavor f . In order to denote different particle types in this section and
Section 4.4, the notation of Reference [17] is adopted. The different subscripts are
summarized in Table 4.1. Rewriting the sum as a sum over chiral fermions allows
combining the fermionic and bosonic terms and facilitates solving the β-function
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Particle Subscript

Dirac fermion f

Dirac quark q

chiral fermion i

chiral fermion or boson p

chiral fermion or boson iq

Table 4.1.: Subscripts used to denote
different particle types.

Field γx

Real scalar 1
Complex scalar 2
Chiral fermion 4
Majorana fermion 4
Dirac fermion 8
Massles gauge boson −22

Table 4.2.: Weight factors γx in
the weak mixing an-
gle’s β-function.

in terms of the solution of the electromagnetic coupling. Using γp to denote
particle type specific factors called weight factors in Reference [17], one finds

β̂s2 = − α

24π
∑︂

p

N c
pγp

(︂
T 3

pQp − s2Q2
p

)︂
. (4.80)

Comparing Equations (4.78) and (4.80) yields γi = 4 for chiral fermions. The
bosonic terms in Equation (4.78) can be obtained, when summing over a pair of
massless gauge bosons (γb = −22) and one complex Goldstone boson (γG = 2,
TG = +1

2 , QG = +1). The weight factors mentioned in Reference [17] are
displayed in Table 4.2.

4.4. Solution of the Weak Mixing Angle’s β-Function
The solution of the β-function of the weak mixing angle is simple from a
technical point of view. One just needs to plug the β-function (4.80) into one
of the first order solutions derived in Chapter 3. The obtained solution may
then be used to rescale the weak mixing angle. However, the β-function is
obtained using perturbation theory, which is not suitable for treating effects
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of the strong interaction. As in the case of the electromagnetic coupling, the
naive solution is ill-defined below the hadronization scale, if light quark effects
are taken into account. In Chapter 3, the workaround was to make use of the
optical theorem and experimental data in order to obtain a value of α̂

(︁
µ2)︁ above

the hadronization scale and avoiding the non-perturbative region altogether.
In order to treat the coupling parameters at low energies, a different ansatz
is required. As described in References [17, 18], the coupling parameters can
be constrained phenomenologically in the non-perturbative region, which is
facilitated by relating the running of sin2 θ̂W to that of the electromagnetic
coupling parameter. Using the solution of the latter, allows constraining the
weak mixing angle indirectly in the non-perturbative region, too. To that end,
the solution of the weak mixing angle in terms of the electromagnetic coupling
is discussed in this section.

The β-function of the weak mixing was derived at one-loop order in the
previous section. The fermionic contributions stem from the fermion loop in
the γZ-mixing and can be deduced from the photonic self-energy. Some higher
order corrections can be taken into account by replacing the color factor Ni

with [18]

Ki = N c
i

{︄(︃
1 + 3

4Q
2
i

α̂

π

)︃
+ α̂s

π
+
(︃
α̂s
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)︃2 [︃125
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72nq

]︃
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4∑︂
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π

)︃k

K
(k)
i

}︄
,

K
(3)
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3888n
2
q ,

K
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i = 2665349

41472 + 182335
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16 ζ4 − 31375
288 ζ5

− nq

(︃11785
648 + 58625

864 ζ3 − 715
48 ζ4 − 13325

432 ζ5

)︃
− n2

q

(︃ 4729
31104 − 3163

1296ζ3 + 55
72ζ4

)︃
+ n3

q

(︃ 107
15552 + 1

108ζ3

)︃
.

(4.81)
The term independent of α̂s applies to all fermions, while the remaining terms
stem from the strong interaction and need to be dropped for leptons. The
bosons are treated at one-loop order, that is Kb = 1. Ki as defined above
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only accounts for non-singlet contributions, as these enter the electromagnetic
coupling similarly. Singlet contributions are also present in the electromagnetic
case but have a different structure and need to be treated separately. The
singlet contributions may be parametrized in terms of σ according to [18]

σ = α̂3
s

π3

[︃ 55
216 − 5

9ζ3

]︃
+ α̂4

s

π4

[︃11065
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− nq
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48ζ4 + 25
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)︃]︃
.

(4.82)
This way, the renormalization group equation of the weak mixing angle becomes

µ2 dŝ2

dµ2 = α̂
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)︄ ⎤⎦ .
(4.83)

The singlet contributions are proportional to the vector coupling constants vq of
the virtual quarks; in order to relate the β-function of the weak mixing angle to
that of the electromagnetic coupling the quark’s vector coupling constants were
already split up in Equation (4.83). Using the same separation of the bosonic
terms into two massless gauge bosons and one Goldstone boson as explained
in Section 4.3 allows writing the β-function of the electromagnetic coupling
constant in a similar form,

µ2 dα̂
dµ2 = α̂2

π

⎡⎣ 1
24
∑︂

i

KiγiQ
2
i + σ

(︄∑︂
q

Qq

)︄2
⎤⎦ . (4.84)

Using Equations (4.83) and (4.84), it is straightforward to derive

µ2 d
dµ2

(︄
ŝ2

α̂

)︄
= − 1

24π
∑︂
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KpγpT
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T 3
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. (4.85)
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The solution of Equation (4.85) is not trivial, as the right-hand side still depends
on the scale µ due to the presence of α̂(µ) and α̂s(µ) within Ki and σ. When
neglecting terms of order O

(︁
α̂2)︁ and O (α̂α̂s)8, the differential Equation (4.85)

can be simplified by the introduction of five auxiliary coefficients λ1, . . . , λ4
and ˜︁σ. The coefficients λi are independent of the coupling parameters and the
scale µ and allow writing Equation (4.85) as

0 = µ2 d
dµ2

(︄
ŝ2 − λ1
α̂

− 3λ3
4π log α̂+ σ̃

π

)︄
− λ2

3π + O
(︁
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)︁
. (4.86)

Using Equation (4.86) as an ansatz, the coefficients can be computed by in-
serting the derivatives of α̂(µ) and ŝ2(µ) and expanding in powers of coupling
constants α̂ and α̂s. This yields a system of equations which eventually leads to

λ1 =
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q QqT
3
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2
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(4.87)

The expression of λ1 is a simplification of

λ1 =
∑︁

iq
NiqγiqT

3
iq
Qiq∑︁

iq
NiqγiqQ

2
iq

, (4.88)

in which the sum is taken over chiral quarks, as indicated by the index iq.
Rewriting the two sums as sums over Dirac quarks yields the result given in
Equation (4.87). Due to the particular form of the coefficients λ1 and λ2, the
sum over quarks in λ2 cancels, allowing to sum over chiral leptons i ̸= q, only.

8Terms of order O (α̂α̂s) have been neglected in the solution of the electromagnetic β-function,
too.
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This can be easily verified by inserting equation (4.88) into the definition of λ2.
However, quarks still contribute to λ2 via λ1 in the sum over chiral leptons. The
precise values of the coefficients in Equation (4.87) depend on the field content
and change when integrating out a fermion. Explicit values can be found in
Reference [17].

Since λ2 is independent of µ, the differential Equation (4.86) can be readily
integrated; without any additional approximation one finds the solution [17]

ŝ2(µ) = α̂(µ)
α̂(µ0) ŝ

2(µ0) + λ1

(︃
1 − α̂(µ)

α̂(µ0)

)︃
+ α̂(µ)

π

(︄
λ2
3 log µ

2

µ2
0

+ 3
4λ3 log α̂(µ)

α̂(µ0) + ˜︁σ(µ0) − ˜︁σ(µ)
)︄

+ O
(︁
α̂3, α̂2α̂s

)︁
.

(4.89)
The term O

(︁
α̂3, α̂2α̂s

)︁
in Equation (4.89) indicates the error that stems from

the approximation made in Equation (4.86). However, as the β-function was
derived without taking into account electroweak two-loop effects, there are
also terms of order O

(︁
α2)︁ that are missing in the solution (4.89). On the

other hand, the O
(︁
α̂2)︁-terms that stem from the two-particle irreducible purely

electromagnetic two-loop diagrams are taken into account due to the two-loop
solution α̂(µ) derived in Chapter 3. These are accompanied by two-loop terms
that arise due to the resummation of one-particle irreducible terms. Either type
of two-loop contributions can be identified by expanding Equation (4.89) in
terms of α̂.

The solution (4.89) is particularly useful, as it expresses the running of the
weak mixing angle in terms of the running of the electromagnetic coupling. That
way, phenomenological constraints of hadronic effects in α̂(µ) can be indirectly
applied to the weak mixing angle. Additional uncertainties because of non-
perturbative effects arise from the singlet contribution and the parameters λi.
The coefficients λi need to be changed at particle thresholds, which are not
well-defined within perturbation theory.
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5.1. Introduction
5.1.1. Concept
The effect of heavy particles on low-energy observables is often negligible and
keeping those particles as degrees of freedom is an unnecessary complication. In
MS-like renormalization schemes, this may be addressed by using an effective
model, which does not contain the heavy fields. The parameters of the effective
model are initially unknown, but can be linked to the parameters of the complete
theory by the so called “matching”. The general procedure of integrating out
heavy degrees of freedom is to introduce renormalization constants in the
effective theory, which are determined by equating Green functions or observables
of the effective and the complete theory, respectively. This follows the process
of renormalization closely, but the matching conditions (in analogy to the
renormalization conditions) depend on calculations in two different models.
As a simple example, the matching condition that fixes the electromagnetic
coupling constant in the effective theory reads

u(p)Γffγ
′µ (p, p)u(p) = u(p)Γffγ

µ (p, p)u(p) (5.1)

for an arbitrary but fixed value of the momentum p. Here and in the following,
primes are used to denote quantities of the effective theory. If the quantity is
momentum dependent, the prime is used as a subscript to avoid confusion with
the derivative with respect to the momentum. Equation (5.1) allows drawing
two conclusions. First, if the Green function of the complete theory is properly
renormalized, that is free of UV divergences, the Green function of the effective
theory will be as well. Second, the matching procedure may be understood as a
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generalization of renormalization; for instance, the renormalization condition
for the electric charge in the on-shell scheme,

u(p)Γffγ
µ (p, p)u(p) = −ieQfu(p)γµu(p), (5.2)

may be understood as matching the theory with the tree-level expression.
Equation (5.1) contains an ambiguity due to the presence of the mass scale µ

that is introduced in dimensional regularization. At one-loop order, it appears
in logarithms of the form

Lh := log µ2

M2
h

, (5.3)

where Mh refers to the mass of one of the heavy particles that are being
integrated out. The particular choice of µ that has to be made in order to
obtain a meaningful matching condition, is called matching scale. Its precise
value is arbitrary, but it is advisable to choose a value of the order of Mh

to prevent the occurrence of large logarithms. If the masses of the heavy
particles span several orders of magnitude, large logarithms inevitably occur
when removing all heavy particles at once. In this case, it might be better
to integrate out the particles one at a time: Suppose there are two particles
with masses M1 ≫ M2. In a first step, one constructs an effective theory
without the particle of mass M1 and matches it with the complete theory
at the scale µ1 ∼ M1. In a next step, the renormalization group equation
(RGE) of the effective model can be used to evolve the effective parameters to
a different scale µ2 ∼ M2. Now, the M2-particle can be removed by creating
a second effective theory and matching it with the first one at the scale µ2.
In this procedure, the large logarithms reappear when evolving the effective
parameters from scale µ1 to µ2. However, the benefit of this approach is that
the large logarithms are automatically resummed when the β-function is solved
analytically.

5.1.2. Published Calculations
The process of matching an effective theory with the one including all degrees
of freedom has been worked out first in [34] and studied in the context of grand
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unification in [35]. The calculations in these two publications were carried out
for simple gauge groups only, raising the question, whether the direct application
to the electroweak Standard Model (EWSM) is viable. In particular, the mass
mixing between the fundamental fields Bµ and W 3

µ that is induced by the
vacuum expectation value of the Higgs,

v2

4 g1g2BµW
3µ = csM2

ZBµW
3µ, (5.4)

was not taken into account. Since Equation (5.4) describes a tree-level effect, it
needs to be resummed in a Dyson series. This is crucially different from the
γZ-mixing induced by loop diagrams, which can be treated perturbatively.

The matching conditions1 for integrating out the W-boson or a heavy fermion
in the SU(2)×U(1) product group of the EWSM were presented in References [9]
and [17], citing the work of Hall [35]. The results for the effective coupling
constants when removing the W-boson given in References [9, 17] read (µ = MW )

1
α

= 1
α′

+ 1
6π , (5.5a)

s2 = 1 − α

α′

(︂
1 − s′

2
)︂

= s′
2 + α

6π
(︂
1 − s′

2
)︂
. (5.5b)

In a more recent study [36], an effective low energy model was constructed by
integrating out the top, Higgs, Z and W simultaneously. Omitting the top-quark
contributions, the findings are

1
α

= 1
α′

+ 1
6π − 7

4πLW (5.6)

and confirm the result (5.5a). By integrating out the Z-boson, the weak mixing
angle was removed from the theory and consequently, no equation analogous
to (5.5b) was given in Reference [36]. However, a validation of Equation (5.5b)
is desirable, as it is not clear whether the application of the methods described
in References [34, 35] to the matching of the weak mixing angle can be justified.

1In the following, the term “matching condition” will be used interchangeably for the defining
relations like Equation (5.1) and its corresponding solutions like Equation (5.5).
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5.1.3. Outline

The key ideas of the derivation of matching conditions based on Reference [35]
are presented in Sections 5.2.1 to 5.2.3. In Section 5.2.4 the results are applied
to integrating out the W-boson, reproducing the results given in Equation (5.5).
This calculation is insufficient in describing all electroweak effects that are
required for the matching of the weak mixing angle. The precise problem is
briefly discussed in Section 5.2.5. Overcoming the inadequacy and deriving
meaningful matching conditions requires a new ansatz that is discussed in the
remainder of this chapter. Two similar calculations based on different effective
models are presented in Sections 5.3 and 5.4, including precise definitions of
the effective models and matching conditions for all relevant amputated two-
and three-point functions.

5.2. Calculation in the Context of a Grand Unified
Theory

The calculation outlined in Reference [35] was done in the context of a grand
unified theory whose gauge group is spontaneously broken. The goal was to
investigate the relation between the known interactions of the Standard Model
and a hypothetical unified interaction that is described by a single simple gauge
group. Additional assumptions like gauge invariance of certain terms in the
effective theory were made, and it is not clear, if the prescription can be directly
applied to the EWSM. The ideas and results of Reference [35] are outlined in
the following subsections nonetheless, as they allow reproducing the matching
condition (5.5b) published in Reference [9]. Different approaches that do not
rely on the assumptions made in Reference [35] are discussed in Sections 5.3
and 5.4.

5.2.1. Heavy Particles at Zero Momentum Transfer

The effect of heavy particles at zero momentum transfer can be directly calcu-
lated in the Standard Model. The heavy particles appear as virtual particles in
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5.2. Calculation in the Context of a Grand Unified Theory

the self-energies of the gauge bosons, which can be separated into transverse
and longitudinal parts according to Equation (2.25). Calculating the matching
condition for a gauge coupling requires the computation of the field renormaliza-
tion constant of the associated gauge field; to this end, it is sufficient to take into
account the coefficients of the metric tensor, only2. Accordingly, the qµqν-terms
will be omitted in the following, so that the one-loop corrected propagator of a
massless gauge boson reads

−igµν

q2 + −igµα

q2

(︂
iΣαβ

)︂ −igβν

q2 = −igµν

q2

(︄
1 − ΣT

q2

)︄
. (5.7)

Any particle that couples to the mediating gauge boson, occurs in the self-energy
and contributes to this correction, but the terms that stem from the heavy
particle may be factorized. Using ΣT

h to denote the contribution of the heavy
particle and ΣT

r for all remaining terms
(︂
ΣT = ΣT

h + ΣT
r

)︂
, the one-loop corrected

propagator can be written as

−igµν

q2

(︄
1 − ΣT

q2

)︄
= −igµν

q2

(︄
1 − ΣT

h

q2

)︄(︄
1 − ΣT

r

q2

)︄
+ O

(︁
ΣT

h ΣT
r

)︁
. (5.8)

The correction ΣT
h

q2 can be expanded in q2

M2
h

, where Mh is the mass of the heavy
particle. For small values of q2 it is dominated by the zeroth-order term of its
Taylor expansion and the propagator (5.8) may be approximated as

−igµν

q2

[︃
1 −

(︂
ΣT

h

)︂′ (︁
q2 = 0

)︁]︃(︄
1 − ΣT

r

q2

)︄
+ O

(︁
ΣT

h ΣT
r

)︁
+ O

(︄
q2

M2
h

)︄
, (5.9)

assuming that ΣT
h (0) = 0. In case of a massive gauge boson, the result is similar,

but the calculation is more involved. The proper derivation including the mass
is carried out in Section 5.3.

2This is justified by the results of the complete calculation in Section 5.3.
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5.2.2. Effective Theory
The effective model does not contain the heavy field as a degree of freedom, but
is constructed such that it includes the same correction of the propagator as
shown in Equation (5.9). This is achieved with the “free” Lagrangian

L A
free = (1 + l)

[︃
−1

4
(︂
∂µA

a
ν − ∂νA

a
µ

)︂2
+ 1

2M
2
AA

a
µA

aµ − 1
2ξa

(︂
∂µAa

µ

)︂2
]︃

(5.10)

of the gauge field Aa
µ, where the correction l is defined as l =

(︂
ΣT

h

)︂′ (︁
q2 = 0

)︁
at one-loop order. Using integration by parts and omitting surface terms, this
may also be written as

L = 1 + l

2 Aa
µ

[︃
gµν

(︂
∂2 +M2

A

)︂
− ∂µ∂ν

(︃
1 − 1

ξa

)︃]︃
Aa

ν . (5.11)

Formally deriving the propagator in the effective theory shows that Equa-
tion (5.11) is in concordance with (5.9). The propagator is the tree-level
expansion of the Green function

Gµν
(︁
x1, x2

)︁
= (−i)2 δ2

δJµ
(︁
x1
)︁
δJν

(︁
x2
)︁

·
∫︁

D [. . .] exp
(︂
i
∫︁

dDx
[︂
L + JµAa

µ

]︂)︂
∫︁

D [. . .] exp (iS)

⃓⃓⃓⃓
⃓⃓
Jµ=0

,

(5.12)

where D [. . .] denotes the functional integration over all fields of the effective
theory. The argument of the exponential function in the numerator of Equa-
tion (5.12) can be rewritten as usual,∫︂

dDx
[︂
L + JµAa

µ

]︂
=
∫︂

dDx
1 + l

2 Ã
a
µ

[︃
gµν

(︂
∂2 +M2

A

)︂
− ∂µ∂ν

(︃
1 − 1

ξa

)︃]︃
Ã

a
ν

+ D

2(1 + l)

∫︂
dDx dDx′ Jµ(x)∆µν

(︁
x, x′

)︁
Jν(x′),

(5.13)
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where D is the dimension of space-time, ∆µν is the Green function of the bracket
in Equation (5.11),[︃

gµν
(︂
∂2 +M2

A

)︂
− ∂µ∂ν

(︃
1 − 1

ξa

)︃]︃
∆µν

(︁
x, x′

)︁
= −δ(D)(︁x, x′)︁, (5.14)

and
Ã

a
µ = Aa

µ − D

1 + l

∫︂
dDx′ ∆µρ

(︁
x, x′

)︁
Jρ(︁x′)︁. (5.15)

Due to translational invariance of the functional integral, the shifted field Ã
a
µ

can be replaced by Aa
µ. Inserting the Lagrangian (5.13) into Equation (5.12)

allows obtaining the Green function. Expanding the remaining exponential
function yields

Gtree
µν

(︁
x1, x2

)︁
= − i

2
D

1 + l

[︄
δ2

δJµ
(︁
x1
)︁
δJν

(︁
x2
)︁

·
∫︂

dDx dDx′ Jµ(x)∆µν
(︁
x, x′

)︁
Jν(︁x′)︁]︄

Jµ=0

(5.16)

for the tree-level Green function. It can be evaluated using the solution of
Equation (5.14), which reads

∆µν
(︁
x, x′

)︁
= 1
D

∫︂ dDp

(2π)D
e−ip(x−x′)

[︄
gµν

p2 −M2
A

− pµpν(1 − ξa)
(p2 −M2

A)(p2 − ξaM2
A)

]︄
(5.17)

in terms of a D-dimensional Fourier integral. Inserting ∆µν
(︁
x, x′

)︁
into Equa-

tion (5.16) yields

Gtree
µν

(︁
x1, x2

)︁
=
∫︂ dDp

(2π)D
e−ip(x1−x2) 1

1 + l

·
[︄

−igµν

p2 −M2
A

+ ipµpν(1 − ξa)
(p2 −M2

A)(p2 − ξaM2
A)

]︄
.

(5.18)

The Fourier transform of this expression is the Feynman rule for a propagator
in momentum space and in agreement with Equation (5.9) in Feynman gauge.
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The Lagrangian in Equation (5.11) is not normalized canonically because
of the leading factor (1 + l). The canonical normalization can be restored by
rescaling the field according to

Aa
µ =

A′aµ√
1 + l

, (5.19)

where the prime denotes the quantity of the effective model. It is now evident
that the constant l introduced as a correction factor carrying contributions of a
heavy particle plays the role of a renormalization constant in the effective theory.
To avoid confusion between the two closely related concepts of renormalization
and matching, the renormalization constants in the effective theory will be
called matching constants and denoted by a lowercase l, while Z is used for
the renormalization constants of the Standard Model. Besides the bilinear
terms, the gauge field also occurs in the interaction terms, which stem from the
covariant derivative, the self-interaction and the gauge fixing. Replacing the
field of the complete theory with that of the effective model in the covariant
derivative gives a contribution to the interaction term,

∂µ − igT aAa
µ = ∂µ − igT aA′aµ

1√
1 + l

. (5.20)

The standard form of the covariant derivative can be restored, too; this time by
introducing an effective gauge coupling that is scaled with the inverse factor to
cancel the corresponding normalization of the gauge field,

g = g′
√

1 + l. (5.21)

Equation (5.21) is called the matching condition and relates the effective cou-
pling g′ to the coupling g of the parent theory. With the definition of the
matching constant l, the coupling constant of the effective theory is solely deter-
mined by the self-energy function of the associated gauge field Aa

µ in the parent
theory. This is similar to the renormalized electric charge in the Standard Model,
which only depends on the self-energy function of the photon.
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MW

MW

MW

Figure 5.1.: Gauge boson self-energy diagrams excluding the Higgs-tadpole
diagram. The dashed line represents any particle with mass MW .

5.2.3. Application to the Fundamental Gauge Bosons of the
Electroweak Sector

The self-energy of a gauge field was derived in Reference [35] by computing the
diagrams with the topologies shown in Figure 5.1 in a general context. The
part of the result that can be applied to integrating out the W-boson is3

lA = − g2

48π2 Tr
(︁
tAtA

)︁
, (5.22)

where A denotes the gauge field and g is the corresponding gauge coupling
constant. The matrices tA are the generators of the broken gauge group in the
adjoint representation. Evaluating the trace yields

lB = 0,

lW 3 = − g2
2

24π2

(5.23)

for the U(1) and SU(2) gauge groups, respectively. The result lB = 0 represents
the fact that the Bµ-field does not couple directly to any of the fields with
mass MW .

3Note, that the definition of l in Reference [35] comes with a relative minus sign compared
to the present definition.
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5.2.4. Derivation of the Electromagnetic Coupling and the Weak
Mixing Angle Via the Fundamental Gauge Couplings

The matching for the electromagnetic coupling constant can be obtained in terms
of the vacuum polarization function by applying the results of Section 5.2.2
in the physical basis, that is the basis in which the mass matrix of the gauge
bosons is diagonal. This calculation is carried out in Section 5.2.5. Since the
electromagnetic coupling constant is defined in terms of the gauge couplings g1
and g2 that are associated with the gauge groups,

α = e2

4π = 1
4π

g2
1g

2
2

g2
1 + g2

2
, (5.24)

the matching can also be derived from the matching of the couplings g1 and g2.
The latter approach also allows deriving the matching for the weak mixing angle,
which is defined as

s2 = g2
1

g2
1 + g2

2
. (5.25)

Inserting Equations (5.21) and (5.23) into the definition of α yields the matching
condition [17]

1
α

= 4π
g′

1
2

1+lW 3
+ g′

2
2

1+lB

g′1
2g′2

2 = 1
α′

+ 1
6π + O(α). (5.26)

A similar calculation for the weak mixing angle also produces a matching
condition of the weak mixing angle,

s2 = s′
2 − c2s2 (lW 3 − lB) + O

(︁
α2)︁ = s′

2 + α

6πc
2 + O

(︁
α2)︁. (5.27)

Equation (5.27) is the matching condition used in References [17, 18] to de-
termine the weak mixing angle at low energies. As mentioned before, the
calculation presented above is not sufficient for deriving the matching of the
mixing angle of the EWSM, which will be briefly illustrated in Section 5.2.5.
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5.2. Calculation in the Context of a Grand Unified Theory

5.2.5. Matching of Electromagnetic Coupling in Terms of the
Photonic Self-Energy Function

To understand the shortcomings of the previous ansatz, the matching condition
for the electromagnetic coupling constant is now derived using the self-energy
of the photon directly. Following Section 5.2.2, the matching condition for the
electromagnetic coupling constant reads

e = e′
√︁

1 + le, le =
[︃ d

dq2 Σγ
T,MW

(︁
q2)︁]︃

q2=0
, (5.28)

where Σγ,T
MW

denotes the transverse part of the photon’s self-energy that stems
from a loop with a particle of mass MW . The matching constant le is a power
series in α, allowing to write the matching condition as

1
e2 = 1

e′2
− le
e2 + O(α). (5.29)

Dropping the fermionic part, the contribution to le from the MS-renormalized
photon self-energy reads [2]

le = α

4π
d

dq2

[︄
3q2 log M

2
W

µ2 −
(︂
3q2 + 4M2

W

)︂
F
(︁
q2,MW ,MW

)︁]︄
q2=0

, (5.30)

where the function F
(︁
q2,M,M

)︁
is the UV-finite part of the two-point Passarino–

Veltman function B0
(︁
q2,M,M

)︁
with the Taylor expansion

F
(︁
q2,M,M

)︁
= q2

6M2 + O

(︄
q4

M4

)︄
. (5.31)

With α = e2

4π , the matching condition for α reads

1
α(µ) = 1

α′(µ) + 1
4π

[︄
3 log µ2

M2
W

+ 2
3

]︄
. (5.32)
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The matching scale is arbitrary to some extent and µ = MW is a convenient
choice, for which one finds [17]

1
α
(︁
MW

)︁ = 1
α′
(︁
MW

)︁ + 1
6π , (5.33)

which confirms the results of the previous sections. The renormalization and
accordingly the matching condition of the electric charge is not solely determined
by the self-energy of the photon, but depends on the γZ-mixing, too [37]. This is
the reason, why the scale dependent term in Equation (5.32) deviates from the
result given in Reference [36]. The latter one also includes the γZ-self-energy
contribution

−2s
c

Σ̂γZ
T (0)
M2

Z

= α

4π4 log M
2
W

µ2 , (5.34)

which does not appear in the present calculation. Adding Equation (5.34) to
the matching constant le yields the result of Reference [36], but is without
justification at this point. The problem is that the present ansatz accounts for
the self-energy of the investigated boson, only. This is sufficient if the gauge
bosons of different gauge groups do not communicate like in the case of a
simple gauge group which is the basis for the calculation in Reference [35]. As
a consequence, the effect of γZ-mixing can not be reproduced by the results
presented in Section 5.2.3.

The reason for the inadequacy of Reference [35] in the context of the EWSM is
similar. The product group SU(2)×U(1) contains two different subgroups whose
gauge bosons mix due to the interaction with the Higgs boson. The mixing
is not accounted for as can be seen in Equation (5.23), where the matching
for either subgroup is derived independently. To overcome this shortcoming,
a different ansatz is discussed in Sections 5.3 and 5.4 based on two different
effective models, in which the matching conditions are obtained by equating
Green functions instead of self-energy functions. This follows the ideas of
renormalization closely and guarantees that also all interactions between gauge
bosons are taken into account.
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5.3. Z as a Pseudo Gauge Boson

5.3. Z as a Pseudo Gauge Boson

The ansatz described in Section 5.2 for the effective model does not include
effective terms that describe the mixing between photon and Z-boson via a
W+W−-loop. This mixing occurs at one-loop order in the EWSM due to
the γZ-self-energy diagrams. Furthermore, the previous calculation also does
not take into account vertex corrections, although the renormalization of the
electromagnetic coupling constant and the weak mixing angle also depend
on vertex functions. All these one-loop corrections have to be reproduced in
the effective theory by means of effective interaction terms. Additionally, the
matching of the weak mixing angle was calculated, presuming that gZ = e

cs
is a valid relation in the effective theory. However, in the effective theory,
the coupling constant gZ should be treated as an independent and elementary
parameter at first. Calculating the matching conditions will then provide a
relation to the physical parameters of the EWSM allowing to give a physical
interpretation of the effective parameters.

In this section, a more versatile ansatz is used and matching conditions for
all two- and three-point functions are derived. An effective model including the
Z-boson but without charged current interactions is introduced in Section 5.3.1.
The motivation for this model is to determine the matching conditions in the
electroweak sector when integrating out the W-boson, but it may also serve as
a basis for integrating out fermions, subsequently. The irreducible two- and
three-point functions of the effective model are given in Section 5.3.2. In
Section 5.3.3 the matching conditions of the field renormalization constants and
electric charge are worked out and the matching of the weak mixing angle is
determined in Section 5.3.5.

5.3.1. Lagrangian

In order to get rid of the shortcomings described above, one needs a more
sophisticated ansatz for the derivation of matching conditions. The starting
point is the electroweak Standard Model in terms of the physical fields as
discussed in Section 2.1 and an ansatz for the effective model. The Lagrangian
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of the effective model is obtained from the EWSM Lagrangian by omitting all
terms that include a scalar, a W±-field or a ghost-field. To compensate for the
omitted interactions with the Higgs field, additional effective mass terms of
the Z-boson and the fermions are introduced. The explicit expression for the
effective Lagrangian reads

L ′ =
∑︂

f

[︂
f ′
(︂
i/∂ −m′0,f

)︂
f ′ − e′Qff ′ /A

′
f ′ + g′Z

(︂
T 3

f f
′L /Z
′
f ′L − s′

2
Qff ′ /Z

′
f ′
)︂]︂

− 1
4F
′
µνF

′µν − 1
4Z
′
µνZ

′µν + 1
2M

′
0,Z

2
Z ′µZ

′µ − 1
2ξ′A

(︁
∂µA

′µ)︁2 − 1
2ξ′Z

(︁
∂µZ

′µ)︁2 ,
(5.35)

where primes denote effective fields and parameters. Additional non-diagonal
terms that would mix the photon and the Z-field are not included, since the
introduction of appropriate matching constants will allow for a non-diagonal
matching of the fields in the effective theory to the corresponding fields in
the EWSM (see Equation (5.37) below). The Lagrangian does not preserve
the SU(2)×U(1)-symmetry of the Standard Model due to the lack of two
components of the SU(2)-vector field, that is W 1

µ and W 2
µ . Additionally, the

Z-mass is not generated by a Higgs mechanism so that the Zµ-field can not be
a gauge field. Accordingly, ξ′Z is not a gauge fixing parameter but merely an
undetermined parameter of the model that has no practical relevance in the
present use case. However, the effective photon field is still invariant under the
local U(1)-symmetry transformation

f ′i → f ′i − ie′Qfi
δθ′Af ′i , A′µ → A′µ + ∂µδθ

′A (5.36)

so that the electric charge is conserved. Equation (5.35) describes only neutral
current phenomena, that is all interactions are diagonal in flavor space. Charged
current interactions like muon decay could be introduced by means of effective
contact interactions of four fermions, but these interaction terms are not required
for the matching of the electromagnetic coupling and the weak mixing angle.
The Lagrangian is parametrized in terms of bare masses m′0,f and M ′0,Z , that
may be expressed in terms of the pole masses or MS-masses, later on. It is
also possible, to introduce a renormalized mass and mass counterterm, which is
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briefly discussed in Section 5.3.3. Since the effective model does not exhibit a
W-boson, the transition from the Standard Model to the effective one may be
understood as the process of integrating out the W-bosons degree of freedom.

For now, the effective fields have no physical meaning as there is no link
to the Standard Models’s degrees of freedom. The relation between the fields
of the EWSM and the effective theory is parametrized in terms of matching
constants l′X ; the defining equations are(︄

A′µ
Z ′µ

)︄
= L

(︄
Aµ

Zµ

)︄
, L =

(︄√
1 + lA lAZ

lZA

√
1 + lZ

)︄
,

f ′L/R = fL/R

√︃
1 + lfL/R.

(5.37)

The off-diagonal elements in L are intentionally defined without a square root;
the motivation for this was explained at the end of Section 4.1.1. Equation (5.37)
allows expressing the effective Lagrangian in terms of the original fields and
derive Green functions with respect to those fields.

5.3.2. Irreducible Vertex Functions
The derivation of the irreducible vertex functions is identical to the calculation
in Section 4.1, due to the great similarity between the effective model and the
neutral sector of the electroweak Standard Model. As a consequence, the previ-
ously obtained expressions can be adopted by replacing the Standard Model
parameters with the effective ones and the counter terms δZX with the ap-
propriate matching constants lX of the effective theory. The self-energy and
vertex functions also change since the fields missing in the effective model do not
contribute. The matrix elements of the bosonic irreducible vertex function Γµν

′
in the effective model are given by

Γγγ
′T = iq2(1 + lA) + i(q2 −M ′0,Z

2)l2ZA + iΣγγ
′T
(︁
q2)︁, (5.38a)

Γγγ
′L = i

q2

ξ′A
(1 + lA) + i

(︄
q2

ξ′Z
−M ′0,Z

2
)︄
l2ZA + iΣγγ

′L
(︁
q2)︁, (5.38b)
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ΓZZ
′T = i

(︂
q2 −M ′0,Z

2
)︂

(1 + lZ) + iq2l2AZ + iΣZZ
′T
(︁
q2)︁, (5.38c)

ΓZZ
′T = i

(︄
q2

ξ′Z
−M ′0,Z

2
)︄

(1 + lZ) + i
q2

ξ′A
l2AZ + iΣZZ

′L
(︁
q2)︁, (5.38d)

ΓγZ
′T = iq2lAZ

√︁
1 + lA + i

(︂
q2 −M ′0,Z

2
)︂
lZA

√︁
1 + lZ + iΣγZ

′T
(︁
q2)︁, (5.38e)

ΓγZ
′L = i

q2

ξ′A
lAZ

√︁
1 + lA + i

(︄
q2

ξ′Z
−M ′0,Z

2
)︄
lZA

√︁
1 + lZ + iΣγZ

′L
(︁
q2)︁, (5.38f)

and ΓZγ
′µν = ΓγZ

′µν . Here, the prime is also introduced for the self-energy and
amputated two-point functions to make its connection to the effective model
explicit. Since Γab

′µν and Σab
′T/L are not just constants, the prime is used as

a subscript in order to avoid confusion with derivatives with respect to the
momentum transfer which will be denoted by a superscript prime, later on. In
analogy to Equation (4.25), the fermionic two point function reads

iΓ′f (q) = −m′0,f

(︃√︂
1 + lfL

√︂
1 + lfR − ΣS

′f
(︁
q2)︁)︃

+ /q
(︂
1 + lfV + ΣV

′f
(︁
q2)︁)︂+ /qγ5

(︂
lfA + ΣA

′f
(︁
q2)︁)︂ , (5.39)

where

lV = lfL + lfR
2 and lA = lfR − lfL

2 (5.40)

are used to rewrite the left- and right-handed terms as vector and axial vector
parts. It is convenient, to introduce the effective coupling constants

v∗∗f = T 3
f

(︂
1 + lfV − lfA

)︂
− 2s′2Qf

(︂
1 + lfV

)︂
, (5.41a)

a∗∗f = T 3
f

(︂
1 + lfV − lfA

)︂
+ 2s′2Qf l

f
A (5.41b)

to absorb some of the fermionic matching constants and where a double asterisk
is used to avoid an ambiguity with respect to the definition in Equation (4.27).
Finally, the irreducible fermion-photon and fermion-Z vertices in terms of
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the effective vertex functions Λffa
′X
(︁
q2)︁ are defined like the vertex functions in

Section 4.1.3 and read

Γffγ
′1PI,µ

(︁
p, p′

)︁
= − ie′Qfγµ

(︂
1 + lfV + lfAγ5

)︂√︁
1 + lA + i

g′Z
2 γµ

(︂
v∗∗f − a∗∗f γ5

)︂
lZA

− ie′
[︄
γµΛffγ

′V
(︁
q2)︁+ γµγ5Λffγ

′A
(︁
q2)︁

+
(p+ p′)µ

2m̃f
Λffγ
′S
(︁
q2)︁+ γ5

(p− p′)µ

2m̃f
Λffγ
′P
(︁
q2)︁]︄ ,

(5.42)

ΓffZ
′1PI,µ

(︁
p, p′

)︁
= i

g′Z
2 γµ

(︂
v∗∗f − γ5a

∗∗
f

)︂√︁
1 + lZ − ie′Qfγµ

(︂
1 + lfV + lfAγ5

)︂
lAZ

+ i
g′Z
2

[︄
γµΛffZ

′V
(︁
q2)︁+ γµγ5ΛffZ

′A
(︁
q2)︁

+
(p+ p′)µ

2m̃f
ΛffZ
′S

(︁
q2)︁+ γ5

(p− p′)µ

2m̃f
ΛffZ
′P

(︁
q2)︁]︄ .

(5.43)

The explicit one-loop expressions can be obtained from the formulae in Ap-
pendix C by omitting the terms that correspond to charged current interactions.

5.3.3. Matching Conditions of Two- and Three-Point Functions

Bosonic Two-Point Functions

Instead of equating two-point Green functions, it is easier to obtain the matching
conditions by equating the irreducible vertex functions, which are the inverse of
the Green functions. Then, the generic matching conditions read

Γab
′P (0) = Γab

P (0), (5.44a)
d

dq2

[︂
Γab
′P
(︁
q2)︁]︂

q2=0
= d

dq2

[︂
Γab

P

(︁
q2)︁]︂

q2=0
, (5.44b)
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where a, b = γ, Z and P = T, L denote transverse and longitudinal parts. Due
to the symmetry of Γ′, Equation (5.44) includes twelve distinct equations. As
the bosonic sector of the effective model is determined by seven parameters, five
additional relations emerge. Since the system of Equations is overdetermined,
explicit calculation will show, if the effective model is able to reproduce all
effects of the EWSM. A violation of one of the excess equations proves that the
effective model is not a valid ansatz for the description of the entire EWSM at
low energy. The Implications are briefly discussed at the end of this section.

The bosonic irreducible two-point vertex functions of the EWSM and the
effective theory are given in Equations (4.17) and (5.38), respectively. Inserting
these expressions, the six equations that stem from the transverse parts become

M ′ 20,Z l
2
ZA = M2

0,ZδZ
2
ZA − Σγγ

T (0), (5.45a)
lA + l2ZA = δZA + δZ2

ZA + Σγγ′
T (0), (5.45b)

M ′ 20,Z(1 + lZ) = M2
0,Z(1 + δZZ) − ΣZZ

T (0), (5.45c)

lZ + l2AZ = δZZ + δZ2
AZ + ΣZZ′

T (0), (5.45d)

M ′ 20,Z lZA

√︁
1 + lZ = M2

0,ZδZZA

√︁
1 + δZZ − ΣγZ

T (0), (5.45e)

lAZ

√︁
1 + lA + lZA

√︁
1 + lZ = δZAZ

√︁
1 + δZA + δZZA

√︁
1 + δZZ + ΣγZ′

T (0),
(5.45f)

where a superscript prime is used to abbreviate the derivatives and the notation

Σab
T/L

(︁
q2)︁ := Σab

T/L

(︁
q2)︁− Σab

′T/L

(︁
q2)︁ (5.46)

is used for the difference between unrenormalized self-energy functions of the
EWSM and the effective theory. So far, no assumptions about the renormal-
ization of the EWSM theory were made. One could omit the renormalization
constants on the right-hand sides of the above equations, but then the effec-
tive model needs to be renormalized additionally. It is easier, to derive the
matching conditions using a renormalized version of the EWSM, in which case
the effective theory “inherits” the renormalization prescription. The matching
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conditions (5.45) need to be iteratively solved order by order, as the (n+1)-loop
self-energy functions depend on the n-loop matching constants. For complete-
ness, the full analytic solution is given, nonetheless. Equations (5.45b), (5.45d),
(5.45c) and (5.45e) are readily solved in terms of lAZ ,

lA = Σγγ′
T (0) + δZA + δZ2

ZA − l2ZA, (5.47a)

lZ = ΣZZ′
T (0) + δZZ + δZ2

AZ − l2AZ , (5.47b)

M ′0,Z
2 =

M2
0,Z(1 + δZZ) − ΣZZ

T (0)
1 + ΣZZ′

T (0) + δZZ + δZ2
AZ − l2AZ

, (5.47c)

lZA = z1

√︂
1 + ΣZZ′

T (0) + δZZ + δZ2
AZ − l2AZ , (5.47d)

z1 =
M2

0,ZδZZA

√
1 + δZZ − ΣγZ

T (0)
M2

0,Z(1 + δZZ) − ΣZZ
T (0)

, (5.47e)

which can be used in conjunction with (5.45f) to derive an equation for lAZ .
The quadratic equation has only one positive solution, which reads

lAZ = −
z2 − z1

(︂
1 + ΣZZ′

T (0) + δZZ + δZ2
AZ

)︂
√

1 + z3
,

z2 = ΣγZ′
T (0) + δZAZ

√︁
1 + δZA + δZZA

√︁
1 + δZZ ,

z3 = Σγγ′
T (0) + δZA + δZ2

ZA

+ z2
1

(︂
1 + ΣZZ′

T (0) + δZZ + δZ2
AZ

)︂
− 2z1z2.

(5.48)

The corresponding one-loop approximations

lA = δZA + Σγγ′
T (0), lZA = δZZA − ΣγZ

T (0)
M2

0,Z

,

lZ = δZZ + ΣZZ′
T (0), lAZ = δZAZ + ΣγZ′

T (0) + ΣγZ
T (0)
M2

0,Z

,

M ′ 20,Z = M2
0,Z

(︂
1 − ΣZZ′

T (0)
)︂

− ΣZZ
T (0)

(5.49)
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are much simpler and show immediately that the parameters of the effective
theory and the Standard Model coincide at leading order and that the particle
being integrated out contributes in the effective model indirectly by means of
appropriate matching constants. The solution of the matching constant lZ is
given in terms of the derivative of the Z-boson’s self-energy function instead
of its value at zero momentum transfer. This is a consequence of the different
masses M ′0,Z and M0,Z that appear on the left-hand and right-hand side of
Equation (5.45c), respectively. Equation (5.49) also makes clear that the particle
being integrated out contributes in the effective model indirectly by means of
appropriate matching constants and that the renormalization of the remaining
fields in the effective model is “inherited” from the Standard Model: The terms
that account for the renormalization, that is UV pieces as well as finite terms
that occur due to the renormalization prescription, are adopted by the effective
model. The renormalized mass M ′Z = M ′0,Z − δM ′Z is an exception to this
observation, as M ′Z and δM ′Z may be chosen freely and only the sum M ′0,Z is
fixed by the matching condition.

The matching conditions that are obtained when inserting the longitudinal
parts of the two-point function into (5.44) read

M ′ 20,Z l
2
ZA = M2

0,ZδZ
2
ZA − Σγγ

L (0), (5.50a)
1 + lA
ξ′A

+ l2ZA

ξ′Z
= 1 + δZA

ξA
+ δZ2

ZA

ξZ
+ Σγγ′

L (0), (5.50b)

M ′0,Z
2(1 + lZ) = M2

0,Z(1 + δZZ) − ΣZZ
L (0), (5.50c)

1 + lZ ′
ξ′Z

+ l2AZ

ξ′A
= 1 + δZZ

ξZ
+ δZ2

AZ

ξA
+ ΣZZ′

L (0), (5.50d)

M ′ 20,Z lZA

√︁
1 + lZ = M2

0,ZδZZA

√︁
1 + δZZ − ΣγZ

L (0), (5.50e)
lAZ

ξ′A

√︁
1 + lA + lZA

ξ′Z

√︁
1 + lZ = δZAZ

ξA

√︁
1 + δZA + δZZA

ξZ

√︁
1 + δZZ + ΣγZ′

L (0).

(5.50f)

The renormalized longitudinal self-energy of the photon vanishes in the EWSM,
but is kept, so that Equation (5.50a) is valid in the general case. Equa-
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tions (5.50b) and (5.50d) can be solved for ξ′A and ξ′Z , but the solution is
cumbersome when inserting the explicit expressions of the other matching
constants. For brevity, only the two- and one-loop expansions are given,

1
ξ′A

= 1
ξA

+
(︂
1 − Σγγ′

T (0) − δZA

)︂(︄
Σγγ′

L (0) − Σγγ′
T (0)
ξA

)︄

+
(︃ 1
ξA

− 1
ξZ

)︃ ΣγZ
T (0)
M2

0,Z

(︄
ΣγZ

T (0)
M2

0,Z

− 2δZZA

)︄
+ O

(︁
α3)︁

= 1
ξA

+ Σγγ′
L (0) − Σγγ′

T (0)
ξA

+ O
(︁
α2)︁,

(5.51a)

1
ξ′Z

= 1
ξZ

+
(︂
1 − ΣZZ′

T (0) − δZZ

)︂(︄
ΣZZ′

L (0) − ΣZZ′
T (0)
ξZ

)︄

+
(︃ 1
ξZ

− 1
ξA

)︃(︄ΣγZ
T (0)
M2

0,Z

+ ΣγZ′
T (0)

)︄(︄
ΣγZ

T (0)
M2

0,Z

+ ΣγZ′
T (0) + 2δZAZ

)︄
+ O

(︁
α3)︁

= 1
ξZ

+ ΣZZ′
L (0) − ΣZZ′

T (0)
ξZ

+ O
(︁
α2)︁.

(5.51b)

The solutions of the matching constants were derived using only a subset of the
conditions (5.45) and (5.50). The system of equations is overdetermined due to
the remaining matching conditions. This is a consequence of the effective model
being less potent than the EWSM; it lacks a few parameters to be guaranteed
to restore all the low energy properties of the EWSM. Inserting the solutions
derived above into the remaining equations yields the five additional relations

Σγγ
T (0) = M2

0,ZδZ
2
ZA −

(︂
M2

0,ZδZZA

√
1 + δZZ − ΣγZ

T (0)
)︂2

M2
0,Z(1 + δZZ) − ΣZZ

T (0)

= ΣγZ
T (0)

(︄
2δZZA − ΣγZ

T (0)
M2

0,Z

)︄
+ O

(︁
α3)︁,

(5.52a)

133



5. Matching Conditions

Σab
T (0) = Σab

L (0), a, b = γ, Z, (5.52b)

ΣγZ′
L (0) = ΣγZ′

T (0)
ξA

+
(︃ 1
ξA

− 1
ξZ

)︃ ΣγZ
T (0)
M2

0,Z

+ O
(︁
α2)︁, (5.52c)

where the second equation is a short notation for three independent condi-
tions. Equation (5.52b) stems from (5.50f) and is given at one-loop order, only.
Equation (5.52a) states that the photon remains massless when taking into
account loop corrections and has to be fulfilled for the model to be physically
meaningful. At one-loop order, it is trivially fulfilled due to Σγγ

′T (0) = 0 +O
(︁
α2)︁.

Equations (5.52) test the effective model to some extent, as a failure of one of
the equations will hint at which of the EWSM properties can not be reproduced.

The one-loop expressions of the MS-renormalized effective parameters read

lA = δZA − α

4π

(︃2
3 + 3∆W

)︃
, (5.53a)

lZA = δZZA − α

4π2c
s

∆W , (5.53b)

lAZ = δZAZ + α

4π

{︄(︃
5c
s

+ 1
6cs

)︃
∆W + 1 + 2c2

3cs

}︄
, (5.53c)

1
ξ′A

= 1 + α

4π

(︃2
3 + 3∆W

)︃
, (5.53d)

1
ξ′Z

= 1 + ΣZZ′
L (0) − ΣZZ′

T (0), (5.53e)

lZ = δZZ + α

4π

[︄(︃
3 − 19

6s2 + 1
6c2

)︃
∆W − 4c2

3s2 +
(︁
c2 − s2)︁2

6c2s2

]︄

+ α

4π
1

12c2s2

[︄
11
3 + 1 + ξ

2(1 − ξ) log ξ − log MHM0,Z

M2
W

+ 5 − ξ

(1 − ξ)3

(︂
1 − ξ2 + 2ξ log ξ

)︂
+ξ3 + 9ξ2 − 9ξ − 1 − 6ξ(1 + ξ) log ξ

6(ξ − 1)3

]︄
,

(5.53f)
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M ′ 20,Z

M2
0,Z

= 1 − α

4π
∑︂

f

v2
f + a2

f

3c2s2 ∆f̃ + α

4π
1

2c2s2

∑︂
f

m2
f

M2
Z

∆f̃ + δZZ − lZ

− α

4π

[︄(︃
4 + 1

c2 − 1
s2

)︃
∆W − ξ

6c2s2 log M
2
H

M2
W

− 1
6c2s2 log M2

Z

M2
W

+ 1
24c2s2

(︃
1 + ξ + 2ξ log ξ

1 − ξ

)︃

+ 5 − ξ

6c2s2

(︄
1 + 1 + ξ

2(1 − ξ) log ξ − log MHMZ

M2
W

)︄]︄
(5.53g)

and are obtained by inserting the unrenormalized one-loop self-energies given in
Appendix C and ξA = ξZ = 1 into Equations (5.49) and (5.51). For readability,
the O

(︁
α2)︁-notation was omitted and lZ used as an abbreviation in the expression

of M ′ 20,Z . The one-loop approximations confirm Equations (5.52a) and (5.52b),
but Equation (5.52c) is violated, as the left- and right-hand sides do not agree,

α

4π
1

3cs ̸= α

4π
1

3cs

[︃(︃1
2 + 9c2

)︃
∆W + 1 + 2c2

]︃
. (5.54)

The disagreement in Equation (5.54) is not surprising, as the effective model
defined in Section 5.3.1 is not a gauge theory due to the introduction of the
Z-boson’s mass without the Higgs mechanism. As a consequence, one has to
expect that the effective model fails to reproduce the longitudinal degrees of
freedom of the Standard Model that are associated with the masses of the heavy
gauge bosons. A different choice of the parameters determined by the matching
conditions (5.50a) to (5.50f) allows fulfilling Equation (5.52c), but one of the
longitudinal matching conditions can not be met.

When contracting the longitudinal part of the Z-boson’s propagator with
fermion spinors, it vanishes if the two fermions interacting with the Z-boson
have the same mass. Since the neutral interaction is not flavor changing, this is
always the case when the fermions are on-shell. Consequently, the longitudinal
part of the Z-boson’s one-loop propagator can only give a contribution when
coupled to off-shell fermions. This happens in box diagrams and at higher loop
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order where the coupled fermions are virtual particles themselves. Both cases
have been excluded in the calculation of the parity violating interaction, which
means that the restriction of the effective model is of no concern for the present
discussion.

Fermionic Two-Point Functions

Similar to the bosonic case, the fermionic constants of the effective model need
to be fixed such that the propagators of the effective theory and the EWSM
coincide in some limit of the fermion’s momentum. Since the UV-divergent
terms are independent of the momentum, any choice of the limit renders the
effective model finite. The pole mass4 is a convenient choice for the matching
point, even though the renormalized propagator does not have to be singular at
the pole mass.

In that case, Standard Model and effective theory need to share the same
value and derivative of the propagators at q2 = m̃2

f , where m̃f is the pole mass
of the fermion. In the most general case, the residue of the Dirac propagator is a
matrix with an axial component (see also Appendix D), which yields independent
matching conditions for the vector and axial vector parts. The matching of the
propagators is achieved by imposing

iΓ′f
(︁
q2)︁u(q)

⃓⃓⃓
q2=m̃2

f

= iΓf

(︁
q2)︁u(q)

⃓⃓⃓
q2=m̃2

f

, (5.55a)

lim
q2→m̃2

f

/q + m̃f

q2 − m̃2
f

iΓ′f
(︁
q2)︁u(q) = lim

q2→m̃2
f

/q + m̃f

q2 − m̃2
f

iΓf

(︁
q2)︁u(q). (5.55b)

Due to the projection onto the Dirac spinor u(q), the scalar and vector parts
of the vertex function are combined. Accordingly, Equation (5.55) is a set of
four distinct equations, two for the “scalar + vector” part and two for the axial
part. However, the two axial matching conditions are identical, leaving three

4A pole mass does not exist for light quarks. This is of no concern in the following calculation,
since the parity violating interaction does not depend on the quark masses. In a naive
calculation, the quark masses enter the parity violating interaction via the running weak
mixing angle, which can be worked around using phenomenologically constraints. [17, 18]
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independent equations for the three effective parameters. It is convenient, to
rewrite Equations (4.25) and (5.39) by grouping terms proportional to /q − m̃f ,
which yields

iΓ′f (q) = m̃f

(︂
1 + lfV + Σf

′V
(︁
q2)︁)︂−m′0,f

(︃√︂
1 + lfL

√︂
1 + lfR − Σf

′S
(︁
q2)︁)︃

+ m̃fγ5
(︂
lfA + Σf

′A
(︁
q2)︁)︂

+
(︂
/q − m̃f

)︂ (︂
1 + lfV + Σf

′V
(︁
q2)︁)︂+

(︂
/q − m̃f

)︂
γ5
(︂
lfA + Σf

′A
(︁
q2)︁)︂

(5.56)

in case of the effective vertex. The (/q − m̃f )-terms vanish when projected onto
the Dirac spinor, so that the first matching condition (5.55a) can be readily
solved. The solutions are

lfA = δZf
A + Σf

A

(︁
m̃2

f

)︁
(5.57)

and

m′0,f

m̃f
=

m0,f

m̃f

(︃√︂
1 + δZf

L

√︂
1 + δZf

R − Σf
S

(︁
m̃2

f

)︁)︃
+ lfV − δZf

V − Σf
V

(︁
m̃2

f

)︁
√︂

1 + lfL

√︂
1 + lfR − Σf

′S
(︁
m̃2

f

)︁ ,

(5.58)
where the notation (5.46) is used to abbreviate the difference between self-energy
functions of the Standard Model and effective theory. The field renormalization
constants and matching constants drop out of the matching condition of the
fermion mass at the one-loop level,

m′0,f

m̃f
= m0,f

m̃f
− Σf

V

(︁
m̃2

f

)︁
− Σf

S

(︁
m̃2

f

)︁
+ O

(︁
α2)︁. (5.59)

The second condition (5.55b) requires a Taylor expansion of the terms on the
first line of Equation (5.56) around q2 = m̃2

f and one finds

lfV = δZf
V + Σf

V

(︁
m̃2

f

)︁
+ 2m̃2

f

[︄
Σf ′

V

(︁
m̃2

f

)︁
+
(︄
m0,f

m̃f
ΣS′

f

(︁
m̃2

f

)︁
−
m′0,f

m̃f
ΣS′
′f
(︁
m̃2

f

)︁)︄]︄
.

(5.60)
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The one-loop order expression of Equation (5.60) is easily obtained by replacing
the mass ratios m0,f

m̃f
and m′

0,f

m̃f
with unity and the self-energy functions with the

appropriate one-loop approximations.
Again, the mass may be chosen arbitrarily by introducing an appropriate

mass counter term, as only the sum of the mass parameter and the mass counter
term is physically meaningful. The field renormalization constants on the other
hand are entirely determined by the renormalization scheme of the Standard
Model.

Matching of the Electromagnetic Coupling Constant

When computing S-matrix elements within the effective model, it is insufficient
to just cut off the external propagators; one also has to take into account
the matching constants of the fields associated with the external particles as
prescribed by the LSZ reduction formula. As in case of the renormalization
constants, these matching constants are the residues of the corresponding
on-shell particle propagators. Due to the matching conditions of the previous
sections, these matching constants are identical to the associated renormalization
constants of the Standard Model. Accordingly, they are not required for the
matching of three- or four-point functions, even if the residues are not normalized
to unity as in the OS scheme. For this reason, external lepton leg corrections are
omitted in this section so that the matching condition for the electromagnetic
coupling constant is determined by the vertex function, only. It reads

u(p)Γffγ
′µ (p, p)u(p) = u(p)Γffγ

µ (p, p)u(p), p2 = m̃2
f , (5.61)

for on-shell fermions at vanishing momentum transfer. The right-hand side
of Equation (5.61) is defined by (4.35) and is the sum of Equations (4.37)
and (4.38). Like before, the subscript prime denotes the quantity of the effective
theory and can be obtained from Equations (5.42) and (5.43). Equation (5.61)
contains two independent conditions, due to the presence of vector- and axial
vector-terms in the three-point function. A discussion of the axial vector part
of Equation (5.61) is postponed to the end of this section, as the vector part of
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Equation (5.61) defines the electromagnetic coupling according to its definition
as the coupling strength of parity conserving scattering at low energy. It reads

e′
[︃
Qf

(︂
1 + lfV

)︂√︁
1 + lA − g′Z

2e′ v
∗∗
f lZA + Λffγ

′V (0) + Λffγ
′S (0)

]︃
+ g′Z

2

[︄
v∗∗f
√︁

1 + lZ − 2e′
g′Z
Qf (1 + lfV )lAZ + ΛffZ

′V (0) + ΛffZ
′S (0)

]︄
ΓZγ
′T (0)

ΓZZ
′T (0)

= e

[︃
Qf

(︂
1 + δZf

V

)︂√︁
1 + δZA − gZ

2e vfδZZA + Λffγ
V (0) + Λffγ

S (0)
]︃

+ gZ

2

[︃
vf

√︁
1 + δZZ − 2e

gZ
Qf (1 + δZf

V )δZAZ + ΛffZ
V (0) + ΛffZ

S (0)
]︃ ΓZγ

T (0)
ΓZZ

T (0)
(5.62)

and solving for e′ requires the matching constants lX of the effective theory
that were derived in the previous sections.

The matching conditions derived before include the renormalization constants
of the EWSM, but for matching with the MS-renormalized EWSM it is easier to
drop the renormalization constants δZX and replace all corresponding one-loop
functions with the appropriate MS-renormalized ones. Using g′Z = e′

c′s′ + O(α)
and the equality of effective and EWSM coupling constants at tree-level5, the
one-loop order expansion of Equation (5.62) reads

e′
[︃
Qf

(︃
1 + lfV + lA

2

)︃
− vf

2cslZA + Λffγ
′V (0) + Λffγ

′S (0)
]︃

+ e

2csvf
ΓZγ
′T (0)

ΓZZ
′T (0)

= ê

(︃
Qf + Λ̂ffγ

V (0) + Λ̂ffγ

S (0)
)︃

+ e

2csvf
Γ̂Zγ

T (0)
Γ̂ZZ

T (0)
+ O

(︁
α2)︁, (5.63)

where a hat is used to denote MS-renormalized quantities. Constants without
primes or hats were used when the difference between effective and EWSM
parameters is beyond one-loop precision. The terms involving the ratio of
amputated two-point functions are identical due to the matching conditions

5While reasonable, these equalities were not yet proven and will be justified in Section 5.3.5.
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of Section 5.3.3. Replacing the matching constants lfV , lA and lZA with the
solutions derived previously yields

e′

ê
= 1 − vf

2csQf

Σ̂γZ
T (0) − ΣγZ

′T (0)
M̂

2
Z

+ Λ̂ffγ

V (0) − Λffγ
′V (0)

Qf
+ Λ̂ffγ

S (0) − Λffγ
′S (0)

Qf

− 1
2
(︂
Σ̂γγ′

T (0) − Σγγ′
′T (0)

)︂
−
(︃

Σ̂f
V (m̃2

f ) − Σf
′V (m̃2

f )
)︃

− 2m̃2
f

(︃
Σ̂f ′

V (m̃2
f ) + Σ̂f ′

S (m̃2
f ) − Σf ′

′V (m̃2
f ) − Σf ′

′S(m̃2
f )
)︃

+ O
(︁
α2)︁.

(5.64)
Using the one-loop expressions of the self-energy and vertex functions given in
Appendix C and neglecting terms of order O

(︃
m2

f

M̂
2
W

)︃
without using the big O no-

tation explicitly, the MS-renormalized self-energy and vertex functions required
for the matching of the electromagnetic coupling constant when integrating out
the W-boson read

Σ̂γγ′
T (0) − Σγγ′

′T (0) = − α

4π

⎧⎨⎩4
3
∑︂

f

NfQ
2
f ∆ +

[︄
2
3 + 3 log µ2

M̂
2
W

]︄⎫⎬⎭ , (5.65a)

Σ̂f
V (m̃2

f ) − Σf
′V (m̃2

f ) = − α

4π

{︄
Q2

f ∆ +
v2

f + a2
f

4c2s2 ∆ + 1
4s2

[︄
1
2 − log µ2

M2
W

]︄}︄
,

(5.65b)

Σ̂f ′
V (m̃2

f ) − Σf ′
′V (m̃2

f ) = Σ̂f ′
S (m̃2

f ) − Σf ′
′S(m̃2

f ) = 0, (5.65c)

Σ̂γZ
T (0) − ΣγZ

′T (0) = α

4π2c
s
M̂

2
Z log µ2

M̂
2
W

, (5.65d)

Λ̂ffγ

V (0) − Λffγ
′V (0) = α

4π

{︄
−Q3

f ∆ −Qf

v2
f + a2

f

4c2s2 ∆ (5.65e)

+Qf ′

4s2

[︄
log µ2

M̂
2
W

− 1
2

]︄
+

3T 3
f

2s2

[︄
log µ2

M̂
2
W

− 1
6

]︄}︄
,

(5.65f)
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Λ̂ffγ

S (0) − Λffγ
′S (0) = 0, (5.65g)

which eventually results in the final expression

e′

ê
= 1 + α

4π

(︄
1
3 + 7

2 log M
2
W

µ2

)︄
+ α

4π
2
3
∑︂

f

NfQ
2
f ∆. (5.66)

The final result being independent of the fermion f , confirms the charge uni-
versality of the pseudo gauge boson model that was proved by verifying the
U(1)-gauge invariance in Section 5.3.1. The appearance of UV-singular and
UV-finite terms is a consequence of matching an unrenormalized model with
the renormalized SM. Equation (5.66) is similar to the renormalization of
the electric charge in the SM, showing the close relation between matching
and renormalization. The first term which stems from the contribution of the
W-boson is free of a UV divergence, as the effective model was matched with
the MS-renormalized SM, which is UV finite. Accordingly, the ∆-term stems
from one-loop functions of the effective model. If one started with an MS-
renormalized effective model, these ∆-terms would disappear. Equation (5.66)
is general, but commonly only the UV-finite term is referred to as matching
term.

The matching of the electric charge in the effective model allows obtaining the
corresponding matching condition for the electromagnetic coupling constant α′.
Dropping the UV-singular term to compare with published results and using
the relation α′ = e′2

4π , one finds

1
α̂

= 1
α′

+ 1
6π + 7

4π log µ2

M2
W

, (5.67)

which confirms the matching condition (5.6) that was obtained from the results
published in Reference [36].

Taking into account the axial part, Equation (5.61) contains two indepen-
dent equations that seem to form an overdetermined set of equations for the
electromagnetic coupling constant. The additional equation also appears in
the charge renormalization of the Standard Model but is fulfilled automatically.
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Using MS-renormalization of the Standard Model as before, the axial part of
Equation (5.61) at one-loop order reads

Qf l
f
A + af

2cslZA + Λffγ
′A (0) + af

2cs

(︄
ΣγZ
′T (0)
M2

Z

− lZA

)︄
= Λffγ

A (0) + af

2cs
Σ̂γZ

T (0)
M2

Z

,

(5.68)
where the matching constants lZA on the left-hand side cancel immediately.
The right-hand side is identical to Qf Σ̂f

A

(︁
m̃2

f

)︁
in the Standard Model, which

can be readily verified by inserting the appropriate loop functions. Replacing
the remaining matching constant lfA on the left-hand side by (5.57) yields

Qf

(︃
Σ̂f

A

(︁
m̃2

f

)︁
− Σf

A

(︁
m̃2

f

)︁)︃
+ Λffγ

′A (0) = Qf Σ̂f
A

(︁
m̃2

f

)︁
. (5.69)

The function ΣγZ
′T (0) was omitted, as it vanishes in the effective model. Equa-

tion (5.69) can be verified with the aid of Appendix C, showing that the axial
vector part of Equation (5.61) is fulfilled automatically and does not add an
additional constraint to the matching of the electromagnetic coupling constant.

In general, the vertex correction also contains a scalar term that was split
into a contribution to the vector piece and a term proportional to σµνq

ν by
means of the Gordon identity. A matching of the σµνq

ν-term is not necessary,
as the contribution induced by a virtual photon is identical in the Standard
Model and the effective theory at one-loop order. The only difference arises
from virtual heavy particles that are not present in the effective theory, but
these contributions are of the order O

(︁mf

M

)︁
, where M is the mass of the heavy

particle, and can be neglected, accordingly.

5.3.4. Parity Violating Fermion–Fermion Interaction

In the previous sections, two- and three-point functions were matched with the
ones obtained for the EWSM in Chapter 4, which also led to an expression of
the effective charge in terms of the EWSM charge. In this section, the parity
violating interaction is determined within the effective model; it is then used
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to construct a matching condition for the weak mixing angle and the neutral
current coupling strength g′Z in Section 5.3.5. Due to the similarity to the
EWSM, the calculation of the parity violating interaction in the effective pseudo
gauge boson model follows closely the steps outlined in Section 4.2. However,
there are two noteworthy differences. First, counter terms (called matching
constants in the context of the effective model) need to be taken into account
explicitly to incorporate the terms stemming from the matching. Second, the
effective parameter ∆r′ that accounts for the relation between Fermi constant
and elementary coupling as well as Z-boson mass and which is defined by

1 − ∆r′ :=
√

2
GF

g′ 2Z

8M̂2
Z

(5.70)

is kept as an unknown in the beginning. This is, because the relation between
Fermi constant and coupling constants in the effective model is not yet known. It
is defined in terms of the MS-mass of the Z-boson to obtain simpler expressions
that do not involve the relation between the unrenormalized effective mass and
the MS-mass. To simplify the calculation further, the tree-level equality

g′Z = ĝZ + O(α) = ê

ĉŝ
+ O(α) (5.71)

is used where applicable to omit terms of two-loop order. The relation (5.71)
is reasonable but will be justified later, when calculating g′Z explicitly. Match-
ing the effective interaction with the SM expression allows giving a relation
between GF and g′Z and determining ∆r′, eventually. Consequently, ∆r′ is
explicitly contained in the low energy coupling piece Cf2(A)′

1f1
, while its contri-

bution to the remaining pieces Cf2(B)′
1f1

to Cf2(D)′
1f1

is of two-loop order and will
be neglected. Otherwise, the corresponding definitions are identical to (4.61a)
to (4.61d) except for the replacement of SM quantities by effective ones.

Following the prescription of the matching of the electromagnetic coupling
in Section 5.3.3, MS-renormalization is used for the Standard Model. The
matching constants of the effective theory are kept to account for the matching
conditions of the two- and three-point functions. Due to the matching of the
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two-point functions, the transverse parts of effective and SM propagators are
identical. This simplifies the calculation of the parity violating interaction,
since the one-loop corrections in C

f2(D)′
1f1

stem from the γZ-propagator only.
Accordingly, this piece is identical to the one derived in the Standard Model,
C

f2(D)′
1f1

= C
f2(D)
1f1

. The remaining pieces can not be taken over as easily and
require a separate calculation. Using the matching constants derived before
and omitting terms of two-loop order, the three other pieces in the effective
model can be written as

C
f2(A)′
1f1

= −2vf1af2

(︂
1 − ∆r′

)︂
·
(︄

1 − δZ f1′
V − δZ f2′

V + af1

vf1

δZ f1′
A + vf2

af2

δZ f2′
A

)︄
,

(5.72a)

C
f2(B)′
1f1

= −2
(︂

− 2s2Qf1

)︂
af2
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·
{︄
Qf2vf2

9s2
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1 − 6 log

m2
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Z

)︄
+ 2c

2

s2
M2

Z

q2 log µ2

M2
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}︄
,

(5.72b)

C
f2(C)′
1f1

= −2vf1af2

⎧⎨⎩ Σ̂ZZ
T (0)
M2

Z

− Λf2f2Z
′A (0)
T 3
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+ lf1
V + lf2

V + lZ − vf2

T 3
f2

lf2
A

⎫⎬⎭
+ 2af2

{︂
T 3

f1 l
f1
A + 2csQf1 lAZ − Λf1f1Z

′V (0)
}︂
.

(5.72c)

Similarly to the calculation outlined in Section 4.2, the loop corrections to Cf2′
1f1

may be separated into three different groups: corrections to the overall amplitude
denoted by ρ′, corrections to the weak mixing angle denoted by κ′ and process
dependent terms that can not be absorbed into a constant independent of the
external fermions. Omitting terms of two-loop order, the effective low energy
coupling can be written as

Cf2′
1f1

= − af2ρ
′
(︂
2T 3

f1 − 4Qf1κ
′s′

2
)︂

+ 4vf1af2
α

4π
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Q2

f1 +Q2
f2

)︂
+Qf1Qf2vf2af2

α

9π

(︄
1 − 6 log

m2
f2

M2
Z

)︄
+ □′ + O

(︁
α2)︁,

(5.73)
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ρ′ =
(︁
1 − ∆r′

)︁ ⎡⎣1 + Σ̂ZZ
T (0)
M2

Z

+ lZ

⎤⎦+ O
(︁
α2)︁, (5.74)

κ′ = 1 − c

s

⎡⎣ Σ̂γZ
T (0)
q2 + Σ̂γZ

T (0)
M2

Z

+ Σ̂γZ′
T (0)

⎤⎦
+ α

2π
c2

s2
M2

Z

q2 log µ2

M2
W

+ c

s
lAZ + O

(︁
α2)︁,

(5.75)

where □′ denotes the box graph contribution in the effective model. Since the
effective model does not contain the W-boson, the process dependent term

containing 6 log
m2

f ′
2

M2
W

in Equation (4.76) is not reproduced; as a consequence, no
universal matching condition can be found for the parameters ρ′ and κ′6. The
missing term may be restored by introducing an effective contact interaction
term in the Lagrangian. However, for the discussion of Møller scattering or
charged lepton–quark scattering as required by the P2 and Qweak experiments,
this is not necessary, because the term vanishes due to the vanishing charge of
the weak isospin partner, Qf ′

2
= 0. When inserting lAZ in terms of self-energy

functions as given in Equation (5.49), most of the terms in κ′ cancel yielding
the expression

κ′ = 1 + α

6πs2

∑︂
f

NfQfvf

(︄
∆ + log µ2

m2
f

)︄
, (5.76)

which does not contain terms that stem from the W-boson interactions. This is
expected, as the effective model was constructed without W±-fields.

5.3.5. Matching of the Weak Mixing Angle
With the parity violating interaction calculated in the previous section, it is now
possible to derive the matching conditions for the weak mixing angle s′ and the

6The same issue is raised by the missing W-box in the effective model. It needs to be added
separately but will be ignored in the following.
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effective coupling g′Z . These are obtained by equating the low energy coupling
constants Cf2

1f1
and C

f ′
2

1f1
of the Standard Model and the effective theory. Since

the equality needs to be independent of f1 and f2, one obtains two distinct
equations,

ρ′ = ρ, (5.77a)
κ′s′

2 = κs2. (5.77b)

Inserting the results (4.74), (4.75), (5.74) and (5.76) yields

s′
2 = s2 − α

2π

⎧⎨⎩
(︃7

2c
2 + 1

12

)︃
log µ2

M2
W

+ 7
9 − s2

2 + 1
3
∑︂

f

NfQfvf ∆

⎫⎬⎭ , (5.78)

∆r′ = Σ̂W W
T (0)
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W

− α

π
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s2 log µ2

M2
W

+ lZ

+ α

4πs2

[︄
log µ2

M2
Z

+
(︃ 7

2s2 − l

)︃
log c2 + 6

]︄
.

(5.79)

The effective weak mixing angle (5.78) is similar to the κ-parameter in the
Standard Model given in Equation (4.75) with two notable differences. First,
the one-loop corrections in Equation (4.75) contain an inverse factor of s2, as κ
is multiplied with s2 when entering the effective coupling Cf2

1f1
. Second, the

fermionic terms contain only the UV-divergent terms but not the logarithmic
ones. They account for the renormalization of the fermion loops that are
present in the effective model, which is also the reason for the opposite sign in
front of the sum. Dropping the fermionic renormalization terms yields what is
conventionally called the matching condition,

s′
2 = s2 − α

2π

{︄(︃7
2c

2 + 1
12

)︃
log µ2

M2
W

+ 7
9 − s2

2

}︄
. (5.80)

These terms are identical to the corresponding ones in the Standard Model
that make up the W-boson contributions to the weak mixing angle at zero
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momentum transfer. In the effective model they have to be part of the definition
of the weak mixing angle as they are not dynamically reproduced by the theory
by construction. The matching of the weak mixing angle at W-threshold in
the pseudo gauge boson model differs from the matching condition published
in Reference [17] that was given in Equation (5.5b). The numerical difference
between Equations (5.80) and (5.5b) for µ = MW is

∆s′2 = α

6π

(︄
4
3 − s2

2

)︄
+ O

(︁
α2)︁ ≈ 4.7 · 10−4, (5.81)

which is obtained by inserting values of the Particle Data Group [38], α =
7.297 · 10−3 and s2 = 0.231. It is small compared to the numerical value of
the weak mixing angle (∆s′2 · s−2 ≈ 0.2 %), but almost seven times larger than
the total theoretical error of 7 · 10−5 published in Reference [18] for the weak
mixing angle at low energies.

Combining Equations (2.33), (4.58), (5.70) and (5.79) allows relating the
neutral current coupling constants gZ and g′Z ,

g′2Z = g2
Z

{︄
1 + α

π

c2

s2 log µ2

M2
W

− lZ + O
(︁
α2)︁}︄ , (5.82)

where the matching constant lZ = Σ̂ZZ′
T (0) − ΣZZ′

′T (0) can be obtained explicitly
using Equation (C.6). The coupling constant (5.82) also contains UV singular
terms hidden in the matching constant lZ that are responsible for rendering the
effective theory finite. Dropping the UV singular pieces, yields the matching
condition for matching an effective theory that was MS-renormalized before the
matching.

The results given above are obtained using the pseudo gauge boson model
defined in Section 5.3.1. Section 5.4 discusses the matching of an effective
model based on the same idea, but in the context of an effective contact
interaction model similar to Fermi’s four-fermion interaction theory. Therefore,
the summary of the findings of this section and a comparison with the results
of Reference [35] are postponed to Section 6.1, where the results of Section 5.4
will be included.
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5.4. Contact Interaction Model

5.4.1. Lagrangian

The effective pseudo gauge boson model described in Section 5.3 was obtained
by omitting the W±- and Higgs-fields but keeping the Z-boson as a massive,
pseudo gauge boson. The model is uncommon, but resembles the Standard
Model in the neutral and electromagnetic sectors. In this section, a contact
interaction model is discussed that is obtained by dropping the Z-boson, too,
and introducing a four-fermion contact interaction term. As before, additional
terms could be introduced to account for effective charged current interactions,
but these are not required for the present discussion. The pseudo gauge boson
model of Section 5.3 failed to restore all process dependent terms of the Standard
Model. As explained before, this is not an issue, as the missing terms do not
contribute to charged lepton scattering. The effective contact interaction model
does not contain a Z-boson so that none of the process dependent terms will
be dynamically reproduced. This is the reason, why the coupling in Fermi’s
four-fermion interaction theory carries fermion indices and why the matching
conditions that will be derived later can not be expressed in terms of universal
constants, only.

The definition of a weak mixing angle without Z-boson is not obvious. Here,
it is introduced as part of an effective vector coupling in the neutral current that
is proportional to the charge of the fermion, just like in the Standard Model.
The Lagrangian can be written as

L ′ =
∑︂

f

[︂
f ′
(︂
i/∂ −m′0,f

)︂
f ′ − e′Qff ′ /A

′
f ′
]︂

− 1
4F
′
µνF

′µν − 1
2ξ′A

(︁
∂µA

′µ)︁2 −KJ ′NC µJ
′µ
NC,

(5.83)

where the effective neutral current J ′µNC is defined by

J ′µNC =
∑︂

f

(︂
T 3

f f
′Lγµf ′L − s′

2
Qff ′γ

µf ′
)︂
. (5.84)

148



5.4. Contact Interaction Model

Just like in the Standard Model, the part of the coupling proportional to the
weak isospin7 applies to the left-handed fermions, solely. Again, primes are used
to denote effective fields and constants and K is used to quantify the strength
of the contact interaction. It has mass dimension −2 and the corresponding
term in the Lagrangian is a dimension-6 operator. An additional coupling
of the neutral current to the photon could be introduced at this point but
determining its strength by matching yields a vanishing coupling constant, as
the corresponding interaction vanishes in the Standard Model at one-loop order.
The Feynman rule of the new interaction vertex is given by

f1

f1

f2

f2

ˆ︁= − iK

4 γµ

(︂
v∗∗f1 − a∗∗f1γ5

)︂
⊗ γµ

(︂
v∗∗f2 − a∗∗f2γ5

)︂
, (5.85)

and can be used to calculate the new Feynman diagrams induced by the contact
interaction. The effective vector and axial vector coupling constants read

v∗∗f = T 3
f

(︂
1 + lfV − lfA

)︂
− 2s′ 2Qf

(︂
1 + lfV

)︂
, (5.86a)

a∗∗f = T 3
f

(︂
1 + lfV − lfA

)︂
+ 2s′ 2Qf l

f
A, (5.86b)

with

lfV = lfR + lfL
2 , lfA = lfR − lfL

2 (5.87)

in terms of lL and lR that are the matching constants of the effective theory
defined as before. The special product symbol “⊗” is used in the Feynman
rule (5.85) to emphasize that the gamma matrices must not be contracted

7The model does not exhibit a SU(2)-symmetry and the weak isospin is introduced as an
auxiliary parameter, only.
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directly, but need to be wrapped between Dirac spinors associated with the
fermion lines of the fermions f1 and f2.

The remainder of this section is organized similar to the previous one. In
Section 5.4.2 the two- and three-point functions of the model are determined.
Section 5.4.3 is dedicated to the matching of two- and three-point functions and
the electromagnetic coupling constant. The parity violating interaction within
the contact interaction model is derived in Section 5.4.4 and the weak mixing
angle and effective parameter K are obtained in Section 5.4.5.

5.4.2. Irreducible Vertex Functions
The derivation of the bosonic two-point function is simpler than the derivation
in the Standard Model, as the propagator is not a two by two matrix. Apart
from that, the steps that need to be carried out are the same. Consequently,
the irreducible two-point vertex function in the effective model can be obtained
from the first equation of the Standard Model result (4.17) by omitting the
mixing terms,

Γγγ
µν =

(︂
− gµν + qµqν

q2

)︂ [︂
iq2(1 + lA) + iΣγγ

′T (q2)
]︂

−qµqν

q2

[︄
i
q2

ξ′A
(1 + lA) + iΣγγ

′L (q2)
]︄
.

(5.88)

The fermion propagator in terms of the fermionic self-energy functions Σf
′X

does not change and is identical to Equation (5.39) when replacing the self-energy
functions and counter terms with the ones of the contact interaction model.
The derivation of the self-energy functions requires the evaluation of a new loop
diagram that is induced by the contact interaction and is depicted in Figure 5.2.
Omitting terms of two loop order by dropping all matching constants, the
self-energy that corresponds to the loop diagram reads

iΣK
f1

µD−4 =
∑︂
f2

∫︂
dDk

(2π)D
Tr
{︄
iK

4 γµ (vf1 − af1γ5) i
/k −mf2

k2 −m2
f2

γµ (vf2 − af2γ5)
}︄
,

(5.89)
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f1 f1

f2

Figure 5.2.: Tadpole diagram in the effective theory that arises from the self
interaction of a fermion line with a Z-boson in the Standard Model.
The loop may contain any fermion that is part of the effective
theory.

where the vector and axial vector coupling constants v∗∗f and a∗∗f were replaced
with the Standard Model ones, as the difference is of two loop order. The
solution of the loop integration is

−iΣK
f1 = i

K

4π2

∑︂
f2

(af1af2 − vf1vf2)m3
f2

(︄
∆ + log µ2

m2
f2

+ 1
)︄

+ O
(︁
α2)︁ (5.90)

in four space-time dimensions, which gives a contribution to the scalar part of
the fermionic self-energy function, only. The diagram in Figure 5.2 is a tadpole
diagram in which the loop does not depend on the momentum of fermion f1.
This is the reason why the corresponding self-energy function only depends on
the mass of fermion f2. As a consequence, the loop merely induces a shift of
the fermion mass mf1 , which can be absorbed in a suitable matching constant.
Since the goal of the matching is to reproduce the mass of the parent theory, one
could get away with ignoring these tadpole diagrams altogether. For the sake of
completeness, they are kept nonetheless, which means one has to distinguish mf

and m′f for the masses in the SM and in the effective theory, respectively.
Due to the reduced field content compared to the Standard Model, the only

vertex diagram that contributes in the effective contact interaction model is
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the one with a virtual photon connecting incoming and outgoing fermion lines.
Its structure is identical to the vertex (5.42) when omitting the matching
constant lZA,

Γffγ
′1PI,µ

(︁
p, p′

)︁
= − ie′Qfγµ

(︂
1 + lfV + lfAγ5

)︂√︁
1 + lA

− ie′
[︄
γµΛffγ

′V
(︁
q2)︁+ γµγ5Λffγ

′A
(︁
q2)︁

+
(p+ p′)µ

2m̃f
Λffγ
′S
(︁
q2)︁+ γ5

(p− p′)µ

2m̃f
Λffγ
′P
(︁
q2)︁]︄ .

(5.91)

As before, the appropriate matching constants and loop functions of the contact
interaction model have to be inserted.

5.4.3. Matching Conditions of Two and Three Point Functions
Bosonic Two-Point Functions

The effective model exhibits only one gauge boson propagator, so that there are
only four matching conditions for the bosonic two-point functions as opposed
to the twelve conditions in the EWSM; they read

Γγγ
′T/L(0) = Γγγ

T/L(0),

Γγγ′
′T/L(0) = Γγγ′

T/L(0).
(5.92)

Inserting the transverse parts of the vertex functions yields

0 = −M2
0,ZδZ

2
ZA + Σγγ

T (0), (5.93a)
lA = δZA + δZ2

ZA + Σγγ′
T (0), (5.93b)

with the short notation (5.46). At one-loop order, the mixing counter term δZZA

does not contribute, so that the first equation is trivially fulfilled because
of Σγγ

′T (0) = Σγγ
T (0) = 0. Using the derivative of the unrenormalized photonic

self-energy function, the second equation becomes

lA = δZA − α

4π

[︃
3∆W + 2

3

]︃
+ O

(︁
α2)︁ (5.94)
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when neglecting terms of two-loop order. Inserting the longitudinal parts of the
vertex functions into equation (5.92) yields

0 = −M2
Z l

2
ZA + Σγγ

L (0), (5.95a)
1 + lA
ξ′A

= 1 + δZA

ξA
+ δZ2

ZA

ξZ
+ Σγγ′

L (0), (5.95b)

where the first condition is trivially fulfilled at one-loop order, too, and the
second one reads

1
ξ′A

= 1
ξA

(︃
1 + α

4π

[︃
3∆W + 2

3

]︃)︃
+ O

(︁
α2)︁ (5.96)

when inserting Equation (5.94).

Fermionic Two-Point Functions

As mentioned in Section 5.4.2, the structure of the fermionic two-point function
is the same as in Section 5.3 and consequently, the matching conditions are
identical to Equations (5.57) to (5.60). Using the result of Section 5.4.2, the
unrenormalized parts of the fermionic self-energy read

Σf
′V
(︁
m̃2

f

)︁
= α

4πQ
2
f (∆f + 2) + O

(︁
α2)︁, (5.97a)

Σf
′A
(︁
m̃2

f

)︁
= O

(︁
α2)︁, (5.97b)

Σf
′S
(︁
m̃2

f

)︁
= − α

4πQ
2
f

(︄
6 + 4 log µ2

m̃2
f

)︄

− K

4π2

∑︂
f2

(afaf2 − vfvf2)m2
f2 (∆f2 + 1) + O

(︁
α2)︁. (5.97c)

The vanishing axial vector piece at one-loop order implies that the matching
constant lA is identical to the renormalized axial vector part of the self-energy
function in the parent theory when neglecting higher order terms,

lfA = δZf
A + Σf

A

(︁
m̃2

f

)︁
+ O

(︁
α2)︁. (5.98)
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The differences of the derivatives of the fermionic self-energies vanish when
neglecting the fermion mass compared to the heavy gauge boson mass so that
inserting the self-energy functions into Equations (5.59) and (5.60) yields

m′0,f

m̃f
= m0,f

m̃f
− α

4π

{︄
v2

f + a2
f

4c2s2

(︃
∆Z − 1

2

)︃

+
v2

f − a2
f

c2s2

(︃
∆Z + 1

2

)︃
+ 1

4s2

[︃
∆W − 1

2

]︃}︄

+ K

4π2

∑︂
f2

(afaf2 − vfvf2)m2
f2 (∆f2 + 1) + O

(︁
α2)︁,

(5.99)

lfV = δZf
V + α

4π

{︄
v2

f + a2
f

4c2s2

(︃
∆Z − 1

2

)︃
+ 1

4s2

[︃
∆W − 1

2

]︃}︄
+ O

(︁
α2)︁. (5.100)

Three-Point Functions

The effective three-point Green function Gffγ
′µ
(︁
p, p′

)︁
is similar to the Standard

Model one, but due to the lack of γZ-mixing, it consists only of a term like
the first one in Equation (4.34). Consequently, the amputated vertex function
is similar to (4.35) when omitting the second term, implying Γffγ

′µ ≡ Γffγ
′1PIµ.

The one particle irreducible vertex function was given in Equation (5.91), but
the derivation of the vertex functions parametrising the loops requires the
calculation of a new Feynman diagram shown in Figure 5.3. Using the generic
notation V1, A1, V2 and A2 for the vector and axial vector couplings at the
left- and right-hand side of the loop, the transverse part of the self-energy
corresponding to the generic fermion loop reads

Σ⃝f

T

(︁
q2)︁ = 1

16π2
4
3
∑︂

f

Nf

{︃
6A1A2m

2
f ∆f

+ q2
[︂
A1A2 − (A1A2 + V1V2) ∆f

]︂
+ O

(︁
q4)︁}︃

(5.101)
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f2

f2

f1

f1

γ

Figure 5.3.: New Feynman diagram contributing to the ffγ-vertex in the effec-
tive contact interaction model.

when expanded at zero momentum transfer. The A1A2-terms do not contribute
to the Feynman diagram depicted in Figure 5.3 due to the coupling to the photon.
Inserting V1 = iK

4 and V2 = −ieQf allows writing the vertex function Λf1f1γ
′V as

Λf1f1γ
′V

(︁
q2)︁ = α

4πQ
3
f1

(︄
∆f1 + 2 log λ2

m2
f1

+ 2
)︄

− iK

16π2
Qf1

3
∑︂

f

Nf

(︂
q2∆f +O

(︁
q4)︁)︂.

(5.102)
The photonic contribution is identical to the one in the Standard Model, but
the terms induced by the heavy gauge bosons are missing. As before, the scalar
and pseudo-scalar vertex functions do not contribute to the matching, allowing
to write the one-loop expansion of the vector part of Equation (5.61) as

e′

ê
= 1 − Σ̂γγ′

T (0) − Σγγ′
′T (0)

2 −
(︃

Σ̂f
V

(︁
m̃2

f

)︁
− Σ̂f

′V
(︁
m̃2

f

)︁)︃

+ Λ̂ffγ

V (0) − Λffγ
′V (0)

Qf
− vf

2csQf

Σ̂γZ
T (0)
M2

Z

+ O
(︁
α2)︁ (5.103)
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when inserting the matching constants derived before and using MS-renormali-
zation for the Standard Model. The Standard Model terms are identical to the
right-hand side of Equation (5.63) and primes and hats are omitted when the
difference is beyond the precision of one-loop order. Derivatives of the fermionic
self-energies that are part of the matching constant lfV do not contribute, since
the photonic terms are identical in the effective theory and Standard Model and
all remaining terms are of order O

(︃
m2

f

M2
W

)︃
. Inserting the individual differences

Σ̂γγ′
T (0) − Σγγ′

′T (0) = − α

4π

⎧⎨⎩4
3
∑︂

f

NfQ
2
f ∆ +

[︄
3 log µ2

M2
W

+ 2
3

]︄⎫⎬⎭ , (5.104a)

Σ̂f
V

(︁
m̃2

f

)︁
− Σ̂f

′V
(︁
m̃2

f

)︁
= + α

4π

{︄
−Q2

f ∆ +
v2

f + a2
f

4c2s2

(︄
−1

2 + log µ2

M2
Z

)︄

+ 1
4s2

[︄
−1

2 + log µ2

M2
W

]︄}︄
,

(5.104b)

Λ̂ffγ

V (0) − Λffγ
′V (0) = + α

4π

{︄
−Q3

f ∆ +Qf

v2
f + a2

f

4c2s2

(︄
log µ2

M2
Z

− 1
2

)︄

+ Qf ′

4s2

[︄
log µ2

M2
W

− 1
2

]︄
+

3T 3
f

2s2

[︄
log µ2

M2
W

− 1
6

]︄}︄
(5.104c)

and Equation (C.3) into (5.103) yields an expression for the effective electro-
magnetic coupling constant in terms of the MS-renormalized coupling,

e′

ê
= 1 + α

4π

(︄
1
3 + 7

2 log µ2

M2
W

)︄
+ α

6π
∑︂

f

NfQ
2
f ∆. (5.105)

Once again, the UV-singular term is a consequence of matching an unrenor-
malized theory with a renormalized one and accounts for the renormalization
of the electric charge in the effective model. Omitting this term by assuming
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MS-renormalization of the effective model, the matching condition for the fine
structure constant reads

1
α̂

= 1
α̂′

+ 1
6π + 7

4π log µ2

M2
W

. (5.106)

Equation (5.106) is identical to the matching condition (5.67) derived in the
context of a pseudo gauge Z-boson.

The axial vector part of the matching condition (5.61) yields an additional
equation. The right-hand side is identical to the right-hand side of Equa-
tion (5.69), while the left-hand side is similar to the left-hand side of (5.69)
but does not contain the mixing terms. At one-loop order, the axial matching
condition reads

Qf l
f
A + Λffγ

′A (0) = Qf Σ̂A

(︁
m̃2

f

)︁
. (5.107)

Because of lfA = Σ̂f
A

(︁
m̃2

f

)︁
and since the axial vertex function Λffγ

′A vanishes in
the contact interaction model, Equation (5.107) is fulfilled trivially.

5.4.4. Parity Violating Fermion–Fermion Interaction
Due to the lack of the Z-boson, the parity violating interaction in the contact
interaction model is solely determined by Feynman diagrams including an
effective contact vertex. At leading order, only the tree-level diagram contributes,
which is identical to the diagram in the Feynman rule given in Equation (5.85).
Including the LSZ factors, the terms of one of the fermion lines at one-loop
order reads

u
(︁
p′
)︁ (︃

1 − 1
2δZ

f
V + 1

2δZ
f

A γ5

)︃
γµ

(︂
v∗∗f − a∗∗f γ5

)︂(︃
1 − 1

2δZ
f

V − 1
2δZ

f
A γ5

)︃
u(p)

= u
(︁
p′
)︁
γµ

[︂
v∗∗f − vfδZ

f
V + afδZ

f
A − γ5

(︂
a∗∗f − afδZ

f
V + vfδZ

f
A

)︂]︂
u(p)

= u
(︁
p′
)︁
γµ (vf − afγ5)s→s′

[︂
1 − ΣV

(︁
m̃2)︁− 2m̃2

(︂
Σ′V
(︁
m̃2)︁+ Σ′S

(︁
m̃2)︁)︂]︂u(p).

(5.108)
The last line is obtained by inserting the explicit expression (5.86) of the
vector and axial vector counter terms and the LSZ factors in terms of the
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self-energy functions as given in Equation (D.23)8. In addition, the axial vector
piece Σf

′A
(︁
m̃2

f

)︁
was omitted since it vanishes in the effective contact interaction

model. Here, the subscript “s → s′” is used to highlight that the vector and axial
vector coupling constants vf and af are still expressed in terms of the effective
weak mixing angle, as only matching constants were written out explicitly. The
vector part of the fermionic self-energy was given in Equation (5.97). Since
the tadpole Diagram 5.2 does not contribute momentum dependent terms, the
derivatives Σf

′V and Σf
′S are identical to the Standard Model expressions when

omitting terms of order O
(︂

mf

MW

)︂
. Using Equations (C.14) and (C.16) allows

writing

u
(︁
p′
)︁
γµ (vf − afγ5)s→s′ u(p) ·

[︄
1 − α

4πQ
2
f

(︄
∆f + 2 log λ2

m̃2
f

+ 4
)︄]︄

(5.109)

for the contribution of the fermion lines including the LSZ factors. Using
Equation (5.109), the “vector–axial vector”-part of the entire tree-level matrix
element becomes

iK

4 (vf1af2)s→s′ u
(︁
p′1
)︁
γµu

(︁
p1
)︁
u
(︁
p′2
)︁
γµγ5u

(︁
p2
)︁

·

⎡⎣1 − α

4π
∑︂

f=f1,f2

Q2
f

(︄
∆f + 2 log λ2

m̃2
f

+ 4
)︄⎤⎦ . (5.110)

Using Equation (4.56) to define the effective coupling constant Cf2′
1f1

in the effec-
tive model, the tree-level diagram including LSZ factors yields the contribution

C
f2(A)′
1f1

= −
√

2
GF

K

4 (vf1af2)s→s′

⎡⎣1 − α

4π
∑︂

f=f1,f2

Q2
f

(︄
∆f + 2 log λ2

m̃2
f

+ 4
)︄⎤⎦ .
(5.111)

8The counter terms used in Equation (D.23) refer to the model itself and not the parent
theory. Within the context of this section, one needs to apply the substitution δZV → lf

V

and δZA → lf
A.
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γ

f ′

f ′

f1

f1

f2

f2

(a)

f ′

f ′

f1
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f2
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Figure 5.4.: Fermion loop diagrams contributing to the parity violating interac-
tion in the effective interaction model.

The superscript “(A)” is used to separate the contributions of different diagrams
and follows the definitions in Equations (4.61a) to (4.61d). The complete cou-
pling Cf2′

1f1
is the sum of the individual pieces as written down in Equation (4.62).

For the following discussion, the loop diagrams are categorized as diagrams
with or without a closed fermion loop. The two one-loop diagrams contributing
to the parity violating interaction that include a closed fermion loop are shown
in Figure 5.4. It was shown that Diagram 5.3 does not contribute to the
matching of the electromagnetic coupling constant, as the self-energy vanishes
at zero momentum transfer when the photon propagator is amputated. In
case of Diagram 5.4a, the photon propagator is not amputated and accounts
for a factor q−2. This induces a contribution in terms of the derivative of the
self-energy function Σ⃝f

T at zero momentum transfer. The series expansion
of Σ⃝f

T was given in Equation (5.101) and readily allows obtaining the derivative.
Following the notation of Section 4.2.3, this contribution counts towards the
piece Cf2(D)′

1f1
, as the diagram is a remnant of the γZ-mixing in the Standard

Model and can be obtained by replacing the Z-propagator with the effective
contact interaction vertex. The longitudinal parts of the photon propagator
and self-energy vanish because of current conservation and will be omitted
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immediately; leaving out terms that do not belong to the “vector–axial vector”-
part of the matrix element in addition, the Feynman diagram in Figure 5.4a
translates to

u
(︁
p′1
)︁

(−ieQf1γµ)u
(︁
p1
)︁−i
q2

(︂
−iΣ⃝f

T

(︁
q2)︁)︂u(︁p′2)︁ (︃ iK4 af2γ

µγ5

)︃
u
(︁
p2
)︁

= − iK

4
α

4πQf1af2
4
3
∑︂
f ′

Nf ′
(︁
Qf ′vf ′∆f ′

)︁
· u
(︁
p′1
)︁
γµu

(︁
p1
)︁
u
(︁
p′2
)︁
γµγ5u

(︁
p2
)︁
,

(5.112)
where the generic vector and axial vector couplings in Equation (5.101) were re-
placed by A1 = 0, V1 = −ieQf ′ and V2 = vf ′ . Comparison with Equation (4.56)
yields

C
f2(D)′
1f1

=
√

2
GF

K

4
α

4πQf1af2
4
3
∑︂
f ′

Nf ′Qf ′vf ′∆f ′ (5.113)

for the corresponding contribution to the low energy coupling constant Cf2′
1f1

.
The second diagram with a fermion loop is depicted in Figure 5.4b and can
be understood as the low energy version of the Z-boson’s self-energy diagram
in the Standard Model and contributes to the piece Cf2(C)′

1f1
, accordingly. The

“vector–axial vector”-part of its matrix element reads

u
(︁
p′1
)︁−iK

4 vf1γµu
(︁
p1
)︁ (︂

−iΣ⃝f

T

(︁
q2
)︂)︁
u
(︁
p′2
)︁ iK

4 af2γ
µγ5u

(︁
p2
)︁

= −iGF√
2
u
(︁
p′1
)︁
γµu

(︁
p1
)︁
u
(︁
p′2
)︁
γµγ5u

(︁
p2
)︁

·
√

2
GF

K2

8
vf1af2

16π2

∑︂
f ′

Nf ′m2
f ′∆f ′ ,

(5.114)
where the generic axial vector coupling constants were replaced by A1A2 =
a2

f ′ = 1
4 . For convenience, the Fermi constant was introduced to separate the

trivial factors in Equation (4.56) from the terms that are part of the low energy
coupling constant Cf2′

1f1
. The contribution to Cf2′

1f1
is given by the terms following

the dot on the second line.
The one-loop diagrams contributing to the interaction that do not contain a

closed fermion loop are obtained by adding virtual photon corrections to the
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Figure 5.5.: Photonic corrections to the parity violating interaction in the
contact interaction model. The diagrams with a photon connecting
the fermions f1 and f2 are process dependent remnants of the
γZ-box graphs in the Standard Model and will not be discussed.

tree-level diagram. The relevant Feynman diagrams are depicted in Figure 5.5.
The similar diagrams with a photon between the left and right fermion lines
are process dependent and can not be absorbed into the universal parameters ρ
and κ, assuming a definition or the parameters similar to the corresponding
one in the Standard Model and the model described in Section 5.3. These
additional diagrams are linked to the γZ-box graphs in the Standard Model
which have been excluded from the discussion. For this reason, only the photonic
corrections shown in Figure 5.5 will be discussed in the following. It is sufficient
to calculate only one of the associated matrix elements, as the diagrams are
symmetric under the exchange of the external fermions. At one-loop order, the
matrix element of Diagram 5.5a reads

µ4−D
∫︂ dDk

(2π)D
u
(︁
p′1
)︁

(−ieQf1γµ) i /p′1 + /k +mf1

(p′1 + k)2 −m2
f1

−iK
4 γν (vf1 − af1γ5)

· i /p1 + /k +mf1

(p1 + k)2 −m2
f1

(−ieQf1γ
µ) −i
k2 u

(︁
p1
)︁
u
(︁
p′2
)︁
γν (vf2 − af2γ5)u

(︁
p2
)︁
,

(5.115)
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where p′1 = p1 − q. Except for the coupling iK
4 , the fermion line of fermion f1

including the virtual photon is identical to the corresponding expression of
the photonic vertex correction in a Standard Model calculation. This allows
copying known results from the vertex function in Equation (C.17). Keeping
“vector–axial vector”-terms only, one finds

i
GF√

2
u
(︁
p′1
)︁
γµu

(︁
p1
)︁
u
(︁
p′2
)︁
γµγ5u

(︁
p2
)︁

·
√

2
GF

K

4 vf1af2
α

4πQ
2
f1

[︄
∆f1 + 2 log λ2

m2
f1

+ 2
]︄

(5.116)
for the contribution of Diagram 5.5a to the parity violating interaction. The
expression for Diagram 5.5b can be obtained from Equation (5.116) by replacing
the subscript f1 inside the brackets with f2.

The piece Cf2(C)′
1f1

is made up of terms that correspond to the terms stemming
from loop corrections of the neutral current interaction in the Standard Model.
In the effective model, these are given by Equations (5.114) and (5.116) as well
as the corresponding contribution of Diagram 5.5b. Combining all pieces, the
low energy coupling constant becomes

C
f2(C)′
1f1

=
√

2
GF

K

4 vf1af2
α

4π

⎛⎝− K

8πα
∑︂
f ′

Nf ′m2
f ′∆f ′ + V

(︁
f1
)︁

+ V
(︁
f2
)︁⎞⎠ ,

V (f) = Q2
f

(︄
∆f + 2 log λ2

m2
f

+ 2
)︄
.

(5.117)

The remaining part Cf2(B)′
1f1

vanishes in the effective contact interaction model,
since the only axial vector coupling of a fermion to the photon at one-loop
order is depicted in Figure 5.4a and counts towards Cf2(D)′

1f1
. Hence, the ef-

fective low energy coupling in the contact interaction model is determined by
Equations (5.111), (5.113) and (5.117). It reads

Cf2′
1f1

= − af2ρ
′
(︂
2T 3

f1 − 4Qf1κ
′s′

2
)︂

+
√

2
GF

K

8 vf1af2
α

π

(︂
Q2

f1 +Q2
f2

)︂
+ □′ + O

(︁
α2)︁, (5.118)
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when using □′ to denote the γZ-box remnants and where the process independent
parameters ρ′ and κ′ are defined as

ρ′ =
√

2
GF

K

8

⎛⎝1 − K

32π2

∑︂
f

Nfm
2
f ∆f

⎞⎠ , (5.119a)

κ′ = 1 + α

6πs2

∑︂
f

NfQfvf ∆f . (5.119b)

These parameters are meaningless without a proper definition of the coupling
constants K and ŝ′ which will be deduced by the matching in Section 5.4.5.

5.4.5. Matching of the Weak Mixing Angle

The process dependent terms in Equation (5.118) stem from a combination
of photonic vertex corrections and LSZ factors. They are identical to the
corresponding terms in the Standard Model that are given in Equation (4.76).
In the Standard Model there are also terms resulting from vertex corrections
including heavy gauge bosons, which are missing in the contact interaction
model. As explained in section 5.4.1, this is the reason why the matching
condition Cf2′

1f1
= Cf2

1f1
can not be fulfilled with process independent constants K

and s′; the process dependent terms would need to be absorbed in either
parameter. The missing correction induced by the W-boson in the Standard
Model could be restored by introducing an effective flavor changing four-fermion
interaction, but the missing Z-boson terms can only be reproduced with an
additional effective contact interaction that depends on the fermion type. This
is because the ffγ-vertex with a virtual Z-boson degenerates to the Feynman
Diagram 5.3 in the contact interaction model, which is the low energy analogue
of the γZ-propagator at one-loop order. Consequently, it is impossible to
separate the process dependent vertex correction and the universal propagator
within the effective contact interaction model. In fact, a distinction of process
dependent and universal contributions is only meaningful in the Standard Model,
in which all degrees of freedom contribute to the low energy interaction.
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5. Matching Conditions

When ignoring the issue regarding the process dependent terms, the correc-
tion κ′ given in Equation (5.119) determines the matching condition of the
weak mixing angle. Assuming the same set of fermions, it is identical to the
matching condition obtained in the pseudo Z-boson model that was given in
Equation (5.76). Accordingly, the matching condition of the weak mixing angle
when matching the effective contact interaction model with the Standard Model
is identical to the one derived in Section 5.3, with the final result given in
Equation (5.78). The equality is a consequence of identical fermion contents
and the lack of a W-boson in either effective model, as the weak mixing angle is
corrected only by fermion and W-boson loops in the Standard Model at one-loop
order.

The expression for the effective coupling strength K can be calculated by solv-
ing the matching condition that is obtained when equating the ρ-parameters and
neglecting the process dependent terms. With the Standard Model expression
given in Equation (4.74), one finds

K = 8GF√
2
ρ+ GFα√

2πc2s2

∑︂
f

Nf

m2
f

M2
Z

∆f + O
(︁
α3)︁, (5.120)

where one factor of the Fermi constant in the second term was replaced with
its definition in terms of the electromagnetic coupling constant α. As before,
the UV-divergent piece appears, since the contact interaction model was not
renormalized beforehand. At leading order, the effective contact coupling is
proportional to the Fermi constant showcasing the close relation to Fermi’s
four-fermion interaction theory. The coupling K accounts for the Z-boson
propagator at zero momentum transfer and the square of the neutral coupling
strength, K ∼ g2

Z

M2
Z

. While the matching of the weak mixing angle is identical in
the contact interaction and pseudo Z-boson models, the matching of K and g′ 2Z

differs considerably. The obvious reason is that the Z-boson’s propagator is
missing in the contact interaction model.

Inserting the matching condition (5.120) into Equation (5.119) yields the
effective parameter ρ′ in terms of the Fermi constant, which is identical to
the corresponding Standard Model parameter ρ given in Equation (4.74), by
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5.4. Contact Interaction Model

construction. In a second step, ρ′ = ρ, κ′ and s′ can be inserted into (5.118). Due
to the matching, the product κ′s′2 is identical to the corresponding expression
in the Standard Model. Eventually, one finds

Cf2′
1f1

= − af2ρ
(︂
2T 3

f1 − 4Qf1κs
2
)︂

+ 4vf1af2
α

4π
(︂
Q2

f1 +Q2
f2

)︂
+ □′ + O

(︁
α2)︁. (5.121)

Equation (5.121) is almost identical to the Standard Model coupling (4.76), but
the process dependent terms stemming from vertex corrections with a virtual
heavy gauge boson are missing in the effective contact interaction model. As
mentioned above, these terms can not universally be reproduced within the
current model. In addition, the box graph contributions were not calculated in
either model and could add to the deviation.

5.4.6. Matching at a Fermion Threshold
So far, the discussion was restricted to the matching of the effective models
with the Standard Model. Since the effective models are incomplete in the
heavy gauge boson sector, the transition from the Standard Model to one
of the effective models can be considered as integrating out the degrees of
freedom associated with (some of) the heavy gauge bosons. In order to obtain
a prediction of the weak mixing angle at low energies, the remaining fermions
are integrated out successively [17, 18]. The appropriate matching conditions
for removing a fermion are different and require an additional calculation; the
expression given in Reference [17] is valid for µ = mf , only, and reads

s′ 2 = s2 +
(︃
α

4π

)︃2 15
2 NfvfQ

3
f + O

(︁
α3)︁ (5.122)

when omitting higher order terms and QCD effects. The one-loop order term
vanishes for µ = mf so that the leading term beyond tree-level is of order O

(︁
α2)︁.

It stems from a fermion loop with a virtual photon inside the loop.
To obtain the matching condition for integrating out fermions in the effec-

tive contact interaction model, the model with a set of light fermions Fl is
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5. Matching Conditions

matched with the model with the same light fermions as well as a set of heavy
fermions F = Fl ∪ Fh. Typically, the set Fh will contain only a single fermion
much heavier than all the light fermions. To stick with the notation used before,
the two models will be referred to as child and parent theory, respectively.
By construction, all terms that do not depend on a sum over all fermions in
the effective model are identical in parent and child theory. This includes the
contribution (5.111) to the low energy coupling constant, which contains a
sum over the external fermions, solely. The only fermion loops that contribute
to the parity violating interaction are depicted in Figure 5.4 and give rise to
the two fermion sums in Equation (5.119). As before, the generic matching
condition is (5.77). To comply with the previous expressions, the parent theory
is MS-renormalized, while the child model remains unrenormalized. Inserting
the corresponding parameters into Equation (5.77) yields

K

⎛⎝1 − K

32π2

∑︂
f∈F

Nfm
2
f log µ2

m2
f

⎞⎠ = K ′

⎛⎝1 − K ′

32π2

∑︂
f∈Fl

Nfm
2
f ∆f

⎞⎠ ,
(5.123a)

s2

⎛⎝1 + α

6πs2

∑︂
f∈F

NfQfvf log µ2

m2
f

⎞⎠ = s′ 2

⎛⎝1 + α

6πs2

∑︂
f∈Fl

NfQfvf ∆f

⎞⎠ ,
(5.123b)

where the primes denote quantities of the child theory. At leading order, the
corresponding solutions in terms of K ′ and s′ 2 are

K ′ = K − K2

32π2

∑︂
f∈Fh

Nfm
2
f log µ2

m2
f

+ K2

32π2

∑︂
f∈Fl

Nfm
2
f ∆ + O

(︂
K3
)︂
, (5.124a)

s′ 2 = s2 + α

6π
∑︂

f∈Fh

NfQfvf log µ2

m2
f

− α

6π
∑︂

f∈Fl

NfQfvf ∆ + O
(︁
α2)︁. (5.124b)

Omitting the UV-divergences that account for the renormalization of the child
theory, the matching conditions are exclusively determined by a term stemming
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from the heavy fermions that are missing in the child theory. In particular,
the matching condition of the weak mixing angle for integrating out a single
fermion f becomes

s′ 2 = s2 + α

6πNfQfvf log µ2

m2
f

+ O
(︁
α2)︁. (5.125)

Due to the scale dependent logarithm, Equation (5.125) reduces to the trivial
matching condition s′ 2 = s2 at the fermion threshold and confirms Equa-
tion (5.122) at one-loop order.
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6. Conclusion

6.1. Summary
This thesis dealt with the derivation of the parity violating interaction at zero
momentum transfer. To that end, the scaling of coupling parameters according
to the renormalization group equation and matching conditions of effective
parameters were discussed. In particular, the matching condition of the weak
mixing angle for integrating out the W-boson was discussed, and it was pointed
out that the expression found in the literature needs to be corrected.

The electromagnetic coupling was discussed in Chapter 3. In the MS-re-
normalization scheme, the electromagnetic coupling parameter α̂ is accessible
from first principles only, if the vacuum polarization function can be calculated
perturbatively. This is not the case for energy scales at which hadronic effects
play a role, as the strong interaction can not be treated perturbatively at low
energies. This fundamental challenge can be avoided using the unsubtracted
dispersion relation approach discussed in Section 3.1. The final result (3.8)
with Equations (3.9), (3.24) and (3.25) can be used to obtain an expression
for the vacuum polarization function just above the non-perturbative regime.
The input are experimental data as described in Section 3.1 and a contour
integral of perturbative expressions given in Section 3.1.1. In a second step, the
electromagnetic coupling can be obtained using Equation (3.1).

In the following, the coupling at higher energy scales can be obtained using
the solution of the renormalization group equation given in Equations (3.66)
and (3.73), which is based on perturbative expressions of the vacuum polarization
derived in Sections 3.1.1 and 3.2. Evolving to high energy scales requires
incorporating the heavy particles via matching. The matching conditions were
derived in a simple context in Section 3.5 with the result (3.75).
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6. Conclusion

Chapter 4 discusses the parity violating interaction in the Standard Model,
which is expressed in terms of low energy effective coupling constants. The
final result (4.76) of Section 4.2 reproduces the long known expression of
Reference [29] but is also valid for arbitrary fermions. The irreducible vertex
functions discussed in Section 4.1 are an important ingredient for the parity
violating interaction as well as the matching conditions derived later on. Finally,
the renormalization group equation of the weak mixing angle and its solution
were presented in Sections 4.3 and 4.4. The solution (4.89) expresses the
weak mixing angle in terms of the running electromagnetic coupling. This
allows making use of the treatment of non-perturbative effects entering the
electromagnetic coupling in the context of the weak mixing angle without
additional treatment and links Chapters 3 and 4.

In the main part of this thesis, Chapter 5, the matching conditions in the elec-
troweak sector of the Standard Model were discussed in the MS-renormalization
scheme. The matching conditions are the relation between the parameters of
an effective model and the parameters of its parent theory and are used to
switch from one model to the other, which corresponds to integrating out or
incorporating heavy particles. The basic concept of matching was introduced in
Section 5.1 and existing calculations were presented in Section 5.2. The main
problems described there are the lack of a properly defined effective model and
that the interaction between massive gauge bosons via the Higgs sector is not
properly respected. The first issue might be fixable by specifying an effective
model and clarifying how to use the matching conditions in the calculation
of an observable, but the second issue is more fundamental and needs to be
resolved in a new ansatz.

These deficiencies are overcome by the explicit introduction of two different
effective models in Sections 5.3 and 5.4. The first one in Section 5.3 resembles
the electroweak sector of the Standard Model but introduces an artificial pseudo
gauge boson. The second model, on the other hand, is a four-fermion contact
interaction model that does not comprise a Z-boson at all. In either case the
matching conditions were derived by equating irreducible vertex functions and
observables with the corresponding expressions in the Standard Model derived
in Chapter 4.
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6.2. Discussion of the Electromagnetic Matching Condition

The final results for the matching of the weak mixing angle at the W-boson
threshold are identical due to the same fermionic field content and the lack of the
W-boson in either model; the explicit expression was given in Equation (5.78).
The difference between the matching condition for integrating out the W-boson
derived in this thesis and the one used in the literature [17, 18] was given in
Equation (5.81). The deviation is almost seven times larger than the total
theoretical uncertainty of the weak mixing angle at low energies and requires a
correction of its calculation.

Finally, in Section 5.4.6, the matching condition for integrating out a fermion
in the contact interaction model was derived and found to be in agreement with
the known expressions presented in Section 3.5.

The main drawback of the contact interaction model is that it does not allow
introducing a process independent weak mixing angle as it can not reproduce
the process dependent terms induced by the Z-boson in the Standard Model.
The model of Section 5.3 on the other hand needs to introduce a pseudo gauge
boson and does not restore the longitudinal properties of the Standard Model,
even though the longitudinal part of the pseudo boson’s propagator exists.
Nonetheless, both models are applicable in the context of the parity violating
asymmetry and other theories with a different set of parameters leading to
different matching conditions could be used, too. In any case, a complete
calculation of the observables is needed for a proper theoretical prediction, as
the coupling parameters are not observable and need to be paired with the
outcome of loop calculations to compensate the scale dependence.

6.2. Discussion of the Electromagnetic Matching
Condition

The findings of Chapter 5 suggest that taking into account electroweak effects
at two-loop order makes the simple ansatz of Section 3.5 inappropriate. In
particular, the W-boson will appear in vertex corrections at two-loop order,
which seems to require the treatment of all loop diagrams and not just the
corrections to the vacuum polarization function. At least, this is the reason, why
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6. Conclusion

the two effective models can be expected to yield different matching conditions
when accounting for electroweak two-loop effects, as the contact interaction
vertex will appear in the matching of the weak mixing angle. However, an
explicit calculation of all vertex corrections for the derivation of the matching
condition of the electromagnetic coupling is probably still not necessary. The
fact that the renormalization of the electric charge in QED depends only on the
field renormalization of the photon field is guaranteed by the Ward identity. As
a consequence, vertex corrections can be ignored as they cancel with external leg
corrections. In the EWSM, the Ward identity is slightly different and causes the
charge renormalization to also depend on the γZ-mixing self-energy [3]. This is
the reason, why Equation (5.34) had to be manually added to (5.32) to obtain
the correct dependence on log µ

MW
. And at higher loop orders, the γZ-mixing

self-energy will also contain finite terms that require a rigorous treatment, even
if the matching scale µ = MW is kept.

An effective model will not exhibit the same symmetries as the EWSM, but
most probably needs to restore the Ward identity for two reasons. First, the
Ward identity follows from a symmetry of the functional integration and not
from specific model properties. Second, the Ward identity ensures that the
photon remains massless at higher loop order, which must be the case in an
effective model, too. Consequently, the application of the Ward identity will
probably allow skipping the calculation of vertex corrections at higher loop
order, too, but a more detailed discussion of the topic is required.

6.3. Outlook

As pointed out in Section 6.1, the matching condition of the weak mixing angle
for integrating out the W-boson needs to be corrected. This will alter the
numerical value of the weak mixing angle right below the W-threshold and
subsequently the running of the weak mixing angle at lower energy scales. In
particular, this also will lead to a small change of the weak mixing angle at zero
momentum transfer that was published in References [17, 18] and requires a
recalculation thereof.
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6.3. Outlook

In the light of the findings of Chapter 5, a discussion about a suitable effective
model for the matching of the weak mixing angle and the electromagnetic
coupling is due. The contact interaction model described in Section 5.4 seems
natural but requires the introduction of a process dependent weak mixing angle
and other models that were not discussed in this thesis might be suitable, as
well.

An aspect that was not discussed but is relevant for the P2 experiment is
the effect of the hadronic structure of the proton. Using a compound target
particle requires a treatment of the hadronic structure which is parametrized in
terms of form factors at low energy. Form factors can not be calculated from
first principles and need to be determined in an experiment. Accordingly, they
may or may not contain all sorts of radiative corrections depending on the data
analysis performed after the measurement. In order to avoid double counting
of certain effects, one has to exclude all diagrams from the calculations in this
thesis that are already part of the form factors.

In the long run, a discussion of electroweak two-loop effects is very much
desirable. These will increase the theoretical precision even further but also
discriminate between the effective models proposed in Chapter 5. In addition,
the discussion of electroweak two-loop diagrams will explicitly show that the
published ansatz for the calculation of the electromagnetic matching conditions
requires a modification as mentioned before.
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A. Illustration of the RG-Running and
Matching Conditions in a Simple
Model

The general steps that are required in order to evolve a coupling parameter
from one energy scale to another were laid out in Section 2.5.4. These steps
are illustrated in the following in case of an effective QED that incorporates
electrons and muons.

The electromagnetic coupling constant is derived from experimental data
obtained at zero momentum transfer below the creation threshold of the electron,
where no logarithms of the type log µ2

m2 occur in the MS-scheme. Accordingly,
the PDG value corresponds to an MS-determination of α̂(µ0) with no active
particle. The initial scale µ0 can be selected freely; µ0 = me will be used in
the following.1 The steps 2 and 3 described at the end of Section 2.5.4 need to
be executed two times due to the crossing of two particle thresholds. In the
following, 2a, 3a, 2b and 3b are used as numeration for the recurring steps. In
order to keep the equations simple, they are expressed in terms of a = α

π instead
of α.

1. As explained above, the initial value is given by experimental value of the
electromagnetic coupling, â

(︁
µ0 = me

)︁
= αPDG

π = α
π .

2a. This step is not required, as the initial value â
(︁
µ0 = me

)︁
= a is already

given at threshold.
1Since the β-function vanishes below the electron threshold, α̂(µ) is constant for µ ≤ me.

This implies that any other choice µ′
0 with µ′

0 < me is identical to µ0 = me.
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3a. The finite parts of the vacuum polarization at zero momentum transfer do
not vanish at two-loop order, which leads to a discontinuity in α̂. Using
the results of Section 3.5 and the notation introduced in Section 2.3, one
has

âp(︁me
)︁

= âc(︁me
)︁

+ 15
16
(︁
âc(︁me

)︁)︁3 = a+ 15
16a

3. (A.1)

2b. The solution of the two-loop β-function in QED reads2

a(µ) = a(µ0)−a2(µ0)β0 log µ
2

µ2
0

+a3(µ0)
(︄
β2

0 log2 µ
2

µ2
0

− β1 log µ
2

µ2
0

)︄
. (A.2)

Replacing a(µ0) by âp(me) and neglecting terms of order O
(︁
a4)︁ yields

âc(mµ) = a+ 15
16a

3 + a2

3 log
m2

µ

m2
e

+ a3
(︄

1
9 log2 m

2
µ

m2
e

+ 1
4 log

m2
µ

m2
e

)︄
+ O

(︁
α4)︁,

(A.3)
where the coefficients β̂0 and β̂1 were replaced by the appropriate numerical
values −1

3 and −1
4 of the effective one-particle QED, respectively, and

the threshold value âp(me) was expressed in terms of a by inserting
Equation (A.1).

3b. The matching condition of the muon is the same as the one of the electron
given in Equation (A.1) yielding

âp(mµ) = a+ a2

3 log
m2

µ

m2
e

+ a3
(︄

1
9 log2 m

2
µ

m2
e

+ 1
4 log

m2
µ

m2
e

+ 15
8

)︄
+ O

(︁
α4)︁,
(A.4)

where the two individual matching constants 15
16 of the electron and muon

have been combined.

2It can be derived from the three-loop solution given in Equation (3.71).
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4. The final result for α̂(µf ) with an arbitrary scale µf ≥ mµ is obtained by
inserting âp(mµ) into Equation (A.2). It reads

â(µf ) = a+ a2

3 log
m2

µ

m2
e

+ a3
(︄

1
9 log2 m

2
µ

m2
e

+ 1
4 log

m2
µ

m2
e

+ 15
8

)︄

+ 2
3a

2 log
µ2

f

m2
µ

+ 4
9a

3 log
µ2

f

m2
µ

log
m2

µ

m2
e

+ a3
(︄

4
9 log2 µ

2
f

m2
µ

+ 1
2 log

µ2
f

m2
µ

)︄
+ O

(︁
α4)︁, for µf ≥ mµ.

(A.5)
This time, the RGE-coefficients β̂0 and β̂1 were replaced by the val-
ues −2

3 and −1
2 according to the field content of the full two-particle

QED. Equation (A.5) can be simplified by expressing all logarithms in
the form log µ2

f

m2
e,µ

, which also separates the individual logarithmic contri-
butions of the electron and muon,

â(µf ) = a+ a2

3

(︄
log

µ2
f

m2
e

+ log
µ2

f

m2
µ

)︄
+ a3

4

(︄
log

µ2
f

m2
e

+ log
µ2

f

m2
µ

)︄

+ a3

9

(︄
log

µ2
f

m2
e

+ log
µ2

f

m2
µ

)︄2

+ a3 15
8 + O

(︁
α4)︁, for µf ≥ mµ.

(A.6)

The final result (A.6) obtained via RGE evolution and matching of effective
theories is the same as the expression of the electromagnetic coupling one
obtains when calculating in the full theory and deriving α̂

(︁
µf

)︁
directly as in

Equation (2.42): Dyson resumming Equation (2.39) yields

α̂(µ) = α
[︂
1 + Π̂

(︁
q2 = 0, µ2)︁]︂ (A.7)

for the relation between MS-renormalized and OS coupling parameters, where Π̂
consists of contributions of irreducible diagrams, only. The two-loop vacuum
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polarization function of QED including electrons and muons is given by (see
Section 3.2)

Π̂
(︁
q2 = 0, µ2)︁ =

α̂
(︁
µ2)︁
π

(︄
−1

3 −
α̂
(︁
µ2)︁

4π

)︄(︄
log m

2
e

µ2 + log
m2

µ

µ2

)︄
+ 15

8
α̂2(︁µ2)︁
π2 .

(A.8)
Inserting Equation (A.8) into (A.7) yields an implicit equation for α̂(µ), as Π̂ is
given in terms of α̂(µ) instead of α. It can be solved by iteratively replacing every
occurrence of α̂(µ) with the right-hand side of Equation (A.7) and neglecting
terms of order O

(︁
α4)︁. The result of that iterated process coincides with the

previously determined expression (A.6).
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B. Feynman Rules

The Feynman rules including the corresponding sign conventions are taken from
Reference [2]. Since an explicit calculation of most of the Feynman diagrams
can be avoided when using the self-energy functions given in Appendix C, only
a couple of Feynman rules are needed throughout this thesis. For completeness,
the ones that are used in this thesis are collected below, with the notation
adjusted according to Section 2.3.

The Feynman rule (B.3) describes a self-energy insertion into one of the gauge
boson propagators or the γZ-mixing; hence, the expression on the right-hand
side includes only the blob without the attached propagators. The coupling of
the blob to the attached propagators is part of the self-energy Σab

µν , too. The
tensor structure of Σab

µν and its decomposition in terms of the transverse and
longitudinal self-energy functions is given in Equation (2.25).

The single additional Feynman rule required for calculations in the effective
contact interaction model in Section 5.4 is not listed and can be found in
Equation (5.85).

γ

µ ν ˆ︁= −igµν

q2 −M2 (B.1)

f
ˆ︁= i

/q +mf

q2 −m2
f

(B.2)

a b

µ ν ˆ︁= iΣab
µν (B.3)
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γ

f

f

ˆ︁= − ieQfγµ (B.4)

Z

f

f

ˆ︁= iMZ

√︂√
2GFγµ (vf − afγ5) (B.5)
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C. One-Loop Functions at Zero
Momentum Transfer

This appendix contains a list of one-loop functions and their derivatives evaluated
at zero momentum transfer or q2 = m̃2

f , which are used in the calculations
throughout this thesis. As before, the mass parameter m̃f is the on-shell
mass of the fermion f . Except for the derivatives of the vertex functions, the
expressions were derived from the complete formulas provided by Reference [2]1
with the help of Package-X [39]. The derivative of the axial part of the fermion-
fermion-photon vertex functions was calculated from scratch with the aid of
FeynCalc [40], FeynHelpers [41] and Package-X. To facilitate the notation
of the Z-boson’s self-energy, the ratio of Higgs- and Z-mass is abbreviated
as ξ = M2

H

M2
Z

. Additionally, the notation f̃ = f if f ̸= νl and f̃ = l if f = νl of
Reference [2] is adopted.

Terms in brackets stem from W-bosons or the Higgs sector and do not appear
in the effective model of Section 5.3, that is the self-energies in the effective
theory are obtained by dropping all brackets. Hats indicate MS-renormalization
as before. The unrenormalized quantities can be obtained when reintroducing
the UV-divergent terms by means of the substitution log µ2

M2
X

→ ∆X , where ∆X

is defined in Equation (2.21). Some of the series expansions of Passarino–
Veltman base functions needed for the evaluation of the self-energies are given
in Section C.4.

1There is a typo in the axial part of the self-energy in Reference [2]. The terms that stem
from the Z-boson loop need an additional factor of −1. Moreover, the V-A term on the
first line of Equation (5.30) should read vσ −aσγ5 instead of vσ

−aσγ5 and there is a closing
parenthesis missing on the second line of the Zff -Feynman rule, right after the first Qiσ.
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C. One-Loop Functions at Zero Momentum Transfer

C.1. Bosonic Self-Energies
The transverse parts of the self-energies, their derivatives with respect to the
momentum transfer and the corresponding longitudinal parts that are identical
to the transverse parts read

Σ̂γγ
T (0) = Σ̂γγ

L (0) = Σ̂γγ′
L (0) = 0, (C.1)

Σ̂γγ′
T (0) = α

4π

⎧⎨⎩4
3
∑︂
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NfQ
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f log µ2
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f

−
[︄
3 log µ2

M2
W

+ 2
3

]︄⎫⎬⎭ , (C.2)

Σ̂γZ
T (0) = Σ̂γZ

L (0) = α

4π

[︄
2M

2
W
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log µ2

M2
W
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, (C.3)

Σ̂γZ′
T (0) = α

4π

{︄
− 2
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∑︂
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NfQfvf log µ2
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+
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)︃
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M2
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+ 1 + 2c2

3cs

]︄}︄
,

(C.4)

Σ̂ZZ
T (0)
M2

Z

= Σ̂ZZ
L (0)
M2
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− α

4π
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f

M2
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6(ξ − 1)3

]︄
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(C.6)

182



C.1. Bosonic Self-Energies

The remaining longitudinal self-energy functions that were not specified in the
equations above, that is all longitudinal parts that differ from the respective
transverse part, are

Σ̂γZ′
L (0) = α

4π

[︃ 1
3cs

]︃
, (C.7)

Σ̂ZZ
L (0)
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= α
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− ξ

6c2s2 log M
2
H
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W

− 1
6c2s2 log M2

Z

M2
W

+ 1
24c2s2

(︃
1 + ξ + 2ξ log ξ

1 − ξ

)︃

+ 5 − ξ

6c2s2

(︄
1 + 1 + ξ

2(1 − ξ) log ξ − log MHMZ

M2
W

)︄]︄ (C.8)

Σ̂ZZ′
L (0) = α

4π

[︄
ξ3 − 3ξ2 − 9ξ + 11 + 6ξ(3 − ξ) log ξ

24c2s2(1 − ξ)3 − c2 − s2

3s2
M2

Z

M2
W

]︄
. (C.9)

A particular important quantity is the difference of the Z- and W-boson’s
transverse self-energies that enters at many places in the renormalization pre-
scriptions. For instance, it is part of the ρ-parameter required by the parity
violating interaction as can be seen in Equation (4.65). The terms cancel to
some extent so that the difference is less complex than the individual pieces.
Using MW = cMZ , which is sufficient for the one-loop calculation, confirms the
result given in Reference [42],

Σ̂ZZ
T (0)
M2

Z

− Σ̂W W
T (0)
M2

W

= α

4π

⎧⎪⎨⎪⎩ 1
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(︃ 17
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+ 1
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(︃13
4 − 4s2

)︃
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M2
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+ 17
4s2 + 3

4s2
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t
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− 3
4s2

c2 log µ2

M2
W

− ξ log µ2

M2
H

c2 − ξ
+ 3

4c2s2

log µ2

M2
Z

− ξ log µ2

M2
H

1 − ξ

⎫⎪⎬⎪⎭ .
(C.10)
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C. One-Loop Functions at Zero Momentum Transfer

C.2. Fermionic Self-Energies

Using λ as an infinitesimal photon mass to regularize the infrared divergences,
the fermionic self-energies read

Σ̂V
f
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= + α

4π
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+ 1
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[︄
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]︄ }︄
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(C.11)
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Σ̂A′
f

(︁
m̃2

f

)︁
= − α

4π

{︄
vfaf

2c2s2
1

3M2
Z

+ 1
4s2

[︄
1

3M2
W

]︄}︄
, (C.15)
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2
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. (C.16)

C.3. Vertex Functions

The photonic vertex corrections are infrared divergent in general and need to
be combined with bremsstrahlung diagrams to cancel the singularities. The
infinitesimal photon mass is again parametrized by λ and f ′ denotes the weak
isospin partner of the fermion f . Note, that there is a mistake in the photonic
contributions of Reference [2]. The correct expressions can be obtained using
the exact vertex correction given in Section C.3.2.
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C.3. Vertex Functions

C.3.1. Function Values at Zero Momentum Transfer

Λffγ
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ΛffZ
S (0) = O

(︄
m2

f

M2
W

)︄
(C.21)

C.3.2. Derivative of the Axial Fermion-Fermion-Photon–Vertex
Previously, only the vertex functions evaluated at zero momentum transfer were
given. For the parity violating interaction at one-loop order, one also needs
the derivative with respect to the momentum transfer of the axial piece of the
ffγ-vertex correction evaluated at zero momentum transfer, Λffγ′

A (0). The
expressions in Reference [2] are not suitable to obtain the derivative at q2 = 0,
as they are defined in the limit m2

f ≪ q2, only. The results of Reference [37]
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Figure C.1.: Feynman diagrams that contribute to the axial vertex correc-
tions Λffγ

A and ΛffZ
A . The Arabic numbers index the vertices

in order to facilitate the generic notation g±i , i = 1, 2, 3, for the
corresponding coupling constants.

are exact in the momentum transfer, but were obtained by neglecting light
fermion masses, which is insufficient for computing the derivative. A calculation
from scratch for the axial piece Λffγ

A

(︁
q2)︁ and its derivative at zero momentum

transfer is presented in the following. All results are written in terms of a
photon as external gauge boson, but the calculation is generic and can also be
used in a neutral current calculation when substituting the coupling constant
appropriately.

There are only two types of Feynman diagrams contributing to Λffγ′
A (0), one

with a virtual W- or Z-boson that is attached to the incoming and outgoing
fermions and one with two virtual W-bosons that form a triple gauge boson
vertex with the external gauge boson. They are displayed in Figure C.1 and the
functions Λffγ

A(a) and Λffγ
A(b) will be used to denote their individual contributions

to the axial vertex function,

Λffγ
A = Λffγ

A(a) + Λffγ
A(b). (C.22)

Using Ci and Cij to denote the scalar Passarino–Veltman functions as defined
in Reference [37] and omitting their arguments

(︁
m2

f , q
2,m2

f ,M,m′f ,m
′
f

)︁
for the
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C.3. Vertex Functions

sake of readability, the expression for the generic fermion–fermion–gauge-boson
vertex Diagram C.1a can be written as

MC.1a = −ieu
(︁
p2
)︁
γµγ5u

(︁
p1
)︁

·X

X = −ig
+
1 g

+
2 g

+
3 − g−1 g

−
2 g
−
3

16π2e

[︂
2C00 − 1 − q2 (C0 + C1 + C2 + C12)

+m2 (C0 + 2C1 + 2C2 + C11 + C22 + 2C12)
]︂

+
im′f

2

16π2e
C0
(︂
g+

1 g
+
2 g
−
3 − g−1 g

−
2 g

+
3

)︂
.

(C.23)
A notation similar to the one of Reference [37] is used: g−i (g+

i ), i = 1, 2, 3,
denote the generic left (right) handed couplings associated with the loop vertices.
The parameter M refers to the mass of the gauge boson within the loop and m′f
is the mass of the fermions f weak isospin partner when M = MW , and identical
to mf otherwise. The matrix element (C.23) represents the contribution of a
single Feynman diagram, only. In order to obtain Λffγ

A(a), one has to sum over
all possible virtual gauge bosons inside the loop. A diagram with a virtual
photon does not contribute to the axial fermion-fermion-photon vertex, as QED
is not parity violating. In case of a fermion-fermion-photon vertex with a virtual
Z-boson inside the loop, the coupling constants read

g−1 = g−2 = ie
T 3

f − s2Qf

cs
, g+

1 = g+
2 = −ies

2Qf

cs
, g+

3 = g−3 = −ieQf ; (C.24)

if the virtual boson is a W-boson, they read

g−1 = g−2 = ie√
2s
, g+

1 = g+
2 = 0, g+

3 = g−3 = −ieQf . (C.25)

For identical incoming and outgoing fermions, the Passarino–Veltman functions
obey the relations

C1
(︁
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2,m2

f ,M,m′f ,m
′
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)︁
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f ), (C.26a)
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f , q
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′
f

)︁
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f , q
2,m2

f ,M,m′f ,m
′
f

)︁
, (C.26b)
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C. One-Loop Functions at Zero Momentum Transfer

which can be used to further simplify Equation (C.23). The Passarino–Veltman
functions can be easily Taylor expanded in the squared momentum transfer
with the help of Package-X. Inserting Equations (C.24) and (C.25), one finds
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(C.27)
Similarly to Equation (C.23), the Feynman diagram in Figure C.1b evaluates

to the matrix element

MC.1b = −ieu
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(C.28)
but this time with Ci,ij ≡ Ci,ij

(︁
m2

f , q
2,m2

f ,m
′
f ,M,M

)︁
. Inserting the coupling

constants

g−1 = g−2 = ie√
2s
, g+

1 = g+
2 = 0, g3 = −ie, (C.29)

eventually leads to2

Λffγ
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(C.30)
2The Feynman rule for g3 depends on the orientation of the gauge bosons, that is the direction

of flow of the charge. This is determined by the isospin of fermion f so that 2T 3
f is used to

parametrize Equation C.30.

188



C.4. Passarino–Veltman Functions

Adding Equations (C.27) and (C.30) confirms Equation (C.18) and yields the
derivative

Λffγ′
A (0) = − α

4π

{︄
Qfvfaf
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]︄}︄ (C.31)

of the axial part of the vertex correction at zero momentum transfer.

C.4. Passarino–Veltman Functions
Primes denote derivatives with respect to the first argument and λ and f ′

have the same meaning as before. The parameter M is used to denote the
masses of the heavy gauge bosons MW and MZ . In case of M = MZ , one
also has mf ′ = mf . If M = MW , the difference mf ̸= mf ′ in the B0- and
B1-functions becomes relevant when taking into account terms of order O

(︃
m2

f

M2
W

)︃
.

Polynomial terms in the photon mass λ are omitted without indication.
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C.5. Propagators
For completeness, the transverse parts of the one-loop gauge boson propa-
gators in terms of the bosonic self-energies are given in this section. The
relation between polarization components and the propagator can be read off
Equation (2.25).

Gγγ
T

(︁
q2)︁ = i

q2

(︄
1 −

Σγγ
T
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(C.40)
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(C.41)

GZZ
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(C.42)
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D. LSZ Reduction Formula for
Fermions in the EWSM

This appendix is dedicated to the derivation of the LSZ reduction formula
for fermions and the corresponding normalization factors in a theory in which
left- and right-handed fermions have different interactions. The LSZ theorem was
first published in Reference [43] and gives a relation between Green functions and
S-matrix elements in a quantum field theory. The calculation in the following
subsections is based on Reference [44].

D.1. In- and Out-fields
The incoming and outgoing states that are used to describe scattering amplitudes
are defined as free-particle states with the physical mass m and normalized
to unity. They are created by the fields ψi and ψo, where the subscripts are
used to denote incoming and outgoing fields. The fields are normalized by
the requirement that the corresponding particle wave functions are properly
normalized and need to obey the Dirac equation(︁

i/∂ − m̃
)︁
ψi/o(x) = 0. (D.1)

The normalization condition reads

⟨0|T
{︂
ψi/o(x)ψi/o(y)

}︂
|0⟩ =

∫︂ d4k

(2π)4 e
−ik(x−y)iSf (k), (D.2)

where
iSf (k) = i

/k + m̃

k2 − m̃2 (D.3)
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is the unperturbed momentum space propagator and m̃ is the on-shell mass.
The fields ψi and ψo can be constructed from the interacting field ψ that adheres
to the Dirac equation (︁

i/∂ −m0
)︁
ψ(x) = j(x), (D.4)

where m0 is the bare fermion mass and j(x) describes the coupling of the
interacting field to other fields or external sources. Using the retarded and
advanced propagators

Sret(x, y) = θ
(︁
x0 − y0)︁ ∫︂ d4k

(2π)4 e
−ik(x−y)Sf (k), (D.5a)

Sadv(x, y) = θ
(︁
y0 − x0)︁ ∫︂ d4k

(2π)4 e
−ik(x−y)Sf (k), (D.5b)

the in- and out-fields can be written as

Z − 1
2ψi(x) := ψ(x) −

∫︂
d4y Sret(x, y)

(︂
j(y) + (m0 − m̃)ψ(y)

)︂
, (D.6a)

Z − 1
2ψo(x) := ψ(x) −

∫︂
d4y Sadv(x, y)

(︂
j(y) + (m0 − m̃)ψ(y)

)︂
(D.6b)

in terms of a yet undetermined normalization constant Z . Technically, the con-
stant Z is closely related to the field renormalization constant that is introduced
in quantum field theories to hide UV-singularities and renormalizing ψ directly
affects Z , as can be read off Equation (D.6) and as will be shown explicitly
in Section D.3. However, the physical reason for either normalization is very
different. By construction, the fields defined by Equation (D.6) solve (D.1)
and Z can be adjusted so that the condition (D.2) is fulfilled, too, which proves
that (D.6) are in fact the in- and out-fields introduced in the beginning. The
normalization Z is allowed to carry an axial structure and the parametrization
and shortcuts

√
Z =

√︁
1 + δZV + δZAγ5 = 1 + 1

2δZV + 1
2δZAγ5 + O

(︁
δ2)︁, (D.7a)

√
Z ‡ = 1 + 1

2δZV − 1
2δZAγ5 + O

(︁
δ2)︁ (D.7b)
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with perturbatively small real valued numbers δZV and δZA will be used in
the following. The matrix structure needs to be respected, because it im-
plies ψi/o(x)Z ̸= Z ψi/o(x). Due to the use of the retarded and advanced
propagators, ψi and ψo obey the limiting behavior

ψ(x) t→−∞−−−−→ Z − 1
2ψi, (D.8a)

ψ(x) t→+∞−−−−→ Z − 1
2ψo (D.8b)

by means of weak operator convergence.1 The in- and out-fields can be Fourier
expanded using creation and annihilation operators,

ψi/o(x) = 1
(2π)3

∑︂
s

∫︂ d3p

2Ep

[︂
us(p)as

i/o(p)e−ipx + vs(p)bs†
i/o(p)e+ipx

]︂
, (D.9a)

ψi/o(x) = 1
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s
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2Ep

[︂
vs(p)bs

i/o(p)e−ipx + us(p)as†
i/o(p)e+ipx

]︂
, (D.9b)

where us(p) and vs(p) are Dirac spinors in terms of the physical mass and as
i/o

and bs
i/o obey the anticommutation relations,

{︂
as

i/o(p), as′†
i/o

(︁
p′
)︁}︂

=
{︂
bs

i/o(p), bs′†
i/o

(︁
p′
)︁}︂

= 2Ep(2π)3δ(3)(︁p − p′
)︁
δss′ , (D.10)

with all other anticommutators equal to zero. The inverse of Equation (D.9)
regarding the particle creators and annihilators reads

as†
i/o(p) =

∫︂
d3x ψ†i/o(x)us(p)e−ipx, (D.11a)

as
i/o(p) =

∫︂
d3x us†(p)ψi/o(x)e+ipx. (D.11b)

and will be required to express one-particle state in terms of the in- and out-
fields.

1See References [43] and [44] for details.
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D.2. Reduction Formula
With the in- and out-fields constructed in the previous section, it is now possible
to derive the reduction formula. To that end, consider the scattering amplitude

Sp,α→β = o⟨β|(ps), α⟩i, (D.12)

where |(ps), α⟩i and o⟨β| are in- and out-states, respectively, (ps) denotes a
single fermion with momentum p and spin s and α and β refer to an unspecified
state of many particles. Using Equation (D.11), the amplitude Sp,α→β can be
written as

o⟨β|(ps), α⟩i = o⟨β − (ps)|α⟩i + o⟨β|
(︂
as†

i (p) − as†
o (p)

)︂
|α⟩i

= o⟨β − (ps)|α⟩i +
∫︂

d3x o⟨β|
(︂
ψ†i (x) − ψ†o(x)

)︂
e−ipxus(p) |α⟩i .

(D.13)
The term o⟨β − (ps)|α⟩i is the scattering amplitude in which the fermion (ps)
is removed from the final state denoted by β. The state o⟨β − (ps)| is unequal
zero only if β contains a fermion with momentum p and spin s. In that
case, Sp,α→β describes a forward scattering process which would be represented
by disconnected Feynman diagrams. Hence, the first term on the right-hand
side of Equation (D.13) will be omitted in the following. Replacing the in- and
out-fields using the asymptotic condition (D.8) yields

Sp,α→β ∼ −
(︃

lim
t→+∞

− lim
t→−∞

)︃∫︂
d3x o⟨β|ψ†(x)

√
Z e−ipxus(p) |α⟩i

= −
∫︂

d4x o⟨β| ∂

∂x0

(︂
ψ(x)γ0

√
Z us(p)e−ipx

)︂
|α⟩i ,

(D.14)

where the tilde sign indicates that the forward scattering term is missing. The
expression on the last line is obtained with the aid of the fundamental theorem
of calculus. As us(p)e−ipx solves the Dirac equation, its time derivative is

γ0
√

Z
∂

∂x0u
s(p)e−ipx =

√
Z ‡ (γ∇ − im)us(p)e−ipx. (D.15)
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Using integration by parts and omitting surface terms allows combining the
differential operators. One finds∫︂

d4x

[︃(︃
∂

∂x0ψ(x)
)︃
γ0

√
Z + ψ(x)

√
Z ‡ (γ∇ − im)

]︃
us(p)e−ipx

= −i
∫︂

d4x ψ(x)
√

Z ‡
(︃
i
←
/∂ +m

)︃
us(p)e−ipx,

(D.16)

where the derivative
←
/∂ acts on ψ(x) only. Inserting Equation (D.16) into (D.14)

expresses the scattering amplitude in terms of an expectation value of the
fermion field ψ(x),

Sp,α→β ∼ i

∫︂
d4x o⟨β|ψ(x) |α⟩i

√
Z ‡

(︃
i
←
/∂ +m

)︃
us(p)e−ipx. (D.17)

Using the Fourier transform ψ(x) =
∫︁ d4q

(2π)4 e
−iqxψ(q) of the fermion field yields

the momentum space expression

Sp,α→β ∼ −i o⟨β|ψ(−p) |α⟩i

√
Z ‡

(︂
/p−m

)︂
us(p). (D.18)

The calculation outlined above can also be applied to removing a fermion from
the out-state. Repeating the same steps when starting with o⟨(ps), β|α⟩i leads
to the similar result

Sα→p,β ∼ −i us(p)
(︂
/p−m

)︂√
Z o⟨β|ψ(−p) |α⟩i . (D.19)

Equations (D.18) and (D.19) can be repeatedly applied until all particles in the
initial and final states are represented by field operators sandwiched between
vacuum states. Such a projection ⟨0|ψ1 . . . ψn |0⟩ is a Green function of the
theory, so that the reduction formula gives a relation between S-matrix elements
and Green functions, eventually. It remains to derive an expression for the LSZ
factors Z , which is done in Section D.3.
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D.3. Normalization
The normalization constant Z in Equation (D.6) accounts for self interactions
of the interacting field as can be seen in Equation (D.8). Accordingly, it is
fully determined by the two-point functions of the in- and out-fields and the
interacting fields. Equation (D.8) implies the relation

⟨0|T
{︂
ψ(x)ψ(y)

}︂
|0⟩on-shell ,= Z − 1

2 ⟨0|T
{︂
ψi/o(x)ψi/o(y)

}︂
|0⟩on-shell Z

‡−
1
2

(D.20)
for large x0 and y0, but since the two-point function only depends on the
difference of x and y, the equation is universally valid and can be used to
determine the normalization constant Z . Inserting the propagators of the free
and interacting theories yields

1
/p− m̃

=
√

Z
1

/p−m0 + Σ
(︁
/p
)︁√Z ‡, (D.21)

where Σ
(︁
/p
)︁

is the renormalized self-energy of the interacting theory and m̃
and m0 are the on-shell and bare mass, respectively. Since (D.21) is a matrix
equation, it is convenient to project either side onto a Dirac spinor, as the
resulting equation is still sufficient to solve for Z . Taking the inverse on either
side and projecting onto the spinor u

(︁
p, m̃

)︁
yields

1
/p− m̃

Z ‡−
1
2
(︂
/p−m0 + Σ

(︁
/p
)︁)︂

Z − 1
2u
(︁
p, m̃

)︁
= u

(︁
p, m̃

)︁
. (D.22)

This expression can be solved for δZV and δZA when inserting Equation (D.7).
The calculation similar to the one outlined in Section 5.3.3 and yields

δZV = ΣV

(︁
m̃2)︁+ δZV + 2m̃2

(︂
Σ′V
(︁
m̃2)︁+ Σ′S

(︁
m̃2)︁)︂ , (D.23a)

δZA = ΣA

(︁
m̃2)︁+ δZA, (D.23b)

where δZV and δZA are the vector and axial vector renormalization constants,
respectively. If one decides to not renormalize the fields (δZV = δZA = 0), the
LSZ factors (D.23) will pick up the leftover UV-poles, so that the scattering
matrix elements are finite even though the Green functions are not.
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D.4. Amputation of Green Functions
Equations (D.18) and (D.19) give a relation between S-matrix elements and
Green functions of the interacting theory. The S-matrix element is obtained by
multiplying the corresponding Green function with the LSZ factors

−i
√

Z ‡
(︂
/p− m̃

)︂
us(︁p, m̃)︁ (D.24a)

for each incoming fermion and

−ius(︁p, m̃)︁ (︂/p− m̃
)︂√

Z (D.24b)

for each fermion in the final state. The external fermion lines of the Green
functions represent the fermion propagators, so that the product of a Green
function and LSZ factors contains terms of the form

1
/p−m0 + Σ

(︁
/p
)︁√Z ‡(/p− m̃)us(︁p, m̃)︁ = Z − 1

2us(︁p, m̃)︁, (D.25a)

us(︁p, m̃)︁ (︂/p−m
)︂√

Z
1

/p−m0 + Σ
(︁
/p
)︁ = us(︁p, m̃)︁Z ‡−

1
2 . (D.25b)

The right-hand sides are immediate consequences of Equation (D.21). Ac-
cordingly, an S-matrix element is obtained by multiplying the corresponding
amputated Green function with the right-hand sides of Equations (D.25a)
and (D.25b) for incoming and outgoing fermions, respectively.
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