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Abstract: Bone fracture healing is a multistep process, including early immunological reactions,
osteogenesis, and as a key factor, angiogenesis. Molecules inducing osteogenesis as well as angiogen-
esis are rare, but hold promise to be employed in bone tissue engineering. It has been demonstrated
that the bone sialoprotein (BSP) can induce bone formation when immobilized in collagen type
I, but its effect on angiogenesis still has to be characterized in detail. Therefore, the aim of this
study was to analyse the effects of BSP immobilized in a collagen type I gel on angiogenesis. First,
in vitro analyses with endothelial cells (HUVECs) were performed detecting enhancing effects of
BSP on proliferation and gene expression of endothelial markers. A spheroid model was employed
confirming these results. Finally, the inducing impact of BSP-collagen on vascular density was proved
in a yolk sac membrane assay. Our results demonstrate that BSP is capable of inducing angiogenesis
and confirm that collagen type I is the optimal carrier for this protein. Taking into account former
results, and literature showing that BSP also induces osteogenesis, one can hypothesize that BSP
couples angiogenesis and osteogenesis, making it a promising molecule to be used in bone tissue
regeneration.

Keywords: bone sialoprotein; angiogenesis; chick yolk sac membrane assay; tissue regeneration;
osteogenesis

1. Introduction

In orthopaedics and trauma surgery, various (bio-)materials are frequently applied as
osteosyntheses or bone substitutes. Lack of implant osseointegration, implant loosening,
and subsequent development of non-unions indicate a need to find new materials that can
be applied as implants. The main challenge in this area is the search for a suitable alternative
for the gold standard method of autogenous bone grafting in biomaterial research.

Beside developing new materials to improve osseointegration, another approach is to
modify (bio-)materials with growth factors or other bioactive molecules. Osteosupportive
molecules are, for example: bone morphogenetic proteins (BMPs), collagens or matrix
related proteins such as hyaluronic acid [1,2]. In particular, BMPs have been studied inten-
sively, but they cause side effects such as heterotopic ossification or joint stiffness [3–5]. It
can be concluded that neither the optimal material nor the optimal supportive modification
has been found yet. This topic is still a challenge for tissue engineering research.

Bone sialoprotein (BSP), a main component of the non-collagenous part of the extra-
cellular matrix (ECM), plays an interesting role in this context [6]. Like osteopontin, os-
teonectin, and dentin-sialoprotein, it belongs to the small integrin-binding ligand N-linked
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glycoprotein (SIBLING) family and is expressed and released by osteoblasts, osteocytes,
osteoclasts, odontoblasts, cementoblasts, or hypertropic cartilage cells [7,8]. Structurally, it
contains an RGD-binding motif, tyrosine and glutamine acid rich regions, and a collagen
binding site [7]. BSP can form a complex with hydroxyapatite (HA), which indicates its
role in HA nucleation [9]. Its crucial function in osteogenesis was demonstrated by BSP
knock-out mice, which showed impaired bone formation [10,11]. Regarding its diversity,
BSP can be considered an ideal candidate for biomaterial functionalisation. Various mate-
rials, such as silk, titanium and hydroxyapatite [12,13], have been coated, modified, and
treated with BSP to improve their osseointegration; however, the results regarding cell
proliferation, differentiation, and gene expression were inconclusive [14–16]. Moreover,
calcium-phosphate cements coated with BSP demonstrated no enhanced effects regarding
bone regeneration in two different rat models [17,18]. These results indicate that the carrier
material for BSP might influence its efficiency. One promising candidate to be used as a
carrier is collagen as it is the main component of the ECM and has been applied in tissue
engineering over recent years [19]. Furthermore, it has been demonstrated that collagen
and BSP interact via the collagen binding site [20–22]. In a previous study, we were able
to show that BSP immobilized in collagen type I induced bone regeneration in vitro and
in vivo [23].

Nevertheless, one should bear in mind that bone fracture healing is a multistep
process, including early immunological reactions, osteogenesis, and as a key factor, an-
giogenesis [24]. Without vascularisation no tissue regeneration is possible [25] and many
stimulation strategies to enhance vascularization exist [24]. It has been proposed that BSP
also plays an important role in angiogenesis. As early as 2000, Bellahcéne showed that
BSP mediates endothelial cell adhesion and migration [26] regulated via alpha(V)beta(3)
dependent cell adhesion to BSP [27]. Using the BSP-RGD motif in multifunctional protein
hydrogels, Mizuguchi et al. showed proangiogenic activity of HUVECs cultured in a
three-dimensional cube [28]. In a coculture model of HUVECs and fibroblasts, addition of
BSP increased tube formation and vessel formation [29,30]. However, studies regarding the
effect of native BSP on angiogenesis in vitro on endothelial cells alone are rare. Therefore,
the aim of this study was to analyze the effect of BSP immobilized in a collagen type I gel
as carrier for angiogenesis. First, in vitro analyses with endothelial cells (HUVECs) were
performed, characterizing proliferation and gene expression of endothelial markers. A
spheroid model was employed to detect the effects of sprout formation in a monoculture of
HUVECs and a coculture model of HUVECs and human primary osteoblasts. This spheroid
model was first described by Korff and Augustin. They developed a three-dimensional
spheroid model to prevent apoptosis of endothelial cells as well as a model for endothelial
differentiation [31]. During the following years this assay was modified by several groups
to investigate angiogenesis in vitro, including cell-cell-interactions, tumour angiogenesis,
pathophysiological processes of the capillary system, neo-vessel formation, etc. [32,33].
In the next step, a yolk sac membrane (YSM) assay was performed to analyze the effects
of BSP-collagen on vascular formation. This assay was first described by Wang et al. as
a novel model to analyse angiogenesis qualitatively as well as quantitatively. They de-
veloped this model as an alternative to the well-established chorioallantoic membrane
model (CAM) [34]. Compared to the CAM assay, the YSM assay is simpler and more cost
effective and is therefore a good tool to test the angiogenic potential of various bioactive
molecules or materials [35]. The goal of this study was to detect whether BSP is able to
induce angiogenesis in addition to the already detected enhancement of osteogenesis.

2. Materials and Methods
2.1. Cell Culture

Human umbilical vein endothelial cells (HUVECs) were purchased from Promocell
(Heidelberg, Germany) and cultured in complete EBM-2 medium as recommended by the
supplier.
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Primary human osteoblasts (hOBs) were isolated according to a previously described
protocol [36]. Human bone specimens were obtained during hip or knee joint replacement
surgeries. The use of residual materials was approved by the ethics committee of the
Landesärztekammer Rheinland-Pfalz in agreement with the University Medical Center
and in accordance with the principles expressed in the Declaration of Helsinki and the ICH
Guidelines for GCP. All patients provided written consent.

2.2. Preparation of Collagen Gels (Modified after the Protocol from Wenger [37])

Three-dimensional collagen gels with a concentration of 2.5 mg/mL collagen type I
(bovine soluble collagen, Viscofan, Weinheim, Germany) were used and prepared with 50%
collagen solution (5 mg/mL), 10% Medium 199 (10×), 6% NaHCO3 (7.5%), 2.5% NaOH
(1 N), and 31.5% Aqua dest (all from Sigma Aldrich, Steinheim, Germany). BSP (Immundi-
agnostik, Bensheim, Germany) was added directly into the gels (1 µg/mL and 5 µg/mL
BSP) and the amount of Aqua dest. was adjusted accordingly. The cell concentrations
used were 5 × 105 HUVEC/mL. One mL of the collagen gel with or without BSP and cells
was pipetted into 24 wells for the following experiments. Gelification took place via a
temperature change by incubation at 37 ◦C in an incubator for 20 min.

2.3. BSP-Release Assay

All experiments were conducted using human recombinant BSP provided by Im-
mundiagnostik AG (Bensheim, Germany). The recombinant BSP was produced by a stable
Chinese hamster ovary (CHO) cell line. As a first step, fluorescein was linked to BSP with
the Lightning-Link® conjugation system (Innova Biosciences, Cambridge, UK) according
to the manufacturer’s instructions. This fluorescein-linked BSP was incorporated into
collagen gels in different concentrations (1 µg/mL, 5 µg/mL, 10 µg/mL, 50 µg/mL and
100 µg/mL). After gelification, the gels were covered with 500 µL/well PBS solution. This
solution was exchanged every day, and transferred into a 96-well plate (3 × 100 µL) for
direct measuring of the supernatant’s fluorescence intensity (Figure 1A).
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centrations were used for the release assays (1–100 μg/mL). The diagram shows the BSP release 
presented as cumulative percentage (n = 3 per concentration). 

  

Figure 1. BSP release. (A)—Fluorescein-coupled BSP was incorporated into collagen gels. The
gels were covered with PBS solution that was exchanged every day, followed by measuring the
solutions’ fluorescence intensity. (B)—Cumulative BSP release from collagen type I gels. Different
concentrations were used for the release assays (1–100 µg/mL). The diagram shows the BSP release
presented as cumulative percentage (n = 3 per concentration).

2.4. Viability Assay

Cell viability of HUVECs in prepared collagen gels (0 µg/mL, 1 µg/mL and 5 µg/mL
BSP) was analysed on days 1, 2, 4 and 7 using the alamarBlue® assay (Life Technologies,
Karlsruhe, Germany) according to the manufacturer’s instruction. Collagen gels without
cells and supplements served as an internal control.



Polymers 2023, 15, 1007 4 of 12

2.5. RNA-Isolation/Reverse Transcription/Quantitative Real-Time PCR

According to the viability assay, collagen gels with or without BSP supplementation
(1 µg/mL and 5 µg/mL) were prepared. The cell number was adapted to 1 × 106 cells/
6 well. After 24 h the gels were digested using a 1 mg/mL collagenase I/dispase solution.
The cell suspensions were centrifuged at 1400 rpm for 5 min and the cell pellet was
stored at −80 ◦C until use. Isolation of RNA was conducted with the PeqGold Total
RNA Micro Kit (PeqLab) according to manufacturer’s instruction. Total RNA (1 µg) was
reverse transcribed into cDNA using dNTPs (4you4 dNTPs Mix (10 mM), BIORON GmbH,
Ludwigshafen), Random Primers (Promega, Madison, WI, USA), and MuLV RT (M-MuLV
Reverse Transcriptase, M0253S New England Biolabs, Ipswich, MA, USA) according to
the manufacturer’s instructions. For gene expression analyses, cDNA template underwent
PCR amplification (40 cycles) using the SYBR Green (PowerUp™ SYBR® green master
mix, Applied Biosystems, Foster City, CA, USA) and sequence specific primers (Primer
sequences listed in Table 1). β2-microglobulin was used for normalization and results were
calculated using the well-established 2−∆∆Ct method [38].

Table 1. Primer sequences.

Gen Forward Primer Reverse Primer

b2-microglobulin CTC ACG TCA TCC AGC AGA GA ACG GCA GGC ATA CTC ATC TT

IGF-1 CCT GAC CTT GTG ATT TGC CC TCC CCT TGA AAG ACC CCA TC

KDR TTA CTT GCA GGG GAC AGA GG TTC CCG GTA GAA GCA CTT GT

MCAM CGG CAA GTG AAC AAG ACC AA GTC TGG TGT GAG GGT GGT TA

PECAM CAT TGG CGT GTT GGG AAG AA GCT CAT GTT TGC CTA GCT CC

VEGF AGA TGA GCT TCC TAC AGC ACA AC AGG ACT TAT ACC GGG ATT TCT TG

vWF GGA TTC AGT GGA TGC AGC AG TAG GGA GGT CTT CGA TTC GC

2.6. Spheroid Model
2.6.1. Spheroid Preparation

Spheroid preparation was performed according to Augustin and Korff 1998 [31]. Six
g methocel was dissolved in 500 mL M199 medium (supplemented with 1% L-glut, 1%
PS and 10% FCS). The combined solution was stirred overnight at 4 ◦C and centrifuged
at 3500× g for 3 h. Meanwhile, the cells were labelled with Cell Tracker™ according to
the manufacturer’s instructions (hOBs with Cell Tracker™ Green and HUVECs with Cell
Tracker™ Red). One part of the methocel solution (2.4 mL/96-well plate) was diluted
with four parts medium (9.6 mL/96-well plate) and the cell suspension (for 1 × 96-well:
6 × 104 cells per mono-culture or 3 × 104 of each cell type per co-culture) was added. After
gently mixing the cells, they were seeded in a 96-well plate with U-bottom (100 µL/well
corresponding to 500 cells/well) and incubated overnight. On the next day, the spheroids
had formed.

2.6.2. Angiogenesis Assay

For angiogenesis assays, the spheroids were embedded in collagen gels composed of
8 parts of collagen, 1 part of M199 10×, and 1 part of NaOH [32].

Spheroids from each 96-well plate were collected with a 1000 µL pipette tip, transferred
into a 50 mL tube, and then centrifuged at 300× g for 3 min. The supernatant was discarded
and the spheroids were gently re-suspended in 1 mL medium M199 + 20% FCS + 0.5%
methylcellulose (6 mL methocel solution + 600 µL FCS + 7.8 mL M199 (including 20%
FCS)). The same volume of collagen gel (1:1) was added and 1 mL of this mixture was
plated in one well of a 24-well plate. Incubation took place at 37 ◦C. Images were taken via
fluorescence microscopy after 1 h and 24 h. Quantification of sprout length was performed
with Image J [39] using Fiji distribution and the newest version available. The plugin
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“angiogenesis” was applied and within this plugin we used the plugin “sprout analysis”
according to Eglinger et al. [40].

2.7. In Ovo—Yolk Sac Membrane Assay

After cleaning, fertilized Leghorn chicken eggs (LSL Rhein-Main, Dieburg, Germany)
were incubated in a special incubator (Janeschitz, Hammelburg, Germany) at a temperature
of 37.5 ◦C and constant humidity. Three days after incubation 5–6 mL of egg clear was
collected from the blunt pole, and an oval 3 × 3 cm opening was cut on the upper side of
the egg. Subsequently the opening was covered with ParafilmVR (Sigma-Aldrich, St. Louis,
MO, USA) to prevent evaporation. The following day, collagen membranes (CM) sized
0.5 × 0.5 cm (Bio-Gide, Geistlich, Baden-Baden, Germany) were inserted under sterile
conditions onto the YSM, embryo-distant, near the vessels. The YSM alone was used as
negative control group (native). The eggs were further sealed with parafilm and incubated
as described above. After 72 h, the vascularization near the CM was photo-documented
with a digital microscope at 50- and 100-fold magnification (VHX-1000; Keyence, Neu-
Isenburg, Germany). The same region of interest (ROI) of 500 × 500 µm was uniformly
applied for every experiment (n = 9 per respective CM, in total n = 135), the vascular density
was measured employing ImageJ.

2.8. Statistics

Statistical analyses were performed using the SPSS software (IBM, Version 23) or
GraphPad Prism software. The results are presented as medians and quartiles or as
means ± standard deviation. Measurements were carried out in triplicates. Cell-based
experiments were independently repeated three times. Normally distributed data were
analysed by one-way ANOVA. Depending on Levene’s test for equality of variances,
pairwise comparisons were conducted either by a Tukey-HSD or Games-Howell post hoc
test. In contrast, non-normally distributed data were evaluated with the Kruskal–Wallis test.
For pairwise comparisons, the Mann–Whitney U-test was used. p < 0.05 was considered
statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.005, and **** p < 0.001). Due to
multiple testing, the p-values were adjusted through the Bonferroni–Holm method.

3. Results and Discussion
3.1. BSP Immobilized in Collagen Type I Enhances Proliferation of HUVECs

As a first step, the release of BSP had to be determined. We were able to demon-
strate that BSP is released from the collagen gels in a constant manner. Within 7 days,
approximately 80% was liberated (Figure 1).

To our knowledge, this is the first study analysing the release of BSP from collagen
gels. Collagen is a commonly used carrier for bioactive molecules and the shown release
kinetics are comparable with kinetics from other bioactive molecules [41]. BSP is released
to the extracellular matrix (ECM) by osteoblasts and as collagen is the main component of
the ECM it offers itself as a carrier material [42]. The hypothesis that collagen might be the
optimal carrier for BSP was first proposed by Kruger et al. who demonstrated that collagen
type I and BSP interact with each other via a collagen binding site of BSP [21]. Regarding
bone regeneration it has been demonstrated that BSP immobilized in and released from
collagen type I shows a positive effect on osteoblast differentiation and bone repair [23,43].
An inducing effect on mineralization was observed for a complex built from collagen and
BSP [22].

HUVECs were seeded in collagen type I gels with and without BSP. Figure 2 demon-
strates that the cells are well incorporated into the gel and demonstrate a typical morpho-
logical structure. At first view, no differences can be observed whether BSP is added or not.
This is in accordance to our former results, when HUVECs were incorporated into the gel
in a coculture model with osteoblasts [23].

A few studies exist which analyze the effect of BSP on endothelial cells, but it is
known that BSP binds to cells via integrin alpha5beta3 and induces migration of endothelial
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cells [27]. Most likely the RGD motif is involved as this motif promotes the proangiogenic
activity of HUVECs [28].Polymers 2023, 15, x FOR PEER REVIEW 6 of 13 
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Figure 2. HUVECs seeded in three-dimensional collagen type I gels with different BSP concentrations.
(A)—0 BSP; (B)—1 µg/mL BSP; (C)—5 µg/mL BSP.

Figure 3A shows the effect of immobilized BSP, in a three-dimensional collagen gel, on
the viability and proliferation of endothelial cells. The most significant effect was observed
after four days of culture, when in particular, the group with the low BSP concentration
showed an enhanced expression of endothelial markers compared to the control with-
out BSP. After seven days the effects were not as pronounced; however, proliferation of
HUVECs in both BSP groups was significantly enhanced compared to the control group.
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HUVECs in collagen gels with immobilized BSP. Results are expressed as mean ± SD (n = 9). Games-
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different modified collagen gels compared with untreated collagen gels (gene expression = 1). Results
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(* p < 0.05, circles and triangles present outliners).
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There are few studies which analyze the effect of BSP on endothelial cells. Interestingly,
most already observed significant effects with BSP concentrations between 0.3 and 3 µg/mL.
Jain et al. observed that BSP binds MMP-2 and induces vessel formation [29]. Byzova
et al. and Bellecene et al. demonstrated a positive effect of these low concentrations on
HUVEC adhesion [26,27]. This is in accordance with our results and speaks for a good
BSP effect even with low concentrations. Moreover, this is confirmed by BSP studies with
osteogenic cells: proliferation of human primary osteoblasts on calcium phosphate scaffolds
was enhanced after BSP-coating with a low concentration [15]. Baht et al. demonstrated a
concentration dependent binding curve of osteoblasts with a saturation at a concentration
of 200 nM approximately corresponding to the used concentration of 5 µg in this study [44].

Regarding economic aspects, this fact makes BSP an even more interesting molecule
for medical applications.

3.2. Effect of BSP Encapsulation in Collagen Gels on Gene Expression in Endothelial Cells

BSP addition enhanced gene expression of the endothelial and other pro-angiogenic
markers, namely KDR (VEGF receptor 2), PECAM (platelet/endothelial cell adhesion
molecule-1), IGF-1 (insulin-like growth factor 1), VEGF (vascular endothelial growth factor),
and to a smaller extent MCAM (melanoma cell adhesion molecule) compared to untreated
control (Figure 2B). The highest effect was seen in the higher BSP concentration (5µg/mL).
No effects were observed regarding the gene expression of vWF.

To our knowledge, the effect of bone sialoprotein on gene expression of endothelial
markers has not been analysed before. Our results show that the typical endothelial markers
are upregulated in collagen gels with immobilized BSP. The most pronounced effect was
observed in the gene expression of IGF-1 with a more than 5-fold enhancement. IGF-1
plays a role in angiogenesis [45] as well as in osteogenesis [46]. It has been demonstrated
that BSP and IGF-1 expression are coupled. BSP −/− mice demonstrate a decreased gene
expression level of IGF-1 [47]. Upon administration of IGF-1 in dental pulp stem cells BSP
gene expression is upregulated [48]. In addition, it has been shown that BSP expression is
downstream of IGF-1 [49,50]. Nevertheless, the exact mechanisms still have to be elucidated.
In summary, the results of gene expression support the hypothesis that BSP plays a role in
angiogenesis.

3.3. BSP Induces Sprout Number and Length in a Spheroid Model

In order to characterize the effect of BSP on vascular formation, a spheroid model was
employed and the sprout formation was analysed. In this three-dimensional model, no
sprout formation could be observed for HUVECs, when cultured as a monoculture (data
not shown). This is in accordance with former studies, where a monoculture of endothelial
cells was not able to form sprouts or vessels and additional factors were needed to induce
these effects [36,51]. One approach to induce vessel formation is a coculture with other
cells, for example, osteoblasts. It has been well described that these cells influence each
other and enhance osteogenesis as well as angiogenesis [23,52,53]. Therefore, the spheroid
model experiment was performed with a coculture of osteoblasts and endothelial cells.

Figure 4A shows the experimental design of the spheroid model. The number of
sprouts/spheroids (Figure 4B) as well as cumulative sprout lengths (Figure 4D) are signifi-
cantly enhanced in both BSP groups compared to the coculture without BSP. No differences
were observed in individual sprout length (Figure 4C) and sprout diameter (Figure 4E)
when compared to control. Figure 4F,G displays the embedded spheroids after gelification
(1 h) and an exemplary picture of each group (green—osteoblasts, red—endothelial cells)
after 24 h, respectively.
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different BSP concentrations on osteogenic markers. In these studies, concentrations be-
tween 1 and 10 μg/mL demonstrated the highest impact [23,55,56]. 
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Figure 4. Spheroid model. (A)—Methodological overview of the spheroid model. (B)—Number of
sprouts counted per spheroid. (C)—Sprout length. (D)—Cumulative sprout length. (E)—Sprout
diameter, significant differences are indicated (* p < 0.05, ** p < 0.01, *** p < 0.005). (F)—Spheroids
embedded in collagen gels after 1 h. (G)—Spheroids embedded in collagen gels after 24 h.

BSP, particularly the concentration of 5 µg/mL, significantly enhanced sprout number
and length. The most prominent effects were observed regarding the gene expression
for this same concentration. The positive effect on neo-vascularization is in accordance
with Bellahcéne et al. who were the first to describe pro-angiogenic effects of BSP by
demonstrating that BSP enhances the proliferation and migration of HUVECs [26]. Only
two studies exist—one for a breast cancer cell line, another with osteosarcoma cells in
coculture with adipocyte stem cells—showing that in a 3D-hydrogel spheroid model, the
gene expression of BSP was enhanced [50,54]. The effect of BSP on angiogenesis in spheroid
models has not been analysed so far. Some studies exist which analyze the effect of different
BSP concentrations on osteogenic markers. In these studies, concentrations between 1 and
10 µg/mL demonstrated the highest impact [23,55,56].

3.4. BSP Enhances Vascular Density in the YSM-Assay

In order to assess the angiogenic potential of BSP in combination with collagen type I,
a yolk sac membrane assay was performed. BSP was adsorbed to the collagen membrane
in a defined concentration, laid on the yolk sac membrane of fertilized chicken eggs and
the vascular density was measured after 72 h.

Figure 5A–C shows exemplary pictures of the collagen membrane without (5A), with
0.5 µg (5B) or 5 µg BSP (5C). The arrow indicates a vascular connection to the membrane in
the group with the highest BSP concentration. Quantification of vascular density shows
that both BSP groups enhance the density significantly, especially the group loaded with
5 µg BSP.
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Figure 5. Yolk sac membrane assay. Collagen membrane without BSP (A), with 0.5 µg BSP (B) or 5 µg
BSP (C) 72 h after putting the membrane onto the yolk sac membrane. (D)—Quantitative analyses of
vascular density. (*** p < 0.005; **** p < 0.001).

Bellahcéne et al. demonstrated that BSP alone was able to promote angiogenesis in the
CAM-assay [26,47]. Our results show that BSP immobilized in collagen type I is released as
a still bioactive molecule and induces angiogenesis.

The crosstalk between angiogenesis and osteogenesis is essential for bone tissue
regeneration [57] and BSP might be one component of this crosstalk.

4. Conclusions

Our results demonstrate that BSP is capable of inducing angiogenesis, interestingly,
at lower rather than higher concentrations. This should be further analysed in follow-up
studies, especially the mechanisms concerning why higher concentrations do not result in
better angiogenic effects as this represents an important issue. Moreover, our results confirm
that collagen type I is the optimal carrier for BSP. Nevertheless, it might be interesting to
test other collagen types as alternatives.

Taking into account former results, and literature showing that BSP also induces
osteogenesis, one can hypothesize that BSP couples angiogenesis and osteogenesis, making
it a promising molecule to be used in bone tissue regeneration.
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