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ZUSAMMENFASSUNG

Das Standard Modell und insbesondere die Eigenschaften des Higgs Boson auf die Probe
zu stellen ist eine zentrale Aufgabe der modernen Teilchenphysik, wobei präzise theo-
retische Vorhersagen eine wesentliche Rolle spielen. Feynman-Integrale sind essentielle
Bausteine quantenfeldtheoretischer Präzisionsberechnungen, da sie in der Berechnung
höherer Ordnungen innerhalb der Störungstheorie auftreten. In dieser Arbeit behandle
ich einerseits drei-Schleifen zwei-Punkt Feynman-Integrale, welche zwei unterschiedliche
Massen beinhalten [1], andererseits betrachte ich eine phänomenologische Anwendung
dieser Integrale1. Die Integrale bilden die vollständige Menge der Masterintegrale, die
zu der Selbstenergie des Higgs Bosons in der Ordnung O

(
α2αs

)
gehören, welche W-

Bosonen und Top Quarks beinhaltet. Die Masterintegrale, also Basisintegrale, werden
in drei Systeme aufgeteilt: Integrale relevant für Feynman-Diagramme proportional zu
dem Produkt der Yukawakopplungen ybyt, Integrale relevant für Feynman-Diagramme
die HW+W− Vertices beinhalten und Integrale relevant für Feynman-Diagramme pro-
portional zu dem Produkt der Yukawakopplungen ybyb. Innerhalb jedes Systems entste-
hen unterschiedliche Wurzeln. Wir behandeln Feynman-Integrale mit der Methode der
Differentialgleichungen. Wir erstellen und lösen Differentialgleichungssysteme für jedes
Set von Masterintegrale, indem wir die Gleichungen in ϵ-Form bringen. Dabei kon-
struieren wir Integrale mit einheitlichem transzendentem Gewicht. Alle auftretenden
Wurzeln werden rationalisiert und wir drücken die resultierenden Basisintegrale durch
multiple Polylogarithmen aus. Das optische Theorem verknüpft den Imaginärteil der
Higgs Boson Selbstenergie mit dessen Zerfallsrate. Daher haben wir alle Integrale bes-
timmt, die für die NNLO (next-to-next-to-leading order) QCD-elektroschwache Korrek-
tur mit W-Bosonen oder geladenen Goldstone Bosonen zur Zerfallsrate Γ

(
H −→ bb̄

)
benötigt werden.

1Noch nicht veröffentlicht.
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ABSTRACT

Probing the standard model and especially properties of the Higgs boson is a central
task of modern particle physics, whereby precise theoretical predictions play a crucial
role. Feynman integrals are essential building blocks of quantum field theoretical pre-
cision calculations, since they emerge in higher-order calculations within perturbation
theory. In this thesis, I derive three-loop two-point Feynman integrals involving two dif-
ferent kinds of internal masses [1] and consider a phenomenological application of them2.
These Feynman integrals amount to the full set of master integrals associated to the
Higgs boson self-energy at O

(
α2αs

)
with internal W-bosons and top quarks. The mas-

ter integrals, i.e. basis integrals, are split into three systems: Integrals relevant to the
Feynman diagrams proportional to the product of Yukawa couplings ybyt, integrals rele-
vant to Feynman diagrams containing an HW+W− vertex and integrals relevant to the
Feynman diagrams proportional to the product of Yukawa couplings ybyb. Each system
gives rise to different combinations of square roots. We handle the Feynman integrals
with the method of differential equations. We set up and solve systems of differential
equations for each set of master integrals by transforming to an ϵ-form. We thereby con-
struct Feynman integrals of uniform weight. All emerging square roots are rationalised
and we express the resulting basis integrals in terms of multiple polylogarithms. The
optical theorem links the imaginary part of the Higgs boson self-energy directly to its
decay rate. We therefore determined all integrals required for the NNLO (next-to-next-
to-leading order) QCD-electroweak correction involving W-bosons or charged Goldstone
bosons to the decay rate Γ

(
H −→ bb̄

)
.

2Not yet published.
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CHAPTER

ONE

INTRODUCTION

The journey of particle physics started in ancient times. Already during the 5th century
BC, Demokrit postulated atoms as fundamental building blocks of everything. In the
beginning of the 19th century, this hypothesis was reinforced by Dalton’s atomic theory,
which states that elements are made from inseparable atoms. The discovery of electrons
and protons in the 19th and 20th century uncovered an even deeper structure of matter.
The prediction [2, 3] as well as the experimental proof [4, 5] of the existence of quarks
in the second half of the 20th century led the way to our modern understanding of the
constituents of nature. Today, strong, weak and electromagnetic interactions are united
within a quantum field theory with

SU(3)c × SU(2)× U(1)Y ,

as underlying gauge groups: The Standard Model of particle physics. Solely one fun-
damental force, namely gravity is described through classical general relativity instead.
The Standard Model is an extraordinarily successful theory, even though it has limita-
tions, like not incorporating gravity, dark matter and dark energy. However, phenomena
like the baryon asymmetry problem or the neutrino oscillations as well as recent mea-
surements regarding the muon’s anomalous magnetic moment [6] or the W-boson mass
[7]1 hint at physics beyond the Standard Model.

The Standard Model consists of fermions, divided into leptons and quarks, and bosons,
i.e. gauge bosons and the scalar Higgs boson. Gauge bosons are force carriers of the
fundamental interactions. The Higgs boson plays a special role. The Higgs field has a
non-zero vacuum expectation value, giving mass to fermions and the W and Z gauge
bosons through spontaneous symmetry breaking. Postulated in 1964 [9], the Higgs
boson was finally discovered in 2012 by ATLAS [10] and CMS [11], completing the
mathematical theory of the Standard Model. Consequently, Higgs precision physics be-
came the centrepiece of the experimental LHC program. Furthermore, future colliders
like the high-luminosity (HL-)LHC [12], the ILC [13, 14] or the FCC-hh [15] will en-
able groundbreaking experimental work. However, only the interplay between precision
measurements and precise theoretical predictions drives the the development of particle
physics forward. Accurate predictions of Standard Model attributes and studying in

1In disagreement with other measurements [8].
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Introduction

particular the properties of the Higgs boson are the foundation for future experimental
efforts [16–20].

A way to handle quantum field theories describing interactions is perturbation theory,
where solutions are expressed as power series in coupling constants. Precise theoreti-
cal predictions require higher-order calculations in perturbation theory. The essential
theoretical building block of measurable cross sections or decay rates are scattering am-
plitudes. A scattering amplitude corresponds to a sum over Feynman diagrams. These
diagrams, developed by Richard Feynman [21, 22] and interpreted by Freeman Dyson
[23, 24], are pictorial representations of particle interactions. Whereas the lowest order in
perturbation theory is usually represented by tree-level diagrams, higher orders require
the derivation of Feynman diagrams involving internal loops. The translation of loop
diagrams into mathematical expressions leads to Feynman integrals; they are integrals
over the momenta flowing inside the loops. Feynman integrals are therefore essential
building blocks of quantum field theoretical precision calculations. Understanding and
deriving them enables not only the evaluation of measurable quantities, but provides
insights into their underlying mathematical structures. It comes as no surprise that
Feynman integrals are an interesting topic of active research.

The complexity of Feynman integrals depends on two main aspects: The number of
loops, which corresponds directly to the order in perturbation theory; and the num-
ber of kinematic variables defined by external kinematics and the masses of internal
particles. Beyond one-loop advanced solution methods are crucial. A set of Feynman
integrals may be reduced to a basis with the help of integration by parts relations [25,
26]. The basis integrals are called master integrals. The standard method for the an-
alytic calculation of master integrals is the method of differential equations [27–30],
which requires the construction and solution of their system of differential equations
with respect to kinematic variables. The ϵ-form of differential equations [31] thereby
simplifies the evaluation of Feynman integrals as expansions in the dimensional regu-
larisation parameter ϵ drastically. In this context, an important and well understood
class of functions are multiple polylogarithms [32–34]. For specific values of the argu-
ments, they evaluate to multiple zeta values. There exist Feynman integrals that are
not expressible in terms of multiple polylogarithms, like elliptic Feynman integrals (see
for example [35–44]). However, in this thesis we are able to express all results in terms
of multiple polylogarithms. Hence, we do not address other classes of Feynman integrals.

The main work of this thesis is the derivation of Feynman integrals corresponding to the
three-loop Higgs boson self-energy involving internal W-boson and top-quark propaga-
tors. Not only three loop integrations, but also two different kinds of internal masses
are involved. Hence, these integrals are an intricate contribution to the Higgs boson
self-energy. The Higgs boson self-energy is a key ingredient for many Standard Model
observables. It enters the Higgs mass definition via renormalisation. In addition to the
derivation of the master integrals, we address one of their phenomenological applica-
tions: the Higgs boson decay rate of its predominant decay mode Γ

(
H −→ bb̄

)
, which is

linked to the imaginary part of the self-energy via the optical theorem. The determina-
tion of the three-loop Feynman integrals enables the analytic evaluation of the mixed
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QCD-electroweak correction to Γ
(
H −→ bb̄

)
. Previously, this computation was not ac-

complished analytically but only with the help of Padé approximations [45].

We start this thesis with a review of some important properties of the Standard Model
in chapter 2 and a detailed discussion about Feynman integrals evaluating to multiple
polylogarithms in chapter 3. Sections 2.1, 2.2 will clarify the emergence of Feynman
diagrams and section 3.1 the ensuing emergence of Feynman integrals within precision
calculations. Section 2.3 and section 3.1-3.3 deal with the structure and basic properties
of Feynman integrals. The method of differential equations is elaborated in sections 3.5
and 3.6. It builds upon the techniques considered in sections 3.3 and 3.4.

The foundations covered in these two chapters allow us to formulate a strategy for
the evaluation of the master integrals as well as for the calculation of the decay rate,
which is sketched in chapter 4. Chapter 4 serves equally as guide and framework for this
thesis: As guide, it helps locating sections on specific topics and connects sections on
theoretical background to sections on calculations. As framework it clarifies the overall
workflow of this thesis as well as the positioning of each section within the workflow.
Furthermore, we specify the content of each chapter and required sections on theoretical
background at the beginning of each chapter.

In chapter 5, the full set of master integrals for the three-loop Higgs boson self-energy
involving internal W-boson and top-quarks is derived. We generate pre-canonical master
integrals and construct their system of differential equations with respect to kinematic
variables in section 5.3. In section 5.4, we transform the master integrals to a basis of
Feynman integrals with uniform transcendental weight zero. This builds upon section
5.2, which introduces so-called auxiliary topologies enabling the utilisation of maximal
cuts in Baikov representation. We demonstrate in section 5.4.4 that maximal cuts are
an essential tool for the derivation of Feynman integrals with uniform weight zero. The
variable transformation in section 5.5.1 allows to represent the system of differential
equations via differential one-forms (section 5.5.2). After evaluating boundary values in
section 5.5.3, the found basis integrals (section 5.5) are expressible in terms of multiple
polylogarithms, as described in section 5.5.4.

In chapter 6, we consider the mixed QCD-electroweak correction to the Higgs boson
decay rate into a bottom-quark pair. Chapter 6 presents the evaluation of scattering
amplitudes and Feynman diagrams in quantum field theoretical calculations up to the
point where Feynman integrals enter the game. We demonstrate the application of the
optical theorem in section 6.2 and the translation of Feynman diagrams to mathematical
expressions in sections 6.3, 6.4. Furthermore, we address the handling of divergences
in section 6.5. Eventually, the diagrams depend on the three-loop Feynman integrals
evaluated in chapter 5. We close this thesis with final conclusions in chapter 7.
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CHAPTER

TWO

THE STANDARD MODEL OF PARTICLE PHYSICS

Particle physics deals with the most fundamental particles and their interactions. Three
out of the four fundamental forces of nature the strong, the weak and the electromag-
netic interaction are united within the Standard Model of particle physics. The Standard
Model is, therefore, one of the most successful theories of physics. It is based on quan-
tum field theory, a formalism combining classical field theory, quantum mechanics and
relativity. Its defining element is a Lagrangian (or Hamiltonian), which may be sepa-
rated into a part describing free fields L0 (H0) and a part consisting of non-linear terms
accounting for interactions Lint (Hint),

L = L0 + Lint,

H = H0 +Hint,

Hint = −Lint.

More details on the Standard Model Lagrangian will be given in section 2.2. Field
equations can be derived from the Lagrangian, utilising Hamilton’s principle of least
action which leads to the Euler-Lagrange equations. However, nonlinear field equations
arising out of interacting parts are not solvable beyond two space-time dimensions (ex-
cept in some special cases) [46]. A physical four space-time dimensional quantum field
theory describing interactions is not exactly solvable by currently known methods! An
important method addressing this issue is perturbation theory. The interacting parts of
a Hamiltonian are proportional to coupling constants,

Hint = λH′
int.

If λ is sufficiently small, the interacting part can be viewed as a small perturbation
relative to the free part H0 and expansions with respect to λ yield practical series ap-
proximations. The perturbative series has even a pictorial representation in terms of
Feynman graphs.

This chapter provides by no means a somewhat complete overview of the Standard
Model of particle physics, but just a slight insight. For more details we refer to the
main references of this chapter [46–50]. We only address topics relevant for our pur-
poses. Along that line, we briefly introduce the scattering matrix and the decay rate
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The Standard Model of particle physics

in the following section. We derive the optical theorem in section 2.1.1. In section
2.2, we discuss the Standard Model Lagrangian, which leads to Feynman rules listed in
section 2.2.1. The last section of this chapter explains the necessity of regularisation
and introduces the dimensional regularisation parameter ϵ. The next chapter provides
a theoretical background of the main subject of this thesis, Feynman integrals.

2.1 The scattering matrix

In this thesis we are dealing with Feynman diagrams and the integrals arising there-
from. In this section we define the object, which is calculated by a sum of Feynman
diagrams expressed through Feynman rules: the scattering amplitude, which emerges
out of the scattering or S-matrix. The S-matrix is a key object within quantum field
theories describing interactions. It encapsulates all information about the evolution of
states in time. The S-matrix is a rather abstract object. However, we may relate it to
quantities, which are actually measurable in scattering experiments.

Before we define the S-matrix, we recall from quantum field theory: States, which
may be represented by wave packets, are just mathematical objects. Physical quantities
are given by the expectation values of operators. Consequently, states can be considered
within different pictures. A state in Schrödinger picture is time-dependent,

|X, t⟩ = exp
(
−iĤ(t− t0)

)
|X, t0⟩ , (2.1)

where

Ĥ =

ˆ
d3x H.

The norm of a state is always time-independent,

⟨a, 0|a, 0⟩ !
= ⟨a, t ̸= 0|a, t ̸= 0⟩ (2.1)⇔ ⟨a, 0|a, 0⟩ !

= ei(H
†−H)t ⟨a|a⟩ ⇒ H = H†.

An important property of Ĥ follows, it has to be hermitian. We may transfer from
Schrödinger picture to Heisenberg picture, where the time-dependence is shifted to op-
erators, via

|X⟩ = exp
(
iĤ(t− t0)

)
|X, t⟩ . (2.2)

The scattering matrix transfers states into each other. Assuming interactions happen
within a finite time, we may consider an initial state constructed in the far past |i,−∞⟩
evolving into a final state in the far future ⟨f,∞|, and define the scattering matrix S by

⟨f |S |i⟩ = ⟨f,∞|i,−∞⟩ = lim
T→∞

⟨f, T |i,−T ⟩ (2.2)
= lim

T→∞
⟨f | exp

(
−iĤ(2T )

)
|i⟩

⇒ S = lim
T→∞

exp
(
−iĤ(2T )

)
. (2.3)

The S-matrix is unitary

S†S = 1,

6



1. The scattering matrix

because Ĥ is hermitian. The scattering matrix can be related to Green functions. The
n-point Green function is defined by

Gn (x1, . . . , xn) = ⟨Ω|TΦ(x1) . . .Φ(xn) |Ω⟩ , (2.4)

with |Ω⟩ being the ground state of the full theory and T the time-ordering operator.
Wicks theorem states that (2.4) is given by the sum of all Feynman diagrams with n ex-
ternal particles, excluding diagrams which are disconnected from all external points [47].

The S-matrix can be separated into a non-interaction part, i.e. 1 and a part describing
interactions, the so-called transfer matrix T ,

S = 1+ iT. (2.5)

The matrix element of T between a final |f⟩ and an initial state |i⟩,

⟨f |T |i⟩ = (2π)4δ4(pi − pf )A(i → f), (2.6)

consists of an overall momentum conservation pi
!
= pf and the scattering amplitude

A(i → f). (2.7)

The scattering amplitude is given by the truncated n-point Green function in momentum
space. Consequently, we calculate it as we sum up all contributing Feynman diagrams
in the respective orders in coupling constants. Feynman diagrams are then evaluated
through Feynman rules (see section 2.2.1).

The S-matrix and therefore the scattering amplitude is the building block needed to
theoretically calculate measurable quantities from scattering experiments. An impor-
tant measurable quantity is the cross section. It is intrinsic to the colliding particles
under consideration and related to the likelihood of a particular final state. It can be
calculated through phase space integration over squared scattering amplitudes. In this
thesis, we consider another measurable quantity, the decay rate. The decay rate Γ of
an unstable particle A is defined as [47]

Γ =
Number of decays per unit time

Number of A particles present
.

More formally it can be shown, that the decay rate of a one-particle state |A⟩ to a state
|X⟩ is given by

Γ(A → X) =
1

2mA

ˆ
dφ(X)(2π)4δ4(pA − pX)|A(A → X)|2, (2.8)

with mA being the mass of particle A and

dφ(X) =
∏
i∈X

d3pi
(2π)32Ei

(2.9)

the phase space integration measure. The lifetime of a particle is the inverse of its total
decay rate, i.e. the sum of its decay rates into all possible final states.
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2.1.1 The optical theorem

The optical theorem relates cross sections or decay rates, to the imaginary part of for-
ward scattering amplitudes. It thereby creates an alternative theoretical approach to
the calculation of measurable cross sections and decay rates. In this section, we derive
a version of the optical theorem addressing decay rates as required in this thesis (see
chapter 6) (cf.[48]).

The optical theorem is based on the unitarity of the S-matrix, we encountered in section
2.1,

S†S = 1. (2.10)

The unitarity of the S-matrix leads to a relation between transfer matrix elements.
Inserting (2.5) into (2.10) and embedding the outcome between final and initial state,
we find

S†S = 1
(2.5)⇔ (1− iT †)(1+ iT ) = 1⇔ i(T † − T ) = T †T

⇒ ⟨f | i(T † − T ) |i⟩ = ⟨f |T †T |i⟩ . (2.11)

The matrix element on the left hand side of (2.11) is given by

⟨f | i(T † − T ) |i⟩ (2.6)
= i(2π)4δ4(pi − pf )

[
A†(i → f)−A(i → f)

]
.

Into the right hand side of (2.11), we may insert a resolution of identity in terms of a
complete set of states |X⟩ and find

⟨f |T †T |i⟩ = ⟨f |T †1T |i⟩ =
∑
X

ˆ
dφ(X) ⟨f |T † |X⟩ ⟨X|T |i⟩

(2.6)
= (2π)8

∑
X

ˆ
dφ(X)δ4(pi − pX)δ4(pX − pf )A†(X → f)A(i → X).

Consequently, the generalised optical theorem emerges out of (2.11) expressed in
terms of matrix elements of M via (2.6),

A†(i → f) − A(i → f) = −i(2π)4
∑
X

ˆ
dφ(X)δ4(pi − pX)A†(X → f)A(i → X).

(2.12)

The generalised optical theorem relates the difference of a matrix element between final
and initial state and its adjoint on the left hand side to a momentum conservation and a
product of matrix elements on the right hand side. Additionally, the right hand side is
summed over all possible intermediate states X and integrated over phase space (2.9).
The right hand side is quadratic in matrix elements, contrary to the left hand side.
Furthermore, (2.12) has to hold for any order in perturbation theory. Implying, for
example, that tree level matrix elements on the right hand side correspond to one-loop
level elements on the left hand side.
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2. The Standard Model Lagrangian

A case significant for this thesis occurs if initial and final state are given by the same
one-particle state |A⟩. Replacing initial and final state in (2.12) with |A⟩, we obtain

A†(A → A)−A(A → A)︸ ︷︷ ︸
=−2iIm(A(A→A))

= −i(2π)4
∑
X

ˆ
dφ(X)δ4(pA−pX)A†(X → A)A(A → X)︸ ︷︷ ︸

=|A(A→X)|2

⇔ Im(A(A → A)) =
1

2
(2π)4

∑
X

ˆ
dφ(X)δ4(pA − pX)|A(A → X)|2. (2.13)

We immediately recognise the decay rate of a one-particle state |A⟩ to a state |X⟩,

Γ(A → X) =
1

2mA

ˆ
dφ(X)(2π)4δ4(pA − pX)|A(A → X)|2, (2.14)

with mA being the mass of particle A. The decay rate is proportional to a phase space
integral over the matrix element squared, the same holds for the imaginary part of the
two-point amplitude in (2.13). Hence, combining (2.13) and (2.14) relates the imaginary
part of the two-point function of particle A to the sum over its decay rates, i.e. its total
decay rate ΓA,total,

Im(A(A −→ A)) = mA

∑
X

Γ(A −→ X) = mAΓA,total. (2.15)

This version of the optical theorem (2.15) is the starting point of the calculations
performed in chapter 6.

2.2 The Standard Model Lagrangian

The scattering amplitude, we encountered in the preceding section A(i → f), corre-
sponds to the sum over all required Feynman diagrams. A Feynman diagram is a graph
describing elementary particles. To translate Feynman diagrams into mathematical
expressions, we require Feynman rules describing the propagation of particles (propaga-
tors) as well as interactions among them (vertex rules). All Feynman rules required in
this thesis will be provided in section 2.2.1. The Feynman rules of a theory arise from
its Lagrangian. Propagators arise from terms bilinear in the corresponding field and
vertices from non-linear terms. We, therefore, start this section with a presentation of
the Standard Model Lagrangian. In order to keep this presentation short, we do not
describe intermediate calculations in detail. For more information we refer to [46], [49]
and [50].

The underlying gauge group of the Standard Model is

SU(3)c︸ ︷︷ ︸
QCD

×SU(2)× U(1)Y︸ ︷︷ ︸
electroweak theory

.
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The Standard Model of particle physics

SU(3)c gives rise to eight gauge fields Gb
µ with gauge coupling gs. Within the quantised

theory, these gauge fields correspond to gluons, the gauge bosons of quantum chromo-
dynamics (QCD). The fermions participating in strong interactions are quarks. They
carry colour charge c in addition to electric charge. The gauge fields of SU(2)× U(1)
are W a

µ , where a ∈ {1, 2, 3}, and Bµ with gauge couplings g and g′. The electric charge

of fermions is Q = I3 + Y
2 . Y is the weak hypercharge. I3 is the third of the weak

isospin. W a=1,2
µ are related to W-bosons, the charged mediators of weak interactions

W±
µ , through the Weinberg transformation of gauge fields,

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ). (2.16)

Additionally, we may define I± = 1√
2
(I1 ± iI2) in order to obtain the equality

I+W
+
µ + I−W

−
µ = I1W 1

µ + I2W 2
µ . (2.17)

The Standard Model Lagrangian may be decomposed into

LSM = LFermion + LY ukawa + Lgauge + LHiggs + Lfix + LGhosts. (2.18)

LFermion (2.19) describes (massless) fermions and their interactions with gauge fields.
Masses are obtained within LY ukawa (2.21) as fermions couple to a field with non-zero
vacuum expectation value, the Higgs field. The Higgs field, introduced in LHiggs (2.27)
causes spontaneous symmetry breaking

SU(2)× U(1)Y → U(1)em,

and, thereby, yields masses for the vector bosons, originally constructed in Lgauge

(2.26). The gauge fixing Lagrangian Lfix (2.28) and the ghost Lagrangian LGhosts

are present if we work in general Rξ gauge. In the following, we first combine LFermion

and LY ukawa to obtain a Lagrangian describing quarks and their interactions with the
Higgs boson, charged W-bosons and charged Goldstone bosons. Afterwards we consider
Lgauge, LHiggs and Lfix, determining bosons and interactions among them. We do not
need LGhosts here.

LFermion inherits the kinetic terms for fermions, including their interactions with gauge
fields. We are only interested in the parts of LFermion describing quarks,

LFermion =
∑
j

(
Q̄L

j iγ
µDµQ

L
j + ūRj iγ

µDµu
R
j + d̄Rj iγ

µDµd
R
j

)
(2.19)

+ leptonic parts.

The Lagrangian inherits a sum over all three families. In correspondence, the left-handed
quark field isospin doublets QL, and right-handed singlets qR are

QL
j =

(
uLj
dLj

)
, uj = uc, cc, tc, dj = dc, sc, bc,

qL =
1

2
(1− γ5)q, q

R =
1

2
(1 + γ5)q.
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2. The Standard Model Lagrangian

Ordinary partial derivatives account for the propagation of (massless) quarks. The
covariant derivatives in (2.19) not only contain partial derivatives, but also gauge fields
facilitating interactions with them. They are defined as

DµQ
L =

(
∂µ − igT aW a

µ − ig′
Y

2
Bµ − igsT

b
sG

b
µ

)
QL,

Dµq
R =

(
∂µ − ig′

Y

2
Bµ − igsT

b
sG

b
µ

)
qR,

with T b
s = λb

2 , b ∈ {1, ..., 8}, being the generators of SU(3)c represented by the Gell-
Mann matrices λb and T a = σa

2 , a ∈ {1, 2, 3}, being the generators of SU(2) represented
by Pauli matrices σa.

The gauge bosons we encounter in this thesis are gluons and chargedW -bosons. Whereas
interactions of quarks with gluons Gb

µ arise more or less straightforwardly from the co-
variant derivative in LFermion, we need to perform the Weinberg transformation (2.16)
to find interactions with W-bosons. These correspond to the part of LFermion (2.19) con-
taining charged currents. Performing the Weinberg transformation (2.16), using (2.17)
and bringing the quarks into their mass basis, we find

(2.19)
basis change⇒ LCC

quarks =
g

2
√
2

(
d̄, s̄, b̄

)
γµ(1− γ5)V

† (u, c, t)T W−
µ

+
g

2
√
2
(ū, c̄, t̄) γµ(1− γ5)V (d, s, b)T W+

µ . (2.20)

The coupling of quarks to W -bosons becomes off-diagonal, with V being the
Cabibbo–Kobayashi–Maskawa-matrix (CKM-matrix).

To complete interactions of quarks and derive their mass terms, we introduce the com-
plex Higgs doublet

Φ(x) =

(
Φ+(x)
Φ0(x)

)
=

(
Φ+(x)

1√
2
(v +H(x) + iχ(x))

)
,

Φ†(x) =

(
Φ−(x)
Φ0 ∗ (x)

)
=

(
Φ−(x)

1√
2
(v +H(x)− iχ(x))

)
,

with non-zero vacuum expectation value v = 2mW
g . Quarks couple to the complex Higgs

doublet via

LY ukawa =
∑
jk

−
[
(ūj , d̄j)

L

(
c
(d)
jk

(
Φ+

Φ0

)
dRk + c

(u)
jk

(
Φ0∗

−Φ−

)
uRk

)]
+ h.c. (2.21)

+ leptonic parts.

We may diagonalise the coupling matrices c(q) within LY ukawa (2.21) and shift the
variables respectively, i.e. we bring the quarks into their mass basis. Finally, we obtain
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mass terms for the quarks as well as interaction terms with the Higgs boson H from
LY ukawa

(2.21)
basis change⇒ LHiggs−quarks

Y ukawa = −
(
1 +

gH

2mW

)∑
j

[
ūjmujuj + d̄jmdjdj

]
. (2.22)

Furthermore, another off-diagonal coupling arises in the Yukawa Lagrangian (2.21), the
coupling of quarks to charged Goldstone bosons Φ+, Φ−.

(2.21)
basis change⇒

Lch.GB.−quarks
Y ukawa =

g

2
√
2

[
Φ+

(
(1 + γ5)

mdj

mW
− (1− γ5)

mui

mW

)
ūiVijdj

+Φ−
(
(1− γ5)

mdj

mW
− (1 + γ5)

mui

mW

)
uiV

∗
ij d̄j

]
, (2.23)

with mass matrices Mu = diag(mu,mc,mt), Md = diag(md,ms,mb).

Collecting the first part of (2.19), as well as (2.22), (2.20) and (2.23) adds up to a
Lagrangian, which describes quarks and their interactions needed for the calculation
performed in this thesis,

LFermion + LHiggs−quarks
Y ukawa︸ ︷︷ ︸
↓

Lquarks ≡ q̄

(
iγµDµ −mq

(
1 +

gH

2mW

))
q + LCC

quarks + Lch.GB.−quarks
Y ukawa

= q̄ (iγµ∂µ −mq) q︸ ︷︷ ︸
→quark propagator

−gsq̄
(
γµGa

µT
a
)
q︸ ︷︷ ︸

interaction with gluon

− gmq

2mW
Hq̄q︸ ︷︷ ︸

interaction with Higgs

+
g

2
√
2

[
γµ(1− γ5)

(
uiV

∗
ij d̄jW

−
µ + ūiVijdjW

+
µ

)
︸ ︷︷ ︸

interaction with W-bosons

+Φ+

(
(1 + γ5)

mdj

mW
− (1− γ5)

mui

mW

)
ūiVijdj

+Φ−
(
(1− γ5)

mdj

mW
− (1 + γ5)

mui

mW

)
uiV

∗
ij d̄j

]
︸ ︷︷ ︸

interactions with Goldstone bosons

. (2.24)

We deduce, the Feynman rules of the quark propagator and the interaction vertices with
a gluon, Higgs boson, W-boson as well as with the charged Goldstone bosons can be
obtained from Lquarks (2.24). They will be listed in section 2.2.1. To give an example,
we explicitly construct the quark propagator from

Lquarks → q̄ (iγµ∂µ −mq)︸ ︷︷ ︸
≡P (x)

q. (2.25)
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The desired propagator in momentum space is given by the Fourier transform of the
inverse of P (x) times i, where the inverse is defined by∑

j

Pij(x)P
−1
jk (x− y) = δikδ

4(x− y),

and its Fourier transform by

P−1
jk (x− y) =

ˆ
d4k

(2π)4
e−ik.xP̃−1

jk (k).

We construct

P (x)

ˆ
d4k

(2π)4
e−ik.xP̃−1(k)

!
=

ˆ
d4k

(2π)4
e−ik.x,

⇔
ˆ

d4k

(2π)4
(/k −mq) e

−ik.xP̃−1(k)
!
=

ˆ
d4k

(2π)4
e−ik.x, (/k = γµk

µ),

⇒ (/k −mq) P̃
−1(k) = 1,

·(/k+mq)⇔ P̃−1(k) =
/k +mq

k2 −m2
q

.

The quark propagator follows,

i
/k +mq

k2 −m2
q

.

We return to the Standard Model Lagrangian: The gauge field Lagrangian

Lgauge =− 1

4
(∂µG

b
ν − ∂νG

b
µ + gsf

bcdGc
µG

d
ν)

2 − 1

4
(∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν )

2

− 1

4
(∂µBν − ∂νBµ)

2, (2.26)

with transformations (2.16) and(
Bµ

W 3
µ

)
=

(
cos (ΘW ) −sin (ΘW )
sin (ΘW ) cos (ΘW )

)(
Aµ

Zµ

)
,

and the Higgs Lagrangian

LHiggs = (DµΦ)
†(DµΦ)−

λ

4
(|Φ|2)2 + µ2|Φ|2, (2.27)

with

DµΦ = (∂µ − igT aW a
µ − ig′

Y

2
Bµ)Φ,

and furthermore the gauge fixing Lagrangian in Rξ-gauges

Lfix =− 1

2ξg
(∂µGb

µ)
2 − 1

2ξA
(∂µAµ)

2 − 1

2ξZ
(∂µZµ − ξZmZχ)

2

− 1

ξW
(∂µW+

µ − iξWmWΦ+)(∂µW−
µ + iξWmWΦ−),

(2.28)
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give rise to boson propagators as well as interactions among them. We will not go into
details here. However, we note that as above the Weinberg transformation of gauge
fields (2.16) has to be performed. Afterwards, we uncover that the Higgs Lagrangian
produces mass terms for the gauge bosons

(DµΦ)
†(DµΦ) → m2

WW+
µ W−µ +

1

2
m2

ZZµZ
µ,

mZ =
v

2

√
g2 + g′2, mW = g

v

2
, mA = 0.

Furthermore, the gauge fixing Lagrangian cancels mixed quadratic terms involving a
gauge and a Goldstone field appearing in LHiggs (2.27) at the cost of adding terms
proportional to gauge fixing parameters ξA, ξZ , ξW ,

L′
fix =Lfix +mixed quadratic terms in LHiggs

=− 1

2ξg
(∂µGa

µ)
2 − 1

2ξA
(∂µAµ)

2

− 1

2ξZ
((∂µZµ)

2 + (ξZmZχ)
2)− 1

ξW
(∂µW−

µ ∂µW+
µ + ξ2Wm2

WΦ−Φ+).

After inspecting the Standard Model Lagrangian, we are able to obtain all Feynman
rules required in this thesis. They are listed in the following subsection.

2.2.1 Feynman rules

In this subsection, we list the Feynman rules obtainable from the Standard Model La-
grangian (2.18) discussed above. Feynman rules enable the translation of Feynman
diagrams into mathematical expressions and therefore the calculation of scattering am-
plitudes. A Feynman diagram is a graph describing the propagation and interaction of
elementary particles. A graph consists of edges connecting vertices. An edge is drawn
as a line. The edge of a Feynman graph represents a propagating particle, hence, it car-
ries its mass and momentum. Strictly speaking, also vertices only attached to one edge
(external vertices) and vertices attached to two edges (dots) are vertices of a graph.
Usually, we only call internal vertices connecting at least three edges “vertex”, since
those represent the interaction among particles. Feynman diagrams are translated into
mathematical expressions as edges and vertices are expressed in Feynman rules. Corre-
spondingly, each edge is associated with one propagator obtained from Feynman rules
and each vertex with a vertex rule proportional to a coupling constant. In addition
every vertex must obey momentum conservation. In this thesis we are dealing with
Feynman diagrams containing closed loops as we consider higher orders in perturbation
theory. These loops require special attention since they carry momenta, which are not
determined by momentum conservation. Hence, these momenta are understood as inte-
gration variables. In this way Feynman integrals enter the game. We will discuss them
in chapter 3. Note, within the context of Feynman rules the phrase “propagator” refers
to the complete mathematical expression of an edge, whereas in the context of Feynman
integrals (section 3.1) it solely refers to the part in the denominator.
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2. The Standard Model Lagrangian

In addition to the translation of edges and vertices the following rules have to be taken
into account:

1) Momentum conservation at each vertex must hold.

2) There must be an integration over each loop-momentum k, i.e. each undetermined
momentum,

ˆ
dDk

(2π)D
. (2.29)

3) For each closed fermion loop an additional factor of (−1) appears and the trace
has to be taken.

In (2.29) we consider a D-dimensional loop momentum as opposed to the physical four
space-time dimensions. The shift to general D dimensions will be explained and verified
in section 2.3. Now, we list all propagators and vertex-rules required in this thesis, they
agree with the Feynman rules and conventions of [46–50] (for an overview on Feynman
rules and sign conventions see [51]). For definitions/notations we refer to the preceding
section.

Propagators:

• The quark propagator for a quark with momentum k and mass mq,

k

q,mq

i
/k +mq

k2 −m2
q

• The gluon propagator:

kµ, a ν, b

g
i

k2

(
−gµν + (1− ξg)

kµkν

k2

)
δab

• The W-boson propagator:

µ νk

W
i

k2 −m2
W

(
−gµν + (1− ξW )

kµkν

k2 − ξWm2
W

)
• The Goldstone-boson propagator:

Φ
k

i

k2 − ξWm2
W

Vertex-rules:

• A gluon g and two quarks:
µ, a

i j

igsγ
µT b

sij , T b
s =

λb

2
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The Standard Model of particle physics

• A Higgs boson H and two quarks:

H

−i
gmq

2mW

• A Higgs boson H and two W -bosons

H

W±
µW∓

ν
igmW gµν

• A Higgs boson H and two Goldstone-bosons

H

Φ−Φ+
−i

g

2

m2
H

mW

• A W-boson W+/− and two quarks:

W+
µ

ui dj

i
g√
2
γµ

1− γ5
2

Vij

W−
µ

di uj

i
g√
2
γµ

1− γ5
2

V ∗
ji

• A charged Goldstone-boson Φ+/− and two quarks:

Φ+

ui dj

i
g

2
√
2

[
(1 + γ5)

mdj

mW
− (1− γ5)

mui

mW

]
Vij

Φ−

di uj

i
g

2
√
2

[
(1− γ5)

mdj

mW
− (1 + γ5)

mui

mW

]
V ∗
ji
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3. Divergences in quantum field theories

2.3 Divergences in quantum field theories

Now, we established how amplitudes are given by sums of Feynman diagrams, which
may be expressed via Feynman rules. In this thesis we are interested in higher pertur-
bative orders and, hence, in Feynman diagrams with loops. A certain Feynman rule
deals with the emergence of loops: Undetermined loop momenta k must be integrated
over d4k

(2π)4
(see (2.29)). A physical momentum has four dimensions, one time and three

space dimensions. We have already mentioned how the physical four dimensions may be
modified to general D dimensions, demanding us to take an integration measure dDk

(2π)D

for every loop momentum. In the following we will provide an explanation for this proce-
dure, known as dimensional regularisation. Dimensional regularisation [52–54] handles
integrals which are divergent in four-dimensional space-time, through the modification
of space-time itself.

We provide two examples to motivate regularisation given by the easiest types of Feyn-
man diagrams with loops. Both of them will be investigated more carefully in section
3.2. For now we may take results thereof. The simplest example of a loop diagram is
the one-loop tadpole diagram shown in fig.2.1. The tadpole diagram represents a single
loop given by a single propagator without external influences. We may express it in the
physical four-dimensional case by

k

Figure 2.1: One-loop tadpole diagram.

∼
ˆ

d4k

(2π)4
1

(k2 −m2)ν
.

k denotes the loop momentum and m the mass. We place an exponent ν ∈ N in the
denominator, whereas ν = 1 gives fig.2.1, ν = 2 implies an additional internal vertex
attached to two edges only, i.e. a propagator with a dot, ν = 3 implies two additional
internal vertices, etc.

Attaching two external legs to a tadpole diagram results in the one-loop bubble dia-
gram displayed in fig.2.2.

k

k − p

p p

Figure 2.2: One-loop bubble diagram.

∼
ˆ

d4k

(2π)4
1

(k2)ν1 ((k − p)2)ν2
.

All Feynman diagrams were created with Inkscape [55], unless stated otherwise.
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The Standard Model of particle physics

The external momentum of the bubble diagram is denoted by p and similar to before
ν1, ν2 ∈ N. Here, we take the bubble diagram as massless.

Now, we investigate the behaviour of both diagrams at k2 → ∞ and at k2 → 0. For
large momentum the tadpole integral behaves like

ˆ
d4k

(2π)4
1

(k2 −m2)ν
k2→∞−→

ˆ
d4k

(2π)4
1

(k2)ν
.

We see, that this integral diverges for ν ≤ 2. We call divergences appearing at k2 → ∞
ultraviolet divergences. The massless bubble diagram also develops an ultraviolet
divergence if ν1 + ν2 ≤ 2, since

ˆ
d4k

(2π)4
1

(k2)ν1 ((k − p)2)ν2
k2→∞−→

ˆ
d4k

(2π)4
1

(k2)ν1+ν2
.

A second kind of divergences appears in the massless case of the tadpole integral

ˆ
d4k

(2π)4
1

(k2)ν
. (2.30)

This integral not only diverges at large momenta if ν ≤ 2 but also at k2 → 0 if ν ≥ 2.
We call the second kind of divergence infrared divergence. We note how the existence
of a mass in the tadpole integral prevents infrared divergences. Similarly, we find for
the massless bubble integral at small momenta an infrared divergence if ν2 ≥ 2, since

ˆ
d4k

(2π)4
1

(k2)ν1 ((k − p)2)ν2
k2→0−→

ˆ
d4k

(2π)4
1

(k2)ν2
.

We see how divergences may occur in the calculation of Feynman integrals. Regularisa-
tion provides a way of handling this problem, because it generates well defined integrals.
In this thesis, we will utilise a standard regularisation method, namely dimensional reg-
ularisation [53, 54, 56]. In dimensional regularisation the four-dimensional vector
space of momentum vectors is exchanged for a D-dimensional vector space, which is
divided into an integer part D0 and a non-integer part D −D0,

4 → D = D0 − 2ϵ,

k = (k0, k1, k2, k3)
T → k = (k0, . . . , kD−1)

T ,

d4k

(2π)4
→ dDk

(2π)D
. (2.31)

We call

ϵ =
D −D0

2
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3. Divergences in quantum field theories

the dimensional regularisation parameter. We recover the physical case if we set
D0 = 4 and take the limit ϵ → 0, hence, we usually set

D = 4− 2ϵ.

Properties of integration like linearity, invariance under translation or rotation and
scaling behaviour are preserved under the transition to D dimensions (see [57] section
2.4.2). The integration measure is normalised such that

ˆ
dDkeak

2
= i
(π
a

)D
2
.

We may translate our investigations on the tadpole and the bubble integral to D di-
mensions and find

• k2 → ∞: The tadpole and bubble integral have an ultraviolet divergence if D ≥ 2ν
and D ≥ 2(ν1 + ν2), respectively.

• k2 → 0: The massless tadpole and massless bubble integral have an infrared
divergence if D ≤ 2ν and D ≤ 2ν2, respectively.

• (k − p)2 → 0: The massless bubble integral has an infrared divergence if D ≤ 2ν1.

We handle ultraviolet divergences with dimensional regularisation as we set D < 2ν
(D < 2(ν1 + ν2)). Theoretically, infrared divergences are handled with the help of an-
other regulator, for example through the introduction of small masses. After performing
the integration in the ultraviolet convergent domain, we may analytically continue the
result to all values of D and especially to D > 2ν (D > 2(ν1 + ν2)). Here, the integral
is infrared finite and we remove the additional regulator. Both divergences, ultraviolet
and infrared, are then regulated by dimensional regularisation.

A Feynman integral I in D dimensions has a Laurent expansion around ϵ = 0

Ii =
∑
j

I
(j)
i ϵj .

In practice, ultraviolet and infrared divergences in four dimensions, therefore, become
apparent as poles in ϵ in D dimensions. Ultraviolet divergences give rise to poles up to
ϵ−l and infrared divergences up to ϵ−2l, where l denotes the number of loops, i.e. the
number of integration variables. The tadpole integral with ν = 1, for example, inherits
a pole in ϵ as it amounts to (see (3.21) and (3.22))

ˆ
dDk

(2π)D
1

(k2 −m2)

D=4−2ϵ∼ −1

ϵ

(
m2
)
+
(
ln
(
m2
)
− 1
) (

m2
)
+O(ϵ).

We stress this point a bit further by looking at our second example. In section 3.3.1 (see
3.39) we will express the massless bubble diagram in terms of Euler’s Gamma function
Γ (3.16),

ˆ
dDk

(2π)D
1

(k2)ν1 ((k − p)2)ν2
(
−p2

)−D
2
+(ν1+ν2)
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The Standard Model of particle physics

∼
Γ
(
(ν1 + ν2)− D

2

)
Γ(ν1)Γ(ν2)

Γ
(
D
2 − ν2

)
Γ
(
D
2 − ν1

)
Γ (D − (ν1 + ν2))

D=4−2ϵ
=

Γ ((ν1 + ν2)− (2− ϵ))

Γ(ν1)Γ(ν2)

Γ ((2− ϵ)− ν2) Γ ((2− ϵ)− ν1)

Γ ((4− 2ϵ)− (ν1 + ν2))
.

Here, we do not need to introduce Euler’s gamma function in its full generality, it is
sufficient to note that

Γ (ϵ) =
1

ϵ
− γE +O(ϵ).

For ν1 = ν2 = 1, i.e. 4 ≥ 2(ν1 + ν2), the ultraviolet divergence becomes visible as pole
in ϵ in the first gamma function of the numerator

Γ ((ν1 + ν2)− (2− ϵ))
ν1=ν2=1

= Γ (ϵ) .

The pole in ϵ of the infrared divergence ν2 ≥ 2 appears in the second gamma function
of the numerator

Γ ((2− ϵ)− ν2)
ν2=2
= Γ (−ϵ) .

Poles in ϵ are handled different regarding their origin in an infrared or an ultraviolet
divergence. Infrared divergences are handled with the Kinoshita-Lee-Nauenberg theo-
rem, ultraviolet divergences by renormalisation. Here, we will not describe the former
in detail. We only note the following: A detector has a finite resolution, hence, two
particles close to each other in phase space are indistinguishable and will be detected as
if they were one particle. The Kinoshita-Lee-Nauenberg [58, 59] theorem assures that
all infrared divergences cancel by summing over all degenerated states, i.e. by taking
all virtual loops as well as real emitted particles into account.

Renormalisation redefines a finite number of parameters and fields in order to ab-
sorb occurring ultraviolet divergences. “Bare” fields and parameters are defined to be a
renormalisation constant times a renormalised field/parameter. For instance, the quark
field q and its mass mq may be redefined as follows

qbare =
√
Z2qren,

mq,bare = Zmmq,ren.

The renormalisation constants Z2, Zm absorb ultraviolet divergences by construction,
leaving a finite renormalised field/parameter qren/mq,ren behind. As a consequence, a
Lagrangian may be separated into a part containing all physical parameters and fields
of the theory Lrenormalised = Lren and a part yielding the cancellation of divergences
LCounterTerms = LCT ,

L −→ Lbare = Lren + LCT . (2.32)

The part of the Standard Model Lagrangian yielding the quark propagator (2.25), for
example, is separated like

L = q̄(iγµ∂µ −mq)q −→ Lbare = Z2q̄ren(iγ
µ∂µ − Zmmq,ren)qren

= Lren + LCT ,

Lren = q̄ren(iγ
µ∂µ −mq,ren)qren,

LCT = q̄ren((Z2 − 1)iγµ∂µ − (Z2Zm − 1)mq,ren)qren.
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3. Divergences in quantum field theories

Figure 2.3: Illustrative example of two-loop Feynman diagram and corresponding dia-
grams with counterterm insertions.

We see, we gain additional Feynman rules from LCT which may be utilised to express
Feynman diagrams with counterterm insertions. Ultraviolet divergences, which arise
in the calculation of a Feynman diagram with Feynman rules obtained from Lbare,
are cancelled by Feynman diagrams with appropriate counterterm insertions. Those
are found as loops of the original diagram are pinched and counterterm insertions are
placed instead. A counterterm insertion is indicated by a cross in the graph. We give
an illustrative example of a not further specified two-loop graph, whose divergent parts
may be cancelled through one-loop and tree graphs in fig.2.3.

The choice of renormalisation constants is not unique. Different renormalisation schemes
reflect different choices. Within the minimal subtraction scheme renormalisation
constants are designed to absorb nothing more than exactly the poles in ϵ. As Euler’s
constant γE and the logarithm ln (4π) accompany each pole in ϵ, the renormalisation
constants within modified minimal subtraction absorb

1

ϵ
− γE + ln (4π) .

Within the on-shell scheme, renormalisation constants are defined via conditions
found as particles are set on-shell

(
p2 = m2

)
.

We close this chapter with the conclusion that physical measurable quantities describing
particle interactions like decay rates are theoretically derived from scattering amplitudes
(see section 2.1). Scattering amplitudes correspond to sums of Feynman diagrams, which
are calculated via Feynman rules (section 2.2.1). Feynman diagrams with loops yield
integrations. Since Feynman integrals in four dimensions can be ill-defined, we apply di-
mensional regularisation and consider D = (4− 2ϵ) space-time dimensions. Divergences
become explicit as poles in the dimensional regularisation parameter. We are left with
the question: How can we compute D-dimensional Feynman integrals? We address this
question in the following chapters. Chapter 3 provides an introduction into the topic
of Feynman integrals and develops methods for their calculation. Chapter 5 shows new
results as integrals for the three-loop Higgs self-energy are found.
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CHAPTER

THREE

FEYNMAN INTEGRALS

Perturbation theory demands us to calculate scattering amplitudes and thereby measur-
able quantities describing particle interactions order by order in coupling constants. As
a consequence, precision calculations in quantum field theory require the derivation of
high orders in perturbation theory, represented by the calculation of Feynman diagrams
with multiple loops. Loop diagrams create Feynman integrals, which are therefore es-
sential building blocks of quantum field theoretical precision calculations. This chapter
starts the discussion on Feynman integrals with an introduction, which demonstrates
the emergence of Feynman integrals. Along the way, we define basic properties and
concepts like scalar integrals, auxiliary topologies and the momentum representation of
Feynman integrals. Section 3.2 can be considered as an extension to the introduction,
since it investigates one-loop diagrams more closely. Sections 3.3 and 3.4 prepare the
calculation of higher loop integrals. The former defines representations of Feynman in-
tegrals required in this thesis. The latter discusses ordering as well as relations between
different integrals and thereby enables the construction of master integrals. Section 3.5
introduces a solution technique for loop integrals, the method of differential equations.
Tools required to utilise this method successfully, like maximal cuts of Feynman inte-
grals, will be given in section 3.6. The main references of this chapter are [57, 60] (see
also [61, 62]), further references will be provided as needed.

3.1 Introduction

Feynman diagrams with loops naturally arise during the calculation of higher orders in
perturbative quantum field theory. We acquired in section 2.2 the Feynman rules needed
to translate those diagrams into mathematical expressions. Loops particularly give
rise to integrations, namely integrations over the undetermined loop momenta. These
integrals need to be regularised. As discussed in section 2.3, dimensional regularisation
constitutes an appropriate regularisation scheme. Hence, momenta are taken to be
D-dimensional. Expressing a Feynman diagram with l loops and n internal edges via
Feynman rules leads to a Feynman integral of the following form:

I =

ˆ l∏
i=1

dDki
(2π)D

N (qµ1 , ..., q
µ
n,m1, ...,mn)

n∏
j=1

1

(q2j −m2
j )
, (3.1)
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Feynman integrals

where ki, i = 1, ...l are the loop momenta, qj , j = 1, ...n are the internal momenta, which
can be expressed in terms of loop momenta and external momenta due to momentum
conservation, and mj , j = 1, ...n are the internal masses. In the context of Feynman
integrals, we call (q2j − m2

j ) (internal) propagator. The numerator N in (3.1) gets
determined through the internal edges and vertices of the diagram. It may contain
vectors, axial-vectors and tensors in contrast to the denominator solely depending on
scalars. Additionally, it absorbs any prefactors arising from Feynman rules.

k

k − p

H

pp

H

q

q̄

Figure 3.1: Two-point one-loop diagram H → qq̄ → H. The dotted line carries mass
mH and the solid line carries mass mq.

To gain further insights into the possible structures of (3.1), we look at an example:
H → qq̄ → H, a one-loop contribution to the Higgs-boson self-energy depicted in
fig.3.1. The internal edges represent a quark q and an antiquark q̄. The quark carries
an undetermined loop momentum k and due to momentum conservation the antiquark
carries momentum (k − p) if p denotes the Higgs-boson’s momentum. In correspondence,
we may assign to the quark’s edge P1 =

(
k2 −m2

q

)
which we call first propagator and to

the other edge P2 =
(
(k − p)2 −m2

q

)
which we call second propagator. Both propagators

form the topology corresponding to fig.3.1. The kinematic invariants are the quark mass
mq and the squared external momentum p2 = s. Expressing figure 3.1 with the help of
Feynman rules from section 2.2.1 yields

−
ˆ

dDk

(2π)D
g2m2

q

4m2
W

Tr
(
(/k +mq)(/k − /p+mq)

)(
k2 −m2

q

) (
(k − p)2 −m2

q

) (3.2)

=−
ˆ

dDk

(2π)D
g2m2

q

m2
W

(
k2 − k · p+m2

q

)(
k2 −m2

q

) (
(k − p)2 −m2

q

) . (3.3)

The trace in (3.2) is evaluated using the following properties from Dirac algebra

{γµ, γν} = 2gµν , /k/k = k2, T r(1) = 4,

T r (γµ) = Tr (γµ1 . . . γµ2n+1) = 0, ∀n ∈ N, (3.4)

which leads to the following numerator

N = −
g2m2

q

m2
W

(
k2 − k · p+m2

q

)
∼
(
k2 − k · p+m2

q

)
.

We see, that numerators of Feynman integrals can depend on loop momenta. This type
of loop integral is called tensor integral. We would like to deal with scalar integrals
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1. Introduction

only, i.e. integrals in which loop momenta solely appear as components of propagators,
to enable the use of various techniques helpful for solving Feynman integrals. A scalar
integral can be represented in the following way:

I ∼
ˆ l∏

i=1

dDki
(2π)D

n∏
j=1

1

(q2j −m2
j )

νj
, νj ∈ Z, (3.5)

To transfer (3.1) into a (sum of) scalar integrals, loop momenta inside scalar products
as well as loop momenta appearing as vectors have to be eliminated from N . Here,
“elimination” of scalar products refers to expressing them in terms of propagators and
kinematic invariants.

In the example (3.3) k2 and k · p appear inside N . The number of propagators and
the number of independent scalar products involving loop momenta matches, as always
in the case of one-loop diagrams. Since the first propagator depends on k2 and the
quark mass, k2 can be expressed through P1 and mq. Similarly, p · k can be rewritten
in terms of both propagators and s,

P1 = k2 −m2
q ⇒ k2 = P1 +m2

q ,

P2 = (k − p)2 −m2
q ⇒ k · p =

1

2
(P1 − P2 + s) . (3.6)

Inserting those linear combinations into (3.3) gives

ˆ
dDk

(2π)D
N

P1P2

(3.6)
= −

ˆ
dDk

(2π)D
g2m2

q

m2
W

(
P1 +m2

q − 1
2 (P1 − P2 + s) +m2

q

)
P1P2

= −
g2m2

q

m2
W

(ˆ
dDk

(2π)D
4m2

q − s

2P1P2
+

ˆ
dDk

(2π)D
1

2P1
+

ˆ
dDk

(2π)D
1

2P2

)

= −
g2m2

q

m2
W

((
2m2

q −
s

2

)
I11 +

1

2
I10 +

1

2
I01

)
. (3.7)

In the last step, we introduced a notation

Iν1ν2 ≡
ˆ

dDk

(2π)D
1

P ν1
1 P ν2

2

, (3.8)

which identifies each scalar integral through the exponents of its propagators P1 and
P2. Three scalar integrals remain. We will see their evaluation in section 3.2. The set
of integrals Iν1ν2 with arbitrary exponents ν1, ν2 is called integral family (belonging
to the diagram in fig.3.1).

In general, for l loop momenta ki and e independent external momenta pm, the scalar
products

ki · kj , ki · pm, pm · pn, i, j = 1, ...l, m, n = 1, ...e,

arise in the numerator of the Feynman integral. That amounts to

Nscp =
l(l + 1)

2
+ e · l (3.9)
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independent scalar products involving loop momenta. If the number of internal edges
and therefore the number of propagators equals N , each scalar product involving a loop
momentum can uniquely be expressed through a linear combination of propagators and
kinematic variables.

It follows, that we may replace scalar products inside the numerator with linear combi-
nations of propagators. We cancel the propagators with the corresponding propagators
in the denominator and obtain a sum of different scalar integrals (3.5). These integrals
can be identified through the exponents of their propagators, which are at this stage
either one or zero, as seen in (3.7) and (3.8). Diagrams with less propagators than re-
quired by (3.9) can be interpreted as sub-graphs of graphs with an appropriate number
of edges. In this way an auxiliary topology, namely the topology belonging to the
larger graph, can be found and utilised for each diagram. The auxiliary propagators
that did not appear in the original diagram emerge in the denominators of integrals
only with negative exponents. The construction of an auxiliary topology will be shown
in practice in section 5.2.

The closed fermion loop in the above example led to a trace in the integral, hence,
no vectors survived. In general, the numerator of (3.1) can contain vectors, which are
not contracted. If each independent scalar product involving a loop momentum can
uniquely be expressed by a linear combination of propagators, we can eliminate the
dependencies on vector like loop momenta through the Passarino-Veltman reduc-
tion technique [63]. The evaluated integral of a scalar function times loop momenta
carrying indices must be equal to a tensor structure carrying these respective indices.
Furthermore, this tensor structure has to be constituted of the fixed external momenta
and the metric tensor gµν . In the case of one loop momentum k and one external
momentum p follows

ˆ
dDk kµf(k) = pµ ·B, B ∈ C,

where f(k) is an arbitrary scalar function. Through contraction with pµ, the constant
B can be rewritten,

pµ⇒
ˆ

dDk pµk
µf(k) = pµp

µ ·B,

⇔
ˆ

dDk p · k f(k) = p2 ·B,

⇔B =
1

p2

ˆ
dDk p · k f(k).

After inserting the result, we obtain for the original integral
ˆ

dDk kµf(k) =
pµ

p2

ˆ
dDk p · k f(k).

Now, the integration is solely over scalars. We replace p · k with an appropriate linear
combination of propagators and obtain a scalar integral. In a similar manner, integrals
containing more vectors can be transformed to scalar integrals. We will see another
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1. Introduction

application of the Passarino-Veltman reduction technique in (6.17), section 6.4.

After obtaining scalar integrals out of (3.1), we are left with a set of integrals which
can be written in the momentum representation of Feynman integrals. In D space-time
dimensions, the momentum representation of a Feynman integral corresponding
to an l-loop diagram with n internal edges is defined by

Iν1ν2...νn = eϵlγE
(
µ2
)ν− lD

2

ˆ l∏
i=1

dDki

iπD/2

n∏
j=1

1

P
νj
j

, Pj = (−q2j +m2
j ), (3.10)

where ki, i = 1, ...l are the loop momenta and qj , j = 1, ...n is the internal momentum
flowing through the edge j which carries mass mj . Furthermore, νj ∈ Z is the exponent
of the propagator Pj , whereby

ν =

n∑
j=1

νj .

µ is an arbitrary parameter with mass dimension one, γE is Euler’s constant and

ϵ =
D0 −D

2
, D0 ∈ N,

is the dimensional regularisation parameter. Note, that any scalar factors that emerged
during the transformation from the original expression of the Feynman diagram (3.1)
are written in front of the obtained integrals. Note further, that this transformation

includes the compensation of the extra factor eϵlγE
(
µ2
)ν− lD

2 and the replacement from

(2π)D in (3.1) with (iπD/2) as well as the change of the overall signs of propagators.
We will justify the use of the latter conventions in section 3.2 (see especially (3.14)
and (3.15)). The factor eϵlγE removes Euler’s constant from the evaluated integral (see
(3.26)). The renormalisation scale µ is introduced to render the integrals dimensionless.
Dimensional power counting,

dDk1...d
Dkl

P ν1
1 ...P νn

n

∼
(
mD

)l
∼ (m2)ν

,

reveals a mass dimension of Dl−2ν = −2(ν− lD
2 ) for an l-loop integral in D dimensions

and, hence, verifies that the factor
(
µ2
)ν− lD

2 ensures (3.10) to be dimensionless.

Due to the insertion of µ, the integral depends on scalar, dimensionless kinematic
variables

pi · pj
µ2

,
m2

q

µ2
, (3.11)

where pi, i, j = 1, . . . , e are linear independent external momenta and mq are internal
masses (see e.g. (3.19)). The products of external momenta in (3.11) are usually rewrit-
ten in terms of Mandelstam variables. One kinematic variable can be set to one, which
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fixes µ2 to be either a squared mass or a Mandelstam variable. As a consequence, the
number of independent kinematic variables is given by

Nv =
e (e− 1)

2
+ nm − 1, (3.12)

where nm ≤ n is the number of different internal masses.

Summarising, any Feynman graph G with loops gives rise to a certain Feynman in-
tegral (3.1). After evaluating its numerator, it is reduced to a sum of scalar Feynman
integrals, thereby, an appropriate auxiliary topology is found if necessary. The number
of edges of the auxiliary graph has to be equal to the number of independent scalar
products containing a loop momentum Nscp (3.9). The remaining integrals are identi-
fied through the exponents of their propagators: Iν1ν2...νn . They can be expressed in
the momentum representation of Feynman integrals (3.10). The set of integrals Iν1ν2...νn
with arbitrary exponents ν1, ν2, . . . , νn is called family of Feynman integrals associated
to G. The integral family includes sub-graphs of G which correspond to an integral
Iν1ν2...νn with one or more zero exponents νi = 0. Here, the sub-graph is obtained from
G through pinching the appropriate edge(s) i.

The Feynman integrals of a family are not independent, instead, linear relations among
them can be found and used to obtain a basis of this family. The basis integrals are also
called master integrals. We will learn more about master integrals and their evaluation
in sections 3.4 and 3.5, but first we will look at the easiest type of Feynman integrals,
namely integrals corresponding to one-loop diagrams.

3.2 One-loop diagrams

In this section we investigate one-loop diagrams and integrals. For this purpose, we
return to the two-point one-loop example H → qq̄ → H from fig.3.1. We encounter
and solve two important one-loop integrals, namely, the tadpole (3.13) and the bubble
integral (3.24) which are expressible through Euler’s gamma (3.16) and beta function
(3.20). On the way, we find a general procedure for calculating one-loop diagrams.

After expressing the one-loop diagram from fig.3.1 through scalar integrals (3.6), the
calculation proceeds as we write it in terms of Feynman integrals in momentum repre-
sentation (3.7).

−
ˆ

dDk

(2π)D
g2m2

q

4m2
W

Tr
(
(/k +mq)(/k − /p+mq)

)(
k2 −m2

q

) (
(k − p)2 −m2

q

)
=

ie−ϵγE

2Dπ
D
2

g2m2
q

m2
W

((
µ2
)D

2
−2
(
−2m2

q +
s

2

)
I11 +

1

2

(
µ2
)D

2
−1

(I10 + I01)

)
,

where the integrals are defined by

Iν1ν2 = eϵγE
(
µ2
)ν−D

2

ˆ
dDk

iπD/2

1

P ν1
1 P ν2

2

,
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2. One-loop diagrams

P1 = −k2 +m2
q , P2 = −(k − p)2 +m2

q .

Since I01 can be transformed into I10 through a variable transformation k → k̃ = k− p,
two integrals I01, I11 remain to be evaluated.

k

Figure 3.2: One-loop tadpole diagram.

We start with the easier integral I10 which is also known as one-loop tadpole integral
T1, due to its diagrammatic depiction (fig.3.2),

I10 = T1

(
D,m2

q

)
,

Tν

(
D,m2

)
≡ eϵγE

(
µ2
)ν−D

2

ˆ
dDk

iπD/2

1

(−k2 +m2)ν
. (3.13)

The tadpole integral depends on the loop momentum k = (k0, k1, . . . , kD−1)
T solely

through its square. Note, it depends not only on the dimension D, but also explicitly
on the dimensional regularisation parameter ϵ through the prefactor eϵγE . However,
we write Tν

(
D,m2

)
instead of Tν

(
D, ϵ,m2

)
, since this prefactor is always the same

by definition. As a first step in the evaluation of the tadpole integral, we change from
Minkowski space,

k2 = k20 − k21 − . . .− k2D−1,

to Euclidean space,

K2 = K2
0 +K2

1 + . . .+K2
D−1,

through a Wick rotation [64]. The integration contour of the Wick rotation is given
by the closed contour in fig.3.3.

Im(k0)

Re(k0)

Figure 3.3: Integration contour of the Wick rotation. Small semicircles on the real axis
circumvent the poles.
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The poles of the propagator on that contour are bypassed by Feynman’s iδ-prescription,

i

−k2 +m2 − iδ
,

which is usually not written down explicitly, but always implied. It follows, that the
integration over the first component of the loop momentum k0 along the closed contour
vanishes. Additionally, the integrations along the quarter-circles at infinity vanish too
if no singularities are on the quarter-circles. Hence, only the integration along the axes
are left and we can find a relation among them,

0 =

˛
dk0f(k0) =

ˆ ∞

−∞
dk0f(k0) +

ˆ −i∞

i∞
dk0f(k0),

⇒
ˆ ∞

−∞
dk0f(k0) = −

ˆ −i∞

i∞
dk0f(k0).

Using this relation we obtain a loop momentum with Euclidean signature if we change
the time component k0 = iK0 and leave the space components as they are kj = Kj , for
0 < j ≤ D − 1,

k2 = −K2, dDk = idDK,

⇒ dDk

iπD/2

1

(−k2 +m2)ν
=

dDK

πD/2

1

(K2 +m2)ν
. (3.14)

Here, we see the reason for changing the signs of the propagators and placing an i in
the denominator of the momentum representation of Feynman integrals (3.10).

In the next step, we introduce generalised spherical coordinates (see appendix A.1)
to split the integration into an angular and a radial part, since the integration variable
appears only squared. The measure is dDK = KD−1dKdΩD. The angular integration,

ˆ
dΩD =

2π
D
2

Γ
(
D
2

) , (3.15)

validates the convention 1

π
D
2

in (3.10), since this factor cancels now. Here,

Γ(x) ≡
ˆ ∞

0
e−ttx−1dt (3.16)

is Euler’s gamma function which has various properties (see for example [57] section
2.4.2) such as

Γ (z + 1) = zΓ (z) ,

Γ (n+ 1) = n!, n ∈ N,

Γ (ϵ) =
1

ϵ
− γE +O(ϵ).

The tadpole integral becomes
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2. One-loop diagrams

Tν

(
D,m2

) Wick rot.
= eϵγE

(
µ2
)ν−D

2

ˆ
dDK

πD/2

1

(K2 +m2)ν
(3.17)

angular int.
= eϵγE

(
µ2
)ν−D

2
2

Γ
(
D
2

) ˆ dK

(
K2
)D−1

2

(K2 +m2)ν
. (3.18)

Changing the variable,

K → t =
K2

m2
⇒ dK = dt

m2

2K
,

leads to

Tν

(
D,m2

)
= eϵγE

(
m2

µ2

)D
2
−ν

1

Γ
(
D
2

) ˆ dt
t
D
2
−1

(t+ 1)ν

= eϵγE
(
m2

µ2

)D
2
−ν

1

Γ
(
D
2

) B

(
D

2
, ν − D

2

)
. (3.19)

We see how the renormalisation scale µ yields a dimensionless integral. Furthermore,
we recognise Euler’s beta function

B(z1, z2) ≡
ˆ ∞

0

tz1−1

(t+ 1)z1+z2
dt =

ˆ 1

0
tz1−1(1− t)z2−1dt =

Γ(z1)Γ(z2)

Γ(z1 + z2)
. (3.20)

We are therefore able to express the tadpole integral in terms of gamma functions

Tν

(
D,

m2

µ2

)
= eϵγE

(
m2

µ2

)D
2
−ν Γ(ν − D

2 )

Γ(ν)
, (3.21)

and obtain in D = 4− 2ϵ dimensions

I10 = T1

(
4− 2ϵ,

m2
q

µ2

)
= eϵγE

(
m2

q

µ2

)
e
−ϵ ln

(
m2

q

µ2

)
Γ(ϵ− 1) (3.22)

= −1

ϵ

(
m2

q

µ2

)
+

(
ln

(
m2

q

µ2

)
− 1

)(
m2

q

µ2

)
+O(ϵ).

In addition, we may set

µ2 = m2
q ,

and find

T1 (4− 2ϵ) = eϵγEΓ(ϵ− 1) (3.23)

= −1

ϵ
− 1−

(
1− 1

2
ζ2

)
ϵ+

(
1

3
ζ3 −

1

2
ζ2 − 1

)
ϵ2 +O

(
ϵ3
)
.

31



Feynman integrals

We encounter the tadpole integral with a general mass and with a mass equal to µ2

again in section 5.4.3 in (5.39) and (5.38). There, the tadpole is taken in D = (2− 2ϵ)-
dimensions in order to find an integral of uniform weight (see section 3.5.1 and section
3.5.2 for definitions of weight properties).

The second integral of the two-point one-loop exampleH → qq̄ → H is named one-loop
bubble Bν1ν2(p

2,m2
1,m

2
2), again after its diagrammatic depiction (fig.3.4).

k

k − p

p p

Figure 3.4: One-loop bubble diagram.

The one-loop bubble integral is defined by

I11 = B11

(
D, p2,m2

q ,m
2
q

)
,

Bν1ν2

(
D, p2,m2

1,m
2
2

)
≡ eϵγE

(
µ2
)ν−D

2

ˆ
dDk

iπD/2

1(
−k2 +m2

1

)ν1 (−(k − p)2 +m2
2

)ν2 .
(3.24)

As in the case of the tadpole integral, we do not point out the bubble integrals’ depen-
dence on ϵ. In contrast to the tadpole, the dependency of the one-loop bubble on the
loop momentum is not solely through its square. Prior to performing a Wick rotation
and shifting to spherical coordinates, we have to complete the square. We therefore have
to find an appropriate integration variable. First, we convert the product of propagators
in the denominator into a sum with the help of Feynman’s trick, which will be given
in its full generality in (3.37) in section 3.3. Here, we only need the special case of two
propagators P1, P2,

1

P1P2
=

ˆ 1

0
da

1

(aP1 + (1− a)P2)
2 . (3.25)

Feynman’s trick introduces a so-called Feynman parameter a. Unfortunately, the conver-
sion to a product comes with an additional integration over a. Alternatively, Schwinger’s
trick could be utilised, which introduces additional integrations over Schwinger param-
eters. Applying (3.25) to the integrand of I11 and reordering the result such that k is
placed inside a squared term gives

1(
−k2 +m2

q

) (
−(k − p)2 +m2

q

) =

ˆ 1

0
da

1

− (k − (1− a)p)2︸ ︷︷ ︸
k̃2

+a (a− 1) p2 +m2
q

,

⇒ I11 = eϵγE
(
µ2
)2−D

2

ˆ 1

0
da

ˆ
dDk̃

iπD/2

1

−k̃2 + a (a− 1) p2 +m2
q

.
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2. One-loop diagrams

After shifting the integration variable to k̃, the integration over k̃ can be performed with
the help of a Wick rotation and D-dimensional spherical coordinates, just as before.
Looking at the definition of the tadpole (3.13) we can transfer its result (3.21) if we set
m̃ = a (a− 1) p2 +m2

q . For D = 4− 2ϵ, we obtain

I11 = eϵγEµ2ϵΓ(ϵ)

ˆ 1

0
da

1(
a (a− 1) p2 +m2

q

)ϵ .
In the massless case, we can identify Euler’s beta function again

B11

(
D, p2, 0, 0

)
= eϵγEµ2ϵΓ(ϵ)

ˆ 1

0
da
(
a (a− 1) p2

)−ϵ

= eϵγE
(
−p2

µ2

)−ϵ

Γ(ϵ)

ˆ 1

0
da a−ϵ (1− a)−ϵ︸ ︷︷ ︸
B(1−ϵ,1−ϵ)

= eϵγE
(
−p2

µ2

)−ϵ

Γ(ϵ)
Γ(1− ϵ)Γ(1− ϵ)

Γ(2− 2ϵ)

=
1

ϵ
− ln

(
−p2

µ2

)
+ 2 +O(ϵ). (3.26)

Here, we see how the series expansion of eϵγE cancels γE coming from Γ(ϵ) = 1
ϵ − γE +

O(ϵ). In section 3.3.1 we obtain an expression for the massless bubble depending on
general indices ν1, ν2 (3.39). The calculation with non-zero masses will not be shown
here, we simply give the result in the appendix A.2.

The massive bubble will occur again in section 5.4.3 (see (5.42)) together with the
massive tadpole, both taken in D = (2 − 2ϵ)-dimensions. There, we develop versions
of the bubble and the tadpole integral, which are more suited within the context of
differential equations of Feynman integrals (section 3.5).

In summary, the one-loop example H → qq̄ → H from fig.3.1 becomes in D = 4 − 2ϵ
dimensions

ie−ϵγE

24 − 2ϵπ2−ϵ

g2m2
q

m2
W((

µ2
)−ϵ

(
−2m2

q +
s

2

)
B11

(
D, p2,m2

q ,m
2
q

)
+
(
µ2
)1−ϵ

T1

(
4− 2ϵ,m2

q

))
, (3.27)

where the tadpole is given by (3.22) and the bubble by (A.1).

The methods we used for the example can be transferred to general one-loop integrals
as calculations of one-loop diagrams all follow the same pattern:

1. After translating the diagram via Feynman rules, the resulting tensor integrals
are reduced to scalar integrals, for example through Passarino-Veltman reduction.
Scalar products containing the loop momentum in the numerator can be replaced
with appropriate linear combinations of propagators and kinematic invariants.
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2. Independent integrals have to be evaluated. Utilising Feynman’s or Schwinger’s
trick transforms the product of propagators in their denominators into a sum. The
integration variable is shifted, such that the integrand only depends on its square.

3. After Wick rotation, D-dimensional spherical coordinates come into play. The
angular integration is trivial and for the radial integration Euler’s gamma and
beta functions are recognised.

4. The integration over Feynman or Schwinger parameter’s remains.

As the procedure for 3. is always the same, it can be summarised in a formula (cf. [57],
eq.(2.133)),

ˆ
dDk

iπD/2

(−k2)a

(−Uk2 + V )ν
=

Γ
(
D
2 + a

)
Γ
(
D
2

) Γ
(
ν − D

2 − a
)

Γ (ν)

U−D
2
−a

V ν−D
2
−a

, (3.28)

where a is a scalar and U, V are polynomials independent of k.

3.3 Representations of Feynman integrals

In the preceding section, we derived a strategy to calculate one-loop integrals. Un-
fortunately, the evaluation of higher loop integrals is trickier. In preparation for the
discussion of a widely used solution strategy, namely the method of differential equa-
tions, we will first take a look at different representations of Feynman integrals.

We have already seen the momentum representation of Feynman integrals (3.10) which
more or less arises out of the application of Feynman rules. It will be the starting
point for each representation introduced here. Hence, we quickly recapitulate it and
we will keep its accompanying notation. Accordingly, each representation introduced
and utilised in the following will be equivalent to (3.10) (and (3.29)). We work with l
loops, n internal edges and in D = D0 − 2ϵ dimensions where D0 ∈ N. The momentum
representation is given by

Iν1ν2...νn = eϵlγE
(
µ2
)ν− lD

2

ˆ l∏
i=1

dDki

iπD/2

n∏
j=1

1

P
νj
j

, Pj = (−q2j +m2
j ), (3.29)

where ki, i = 1, ...l are the loop momenta and qj ,mj , j = 1, ...n are the internal mo-
menta and masses corresponding to the propagators Pj which carry exponents νj ∈ Z,
whereby ν =

∑n
j=1 νj . Furthermore, µ is the renormalisation scale with mass dimension

one and γE is Euler’s constant.

Additionally, we already gained an insight into the Feynman parameter representation of
integrals in the previous section. We treated the integration over the loop momentum for
an integration over a Feynman parameter as we applied Feynman’s trick and evaluated
the simplified momentum integration. In the upcoming subsection we briefly introduce
the Schwinger and Feynman parameter representation in their full generality. Along
the way, we encounter the graph polynomials U , F , which play an essential role within
the method of differential equations. The graph polynomial U enables the construction
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of dimensional shift relations between integrals and F helps constructing derivatives of
Feynman integrals. Afterwards, we deal with another important representation of Feyn-
man integrals, namely the Baikov representation. The Baikov representation as well as
dimensional shift relations play a crucial role in the method of differential equations, as
we will see later.

3.3.1 Schwinger and Feynman parameter representation

Schwinger and Feynman parameter representation of Feynman integrals simplify the
integration over loop momenta at the cost of introducing auxiliary integrations. Both
can be obtained from the momentum representation (3.29) through the application
of either Schwinger’s or Feynman’s trick. The trick is applied to every propagator

Pj =
(
−q2j +m2

j

)
, trading the product of propagators in the denominator of (3.29) for

a sum. In the case of Schwinger’s trick

1

P
νj
j

=
1

Γ(ν)

ˆ ∞

0
dααν−1e−αPj , (3.30)

which follows from the definition of Euler’s gamma function (3.16), this sum of propa-
gators emerges in an exponential,

I
(3.30)∼

ˆ
αj≥0

dnα
n∏

j=1

α
νj−1
j

ˆ l∏
i=1

dDki

iπ
D
2

exp

−
n∑
j

αj

(
−q2j +m2

j

) . (3.31)

Now, each propagator is accompanied by an auxiliary integration variable, called Schwinger
parameters αj , j = 1, . . . , n. The sum in the exponential is sorted by the dependence
on loop momenta creating an l × l -matrix M , an l-dimensional vector v with linear
combinations of the d-dimensional external momenta as entries and a scalar J ,

n∑
j

αj

(
−q2j +m2

j

)
= −

l∑
i=1

l∑
m=1

kiMimkm +

l∑
i=1

2ki · vi + J. (3.32)

This enables the use of (3.33) (cf. [57] eq.(2.158)), which simplifies the integration over
loop momenta in (3.31),

ˆ ∞

−∞
dy1...dynexp

(
−y⃗TAy⃗ + 2w⃗T y⃗ + c

)
= π

n
2 detA− 1

2 exp
(
w⃗TA−1w⃗ + c

)
, (3.33)

where A is an n× n -matrix and w⃗ is an n-dimensional vector.

Before we give the resulting representation, we define the graph polynomials in terms
of M, v and J found in (3.32),

U = det (M) ,

F =
det (M)

µ2

(
J + vTm−1v

)
. (3.34)

U , also called 1st Symanzik polynomial, is a homogeneous polynomial of degree l in the
Schwinger parameter’s, whereas F , the 2nd Symanzik polynomial, is of degree l + 1.
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Finally, the Schwinger parameter representation of a Feynman diagram with l
loops and n internal edges is given by

I =
eϵlγE

n∏
j=1

Γ(νj)

ˆ
αj≥0

dnα
n∏

j=1

α
νj−1
j U−D

2 exp

(
−F(α)

U(α)

)
, (3.35)

where αj are the Schwinger parameters and, as before, νj is the exponent of the jth

propagator, ϵ is the dimensional regularisation parameter and γE is Euler’s constant.

The Feynman parameter representation of a diagram with l loops and n inter-
nal edges is defined by

I =
eϵlγEΓ

(
ν − lD

2

)
n∏

j=1

Γ(νj)

ˆ
aj≥0

dna δ

1−
n∑

j=1

aj

 n∏
j=1

a
νj−1
j

U(a)ν−
(l+1)D

2

F(a)ν−
lD
2

, (3.36)

where aj , j = 1, .., n are called Feynman parameters. Similar to the Schwinger param-
eter representation, it can be derived from momentum representation (3.29) with the
help of Feynman’s trick

n∏
j=1

1

P
νj
j

=
Γ(ν)

n∏
j=1

Γ(νj)

ˆ
aj≥0

dna δ

1−
n∑

j=1

aj

 ∏n
j=1 a

νj−1
j(∑n

j=1 ajPj

)ν . (3.37)

Alternatively, (3.36) can be constructed from Schwinger parameter representation through

the insertion of 1 =
´∞
0 δ

(
t−

∑n
j=1 αj

)
dt and the variable substitution aj =

αj

t .

Alternative ways of constructing the Symanzik polynomials exist. We mention a graph-
ical approach here (cf. [65]). The result reveals the structures of the polynomials. U can
be obtained from the spanning trees and F from the spanning 2-forests of the respec-
tive graph. A spanning tree T is a connected sub-graph without loops, that contains
all vertices of the original graph. If a graph has l loops, l edges must be removed to
obtain a spanning tree. Removing l edges in all possible ways, such that no vertices are
lost, gives the set of spanning trees T1. If the deletion of l + 1 internal edges results in
two connected tree-graphs (instead of one), we call it a spanning 2-forest (T1, T2). The
corresponding set of all spanning 2-forests is denoted by T2. The Symanzik polynomials
are given by

U =
∑
T∈T1

∏
ei /∈T

ai,

F =
∑

(T1,T2)∈T2

 ∏
ei /∈(T1,T2)

ai

(−s(T1,T2)

µ2

)
+ U(a)

n∑
i=1

ai
m2

i

µ2
, (3.38)
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where ai is the Feynman parameter corresponding to the deleted edge ei and s(T1,T2)

gives the square of the momenta flowing through all deleted edges of the respective
spanning 2-forest. Now, we clearly see, that U is a homogeneous polynomial of degree l
in Schwinger/Feynman parameters and F one of degree l+1. Additionally, we see, that
U depends linearly on each Schwinger/Feynman parameter. This property plays a role
in the construction of dimensional shift operators (see section 5.3). F is linear in the

kinematic variables
−s(T1,T2)

µ2 ,
m2

i
µ2 , which plays a role in the construction of a differential

equation (see section 5.3.1).

We complete this subsection with an example, namely the one-loop bubble (fig.3.4)
we already investigated in the prior subsection,

Bν1ν2(p
2,m2

1,m
2
2) = eϵγE

(
µ2
)ν−D

2

ˆ
dDk

iπD/2

1(
−k2 +m2

1

)ν1 (−(k − p)2 +m2
2

)ν2 .
The Feynman parameter representation of the one-loop bubble is given by

Bν1ν2(p
2,m2

1,m
2
2) =

eϵγEΓ
(
ν − D

2

)
Γ(ν1)Γ(ν2)

ˆ ∞

0
da1

ˆ ∞

0
da2 δ (1− (a1 + a2)) a

ν1−1
1 aν2−1

2

U(a)ν−D

F(a)ν−
D
2

,

U = a1 + a2,

F = a1a2

(
−p2

µ2

)
+ (a1 + a2)

(
a1

m1

µ2
+ a2

m2

µ2

)
.

Here, we found the graph polynomials U and F with the just described method. In the
massless case, we easily calculate the Feynman representation of the bubble integral,

Bν1ν2(p
2, 0, 0) =

eϵγEΓ
(
ν − D

2

)
Γ(ν1)Γ(ν2)

(
−p2

µ2

)D
2
−ν ˆ ∞

0
da1 a

ν1−1
1 (1− a1)

ν2−1 (a1 + 1− a1)
ν−D

a
ν−D

2
1 (1− a1)

ν−D
2

=
eϵγEΓ

(
ν − D

2

)
Γ(ν1)Γ(ν2)

(
−p2

µ2

)D
2
−ν ˆ ∞

0
da1 a

D
2
−1−ν2

1 (1− a1)
D
2
−1−ν1︸ ︷︷ ︸

B(D
2
−ν2,

D
2
−ν1)

.

We recognise Euler’s beta function (3.20) and, therefore, find a general solution for the
massless one-loop bubble,

Bν1ν2(p
2, 0, 0) =

(
−p2

µ2

)D
2
−ν eϵγEΓ

(
ν − D

2

)
Γ(ν1)Γ(ν2)

Γ
(
D
2 − ν2

)
Γ
(
D
2 − ν1

)
Γ (D − ν)

. (3.39)

3.3.2 Baikov representation of Feynman integrals

In addition to momentum, Feynman and Schwinger parameter representation, we in-
troduce a last representation of Feynman integrals, the Baikov representation [66]. The
Baikov representation may be utilised to determine the maximal cut of a Feynman in-
tegral, which plays a key role in the solution strategy within the method of differential
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equations applied in this thesis. We will discuss the method of differential equations de-
signed for calculating Feynman integrals in section 3.5 and maximal cuts in section 3.6.1.

The Baikov representation treats the integration over loop momenta for the integration
over propagators. This transition is split into a change from momentum integration to
integration over scalar products involving loop momenta and a subsequent change to
integration over propagators to simplify the development of the Baikov representation.
We summarise the independent scalar products involving loop momenta in

σ = (σ1, . . . , σNscp) = (−k1 · k1,−k1 · k2, . . . ,−kl · kl,−k1 · p1, . . . ,−kl · pe).

The number of scalar products Nscp, i.e. the length of σ was given in the beginning of
this chapter in (3.9). A propagator belonging to edge i is given by

zi = −q2i +mi,

where mi denotes the mass of edge i and qi its momentum. As we seek for an integration
over propagators, we call zi aBaikov variable. The number of Baikov variables is given
by the number of internal edges n. We may summarise our strategy for the derivation
of the Baikov representation as

dDki → dNscpσ → dnz.

The second transition requires a topology where every σi is uniquely expressible in terms
of propagators (see (3.40)). The Baikov representation is, therefore, only applicable for
topologies which have the same amount of propagators as independent scalar products
involving loop momenta,

n
!
= Nscp.

In the beginning of this chapter we discussed, how we may always find an auxiliary
topology with appropriate propagators if the original number of edges deceeds Nscp. In
this way we are always able to stretch our starting conditions and, thus, convert to the
Baikov representation.

In the beginning of this chapter we also discussed how scalar products involving loop
momenta are expressible in terms of propagators. In correspondence, we may write

zi = Cijσj + fi, (3.40)

with an invertible n × n-dimensional matrix C and an n-dimensional vector f free of
loop momenta.

Now, we are able to determine the Baikov representation for the one-loop case

σ = (−k · k,−k · p1, . . . ,−k · pe).

The multi-loop case can then be obtained through iterative application of the one-loop
procedure. To find the Baikov representation from an integral in momentum represen-
tation,

I ∼
ˆ

dDk

iπD/2

n∏
j=1

z
−νj
j ,
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we first seek for a transfer from the integration over loop momenta to an integration
over σ. We decompose the loop momentum into a part parallel to the space spanned
by external momenta and an orthogonal part,

k = k|| + k⊥, k|| ∈ ⟨p1, . . . , pe⟩,

in order to treat them separately. Additionally, we go to Euclidean space, implying for
the measure

dDk = dek||d
D−ek⊥ = ideK||d

D−eK⊥,

where e is the number of independent external momenta and consequently the dimension
of the parallel space. A scalar product of the orthogonal part of the loop momentum
with external momenta vanishes by definition, hence, the orthogonal part survives only
as a square in the integrand. Accordingly, it is natural to switch to spherical coordinates.
The angular integrations in orthogonal space is then performed straightforwardly,

dD−eK⊥ =
π

D−e
2

Γ
(
D−e
2

) (K2
⊥
)D−e−2

2 dK2
⊥.

Additionally, we may trade the integration over K2
⊥ for the integration over σ1 = K2,

dK2
⊥ = dσ1,

and express the squared orthogonal part in terms of scalar products,

K2
⊥ =

detGeucl.(K,P1, . . . , Pe)

detGeucl.(P1, . . . , Pe)
=

detG(k, p1, . . . , pe)

detG(p1, . . . , pe)
.

Here, the Gram determinant detG and the Euclidean Gram determinant detGeucl.

are defined by

detG(q1, . . . , qe) = det (−qi · qj) = det (Qi ·Qj) = detGeucl.(Q1, . . . , Qe). (3.41)

The parallel part remains. We may change integration variables in parallel space to
(σ2, . . . , σe+1) = (K · P1, . . . ,K · Pe),

deK|| = detJ−1dσ2 . . . dσe+1,

detJ = det

(
∂(σ2, . . . , σe+1)

∂(K0, . . . ,Ke−1)

)
=
√
detG(p1, . . . , pe).

In the final step, we change variables from scalar products σ to Baikov variables z with
the help of (3.40), which yields a Jacobian detC = ∂z

∂σ . For the complete measure we
obtain

dDk

iπ
D
2

=
detG (p1, . . . , pe)

−D+e+1
2

π
e
2 (detC)Γ

(
D−e
2

) detG (k, p1, . . . , pe)
D−e−2

2 dNscpz. (3.42)

In the one loop case, the number of Baikov variables is given by Nscp = e + 1. To
emphasise, that Gram determinants are expressed in terms of Baikov variables, we
replace

B(z) = detG (k1, . . . , kl, p1, . . . , pe) (3.43)
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and call B Baikov polynomial. The variable z represents all Baikov variables
z1, . . . , zNscp .

The l-loopBaikov representationmay be developed iteratively from (3.42), it amounts
to

Iν1,...,νn =
eϵlγE

(
µ2
)ν− lD

2 detG (p1, . . . , pe)
−D+e+1

2

π
1
2
(n−l)det(C)

l∏
i=1

Γ

(
D − e+ 1− i

2

) ˆ
C
dnz B(z)

D−l−e−1
2

n∏
j=1

z
−νj
j . (3.44)

The rather complicated integration domain is given by

C = C1 ∩ C2 ∩ . . . ∩ Cl,

Ci =
{

detG (kj , . . . , kl, p1, . . . , pe)

detG (kj+1, . . . , kl, p1, . . . , pe)
≥ 0

}
. (3.45)

3.4 Master integrals and the Laporta algorithm

After the introduction of the graph polynomials (3.34),(3.38) and the Baikov represen-
tation (3.44), we proceed with the calculation of Feynman integrals beyond one-loop.
We already discussed the concept of auxiliary topologies and the Passarino-Veltman
reduction technique in the beginning of this chapter. Both are utilised in a first sim-
plification step of the calculation process, namely the conversion of tensor integrals
obtained from Feynman rules to scalar integrals. This conversion may generate a huge
number of scalar integrals. We have seen in the one-loop example from the beginning
of this chapter (fig.3.1), how one tensor integral gave rise to three scalar integrals (3.7).
Beyond one-loop the numbers become far greater (see for example section 6.4, page 145).

Before we actually calculate any Feynman integrals we want to reduce their number.
This can be achieved with the help of the Laporta algorithm [67], which starts with
a set of scalar Feynman integrals and returns a smaller set of so-called master inte-
grals. It constructs relations between integrals, such that “more complicated” integrals
can be erased in favour of “simpler” integrals. To define simplicity in the context of
Feynman integrals, we introduce some classifying variables in the following subsection.
Afterwards, we discuss how integration by parts helps relating integrals to “simpler”
integrals.

3.4.1 Sectors

We recall, that any scalar Feynman integral Iν1ν2...νn of a certain integral family is
completely determined by its indices νi, which are the exponents of its n propagators.
A set of integrals with common propagators in the denominator, i.e. with a common set
{νi > 0}, is called a sector. Each sector can be drawn as a graph consisting of all edges
i that correspond to νi > 0. In section 3.6, we will see how sectors appear as blocks
inside the system of differential equations of master integrals. Integrals within a sector
differ by their irreducible scalar products, i.e. propagators with negative exponents, and
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the actual values of their positive indices. The sector identity

SID =

n∑
j=1

2j−1Θ

(
νj −

1

2

)
, (3.46)

characterises each sector and simplifies the assignment of integrals. Θ is the Heaviside
step-function. If we refer to a sector by a number we always talk about its sector identity.
The number of propagators with positive powers

Nprop =

n∑
j=1

Θ

(
νj −

1

2

)
, (3.47)

gives the length of the set {νi > 0}. In the calculation of a Feynman diagram, the
transition from tensor integrals to scalar integrals naturally gives rise to sub-sectors of
the diagram of interest. The diagram of interest defines the top sector, possessing the
largest set of positive indices,

Nprop,top sector = Nprop,max,

SID,top sector = SID,max.

A sub-sector is obtained as propagators and thereby edges of the graph get pinched,
manifested through zero indices in the integral representation. Every sub-sector is,
therefore, defined through a subset {νi > 0} of the original set and corresponds to a
sub-graph of the original graph.

The Laporta algorithm demands a sorting of integrals according to their simplicity.
Hence, we have to define criteria for simplicity. Integrals with more propagators, i.e.
a greater Nprop, are naturally more difficult. We deduce, that integrals from the top
sector are most challenging. We further deduce, that Nprop gives a good first sorting
criterion. Sectors with the same amount of propagators can be arranged according to
their sector identity, where we choose to start with the smallest SID.

In order to be able to sort integrals within their sectors, we introduce the following
variables:

r =

n∑
j=1

νjΘ

(
νj −

1

2

)
, (3.48)

s =

n∑
j=1

|νj |Θ
(
−νj +

1

2

)
, (3.49)

r sums all positive and s all negative indices. Integrals with smaller propagator powers
within one sector give rise to smaller r or s and are considered simpler. It follows that
integrals can be ordered lexicographically, for example with respect to

(Nprop, SID, r, s, . . .) . (3.50)
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3.4.2 Integration by parts

The second main ingredient of Laporta’s algorithm besides the classification of integrals
are relations among the integrals, which can be found from integration by parts identities
or symmetry relations. Integration by parts identities [25, 26] rely on the fact that the
integral of a total derivative vanishes within dimensional regularisation,ˆ

dDk
∂

∂kµ
vµf(k, pi) = 0, (3.51)

where vµ = kµ, pµi or any linear combination thereof, implying the absence of boundary
terms. For Feynman integrals,

eϵlγE
(
µ2
)ν− lD

2

ˆ l∏
i=1

dDki

iπD/2

∂

∂kµl
vµ

n∏
j=1

1

(−q2j +m2
j )

νj
= 0, (3.52)

follows right away, with vµ being any vector consisting of loop and external momenta.
Inserting different sets {νi} and vectors vµ into (3.52) yields various relations between
integrals, which are then called integration by parts identities.

After obtaining all integration by parts identities (and symmetry relations) of a set
of Feynman integrals, each integral can be replaced by combinations of simpler integrals
according to the ordering relation (3.50). Only a small subset of integrals is left behind.
These are called master integrals. The substitutions have the following structure,

Ii =

NMI∑
j

ci,jI
′
j , (3.53)

where Ii is the integral which gets expressed in terms of master integrals I ′j , and NMI

denotes the number of master integrals. The rational coefficients ci,j depend on prod-
ucts of masses, the invariant external momenta squared and the dimension D.

The master integrals form a basis, hence their number NMI is fixed. However, the
choice of basis is not unique. The numbering of edges as well as the specified order
criteria influence the gained basis. For example, swapping r and s in (3.50) also leads to
a possible order relation, but results into different master integrals. Viewing the ordered
set of master integrals as a vector

I⃗ ′ =
(
I ′1, . . . , I

′
NMI

)T
,

transformations between different bases are written as

I⃗ ′ = UJ⃗, (3.54)

with U being an NMI ×NMI -dimensional transformation matrix. Some bases are easier
to evaluate then others. Finding a suitable basis J of master integrals is one of the main
tasks during the evaluation of Feynman diagrams. A canonical basis is particularly
suited, as we will see in the following section. There, we will explore the method of
differential equations. This method relies on the ability to reduce Feynman integrals to
a small set of master integrals, i.e. it relies on integration by parts reduction techniques.
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5. The method of differential equations

3.5 The method of differential equations

In the previous section we deduced that several scalar Feynman integrals, which emerged
during the evaluation of Feynman diagrams, can be eliminated in favour of a minimal set
of integrals. These master integrals are found with the help of the Laporta algorithm.
The ordered set of master integrals is usually denoted by a vector

I⃗ = (I1, . . . , INMI
)T .

The calculation of I⃗ remains to be done. A particularly efficient method of deriving
master integrals is the method of differential equations [27–30], which circumvents the
need of direct integration over loop momenta. As reflected by the method’s name, a
system of first order differential equations of master integrals with respect to kinematic
variables is set up and solved.

The first step within the method of differential equations is clearly setting up differ-
ential equations with respect to kinematic variables. Each master integral kinematically
depends on internal masses and products of external momenta. We remember from
(3.10) and (3.11) that scaling the integrals with the renormalisation constant µ2 yields
dimensionless kinematic variables,

pi · pj
µ2

,
m2

i

µ2
.

µ2 is set to be either an internal mass squared or a product of external momenta, more
specifically a mandelstam variable, reducing the number of kinematic variables by one
(see (3.12)). In the following we call the kinematic variables

x1, . . . , xNv .

A derivative with respect to a variable corresponding to a mass, like xi =
m2

i
µ2 , is derived

as follows. We recall the momentum representation of Feynman integrals from (3.29),

I = Iν1ν2...νn = eϵlγE
(
µ2
)ν− lD

2

ˆ l∏
r=1

dDkr

iπD/2

n∏
j=1

1

(−q2j +m2
j )

νj
, (3.55)

where ν =
∑n

j νj . If only one propagator carries m2
i we deduce

∂

∂xi
I = µ2 ∂

∂m2
i

Iν1ν2...νn

= eϵlγE
(
µ2
)ν+1− lD

2

ˆ l∏
r=1

dDkr

iπD/2

(
∂

∂m2
i

1

(−q2i +m2
i )

νi

)∏
j ̸=i

1

(−q2j +m2
j )

νj

= eϵlγE
(
µ2
)ν+1− lD

2

ˆ l∏
r=1

dDkr

iπD/2

(
−νi

(−q2i +m2
i )

νi+1

)∏
j ̸=i

1

(−q2j +m2
j )

νj

= −νi I...(νi+1).... (3.56)
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We introduce the raising operator j+, which raises the power of the j-th propagator
by one and multiplies by its previous power νj ,

j+I...,νj ,... = νj · I...,(νj+1),.... (3.57)

Afterwards, equation (3.56) can be summarised as

µ2 ∂

∂m2
i

I = −i+I.

The extension to multiple propagators carrying m2
i utilises the product rule. The deriva-

tive is expressed as a sum over all edges j which carry massm2
i . These edges are collected

in the set Jm2
i
, and we obtain

µ2 ∂

∂m2
i

I = −
∑

j∈J
m2

i

i+I.

This equation is true for every integral from the same family of Feynman integrals,
hence, we write for the basis integrals I⃗ = (I1, . . . , INMI

)T

µ2 ∂

∂m2
i

I⃗ = −
∑

j∈J
m2

i

j+I⃗ . (3.58)

If different topologies, i.e. different sets of propagators, are joined within one vector of
master integrals the sets Jm2

i
have to be chosen accordingly.

The integrals appearing in the sum on the right hand side of (3.58) have additional
dots compared to the basis integrals, but they are again expressible as linear combina-
tions of master integrals via the Laporta algorithm (see section 3.4). Equation (3.58)
can be rewritten,

µ2 ∂

∂m2
i

I⃗ = Am2
i
I⃗ , (3.59)

where Am2
i
is an NMI ×NMI - dimensional matrix, containing kinematic variables and

the dimension D.

Setting up differential equations with respect to variables, which do not correspond
to a mass, will be described as needed in section 5.3.1 (see especially (5.13)). In the
end, any differential equation of the master integrals with respect to a variable xi can
be displayed as

∂

∂xi
I⃗ = Axi(D,x1, . . . , xNv) I⃗ , (3.60)

with Axi being an NMI ×NMI - dimensional matrix, containing kinematic variables and
the dimension D. The matrices Axi are lower block-triangular matrices if the master
integrals are ordered according to the order relation (for example (3.50)) within the La-
porta algorithm. The order relation primarily sorts integrals by their number of edges
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and their sectors, such that the first few integrals in the vector I⃗ belong to the simplest
sector. Hence, reductions of integrals and their derivatives within the lowest sector only
generate integrals in the same sector. In other words, differential equations of the mas-
ter integrals belonging to the first sector are homogeneous. This gives rise to a block
matrix in the upper left corner of the differential equation of the full vector I⃗. In accor-
dance, all sectors appear as blocks on the diagonal of Axi . The matrices become lower
block-triangular, since the reductions of integrals in higher sectors include integrals of
simpler sectors.

All differential equations (3.60) of the master integrals I⃗ = (I1, . . . , INMI
)T with respect

to each kinematic variable x1, . . . , xNv are combined into the system of first-order
differential equations

dI⃗ = AI⃗, (3.61)

where the matrix-valued one-form A is defined by

A =

Nv∑
i

Axi(D,x1, . . . , xNv) dxi, (3.62)

and the total derivative is given by

dIi =

Nv∑
j

(
∂Ii
∂xj

)
dxj . (3.63)

The system (3.61) is integrable, hence, the following integrability condition must
hold,

∂xnAxm − ∂xmAxn − [Axn , Axm ] = 0, n,m = 1, . . . , Nv, (3.64)

where [, ] denotes the commutator,

[A,B] = A ·B −B ·A.

A general solution to (3.61) can be written as an infinite series, where the j-th term is
given by a j-fold iterated integral (cf. [31, 57]),

I⃗ = Pexp

[ˆ
γ
A

]
I⃗0, (3.65)

P denotes the path ordering operator with respect to an integration contour γ. I⃗0 de-
notes the value of I⃗ at the boundary point determined by γ. However, due to the lack of
a truncation criterion the infinite series in (3.65) yields no practical solution to (3.61).
It follows, that we seek a solution strategy providing an appropriate truncation criterion.

Before we discuss such a solution strategy for (3.61) in the next subsection, we want
to make a note on the dependence of the matrices Ax on kinematic variables x follow-
ing [60] especially chapters 2.3&4.1 and [57] chapter 7.1.5. The differential equations
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(3.60) are build up from Feynman integrals, hence, their properties put restrictions on
Ax. Singular points xk in the differential equation must arise from singularities of the
original integrals. The leading behaviour of Feynman integrals is expected to grow like
∼ (x− xk)

j for some j. In correspondence, the differential equations should only have
regular singularities and the series expansion of Feynman integrals should only have a
finite number of terms with negative exponent. If Ax depends rationally on x, we may
write

Ax =
∑
xk∈S

oxk∑
j

Axk,j
1

(x− xk)
j
+ terms non-singular in x, (3.66)

where Axk,j denote matrices free of x and rational in the dimension, S the set of all
singular points and oxk

the order of the pole at xk. Under conditions which are usu-
ally fulfilled in the context of Feynman integrals, the poles in (3.66) may be removed
successively utilising Moser’s algorithm [68–70]. Hence, the rational matrix Ax can be
transformed to Fuchsian form,

Ax =
∑
xk∈S

Axk,1
1

(x− xk)
. (3.67)

3.5.1 The canonical form of differential equations

Now, the first step of the method of differential equations, namely setting up a system
of first-order differential equations with respect to kinematic variables (3.61), is com-
pleted. The second step consists of finding a solution for the system and, therefore,
for the master integrals. In the following, we discuss a key method within the context
of solving differential equations of Feynman integrals. The main idea is the conversion
of differential equations into canonical differential equations, which are linear in the
dimensional regularisation parameter [31]. The homogeneous solution of a canonical
differential equation is trivial in the limit ϵ = 4−D

2 → 0. This reduces the problem of
finding a solution to the problem of finding an appropriate basis of master integrals
which transforms the differential equation accordingly. (Box 1 in section 3.6 provides a
concise summary on the transformation to canonical differential equations.)

After starting this section with a short motivation, we bring a system of differential
equations into ϵ-form via basis transformations and variable transformations. We define
the ϵ-form, which is determined by its letters. Furthermore, we sketch a solution process
leading to iterated integrals and give a first notion on weight properties.

We recall, that master integrals are functions of kinematic variables and the dimensional
regularisation parameter ϵ. We may motivate the technique of canonical differential
equations as we look at the general solution of (non-canonical) differential equations
(3.58). The general solution consists of an infinite series of iterated integrals, which
lacks an appropriate truncation criterion. However, under a conversion to a differential
equation with linear dependence on ϵ,

A (ϵ, x1, . . . , xNv) → ϵÃ (x1, . . . , xNv) ,
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the general solution transforms as

I⃗ = Pexp

[ˆ
γ
A (ϵ, x1, . . .)

]
I⃗0 → J⃗ = Pexp

[ˆ
γ
ϵÃ (x1, . . .)

]
J⃗0, (3.68)

again P denotes the path ordering operator with respect to an integration contour γ.
I⃗0/J⃗0 denote values of I⃗/J⃗ at the boundary point determined by γ. The series becomes
a series in ϵ, hence, an appropriate truncation criterion is determined by the required
order in ϵ! Before we go into details, we already observe an important property of
the transformed general solution. Each series coefficient consists of iterated integrals of
same transcendental weight, i.e. iterated integrals of same depth.

Let us look at the details of such a transformation. We start with the set of NMI

master integrals I⃗ and their system of differential equations, that we found in the pre-
ceding section

dI⃗ = AI⃗,

A =

Nv∑
i

Axi(ϵ, x1, . . . , xNv) dxi.

We apply a basis transformation given by a NMI × NMI - dimensional matrix U ,
which depends (rationally) on ϵ and the kinematic variables,

I⃗ = U (ϵ, x1, . . . , xNv) J⃗

⇒ d
(
U−1J⃗

)
= A

(
U−1J⃗

)
⇒
(
UdU−1

)
J⃗ + dJ⃗ =

(
UAU−1

)
J⃗

⇒ dJ⃗ = A′J⃗ , (3.69)

where the transformed matrix-valued one-form is given by

A′ = UAU−1 − UdU−1. (3.70)

In accordance with our motivation, we search for a transformation which yields a matrix
A′ purely linear in the dimensional regularisation parameter,

A′ (ϵ, x1, . . . , xNv) = ϵÃ (x1, . . . , xNv) .

If Ã additionally fulfils

Ã =
∑
i

Ciωi, (3.71)

where Ci are NMI × NMI - dimensional matrices consisting of algebraic numbers and
ωi are differential one-forms containing only simple poles, we call J⃗ a canonical basis
of master integrals. Furthermore, the non-zero boundary constants of Ã have to be
of uniform weight zero (description further on). The resulting system of differential
equations

dJ⃗ = ϵÃ (x1, . . . , xNv) J⃗ = ϵ
∑
i

CiωiJ⃗ (3.72)
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is named a canonical or ϵ-form of differential equations.

The differential one-forms ωi are called letters and the set of all independent letters
sufficient to express Ã is called alphabet. A simple but frequently occurring example of
a letter is

ω =
dx

x
.

It has only a single pole as required and can, therefore, be expressed in terms of a
dlog-form

ω = dlog (x) . (3.73)

In general, we seek for an alphabet completely consisting of dlog-forms, i.e. letters of
the form

ωi = dlog (fi (x1, . . . , xNv)) , (3.74)

where fi denotes rational functions depending on the kinematic variables.

It may happen, that only a non-rational basis transformation U (3.69) causing a lin-
ear dependence in ϵ can be found. This leads to square roots in arguments of some
dlog-forms. The condition of differential one-forms which have only simple poles is not
fulfilled. To solve this issue, a coordinate transformation must be applied. This vari-
able transformation has to rationalise all square roots, i.e. it has to lead to a square
under each square root. An example is given by

r =
√
−x(4− x) −→ x =

−(1− x′)2

x′
−→ r =

1− x′2

x′
.

In section 3.6.2 we will obtain this example explicitly (see especially (3.96)), as we will
describe a general method to find appropriate variable transformations.

The ϵ-form of differential equations is particularly nice, since it can be solved straight-
forwardly order by order in ϵ. For this purpose, the master integrals J⃗ = (J1, . . . , JNMI

)
are expanded as a Laurent-series in ϵ,

Ji =

∞∑
j=jmin

J
(j)
i ϵj = ϵjminJ

(jmin)
i + . . . , (3.75)

where jmin might be negative, but finite. The starting term is explicitly written to
demonstrate, that we can force the expansion of any master integral to start with an
ϵ0-term, simply through a redefinition Ji → ϵ−jminJi. Now the set of canonical master
integrals can be viewed as

J⃗ =

 ϵ0J
(0)
1 + ϵJ

(1)
1 + ϵ2J

(2)
1 + ...

. . .

ϵ0J
(0)
NMI

+ ϵJ
(1)
NMI

+ ϵ2J
(2)
NMI

+ ...

 . (3.76)
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Inserting (3.76) into the differential equation (3.72), we find

d

 ϵ0J
(0)
1 + ϵ1J

(1)
1 + ϵ2J

(2)
1 + ...

. . .

ϵ0J
(0)
NMI

+ ϵ1J
(1)
NMI

+ ϵ2J
(2)
NMI

+ ...

 =
∑
i

Ciωi

 ϵ1J
(0)
1 + ϵ2J

(1)
1 + ϵ3J

(2)
1 + ...

. . .

ϵ1J
(0)
NMI

+ ϵ2J
(1)
NMI

+ ϵ3J
(2)
NMI

+ ...

 .

(3.77)

The resulting system of differential equations is solved order by order in ϵ, starting with
ϵ0. We see, that the right hand side of (3.77) has no ϵ0-terms as opposed to the left
hand side,

dJ⃗ (0) = 0.

Hence, the integrations of dJ
(0)
i yield constants. These are determined by boundary

conditions, i.e. values of the master integrals at specific kinematic configurations:
One kinematic variable is set to be a certain value, making the calculation of boundary
conditions simpler. Next, we compare the terms proportional to ϵ on the left and right
hand side of (3.77) and conclude

dJ⃗ (q+1) =
∑
i

Ciωi J⃗
(q). (3.78)

Since we know J⃗ (0), we can find J⃗ (1) through integration. The result is an iterated inte-
gral of depth one plus an integration constant, which is again determined by boundary
conditions (see for example (3.81)). Proceeding with the integration of dJ⃗ (2) using the
result obtained for J⃗ (1), we successively find solutions for all J⃗ (i) in terms of iterated
integrals of depth ≤ i.

The iterated integrals, appearing in the solutions of J⃗ , are specified by ordered se-
quences of letters ωi,ˆ

γ:[0,1]→M
ω1 . . . ωn =

ˆ
0≤t1≤...≤tn≤1

f1 (t1) dt1 . . . fn (tn) dtn, (3.79)

where M is a smooth manifold over R, and fi (ti) dti denotes the pull back of ωi to the
interval [0, 1] (cf. [71]). n corresponds to the depth of the iterated integral. If n = 0 the
integral equals 1 by definition. To give a simple example we return to (3.73)

ω0 =
dx

x
.

The iterated integral
ˆ
γ
ω0 = log(x)− log(x0)

solely depends on the endpoints of γ, namely γ(0) = x0 and γ(1) = x. We elaborate

ˆ
γ
ω0 . . . ω0︸ ︷︷ ︸
r times

=
1

r!

(ˆ
γ
ω0

)r

=
1

r!
(log(x)− log(x0))

r ,
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which follows from the so-called shuffle product. A shuffle product for iterated inte-
grals (3.79) is defined byˆ

γ
ω1 . . . ωi

ˆ
γ
ωi+1 . . . ωr =

∑
σ

ˆ
γ
ωσ(1) . . . ωσ(r), (3.80)

where σ “shuffles” the sets (1, . . . , i) and (i+ 1, . . . , r), i.e. it permutes all indices
without changing the internal order of (1, . . . , i) and (i+ 1, . . . , r), respectively. The
shuffle product of a one-fold and a two-fold integral is, for example, given byˆ

γ
ω1

ˆ
γ
ω2ω3 =

ˆ
γ
ω1ω2ω3 +

ˆ
γ
ω2ω1ω3 +

ˆ
γ
ω2ω3ω1.

One condition on the ϵ-form (3.72) requires the non-zero boundary constants to be
of uniform weight zero. This condition originates from the observation we made earlier,
the series coefficients of (3.68) consist of iterated integrals of same weight. We discussed
that (solutions of) master integrals are series expansions in ϵ (3.76). The same holds for
integrals on boundary points. The request for uniform transcendental weight zero
puts a constraint on every term in the series, every term must have weight zero. Here,
rational numbers are assigned weight zero as opposed to transcendental numbers like π,
which has weight one, and zeta values

ζn =

∞∑
j=1

1

jn
, ζ2 =

π2

6
,

which have weight n. Weights are summed if factors are multiplied. It follows, that
weights can be balanced if ϵ is assigned weight −1. If a series starts at order ϵ0, the
parts proportional to ϵj must have weight j to produce uniform weight zero (see also
end of section 3.5.2).

In the next section, we will derive the solution to a canonical differential equation in
more details. We thereby present the solution in terms of a special class of functions,
multiple polylogarithms, and put more emphasise on weight properties. Beforehand, we
want to emphasise the advantages of the just described method. Verifying if a differen-
tial equation is in ϵ-form is straightforward, since the dependence on ϵ is easily checked.
As demonstrated, the solution of the ϵ-form is easily determined. The only requirements
are the existence of appropriate boundary terms. The tricky part within this method
is, therefore, not solving a differential equation, but finding transformations. We seek
for a basis transformation to a canonical basis (3.69), (3.70) and if necessary a variable
transformation to rationalise appearing square roots. Unfortunately, no general method
of finding such a canonical basis is known. We will explore a systematic approach, which
utilises the properties of maximal cuts on Feynman integrals throughout this thesis (see
section 5.4.4). Maximal cuts are usually found within the Baikov representation, which
was described in section 3.3.2. We will define them in section 3.6.1.

3.5.2 Multiple polylogarithms in the solution of differential equations

Now, we explain an important class of iterated integrals, which are fundamental blocks
of the solution of canonical differential equations, namely multiple polylogarithms [32–
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34]. Subsequent to the previous subsection, we illustratively sketch their emergence in
the solution of canonical differential equations. For simplicity, we look at a toy example
consisting of one kinematic variable x and one master integral. The emergence of mul-
tiple polylogarithms in more complex cases proceeds similarly (see for example section
5.5.4, especially (5.105)). Afterwards, we will define multiple polylogarithms in detail.

In the preceding subsection we started with pre-canonical master integrals and, after
applying a basis transformation, the system of differential equations became canonical
(see (3.72)),

dJ = ϵÃ (x) J = CωJ.

C is an algebraic number and the letter ω has only a simple pole. With regards to (3.67)
we may consider

ω =
dx

x− z
= dlog (x− z) ,

where z is constant with respect to x. The master integral can be expanded in a Taylor
series in ϵ (3.76),

J = ϵ0J (0) + ϵJ (1) + ϵ2J (2) + ...,

which is inserted into the canonical differential equation to find in correspondence with
(3.78)

dJ (0) = 0,

dJ (q+1) = C
dx

x− z
J (q).

The solution for J (0) follows immediately,

⇒ J (0) = B(0),

where B(0) and all B(i) that will appear in the following calculation are constants de-
termined by boundary conditions. The next order in ϵ becomes

⇒ dJ (1) = B(0)C
dx

x− z
.

Choosing integration boundaries from 0 to x,

J (1) = B(0)C

ˆ x

0

dx′

x′ − z
+B(1),

= B(0)C log(x′ − z)
∣∣x
0︸ ︷︷ ︸

=log(1−x
z )

+B(1), (3.81)

we can simultaneously interpret J (1) as a logarithm and as a one-fold iterated integral.
We set

G [z;x] =

ˆ x

0

dx′

x′ − z
= log

(
1− x

z

)
, (3.82)
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and write

J (1) = B(0)C G [z;x] +B(1).

The second order in ϵ follows

J (2) = B(0)C2

ˆ x

0

dx′

x′ − z

ˆ x′

0

dx′′

x′′ − z
+B(1)C

ˆ x

0

dx′

x′ − z
+B(2)

⇔ J (2) = B(0)C2

ˆ x

0

dx′G [z;x′]

x′ − z
+B(1)C G [z;x] +B(2). (3.83)

The solution to the second order contains a two-fold iterated integral. Similar to (3.82),
we set

G [z1, z2;x] =

ˆ x

0

dx′

x′ − z1

ˆ x′

0

dx′′

x′′ − z2
, (3.84)

and find

J (2) = B(0)C2 G [z, z;x] +B(1)C G [z;x] +B(2).

A pattern in the solution becomes visible, the j-th order gives rise to iterated integrals
of depth ≤ j, which can be written in terms of G-functions. Both G’s we encountered
(3.82), (3.84) belong to the same class of functions. The one-fold G-function (3.82) is
equivalent to a logarithm. Accordingly, the class of functions is called multiple poly-
logarithms. As indicated in (3.83), a multiple polylogarithm of depth n is naturally
defined recursively

G [z1, z2, . . . , zn;x] =

ˆ x

0

dx1
x1 − z1

G [z2, . . . , zn;x1] , (3.85)

whereby

G[0, . . . , 0︸ ︷︷ ︸
n times

;x] =
ln(x)n

n!
. (3.86)

For zn ̸= 0, we conclude

G [z1, z2, . . . , zn;x] =

ˆ x

0

dx1
x1 − z1

ˆ x1

0

dx2
x2 − z2

. . .

ˆ xn−1

0

dxn
xn − zn

. (3.87)

The depth of the iterated integral, which is n in the above equation, also defines the
weight of a multiple polylogarithm. Multiple polylogarithms with zn ̸= 0 additionally
fulfil a scaling relation

G [z1, z2, . . . , zn;x] = G [yz1, yz2, . . . , yzn; yx] , zn, y ∈ C\{0}. (3.88)

In the context of multiple polylogarithms, we may take z1 . . . zn as letters and obtain
a shuffle product in correspondence with (3.80),

G [z1, . . . , zi;x]G [zi+1, . . . , zn;x] =
∑
σ

G
[
zσ(1), . . . , zσ(n);x

]
, (3.89)
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where σ permutes all indices without changing the internal order of (1, . . . , i) and
(i+ 1, . . . , n). Multiple polylogarithms, therefore, obey a shuffle algebra.

The shuffle product of multiple polylogarithms (3.89) makes it possible to remove so-
called trailing zeros, i.e. zn−j−1 ̸= 0 and zn−j = . . . = zn = 0. We find for example

G [0;x]G [z1;x] = G [0, z1;x] +G [z1, 0;x] ,

⇒ G [z1, 0;x] = −G [0, z1;x] +G [0;x]G [z1;x]

= −G [0, z1;x] + ln [x]G [z1;x] .

For our toy example, the general solution of the i-th order in epsilon J (i) can be given
in terms of multiple polylogarithms,

J (i) = B(0)Ci G[z, . . . , z︸ ︷︷ ︸
i times

;x] +B(1)C(i−1) G[ z, . . . , z︸ ︷︷ ︸
(i−1)times

;x]

+B(2)C(i−2) G[ z, . . . , z︸ ︷︷ ︸
(i−2) times

;x] + . . .+B(i−1)C G [z;x] +B(i).

Implying for the full solution

J(x) = B(0) + ϵ
(
B(0)C G [z;x] +B(1)

)
+ ϵ2

(
B(0)C2 G [z, z;x] +B(1)C G [z;x] +B(2)

)
+ ϵ3

(
B(0)C3 G [z, z, z;x] +B(1)C2 G [z, z;x] +B(2)C G [z;x] +B(3)

)
+O

(
ϵ4
)
.

We know, that the solution to a canonical differential equation has uniform weight, more
specifically uniform weight zero if its series starts with an ϵ0-term. With a rational
number C, this determines the weight of all constants in the solution. We know that ϵj

has weight (−j) and G [z1, . . . , zj ;x] weight j. It follows, that a non-zero constant B(j)

must have weight j as well to ensure uniform weight. Boundary constants are determined
by boundary conditions. A boundary condition could, for example, be found at x = 0,
where J amounts to

J(0) = a(0) + ϵa(1) + ϵ2a(2) + ϵ3a(3) + . . . .

The definition of the ϵ-form (3.72) places the requirement on its non-zero boundary con-
stants to be of uniform weight. Hence, each a(j) has to be either a transcendental number
of weight j or zero. Every B(j) has to be equal to a(j), yielding correct weight properties.

We demonstrated that multiple polylogarithms are a class of functions sufficient to
express the solution of a differential equation in ϵ-form possessing an alphabet free of
non-rational functions. We gave a definition in terms of iterated integrals (3.87). Mul-
tiple polylogarithms have also a sum representation, for more information we refer to
[57] chapter 8.
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3.6 On the solution strategy for the system of differential
equations

In section 3.5, we introduced the method of differential equations as a solution strategy
for a set of master integrals. The ϵ-form of differential equations (3.72) is thereby an
especially desirable form, as discussed in the last two subsections. Its solution may be
written as Taylor series in ϵ. Each series coefficient consists of iterated integrals, or more
specifically multiple polylogarithms (see section 3.5.2). Furthermore, the j-th series co-
efficient has weight j yielding a solution of uniform weight zero. Hence, we search for
integrals of uniform weight while searching for a canonical basis.

At the beginning of section 3.5.1 we started with an arbitrary basis of master integrals
I⃗ = (I1, . . . , INMI

)T and its system of differential equations with respect to kinematic
variables x1, . . . , xNv . Afterwards, we performed a transformation to obtain a canonical
basis J⃗ = (J1, . . . , JNMI

)T . As mentioned in section 3.5.1, it may happen that a basis
transformation U causes a linear dependence in ϵ, but leads to square roots in arguments
of some dlog-forms ωi. To solve this issue, a variable transformation rationalising all
square roots can be applied. A summary of the complete procedure is sketched in box
1.

Box 1: Canonical master integrals as solution strategy
within the framework of differential equations

A pre-canonical basis of master integrals I⃗ = (I1, . . . , INMI
)T , depending on kine-

matic variables (x1, . . . , xNv) may be solved within the framework of differential
equations:

Pre-canonical
system of differential equations:

dI⃗ = A (ϵ, x1, . . . , xNv) I⃗ , A =

Nv∑
i

Axidxi

⇓
Basis transformation: I⃗ = U (ϵ, x1, . . . , xNv) J⃗ → factor out ϵ

⇓
Variable transformation:

(
x1, . . . , xNv

)
→
(
x′1, . . . , x

′
Nv

)
→ rationalise roots

⇓
Canonical
system of differential equations:

dJ⃗ = ϵÃ
(
x′1, . . . , x

′
Nv

)
J⃗ , Ã =

∑
i

Ciωi

⇓
Solve order by order in ϵ → expressible in G

[
z1, . . . , zn;x

′] (see (3.87))

Here, Axi and Ci are NMI ×NMI -dimensional matrices. Axi may depend on kinematic
variables and ϵ = 4−D

2 , whereas Ci purely consists of rational numbers. ωi are dlog-forms
containing rational functions of the kinematic variables.
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Clearly, the main task within the method of differential equations is the search for a
canonical basis J⃗ , i.e. the search for an appropriate transformation U . And, if necessary
the search for a variable transformation. Unfortunately, no general method for finding
U is known. Deterministic algorithms exist [68–70, 72–74], however they cannot handle
complex problems like the one considered in this thesis. In this thesis we use a heuristic
method, which will be discussed in section 5.4.4. In this section we introduce a main
tool regarding this method as well as an algorithm determining variable transformations.

Before we actually try to find a canonical basis, we may simplify our problem, util-
ising the structure of matrices within the system of differential equations,

d


I⃗sec1

I⃗sec2

I⃗sec3

. . .

 =


A(1) 0 0 . . .

A(1×2) A(2) 0

A(1×3) A(2×3) A(3)

. . .



I⃗sec1

I⃗sec2

I⃗sec3

. . .

 , (3.90)

A(j) =

Nv∑
i

A(j)
xi

dxi,
∂

∂xi
I⃗secj = A(j)

xi
I⃗secj ,

I⃗secj denotes the set of master integrals belonging to sector j. A
(j)
xi , A

(l×j)
xi denote

matrices with dimensions determined by the length of I⃗secj or the length of I⃗secl and
I⃗secj respectively.

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

Figure 3.5: Block decomposition: Illustrative sketch of workflow regarding a system
with three sectors containing 2, 2 and 1 master integral, respectively.

We observe, that Axi are lower block-triangular matrices. This results from the fact,
that master integrals are ordered starting with those belonging to the simplest sector,
as described in section 3.5 on page 44. Sectors manifest themselves as blocks on the
diagonal, sub-sectors contributions appear to their left. Hence, we may divide the
complete differential equation into equations for each sector,

∂

∂x
I⃗secj = A(j)I⃗secj +

∑
l<j

A(l×j)I⃗secl ,
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and treat each block in (3.90) individually.

We may transform the complete matrix by transforming its blocks moving from its
top to its bottom and from right to left as illustrated in fig.3.5. Thereby, we must not
change blocks we already transformed, but we may change blocks we did not investigate
yet. Details on this procedure will be given in section 5.4.2.

An important tool for the study of diagonal blocks is introduced in the following sub-
section, namely maximal cuts of Feynman integrals. Afterwards, in section 3.6.2, we
discuss a rationalisation algorithm most helpful in constructing appropriate variable
transformations.

3.6.1 Maximal Cuts

Previously, we stressed the fact that matrices of a system of differential equations are
lower block triangular and we may find appropriate transformations for each block indi-
vidually. In this section we discuss an operation that projects a differential equation onto
its homogeneous part, allowing the dedicated study of diagonal blocks [75]. This op-
eration refers to taking the maximal cut of a Feynman integral in Baikov representation.

We recall the Baikov representation of Feynman integrals

Iν1,...,νn = K

ˆ
C
dnz B(z)

D−l−e−1
2

n∏
j=1

z
−νj
j , (3.91)

where zj are Baikov variables, i.e. essentially the propagators of the regarded integral,
the νi ∈ Z their exponents and B(z) denotes the Baikov polynomial (3.43). (l is the
number of loops, e the number of independent external momenta and D the dimension.)
The prefactor K and the integration domain C can be read off from (3.44) and (3.45),
but are of no importance here. We only need to remember that C was rather compli-
cated.

In the following, we first discuss the cut of a single edge i with a propagator raised
to power one, νi = 1. In order to cut a propagator zi with νi = 1 of I, we may view the
integral as

Iν1,...,νi=1,...,νn ∼
ˆ
C

f(z)

zi
dzi,

where f(z) ∼ B(z)
D−l−e−1

2
∏

j ̸=i z
−νj
j . To cut zi we replace the integration contour by a

small anti-clockwise circle around zi = 0, which amounts to taking the residue at zi = 0,

Iν1,...,νi=1,...,νn → Cut|i (Iν1,...,νi=1,...,νn) ,ˆ
C

f(z)

zi
dzi →

ffi
zi=0

f(z)

zi
dzi = 2πi res

(
f(z)

zi
, zi = 0

)
= 2πi

ˆ
f(z)δ(zi)dzi. (3.92)

We deduce, that in practice, we may perform a cut of a propagator raised to power one
through a substitution in the integrand

1

zi
→ 2πi δ (zi) ,
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Cut|i (Iν1,...,νi=1,...,νn) = 2πi K

ˆ
C
dnz δ (zi)B(z)

D−l−e−1
2

n∏
j=1
j ̸=i

z
−νj
j . (3.93)

The integration of a delta function is carried out straightforwardly and corresponds to
a simplification of the Baikov polynomial

B(z) → B(z)|zi=0.

Now, we discuss the case νi ̸= 1, i.e. the cut of a propagator raised to powers greater
or smaller than one. If νi > 1, we may expand the integral in a Laurent series around
zi = 0 and find its residue as the coefficient of the 1

zi
-term. If νi ≤ 0, the integral has

no residue in zi = 0 and the cut of zi gives zero,

Cut|i
(
I...,νi−1,0,νi+1,...

)
= 0.

On the one hand, cutting an edge of an integral simplifies the integration over its
propagators drastically. On the other hand, important properties of the original integral
like integration by parts relations are preserved: For a set of master integrals fulfilling

dI⃗ = AI⃗,

we may take cuts of I⃗ without invalidating the differential equation [75],

dCut
(
I⃗
)
= A Cut

(
I⃗
)
.

This is especially useful if we cut an integral not only once, but wherever possible. The
maximal cut is defined by the simultaneous cut of all propagators zi with positive
exponents νi > 0. We remember how we may divide differential equations of a sector
I⃗secj into a homogeneous part and sub-sector contributions,

∂

∂x
I⃗secj = A(j)I⃗secj +

∑
l<j

A(l×j)I⃗secl . (3.94)

A sector is defined by a certain set of propagators {zj} with positive indices {νj > 0}.
Any sub-sector consists of a subset of these, hence every integral from sub-sectors in
(3.94) misses at least one of the propagators from {zj}. Cutting this missing propagator
forces the sub-sector integral to vanish. Applying the maximal cut onto (3.94), i.e.
cutting all {zj}, therefore, results into

∂

∂x
MaxCut

(
I⃗secj

)
= A(j)MaxCut

(
I⃗secj

)
+ 0.

The sub-sector contributions vanish, we are left with a simpler differential equation. We
see, the maximal cut is a solution to the homogeneous part of (3.94).

Furthermore, it is important to note, that uniform weight properties are preserved under
the maximal cut. Solutions to canonical differential equations are integrals of uniform
weight, hence, their maximal cuts also have uniform weight. To gain information about
weight properties of an integral, we therefore might study the simpler maximally cut
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integral first. As we will explain in details in section 5.4.4 (see especially box 2), we may
modify the integration contour and the integrand of a maximally cut integral, such that
the leading term of its ϵ-expansion is a constant of weight zero. After modifying the
integrand of the original integral accordingly, we have an ansatz for a canonical integral.

We see, maximal cuts allow the dedicated study of diagonal blocks and are an essential
tool in the search for integrals of uniform weight. However, we not only have to deal
with basis transformations, but also with variable transformations, hence, we will look
at them in the next subsection.

3.6.2 Rationalisation algorithm

We aim at solving a differential equation and the corresponding set of master integrals
in terms of multiple polylogarithms. Finding a canonical differential equation is thereby
the most convenient way to achieve this goal. A canonical differential equation is linear
in ϵ and expressible through dlog-forms containing only rational functions. In section
3.5.1, we mentioned how we might only find a non-rational transformation U for a set
of pre-canonical master integrals I⃗ to cause a linear dependence in ϵ,

I⃗ = UJ⃗ ⇒ dJ⃗ = ϵA (x1, . . . , xNv) J⃗ .

If the resulting matrix A can not be turned into a rational matrix, it is not expressible in
terms of dlog-forms which contain only rational functions. As a result, the master inte-
grals J⃗ are not easily expressible in terms of multiple polylogarithms. However, A might
be turned into a rational matrix through an appropriate variable transformation. The
variable transformation has to lead to a square under each square root, rationalising all
square roots. Note, that such a rationalisation is not always possible [76]. Note further,
that examples of Feynman integrals with singularities involving unrationalisable roots
which are still expressible in terms of multiple polylogarithms exist [77].

In the following we will sketch an algorithmic approach to the problem of rationali-
sation, which was introduced in [78], in a manner understandable without knowledge
about its theoretical background from algebraic geometry. For further information and
detailed definitions we refer to [78, 79] and to [57] section 7.2.

We consider a square root

r1 =

√
q1
q2
,

which depends on the ratio of two polynomials q1(x1, . . . , xNv), q2(x1, . . . , xNv), where
x1, . . . , xNv is the set of kinematic variables. We seek a transformation

r1 −→ ϕr(x
′
0, . . . , x

′
Nv

),

xi −→ ϕxi(x
′
0, . . . , x

′
Nv

),

such that ϕr is rational in x′1, . . . , x
′
n. We may search for an appropriate variable trans-

formation in the following way:
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6. On the solution strategy for the system of differential equations

1. Define f(r, x1, . . . , xNv) ≡ q2 · r2 − q1 and identify the degree d of f .

2. Find a point p = (a0, . . . , aNv) of multiplicity m = d − 1, i.e. determine p such
that all partial derivatives of f of order < m vanish at p, but ensure that at least
one none-vanishing m-th partial derivative exists.

3. Set g(r, x1, . . . , xNv) ≡ f(r + a0, x1 + a1, . . . , xNv + aNv) and collect terms with
common degree: g(r, x1, . . . , xNv) = gd(r, x1, . . . , xNv)+gd−1(r, x1, . . . , xNv). Here,
gj denotes a homogeneous polynomial of degree j.

4. Now, the desired transformations are found to be

r1 → ϕr(x
′
0, . . . , x

′
Nv

) = −x′0
gd−1(x

′
0, . . . , x

′
Nv

)

gd(x
′
0, . . . , x

′
Nv

)
+ a0,

xi → ϕxi(x
′
0, . . . , x

′
Nv

) = −x′i
gd−1(x

′
0, . . . , x

′
Nv

)

gd(x
′
0, . . . , x

′
Nv

)
+ ai, (3.95)

whereby a single x′i, typically x′0, is set to one.

This algorithm only holds if p is not infinity. However, it may be extended to include
points at infinity (see [57] section 7.2.).

We illustrate the algorithm described above, while deriving a rationalisation for

r1 =
√
−v(4− v).

1. The defining function f = r2 + v(4− v) has degree 2.

2. Hence, we determine a point p with multiplicity one. p = (r = 0, v = 0) fulfills
the requirements, since f(p) = 0 and ∂f

∂v (p) = 4 ̸= 0.

3. We set f(r + 0, v + 0) = r2 − v2︸ ︷︷ ︸
=g2

+ 4v︸︷︷︸
=g1

.

4. With x′0 = 1, x′1 = x′, we find the transformations

ϕr(1, x
′) = −g1(1, x

′)

g2(1, x′)
+ 0 = − 4x′

1− x′2
,

ϕx1(1, x
′) = −x′

g1(1, x
′)

g2(1, x′)
+ 0 = − 4x′2

1− x′2
.

We constructed an appropriate variable transformation,

v = − 4x′2

1− x′2

⇒ r1 = − 4x′

1− x′2
.

Alternatively, we may work with the transformation that we obtain after including the
substitution

x′ =
1− x

1 + x
,
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and choosing the opposite sign of the square root,

⇒ v =
−(1− x)2

x
, (3.96)

⇒ r1 =
1− x2

x
.

Another, more involved application of the algorithmic approach will be demonstrated
in section 5.5.1, see (5.79), (5.80). There, we rationalise multiple square roots simulta-
neously. If multiple square roots occur, we may consecutively apply the rationalisation
algorithm to each root. Afterwards we finally arrive at a canonical differential equation,

∂

∂xi
J⃗ = ϵAxi (x1, . . .) J⃗

xi→x′
i−→ ∂

∂x′i
J⃗ = ϵ

Nv∑
j

∂xj
∂x′i

Axj

(
x′1, . . .

)
J⃗ ,

dJ⃗ = A (x1, . . .) J⃗
xi→x′

i−→ dJ⃗ = ϵÃ
(
x′1, . . .

)
J⃗ ,

where the resulting matrix-valued one-form is given by

Ã
(
x′1, . . .

)
=

Nv∑
i

 Nv∑
j

∂xj
∂x′i

Axj

(
x′1, . . .

) dx′i.
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CHAPTER

FOUR

THE STRATEGY

In this chapter we provide a concise summary of the strategy employed in this thesis
as well as an overview of its structure. In correspondence, this chapter serves as a road
map to sections and topics. This thesis is divided into two main parts:

1) The calculation of all three-loop master integrals with internal top- and
W-propagators relevant to the Higgs boson self-energy at O

(
α2αs

)
.

2) The discussion of the mixed QCD-electroweak correction involving charged weak
bosons to the Higgs boson decay rate into a bottom quark pair Γ

(
H → bb̄

)
.

The former are essential building blocks of the latter, as the optical theorem links self-
energy diagrams to decay rates. They will be discussed in chapter 5. Afterwards, in
chapter 6 we consider the correction to the decay rate. Here, we display the workflow of
both side by side, thereby we also mention corresponding sections of theoretical back-
ground. The procedures sketched in this chapter are kept general, they may be utilised
to compute any set of master integrals which can be brought to canonical form, as well
as any correction to a decay rate.

We take the results from 1) to express all integrals appearing in 2). Consequently,
we first have to agree on a set of topologies and top sectors sufficient to express all
occurring diagrams. Afterwards, we may separate the workflow. The steps on the way
to determine the correction to Γ

(
H → bb̄

)
will be listed down below in the left column,

whereas the calculation of master integrals is sketched in the right column.
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The strategy

• Determine all contributing Feynman diagrams → application in section 6.3.

• Chose an appropriate auxiliary topology → application in section 5.2.

The decay rate:

Γ
(
H → bb̄

)
with internal charged

bosons at O(ααs) → chapter 6

The master integrals:

Higgs self-energy with internal top- and
W-propagators at O

(
α2αs

)
→ chapter 5

• Calculate all Feynman diagrams:

– Express Feynman diagrams in
terms of Feynman rules.

→ Feynman rules in section 2.2.1

→ application in
sections 6.4.1, 6.4.2

– Transform all emerging integrals
to scalar integrals.

→ theory in section 3.1

– Reduce all scalar integrals to
pre-canonical master integrals,

Ii =

NMI∑
j

ci,jIj .

→ theory in section 3.4

– Express pre-canonical master
integrals in terms of canonical
master integrals,

I⃗ = UJ⃗ ⇒ Ii =

NMI∑
j

ui,jJj .

• Sum over all Feynman diagrams,

Σ
(α2αs)W
H =

∑
diagrams

NMI∑
j

fjJj .

→ application in section 6.4

• Find a set of pre-canonical
master integrals,

I⃗ = (I1, . . . , INMI
)T .

→ theory in section 3.4

→ application in section 5.3

• Determine their system of
differential equations,

dI⃗ = A
(
ϵ, x1, . . . , xNv︸ ︷︷ ︸

kinematic var.

)
I⃗.

→ theory in begin of section 3.5

→ application in section 5.3.1

• Transform to a canonical system
of differential equations:

– Basis transformations,

→ application in section 5.4

– Variable transformations,

→ application in section 5.5.1

dJ⃗ = ϵÃ
(
x′1, . . . , x

′
Nv

)
J⃗ .

→ theory in sections 3.5.1 & 3.6

− Canonical basis J⃗ is given by iterated integrals.

→ theory in sections 3.5.1 & 3.5.2

→ application in section 5.5, especially section 5.5.4
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• Renormalisation:

– Calculate all necessary diagrams
with counterterm insertions.

– Add them to sum

→ theory in section 2.3

→ application in section 6.5

• Apply the optical theorem to obtain
the decay rate

Γ(H −→ bb̄) = 1
mH

Im (A (H → H))

→ theory in section 2.1.1

→ discussion in section 6.2

After the construction of a (rough) strategy, we are able to proceed with the main parts
of this thesis in the following chapters. We start with its major work, the derivation of
master integrals as outlined above on the right. Afterwards, we discuss the decay rate
as phenomenological application. In the sections highlighted above, we provide detailed
information on intermediate steps as well as explanatory examples.
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CHAPTER

FIVE

THREE-LOOP MASTER INTEGRALS FOR THE HIGGS
BOSON SELF-ENERGY INVOLVING TOP QUARKS AND

W-BOSONS

After setting up the framework of this thesis, we start with its main part: the calcula-
tion of three-loop master integrals for the Higgs boson self-energy. Master integrals are
basis integrals sufficient to express one or multiple families of Feynman integrals under
consideration. We already sketched the strategy we are going to apply in the preceding
chapter and gave required knowledge about Feynman integrals in chapter 3. The results
discussed here were published in [1]. In [1] the emphasise is on presentation of results,
whereas the emphasis of this chapter is on insights into (practical) calculations.

We start this chapter with an introduction. Afterwards, in section 5.2 we show all
essential top sector diagrams and find appropriate topologies. Any regarded self-energy
diagram gives rise to Feynman integrals depending on the propagators of these topologies
(the emergence of Feynman integrals and their expression in terms of propagators was
explained in section 3.1). The respective Feynman integrals may be expressed in terms
of basis integrals with the help of the Laporta algorithm (discussed in section 3.4). As
sketched in chapter 4, the next step is, therefore, the generation of pre-canonical master
integrals. This step will be described in section 5.3. In order to solve those, we relate
them to another so-called canonical basis. A canonical basis accompanies a system of
differential equations in ϵ-form, which may be solved straightforwardly order by order
in the dimensional regularisation parameter (see section 3.5.1 for the definition and ad-
vantages of differential equations in ϵ-form). This solution strategy is placed within the
framework of differential equations of Feynman integrals (see section 3.5). We initiate it
in section 5.3.1, as we build differential equations of the pre-canonical master integrals
with respect to their kinematic variables. Afterwards, we are prepared to start with
the main work. In section 5.4, we discuss basis transformations leading to ϵ-factorised
differential equations. We indicated in section 3.6 that we transform differential equa-
tions sector by sector starting with the lowest sector (sectors and “simplicity” in the
context of sectors were discussed in section 3.4.1). We provide insights into this strategy
in section 5.4.2. The homogeneous part of a sector’s differential equation is solved by
the construction of ansätze for integrals of uniform transcendental weight (see section
3.5.1 and section 3.5.2 for weight properties of integrals). The maximal cut introduced

65



Three-loop master integrals for the Higgs boson self-energy

in section 3.6.1 plays a crucial role. In section 5.4.4, we demonstrate its application as
we find integrals of uniform weight for example sectors. A good introductory example
into the topic of basis transformations, integrals with certain weight properties and the
utilisation of the maximal cut is given in section 5.4.3. There we encounter again the
tadpole and the bubble integral (see section 3.2). The transformed basis integrals of
uniform weight zero are presented in section 5.5. After the inclusion of variable transfor-
mations in section 5.5.1, the canonical master integrals give rise to differential equations
in ϵ-form. These are expressible through differential one-forms containing only simple
poles, which are presented in section 5.5.2 (see section 3.5.1 for the necessity of variable
transformations and section 3.6.2 for their determination). Boundary values of the inte-
grals, i.e. values of the integrals at a specific kinematic point, are calculated in section
5.5.3. They enable the presentation of results in terms of multiple polylogarithms in
section 5.5.4 (multiple polylogarithms and their arising out of differential equations in
ϵ-form were discussed in section 3.5.2). We close this chapter with a conclusion and
summary in section 5.6.

5.1 Introduction

The Higgs boson self-energy plays a key role in the context of Higgs precision physics.
The optical theorem, for example, links its imaginary part directly to the Higgs de-
cay rate (see chapter 6). Here, we, therefore, address contributions to the Higgs boson
self-energy and determine sufficient canonical master integrals. We already discussed a
one-loop contribution in an exemplary manner in section 3.2 (see fig.3.1). Higher loop
contributions are naturally more complicated. Complications arise from the increase of
integration variables as well as from the increase of kinematic invariants. In the context
of self-energy diagrams, the increase of kinematic invariants corresponds to an increase of
massive propagators. We address three-loop contributions containing two different kinds
of internal masses. To be more precise, we analytically calculate all master integrals
sufficient to express three-loop Higgs self-energy diagrams containing internal top and
W-boson propagators. These are of order O

(
α2αs

)
and depend on the squared external

momentum s = p2 and the heavy particle masses mW , mt, since we neglect the bot-
tom quark mass. We work in D = 4−2ϵ dimensions obeying dimensional regularisation.

We would like to mention, that the results presented here do not include all master
integrals of the Higgs boson self-energy at O

(
α2αs

)
. We are missing contributions with

internal Z-boson or photon propagators. However, these involve less internal masses and
are therefore less intricate. Additionally, a main set of master integrals corresponding
to contributions with internal Z-boson propagators are a special case of the here dis-
cussed master integrals as they are obtained in the limit mt → mb. We calculate a more
complicated contribution to the Higgs boson self-energy at O

(
α2αs

)
The emergence of square roots forces us to divide the self-energy diagrams into dif-
ferent sets, which may be classified a priori according to proportionality to the product
of Yukawa couplings ybyt. In the end, we are dealing with three systems of master inte-
grals. The solution of each set proceeds similarly, hence, we describe our methods in a
general manner. In correspondence we keep notations general. Especially in section 5.3
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2. The topologies

and section 5.4, we write I⃗/J⃗ for pre-canonical/canonical master integrals of any system
interchangeably and may not distinguish between (matrices of) differential equations be-
longing to different sets. If we provide examples, we point out the respective system.
We find a basis of uniform weight for each of the sets and obtain canonical differential
equations. Our results are, therefore, expressible in terms of multiple polylogarithms.

5.2 The topologies

This section together with the subsequent section lays the foundation of this chapter.
Here, topologies sufficient to express all occurring self-energy diagrams will be found.
We set up five three-loop topologies depending on one external momentum and two
different kinds of masses. In combination with their top sectors these topologies define
which master integrals need to be computed. In the subsequent section, we specify this
point as we specify notations regarding integrals and find a pre-canonical set of master
integrals. Then, we determine differential equations for this set of master integrals.

Before we display the self-energy diagrams, we would like to make a comment about
the bottom quark mass. The mass of the bottom quark is in the order of magnitude
of 4 GeV. This is negligibly small compared to the boson masses mW ≈ 80 GeV,
mH ≈ 125 GeV and the top quark mass mt ≈ 173 GeV. Hence, we only keep the de-
pendence on the heavy particle masses mW , mt and neglect the bottom quark mass. In
addition to the masses, all diagrams depend on the squared external momentum s = p2,
where the main application corresponds to s = m2

H .

Figure 5.1: Examples of three-loop Higgs self-energy diagrams at O
(
α2αs

)
. Blue lines

represent top quarks with mass mt, wavy orange lines represent W-bosons (or charged
Goldstone bosons) with mass mW , curly lines represent gluons, straight black lines
represent bottom quarks.

We talk about three-loop Higgs boson self-energy diagrams at O
(
α2αs

)
, not only involv-

ing a gluon, which contributes the factor αs but also W-bosons or charged Goldstone
bosons, which convert top quarks to bottom quarks and vice versa. The top sector dia-
grams are shown in fig.5.1. Sub-sector diagrams, i.e. diagrams obtained from pinching
edges, are not shown here (they will be given in chapter 6).

We immediately notice two main points regarding fig.5.1. Firstly, the diagrams may
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Three-loop master integrals for the Higgs boson self-energy

be divided into two sets, diagrams proportional to the product of Yukawa couplings ybyt
given by the first row of fig.5.1 and the complement. Secondly, the diagrams have 8
internal edges each. To demonstrate the consequences of this point, we consider the
first diagram in fig.5.1. We may name its momenta obeying momentum conservation
and number its edges as illustrated in fig.5.2.

p p

k3

k3 − p

k2

k1

k1 − p

−k2 − p

k1 + k2 k2 + k3

7

8

4

1

2

6

3 5

Figure 5.2: Example diagram with momenta and numbered edges. Blue lines carry mass
mt, orange lines mW , black lines are massless.

The external momentum is called p and the three undetermined loop momenta, arising
from three loops, are denoted by k1, k2, k3. In correspondence, each edge gives rise to
one of eight propagators. Edge 1, for example, carries momentum k1 and mass mt,
hence, it gives rise to the propagator

PA
1 = −k21 +m2

t .

At this point, we would like to recall that within the context of Feynman integrals,
we call −q2j + m2

j the propagator of edge j with momentum qj and mass mj . Prop-
agators are situated in the denominator of a Feynman integral, in order to place one
in the numerator, they are raised to negative powers. The choice of the overall sign
of propagators was motivated in chapter 3 (see especially (3.14)). We notice, no edge
in fig.5.2 is accompanied by a momentum simultaneously containing k1 and k3. The
emerging propagators suffice to express each scalar product involving k1, k2 or k3 via
linear combination of themselves except for k1 · k3. We make similar observations for
every diagram in fig.5.1. With l = 3 loops and e = 1 external momentum, we find

Nscp =
l(l + 1)

2
+ e · l

l=3
e=1= 9

independent scalar products involving loop momenta (see (3.9)). Every diagram needs
one additional propagator to be able to uniquely express every scalar product through
a linear combination of propagators and to shift integrals to Baikov representation (see
section 3.3.2). Appropriate auxiliary topologies with nine edges have to be found!

We may set up an auxiliary topology for the diagram in fig.5.2 as displayed in fig.5.3,
now sufficient to express also k1 · k3 through linear combinations of propagators, and
call it topology A. The numbering of its edges coincides with the numbering in fig.5.2
and determines the numbering of propagators. Now, we may identify the diagram in
fig.5.2 with a certain sector of topology A. The sector identity was defined in (3.46), it
reflects the presence of edges within a diagram, since integrals with common propaga-
tors belong to the same sector. Here, edges corresponding to propagators PA

1 − PA
8 are
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present, yielding a sector identity of 255. Hence, sector 255 defines the top sector of
topology A. Any sub-sector is represented by a smaller sector identity.

1

−p

p

p−p

4 6

7

82

3 5

9

Topology A

Figure 5.3: Topology A. Blue lines carry
mass mt, orange lines mW , black lines are
massless, external momenta are outgoing.

PA
1 = −k21 +m2

t ,

PA
2 = − (k1 − p)2 +m2

t ,

PA
3 = − (k1 + k2)

2 ,

PA
4 = −k22 +m2

t ,

PA
5 = − (k2 + k3)

2 +m2
W ,

PA
6 = − (k2 + p)2 +m2

t ,

PA
7 = −k23,

PA
8 = − (k3 − p)2 ,

PA
9 = − (k1 − k3)

2 +m2
t .

7

8

4

1

2

6

3 5

Topology A, Sector 255

7

8

4

1

2

6

3 5

Topology B, Sector 255

7

8

3

1

2

6

5 4

Topology C, Sector 255

1

2

3

4 7

8

6

5

Topology D, Sector 255

Figure 5.4: Top-sector three-loop Higgs self-energy diagrams containing W- and top
quarks, proportional to the product of Yukawa couplings ybyt. The colouring specifies
the internal masses of propagators: Blue lines carry mass mt, orange lines mW , black
lines are massless. External momenta are outgoing.

Topology A was constructed from the first diagram in fig.5.1. In the same manner, the
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other diagrams proportional to the product of Yukawa couplings ybyt are the starting
points for the construction of topologies B,C and D. Momenta are distributed according
to momentum conservation, edges are numbered as in fig.5.4 and an appropriate ninth
propagator is found. The momenta of topology B match those from topology A, but
less propagators of topology B are massive. Topology C corresponds to the non-planar
diagram in fig.5.4. The resulting topologies are given in fig.5.5 together with topology
A, for completeness. The resulting propagators will be given in table 5.1. Figure 5.4
additionally shows the resulting sector each diagram corresponds to. All topologies
corresponding to diagrams proportional to the product of Yukawa couplings ybyt have
top sector 255.

1

−p

p

p−p

4 6

7

82

3 5

9

Topology A

1

−p

p

p−p

4 6

7

82

3 5

9

Topology B

1

−p

p

p

5 9

7

62

3
8

4

Topology C

−p

1

−p

p

p−p

5 9

7

82

4 6

3

Topology D

Figure 5.5: Graphs representing topologies A, B, C, D. The colouring specifies the
internal masses of the propagators: Blue lines carry mass mt, orange lines mass mW

and black lines are massless. External momenta are outgoing.

The momenta of diagrams not proportional to the product of Yukawa couplings ybyt,
shown in fig.5.6, overlap such that a common set of nine propagators is easily found.
The resulting topology, called topology B’, resembles topology B, but its masses are
exchanged mW ↔ mt. This choice is motivated as we notice that the first diagram in
fig.5.6 matches the diagram corresponding to topology B, i.e. the second diagram in
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fig.5.4, with exchanged masses. Resulting propagators can be read off from table 5.1.
We find three different top sectors for this topology: 255, 479 and 509.

7

8

4

1

2

6

3 5

Topology B’, Sector 255

7

8

4

9

3

5

Topology B’, Sector 479

1

2

1

7

8

3 2

5

6

4

Topology B’, Sector 509

Figure 5.6: Top-sector three-loop Higgs self-energy diagrams containing W - and top
quark propagators, not proportional to ybyt. Straight blue lines carry mass mt, wavy
orange lines mass mW , curly lines represent gluons, straight black lines represent bottom
quarks.

1

−p

p

p−p

4 6

7

82

3 5

9

Topology B’

Figure 5.7: Graph representing the auxiliary topology B’. The colouring specifies the
internal masses of the propagators: Blue lines carry mass mt, orange lines mass mW

and black lines are massless. External momenta are outgoing.
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Topology A:

PA
1 = −k21 +m2

t PA
2 = − (k1 − p)2 +m2

t PA
3 = − (k1 + k2)

2

PA
4 = −k22 +m2

t PA
5 = − (k2 + k3)

2 +m2
W PA

6 = − (k2 + p)2 +m2
t

PA
7 = −k23 PA

8 = − (k3 − p)2 PA
9 = − (k1 − k3)

2 +m2
t

Topology B:

PB
1 = −k21 +m2

t PB
2 = − (k1 − p)2 +m2

t PB
3 = − (k1 + k2)

2 +m2
W

PB
4 = −k22 PB

5 = − (k2 + k3)
2 PB

6 = − (k2 + p)2

PA
7 = −k23 PA

8 = − (k3 − p)2 PB
9 = − (k1 − k3)

2 +m2
W

Topology C:

PC
1 = −k21 +m2

t PC
2 = − (k1 − p)2 +m2

t PC
3 = − (k1 + k2)

2

PC
4 = − (k1 + k2 − k3)

2 PC
5 = −k22 +m2

W PC
6 = − (k2 − k3 + p)2 +m2

t

PA
7 = −k23 PA

8 = − (k3 − p)2 PC
9 = − (k2 + p)2 +m2

t

Topology D:

PD
1 = −k21 +m2

t PD
2 = − (k1 − p)2 +m2

t PD
3 = − (k1 − k3)

2 +m2
W

PD
4 = − (k1 + k2)

2 +m2
t PD

5 = −k22 PD
6 = − (k2 + k3)

2

PA
7 = −k23 PA

8 = − (k3 − p)2 PD
9 = − (k2 + p)2

Topology B’:

PB
1 = −k21 +m2

W PB
2 = − (k1 − p)2 +m2

W PB
3 = − (k1 + k2)

2 +m2
t

PB
4 = −k22 PB

5 = − (k2 + k3)
2 PB

6 = − (k2 + p)2

PA
7 = −k23 PA

8 = − (k3 − p)2 PB
9 = − (k1 − k3)

2 +m2
t

Table 5.1: The topologies A,B,C,D,B’. Definition of all propagators.

5.3 The pre-canonical master integrals

In the preceding section we constructed five different topologies and found their top
sectors. We naturally divided them into two systems:

System 1: Topologies A, B, C and D (fig.5.5) , i.e. the topologies corresponding to
all diagrams proportional to the product of Yukawa couplings ybyt (fig.5.4). Each
of them has sector 255 as top sector.

System 2: Topology B’ (fig.5.7), i.e. the topology corresponding to the remaining
diagrams (fig.5.6). Its top sectors are 255, 479, 509.

In correspondence with these topologies, we consider three-loopD = (4− 2ϵ)-dimensional
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3. The pre-canonical master integrals

Feynman integrals of the following kind

IXν1ν2ν3ν4ν5ν6ν7ν8ν9 = e3ϵγE
(
µ2
)ν− 3D

2

ˆ
dDk1

iπ
D
2

dDk2

iπ
D
2

dDk3

iπ
D
2

9∏
j=1

1(
PX
j

)νj , (5.1)

where µ is an arbitrary parameter with mass dimension one and γE is Euler’s constant.
Furthermore, νj ∈ Z are the exponents of propagators PX

j , whereby

ν =

n∑
j=1

νj .

The integrals in (5.1) are given in momentum representation (see (3.29) and also (3.10)
for more information on the choice of prefactors) and define the families of Feynman
integrals belonging to the topologies

X = A,B,C,D,B′,

defined in fig.5.5, fig.5.7 and table 5.1. The Feynman parameter representation (3.36)
and the Schwinger parameter representation (3.35) were introduced in section 3.3.1.
Here, they are given by

IXν1ν2...ν9 =
eϵ3γEΓ

(
ν − 3D

2

)
9∏

j=1

Γ(νj)

ˆ
aj≥0

d9a δ

1−
9∑

j=1

aj

 9∏
j=1

a
νj−1
j

UX(a)ν−2D

FX(a)ν−
3D
2

, (5.2)

IXν1ν2...ν9 =
eϵ3γE

9∏
j=1

Γ(νj)

ˆ
αj≥0

d9α
9∏

j=1

α
νj−1
j

1

UX(α)
D
2

exp

(
−FX(α)

UX(α)

)
, (5.3)

where UX ,FX are the first and second graph polynomial of topologyX. They are derived
from spanning trees and spanning 2-forests of the graph representing the respective
topology (see (3.38)). Consequently, the first graph polynomials of topology A, topology
B and topology B’ are identical, since the structure of their graphs is identical. Using
the abbreviation aij = (ai + aj) the first graph polynomials evaluate to

UA (a) = UB (a) = UB′ (a) = a12 a3 a5 + a12 a3 a78 + a12 a3 a9 + a12 a46 a5

+ a12 a46 a78 + a12 a46 a9 + a12 a5 a78 + a12 a5 a9 + a3 a46 a5 + a3 a46 a78

+ a3 a46 a9 + a3 a5 a78 + a3 a78 a9 + a46 a5 a9 + a46 a78 a9 + a5 a78 a9,

UC (a) = a12 a3 a4 + a12 a3 a6 + a12 a3 a78 + a12 a4 a59 + a12 a4 a78 + a12 a59 a6

+ a12 a59 a78 + a12 a6 a78 + a3 a4 a59 + a3 a4 a6 + a3 a59 a6 + a3 a59 a78

+ a3 a6 a78 + a4 a59 a6 + a4 a59 a78 + a4 a6 a78,

UD (a) = a12 a3 a4 + a12 a3 a59 + a12 a3 a6 + a12 a4 a6 + a12 a4 a78 + a12 a59 a6

+ a12 a59 a78 + a12 a6 a78 + a3 a4 a59 + a3 a4 a78 + a3 a59 a6 + a3 a59 a78

+ a3 a6 a78 + a4 a59 a6 + a4 a59 a78 + a4 a6 a78. (5.4)
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We work in D = (4−2ϵ)-dimensions, however, we can shift the dimension of space-time
with the help of the dimensional shift operator D±. The dimensional shift operator
raises or lowers the dimension of a Feynman integral by 2,

D±IXν1ν2ν3ν4ν5ν6ν7ν8ν9 (D) = IXν1ν2ν3ν4ν5ν6ν7ν8ν9 (D ± 2) . (5.5)

During the construction of master integrals with uniform weight it is often helpful to
switch to D = (2−2ϵ)-dimensions. The tadpole (3.13), for example, has a representation
of uniform weight only in D = (2−2ϵ)-dimensions as we will explore in section 5.4.3. In
order to figure out how D− acts on an integral, we consider the Schwinger parameter
representation (5.3). Its only dependence on D is through the exponent of the first
graph polynomial, hence, we deduce

D−IXν1...ν9 (D) =
eϵlγE

n∏
j=1

Γ(νj)

ˆ
αj≥0

dnα
n∏

j=1

α
νj−1
j

UX(α)

UX(α)
D
2

exp

(
−FX(α)

UX(α)

)
.

To develop an appropriate treatment of the extra U in the numerator, we recall the
raising operator (3.57), that acts on an integral in momentum representation like

j+I...,νj ,... = νj · I...,(νj+1),....

In correspondence, it acts on an integral in Schwinger parameter representation as fol-
lows,

j+IXν1...ν9 (D) =
eϵlγE

n∏
j=1

Γ(νj)

ˆ
αj≥0

dnα
n∏

j=1

α
νj−1
j

αj

UX(α)
D
2

exp

(
−FX(α)

UX(α)

)
.

The extra UX (α1, . . . , α9) in the numerator gives rise to polynomials in the Schwinger
parameters (see (5.4)). Each of these parameters can be generated through the appli-
cation of j+, hence, we can view D− as [80, 81]

D−IXν1...ν9 (D) = UX

(
1+,2+,3+,4+,5+,6+,7+,8+,9+

)
. (5.6)

Any member of the integral families can be expressed through a linear combination
of basis/master integrals. In the following, we determine pre-canonical master integrals
for each system and afterwards we build differential equations with respect to kinematic
variables. The integrals (5.1) kinematically depend on the heavy particle masses mW

and mt as well as on the squared external momentum s = p2.

We find appropriate sets of pre-canonical basis integrals through the reduction of each
top sector. Integral reduction methods rely on integration by parts identities (3.52),
as described in section 3.4. They may be carried out with the help of public available
implementations of the Laporta algorithm, like Kira [82, 83], FIRE/LiteRed [84–87] or

74



3. The pre-canonical master integrals

Reduze [88, 89]. For each top sector we find the numbers of master integrals which are
shown in table 5.2.

Topology Top sector Total number MI’s

A 255 50
B 255 32
C 255 95
D 255 67
B’ 255 32
B’ 479 57
B’ 509 43

Table 5.2: Total number of master integrals (MI’s) per top sector and topology.

Pre-canonical master integral Sector

IA100110000 25

IA110110000 27

IA011110000 30
IA(−1)11110000 30

IA101010100 85
IA101(−1)10100 85

IA011010100 86
IA(−1)11010100 86

IA011(−1)10100 86

IA01101(−1)100 86

IA100110100 89

IA100011100 113
IA10(−1)011100 113

IA1000111(−1)0 113

IA100100110 201

IA100010110 209

IA110111000 59

IA111010100 87
IA111(−1)10100 87

IA110110100 91

. . . . . .

IA11111011(−1) 223

IA110111110 251

Table 5.3: Topology A: Possible choice of first 20 and last two pre-canonical master
integrals defined as in (5.1) and the sector (3.46) they belong to.

The number of master integrals becomes a useful information only if we combine it with
the sectors these master integrals belong to. The sectors and the numbers of integrals
per sector encapsulate all important information about the required master integrals.
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The exact formation of a pre-canonical master integral within a sector, may be chosen
freely. In practice, the choice depends on ordering criteria applied by the utilised com-
puter program. To give an example, table 5.3 shows an extract of a possible choice for
the pre-canonical master integrals of topology A as well as the sectors they belong to.
The full information will be given in table 5.6, table 5.7 and table 5.8.

The integrals in table 5.3 are ordered according to (3.50). First of all and most im-
portant, sectors are ordered by their number of propagators, such that the first sector
is the simplest in the sense that it has the lowest number of propagators. We see, the
first integral in table 5.3 has three propagators, then all integrals with four propagators
line up, before sector 59 starts the line of integrals with five propagators. Integrals are
ordered to ensure that reduction methods relate integrals only to simpler integrals (see
section 3.4.1 for details).

Table 5.2 shows the number of master integrals if we treat each top sector individu-
ally. However, master integrals from different top sectors and different topologies may
be identical or related by symmetries. Out of the 67 master integrals from topology D,
for example, only one integral is not expressible through master integrals of topology A,
B or C. Hence, we may exchange master integrals from one topology with those from a
former topology and determine cumulative sets of master integrals. Table 5.4 displays
respective numbers of the first system and table 5.5 of the second system.

Topologytop sector independent MI’s cumulative number of MI’s

A255 50 A255 50
B255 17 A255+B255 67
C255 37 A255+B255+C255 104
D255 1 A255+B255+C255+D255 105

Table 5.4: System 1: Independent number of master integrals (MI’s) per top sector and
topology as well as cumulative sum.

Topologytop sector independent MI’s cumulative number of MI’s

B′
255 32 B′

255 32
B′

479 29 B′
255 +B′

479 61
B′

509 4 B′
255 +B′

479 +B′
509 65

Table 5.5: System 2: Independent number of master integrals (MI’s) per top sector and
topology as well as cumulative sum.

Note, the numbers in table 5.4 and table 5.5 do not take relations between integrals
of different systems into account. However, topology B’ resembles topology B, but has
switched masses mW ↔ mt. Their integrals under top sector 255 are related.

System 1 amounts to N1
MI = 105 independent master integrals and system 2 to N2

MI =
65 master integrals. Note, that the emergence of square roots will force us to split sys-
tem 2 even further, into system 2a containing top sector 255 and 479 with N2a

MI = 61
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3. The pre-canonical master integrals

integrals and system 2b containing top sector 509 with N2b
MI = 43 integrals. (We will

encounter square roots in section 5.4.3 and section 5.4.4 (see (5.42), (5.58)). We will
deal with them in section 5.5.1.) For each system, we view the ordered sets of master
integrals as vectors,

I⃗1, I⃗2a, I⃗2b.

Table 5.6, table 5.7 and table 5.8 denote the ordered sectors and the numbers of integrals
per sector of system 1, system 2a and system 2b, respectively. As a consequence, they
completely characterise the required master integrals I⃗1, I⃗2a, I⃗2b.

Topology Sectors

A 25 , 27 , 30 , 30 , 85 , 85 , 86 , 86 , 86 , 86 , 89 , 113 , 113 , 113 , 201 ,
209, 59 , 87 , 87 , 91 , 94 , 94 , 94 , 115 , 115 , 115 , 117 , 117 , 117 ,
117 , 121, 203 , 206 , 206 , 211 , 213 , 119 , 119 , 123 , 215 , 215 , 215 ,
222 ,222,235 , 249 , 223 , 223 , 223 , 251

B 113 , 116 , 115 , 117 , 117 , 117 , 118 , 206 , 206 , 206 , 233 , 236,
119 , 119 , 207 , 235 , 223 , 239

C 101 , 101 , 101 , 102 , 103 , 117 , 117 , 117 , 118 , 118 , 118 , 173 , 173 ,
181 , 119 , 119 , 119 , 175 , 183 , 189 , 189 , 190 , 231 , 231 , 231 , 246 ,
246 , 191 , 191 , 191 , 191 , 247 , 247 , 247 , 247 , 253 , 255

D 239

Table 5.6: System 1: Ordered topologies and sectors from system 1. Sector identities
(3.46) define the sector. The number of equal sector identities refers to the number of
master integrals required in this sector.

Sectors from Topology B’

85 , 85 , 86 , 86 , 86 , 86 , 113 , 116 , 197 , 87 , 87 , 115 , 117 , 117 , 117 , 118 ,
199 , 205 , 206 , 206 , 206 , 233 , 236 , 119 , 119 , 207 , 215 , 215 , 215 , 235 , 223 ,
239 ,261 , 263 , 269 , 270 , 270 , 270 , 332 , 396 , 396 , 396 , 452 , 271 , 333 , 334 ,
334 , 334 , 397 , 397 , 397 , 335 , 399 , 413 , 455 , 462 , 462 , 415 , 415 , 415 , 463

Table 5.7: System 2a: Ordered sectors from system 2a. Sector identities (3.46) define
the sector. The number of equal sector identities refers to the number of master integrals
required in this sector.

Sectors from Topology B’

85 , 85 , 113 , 116 , 197 , 117 , 117 , 117 , 205 , 233 , 236 , 261 , 269 , 332 , 396 ,
396 , 396 , 452 , 333 , 397 , 397 , 397 , 413 , 492 , 492 , 493 , 493 , 149 , 149 , 149 ,
149 , 293 , 293 , 293 , 157 , 229 , 229 , 229 , 421 , 421 , 421 , 429 , 429

Table 5.8: System 2b: Ordered sectors from system 2b. Sector identities (3.46) define
the sector. The number of equal sector identities refers to the number of master integrals
required in this sector.

77



Three-loop master integrals for the Higgs boson self-energy

For now, we do not distinguish between the different systems I⃗1, I⃗2a, I⃗2b, since the fol-
lowing procedure is similar for all of them. Hence we keep notations general and drop
the index indicating the system. We write

I⃗ = (I1, . . . , INMI
)T ,

for the master integrals of any of the systems interchangeably. If we want to emphasise
their correspondence to different sectors, we divide the vector into smaller vectors

I⃗ =


I⃗sec1

I⃗sec2

I⃗sec3

. . .

 ,

where the numbers 1, 2, 3, . . . are placeholders that may be replaced by sector identities
from table 5.6, table 5.7 or table 5.8 if we talk about a certain system. To simplify
notations, we do not indicate correspondences to topologies at this level, however, this
should be clear from the context. At the level of specific integrals (5.1) the correspon-
dence is completely specified.

In order to calculate I⃗, we apply the method of differential equation, described in sec-
tion 3.5. We start as we set up differential equations with respect to their kinematic
variables, i.e. p2,m2

W ,m2
t , in the following subsection.

5.3.1 Differential equations

Now, we laid the foundation for our upcoming work, because we specified the numbers,
sectors and topologies of master integrals we need to compute. The 105 and 61/43 pre-
canonical master integrals of system 1 and system 2a/b depend on s = p2 and m2

W ,m2
t .

During the construction of differential equations with respect to these variables, we may
treat the systems on an equal footing. We already derived differential equations with
respect to squared masses for a general set of Feynman integrals in section 3.5, (3.58).
Here, the result we found translates into

µ2 ∂

∂m2
t

IXν1ν2ν3ν4ν5ν6ν7ν8ν9 = −
∑

j∈JX
m2

t

j+IXν1ν2ν3ν4ν5ν6ν7ν8ν9 , (5.7)

µ2 ∂

∂m2
W

IXν1ν2ν3ν4ν5ν6ν7ν8ν9 = −
∑

j∈JX
m2

W

j+IXν1ν2ν3ν4ν5ν6ν7ν8ν9 , (5.8)

where j+ is the raising operator (3.57),

j+I...,νj ,... = νj · I...,(νj+1),....

JX
m2

t
and JX

m2
W

are the sets of edges of topology X = A,B,C,D,B′ that carry mass m2
t

and m2
W , respectively.
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JA
m2

t
= {1, 2, 4, 6, 9}

JB
m2

t
= {1, 2}

JC
m2

t
= {1, 2, 6, 9}

JD
m2

t
= {1, 2, 4}

JB′

m2
t
= {3, 9}

JA
m2

W
= {5}

JB
m2

W
= {3, 9}

JC
m2

W
= {5}

JD
m2

W
= {3}

JB′

m2
W

= {1, 2}

We show an example, a sub sector of topology B’ with top sector 479, namely sector
334. Sector 334 gives rise to three master integrals,

I⃗sec334 =

 IB
′

011100101

IB
′

(−1)11100101

IB
′

0111(−1)0101

 . (5.9)

The integrals contain both top quark propagators PB′
3 , PB′

9 up to power one, hence,
differentiating them with respect to m2

t yields

µ2 ∂

∂m2
t

IB
′

011100101 = −IB
′

012100101 − IB
′

011100102,

µ2 ∂

∂m2
t

IB
′

(−1)11100101 = −IB
′

(−1)12100101 − IB
′

(−1)11100102,

µ2 ∂

∂m2
t

IB
′

0111(−1)0101 = −IB
′

0121(−1)0101 − IB
′

0111(−1)0102. (5.10)

The only W-boson propagator the first and third integral contain is PB′
2 , the second

integral, however, carries PB′
1 raised to power minus one. This minus one becomes a

zero after applying 1+, additionally the sign of the integral changes,

1+IB
′

(−1)11100101 = −IB
′

011100101.

Differentiating the integrals with respect to m2
W , therefore, leads to

µ2 ∂

∂m2
W

IB
′

011100101 = −IB
′

021100101,

µ2 ∂

∂m2
W

IB
′

(−1)11100101 = IB
′

011100101 − IB
′

(−1)21100101,

µ2 ∂

∂m2
W

IB
′

0111(−1)0101 = −IB
′

0211(−1)0101. (5.11)

To differentiate an integral with respect to s, we will obtain a relation among differential
equations with respect to different variables. In this way, the derivative with respect to s
can be constructed from those with respect to masses. This relation holds independently
of the specific set of kinematic variables, hence, we keep a general set x1, . . . , xNv+1,
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which we abbreviate by x. It may be re-translated via x1 = s, x2 = m2
W , x3 = m2

t . The
relation can be constructed within momentum representation through a scaling of loop
momenta k → k

λ and the subsequent application of λ2 ∂
∂λ2 to the integral. A quicker

derivation may be performed within Feynman parameter representation (3.36), which
was introduced in section 3.3.1,

I =
eϵlγEΓ

(
ν − lD

2

)∏n
j=1Γ(νj)

ˆ
aj≥0

dna δ

1−
n∑

j=1

aj

 n∏
j=1

a
νj−1
j

U(a)ν−
(l+1)D

2

F(a)ν−
lD
2

, (5.12)

where U ,F (3.34) are the first and second graph polynomials. U solely depends on
Feynman parameters aj in contrast to F . In the end of section 3.3.1 in (3.38), we
deduced that F depends linearly on kinematic variables. In correspondence, we may
write for the second graph polynomial

F (a, x) =

Nv+1∑
i=1

F ′
xi
· xi,

where

F ′
xi

=
∂

∂xi
F (a, x) .

In order to construct the desired relation, an integral (5.12) is differentiated with respect
to every kinematic variable while multiplying with the respective variable,

Nv+1∑
i=1

xi
∂

∂xi
I =

eϵlγEΓ
(
ν − lD

2

)∏n
j=1Γ(νj)

ˆ
aj≥0

dna δ

1−
n∑

j=1

aj

 n∏
j=1

a
νj−1
j

Nv+1∑
i=1

xi
∂

∂xi

U(a)ν−
(l+1)D

2

F(a)ν−
lD
2

.

Evaluating the derivatives,

Nv+1∑
i=1

xi
∂

∂xi

U(a)ν−
(l+1)D

2

F(a)ν−
lD
2

= −
(
ν − lD

2

)Nv+1∑
i=1

xiF ′
xi
U(a)ν−

(l+1)D
2

F(a)ν−
lD
2
+1

=

(
lD

2
− ν

)
F(a) U(a)ν−

(l+1)D
2

F(a)ν−
lD
2
+1

=

(
lD

2
− ν

)
U(a)ν−

(l+1)D
2

F(a)ν−
lD
2

,

results into the sought after relation

Nv+1∑
i=1

xi
∂

∂xi
I =

(
lD

2
− ν

)
I. (5.13)
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Coming back to x1 = s, x2 = m2
W , x3 = m2

t , l = 3 we obtain(
ν − 3D

2
+ s

∂

∂s
+m2

W

∂

∂m2
W

+m2
t

∂

∂m2
t

)
I = 0. (5.14)

Combining (5.7) and (5.8) with (5.14) we find the resulting derivative with respect to s,

µ2 ∂

∂s
IXν1ν2ν3ν4ν5ν6ν7ν8ν9 =

(
3D

2
− ν

)
µ2

s
IXν1ν2ν3ν4ν5ν6ν7ν8ν9

+
m2

W

s

∑
j∈JX

m2
w

j+IXν1ν2ν3ν4ν5ν6ν7ν8ν9 +
m2

t

s

∑
j∈JX

m2
t

j+IXν1ν2ν3ν4ν5ν6ν7ν8ν9 .

(5.15)

Applying (5.15) to the first integral from our example sector 334 (5.9), we find with
ν = 5,

µ2 ∂

∂s
IB

′
011100101 =

(
3D

2
− 5

)
︸ ︷︷ ︸

=(1−3ϵ)

µ2

s
IB

′
011100101 +

m2
W

s
IB

′
021100101 +

m2
t

s

(
IB

′
012100101 + IB

′
011100102

)
.

(5.16)

The second and third integral from sector 334 have ν = 4. Their derivatives with respect
to s evaluate to

µ2 ∂

∂s
IB

′

(−1)11100101 =

(
3D

2
− 4

)
︸ ︷︷ ︸

=(2−3ϵ)

µ2

s
IB

′

(−1)11100101 +
m2

W

s

(
−IB

′
011100101 + IB

′

(−1)21100101

)

+
m2

t

s

(
IB

′

(−1)12100101 + IB
′

(−1)11100102

)
,

µ2 ∂

∂s
IB

′

0111(−1)0101 = (2− 3ϵ)
µ2

s
IB

′

0111(−1)0101 +
m2

W

s
IB

′

0211(−1)0101

+
m2

t

s

(
IB

′

0121(−1)0101 + IB
′

0111(−1)0102

)
. (5.17)

Now, we are able to differentiate the pre-canonical master integrals with respect to
m2

t ,m
2
W (5.7),(5.8) and p2 (5.15). We recall, the factors of µ2 in the definition of inte-

grals (5.1) shall ensure that integrals depend on scalar, dimensionless kinematic variables
(see (3.10)). We may set

µ2 = m2
t ,

and consequently the integrals kinematically depend on the following variables

v =
p2

m2
t

, w =
m2

W

m2
t

. (5.18)
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Derivatives with respect to w, v can be directly read off from (5.8) and (5.15), since

∂

∂w
IXν1ν2ν3ν4ν5ν6ν7ν8ν9 =µ2 ∂

∂m2
W

IXν1ν2ν3ν4ν5ν6ν7ν8ν9 ,

∂

∂v
IXν1ν2ν3ν4ν5ν6ν7ν8ν9 =µ2 ∂

∂s
IXν1ν2ν3ν4ν5ν6ν7ν8ν9 .

Derivatives of the integrals from sector 334, for example, are obtained from (5.11), (5.16)
and (5.16),

∂

∂w
IB

′
011100101 = −IB

′
021100101,

∂

∂w
IB

′

(−1)11100101 = IB
′

011100101 − IB
′

(−1)21100101,

∂

∂w
IB

′

0111(−1)0101 = −IB
′

0211(−1)0101, (5.19)

∂

∂v
IB

′
011100101 =

1

s

[
(1− 3ϵ)IB

′
011100101 + wIB

′
021100101 + IB

′
012100101 + IB

′
011100102

]
,

∂

∂v
IB

′

(−1)11100101 =
1

s

[
(2− 3ϵ)IB

′

(−1)11100101 + w
(
−IB

′
011100101 + IB

′

(−1)21100101

)
+ IB

′

(−1)12100101 + IB
′

(−1)11100102

]
,

∂

∂v
IB

′

0111(−1)0101 =
1

s

[
(2− 3ϵ) IB

′

0111(−1)0101 + wIB
′

0211(−1)0101 + IB
′

0121(−1)0101 + IB
′

0111(−1)0102

]
.

(5.20)

By construction, some of the integrals on the right hand sides of (5.19) and (5.20) have
additional dots, i.e. propagators raised to power two, compared to the basis integrals
of sector 334 (5.9). Applying integration by parts reduction methods, they are again
expressible through linear combinations of master integrals of sector 334 and sub-sectors.
The integral with a dot on the second propagator, for example, can be re-expressed as

IB
′

021100101 =
1

2w (v2 − 2v(w + 1) + (w − 1)2)

{
IB

′
011100101

[
v2(−2ϵ(w − 3) + 2w − 5)

+ v
(
−2ϵ

(
2w2 − 7w + 3

)
+ 4w2 − 11w + 5

)
+ 2(w − 1)w(ϵ(3w − 7)− 3w + 5)

]
+ IB

′

(−1)11100101

[
−2ϵ

(
v2 + 2vw + v − 3w2 − w − 2

)
+ 2v2 + 4vw + v − 6w2 − w − 3

]
− IB

′

0111(−1)0101

[
2(ϵ− 1)

(
v2 + v(2w − 1)− 3w2 + w

)]
− IB

′
1010000012(ϵ− 1)(v + 3w − 1)

+ IB
′

0111000012(ϵ− 1)
(
v2 + v(w − 1)− 2w(3w + 1)

)
+ IB

′

(−1)111000012(ϵ− 1)(v + 3w − 1)

+ IB
′

01110(−1)0014(ϵ− 1)(v + 3w − 1)

+ IB
′

001100101(4ϵ(v + 2w − 1)− 3v − 5w + 3)
}
. (5.21)

We see, here, the sub-sector contributions come from the master integral belonging

to sector 261 with master integral I⃗sec261 =
(
IB

′
101000001

)
, from sector 270 with master
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integrals

I⃗sec270 =

 IB
′

011100001

IB
′

(−1)11100001

IB
′

01110(−1)001

 ,

and sector 332 with I⃗sec332 =
(
IB

′
001100101

)
. Relations like the integration by parts

relation in (5.21) make it possible to construct differential equations for the integrals
from sector 334,

∂

∂v
I⃗sec334 = A(334)

v I⃗sec334 + sub-sector contributions,

∂

∂w
I⃗sec334 = A(334)

w I⃗sec334 + sub-sector contributions,

where A
(334)
v , A

(334)
w are 3× 3-dimensional matrices, depending on v, w, ϵ. The matrices’

components are rather long, hence, we do not display them here in full. Instead we
give a short example regarding their construction. Combining the derivative of the first
master integral from sector 334 with respect to w (5.19) with the relation in (5.21), we

obtain the complete first row of A
(334)
w ,

A(334)
w (1) =

1

2w (v2 − 2v(w + 1) + (w − 1)2)

{[
v2(−2ϵ(w − 3) + 2w − 5)

+ v
(
−2ϵ

(
2w2 − 7w + 3

)
+ 4w2 − 11w + 5

)
+ 2(w − 1)w(ϵ(3w − 7)− 3w + 5)

]
,[

−2ϵ
(
v2 + 2vw + v − 3w2 − w − 2

)
+ 2v2 + 4vw + v − 6w2 − w − 3

]
,

−
[
2(ϵ− 1)

(
v2 + v(2w − 1)− 3w2 + w

)]}
.

The sub-sector contributions take the form∑
l={261,270,332}

A
(l×334)
v/w I⃗secl ,

where A
(l×334)
v/w are matrices of respective sizes.

Analogously, we may write for the complete vectors of master integrals I⃗ (either from
system 1 or system 2a/b),

∂

∂w
I⃗ =µ2 ∂

∂m2
W

I⃗
IBP
= AwI⃗ ,

∂

∂v
I⃗ =µ2 ∂

∂s
I⃗

IBP
= Av I⃗ ,

where Aw, Av are (105× 105)-dimensional ((61× 61)/(43× 43)-dimensional) matrices
in the case of system 1 (system 2a/b). They depend on v, w and the dimensional regu-
larisation parameter.
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We summarise our findings as we set up systems of differential equations

dI⃗ = A (ϵ, v, w) I⃗ ,

A = Awdw +Avdv, (5.22)

where d denotes the total derivative. The systems fulfil the integrability condition (3.64),

∂wAv − ∂vAw − [Aw, Av] = 0,

where [, ] denotes the commutator.

In correspondence with our discussion in section 3.6, the ordering of master integrals
results in differential equations consisting of lower block-triangular matrices. Sectors
manifest themselves as blocks on the diagonal, sub-sector contributions appear to their
left. A schematic representation of the first fifteen rows and columns of the matrix cor-
responding to system 1 is shown in an exemplary manner in fig.5.8. The corresponding
first fifteen pre-canonical master integrals from system 1 as well as their sectors can be
read off from table 5.3. In correspondence, we find blocks on the diagonal of fig.5.8 with
dimensions according to the numbers of integrals per sectors.

1 5 10 15

1

5

10

15

1 5 10 15

1

5

10

15

Figure 5.8: Block structure: A schematic representation of A(1−15,1−15), where dI⃗ = AI⃗
belongs to system 1. White areas represent zeros, red areas are non zero.

5.4 Basis transformations

We recall from section 3.5.1 that we are seeking a system of differential equations in
canonical form, i.e.

dJ⃗ = ϵÃ,
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4. Basis transformations

Ã =
∑
i

Ciωi,

where Ci are NMI ×NMI - dimensional matrices consisting of algebraic numbers and ωi

are one-forms depending on kinematic variables, containing only simple poles. As sum-
marised in box 1 in section 3.6, differential equations of pre-canonical master integrals
I⃗ (5.22) arrive there through the application of:

1. Basis transformations: Find appropriate basis transformations U
(
I⃗ = UJ⃗

)
, which

factor out ϵ.

2. Variable transformations: Find appropriate variable transformations that ratio-
nalise all occurring square roots.

This section treats the first point, basis transformations. The second point, will be
discussed in section 5.5.1, however, already in this section we will encounter the need
for variable transformations.

We left the previous section with two main conclusions. Firstly, we found three sets
(system 1 and system 2a/b) of pre-canonical master integrals I⃗ and built their systems
of differential equations (5.22),

dI⃗ = (Awdw +Avdv) I⃗ ,

∂

∂w
I⃗ = AwI⃗ ,

∂

∂v
I⃗ = Av I⃗ . (5.23)

The emerging matrices depend on the kinematic variables v, w as well as on the dimen-
sional regularisation parameter ϵ. In this section we will employ a heuristic approach
to find master integrals of uniform weight J⃗ , yielding a differential equation with linear
dependence on ϵ,

dJ⃗ = ϵÃ, (5.24)

where Ã is independent of ϵ. Heuristic approaches may seem to be less powerful than
algorithmic approaches, since their success is not predestined. In our case, however,
their success is easily verified or falsified. We simply calculate the resulting differential
equation. Since existing algorithms [68–70, 72–74] cannot handle problems of this com-
plexity, our heuristic approach yields a welcome and easy to handle method. As before,
we describe our methods in a general manner if they apply to each of the three sets. In
correspondence we keep our notations general.

The second conclusion of the preceding section concerns the structure of the systems of
differential equations. As shown in fig.5.8, systems of differential equations consist of
lower block-triangular matrices with sectors represented by blocks on the diagonal and
sub-sectors contributions to their left. This is rather obvious as reduction methods are
designed to relate integrals only to simpler integrals. However, it is still important for
our ongoing strategy because it allows us to divide the complete differential equation
into equations for each sector,
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∂

∂v


I⃗sec1

I⃗sec2

I⃗sec3

. . .

 =


A

(1)
v 0 0 . . .

A
(1×2)
v A

(2)
v 0

A
(1×3)
v A

(2×3)
v A

(3)
v

. . .



I⃗sec1

I⃗sec2

I⃗sec3

. . .

 ,

∂

∂v
I⃗secj = A(j)

v I⃗secj +
∑
l<j

A(l×j)
v I⃗secl ,

∂

∂w


I⃗sec1

I⃗sec2

I⃗sec3

. . .

 =


A

(1)
w 0 0 . . .

A
(1×2)
w A

(2)
w 0

A
(1×3)
w A

(2×3)
w A

(3)
w

. . .



I⃗sec1

I⃗sec2

I⃗sec3

. . .

 , (5.25)

∂

∂w
I⃗secj = A(j)

w I⃗secj +
∑
l<j

A(l×j)
w I⃗secl .

I⃗secj denotes the set of master integrals belonging to sector j. A
(j)
v/w, A

(l×j)
v/w denote

matrices with dimensions determined by the length of I⃗secj or the length of I⃗secl and

I⃗secj respectively. In the following, we may write A(j), A(l×j) instead of A
(j)
v/w, A

(l×j)
v/w if

we talk about procedures applying to both differential equations in the same way.

We benefit from the block structure of the differential equations as it enables us to
treat blocks individually instead of altogether. In this thesis we employ a bottom-up
approach, i.e. we, thereby, start with the first block of the differential equation. We
outline this approach in section 5.4.2, after discussing two important types of transfor-
mations in the following section. A good strategy for the treatment of diagonal blocks
consists of finding an ansatz for an integral of uniform weight. In section 5.4.3 we find
representations of the tadpole and bubble integral as integrals of uniform weight. There,
we define our first canonical master integrals and understand the necessity of the di-
mensional shift operator (5.5). Integrals of uniform weight can be determined through
the application of maximal cuts and the analysis of their leading singularities. This will
be described in section 5.4.4.

Consequently, we may specify the listing made at the beginning of this section as we di-
vide the first point into tasks regarding diagonal or off-diagonal blocks of the differential
equation:

1. Basis transformations: Find appropriate basis transformations U that factor out
ϵ utilising a bottom-up approach:

– Diagonal blocks: Leading singularity analyses of maximal cuts provides ansatz
for integral of uniform weight

– Off-diagonal blocks: Transformations on the matrix itself force terms not
proportional to ϵ to vanish

2. Variable transformations: Find appropriate variable transformations that ratio-
nalise all occurring roots
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4. Basis transformations

5.4.1 Transformations of differential equations

On our way transforming (5.25) into an ϵ-factorised form, we will encounter two different
kinds of transformations: 1) Transformations on diagonal blocks and 2) transformations
serving the purpose of bringing an off-diagonal block into ϵ-form. We recapitulate the
transformation behaviour of differential equations under any basis transformation U
(see (3.69), (3.70)),

dI⃗ = AI⃗, I⃗ = UJ⃗

⇒ dJ⃗ = A′J⃗ ,

A′ = U ·A · U−1 − U · dU−1. (5.26)

A transformation matrix of the first kind takes the form

U1 =


. . .

. . . 1(i−1) 0 0

0 U (i) 0

0 0 1(i+1) . . .
. . .

 , (5.27)

with

U−1
1 =


. . .

. . . 1(i−1) 0 0

0
(
U (i)

)−1
0

0 0 1(i+1) . . .
. . .

 ,

where 1(j) is the identity matrix with a size determined by the length of I⃗secj and
0’s indicate zero matrices with appropriate size. U (i) is a square matrix designed to
transform the diagonal block A(i) into an ϵ-form, hence, it has the same dimensions as
A(i). Under the application of U1, the differential equation (5.25) becomes

A′
U1

= U1 ·A · U−1
1 − U1 · dU−1

1

=


. . .

. . . A(i−1) 0 0

U (i).A((i−1)×i) U (i) ·A(i).
(
U (i)

)−1 − U (i).d
(
U (i)

)−1
0

A((i−1)×(i+1)) A(i×(i+1)).
(
U (i)

)−1
A(i+1) . . .

. . .

 . (5.28)

In addition to A(i), the transformation changes the row to the left of A(i) and the col-
umn below A(i). In other words, U1 only influences sub-sector contributions to A(i) and
sub-sector contributions from A(i) to higher sector. U1 is designed to have no influence
on other diagonal blocks. We will encounter two different applications of U1. On the
one hand, U1 corresponds to transformations on diagonal blocks. In section 5.4.4, U1

completes the transformation of a sector (5.61), (5.62). On the other hand, a version
solely depending on ϵ (5.33) may be utilised to obtain easy to handle sub-sector contri-
butions (5.32), as demonstrated in the following section.

87



Three-loop master integrals for the Higgs boson self-energy

The second kind of transformations serve the purpose of bringing an off-diagonal block
A(j×i), j < i into ϵ-form,

U2 =


. . .

. . . 1(i−1) 0 0

U (j×i) 1(i) 0

0 0 1(i+1) . . .
. . .

 , (5.29)

U−1
2 =


. . .

. . . 1(i−1) 0 0

−U (j×i) 1(i) 0

0 0 1(i+1) . . .
. . .

 .

Again, 1(i) is a identity matrix of the size determined by the length of sector i and 0’s
indicate zero matrices with appropriate size, U (j×i) has the same dimension as A(j×i).

U2 transforms A(j×i) → A
(j×i)
U2

only, and leaves every other block unchanged,

A
(j×i)
U2

=
(
U (j×i) ·A(j) −A(i) · U (j×i) +A(j×i) + dU (j×i)

)
. (5.30)

We see, we may decompose the task of finding an appropriate transformation U for
the complete matrix A into multiple tasks of finding transformations U1 and U2 for the
diagonal and off-diagonal blocks in A. From the structure of the differential equation
(5.25), we deduce that it is best to start looking for a transformation in the simplest
sector. Additionally, the transformation behaviour under U1 and U2 suggests to move
from top to bottom and right to left in A, while searching appropriate transformations.

5.4.2 Transforming differential equations bottom-up

In the following we introduce a technique structuring and thereby simplifying the work-
flow in the search for an ϵ-factorised differential equation. This technique utilises the
block structure of the differential equation (5.25) as it separates the task of finding an
ϵ-factorised form for the complete system into smaller tasks of finding ϵ-factorised blocks
A(j), A(l×j) (see also begin of section 3.6). From the previous sections, we deduce, that
it is best to transform the basis of master integrals working bottom-up as indicated in
fig.5.9. We start with the simplest sector and move from top to bottom and right to
left in A. The procedure does not change along the way, however, the more sectors are
involved the more intricate its practical execution becomes. In this section, we describe
the first few steps in a general manner writing x as arbitrary variable. This general
description serves the purpose of showing the larger picture of the applied workflow as
well as demonstrating the inclusion of sub-sector contributions. In the next section we
give an example, namely the first two integrals of system 1.
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Figure 5.9: Block structure: A schematic representation of A(1−15,1−15), where dI⃗ = AI⃗
belongs to system 1. White areas represent zeros, red areas are non zero. Arrows
indicate the workflow during the search for basis transformations.

Differential equations regarding the lowest sector are by construction homogeneous,

∂

∂x
I⃗sec1 = A(1)I⃗sec1 .

We may solve them first by making an ansatz for a set of master integrals of uniform
weight J⃗sec1 ,

J⃗sec1 = U (1)I⃗sec1 .

A promising approach on finding such an ansatz deals with the integrals’ maximal cut
and will be explained in section 5.4.4. If the ansatz yields indeed a linear dependence
on ϵ,

dJ⃗sec1 = U (1) ·A(1).
(
U (1)

)−1
− U (1).d

(
U (1)

)−1

= ϵÃ(1) (x1, . . . , xNv) J⃗
sec1 ,

we move on to the next sector. Note, that the transformation U (1) changes the sub-sector

contributions from the first sector to higher sectors A(1×j) →
(
A(1×j).

(
U (1)

)−1
)
, j > 1.

To keep the following description simple, however, we redefine
(
A(1×j).

(
U (1)

)−1
)
to be

A(1×j).

The differential equations of the second lowest sector,

∂

∂x
I⃗sec2 = A(2)I⃗sec2 +A(1×2)I⃗sec1 ,

need not to be homogeneous. They may contain contributions from the first sector.
This is no problem at all, since we already know the solution for the lowest sector J⃗sec1 .
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Hence, we may focus on solving the homogeneous parts of the differential equations

∂

∂x
I⃗sec2 = A(2)I⃗sec2 .

We make an ansatz J⃗ ′sec2 and verify if it yields an ϵ-factorised form on the sector

dJ⃗ ′sec2 = ϵÃ(2) (x1, . . . , xNv) J⃗
′sec2 .

Now, the differential equation becomes

∂

∂x


J⃗sec1

J⃗ ′sec2

I⃗sec3

. . .

 =


ϵÃ(1) 0 0 . . .

A(1×2) ϵÃ(2) 0

A(1×3) A(2×3) A(3)

. . .



J⃗sec1

J⃗ ′sec2

I⃗sec3

. . .

 , (5.31)

where matrices Ã are independent of ϵ as opposed to matrices A. In the next step,
we include the sub-sector contribution of the second sector, i.e. we transform A(1×2).
Thereby, we must not change Ã(1) and Ã(2). We first look at the appearance of ϵ in
A(1×2). In the end, we seek an ϵ-form,

A(1×2) → ϵÃ(1×2).

If A(1×2) is not already in ϵ-form, a helpful intermediate step is a matrix containing a
part proportional to ϵ0 and a part proportional to ϵ1,

A(1×2) → A
(1×2)
0 + ϵA

(1×2)
1 → ϵÃ(1×2).

Determining master integrals according to the properties of their maximal cut (see
upcoming section) usually leads to a uniform appearance of ϵ in A(1×2). Often, sub-
sector contributions already take the intermediate simple form

A(1×2) = A
(1×2)
0 + ϵA

(1×2)
1 . (5.32)

Otherwise, they are at least given by

A(1×2) = g (ϵ)
[
A

(1×2)
0 + ϵA

(1×2)
1

]
,

where g (ϵ) is a polynomial in ϵ. This polynomial vanishes if we substitute

J⃗ ′sec2 → 1

g (ϵ)
J⃗ ′sec2 .

The corresponding transformation matrix has the structure of U1 (5.27) and depends
solely on ϵ, 

1(1) 0 0

0 1
g(ϵ)1

(2) 0

0 0 1(3)

. . .

 , (5.33)
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where 1(i) is an identity matrix of size determined by the length of sector i, and 0’s
indicate zero matrices with appropriate size. From (5.28) we find, that the matrix of
the differential equation (5.31) becomes

A′ =


ϵÃ(1) 0 0

1
g(ϵ)g (ϵ)

[
A

(1×2)
0 + ϵA

(1×2)
1

]
ϵÃ(2) 0

A(1×3) g (ϵ)A(2×3) A(3)

. . .

 . (5.34)

After converting the sub-sector contribution to (5.32), we need to find a transformation

A
(1×2)
0 + ϵA

(1×2)
1 → ϵÃ(1×2).

We, therefore, utilise a transformation matrix of the second kind (5.29),
1(1) 0 0

U (1×2) 1(2) 0

0 0 1(3)

. . .

 .

Again, 1(i) is an identity matrix of size determined by the length of sector i and 0’s
indicate zero matrices with appropriate size, U (1×2) has the same dimension as A(1×2).
We know that this transformation solely affects A(1×2). The resulting matrix is given
by

A′′ = ϵÃ(1) 0 . . .

ϵ
(
U (1×2) · Ã(1) − Ã(2) · U (1×2) +A

(1×2)
1

)
+A

(1×2)
0 + dU (1×2) ϵÃ(2)

. . .

 .

Hence, a possible transformation U (1×2) corresponds to the solution of the differential
equation

ϵ
(
U (1×2) · Ã(1) − Ã(2) · U (1×2)

)
+ dU (1×2) = −A

(1×2)
0 .

In practice, the ansatz

U (1×2) = −
ˆ

A
(1×2)
0 dx,

often suffices.

After completing the second sector, we move on to the third sector. We first solve
the homogeneous part of its differential equation by making an ansatz. Then we check
for contributions of the second sector to the third sector. We may fix them in the same
way we fixed the contribution from the lowest sector to the second, we first derive a
simple dependence on ϵ and then remove left over parts. Before we are ready to inspect
the fourth sector, we transform possible contributions from the first sector to the third.
We proceed in the same way and transform the complete matrix finishing with the most
complicated sector, as indicated in fig.5.9.

91



Three-loop master integrals for the Higgs boson self-energy

5.4.3 Tadpole and bubble integral as integrals of uniform weight zero

This section links the preceding section to the next section. Besides proceeding as
outlined in section 5.4.2, we give an introductory example to the method described
in section 5.4.4. This section provides first practical insights, for example, into the
necessity and advantages of introducing a dimensional shift operator or the structure of
“good” master integrals, i.e. master integrals of uniform weight zero. We will encounter
the massive tadpole and massive bubble integral known from section 3.2 again, while
considering the first two pre-canonical master integrals of system 1 (see table 5.3),

sector 25: IA100110000,

sector 27: IA110110000.

These integrals correspond to one sector each, to sector 25 and 27 of topology A. Their
graphs are drawn in fig.5.10 and fig.5.11. We can see in fig.5.9 that the first integral
contributes to the second. Their differential equations amount to

∂

∂v
IA100110000 = 0,

∂

∂w
IA100110000 =

d− 2

2w
IA100110000, (5.35)

∂

∂v
IA110110000 =

4 + (d− 4)v

2(v − 4)v
IA110110000 +

d− 2

(v − 4)v
IA100110000,

∂

∂w
IA110110000 =

d− 2

2w
IA110110000. (5.36)

Figure 5.10: Graph of sector 25 of topology A. The graph consists of three tadpoles.
Blue lines denote propagators with mass m2

t , orange lines denote propagators with m2
W .

We start as we try to find an ansatz for the first integral. Solutions to differential
equations in ϵ-form are of uniform weight zero. Hence, an optimal ansatz has as well
uniform weight zero (see section 3.5.1 and section 3.5.2 on details regarding weight
properties). We recall that rational numbers have weight zero, zeta values ζn weight n
and ϵ weight minus one. Fig.5.10 shows that the first integral consists of three tadpoles,
two with mass mt and one with mass mW . We may concentrate on the former first.
The tadpole was derived in (3.21) for a general mass,

Tν

(
D,

m2

µ2

)
= eϵγE

(
m2

µ2

)D
2
−ν Γ(ν − D

2 )

Γ(ν)
. (5.37)
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For

µ2 = m2
t ,

we found in D = (4− 2ϵ)-dimensions

T1 (4− 2ϵ) = eϵγEΓ(ϵ− 1)

= −1

ϵ
− 1−

(
1− 1

2
ζ2

)
ϵ+

(
1

3
ζ3 −

1

2
ζ2 − 1

)
ϵ2 +O

(
ϵ3
)
.

This series is not of uniform weight, even if we multiply it with ϵ,

ϵT1 (4− 2ϵ) = −1︸︷︷︸
weight: 0

− ϵ︸︷︷︸
−1

− ϵ2︸︷︷︸
−2

+
1

2
ζ2ϵ

2︸︷︷︸
0

+
1

3
ζ3ϵ

3︸︷︷︸
0

−1

2
ζ2ϵ

3︸︷︷︸
−1

− ϵ3︸︷︷︸
−3

+O
(
ϵ4
)
.

However, in D = (2− 2ϵ)-dimensions, we deduce from (5.37)

ϵT1 (2− 2ϵ) = eϵγEϵΓ(ϵ) = eϵγEΓ(1 + ϵ)

= 1 +
1

2
ζ2ϵ

2︸︷︷︸
2−2=0

−1

3
ζ3ϵ

3︸︷︷︸
3−3

+
9

16
ζ4ϵ

4︸︷︷︸
4−4

−

1

5
ζ5︸︷︷︸
5

+
1

6
ζ2ζ3︸︷︷︸
2+3

 ϵ5︸︷︷︸
−5

+O
(
ϵ6
)
, (5.38)

and find that every term in the series has weight zero. A similar candidate arises for a
tadpole depending on another mass, like m2

W ,

ϵT1 (2− 2ϵ, w) = eϵγE (w)−ϵ ϵΓ(ϵ) = eϵγEe−ϵln(w)Γ(1 + ϵ)

= 1− ln(w)ϵ+
1

2

(
ln(w)2 + ζ2

)
ϵ2

−
(
1

2
ζ2ln(w) +

1

6
ln(w)3 +

1

3
ζ3

)
ϵ3 +O

(
ϵ4
)
. (5.39)

We draw an important conclusion: Tadpole integrals in (2− 2ϵ)-dimensions multiplied
with ϵ have uniform weight zero. In order to express the first master integral through
them, we need to shift its dimension from (4 − 2ϵ) to (2 − 2ϵ). For this purpose, we
introduced the dimensional shift operator D− (5.5) earlier. Hence, we construct our
first canonical integral J1 as the product of three tadpoles in (2 − 2ϵ) dimensions each
multiplied with ϵ, (5.38) and (5.39),

J1 = ϵ3D−IA100110000.

We relate it back to the first master integral in (4− 2ϵ)-dimensions,

J1 = ϵ3D−IA100110000
(5.6)
= ϵ3IA200220000

IBP
=

(
(4− 2ϵ)3 − 6(4− 2ϵ)2 + 12(4− 2ϵ)− 8

)
ϵ3

8w︸ ︷︷ ︸
=U(1)

IA100110000,
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and construct the differential equation of J1 with (5.26) from (5.35),

A′=U(1)A(U(1))
(−1)−U(1)d(U(1))

(−1)

=⇒

{
∂
∂vJ1 = 0,
∂
∂wJ1 =

−ϵ
w IA100110000.

(5.40)

Figure 5.11: Graph of sector 27 of topology A. The graph consists of two tadpoles and
a bubble. Blue lines denote propagators with mass m2

t , orange lines denote propagators
with m2

W .

The second master integral IA110110000 consists of two tadpoles with masses mt and mW

and a bubble with mass mt as shown in fig.5.11. We already learned how to convert
tadpoles into integrals of uniform weight zero. The remaining bubble integral will serve
as introductory example to the method we use in this thesis to convert diagonal blocks.
We start with the conversion of the bubble integral from momentum representation (5.1)

= I11 (D) = eϵγE
(
µ2
)2− 3D

2

ˆ
dDk1

iπ
D
2

1(
−k21 +m2

t

) (
−(k1 − p)2 +m2

t

) ,
to Baikov representation (3.44)

I11 (D) =
eϵγE

(
µ2
)2−D

2 detG (p)
2−D
2

−2π
1
2Γ
(
D−1
2

) ˆ
C
dz1dz2

B(z1, z2)
D−3
2

z1z2
,

where the Baikov polynomial B(z1, z2) is given by the Gram determinant detG (k1, p)
(3.41) expressed in terms of the Baikov variables

z1 =
(
−k21 +m2

t

)
, z2 =

(
−(k1 − p)2 +m2

t

)
.

The integration domain is not important here, it can be read off from (3.45). We
calculate the Baikov polynomial and find

I11 (D) =
−2(2−D)eϵγE

(
m2

t

)2−D
2
(
−p2

) 2−D
2

π
1
2Γ
(
D−1
2

) ˆ
C
dz1dz2

(
s
(
4m2

t − s
)
− 2z1 (s− z2)− 2sz2 − z21 − z22

)D−3
2

z1z2
.
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4. Basis transformations

We aim at investigating the leading term of the Laurent expansion around ϵ = 0 of
the maximal cut. Hence, we set D = 2 during our investigation instead of setting
D = (2− 2ϵ). (Tadpoles also contributing to the second master integral must be taken
in (2 − 2ϵ) dimensions, therefore, we are not considering D = 4. Apart from that,
bubble integrals in four dimensions do not fulfil the desired properties, i.e. they are not
of uniform weight.)

I11 (2) =

ˆ
C
dz1dz2

−eϵγEm2
t

πz1z2

√
s
(
4m2

t − s
)
− 2z1 (s− z2)− 2sz2 − z21 − z22

.

We apply the maximal cut (see section 3.6.1) through the exchange

1

z1z2
→ (2πi)2 δ (z1) δ (z2) ,

and obtain

MaxCut (I11 (2)) =
4πm2

t√
s
(
4m2

t − s
) . (5.41)

We recall, that solutions to canonical differential equations are integrals of uniform
weight, hence, their maximal cuts should also be of uniform weight. The result we
found, however is not a constant of weight zero. If we consider√

s
(
4m2

t − s
)

m2
t

I11 (2) ,

we obtain a constant of weight one after applying the maximal cut

MaxCut


√
s
(
4m2

t − s
)

m2
t

I11 (2)

 = 4π.

Additional multiplication with ϵ, finally yields a constant of weight zero

MaxCut

ϵ

√
s
(
4m2

t − s
)

m2
t

I11 (2)

 = 4ϵπ. (5.42)

In conclusion, we determine our second master integral as the product of two tadpoles in
D = (2− 2ϵ)-dimensions multiplied with ϵ ((5.38) ,(5.39)) and an accordingly modified
bubble in D = (2− 2ϵ)-dimensions (5.42),

J2 = ϵ3r1D
−IA110110000, (5.43)

where we defined

r1 =
√
−v (4− v).

The resulting differential equations are linear in ϵ, where the kinematic variables are
defined as in (5.18),
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J2 = ϵ3r1
(
IA120220000 + IA210220000

)
= −(ϵ− 1)2((1− ϵ)IA100110000 + (1− 2ϵ)IA110110000)

(v − 4)w

(5.36)⇒

{
∂
∂wJ2 =

−ϵ
w IA110110000,

∂
∂vJ2 =

2ϵ
r1
IA100110000 +

ϵ
4−v I

A
110110000

. (5.44)

We see, not only the contribution of sector 27 itself is now linear in ϵ, but also the sub-
sector contribution from sector 25. Constructing master integrals of uniform weight,
sub-sector contributions are often already linear in ϵ or at least close to that form as in
(5.32). Furthermore, we would like to point out the occurrence of a square root: r1. The
transformation IA110110000 → J2 we found is not rational, consequently, the differential
equation of J2 is not rational. Appropriate variable transformations are required. We
acquire those in section 5.5.1 after transforming the complete basis of master integrals
into a basis with uniform weight zero (section 5.5). The investigations on the massive
bubble tell us in addition something about the massless bubble. From (5.42) we conclude
that a massless bubble in D = (2 − 2ϵ)-dimensions must be multiplied with the factor
(ϵv) to become uniform in weight. In the upcoming section, we generalise the way we
treated the bubble integral utilising the maximal cut.

5.4.4 Maximal cuts and constant leading singularities

Diagonal blocks in differential equations of master integrals reflect their division into
sectors (5.25). In conclusion, section 5.4.2 described a way of transforming a differential
equation bottom-up, sector by sector, into an equation linear in ϵ,

J⃗seci = U (i)I⃗seci

⇒ dJ⃗seci = ϵÃ(i)J⃗seci .

However, section 5.4.2 raised the question: How are appropriate transformations U (i) of
diagonal blocks found? To phrase this question differently: How are ansätze for “good”
master integrals of a sector J⃗seci obtained? This question will be answered here. We
elaborate the method already applied in the former section with regards to the bubble
integral. The method is a heuristic approach in the search for “good” master integrals
relying on two main facts:

1. Solutions to canonical differential equations are integrals of uniform weight (section
3.5.1, 3.5.2).

→ “Good” master integrals are, therefore, master integrals of uniform weight.

2. Weight properties of integrals are preserved under the application of cuts. The
maximal cut of an integral of uniform weight remains to be of uniform weight
(section 3.6.1).

→ To gain information about weight properties of an integral, we may study the
simpler maximally cut integral, first.

96



4. Basis transformations

Although the success of a heuristic approaches is not predestined, it is easily verified or
falsified through the calculation of the resulting differential equation. In combination
with direct transformations (discussed in section 5.4.1) the heuristic approach sufficed
to transform all three systems of master integrals (system 1, system 2a/b, see section
5.3) into differential equations linear in ϵ. It utilises maximal cuts of Feynman integrals
in Baikov representation [66, 90]. The Baikov representation was defined in section 3.3.2
and maximal cuts were discussed in section 3.6.1. Box 2 provides a concise summary of
the approach.

Box 2: Leading singularity analyses

Baikov rep.: democratic (3.44)

I ∼
´
d9zB(z)

D−l−e−1
2

∏9
j=1 z

−νj
j

B(z) = detG (k1, k2, k3, p)

Baikov rep.: loop by loop (3.42)

dDk ∼ detG (mom. ext. to loop)
−D+e+1

2 ·
detG (k,mom. ext. to loop)

D−e−2
2 dz

Momentum representation:

I ∼
´
dDk1d

Dk2d
Dk3

∏9
j=1

(
PX
j

)−νj

Maximal Cut: cut all propagators with νj > 0
1
zj

→ 2πiδ(zj) ⇒ MaxCut (Ii) =
´
CMaxCut

φi

Search Ci & modify φi such that the leading term of the Laurent expansion (ϵ = 0)
of
´
Ci φ

′
i is a constant of weight zero; π: weight 1, ζn: weight n, ϵ: weight -1

An introductory example was already given in the end of section 5.4.3. There, we mul-
tiplied the two-dimensional bubble integral with a prefactor depending on kinematic
variables as demanded by its maximal cut. We modified the maximal cut to obtain a
constant of weight zero. Here, we describe this approach in more detail with the help of
more involved examples. Our fist example demonstrates how maximal cuts may leave
us behind with integrations requiring modifications not only on the integrand level but
also regarding the integration contour. Afterwards, we give a short definition of con-
stant leading singularities. Then, our second example demonstrates an alternative way
of constructing the Baikov representation.

We start with the 104th master integral of system 1, i.e. the last master integral of
topology C,

sector 255 : IC111111110 = e3ϵγE
(
µ2
)8− 3D

2

ˆ
dDk1

iπ
D
2

dDk2

iπ
D
2

dDk3

iπ
D
2

8∏
j=1

1(
PC
j

) .
The definitions of propagators PC

j can be read off from fig.5.5, table 5.1. First, we con-
vert the integral to Baikov representation. We may work directly in D = 4 dimensions,
since we are only interested in the leading term of its maximal cut. We obtain the
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Baikov representation democratically, i.e. via the application of equation (3.44). We
replace each propagator PC

j in the numerator of IC111111110 with a Baikov variable zj ,
additionally we compute the Baikov polynomial and adjust prefactors to find

IC111111110 (D = 4) =
µ4detG (p)−1

π3det(C)
3∏

i=1

Γ

(
4− i

2

) ˆ
C
d9z B(z)(−

1
2)

8∏
j=1

z−1
j

=

ˆ
C
d9z

−µ4

(8π4sz1z2z3z4z5z6z7z8)B(z)(
1
2)
, (5.45)

where B(z)(
1
2) is a square root depending on all kinematic variables and all Baikov

variables z1 − z9. The maximal cut of the integral refers to the cut (3.93) of all edges
belonging to the integral. Hence, the parts within the Baikov polynomial proportional
to z1 − z8 are not important, since we cut these Baikov variables in the next step,

1

z1z2z3z4z5z6z7z8
→ (2πi)8

8∑
i=1

δ (zi) . (5.46)

The parts within B(z)(
1
2) solely proportional to z9 yield squared terms cancelling the

root and we are left with

(5.46)⇒ MaxCut
(
IC111111110 (D = 4)

)
=

ˆ
CMaxCut

dz9
32π4µ4

sz9
(
m2

t −m2
W − s− z9

) .
Sometimes the maximal cut leaves no integration variable behind as in the introductory
example (5.41). In other cases, we replace integration contours of the maximal cut
CMaxCut with simpler contours, usually around poles. Here, we choose an anticlockwise
circle around z9 = 0 (alternatively around z9 = m2

t −m2
W − s). We know that

ffi
z=z0

f(z)

z − z0
dz = 2πi res

(
f(z)

z − z0
, z = z0

)
= 2πif(z0). (5.47)

Hence, we deduce

ffi
z9=0

dz9
32π4µ4

sz9
(
m2

t −m2
W − s− z9

) =
64iπ5µ4

s
(
m2

t −m2
W − s

) =
64iπ5

v (1− w − v)
,

with

µ2 = m2
t , v =

p2

m2
t

, w =
m2

W

m2
t

.

We aim at constructing a constant of weight zero, thereby, we may also modify the
integrand of the maximal cut. We multiply with a prefactor cancelling appearances of
kinematic variables,

v (1− w − v)

ffi
z9=0

dz9
32π4µ4

sz9
(
m2

t −m2
W − s− z9

) = 64iπ5︸ ︷︷ ︸
constant of weight 5

.
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4. Basis transformations

Since weights are summed if factors are multiplied π5 has weight five and we multiply
with ϵ5 in order to balance the weight,

ϵ5v (1− w − v)

ffi
z9=0

dz9
32π4µ4

sz9
(
m2

t −m2
W − s− z9

) = 64iϵ5π5︸ ︷︷ ︸
constant of weight 0

.

Accordingly, we modify

IC111111110 → J104 = ϵ5v (1− w − v) IC111111110. (5.48)

and obtain a candidate for a master integral of uniform weight.

We verify that (5.48) yields a linear dependence on ϵ in the corresponding diagonal
block of the differential equation. However, its sub-sector contributions are propor-
tional to ϵ

(1−2ϵ) requiring an additional factor of (1− 2ϵ), i.e. a transformation matrix

of the first kind (5.27) (see also (5.33),(5.34) with A
(1×2)
0 = 0),

J104 = ϵ5 (1− 2ϵ) v (1− w − v) IC111111110. (5.49)

Before we move on to the next example, we summarise the above described procedure
in a more formal way. We looked at the leading term of the maximal cut

MaxCut (I (ϵ = 0)) =

ˆ
CMaxCut

φ,

and modified its integration contour,

CMaxCut → C′,

and integrand,

φ → φ′,

to obtain a constant of weight zero,ˆ
C′
φ′ = constant of weight zero.

In accordance, we say ˆ
CMaxCut

φ′

has constant leading singularities [91, 92].

In order to modify the integration contour and the integrand of a maximally cut in-
tegral efficiently, we not only rely on (5.47), we may also consider an integration along
a closed, anticlockwise contour around a slit [a, b],

ffi
[a,b]

dz√
(z − a)(z − b)

= 2πi. (5.50)
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Furthermore, the package DlogBasis [93] can be a helpful tool for the calculations of
leading singularities.

Our next example is more involved. We look at a sector containing three master inte-
grals. Furthermore, we are going to derive the Baikov representation loop-by-loop.

k2 k3

k1 − k3

k1 + k2

k1 − p
−p p

Figure 5.12: Graph of sector 334 from topology B’.
Blue lines denote propagators with mass m2

t , orange
lines denote propagators with m2

W .

I⃗sec334 =

 IB
′

011100101

IB
′

(−1)11100101

IB
′

0111(−1)0101

 . (5.51)

We look at sector 334 from topology B’ containing three master integrals given in (5.51).
The master integrals appear on 46th, 47th and 48th place in the vector of pre-canonical
master integrals of system 2a. Later on, we will call the vector of canonical master
integrals of system 2a K⃗. Here, we search for canonical master integrals of sector 334.
In order to be consistent, we call them K46,K47,K48. We work with the first integral
in (5.51), because it completely specifies the sector,

IB
′

011100101 =eϵ3γE
(
µ2
)5− 3D

2

ˆ
dDk1

iπD/2

dDk2

iπD/2

dDk3

iπD/2

1(
−(k1 − p)2 +m2

W

) (
−(k1 + k2)2 +m2

t

) (
−k22

) (
−k23

) (
−(k1 − k3)2 +m2

t

) .
(5.52)

The exact composition of the second and third integral in (5.51), like placement of
propagators in the numerator, is not important and depends on the chosen integration
by parts reduction program. As before, we start with the derivation of the Baikov
representation. We number Baikov variables in the same way we number edges,

z1 = −k21 +m2
W , z2 = − (k1 − p)2 +m2

W , z3 = − (k1 + k2)
2 +m2

t ,

z4 = −k22, z5 = − (k2 + k3)
2, z6 = − (k2 + p)2,

z7 = −k23 z8 = − (k3 − p)2, z9 = − (k1 − k3)
2 +m2

t .

Building the Baikov representation democratically, i.e. via (3.44), all nine Baikov vari-
ables would be integration variables. Out of those only five belong to sector 334, namely
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4. Basis transformations

z2, z3, z4, z7, z9. Taking the maximal cut of an integral from sector 334, corresponds
to cutting those propagators. As consequence, the democratic Baikov representation
would result into four integration variables. We know, however, that an alternative way

of constructing the Baikov representation exists. The integration measures
dDkj

iπ
D
2

can

be replaced loop by loop with (3.42). In this way the Baikov representation consists of
as many integration variables as scalar products involving loop momenta appear in the
integral. Due to this simplification, we usually build the Baikov representation loop-
by-loop, with the exception of top sectors as in our previous example or, more general,
sectors with a sufficient amount of edges. (In our previous example, the loop-by-loop
approach would not have simplified the Baikov representation, moreover it would have
been more difficult to construct.) From fig.5.12, we deduce that building the Baikov
representation loop by loop results into six integration variables z1, z2, z3, z4, z7, z9 since
six scalar products involving loop momenta occur, namely k21, k

2
2, k

2
3, k1 ·k2, k1 ·k3, k1 · p.

We recall the Baikov measure

dDk

iπ
D
2

=
detG (momenta external to loop)

−D+e+1
2

π
e
2 (detC)Γ

(
D−e
2

) detG (k,momenta external to loop)
D−e−2

2 dNvz,

where detG denotes the Gram determinant (3.41), e is the number of momenta external
to the loop, Nv is the number of scalar products involving loop momenta, which is here
e+1. Changing from integration over scalar products involving the loop momentum to
integration over Baikov variables z yields the Jacobian detC.

We may start obtaining the Baikov representation for (5.52) loop by loop with the
left loop in fig.5.12. Viewing this loop individually, it is a bubble with loop momentum
k2 and external momentum k1. One external momentum results in two scalar products
involving the loop momentum, namely k22 and k2 · k1. These scalar products are part of
z3, z4. Hence, we convert from an integration over k2 to an integration over z3, z4,

dDk2

iπ
D
2

=
detG (k1)

−D+2
2

π
1
2 (detC2)Γ

(
D−1
2

) detG (k2, k1)
D−3
2 dz3dz4,

detC2 = det

 ∂z3
∂(−k22)

∂z3
∂(−k2·k3)

∂z4
∂(−k22)

∂z4
∂(−k2·k3)

 = det

((
1 2
1 0

))
= −2.

We conclude, working in D = 2 dimensions one Gram determinant vanishes and we
obtain

dDk2

iπ
D
2

=
1

π
1
2 (detC2)Γ

(
1
2

) detG (k2, k1)
(− 1

2) dz3dz4.

We express the remaining Gram determinant,

detG (k2, k1) = det

((
−k22 −k2 · k1

−k1 · k2 −k21

))
= det

((
z4

1
2

(
−m2

t +m2
W − z1 + z3 − z4

)
1
2

(
−m2

t +m2
W − z1 + z3 − z4

)
z1 −m2

W

))
101



Three-loop master integrals for the Higgs boson self-energy

=
1

4

(
−m4

t + 2z3
(
m2

t −m2
W + z4

)
+ 2z1

(
−m2

t +m2
W + z3 + z4

)
+ 2m2

tm
2
W − 2m2

t z4 −m4
W − 2m2

W z4 − z21 − z23 − z24
)
,

in terms of Baikov variables z1, z3, z4 and find

dDk2

iπ
D
2

=
1

π
1
2 (detC2)Γ

(
1
2

) detG (k2, k1)
(− 1

2) dz3dz4

= −dz3dz4
π

[
−m4

t + 2z3
(
m2

t −m2
W + z4

)
+ 2z1

(
−m2

t +m2
W + z3 + z4

)
+ 2m2

tm
2
W

− 2m2
t z4 −m4

W − 2m2
W z4 − z21 − z23 − z24

](− 1
2)
. (5.53)

Next, we approach the right loop in fig.5.12 with loop momentum k3 and external
momentum k1. The arising scalar products k23, k3 ·k1 correspond to the Baikov variables
z7, z9. We obtain

d(D=2)k3

iπ
D
2

=
1

π
1
2 (detC3)Γ

(
1
2

) detG (k3, k1)
(− 1

2) dz7dz9 =

−dz7dz9

π
√

2z1
(
−m2

t +m2
W + z7 + z9

)
−
(
−m2

t +m2
W + z9

)
2 − 2z7

(
m2

t +m2
W − z9

)
− z21 − z27

.

(5.54)

The remaining loop carries loop momentum k1 and external momentum p. The last
measure evaluates to

d(D=2)k1

iπ
D
2

=
1

π
1
2 (detC1)Γ

(
1
2

) detG (k1, p)
(− 1

2) dz1dz2

= − dz1dz2

π
√
s
(
4m2

W − s
)
− 2z1 (s− z2)− 2sz2 − z21 − z22

. (5.55)

To obtain the final representation of IB
′

011100101 (D = 2), we plug (5.53),(5.54) and (5.55)
into (5.52) and replace propagators with respective Baikov variables,

IB
′

011100101 (D = 2) = −m4
t

ˆ
dz1dz2dz3dz4dz7dz9

[
π3z2z3z4z7z9

{(
−m4

t

+ 2z3
(
m2

t −m2
W + z4

)
+ 2z1

(
−m2

t +m2
W + z3 + z4

)
+ 2m2

tm
2
W

− 2m2
t z4 −m4

W − 2m2
W z4 − z21 − z23 − z24

)(
2z1
(
−m2

t +m2
W + z7 + z9

)
−
(
−m2

t +m2
W + z9

)
2 − 2z7

(
m2

t +m2
W − z9

)
− z21 − z27

)}(− 1
2)√

s
(
4m2

W − s
)
− 2z1 (s− z2)− 2sz2 − z21 − z22

](−1)

.

Now, we are able to maximally cut the integral via the replacement

1

z2z3z4z7z9
→ (2πi)5 δ (z2) δ (z3) δ (z4) δ (z7) δ (z9) ,
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MaxCutIB
′

011100101(2) =

ˆ
CMaxCut

dz1
32iπ2m4

t(
m2

t −m2
W + z1

)2√
s
(
4m2

W − s
)
− 2sz1 − z21

=

ˆ
CMaxCut

φ334. (5.56)

We are left with one integration over z1. We name the resulting integrand φ334. Before
we continue, we recall that the dimensional shift operator (5.6) D−I (D) = I (D − 2),
makes it possible to relate results obtained in D = (2− 2ϵ) space-time dimensions back
to D = (4− 2ϵ) dimensions.

φ334 is integrated straightforwardly after transforming it to a simpler form, like (5.47) or

(5.50). We immediately recognise, that a multiplication with
(
m2

t −m2
W + z1

)2
results

in an integrand similar to (5.50), which may be integrated along a counterclockwise
circle around the slit [(−2mW

√
s− s), (2mW

√
s− s)] ≡ [a334, b334],

ffi
[a334,b334]

(
m2

t −m2
W + z1

)2
φ334 =

ffi
[a334,b334]

dz1
32iπ2m4

t√
s
(
4m2

W − s
)
− 2sz1 − z21

=

ffi
[a334,b334]

dz1
32π2m4

t√
(z1 − (−2mW

√
s− s)) (z1 − (2mW

√
s− s))

= 64π3i.

The result is proportional to π3 and therefore of weight three. A multiplication with ϵ3

results into a constant of weight zero,

ϵ3
ffi
[(−2mW

√
s−s),(2mW

√
s−s)]

(
m2

t −m2
W + z1

)2
φ334 = 64ϵ3π3i.

To obtain the first ansatz for an integral of uniform weight K46 we multiply the original
integrand of IB

′
011100101 (D = 2− 2ϵ) = D−IB

′
011100101 with the prefactor that led to a

constant of weight zero,

ϵ3
(
m2

t −m2
W + z1

)2
= ϵ3

(
(m2

t −m2
W )2 + 2z1(m

2
t −m2

W ) + z21
)
,

whereby a multiplication with z1 corresponds to an additional Baikov variable z1 in the
numerator,

ˆ
dz1dz2dz3dz4dz7dz9

1

z2z3z4z7z9

·z1→
ˆ

dz1dz2dz3dz4dz7dz9
z1

z2z3z4z7z9
,

raising ν1 by minus one. Accordingly, a multiplication with z21 raises ν1 by minus two.
We find

K46 = ϵ3
(
(1− w)2D−IB

′
011100101 + 2(1− w)D−IB

′

(−1)11100101 +D−IB
′

(−2)11100101

)
,

(5.57)
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We find an ansatz for the second integral in the same way. We recognise, that a multi-
plication of φ334 with

(
m2

t −m2
W + z1

)
results into an integrand similar to (5.47), which

may be integrated along a counterclockwise circle around the pole z1 = −m2
t +m2

W ,

ffi
z1=−m2

t+m2
W

(
m2

t −m2
W + z1

)
φ334

=

ffi
z1=−m2

t+m2
W

dz1
32iπ2m4

t(
m2

t −m2
W + z1

)√
s
(
4m2

W − s
)
− 2sz1 − z21

=
64i2π2m4

t√
s
(
4m2

W − s
)
− 2sz1 − z21

∣∣∣∣∣∣
z1=−m2

t+m2
W

=
64iπ3

r2
, (5.58)

with

r2 =
√

λ (v, w, 1),

where λ is the Källen function defined by

λ (x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

We deduce that an additional multiplication with ϵ3r2,

φ334 → ϵ3r2
(
m2

t −m2
W + z1

)
φ334,

leads to a maximal cut with constant leading singularities. Accordingly we multiply the
integrand of D−IB

′
011100101 with ϵ3r2 (1− w + z1) and find

K47 = ϵ3r2

(
(1− w)D−IB

′
011100101 +D−IB

′

(−1)11100101

)
. (5.59)

We noticed that we encountered a second square root r2 in addition to the square root
we found in the previous section r1.

We found two integrals of uniform weight (5.57), (5.59) as intermediate result. We
derived them as we analysed the leading singularity of the maximal cut (5.56). To
verify these ansätze, we may calculate their differential equation, thereby, we make a
guess for the third integral based on the dimensions and dependence on ϵ of the first
two integrals,

I⃗(334) =

 IB
′

011100101

IB
′

(−1)11100101

IB
′

0111(−1)0101

→ I⃗ ′
(334)

=

 K46

K47

ϵ3D−IB
′

0111(−1)0101

 .

We already calculated the differential equations of I⃗(334) in (5.19) and (5.20). The trans-
formed system of differential equation is found as usual (5.26), where the transformation
matrix is obtained with the help of integration by parts reductions. We notice that the
resulting system of differential equations
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dI⃗ ′
(334)

=
(
A(334)

v dv +A(334)
w dw

)
I⃗ ′

(334)
,

A(334)
v =

 − ϵ(7v2−4vw−4v−3w2+6w−3)
v(v2−2vw−2v+w2−2w+1)

2ϵ(−v+w−1)
r2v

2ϵ(w−v)(3v+w−1)
r2v

−2ϵ(−v+w−1)
r2v

− ϵ
v −2ϵ(w−v)

v
ϵ(3v+w−1)
r2v(v−w) − ϵ

v(w−v)
1

w−v − 2ϵ
w−v

 ,

A(334)
w =


2ϵ(v2+3vw−2v−4w2+3w+1)
w(v2−2vw−2v+w2−2w+1)

2ϵ(v−w−1)
r2w

2ϵ(v−w)(v+3w−1)
r2w

−2ϵ(v−w−1)
r2w

−2ϵ
w −2ϵ(v−w)

w

− ϵ(v+3w−1)
r2w(v−w) − ϵ

w(v−w)
1

v−w − ϵ(v+w)
w(v−w)

 ,

is almost linear in ϵ. The lower right corners contain additional parts proportional to
ϵ0. We may solve this issue for a general variable x as placeholder for v, w, writing
symbolically

∂

∂x
I⃗ ′

(334)
= A(334)

x I⃗ ′
(334)

=

ϵax11 ϵax12 ϵax13
ϵax21 ϵax22 ϵax23
ϵax31 ϵax32 ϵ (ax33)

(1) + (ax33)
(0)

 I⃗ ′
(334)

. (5.60)

The part (ax33)
(0) may be removed through a transformation matrix of the first kind

(5.27) with

U (334) =

1 0 0
0 1 0
0 0 u(x)

 , (5.61)

which acts on the differential equation (5.60) like

U (334).A(334)
x .

(
U (334)

)(−1)
− U (334).d

(
U (334)

)(−1)

=

 ϵax11 ϵax12 ϵ
ax13
u

ϵax21 ϵax22 ϵ
ax23
u

ϵuax31 ϵuax32 ϵ (ax33)
(1) + (ax33)

(0) + ∂u
u∂x

 .

In conclusion, the part (ax33)
(0) vanishes if u(x) is a solution to

(ax33)
(0) u(x) +

∂u(x)

∂x

!
= 0. (5.62)

This differential equation is solved by

u(x) = exp

(
−
ˆ

(ax33)
(0) dx

)
. (5.63)

Returning to v, w the requirement (5.62) yields

1

w − v
u(v) +

∂u(v)

∂v
= 0,
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⇒ u(v) = exp

(
−
ˆ

1

w − v
dv

)
= w − v,

1

v − w
u(w) +

∂u(w)

∂w
= 0,

⇒ u(w) = exp

(
−
ˆ

1

v − w
dw

)
= w − v.

We insert u(v, w) = (w − v) into U (5.61) and obtain the following integrals and differ-
ential equations,

d

 K46

K47

ϵ3 (w − v)D−IB
′

0111(−1)0101

 =
(
Ã(334)

v dv + Ã(334)
w dw

) K46

K47

ϵ3 (w − v)D−IB
′

0111(−1)0101

 ,

Ã(334)
v =

 − ϵ(7v2−4vw−4v−3w2+6w−3)
v(v2−2vw−2v+w2−2w+1)

−2ϵ(v−w+1)
vr2

2ϵ(3v+w−1)
vr2

2ϵ(v−w+1)
vr2

− ϵ
v −2ϵ

v

− ϵ(3v+w−1)
vr2

− ϵ
v

2ϵ
v−w

 ,

Ã(334)
w =

 −2ϵ(−v2−3vw+2v+4w2−3w−1)
w(v2−2vw−2v+w2−2w+1)

2ϵ(v−w−1)
wr2

−2ϵ(v+3w−1)
wr2

−2ϵ(v−w−1)
wr2

−2ϵ
w

2ϵ
w

ϵ(v+3w−1)
wr2

ϵ
w − ϵ(v+w)

w(v−w)

 .

The diagonal block corresponding to sector 334 is linear in ϵ! Considering the complete
matrix of system 2a, we find that the third integral misses a sub-sector contribution.
The parts not proportional to ϵ are removed with a transformation matrix of the second
kind (5.29). We find

K46 = ϵ3
(
(1− w)2D−IB

′
011100101 + 2(1− w)D−IB

′

(−1)11100101 +D−IB
′

(−2)11100101

)
,

K47 = ϵ3r2

(
(1− w)D−IB

′
011100101 +D−IB

′

(−1)11100101

)
,

K48 = ϵ3 (w − v)
(
D−IB

′

0111(−1)0101 − 2D−IB
′

001100011

)
.

In this section we explored a method providing ansätze for integrals of uniform weight.
We demonstrated its application by means of two example sectors. We studied the
weight properties of the leading term of a maximal cut with the aim of obtaining con-
stant leading singularities. The maximal cut projects the differential equation of the
corresponding integral onto its homogeneous part, hence, this method is best suited for
the study of diagonal blocks. Furthermore, the leading term of the maximal cut is dras-
tically simpler then the original integral, which makes the study of weight properties
accessible in the first place. We may generalise this method for a sector with N mas-
ter integrals, whose maximal cut leaves integration’s behind. We select N independent
integration domains

CMaxCut → C1, . . . , CN .

106
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These are usually around poles in order to be as simple as possible (see (5.47) and
(5.50)). In addition, we modify the integrand

φ → φ1, . . . , φN ,

to obtain a constants of weight zero. Applying the same modifications to the original
integral provides the sought-after ansätze. In this section, we, furthermore, encountered
another square root (5.58) and utilised a transformation matrix (5.61) to fix our results.
In the next section we return to the larger picture and give a complete list of all integrals
of uniform weight.

5.5 Master integrals

In the preceding sections, we illustrated different techniques applied in the search for ap-
propriate master integrals, i.e. master integrals leading to differential equations linear in
the dimensional regularisation parameter ϵ. We obtained three systems of pre-canonical
master integrals in section 5.3. We transformed the resulting differential equations of
all systems bottom-up (section 5.4.2). We constructed ansätze for master integrals of
uniform weight in order to transform sectors, i.e. blocks on the diagonal of differential
equations. Thereby, we also worked in (2− 2ϵ) dimensions, since the dimensional shift
operator (5.6) is able to transfer results back to (4 − 2ϵ) dimensions. One way to find
such an ansatz is through relations to (simpler) integrals, which are already known. In
section 5.4.3, for example, we found expressions of uniform weight for the tadpole and
bubble integral and were therefore able to construct ansätze for the first two integrals
of system 1. If the integrals become more complex the leading singularity analyses (Box
2) is a helpful tool. We explained this approach in the previous section. Instead of the
integral itself we may study the weight properties of the leading term of the simpler
maximally cut integral. To obtain the maximal cut, we first convert the integral to
Baikov representation democratically or loop by loop. We modify the maximal cut to
obtain a constant of weight zero. If the maximal cut does not remove all integrations, we
change not only the integrand but also the integration domain. The chosen integration
domains are usually around poles. The modifications applied to the integrand of the
maximal cut are applied to the original integrand in order to obtain the desired ansatz.
Transformation matrices of the first kind (5.33) may fix resulting ansätze (see for ex-
ample (5.61), (5.62)). After obtaining differential equations linear in ϵ on the sector,
we consider its sub-sector contributions. Sub-sector contributions appear on the left of
diagonal blocks. They are brought to a form linear in ϵ with the help of transformations
on the matrix (section 5.4). Non-linear contributions of single sub-sectors are removed
by transformation matrices of the second kind (5.29). Sometimes, we need to put a
prefactor depending on ϵ in front of the considered integral itself. This transformation
matrix of the first kind (5.33), solely depending on ϵ, either removes unwanted sub-sector
contributions completely or transforms them to a simple form (5.32). This simple form
is again fixed by transformation matrices of the second kind (5.29).

We are dealing with a huge amount of master integrals as opposed to the few examples
we gave. In practice, we automatised main parts of the procedures as we implemented
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them within Mathematica. In this section, we give all resulting master integrals of uni-
form weight.

We have seen how square roots may arise in the construction of integrals of uniform
weight. In section 5.4.3 we encountered r1 in (5.42) and in section 5.4.4 r2 in (5.58).
Furthermore, we find the square roots r3, r4,

r1 =
√

−v (4− v),

r2 =
√

λ (v, w, 1),

r3 =
√
−v (4w − v),

r4 =
√

−v (−4− v), (5.64)

where λ is the Källen function defined by

λ (x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. (5.65)

As we are seeking canonical differential equations (3.72) (see section 3.5.1), which are
expressible in terms of dlog forms containing rational functions, these must be ratio-
nalised (see section 3.6.2). We are not able to rationalise all square roots simultaneously.
Hence, we divide the master integrals into three systems, each containing a subset of
square roots which can be rationalised. These rationalisations will be given in section
5.5.1. Accordingly we find three systems of differential equations linear in ϵ, all fulfilling
the integrability condition (3.64).

System 1 consists of topologies A, B, C and D (fig.5.5, table 5.6) with sectors 255 as
top sectors. We call the corresponding master integrals of uniform weight J⃗ and
present them in (5.69). They fulfil the system of differential equations

dJ⃗ = ϵÃ (v, w) J⃗ ,

Ã (v, w) = Ãvdv + Ãwdw, (5.66)

where Ãv, Ãw are 105× 105-dimensional matrices depending on v, w and thereby
also on the following square roots

(r1, r2) .

System 2a contains topology B’ (fig.5.7, table 5.7) with top sectors 255 and 479. Here,
we call the master integrals of uniform weight, given in (5.70), K⃗. Their system
of differential equations evaluates to

dK⃗ = ϵB̃ (v, w) K⃗,

B̃ (v, w) = B̃vdv + B̃wdw, (5.67)

where Bv, Bw are 61 × 61-dimensional matrices depending on v, w and thereby
also on the following square roots

(r1, r2, r3) .
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System 2b contains topology B’ (fig.5.7, table 5.8) with top sector 509. We call the
last set of master integrals of uniform weight L⃗ (5.71). Their system of differential
equations amounts to

dL⃗ = ϵC̃ (v, w) L⃗,

C̃ (v, w) = C̃vdv + C̃wdw, (5.68)

where Cv, Cw are 43 × 43-dimensional matrices depending on v, w and thereby
also on

(r1, r2, r4) .

Defining three systems is in some sense redundant, as several integrals of different sys-
tems are related to each other. Topology B’ resembles topology B, but masses are
exchanged mW ↔ mt. Hence, its master integrals under top sector 255 correspond to
those of topology B. Furthermore, system 2a and system 2b share common sub-sectors.
As already shown in table 5.5, only four integrals from system 2b, namely L40 − L43,
are no part of system 2a.

The master integrals are completely defined by their alphabet and corresponding co-
efficient matrix, which will be discussed in section 5.5.2, as well as their boundary
values. We take (v, w) = (0, 1) as boundary point, since most master integrals vanish
there. The remaining boundary values will be given in section 5.5.3

The master integrals of uniform weight for system 1, J⃗ , are presented in the follow-
ing. Furthermore, a summary is given in appendix B.1.

J1 = ϵ3 D−IA100110000,

J2 = ϵ3 r1 D
−IA110110000,

J3 = ϵ3 r1 D
−IA011110000,

J4 = ϵ3 D−IA(−1)11110000,

J5 = ϵ3 (1− w) D−IA101010100,

J6 = ϵ3 D−IA101(−1)10100,

J7 = ϵ3 r2 D
−IA011010100,

J8 = ϵ3
[
D−IA011(−1)10100 − (1− w) D−IA011010100

]
,

J9 = ϵ3 D−IA01101(−1)100,

J10 = ϵ3
[
D−IA0110101(−1)0 + v D−IA011010100

]
,

J11 = ϵ3 (1− w) D−IA100110100,

J12 = ϵ3 r2 D
−IA100011100,

J13 = ϵ3
[
D−IA100(−1)11100 − (1− w) D−IA100011100

]
,

J14 = ϵ3
[
D−IA1000111(−1)0 + v D−IA100011100

]
,
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J15 = ϵ3 v D−IA100100110,

J16 = ϵ3 v D−IA100010110,

J17 = ϵ3 v (4− v) D−IA110111000,

J18 = ϵ3 r1

[
D−IA111(−1)10100 − (1− w) D−IA111010100

]
,

J19 = ϵ3 r1

[
D−IA111(−1)10100 −D−IA011010100

]
,

J20 = ϵ3 (1− w) r1 D
−IA110110100,

J21 = ϵ3 r1
[
(1− w) D−IA011110100 −D−IA011010100

]
,

J22 = ϵ3 (1− w)
[
D−IA(−1)11110100 −D−IA011010100

]
,

J23 = ϵ3 (1− w) D−IA01111(−1)100,

J24 = ϵ3 r1r2 D
−IA110011100,

J25 = ϵ3 r1

[
D−IA110(−1)11100 − (1− w) D−IA110011100

]
,

J26 = ϵ3 r1

[
D−IA1100111(−1)0 + v D−IA110011100

]
,

J27 = ϵ3 r2 D
−IA101(−1)11100,

J28 = ϵ3 r1

[
D−IA101(−1)11100 − (1− w) D−IA101011100

]
,

J29 = ϵ3
[
D−IA101(−2)11100 − (1− w) D−IA101(−1)11100

]
,

J30 = ϵ3 (1− v)
[
D−IA101(−1)11100 +D−IA10101110(−1) − (1− w) D−IA101011100

]
,

J31 = ϵ3 r1
[
(1− w) D−IA100111100 −D−IA100011100

]
,

J32 = ϵ3 vr1 D
−IA110100110,

J33 = ϵ3 vr1 D
−IA011100110,

J34 = ϵ3 v D−IA(−1)11100110,

J35 = ϵ3 vr1 D
−IA110010110,

J36 = ϵ3 (1− w)
[
v D−IA101010110 +D−IA011010100

]
,

J37 = ϵ4 (1− 2ϵ) v IA111021100,

J38 = ϵ4 (1− 2ϵ) v IA111011200,

J39 = ϵ3 v (4− v)
[
(1− w) D−IA110111100 −D−IA110011100

]
,

J40 = ϵ3vr1

[
D−IA11101011(−1) − (1− w) D−IA111010110

]
,

J41 = ϵ4 (1− 2ϵ) v IA112010110,

J42 = ϵ4 (1− 2ϵ) v IA111020110,

J43 = ϵ4 (1− 2ϵ) v IA021110110,

J44 = ϵ4 (1− 2ϵ) v IA012110110,

J45 = ϵ3 v2 (4− v) D−IA110101110,

J46 = ϵ4 (1− ϵ) (1− 2ϵ) v IA100111110,
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J47 = ϵ5 (1− 2ϵ) v IA111110110,

J48 = ϵ4 (1− 2ϵ) v (1− w) IA111120110,

J49 = ϵ4 (1− 2ϵ) v

[
IA211110110 +

1

2
(2− v + r1) IA121110110

]
,

J50 = ϵ4 (1− 2ϵ) vr1 I
A
210111110,

J51 = ϵ3 v D−IB100011100,

J52 = ϵ3 v D−IB001011100,

J53 = ϵ3 vr1 D
−IB110011100,

J54 = ϵ3 r2 D
−IB101(−1)11100,

J55 = ϵ3 (1− w)
[
D−IB101(−1)11100 + v D−IB101011100

]
,

J56 = ϵ3
[
D−IB101(−2)11100 + v D−IB101(−1)11100

]
,

J57 = ϵ3 vr2 D
−IB011100110,

J58 = ϵ3 v
[
D−IB(−1)11100110 − (1− w) D−IB011100110

]
,

J59 = ϵ3 v D−IB0111(−1)0110,

J60 = ϵ3 v2 D−IB100101110,

J61 = ϵ3 v2 D−IB001101110,

J62 = ϵ4 (1− 2ϵ) v IB111021100,

J63 = ϵ3 r1

{
(1− w) D−IB111(−1)11100 −D−IB101(−1)11100

}
,

J64 = ϵ3 vr1
{
(1− w) D−IB111100110 −D−IB011100110

}
,

J65 = ϵ3 v2r1 D
−IB110101110,

J66 = ϵ5 (1− 2ϵ) v IB111110110,

J67 = ϵ4 (1− 2ϵ)2 v IB111101110,

J68 = ϵ3 r1 D
−IC101001100,

J69 = ϵ3 D−IC1(−1)1001100,

J70 = ϵ3 D−IC10100110(−1),

J71 = ϵ2 (1 + 4ϵ) D−IC011001100,

J72 = ϵ3r1 D
−IC11100110(−1),

J73 = ϵ3 r2
[
(1− w) D−IC101011100 +D−IC101001100

]
,

J74 = ϵ3 (1− w) D−IC10101110(−1),

J75 = ϵ3 (1− w)
[
D−IC1010111(−1)0 + v D−IC101011100

]
,

J76 = ϵ3 r2 D
−IC01101110(−1),

J77 = ϵ3 D−IC01101110(−2),

J78 = ϵ3 (w − v)
{
D−IC011(−1)11100 − 2 D−IA100011100

}
,
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J79 = ϵ3 r1

{
2 D−IC1(−1)1101010 + v D−IC101101010 −D−IC011001100 − 2 D−IC101100010

}
,

J80 = ϵ3 v
[
2 (1− 3ϵ)

(
IC202101010 − ϵ IC102101010

)
+ ϵ (1− 2ϵ) IC101201010

]
,

J81 = ϵ3 (1− w)
[
(1− w) D−IC101011010 +D−IC011001100

]
,

J82 = ϵ3 r1

{
(1− w) D−IC11101110(−1) −D−IC01101110(−1)

}
,

J83 = ϵ4 (1− 2ϵ) v IC111011200,

J84 = ϵ4 (1− 2ϵ) v IC111012100,

J85 = ϵ4 (1− 2ϵ) v IC112101010,

J86 = ϵ3 (1− w) r1
[
(1− w) D−IC111011010 −D−IC101011100 +D−IC111001100

]
,

J87 = ϵ4 (1− 2ϵ)

[
IC101111010 −

1

2
(1− w) IC201111010 −

3

2
IC101211(−1)10 +

1

4
v IC101201010

−1

2
IC201101010 +

1

2
IC200111010 +

3

2
IC100211010

]
+

ϵ3

2
(1− 3ϵ) v

[
IC202101010 − ϵ IC102101010

]
,

J88 = ϵ4 (1− 2ϵ) v IC101211010,

J89 = ϵ4 (1− 2ϵ) v IC012111010,

J90 = ϵ4 (1− 2ϵ) v IC112001110,

J91 = ϵ4 (1− 2ϵ) v IC111002110,

J92 = ϵ2 r1

[
(1− 2ϵ)2 v IC211001210 − ϵ (1− 2ϵ) IC111002110 − IC202002100 − v IA210200210

]
,

J93 = ϵ4 (1− 2ϵ) v IC021011110,

J94 = ϵ4 (1− 2ϵ) v IC012011110,

J95 = ϵ5 (1− 2ϵ) v IC111111010,

J96 = ϵ4 (1− 2ϵ) vw IC111121010,

J97 = ϵ4 (1− 2ϵ) v (1− w) IC111111020,

J98 = ϵ4 (1− 2ϵ) r1
(
IC211111010 + IC121111010 + IC111112010 + w IC111121010 − 4ϵ IC111111010

)
,

J99 = ϵ5 (1− 2ϵ) v IC111011110,

J100 = ϵ4 (1− 2ϵ) v (1− w) IC111012110,

J101 = ϵ4 (1− 2ϵ) v (1− w) IC112011110,

J102 = ϵ4 (1− 2ϵ) vr1 I
C
121011110,

J103 = ϵ5 (1− 2ϵ) v IC101111110,

J104 = ϵ5 (1− 2ϵ) v (1− v − w) IC111111110,

J105 = ϵ4 (1− 2ϵ) vw ID111201110. (5.69)

The master integrals for system 2a are

K1 = ϵ3 (1− w) D−IB
′

101010100,

K2 = ϵ3 D−IB
′

101(−1)10100,

K3 = ϵ3 r2 D
−IB

′
011010100,
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K4 = ϵ3
[
D−IB

′

(−1)11010100 + (1− w)D−IB
′

011010100

]
,

K5 = ϵ3
[
D−IB

′

01101(−1)100 + v D−IB
′

011010100

]
,

K6 = ϵ3
[
D−IB

′

0110101(−1)0 + v D−IB
′

011010100

]
,

K7 = ϵ3 v D−IB
′

100011100,

K8 = ϵ3 v D−IB
′

001011100,

K9 = ϵ3 v D−IB
′

101000110,

K10 = ϵ3 r3

[
D−IB

′
011010100 +D−IB

′

111(−1)10100 + (1− w) D−IB
′

111010100

]
,

K11 = ϵ3 r3 D
−IB

′

111(−1)10100,

K12 = ϵ3 v r3 D
−IB

′
110011100,

K13 = ϵ3 r2 D
−IB

′

101(−1)11100,

K14 = ϵ3 (1− w)
[
D−IB

′

101(−1)11100 + v D−IB
′

101011100

]
,

K15 = ϵ3
[
D−IB

′

101(−2)11100 + v D−IB
′

101(−1)11100

]
,

K16 = ϵ3 (1− w)
[
v D−IB

′
011011100 +D−IB

′
011010100

]
,

K17 = ϵ3 v r3 D
−IB

′
111000110,

K18 = ϵ3 v (1− w) D−IB
′

101100110,

K19 = ϵ3 v r2 D
−IB

′
011100110,

K20 = ϵ3 v
[
D−IB

′

(−1)11100110 + (1− w) D−IB
′

011100110

]
,

K21 = ϵ3 v D−IB
′

0111(−1)0110,

K22 = ϵ3 v2 D−IB
′

100101110,

K23 = ϵ3 v2 D−IB
′

001101110,

K24 = ϵ4 (1− 2ϵ) v IB
′

111021100,

K25 = ϵ3 r3

[
(1− w)D−IB

′

111(−1)11100 +D−IB
′

101(−1)11100

]
,

K26 = ϵ3 v r3

[
(1− w)D−IB

′
111100110 +D−IB

′
011100110

]
,

K27 = ϵ3 v r3 D
−IB

′

11101011(−1),

K28 = ϵ4 (1− 2ϵ) v IB
′

112010110,

K29 = ϵ4 (1− 2ϵ) v IB
′

111020110,

K30 = ϵ3 v2 r3 D
−IB

′
110101110,

K31 = ϵ5 (1− 2ϵ) v IB
′

111110110,

K32 = ϵ4 (1− 2ϵ)2 v IB
′

111101110,

K33 = ϵ3 D−IB
′

101000001,

K34 = ϵ3 r3 D
−IB

′
111000001,
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K35 = ϵ3 (1− w)D−IB
′

101100001,

K36 = ϵ3 r2 D
−IB

′
011100001,

K37 = ϵ3
[
D−IB

′

(−1)11100001 + (1− w)D−IB
′

011100001

]
,

K38 = ϵ3
[
D−IB

′

01110(−1)001 + v D−IB
′

011100001

]
,

K39 = ϵ2 (1 + 4ϵ) D−IB
′

001100101,

K40 = ϵ3 r1 D
−IB

′
001100011,

K41 = ϵ3
[
D−IB

′

(−1)01100011 + (1− w) D−IB
′

001100011

]
,

K42 = ϵ3
[
D−IB

′

0011(−1)0011 + v D−IB
′

001100011

]
,

K43 = ϵ3 v D−IB
′

001000111,

K44 = ϵ3 r3

[
(1− w) D−IB

′
111100001 +D−IB

′
011100001

]
,

K45 = ϵ3 (1− w)
[
(1− w) D−IB

′
101100101 +D−IB

′
001100101

]
,

K46 = ϵ3 r2

[
D−IB

′

(−1)11100101 + (1− w) D−IB
′

011100101

]
,

K47 = ϵ3
[
D−IB

′

(−2)11100101 + 2 (1− w) D−IB
′

(−1)11100101 + (1− w)2 D−IB
′

011100101

]
,

K48 = ϵ3 (w − v)
[
D−IB

′

0111(−1)0101 − 2 D−IB
′

011000101

]
,

K49 = ϵ3 r2

[
(1− w) D−IB

′
101100011 +D−IB

′
001100011

]
,

K50 = ϵ3 (1− w)
[
D−IB

′

1(−1)1100011 + (1− w) D−IB
′

101100011

]
,

K51 = ϵ3 (1− w)
[
D−IB

′

101100(−1)11 + v D−IB
′

101100011

]
,

K52 = ϵ3 r3

[
(1− w)2 D−IB

′
111100101 + 2 (1− w) D−IB

′
011100101 +D−IB

′

(−1)11100101

]
,

K53 = ϵ3 r3

[
(1− w)2 D−IB

′
111100011 + (1− w)

(
D−IB

′
011100011 +D−IB

′
101100011

)
+D−IB

′
001100011

]
,

K54 = ϵ4 (1− 2ϵ) v IB
′

101110021,

K55 = ϵ4 (1− 2ϵ) v IB
′

112000111,

K56 = ϵ4 (1− 2ϵ) v IB
′

012100111,

K57 = ϵ4 (1− 2ϵ) v IB
′

011200111,

K58 = ϵ5 (1− 2ϵ) v IB
′

111110011,

K59 = ϵ4 (1− 2ϵ) v IB
′

112110011,

K60 = ϵ4 (1− 2ϵ) r3

[
w IB

′
211110011 + IB

′
112110011 − 2ϵ IB

′
111110011

]
,

K61 = ϵ4 (1− 2ϵ) vw IB
′

112100111. (5.70)

The master integrals for system 2b amount to

L1 = K1 = ϵ3 (1− w) D−IB
′

101010100,

L2 = K2 = ϵ3 D−IB
′

101(−1)10100,
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L3 = K3 = ϵ3 r2 D
−IB

′
011010100,

L4 = K4 = ϵ3
[
D−IB

′

(−1)11010100 + (1− w)D−IB
′

011010100

]
,

L5 = K5 = ϵ3
[
D−IB

′

01101(−1)100 + v D−IB
′

011010100

]
,

L6 = K6 = ϵ3
[
D−IB

′

0110101(−1)0 + v D−IB
′

011010100

]
,

L7 = K7 = ϵ3 v D−IB
′

100011100,

L8 = K8 = ϵ3 v D−IB
′

001011100,

L9 = K9 = ϵ3 v D−IB
′

101000110,

L10 = K13 = ϵ3 r2 D
−IB

′

101(−1)11100,

L11 = K14 = ϵ3 (1− w)
[
D−IB

′

101(−1)11100 + v D−IB
′

101011100

]
,

L12 = K15 = ϵ3
[
D−IB

′

101(−2)11100 + v D−IB
′

101(−1)11100

]
,

L13 = K16 = ϵ3 (1− w)
[
v D−IB

′
011011100 +D−IB

′
011010100

]
,

L14 = K18 = ϵ3 v (1− w) D−IB
′

101100110,

L15 = K19 = ϵ3 v r2 D
−IB

′
011100110,

L16 = K20 = ϵ3 v
[
D−IB

′

(−1)11100110 + (1− w) D−IB
′

011100110

]
,

L17 = K21 = ϵ3 v D−IB
′

0111(−1)0110,

L18 = K22 = ϵ3 v2 D−IB
′

100101110,

L19 = K23 = ϵ3 v2 D−IB
′

001101110,

L20 = K33 = ϵ3 D−IB
′

101000001,

L21 = K35 = ϵ3 (1− w)D−IB
′

101100001,

L22 = K36 = ϵ3 r2 D
−IB

′
011100001,

L23 = K37 = ϵ3
[
D−IB

′

(−1)11100001 + (1− w)D−IB
′

011100001

]
,

L24 = K38 = ϵ3
[
D−IB

′

01110(−1)001 + v D−IB
′

011100001

]
,

L25 = K39 = ϵ2 (1 + 4ϵ) D−IB
′

001100101,

L26 = K40 = ϵ3 r1 D
−IB

′
001100011,

L27 = K41 = ϵ3
[
D−IB

′

(−1)01100011 + (1− w) D−IB
′

001100011

]
,

L28 = K42 = ϵ3
[
D−IB

′

0011(−1)0011 + v D−IB
′

001100011

]
,

L29 = K43 = ϵ3 v D−IB
′

001000111,

L30 = K45 = ϵ3 (1− w)
[
(1− w) D−IB

′
101100101 +D−IB

′
001100101

]
,

L31 = K46 = ϵ3 r2

[
D−IB

′

(−1)11100101 + (1− w) D−IB
′

011100101

]
,

L32 = K47 = ϵ3
[
D−IB

′

(−2)11100101 + 2 (1− w) D−IB
′

(−1)11100101 + (1− w)2 D−IB
′

011100101

]
,
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L33 = K48 = ϵ3 (w − v)
[
D−IB

′

0111(−1)0101 − 2 D−IB
′

011000101

]
,

L34 = K49 = ϵ3 r2

[
(1− w) D−IB

′
101100011 +D−IB

′
001100011

]
,

L35 = K50 = ϵ3 (1− w)
[
D−IB

′

1(−1)1100011 + (1− w) D−IB
′

101100011

]
,

L36 = K51 = ϵ3 (1− w)
[
D−IB

′

101100(−1)11 + v D−IB
′

101100011

]
,

L37 = K54 = ϵ4 (1− 2ϵ) v IB
′

101110021,

L38 = K56 = ϵ4 (1− 2ϵ) v IB
′

012100111,

L39 = K57 = ϵ4 (1− 2ϵ) v IB
′

011200111,

L40 = ϵ3 r4

[
v D−IB

′

0011(−1)1111 + 2 D−IB
′

001100011

]
,

L41 = ϵ4 (1− 2ϵ) v IB
′

002101111,

L42 = ϵ5 (1− 2ϵ) v IB
′

101101111,

L43 = ϵ4 (1− 2ϵ) v (1− w) IB
′

102101111. (5.71)

5.5.1 Variable transformations

Multiple polylogarithms (section 3.5.2) are a well understood class of functions, hence,
we want to be able to express our results in terms of them. The most efficient strategy is
thereby generating a differential equation in ϵ-form free of square roots. We recall, that
the master integrals given in the previous section depend on the following kinematic
variables,

v =
p2

m2
t

, w =
m2

W

m2
t

. (5.72)

Unfortunately, this dependence is not free of square roots, we encounter

r1 =
√

−v (4− v),

r2 =
√

λ (v, w, 1),

r3 =
√
−v (4w − v),

r4 =
√

−v (−4− v), (5.73)

where λ is the Källen function defined by (5.65).

As stressed in the previous section, we are not able to rationalise all four square roots
simultaneously. However, we are able to rationalise the sets of square-roots as demanded
by each system,

System 1 (5.66): (r1, r2) ,

System 2a (5.67): (r1, r2, r3) ,

System 2b (5.68): (r1, r2, r4) .

We start with the simultaneous rationalisation of r1 and r2. In section 3.6.2 we already
derived a possible rationalisation for r1 (3.96): The variable shift v → x, where x is
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defined by

v =
−(1− x)2

x
,

⇒ x =
1

2
(2− v − r1) , (5.74)

leads to

r1 =
√

−v (4− v)
v=

−(1−x)2

x⇒ r1 =
1− x2

x
. (5.75)

A variable shift w → y rationalising r2 in addition was introduced in [94] based on the
method of [78, 79], where

w =
(1− y + 2xy) (x− 2y + xy)

x (1− y2)
, (5.76)

⇒ y =
r2 − r1

1− w + 2v
, (5.77)

⇒ r2 =
(1− x)

[
(1− y)2 + x (1 + y)2

]
x (1− y2)

.

the variable transformation to x and y suffices to rationalise the square roots of all 105
master integrals J⃗ of the first system. We have to determine boundary values of the
integrals to be able to solve their differential equations. As boundary point, we choose
(v, w) = (0, 1), corresponding in (x, y)-space to the line at x = 1. In conclusion, we
can integrate the differential equation solely in x keeping a constant y. The integration
paths of multiple polylogarithms (3.85) are defined to start at 0. This leads us to an
additional change of variables x → x′, where

x′ = 1− x. (5.78)

This way, the boundary point corresponds to x′ = 0 and integrations start at 0.

The algorithmic approach of [78] was sketched in section 3.6.2. We may use it as well
to find a rationalisation for r3 in addition to r1, r2, i.e. appropriate variables for system
2a. Of course we want to keep the rationalisations of r1, r2, hence, we insert x and y
into r3 and deal with the outcome,

r3 =

√
(1− x)2

x2(1− y2)
(x2 (7y2 + 8y + 1) + x (2− 18y2) + 7y2 − 8y + 1)

=
1− x

x

√
(x2 (7y2 + 8y + 1) + x (2− 18y2) + 7y2 − 8y + 1)

(1− y2)
.

We conclude we need to rationalise√
(x2 (7y2 + 8y + 1) + x (2− 18y2) + 7y2 − 8y + 1)

(1− y2)
≡
√

q1
q2
.
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We follow the steps outlined in section 3.6.2 and start with the following definition,

f (r, x) = q2 · r2 − q1

= (1− y2)r2 −
(
x2
(
7y2 + 8y + 1

)
+ x

(
2− 18y2

)
+ 7y2 − 8y + 1

)
. (5.79)

Setting y = constant, we imply that we search for a variable transformation in x. The
function f is of degree d = 2. Hence, we need to determine a point p = (a0, a1) of
multiplicity 2 − 1 = 1. f must vanish at this point, but at least one partial derivative
must stay non-zero. The polynomial q1 simplifies drastically after inserting x = 1,

f (r, x = 1) = (1− y2)r2 − 4(1− y2).

A possible candidate for p becomes immediately apparent,

f (r = 2, x = 1) = (1− y2)4− 4(1− y2) = 0,

∂f

∂x
(r = 2, x = 1) = 4

(
y2 − 4y − 1

)
̸= 0

⇒ p = (2, 1).

The next step demands us to collect the terms of common degree within f (r + a0, x+ a1),
to find two polynomials gd (r, x) , gd−1 (r, x),

f(r + 2, x+ 1) = (r + 2)2
(
1− y2

)
− (x+ 1)

(
2− 18y2

)
− (x+ 1)2

(
7y2 + 8y + 1

)
− 7y2 + 8y − 1

= r2
(
1− y2

)
+ x2

(
−7y2 − 8y − 1

)︸ ︷︷ ︸
=g2(r,x)

−4r
(
y2 − 1

)
+ x

(
4y2 − 16y − 4

)︸ ︷︷ ︸
=g1(r,x)

.

Now, the resulting variable transformation x → x̂ is found as stated in (3.95),

x = −x̂
g1(1, x̂)

g2(1, x̂)
+ a1

= −
x̂
(
−x̂
(
−4y2 + 16y + 4

)
− 4

(
y2 − 1

))
−x̂ (7x̂y2 + 8x̂y + x̂)− y2 + 1

+ 1

=
(y − 1)

(
x̂2(11y + 3)− 4x̂(y + 1) + y + 1

)
(y + 1) (x̂2(7y + 1) + y − 1)

⇔ x̂ =

(
1− y2

)
(1− x)

(2 (1− x)− xr3)

(3 + x+ 8y − 11y2 + 8xy + 7xy2)
. (5.80)

The variables x̂, y rationalise r1, r2 and r3 simultaneously,

r1 =
8x̂
(
x̂
(
y2 − 4y − 1

)
− y2 + 1

) (
x̂2
(
9y2 − 1

)
− 2x̂

(
y2 − 1

)
+ y2 − 1

)
(1− y2) (x̂2(7y + 1) + y − 1) (x̂2(11y + 3)− 4x̂(y + 1) + y + 1)

,

r2 =
8x̂
(
x̂
(
y2 − 4y − 1

)
− y2 + 1

) (
x̂2
(
9y2 + 4y + 1

)
− 2x̂(y + 1)2 + y2 + 1

)
(1− y2) (− (x̂2(7y + 1))− y + 1) (x̂2(11y + 3)− 4x̂(y + 1) + y + 1)

,

r3 =
8x̂
[
1− y2 −

(
1 + 4y − y2

)
x̂
] [
1− y2 − 2

(
1 + 4y − y2

)
x̂+ (1 + y) (1 + 7y) x̂2

]
(1− y2) [1− y − (1 + 7y) x̂2] [(1 + y) (1− 4x̂) + (3 + 11y) x̂2]

.
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Fortunately, the boundary point x = 1 corresponds to x̂ = 0.

The remaining set of square roots is (r1, r2, r4). To rationalise simultaneously r1 and
r4, we take the variable x̃, where

x = x̃
(1− x̃)

(1 + x̃)
,

x̃ =
1

2

(
1− x−

√
x2 − 6x+ 1

)
, (5.81)

which already appeared in [95]. The roots evaluate to

r1 =

(
−x̃2 + 2x̃+ 1

) (
x̃2 + 1

)
x̃ (1− x̃2)

,

r2 =

(
x̃2 + 1

) (
x̃2
(
−y2

)
− 2x̃2y − x̃2 + 2x̃y2 + 2x̃+ y2 − 2y + 1

)
x̃ (1− x̃2) (1− y2)

,

r4 =

(
1 + x̃2

) (
1− 2x̃− x̃2

)
x̃ (1− x̃2)

.

The value x = 1 + iδ, where δ is infinitesimal small positive number, corresponds to
x̃ = i. Setting

x̃′ = i− x̃, (5.82)

the value x = 1 + iδ corresponds to x̃′ = 0.

In summary, we found appropriate variable transformations for all three systems,

System 1 (5.66): (x (5.74), y (5.77)) ,

System 2a (5.67): (x̂ (5.80), y (5.77)) ,

System 2b (5.68): (x̃ (5.81), y (5.77)) .

Now we are able to express the differential equations in terms of dlog-forms containing
only rational square roots.

5.5.2 Differential one-forms

The differential equations of all three systems (5.66), (5.67), (5.68) are linear in ϵ. They
can be written in terms of dlog-forms ωi (see section 3.5.1). In the former section, we
found variable transformations for all systems. Hence, the dlog-forms contain rational
arguments. The definition of three systems solely served this purpose. Systems still
share subsets of integrals and, consequently, also dlog-forms. In this section we, there-
fore, present a complete list of all sufficient dlog-forms as functions of v, w (5.72). Note,
however, that behind the scenes calculations may be carried out in terms of x, x̂, x̃, y
(5.74),(5.80),(5.81),(5.77).

We start with a small example demonstrating dependencies on dlog-forms. In section
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5.4.3, we determined the differential equation of J1 (5.40) and J2 (5.44). We see, that
the first entries of Ã (5.66) can be written as

ϵÃ(1,1) = − ϵ

w
dw = −ϵ dlog (w) ,

ϵÃ(2,1) =
2ϵ

r1
dv = ϵ

2x

1− x2
∂v

∂x
dx = ϵ

2x

1− x2

(
−1− x2

x2

)
dx = ϵ

−2

x
dx

= −ϵ dlog
(
x2
)
= −ϵ dlog

(
2− v − r1
2− v + r1

)
,

ϵÃ(2,2) =
ϵ

4− v
dv − ϵ

w
dw = −ϵ dlog (w)− ϵ dlog (4− v) . (5.83)

In practice, dlog-forms ωk and coefficient matrices can be found, for example, with the
help of FiniteFlow [96, 97]. An (oversized) set of possible dlog-forms is determined by
the arguments of logarithmic functions emerging through naive integration of Ã with
respect to either v or w. A subsequent linear fit fixes a sufficient set of ω’s and coefficient
matrices. The first system (5.66) amounts to

Ã =

19∑
k=1

Mkωk

=



−ω1 0 0 0 0 0 . . .
−ω13 −ω1 − ω5 0 0 0 0
ω13 0 −ω1 − ω3 − 3ω5 −3ω13 0 0
0 0 ω13

2 ω3 − ω1 0 0
0 0 0 0 2 (ω1 − 2ω2) −3ω1

0 0 0 0 2 (ω1 − ω2) −3ω1

. . .


,

(5.84)

where coefficient matrices Mk are 105 × 105-dimensional, with rational numbers as

entries. The complete matrix ϵ
19∑
k=1

Mkωk is attached to the arXiv version of [1] under

the name A. The 19 sufficient differential one-forms ωk are given by

ω1 = dlog (w) ,

ω2 = dlog (1− w) ,

ω3 = dlog (−v) ,

ω4 = dlog (1− v) ,

ω5 = dlog (4− v) ,

ω6 = dlog (w − v) ,

ω7 = dlog (1− w − v) ,

ω8 = dlog (1− w + v) ,

ω9 = dlog
(
w2 + v (1− w)

)
,

ω10 = dlog
(
(1− w)2 + vw

)
,
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ω11 = dlog
(
(1− w)2 + v (2− w)

)
,

ω12 = dlog (λ (v, w, 1)) ,

ω13 = dlog

(
2− v − r1
2− v + r1

)
,

ω14 = dlog

(
2w + v (1− w)− (1− w) r1
2w + v (1− w) + (1− w) r1

)
,

ω15 = dlog

(
2 (1− w) + vw − wr1
2 (1− w) + vw + wr1

)
,

ω16 = dlog

(
wv2 +

(
1− 2w − w2

)
v + 2 (1− w)2 −

(
1− w2 + vw

)
r1

wv2 + (1− 2w − w2) v + 2 (1− w)2 + (1− w2 + vw) r1

)
,

ω17 = dlog

(
1 + w − v − r2
1 + w − v + r2

)
,

ω18 = dlog

(
(1− w)2 − v (1 + w)− (1− w) r2

(1− w)2 − v (1 + w) + (1− w) r2

)
,

ω19 = dlog

(
−v (3− v + w)− r1r2
−v (3− v + w) + r1r2

)
. (5.85)

The variable transformation to x, y (5.74),(5.77) yields rational functions within all
dlog-forms

ωi = dlog (fi) ,

where fi are compositions of polynomials

f1 = −p−1
1 p−1

5 p−1
6 p8p9, f2 = 2p−1

1 p2p4p
−1
5 p−1

6 p7, f3 = p−1
1 p22,

f4 = p−1
1 p17, f5 = p−1

1 p23, f6 = −p−1
1 p−1

5 p−1
6 p18,

f7 = p−1
1 p2p

−1
5 p−1

6 p16, f8 = p−1
1 p2p

−1
5 p−1

6 p12, f9 = p−2
1 p−2

5 p−2
6 p19p20,

f10 = p−2
1 p22p

−2
5 p−2

6 p14p15, f11 = p−2
1 p22p

−2
5 p−2

6 p10p13, f12 = p−2
1 p22p

−2
5 p−2

6 p211,

f13 = p21, f14 = p−2
1 p19p

−1
20 , f15 = p−2

1 p−1
14 p15,

f16 = p−2
1 p−1

10 p13p
−1
14 p15, f17 = −p1p

−1
5 p6p8p

−1
9 , f18 = −p−1

1 p35p
−3
6 p8p

−1
9 ,

f19 = −4p1p
2
4p

−2
7 . (5.86)

The set of polynomials rational in x and y is given by

p1 = x,

p2 = x− 1,

p3 = x+ 1,

p4 = y,

p5 = y − 1,

p6 = y + 1,

p7 = xy + x− y + 1,

p8 = xy + x− 2y,
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p9 = 2xy − y + 1,

p10 = xy2 + 2xy − 2y2 + x+ 2y,

p11 = xy2 + 2xy + y2 + x− 2y + 1,

p12 = xy2 + 2xy − y2 + x+ 2y − 1,

p13 = 2xy2 + 2xy − y2 + 2y − 1,

p14 = 2xy2 + 2xy − 3y2 + 2y + 1,

p15 = 3xy2 + 2xy − 2y2 − x+ 2y,

p16 = 3xy2 + 2xy − 3y2 − x+ 2y + 1,

p17 = x2 − x+ 1,

p18 = x2y2 + 2x2y − 3xy2 + x2 + y2 − x− 2y + 1,

p19 = x2y2 + 2x2y − 4xy2 + x2 + 2y2 − 2y,

p20 = 2x2y2 + 2x2y − 4xy2 + y2 − 2y + 1. (5.87)

The polynomials linear in x, p1-p16, appeared already in the two-loop mixed QCD-
electroweak corrections to H → bb̄ through a Htt̄-coupling [94]. Four polynomials,
p17-p20, are quadratic in x.

System 2a (5.67) and system 2b (5.68) require additional differential one-forms (5.90),
however not all dlog-forms of (5.85) occur. The lists of sufficient dlog-forms are

K : {ω1, ω2, ω3, ω5, ω6, ω8, ω12, ω13, ω17, ω18, ω19, ω20, ω21, ω22, ω23, ω24} ,
L : {ω1, ω2, ω3, ω5, ω6, ω8, ω12, ω13, ω17, ω18, ω19, ω25, ω26, ω27, ω28} .

In correspondence, the differential equations amount to

B̃ =
28∑
k=1

M ′
kωk, (5.88)

C̃ =
28∑
k=1

M ′′
kωk, (5.89)

where M ′
k are rational 61×61-matrices and M ′′

k rational 43×43-matrices. The complete

matrices ϵ
19∑
k=1

M ′
kωk and ϵ

19∑
k=1

M ′′
kωk are attached to the arXiv version of [1] under the

name B and C. The additional differential one-forms are given by

ω20 = dlog (4w − v) ,

ω21 = dlog
(
(1− w)2 + v

)
,

ω22 = dlog

(
2w − v − r3
2w − v + r3

)
,

ω23 = dlog

(
2w (1− w)− v − r3
2w (1− w)− v + r3

)
,

ω24 = dlog

(
−v (1− v + 3w)− r2r3
−v (1− v + 3w) + r2r3

)
,
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ω25 = dlog (4 + v) ,

ω26 = dlog
(
(1− w)2 − vw

)
,

ω27 = dlog

(
2 + v − r4
2 + v + r4

)
,

ω28 = dlog

(
−v (1 + w)− (1− w) r4
−v (1 + w) + (1− w) r4

)
. (5.90)

Under the variable change of system 2a to x̂, y (5.80),(5.77) the differential one-forms
become

d ln (p̂1(x̂, y)) , . . . , d ln (p̂20(x̂, y)) .

We note that the dlog-form ω6 = d ln(w − v) leads to a quartic polynomial in x̂,

p̂20 = 1− 4 x̂− 2 y2 − 16 yx̂+ 18 x̂2 + 8 y2x̂+ 48 x̂2y − 28 x̂3 + y4 + 16 y3x̂+ 44 x̂2y2

− 144 x̂3y + 13 x̂4 − 4 y4x̂− 48 x̂2y3 − 104 y2x̂3 + 112 x̂4y + 2 y4x̂2 + 16 y3x̂3

+ 246 x̂4y2 + 4 y4x̂3 + 16 y3x̂4 + 61 y4x̂4.

The remaining polynomials are at most quadratic in x̂. p̂20 yields roots of a quartic
polynomial within the arguments of multiple polylogarithms if the differential equation
is integrated along x̂ for generic and constant y.

Accordingly, the variable change of system 2b to x̃, y (5.81),(5.77) leads to

d ln (p̃1) , . . . , d ln (p̃17) .

Again the dlog-form ω6 = d ln(w − v) leads to a quartic polynomial,

p̃17 = 1− 2 y + x̃+ y2 − 4 yx̃+ 2 x̃2 − y2x̃− x̃3 + 2 y2x̃2 − 4 x̃3y + x̃4 + x̃3y2

+ 2 x̃4y + x̃4y2.

p̃1-p̃16 are at most quadratic in x̃. Furthermore, all polynomials are quadratic in y.

The set of all sufficient dlog-forms and coefficient matrices specifies in combination
with boundary values the resulting integrals. Appropriate boundary values will be de-
termined in the next section.

5.5.3 Boundary values

Each master integral is a Laurent series in the dimensional regularisation parameter.
In sections 3.5.1 and 3.5.2 we sketched the iterative construction of solutions to master
integrals in orders of ϵ. All constants emerging in the solution of master integrals are
thereby set with the help of boundary values. A boundary value corresponds to the
value of an integral at the boundary point. As already mentioned, we take

s = 0, m2
W = m2

t
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⇔ v = 0, w = 1,

as boundary point. Integrals without singularities at v = 0 vanish at the boundary
point if their prefactor evaluates to zero. J2 or J5 (5.69), for example, vanish, since r1
and (1 − w) become zero at v = 0, w = 1. This explains our choice for the boundary
point, most master integrals vanish. In this section we find the remaining non-trivial
boundary values. In (x, y)-space, the boundary point translates to the line x = 1, as
discussed in section 5.5.1.

We start with a dedicated integral reduction at s = 0, m2
W = m2

t reducing the number
of integrals we have to compute. To give an example, we look at the following integrals

J6 = ϵ3 D−IA101(−1)10100,

J8 = ϵ3
[
D−IA011(−1)10100 − (1− w) D−IA011010100

]
w=1
= ϵ3 D−IA011(−1)10100,

J9 = ϵ3 D−IA01101(−1)100,

J29 = ϵ3
[
D−IA101(−2)11100 − (1− w) D−IA101(−1)11100

]
w=1
= ϵ3 D−IA101(−2)11100.

From the definitions of the propagators (table 5.1), we deduce that these integrals must
evaluate to the same integral at s = 0, m2

W = m2
t . The integral reduction reveals indeed

J6|x=1 = J8|x=1 = J9|x=1 = J29|x=1 = ϵ3
2− 15ϵ+ 40ϵ2 − 45ϵ3 + 18ϵ4

2− 8ϵ
IA101010100.

Furthermore, we may derive relations from the coefficient matrices accompanying

ω2 = dlog (1− w) =
−dw

(1− w)
,

for example for system 2a (5.88),

dK⃗ =
(
M ′

2ω2

)
K⃗ +

 28∑
k=1
k ̸=2

M ′
kωk

 K⃗,

the master integrals should have no logarithmic singularity at w = 1. From this condi-
tion, we deduce

M ′
2.K⃗ =



−4K1

0
. . .
0

4K11 − 4K10

0
0
0

2K1 − 2K14

0
6K4 + 6K6 + 2K7 − 2K8 − 2K16

0
−2K18

. . .



!
= 0⃗.
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We find an even stronger statement considering the behaviour of complete systems of
differential equations at x = 1. Master integrals J⃗ must be constant at the boundary
point,

J⃗
∣∣∣
x=1

= constant

⇒ d
(
J⃗
∣∣∣
x=1

)
= 0⃗,

implying that J⃗ is in the kernel of Ã at x = 1,

dJ⃗=ÃJ⃗⇒ Ã
(
J⃗
∣∣∣
x=1

)
= 0⃗. (5.91)

We derive additional relations thereof and confirm the disappearance of certain integrals.

Finally, a few integrals have to be computed explicitly, J1 for example. In section
5.4.3, we determined

J1 = ϵ3 D−IA100110000 = ϵ3T1 (2− 2ϵ)2 T1 (2− 2ϵ, w)

to be the product of three tadpoles and, therefore, constant. Consequently, the first
boundary value is given by the product of two tadpoles with mass m2

t (5.38) and one
tadpole with mass m2

W (5.39),

ϵT1 (2− 2ϵ) = eϵγEΓ(1 + ϵ),

ϵT1 (2− 2ϵ, w) = eϵγEw−ϵΓ(1 + ϵ),

⇒ J1 = C1w
−ϵ,

C1 = e3γEϵ (Γ(1 + ϵ))3 . (5.92)

The next non-vanishing boundary value corresponds to

J15 = ϵ3 v D−IA100100110,

which consists of two massive tadpoles and a massless bubble. A general formula for
the massless bubble was derived in (3.39). In D = (2− 2ϵ) dimensions, it translates to

B11(2− 2ϵ; p2, 0, 0) = (−v)−1−ϵ e
ϵγEΓ (1 + ϵ) Γ (−ϵ) Γ (−ϵ)

Γ (−2ϵ)
. (5.93)

In the end of section 5.4.3 (see (5.42)), we determined that a massless bubble integral
in two dimensions requires a prefactor (ϵv) to be of uniform weight,

ϵ v B11(2− 2ϵ; p2, 0, 0) = − (−v)−ϵ
−2eϵγEΓ (1 + ϵ)

(
ϵ2Γ (−ϵ)2

)
−2ϵΓ (−2ϵ)

= (−v)−ϵ 2e
ϵγEΓ (1 + ϵ) (Γ (1− ϵ))2

Γ (1− 2ϵ)
,
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implying for J15,

J15 = ϵ3 v D−IA100100110 = ϵ2 T1 (2− 2ϵ)2 ϵ v B11(2− 2ϵ; p2, 0, 0),

⇒ J15 = (−v)−ϵC15,

C15 = 2e3ϵγE
Γ(1 + ϵ)3Γ(1− ϵ)2

Γ(1− 2ϵ)
. (5.94)

J15 has a logarithmic singularity at v = 0. The same holds for J51 and J60.

The list of non-zero boundary values from system 1 is

J1 = C1w
−ϵ, J15 = C15 (−v)−ϵ , J51 = C51 (−v)−2ϵw−ϵ,

J60 = C60 (−v)−2ϵ , J71 = C71, (5.95)

with

C1 = e3γEϵ (Γ (1 + ϵ))3 ,

C15 = 2e3γEϵ (Γ (1 + ϵ))3 (Γ (1− ϵ))2

Γ (1− 2ϵ)
,

C51 = −3e3γEϵΓ (1 + ϵ) (Γ (1− ϵ))3 Γ (1 + 2ϵ)

Γ (1− 3ϵ)
,

C60 = 4e3γEϵ (Γ (1 + ϵ))3 (Γ (1− ϵ))4

Γ (1− 2ϵ)2
,

C71 = e3γEϵΓ (1− ϵ) Γ (1 + ϵ) Γ (1 + 2ϵ)2 Γ (1 + 3ϵ)

Γ (1 + 4ϵ)
. (5.96)

The remaining non-zero boundary values are given by

J14|x=1 = J1|x=1,

J16|x=1 = J59|x=1 = J15|x=1,

J52|x=1 = J51|x=1,

J61|x=1 = J60|x=1,

J6|x=1 = J8|x=1 = J9|x=1 = J29|x=1 = J70|x=1 = J77|x=1 =
1

3
J71|x=1,

J56|x=1 = −2

3
J71|x=1,

J30|x=1 = −1

2
J1|x=1 +

1

2
J71|x=1,

J78|x=1 =
1

2
J1|x=1 −

1

2
J71|x=1,

J87|x=1 = −1

4
J1|x=1 +

1

4
J71|x=1.

The boundary values of system 2a and system 2b are related to those from system 1 as
follows,

K33|x=1 = K38|x=1 = J1|x=1,
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K9|x=1 = K21|x=1 = K43|x=1 = J15|x=1,

K7|x=1 = K8|x=1 = J51|x=1,

K22|x=1 = K23|x=1 = J60|x=1,

K39|x=1 = J71|x=1,

K41|x=1 = K47|x=1 =
1

3
J71|x=1,

K2|x=1 = K5|x=1 = K15|x=1 = K42|x=1 = −2

3
J71|x=1,

K48|x=1 =
1

2
J1|x=1 −

1

2
J71|x=1,

L20|x=1 = L24|x=1 = J1|x=1,

L9|x=1 = L17|x=1 = L29|x=1 = J15|x=1,

L7|x=1 = L8|x=1 = J51|x=1,

L18|x=1 = L19|x=1 = J60|x=1,

L25|x=1 = J71|x=1,

L27|x=1 = L32|x=1 =
1

3
J71|x=1,

L2|x=1 = L5|x=1 = L12|x=1 = L28|x=1 =
−2

3
J71|x=1,

L33|x=1 =
1

2
J1|x=1 −

1

2
J71|x=1.

We found boundary values for all master integrals. The boundary values along with
the dlog-forms defined in (5.85), (5.90) and corresponding coefficient matrices (5.84),
(5.88), (5.89) comprise all information about the three systems.

5.5.4 Results

We transformed the pre-canonical bases of master integrals obtained in section 5.3 to
a canonical basis given in section 5.5 via methods discussed in section 5.4. In section
5.5.1 we rationalised all square roots. Hence, we were able to express the systems of
differential equations through dlog-forms containing rational functions (5.85), (5.90) in
section 5.5.2. In the preceding section we finalised our work with the calculation of
boundary values of the master integrals at v = 0, w = 1 (5.96). All ingredients needed
to express results in terms of multiple polylogarithms are available. Hence, they are
presented in this section.

A differential equation in ϵ-form is solved order by order in the dimensional regular-
isation parameter, as described in section 3.5.1. Hence, each order in ϵ arises from its
lower order, as derived in (3.77),

dJ⃗ (0) = 0,

dJ⃗ (q+1) =
∑
i

Ciωi J⃗
(q). (5.97)
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In section 3.5.2, we explained how solutions in terms of multiple polylogarithms are
constructed. Here, we give another example. We consider again

J1 = ϵ3 D−IA100110000.

We expressed the differential equation of J1 through a dlog-form in (5.83),

dJ1 = − ϵ

w
dwJ1 = −ϵ dlog (w) J1 = −ϵ ω1J1, (5.98)

and determined its boundary value in (5.92),

J1 = w−ϵe3γEϵ (Γ(1 + ϵ))3 = 1− ϵ log (w) + ϵ2
1

4

(
π2 + 2log(w)2

)
+O

(
ϵ3
)
,

⇒ J1|w=1 = 1 + ϵ2
1

4
π2 +O

(
ϵ3
)
. (5.99)

From (5.97) and (5.98) follows

dJ
(0)
1 = 0, (5.100)

dJ
(q+1)
1 = −ω1 J

(q)
1 . (5.101)

The boundary value of J1 at order ϵ0 is 1 (5.99), yielding immediately

(5.99),(5.100)⇒ J
(0)
1 = 1.

The differential equation of the first order in ϵ becomes

dJ
(1)
1 = −dlog (w) , (5.102)

in (v, w)-space. The appearing square roots (5.73) force us to move to (x, y)-space.
The boundary point in (x, y)-space corresponds to the line at x = 1. In conclusion, we
can integrate the differential equation solely in x in (x, y)-space. We recall from section
3.5.2, that the integration paths of multiple polylogarithms (3.85) are defined to start at
0. As we want to obtain multiple polylogarithms we need to shift the lower integration
boundary from 1 to 0. This leads us to an additional change of variables x → x′, where

x = 1− x′. (5.103)

The boundary point corresponds to x′ = 0. Equation (5.102) transforms as follows,

dJ
(1)
1 = −dlog (w)

= −∂w

∂x

∂x

∂x′
1

w
dx′,

where w is given by (5.76) and x by (5.103). After performing partial fraction decom-
position, we obtain
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dJ
(1)
1 = −

(
2y

2x′y − y − 1
+

y + 1

x′(y + 1) + y − 1
− 1

x′ − 1

)
dx′

= −

(
1

x′ − 1+y
2y

+
1

x′ − 1−y
1+y

− 1

x′ − 1

)
dx′,

and J
(1)
1 evaluates to

J
(1)
1 = −

(ˆ x′

0

dx1

x1 − 1+y
2y

+

ˆ x′

0

dx1

x1 − 1−y
1+y

−
ˆ x′

0

dx1
x1 − 1

)
(5.104)

= −
(
G

[
1 + y

2y
;x′
]
+G

[
1− y

1 + y
;x′
]
−G

[
1;x′

])
+B

(1)
1 ,

where multiple polylogarithms G are defined in (3.87). Multiple polylogarithms vanish
at x′ = 0. Furthermore, the boundary value of J1 (5.99) has no ϵ1-term, hence,

B
(1)
1 = 0.

The next order in ϵ follows,

(5.101),(5.104)⇒ J
(2)
1 =

(ˆ x′

0

dx1

x1 − 1+y
2y

(ˆ x1

0

dx2

x2 − 1+y
2y

+

ˆ x1

0

dx2

x2 − 1−y
1+y

−
ˆ x1

0

dx2
x2 − 1

))

+

(ˆ x′

0

dx1

x1 − 1−y
1+y

(ˆ x1

0

dx2

x2 − 1+y
2y

+

ˆ x1

0

dx2

x2 − 1−y
1+y

−
ˆ x1

0

dx2
x2 − 1

))

+

(
−
ˆ x′

0

dx1
x1 − 1

(ˆ x1

0

dx2

x2 − 1+y
2y

+

ˆ x1

0

dx2

x2 − 1−y
1+y

−
ˆ x1

0

dx2
x2 − 1

))
.

The resulting multiple polylogarithms vanish again on the boundary point. The inte-
gration constant is 1

4π
2 as demanded by (5.99). We derive

J1 = 1 + ϵ

(
−G

[
y + 1

2y
;x′
]
−G

[
1− y

y + 1
;x′
]
+G[1;x′]

)
+ ϵ2

(
G

[
y + 1

2y
,
y + 1

2y
;x′
]
+G

[
y + 1

2y
,
1− y

y + 1
;x′
]
−G

[
y + 1

2y
, 1;x′

]
+G

[
1− y

y + 1
,
y + 1

2y
;x′
]
+G

[
1− y

y + 1
,
1− y

y + 1
;x′
]
−G

[
1− y

y + 1
, 1;x′

]
−G

[
1,

y + 1

2y
;x′
]
−G

[
1,

1− y

y + 1
;x′
]
+G[1, 1;x′] +

1

4
π2

)
+O

(
ϵ3
)
. (5.105)

We verify that J1 is of uniform weight zero. In practice, we may utilise the Mathematica
package PolyLogTools [98] to deal with emerging multiple polylogarithms.

All multiple polylogarithms arising in the solutions of master integrals J⃗ depend on
letters l′1, . . . , l

′k and may be written like

G
[
l′1, . . . , l

′
k;x

′] .
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J1, for example, evaluates to

J1 = 1 + ϵ
(
−G

[
x′9;x

′]−G
[
x′8;x

′]+G[1;x′]
)

+ ϵ2
(
G
[
x′9, x

′
9;x

′]+G
[
x′9, x

′
8;x

′]−G
[
x′9, 1;x

′]
+G

[
x′8, x

′
9;x

′]+G
[
x′8, x

′
8;x

′]−G
[
x′8, 1;x

′]
−G

[
1, x′9;x

′]−G
[
1, x′8;x

′]+G[1, 1;x′] +
1

4
π2
)
+O

(
ϵ3
)
.

The 21 sufficient letters form the following alphabet,

A =
{
0, 1, 2, x′7, x

′
8, x

′
9, x

′
10, x

′
11, x

′
12, x

′
13, x

′
14, x

′
15, x

′
16,

x′17,a, x
′
17,b, x

′
18,a, x

′
18,b, x

′
19,a, x

′
19,b, x

′
20,a, x

′
20,b

}
, (5.106)

with

x′7 =
2

1 + y
, x′8 =

1− y

1 + y
, x′9 =

1 + y

2y
,

x′10 =
1 + 4y − y2

(1 + y)2
, x′11 =

2
(
1 + y2

)
(1 + y)2

, x′12 =
4y

(1 + y)2
,

x′13 = −1− 4y − y2

2y (1 + y)
, x′14 =

1 + 4y − y2

2y (1 + y)
, x′15 =

1− 4y − y2

(1 + y) (1− 3y)
,

x′16 = − 4y

(1 + y) (1− 3y)
, (5.107)

and

x′17,a = e
πi
3 , x′17,b = e−

πi
3 ,

x′18,a =
1 + 4y − y2 + i

√
(3 + y2) (1− 5y2)

2 (1 + y)2
,

x′18,b =
1 + 4y − y2 − i

√
(3 + y2) (1− 5y2)

2 (1 + y)2
,

x′19,a =
1 + 2y − y2 +

√
2y (1 + y − y2 + y3)

(1 + y)2
,

x′19,b =
1 + 2y − y2 −

√
2y (1 + y − y2 + y3)

(1 + y)2
,

x′20,a =
2y + i

√
2y (1− y − y2 − y3)

2y (1 + y)
,

x′20,b =
2y − i

√
2y (1− y − y2 − y3)

2y (1 + y)
. (5.108)

The rational arguments of all sufficient dlog-forms are compositions of polynomials, as
described in section 5.5.2. Each letter corresponds to a root of such a polynomial. The
just defined letters of system 1, hence, correspond to roots of p1-p20 (5.87) in x′ with x
replaced by 1− x′. The letters for the other systems are obtained as roots of respective
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polynomials in x̂ and x̃′.

For all master integrals,

Jk =
∞∑
j=0

ϵjJ
(j)
k ,

we confirm, that the ϵj-term J
(j)
k is of uniform weight j. To provide another example,

we display

J67 = 2
[
G
[
0, x′8, x

′
9;x

′]+G
[
0, x′9, x

′
8;x

′]−G
[
x′15, x

′
8, 0;x

′]−G
[
x′14, x

′
9, 0;x

′]
−G

[
x′14, x

′
8, 0;x

′]−G
[
x′15, x

′
9, 0;x

′]+G
[
x′14, x

′
8, x

′
9;x

′]+G
[
x′14, x

′
9, x

′
8;x

′]
+G

[
x′15, x

′
8, x

′
9;x

′]+G
[
x′15, x

′
9, x

′
8;x

′]−G
[
1, x′9, x

′
8;x

′]+G
[
x′15, x

′
9, 1;x

′]
−G

[
x′7, x

′
9, 1;x

′]+G
[
x′7, 1, x

′
9;x

′]−G
[
0, x′8, 1;x

′]−G
[
1, x′9, 1;x

′]
−G

[
0, 1, x′8;x

′]− 2G
[
x′7, 1, 0;x

′]+G
[
1, 0, 1;x′

]
−G

[
x′14, x

′
8, 1;x

′]
+2G

[
x′15, 1, 0;x

′]+ 2G
[
x′7, x

′
8, 0;x

′]+ 2G
[
x′7, x

′
9, 0;x

′]−G
[
x′15, x

′
7, 1;x

′]
−G

[
x′7, x

′
9, x

′
8;x

′]−G
[
x′15, 1, x

′
9;x

′]−G
[
x′7, x

′
8, x

′
9;x

′]−G
[
x′14, x

′
7, x

′
9;x

′]
−G

[
x′15, x

′
7, x

′
8;x

′]−G
[
1, x′8, x

′
9;x

′]+ 2G
[
x′14, x

′
7, 1;x

′]+G
[
1, x′7, 1;x

′]
+G

[
1, x′7, x

′
8;x

′]] ϵ3 +O
(
ϵ4
)
.

Results can be validated through numerical checks. We may evaluate the master inte-
grals expressed through multiple polylogarithms at a specific kinematic point with the
help of GiNaC [99, 100]. We make a counter-check if we evaluate the master integrals
in (5.69),(5.70),(5.71) at the same kinematic point applying the Mathematica package
AMFlow [101–103] or the program sector decomposition [104, 105]. In appendix B.2
(table B.4 and table B.5) we present numerical results of system 1 as reference value at
the kinematic point p2 = m2

H = 125.2GeV.

5.6 Summary and conclusion

We analytically calculated all master integrals relevant for the three-loop Higgs boson
self-energy diagrams with internal W- and top-propagators (fig.5.1), keeping the full
dependence on m2

W ,m2
t , p

2. We created five topologies, summarised in table 5.1 and
illustrated in fig.5.5 and fig.5.7, sufficient to express all occurring diagrams. We divided
the diagrams into those proportional to the product of Yukawa couplings ybyt (fig.5.4)
and the complement (fig.5.6). The appearance of square roots (see for example (5.42),
(5.58)) forced us to divide even further into three systems and to transform the original
kinematic variables, which were given by

v =
p2

m2
t

, w =
m2

W

m2
t

.

The three systems, their corresponding topologies and top sectors as well as emerging
square roots rationalised by subsequently introduced kinematic variables are summarised
in table 5.9.
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System 1 (5.66) System 2a (5.67) System 2b (5.68)

defined in fig.5.5, table 5.6 fig.5.7, table 5.7 fig.5.7, table 5.8

TopologyTop Sector A255, B255, C255, D255 B′
255, B

′
479 B′

509

Canonical
Master integrals J⃗ (5.69) K⃗ (5.70) L⃗ (5.71)

Cumulative
Number 105 61 43

Differential
equations dJ⃗ = ϵ

19∑
k=1

MkωkJ⃗ dK⃗ = ϵ
28∑
k=1

M ′
kωkK⃗ dL⃗ = ϵ

28∑
k=1

M ′′
kωkL⃗

Square roots r1, r2 r1, r2, r3 r1, r2, r4

Final variables (x′ (5.78), y (5.77)) (x̂ (5.80), y (5.77)) (x̃′ (5.82), y (5.77))

Table 5.9: Summary of the three systems of master integrals for the three-loop Higgs bo-
son self-energy with internal W- and top-propagators. Coefficient matrices Mk,M

′
k,M

′′
k

are rational and independent of ϵ, dlog forms ωk are defined in (5.85) and (5.90), and
square roots in (5.64).

In section 5.3.1, we obtained differential equations for all pre-canonical master inte-
grals. Each system was transformed through appropriate basis transformations (see
section 5.4), with the aim of factoring out the dimensional regularisation parameter.
We studied diagonal blocks within differential equations with the help of the maximal
cut. We altered maximally cut integrals to have constant leading singularities to find
ansätze for integrals of uniform transcendental weight (section 5.4.4). Integrals of uni-
form transcendental weight depending on variables rationalising occurring square roots
(section 5.5.1) lead to canonical differential equations. After calculating boundary val-
ues (section 5.5.3), the resulting canonical master integrals are expressible in terms of
multiple polylogarithms to any order in the dimensional regularisation parameter (sec-
tion 5.5.4).

The resulting integrals are essential building blocks within precision Higgs physics. A
possible application is the determination of the mixed QCD-electroweak correction to
the Higgs decay rate into a bottom quark pair. We discuss the decay rate Γ

(
H −→ bb̄

)
in the following chapter.
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CHAPTER

SIX

MIXED QCD-ELECTROWEAK CORRECTION TO THE
HIGGS BOSON DECAY RATE INTO A BOTTOM QUARK

PAIR

In this chapter we consider a phenomenological application of the three-loop master
integrals derived in the preceding chapter: The mixed QCD-electroweak correction to the
Higgs boson decay rate into a bottom quark pair. Required theoretical knowledge was
reviewed in chapter 2 and the strategy sketched in chapter 4. The calculations described
here are still work in progress, hence, no final result is presented. Nevertheless, this
chapter presents diversified aspects of analytical calculations of scattering amplitudes
within the Standard Model. After an introduction, we discuss the decay rate Γ

(
H → bb̄

)
and how to calculate it via the optical theorem in section 6.2. We derive all contributing
Feynman diagrams in section 6.3. In section 6.4, we encounter colour factors from
QCD and handle γ5, which arises within electroweak interactions, while discussing the
scattering amplitude. We apply Feynman rules and give some exemplary calculations in
sections 6.4.1 and 6.4.2. Section 6.5 treats occurring divergences. We close this chapter
with an outlook in section 6.6.

6.1 Introduction

The Higgs boson is an essential cornerstone of the Standard Model of particle physics
(see section 2.2). Studies of its decays are crucial in order to determine its properties
and, therefore, probe the Standard Model. From a theoretical point of view, the study
of decays H −→ ff̄ corresponds to the study of partial decay widths Γ(H −→ ff̄) which
we introduced in section 2.1 (see (2.8)). However, those are not directly observable.
From an experimental point of view, branching ratios BR(H −→ ff̄) are called for.
Both are related as a branching ratio gives the fraction of the total decay width ΓH,total

corresponding to the considered partial decay width,

Γ
(
H −→ ff̄

)
= ΓH,total ·BR

(
H −→ ff̄

)
.

With a mass of mH = 125 GeV the Higgs boson decays predominantly into a bottom
quark pair, the heaviest possible final state with mb = 4 GeV. The vast contribution of
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(
H −→ bb̄

)
this decay to the Higgs boson’s total decay width exceeds 50%! Its branching ratio is
[106]

BR
(
H −→ bb̄

)
= 58%.

Since the Higgs boson’s total decay width is in the order of 4 ·10−3GeV [107], its partial
decay width into a bottom quark pair is roughly 2 ·10−3GeV. The Higgs boson’s second
most frequent decay is the decay into off-shell W-bosons with a branching ratio of 21%.
The huge difference between both top branching ratios emphasises the importance of
H → bb̄. Large background makes the observation of H → bb̄ rather complicated. It
was only accomplished in 2018 at the LHC [108, 109], six years after the Higgs boson
discovery. However, future colliders like FCC-ee [110] will enable groundbreaking ex-
perimental work. Furthermore, due to its major contribution to the Higgs boson’s total
decay width, Γ(H −→ bb̄) significantly influences each Higgs boson branching ratio. A
precise theoretical prediction of its value is therefore indispensable.

The Higgs boson decay rate into a bottom quark pair can be written as a perturba-
tive expansion,

Γ
(
H −→ bb̄

)
= Γ(0)(1 + ∆(αs) +∆(α) +∆(ααs) + ...),

where Γ(0) denotes the Born decay rate (6.2), ∆(αs) denotes QCD-corrections, ∆(α) de-
notes electroweak-corrections and ∆(ααs) denotes mixed QCD-electroweak corrections.
QCD corrections are known up to O

(
α3
s

)
[111]. The next to leading order QCD correc-

tion amount to roughly 20% and the two-loop QCD corrections to 3.8%. In comparison,
the one-loop electroweak correction is only about (−1)% [45]. The dominant term of
the two-loop electroweak correction corresponds approximately to 0.047% relative to the
Born decay rate [112]. As a consequence, the mixed QCD-electroweak corrections are of
particular interest. In [45] those were computed via Padé approximations. Techniques
to compute Feynman integrals have evolved. Hence, the mixed QCD-electroweak cor-
rections should be approached again.

We consider the NNLO QCD-electroweak corrections involving W-bosons or charged
Goldstone bosons. In addition to the masses of the Higgs bosonmH = 125.25±0.17 GeV
and the bottom quarks mb = 4.18+0.03

−02 GeV, the W-boson mass mW = 80.377 ±
0.012 GeV and top quark masses mt = 172.69 ± 0.3 GeV enter [107]. Considering
the relative size of mb, we only keep its leading term m2

b , otherwise we work in mass-
less bottom quark approximation. We work in dimensional regularisation as explained
in section 2.3. Hence, momenta are taken in D = (4− 2ϵ) dimensions. We choose
Feynman gauge in the electroweak sector, i.e. ξW = 1, to avoid appearances of ξW in
the denominator of W-/Goldstone boson propagators (see section 2.2 on Rξ-gauge and
Feynman rules). We maintain the general gauge parameter ξg of the gluon propagator.
The final result should be independent of the chosen gauge and therefore also of ξg.
Keeping ξg, we obtain a consistency check. We use the optical theorem discussed in
section 2.1.1 and encounter therefore two-point three-loop Feynman diagrams. In the
following section, we clarify this point after discussing the Higgs boson decay rate into
a bottom quark pair more closely.
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6.2 The decay rate

H

b

b̄

H

b

b̄

H

b

b̄

t

t̄

H

b

b̄

t

t̄

∼ αs ∼ α ∼ ααs

Figure 6.1: Structure of the perturbative expansion H → bb̄. Dashed lines denote Higgs
bosons, curled lines gluons, orange lines W-bosons, straight black lines bottom quarks
and blue lines top-quarks.

The perturbative expansion of the Higgs boson decay rate into a bottom quark pair,
illustrated in fig.6.1, can be written as

Γ
(
H −→ bb̄

)
= Γ(0)(1 + ∆(αs) +∆(α) +∆(ααs) + ...), (6.1)

where Γ(0) denotes the Born decay rate, ∆(αs) denotes αs-corrections, ∆
(α) denotes α-

corrections and ∆(ααs) denotes mixed QCD-electroweak corrections, i.e. ααs-corrections.

The Born decay rate is

Γ(0) =
NCαm

2
bmHβ3

8 sin (ΘW )2m2
W

,

with NC being the number of colours, ΘW the weak mixing angle and

β =

√
1− 4

m2
b

m2
H

≈ 1− 2
m2

b

m2
H

−O

((
m2

b

m2
H

)2
)

the velocity of b-quarks, which we set to one as we only keep the leading power of m2
b .

We may express the resulting Born decay rate,

Γ(0) =
NCαm

2
bmH

8 sin (ΘW )m2
W

,

in terms of Fermi’s constant

Γ
(0)
GF

=
NCGFm

2
bmH

4
√
2π

, (6.2)

GF√
2
=

πα

2/; sin (ΘW )2m2
W (1−∆r)

, (6.3)

where ∆r gives radiative corrections to the muon decay beyond QED corrections within
the effective four-fermion theory [113].
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The first order QCD and electroweak corrections to (6.1) are

∆(αs) =
CFαs

π

(
17

4
− 3

2
ln

(
m2

H

µ2

))
,

∆(α) =
Q2

bα

π

(
17

4
− 3

2
ln

(
m2

H

µ2

))
,

whereby the latter can be derived from the former through a substitution CFαs → Q2
bα.

Here, we address mixed QCD-electroweak corrections ∆(ααs) to the decay rate. We

decompose them into mixed QED-QCD contributions ∆
(ααs)
γ , contributions involving

Z-bosons or neutral Goldstone bosons ∆
(ααs)
Z and contributions involving W-bosons or

charged Goldstone bosons ∆
(ααs)
W ,

∆(ααs) = ∆(ααs)
γ +∆

(ααs)
Z +∆

(ααs)
W . (6.4)

The mixed QED-QCD contributions were analytically calculated in [114],

∆(ααs)
γ =

CFαs

π

Q2
bα

π

(
691

32
− 9

2
ζ2 −

9

2
ζ3 −

105

8
ln

(
m2

H

µ2

)
+

9

4
ln

(
m2

H

µ2

)2
)
.

The remaining mixed QCD-electroweak contributions are so far only computed with the
help of Padé approximations [45],

∆
(ααs)
Z ≈ −0.002, ∆

(ααs)
W ≈ −0.0009.

In this thesis, we consider the - due to more internal masses - more complicated contribu-
tion, the mixed QCD-electroweak correction involving W-bosons or charged Goldstone

bosons ∆
(ααs)
W .

We defined decay rates in (2.8) as phase space integrations over squared scattering
amplitudes. In this context, the scattering amplitude corresponds to diagrams like the
ones in fig.6.1. Instead of calculating the decay rate via (2.8), we avoid phase space
integration and emerging infrared divergences through the application of the optical
theorem (see section 2.1.1). It relates the imaginary part of a two-point function to a
total decay rate,

Im(M(A −→ A)) = mA

∑
X

Γ(A −→ X) = mAΓA,total. (6.5)

In order to derive a partial decay width for a specified final state, the matching term
on the left hand side of (6.5) is selected. In the case of H −→ bb̄, we take the imaginary
part of on-shell Higgs boson two-point functions ending in an Hbb̄-vertex,

Γ
(
H −→ bb̄

)
=

1

mH
Im
(
ΣH(p2 = m2

H + iϵ)
)
. (6.6)
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The optical theorem holds for any order in perturbation theory. Since we want to
calculate ααs-corrections on the left hand side of (6.6), we have to consider α2αs-
corrections on the right hand side. Consequently, we do not deal with three-point
two-loop diagrams like the last one in fig.6.1, but with two-point three-loop diagrams.
As indicated in fig.6.2, the three-loop diagrams are obtained from the two-loop diagrams
if we close them on their right.

H

b

b̄

t

t̄

H H

b

b̄t̄

t

=⇒g gW W

Figure 6.2: Sketch of the application of the optical theorem. Feynman diagrams are
closed. Dashed lines denote Higgs bosons, curled lines gluons, orange lines W-bosons,
straight black lines bottom quarks and blue lines top-quarks.

In the following section, we present all relevant Feynman diagrams before we discuss
their evaluation in section 6.4.

6.3 Contributing Feynman diagrams

The first step for the determination of the mixed QCD-electroweak correction ∆
(ααs)
W

to the decay rate Γ
(
H −→ bb̄

)
(6.1) via the optical theorem (6.6) is the generation of

all contributing Feynman diagrams. This is achieved with the help of QGRAF [115] and
FeynArts [116]. We summarise all diagrams in table 6.1 and table 6.2. As already
sketched in the previous section (see fig.6.2), we consider three-loop Higgs boson self-
energy diagrams at O

(
α2αs

)
ending in an Hbb̄ vertex. An internal W or charged

Goldstone boson, accompanied by a factor α = g2

4π , converts top (antitop) quarks into

bottom (antibottom) quarks. An internal gluon yields a factor αs =
g2s
4π .

The diagrams are not new within this thesis. In chapter 5, we derived master integrals
of uniform weight sufficient to express them. In section 5.2, we already discussed all top-
sector diagrams and explained the need for auxiliary topologies with nine propagators:
The three-loop diagrams give rise to nine scalar products involving loop momenta, but
only to eight propagators. Since we want to turn all Feynman integrals into scalar inte-
grals, we need to be able to express all of these scalar products in terms of propagators.
The auxiliary topologies introduce an appropriate ninth propagator. Furthermore, only
keeping the leading term in the bottom quark mass m2

b , we can work with massless bot-
tom quark propagators: Each required Feynman diagram ends in an Hbb̄ vertex. The
corresponding Feynman rule provides a factor of mb (see section 2.2.1). Considering the
prefactor mb times a bottom quark propagator, setting O(m3

b) to zero corresponds to
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taking a massless propagator,

mb
1

q2 −m2
b

= mb

(
1

q2
+

m2
b

q4
+O(m4

b)

)
= mb

1

q2
+O(m3

b)︸ ︷︷ ︸
→0

.

In conclusion, we work with the topologies derived in section 5.2, illustrated in fig.5.5,
fig.5.7 and summarised in table 5.1. Consequently, we already assign each diagram to a
topology and a sector as we list them in table 6.1 and table 6.2. Furthermore, we divide
the diagrams by their coupling, i.e. by the vertices attached to the external Higgs boson.
This division corresponds exactly to the three systems, we introduced in chapter 5 and
summarised in table 5.9.

Multiple diagrams arise in one sector. Gluon loops can be attached to different edges
without changing the set of required propagators and, therefore, without changing the
sector the diagram belongs to. In addition, rotated diagrams may enter as well. Fur-
thermore, the diagrams come in pairs. Each diagram enters once containing a W-boson
and once containing a charged Goldstone boson instead.

In the second column of table 6.1 and table 6.2, we display one representative dia-
gram per sector and topology, whereby topologies and sectors are specified in the third
and fourth column. Instead of presenting each diagram of one sector graphically, they
are indicated as the last column in table 6.1, and table 6.2 gives the number of diagrams
per sector. The factor of two, thereby, indicates the diagrams containing Goldstone
bosons instead of W-bosons. Column two and column five have to be considered simul-
taneously to gain full information on required diagrams.

In the following section, we discuss the Feynman diagrams more closely by express-
ing them in terms of Feynman rules.
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Higgs-vertices Diagrams Topology Sector Number of
diagrams

Htt̄ → Hbb̄

⇒ System 1

A 255 2 · 2

B 255 2 · 2

C 255 2 · 4

D 255 2 · 4

223 2 · 4

247 2 · 4

HW+W− → Hbb̄

⇒ System 2a

B’ 255 2 · 2

479 2 · 4

475 2 · 4

471 2 · 2

Table 6.1: List of all diagrams, Part 1. See description of table 6.2.
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Higgs-vertices Diagrams Topology Sector Number of
diagrams

Hbb̄ → Hbb̄

⇒ System 2b

B’ 509 2 · 2

505 2 · 4

497 2 · 4

473 2 · 4

469 2 · 2

381 2 · 4

221 2 · 2

Table 6.2: List of all diagrams, Part 2. Systems are summarised in table 5.9. Dashed
lines denote Higgs bosons, curled lines gluons, orange lines W-bosons/charged Goldstone
bosons, straight black lines bottom quarks and blue lines top-quarks. Topologies are
defined in table 5.1. Sector identities in (3.46). The last column corresponds to the
number of diagrams emerging within the respective sector, accounting for the exchange
of W-bosons with Goldstone bosons and the possibility to reposition the edge of a gluon.
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6.4 The scattering amplitude

In the subsequent section (table 6.1 and table 6.2) we presented all Feynman diagrams
required for the two-point three-loop scattering amplitude corresponding to H → bb̄ →
H containing an internal W-boson or charged Goldstone boson and an internal gluon.
We denote the scattering amplitude by

Σ
(α2αs)W
H .

In this section, we calculate the scattering amplitude by expressing the diagrams via
Feynman rules, listed in section 2.2.1. Its imaginary part is related to the mixed QCD-

electroweak correction ∆
(ααs)
W to the decay rate Γ

(
H −→ bb̄

)
(6.1) via the optical theorem

(6.6),

Γ
(
H −→ bb̄

)
=

1

mH
Im
(
ΣH(p2 = m2

H + iϵ)
)
,

⇒ ∆
(ααs)
W =

1

mH
Im

(
Σ
(α2αs)W
H (p2 = m2

H + iϵ)

)
. (6.7)

We start this section with a brief discussion about the application of Feynman rules.
Next, we consider some common properties of all diagrams, namely their colour fac-
tor and the appearance of the fifth Dirac matrix γ5. After transforming all emerging
integrals to scalar integrals, we are able to express the results in terms of the master
integrals from chapter 5.

Each diagram in table 6.1 and table 6.2 is translated into a mathematical expression
via Feynman rules from section 2.2.1. At first we label the momenta of all edges with
respect to momentum conservation. We thereby name the momenta in correspondence
with the topologies from table 5.1. The diagrams consist of closed quark loops, which
contributes a factor (−1). We take the trace of the quark loop and insert a Feynman
propagator for each edge and a vertex rule for each vertex. The trace is multiplied by
the occurring boson propagators. Furthermore, we need to integrate over all three un-
determined loop momenta k1, k2, k3. Explicit calculations of individual, representative
diagrams will be given in section 6.4.1 and section 6.4.2. We receive expressions of the
following structure

ˆ
dDk1
(2π)D

dDk2
(2π)D

dDk3
(2π)D

9∏
j=1

N (k1, k2, k2,mW ,mt,mH)

PX
j

, X ∈ {A,B,C,D,B′}, (6.8)

where X represents the respective topology and N inherits the trace of the closed quark
loop as well as the boson propagators. The scattering amplitude is given by the sum
over all diagrams.
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b

j i (
T b
s

)
ij

(
T b
s

)
ji

Figure 6.3: Sketch illustrating the
colour flow. A gluon (curled line) is con-
nected to a quark loop.

The vertex rule representing a gluon cou-
pling to quarks contains

(
T b
s

)
, with b ∈

{1, ..., 8}, which leads to the appearance of a
colour factor (see section 2.2 for information
on T b

s , the generators of SU(3)c). Colour
factors handle colour degrees of freedom of
Feynman diagrams within QCD. All dia-
grams in table 6.1 and table 6.2 contain the
same arrangement of one gluon connected
to a quark loop as illustrated in fig.6.3.

Hence, each diagram yields the same colour factor. The gluon changes the quark’s colour
from j to i and i to j, where j, i ∈ {red, green, blue}, manifested by the emergence of(
T b
s

)
ij

and
(
T b
s

)
ji
, b ∈ {1, ..., 8}. The resulting colour factor is NCCF = 4. NC = 3

represents the number of colours and CF = 4
3 ,(

T b
s

)
ij

(
T b
s

)
ji
=
(
T b
sT

b
s

)
ii
= Tr

[
T b
sT

b
s

]
=

1

2
δbb = 4. (6.9)

Vertices of W- or Goldstone bosons with quarks introduce the fifth gamma matrix (see
(3.4) for Dirac algebra). In four dimensions γ5 is defined by

γ5 =
i

4!
ϵµναβγ

µγνγαγβ, (6.10)

and fulfils the following properties

γ25 = 1, (6.11)

{γ5, γµ} = 0, (6.12)

Tr[γµγνγσγτγ5] = i4ϵµνστ . (6.13)

We require a D-dimensional fifth Dirac matrix, since we work in dimensional regulari-
sation. Unfortunately, we cannot transport all properties of the four-dimensional γ5 to
D dimensions. Contradictions arise if we consider D times a trace containing an even
number of Dirac matrices and γ5 and contract the outcome with an epsilon tensor. The
calculation, demonstrated in appendix C.1, makes use of (6.12) and of the cyclicity of
the trace. It leads to

(D − 4)ϵµνσρTr [γµγνγσγργ5] = 0, (6.14)

implying for D ̸= 4 that Tr [γµγνγσγργ5] = 0 in contrast to the property in (6.13) in four
dimensions. We see, one property violates the other. Consequently, we have to chose
an appropriate scheme defining the fifth Dirac matrix in D dimensions. One possibility
is the scheme by t’Hooft and Veltman [52], where γ5 is defined as in four dimensions,
i.e via (6.10). This scheme preserves the trace identity (6.13). However, it violates
the anticommuting property (6.12), since {γ5, γµ} = 0 for µ = 0, 1, 2, 3, but [γ5, γ

µ] = 0
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otherwise. Another possibility is the so-called “naive dimensional regularisation scheme”
(NDR) originally introduced in [117]. Within NDR γ5 is defined by (6.11) and (6.12),

γ25 = 1, (6.15)

{γ5, γµ} = 0, (6.16)

where the anticommuting property (6.16) holds for all µ, independent of the dimension.
The “naive” choice of the fifth gamma matrix is not mathematically well-defined. How-
ever, if we encounter even numbers of γ5 within a trace it is appropriate, since we may
eliminate γ5 completely via (6.15) and (6.16) before evaluating the trace. The schemes
do not differ in the physical case D → 4.

If we evaluate the diagrams in table 6.1 and table 6.2 within t’Hooft and Veltman
scheme, for example with the help of FeynCalc [118], we notice that only traces con-
taining even numbers of γ5 survive: Evaluation within t’Hooft and Veltman scheme
leads to terms proportional to γ5 of the following structure(

Σ
(α2αs)W
H

)
∼γ5

= ig4g2s

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

ˆ
dDk3
(2π)D

ϵk1k2k3p fs,

where ϵk1k2k3p denotes the epsilon tensor contracted with all three loop momenta k1, k2, k3
and the external momentum p. fs denotes a scalar function depending on propagators
and D. Following the Passarino-Veltman reduction technique (see section 3.1), an in-
tegral over three momenta carrying three indices must evaluate to a tensor structure
carrying the respective three indices. In our case, the tensor structure must consist of
the only external momentum p and the metric tensor,

ˆ
dDk1

ˆ
dDk2

ˆ
dDk3 k

α
1 k

β
2 k

γ
3 f(k1, k2, k3)

= C1p
αpβpγ + C2,ap

αgβγ + C2,bp
βgαγ + C2,cp

γgαβ, (6.17)

with f being an arbitrary scalar function and C1, C2,a, C2,b, C2,c constant. This implies
for the terms of the scattering amplitude solely containing one γ5,(

Σ
(α2αs)W
H

)
∼γ5

= ig4g2s ϵαβγδp
δ

ˆ
dDk1

ˆ
dDk2

ˆ
dDk3 k

α
1 k

β
2 k

γ
3 fs

(6.17)
= ϵαβγδ︸ ︷︷ ︸

antisymmetric

C1 p
αpβpγpδ︸ ︷︷ ︸
symmetric

+C2,a p
αgβγpδ︸ ︷︷ ︸

symmetric

+C2,b p
βgαγpδ︸ ︷︷ ︸

symmetric

+C2,c p
γgαβpδ︸ ︷︷ ︸

symmetric


= C1 · 0 + C2,a · 0 + C2,b · 0 + C2,c · 0 = 0. (6.18)

The terms proportional to the fifth Dirac matrix vanish. As a consequence, we may
use NDR. In (6.27) and (6.29), we demonstrate how (6.15) and (6.16) are utilised to
eliminate γ5 completely.

After dealing with γ5, we are able to continue the calculation of the expressions of
diagrams (6.8). We evaluate the traces representing closed quark loops and contract
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the result with the boson propagators. For this purpose, we utilise FORM [119]. Scalar
products involving loop momenta arise in the numerators. Those are replaced by linear
combinations of propagators of the corresponding topology. We present the combina-
tions of propagators for topology A,B,C,D in table 6.3 and for topology B’ in table
6.4.

Topology A Topology B

k21 = m2
t − PA

1

k22 = m2
t − PA

4

k23 = −PA
7

p.k1 =
1

2

[
−PA

1 + PA
2 + s

]
p.k2 =

1

2

[
PA
4 − PA

6 − s
]

p.k3 =
1

2

[
−PA

7 + PA
8 + s

]
k1.k2 =

1

2

[
PA
1 − PA

3 + PA
4 − 2m2

t

]
k1.k3 =

1

2

[
−PA

1 − PA
7 + PA

9

]
k2.k3 =

1

2

[
PA
4 − PA

5 + PA
7 −m2

t +m2
W

]

k21 = −PB
1 +m2

t

k22 = −PB
4

k23 = −PB
7

p.k1 =
1

2

[
−PB

1 + PB
2 + s

]
p.k2 =

1

2

[
PB
4 − PB

6 − s
]

p.k3 =
1

2

[
−PB

7 + PB
8 + s

]
k1.k2 =

1

2

[
PB
1 − PB

3 + PB
4 −m2

t +m2
W

]
k1.k3 =

1

2

[
−PB

1 − PB
7 + PB

9 +m2
t −m2

W

]
k2.k3 =

1

2

[
PB
4 − PB

5 + PB
7

]
Topology B Topology C

k21 =− PC
1 +m2

t

k22 =− PC
5 +m2

W

k23 =− PA
7

p.k1 =
1

2

[
−PC

1 + PC
2 + s

]
p.k2 =

1

2

[
PC
5 − PC

9 − s−m2
W +m2

t

]
p.k3 =

1

2

[
−PC

7 + PC
8 + s

]
k1.k2 =

1

2

[
PC
1 − PC

3 + PC
5 −m2

W −m2
t

]
k1.k3 =

1

2

[
−PC

3 + PC
4 − PC

6 − PC
7

+PC
8 + PC

9 + s
]

k2.k3 =
1

2

[
PC
6 − PC

8 − PC
9 − s

]

k21 = −PD
1 +m2

t

k22 = −PD
5

k23 = −PA
7

p.k1 =
1

2

[
−PD

1 + PD
2 + s

]
p.k2 =

1

2

[
PD
5 − PD

9 − s
]

p.k3 =
1

2

[
−PD

7 + PD
8 + s

]
k1.k2 =

1

2

[
PD
1 − PD

4 + PD
5

]
k1.k3 =

1

2

[
−PD

1 + PD
3 − PD

7 +m2
t −m2

W

]
k2.k3 =

1

2

[
PD
5 − PD

6 + PD
7

]
Table 6.3: Scalar products involving loop momenta in terms of linear combinations of
propagators, Part 1. Propagators were defined in table 5.1.
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Topology B’

k21 = −PB′
1 −m2

W

k22 = −PB′
4

k23 = −PB′
7

p.k1 =
1

2

[
−PB′

1 + PB′
2 + s

]
p.k2 =

1

2

[
PB′
4 − PB′

6 − s
]

p.k3 =
1

2

[
−PB′

7 + PB′
8 + s

]
k1.k2 =

1

2

[
PB′
1 − PB′

3 + PB′
4 +m2

t −m2
W

]
k1.k3 =

1

2

[
−PB′

1 − PB′
7 + PB′

9 −m2
t +m2

W

]
k2.k3 =

1

2

[
PB′
4 − PB′

5 + PB′
7

]
Table 6.4: Scalar products involving loop momenta in terms of linear combinations of
propagators, Part 2. Propagators were defined in table 5.1.

After replacing all scalar products involving loop momenta as given in table 6.3 and table
6.4, the diagrams consist of sums of scalar integrals (see section 3.1 for information about
scalar integrals).

Σ
(α2αs)W
H (p) =

∑
Diagrams

ˆ
dDk1
(2π)D

dDk2
(2π)D

dDk3
(2π)D

9∏
j=1

N (k1, k2, k2,mW ,mt,mH)

PX
jy Evaluation & Replacement of scalar products

Σ
(α2αs)W
H (p) = NCCF g

4g2s
∑
i

cXi ÎXi = NCCF (α4π)2 (αs4π)
∑
i

cXi ÎXi , (6.19)

with rational prefactors cXi and X ∈ {A,B,C,D,B′}. The scalar integrals in (6.19) are
defined by

ÎXν1ν2ν3ν4ν5ν6ν7ν8ν9 =

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

ˆ
dDk3
(2π)D

9∏
j=1

1(
PX
j

)νXj , νXj ∈ Z. (6.20)

The sum in (6.19) contains a vast amount of integrals. The first two diagrams in table
6.1, i.e. the diagrams evaluated within topology A and B, each give rise to a sum
over 104 integrals. The third diagram in table 6.1, which corresponds to topology C,
even exceeds this number as it gathers 198 different scalar integrals. Fortunately, as
explained in section 3.4 and discussed in section 5.3, there is no need to deal with all of
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these integrals. We reduce them to a basis set of integrals. For this purpose, we utilise
an integration by parts reduction program like Kira [82, 83]. The pre-canonical master
integrals coincide with those characterised in table 5.6, table 5.7 and table 5.8, since we
work within the same topologies and top-sectors as in the previous chapter. We have
I⃗1 for system 1, i.e. the diagrams starting with a Htt̄-vertex, I⃗2a for system 2a, i.e.
the diagrams starting with a HW+W− vertex and I⃗2b for system 2b, i.e. the diagrams
starting with a Hbb̄ vertex. The numbers of master integrals are N1

MI = 105 for system
1, N2a

MI = 61 for system 2a and N2b
MI = 43 for system 2b. During the reduction we set

µ2 = m2
t ,

hence, the integrals kinematically depend on the following variables

v =
p2

m2
t

, w =
m2

W

m2
t

, (6.21)

and are given by

Îi =

Ns
MI∑
j

c̃si,jI
s
j , s = 1, 2a, 2b, (6.22)

where Isj denotes a pre-canonical master integral of system s and c̃si,j rational prefactors
depending on v, w and the dimension D = (4− 2ϵ). This implies for the scattering
amplitude

Σ
(α2αs)W
H (p) = NCCF g

4g2s
∑
i

cXi ÎXiy IBP reduction (6.22)

Σ
(α2αs)W
H (p) = NCCF g

4g2s
∑

systems

Ns
MI∑
j

ĉsjI
s
j , (6.23)

where

ĉsj =
∑
i

c̃si,jci.

We spend the last chapter finding canonical master integrals expressible in terms of mul-
tiple polylogarithms (see section 5.5.4). In section 5.4, we found basis transformations
U . We presented the resulting integrals in section 5.5. The canonical master integrals
from system 1, J⃗ , were given in (5.69), those from system 2a, K⃗, in (5.70) and those
from system 2b, L⃗, in (5.71). Inverting the transformation matrices U , we are able to
express each pre-canonical master integrals in terms of an integral of uniform weight,

J⃗
(5.69)
= U1I⃗1 ⇒ I⃗1 = U (−1)J⃗ ,

K⃗
(5.70)
= U2aI⃗2a ⇒ I⃗2a = U

(−1)
2a K⃗,
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L⃗
(5.71)
= U2bI⃗2b ⇒ I⃗2b = U

(−1)
2b L⃗. (6.24)

In practice, we sum up all diagrams only now to obtain the scattering amplitude, which
then evaluates to

Σ
(α2αs)W
H (p) = NCCF g

4g2s
∑

systems

Ns
MI∑
j

ĉsjI
s
jy transforming master integrals (6.24)

Σ
(α2αs)W
H (p) = NCCF g

4g2s

N1
MI∑
j

f1
j Jj +

N2a
MI∑
j

f2a
j Kj +

N2b
MI∑
j

f2b
j Lj

 , (6.25)

where the rational factors fs
j are obtained from ĉsj and (6.24).

The resulting scattering amplitude (6.25) is a sum over the master integrals we al-
ready evaluated in section 5.5.4. However, the master integrals still contain divergences
manifested through poles in the dimensional regularisation parameter (see section 2.3 on
divergences in Feynman integrals). We discuss renormalisation, a method eliminating
divergences, in section 6.5. Beforehand, we give some insights into calculations of dia-
grams in the following subsections. In table 6.1 and table 6.2, we divided the diagrams
according to the system they belong to. The calculation of diagrams belonging to the
same system yield the same structure and prefactor, hence, we only show a selection of
diagrams to illustrate the procedure. First, we discuss diagrams starting with an Htt̄-
vertex in section 6.4.1, i.e. diagrams proportional to the product of Yukawa couplings
ybyt. Afterwards, we consider diagrams containing an HW+W− vertex and diagrams
containing two Hbb̄-vertices in section 6.4.2.

6.4.1 Diagrams proportional to the product of Yukawa couplings ybyt

p p

k3

k3 − p

k2

k1

k1 − p

−k2 − p

k1 + k2 k2 + k3

µ1µ2

µ3 µ4

p p

k3

k3 − p

k2

k1

k1 − p

−k2 − p

k1 + k2 k2 + k3

µ2

µ3

Figure 6.4: The diagrams corresponding to topology A sector 255. Dashed lines denote
Higgs bosons, curled lines gluons, orange lines W-bosons, dotted lines charged Goldstone
bosons, straight black lines bottom quarks and blue lines top-quarks.

Here, we provide a detailed example application of Feynman rules. Note, that the calcu-
lations presented in this subsection were already part of my master thesis. We consider
the first diagram in table 6.1. Like each required diagram, this diagram enters once
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containing a W-boson and once containing a charged Goldstone boson. Furthermore,
rotated versions have to be taken into account. However, those amount to the same
expression in terms of Feynman rules and are, therefore, accounted for by a factor 2.
We already discussed in section 5.2 (see fig.5.2) how to label its momenta according to
momentum conservation at each vertex, with p being the external momentum. Conse-
quently, we obtain the two diagrams in fig.6.4. The left diagram (W-boson) corresponds
to ΣA

W (p) and the right diagram (Goldstone boson) to ΣA
GB(p).

We express the diagrams in terms of Feynman rules from section 2.2.1. We move
along the closed quark loop against its momentum flow and translate each edge into
a Feynman propagator and each vertex via a vertex rule. Furthermore, we multiply a
gluon and a W-boson or Goldstone boson propagator. Within the gluon propagator, we
keep the general gauge parameter ξg. For the W-/Goldstone boson, we choose Feynman
gauge ξW = 1. The CKM-matrix is taken to be the identity matrix |Vtb|2 = 1 (see
section 2.2 on Rξ-gauge and the CKM-matrix).

ΣA
W (p) =

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

ˆ
dDk3
(2π)D

|Vtb|2(−1) Tr

[(
−i

g

2

mb

mW

)
i
/k3 +mb

k23 −m2
b(

i
g√
2
γµ1

1− γ5
2

)
i
− /k2 +mt

k22 −m2
t

(
igsγ

µ2
λa

2

)
i
/k1 +mt

k21 −m2
t

(
−i

g

2

mt

mW

)
i

/k1 − /p+mt

(k1 − p)2 −m2
t

(
igsγ

µ3
λa

2

)
i
−
(
/k2 + /p

)
+mt

(k2 + p)2 −m2
t

(
i
g√
2
γµ4

1− γ5
2

)
i

/k3 − /p+mb

(k3 − p)2 −m2
b

]
i

(k1 + k2)2

(
−gµ2µ3 + (1− ξg)

(k1 + k2)µ2(k1 + k2)µ3

(k1 + k2)2

)
(

−igµ1µ4

(k2 + k3)2 −m2
W

)

= NCCF
g4g2s
32

mtmb

m2
W

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

ˆ
dDk3
(2π)D

[
8∏

i=1

PA
i

]−1

(
−gµ2µ3 + (1− ξg)

(k1 + k2)µ2(k1 + k2)µ3

PA
3

)
(−gµ1µ4) T A

W , (6.26)

where the propagators PA
i were defined in table 5.1. The trace of the closed quark loop

of the left diagram in fig.6.4 is

T A
W = Tr

[
( /k3 +mb)γ

µ1(1− γ5)(− /k2 +mt)γ
µ2( /k1 +mt)( /k1 − /p+mt)

γµ3(− /k2 − /p+mt)γ
µ4(1− γ5)( /k3 − /p+mb)

]
. (6.27)

The right diagram in fig.6.4 amounts to
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ΣA
GB(p) =

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

ˆ
dDk3
(2π)D

|Vtb|2(−1)

(
i

(k2 + k3)2 −m2
W

)
Tr

[(
−i

g

2

mb

mW

)
i
/k3 +mb

k23 −m2
b

i
g

2
√
2

[
(1− γ5)

mb

mW
− (1 + γ5)

mt

mW

]
i
− /k2 +mt

k22 −m2
t(

igsγ
µ2

λa

2

)
i
/k1 +mt

k21 −m2
t

(
−i

g

2

mt

mW

)
i

/k1 − /p+mt

(k1 − p)2 −m2
t

(
igsγ

µ3
λa

2

)
i
−
(
/k2 + /p

)
+mt

(k2 + p)2 −m2
t

g

2
√
2

[
(1 + γ5)

mb

mW
− (1− γ5)

mt

mW

]
i

/k3 − /p+mb

(k3 − p)2 −m2
b

]
i

(k1 + k2)2

(
−gµ2µ3 + (1− ξg)

(k1 + k2)µ2(k1 + k2)µ3

(k1 + k2)2

)

=NCCF
g4g2s
32

mtmb

m2
W

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

ˆ
dDk3
(2π)D

[
8∏

i=1

PA
i

]−1

(
−gµ2µ3 + (1− ξg)

(k1 + k2)µ2(k1 + k2)µ3

PA
3

)
T A
GB, (6.28)

where the propagators PC
i were defined in table 5.1. The trace of the closed quark loop

of the right diagram in fig.6.4 is

T A
GB = Tr

[
( /k3 +mb)

[
(1− γ5)

mb

mW
− (1 + γ5)

mt

mW

]
(− /k2 +mt)γ

µ2( /k1 +mt)

( /k1 − /p+mt)γ
µ3(− /k2 − /p+mt)

[
(1 + γ5)

mb

mW
− (1− γ5)

mt

mW

]
( /k3 − /p+mb)

]
.

(6.29)

We evaluated in (6.18), that terms within the traces (6.27), (6.29) solely containing one
γ5 vanish. We may eliminate the fifth Dirac matrix completely in (6.30) and (6.31)
through the application of the properties (6.15) and (6.16),

T A
W = Tr

[
( /k3 +mb)γ

µ1

(
(− /k2 +mt)γ

µ2( /k1 +mt)( /k1 − /p+mt)γ
µ3(− /k2 − /p+mt)γ

µ4

+ γ5(− /k2 +mt)γ
µ2( /k1 +mt)( /k1 − /p+mt)γ

µ3(− /k2 − /p+mt)γ
µ4γ5︸ ︷︷ ︸

= ( /k2 +mt)γ5γ
µ2( /k1 +mt)( /k1 − /p+mt)γ

µ3γ5(− /k2 − /p−mt)γ
µ4

= ( /k2 +mt)γ
µ2( /k1 −mt) γ5γ5︸︷︷︸

=1

( /k1 − /p−mt)γ
µ3(− /k2 − /p−mt)γ

µ4

)
( /k3 − /p+mb)

]
,

(6.30)

T A
GB = Tr

[
( /k3 +mb)

{
M−(− /k2 +mt)γ

µ2( /k1 +mt)( /k1 − /p+mt)γ
µ3(− /k2 − /p+mt)

−M+ γ5(− /k2 +mt)γ
µ2( /k1 +mt)( /k1 − /p+mt)γ

µ3(− /k2 − /p+mt)γ5︸ ︷︷ ︸
= ( /k2 +mt)γ

µ2( /k1 −mt) γ5γ5︸︷︷︸
=1

( /k1 − /p−mt)γ
µ3( /k2 + /p+mt)

}
( /k3 − /p+mb)

]
,

(6.31)
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(
H −→ bb̄

)
with

M− ≡ (mb −mt)
2

m2
W

, M+ ≡ (mt +mb)
2

m2
W

. (6.32)

Every other diagram from table 6.1 starting with an Htt̄ vertex reveals a similar struc-
ture after expressing it through Feynman rules. They are summarised in table 6.5&6.6.

Diagrams Expressions via Feynman rules

p p

k3

k3 − p

k2

k1

k1 − p

−k2 − p

k1 + k2 k2 + k3

A255

ΣA(p)=NCCF
g4g2s
32

mtmb
m2

W

´ dDk1
(2π)D

´ dDk2
(2π)D

´ dDk3
(2π)D

[
∏8

i=1 P
A
i ]

−1(
−gµ2µ3+(1−ξg)

(k1+k2)µ2 (k1+k2)µ3
PA
3

)
(−gµ1µ4T

A
W+T A

GB),

T A
W=Tr

[
( /k3+mb)γ

µ1

(
(− /k2+mt)γµ2 ( /k1+mt)( /k1−/p+mt)γµ3 (− /k2−/p+mt)γµ4

+( /k2+mt)γµ2 ( /k1−mt)γ5γ5︸︷︷︸
=1

( /k1−/p−mt)γµ3 (− /k2−/p−mt)γµ4

)
( /k3−/p+mb)

]
,

T A
GB=Tr

[
( /k3+mb)

{
M−(− /k2+mt)γµ2 ( /k1+mt)( /k1−/p+mt)γµ3 (− /k2−/p+mt)

−M+( /k2+mt)γµ2 ( /k1−mt)γ5γ5︸︷︷︸
=1

( /k1−/p−mt)γµ3 ( /k2+/p+mt)
}
( /k3−/p+mb)

]
.

p p

k3

k3 − p

−k2

k1

k1 − p

−k2 − p

k1 + k2 k2 + k3

B255

ΣB(p)=NCCF
g4g2s
32

mtmb
m2

W

´ dDk1
(2π)D

´ dDk2
(2π)D

´ dDk3
(2π)D

[
∏8

i=1 P
B
i ]

−1(
−gµ1µ4+(1−ξg)

(k2+k3)µ1 (k2+k3)µ4
PB
5

)
(−gµ2µ3T

B
W+T B

GB),

T B
W=Tr

[
( /k3+mb)γ

µ1 (− /k2+mb)γ
µ2

{
( /k1+mt)( /k1−/p+mt)

+(− /k1+mt)γ5γ5︸︷︷︸
=1

( /k1−/p−mt)
}
γµ3 (−( /k2+/p)+mb)γ

µ4 ( /k3−/p+mb)

]
,

T B
GB=Tr

[
( /k3+mb)γ

µ1 (− /k2+mb)
{
M−( /k1+mt)( /k1−/p+mt)

−M+(− /k1+mt)γ5γ5︸︷︷︸
=1

(− /k1+/p+mt)
}
(− /k2−/p+mb)γ

µ4 ( /k3−/p+mb)

]

k1

k1 − p

p p

k3 − p

k3
k2

k3 − k2 − p

k1 + k2

k1 + k2 − k3

C255

ΣC(p)=NCCF
g4g2s
32

mtmb
m2

W

´ dDk1
(2π)D

´ dDk2
(2π)D

´ dDk3
(2π)D

[
∏8

i=1 P
C
i ]

−1

(−gµ2µ4T
C
W+T C

GB)
(
−gµ1µ3+(1−ξg)

(k1+k2−k3)µ1 (k1+k2−k3)µ3
PC
4

)
,

T C
W=Tr

[
( /k3+mb)γ

µ1 ( /k1+ /k2+mb)γ
µ2

{
( /k1+mt)( /k1−/p+mt)γµ3 ( /k3− /k2−/p+mt)

+(− /k1+mt)γ5γ5︸︷︷︸
=1

( /k1−/p−mt)γµ3 ( /k3− /k2−/p−mt)
}
γµ4 ( /k3−/p+mb)

]
,

T C
GB=Tr

[
( /k3+mb)γ

µ1 ( /k1+ /k2+mb)
{
M−( /k1+mt)( /k1−/p+mt)γµ3 ( /k3− /k2−/p+mt)

−M+(− /k1+mt)( /k1−/p−mt)γµ3 γ5γ5︸︷︷︸
=1

(− /k3+ /k2+/p+mt)
}
( /k3−/p+mb)

]
.

Table 6.5: Diagrams proportional to the product of Yukawa couplings ybyt expressed via
Feynman rules from section 2.2.1; Part 1. Dashed lines denote Higgs bosons, curled lines
gluons, orange lines W-bosons/charged Goldstone bosons, straight black lines bottom
quarks and blue lines top-quarks. Propagators PX

i are defined in table 5.1, M+,M− in
(6.32).

150



4. The scattering amplitude

Diagrams Expressions via Feynman rules

k1

k1 − p

k1 − k3

k1 + k2 k3

k3 − p

k2 + k3

k2

p p

D255

ΣD
225(p)=NCCF

g4g2s
32

mtmb
m2

W

´ dDk1
(2π)D

´ dDk2
(2π)D

´ dDk3
(2π)D

[
∏8

i=1 P
D
i ]

−1(
−gµ1µ3+(1−ξg)

(k2)µ1
(k2)µ3

PD
5

)
(−gµ2µ4T

D
W +T D

GB),

T D
W =Tr

[
( /k3+mb)γ

µ1 ( /k2+ /k3+mb)γ
µ2

{
( /k1+ /k2+mt)γµ3 ( /k1+mt)( /k1−/p+mt)γµ4

+(− /k1− /k2+mt)γ5γ5︸︷︷︸
=1

γµ3 ( /k1−mt)( /k1−/p−mt)γµ4

}
( /k3−/p+mb)

]
,

T D
GB=Tr

[
( /k3+mb)γ

µ1 ( /k2+ /k3+mb)
{
M−( /k1+ /k2+mt)γµ3 ( /k1+mt)( /k1−/p+mt)

−M+(− /k1− /k2+mt)γ5γ5︸︷︷︸
=1

γµ3 ( /k1−mt)(− /k1+/p+mt)
}
( /k3−/p+mb)

]
.

k1

k1 − p

k1 − k3

k1 + k2 k3

k3 − p

k2p p

k1

D223

ΣD
223(p)=NCCF

g4g2s
32

mtmb
m2

W

´ dDk1
(2π)D

´ dDk2
(2π)D

´ dDk3
(2π)D(

−gµ2µ3+(1−ξg)
(k2)µ2

(k2)µ3
PD
5

)(
−gµ1µ4T E

W+T E
GB

(PD
1 )

2
PD
2 PD

3 PD
4 PD

5 PD
7 PD

8

)
,

T E
W=Tr

[
( /k3+mb)γ

µ1

{
( /k1+mt)γµ2 ( /k1+ /k2+mt)γµ3 ( /k1+mt)( /k1−/p+mt)

+(− /k1+mt)γ5γ5︸︷︷︸
=1

γµ2 ( /k1+ /k2−mt)γµ3 ( /k1−mt)( /k1−/p−mt)
}
γµ4 ( /k3−/p+mb)

]
,

T E
GB=Tr

[
( /k3+mb)

{
M−( /k1+mt)γµ2 ( /k1+ /k2+mt)γµ3 ( /k1+mt)( /k1−/p+mt)

−M+(− /k1+mt)γ5γ5︸︷︷︸
=1

γµ2 ( /k1+ /k2−mt)γµ3 ( /k1−mt)(− /k1+/p+mt)
}
( /k3−/p+mb)

]

k1

k1 − p

k1 − k3

k3

k3 − p

k2p p

k3

k2 + k3

D247

ΣD
247(p)=NCCF

g4g2s
32

mtmb
m2

W

´ dDk1
(2π)D

´ dDk2
(2π)D

´ dDk3
(2π)D(

−gµ1µ2+(1−ξg)
(k2)µ1

(k2)µ2
PD
5

)(
−gµ3µ4T F

W+T F
GB

PD
1 PD

2 PD
3 PD

5 PD
6 (PD

7 )
2
PD
8

)
,

T F
W=Tr

[
( /k3+mb)γ

µ1 ( /k2+ /k3+mb)γ
µ2 ( /k3+mb)γ

µ3

{
( /k1+mt)( /k1−/p+mt)

+(− /k1+mt)γ5γ5︸︷︷︸
=1

( /k1−/p−mt)
}
γµ4 ( /k3−/p+mb)

]
,

T F
GB=Tr

[
( /k3+mb)γ

µ1 ( /k2+ /k3+mb)γ
µ2 ( /k3+mb)

{
M−( /k1+mt)( /k1−/p+mt)

−M+(− /k1+mt)γ5γ5︸︷︷︸
=1

(− /k1+/p+mt)
}
( /k3−/p+mb)

]
.

Table 6.6: Diagrams proportional to the product of Yukawa couplings ybyt expressed via
Feynman rules from section 2.2.1; Part 2. Dashed lines denote Higgs bosons, curled lines
gluons, orange lines W-bosons/charged Goldstone bosons, straight black lines bottom
quarks and blue lines top-quarks. Propagators PD

i are defined in table 5.1, M+,M− in
(6.32).

The diagrams starting with an Htt̄ vertex involving a W-boson yield the same prefactor
as those involving a charged Goldstone boson. The former contain W-boson propagators
and therefore an additional metric tensor as opposed to the latter containing scalar
Goldstone boson propagators.
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(
H −→ bb̄

)
6.4.2 Diagrams not proportional to the product of Yukawa couplings

ybyt

The diagrams containing either an HW+W− or an HΦ+Φ− vertex differ in there pref-
actor and structure. We provide one explanatory example, the seventh diagram in table
6.1. We start with the version of the diagram containing two W-boson propagators,
displayed in fig.6.5.

p p

k3

k3 − p

−k2

k1

k1 − p

−k2 − p

−k1 − k2 k2 + k3

µ1µ2

µ3 µ4

ν1

ν2

Figure 6.5: The diagram corresponding to topology B’ sector 255 with W-boson. Dashed
lines denote Higgs bosons, curled lines gluons, orange lines W-bosons, straight black lines
bottom quarks and blue lines top-quarks.

We express fig.6.5 in terms of Feynman rules (section 2.2.1) and simplify the outcome,

ΣB′,255
W (p) =−NCCF

g4g2smb

16

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

ˆ
dDk3
(2π)D

[
8∏

i=1

PB′
i

]−1

T B′
W(

−gµ1µ4 + (1− ξg)
(k2 + k3)µ1(k2 + k3)µ4

PB′
5

)
(−gµ2ν1) (g

ν1ν2) (−gν2µ3)︸ ︷︷ ︸
=gµ2µ3

,

where the propagators of topology B’, PB′
i , were defined in table 5.1. The trace of the

closed quark loop is

T B′,255
W = Tr

[
( /k3 +mb)γ

µ1(− /k2 +mb)γ
µ2(1− γ5)(− /k1 − /k2 +mt)γ

µ3(1− γ5)

(−
(
/k2 + /p

)
+mb)γ

µ4( /k3 − /p+mb)
]

= Tr
[
( /k3 +mb)γ

µ1(− /k2 +mb)γ
µ2
{
(− /k1 − /k2 +mt)

+ γ5γ5︸︷︷︸
=1

(− /k1 − /k2 −mt)
}
γµ3(−

(
/k2 + /p

)
+mb)γ

µ4( /k3 − /p+mb)
]
.

The version of fig.6.5 containing two charged Goldstone bosons instead of W-bosons
evaluates to
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ΣB′,255
GB (p) =−NCCF

g4g2s
32

mbm
2
h

m2
W

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

ˆ
dDk3
(2π)D

[
8∏

i=1

PB′
i

]−1

T B′
GB(

−gµ1µ4 + (1− ξg)
(k2 + k3)µ1(k2 + k3)µ4

PB′
5

)
, (6.33)

where the trace is

T B′,255
GB = Tr

[
( /k3 +mb)γ

µ1(− /k2 +mb)
{
M−((− /k1 − /k2 +mt)

−M+ γ5γ5︸︷︷︸
=1

( /k1 + /k2 +mt)
}
(− /k2 − /p+mb)γ

µ4( /k3 − /p+mb)
]
,

with M+,M− defined in (6.32).

We unite (6.33) and (6.33) to demonstrate the general structure of all pairs of diagrams
containing a HW+W− and HΦ+Φ− vertex, respectively.

ΣB′
255 =ΣB′,255

W (p) + ΣB′,255
GB (p) = NCCF

g4g2smb

16

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

ˆ
dDk3
(2π)D

[
8∏

i=1

PB′
i

]−1

(
−gµ1µ4 + (1− ξg)

(k2 + k3)µ1(k2 + k3)µ4

PB′
5

)(
−gµ2µ3T

B′,255
W −

m2
h

2m2
W

T B′,255
GB

)
,

(6.34)

The diagrams proportional to the product of Yukawa coupling ybyb, i.e. the diagrams

involving two Hbb̄ vertices, contain the smallest prefactor, due to the ratio
m2

b

m2
W
. Here,

we provide one explanatory example as well, namely the first diagram in table 6.2. The
diagram with W-boson is illustrated in fig.6.6.

p p

k1

k3

k3 − p

−k1 − k2 −k1 + k3

k2 + k3

−k2 − p

−k2

Figure 6.6: The diagram corresponding to topology B’ sector 509 with W-boson. Dashed
lines denote Higgs bosons, curled lines gluons, orange lines W-bosons, straight black lines
bottom quarks and blue lines top-quarks.
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Together with the corresponding diagram containing a Goldstone boson, fig.6.6 ex-
pressed via Feynman rules (section 2.2.1) and simplified afterwards becomes

ΣB′
509(p) =NCCF

g4g2s
32

m2
b

m2
W

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

ˆ
dDk3
(2π)D

9∏
i=1
i ̸=2

(
PB′
i

)−1

(
−gµ2µ4 + (1− ξg)

(k2 + k3)µ2(k2 + k3)µ4

PB′
5

)(
−gµ1µ3T

B′,509
W + T B′,509

GB

)
,

(6.35)

where the respective traces are

T B′,509
W = Tr

[
( /k3 +mb)γ

µ1(1− γ5)(− /k1 + /k3 +mt)γ
µ2(− /k1 − /k2 +mt)

γµ3(1− γ5)(− /k2 +mb)(− /k2 − /p+mb)γ
µ4( /k3 − /p+mb)

]
= Tr

[
( /k3 +mb)γ

µ1
{
(− /k1 + /k3 +mt)γ

µ2(− /k1 − /k2 +mt) + (− /k1 + /k3 −mt)γ
µ2

γ5γ5︸︷︷︸
=1

(− /k1 − /k2 −mt)
}
γµ3(− /k2 +mb)(− /k2 − /p+mb)γ

µ4( /k3 − /p+mb)
]
,

T B′,509
GB =

Tr
[
( /k3 +mb)

(
(1 + γ5)

mt

mW
− (1− γ5)

mb

mW

)
(− /k1 + /k3 +mt)γ

µ2(− /k1 − /k2 +mt)(
(1− γ5)

mt

mW
− (1 + γ5)

mb

mW

)
(− /k2 +mb)(− /k2 − /p+mb)γ

µ4( /k3 − /p+mb)
]

= Tr
[
( /k3 +mb)

{
M−(− /k1 + /k3 +mt)γ

µ2(− /k1 − /k2 +mt)−M+(− /k1 + /k3 −mt)γ
µ2

γ5γ5︸︷︷︸
=1

( /k1 + /k2 +mt)
}
(− /k2 +mb)(− /k2 − /p+mb)γ

µ4( /k3 − /p+mb)
]
.

In this section, we explained the steps accompanying the evaluation of the scattering

amplitude Σ
(α2αs)W
H related to the mixed QCD-electroweak corrections to the decay

rate H → bb̄ via the optical theorem (6.7), see especially (6.19), (6.23) and (6.25). We
discussed the emerging colour factor (6.9) and the fifth Dirac matrix in NDR (6.15),
(6.16). The resulting scattering amplitude (6.25) depends on the master integrals, we
derived in the subsequent chapter (5.69), (5.70), (5.71). As already mentioned they
contain ultraviolet divergences. Hence, we consider renormalisation in the next section.

6.5 Renormalisation

In section 6.2, we decided to calculate the mixed QCD-electroweak corrections involving

W-/charged Goldstone bosons ∆
(ααs)
W to Γ

(
H −→ bb̄

)
with the help of the optical theorem

(6.7). Consequently, we started calculating a three-loop two-point scattering amplitude
in section 6.4. The scattering amplitude corresponds to a sum over the master integrals
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derived in the subsequent chapter (5.69), (5.70), (5.71),

Σ
(α2αs)W
H (p) = NCCF g

4g2s

N1
MI∑
j

f1
j Jj +

N2a
MI∑
j

f2a
j Kj +

N2b
MI∑
j

f2b
j Lj

 ,

with rational factors fs
j . Feynman diagrams may give rise to integrals containing diver-

gences, as elaborated in section 2.3. Sine we work in dimensional regularisation with
D = (4− 2ϵ), these manifest themselves as poles in the dimensional regularisation pa-
rameter 1

ϵ . We may remove the ultraviolet divergent parts emerging out of the diagrams
in table 6.1 and table 6.2 if we consider appropriate counter term diagrams. Evaluating
them we obtain the same poles in ϵ, but with inverse sign. Appropriate counter term
diagrams are found if loops of the original diagrams are pinched and counter term in-
sertions are placed instead. They may also be generated with QGRAF [115] or FeynArts
[116]. In this section, we discuss the counter term diagrams corresponding to the di-
agrams proportional to the product of Yukawa couplings ybyt (table 6.5, table 6.6) in
order to illustrate the concept of renormalisation.

We consider the diagram corresponding to topology A sector 255 (see section 6.4.1,
fig.6.4) as example and display the diagrams cancelling its UV-divergent parts in fig.6.7.
These diagrams are obtained as we close one or both loops and insert a counterterm
instead, denoted by a cross. The former exchange particle demands the proportionality
of the inserted counterterm. Closing the right loop of the original diagram contain-
ing a W-/charged Goldstone, we construct the diagram in the middle of fig.6.7, with

a counterterm insertion proportional to α = g2

4π . We construct the diagram in the
right of fig.6.7 if we close the left loop of the original diagram containing a gluon and

place a counterterm insertion proportional to αs = g2s
4π instead. Pinching both loops

simultaneously, we obtain the first diagram in fig.6.7.

∼ αs

µ

ν

p

k1

k1 − p

k1 − k2

k2

k2 − p

pp p

k2

k1

k1 − p

k2 − p

k1 − k2

µ

ν

∼ α∼ α∼ αs

k

k − p

p p

Figure 6.7: The counterterm diagrams cancelling the UV-divergent parts of the diagrams
corresponding to topology A sector 255 displayed in fig.6.4. Dashed lines denote Higgs
bosons, curled lines gluons, orange lines W-bosons, straight black lines bottom quarks
and blue lines top-quarks. Counterterm insertions are denoted by a cross.

We calculate the diagrams in fig.6.7 in the same way we calculated the original Feynman
diagrams. We label momenta according to momentum conservation and apply Feynman
rules. The Feynman rules for counterterm insertions are listed in the appendix C.2. They
depend on renormalisation constants, defined by the chosen renormalisation scheme. We
have to take the renormalisation constant at the correct order of coupling constants (see
(C.7), (C.2), (C.2)). In correspondence, the one-loop diagram of fig.6.7 evaluates to
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ΣA,1
CT (p,m

2
t )

=

ˆ
dDk

(2π)D
NCTr

[
−i

α

4π
Zα,1
Hqq

gmt

2mW
i
/k +mt

k2 −m2
t

(
−i

αs

4π
Zαs,1
Hqq

gmt

2mW

)
i

/k − /p+mt

(k − p)2 −m2
t

]
=

ˆ
dDk

(2π)D
NC

α2αs

42π

m2
t

m2
W

Zα,1
HqqZ

1,αs

Hqq

Tr
[
(/k +mt)

(
/k − /p+mt

)](
k2 −m2

t

) (
(k − p)2 −m2

t

)︸ ︷︷ ︸
4(k.(k−p)+m2

t )

(k2−m2
t )((k−p)2−m2

t )

=

(
2

k2−m2
t
+ 2

(k−p)2−m2
t
+

8m2
t−2p2

(k2−m2
t )((k−p)2−m2

t )

)

= ie−ϵγENC
α2αs

4D/2+2πD/2+1

m2
t

m2
W

Zα,1
HqqZ

αs,1
Hqq(

−2
(
µ2
)D

2
−1

T1(D,m2
t ) + 2

(
4m2

t − p2
) (

µ2
)D

2
−2

B11(p
2,m2

t ,m
2
t )

)
,

with the tadpole Tν (3.13) and the bubble integral Bν1ν2 (3.24) as defined in section 3.2.

The diagram in the middle of fig.6.7 with a counterterm insertion proportional to α
becomes

ΣA,2,gluon
CT (p,m2

t ) =

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

iα2αsπNCCF
m2

t

m2
W

Zα,1
Hqq

[
−gµν + (1− ξq)

(k1 − k2)µ(k1 − k2)ν
(k1 − k2)2

]
Tr
[
( /k2 +mt)γ

µ( /k1 +mt)( /k1 − /p+mt)γ
ν( /k2 − /p+mt)

]
(k22 −m2

t )(k
2
1 −m2

t )
(
(k1 − p)2 −m2

t

) (
(k2 − p)2 −m2

t

)
(k1 − k2)2

.

The resulting Feynman integrals correspond to topology CT1 with propagators PCT1,

PCT1
1 = k21 −m2

t ,

PCT1
2 = k22 −m2

t ,

PCT1
3 = (k1 − p)2 −m2

t ,

PCT1
4 = (k2 − p)2 −m2

t ,

PCT1
5 = (k1 − k2)

2. (6.36)

We have to consider the diagram in the right of fig.6.7 with a counterterm insertion
proportional to αs twice, once containing a W-boson ΣA,2,W

CT and once containing a

charged Goldstone boson ΣA,2,GB
CT . We find

ΣA,2,W
CT (p) =

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

NC
iαsα

2π

8

mbmt

m2
W

Zαs,1
Hqq [−gµν ]

Tr
[
( /k2 +mb)γ

µ(1− γ5)( /k1 +mt)( /k1 − /p+mt)γ
ν(1− γ5)( /k2 − /p+mb)

]
(k22 −m2

b)(k
2
1 −m2

t )
(
(k1 − p)2 −m2

t

) (
(k2 − p)2 −m2

b

) (
(k1 − k2)2 −m2

W

) ,
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where the trace may be split into

Tr
[
( /k2 +mb)γ

µ
(
( /k1 +mt)( /k1 − /p+mt)γ

ν − {γ5, ( /k1 +mt)( /k1 − /p+mt)γ
ν}

+ γ5( /k1 +mt)( /k1 − /p+mt)γ
νγ5︸ ︷︷ ︸

=(− /k1+mt)( /k1−/p−mt)γν

)
( /k2 − /p+mb)

]
. (6.37)

Furthermore,

ΣA,2,GB
CT (p) =

ˆ
dDk1
(2π)D

ˆ
dDk2
(2π)D

NC
iαsα

8

g2mbmt

4m2
W

Zαs,1
Hqq Tr

[
( /k2 +mb)

(
mt −mb

mW

+ γ5
mt +mb

mW

)
( /k1 +mt)( /k1 − /p+mt)

(
mt −mb

mW
− γ5

mt +mb

mW

)
( /k2 − /p+mb)

]
[
(k22 −m2

b)(k
2
1 −m2

t )
(
(k1 − p)2 −m2

t

) (
(k2 − p)2 −m2

b

) (
(k1 − k2)

2 −m2
W

)]−1
,

where the trace is

Tr
[
( /k2 +mb)

((mt −mb)
2

m2
W

( /k1 +mt)( /k1 − /p+mt) +
m2

t +m2
b

m2
W

[
γ5, ( /k1 +mt)( /k1 − /p+mt)

]
− (mt +mb)

2

m2
W

γ5( /k1 +mt)( /k1 − /p+mt)γ5︸ ︷︷ ︸
=(− /k1+mt)(− /k1+/p+mt)

)
( /k2 − /p+mb)

]
. (6.38)

The emerging Feynman integrals correspond to topology CT2 with propagators PCT2,

PCT2
1 = k21 −m2

t ,

PCT2
2 = k22,

PCT2
3 = (k1 − p)2 −m2

t ,

PCT2
4 = (k2 − p)2,

PCT2
5 = (k1 − k2)

2 −m2
W . (6.39)

We summarise all diagrams with counterterm insertion sufficient to remove the UV-
divergent parts of the diagrams proportional to the product of Yukawa couplings ybyt
(table 6.5, table 6.6) in table 6.7 and table 6.8. We thereby require a third topology,

PCT3
1 = k21 −m2

t ,

PCT3
2 = k22,

PCT3
3 = (k1 − k2)

2 −m2
t ,

PCT3
4 = (k1 − p)2 −m2

t ,

PCT3
5 = (k2 − p)2. (6.40)
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Diagrams Expressions via Feynman rules Topology

Removing divergences from A255, fig.6.4

∼ α∼ αs

ΣA,1
CT (p,m2

t )=ie−ϵγENC
α2αs

4D/2+2πD/2+1
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−2(µ2)
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)
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2

(6.36)

∼ αs

ΣA,2,W
CT (p)=

´ dDk1
(2π)D

´ dDk2
(2π)D

NC
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8

mbmt
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W
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t )((k1−p)2−m2
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,
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CT (p)=
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(2π)D
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(2π)D

NC
iαsα

8

g2mbmt
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Hqq
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(6.39)

Removing divergences from B255

∼ αs∼ α

ΣB,1
CT = ΣA,1

CT (p,m
2
b)

∼ α

ΣB,2,gluon
CT = ΣA,2,gluon

CT (p,m2
b) (6.36)

∼ αs

ΣB,2,W+GB
CT = ΣA,2,W+GB

CT (p) (6.39)

Removing divergences from D255

∼ αs ΣD
CT (p) =

Zαs,1
Wqq

Zαs,1
Hqq

ΣA,2,W+GB
CT (p) (6.39)

Table 6.7: Diagrams removing the UV-divergent parts of the three-loop diagrams pro-
portional to the product of Yukawa couplings ybyt, which are denoted by topologysector
(table 6.5, table 6.6); Part 1. See description of table 6.8.
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Diagrams Expressions via Feynman rules Topology

Removing divergences from D223
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Removing divergences from D247
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Table 6.8: Diagrams removing the UV-divergent parts of the three-loop diagrams pro-
portional to the product of Yukawa couplings ybyt, which are denoted by topologysector
(table 6.5, table 6.6); Part 2. Crosses denote counterterm insertions, dashed lines denote
Higgs bosons, curled lines gluons, orange lines W-/charged Goldstone bosons, straight
black lines bottom quarks and blue lines top-quarks.
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6.6 Outlook

The partial decay width of the Higgs boson’s predominant decay mode,

Γ
(
H −→ bb̄

)
= Γ(0)(1 + ∆(αs) +∆(α) +∆(ααs) + ...),

significantly influences the Higgs boson’s total decay width and, therefore, its branch-
ing ratios. A precise theoretical prediction is indispensable. We address mixed QCD-
electroweak corrections involving W-bosons or charged Goldstone bosons, a rather com-
plicated contribution. As discussed in section 6.2, we utilise the optical theorem,

Γ
(
H −→ bb̄

)
=

1

mH
Im
(
ΣH(p2 = m2

H + iϵ)
)
,

⇒ ∆
(ααs)
W =

1

mH
Im

(
Σ
(α2αs)W
H (p2 = m2

H + iϵ)

)
, (6.41)

relating the decay rate to the imaginary part of a two-point function. In section 6.3
(table 6.1 and table 6.2), we derived all Feynman diagrams entering the right hand side
of (6.41). The diagrams are expressible through the topologies discussed in section 5.2.

Hence, it is possible to determine the scattering amplitude Σ
(α2αs)W
H (see section 6.4)

as sum over the master integrals of uniform weight derived in chapter 5 (J⃗ (5.69), K⃗
(5.70), L⃗ (5.71)),

Σ
(α2αs)W
H (p) = NCCF g

4g2s

N1
MI∑
j

f1
j Jj +

N2a
MI∑
j

f2a
j Kj +

N2b
MI∑
j

f2b
j Lj

 ,

with rational factors fj .

Beforehand, we have to calculate the scattering amplitude via Feynman rules. In section
6.4.1 and section 6.4.2, we demonstrated the application of Feynman rules. We automa-
tise the calculation utilising QGRAF [115] and FORM [119]. QGRAF generates all required
Feynman diagrams. Within FORM, we evaluate traces and replace scalar products to ob-
tain scalar integrals. Furthermore, we embed relations among integrals obtained from
an integration by parts reduction program like Kira [82, 83] or FIRE/LiteRed [84–87].
Afterwards, we relate those to the master integrals of uniform weight. Furthermore, we
have to finish the work started in section 6.5. We have to add all counterterm diagrams
to the scattering amplitude to remove poles in the dimensional regularisation parameter,
which emerge out of the master integrals of uniform weight.

A similar procedure enables the analytic calculation of mixed QCD-electroweak cor-
rections involving Z-bosons or neutral Goldstone bosons to Γ

(
H −→ bb̄

)
. Most of the

required diagrams resemble those in table 6.1 and table 6.2, but contain a neutral weak
boson and consequently only bottom quarks. Here, we may translate our results straight-
forwardly if we set mt → mb. As mixed QCD-QED corrections are already calculated
[114], the calculation of corrections involving gluons and Z-bosons/neutral Goldstone
bosons would complete the mixed QCD-electroweak corrections to Γ

(
H −→ bb̄

)
.
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CHAPTER

SEVEN

CONCLUSION AND OUTLOOK

In this thesis, I considered three-loop Feynman integrals containing two different kinds
of masses within the framework of differential equations as well as a phenomenological
application of them. Feynman integrals arise in the evaluation of higher orders in per-
turbation theory. Hence, Feynman integrals are indispensable for precision calculations.
In order to probe the successful but limited theory of the Standard Model, the determi-
nation of Feynman integrals corresponding to its properties is essential. Here, a special
emphasise should be put on the Higgs boson, which gives masses to fermions as well as
to W- and Z-bosons. However, the number of loops and the number of kinematic vari-
ables complicates the analytic evaluation of Feynman integrals rapidly. Beyond one-loop
advanced solution methods are crucial. Within the framework of differential equations
for Feynman integrals, a distinguished solution strategy involves the ϵ-form or canonical
form of differential equations (3.72). After reducing Feynman integrals to a set of basis
or master integrals, the ϵ-form enables a straightforward solution of their differential
equations order by order in the dimensional regularisation parameter ϵ. Here, the main
task is the search for two kinds of transformations resulting in the ϵ-form: basis trans-
formations factoring out ϵ, and if required variable transformations, which eliminate
square roots within differential equations (see box 1).

We analytically evaluated a previously unknown building block of Higgs precision physics:
All master integrals relevant to the three-loop Higgs boson self-energy at O

(
α2αs

)
in-

volving internal W-boson and top-quark propagators. We kept the full dependence on
the heavy particle masses mW ,mt and the external momentum p2. The presence of
W- and top-propagators complicates the calculations. Hence, the considered Feynman
integrals are a complex contribution to this order in perturbation theory.

In chapter 5, we studied the Feynman integrals contributing to the three-loop Higgs
boson self-energy with internal W-boson, gluon, top-quark and bottom-quark propaga-
tors, working in the massless bottom quark approximation. We aimed to obtain the
analytic results by first transforming differential equations to an ϵ-form. We divided
the Feynman diagrams and their associated integrals (5.1) into three systems. The first
system corresponds to diagrams proportional to the product of Yukawa couplings ybyt.
System 2a consists of diagrams containing an HW+W− vertex. Diagrams of system 2b
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are proportional to the product of Yukawa couplings ybyb. We summarised the char-
acteristics of each system in table 5.9. After creating all top sector diagrams (fig.5.1),
we constructed appropriate topologies (fig.5.5, fig. 5.7 and table 5.1). We generated
three bases of pre-canonical master integrals (system 1: table 5.6, system 2a: table 5.7,
system 2b: table 5.8). After setting µ2 = m2

t , we derived their differential equations
with respect to

v =
p2

m2
t

, w =
m2

W

m2
t

.

We have seen in this thesis that it is beneficial to arrange differential equations sector by
sector. The resulting matrices are lower block-triangular, where sectors appear as blocks
on the diagonal, and sub-sector contributions are to their left. The task ahead consists
of finding transformations which bring all these blocks and thereby the whole system
of differential equations into a canonical form. We discussed, that it is advantageous to
transform the differential equations bottom-up, starting with the lowest sector (fig.5.9).
We thereby applied two kinds of transformation matrices. U1 (5.27) transforms diagonal
blocks, leaving diagonal blocks of lower sectors unchanged. Furthermore a version of
U1 solely depending on ϵ (5.33) may be utilised to simplify the dependence of sub-
sector contributions on ϵ (5.32). Afterwards U2 (5.29), which only acts on the intended
off-diagonal block, serves the purpose of bringing the sub-sector contributions into ϵ-
form. To find appropriate transformations for the diagonal blocks of matrices, i.e.
the homogeneous part of a sector’s differential equation, we constructed ansätze for
integrals of uniform transcendental weight. We have seen how to efficiently make use
of the maximal cut in this context: We start as we shift the considered integral to
Baikov representation either democratically (3.44) if the majority of propagators is
present in the considered integral as in (5.45) or loop-by-loop (3.42) to end up with
fewer integration variables (5.53),(5.54),(5.55). All Baikov variables situated in the
denominator and raised to positive powers are cut (3.93). We discussed how to modify
the integration contour (5.47), (5.50) and integrand of the leading term of the resulting
maximally cut integral in order to obtain a constant of weight zero,

MaxCut (I (ϵ = 0)) =

ˆ
CMaxCut

φ →
ˆ
C′
φ′ = constant of weight zero.

Modifying the integrand of the original integral accordingly, we gained the sought-after
ansatz (see for example (5.48)). This approach is summarised in Box 2. If the regarded
sector contains multiple integrals, it is important to choose independent integration con-
tours.

For each system, we found a basis of master integrals of uniform weight. The basis
integrals are listed in (5.69), (5.70) and (5.71). We divided the master integrals into
three systems to simplify dependencies on square roots and to be able to rationalise all
square roots within one system simultaneously. We found appropriate variable trans-
formations for all three systems (5.74), (5.77), (5.80), (5.81). Afterwards, each system
of differential equations could be written in terms of differential one-forms containing
only simple poles, i.e. dlog-forms (3.74). All sufficient dlog-forms contain only ratio-
nal functions depending on kinematic variables. They are listed in (5.85), (5.90). As
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boundary point, we chose v = 0, w = 1, as most integrals vanish at this point. We ob-
tained relations between different boundary values with the help of integral reductions
at the boundary point as well as from the fact that the integrals must be constant on
the boundary point (5.91). We explicitly calculated remaining boundary values (5.92),
(5.94). Our efforts culminate as we are able to express all master integrals via multiple
polylogarithms to all orders in the dimensional regularisation parameter ϵ (section 5.5.4).

The Higgs boson self-energy is a key ingredient of Higgs precision physics. It enters
the Higgs mass definition via renormalisation. Furthermore, it is linked to the Higgs
boson decay rate via the optical theorem (2.8), (6.41). In chapter 6, we consequently
considered the predominant decay mode of the Higgs boson, the decay into a bottom
quark pair. The decay rate,

Γ
(
H −→ bb̄

)
= Γ(0)(1 + ∆(α) +∆(αs) +∆(ααs) + ...),

consists of the Born decay rate Γ(0) (6.2) enhanced by electroweak-corrections ∆(α),
QCD-corrections ∆(αs) and mixed QCD-electroweak corrections ∆(ααs) (6.4), which
may be split with regards to the involved electroweak bosons. The contributions con-
taining W-/charged Goldstone bosons and Z-/neutral Goldstone bosons were so far
only computed with the help of Padé approximations [45]. We address the mixed QCD-

electroweak correction involvingW-/charged Goldstone bosons ∆
(ααs)
W , which is the more

complicated contribution, due to the presence of W- and top-propagators. We gener-
ated all contributing Feynman diagrams (table 6.1 and table 6.2) and translated them
to mathematical expressions (table 6.5, table 6.6, (6.34) and (6.35)). Since we utilise
the optical theorem (6.41), the required two-point three-loop diagrams correspond to
the topologies and top sectors from chapter 5. We simplify the scattering amplitude
in (6.19) and (6.23). Finally, the scattering amplitude will be given in terms of the
canonical basis of master integrals (6.25).

The master integrals we derived can be helpful in another context as well. On the
one hand, they may be transferred directly to other three-loop processes. An example is
the analytic calculation of the Higgs boson self-energy at O

(
α2αs

)
involving Z-bosons

and accordingly the mixed QCD-electroweak corrections involving Z-/neutral Goldstone
bosons to Γ

(
H −→ bb̄

)
. Most of the diagrams involving Z-boson propagators resemble

those in fig.5.1, table 6.1 and table 6.2, but contain a neutral weak boson instead of a
charged weak boson and consequently only bottom quarks. Hence, those diagrams and
corresponding master integrals are a special case of our results, we may obtain them
through the shift mt → mb. (In addition, Feynman diagrams with closed top quark
loops contribute to the Higgs boson self-energy at O

(
α2αs

)
involving Z-boson.) On

the other hand, the integrals we found may be utilised as building blocks for even more
intrinsic integrals, which are currently still out of reach. We demonstrated this proce-
dure in section 5.4.3. An ansatz for an integral of uniform weight may be composed out
of simpler integrals for which a representation of uniform weight is already known (5.43).

We analytically calculated all master integrals relevant to the NNLO Higgs boson self-
energy at O

(
α2αs

)
containing W- and top-propagators. We presented a basis of uniform

weight expressible through multiple polylogarithms to any order in ϵ. We kept the full
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dependence on m2
W ,m2

t and p2. Consequently, we determined all integrals required
for the mixed QCD-electroweak corrections to Γ

(
H −→ bb̄

)
with internal W-/charged

Goldstone bosons. Furthermore, the missing integrals of the Higgs boson self-energy at
O
(
α2αs

)
with internal Z-propagators are within reach.
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A

ADDENDUM TO CHAPTER 3

A.1 Generalised spherical coordinates

Spherical coordinates in D dimensions are defined as (cf. [50])

K0 = K cosΘ1

K1 = K sinΘ1 cosΘ2

. . .

KD−2 = K sinΘ1 . . . sinΘD−2 cosΘD−1

KD−1 = K sinΘ1 . . . sinΘD−2 sinΘD−1,

with K being the radial variable, Θj , 1 ≤ j ≤ D − 2 being the polar angles and ΘD−1

being the azimuthal angle.

A.2 Massive bubble integral

The bubble integral with equal masses is defined as

Bν1ν2(p
2,m2

1,m
2
2) ≡ eϵγE

(
µ2
)ν−D

2

ˆ
dDk

iπD/2

1(
−k2 +m2

1

)ν1 (−(k − p)2 +m2
2

)ν2 ,
with

ν =
2∑

j=1

νj .

µ is an arbitrary parameter with mass dimension one, γE is Euler’s constant,

ϵ =
D0 −D

2
, D0 ∈ N,

is the dimensional regularisation parameter and D the dimension. For ν1 = ν2 = 1, it
is given by (cf. [50])

I11 = B11(p
2,m2

q ,m
2
q) =

1

2
eϵγE

(
m2

q

µ2

)−ϵ

(1− x)−ϵ
∞∑
n=0

Γ(n+ ϵ)

Γ(n+ 1)

χn(
n+ 1

2

) (A.1)
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=

(
1

ϵ
− ln

(
m2

q

µ2

)
− ln(1− x)

)
+

∞∑
n=1

(
1

n
− 1

n+ 1
2

)
χn +O(ϵ),

with

χ =
−x

1− x
=

p2

p2 − 4m2
q

,
∞∑
n=0

χn

n
= − ln(1− χ),

∞∑
n=0

χn(
n+ 1

2

) = −2− 1
√
χ
ln(1−√

χ) +
1
√
χ
ln(1 +

√
χ).
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B

ADDENDUM TO CHAPTER 5

B.1 Overview of master integrals

Topology Sector Propagators Master Integrals

A 25 1, 4, 5 J1

27 1, 2, 4, 5 J2

30 2, 3, 4, 5 J3, J4

85 1, 3, 5, 7 J5, J6

86 2, 3, 5, 7 J7, J8, J9, J10

89 1, 4, 5, 7 J11

113 1, 5, 6, 7 J12, J13, J14

201 1, 4, 7, 8 J15

209 1, 5, 7, 8 J16

59 1, 2, 4, 5, 6 J17

87 1, 2, 3, 5, 7 J18, J19

91 1, 2, 4, 5, 7 J20

Table B.1: Overview of the set of master integrals; Part 1. The first column denotes the
topology, the second column labels consecutively the sectors, the third column gives the
sector identity defined in (3.46), the fourth column lists the propagators with positive
exponent, the fifth column lists the master integrals in the basis J⃗ .
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Topology Sector Propagators Master Integrals

A 94 2, 3, 4, 5, 7 J21, J22, J23

115 1, 2, 5, 6, 7 J24, J25, J26

117 1, 3, 5, 6, 7 J27, J28, J29, J30

121 1, 4, 5, 6, 7 J31

203 1, 2, 4, 7, 8 J32

206 2, 3, 4, 7, 8 J33, J34

211 1, 2, 5, 7, 8 J35

213 1, 3, 5, 7, 8 J36

119 1, 2, 3, 5, 6, 7 J37, J38

123 1, 2, 4, 5, 6, 7 J39

215 1, 2, 3, 5, 7, 8 J40, J41, J42

222 2, 3, 4, 5, 7, 8 J43, J44

235 1, 2, 4, 6, 7, 8 J45

249 1, 4, 5, 6, 7, 8 J46

223 1, 2, 3, 4, 5, 7, 8 J47, J48, J49

251 1, 2, 4, 5, 6, 7, 8 J50

B 113 1, 5, 6, 7 J51

116 3, 5, 6, 7 J52

115 1, 2, 5, 6, 7 J53

117 1, 3, 5, 6, 7 J54, J55, J56

206 2, 3, 4, 7, 8 J57, J58, J59

233 1, 4, 6, 7, 8 J60

236 3, 4, 6, 7, 8 J61

119 1, 2, 3, 5, 6, 7 J62, J63

Table B.2: Overview of the set of master integrals; Part 2. The first column denotes the
topology, the second column labels consecutively the sectors, the third column gives the
sector identity defined in (3.46), the fourth column lists the propagators with positive
exponent, the fifth column lists the master integrals in the basis J⃗ .
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1. Overview of master integrals

Topology Sector Propagators Master Integrals

B 207 1, 2, 3, 4, 7, 8 J64

235 1, 2, 4, 6, 7, 8 J65

223 1, 2, 3, 4, 5, 7, 8 J66

239 1, 2, 3, 4, 6, 7, 8 J67

C 101 1, 3, 6, 7 J68, J69, J70

102 2, 3, 6, 7 J71

103 1, 2, 3, 6, 7 J72

117 1, 3, 5, 6, 7 J73, J74, J75

118 2, 3, 5, 6, 7 J76, J77, J78

173 1, 3, 4, 6, 8 J79, J80

181 1, 3, 5, 6, 8 J81

119 1, 2, 3, 5, 6, 7 J82, J83, J84

175 1, 2, 3, 4, 6, 8 J85

183 1, 2, 3, 5, 6, 8 J86

189 1, 3, 4, 5, 6, 8 J87, J88

190 2, 3, 4, 5, 6, 8 J89

231 1, 2, 3, 6, 7, 8 J90, J91, J92

246 2, 3, 5, 6, 7, 8 J93, J94

191 1, 2, 3, 4, 5, 6, 8 J95, J96, J97, J98

247 1, 2, 3, 5, 6, 7, 8 J99, J100, J101, J102

253 1, 3, 4, 5, 6, 7, 8 J103

255 1, 2, 3, 4, 5, 6, 7, 8 J104

D 239 1, 2, 3, 4, 6, 7, 8 J105

Table B.3: Overview of the set of master integrals; Part 3.The first column denotes the
topology, the second column labels consecutively the sectors, the third column gives the
sector identity defined in (3.46), the fourth column lists the propagators with positive
exponent, the fifth column lists the master integrals in the basis J⃗ .
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B.2 Numerical results

In table B.4 and table B.5 we show numerical results of system 1 as reference value at
the kinematic point

p2 = m2
H ,

where

mH = 125.2 GeV.

The other masses are given by

mW = 80.38 GeV, mt = 173.1 GeV.

p2 > 0, hence, we are not in the Euclidean region. Due to Feynman’s iδ-prescription we
have to take a small imaginary part into account: p2 → p2 + iδ, selecting the correct
branches for the two square roots.

r1|p2=m2
H
= −i 1.3487

r2|p2=m2
H
= −i 0.6188

⇒ x|p2=m2
H
=

1

2
(2− v − r1)

∣∣∣∣
p2=m2

H

= 0.7384 + i 0.6743

y|p2=m2
H
=

r2 − r1
1− w + 2v

∣∣∣∣
p2=m2

H

= i 0.3987

Table B.4 and table B.5 display the first four orders in ϵ. The first five orders can be
viewed in [1].
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2. Numerical results

ϵ0 ϵ1 ϵ2 ϵ3 ϵ4

J1 1 1.5342081 3.6442984 3.1853184 5.1462966

J2 0 −1.4801083i −2.4097495i −5.6149488i −5.2333001i

J3 0 1.4801083i −0.22727279i 7.1496293i −6.383137i

J4 0 0 −0.54768013 −0.36476197 −2.891637

J5 0 1.5342081 −2.9983034 19.075365 −53.393746

J6 0.33333333 1.5342081 −0.088235985 15.450021 −32.95737

J7 0 −1.4585842i 1.294182i −18.724204i 33.200239i

J8 0.33333333 0 3.7496407 −3.6797304 30.246157

J9 0.33333333 1.5342081 1.3128219 16.578415 −17.750719

J10 0 0 −2.2406312 1.0647958 −26.559377

J11 0 −1.5342081 0.91070302 −7.2586694 10.224944

J12 0 1.4585842i 0.050868134i 7.6533633i −4.6991476i

J13 0 1.5342081 −1.7502763 7.0599975 −14.845047

J14 1 1.5342081 5.8849296 4.6861424 17.388435

J15 2 1.295828 + 6.2831853i −7.8048778 + 4.0709638i −12.450557 − 3.8488956i −11.660945 − 25.721646i

J16 2 4.3642443 + 6.2831853i −3.4630132 + 13.710678i −21.696071 + 9.7914742i −38.706617 − 23.053895i

J17 0 0 2.1907205 3.772359 8.6571337

J18 0 −1.4801083i 0.5445262i −15.995422i 23.86858i

J19 0 0 −5.2250698i 10.295242i −65.298537i

J20 0 0 2.2707942i −1.1347528i 10.629046i

J21 0 1.4801083i −5.4523426i 28.891559i −88.331183i

J22 0 −1.5342081 3.2901965 −18.78899 54.646442

J23 0 1.5342081 −2.1449256 21.075678 −46.255399

J24 0 0 2.1588625 0.27796832 11.346261

J25 0 0 −2.2707942i 2.3774122i −10.218327i

J26 0 −1.4801083i −2.4097495i −8.9313256i −7.7660295i

J27 0 −1.4585842i 1.5911765i −16.821522i 38.929474i

J28 0 −1.4801083i 5.4523426i −27.832513i 90.872416i

J29 0.33333333 0 4.2973208 −7.8296127 39.354989

J30 0 0 0 3.9327313 −9.7902493

J31 0 −1.4801083i 2.8153204i −9.1045495i 18.752518i

J32 0 −2.9602166i 9.2997946 − 2.1958763i 6.898549 + 11.35639i −5.0820522 + 19.501961i

J33 0 2.9602166i −9.2997946 − 3.0781682i 9.6703505 − 3.6126738i −19.245548 − 12.824796i

J34 0 0 −1.0953603 0.24128744 − 3.4411758i 1.6402683 + 0.75802684i

J35 0 −2.9602166i 9.2997946 − 6.7374647i 21.16637 + 4.5035873i 16.446661 + 32.559044i

J36 0 −1.5342081 −2.6034827 − 9.6397141i 26.9974 − 0.52358996i −27.747558 − 12.210078i

J37 0 0 0 0 2.4095606

J38 0 0 0 −0.80345343 2.3774716

J39 0 0 2.1907205 −3.9613101 13.09607

J40 0 2.9602166i −9.2997946 − 3.712675i 14.988491 − 6.3598329i −8.0684303 − 1.80014i

J41 0 0 0 −1.2199963 − 1.2715067i 5.3143264 − 0.86415471i

J42 0 0 0 0 4.2051087 + 3.3549988i

J43 0 0 0 0 2.6414875 + 2.2409565i

J44 0 0 0 −1.2199963 − 1.2715067i 4.98217 − 0.70082991i

J45 0 0 4.381441 3.6614725 + 13.764703i −16.48045 + 11.502855i

J46 0 0 0 −1.2199963 − 1.2715067i 3.4643984 − 1.4351478i

J47 0 0 0 0 0

J48 0 0 0 0 0.65371112 + 1.0931833i

J49 0 0 0 0 1.6251574 + 0.75070903i

J50 0 0 0 0 0.94098377 − 0.90286329i

J51 −3 −3.887484 − 18.849556i 59.166272 − 24.425783i 118.51311 + 123.70244i −92.180991 + 423.20939i

J52 −3 −8.4901085 − 18.849556i 49.671371 − 53.344925i 202.90571 + 64.044212i 156.24311 + 572.90309i

J53 0 4.4403248i −27.899384 + 6.1707632i −38.772048 − 87.008884i 179.55177 − 183.60241i

J54 0 −2.9171683i 9.1645545 − 1.9918105i 24.127791 + 5.3212259i −21.804448 + 120.95424i

Table B.4: Numerical results for the first five terms of the ϵ-expansion of the master
integrals J1-J54 at the kinematic point p2 = m2

H .
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ϵ0 ϵ1 ϵ2 ϵ3 ϵ4

J55 0 −1.5342081 −8.2052687 − 19.279428i 79.333963 − 36.244239i 118.23648 + 121.5975i

J56 −0.66666667 −1.5342081 −7.3030938 −22.007405 − 14.078301i −7.7964625 − 73.29467i

J57 0 2.9171683i −9.1645545 + 1.9918105i −6.2574572 − 3.2092524i −20.068012 − 19.446051i

J58 0 3.0684163 −1.5124828 + 9.6397141i −7.6933829 − 4.7516047i −18.562293 + 7.543913i

J59 2 4.3642443 + 6.2831853i −1.2223821 + 13.710678i −18.743511 + 16.830625i −39.764537 − 13.778153i

J60 4 5.1833121 + 25.132741i −78.888363 + 32.56771i −129.16811 − 164.93658i 199.25544 − 383.01328i

J61 4 11.320145 + 25.132741i −66.228494 + 71.126566i −241.69158 − 85.392283i −87.715765 − 582.60488i

J62 0 0 0 −1.2199963 − 1.2715067i 5.9914141 − 3.4779304i

J63 0 2.9602166i −9.2997946 − 3.712675i −16.248795 − 0.64764184i 40.454671 − 155.25155i

J64 0 −2.9602166i 9.2997946 + 3.712675i −11.663712 + 4.2951778i 17.101399 + 9.4430398i

J65 0 −5.9204331i 37.199178 − 8.2276842i 51.696065 + 116.01185i −239.40236 + 202.10303i

J66 0 0 0 0 0

J67 0 0 0 1.2199963 + 1.2715067i −6.6685018 + 6.0917061i

J68 0 −1.4801083i 5.1350892i −25.837256i 86.938604i

J69 0 0 1.0953603 −3.0231166 16.571142

J70 0.33333333 0 1.3701472 1.8283464 −4.959024

J71 1 0 2.4674011 8.4143983 −35.10786

J72 0 −1.4801083i 2.498067i −15.01875i 37.560716i

J73 0 −1.4585842i 1.5911765i −15.779761i 37.376156i

J74 0 1.5342081 −2.1449256 18.664175 −47.494038

J75 0 −1.5342081 −0.2345679 −8.9971424 3.8407769

J76 0 −1.4585842i 1.294182i −16.104568i 36.151551i

J77 0.33333333 1.5342081 0.62627943 18.031643 −37.794484

J78 0 0 0 1.5692999 −6.5217998

J79 0 2.9602166i −9.2997946 − 3.0781682i −14.67018 − 1.6806018i 50.404394 − 150.6488i

J80 0 0 −0.54768013 −0.41446154 − 1.7205879i −2.3612249 − 7.5128487i

J81 0 1.5342081 −2.9983034 17.247662 −52.439144

J82 0 1.4801083i −5.4523426i 23.141893i −87.484869i

J83 0 0 0 −0.80345343 2.4731997

J84 0 0 0 0 1.6505684

J85 0 0 0 −0.9800827 − 0.86029394i 4.9546534 − 1.9953368i

J86 0 0 −0.31725341i −1.4970783i 1.498074i

J87 0 0 −0.13692003 2.3004984 − 0.43014697i −6.0933617 − 0.63742354i

J88 0 0 0 −1.2199963 − 1.2715067i 5.1907304 − 3.6242119i

J89 0 0 0 −1.3411296 − 1.3187987i 5.076922 − 3.9113363i

J90 0 0 0 −0.9800827 − 0.86029394i 4.8178105 + 0.24314247i

J91 0 0 0 0 2.4985099 + 1.7074518i

J92 0 1.4801083i −9.2997946 + 2.0569211i 2.2589826 − 23.245834i −5.6384268 + 23.974917i

J93 0 0 0 0 2.7500878 + 2.2730554i

J94 0 0 0 −1.3411296 − 1.3187987i 4.9222387 − 0.91431241i

J95 0 0 0 0 0

J96 0 0 0 0 0.21789937 + 0.042131655i

J97 0 0 0 −0.23991356 − 0.41121273i 0.85908359 − 1.5044267i

J98 0 0 0 0 0.78680569 − 5.3224605i

J99 0 0 0 0 0

J100 0 0 0 0 0.39649658 + 0.58554103i

J101 0 0 0 −0.36104693 − 0.45850473i 0.35197787 − 1.3297874i

J102 0 0 0 0 0.96352362 − 0.98327656i

J103 0 0 0 0 0

J104 0 0 0 0 0

J105 0 0 0 0 0.10737705 + 0.15759037i

Table B.5: Numerical results for the first five terms of the ϵ-expansion of the master
integrals J55-J105 at the kinematic point p2 = m2

H .
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C.1 Contradictions arising for γ5 in D dimensions

The four-dimensional γ5 is defined by

γ25 = 1, (C.1)

{γ5, γµ} = 0, (C.2)

Tr[γµγνγσγτγ5] = i4ϵµνστ . (C.3)

Unfortunately, we can not transport all properties to D dimensions. Contradictions to
the property (C.3) arise if we utilise the anticommuting property (C.2) in D dimensions,

DTr [γµγνγσγργ5] = Tr [γτγ
τγµγνγσγργ5]

cyclic
=

anticom.
−Tr [γτγµγνγσγργτγ5]

1)
=− Tr [γτγµγνγσ(2gρτ − γτγρ)γ5] = −2Tr [γργµγνγσγ5] + Tr [γτγµγνγσγτγργ5]

1)
=

cyc.+anticom.
2Tr [γµγνγσγργ5] + Tr [γτγµγν(2gστ − γτγσ)γργ5]

1)
=2Tr [γµγνγσγργ5] + 2Tr [γσγµγνγργ5]− Tr [γτγµ(2gντ − γτγν)γσγργ5]

= 2Tr [γµγνγσγργ5] + 2Tr [γσγµγνγργ5]

− 2Tr [γνγµγσγργ5] + 2Tr [γµγνγσγργ5]− Tr [Dγµγνγσγργ5]

⇔ 2DTr [γµγνγσγργ5] = 4Tr [γµγνγσγργ5] + 2Tr [γσγµγνγργ5]− 2Tr [γνγµγσγργ5] ,
(C.4)

where 1) is defined by {γµ, γν} = 2gµν ⇔ γµγν = 2gµν − γνγµ.
Contracting equation (C.4) with ϵµνσρ and dividing by 2, we find

DϵµνσρTr [γµγνγσγργ5] = 2ϵµνσρTr [γµγνγσγργ5] + ϵµνσρTr [γσγµγνγργ5]︸ ︷︷ ︸
σ→µ, µ→ν

=
ν→σ

ϵνσµρ︸ ︷︷ ︸
=ϵµνσρ

Tr[γµγνγσγργ5]

− ϵµνσρTr [γνγµγσγργ5]︸ ︷︷ ︸
ν→µ
=

µ→ν
ϵνµσρ︸ ︷︷ ︸

=−ϵµνσρ

Tr[γµγνγσγργ5]

173



Addendum to chapter 6

= 4ϵµνσρTr [γµγνγσγργ5] ,

⇔ (D − 4)ϵµνσρTr [γµγνγσγργ5] = 0. (C.5)

C.2 Counter term Feynman rules

We described in section 2.3 that we may derive Feynman rules for counterterm insertions
from a counterterm Lagrangian LCT . We therefore split the bare Lagrangian,

L −→ Lbare = Lrenormalised + LCT . (C.6)

In section 2.2, we obtained the Feynman rule of the quark propagator. The quark
propagator with counterterm insertion arises in a similar way out of

Lbare = Z2q̄(iγ
µ∂µ − Zmmq)q

⇒ LCT = q̄((Z2 − 1)iγµ∂µ − (Z2Zm − 1)mq)q.

It amounts to

i [(Z2 − 1)/k − (Z2Zm − 1)mq] .

We require the renormalisation constants Z1
2 and Z1

mq
, which may be constructed from

the quark self-energy, at order αs,

Z2 = 1 +
αs

4π
Z1
2 + ...,

Zm = 1 +
αs

4π
Z1
m + ..., (C.7)

implying for the quark propagator with counterterm insertion

i [(Z2 − 1)/k − (Z2Zm − 1)mq] = i
αs

4π

[
Z1
2/k − (Z1

2 + Z1
m)mq

]
+O(α2

s) +O(α).

The Feynman rule for a Hqq̄ vertex with counterterm insertion amounts to

−i(ZHqq − 1)
gmq

2mW
.

The renormalisation constant ZHqq consists of the renormalisation constants of the quark
mass and field as well as the W-boson mass and the strong coupling. The Feynman rule
for a W±qq̄ vertex with counterterm insertion is

Feynman diagrams in section C.2 were created with [120]

174



2. Counter term Feynman rules

i(ZWqq − 1)
g√
2
γµ

1− γ5
2

Vij ,

i(ZWqq − 1)
g√
2
γµ

1− γ5
2

V ∗
ij ,

where the renormalisation constant ZWqq, which we need at order αs, is a composition
of the renormalisation constants of the quark field, the W-boson field and the strong
coupling,

ZWqq = 1 +
αs

4π
Z1
Wqq +O(α2

s) +O(α),

⇒ i(ZWqq − 1)
g√
2
γµ

1− γ5
2

Vij = i
g

2
√
2
γµ(1− γ5)Vij

αs

4π
Z1
Wqq +O(α2

s) +O(α).

The Φ±qq̄ vertex with counterterm insertion

i(ZHqq − 1)
g

2
√
2

[
(1− γ5)

mui

mW
− (1 + γ5)

mdj

mW

]
Vij ,

i(ZHqq − 1)
g

2
√
2

[
(1 + γ5)

mui

mW
− (1− γ5)

mdj

mW

]
V ∗
ij .

depends again on ZHqq. Hence we require ZHqq at order α and at order αs,

ZHqq = 1 +
αs

4π
Zαs,1
Hqq +

α

4π
Zα,1
Hqq +O(α2

s) +O(α2).

Z1
Hqq can be constructed if we consider the αs correction to the qq̄ Higgs vertex. We may

obtain ZHqq at O(α) from the α correction to the Hqq̄ vertex, whereas one contribution
arises from flavour changing particles and one from non-flavour changing particles. The
latter should be dropped, since we do not consider non-flavour changing electroweak
bosons.

175



176



BIBLIOGRAPHY

[1] Ekta Chaubey, Ina Hönemann, and Stefan Weinzierl.
“Three-loop master integrals for the Higgs boson self-energy with internal top-
quarks and W-bosons”.
In: Journal of High Energy Physics 2022.11 (2022).
doi: 10.1007/jhep11(2022)051.
url: https://doi.org/10.1007%2Fjhep11%282022%29051.

[2] G. Zweig.
“An SU(3) model for strong interaction symmetry and its breaking. Version 2”.
In:
DEVELOPMENTS IN THE QUARK THEORY OF HADRONS. VOL. 1. 1964
- 1978.
Ed. by D. B. Lichtenberg and Simon Peter Rosen.
1964,
Pp. 22–101.

[3] Murray Gell-Mann.
“A Schematic Model of Baryons and Mesons”.
In: Phys. Lett. 8 (1964), pp. 214–215.
doi: 10.1016/S0031-9163(64)92001-3.

[4] E. D. Bloom et al.
“High-Energy Inelastic e− p Scattering at 6 and 10”.
In: Phys. Rev. Lett. 23 (16 1969), pp. 930–934.
doi: 10.1103/PhysRevLett.23.930.
url: https://link.aps.org/doi/10.1103/PhysRevLett.23.930.

[5] M. Breidenbach et al.
“Observed Behavior of Highly Inelastic Electron-Proton Scattering”.
In: Phys. Rev. Lett. 23 (16 1969), pp. 935–939.
doi: 10.1103/PhysRevLett.23.935.
url: https://link.aps.org/doi/10.1103/PhysRevLett.23.935.

[6] The Muon g − 2 Collaboration.
“Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm”.
In: Physical Review Letters 126.14 (2021).
doi: 10.1103/physrevlett.126.141801.
url: https://doi.org/10.1103%2Fphysrevlett.126.141801.

177

https://doi.org/10.1007/jhep11(2022)051
https://doi.org/10.1007%2Fjhep11%282022%29051
https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1103/PhysRevLett.23.930
https://link.aps.org/doi/10.1103/PhysRevLett.23.930
https://doi.org/10.1103/PhysRevLett.23.935
https://link.aps.org/doi/10.1103/PhysRevLett.23.935
https://doi.org/10.1103/physrevlett.126.141801
https://doi.org/10.1103%2Fphysrevlett.126.141801


[7] CDF collaboration.
“High-precision measurement of the W boson mass with the CDF II detector”.
In: Science 376.6589 (2022), pp. 170–176.
doi: 10.1126/science.abk1781.
eprint: https://www.science.org/doi/pdf/10.1126/science.abk1781.
url: https://www.science.org/doi/abs/10.1126/science.abk1781.

[8] Simone Amoroso.
Status of the W-boson mass averaging project.
2022.
doi: 10.48550/ARXIV.2211.12365.
url: https://arxiv.org/abs/2211.12365.

[9] Peter W. Higgs.
“Broken Symmetries and the Masses of Gauge Bosons”.
In: Phys. Rev. Lett. 13 (1964). Ed. by J. C. Taylor, pp. 508–509.
doi: 10.1103/PhysRevLett.13.508.

[10] G. Aad et al.
“Observation of a new particle in the search for the Standard Model Higgs boson
with the ATLAS detector at the LHC”.
In: Physics Letters B 716.1 (2012), pp. 1–29.
issn: 0370-2693.
doi: 10.1016/j.physletb.2012.08.020.
url: http://dx.doi.org/10.1016/j.physletb.2012.08.020.

[11] S. Chatrchyan et al.
“Observation of a new boson at a mass of 125 GeV with the CMS experiment at
the LHC”.
In: Physics Letters B 716.1 (2012), pp. 30–61.
issn: 0370-2693.
doi: 10.1016/j.physletb.2012.08.021.
url: http://dx.doi.org/10.1016/j.physletb.2012.08.021.

[12] I. Zurbano Fernandez et al.
“High-Luminosity Large Hadron Collider (HL-LHC): Technical design report”.
In: 10/2020 (2020). Ed. by I. Béjar Alonso et al.
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[44] Sebastian Pögel, Xing Wang, and Stefan Weinzierl.
Bananas of equal mass: any loop, any order in the dimensional regularisation
parameter.
2022.
doi: 10.48550/ARXIV.2212.08908.
url: https://arxiv.org/abs/2212.08908.

[45] Luminita Mihaila, Barbara Schmidt, and Matthias Steinhauser.
“Γ(H → bb̄) to order ααs”.
In: Physics Letters B 751 (2015), pp. 442–447.
issn: 0370-2693.
doi: 10.1016/j.physletb.2015.10.078.
url: http://dx.doi.org/10.1016/j.physletb.2015.10.078.

[46] Owe Philipsen.
Quantenfeldtheorie und das Standardmodell der Teilchenphysik: Eine Einführung.
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