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Abstract
Hypertensive disorders of pregnancy are complications that can lead to maternal and infant mortality and morbidity. Hyper-
tensive disorders of pregnancy are generally defined as hypertension and may be accompanied by other end organ damages 
including proteinuria, maternal organ disturbances including renal insufficiency, neurological complications, thrombocytope-
nia, impaired liver function, or uteroplacental dysfunction such as fetal growth restriction and stillbirth. Although the causes 
of these hypertensive disorders of pregnancy are multifactorial and elusive, they seem to share some common vascular-related 
mechanisms, including diseased spiral arteries, placental ischemia, and endothelial dysfunction. Recently, preeclampsia is 
being considered as a vascular disorder. Unfortunately, due to the complex etiology of preeclampsia and safety concerns 
on drug usage during pregnancy, there is still no effective pharmacological treatments available for preeclampsia yet. An 
emerging area of interest in this research field is the potential beneficial effects of dietary intervention on reducing the risk 
of preeclampsia. Recent studies have been focused on the association between deficiencies or excesses of some nutrients and 
complications during pregnancy, fetal growth and development, and later risk of cardiovascular and metabolic diseases in the 
offspring. In this review, we discuss the involvement of placental vascular dysfunction in preeclampsia. We summarize the 
current understanding of the association between abnormal placentation and preeclampsia in a vascular perspective. Finally, 
we evaluate several studied dietary supplementations to prevent and reduce the risk of preeclampsia, targeting placental 
vascular development and function, leading to improved pregnancy and postnatal outcomes.
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Introduction

According to the World Health Organization (WHO), the 
worldwide maternal mortality is unacceptably high [1]. 
In 2017, approximately 810 women died each day from 
pregnancy-related complications [1]. Maternal mortality is 
the result of complications during and following pregnancy 
and childbirth. Most of these complications develop dur-
ing pregnancy while some complications may exist before 
pregnancy and are worsened during pregnancy. The major 
complications that lead to most maternal deaths include 
severe bleeding during childbirth, infections, unsafe abor-
tion, high blood pressure during pregnancy, and other 

causes associated with chronic diseases like diabetes [2]. 
Indeed, most of these complications are largely prevent-
able and can be improved with better hygiene condition and 
healthcare facilities. However, among these complications, 
hypertensive disorders of pregnancy, including gestational 
hypertension, pre-eclampsia, and eclampsia, can only be 
minimized via pharmacological and dietary interventions. 
Also, pregnancy-associated hypertensive disorders occur 
in approximately 10% of all pregnancies and account for 
approximately 14% of maternal mortality [3, 4]. Hyperten-
sive disorders of pregnancy are generally defined as hyper-
tension (≥ 140 mmHg systolic and/or ≥ 90 mmHg diastolic 
blood pressure) occurring after 20 weeks of gestation while 
preeclampsia is defined as gestational hypertension accom-
panied by proteinuria (excretion of ≥ 300 mg protein every 
24 h) [5]. Apart from maternal mortality, these hyperten-
sive disorders of pregnancy can lead to an increased risk for 
future metabolic and cardiovascular disease for both mother 
and offspring [6, 7]. Therefore, the identification of better 
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preventive strategies and treatment modalities is imperative 
to minimize these inter-generational pathological conse-
quences of pregnancy-related complications. Despite the fact 
that the causes of these hypertensive disorders of pregnancy 
are multifactorial and elusive, they seem to share some com-
mon vascular-related mechanisms, including diseased spi-
ral arteries, placental ischemia, and endothelial dysfunction 
[8–10]. Various studies have shown that dietary patterns and 
supplements can influence adverse pregnancy and birth out-
comes [11–13]. This review aims to summarize the current 
understanding of the beneficial effects of different dietary 
supplementations in hypertensive disorders of pregnancy, 
focusing on vascular function.

Hypertensive disorders of pregnancy 
and vascular function

The exact mechanisms underlying the development of hyper-
tensive disorders of pregnancy are unclear. Currently, most 
of the literature has specifically focused on the pathogenesis 
underlying preeclampsia, while few of them have discussed 
on gestational hypertension, although gestational hyperten-
sion is also associated with adverse maternal and perinatal 
outcomes, and similar renal histopathology [14–16]. Tradi-
tionally, significant proteinuria has been the second crite-
rion required to distinguish between gestational hyperten-
sion and preeclampsia. Indeed, various maternal and fetal 
consequences now appear in international guidelines for the 
diagnosis of preeclampsia, including hypertension and end-
organ dysfunction, while proteinuria is no longer mandatory 
[17–19]. Therefore, the review will primarily focus on the 
pathogenesis of preeclampsia.

Preeclampsia is a complex and multifactorial disease 
defined as a rise in systolic blood pressure above 140 mmHg 
and/or rise in diastolic blood pressure above 90 mmHg 

occurring after 20 weeks of gestation in a pregnant woman 
without prior hypertension [5, 20], accompanied by the 
occurrence of at least one of the following complications at 
or after 20 weeks of gestation: proteinuria, maternal organ 
disturbances including renal insufficiency, neurological 
complications, thrombocytopenia, impaired liver function, 
or uteroplacental dysfunction such as fetal growth restric-
tion and stillbirth [17–19]. Superimposed preeclampsia is 
defined as the development of any of the above-mentioned 
maternal organ dysfunctions in a mother with pre-existing 
chronic hypertension [21]. If untreated, preeclampsia can 
lead to eclampsia. Eclampsia is the development of sei-
zures in pre-existing preeclampsia and is a life-threatening 
emergency condition that can also occur in the postpar-
tum period [22] (Fig. 1). Although eclampsia is one of the 
leading causes of maternal mortality, it is not known how 
hypertension in pregnancy affects the cerebral circulation 
and causes eclampsia due to the lack of animal models [23]. 
The primary explanation for the pathogenesis of eclampsia is 
thought to be hypertensive encephalopathy [24]. In addition, 
preeclampsia may persist during antepartum and postpar-
tum. Late postpartum preeclampsia is defined as the pres-
ence of preeclampsia symptoms up to 6 weeks postpartum 
[25]. Although the detailed pathophysiology is relatively 
unknown, the persistently high levels of anti-angiogenic 
factors after delivery may play a role in the development 
of postpartum preeclampsia [26]. Postpartum preeclampsia 
may cause endothelial damage associated with substantial 
maternal mortality and increased risk of chronic hyperten-
sion [25, 27].

Women with history of preeclampsia have approximately 
2-fold increased risk of developing cardiovascular diseases 
and around 10-fold increased risk of chronic kidney diseases 
[28]. Also, a few epidemiologic studies have linked 15–20% 
of all fetal growth restriction and small for gestational age 
infants to preeclampsia, while 20% of all preterm births are 

Fig. 1  Diagram showing different hypertensive disorders of preg-
nancy. Gestation hypertension is the increase in blood pressure dur-
ing pregnancy. Preeclampsia patients have gestation hypertension 
and accompanied by the occurrence of at least one of the following 
complications at or after 20 weeks of gestation: proteinuria, mater-
nal organ disturbances including renal insufficiency, neurological 
complications, thrombocytopenia, impaired liver function, or utero-

placental dysfunction such as fetal growth restriction and stillbirth. 
Women with chronic hypertension who develop symptoms of preec-
lampsia are diagnosed with superimposed preeclampsia. Eclampsia 
is the development of seizures in pre-existing preeclampsia and is a 
life-threatening emergency condition. Postpartum preeclampsia may 
also occur when the symptoms of preeclampsia persist in postpartum, 
which may increase the risk of chronic cardiovascular diseases.
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also associated with preeclampsia [29]. Apart from obstet-
ric and neonatal consequences, preeclampsia has also been 
shown to exert long-term risk of metabolic and cardiovascu-
lar complications [30]. Therefore, hypertensive disorders of 
pregnancy can leave long-term metabolic and cardiovascular 
risks to both mother and child.

Placenta plays an important role in the development 
and severity of preeclampsia. It has been suggested that 
the placenta itself, but not the fetus, is necessary for the 
development of preeclampsia, while preeclampsia can also 
occur in patients with hydatidiform moles and the removal 
of placenta can resolve the syndrome [31, 32]. Accumulat-
ing studies have evidenced the involvement of multifacto-
rial mechanisms including early disturbances in placentation 
followed by the imbalance in angiogenic factors, aberrant 
inflammatory response, increased placental oxidative stress, 
and placental aging in the pathogenesis of preeclampsia [33, 
34]. Indeed, preeclampsia can be considered as a vascular 
disorder. A functional and adequately vascularized placenta 
is crucial for healthy pregnancy and birth outcome [35]. It 
is proposed that the initiating step in the pathogenesis of 
preeclampsia is the abnormal placentation that characterized 
by defective trophoblast cell invasion and uterine vascula-
ture remodeling [36]. During normal pregnancy, maternal 
uterine spiral arteries are remodeled into low-resistance ves-
sels as a result of fetal trophoblast invasion and replacing 
the endothelial and smooth muscle cells in the vessel wall 
[37]. The interaction between the trophoblast and uterine 
natural killer cells initials the spiral artery remodeling [38]. 
In preeclampsia, overreaction of the maternal immunity 
can limit the placental development [39], while the incom-
plete trophoblastic invasion and spiral arteries remodeling 
lead to decreased placental perfusion and poor placentation 
[40–42], which result in the activation of pathways leading to 
maternal vasoconstriction and endothelial dysfunction [42]. 
Currently, the exact pathological mechanisms of incomplete 
trophoblastic invasion are not completely known while some 
studies have suggested, apart from immune maladaptation, 
the contribution of imbalanced angiogenic growth factors 
and placental endothelial dysfunction [40, 43].

Reduction of placental angiogenic factors plays an impor-
tant role in the pathogenesis of preeclampsia. The releases of 
angiogenic cytokines including, vascular endothelial growth 
factor (VEGF), placental growth factor (PlGF), and angi-
opoietin 2, are required for normal placentation [40, 43, 44]. 
In the first trimester of pregnancy, low serum level of PlGF 
is detected in suspected preeclampsia [45]. Inflammation and 
tissue hypoxia in the spiral arteries lead to the production of 
the transcription factor hypoxia-inducible factor-1 (HIF-1), 
which in turn downregulates PlGF [46]. Also, soluble fms-
like tyrosine kinase 1 (sFlt1), an antiangiogenic protein that 
inactivates VEGF and PlGF is upregulated in preeclampsia 
[47]. Therefore, placental abnormality results in decreased 

levels of angiogenic VEGF and PlGF and increased lev-
els of deleterious placental factors including sFIt-1 in the 
maternal circulation. Moreover, the imbalance of pro- and 
anti-inflammatory and pro- and anti-angiogenic factors sig-
nificantly contribute to generalized endothelial dysfunction, 
intravascular inflammation, and activation of the hemostatic 
system that result in the maternal syndrome [48, 49].

Throughout the whole body, the endothelium is believed 
to be the primary target of mediators generated from the 
placenta, causing endothelial dysfunction and end-organ 
damages [50]. Hypertension and proteinuria are common 
manifestation of endothelial dysfunction-mediated end-
organ damages, while some severe cases of preeclampsia 
have microangiopathic hemolytic anemia and organ hypop-
erfusion [51]. Indeed, endothelial dysfunction can occur in 
both maternal and placental circulations in hypertension 
disorders of pregnancy [40–42]. In clinical studies, vascu-
lar responsiveness can be assessed by in vivo [52–55] and 
in vitro [56, 57] methods to examine the vascular function 
in normal pregnancy and preeclampsia. A clinical study 
has demonstrated that vascular reactivity to endothelium-
dependent vasodilators (such as acetylcholine) was impaired 
in preeclampsia as evidenced by the reduced forearm blood 
flow measured by venous occlusion plethysmography in vivo 
[52]. Flow-mediated dilatation was reduced in preeclamp-
sia patients compared to normal pregnant women as meas-
ured by myography in vitro [56]. In addition, a reduction of 
flow-mediated dilation was observed in the uterine artery or 
preeclampsia patients by doppler ultrasonography in vivo 
[54]. Also, preeclampsia is associated with a failure of shear 
stress-induced vasodilatation and an enhanced myogenic 
response in vitro, which increased the vascular resistance in 
the uterine circulation [57]. Serum levels of endothelial acti-
vation markers including thrombomodulin, von Willebrand 
factor, fibronectin, and cell adhesion molecules including 
intercellular adhesion molecule 1 (ICAM-1), and vascular 
adhesion molecule (VCAM-1) have been shown upregu-
lated in preeclamptic patients [58–60]. Coherent with the 
clinical studies, treatment of recombinant sFlt-1 in human 
umbilical vascular endothelial cells (HUVEC) significantly 
increases these endothelial activation markers in vitro [61], 
suggesting the pathological role of sFlt-1 in endothelial 
activation, which in turn, contributes to the adverse respon-
siveness of the vasculature. During preeclampsia, patients 
have increased serum levels of vasoconstrictors such as 
endothelin 1 (ET-1) and thromboxane [62–64], while the 
responsiveness to vasodilators including nitric oxide (NO) 
and prostacyclin is significantly reduced in vivo [65–67]. 
Endothelium-dependent hyperpolarization factors (EDHF)-
mediated relaxation is also reduced in arteries of women 
with preeclampsia [68]. Vessels isolated from preeclamptic 
patients have increased responsiveness to vasoconstrictors 
including potassium chloride (KCl) and arginine vasopressin 
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(AVP) and have limited vasodilatation in response to acetyl-
choline in vitro [69]. Studies using animal models of preec-
lampsia have reported comparable findings [70]. Moreover, 
vascular dysfunction in preeclampsia can be manifested as 
augmented arterial stiffness and remodeling [71].

Although there may be multiple factors that contribute to 
endothelial dysfunction in preeclampsia, poor placentation 
and ischemic placenta, associated with acute atherosis or 
thrombosis, are considered critically contribute to endothe-
lial dysfunction [72]. Recent reports have suggested that 
maternal factors including obesity, hyperlipidemia, insulin 
resistance, and inflammation-associated coagulation factors 
alteration are correlated to impaired placentation [43, 73, 
74]. These conditions further augment oxidative stress and 
disrupt both maternal and perinatal endothelial functions 
that lead to organ hypoperfusion [43]. Strikingly, incubation 
of resistance vessels from normotensive pregnant women 
with plasma from either preeclampsia patients or pregnant 
women who would later develop preeclampsia also results 
in a reduction of endothelium-dependent relaxation ex vivo, 
which highlights the contribution of the imbalanced circu-
lating factors in the development of endothelial dysfunction 
during preeclampsia [75, 76]. These mechanisms lead to 
endothelial dysfunction that eventually results in hyper-
tension and increased cardiac output, stroke volume, and 
systemic vascular resistance during preeclampsia, as well 
as in postpartum, and increase the risk for cardiovascular 
disease later in life [77, 78]. In addition, growing evidence 
has linked these placental vascular pathologies with poor 
fetal growth and adverse birth outcomes [79–81].

In addition to endothelial dysfunction, premature aging of 
the placenta has recently been associated with hypertensive 
disorders of pregnancy and intrauterine growth restriction 
(IUGR) [82]. Patients with preeclampsia have augmented 
placental senescence compared to normal pregnant women 
as evidenced by telomere shortening in trophoblasts [82], 
while other studies have shown the upregulation of pro-
tein and gene expression of senescence-associated secre-
tory phenotype (SASP) components including p16, p21, 
p53, IL-6, IL-8, plasminogen activator inhibitor-1 (PAI-1), 
and monocyte chemotactic protein-1 (MCP-1) in the pla-
centa from preeclamptic patients compared to normoten-
sive controls [83–86]. One study has demonstrated that 
senescence of mesenchymal stem cells, multipotent cells 
with pro-angiogenic activities, is one of the mechanisms by 
which angiogenesis is inhibited by systemic inflammation 
in preeclampsia [87]. The same group has recently revealed 
the aging phenotype in the adipose tissue and kidney dur-
ing preeclampsia, suggesting that cellular senescence can be 
one of the important mechanisms of the pathophysiology of 
preeclampsia [88]. In addition, immunohistological stain-
ing of the preeclamptic placentas revealed the presence of 
8-hydroxy-2′-deoxy-guanosine (8-OHdG) [83], suggesting 

that oxidative stress may cause DNA damage, resulting 
in the activation of tumor suppressor genes such as p53. 
In fact, chronic low-grade inflammation can increase pla-
cental oxidative stress and endoplasmic reticulum stress in 
the placenta [89]. Poor placentation is also associated with 
increased placental oxidative stress and endoplasmic reticu-
lum stress, which can facilitate the pathways of senescence 
[89]. These lead to apoptosis and cell senescence which 
result in the loss of proliferative capacity in the placenta 
(Fig. 2).

Fetal programming and reprogramming

The sensitivity and susceptibility of the epigenome are high 
during pregnancy and lactation periods and decrease dur-
ing life [90]. It is suggested that some adult metabolic and 
cardiovascular diseases have a fetal origin, which is also 
referred as fetal programming [91, 92]. Apart from mater-
nal end-organ damages, preeclampsia can leave short-term 
and long-term adverse effects on the offspring. Indeed, the 
risk of preeclampsia is increased with family history while 
a maternal history of preeclampsia increases the risk in her 
daughter, as well as her son’s female partner [93]. Various 
reports have suggested the hypothesis that nutrition condi-
tion during intrauterine life and perinatal period may have 
long-lasting effects on the future risk of metabolic and car-
diovascular disease through persistence of metabolic and 
physiological adaptations, which is referred as fetal repro-
gramming [94–97]. Epigenetic modifications can be induced 
by diet and drug treatments during pregnancy and lactation 
periods, even with compounds that are not direct inhibitors 
or activators of the epigenetic machinery enzymes [98, 99]. 
These suggest that maternal drug treatment and/or dietary 
supplementation may be very likely to affect the birth out-
come and modulate the future risk of metabolic and cardio-
vascular diseases in the later life of the offspring by epige-
netic mechanisms.

Endothelial nitric oxide synthase, nitric oxide, 
and preeclampsia

Endothelial nitric oxide synthase (eNOS) is an important 
regulator of vascular tone and contributes to the reduction of 
the uteroplacental resistance during normal pregnancy [100, 
101]. eNOS exerts its functions mainly via the production 
of NO by reduction of L-arginine to L-citrulline [101]. It is 
suggested that, among different mediators that involved in 
endothelial dysfunction in preeclampsia, the role of eNOS 
appears most significant in the development of preeclamp-
sia [102]. NO synthesis can be stimulated by intraluminal 
flow, shear stress, and vasodilators such as acetylcholine 
and bradykinin [56, 57]. It has been shown that NO pro-
duction from the endothelium is increased during normal 
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pregnancy and decreases in preeclampsia [103]. Also, vari-
ous clinical studies have revealed the association between 
certain eNOS gene variants (for example G894T, 4b/a, 
c.894G > T (p.(Glu298Asp)), g.-786 T > C, g.2051G > A, and 
g.1861G > A) and low serum level of NO in preeclamptic 
patients [104, 105], while the presence of AGT 704C allele 
is associated with a reduced risk of developing preeclampsia 
[105]. Reduced eNOS activity or NO production exacerbates 
sFlt-1-associated preeclampsia-like phenotype in mice, which 
is partly through activation of the endothelin system [106].

Indeed, preeclampsia occurs during pregnancy exclu-
sively in humans and certain apes, therefore, researches 
have been limited since there is currently no animal 
model which exactly mimics human preeclampsia [107]. 
Rodents are the most commonly used models for investi-
gating preeclampsia, due to the similarity of cardiovascu-
lar adaptations to pregnancy in humans. In general, these 
rodent models of preeclampsia exhibit an increase in blood 
pressure (approximately 20–30 mmHg rise in systolic 
blood pressure), accompanied by reduced renal function 
[107–109]. NOS inhibition by its nonselective inhibitor 
L-NG-Nitro arginine methyl ester (L-NAME) has been 

commonly used in rodent models to mimic preeclamp-
sia-like phenotype [110]. Chronic L-NAME treatment in 
pregnant rat results in hypertension, reduced kidney func-
tion and increased placental sFLT-1 expression, while pro-
teinuria is not observed and vascular function is not altered 
ex vivo [111]. Also, fetal malformations could be a side-
effect of L-NAME treatment [112]. sFLT1-infusion in rats 
is another animal model with preeclampsia-like symptoms 
and is the only animal model reported to have glomerular 
endotheliosis [113]. However, the relevance of this animal 
model requires more detailed studies. The main concern of 
these treatment-induced model is that the symptoms would 
be unlikely to subside after delivery of the placenta and is 
not due to a pregnancy-derived phenotype. On the other 
hand, Dahl salt-sensitive rats (DSSR) is a genetic model of 
salt-induced hypertension and has been recently reported 
to display preeclamptic phenotype (including blood pres-
sure, proteinuria, placental hypoxia and reduced uteropla-
cental blood flow and fetal growth restriction) even when 
fed a normal chow diet [114–118]. There are a few helpful 
reviews that provide detailed discussion on animal models 
of preeclampsia [107–109, 119].

Fig. 2  Placental dysfunction 
in hypertensive disorders of 
pregnancy. The current under-
standing of the pathogenesis of 
placental dysfunction in hyper-
tensive disorders of pregnancy. 
Placenta plays an important role 
in the development and severity 
of preeclampsia. It is proposed 
that the initiating step in the 
pathogenesis of preeclampsia 
is the abnormal placentation 
that characterized by defective 
trophoblast cell invasion and 
uterine vasculature remodeling. 
Placental dysfunction leads to 
further imbalance in angiogenic 
factors, increased placental 
oxidative stress, placental 
aging and increased endothe-
lial activation markers in the 
pathogenesis of preeclampsia. 
These multiple factors can cause 
adverse effects in both mother 
and offspring. Endothelial 
dysfunction leads to end-organ 
damages in the mother and 
causes symptoms of preeclamp-
sia. Placental insufficiency can 
lead to growth restriction and 
adverse birth outcomes in the 
offspring. Preeclampsia can also 
increase the risk of metabolic 
and cardiovascular diseases in 
the mother as well as in the later 
life of the offspring.



 Pflügers Archiv - European Journal of Physiology

1 3

During normal pregnancy, the production of reactive 
oxygen species (ROS), such as NO, hydrogen peroxide 
 (H2O2), hydroxyl radical·OH, superoxide anion  O2−, and 
peroxynitrite  ONOO− is increased [120]. These physiologi-
cal ROS are important for the development of placenta and 
promotion of mitochondrial activity in trophoblasts [121]. 
In addition, uterine contractions and interventions including 
diet and exercise may induce mild placental ROS produc-
tion that is also needed for maintenance of pregnancy and 
embryo development [120]. It is suggested that eNOS/NO 
signaling plays an important role in maintaining a healthy 
pregnancy. However, when ROS production is augmented, 
eNOS becomes uncoupled [122]. It is also suggested that 
the uncoupling of eNOS in the hypoxic placenta may fur-
ther trigger high oxidative stress during preeclampsia [100]. 
Oxidative stress in the placenta can stimulate the release of 
apoptotic and necrotic trophoblastic placental debris, anti-
angiogenic factors, and proinflammatory cytokines into 
maternal circulation [123].

On the other hand, sFlt-1 secreted from the placenta can 
antagonize VEGF signaling, which leads to reduced eNOS 
activity [61]. Hypertensive disorders of pregnancy are asso-
ciated with increased levels of factors that inhibit eNOS/
NO pathway. Plasma level of asymmetric dimethyl arginine 
(ADMA), a competitive inhibitor of eNOS, is increased 
in preeclamptic patients [54], while the expression of a 
placenta-derived soluble transforming growth factor beta 
(TGF-β) coreceptor, endoglin, which impairs eNOS activa-
tion is also increased [124]. Recent report has also shown 
that microRNAs (miRs) are upregulated in the human pla-
centa during preeclampsia [125]. These miRs are carried by 
exosomes and can suppress NO production and eNOS expres-
sion by targeting the 3’-untranslated region on eNOS [125].

NO donors have potent vasodilator effect and have been 
shown to improve blood flow in the fetoplacental circulation 
during mild preeclampsia [126]. The vasodilator effect of 
NO signaling is modulated by the interaction between NO 
and heme-containing proteins, most notably soluble guanylyl 
cyclase (sGC) [127]. In addition, NO is an endogenous sign-
aling molecule that is involved in the regulation of various 
important cellular functions. NO can regulate gene expres-
sion by either direct interaction with transcription factors or 
by post-translational modifications of proteins [128]. Recent 
studies have also revealed the importance of eNOS/NO 
signaling in modulating the expression of angiogenic fac-
tors including PlGF, VEGF, angiopoietins and their receptor 
soluble angiopoietin-tunica interna endothelial cell kinase 2 
(Tie-2), thrombospondin, and anti-angiogenic factors such 
as sFlt-1 [129, 130]. NO is involved in the transcriptional 
regulation of histone-modifying enzymes and modulates 
the activities and cellular localizations of transcription fac-
tors through the formation of S-nitrosothiols or iron nitrosyl 
complexes. [131]. In addition, NO may alter the cellular 

methylation, acetylation, phosphorylation, ubiquitylation, or 
sumoylation profiles of proteins and histones [132]. S-nitros-
ylation is a post-translational modification on the cysteine 
residue by NO [133]. S-nitrosylated proteins are reported 
to be involved in different pregnancy-related processes 
including trophoblast cell migration, immunomodulation, 
apoptosis, and oxygen delivery [134]. Growing evidence 
has revealed the association between abnormal placental 
S-nitrosylation and preeclampsia in both human [135] and 
rodent [136]. The nitroso-proteomes in the placentas from 
normotensive and preeclamptic patients are significantly 
different, while among these downregulated S-nitrosylated-
proteins in preeclampsia, annexin A2 is responsible for the 
activation of angiogenesis [137]. Therefore, reduced eNOS/
NO signaling in hypertensive disorders of pregnancy may 
alter the nitrosylation of proteins which lead to placental 
dysfunction.

Dietary supplement

Due to the complex etiology of preeclampsia and safety con-
cerns on drug usage during pregnancy, there is still no effec-
tive pharmacological treatments available for preeclampsia 
yet [3]. An emerging area of interest in this research field 
is the potential beneficial effects of dietary intervention 
on reducing the risk of preeclampsia [138]. Recent stud-
ies have been focused on the association between deficien-
cies or excesses of some nutrients and complications during 
pregnancy, fetal growth and development, and later risk of 
cardiovascular and metabolic diseases in the offspring.

During pregnancy, nutrient intake during the periods of 
periconception and pregnancy has significant influences to 
both the health of mother and the development of the fetus 
[139]. Pregnancy greatly changes a woman’s metabolism 
and increases the demands for energy, proteins, vitamins, 
and minerals. The daily requirement of dietary intake in 
healthy pregnancy woman is higher than that of a healthy 
nonpregnant woman [140]. The growth and development 
of fetus depend completely on the mother; hence, adequate 
maternal dietary intake is essential for the health of the 
mother and the development of the fetus. In this sense, preg-
nancy represents a challenge from a nutritional perspective 
[141, 142]. Unbalanced diet is a well-known risk factor for 
cardiovascular diseases and diabetes; hence it may also play 
a role in the pathophysiology of hypertensive disorders of 
pregnancy [143]. In addition, imbalanced serum levels of 
nutrients have been associated with increased inflammation, 
oxidative stress, and dyslipidemia [144]. Nutrient status 
including increased serum triglyceride and fatty acids, and 
reduced levels of magnesium, zinc and vitamins, as well as 
low calcium intake have been associated with increased risk 
of pre-eclampsia [145, 146].
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An ideal nutrient supplement and/or therapy for preg-
nancy-related complications should have protective effects 
in relieving the symptoms of preeclampsia in the mother, 
improving fetal growth and survival, as well as reducing 
the disease risk of the offspring at adult ages. Although, 
the exact effects and mechanisms of nutrition in the allevi-
ating preeclampsia are still debatable, growing number of 
studies has provided supporting evidence for the potential 
use of supplements in alleviating preeclampsia. Currently, 
two main mechanisms have been proposed: (i) Nutritional 
supplementation shows pharmacological effects in women 
with dietary intake of nutrients above the recommended 
daily amount [147]; (ii) nutritional supplementation may 
achieve benefit via normalizing the deficiency in women 
with inadequate nutrition [148]. Here, we summarize some 
of the supplements and their documented beneficial effects 
in hypertensive disorders of pregnancy.

L‑arginine

As mentioned above, NO is a potent endothelium-derived 
vasodilator and defective eNOS/NO signaling has been doc-
umented in preeclampsia. NO is produced by eNOS which 
uses L-arginine as substrate. Therefore, the bio-availability 
of L-arginine is important to maintain the endothelial adap-
tive regulatory mechanisms for vasodilatation in healthy 
pregnancy. Arginine is a semi-essential amino acid and the 
precursor of various biological pathways including the urea 
cycle and the production of NO and polyamines [149, 150]. 
Arginine may regulate many metabolic pathways that are 
crucial to reproduction, growth, and health [151], while 
the role and functions of NO have been discussed above. 
It is well documented that the administration of L-arginine 
improves vascular function in atherosclerosis and peripheral 
vascular diseases [152–154].

Recently, it has been shown in some animal and clini-
cal studies that L-arginine have the potential to alleviate 
preeclampsia [155–157]. In a recent systematic review and 
meta-analysis of randomized controlled trials, L-arginine 
supplementation has been shown to increase plasma NO 
concentration in IUGR pregnancies and decrease the risk of 
preeclampsia [158]. In addition, L-arginine supplementation 
can improve birth weights of offspring in both hypertensive 
and IUGR pregnant women [158]. Moreover, it has been sug-
gested that intravenous infusion of L-arginine, but not oral 
administration, significantly increases NO concentrations and 
birth weights in IUGR pregnancies [158]. L-arginine has also 
been shown to alleviate the pathogenesis of malaria-induced 
adverse birth outcomes in pregnancy [159, 160].

Apart from NO, several metabolites of arginine, such as poly-
amines, are important nutrients required in multiple stages of 
pregnancy, including implantation, early embryogenesis, fetal 
growth, and placental development [161]. Polyamines, such as 

putrescine, spermine, and spermidine, will interact with nega-
tively charged molecules, including DNA, RNA, acidic proteins, 
and phospholipids [162, 163]. Indeed, polyamine metabolism 
plays an important role in placental function during pregnancy 
[164]. Reductions in polyamine bioavailability in pregnant rodent 
models have been associated with abnormal placentation and 
fetal growth restriction [165, 166]. Polyamines are involved in the 
regulation of the inflammatory response due to their antioxidant 
properties [167] and modulate T cell responses [168]. Treatment 
with spermine inhibits lipopolysaccharide (LPS)-mediated pro-
duction of pro-inflammatory cytokines, such as TNF-α and IL-6 
in mouse macrophages [169]. The beneficial effects of polyam-
ines may be attributed to the regulation of pathways involved in 
endothelial cell migration, proliferation, protein synthesis, and 
pro-angiogenic gene expression [164]. However, the underlying 
molecular pathways by which polyamines are involved in angio-
genesis remain unclear. Recent study also reveals the epigenetic 
effects of placental polyamines via regulating acetyl-CoA level 
and histone acetylation [161].

These observations raise the possibility of practical 
dietary L-arginine supplementation during pregnancy as 
a NO donor to reduce the risk of preeclampsia. Neverthe-
less, although L-arginine is an inexpensive supplementation 
with a known safety profile in pregnancy, the bioavailabil-
ity of arginine is relatively low, as 40% of oral arginine is 
catabolized by the intestine and another 9% is metabolized 
by the liver [159]. Therefore, the challenge of considering 
L-arginine as a dietary supplement targeting preeclampsia 
would be the low bioavailability.

L‑citrulline

L-citrulline is an amino acid that is also the natural precur-
sor and metabolite of L-arginine. L-citrulline is converted 
to L-arginine by arginosuccinate synthase. Activation of 
arginosuccinate synthase in cells isolated from preeclamp-
tic patients has been shown to improve endothelial function, 
associated with increased NO production and reduced oxida-
tive stress [170, 171]. On the other hand, compared to argi-
nine, citrulline has been shown more effective to promote 
NO production as it can bypass hepatic metabolism, and not 
metabolized by arginase [159]. A few evidence has suggested 
that the protective effect of citrulline may not be analogous 
with arginine [172], and these two amino acids regulate gene 
expression in different manners [173]. Citrulline has also 
been shown to improve protein anabolism, increase nitrogen 
balance in rats [174], and enhance muscle protein synthesis 
in human [175] more efficiently than arginine. In addition, 
the usage of citrulline has an even greater safety profile than 
that of arginine, as none of the clinical trials have reported 
any adverse effects [176]. Therefore, these raise the hypoth-
esis that citrulline can be a better supplementation than argi-
nine in targeting hypertensive disorders of pregnancy.
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In our recently published study, we examined the 
effect of citrulline supplementation in a rat model of 
preeclampsia [177]. We have demonstrated the protec-
tive effects of citrulline supplementation in the Dahl 
salt-sensitive rats (DSSR). Citrulline supplementation in 
DSSR leads to the reduction of maternal blood pressure 
and markers of preeclampsia (sFlt-1). Pup-to-placenta 
weight ratio and maternal vascular function are improved 
by citrulline supplementation. In addition, the beneficial 
effects of citrulline in ameliorating placental fibrosis and 
senescence, and promoting angiogenesis in the placentas 
have been observed, in parts, attributable to the downreg-
ulation of toll-like receptor 4 (TLR4) and nuclear factor 
κB (NF-κB) in the placenta [177]. Coherently, another 
study has demonstrated the effect of L-citrulline supple-
mentation in a mouse model of preeclampsia [178]. This 
study shows that L-citrulline supplementation can reduce 
blood pressure, increase vascular glycocalyx volume, and 
improve maternal vascular function ex vivo at gestation 
day 17.5 in the preeclampsia-like mouse model [178]. 
The beneficial effects of citrulline in maternal vascular 
function appear, in part, attributable to eNOS/NO sign-
aling. In addition, L-citrulline supplementation has also 
been shown to enhance fetal growth and protein syn-
thesis in rats with intrauterine growth restriction [179]. 
Maternal L-citrulline supplementation can prevent 50% 
caloric restriction-induced low nephron number and renal 
dysfunction in the offspring, although increased blood 
pressure has been observed in the offspring [180]. The 
effects in developmental programming of kidney disease 
and hypertension are associated with reduced ADMA in 
the plasma [180]. Also, maternal supplementation with 
citrulline has been shown to have long-term antihyper-
tensive effects in the offspring of spontaneous hyperten-
sive rats [181]. Moreover, maternal L-citrulline treatment 
prevents prenatal dexamethasone-induced programmed 
hypertension by restoration ADMA/NO balance, altera-
tions of renin–angiotensin system and sodium transport-
ers, and epigenetic regulation by histone deacetylases in 
mice [182].

Micronutrients

Micronutrients, including fatty acids, vitamins, and min-
erals, are chemical substances that are required in small 
amount but are important in regulating the metabolic and 
biochemical processes of the body [183]. Deficits in any of 
them can lead to deficiencies in growth and development, 
as well as abnormal physiological functions, and immu-
nity. Current evidence supports the idea that deficiencies 
of these micronutrients have adverse effects in maternal 
health and the outcome of pregnancy.

Fatty acids

Lipid and fatty acids are involved in the generations of free 
radicals [184]. High-fat diet is atherogenic, while polyun-
saturated fats are substrate for lipid peroxidation and have 
been reported to be increased in the diet of preeclamptic 
women [185]. On the other hand, omega-3 long-chain poly-
unsaturated fatty acids (n-3 PUFAs) have been suggested to 
be involved in the prevention of preeclampsia. Studies have 
revealed that levels of n-3 PUFAs were lower in erythrocytes 
of women with preeclampsia [186]. n-3 PUFAs are essential 
for fetal tissue formation [187]. In addition, n-3 PUFAs have 
been shown to have protective effects in cardiovascular func-
tion and alleviating inflammation [188, 189]. Eicosapentae-
noic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 
22:6) have been associated with beneficial effects in vaso-
dilation [190]. In addition, n-3 PUFAs have been shown to 
increase eNOS activity and NO production [191, 192]. The 
beneficial effects of n-3 PUFAs are suggested by the evi-
dence that there is a reduced rate of preeclampsia in popula-
tion that have large quantities of fish or fish oil intake [193]. 
In a recent systematic review and meta-analysis, the com-
parison of clinical trials has also suggested that n-3 PUFAs 
supplementation played a protective role against the risk of 
preeclampsia in women with low-risk pregnancies [194], 
probably by reducing placental inflammation and oxidative 
stress [195]. In a recent umbrella review of meta-analyses of 
randomized trials, n-3 PUFAs supplementation during preg-
nancy can exert beneficial effects in improving birth weight, 
preterm delivery, and post-partum depression, and reducing 
cardiometabolic risk factors in pregnant mothers, as well 
as can improve anthropometric measures, immune system, 
and visual activity in infants [196]. It has also been recently 
reported the effect of maternal intake of n-3 PUFAs during 
pregnancy influences the offspring DNA methylation [197]. 
Also, it has been recently shown that maternal n-3 PUFAs 
supplementations are closely correlated to infant telomere 
length [198]. However, the long-term effect of maternal 
intake of n-3 PUFAs in reducing future risk of metabolic 
and cardiovascular diseases in the offspring is unknown.

Calcium

Calcium supplementation has been reported to reduce the 
risk of preeclampsia [199]. Indeed, calcium is the most-
studied micronutrient in relationship to preeclampsia. 
Various epidemiological studies have demonstrated the 
association between reduced calcium intake and preec-
lampsia [200, 201] and women with low calcium intake 
(< 800 mg/day) are considered at increased risk of preec-
lampsia [21]. Several randomized controlled trials have 
been performed to investigate the effect of calcium sup-
plementation. The analysis of these trails has indicated 
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a 32% reduction of the incidence of preeclampsia with 
calcium supplementation [199], while this beneficial effect 
is most prominent in low baseline calcium intake groups. 
However, one of the largest trials to date reported no effect 
of calcium supplementation on preeclampsia [202], prob-
ably due to the inclusion of pregnant women with adequate 
dietary calcium intake. Therefore, current evidence has 
supported the hypothesis that the incidence of preeclamp-
sia can be reduced by calcium supplementation, while 
women with low calcium intake seem to be more likely to 
benefit from calcium supplementation [203]. In addition, 
prenatal supplementation with high-dose calcium has been 
shown to reduce the prevalence of gestational hyperten-
sion, serious maternal morbidity or death, and preterm 
birth [199]. Moreover, maternal calcium supplementation 
has been shown to improve the postpartum maternal bone 
health [204, 205], as well as to reduce the risk of increased 
systolic pressure in the offspring [206].

Vitamins

A recent systematic review and meta-analysis have shown 
the positive correlation between lower rate of preeclamp-
sia and calcium and vitamin D intake [207]. Vitamin D is 
a pre-hormone, that can also be endogenously produced 
by the skin when exposed to UV-B. Vitamin D plays an 
important role in preventing bone diseases and improving 
calcium metabolism [208]. Recently, vitamin D has also 
been shown to regulate the expression of signature devel-
opmental and angiogenic genes in the placenta [209–211]. 
Vitamin D deficiency before 22 weeks of pregnancy is 
a strong and independent risk factor for preeclampsia 
[208]. Maternal vitamin D insufficiency could also lead 
to preterm birth, small for gestational age or IUGR and 
gestational diabetes mellitus [212]. The active vitamin D 
metabolite, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], 
exerts immunosuppressive activity. It has anti-proliferative 
effect on Th1 cells and inhibits the secretion Th1 cytokines 
[213]. Deficiency of vitamin D is significantly associated 
with placenta calcification and aging [214]. Various stud-
ies have provided evidence supporting that vitamin D sup-
plementation can reduce the incidences of preeclampsia 
[215–217]. Some recent studies have shown that vitamin 
D supplementation can improve mitochondrial function, 
reduce inflammation in the placenta and preserve placental 
functions [218, 219]. A few trails have shown that vitamin 
D supplementation can reduce the risk of having a pre-
term birth [220, 221], as well as improve fetal growth and 
peripheral blood flow in the fetus [222]. One study has 
shown that low vitamin D status is associated with lower 
adiposity at birth, but a greater offspring adiposity at age 
of 6 years [223]. However, the long-term effect of maternal 
vitamin D supplementation in the offspring is still unclear.

Vitamins C and E are important non-enzymes that involve 
in the endogenous cellular antioxidant system. Vitamin C 
is water soluble while vitamin E is lipid soluble [224]. 
Vitamin C level is decreased in women with preeclampsia 
[225, 226] while vitamin E has been shown to be reduced in 
some [225, 226] but not all cases [227, 228]. Vitamin E is 
consistently reduced in severe cases of preeclampsia [229, 
230]. Adequate dietary intake of vitamins C and E appears 
to be mandatory to prevent oxidative stress [231]. Indeed, 
antioxidants have been proposed as prophylactic agents for 
preeclampsia [232, 233]. Various studies have demonstrated 
the beneficial effect of vitamin C and E supplementation 
in reducing preeclampsia by 4–12% depending on the risk 
level of the pregnant woman [234, 235]. Vitamin C or E sup-
plementation can reduce the systolic blood pressure in the 
preeclampsia patient [235]. Supplementation with vitamins 
C and E can has been shown to reduce PAI-1/PAI-2 ratio 
during gestation [233], suggesting the beneficial effects of 
vitamins C and E may be attributed to alleviating endothelial 
senescence and placental insufficiency. Vitamin C admin-
istration improves endothelial function, as evidenced by 
the increased flow-mediated dilatation measured by in vivo 
ultrasonography, in previously preeclamptic women [55]. 
However, some of the studies did not observe any signifi-
cant effects of vitamins C and E [147, 236]. Nevertheless, a 
recent meta-analysis has indicated that multivitamins sup-
plementation can significantly reduce the risk of preeclamp-
sia [237], suggesting that the beneficial effects of vitamins 
may be interrelated.

Resveratrol

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphe-
nol found in grape fruits and can be obtained from drinking 
red wine [238]. Resveratrol has been widely studied on its 
anti-oxidant and anti-inflammatory activities [239–241]. The 
protective effects of resveratrol have been demonstrated in 
cancer, cardiovascular, metabolic, and neurodegenerative 
diseases [242–244]. Resveratrol exerts its beneficial effect 
in cardiovascular protection by increasing the production 
of NO, partly by, upregulating eNOS expression, stimulat-
ing eNOS activity, and preventing eNOS uncoupling [245]. 
Also, resveratrol can modulate the function of immune cell 
and inhibit immune cell infiltration [246, 247].

Resveratrol supplementation improves the efficacy of oral 
nifedipine treatment in preeclampsia [248]. Maternal resveratrol 
consumption could decrease inflammation and oxidative stress 
in placental and embryonic tissues [249]. Also, resveratrol treat-
ment has been shown to increase uterine artery blood flow and 
fetal oxygenation, upregulate antioxidant enzymes in the pla-
centa, reduce markers of endothelial dysfunction, and enhance 
placental and fetal weight in a rat model of severe hypoxia [250]. 



 Pflügers Archiv - European Journal of Physiology

1 3

The expressions of endothelial dysfunction markers, including 
ICAM-1, von Willebrand factor, and Caspase-3, in endothe-
lial cells and umbilical arteries from preeclampsia patients are 
coherently attenuated by resveratrol treatment [251]. A recent 
study has revealed that resveratrol ameliorates preeclampsia by 
upregulating VEGF through miR-363-3p-mediated pigment epi-
thelium-derived factor (PEDF) downregulation [252]. Moreover, 
a systematic review of 31 studies has suggested that resveratrol 
possesses epigenetic effects in the development of placenta and 
fetal tissues during the gestational period [253]. Various animal 
studies have demonstrated the fetal reprogramming effects of 
maternal resveratrol supplementation that attenuate obesity, pre-
vent hepatic steatosis, and improve insulin sensitivity and islet 
dysfunction in the offspring [254, 255].

Recently, the effects of sirtuin 1 (SIRT1) on the bio-
logical functions of trophoblasts and endothelial cells 
have gradually emerged, and the serum and placental level 
of SIRT1 is reduced in preeclampsia [256–258]. SIRT1, 
which can be activated directly or indirectly by resveratrol, 
is also known as a longevity enzyme. SIRT1 activity is con-
trolled by intercellular nicotinamide adenosine dinucleotide 

(NAD) levels and is involved in transcriptional regulation 
of a large number of genes that are involved in different 
cellular functions [238]. SIRT1 can also activate eNOS 
and enhance endothelial function [238] and is an impor-
tant player in regulating vascular function and preventing 
vascular aging [259]. The beneficial effects of resveratrol 
in cardiovascular diseases are comparable to calorie restric-
tion or SIRT1-overexpression models in vivo [260, 261]. A 
recent study has demonstrated that treatment of recombi-
nant SIRT1 protein can decrease maternal blood pressure 
and improves angiogenic imbalance, inflammation, and 
pregnancy outcome in a rat model of preeclampsia [257]. 
High levels of sFlt-1, TNF-α, and IL-6 in maternal plasma 
are normalized by the treatment of recombinant SIRT1 
protein [257]. In another recent study, downregulation of 
SIRT1 has been correlated to the accelerated senescence 
of syncytiotrophoblast via downstream targets contribut-
ing to the regulation of the cell cycle, extracellular matrix 
production, and cytoskeleton reorganization, which lead 
to premature placental aging in preeclampsia [258]. Res-
veratrol-induced SIRT1 activation abrogates senescence in 

Table 1  Summary of the 
potential beneficial effects 
of various supplements in 
hypertensive disorders of 
pregnancy reported in clinical 
and animal studies, focusing 
on the three aspects: maternal 
effects, fetal effects, and effects 
in risk of future diseases in the 
offsping
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trophoblast-derived BeWo cells in vitro [258], suggesting 
the beneficial effect of resveratrol in ameliorating placental 
senescence in preeclampsia. In addition, resveratrol has 
also been studied for the beneficial effect on modulating 
gut microbiota [98, 245, 262]. Recent studies have dis-
cussed the causal association between gut dysbiosis and 
preeclampsia [263–265]. These raise the possibility that 
beneficial effect of resveratrol in alleviating preeclampsia 
is partly via gut microbiota remodeling.

Conclusion and future directions

Pregnancy-associated hypertensive disorders represent an 
important cause of maternal and infant mortality and mor-
bidity, as well as increasing the risk for future metabolic 
and cardiovascular disease for both mother and offspring. 
Although the knowledge of pregnancy-associated hyperten-
sive disorders has increased dramatically over the past years, 
the role of diet and the potential use of dietary supplements 
or therapy targeting preeclampsia has not been adequately 
studied. Currently, different clinical trials and meta-analyses 
have been performed to evaluate the effect of different dietary 
supplements on the development of preeclampsia (Table 1). 
However, these studies are mostly limited by the fact that 
the pathogenesis of preeclampsia could be multifactorial, 
severity of preeclampsia can be varying and heterogeneity 
between studies is very high. In addition, in most clinical 
cases of preeclampsia, it is not possible to discriminate the 
cause and effect between nutrient deficiencies and preec-
lampsia. Therefore, there is a need to apply novel animal 
models of preeclampsia for future studies in this field. To 
improve study quality, we must also try to explore the effects 
of these interventions and/or therapeutics in three important 
aspects: the maternal syndrome, fetal growth and survival, 
and the disease risk of the offspring at adult ages. Neverthe-
less, this review has summarized the current understanding 
of the pathophysiology of pregnancy-associated hypertensive 
disorders in a vascular perspective. We have also listed out 
the beneficial effects of a few dietary supplements targeting 
preeclampsia. This review aims to provide some potential 
insight and brainstorming for the future direction of studies 
with dietary interventions in preventing preeclampsia.
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