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Abstract: Targeting RNA methyltransferases with small molecules as inhibitors or tool compounds
is an emerging field of interest in epitranscriptomics and medicinal chemistry. For two challenging
RNA methyltransferases that introduce the 5-methylcytosine (m5C) modification in different tRNAs,
namely DNMT2 and NSUN6, an ultra-large commercially available chemical space was virtually
screened by physicochemical property filtering, molecular docking, and clustering to identify new
ligands for those enzymes. Novel chemotypes binding to DNMT2 and NSUN6 with affinities down to
KD,app = 37 µM and KD,app = 12 µM, respectively, were identified using a microscale thermophoresis
(MST) binding assay. These compounds represent the first molecules with a distinct structure from
the cofactor SAM and have the potential to be developed into activity-based probes for these enzymes.
Additionally, the challenges and strategies of chemical space docking screens with special emphasis
on library focusing and diversification are discussed.

Keywords: RNA methyltransferases; DNMT2; NSUN6; virtual screening; ultra-large molecular
libraries; molecular docking; chemical spaces

1. Introduction
1.1. RNA Methyltransferases as a Target

RNA modifications play an important role in an abundance of both physiological
and pathophysiological biochemical pathways [1–4]. Among over 170 known RNA mod-
ifications [5–7], one of the most significant ones is methylation, which is introduced by
methyltransferases. One prominent example of interfering with RNA modifying enzymes
as a therapeutic strategy is the methyltransferase 3 (METTL3, also called N6-adenosine-
methyltransferase) inhibitor STM2457, which is under investigation for the treatment of
acute myeloid leukemia (AML) [8]. Examination of other RNA methyltransferases as
possible drug targets is still in its infancy, which is also reflected in the literature [9]. How-
ever, in recent times, research in this area has started to accelerate. In this emerging field,
the 5-methylcytosine (m5C) modification, which is catalyzed by various members of the
Nol1/Nop2/SUN (NSUN) family, but also by the DNA methyltransferase 2 (DNMT2), is
of special interest in different human diseases [10].

Due to its high structural similarity to DNMT1 and DNMT3, DNMT2 was classified as
a member of the DNMT family, but it was found that the main substrate of DNMT2 is RNA.
The first reported RNA substrate of DNMT2 was tRNAAsp [11–13]. Meanwhile, tRNAVal

and tRNAGly were identified as substrates of DNMT2 as well [14,15]. The m5C modification
introduced by DNMT2 in position C-38 of the anticodon loop of tRNAAsp increases the
stability of the tRNA and therefore affects protein translation [16–18]. The influence of
DNMT2 involves epigenetic but also pathogenic pathways, especially in carcinogenesis
and inheritance of metabolic disorders [19–21]. Besides azacytidine and zebularine, which
both have to be incorporated into the substrate tRNA to inhibit DNMT2 [22,23], several
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derivatives of the enzyme’s cofactor S-adenosyl-L-methionine (SAM, Figure 1) and the
autoinhibitory reaction product S-adenosyl-L-homocysteine (SAH) and the well-known
natural product pan-methyltransferase inhibitor sinefungin (SFG) were identified to inhibit
DNMT2 [24,25].
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NSUN6 is a member of the NSUN family and methylates C-72 in tRNACys and
tRNAThr, as well as several mRNAs [26,27]. NSUN6 was claimed to be involved in bone
metastasis [28], but its complete physiological role remains elusive [29]. Besides SAH,
sinefungin, and derivatives, to the best of our knowledge, no drug-like inhibitors designed
for NSUN6 have been reported in the literature so far. Although NSUN6 and DNMT2
may not be potential drug targets in the first place, the development of activity-based
probes (ABPs) [30,31] for RNA methyltransferases aims to improve our understanding of
the biological impact of RNA methylation in general via chemical knock-out in cellular
models. Therefore, the requirements for ABPs can be less strict in terms of drug metabolism
and pharmacokinetics than for actual drug candidates while still requiring high affinity
and selectivity.

1.2. Ultra-Large Library Docking

With the advance of commercial, combinatorial make-on-demand chemical spaces,
structure-based virtual screening faces new opportunities and challenges. With the knowl-
edge of robust reactions and available building blocks, new molecular entities become
available for ultra-large library (also called chemical spaces) virtual screenings while being
likely to be synthetically accessible at the same time. These chemical spaces hold the
promise that included novel chemotypes can bind to so-far-undrugged targets. Current
make-on-demand spaces are far beyond the size of in-stock compounds. While the curated
ZINC20 library [32] covers around 8.1 million drug-like [33] in-stock molecules (molecular
weight ≤ 500 g/mol, logP ≤ 5, reactivity: anodyne) from a plethora of different supplier
catalogs, current commercial chemical spaces overshadow these by three (e.g., WuXi Lab-
Networks’s GalaXi, 8 × 109 molecules) to almost four orders of magnitude (e.g., Enamine’s
REALspace, 3.4 × 1010, values from December 2022) [34,35]. While exhaustive molecu-
lar docking screens (in the following referred to as ‘brute-force docking’) can be feasible
up to many millions to a few billion molecules, they demonstrated impressive hit rates
and identified potent binders previously (Table 1) [36–39], increasing sizes of chemical
spaces will make this approach (computationally) too expensive if not impossible [40].
This especially holds true if proprietary chemical spaces are considered, such as Merck
MASSIV 2018 (1020 molecules) or GSK XXL 2020 (1026 molecules) [34,41]. Subsequently,
even though ‘bigger is better’ [42] is usually valid for virtual screening libraries, new strate-
gies for structure-based screenings are required to focus libraries prior to docking [43,44].
One approach is the docking of a diverse subset. However, even though this speeds up
the docking time, it cannot be known a priori if the diverse cluster representatives are
suitable for the target of interest. Eventually, complete clusters of likely binders are dis-
carded if the cluster representative does not match a required interaction pattern [36]. This
likewise accounts for random subsets, but in combination with a machine-learning (ML)
model to quickly estimate docking scores, this strategy yielded some promising results
for speeding up the process while maintaining high hit rates recently [40]. Alternatively,
taking advantage of target knowledge can be a promising route to design its own focused
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chemical spaces, as demonstrated in an exclusive series of tetrahydropyridines as potential
serotonin (5-hydroxytryptamine, 5-HT) receptor ligands [45]. Another approach is based
on fragment-based drug design (FBDD), either physically by generating a chemical space
upon crystallographically known fragment substructures and corresponding building
blocks [46,47] or starting with pure fragment docking [48,49]. While both strategies rely on
the placement of initial virtual ‘synthons’, a crystallographic fragment screening as a first
step can support the docking process using the experimental binding mode for template
docking, whereas the latter is defined by general limitations of fragment docking. The
limitation that probably requires the most attention in this regard is that scoring functions
might be unable to distinguish the correct binding mode from incorrect ones due to the
intrinsically low number of interactions of fragments requiring proper additional re-scoring
methods or pharmacophore constraints [47,49–51].

While for the described virtual screening strategies, several success stories are reported
with both high hit rates and very potent ligands (Table 1), those virtual screenings were
usually performed for very well-described targets such as kinases and G-protein-coupled
receptors (GPCRs) with several crystal structures and known ligands available. However,
virtual chemical spaces hold the promise to contain novel chemotypes not (yet) present
in conventional in-stock libraries as suitable ligands for so-far-undrugged and considered
undruggable or hard-to-drug targets. In our study, we applied the virtual screening
strategy on targets of interest DNMT2 and NSUN6 with only a few known ligands, a
small number of crystal structures, and rather low predicted druggability, where hit rates
tend to be lower (Table 1) [52–55]. Reported ligands for DNMT2 and NSUN6 are either
close homologs of the native cofactor SAM with poor physicochemical properties, low
drug-likeness, and limited selectivity over other SAM-dependent enzymes [25] or require
incorporation into the substrate tRNA-like 5-azacytidine [23]. Likewise, the drug-candidate
inhibitor of the structurally closely related DNMT1, GSK3685032, was recently shown to
bind primarily to the DNA rather than to the enzyme [56]. This molecule was optimized
from only one hit series of a 1.8 million compound high-throughput screening (HTS; most
other initial hits were not followed up due to inactivity after purification or non-specific
binding). This is a further hint for the low druggability of DNMTs, which eventually
requires novel chemotypes to identify new ligands. As another consequence of the low
number of known ligands for the m5C-RNA methyltransferases of interest, also model
validation is considered best practice [37], which includes binder vs. non-binder/decoy
discrimination offered limited possibilities.

Table 1. Recent examples of (ultra-)large library structure-based virtual screenings and results from
this work.

Target Reported
Ligands a PDB-Entries b PDB-ID Predicted

Druggability c VS Strategy VS Library
Size

Synthesis
Success Rate Hit Rate

Most Potent Hit
(→ Improved Lead

Compound)
References

D4 4457 96 5WIU 0.74 Brute force 138 million 549/589 (93%) 58/238 (24%) EC50 = 180 pM [36]
AmpC 62,046 123 1L2S 0.40 Brute force 99 million 44/51 (86%) 5/44 (11%) KI = 1.3 µM [36]
MT1 1334 (MT1A) 12 6ME3 0.67 Brute force 150 million 38/40 (95%) 15/38 (39%) EC50 = 470 pM [38]

KEAP1 704 (KEAP1/
NRF2) 125 5FNQ/

4IFL 0.61/0.47 Brute force 1.3 billion n.a. 69/590 (12%) KD = 114 nM [39]

5-HT2A
5-HT2A: 7568
5-HT2B: 3616

5-HT2A: 12
5-HT2B: 97

homology

model d

5TVN
0.67 Brute force,

focused library

75 million
(tetrahydro-

pyridins)
n.a. 4/17 (24%) KI = 0.67 µM

(→ EC50 = 41 nM) [45]

PKA 2500 343 5N3J 0.55
X-ray fragment

screening,
synthon-based

208 thousand
fragments as

synthons,
2.7 billion

93/106 (88%) 30/75 e (40%) KI = 0.74 µM [47]

CB1 10,090 4 5ZTY 0.96 Synthon-based

<0.1% of
11 billion,

600 thousand
minimal
synthons,

1.5 million

60/80 (75%) 21/60 (35%) KI = 0.28 µM (→
KI = 0.9 nM) [48]

ROCK1 3552 26 2ETR 0.53 Synthon-based

<0.1% of
11 billion,

600 thousand
minimal
synthons,
1 million

superstructures

21/24 (88%) 6/21 (29%) IC50 = 6.3 nM [48]

ROCK1 3552 26 2ETR 0.53 Synthon-based

137 thousand
fragment-sized
building blocks,

5.2 million
superstructures

n.a. 27/69 (39%) KI = 38 nM [49]
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Table 1. Cont.

Target Reported
Ligands a PDB-Entries b PDB-ID Predicted

Druggability c VS Strategy VS Library
Size

Synthesis
Success Rate Hit Rate

Most Potent Hit
(→ Improved Lead

Compound)
References

SARS-CoV-2
Mpro 201 (1765) [57] 774 6W63/

5RF7 0.15/0.12
Brute force;

focused
(fragment)

235 million;
2 million n.a.

19/100 (19%);
21/93 (23%) f

KD = 23 µM;
KD = 7.2 µM [52]

SARS-CoV-2
Mpro 201 (1765) [57] 774 4MDS 0.23 Brute force.

deep learning 1.3 billion 0/0
n.a.

0/0
1/32 (3%)

0
IC50 = 0.8 mM g [53–55]

DNMT2 1 (16) h 1 1G55 0.44 Filtering, brute
force

720 million
filtered to
3.4 million

18/21 (86%) 5/18 (28%) KD,app = 37 µM This work

NSUN6 1 (5) h 4 5WWR 0.33 Filtering,
diversity subset

21.4 million
filtered to

400 thousand,
analog search in

14 billion

12/17 (71%) 5/12 (42%) KD,app = 12 µM This work

a According to ChEMBL (https://www.ebi.ac.uk/chembl/, accessed on 15 December 2022). b With 95% sequence
identity to the entry used for docking (https://www.rcsb.org/, accessed on 15 December 2022). c Calculated
with the DogSiteScorer [58,59] implementation of SeeSAR-12.0.1 for the PDB-ID used in the reported VS. Values
between 0 and 1 with higher numbers indicating higher druggability. d The used template structure 5-HT2B
receptor (PDB-ID 5TVN) shares 67% sequence identity and 80% sequence similarity with the 5-HT2A receptor.
e 18 of 93 compounds were not sufficiently soluble for testing. f Hit rate in SPR binding assay. Mpro was inhibited
by 3 and 5 compounds, respectively (hit rates of 3% and 5%). g In the original publication [55], no in vitro
validation was performed. Re-scoring and testing was conducted by Rossetti et al. [53]. h Recently, 16 SAM-analog
inhibitors of DNMT2 and 5 of NSUN6 that are not yet available in ChEMBL were discovered [25]. n.a.: Information
on synthesis success rates are not available; D4, dopamine receptor type 4; AmpC, β-lactamase; MT1, melatonin
receptor type 1; KEAP1, Kelch-like ECH-associated protein 1; 5-HT2A, serotonin receptor type 2A; PKA, protein
kinase A; CB1, cannabinoid receptor type 1; SARS-CoV-2 Mpro, severe acute respiratory syndrome coronavirus-2
main protease.

2. Results
2.1. Virtual Screening

In order to identify new chemotypes as DNMT2 and NSUN6 inhibitors distinct from
the native ligand SAM, virtual screenings of the Enamine Ltd. readily accessible (REAL)
chemical space were performed. For the DNMT2 virtual screening (Figure 2A), REAL Space
consisted of 719,205,874 compounds, which was too large for a brute-force docking ap-
proach and required rather strict physicochemical property filtering (Table S1). Besides the
removal of reactive or pan-assay interference compounds (PAINs) [60,61] and consideration
of typical drug-like criteria according to the Lipinski rule of five (RO5) [33] and Oprea lead-
likeness [62], additional truncation was performed based on the native ligand SAM, which
is moderately large and very polar. By the application of upper and lower limits on molec-
ular weight, rotatable bonds, charge, ring number and size, polar surface area (PSA), and
chiral centers to reduce chemical complexity for future optimization, the screening library
was reduced to a computationally feasible number. The remaining 3,447,976 molecules
were docked against the DNMT2-SAH complex structure (PDB-ID 1G55) [63]. Among the
300 best-scoring compounds, which were visually inspected, several close analogs were
observed. Subsequently, the top 20,000 molecules were also clustered prior to the final
selection of 21 structurally diverse ligands from the top 300 clusters for testing (compounds
1.1–1.21, Table S2). A total of 18 of these 21 were successfully synthesized by Enamine Ltd.
(Kyiv, Ukraine) with the company’s robust internal procedures.

Differently from the DNMT2 virtual screening procedure (Figure 2B), instead of
starting from the whole REAL Space (at the time over 14 billion molecules), the subset
REAL diversity (Tanimoto similarity between compounds of less than 0.65 using the
Morgan 2, 512 bit fingerprint according to Enamine Ltd.) of 21,441,180 compounds was
subjected to physicochemical filtering (Table S1), resulting in only 400,306 molecules for
docking against the NSUN6-SFG complex structure (PDB-ID 5WWR, tRNA present in
the crystal structure was removed prior to docking) [64]. After visual inspection of the
top 300 hits by docking score, for 15 selected compounds, 99 analogs per molecule were
searched by structural similarity in the complete REAL Space and subsequently docked.
Notably, only four analog series molecules with better scores compared to the initial hits
were found. This and the overall lower faction of very high-scoring molecules hinted to the
previously described hypothesis [36] that while hits are among the best of their respective

https://www.ebi.ac.uk/chembl/
https://www.rcsb.org/
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clusters, other promising scaffolds with a worse scoring representative got lost during this
process. The final hit selection consisted of nine initial hits from the diversity subset and
four initial hit + analog pairs. Syntheses by Enamine Ltd. were successful for 12 of these
17 molecules (compounds 2.1–2.17, Table S3).
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Figure 2. Virtual screening workflow for DNMT2 performing first molecular docking and then
clustering (A), and NSUN6 starting from a diversity subset (first clustering) followed by docking
and analog search in the whole chemical space (indicated by the green arrow) prior hit selection and
testing (B).

Even though the two virtual screenings were performed independently and separated
in time, the hit selection criteria for both DNMT2 and NSUN6 were similarly based on the
docking score as a first filtering step and the resembling of the crystallographic ligands’
interactions with the RNA methyltransferases. Special emphasis was put on molecules to
not have peculiar internal torsion strain and being deeply burrowed in the SAM amino acid-
moiety sub-pocket to result in H-bond interactions with the Gly-15 and Val-13 backbone
as well as the Ser-376 sidechain in DNMT2 (Figure 3A) or Gly-245, Lys-248 backbone, and
Ser-223 and additionally Lys-248 sidechain in NSUN6, respectively (Figure 3B). Followed
by an eventually rigidified cyclic-aliphatic or aromatic linker that was allowed to enter the
binding site of Cyt-38 in DNMT2 or Cyt-72 in NSUN6 (docking was performed without
the tRNA present in the crystal structure), a mimic of the ribose vicinal diol interaction
with Asp-34 or Asp-266, respectively, was prioritized. Lastly, substructures resembling
the interactions of the adenine moiety of SAH and SFG, namely an H-bond donor to Glu-
58/Asp-293, and H-bond acceptors for the backbone of Ile-57/Gly-294 and Val-35/Lys-267
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(enumeration DNMT2/NSUN6) incorporated in or attached to an aromatic ring system,
were favored.
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Figure 3. Binding modes of SAH-bound to DNMT2 (A) (PDB-ID 1G55) and SFG bound to
NSUN6 (B) (PDB-ID 5WWR). Enzymes are shown with white surface and carbon atoms, ligands
with green carbon atoms. Polar contacts are shown as yellow dashed lines, water molecules as red
spheres. For clear view only residues forming polar contacts with the ligands are shown as lines and
labeled as well as C-72 (light blue carbon atoms) and the catalytic Cys-residues 326 and 373 in the
NSUN6-tRNA-SFG complex (B).

2.2. Binding Assay and Structure–Affinity Relationship

Due to previous library filtering (Table S1), none of the obtained compounds was
flagged as PAINs [61], potential aggregators, or reactive species. All virtual screening
hits were subjected to a microscale thermophoresis (MST) pre-screening at three different
concentrations of 300, 100, and 33.3 µM (Tables S2 and S3). MST proved to be especially
suitable as a primary binding assay due to its high sensitivity and robustness that allowed
the application for very weak binders or even fragments [65] and was demonstrated to
be highly accurate for DNMT2 and NSUN6 ligand identification, previously [25,66]. For
the literature known reference ligand SAH, KD values of 11.8 µM and 9.1 µM for DNMT2
and NSUN6, respectively, were determined (Table 2). Virtual screening hits showing a
dose-dependent shift of thermophoresis (Tables S2 and S3) were measured at additional
concentrations to obtain KD values. However, due to limited solubility, this was not always
achieved when the upper plateau of MST dose–response curves could not be reached.
Subsequently, apparent KD values (KD,app) are presented when possible as a lower limit
(indicated as KD,app ≥ fitted value).

From the DNMT2 virtual screening, five hits could be identified as binders via MST
(Table 2). The strongest binder of DNMT2 was 1.4 with KD,app = 37 µM, while for 1.14
a KD,app ≥ 67 µM could be determined. 1.6, 1.17, and 1.18 showed a reproducible, dose-
dependent shift of thermophoresis in the dose–response curve and, thus, also binding.
However, a KD(app) value could not be determined clearly and is estimated to be in the high
micromolar to millimolar range.

MST confirmed five ligands out of the NSUN6 virtual screening as well. KD,app values
of 16.4 µM, 42 µM, ≥72 µM, ≥83 µM and ≥369 µM could be determined for 2.4, 2.8, 2.5,
2.2, and 2.1, respectively (Table 3).
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Table 2. MST results of SAH and newly identified DNMT2-ligands derived from the DNMT2 virtual
screening. Measured normalized fluorescence values (Fnorm [‰]) are mean with standard error of at
least duplicate determination. Apparent KD values (KD,app) are indicated as a lower limit (via the
≥ symbol) if the upper plateau of the dose–response curve was not completely reached. In case a
dose-dependent shift in thermophoresis was observed, which indicates binding, but the curve could
not be fitted with sufficient accuracy (1.6, 1.17, 1.18), KD,app was not determined (n.d.). Molecules are
depicted in their docked stereoisomers, protomers, and tautomers; however, for 1.6, 1.17, and 1.18,
racemic mixtures were obtained for testing. All molecules are drawn in the same orientation as SAH,
with left side: amino acid mimetic, central part: ribose replacement, right side: adenine mimetic.

Compound
MST Dose–Response Curves

DNMT2 (Primary Target) NSUN6 (‘Off-Target’/Selectivity)
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Table 2. Cont.

Compound
MST Dose–Response Curves

DNMT2 (Primary Target) NSUN6 (‘Off-Target’/Selectivity)
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For DNMT2 hits (Table 2), regularly observed features in predicted binding modes
were mimics of the H-bond acceptor profile of SAM’s methionine amino acid carboxy-
late sub-structure. While not necessarily being charged, for 1.4 (Figure 4A), instead of
the docked and depicted protomer, a phenolate anion also seems reasonable due to the
vinylogous acid with a predicted pKa of 7.04 (calculated with MOE). More often, H-bond
acceptors were found in a heterocycle-like triazine (1.17 and 1.18) or oxadiazole (1.6). A
mimic of the native ligand’s basic, primary amine, however, was not found in the virtual
screening hits. Connected by different types of linkers, the ribose hydroxy groups are
replaced by either a urea (1.4, Figure 4A), an amide (1.6, 1.14), or a basic nitrogen (1.17,
1.18, Figure 4B) to interact with Asp-34. Lastly, the natural ligand’s adenine moiety and its
H-bond interaction profile with Glu-58 and Ile-57 (Figure 3A) can be mimicked by an analog
4-amino quinazoline (1.14), an amide either attached to (1.6) or part of (1.4, Figure 4A) a
ring system, or by a 3,5-dimethyl-1H-pyrazole (1.17, 1.18, Figure 4B).
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Table 3. MST results of newly identified NSUN6-ligands derived from the NSUN6 virtual screening.
Measured normalized fluorescence values (Fnorm [‰]) are mean with standard error of at least
duplicate determination. Apparent KD values (KD,app) are indicated as a lower limit (via the ≥
symbol) if the upper plateau of the dose–response curve was not completely reached. In case a
dose-dependent shift in thermophoresis was observed, which indicates binding, but the curve could
not be fitted with sufficient accuracy, KD,app was not determined (n.d.). Molecules are depicted in
their docked stereoisomers, protomers, and tautomers; however, for 2.1 and 2.4, racemic mixtures
were obtained for testing. All molecules are drawn in the same orientation as SAH, with left side:
amino acid mimetic, central part: ribose replacement, right side: adenine mimetic.

Compound
MST Results

NSUN6 (Primary Target) DNMT2 (‘Off-Target’/Selectivity)
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Figure 4. Predicted binding modes of 1.4 in complex with DNMT2 (A), 1.18 in complex with
DNMT2 (B), 2.5 in complex with NSUN6 (C), and 2.8 in complex with NSUN6 (D). Docking poses are
depicted with green carbon atoms, enzymes with white carbon atoms, and transparent surfaces. For a
clear view, only residues forming polar interactions (yellow dashed lines) are shown and labeled. For
orientation, the crystallographic reference ligands SAH (DNMT2, PDB-ID 1G55) and SFG (NSUN6,
PDB-ID 5WWR) are shown with magenta carbon atoms. In NSUN6, C-72 is depicted with light blue
carbon atoms for orientation, but tRNA was removed during molecular docking.
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Differently from the DNMT2 hits where only mimetics of the acid were found, binders
of NSUN6 feature the complete amino acid sub-structure (2.2, 2.5, Figure 4C, Table 3) or
a basic nitrogen alone (2.1, 2.4), or even an additional positively charged group as in 2.8,
which interacts with Asp 240 (Figure 4D). In 2.2, 2.5, and 2.8, a meta-substituted benzene
linker was found as a common feature attached to an amide, which acts as an H-bond
donor for Asp-266 replacing the interaction of one of the ribose hydroxyls according to the
docking predictions (Figure 4C,D). As the adenine replacement, a variety of different one-
or two-ring systems was found.

One intention of the virtual screening was the identification of novel chemotypes
distinct from the native ligand SAM and eventually improved selectivity for the target
RNA methyltransferase. Even though there are some differences in sequence identity and
similarity within the SAM-binding sites (17% identity, 31% similarity), interaction profiles
are highly conserved between DNMT2 and NSUN6 (Figure 3A,B). Testing of hits from the
DNMT2 virtual screening against NSUN6 and vice versa, however, showed selectivity for
1.6, 1.17, 1.18 for DNMT2 and 2.4, 2.5, and 2.8 for NSUN6 as intended (Tables 2 and 3, right
column). Molecules were defined to be selective when no MST shift was observed for the
other (‘off-target’) enzyme at a ligand concentration of up to 300 µM. Notably, non-selective
NSUN6 ligands 2.1 and 2.2 (Table 3) contain an amino acid or only the basic moiety, a
feature not found in the DNMT2 virtual screening. This indicates that the presence of the
basic nitrogen is underestimated in the DNMT2 docking, which was observed previously
when for SAM-analog DNMT2 inhibitors, a drastic loss of potency was observed upon
removal of the positively charged nitrogen from a SAH-scaffold [25]. It was hypothesized
that this basic amine is involved in an H-bond network with several water molecules not
captured by the docking protocol. Further, 1.4 (DNMT2 KD,app = 37 µM) turned out to be
the strongest binder of NSUN6 (KD,app = 12 µM) even though derived from the DNMT2-
and not the NSUN6-virtual screening. Likewise, 1.14 was not selective over NSUN6 with
a KD,app ≥ 116 µM (DNMT2 KD,app ≥ 67 µM), and for 2.2 from the NSUN6 docking, a
DNMT2 KD,app ≥ 145 µM was determined.

Lastly, compounds 1.4, 1.6, 1.14, 1.17, and 1.18 were subjected to a DNMT2 tritium
incorporation activity assay at a concentration of 100 µM. However, the low binding affinity
in the mid-micromolar to presumably millimolar range did not effectively translate into
significant enzyme inhibition (Figure S1). Based on crystal structure analysis, there is no
evidence for an allosteric druggable binding site. Eventually, the presence of substrate
tRNA might induce conformational changes in the catalytic loop [67] of the enzyme-altering
ligand binding strength and behavior compared to the tRNA-free MST binding assay.
Another hypothesis, even though rather speculative and to be taken with caution, is that
the free energy of ligand binding is spent to ‘flip-out’ C-38 of tRNAAsp for methylation [68],
forming a more stable ternary DNMT2-tRNA-inhibitor complex compared to the DNMT2-
inhibitor complex alone. However, the required structural, thermodynamic, and, eventually,
kinetic characterization of these complex formations is beyond the scope of this manuscript
and likely requires more potent ligands for in-depth elucidation.

3. Discussion

The advance of commercial chemical spaces allows virtual screenings of a novel yet
synthetically accessible chemical matter for targets of interest. Applying two different
strategies of chemical space docking screens led to the identification of novel binders with
KD,app values down to 12 µM for RNA methyltransferases that have low predicted drugga-
bility, DNMT2 and NSUN6 (Tables 2 and 3). While for both targets, the virtual screening
strategy included strict physicochemical property filtering (Table S1) based on known
ligands’ parameters to reduce the library size to a computationally feasible number of
molecules, different methods of diversification were applied (Figure 2). While for DNMT2,
a larger library of 3.4 million molecules was docked and clustered afterward (‘first dock,
then cluster’), for NSUN6, a diversity subset was used as a starting point for filtering and
docking followed by an analog search (‘first cluster, then dock’). Interestingly, hit numbers



Int. J. Mol. Sci. 2023, 24, 6109 12 of 18

were similar for both strategies, with 5 of 18 for DNMT2 and 5 of 12 for NSUN6, respec-
tively, even though it is hypothesized that diversity subsets might lose complete clusters
of potential ligands if the cluster representatives do not resemble favorable interaction
profiles [36]. This was indirectly hinted during the hit selection process when initial virtual
screening hits from the REAL diversity subset for NSUN6 usually showed lower scores
than their analogs from REAL Space (Table S3). However, handling the increasing size
of commercial (and proprietary) [41] chemical spaces will require new strategies to focus
libraries prior to computationally more expensive molecular docking screens [43–45] or
improvements in fragment docking and scoring [50,51] to enhance synthon-based chemical
space design within the binding site [47–49]. In this study, both DNMT2 and NSUN6
binders showed affinities in the mid-micromolar to presumably millimolar range in an
MST binding assay. 1.4 and 1.14 were the strongest identified binders of DNMT2 with
KD,app = 37 µM and ≥67 µM, respectively. For NSUN6, the highest affinity was found
for 2.4 (KD,app = 16.4 µM) and 2.8 (KD,app = 42 µM). However, selectivity between the two
methyltransferases was not always achieved, as seen, for example, in compound 1.4, which
originates from the DNMT2 virtual screening but is also the strongest binder of NSUN6
with a KD,app of 12 µM. Hence, the identified compounds can be considered initial hits
as starting points for further hit-to-lead optimization. While no analogs of these novel
chemotypes are available in commercial in-stock libraries, their origin from REAL Space
still allows fast and easy derivatization either by the combination of the available build-
ing blocks or a direct SAR-by-catalog approach to improving the inhibitory potency and
selectivity for the development of DNMT2 and NSUN6 ABPs in the future.

4. Materials and Methods
4.1. Virtual Screening

The virtual, combinatoric synthesis molecule libraries REAL Space and REAL diver-
sity were obtained from the supplier’s homepage (Enamine Ltd., https://enamine.net/
compound-collections/real-compounds/ accessed on 14 January 2019 for REAL Space
and 10 August 2020 for REAL diversity) in SMILES format. Physicochemical property-
filters (Table S1) to reduce library sizes were applied with MOE (Molecular Operating
Environment (MOE), 2018.0101 Chemical Computing Group ULC, 1010 Sherbooke St. West,
Suite #910, Montreal, QC, Canada, H3A 2R7, 2018.) and FILTER (FILTER part of OMEGA
3.1.0.3: OpenEye Scientific Software, Santa Fe, NM, USA, http://www.eyesopen.com, 2018).
Energetically favorable 3D conformers for docking were generated using OMEGA [69].

For DNMT2 virtual screening, the DNMT2-SAH complex structure (PDB-ID 1G55) [63]
and the FlexX-3.0 [70] (BiosolveIT GmbH. FlexX v.3.0 Sankt Augustin, Germany, 2018) as
the docking engine were used. The docking setup was validated by re-docking of the
crystallographic reference ligand SAH (FlexX-score: −38.08 kJ/mol, RMSD: 0.997 Å). The
filtered 3.45 million compound library derived from REAL Space was docked under these
conditions. Top-scoring molecules of rank 1–300 were visually inspected for hit selection.
Additionally, the top 20,000 molecules were clustered using MACCS fingerprints and the
Tanimoto coefficient similarity metric (max. 0.65) within MOE. The top 300 clusters were
also considered during hit selection for testing (Table S2).

For docking setup validation of the NSUN6 virtual screening with FlexX-4.1 (Bio-
solveIT GmbH. FlexX v.4.1 Sankt Augustin, Germany, 2019), re- and cross-docking of
SAM and SFG from PDB-IDs 5WWR and 5WWS were performed for chains A and B in
presence and absence of the tRNA present in the crystal structure, respectively [64]. Addi-
tionally, scoring was evaluated by docking SAM, SFG, and SAH and 150 decoys derived
from the database of useful decoys-enhanced (DUD-E) [71] with similar physicochemical
properties but distinct structural features. Even though FlexX is suitable for RNA-ligand
docking [72], a docking setup without the tRNA present in the crystal structure was selected
to allow potential ligands to not only bind to the SAM-, but also the Cyt-72 sub-pocket as
demonstrated previously [25]. Additional interactions within this site hold the potential of
improved binding affinity and selectivity while also interfering with tRNA binding. The
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NSUN6 docking screen was subsequently performed with PDB-ID 5WWR, chain B, which
showed reasonable posing and scoring for SFG re-docking (FlexX-score: −43.63 kJ/mol,
rank: 2/153, RMSD: 1.09 Å), SAM cross-docking (FlexX-score: −46.32 kJ/mol, rank: 1/153,
RMSD: 0.93 Å) and SAH docking (FlexX-score: −36.71 kJ/mol, rank: 18/153). Docking
of the filtered REAL diversity library of around 400,000 molecules was performed under
the same conditions. After visual inspection of the 300 top-scoring molecules, analogs
of 15 molecules were searched in the complete REAL Space (at the time over 14 billion
molecules) using infiniSee-1.2 [73,74] (BiosolveIT GmbH. infiniSee v.1.2 Sankt Augustin,
Germany, 2019) and 99 analogs for each of the 15 initial molecules were also docked prior
final compound selection for testing.

Molecules were ordered from Enamine Ltd. Custom synthesis based on the company’s
internal procedures was successful for 18 out of 21 compounds from the DNMT2 virtual
screening (86% synthesis success rate) and 12 of 17 for the NSUN6 virtual screening (71%
synthesis success rate), respectively. Identity and purity > 90% of obtained compounds
were guaranteed by the supplier and confirmed for MST hits using in-house LC/ESI-MS
analysis (Tables S2 and S3). HPLC/ESI-MS analysis was performed using an Agilent
1100 series HPLC system with an Agilent Poroshell 120 EC-C18 (150 × 2.10 mm) or an
Agilent Zorbax SB-Aq (4.6 × 150 mm) column (both at 40 ◦C oven temperature) with
MeCN/H2O + 0.1% HCOOH = 10:90→ 100:0 as a mobile phase at a flow rate of 0.7 mL/min.
Samples were applied using 5 µL injection with quantitation by AUC at 254 nm or 210 nm.
Electrospray ionization (ESI) mass spectra were recorded on an Agilent 1100 series LC/MSD
Ion trap spectrometer in the positive ion mode.

Figures are made with PyMOL (The PyMOL Molecular Graphics System, Version
2.4.0 Schrödinger, LLC.). The background of the TOC figure was generated with craiyon
(https://www.craiyon.com/ accessed on 15 December 2022).

4.2. Protein Expression and Purification

The plasmid containing genes for DNMT2 was kindly provided by Albert Jeltsch
(University of Stuttgart, Stuttgart, Germany). Expression and purification were performed
as described previously with minor adaptions [25]. In brief, the concentration of sodium
chloride in the buffers used for immobilized metal affinity chromatography was increased
to 500 mM to remove more unspecific bound impurities from DNMT2; therefore, ion-
exchange chromatography was skipped. A plasmid for the expression of NSUN6 was
designed and synthesized as described previously [25] (made available via Addgene,
ID: #188060, https://www.addgene.org). Expression and purification were performed
according to the literature. Plasmids coding for each enzyme were separately transformed
into E. coli Rosetta2 cells. These were grown in LB medium at 30 ◦C overnight. The next
day, 1 L TB medium was inoculated with 20 mL overnight culture. Cells were grown at
37 ◦C until an OD600 of ~0.8 was reached, then the temperature was reduced to 20 ◦C for
DNMT2 and 16 ◦C for NSUN6, respectively. Overexpression of the proteins was induced
by adding isopropyl-β-D-thiogalactopyranoside (IPTG) to a final concentration of 500 µM.
Overexpression was maintained overnight. Cells were harvested by centrifugation. After
cell lysis by sonication, cell debris was removed by centrifugation, and the supernatant
was objected to immobilized metal affinity chromatography (Ni2+-NTA, HisTrap HP, 5 mL)
for further purification a size-exclusion chromatography (Superdex 16/600 75 PG) was
performed using an ÄKTA Start (GE Healthcare, Chicago, IL, USA). Glycerol concentrations
were adjusted to allow liquid storage of proteins at −20 ◦C until further use.

4.3. Microscale Thermophoresis

Since the constructs of DNMT2 and NSUN6 contain hexa-histidine tags, proteins were
labeled using a Monolith His-Tag Labeling Kit RED-Tris-NTA 2nd generation according to
the manufacturer’s instructions. This labeling strategy was chosen since it should prevent
any interference with the actual binding site of the proteins. Labeled protein was diluted to
a concentration of 20 nM into MST buffer (50 mM Hepes, pH 7.5, 150 mM NaCl, 10 mM
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MgCl2, 1 mM DTT, 0.05% polysorbate-20, 0.1% PEG-8000). All compounds were prepared
as stocks dissolved in DMSO to a concentration of 50 mM. For all compounds, dilutions in
MST buffer to concentrations of 600 µM, 200 µM, and 66.7 µM, respectively, were prepared.
Labeled protein was then mixed 1:1 with the dilution series of each compound (final
concentrations: 10 nM protein, ligands 300, 100, and 33.3 µM, respectively) and incubated
for 5 min at room temperature. All measurements were performed on a Monolith Pico
instrument (NanoTemper Technologies, Muenchen, Germany) with red light. To induce
thermophoresis, medium MST power was selected for DNMT2 and high MST power for
NSUN6. All experiments were performed in quadruplicates. For all compounds that
showed a concentration-dependent thermophoresis behavior, a half-logarithmic dilution
series was prepared to cover a range from 600 µM to 600 nM. Obtained dilutions were
then mixed 1:1 with labeled protein (20 nM) and incubated for 5 min at room temperature
prior to measurement. Experiments were performed in duplicates. All data received were
analyzed using the MO. Affinity Analysis software version 2.3 (NanoTemper Technologies,
Muenchen, Germany).

4.4. Tritium Incorporation Assay

DNMT2 activity assays were carried out in 20 µL containing 100 mM Tris-HCl, pH 8,
100 mM NH4OAc, 0.1 mM EDTA, 10 mM MgCl2, and 10 mM DTT. The amount of DMSO in
the reaction mixture was adjusted to 5%, while tRNAAsp was added to a final concentration
of 5 µM after heating it to 75 ◦C for 5 min and slowly cooling it to room temperature. To this,
SAM was added as a mixture of cold SAM (New England Biolabs GmbH, Ipswich, MA,
USA) and 3H-SAM (Hartmann Analytics, Braunschweig, Germany) to final concentrations
of 0.9 µM and 0.025 µCi µL−1. DNMT2 was added last to a concentration of 250 nM, and
enzymatic reactions were run at 37 ◦C. Aliquots of 8 µL were taken out of the reaction
mixture at 0 and 20 min, spotted on Whatman® glass microfiber filters (GF/C, 25 mm),
and transferred into an ice-cold trichloroacetic acid (TCA) solution (5%) where they were
kept for at least 15 min. Subsequently, two washing steps with the TCA solution (5%) for
20 and 10 min and one with EtOH for 10 min were carried out at room temperature. The
filters were dried and placed into scintillation vials. A total of 3 mL of Gold MV liquid
scintillation cocktail (PerkinElmer, Waltham, MA, USA) was added before scintillation
was measured for 1 min on a scintillation counter (TriCarb® Liquid Scintillation Analyzer
4810TR, PerkinElmer, Waltham, MA, USA). For the inhibition assay, compounds were
present at a final concentration of 100 µM during the enzymatic reaction, and inhibition in
percent was calculated by referencing the scintillation signal to a positive control without
compound. All experiments were carried out in biological triplicates, while errors refer to
the obtained standard deviation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms24076109/s1. References [33,61,62,75] are cited in
Supplementary Materials.
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