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Abstract

My work concerns two different systems of equations used in the mathematical
modeling of semiconductors and plasmas: the Euler-Poisson system and the quan-
tum drift-diffusion system. The first is given by the Euler equations for the conserva-
tion of mass and momentum, with a Poisson equation for the electrostatic potential.
The second one takes into account the physical effects due to the smallness of the
devices (quantum effects). It is a simple extension of the classical drift-diffusion
model which consists of two continuity equations for the charge densities, with a
Poisson equation for the electrostatic potential.

Using an asymptotic expansion method, we study (in the steady-state case for a
potential flow) the limit to zero of the three physical parameters which arise in the
Euler-Poisson system: the electron mass, the relaxation time and the Debye length.
For each limit, we prove the existence and uniqueness of profiles to the asymptotic
expansion and some error estimates. For a vanishing electron mass or a vanishing
relaxation time, this method gives us a new approach in the convergence of the
Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye
length (also called quasineutral limit), we obtain a new approach in the existence
of solutions when boundary layers can appear (i.e. when no compatibility condition
is assumed). Moreover, using an iterative method, and a finite volume scheme or a
penalized mixed finite volume scheme, we numerically show the smallness condition
on the electron mass needed in the existence of solutions to the system, condition
which has already been shown in the literature.

In the quantum drift-diffusion model for the transient bipolar case in one-space
dimension, we show, by using a time discretization and energy estimates, the ex-
istence of solutions (for a general doping profile). We also prove rigorously the
quasineutral limit (for a vanishing doping profile). Finally, using a new time dis-
cretization and an algorithmic construction of entropies, we prove some regularity
properties for the solutions of the equation obtained in the quasineutral limit (for
a vanishing pressure). This new regularity permits us to prove the positivity of
solutions to this equation for at least times large enough.





Résumé

Mes travaux concernent deux systèmes d’équations différents utilisés dans la
modélisation mathématique des semi-conducteurs et des plasmas : le système d’Euler-
Poisson, et, le système de dérive-diffusion quantique. Le premier est constitué des
équations d’Euler pour la conservation de la masse et de la quantité de mouvement
et de l’équation de Poisson pour le potentiel électrostatique. Le second prend en
compte les effets physiques dus à la petitesse des appareils (effets quantiques). Il
s’agit d’une extension simple du modèle de dérive-diffusion classique qui est con-
stitué de deux équations de continuité pour les densités de charge et de l’équation
de Poisson pour le potentiel électrostatique.

En utilisant une technique de développement asymptotique, nous étudions les
limites en zéro, dans le cas stationnaire pour un flot potentiel, des trois paramètres
physiques intervenants dans le système d’Euler-Poisson : la masse d’électron, le
temps de relaxation et la longueur de Debye. Pour chacune de ces limites, nous
démontrons l’existence et l’unicité des profils ainsi que des estimations d’erreur.
Pour les limites de masse d’électron et du temps de relaxation, cette méthode nous
donne une nouvelle approche pour la convergence du système d’Euler-Poisson vers
les équations d’Euler incompressibles. Pour la limite de la longueur de Debye, aussi
appelée limite de quasi-neutralité, nous obtenons ainsi une nouvelle approche dans
l’existence de solution du système lorsque des couches limites peuvent apparâıtre.
De plus, en utilisant une méthode itérative, et des schémas volumes finis classiques
et volumes finis mixtes pénalisés, nous pouvons faire apparâıtre numériquement la
condition de petitesse sur la masse d’électron nécessaire à l’existence de solution de
ce sytème, et qui a déjà été démontrée dans la littérature.

En utilisant une semi-discrétisation en temps et des estimations d’énergie, nous
démontrons l’existence de solution (pour un profil de dopage général), ainsi que la
limite de quasi-neutralité (pour un profil de dopage nul), dans le modèle évolutif
de dérive-diffusion quantique pour le cas bipolaire uni-dimensionnel. Enfin, en
utilisant une semi-discrétisation différente et une méthode algorithmique de con-
struction d’entropie, nous montrons des propriétés de régularité des solutions de
l’équation obtenue par la limite de quasi-neutralité (dans le cas de pressions nulles).
Cette nouvelle régularité nous permet, de plus, de démontrer la stricte positivité des
solutions de cette équation au moins pour des temps assez grands.





Zusammenfassung

Meine Arbeit behandelt zwei unterschiedliche Systeme von Gleichungen, die in
der mathematischen Modellierung von Halbleitern und Plasmen verwendet werden.
Dies sind das Euler-Poisson-Modell und das Quantum-Drift-Diffusionsmodell. Das
erste ist durch die Euler-Gleichungen für die Erhaltung der Masse und des Impulses,
sowie die Poisson-Gleichung für das elektrostatische Potential gegeben. Das zweite
Modell besteht ebenso aus der Poisson-Gleichung und eine Erweiterung der Drift-
diffusionsgleichung zur Berücksichtigung von in diesen Bauteildimensionen auftre-
tenden Quanteneffekten.

Für den stationären Fall eines Potentialflusses werden verschiedene Grenzw-
erte des Euler-Poisson-Modells mittels asymptotischer Entwicklungen untersucht.
Speziell werden die Grenzwerte verschwindender Elektronenmasse, Relaxationszeit
und verschindender Debyelänge analysiert. Für jeden dieser Grenzwerte werden
Existenz und Eindeutigkeit der Lösung der asymptotischen Entwicklungen sowie
entsprechende A-Priori-Abschätzungen bewiesen. Die Grenzwerte verschwinden-
der Elektronenmasse sowie verschwindender Relaxationszeit stellen neue Ergebnisse
da, die den Übergung vom Euler-Poisson-System zu den inkompressiblen Eulergle-
ichungen beschreiben. Im Falle der asymptotischen Entwicklung für kleine Debye-
Längen ermöglicht der hier verwendete Ansatz einen Beweis der Existenz, selbst
wenn Randgrenzschichten auftreten. Das Euler-Poisson-System wird mit einem iter-
ativen Verfahren mit Finiten-Volumen- und gemischten Finiten-Volumen-Methoden
diskretisiert. Damit konnte die in der Analysis notwendige Bedingung für die Ex-
istenz der Lösung - eine Beschränkung auf kleine Elektronenmassen - numerisch
verifiziert werden.

Für das bipolare Quantum-Drift-Diffusionsmodell in einer Raumdimension haben
wir mit einer Zeitdiskretisierung und Energieabschätzungen die Existenz der Lösung
für ein allgemeines Dotierungsprofil gezeigt sowie den quasineutralen Grenzwert für
ein verschwindendes Dotierungsprofil analysiert. Abschließend wird eine Verbes-
serung des Regularitätsresultats für den quasineutralen Grenzwert (für verschwinden-
den Druck) bewiesen, welches durch eine veränderte Zeitdiskretisierung und neue
algorithmisch konstruierte Entropien gewonnen wird. Das neue Regularitätresultat
erlaubt den Beweis der Positivität der Lösungen dieser Gleichung zumindest für
hinreichend ”grosse” Zeiten.
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Part I

Introduction

11





In this work we are interested in mathematical analysis and numerical simula-
tion of semiconductors and plasmas. The modern computer and telecommunication
industry relies strongly on the use of semiconductors. Depending on the devices
structure, the transport of particles can be very different, due to several physical
phenomena, like drift, diffusion, scattering or quantum effects. Therefore, there
are several mathematical models, which can be used in the modeling of such de-
vices. The different models vary for complexity and mathematical properties and
build a hierarchy, in which we can distinguish three classes: the kinetic models, the
fluid-dynamical models and the quantum models.

In the first part of this work, we study a fluid-dynamical model called the Euler-
Poisson system in which the unknowns are the charge densities, the charge velocities
and the electrostatic potential. More specifically, this is a hydrodynamic model,
since it consists of Euler equations of conservation laws (conservation of mass and
momentum), plus a Poisson equation for the electrostatic potential. It can be con-
sidered in the bipolar as well as in the unipolar case. This means that we can take
into account, for the charge transport, either the two species of charges (electrons
and holes for a semiconductor, electrons and ions for a plasma), or only the elec-
trons. For a plasma, the unipolar case means that the ion background density is
fixed. Let us mention that the ballistic diodes are an example of semiconductors in
which the charge transport is only due to the electrons. Such semiconductors consist
of one weakly doped region n between two highly doped regions n+ (see figure 1)

nn+ n+

Figure 1: Ballistic diode

In the unipolar Euler-Poisson model three physical parameters appear: the elec-
tron mass, the relaxation time and the Debye length. Since they are small compared
to the characteristic length of physical interest, it is important to study their limits
to zero. It is the goal of Part II for a potential flow in the steady state case.

We refer to Chapter 1 for more details on the Euler-Poisson model and the
references therein, and, to Part II (Chapters 3, 4, 5 and 6) for the results obtained
on this model.



In the second part of this work, we study the quantum drift-diffusion model.
Due to the ongoing miniaturization of semiconductor devices in the microelectronics
industry, quantum effects play a more and more dominant role. An example of these
very small devices are the tunneling diodes, which have a structure of one length
of only few nanometers. It is then important to study models which also take into
account these quantum phenomena.

The quantum drift-diffusion model is a simple extension of the classical drift-
diffusion model, with only a quantum term of fourth-order in more, called the quan-
tum Bohm potential. Recall that the drift-diffusion system consists of two continuity
equations for the charge densities with a Poisson equation for the electrostatic po-
tential.

We are particularly interested in the existence of solutions and the quasineutral
limit (i.e. vanishing Debye length) in the bipolar quantum drift-diffusion equations
in one space dimension.

Note that the equation obtained in the quasineutral limit corresponds, for vanish-
ing pressure, to the so-called Derrida-Lebowitz-Speer-Spohn equation. This equa-
tion has recently attracted a lot of attention due to its remarkable mathematical
properties. In particular, the existence of nonnegative solutions has already been
shown. However, to our knowledge the positivity of solutions has not been proved
yet. There exists only a partial result presented in [10] for small times.

Here we study the regularity of solutions to this limit equation and we obtain
better results than in the literature. Moreover, we use these new regularity properties
to prove the positivity of solutions at least for times large enough.

We refer to Chapter 2 for more details and the references therein on the quantum
drift-diffusion model and to Part III (Chapters 7 and 8) for the results and their
proofs.



Chapter 1

Euler-Poisson model

In this chapter, we present the Euler-Poisson system which is studied in Part II.
Here we only consider the unipolar model for which we will study the asymptotic
limits (see Chapters 4 and 5). These results could be extended to the bipolar case.
But here the bipolar model is only treated in Chapter 6 from a numerical point of
view and with the same kind of assumptions as for the unipolar model. Note that
treating the bipolar system is not very different from treating the unipolar system.

1.1 General Presentation

Let Ω be an open and bounded domain of IRd (d = 2 or d = 3 in practice) which
stands for the geometry of the semiconductor device or the domain occupied by the
plasma. In the unipolar case, the Euler-Poisson system consists of Euler equations
of hyperbolic conservation laws:

• mass conservation:

∂tn+ div(nu) = 0, (1.1)

• momentum conservation:

ε∂t(nu) + εdiv(nu⊗ u) + ∇p(n) = n∇φ− εnu

τ
, (1.2)

and a linear Poisson equation:

− λ2∆φ = C − n. (1.3)

Here, the unknowns of the system are the electron density n = n(t, x), the
electron velocity u = u(t, x) and the electrostatic potential φ = φ(t, x). The function

15
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C = C(x), which only depends on the space variable, represents the doping profile
for a semiconductor and the fixed background ion density for a plasma. The quantity

J = nu,

is the electron current density. The function p = p(s) stands for the pressure func-
tion. Indeed, since we only consider isentropic flow, the energy equation of the
hydrodynamic model is replaced by a pressure-density relation p = p(n). In all the
following, the pressure function is supposed to be sufficiently smooth and strictly
increasing for n > 0. In practice, the pressure function is typically governed by the
γ−law p(s) = csγ, where c > 0 and γ ≥ 1 are constants. The case γ = 1 corresponds
to the isothermal flow, since in this case the temperature is constant. The physical
parameters are the scaled electron mass ε, relaxation time τ and Debye length λ.
They are small compared to the characteristic length of physical interest (e.g. the
length of the device). Therefore it is important to study the asymptotic limits of
the system when ε or τ or λ tends to zero independently.

For (n, u, φ) smooth enough and n > 0, equation (1.2) can be rewritten as

ε∂tu+ ε(u · ∇)u+ ∇h(n) = ∇φ− εu

τ
, (1.4)

where h = h(s) is the enthalpy function of the system and is defined by

h′(s) =
p′(s)

s
, h(1) = 0.

Indeed, for n > 0, let us divide equation (1.2) by n. We obtain

ε

n
∂t(nu) +

ε

n
div(nu⊗ u) +

1

n
∇p(n) = ∇φ− εu

τ
. (1.5)

Then, using (1.1),
ε

n
∂t(nu) = −εu

n
div(nu) + εut. (1.6)

Moreover, a straightforward calculation shows that

ε

n
div(nu⊗ u) =

εu

n
div(nu) + ε(u · ∇)u. (1.7)

Combining (1.5)-(1.7) we obtain (1.4).

Here we are only interested in the steady-state Euler-Poisson system. In this
case the system becomes

div(nu) = 0, (1.8)

ε(u · ∇)u+ ∇h(n) = ∇φ− εu

τ
, (1.9)
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− λ2∆φ = C − n, in Ω. (1.10)

There exist, to my knowledge, no results on system (1.8)-(1.10) without the supple-
mented assumption of a potential flow. Hence, we assume that the flow in the device
is irrotationnal (which corresponds to the case of a potential flow). Then rot u = 0
and there exists a velocity potential ψ such that u = −∇ψ, so that we can rewrite
equation (1.9) in the following way

ε

2
|∇ψ|2 + h(n) = φ+ εψ. (1.11)

Indeed, by using the property rot u = 0, we can show

(u · ∇)u =
1

2
∇(|u|2) =

1

2
∇(|∇ψ|2). (1.12)

Then (1.9) gives by using (1.12)

∇
(ε

2
|∇ψ|2 + h(n)

)

= ∇
(

φ+
εψ

τ

)

. (1.13)

Then, by integrating (1.13), we obtain (1.11).

Finally, the steady-state Euler-Poisson system for a potential flow reads:

− div(n∇ψ) = 0, (1.14)

ε

2
|∇ψ|2 + h(n) = φ+

εψ

τ
, (1.15)

− λ2∆φ = C − n, in Ω. (1.16)

The electron current density is now given by

J = −n∇ψ. (1.17)

The existence of irrotational subsonic steady-state flows in the gas-dynamics case
(i.e. (1.15) with τ = ∞, φ ≡ 0 and (1.14)) is well known (see e.g. [57]). In [36], the
authors employ a different analytical approach, which makes an explicit use of the
Poisson equation (1.16) and allows to incorporate boundary conditions appropriate
for semiconductors.

1.2 Boundary conditions

Let us now discuss the boundary conditions associated to (1.14)-(1.16). The bound-
ary Γ = ∂Ω is assumed to be split into N disjoint, closed and connected ”contact”
segments Γ1, ..., ΓN and ”insulating” segments, whose the union is denote by Γins.
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We set Neumann boundary conditions on the insulating segments and Dirichlet
boundary conditions on the contact segments. More precisely, let us define the
following boundary conditions:

n∣
∣

Γi

= nD
∣

∣

Γi

, i = 1, ..., N, (1.18)

(∇ψ × νnorm)∣
∣

Γi

= 0, i = 1, ..., N, (1.19)

∇n · νnorm
∣

∣

Γins

= 0, (1.20)

∇ψ · νnorm
∣

∣

Γins

= 0, (1.21)

where νnorm stands for the outward unit normal to Γ. Note that (1.21) means that
the normal component of the velocity vanishes along Γins, which implies no current
flow through Γins, and (1.19) implies that ψ is constant on each segment Γi. Indeed,

∇ψ = (∇ψ · νtan)νtan + (∇ψ · νnorm)νnorm,

where νtan stands for the unit tangential vector to Γ. Then,

∇ψ × νnorm = (∇ψ · νtan)νtan × νnorm.

Using (1.19), since νtan × νnorm 6= 0, we obtain

∇ψ · νtan
∣

∣

Γi

= 0 =⇒ ∂ψ

∂νtan

∣

∣

∣

Γi

= 0 =⇒ ψ∣
∣

Γi

= const.

For a current driven device, the values of these constants are given by imposing the
currents Ii, i = 1, ..., N flowing out of the contacts ([36]):

Ii = −
∫

Γi

n∇ψ · νnormds, i = 1, ..., N. (1.22)

Due to the conservation equation (1.14), we have:

0 =

∫

Ω

div(n∇ψ)dx =

∫

Γ

n∇ψ · νnormds. (1.23)

Since

Γ =

(

N
⋃

i=1

Γi

)

⋃

Γins,

using (1.20),
∫

Γ

n∇ψ · νnormds =
N
∑

i=1

∫

Γi

n∇ψ · νnormds.
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Then, the data Ii, i = 1, ..., N must satisfy

N
∑

i=1

Ii = 0. (1.24)

Let us now show that the boundary conditions (1.19) and (1.22) lead to Dirichlet
data for the velocity potential ψ ([36]). To this end, we introduce the functions χi

solutions to

div(n∇χi) = 0, in Ω, (1.25)

χi
∣

∣

Γj

= δij, j = 1, ..., N, (1.26)

∇χi · νnorm
∣

∣

Γins

= 0, (1.27)

for i = 1, ..., N. Here, δij is the Kronecker symbol. Let us define the influence matrix
D = (Dij)i,j=1,...,N by

Dij =

∫

Γj

n∇χi · νnormds.

Since (with as yet unknown constants ψi)

ψ =
N
∑

j=1

ψjχj, (1.28)

then from (1.22)

−
N
∑

i=1

Djiψj = Ii. (1.29)

Let us show that D is a symmetric nonnegative matrix. Indeed, multiplying (1.25)
by χj and integrating over Ω, we obtain

0 =

∫

Ω

div(n∇χi)χjdx =

∫

Γ

nχj∇χi · νnormds−
∫

Ω

n∇χi · ∇χjdx

=
N
∑

i=1

∫

Γk

nχj∇χi · νnormds−
∫

Ω

n∇χi · ∇χjdx

=

∫

Γj

n∇χi · νnormds−
∫

Ω

n∇χi · ∇χjdx.

Hence,

Dij =

∫

Ω

n∇χi · ∇χjdx. (1.30)
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Then the matrix D is symmetric. Moreover, let (ξ1, ..., ξN )t ∈ IRN . Using (1.30):

N
∑

i,j=1

Dijξiξj =

∫

Ω

n∇
(

N
∑

i=1

ξiχi

)

· ∇
(

N
∑

j=1

ξjχj

)

dx =

∫

Ω

n|∇χ|2dx ≥ 0,

where

χ =
N
∑

i=1

ξiχi

satisfy, by using (1.25), (1.26) and (1.27):

div(n∇χ) = 0, in Ω, (1.31)

∇χ · νnorm
∣

∣

Γins

= 0, (1.32)

χ∣
∣

Γj

= ξj. (1.33)

Hence, D is a nonnegative matrix.
Furthermore, we can also show that D is a matrix of rank N − 1. Indeed, if

Dξ = 0,

we have

0 = ξtDξ =
N
∑

i,j=1

Dijξiξj =

∫

Ω

n|∇χ|2dx,

and then

χ =
N
∑

i=1

ξiχi = const.

Since for all 1 ≤ j ≤ N

χ∣
∣

Γj

=
N
∑

i=1

ξiχi
∣

∣

Γj

=
N
∑

i=1

ξiδij = ξj,

we deduce that ξ = (1, ..., 1)t. Then:

Ker(D) ⊂ Vect{(1, ..., 1)t}.

By uniqueness of solutions to the problem (1.25)-(1.27), it is easy to see that:

N
∑

j=1

χj = 1.
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Then,

(Dξ)i =
N
∑

j=1

Dij =

∫

Ω

n∇χi · ∇
(

N
∑

j=1

χj

)

dx = 0, ∀ 1 ≤ i ≤ N.

This implies that ξ = (1, ..., 1)t ∈ Ker(D), and then

Ker(D) = Vect{(1, ..., 1)t},
and consequently the matrix D is of rank N − 1.

Thus, D is a symmetric nonnegative matrix of rankN−1. Using condition (1.24),
system (1.29) can be solved if we give one of the values ψi (e.g. ψ1 = 0). We then
obtain:

ψ∣
∣

Γi

= ψi, (1.34)

which is a Dirichlet boundary condition and in which ψi depends on Ij for j =
1, ..., N, and on χi and n by definition

Remark 1.1. More information on the influence matrix and their use in vectorial
decomposition can be found in [39].

Remark 1.2. By analogy to the drift-diffusion model for semiconductors (see [77,
91]), the velocity potential ψ can be seen as a quasi-Fermi level for electrons (the
quasi-Fermi potential being defined as: F = h(n) − φ for electrons and the quasi-
Fermi level as F ≡ 0). Indeed, if all the ψi are vanishing, then there is no current
flow and the semiconductor is on thermal equilibrium. We obtain in this case the
following equation for the electrostatic potential φ, using (1.15)-(1.16):

φ = h(n), ∆φ = n− C (1.35)

which is in agreement with the equilibrium of the drift-diffusion model if h(n) =
K lnn, K > 0, i.e. if p(n) = Kn (case γ = 1 for the γ−law).

For a voltage driven device, the values ψi, i = 1, ..., N, (applied potentials)
are prescribed (with say ψ1 = 0) and the outflow currents Ii can be computed a
posteriorly from (1.24), (1.29).

1.3 Existence and uniqueness of solutions

Let us first give some definitions.

Definition 1.1. • The electron flow in the device is called subsonic if

|u| = |∇ψ| <
√

p′(n)/ε, in Ω, (1.36)

or, equivalently,
ε|J |2 < n2p′(n), in Ω. (1.37)
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• The electron flow in the device is called supersonic if

|u| = |∇ψ| >
√

p′(n)/ε, in Ω, (1.38)

or, equivalently,
ε|J |2 > n2p′(n), in Ω. (1.39)

• The electron flow in the device is called transonic if it is alternatively super-
sonic and subsonic.

• The quantity
√

p′(n)/ε is called the electron sound speed [30].

Obviously, shocks may occur if the flow is transonic or supersonic. To our knowl-
edge the existence of a purely supersonic solution has not been performed yet.

In Chapter 3, we give existence and uniqueness results of a supersonic solution
to the one-dimensional unipolar steady state Euler-Poisson system for a potential
flow (1.14)-(1.16) supplemented with Dirichlet boundary conditions.

In [47, 48], the stationary transonic solutions have been studied by using an
artificial viscosity method. The existence of such solutions is proved by passing to
the limit in the approximate Euler-Poisson system as the viscosity coefficient tends
to zero. In [2], the subsonic solutions to a one-dimensional non isentropic model
have been studied. In the steady state isentropic case, with Dirichlet boundary
conditions, the existence and uniqueness of smooth solutions, in the subsonic region,
are obtained for a one-dimensional flow in [35] or a potential flow in [36]. The main
assumption of these results is a restriction on the magnitude of the boundary data
for ψ, which implies a fully subsonic flow. In one-space dimension, this condition
can be verified (see [35]), but for the multi-dimensional case, the smallness condition
can not be explicitly verified anymore.

P.Degond and P.Markowich have shown, in [36], the existence and uniqueness of
solutions to the system (1.14)-(1.16) (with Γins = ∅ and for ε = τ = λ = 1) in the
space

B = W2,q(Ω) × C2,δ(Ω̄) × C1,δ(Ω̄).

Let us now describe the method to prove this result. First of all, using (1.15), we
have:

ε

2
∆(|∇ψ|2) + ∆h(n) = ∆φ+

ε

τ
∆ψ. (1.40)

The first term on the left-hand side is of third order. However it can be rewritten
as a sum of at most second order terms. Indeed, from (1.14) we have:

∆ψ = − 1

n
∇n · ∇ψ. (1.41)
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Then a straightforward calculation and the use of (1.41) yield to

∆(|∇ψ|2) =
2

n2
(∇n · ∇ψ)2 − 2

n

d
∑

i,j=1

∂ψ

∂xi

∂ψ

∂xj

∂2n

∂xi∂xj

− 2

n

d
∑

i,j=1

∂ψ

∂xi

∂2ψ

∂xi∂xj

∂n

∂xj

+ 2
d
∑

i,j=1

(

∂2ψ

∂xi∂xj

)2

. (1.42)

Using (1.16) and (1.40), this gives

−∆h(n) +
ε

n

d
∑

i,j=1

∂ψ

∂xi

∂ψ

∂xj

∂2n

∂xi∂xj

− ε

τn
∇ψ · ∇n− ε

n2
(∇ψ · ∇n)2

+
ε

n

d
∑

i,j=1

∂ψ

∂xi

∂2ψ

∂xi∂xj

∂n

∂xj

+
1

λ2
(n− C) = εQ(ψ), (1.43)

where,

Q(ψ) =
d
∑

i,j=1

(

∂2ψ

∂xi∂xj

)2

.

Then, consider the system (1.14), (1.43) (with ε = τ = λ = 1) supplemented with
the following Dirichlet boundary conditions (recall that Γins = ∅)

n = nD, ψ = ψD, on Γ. (1.44)

For given n and ψ, the electrostatic potential is given by the relation (1.15). It is
easy to see that, for n > 0, (n, ψ, φ) is a smooth solution to the system (1.14)-(1.16)
if and only if (n, ψ) is a smooth solution to the system (1.14), (1.43).

Furthermore, we can show that the smallness condition on the data, which guar-
antees a subsonic flow in the device, is equivalent to the ellipticity condition for
the equation (1.43). Then, under the assumption of a subsonic flow, system (1.14),
(1.43) is a nonlinear elliptic problem. The proof given by P.Degond and P.Markowich
in [36] makes an explicit use of the regularity properties for second order elliptic
problems (see [56]). More precisely, by linearizing the problem and classical results
on linear elliptic problems, they prove that the Schauder fixed point Theorem can
be applied to obtain the existence of a smooth solution (n, ψ) to the system (1.14),
(1.43) subject to the Dirichlet boundary conditions (1.44) (for recall ε = τ = λ = 1).
The uniqueness of solutions is also obtained.

The proof of existence relies strongly on regularity results for elliptic equations,
which in full generality can only be obtained for Dirichlet problems. That is why
the assumption Γins = ∅ is made. Nevertheless it is possible to generalize the
existence and uniqueness results to mixed Dirichlet-Neumann boundary conditions
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under additional stringent regularity and geometry assumptions on the boundary
segments.

In [80], Y.J.Peng has shown, in a same way, that the smallness condition on
the data can be replaced by a smallness condition on the electron mass ε. Then
the existence and uniqueness of solutions are valid provided that the electron mass
is small enough (which is physically the case). As in [36] the result is shown for
Dirichlet boundary conditions (i.e. for Γins = ∅).

Remark 1.3. In [80] the existence and uniqueness of solutions is shown for all
ε, τ provided that ε is small enough. It is also proved that the result holds for all λ
provided that ε is small enough and that the compatibility condition nD = C on Γ is
satisfied. We will give more details on it in the following section.

In Chapter 6, we are interested in this smallness condition on the electron
mass for the existence and uniqueness of solutions from a numerical point of view.
However, the equation (1.43) is fully nonlinear and coupled to ψ till its second
derivatives, so that its numerical discretization is not an easy task. Note that
(1.14), (1.16) are linear for (ψ, φ) and (1.15) is nonlinear only algebraically for n.
This motivates us to make the following iterative scheme: for a given nm > 0 (m ≥ 0)
we first solve (ψm, φm) by

− div(nm∇ψm) = 0, (1.45)

− ∆φm = C − nm, in Ω, (1.46)

subject to mixed Dirichlet-Neumann boundary conditions. Then we compute nm+1

by the algebraic equation

h(nm+1) = φm + εψm − ε

2
|∇ψm|2. (1.47)

Equations (1.45), (1.46) are of elliptic type (provided nm remains positive). There
are several numerical methods to solve this kind of equations (e.g. finite element
method, mixed finite element method, finite volume methods...). In Chapter 6,
some finite volume schemes are used. The first scheme is ”classical” with a two
point discretization of the fluxes through the edges, see [44]. It leads to piecewise
constant approximate solutions and needs to be completed by a reconstruction of
the gradients ∇ψm, necessary for the computation of nm+1 in (1.47). The second
scheme is of mixed type as introduced by J.Droniou and R.Eymard in [42], in which
the construction of the gradients is intrinsic. Then we can numerically obtain the
solution to the steady-state Euler-Poisson system for a potential flow. The smallness
condition on ε then clearly appears. Indeed, if ε is not small enough, after some
iterations, the program is stopped since the involved matrix in the resolution of
(1.45) becomes singular (the system is no more elliptic).
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The bipolar steady-state Euler-Poisson system for a potential flow is also treated
in Chapter 6. Let us mention that in [1] the existence of smooth global solutions to
the multi-dimensional bipolar transient Euler-Poisson model has been shown under
the assumption that the initial densities are close to a constant.

1.4 Asymptotic limits

Let us now discuss the asymptotic limits ε → 0, τ → 0 and λ → 0 in the system
(1.14)-(1.16).

1.4.1 Zero-electron-mass limit

First of all, we consider the zero electron mass limit (ε → 0). To this end, let
(nε, ψε, φε)ε>0 be a sequence of solutions to the system (1.14)-(1.16), (1.44). We set
λ = τ = 1. Then,

− div(nε∇ψε) = 0, (1.48)
ε

2
|∇ψε|2 + h(nε) = φε + εψε, (1.49)

− ∆φε = C − nε, in Ω, (1.50)

nε = nD, ψε = ψD, on Γ. (1.51)

By performing the formal limit ε→ 0 in (1.48)-(1.51), we obtain

− div(n∇ψ) = 0, (1.52)

h(n) = φ, (1.53)

− ∆φ = C − n, in Ω, (1.54)

n = nD, ψ = ψD, on Γ. (1.55)

In [80], Y.J.Peng has shown that the sequence (nε, ψε, φε)ε>0 tends to (n, ψ, φ),
solution of (1.52)-(1.55) in B when ε tends to zero. More precisely, he has proved
that

‖nε − n‖W2,q(Ω) ≤ A0ε, ‖ψε − ψ‖C2,δ(Ω̄) ≤ A0ε, ‖φε − φ‖C1,δ(Ω̄) ≤ A0ε, (1.56)

where A0 > 0 is a constant independent of ε.

In Chapter 4, we consider an asymptotic expansion up to order m, for m ≥ 0,
of the solution. More precisely, let

nm
a,ε =

m
∑

k=0

εknk, ψ
m
a,ε =

m
∑

k=0

εkψk, φ
m
a,ε =

m
∑

k=0

εkφk. (1.57)
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We are able to prove the existence and uniqueness of each profile (nk, ψk, φk), 0 ≤
k ≤ m and the following convergence result.

Theorem 1.1. Let (nε, ψε, φε) be the solution of the problem (1.48)-(1.50) supple-
mented with appropriate Dirichlet boundary conditions and (nm

a,ε, ψ
m
a,ε, φ

m
a,ε) be the

approximate solution given by the asymptotic expansion (1.57). Under regularity
assumptions, there exists ε0 > 0 such that for all ε ∈ (0, ε0], we have the following
estimates:

‖nε−nm
a,ε‖W2,q(Ω) ≤ B0ε

m+1, ‖ψε−ψm
a,ε‖C2,δ(Ω̄) ≤ B0ε

m+1, ‖φε−φm
a,ε‖C1,δ(Ω̄) ≤ B0ε

m+1,
(1.58)

where B0 > 0 is a constant independent of ε.

This is a generalization of the result obtained by Y.J.Peng in [80]. Indeed, (1.56)
corresponds to the case of an asymptotic expansion up to order 0, i.e., to the case
m = 0 in (1.58).

The proof of (1.58) uses strongly the existence and uniqueness of a sequence of
solutions and the uniform estimates in ε of the sequence (boundedness also shown
in [80]). The idea is to subtract the system (1.48)-(1.51) and the one satisfied by
(nm

a,ε, ψ
m
a,ε, φ

m
a,ε). Then as in the previous section, by using the Poisson equations to

eliminate φε − φm
a,ε, we can work on the system verified by (nε − nm

a,ε, ψε − ψm
a,ε). In

these two equations, it appears the following term:

Iε =
1

2
∆(|∇ψε|2 − |∇ψm

a,ε|2),

which is of third order. The main point of the proof is to give an estimate of Iε by
showing that it can be written as a function of at most second order derivatives (see
Chapter 4 for more details).

As an application of this result, using asymptotic expansion up to second order,
we also establish, in Chapter 4, the convergence of the Euler-Poisson system to the
incompressible Euler equations. More precisely, we show the following result.

Corollary 1.1. Let b(x) ≡ 1 and m = 1. Under regularity assumptions, the sequence
of solutions (nε, ψε, φε)ε>0 to the problem (1.48)-(1.50) supplemented with appro-
priate boundary conditions converges, as ε tends to 0, to (n0, ψ0, φ0) in B, where
(n0, ψ0, φ0) is the first term in the asymptotic expansion. Moreover, u0 = −∇ψ0

satisfies the incompressible Euler equation

(u0 · ∇)u0 + u0 + ∇P = 0, div u0 = 0,

where the pressure P is defined by:

P = h′(1)n1 − φ1,

with (n1, ψ1, φ1) the second term in the asymptotic expansion.
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1.4.2 Zero-relaxation-time limit

Let us now consider the zero relaxation time limit. Let (ñτ , ψ̃τ , φ̃τ )τ>0 be a sequence
of solutions. We set λ = 1 and the following change of variables:

nτ = ñτ , ψτ =
ψ̃τ

τ
, φτ = φ̃τ .

We obtain
− div(nτ∇ψτ ) = 0, (1.59)

ετ 2

2
|∇ψτ |2 + h(nτ ) = φτ + εψτ , (1.60)

− ∆φτ = C − nτ , in Ω, (1.61)

nτ = nD, ψτ = ψD, on Γ. (1.62)

By performing the formal limit τ → 0 in (1.59)-(1.62), we obtain the drift-diffusion
system

− div(n∇ψ) = 0, (1.63)

h(n) = φ+ εψ, (1.64)

− ∆φ = C − n, in Ω, (1.65)

n = nD, ψ = ψD, on Γ. (1.66)

In [80], Y.J.Peng has shown that the sequence (nτ , ψτ , φτ )τ>0 tends to (n, ψ, φ),
solution of (1.63)-(1.66) in B when τ tends to zero. More precisely he has obtained
the following estimates:

‖nτ − n‖W2,q(Ω) ≤ A1τ
2, ‖ψτ − ψ‖C2,δ(Ω̄) ≤ A1τ

2, ‖φτ − φ‖C1,δ(Ω̄) ≤ A1τ
2, (1.67)

where A1 > 0 is a constant independent of τ.

In Chapter 4, using the asymptotic expansion method, after proving the exis-
tence and uniqueness of each profile, we show the following Theorem.

Theorem 1.2. Under regularity assumptions, for an asymptotic expansion up to
order m such that

nm
a,τ =

m
∑

k=0

τ 2knk, ψ
m
a,τ =

m
∑

k=0

τ 2kψk, φ
m
a,τ =

m
∑

k=0

τ 2kφk,

we have the following estimates

‖nτ − nm
a,τ‖W2,q(Ω) ≤ B1τ

2(m+1), ‖ψτ − ψm
a,τ‖C2,δ(Ω̄) ≤ B1τ

2(m+1),

‖φτ − φm
a,τ‖C1,δ(Ω̄) ≤ B1τ

2(m+1), (1.68)

where B1 > 0 is a constant independent of τ.
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Again, (1.67) corresponds to the case m = 0 in (1.68). The proof of (1.68)
is similar to the one for the zero-electron-mass limit. As for the zero-electron-mass
limit, we use the asymptotic expansion up to second order to show the convergence of
the Euler-Poisson system to the incompressible Euler equations when the relaxation
time tends to zero and we obtain an analogous result as Corollary 1.1 (see Chapter
4).

Note that the zero-relaxation-time limit has been investigated in the transient
one-dimensional model in [76] and in [65, 66] by using compensated compactness
arguments for global weak solutions. The limit system, obtained in this case, is the
so-called and well-known drift-diffusion model. The multi-dimensional case for local
smooth solutions has also been studied (see [1, 74]).

1.4.3 Quasineutral limit

Finally let us consider the quasineutral limit (λ → 0). Let (nλ, ψλ, φλ)λ>0 be a
sequence of solutions to the system. We set τ = 1. Then,

− div(nλ∇ψλ) = 0, (1.69)

ε

2
|∇ψλ|2 + h(nλ) = φλ + εψλ, (1.70)

− ∆φλ = C − nλ, in Ω, (1.71)

nλ = nD, ψλ = ψD, on Γ. (1.72)

The formal limit in the Poisson equation (1.71) gives:

n = C, in Ω,

and with (1.72) we have
n = nD, on Γ.

Then if nD 6= C on Γ, a boundary layer Ωθ appears (see figure 1.1).

Let us first assume the following compatibility condition

nD = C, on Γ. (1.73)

It is clear that this condition avoids any boundary layer and, then, the formal limit
λ→ 0 in (1.69)-(1.72) gives

− div(n∇ψ) = 0, (1.74)
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Γ

Ω

Ωθ

Figure 1.1: Boundary layer representation.

ε

2
|∇ψ|2 + h(n) = φ+ εψ, (1.75)

n = C, in Ω, (1.76)

n = nD = C, ψ = ψD, on Γ. (1.77)

In [80], under the compatibility condition (1.73), Y.J.Peng shows that the sequence
(nλ, ψλ, φλ)λ>0 tends, when λ tends to zero, to (n, ψ, φ) in Lq(Ω)×W1,q(Ω)×Lq(Ω),
and in L∞(Ω) ×W1,q(Ω) × Lq(Ω), for all q ∈ [1,+∞[, if we assume more regularity
property on the doping profile. More precisely, by assuming (1.73), it is shown:

‖nλ − n‖Lq(Ω) ≤ A2λ
2, ‖ψλ − ψ‖W1,q(Ω) ≤ A2λ

2, ‖φλ − φ‖Lq(Ω) ≤ A2λ
2, (1.78)

or (with the more stringent assumption on the doping profile),

‖nλ − n‖L∞(Ω) ≤ A′
2λ

2, ‖ψλ − ψ‖W1,q(Ω) ≤ A′
2λ

2, ‖φλ − φ‖Lq(Ω) ≤ A′
2λ

2, (1.79)

where A2, A
′
2 > 0 are constants independent of λ. Then in this case the convergence

space obtained is larger than the existence space. Recall that both existence and
convergence results are available only if the compatibility condition (1.73)
holds.

In Chapter 5, we are interested in the use of the asymptotic expansion method
when the compatibility condition is not satisfied. Here the difficulty is that the
existence result does not hold anymore and then we cannot use the same way as
for the zero-electron-mass limit or the zero-relaxation-time limit. Indeed we need
to prove, on one hand, the existence of each profile for an asymptotic expansion
well defined and, on the other hand, in the same time the existence of a sequence
(nλ, ψλ, φλ)λ>0 and its convergence to the asymptotic expansion. Using the same
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asymptotic expansion as defined in [83] by Y.J.Peng and Y.G.Wang, we are able to
prove:

Theorem 1.3. Under regularity assumptions, for λ small enough, there is an ε0 > 0
independent of λ such that for all ε ∈ [0, ε0], the problem (1.69)-(1.71) subject to
appropriate boundary conditions has a solution (nλ, ψλ, φλ) in B which satisfies:

‖nλ − na
λ‖W2,q(Ω) ≤ B2λ

m−1, ‖ψλ − ψa
λ‖C2,δ(Ω̄) ≤ B2λ

m−1,

‖φλ − φa
λ‖C1,δ(Ω̄) ≤ B2λ

m−1, (1.80)

where B2 > 0 stands for a constant independent of λ, and (na
λ, ψ

a
λ, φ

a
λ) for an asymp-

totic expansion, up to order m with m ≥ 2, well defined and in which the terms of
order 0 and 1 satisfy compatibility conditions.

The last conditions in Theorem 1.3 mean that there are no boundary layers of
order 0 and 1. Moreover, with more stringent assumption on the regularity of the
boundary data, we show that for all q ∈ [1,+∞[,

‖nλ − na
λ‖L∞(Ω) ≤ B′

2λ
m+1, ‖ψλ − ψa

λ‖W1,q(Ω) ≤ B′
2λ

m+1,

‖φλ − φa
λ‖Lq(Ω) ≤ B′

2λ
m+1, (1.81)

where B′
2 > 0 is a constant independent of λ.

If we take m = 1 in (1.81), we have (1.79) since the term of order 1 in our
asymptotic expansion is vanishing. Note that in Chapter 5 we obtain the existence
of solutions and the convergence in the same space: B. The proof of this result is
really technical. Again the idea is to work on the system obtained after eliminating
φλ − φa

λ. Then we define rλ and pλ by

nλ = na
λ + λm−1rλ, ψλ = ψa

λ + λm−1pλ,

and we work with the problem satisfied by (rλ, pλ). We linearize this system to
apply the Schauder fixed point Theorem to show the existence and the boundedness
of (rλ, pλ) in good spaces. The main point of this proof is to show the existence and
boundedness of solutions to the linearized equation on rλ. To this end, we use the
Leray-Schauder fixed point Theorem since the classical results are not available at
this step. Indeed, the dependence of the functions in the equation doesn’t allow to
use them (see Chapter 5 for more details).

Let us mention that there are a lot of study on the quasineutral limit. In
[14], it has been performed in the semilinear Poisson equation under the Maxwell-
Boltzmann relation. In the steady-state Euler-Poisson system, it has been performed
in [95] in the one-dimensional case for well prepared boundary conditions, and, in
[79] for general boundary conditions. In [80, 83] the quasineutral limit is used to
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show the convergence of the Euler-Poisson system to incompressible Euler equations,
for well-prepared boundary conditions.

Using pseudo-differential technics, the quasineutral limit has been shown in [29]
for local smooth solutions in a one-dimensional model for an isothermal plasma in
which the electron density is described by the Maxwell-Boltzmann relation. In [85]
the convergence of the transient compressible Euler-Poisson equations (hyperbolic
system) to the incompressible Euler equations has also been proved by using the
quasineutral limit and the asymptotic expansion method. Numerically, the limit
λ→ 0 has also been studied in the Euler-Poisson system in, for example, [33].

Note that in [53] and the references therein, the combined zero-relaxation-time
and quasineutral limit is studied. See also [51, 52] for the study of the quasineutral
limit in the bipolar drift-diffusion model.

Finally, let us point out that these three asymptotic limits yield a hierarchy of
hydrodynamic models for plasmas given in [65, 66, 67], in which the zero-relaxation-
time limit and the quasineutral limit are also shown for the drift-diffusion model.





Chapter 2

Quantum drift-diffusion model

In this Chapter, we present the quantum drift-diffusion model which is studied in
Part II. For this model, we consider the bipolar case. This means that the charge
transport in the device is due to the two species electrons and positive ions or holes.
We are particularly interested in the quasineutral limit in the transient quantum
drift-diffusion model and the regularity and positivity of solutions to the obtained
limit equation.

2.1 General Presentation

The quantum drift-diffusion model can be derived by the entropy minimization
principle from the Wigner-BGK equation in the diffusion limit [37], or, from the
so-called quantum hydrodynamic model in the zero-relaxation-time limit [62]. Let
us present here the second derivation.

Recall that the quantum hydrodynamic model consists of the isentropic Euler
equations of conservation laws for the particle densities and current densities includ-
ing the quantum Bohm potential and a momentum relaxation term, plus a Poisson
equation for the electrostatic potential. It contains highly nonlinear and disper-
sive terms with third-order derivatives and therefore, its analytical and numerical
treatment is quite involved. However, in some physical regimes, this model can be
formally reduced to simpler models. More precisely, for example, when performing
a diffusive scaling, the convective term can be formally neglected and the model is
reduced then to the so-called quantum drift-diffusion model whose analysis and nu-
merical solution are much simpler than that of the original model since it is parabolic
and of fourth order.

More specifically, let QT := [0, T ] × Ω for T > 0 and Ω ⊂ IRd (d = 1, 2 or 3)
the domain occupied by the device. The (scaled) transient isentropic quantum

33
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hydrodynamic model (in the bipolar case) reads:

∂tn−∇ · Jn = 0, (2.1)

∂tJn − div
(Jn ⊗ Jn

n

)

−∇Pn(n) = −ε
2

2
n∇
(∆

√
n√
n

)

− n∇V − Jn

τ
, (2.2)

∂tp+ ∇ · Jp = 0, (2.3)

∂tJp + div
(Jp ⊗ Jp

p

)

−∇Pp(p) =
ε2

2
p∇
(∆

√
p

√
p

)

− p∇V − Jp

τ
, (2.4)

λ2∆V = n− p− C, in QT . (2.5)

The unknowns of this system are the electron density n = n(t, x), the positively
charged ion (or hole) density p = p(t, x), and the (negative) electrostatic potential
V = V (t, x). Here, Jn and Jp stand respectively for the electron current density
and the hole current density. The function C = C(x) represents the fixed charged
background ions, usually called the doping concentration or doping profile. The
functions Pn and Pp are the pressure functions. They are typically of the form
Pα(s) = θαs

qα , (α = n, p) for some θα > 0 and qα ≥ 1 (γ−law which we have
already mentioned in Chapter 1). Recall that the case qα = 1 corresponds to the
isothermal case. Finally, the physical parameters are the scaled Planck constant ε,
the ratio of the Debye length and the characteristic length (e.g. the device diameter)
λ > 0, and the relaxation time of the system τ .

Note that the quantum terms (ε2/2)n((∆
√
n)/

√
n) and (ε2/2)p((∆

√
p)/

√
p) can

be interpreted as quantum self-potential terms with the Bohm potentials (∆
√
n)/

√
n

and (∆
√
p)/

√
p. The term Jn/τ models interactions of the electrons with the phonons

of the semiconductor crystal lattice.
Let us now perform in (2.1)-(2.5) the following diffusion scaling: we substitute t

by t/τ and Jn, Jp by τJn, τJp respectively. After rescaling we obtain the equations:

τ∂tn− τ∇ · Jn = 0, (2.6)

τ 2∂tJn − τ 2div
(Jn ⊗ Jn

n

)

−∇Pn(n) = −ε
2

2
n∇
(∆

√
n√
n

)

− n∇V − Jn, (2.7)

τ∂tp+ τ∇ · Jp = 0, (2.8)

τ 2∂tJp + τ 2div
(Jp ⊗ Jp

p

)

+ ∇Pp(p) =
ε2

2
p∇
(∆

√
p

√
p

)

− p∇V − Jp, (2.9)

λ2∆V = n− p− C, in QT . (2.10)

Remark 2.1. If the constant τ is small, then the system (2.6)-(2.10) describes a
situation for large time-scale and small current densities.



Introduction 35

Computing the formal limit τ → 0 in (2.6)-(2.10), the so-called quantum drift-
diffusion model is derived and reads

∂tn−∇ · Jn = 0, Jn = −ε
2

2
n∇
(∆

√
n√
n

)

+ ∇Pn(n) − n∇V, (2.11)

∂tp+ ∇ · Jp = 0, Jp =
ε2

2
p∇
(∆

√
p

√
p

)

−∇Pp(p) − p∇V, (2.12)

λ2∆V = n− p− C, in QT . (2.13)

Remark 2.2. This model is a simple extension of the well-known classical drift-
diffusion model. Indeed, if we neglect the recombination-generation rate and set all
the physical parameters equal to 1, except for the Debye length, the drift-diffusion
system can be written as:

∂tn−∇ · Jn = 0, Jn = ∇Pn(n) − n∇V,

∂tp+ ∇ · Jp = 0, Jp = −∇Pp(p) − p∇V,

λ2∆V = n− p− C, in QT .

In this Chapter and in Part III, we are only interested in the one-dimensional
transient quantum drift-diffusion model which can then be written as:

∂tn− Jn,x = 0, Jn = −ε
2

2
n
((

√
n)xx√
n

)

x
+ (Pn(n))x − nVx, (2.14)

∂tp+ Jp,x = 0, Jp =
ε2

2
p
((

√
p)xx√
p

)

x
− (Pp(p))x − pVx, (2.15)

λ2Vxx = n− p− C, in QT . (2.16)

It is easy to see that

n
((

√
n)xx√
n

)

x
=

1

2
(n(log n)xx)x, and, p

((
√
p)xx√
p

)

x
=

1

2
(p(log p)xx)x.

Then, using these equalities and setting ε = ε/2, the equations (2.14)-(2.16) can
equivalently be rewritten

∂tn− Jn,x = 0, Jn = −ε
2

2
(n(log n)xx)x + (Pn(n))x − nVx, (2.17)

∂tp+ Jp,x = 0, Jp =
ε2

2
(p(log p)xx)x − (Pp(p))x − pVx, (2.18)
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λ2Vxx = n− p− C, in QT . (2.19)

Since we only focus on the one-dimensional case, we can consider the problem in
the space interval Ω = (0, 1), without loss of generality. This system can be supple-
mented with different boundary conditions. In Chapter 7 we consider the following
initial and Dirichlet-Neumann boundary conditions given by:

n(t, x) = p(t, x) = 1, nx(t, x) = px(t, x) = 0, V (t, x) = VD(x) for x ∈ {0, 1}, t > 0,
(2.20)

n(·, 0) = nI , p(·, 0) = pI in Ω, (2.21)

where VD(x) = xU and U ∈ IR is the applied potential. In the case of a vanishing
doping profile at the boundary, the Dirichlet boundary conditions for n and p express
charge neutrality, whereas Neumann boundary conditions have been employed in
numerical simulations of quantum semiconductor devices [49].

2.2 Existence of solutions

In this section, we are interested in the existence of solutions to the system (2.17)-
(2.21). Moreover, since n and p are respectively the electron density and the hole
density, we also want to show that they are nonnegative. Note that due to the
quantum terms, the equations (2.17) and (2.18) are parabolic and of fourth order.
In such a situation, no maximum principle is available to prove the nonnegativity
of solutions which complicates the analysis (see [69, 70]). Then, we have to find
another way to prove this result. To this end, we use a method presented in the
literature on a simpler model.

Let us consider the following problem with homogeneous Dirichlet-Neumann
boundary conditions

∂tu+ (u(log u)xx)xx = 0, in QT , (2.22)

u(t, 0) = u(t, 1) = 1, ux(t, 0) = ux(t, 1) = 0, t > 0, (2.23)

u(0, x) = u0(x), x ∈ Ω, (2.24)

under the assumption that the initial datum u0 is measurable and satisfies the
condition

∫

Ω

(u0 − log u0)dx <∞. (2.25)

Let us mention that the problem (2.22)-(2.24) corresponds in fact to the unipolar
case of problem (2.17)-(2.21) for a vanishing temperature and a vanishing electric
field. Moreover the equation (2.22) is the so-called Derrida-Lebowitz-Speer-Spohn
equation derived in the context of fluctuations of a stationary non-equilibrium in-
terface (see [40]).
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The first analytical result has been presented in [10] in which the existence of
local-in-time classical solutions has been proved. In [69], the existence and the
nonnegativity of global-in-time solutions have been shown.

Let us now shortly describe the method used in [69] to obtain this result since
we use a same way to prove the existence of nonnegative solutions to the system
(2.17)-(2.21).

First, in [69], A.Jüngel and R.Pinnau introduce an exponential change of vari-
ables. Setting u = e2y, we get from (2.22)

∂t(e
2y)= − 2(e2yyxx)xx. (2.26)

Hence, the existence of a global-in-time weak solution y of (2.26) implies the exis-
tence of a global-in-time nonnegative solution u to (2.22). Note that exponential
transformations had already been successfully employed in the study of the station-
ary quantum hydrodynamic equations [60, 15].

The second step is the semi-discretization in time of equation (2.26), which leads
to a sequence of elliptic problems. Using the Leray-Schauder fixed point Theorem,
they show the existence of solutions y(tk, .) in H2(Ω) to these resulting elliptic
problems. Then, the approximate solutions y(tk, .) are in L∞(Ω) and the expressions
like ey(tk,.) are well defined.

The third step is the proof of the unique solvability for the semi-discretized
problems by using a monotonicity property.

Then, using the fact that (2.22) possesses several Lyapunov functionals and that
there are connections to logarithmic Sobolev inequalities (see [41] and references
therein), they are able to obtain several a priori estimates.

Finally, in the last step they perform the limit when the time step tends to zero
in the weak formulation of the sequence of the resulting elliptic problems. The proof
uses, in particular, the a priori estimates obtained in the third step and the Aubin’s
Lemma, which allow to obtain some necessary strong convergences.

Remark 2.3. Note that the boundary conditions (2.23) simplify considerably the
analysis. Indeed, writing (2.23) in the new variable y we have

e2y(t,0) = e2y(t,1) = 1, yx(t, 0)e2y(t,0) = yx(t, 1)e2y(t,1) = 0, t > 0,

which gives
y(t, 0) = y(t, 1) = 0, yx(t, 0) = yx(t, 1) = 0, t > 0. (2.27)

Hence we obtain homogeneous Dirichlet-Neumann boundary conditions. Thus,
using for example the test function y in the weak formulation of (2.22), no integrals
with boundary data will appear.

Let us mention that almost all results for (2.22)-(2.24) (and for related fourth-
order equations like the thin-film model [9]) have been shown only for periodic or
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no-flux boundary conditions or for whole-space problems, in order to avoid integrals
boundary data.

In [59], M.Gualdani, A.Jüngel and G.Toscani have also studied the problem
(2.22)-(2.24) but subject to the following more general non-homogeneous Dirichlet-
Neumann boundary conditions:

u(t, 0) = u0, u(t, 1) = u1, ux(t, 0) = w0, ux(t, 1) = w1, t > 0, (2.28)

where u0, u1 > 0 and w0, w1 ∈ IR. In this paper, they first show the existence of the
stationary problem by using the change of variables u = ey and the Leray-Schauder
fixed point Theorem. Then to prove the existence of solutions, to the transient
problem, under assumption (2.25) for the initial data, they use the existence result
for the stationary model and a method similar to the one used in [69] and previously
described.

In Chapter 7, we are able to prove the existence of global-in-time solutions to
the problem (2.17)-(2.21) and the nonnegativity of n and p. More precisely,

Theorem 2.1. Let T > 0, U ∈ IR, C ∈ L∞(Ω), and 0 ≤ nI , pI ∈ L1(Ω) satisfying

∫

Ω

(

(nI − log nI) + (pI − log pI)
)

dx+

∫

Ω

(

nI(log nI − 1) + pI(log pI − 1)
)

dx <∞.

Furthermore, let Pn, Pp ∈ C1([0,∞)) be nondecreasing and assume that there exist
0 < q < 7/2 and CP > 0 such that

|Pα(x)| ≤ CP (1 + |x|q) for all x ≥ 0, α = n, p. (2.29)

Then there exists a weak solution n, p ∈ L7/2(QT ), V ∈ L∞(0, T ;H2(Ω)) to (2.17)-
(2.21) such that

n, p ≥ 0 in QT , log n, log p ∈ L2(0, T ;H2
0 (Ω)), nt, pt ∈ L1(0, T ;H−3(Ω)).

To prove this result, as seen previously, we first set the following change of
variables:

n = ey and p = ez,

which leads to the problem

∂t(e
y) +

ε2

2

(

eyyxx

)

xx
=
(

(Pn(ey))x − eyVx

)

x
, (2.30)

∂t(e
z) +

ε2

2

(

ezzxx

)

xx
=
(

(Pp(e
z))x − ezVx

)

x
, (2.31)
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λ2Vxx = ey − ez − C, in QT , (2.32)

subject to the initial condition

y(0, .) = yI = log nI , z(0, .) = zI = log pI , in Ω, (2.33)

and homogeneous Dirichlet-Neumann boundary conditions on y and z.
Then, the idea is the same as in [69] or [59]. We first semi-discretize in time the

problem, and show existence and uniqueness of solutions to the discrete problems
(using the Leray-Schauder fixed point Theorem). Then we obtain some a priori
estimates (using energy estimates), and, finally, we perform the limit for vanishing
time step (using Aubin’s Lemma and our a priori estimates). We refer to Chapter
7 for more details on the proof.

Remark 2.4. Although the proof of existence of solutions is just an adaptation to
the bipolar case of the one presented in [69], we write it completely in Chapter 7
since it makes clear which quantities are uniformly bounded in λ (in appropriate
norms). Indeed, the main goal of Chapter 7 is to perform the quasineutral limit in
(2.17)-(2.21) (see next section).

Remark 2.5. Note that in our proof the assumption of one space dimension is
strongly used and then adapting our proof to the multi-dimensional case looks very
complicated. We refer to [55] for an existence proof in the multi-dimensional equa-
tions for vanishing electric field and vanishing pressure with only periodic boundary
conditions. To our knowledge, the treatment of the quantum drift-diffusion model in
several space dimensions with physically motivated boundary conditions is currently
not well known.

2.3 Quasineutral limit

In charged particle transport, quasineutrality is a commonly used assumption in or-
der to simplify the model equations. Let us first give the definition of the quasineu-
trality.

Definition 2.1. Quasineutrality means that the difference between the concentra-
tions of positive ions and electrons is negligible compared to a reference density.

Formally, quasineutral models are obtained in the limit as the ratio of the De-
bye length to the characteristic length tends to zero (i.e. λ → 0 in the system).
Quasineutral models are used, for instance, in simulation of semiconductors and
plasmas (see e.g. [31, 32, 34]). The justification of the quasineutral limit in fluid-
dynamical models has attracted a lot of attention in the last years and the literature
on this problem is huge (see Chapter 1 section 1.4 for references). Recently, the
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quasineutrality has also been studied in quantum models (see [12]). However, to
our knowledge, no analytical results on the quasineutral limit in fluid-type quantum
models are available up to now.

In Chapter 7, we give a first result: we rigorously prove the quasineutral limit
for a vanishing doping profile.

Performing the formal quasineutral limit, λ → 0, in (2.19) we obtain n = p and
from (2.17)-(2.18)

∂tn+
ε2

2
(n(log n)xx)xx =

1

2
(Pn(n) + Pp(n))xx, in QT , (2.34)

with the following initial and boundary conditions

n(t, x) = 1, nx(t, x) = 0, for x ∈ {0, 1}, t > 0, n(0, .) = nI in Ω. (2.35)

We show in Chapter 7:

Theorem 2.2. Let the assumptions of Theorem 2.1 hold and let, in addition, C(x) ≡
0, q ≤ 7/3 and nI = pI in Ω. Let (n(λ), p(λ), V (λ)) be a weak solution (in the sense of
Theorem 2.1) to (2.17)-(2.21). Then there exists a subsequence of (n(λ), p(λ), V (λ)),
which is not relabeled, such that, as λ→ 0,

n(λ) → n, p(λ) → n strongly in L3(QT ),

n
(λ)
t ⇀ nt, p

(λ)
t ⇀ nt weakly in L42/41(0, T ;H−3(Ω)),

log n(λ) ⇀ log n, log p(λ) ⇀ log n weakly in L2(0, T ;H2(Ω)),

satisfying (2.34)-(2.35).

Let us now shortly explain how to obtain the limit result. The sum of (2.17)-
(2.18) leads to the following weak formulation (for φ a smooth test function):

∫ T

0

< ∂tn+ ∂tp, φ >H−2,H2 dt+
ε2

2

∫

QT

[n(log n)xx + p(log p)xx]φxxdxdt

=

∫

QT

(Pn(n) + Pp(p))φxxdxdt+

∫

QT

(n− p)Vxφxdxdt. (2.36)

Then to show the convergence of (2.17)-(2.21) to (2.34)-(2.35) when λ tends to zero,
we have in particular to prove that the drift term

∫

QT

(n− p)Vxφxdxdt,

in (2.36) tends to zero when λ tends to zero.
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To this end, we use some a priori estimates already obtained for the existence
result, and which are uniform in λ, plus other estimates which are only needed
for showing this limit and whose the proof is more technical. More precisely, we
can show (already for the existence proof) that the ”entropy”

∫

(n − log n)dx is
nonincreasing with respect to time and that the corresponding entropy product
terms provide uniform bounds for log n and log p with respect to λ in L2(0, T,H2(Ω)),
and, for n and p in L7/2(QT ). Also, the entropy

∫

n(log n−1)dx being nonincreasing
in time, it provides the following uniform bounds:

‖n− p‖L2(QT ) ≤ cλ, ‖Vx‖L2(QT ) ≤ cλ−1, (2.37)

where c > 0 is a constant independent of λ. These estimates are sufficient for the
existence result but not for passing to the quasineutral limit. Indeed, using the
Hölder inequality, these estimates lead, for the drift term, to

∫

QT

(n− p)Vxφxdxdt ≤ ‖n− p‖L2(QT )‖Vx‖L2(QT )‖φx‖L∞(QT ) ≤ c,

where c > 0 is still a constant independent of λ. Thus, estimates (2.37) only show
that the drift term is uniformly bounded and it is not sufficient to show that it tends
to zero! The main problem of the proof of the quasineutral limit is then to obtain
that the (negative) electric field Vx is of order O(λ−α) with 0 < α < 1. We are able
to prove in Chapter 7 the following two estimates

‖√n−√
p‖L2(QT ) ≤ cλ, ‖(√n+

√
p)Vx‖L2(QT ) ≤ cλ−8/9, (2.38)

which give for the drift term, using Hölder inequality

∫

QT

(n− p)Vxφxdxdt =

∫

QT

(
√
n−√

p)(
√
n+

√
p)Vxφxdxdt ≤ λ1/9,

and hence, this shows that it tends to zero in the quasineutral limit. See Chapter
7 section 7.3 for more details on the proof of estimates (2.38) and the quasineutral
limit.

Note that taking the difference of equations (2.17) and (2.18) provides in the
formal limit λ→ 0 an equation for the electrostatic potential,

−((n+ p)Vx)x = (Pn(n) − Pp(n))xx in Ω, V (t, 0) = 0, V (t, 1) = U.

However, since Vx is of the order O(λ−1) we cannot justify rigorously this limit
equation. In the drift-diffusion equations, this is possible under some assumptions
(see [70]).



42 Ingrid Violet

Remark 2.6. Note that to show the quasineutral limit, we have to assume also that
nI = pI in Ω, which, with the boundary conditions chosen, avoids any initial or
boundary layer. See for example [67] for the treatment of boundary layers and [52]
for the analysis of initial layers in the drift-diffusion model.

Remark 2.7. To our knowledge, there is no general uniqueness result on the limit
problem.

2.4 Regularity and positivity of solutions to the

limit equation

Let us now consider the equation (2.34) obtained in the quasineutral limit. We
assume here vanishing pressures and ε = 1. Then, we obtain, as mentioned in
section 2.2, the so-called and well-known Derrida-Lebowitz-Speer-Spohn equation
(2.22). Recall that this equation reads

∂tu+ (u(log u)xx)xx = 0. (2.39)

In the last few years, (2.39) has attracted a lot of attention in mathematical
literature. Indeed, it possesses, for example, several Lyapunov functionals, which
allow to obtain a lot of a priori estimates (see [10, 17, 41]), and then it is possible
to obtain some regularity properties for the solutions. Moreover, there are also
connections to logarithmic Sobolev inequalities (see [41] and references therein). Let
us also mention that equation (2.39) can be seen as a one-homogeneous equation
which could be a simple example of a generalization to the heat equation to higher
order operators since the heat equation can be written

∂tu− (u(log u)x)x = 0.

We have already mentioned, in section 2.2 of this Chapter, the two papers [69]
and [59] in which existence of nonnegative global-in-time solutions to (2.39) with ho-
mogeneous and non-homogeneous Dirichlet-Neumann boundary conditions has been
shown. A global-in-time existence result which is available for periodic boundary
conditions has been shown in [41], by using an adaptation of the method used in
[69] and shortly presented in section 2.2 of this Chapter. Concerning the multi-
dimensional case, there exists, to our knowledge, only one result of existence of
global-in-time weak solutions presented in [55].

The long-time behavior of solutions to equation (2.39) has also been studied. In
[17], the case of periodic boundary conditions under restrictive regularity conditions
on the initial data is presented. In [71] this study is concerned with homogeneous
Dirichlet-Neumann boundary conditions and finally in [59] with non-homogeneous
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Dirichlet-Neumann boundary conditions. More precisely the exponential decay of
the solutions to their steady state has been shown in various norms and in terms of
entropy. Numerically, this decay rate has been computed in [18].

Since u in (2.39) stands for a density of charge, it should be possible to show that
it is positive and not only nonnegative as already obtained in the literature. This
question of nonnegative or positive solutions to fourth-order parabolic equations has
already been investigated in the context of lubrication-type equations, like the thin
film equation

∂tu+ (f(u)uxxx)x = 0,

(see e.g. [7, 8]), where typically, f(u) = uα for some α > 0. However this equation
is of degenerate type which makes the analysis easier than for (2.39), at least for
the positivity property. Note that (2.39) is not of degenerate type, and that to our
knowledge, the positivity property problem is still open! There exists only a partial
result which establishes the positivity for small times (see [10]).

We are interested in this positivity problem for at least times large enough. To
prove it, it seems to be necessary to first show additional regularity results to the
ones already proved in the mathematical literature as for example in [41].

Let us consider the equation (2.39) supplemented with periodic boundary con-
ditions and the following initial condition:

u(0, x) = u0(x), x ∈ Ω, (2.40)

where the initial datum u0 satisfies (2.25).
Using a classical way (already presented in section 2.2) and the algorithmic

construction of entropy presented by A.Jüngel and D.Matthes in [63], J.Dolbeault,
I.Gentil and A.Jüngel have first shown in [41] the existence of global-in-time nonneg-
ative weak solutions to this problem. Furthermore, they prove that a global-in-time
solution u to (2.39)-(2.40) satisfies the regularity properties

√
u ∈ L2(0, T ;H3(Ω)) ∩ L∞(0, T ;H1(S1)).

In Chapter 8, we rewrite equation (2.39) under the form

1

α
u1−α∂t(u

α) + (u(log u)xx)xx = 0, (2.41)

by using that 1
α
u1−α∂t(u

α) = ∂tu. Then the usual change of variables u = ey in
(2.41) leads to a different time discretization. Therefore, we need to prove again
an existence result of nonnegative global-in-time weak solutions. More precisely, we
show:
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Theorem 2.3. Let u0 : Ω → IR be a nonnegative measurable function such that
∫

Ω
(u0 − log u0)dx <∞ and u0 ∈ H1(Ω). Let T > 0. We assume that α ∈ [2/53(25−

6
√

10), 1]. Then there exists a global weak solution u of (2.41)-(2.40) satisfying

u ∈ L5/2(0, T ;W 1,1(Ω)), log u ∈ L2(0, T ;H2(Ω)),

u ≥ 0 in Ω × (0,∞),

and for all T > 0 and all smooth functions φ,

∫ T

0

1

α
< (uα)t, φ >H−2,H2 dt+

∫ T

0

∫

Ω

u(log u)xx(u
α−1φ)xxdxdt = 0.

The initial datum is satisfied in the sense of H−2(Ω) := (H2
0 (Ω))∗.

The form of (2.41), its time discretization and the algorithmic construction of
entropy, presented by A.Jüngel and D.Matthes in [63], allow us to obtain new a
priori estimates. They lead, by performing the vanishing time step limit, to the
proof of Theorem 2.3 and to the regularity properties:

Theorem 2.4. Under the assumptions of Theorem 2.3, the solution u verifies

uα ∈ L2(0, T ;H3(Ω)), uα/2 ∈ L∞(0, T ;H1(Ω)), (2.42)

and u ∈ L∞(0, T ;L∞(Ω)),

where α is a real number in the interval I := [2/53(25 − 6
√

10), 1].

We refer to the appendix in Chapter 8 for the justification of the lowest bound
of I.

Let us mention that due to the form of (2.41), performing the vanishing time
step limit is more complicated than in [41]. Indeed, let us multiply (2.41) by uα−1.
Then we obtain the following weak formulation:

1

α

∫ T

0

< ∂t(u
α), φ >H−2,H2 dt+

∫ T

0

∫

Ω

u(log u)xx(u
α−1φ)xxdxdt = 0,

for a smooth test function φ. Then in the discrete problem, the second integral gives
a product of three terms and not only two. In this case, the a priori estimates
obtained and the Aubin’s Lemma are not sufficient to have all the strong necessary
convergences (in the good spaces) to pass to the limit on the time step. Therefore
we also give in Chapter 8 some preliminary results concerned with the strong con-
vergence of a function sequence in Sobolev spaces (available in one-space dimension)
under particular assumptions satisfied by our sequence of solutions to the discrete
problem. We refer to Chapter 8 for more details.
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Remark 2.8. The proof given in Chapter 8 uses strongly the one-space dimension
property. Then it seems difficult to extend the method to the multi-dimensional case.

Using the regularities presented in Theorem 2.4, we can prove the positivity of
solutions to the problem for times large enough. Indeed, one estimate obtained for
the proofs of Theorems 2.3 and 2.4 leads to

‖(uα/2)x‖L∞(0,T ;L2(Ω)) ≤ ce−λT ,

for c, λ > 0 some constants and for all T > 0. Using this inequality and convergence
properties, in the particular case α = 1, we can show that there exist γ > 0 and
t0 > 0 such that for all t > t0 and all x ∈ Ω,

√

u(t, x) ≥ γ > 0.

This means that for times large enough, there exists a positive solution to the
equation (2.39) (we refer to Chapter 8 for more details).
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Part II

Euler-Poisson model
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Chapter 3

Example of supersonic solutions to
a steady state Euler-Poisson
system

This Chapter is an article in collaboration with Yue-Jun Peng published in Applied
Mathematical Letters ([82]).

3.1 Introduction

The Euler-Poisson system plays an important role in the mathematical modeling
and numerical simulation for plasmas and semiconductors [23, 50, 77]. In the steady
state isentropic case the existence and uniqueness of smooth solutions are obtained in
the subsonic region for a one-dimensional flow [35] or potential flows [36]. See also [2]
for the subsonic solutions to a one-dimensional non-isentropic model. In [47, 48], the
stationary transonic solutions are studied by an artificial viscosity approximation.
The existence of the transonic solutions is proved by passing to the limit in the
approximate Euler-Poisson system as the viscosity coefficient goes to zero. However,
the existence of the purely supersonic solutions has not been discussed yet.

In this paper, we give an example of the supersonic solutions in a one-dimensional
steady state Euler-Poisson system :

∂xj = 0, (3.1)

∂x

(

j2

n
+ p(n)

)

= n∂xφ− j/τ, (3.2)

− ∂xxφ = b− n. (3.3)

Equation (3.1) implies that j is a constant. Here, n, j and φ are the electron density,
the current density and the electric potential, respectively. The parameter τ > 0

49



50 Ingrid Violet

stands for the momentum relaxation time depending on n and j in general. For
simplicity, we assume that τ is a constant. The given function b = b(x) is the
doping profile for the semiconductors. The pressure function p = p(n) is assumed to
be smooth and strictly increasing for n > 0. As in [35], we consider equations (3.1)-
(3.3) in the interval (0, 1) subject to the following Dirichlet boundary conditions:

n(0) = n0, n(1) = n1, φ(0) = φ0, φ(1) = φ1, (3.4)

where n0 > 0, n1 > 0 and φ0, φ1 ∈ IR are given data. If n > 0 is a smooth function,
after eliminating φ in (3.2)-(3.3), we obtain a Dirichlet problem for n :

− ∂xxFj(n) − 1

j
∂x

(

1

τn

)

+
1

j2
(n− b) = 0 in (0, 1), (3.5)

n(0) = n0, n(1) = n1, (3.6)

where

Fj(n) =
1

2n2
+
h(n)

j2
with h(n) =

∫ n

1

p′(y)

y
dy.

Once n is solved, from (3.2) φ is given explicitly by :

φ(x) = φ0 + j2(Fj(n(x)) − Fj(n0)) +

∫ x

0

j

τn(y)
dy. (3.7)

Then φ1 is linked with j by the following relation

φ1 = φ0 + j2(Fj(n1) − Fj(n0)) +

∫ 1

0

j

τn(y)
dy. (3.8)

It is easy to see that (n, φ) with n > 0 is a smooth solution of (3.2)-(3.4) if and only
if (n, φ) is a smooth solution of (3.5)-(3.7). Therefore, we may first solve n to the
Dirichlet problem (3.5)-(3.6) and then determine φ by (3.7).

Now the equation (3.5) is elliptic if and only if F ′
j(n) 6= 0. Since p is strictly

increasing, there is a unique nc(j) such that F ′
j(nc(j)) = 0, or equivalently

√

p′(nc(j)) =
|j|
nc(j)

.

Here the quantities c =
√

p′(n) and j/n stand for the speed of sound and the electron
velocity, respectively. If n −→ n2p′(n) is strictly increasing, we obtain the following
alternative :

subsonic flow ⇐⇒ F ′
j(n) > 0 ⇐⇒ n > nc(j) =⇒ (3.5) is elliptic, (3.9)

supersonic flow ⇐⇒ F ′
j(n) < 0 ⇐⇒ n < nc(j) =⇒ (3.5) is elliptic. (3.10)

Note that the linear term n/j2 in (3.5) has not a good sign. Nevertheless, it
is small as j is large and then can be controlled by the L2(0, 1) norm of ∂xn by
Poincaré’s inequality. Similar argument holds for the term ∂x(1/jτn). This is the
main feature of the problem to yield the existence and uniqueness of solutions.
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3.2 Existence of solutions

Assume b ∈ L∞(0, 1). In view of (3.9), the subsonic solutions to (3.2)-(3.4) corre-
spond to the small value of j. They have been considered in [35]. We study here
the supersonic solutions which correspond to the case (3.10). To this end, let M1

and M2 be any two constants satisfying

0 < M1 < min(n0, n1), max(n0, n1) < M2. (3.11)

Choosing j such that nc(j) > M2, then (3.10) and (3.11) imply that the boundary
data n0 and n1 are in the supersonic region. Since the maximum principle can not
be applied to (3.5) in the supersonic region, the solutions of (3.5)-(3.6) may not be
supersonic flow. To seek for a supersonic solution, we define a smooth and strictly
decreasing function F̃j on IR+ such that

F̃j(+∞) = 0, F̃j(n) = Fj(n) for all n ≤M2.

Then we study the following problem instead of (3.5)-(3.6) :

− ∂xxF̃j(n) − 1

j
∂x

(

1

τn

)

+
1

j2
(n− b) = 0 in (0, 1), (3.12)

n(0) = n0, n(1) = n1. (3.13)

Our strategy is to prove the existence of a smooth solution n to (3.12)-(3.13) such
that 0 < n ≤M2. Then n is a supersonic solution of (3.5)-(3.6) by the definition of
F̃j.

Since F̃j is smooth and strictly decreasing from IR+ to IR+, we may make a
change of variable v = F̃j(n) for n > 0. Let Gj be the inverse of F̃j, which is also
smooth and strictly decreasing from IR+ to IR+. Then the problem (3.12)-(3.13) is
equivalent to

− ∂xxv −
1

j
∂x

(

1

τGj(v)

)

+
1

j2
(Gj(v) − b) = 0 in (0, 1), (3.14)

v(0) = v0j = Fj(n0), v(1) = v1j = Fj(n1). (3.15)

To study the problem (3.14)-(3.15), we will apply Schauder’s fixed point theorem.
For this purpose, let’s define a closed convex set

S = {v ∈ C([0, 1]); Fj(M2) ≤ v ≤ Fj(M1)},

and a map T by v = T (σ) for σ ∈ S, where v solves the linear problem :

− ∂xxv +
1

jτ
αj(σ)∂xv +

1

j2
βj(x, σ) = 0 in (0, 1), (3.16)



52 Ingrid Violet

v(0) = v0j, v(1) = v1j, (3.17)

with

αj(σ) =
G′

j(σ)

G2
j(σ)

=
1

G2
j(σ)F̃ ′

j(Gj(σ))
, βj(x, σ) = Gj(σ) − b(x).

We observe that σ ∈ S implies that

Fj(M2) ≤ σ ≤ Fj(M1).

From F̃j(σ) = Fj(σ) for σ ≤M2, we have

M1 ≤ Gj(σ) ≤M2.

Therefore, from the definition of Fj, there is a j1 > 0 depending only on M1 and M2

such that αj and βj are two bounded functions with bounds depending on M1 and
M2 but independent of j and σ for any j ∈ IR satisfying |j| ≥ j1.

For v ∈ H1(0, 1) and z ∈ H1
0 (0, 1), let

a(v, z) =

∫ 1

0

(

∂xv∂xz +
1

jτ
αj(σ)z∂xv

)

dx, l(z) = − 1

j2

∫ 1

0

βj(x, σ)zdx.

It is clear that l(·) is linear and continuous on H1
0 (0, 1), and a(·, ·) is bilinear and

continuous on H1
0 (0, 1) ×H1

0 (0, 1). Moreover, by Poincaré’s inequality,

a(z, z) =

∫ 1

0

(

(∂xz)
2 +

1

jτ
αj(σ)z∂xz

)

dx

≥ ||∂xz||2L2(0,1) −
1

|j|τ ||αj||L∞(0,1)||z||L2(0,1)||∂xz||L2(0,1)

≥
(

1 − C1

|j|τ ||αj||L∞(0,1)

)

||∂xz||2L2(0,1), ∀ z ∈ H1
0 (0, 1),

where C1 > 0 is the constant in Poincaré’s inequality. Then there exists a j2 ≥
2C1

τ
||αj||L∞(0,1) depending only on M1 and M2 such that

a(z, z) ≥ 1

2
||∂xz||2L2(0,1), ∀ |j| ≥ j2, ∀ z ∈ H1

0 (0, 1). (3.18)

Therefore, a(·, ·) is coercive. By Lax-Milgram’s theorem, there exists a unique so-
lution v ∈ H1(0, 1) to the variational problem a(v, z) = l(z), ∀ z ∈ H1

0 (0, 1) and
(3.17). This shows that the map T is well defined.

We prove now that T (S) is a compact set of C([0, 1]). Indeed, let vj = (1 −
x)v0j + xv1j. Then v − vj ∈ H1

0 (0, 1). From the continuity of l(·) and a(·, ·), the
coercivity estimate (3.18) and

a(v − vj, v − vj) = l(v − vj) − a(vj, v − vj),
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it is easy to obtain

||∂x(v − vj)||L2(0,1) ≤
2C1

j2
||βj||L∞(0,1) +

2C1

|j|τ ||αj||L∞(0,1)||∂xvj||L2(0,1). (3.19)

Recall that αj and βj are bounded independent of σ. We conclude from Poincaré’s
inequality and the compact imbedding from H1(0, 1) into C([0, 1]) that T (S) is a
compact set of C([0, 1]). Moreover, there are constants C2 > 0 and j3 ≥ j2 which
depend only on M1 and M2 such that

|v(x) − vj(x)| ≤
C2

|j| , ∀ |j| ≥ j3, ∀ x ∈ [0, 1].

Since
Fj(max(n0, n1)) ≤ vj(x) ≤ Fj(min(n0, n1)), ∀ x ∈ [0, 1],

it follows that

Fj(max(n0, n1)) −
C2

|j| ≤ v(x) ≤ Fj(min(n0, n1)) +
C2

|j| , ∀ |j| ≥ j3, ∀ x ∈ [0, 1].

The function n −→ Fj(n) being strictly decreasing for n ≤M2, from (3.11) there is
a j4 ≥ j3 depending only on M1 and M2 such that

Fj(M2) ≤ v(x) ≤ Fj(M1), ∀ |j| ≥ j4, ∀ x ∈ [0, 1]. (3.20)

Hence, v ∈ S and then T is a self map from S to S. Finally, the continuity of T
follows from a standard argument. More precisely, for σ1, σ2 ∈ S, we can prove that
there is a constant C3 > 0 depending only on M1 and M2 such that

(

1 − C3

|j|τ

)

||T (σ1) − T (σ2)||C([0,1]) ≤
C3

|j|τ ||σ1 − σ2||C([0,1]).

Thus, T is continuous for |j| > j5 = max(j4, C3/τ). We conclude from Schauder’s
fixed point theorem the existence of a solution v ∈ H1(0, 1) ∩ S of v = T (v).

This shows the existence of a solution v ∈ H1(0, 1) ∩ S to the problem (3.14)-
(3.15), and then the existence of a solution n = Gj(v) ∈ H1(0, 1) to the problem
(3.12)-(3.13). Since v = F̃j(n) = Fj(n) for n ≤M2, from (3.20) we obtain

M1 ≤ n(x) ≤M2, ∀ |j| ≥ j5, ∀ x ∈ [0, 1]. (3.21)

Therefore, n ∈ H1(0, 1) is a supersonic solution to the problem (3.5)-(3.6). Thus,
we have proved

Theorem 3.1. Let n0 > 0 and n1 > 0. Let M1, M2 be two constants satisfying
(3.11) and b ∈ L∞(0, 1). Then there exists a je > 0 depending only on M1 and M2

such that for any current density j satisfying |j| ≥ je, the problem (3.2)-(3.4) admits
a solution (n, φ) ∈ H1(0, 1) × H1(0, 1). This solution is located in the supersonic
region and satisfies (3.21).
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3.3 Uniqueness of solutions

There doesn’t exist a general result on the uniqueness of solutions when the boundary
data are located in the supersonic region. Indeed, for large j the formation of shocks
cannot be avoided and the transonic solutions should be investigated. We refer to
[47, 48] for the analysis of the transonic solutions. Here we give a uniqueness result
in the supersonic region for large j. This result can be stated as follows.

Theorem 3.2. Let M1 and M2 be two constants with 0 < M1 < M2. Let (n(1), φ(1))
and (n(2), φ(2)) be two supersonic solutions of (3.2)-(3.3) in H1(0, 1)×H1(0, 1) with
M1 ≤ n(1), n(2) ≤ M2. Then there exists a ju > 0 depending only on M1 and M2

such that for any current density j ∈ IR satisfying |j| ≥ ju, we have (n(1), φ(1)) =
(n(2), φ(2)).

Proof. In view of (3.7), it suffices to show that n(1) = n(2). Let w = n(2) − n(1). By
subtracting the equation (3.5) satisfied by n(1) and n(2) we obtain :

∂xx(Aj(x)w) +
1

jτ
∂x(B(x)w) +

1

j2
w = 0 in (0, 1), (3.22)

where

Aj(x) = −
∫ 1

0

∂Fj

∂n

(

n(1)(x) + s
(

n(2)(x) − n(1)(x)
))

ds,

1

M2
2

≤ B(x) =
1

n(1)n(2)
≤ 1

M2
1

in (0, 1).

From

F ′
j(n) = − 1

n3
+
h′(n)

j2
,

it is easy to check that there are constants C4 > 0 and j6 > 0 which depend only on
M1 and M2 such that

Aj(x) ≥ C4, ∀ |j| ≥ j6, ∀ x ∈ [0, 1].

Multiplying (3.22) by Ajw ∈ H1
0 (0, 1) and integrating over (0, 1) give :

∫ 1

0

[∂x(Aj(x)w)]2 dx =

∫ 1

0

(

− 1

jτ
B(x)w∂x(Aj(x)w) +

1

j2
Aj(x)w

2

)

dx.

It follows from Poincaré’s inequality that :

||∂x(Ajw)||2L2(0,1) ≤
1

C4

(

C0

M2
1 |j|τ

+
C2

0

j2

)

||∂x(Ajw)||2L2(0,1).

This shows that Ajw = 0 and then w = 0 provided that |j| ≥ j7 for some large
j7 > 0 depending only on M1 and M2.



Chapter 4

Asymptotic expansions in a steady
state Euler-Poisson system and
convergence to incompressible
Euler equations

This Chapter is an article in collaboration with Yue-Jun Peng published in the
review M3AS ([81]).

4.1 Introduction

The Euler-Poisson system is a hydrodynamic model widely used in the mathemati-
cal modeling and numerical simulation for plasmas [23] and semiconductors [77]. It
consists of two nonlinear equations given by the conservation of density and momen-
tum, called Euler equations, plus a Poisson equation for the electric potential. Due
to the nonlinear hyperbolicity, the weak solution of the transient Euler equations
is only studied in one space dimension. In such a situation, the existence of global
weak solutions can be shown in the set of bounded functions.

In this paper, we study a steady state unipolar model for electrons. Then the
corresponding Euler-Poisson system reads as follows :

− div(nu) = 0, (4.1)

εdiv(nu⊗ u) + ∇p(n) = n∇φ− εnu

τ
, (4.2)

− λ2∆φ = b(x) − n. (4.3)

This system will be studied in an open and bounded domain Ω of IRd (d = 2 or
d = 3 in practice). Here n = n(x), u = u(x) and φ = φ(x) stand for the electron
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density, electron velocity and electric potential, respectively. The given functions
b = b(x) is the doping profile for semiconductors and ion density for the plasmas, and
p = p(n) is the pressure function. We assume that b and p are smooth functions, p
is strictly increasing for n > 0, and there is a constant b > 0 such that : b(x) ≥ b for
all x ∈ Ω̄. The physical parameters λ, ε and τ stand for the Debye length, electron
mass and relaxation time of the system, respectively. They are small compared with
the characteristic length of physical interest. Therefore, it is important to give the
mathematical justification of these limits. Notice that for the plasmas, the ions are
usually much heavier than the electrons. Therefore the electron mass ε here should
be understood as the ratio of the electron mass and ion mass.

In the sequel, we study independently the zero-electron-mass limit ε → 0 and
zero-relaxation-time limit τ → 0 when λ > 0 is fixed. For simplicity, we assume
that λ = 1.

We consider the case of a potential flow, curlu = 0. Then by introducing the
velocity potential ψ defined by u = −∇ψ and using

div(nu⊗ u) =
n

2
∇|∇ψ|2 + udiv(nu),

we obtain from (4.1)-(4.2) :

∇
(1

2
|∇ψ|2 + h(n) − φ

)

= ∇ψ,

where h is the enthalpy of the system defined by :

h(n) =

∫ n

1

p′(y)

y
dy.

Hence, for smooth solutions, the system (4.1)-(4.3) can be written in the form :

− div(n∇ψ) = 0, (4.4)

ε

2
|∇ψ|2 + h(n) = φ+

εψ

τ
, (4.5)

− ∆φ = b(x) − n. (4.6)

Equation (4.5) is the Bernoulli law. Eliminating φ from (4.4) and (4.6) and using
(4.5), we have

−∆h(n) +
ε

n

d
∑

i,j=1

∂ψ

∂xi

∂ψ

∂xj

∂2n

∂xi∂xj

− ε

τn
∇ψ.∇n− ε

n2
(∇ψ.∇n)2

+
ε

n

d
∑

i,j=1

∂ψ

∂xi

∂2ψ

∂xi∂xj

∂n

∂xj

+ n− b(x) = Q(ψ), (4.7)
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where Q is given by

Q(ψ) =
d
∑

i,j=1

(

∂2ψ

∂xi∂xj

)2

. (4.8)

For n > 0 it is easy to see that (n, ψ, φ) is a smooth solution to the system (4.4)-(4.6)
if and only if (n, ψ) is a smooth solution to the system (4.4) and (4.7). Moreover,
for given ψ, the equation (4.7) is elliptic if and only if the flow is subsonic, i.e., the
condition |∇ψ| <

√

p′(n)/ε holds.
For each limit of the system (4.4)-(4.6), we supplement the Dirichlet boundary

conditions. In the case of the zero electron mass limit, we associate to the system
(4.4)-(4.6) (where τ = 1) the following boundary conditions :

n =
m
∑

k=0

εkn̄k + nm+1
D,ε , ψ =

m
∑

k=0

εkψ̄k + ψm+1
D,ε on Γ

def
= ∂Ω, (4.9)

where nm+1
D,ε and ψm+1

D,ε are smooth enough and defined in Ω̄ such that nm+1
D,ε =

O(εm+1) and ψm+1
D,ε = O(εm+1) uniformly in ε. In the case of the zero relaxation

time limit, we first make a change of variable and then associate to the new system
the following boundary conditions :

n =
m
∑

k=0

τ 2kn̄k + nm+1
D,τ , ψ =

m+1
∑

k=0

τ 2kψ̄k + ψm+1
D,τ on Γ, (4.10)

with similar assumptions on the data to those used in the zero electron mass limit.
For fixed ε and τ , the existence and uniqueness of solutions to the system (4.4)-

(4.6) have been already shown in the space

B
def
= W2,q(Ω) × C2,δ(Ω̄) × C1,δ(Ω̄)

for small Dirichlet data on the velocity potential (see [36]) by using the equivalent
system (4.4) and (4.7). The smallness condition on the data guarantees that the
problem is located in the subsonic region. In [80] it is shown that this smallness
condition corresponds to the smallness of ε. Then the existence and uniqueness of
solutions hold for large data provided that ε is small enough. Furthermore, there is
given a result of convergence and an error estimate for an asymptotic expansion on
ε up to first order of the solution in the same space.

The quasineutral limit λ → 0 has been studied by a lot of authors. In one-
dimensional steady state Euler-Poisson system it was performed in [95] for well-
prepared boundary data and in [79] for general boundary data. The steady problem
in several space variables for a potential flow without the formation of boundary
layers was investigated in [80]. In [29], by using pseudo-differential techniques, the
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quasineutral limit was studied for local smooth solutions of an one-dimensional and
isothermal model for plasmas in which the electron density is described by the
Maxwell-Boltzmann relation. This relation can be obtained in the zero electron
mass limit of the Euler-Poisson equations which we will discuss below (Remark 4.1).
See also [14] for the study of the quasi-neutral limit in a semi-linear Poisson equation
in which the Maxwell-Boltzmann relation is also used.

The zero relaxation time limit in one dimensional transient Euler-Poisson system
has been investigated in [76] and [65, 66] by the compensated compactness arguments
for global weak solutions. The limit system is governed by the classical drift-diffusion
model. In multi-dimensional case and for local smooth solutions this limit has been
studied in [74] and [1]. See also [53] for a combined zero relaxation time and vanishing
Debye length limit and the references therein.

In this paper, we study the zero-electron-mass limit and zero-relaxation-time
limit in the subsonic region by the method of asymptotic expansions. For each limit,
we justify the asymptotic expansions in the space B up to any order by using the
elliptic properties. As applications of the asymptotic expansions up to second order,
we establish in both limits the convergence of the Euler-Poisson system (4.4)-(4.6) to
the incompressible Euler equations with explicit pressure expressed by the profiles.
Notice that the convergence of the Euler-Poisson system to the incompressible Euler
equations has been already shown via the quasi-neutral limit when the Dirichlet
boundary data are well prepared (see [80] and [83]).

Finally, let us mention the main differences between this paper and [85] where
the convergence of the compressible Euler-Poisson equations to the incompressible
Euler equations was also proved. Paper [85] dealt with the quasi-neutral limit in
the transient Euler-Poisson system which is hyperbolic. Although the constructions
of the profiles in the asymptotic expansions are similar, the limit equations and
the justifications of the expansions are quite different in the two papers. In [85],
the symmetric hyperbolic property and high order energy estimates are used for
local smooth solutions to the Cauchy problem in the space C(0, T ;Hs(IR)), whereas
in this paper, only the elliptic properties are employed for the Dirichlet boundary
problem.

The remainder of the paper is arranged as follows. In Sections 4.2, 4.3, we
consider the zero electron mass limit. We begin, in Section 4.2, with the asymptotic
expansions of solutions to the problem by determining its all order profile. In Section
4.3, we justify the asymptotic expansions up to orderm and establish error estimates
of order εm+1 for each variable. Section 4.4 is devoted to the zero relaxation time
limit. We obtain in a same way the error estimates of order τ 2(m+1) for an asymptotic
expansion up to order m. Finally, in the last section, we give applications of these
results by showing the convergence of the system (4.4)-(4.6) to the incompressible
Euler equations for each limit ε→ 0 and τ → 0.
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4.2 Asymptotic expansion

4.2.1 Derivation of the profile equations

Let τ = 1. We consider the limit ε→ 0 in the steady state Euler-Poisson system for
the potential flow, i.e., the system (4.4)-(4.6) associated to the Dirichlet boundary
conditions (4.9).

We assume that :

(A1) Ω is a bounded and convex domain of IRd with Γ = ∂Ω ∈ C2,δ, δ ∈]0, 1[,

(A2) p ∈ Cm+4(IR+), m ∈ IN, p′(n) > 0 ∀ n > 0,

(A3) b ∈ L∞(Ω), 0 < b ≤ b(x),

(A4) n̄k ∈ W2,q(Ω) for q > d
1−δ

and ∀ 0 ≤ k ≤ m, 0 < n ≤ n̄0(x) ∀x ∈ Γ,

(A5) ψ̄k ∈ C2,δ(Ω̄), ∀ 0 ≤ k ≤ m,

(A6) the sequence (ε−(m+1)nm+1
D,ε )ε>0 is bounded in W2,q(Ω),

(A7) the sequence (ε−(m+1)ψm+1
D,ε )ε>0 is bounded in C2,δ(Ω̄).

Let (na,ε, ψa,ε, φa,ε) be defined by the following ansatz :

na,ε =
∑

k≥0

εknk, ψa,ε =
∑

k≥0

εkψk, φa,ε =
∑

k≥0

εkφk in Ω, (4.11)

with the boundary conditions :

na,ε =
∑

k≥0

εkn̄k, ψa,ε =
∑

k≥0

εkψ̄k on Γ. (4.12)

Plugging the expression (4.11) into the system (4.4)-(4.6), we obtain formally

− div

(

(

∑

k≥0

εknk

)

∇
(

∑

k≥0

εkψk

)

)

= 0, (4.13)

ε

2

∣

∣

∣

∣

∣

∇
(

∑

k≥0

εkψk

)

∣

∣

∣

∣

∣

2

+ h
(

∑

k≥0

εknk

)

=
∑

k≥0

εkφk + ε
∑

k≥0

εkψk, (4.14)

− ∆

(

∑

k≥0

εkφk

)

= b(x) −
∑

k≥0

εknk. (4.15)
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Now, we seek for the system and boundary conditions for each profile (nk, ψk, φk).
Obviously,

div

(

(

∑

k≥0

εknk

)(

∑

k≥0

εk∇ψk

)

)

=
∑

k≥0

εk

k
∑

i=0

div(ni∇ψk−i),

∣

∣

∣

∣

∣

∇
(

∑

k≥0

εkψk

)

∣

∣

∣

∣

∣

2

=
∑

k≥0

εk
(

k
∑

i=0

∇ψi.∇ψk−i

)

and by the Taylor’s formula,

h

(

∑

k≥0

εknk

)

=
∑

k≥0

εkhk(n),

where n = (ni)i≥0 and

hk(n) =
1

k!

dkh(
∑

k≥0 ε
knk)

dεk

∣

∣

∣

ε=0
, k ≥ 0.

It is immediate that

hk(n) = h′(n0)nk + h̄k

(

(ni)0≤i≤k−1

)

, k ≥ 1,

where hk is of class Cm−k+3 with h̄1 ≡ 0. It follows that :

h
(

∑

k≥0

εknk

)

= h(n0) +
∑

k≥1

εkh′(n0)nk +
∑

k≥2

εkh̄k

(

(ni)0≤i≤k−1

)

.

Then by identification of the order in ε in the problem (4.13)-(4.15) and (4.12),
we obtain the system for each (nk, ψk, φk), k ≥ 0. More precisely, the first order
(n0, ψ0, φ0) satisfies the nonlinear problem in Ω :

− div(n0∇ψ0) = 0, (4.16)

h(n0) = φ0, (4.17)

− ∆φ0 = b(x) − n0, (4.18)

with the following boundary conditions :

n0 = n̄0, ψ0 = ψ̄0 on Γ. (4.19)

For all k ≥ 1, (nk, ψk, φk) is obtained by induction on k in the following linear
problem in Ω :

− div(n0∇ψk) =
k
∑

i=1

div(ni∇ψk−i), (4.20)
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h′(n0)nk − φk = fk, (4.21)

− ∆φk = −nk, (4.22)

with the boundary conditions :

nk = n̄k, ψk = ψ̄k on Γ, (4.23)

where

fk = ψk−1 −
1

2

k−1
∑

i=0

∇ψk−1−i.∇ψi − h̄k((ni)0≤i≤k−1). (4.24)

Remark 4.1. Equation (4.17) expresses a Maxwell-Boltzmann type relation. In-
deed, for the isothermal plasma, the pressure is a linear function. Then p(n) = a2n
with a > 0. This implies from the definition of h that h(n) = a2 log n and hence,
from (4.17) n0 = exp(φ0/a

2). This is the classical Maxwell-Boltzmann relation
which has been used in [14, 29] and [87] for the study of the quasi-neutral limit.

4.2.2 Existence and uniqueness of the profiles

Now we show that each problem (4.16)-(4.19) and (4.20)-(4.23) has a unique solution.
We start by the problem (4.16)-(4.19). Eliminating φ0 in (4.18) by (4.17), we obtain
the nonlinear problem on n0 :

∆h(n0) − n0 = −b(x) in Ω, (4.25)

n0 = n̄0 on Γ. (4.26)

Since p is smooth and strictly increasing, so is h. By the assumptions (A2)-(A4) and
Lemmas 9.15 and 9.17 in [56] or Lemma 2.2 in [36], this problem admits a unique
solution n0 ∈ W2,q(Ω). Furthermore, the maximum principle gives :

n0(x) ≥ min

(

min
x∈Ω

b(x),min
x∈Γ

n̄0(x)

)

≥ nmin
def
= min(b, n) > 0, ∀ x ∈ Ω. (4.27)

Then, (4.17) gives a unique φ0 ∈ W2,q(Ω). Finally, since the injection W2,q(Ω) →֒
C1,δ(Ω̄) is continuous for q > d

1−δ
(see assumption (A4)), the equation (4.16) and the

boundary condition in (4.19) provide a unique solution ψ0 ∈ C2,δ(Ω̄) (see Theorem
6.6, [56]). Hence, we have determined a unique solution (n0, ψ0, φ0) to the problem
(4.16)-(4.19) in W2,q(Ω) × C2,δ(Ω̄) ×W2,q(Ω).

Now we consider the problem (4.20)-(4.23). Assume that for some k ≥ 1 we know
all (nj, ψj, φj) ∈ B for 0 ≤ j ≤ k− 1, solutions of the problem (4.16)-(4.19) if j = 0
or (4.20)-(4.23) in which k is replaced by j ≥ 1. Eliminating φk in (4.21)-(4.22) we
obtain the following linear problem for nk :

∆(h′(n0)nk) − nk = ∆fk in Ω, (4.28)
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nk = n̄k on Γ. (4.29)

Notice that ∆fk contains the third order derivatives of (ψi)0≤i≤k−1. Since n→ h(n)
is strictly increasing for n > 0, from (4.27), in order to show the existence of a unique
solution n ∈ W2,q(Ω) of the linear problem (4.28)-(4.29), we have to establish the
following result.

Lemma 4.1. Let m ≥ 1 and 1 ≤ k ≤ m. Assume that (nj, ψj) ∈ W2,q(Ω)×C2,δ(Ω̄)
for all 0 ≤ j ≤ k − 1. Then, fk ∈ C1,δ(Ω̄) and ∆fk ∈ Lq(Ω).

Proof. By (4.24) and the continuous injection W2,q(Ω) →֒ C1,δ(Ω̄) it is clear that
fk ∈ C1,δ(Ω̄). To prove ∆fk ∈ Lq(Ω) it suffices to show that ∆fk can be expressed
as a function of at most second order derivatives of (ni)0≤i≤k−1 and (ψi)0≤i≤k−1, and
the second order derivative of (ni)0≤i≤k−1 in ∆fk is linear. Since

∆fk = ∆ψk−1 −
1

2
∆

(

k−1
∑

i=0

∇ψk−1−i.∇ψi

)

− ∆h̄k((ni)0≤i≤k−1)

and

∆ (∇ψk−1−i.∇ψi) = ∇(∆ψk−1−i).∇ψi + ∇(∆ψi).∇ψk−1−i

+2
d
∑

l,j=1

∂2ψk−1−i

∂xl∂xj

∂2ψi

∂xl∂xj

,

by the assumptions and the regularity of h̄k, the problem is reduced to show that
for all k ≥ 1, ∆ψk can be expressed as a function of at most first order derivatives
of (ni)0≤i≤k−1 and (ψi)0≤i≤k−1, and the first order derivative of (ni)0≤i≤k−1 in ∆ψk

is linear. Indeed, from (4.16) we have :

∆ψ0 =
1

n0

∇n0.∇ψ0.

Then the assertion is true for k = 0. Assume it is true for all 0 ≤ i ≤ k − 1. From
(4.20) we obtain :

−∆ψk =
1

n0

k
∑

i=0

(∇nk−i.∇ψi) +
1

n0

k−1
∑

i=0

(nk−i∆ψi).

This shows the assertion for k and the result follows.

Consequently, for all 0 ≤ k ≤ m, the linear problem (4.28)-(4.29) has a unique
solution nk ∈ W2,q(Ω). Hence, (4.21) gives a unique φk ∈ C1,δ(Ω̄), and finally the
linear equation (4.20) with the boundary condition for ψk in (4.23) defines a unique
solution ψk ∈ C2,δ(Ω̄). In summary, we have :
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Theorem 4.1. Let m ∈ IN and the assumptions (A1)-(A5) hold. Then there exists
a unique asymptotic expansion (4.11) up to order m, i.e., for all 0 ≤ k ≤ m, there
exists a unique profile (nk, ψk, φk) ∈ B, solution to the problem (4.16)-(4.19) if k = 0
or (4.20)-(4.23) if 1 ≤ k ≤ m. Moreover, n0(x) ≥ nmin for all x ∈ Ω.

4.3 Justification of the asymptotic expansion

4.3.1 The main result

Let (nε, ψε, φε) be a smooth solution of (4.4)-(4.6), (4.9) and (nm
a,ε, ψ

m
a,ε, φ

m
a,ε) be

approximate solution of order m defined by :

nm
a,ε =

m
∑

k=0

εknk, ψm
a,ε =

m
∑

k=0

εkψk, φm
a,ε =

m
∑

k=0

εkφk, (4.30)

where (nk, ψk, φk)0≤k≤m is the unique solution of (4.16)-(4.19) for k = 0 and (4.20)-
(4.23) for 1 ≤ k ≤ m.

One of the goals of this paper is to show the following result.

Theorem 4.2. Let (nε, ψε, φε) be the solution of the problem (4.4)-(4.6), (4.9) and
(nm

a,ε, ψ
m
a,ε, φ

m
a,ε) be the approximate solution given by the asymptotic expansion (4.30).

Let the assumptions (A1)-(A7) hold. Then there exists ε0 > 0 such that for all
ε ∈ (0, ε0], we have the following estimates :

‖nε − nm
a,ε‖W2,q(Ω) ≤ A1ε

m+1, ‖ψε − ψm
a,ε‖C2,δ(Ω̄) ≤ A1ε

m+1

and
‖φε − φm

a,ε‖C1,δ(Ω̄) ≤ A1ε
m+1,

where A1 > 0 is a constant independent of ε.

4.3.2 Derivation of the problem on (nε−nm

a,ε
, ψε−ψm

a,ε
, φε−φm

a,ε
)

First, since (nε, ψε, φε) is the solution of (4.4)-(4.6) and (4.9), we have in Ω :

− div(nε∇ψε) = 0, (4.31)

ε

2
|∇ψε|2 + h(nε) = φε + εψε, (4.32)

− ∆φε = b(x) − nε (4.33)

and

nε =
m
∑

k=0

εkn̄k + nm+1
D,ε , ψε =

m
∑

k=0

εkψ̄k + ψm+1
D,ε on Γ. (4.34)
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Now we determine the system verified by the approximate solution (nm
a,ε, ψ

m
a,ε, φ

m
a,ε).

Since

div(nm
a,ε∇ψm

a,ε) =
m
∑

k=0

εk

( k
∑

i=0

div(ni∇ψk−i)

)

+ εm+1Dε
1,

where

Dε
1 =

2m
∑

k=m+1

(

εk−m−1

m
∑

i=k−m

div(ni∇ψk−i)
)

, (4.35)

from (4.16) and (4.20), we have :

− div(nm
a,ε∇ψm

a,ε) = −εm+1Dε
1. (4.36)

Similarly,
ε

2
|∇ψm

a,ε|2 + h(nm
a,ε) = φm

a,ε + εψm
a,ε − εm+1Dε

2, (4.37)

− ∆φm
a,ε = b(x) − nm

a,ε, (4.38)

nm
a,ε =

m
∑

k=0

εkn̄k, ψm
a,ε =

m
∑

k=0

εkψ̄k on Γ, (4.39)

where

Dε
2 = −1

2

2m
∑

k=m

(

εk−m

m
∑

i=k−m

∇ψi.∇ψk−i

)

− rε(n) + ψm (4.40)

and

rε(n) =
1

(m+ 1)!

dm+1h(nm
a,ξ)

dεm+1
with ξ ∈ [0, ε]. (4.41)

By subtraction of the systems (4.31)-(4.34) and (4.36)-(4.39), we obtain in Ω :

− div(nε∇ψε) + div(nm
a,ε∇ψm

a,ε) = εm+1Dε
1, (4.42)

ε

2
(|∇ψε|2 − |∇ψm

a,ε|2) + h(nε) − h(nm
a,ε) = φε − φm

a,ε + ε(ψε − ψm
a,ε)

+εm+1Dε
2, (4.43)

− ∆(φε − φm
a,ε) = −(nε − nm

a,ε) (4.44)

and
nε − nm

a,ε = nm+1
D,ε , ψε − ψm

a,ε = ψm+1
D,ε on Γ. (4.45)

Eliminating φε − φm
a,ε in (4.43)-(4.44), we obtain finally the following system in Ω :

ε

2
∆(|∇ψε|2 − |∇ψm

a,ε|2) + ∆(h(nε) − h(nm
a,ε)) = nε − nm

a,ε + ε∆(ψε − ψm
a,ε)

+εm+1∆Dε
2, (4.46)

− div((nε − nm
a,ε)∇ψε + nm

a,ε∇(ψε − ψm
a,ε)) = εm+1Dε

1. (4.47)
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4.3.3 Some preliminary results

In what follows, Ci > 0 (i ≥ 1) denote different constants independent of ε. We
give some preliminary results for the proof of Theorem 4.2. Lemma 4.2 is a direct
consequence of the existence and uniqueness of solutions to the system (4.31)-(4.33)
with Dirichlet data bounded in W2,q(Ω)×C2,δ(Ω̄). Its proof can be found in [80]. The
system (4.46)-(4.47) contains also the third order derivatives which can be treated
in a similar way as that for ∆fk (Lemma 4.3). The key estimate is given in Lemma
4.4 These results allow us to justify rigorously the asymptotic expansion (4.11) in
B.

Lemma 4.2. Under the assumptions (A1)-(A7), there exists ε1 > 0 such that for
all ε ∈ [0, ε1] the problem (4.31)-(4.34) has a unique solution (nε, ψε, φε) ∈ B with
nε ≥ nmin > 0. Furthermore, the sequence of solutions (nε, ψε, φε)ε>0 is bounded in
B.

Lemma 4.3. Assume that (ni, ψi) ∈ W2,q(Ω)×C2,δ(Ω̄) for all 0 ≤ i ≤ m. Then the
sequences (∇Dε

1)ε>0 and (∆Dε
2)ε>0 are bounded in Lq(Ω).

Proof. We only prove Lemma 4.3 for the sequence (∇Dε
1)ε>0 since the proof is similar

for the sequence (∆Dε
2)ε>0. By the definition of Dε

1 in (4.35), we have :

∇Dε
1 =

2m
∑

k=m+1

εk−m−1

m
∑

i=k−m

(∇ni∆ψk−i + ∇(∇ni.∇ψk−i) + ni∇(∆ψk−i)),

in which the third order derivatives appear only in the terms ∇(∆ψk−i) for m+1 ≤
k ≤ 2m and k −m ≤ i ≤ m, i.e., in the terms of the form ∇(∆ψk) for 1 ≤ k ≤ m.
Furthermore, it is easy to check that the second order derivative of (ni)0≤i≤m in
∇Dε

1 is linear. Since (ni, ψi) ∈ W2,q(Ω) × C2,δ(Ω̄) for all 0 ≤ i ≤ m, from the proof
of Lemma 4.1 we know that ∆ψk can be expressed as a function of at most first
order derivatives of (ni)0≤i≤k−1 and (ψi)0≤i≤k−1, and the first order derivative of
(ni)0≤i≤k−1 in ∆ψk is linear. This shows that the sequence (∇Dε

1)ε>0 is bounded in
Lq(Ω).

Lemma 4.4. Let Iε = 1
2
∆(|∇ψε|2 − |∇ψm

a,ε|2). Under the assumption (ni, ψi) ∈
W2,q(Ω)×C2,δ(Ω̄) for all 0 ≤ i ≤ m, there exists a constant C > 0 independent of ε
such that :

‖Iε‖Lq(Ω) ≤ C
(

‖ψε − ψm
a,ε‖C2,δ(Ω̄) + ‖nε − nm

a,ε‖W2,q(Ω) + εm+1
)

. (4.48)

Proof. From the relation :

1

2
∆(|∇ψ|2) = ∇ψ.∇(∆ψ) +Q(ψ),
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where Q(ψ) is defined in (4.8), we obtain :

Iε = ∇ψε.∇(∆ψε) −∇ψm
a,ε.∇(∆ψm

a,ε) +Q(ψε) −Q(ψm
a,ε)

= ∇ψm
a,ε.∇(∆ψε − ∆ψm

a,ε) + ∇(ψε − ψm
a,ε).∇(∆ψε) +Q(ψε) −Q(ψm

a,ε).

Noting (4.27) and ni ∈ W2,q(Ω) (0 ≤ i ≤ m), for ε > 0 small enough we have
nm

a,ε > n∗, where n∗ > 0 depends only on nmin and m. It follows from (4.31) and
(4.36) that :

∆ψε = −∇nε

nε

∇ψε,

∆ψm
a,ε = −∇nm

a,ε

nm
a,ε

∇ψm
a,ε + εm+1Dε

1.

Then,

∆ψε − ∆ψm
a,ε =

∇nm
a,ε

nm
a,ε

.∇ψm
a,ε −

∇nε

nε

.∇ψε − εm+1Dε
1

=
∇nm

a,ε

nm
a,ε

.∇(ψm
a,ε − ψε) +

(∇nm
a,ε

nm
a,ε

− ∇nε

nε

)

.∇ψε − εm+1Dε
1

=
∇nm

a,ε

nm
a,ε

.∇(ψm
a,ε − ψε) + ∇(lnnm

a,ε − lnnε).∇ψε − εm+1Dε
1.

This gives :

Iε = ∇ψm
a,ε.∇

[

∇nm
a,ε

nm
a,ε

.∇(ψm
a,ε − ψε) + ∇(lnnm

a,ε − lnnε).∇ψε − εm+1Dε
1

]

+∇(ψm
a,ε − ψε).∇

(∇nε

nε

.∇ψε

)

+Q(ψε) −Q(ψm
a,ε).

By Lemma 4.2 and Theorem 4.1, since (nε)ε>0 and (nm
a,ε)ε>0 are bounded in W2,q(Ω)

and (ψε)ε>0 and (ψm
a,ε)ε>0 are bounded in C2,δ(Ω̄), we deduce from the continuous

injection from W2,q(Ω) to C1,δ(Ω̄) that :

‖Q(ψε) −Q(ψm
a,ε)‖Lq(Ω) ≤ C1‖ψε − ψm

a,ε‖C2,δ(Ω̄)

and
‖ lnnε − lnnm

a,ε‖W2,q(Ω) ≤ C2‖nε − nm
a,ε‖W2,q(Ω).

Hence,

‖Iε‖Lq(Ω) ≤ C3

(

‖ψε − ψm
a,ε‖C2,δ(Ω̄) + ‖nε − nm

a,ε‖W2,q(Ω) + εm+1‖∇Dε
1‖Lq(Ω)

)

.

This ends the proof of Lemma 4.4, by using Lemma 4.3
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4.3.4 Proof of Theorem 4.2

Let
Fε = Iε − ∆(ψε − ψm

a,ε) − εm∆Dε
2

Then the equation (4.46) can be written as :

− ∆(h(nε) − h(nm
a,ε)) + (nε − nm

a,ε) = εFε. (4.49)

By Lemmas 4.3 and 4.4, we have :

‖Fε‖Lq(Ω) ≤ C4

(

‖ψε − ψm
a,ε‖C2,δ(Ω̄) + ‖nε − nm

a,ε‖W2,q(Ω) + εm
)

.

Moreover, under the assumption (A6), the Lemmas 9.15 and 9.17 in [56] applied to
the equation (4.49) and the boundary condition (4.45) give :

‖h(nε) − h(nm
a,ε)‖W2,q(Ω) ≤ C5

(

ε‖ψε − ψm
a,ε‖C2,δ(Ω̄) + ε‖nε − nm

a,ε‖W2,q(Ω) + εm+1
)

.

Noting that h is smooth and strictly increasing, we have :

C6‖nε − nm
a,ε‖W2,q(Ω) ≤ ‖h(nε) − h(nm

a,ε)‖W2,q(Ω).

We conclude that for ε small enough :

‖nε − nm
a,ε‖W2,q(Ω) ≤ C7

(

ε‖ψε − ψm
a,ε‖C2,δ(Ω̄) + εm+1

)

. (4.50)

Next, we rewrite the equation (4.46) under the form :

− ∆(ψε − ψm
a,ε) −

∇nm
a,ε

nm
a,ε

.∇(ψε − ψm
a,ε) = gε, (4.51)

where

gε =
1

nm
a,ε

div
(

(nε − nm
a,ε)∇ψε

)

+
εm+1

nm
a,ε

Dε
1.

From (4.50) and the continuous injection from W2,q(Ω) to C1,δ(Ω̄), we have :

‖gε‖C0,δ(Ω̄) ≤ C8

(

ε‖ψε − ψm
a,ε‖C2,δ(Ω̄) + εm+1

)

.

Hence, from the assumption (A7), Theorem 6.6 in [56] shows that the solution ψε of
the equation (4.51) associated to the boundary condition given in (4.45) satisfies :

‖ψε − ψm
a,ε‖C2,δ(Ω̄) ≤ C9

(

ε‖ψε − ψm
a,ε‖C2,δ(Ω̄) + εm+1

)

.
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We deduce that, for all ε small enough, (for example ε ≤ 1/2C9) :

‖ψε − ψm
a,ε‖C2,δ(Ω̄) ≤ C10ε

m+1,

which yields from (4.50) :

‖nε − nm
a,ε‖W2,q(Ω) ≤ C11ε

m+1.

Finally, (4.43) gives :
‖φε − φm

a,ε‖C1,δ(Ω̄) ≤ C12ε
m+1.

This completes the proof of Theorem 4.2. �

4.4 Zero relaxation time limit

In this section we deal with the zero relaxation time limit τ → 0 in the system (4.4)-
(4.6). We present the results and omit the proofs since they are similar to those
of Sections 4.2, 4.3. To simplify the presentation, we make the following change of
variable :

nτ = n, ψτ =
ψ

τ
, φτ = φ.

Then from (4.4)-(4.6), (nτ , ψτ , φτ ) satisfies :

− div(nτ∇ψτ ) = 0, (4.52)

ε

2
τ 2|∇ψτ |2 + h(nτ ) = φτ + εψτ , (4.53)

− ∆φτ = b(x) − nτ . (4.54)

We associate to this system the following Dirichlet boundary conditions :

nτ =
m
∑

k=0

τ 2kn̄k + nm+1
D,τ , ψτ =

m
∑

k=0

τ 2kψ̄k + ψm+1
D,τ on Γ, (4.55)

where nm+1
D,τ and ψm+1

D,τ satisfy the following conditions :

(A6)’ the sequence (τ−2(m+1)nm+1
D,τ )τ>0 is bounded in W2,q(Ω).

(A7)’ the sequence (τ−2(m+1)ψm+1
D,τ )τ>0 is bounded in C2,δ(Ω̄).

Similar to Lemma 4.2, if the assumptions (A1)-(A5) and (A6)’-(A7)’ hold, we can
prove that there is a ε2 > 0 independent of τ such that for all ε ∈ (0, ε2], the problem
(4.52)-(4.55) has a unique solution (nτ , ψτ , φτ ) in B with nτ ≥ nmin > 0. Moreover,
the sequences (nτ )τ>0, (ψτ )τ>0 and (φτ )τ>0 are bounded in W2,q(Ω), C2,δ(Ω̄) and
C1,δ(Ω̄), respectively. We refer to [80] for details.
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4.4.1 Asymptotic expansion

In view of the system (4.52)-(4.54), it is natural to consider the ansatz defined by :

na,τ =
∑

k≥0

τ 2knk, ψa,τ =
∑

k≥0

τ 2kψk, φa,τ =
∑

k≥0

τ 2kφk. (4.56)

Plugging (4.56) into the system (4.52)-(4.54) and comparing the orders in τ 2, we
have :

The first order profile (n0, ψ0, φ0) satisfies the nonlinear drift-diffusion system in
Ω :

− div(n0∇ψ0) = 0, (4.57)

h(n0) = φ0 + εψ0, (4.58)

− ∆φ0 = b(x) − n0, (4.59)

with the following boundary conditions :

n0 = n̄0, ψ0 = ψ̄0 on Γ. (4.60)

For all k ≥ 1, (nk, ψk, φk) satisfies the linearized drift-diffusion system in Ω :

− div(n0∇ψk) =
k
∑

i=1

div(ni∇ψk−i), (4.61)

h′(n0)nk − φk − εψk = −ε
2

k−1
∑

i=0

∇ψk−1−i.∇ψi − h̄k((ni)0≤i≤k−1), (4.62)

− ∆φk = −nk, (4.63)

with the boundary conditions :

nk = n̄k, ψk = ψ̄k on Γ. (4.64)

Now we show that each problem (4.57)-(4.60) and (4.61)-(4.64) for all k ≥ 1 has
a unique solution in B when the parameter ε > 0 is small enough. First, eliminating
φ0 in (4.58)-(4.59), we have :

∆h(n0) − n0 − ε∆ψ0 = −b(x).

It follows from (4.57) that :

∆h(n0) − n0 −
ε∇n0

n0

.∇ψ0 = −b(x). (4.65)
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The system (4.57), (4.65) is a simplified version of (4.4) and (4.7). Then applying the
Schauder’s fixed point Theorem, this system associated to the boundary conditions
given in (4.60) admits a unique solution (n0, ψ0) ∈ W2,q(Ω)× C2,δ(Ω̄) provided that
ε > 0 is small enough (see [80]). Furthermore, the maximum principle implies :

n0(x) ≥ nmin > 0, ∀ x ∈ Ω.

Next, we determine a unique φ0 ∈ W2,q(Ω) from (4.58). This shows the existence
and uniqueness of (n0, ψ0, φ0). By induction and an analogous method used above,
we show that the linear problem (4.61)-(4.64), for all k ≥ 1, has a unique solution
(nk, ψk, φk) ∈ B.

Hence, we have proved the following theorem.

Theorem 4.3. Let m ∈ IN. Assume that the assumptions (A1)-(A5) hold. Then,
there exists ε3 > 0 and a unique asymptotic expansion (4.56) up to order m for all
ε ∈ (0, ε3], i.e., for all 0 ≤ k ≤ m, there exists a unique profile (nk, ψk, φk) ∈ B,
solution of the problem (4.57)-(4.60) if k = 0 or (4.61)-(4.64) if 1 ≤ k ≤ m.
Moreover, n0(x) ≥ nmin for all x ∈ Ω.

4.4.2 Justification of the asymptotic expansion

Let us define (nm
a,τ , ψ

m
a,τ , φ

m
a,τ ) by :

nm
a,τ =

m
∑

k=0

τ 2knk, ψm
a,τ =

m
∑

k=0

τ 2kψk, φm
a,τ =

m
∑

k=0

τ 2kφk, (4.66)

where (n0, ψ0, φ0) is the unique solution of the problem (4.57)-(4.60) and (nk, ψk, φk)
is the unique solution of (4.61)-(4.64) for all 1 ≤ k ≤ m. Similar to the arguments
used in Section 4.3, we obtain :

− div(nm
a,τ∇ψm

a,τ ) = −τ 2(m+1)Eτ
1 , (4.67)

ε

2
τ 2|∇ψm

a,τ |2 + h(nm
a,τ ) = φm

a,τ + εψm
a,τ − τ 2(m+1)Eτ

2 , (4.68)

− ∆φm
a,τ = b(x) − nm

a,τ , (4.69)

where

Eτ
1 =

2m
∑

k=m+1

(

τ 2(k−m−1)

m
∑

i=k−m

div(ni∇ψk−i)
)

,

Eτ
2 = −ε

2

2m
∑

k=m

(

τ 2(k−m)

m
∑

i=k−m

∇ψi.∇ψk−i

)

− sτ (n),
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sτ (n) =
1

(m+ 1)!

dm+1h(nm
a,ξ)

d(τ 2)m+1
with ξ ∈ [0, τ ].

It follows that
−div(nτ∇ψτ ) + div(nm

a,τ∇ψm
a,τ ) = τm+1Eτ

1 ,

ε

2
τ 2(|∇ψτ |2 − |∇ψm

a,τ |2) + h(nτ ) − h(nm
a,τ ) = φτ − φm

a,τ + ε(ψτ − ψm
a,τ ) + τm+1Eτ

2 ,

−∆(φτ − φm
a,τ ) = −(nτ − nm

a,τ )

in Ω with the boundary conditions

nτ − nm
a,τ = nm+1

D,τ , ψτ − ψm
a,ε = ψm+1

D,τ on Γ.

These equations are similar to (4.42)-(4.45). Like Lemma 4.3, we can show
that the sequences (∇Eτ

1 )τ>0 and (∆Eτ
2 )τ>0 are bounded in Lq(Ω). Then from the

assumptions (A6)’ and (A7)’, we obtain the following convergence result similar to
Theorem 4.2.

Theorem 4.4. Let (nτ , ψτ , φτ ) be the solution of the problem (4.52)-(4.55) and
(nm

a,τ , ψ
m
a,τ , φ

m
a,τ ) be the approximate solution given by (4.66). Under the assumptions

(A1)-(A5) and (A6)’-(A7)’, there exists ε4 > 0 independent of τ ∈ (0, 1) such that
for all ε ∈ (0, ε4] we have the following error estimates :

‖nτ − nm
a,τ‖W2,q(Ω) ≤ A2τ

2(m+1), ‖ψτ − ψm
a,τ‖C2,δ(Ω̄) ≤ A2τ

2(m+1)

and
‖φτ − φm

a,τ‖C1,δ(Ω̄) ≤ A2τ
2(m+1),

where A2 > 0 is a constant independent of ε and τ.

4.5 Convergence to the incompressible Euler equa-

tions

As applications of Theorems 4.2 and 4.4, we show in this section that when the
boundary data are compatible with the function b, the velocity u = −∇ψ in each
limit satisfies the incompressible Euler equations, in which the pressures are deter-
mined as functions of the profiles (n1, ψ1, φ1) in both cases. To see this property,
we assume in what follows b(x) ≡ 1. From the discussion below it is easy to see
that for general function b, the velocity u in the zero electron mass limit satisfies
formally some compressible type Euler equations with given density determined by
a nonlinear Poisson equation. However, the justification of this limit remains open
in the time-dependent problem.
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4.5.1 Via the zero electron mass limit

Let (nε, uε, φε) be a smooth solution of the steady state Euler-Poisson system (4.1)-
(4.3) with τ = λ = 1. Then :

− div(nεuε) = 0, (4.70)

εdiv(nεuε ⊗ uε) + ∇p(nε) = nε∇φε − εnεuε, (4.71)

− ∆φε = 1 − nε. (4.72)

For nε > 0, the equation (4.71) is equivalent to :

(uε.∇)uε +
1

ε
∇(h(nε) − φε) + uε = 0.

If we take the following ansatz :

nε = 1 + εn1 +O(ε2),

uε = u0 + εu1 +O(ε2),

φε = φ0 + εφ1 +O(ε2),

then it is easy to see that φ0 = h(1) and u0 satisfies the incompressible Euler
equations :

(u0.∇)u0 + u0 + ∇P = 0, divu0 = 0, (4.73)

where the pressure P is defined by :

P = h′(1)n1 − φ1. (4.74)

This formal analysis can be easily extended to the transient Euler-Poisson system.
For the potential flow, if we take n̄0 = 1, then by Theorem 4.1 the problem

(4.16)-(4.19) has a unique solution (n0, ψ0, φ0) given by :

n0 = 1, φ0 = h(1) (4.75)

and
− div(∇ψ0) = 0 in Ω, ψ0 = ψ̄0 on Γ. (4.76)

Hence, u0 = −∇ψ0 satisfies the incompressible Euler equations (4.73) with P =
h′(1)n1 − φ1, where (n1, ψ1, φ1) is the unique solution of the problem (4.20)-(4.23)
for k = 1. By Theorem 4.2, we have :

‖ψε − ψ0‖C2,δ(Ω̄) ≤ A1ε.

Then, the velocity uε = −∇ψε satisfies :

‖uε − u0‖C1,δ(Ω̄) ≤ A1ε. (4.77)

In summary, we have obtained :
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Corollary 4.1. Let b(x) ≡ 1, n̄0(x) ≡ 1 and the assumptions (A1)-(A7) hold for
m = 1. Then the sequence of solutions (nε, ψε, φε)ε>0 of the problem (4.4)-(4.6)
and (4.9) converges, as ε tends to 0, to (n0, ψ0, φ0) in B, where (n0, ψ0, φ0) is the
unique solution of the problem (4.75)-(4.76). Moreover, u0 = −∇ψ0 satisfies the
incompressible Euler equations (4.73) in which P is defined by (4.74) and (n1, ψ1, φ1)
is the unique solution of the problem (4.20)-(4.23) for k = 1. Furthermore, the
estimate (4.77) holds.

4.5.2 Via the zero relaxation time limit

Let (n, u, φ) be a smooth solution of the steady state Euler-Poisson system (4.1)-
(4.3) with λ = 1. As above, we make the following change of variable :

nτ = n, uτ =
u

τ
, φτ = φ.

If nτ > 0, then (nτ , uτ , φτ ) satisfies :

− div(nτuτ ) = 0, (4.78)

ετ 2(uτ .∇)uτ + ∇(h(nτ ) − φτ ) + εuτ = 0, (4.79)

− ∆φτ = 1 − nτ . (4.80)

If we take the following ansatz :

nτ = 1 + τ 2n1 +O(τ 4),

uτ = u0 + τ 2u1 +O(τ 4),

φτ = φ0 + τ 2φ1 +O(τ 4),

then it is easy to see that ∆φ0 = 0 and u0 satisfies the incompressible Euler equa-
tions :

(u0.∇)u0 + ∇P = 0, divu0 = 0, (4.81)

where

∇P =
1

ε
∇(h′(1)n1 − φ1) + u1.

This formal analysis can also be extended to the transient Euler-Poisson equations.
For the potential flow, if we take n̄0 = 1, then the problem (4.57)-(4.60) has a

unique solution (n0, ψ0, φ0) given by :

n0 = 1, φ0 = h(1) − εψ0 (4.82)

and
− div(∇ψ0) = 0 in Ω, ψ0 = ψ̄0 on Γ. (4.83)
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Then, u0 = −∇ψ0 satisfies the incompressible Euler equations (4.81) with

P =
1

ε
(h′(1)n1 − φ1) − ψ1, (4.84)

where (n1, ψ1, φ1) is the unique solution of the problem (4.61)-(4.64) for k = 1. By
Theorem 4.4, we have :

‖ψτ − ψ0‖C2,δ(Ω̄) ≤ A2τ
2.

Therefore, the velocity uτ = −∇ψτ satisfies :

‖uτ − u0‖C1,δ(Ω̄) ≤ A2τ
2. (4.85)

In summary, we have obtained :

Corollary 4.2. Let b(x) ≡ 1, n̄0(x) ≡ 1 and the assumptions (A1)-(A5) and
(A6)’-(A7)’ hold for m = 1. Then for all ε ∈ (0, ε4], the sequence of solutions
(nτ , ψτ , φτ )τ>0 of the problem (4.52)-(4.55) converges, as τ tends to 0, to (n0, ψ0, φ0)
in B, where (n0, ψ0, φ0) is the unique solution of the problem (4.82)-(4.83). More-
over, u0 = −∇ψ0 satisfies the incompressible Euler equations (4.81) with P being
defined by (4.84) and (n1, ψ1, φ1) being the unique solution of the problem (4.61)-
(4.64) for k = 1. Furthermore, the estimate (4.85) holds.



Chapter 5

High order expansions in
quasineutral limit of the
Euler-Poisson system for a
potential flow

This Chapter is an article accepted for publication in the Royal Society of Edinburgh
Proceedings A (Mathematics) ([96]).

5.1 Introduction

The hydrodynamic model is widely used in mathematical modeling and numerical
simulation for plasmas [23] and semiconductors [77]. It consists in two non linear
equations given by the conservation laws of momentum and density, called Euler
equations, plus a Poisson equation for the electrostatic potential. Due to the hyper-
bolicity of the transient non linear Euler equations, the weak solution is only studied
in one space dimension. In such a situation, the existence of global weak solution is
shown in the set of bounded functions [76].

In this paper we only consider the unipolar steady-state case for a potential flow.
Then the Euler-Poisson system reads as follows (see [36, 80, 81] (Chapter 4 here)) :

ε

2
|∇ψ|2 + h(n) = φ+

εψ

τ
, (5.1)

−div(n∇ψ) = 0, (5.2)

−λ2∆φ = b(x) − n. (5.3)

This system will be studied in an open and bounded domain Ω in IRd (d=2 or d=3 in
practice) with sufficiently smooth boundary Γ. Here n = n(x), ψ = ψ(x), φ = φ(x)

75
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represent respectively the electron density, the velocity potential and the electro-
static potential. The function h = h(n) is the enthalpy for the system and is defined
by :

h′(n) =
p′(n)

n
, n > 0, and h(1) = 0,

where p = p(n) is the pressure function, supposed to be sufficiently smooth and
strictly increasing for n > 0. The function b = b(x) represents the doping profile
for a semiconductor and the ion density for a plasma. The parameters λ, ǫ, τ repre-
sent respectively the scaled Debye length, electron mass and relaxation time of the
system. They are dimensionless and small compared to the characteristic length of
physical interest. Then it is important to study the limits λ → 0, ǫ → 0, τ → 0. In
[81] (Chapter 4) we used asymptotic expansions to study the zero-electron-mass limit
and the zero-relaxation-time limit and to show the convergence of the Euler-Poisson
system to the incompressible Euler equations. Here we study the quasineutral limit
λ → 0. In all the following we take τ ≡ 1 and we keep ε > 0 as a small parameter
independent of λ in the equations.

By eliminating φ of (5.1) and (5.3) and using (5.2) we have :

∆h(n) − ε

n

d
∑

i,j=1

ψxi
ψxj

nxixj
+

ε

n2
(∇ψ.∇n)2 +

ε

n
(∇ψ.∇n)

− ε

n

d
∑

i,j=1

ψxi
ψxixj

nxj
− 1

λ2
(n− b) + εQ(ψ) = 0. (5.4)

where Q is given by :

Q(ψ) =
d
∑

i,j=1

ψ2
xixj

. (5.5)

For n > 0, it is easy to see that (n, ψ, φ) is a smooth solution to the system (5.1)-
(5.3) if and only if (n, ψ) is a smooth solution to (5.2) and (5.4). Moreover, for
ψ given, the equation (5.4) is elliptic if and only if the flow is subsonic, i.e., the
condition |∇ψ| <

√

p′(n)/ε holds.

We supplement the system (5.1)-(5.3) by Dirichlet boundary conditions :

n =
m
∑

j=0

λjnj
D + nm

D,λ, ψ =
m
∑

j=0

λjψj
D + ψm

D,λ, on Γ = ∂Ω, (5.6)

where nm
D,λ and ψm

D,λ are smooth enough and defined on Ω̄.
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The Euler-Poisson system and its asymptotic limits have been studied by a lot of
authors. In [36] it is shown the existence and uniqueness of solutions for a potential
flow under an assumption on the smallness of data, which implies that the problem
is in the subsonic region. In [80] the author shows that the smallness condition
corresponds to the smallness of ε. Then the existence and uniqueness hold for large
data provided that ε is small enough.

The quasineutral limit has been studied in several special cases. In one-dimensional
steady-state Euler-Poisson system it was performed in [95] for well-prepared bound-
ary data. The steady problem in several space variables for a potential flow without
the formation of boundary layers was investigated in [80]. In [29] the authors use
pseudo-differential techniques to study this limit in transient Euler-Poisson model.
The quasineutral limit has also been studied in the bipolar case in the drift-diffusion
equations (see [51, 52, 67]). See also [14] for the study of this limit in a semi-
linear Poisson equation in which the electron density is described by the Maxwell-
Boltzmann relation. This relation is also used in [29].

The zero-electron-mass limit (ε→ 0) and the zero-relaxation-time limit (τ → 0)
have also been studied a lot. See [1, 65, 81] for different results on these two limits.
In [53], the authors study the combined relaxation-time limit and the vanishing
Debye length.

This article is based on the method of asymptotic expansions presented in [83].
In [83] the justification of these asymptotic expansions is only given up to first order
in the one-dimensional case. Here we will give their justification up to any order in
the multidimensional case by using the Schauder fixed point Theorem. The main
difficulty is to verify the assumptions in this theorem which are achieved by the
Leray Schauder fixed point Theorem.

The paper is organized as follow. In Section 2, we give the formal asymptotic
expansions and the systems verified by each boundary layer profiles under our as-
sumptions. Section 3 is devoted to the justification up to any order of the asymptotic
expansions.

5.2 Formal asymptotic expansions

In this section we study the formal asymptotic expansions of a solution to (5.1)-
(5.3). We use for this the method of asymptotic expansions presented in [83]. We
assume :

(H1) b ∈ C∞(Ω̄), 0 < n ≤ b(x) ≤ n̄, x ∈ Ω̄, n, n̄ ∈ IR,

(H2) nj
D ∈ C∞(Ω̄) for 0 ≤ j ≤ m,

(H3) ψj
D ∈ C2,δ(Ω̄) for 0 ≤ j ≤ m,

(H4) n0
D(x) = b(x), n1

D(x) = 0, x ∈ Ω̄,
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(H5) (λ−m−1nm
D,λ)λ>0 is bounded in W 2,q(Ω), q > d

1−δ
, δ ∈ (0, 1),

(H6) (λ−m+1ψm
D,λ)λ>0 is bounded in C2,δ(Ω̄).

The assumption (H4) is a compatibility condition for the first and second order
terms. It assures that there will not appear any boundary layers in these two terms.
The case without any compatibility conditions presents some difficulties which we
didn’t succeed in this study (see Remark 5.1).

5.2.1 Internal expansion

Let :
n(x) =

∑

k≥0

λknk(x); ψ(x) =
∑

k≥0

λkψk(x); φ(x) =
∑

k≥0

λkφk(x).

We inject this into (5.1)-(5.3) and obtain :

ε

2
|∇
(

∑

k≥0

λkψk(x)
)

|2 + h
(

∑

k≥0

λknk(x)
)

=
∑

k≥0

λkφk(x) + ε
∑

k≥0

λkψk(x),(5.7)

−div
(

∑

k≥0

λknk(x)∇
(

∑

k≥0

λkψk(x)
))

= 0, (5.8)

−λ2∆
(

∑

k≥0

λkφk(x)
)

= b(x) −
∑

k≥0

λknk(x), in Ω. (5.9)

Formally,

div
(

∑

k≥0

λknk(x)∇
(

∑

k≥0

λkψk(x)
))

=
∑

k≥0

λk

( k
∑

i=0

div(ni∇ψk−i)

)

,

|∇
(

∑

k≥0

λkψk(x)
)

|2 =
∑

k≥0

λk

( k
∑

i=0

∇ψi.∇ψk−i

)

,

h
(

∑

k≥0

λknk(x)
)

=
∑

k≥0

λkhk(n),

where n = (ni)i≥0 and :

hk(n) =
1

k!

dkh
(
∑

k≥0 λ
knk

)

dλk
∣

∣

∣

∣

λ=0

, k ≥ 0.

As shown in [81] (Chapter 4): hk(n) = h′(n0)nk + h̄k((ni)0≤i≤k−1), k ≥ 1 where h̄k

is smooth and h̄1 ≡ 0. Then :

h(nλ) = h(n0) +
∑

k≥1

λkh′(n0)nk +
∑

k≥2

λkh̄k((ni)0≤i≤k−1).
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Hence the system (5.7)-(5.9) becomes :

ε

2

∑

k≥0

λk

( k
∑

i=0

∇ψi.∇ψk−i

)

+ h(n0) +
∑

k≥1

λkh′(n0)nk +
∑

k≥2

λkh̄k((ni)0≤i≤k−1)

=
∑

k≥0

λkφk(x) + ε
∑

k≥0

λkψk(x), (5.10)

−
∑

k≥0

λk

( k
∑

i=0

div(ni∇ψk−i)

)

= 0, (5.11)

−
∑

k≥2

λk∆φk−2 = b(x) −
∑

k≥0

λknk. (5.12)

We identify the order in λ and obtain the system verified by (nk, ψk, φk) for all
k. For k = 0 we have :

φ0 = −ε
2
|∇ψ0|2 − h(n0) + εψ0, (5.13)

div(n0∇ψ0) = 0, (5.14)

n0 = b(x). (5.15)

For k = 1 we have :

φ1 = −ε∇ψ0.∇ψ1 − h′(n0)n1 + εψ1, (5.16)

−div(n0∇ψ1) = div(n1∇ψ0), (5.17)

n1 = 0. (5.18)

And for k ≥ 2 :

φk = −ε
2

k
∑

i=0

∇ψi.∇ψk−i − h′(n0)nk − h̄k((ni)0≤i≤k−1) + εψk, (5.19)

−div(n0∇ψk) =
k
∑

i=1

div(ni∇ψk−i), (5.20)

nk = ∆φk−2. (5.21)

All the profiles (nk, ψk, φk) can be determined, uniquely and sufficiently smooth, by
induction on k with boundary conditions given later. First, we obtain n0 by (5.15),
then we have ψ0 by (5.14) and φ0 by (5.13). We use the same way for determin-
ing the solutions of (5.16)-(5.18) and (5.19)-(5.21). Then the internal solution is
constructed. For m ≥ 2 let us denote :

nλ
I,m =

m
∑

k=0

λknk; ψ
λ
I,m =

m
∑

k=0

λkψk; φ
λ
I,m =

m
∑

k=0

λkφk.
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By construction, if (nk, ψk, φk) are smooth enough, then the error equations are of
order O(λm+1). Since nk = ∆φk−2, for k ≥ 2, and is not necessarily equal to nk

D on
Γ, then a boundary layer can appear.

5.2.2 External expansion

We follow the notations in [46]. For x ∈ Ω, we note t(x) the distance from Γ to x
and s(x) the point of Γ nearest from x. For θ > 0, let Ωθ be the boundary layer of
size θ :

Ωθ = {x ∈ Ω; |x− y| < θ, y ∈ Γ}.
If θ is small enough, s(x) is defined uniquely for all x ∈ Ωθ. In Ωθ, we define the
fast variable by ξ(x, λ) = t(x)/λ. For x ∈ Ωθ, let ν(x) = (ν1, ..., νd) the unit interior-
directional normal vector of Γ passing from x. Then from :

t(x) = ‖x− s(x)‖, x− s(x) = t(x)ν(x),

and due to the fact that for all i = 1, ..., d, ∂s(x)/∂xi is orthogonal to ν(x), it is easy
to see that ∇xt = ν(x). Hence the partial derivative of a function w(s(x), ξ(x, λ))
may be decomposed as :

∂w(s(x), ξ(x, λ))

∂xi

= λ−1νi
∂w

∂ξ
+Diw, (5.22)

where Di is a first order differential operator in s defined by : Diw = ∇sw.
∂s
∂xi
.

Similarly :

∂2w(s(x), ξ(x, λ))

∂xi∂xj

= λ−2νi
∂2w

∂ξ2
+ λ−1Dji

∂w

∂ξ
+DjDiw + ∇sw.

∂2s

∂xi∂xj

, (5.23)

where Dji = νiDj + νjDi + ∂νi/∂xj. Note that for all i, j we have : Dji = Dij.
For every function w(x) defined in Ωθ the equivalent function of (s, t) is desig-

nated by w̃ i.e. w(x) = w̃(s(x), t(x)) = w̃(s(x), λξ(x, λ)).We develop w̃(s(x), λξ(x, λ))
formally to obtain :

w̃(s(x), λξ(x, λ)) = w̃(s(x), 0) +O(λ).

Let w̄(s) = w̃(s, 0). Then the ansatz of an approximate solution up to order m of
(5.1)-(5.3) in Ωθ are given by :

ñλ
a,m(x) = nλ

I,m(x) + ñλ
B,m(s(x), ξ(x, λ)),

ψ̃λ
a,m(x) = ψλ

I,m(x) + ψ̃λ
B,m(s(x), ξ(x, λ)),

φ̃λ
a,m(x) = φλ

I,m(x) + φ̃λ
B,m(s(x), ξ(x, λ));
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where the boundary layers (ñλ
B,m, ψ̃

λ
B,m, φ̃

λ
B,m) have the expansions :

ñλ
B,m =

m
∑

k=0

λknb
k, ψ̃

λ
B,m =

m+1
∑

k=0

λkψb
k, φ̃

λ
B,m =

m
∑

k=0

λkφb
k,

in which each term (nb
k(s, ξ), ψ

b
k(s, ξ), φ

b
k(s, ξ)) will be chosen to decay exponentially

when ξ tends to +∞. They are determined by setting (ñλ
a,m, ψ̃

λ
a,m, φ̃

λ
a,m) in (5.1)-(5.3)

and by identification of the order in λ. Let ∂/∂ν =
∑d

i=1 νi∂/∂xi. After computation
we obtain :

ψb
0 ≡ 0,

the system for (nb
0, ψ

b
1, φ

b
0) :

(S0)































(n̄0 + nb
0)
∂2ψb

1

∂ξ2
+

(

∂ψ̄0

∂ν
+
∂ψb

1

∂ξ

)

∂nb
0

∂ξ
= 0,

ε

2

(

∂ψb
1

∂ξ

)2

+ ε
∂ψb

1

∂ξ

∂ψ̄0

∂ν
+ h(n̄0 + nb

0) − φb
0 = φ̄0 + εψ̄0,

∂2φb
0

∂ξ2
= nb

0,

and the system for (nb
k, ψ

b
k+1, φ

b
k) with k ≥ 1 :

(Sk)











































ε
∂ψb

k+1

∂ξ

(

∂ψb
1

∂ξ
+
∂ψ̄0

∂ν

)

+ h′(n̄0 + nb
0)n

b
k − φb

k = F1,k(n
b
l , ψ

b
l+1, 0 ≤ l ≤ k − 1),

(n̄0 + nb
0)
∂2ψb

k+1

∂ξ2
+

(

∂ψ̄0

∂ν
+
∂ψb

1

∂ξ

)

∂nb
k

∂ξ
+ nb

k

∂2ψb
1

∂ξ2
+
∂nb

0

∂ξ

∂ψb
k+1

∂ξ
=

F2,k(n
b
l , ψ

b
l+1, 0 ≤ l ≤ k − 1),

−∂
2φb

k

∂ξ2
+ nb

k = F3,k(φ
b
l , k − 1 ≤ l ≤ k − 2),

where Fi,k, i = 1, 2, 3, are given functions of (nb
l , ψ

b
l+1)0≤l≤k−1 for F1,k, F2,k, and of

(φb
l )k−1≤l≤k−2 for F3,k.
Hence the approximate solution is constructed in Ωθ. To complete the definition

of the approximate solution in Ω̄, let σ ∈ C∞(0,∞) be a smooth function such that
σ(t) = 1 for 0 ≤ t ≤ θ/2 and σ ≡ 0 for t ≥ θ and we define :

(nλ
B,m(x), ψλ

B,m(x), φλ
B,m(x)) =

{

(ñλ
B,m(s(x), t(x)/λ), ψ̃λ

B,m(s(x)t(x)/λ), φ̃λ
B,m(s(x)t(x)/λ))σ(t(x)), for x ∈ Ωθ,

0, for x ∈ Ω − Ωθ.

Then, (nλ
B,m, ψ

λ
B,m, φ

λ
B,m) has the same regularity as (ñλ

B,m, ψ̃
λ
B,m, φ̃

λ
B,m). If each

(nb
k(s, ξ), ψ

b
k(s, ξ), φ

b
k(s, ξ)) decays exponentially when ξ tends to +∞ it is easy to
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see that the difference between (nλ
B,m, ψ

λ
B,m, φ

λ
B,m) and (ñλ

B,m, ψ̃
λ
B,m, φ̃

λ
B,m) is uniform

of order of e−µ/λ for a constant µ > 0.
Finally, the boundary conditions (5.6) give for s ∈ Γ :

n0 = n0
D, n1 = n1

D, n
b
0(s, 0) = nb

1(s, 0) = 0, n̄k(s) + nb
k(s, 0) = nk

D, k ≥ 2, (5.24)

ψ0 = ψ0
D, ψ1 = ψ1

D, ψ2 = ψ2
D, ψ

b
1(s, 0) = ψb

2(s, 0) = 0, ψ̄k(s) + ψb
k(s, 0) = ψk

D, k ≥ 3.
(5.25)

We refer to [83] for the scheme of determination of (nk, ψk, φk, n
b
k, ψ

b
k+1, φ

b
k). We

can show under the assumption (H4) :

nb
0 = nb

1 = ψb
1 = ψb

2 = 0.

The approximate solution up to order m is constructed in the form :

(na
λ, ψ

a
λ, φ

a
λ) = (nλ

I,m + nλ
B,m, ψ

λ
I,m + ψλ

B,m, φ
λ
I,m + φλ

B,m), in Ω̄. (5.26)

By construction : na
λ =

∑m
k=0 λ

knk
D, ψ

a
λ =

∑m
k=0 λ

kψk
D on Γ and :

na
λ = n0 +

m
∑

j=2

λj(nj + nb
j), (5.27)

ψa
λ = ψ0 + λψ1 + λ2ψ2 +

m
∑

j=3

λj(ψj + ψb
j) + λm+1ψb

m+1. (5.28)

The existence and uniqueness of boundary layers (nb
k, ψ

b
k+1) with exponential

decay have been shown in [83] for each k ≥ 0. Thus we obtain,

Theorem 5.1. Under the assumptions (H1)-(H6), there exists a unique asymptotic
expansion (5.26) up to order m, sufficiently smooth, satisfying (5.27)-(5.28).

5.3 Justification of the quasineutral limit

We have seen in the introduction that (5.1)-(5.3), (5.6) is equivalent to (5.1)-(5.2),
(5.4), (5.6). The main result of this paper is :

Theorem 5.2. Under the assumption (H1)-(H6), for λ small enough, there is an
ε0 > 0 independent of λ such that for all ε ∈ [0, ε0], the problem (5.2), (5.4), (5.6)
has a solution (nλ, ψλ) ∈ W 2,q(Ω) × C2,δ(Ω̄) which satisfies :

‖nλ − na
λ‖W 2,q(Ω) ≤ Aλm−1, ‖ψλ − ψa

λ‖C2,δ(Ω̄) ≤ Aλm−1, (5.29)

where A is a constant independent of λ.
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Remark 5.1. Using equation (5.1), the continuity of h and the estimates from
Theorem 5.2, we can easily show, for λ small enough :

‖φλ − φa
λ‖C1,δ(Ω̄) ≤ Aλm−1,

where A is a constant independent of λ.

Remark 5.2. Without the assumption (H4), some boundary layers of order 0 and
1 appear, and we are not able to estimate nλ − na

λ and ψλ − ψa
λ in the same spaces

as in (5.29).

Proof of Theorem 5.2 : We search a solution of the problem (5.2), (5.4), (5.6) of
the form :

nλ = na
λ + λm−1rλ, ψλ = ψa

λ + λm−1pλ,

where na
λ and ψa

λ are the expansions defined in (5.27)-(5.28). To this end we define
the two following operators :

N(n, ψ) := L(n, ψ) − 1

λ2
(n− b) + εQ(ψ),

M(n, ψ) := −div(n∇ψ),

where :

L(n, ψ) := ∆h(n) − ε

n

3
∑

i,j=1

ψxi
ψxj

nxixj
+
ε

n
∇ψ.∇n+

ε

n2
(∇ψ.∇n)2

− ε

n

3
∑

i,j=1

ψxi
ψxixj

nxj
.

Then the system (5.2),(5.4),(5.6) can be written as :

N(nλ, ψλ)(x, λ) = 0, (5.30)

M(nλ, ψλ)(x, λ) = 0, in Ω, (5.31)

nλ =
m
∑

k=0

λknk
D + nm

D,λ, ψλ =
m
∑

k=0

λkψk
D + ψm

D,λ, on Γ. (5.32)

By construction it is easy to check that (see [83]) :

N(na
λ, ψ

a
λ) = O(λm−1), M(na

λ, ψ
a
λ) = O(λm), in L∞(Ω), (5.33)

N(na
λ, ψ

a
λ) = O(λm−2), M(na

λ, ψ
a
λ) = O(λm−1), in C1(Ω̄), (5.34)

uniformly with respect to λ.
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We search now the system verified by (rλ, pλ) by replacing formally nλ by na
λ +

λm−1rλ and ψλ by ψa
λ + λm−1pλ in (5.30)-(5.32). From (5.31) we have :

− div[(na
λ + λm−1rλ)∇pλ] = λ−m+1[−M(na

λ, ψ
a
λ) + λm−1div(rλ∇ψa

λ)]. (5.35)

Similarly, (5.30) gives :

∆H(rλ, x, λ) − ε

na
λ + λm−1rλ

3
∑

i,j=1

(

∂ψa
λ

∂xi

+ λm−1∂pλ

∂xi

)(

∂ψa
λ

∂xj

+ λm−1∂pλ

∂xj

)

∂2rλ

∂xi∂xj

+
ε

(na
λ + λm−1rλ)2

[

λm−1(∇(ψa
λ + λm−1pλ).∇rλ)

2 + 2∇(ψa
λ + λm−1pλ).∇rλ ×

(∇ψa
λ.∇na

λ + λm−1∇pλ.∇na
λ)

]

+
ε

na
λ + λm−1rλ

∇(ψa
λ + λm−1pλ).∇rλ

− ε

na
λ + λm−1rλ

3
∑

i,j=1

(

∂ψa
λ

∂xi

+ λm−1∂pλ

∂xi

)(

∂2ψa
λ

∂xi∂xj

+ λm−1 ∂2pλ

∂xi∂xj

)

∂rλ

∂xj

(5.36)

− 1

λ2
rλ(1 − λ2β(rλ, x)) =

−λ−m+1na
λ

na
λ + λm−1rλ

N(na
λ, ψ

a
λ) − g1(n

a
λ, ψ

a
λ, rλ, pλ) − g2(n

a
λ, ψ

a
λ, rλ)

with :

H(rλ, x, λ) := rλ

∫ 1

0

h′(na
λ(x) + λm−1rλt)dt,

g1(n
a
λ, ψ

a
λ, rλ, pλ) := − ε

na
λ + λm−1rλ

3
∑

i,j=1

[

∂ψa
λ

∂xi

∂pλ

∂xj

+
∂pλ

∂xi

(

∂ψa
λ

∂xj

+ λm−1∂pλ

∂xj

)]

∂2na
λ

∂xi∂xj

+
ε

(na
λ + λm−1rλ)2

[

λm−1(∇pλ.∇na
λ)

2 + 2(∇ψa
λ.∇na

λ)(∇pλ.∇na
λ)

]

+
ε

na
λ + λm−1rλ

∇pλ.∇na
λ −

ε

na
λ + λm−1rλ

[

3
∑

i,j=1

∂ψa
λ

∂xi

∂na
λ

∂xj

∂2pλ

∂xi∂xj

+
3
∑

i,j=1

∂pλ

∂xi

∂na
λ

∂xj

(

∂2ψa
λ

∂xi∂xj

+ λm−1 ∂2pλ

∂xi∂xj

)

]

+ ε

[

λm−1Q(pλ) + 2
3
∑

i,j=1

∂2ψa
λ

∂xi∂xj

∂2pλ

∂xi∂xj

]

,

g2(n
a
λ, ψ

a
λ, rλ) := − εrλ

na
λ(n

a
λ + λm−1rλ)2

(∇ψa
λ.∇na

λ)
2 +

εrλ

na
λ + λm−1rλ

Q(ψa
λ),
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and,

β(rλ, x) =
1

na
λ(x) + λm−1rλ

∆h(na
λ(x)) −

1

λ2(na
λ(x) + λm−1rλ)

(na
λ(x) − b(x)).

From (5.6) the boundary conditions associated to (5.35)-(5.36) are :

pλ = λ−m+1ψm
D,λ, rλ = λ−m+1nm

D,λ, on Γ. (5.37)

Note that by definition, using the assumptions, the application H(., x, λ) : rλ 7→
H(rλ, x, λ) is continuous and strictly increasing and then invertible.

To prove Theorem 5.2, it suffices to prove the following Lemma.

Lemma 5.1. Under the assumptions (H1)-(H6), for λ small enough, there is an
ε0 > 0 independent of λ such that for all ε ∈ [0, ε0], the problem (5.35)-(5.37) has a
solution (rλ, pλ) ∈ W 2,q(Ω) × C2,δ(Ω̄) which satisfies :

‖rλ‖W 2,q(Ω) ≤ A1, ‖pλ‖C2,δ(Ω̄) ≤ A1,

where A1 is a constant independent of λ.

Proof : Let σλ ∈ S with :

S = {ρ ∈ C1,δ(Ω̄); ‖ρ‖C1,δ(Ω̄) ≤ K},

where K is a constant independent of λ which will be fixed later. Here S is a closed
and convex set. We define the mapping T : σλ 7→ pλ 7→ rλ by :

(A) the solution of :

−div[(na
λ + λm−1σλ)∇pλ] = f1(σλ, ψ

a
λ, n

a
λ), in Ω,

pλ = λ−m+1ψm
D,λ, on Γ

with

f1(σλ, ψ
a
λ, n

a
λ) := λ−m+1

[

−M(na
λ, ψ

a
λ) + λm−1div(σλ∇ψa

λ)

]

;
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(B) let rλ = G(vλ, x, λ) where G(., x, λ) = H−1(., x, λ) with vλ being solution of :

∆vλ −
εG′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂2vλ

∂xi∂xj

− εG′′(H(σλ, x, λ), x, λ)

(na
λ + λm−1σλ)G′(H(σλ, x, λ), x, λ)

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂σλ

∂xi

∂vλ

∂xj

− ε

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

(

∂G′(H(σλ, x, λ), x, λ)

∂xj

∂vλ

∂xi

+
∂G′(H(σλ, x, λ), x, λ)

∂xi

∂vλ

∂xj

)

−εG
′′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂H(σλ, x, λ)

∂xi

∂vλ

∂xj

+
εG′(H(σλ, x, λ), x, λ)

(na
λ + λm−1σλ)2

[

λm−1(∇ψλ.∇σλ)∇ψλ + 2(∇ψa
λ.∇na

λ + λm−1∇pλ.∇na
λ)∇ψλ

]

.∇vλ

+
εG′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

∇ψλ.∇vλ −
εG′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂2ψλ

∂xi∂xj

∂vλ

∂xj

− 1

λ2
G(vλ, x, λ)(1 − λ2β(σλ, x)) = f2(σλ, x, λ), x ∈ Ω,

vλ = H(λ−m+1nm
D,λ, x, λ), on Γ,

where we note :

G′(vλ, x, λ) =
∂G

∂vλ

(vλ, x, λ), G′′(vλ, x, λ) =
∂2G

∂v2
λ

(vλ, x, λ),

f2(σλ, x, λ) = −λ−m+1 na
λ

na
λ + λm−1σλ

N(na
λ, ψ

a
λ) − g1(n

a
λ, ψ

a
λ, σλ, pλ)

− g2(n
a
λ, ψ

a
λ, σλ) +

ε

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂2G

∂xi∂xj

(H(σλ, x, λ), x, λ)

− ε

(na
λ + λm−1σλ)2

[

λm−1(∇ψλ.∇σλ)∇ψλ + 2(∇ψa
λ.∇na

λ + λm−1∇pλ.∇na
λ)∇ψλ

]

.∇xG(H(σλ, x, λ), x, λ)

− ε

na
λ + λm−1σλ

∇ψλ.∇xG(H(σλ, x, λ), x, λ)

+
ε

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂2ψλ

∂xi∂xj

∂G

∂xj

(H(σλ, x, λ), x, λ).
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By construction na
λ and ψa

λ being sufficiently smooth, f1 ∈ C0,δ(Ω̄) and is bounded
in C0,δ(Ω̄) uniformly in λ. Moreover by assumption n0 ≥ n > 0, hence for λ small
enough we have : na

λ + λm−1σλ ≥ 1
2
n > 0. Finally, using the Theorem 6.6 in [56] we

obtain that the problem (A) has a unique solution pλ ∈ C2,δ(Ω̄) and :

‖pλ‖C2,δ(Ω̄) ≤ C(K),

with C(K) a constant independent of λ. Therefore, there exists ε1 > 0, independent
of λ, such that for all ε ∈ [0, ε1], (B) is an elliptic problem.

Here, we cannot use the classical result used in [36] due to the fact that the
function G depends not only on vλ, but also on the variable x. The idea here is
to use the Leray-Schauder fixed point Theorem to show first the existence and
boundedness of solutions vλ to (B). This implies the existence and boundedness of
rλ = G(vλ, x, λ) which are needed to prove that T is an application from S to S,
and then to apply the Schauder fixed point Theorem. More precisely, we use the
Leray-Schauder fixed point Theorem to prove the following Lemma.

Lemma 5.2. Under the assumptions (H1)-(H6), for λ small enough, there is an
ε0 > 0, independent of λ such that for all ε ∈ [0, ε0], (B) has a unique solution
vλ ∈W 2,q(Ω) which satisfies :

‖vλ‖W 2,q(Ω) ≤ A2, with A2 independent of λ,K.

Proof : As mention previously, to prove this lemma, we will use the Leray-Schauder
fixed point theorem. Let τ ∈ [0, 1] and w ∈ W 2,q(Ω). We define the application
T̃ : W 2,q(Ω) × [0, 1] → C1,δ(Ω̄) by (w, τ) 7→ v where v solves the problem :

∆v − εG′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂2v

∂xi∂xj

− τεG′′(H(σλ, x, λ), x, λ)

(na
λ + λm−1σλ)G′(H(σλ, x, λ), x, λ)

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂σλ

∂xi

∂w

∂xj

− τε

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

(

∂G′(H(σλ, x, λ), x, λ)

∂xj

∂w

∂xi

+
∂G′(H(σλ, x, λ), x, λ)

∂xi

∂w

∂xj

)

−τεG
′′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂H(σλ, x, λ)

∂xi

∂w

∂xj

+
τεG′(H(σλ, x, λ), x, λ)

(na
λ + λm−1σλ)2

[

λm−1(∇ψλ.∇σλ)∇ψλ + 2(∇ψa
λ.∇na

λ + λm−1∇pλ.∇na
λ)∇ψλ

]

.∇w

+
τεG′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

∇ψλ.∇w − τεG′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂2ψλ

∂xi∂xj

∂w

∂xj

− τ

λ2
G(w, x, λ)(1 − λ2β(σλ, x)) = τf2(σλ, x, λ), x ∈ Ω,
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v = τH(λ−m+1nm
D,λ, x, λ), on Γ.

This problem is elliptic and admits a unique solution for ε small enough, hence T̃ is
well-defined. We have : T̃ (w, 0) = v1 where v1 is a solution of the linear problem :

∆v1 −
εG′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂2v1

∂xi∂xj

= 0

v1 = 0, on Γ.

Then v1 = 0 and hence T̃ (w, 0) = 0. Furthermore, it is not difficult to check that
T̃ is continuous and also compact (due to the compact injection from W 2,q(Ω) to
C1,δ(Ω̄)).

To achieve the proof of Lemma 5.2, we need to prove that if v2 is a fixed point
of T̃ then we have

‖v2‖W 2,q(Ω) ≤ A3,

with A3 being independent of λ, K. This is the statement of Lemma 5.3. Since its
proof being technical, it is moved to Appendix.

Lemma 5.3. Assuming (H1)-(H6), let v2 be a fixed point of T̃ . Then for λ small
enough there is an ε0 > 0, independent of λ such that for all ε ∈ [0, ε0] :

‖v2‖W 2,q(Ω) ≤ A3, ∀τ ∈ [0, 1],

where A3 is a constant independent of λ and K.

Then by the Leray-Schauder fixed point theorem, for λ small enough, and ε ≤
ε0, ε0 independent of λ, T̃1 = T̃ (w, 1) has a fixed point vλ ∈ W 2,q(Ω) such that :

‖vλ‖W 2,q(Ω) ≤ A2, with A2 independent of λ,K.

By definition of T̃ , vλ is a solution to the problem (B). For the uniqueness of solution,
we assume that there exist two solutions vλ,1, vλ,2, we subtract the two systems.
Using Theorem 9.15 in [56], we show that the obtained system has the unique
solution zero. This gives vλ,1 = vλ,2, and then we obtain the uniqueness of solutions
for (B). This completes the proof of Lemma 5.2.

Now using Lemma 5.2 and the injection W 2,q(Ω) →֒ C1,δ(Ω̄), with K = cA2,
where c is the injection constant, we obtain vλ ∈ S which implies rλ ∈ S and then
T : S → S. To complete the verification of the assumptions in the Schauder fixed
point Theorem for T we need to show that T is continuous and compact. This is
the statement of the following Lemma.
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Lemma 5.4. The application T, as an application from C1,δ(Ω̄) to C1,δ(Ω̄), is con-
tinuous and compact.

Proof :
We define T = I ◦G(., x, λ) ◦ χ ◦ γ by :

I : W 2,q(Ω) →֒ C1,δ(Ω̄), which is continuous and compact,

G(., x, λ) : vλ 7→ rλ, which is continuous by assumption,

γ : C1,δ(Ω̄) −→ C2,δ(Ω̄), σλ 7→ pλ, where pλ is solution of (A),

χ : C2,δ(Ω̄) −→ W 2,q(Ω), pλ 7→ vλ, where vλ is solution of (B).

We have to show that χ and γ are continuous.
Let pλ,1 and pλ,2 be two solutions of (A). Then by subtraction of the two systems
we obtain the following one :

−div[(na
λ + λm−1σλ,1)∇(pλ,1 − pλ,2)] = f, in Ω,

pλ,1 − pλ,2 = 0, on Γ,

with :

f = f1(σλ,1, ψ
a
λ, n

a
λ) − f1(σλ,2, ψ

a
λ, n

a
λ) − λm−1div[(σλ,1 − σλ,2)∇pλ,2].

It is clear that :

‖λm−1div[(σλ,1 − σλ,2)∇pλ,2]‖C0,δ(Ω̄) ≤ C̃‖σλ,1 − σλ,2‖C1,δ(Ω̄),

since ‖pλ,2‖C2,δ(Ω̄) ≤ C̃.
Moreover, by definition we have :

f1(σλ,1, ψ
a
λ, n

a
λ) − f1(σλ,2, ψ

a
λ, n

a
λ) = div[(σλ,1 − σλ,2)∇ψa

λ],

and by construction : ‖ψa
λ‖C2,δ(Ω̄) ≤ C̃. Then

‖f1(σλ,1, ψ
a
λ, n

a
λ) − f1(σλ,2, ψ

a
λ, n

a
λ)‖C0,δ(Ω̄) ≤ C̃‖σλ,1 − σλ,2‖C1,δ(Ω̄).

Hence we obtain that :

‖f‖C0,δ(Ω̄) ≤ C̃‖σλ,1 − σλ,2‖C1,δ(Ω̄).

Using Theorem 6.6 in [56]

‖pλ,1 − pλ,2‖C2,δ(Ω̄) ≤ ‖f‖C0,δ(Ω̄).
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Hence :

‖pλ,1 − pλ,2‖C2,δ(Ω̄) ≤ C̃‖σλ,1 − σλ,2‖C1,δ(Ω̄),

and the application γ is continuous from C1,δ(Ω̄) to C2,δ(Ω̄).

In a same way, with the pressure function pλ smooth enough we obtain that χ is
a continuous application from C2,δ(Ω̄) to W 2,q(Ω). Therefore, T is continuous. The
application I being compact, we have that T is also compact. This completes the
proof of Lemma 5.4.

Finally all the assumptions in the Schauder fixed point Theorem are satisfied.
As a consequence, for λ small enough and ε ≤ ε0, ε0 being independent of λ, T has
a fixed point. This completes the proof of Lemma 5.1.

Theorem 5.3. Assume (H1)-(H6). If in addition, (λ−m−1nm
D,λ)λ>0 is bounded in

W 2,∞(Ω), and (λ−m−1ψm
D,λ)λ>0 is bounded in W 1,q(Ω). Then,

‖nλ − na
λ‖L∞(Ω) ≤ A4λ

m+1, ‖ψλ − ψa
λ‖W 1,q(Ω) ≤ A4λ

m+1,

where A4 is a constant independent of λ.

Since the proof uses notations defined in the proof of Lemma 5.3, it is also moved
in Appendix.

Appendix :

Proof of Lemma 5.3.

Let v2 be a fixed point of T̃ . Let :
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L̃(τ, σλ, n
a
λ, ψ

a
λ, pλ)v2 := −∆v2 +

εG′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂2v2

∂xi∂xj

+
τεG′′(H(σλ, x, λ), x, λ)

(na
λ + λm−1σλ)G′(H(σλ, x, λ), x, λ)

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂σλ

∂xi

∂v2

∂xj

+
τε

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

(

∂G′(H(σλ, x, λ), x, λ)

∂xj

∂v2

∂xi

+
∂G′(H(σλ, x, λ), x, λ)

∂xi

∂v2

∂xj

)

+
τεG′′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂ψλ

∂xj

∂H(σλ, x, λ)

∂xi

∂v2

∂xj

−τεG
′(H(σλ, x, λ), x, λ)

(na
λ + λm−1σλ)2

[

λm−1(∇ψλ.∇σλ)∇ψλ + 2(∇ψa
λ.∇na

λ

+λm−1∇pλ.∇na
λ)∇ψλ

]

.∇v2

−τεG
′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

∇ψλ.∇v2 +
τεG′(H(σλ, x, λ), x, λ)

na
λ + λm−1σλ

3
∑

i,j=1

∂ψλ

∂xi

∂2ψλ

∂xi∂xj

∂v2

∂xj

.

For ε ∈ [0, ε1], the differential operator L̃ is elliptic. By definition v2 is solution of :

−L̃(τ, σλ, n
a
λ, ψ

a
λ, pλ)v2 −

τ

λ2
G(v2, x, λ)(1 − λ2β(σλ, x)) = τf2(σλ, x, λ), x ∈ Ω,

v2 = τH(λ−m+1nm
D,λ, x, λ), on Γ. (5.38)

Let

f3(τ, σλ, x, λ) := f2(σλ, x, λ) +
1

λ2
G(Bτ , x, λ)(1 − λ2β(σλ, x)),

Bτ := τH(λ−m+1nm
D,λ, x, λ).

Then (5.38) can be rewritten as:

L̃(τ, σλ, n
a
λ, ψ

a
λ, pλ)v2 +

τ

λ2

(

G(v2, x, λ) −G(Bτ , x, λ)
)

(1 − λ2β(σλ, x))

= −τf3(τ, σλ, x, λ), in Ω,

v2 = Bτ , on Γ.

We can show that for λ small enough,

1

2
≤ 1 − λ2β(σλ, x) ≤ C1, ∀x ∈ Ω, (5.39)
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with C1 a constant independent of λ and K. Using the result of [80] we show that,
there exists ε2 > 0, independent of λ, such that for all ε ∈ [0, ε2] :

∫

Ω

z|z|q−2L̃(τ, σλ, n
a
λ, ψ

a
λ, pλ)zdx ≥ 0, ∀z ∈ W 2,q(Ω) ∩W 1,q

0 (Ω).

Let u = v2 −Bτ . We have u ∈ W 2,q(Ω) ∩W 1,q
0 (Ω) and u is a solution of :

L̃(τ, σλ, n
a
λ, ψ

a
λ, pλ)u +

τ

λ2

(

G(u+Bτ , x, λ) −G(Bτ , x, λ)
)

(1 − λ2β(σλ, x))

= −τf3(τ, σλ, x, λ) − L̃(τ, σλ, n
a
λ, ψ

a
λ, pλ)Bτ , in Ω (5.40)

u = 0, on Γ.

For λ small enough, the function H(., x, λ) is strictly increasing and so is G(., x, λ)
by definition. Then there exists two constants C2 and C3 independent of λ, τ and
K such that :

C2u
2 ≤

(

G(u+Bτ , x, λ)−G(Bτ , x, λ)
)

u = u2

∫ 1

0

G′(u+tBτ , x, λ)dt ≤ C3u
2. (5.41)

We multiply (5.40) by u|u|q−2 and we integrate on Ω. Then using (5.39), (5.41), for
λ small enough, by Hölder inequality,

C2τ

2λ2

∫

Ω

|u|qdx ≤ −
∫

Ω

(

τf3(τ, σλ, x, λ) + L̃(τ, σλ, n
a
λ, ψ

a
λ, pλ)Bτ

)

u|u|q−2dx

≤
(

τ‖f3(τ, σλ, x, λ)‖Lq(Ω) + ‖L̃(τ, σλ, n
a
λ, ψ

a
λ, pλ)Bτ‖Lq(Ω)

)

‖u‖q−1
Lq(Ω).

Then :

‖u‖Lq(Ω) ≤
2λ2

C2

(

‖f3(τ, σλ, x, λ)‖Lq(Ω) +
1

τ
‖L̃(τ, σλ, n

a
λ, ψ

a
λ, pλ)Bτ‖Lq(Ω)

)

.

For λ small enough, there exists ε3 > 0 independent of λ such that for all ε ∈ [0, ε3] :

‖f3(τ, σλ, x, λ)‖Lq(Ω) ≤ C4,
1

τ
‖L̃(τ, σλ, n

a
λ, ψ

a
λ, pλ)Bτ‖Lq(Ω) ≤ C5,

with C4 and C5 constants independent of λ, τ,K. Hence :

‖u‖Lq(Ω) ≤ C6λ
2,

with C6 independent of λ, τ,K. Like in [80], we obtain, for λ small enough,

‖u‖W 2,q(Ω) ≤ C7,
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with C7 independent of λ, τ,K. Finally :

‖v2‖W 2,q(Ω) ≤ ‖u‖W 2,q(Ω) + ‖B‖W 2,q(Ω).

This completes the proof of Lemma 5.3 with ε0 = min(ε1, ε2, ε3).

Proof of Theorem 5.3. In all the following, the constants Ci are independent of
λ. It is clear that uλ = vλ −B1, where B1 = Bτ for τ = 1, is solution of :

L̃(1, rλ, n
a
λ, ψ

a
λ, pλ)uλ +

1

λ2

(

G(uλ +B1, x, λ) −G(B1, x, λ)
)

(1 − λ2β(rλ, x))

= −f3(1, rλ, x, λ) − L̃(1, rλ, n
a
λ, ψ

a
λ, pλ)B1, in Ω (5.42)

uλ = 0, on Γ.

Since by assumption (λ−m−1nm
D,λ)λ>0 is bounded in W 2,∞(Ω), we have :

‖f3(1, rλ, x, λ) + L̃(1, rλ, n
a
λ, ψ

a
λ, pλ)B1‖L∞(Ω) ≤ C8.

Let :

ū =
2λ2C8

C2

, and u = −2λ2C8

C3

.

We can show that ū (resp. u) is an upper-solution (resp. lower-solution) of (5.42).
Hence,

u ≤ uλ ≤ ū, and, ‖uλ‖L∞(Ω) ≤ C9λ
2.

Using the assumption on nm
D,λ,

‖B1‖L∞(Ω) ≤ C10λ
2.

Hence :
‖vλ‖L∞(Ω) ≤ ‖uλ‖L∞(Ω) + ‖B1‖L∞(Ω) ≤ C11λ

2.

Then, using the continuity of H(., x, λ), we obtain

‖rλ‖L∞(Ω) ≤ C12λ
2,

which gives the first estimate in Theorem 5.3. Using the equations satisfied by the
boundary layers profiles, we can show that

M(na
λ, ψ

a
λ) = O(λm+1) in W−1,q(Ω).

Then in a same way than in [80], using the assumption on ψm
D,λ, the boundedness

of rλ in L∞(Ω), ψa
λ ∈ C2,δ(Ω̄), (5.33), and the strict positivity of nλ, for λ small

enough, we have :
‖pλ‖W 1,q(Ω) ≤ C13λ

2.

This completes the proof of Theorem 5.3.





Chapter 6

Numerical solutions of
Euler-Poisson systems for the
potential flows

This Chapter is an article, in collaboration with Claire Chainais-Hillairet and Yue-
Jun Peng, submitted for publication.

6.1 Introduction

The Euler-Poisson system is widely used in mathematical modeling and numerical si-
mulation for semiconductor devices [77, 78] and plasmas [23]. Here we are interested
in the semiconductor model, which consists of two nonlinear equations given by the
conservation laws of momentum and density for each species, called Euler equations,
coupled to a Poisson equation for the electrostatic potential.

In the bipolar case the steady-state Euler-Poisson system reads :

div(pup) = 0, (6.1)

div(pup ⊗ up) + ∇Pp(p) = −p∇φ− pup

τ
, (6.2)

div(nun) = 0, (6.3)

εdiv(nun ⊗ un) + ∇Pn(n) = n∇φ− ε
nun

τ
, (6.4)

λ2∆φ = n− p− C, in Ω, (6.5)

where Ω is an open and bounded domain of IRd (d = 2 or d = 3 in practice) repre-
senting the geometry of the semiconductor device. The unknowns of the system are
the electron and hole densities n = n(x), p = p(x), the electron and hole velocities
un = un(x), up = up(x), and the electrostatic potential φ = φ(x). The func-
tion C = C(x) stands for the doping profile of the device. The pressure functions

95
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Pα = Pα(s), α = n, p are supposed to be sufficiently smooth and strictly increasing
for s > 0. In applications and throughout this paper, Pn(s) = Pp(s) = P (s). Typi-
cally they are governed by the adiabatic law P (s) = sγ where γ ≥ 1 is a constant.
The physical parameters λ, ε and τ are respectively the Debye length, the ratio of
the electron mass and hole mass, and the relaxation time. They are small compared
to the characteristic lengths of physical interest. In the sequel, λ and τ are supposed
to be equal to 1.

In this paper we consider the case of potential flows. Then, rot(uα) = 0, α = n, p,
and there exist ψn and ψp such that un = −∇ψn, up = −∇ψp, where ψn and ψp are
the electron and hole velocity potentials. Under these conditions and with λ = τ = 1,
the system (6.1)-(6.5) can be rewritten as (see [36]) :

−div(p∇ψp) = 0, (6.6)

H(p) +
1

2
|∇ψp|2 = −φ+ ψp, (6.7)

−div(n∇ψn) = 0, (6.8)

H(n) +
ε

2
|∇ψn|2 = φ+ εψn, (6.9)

∆φ = n− p− C, in Ω, (6.10)

where H = H(s) is the enthalpy function of the system defined by:

H ′(s) =
P ′(s)

s
and H(1) = 0.

In the unipolar case, the system is reduced to three equations (6.8)-(6.10) in
which p = p(x) can be neglected. The system (6.6)-(6.10) or (6.8)-(6.10) is in
general supplemented with Dirichlet-Neumann boundary conditions on the densities
and velocity potentials.

There are many works for the study of the Euler-Poisson system and its asymp-
totic limits. In the transient system, we refer to [76, 1] for the existence of solutions
and to [65, 1] for the asymptotic limits. The numerical study of the Euler-Poisson
system in the quasineutral limit case can be found in [31, 33, 32]. Finally, we men-
tion that the zero relaxation time limit was justified in [65]. The limit equations are
classical drift-diffusion models for which the numerical results were given in [19, 21].

In the case of steady-state unipolar model for potential flows the existence and
local uniqueness of solutions were proved under a smallness condition on the bound-
ary data, which implies that the problem is in the subsonic region (see [36]). It has
been proved in [80] that this smallness condition can be replaced by a smallness
condition on ε. The results can be extended to the bipolar case provided that ε and
the boundary data for ψp are small. In [81, 96], (here [81] is Chapter 4 here), the
asymptotic limits are performed by using a method of asymptotic expansions.
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The goal of this paper is to develop numerical schemes to compute the solutions of
the steady-state Euler-Poisson system for potential flows. In particular, we want to
illustrate the smallness condition on ε for the existence of solutions to the problem
(6.1)-(6.5). The main idea is to use iterative schemes to solve a system of linear
partial differential equations for (φ, ψn, ψp) and nonlinear algebraic equations for
(n, p) instead of solving a fully nonlinear system of partial differential equations.
We present two numerical schemes of finite volume type with reconstruction of the
gradients appearing in (6.7) or (6.9). They are based on the work in [42, 44, 45].
For the numerical analysis and simulation in the drift-diffusion equations we refer
to [4, 16, 19, 21, 25, 28, 61, 68, 89] and the references therein.

In Section 2, we present our numerical schemes in the unipolar case. The nu-
merical results in two space dimensions in the unipolar and bipolar cases are given
in Section 3.

6.2 Presentation of the numerical schemes

In this section we construct numerical schemes to the system in the unipolar case.
The corresponding schemes in the bipolar case are similar. Omitting the subscript
n for simplicity, the set of equations (6.8)-(6.10) for the unipolar model can be
rewritten as :

−div(n∇ψ) = 0, (6.11)

H(n) +
ε

2
|∇ψ|2 = φ+ εψ, (6.12)

∆φ = n− C, in Ω. (6.13)

From a theoretical point of view, to study this system one uses equation (6.11)
and (6.13) to eliminate φ in (6.12) to obtain a system of two equations of unknowns
(n, ψ), supplemented with Dirichlet boundary conditions. The resulting equation
for n is

−∆H(n) +
ε

n

d
∑

i,j=1

∂ψ

∂xi

∂ψ

∂xj

∂2n

∂xi∂xj

− ε

n
∇ψ.∇n− ε

n2
(∇ψ.∇n)2

+
ε

n

d
∑

i,j=1

∂ψ

∂xi

∂2ψ

∂xi∂xj

∂n

∂xj

+ n− b(x) = Q(ψ), (6.14)

where Q is given by

Q(ψ) =
d
∑

i,j=1

(

∂2ψ

∂xi∂xj

)2

.
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The existence and uniqueness of solutions to the system (6.11)-(6.14) can be proved
under a smallness condition on the boundary data [36] or on ε [80] which ensures
the strict ellipticity of the equation for n. When (n, ψ) are solved one obtains easily
φ from (6.12). However, the equation (6.14) is fully nonlinear and coupled to ψ till
its second derivatives, so that its numerical discretization is not an easy task. Note
that the first and last equations in the system (6.11)-(6.13) are linear for (ψ, φ) and
the second one is nonlinear only algebraically for n. This motivates us to make the
following iterative scheme : for a given nm (m ≥ 0), we first solve (ψm, φm) by :

−div(nm∇ψm) = 0, (6.15)

−∆φm = C − nm, in Ω, (6.16)

subject to mixed Dirichlet-Neumann boundary conditions :

φm = φ̄, ψm = ψ̄
def
= H(n0) − φ̄, on ΓD, (6.17)

∇φm.ν = ∇ψm.ν = 0, on ΓN , (6.18)

where ν is the unit outward normal to Γ = ∂Ω = ΓD ∪ΓN , with ΓD being the ohmic
contacts and ΓN the insulating boundary segments. These boundary conditions
are physically motivated in the case of a semiconductor (see [36]). In particular,
condition (6.17) means that the system is in equilibrium for the first iteration. Then
we compute nm+1 by the algebraic equation

H(nm+1) +
ε

2
|∇ψm|2 = φm + εψm. (6.19)

Equations (6.15) and (6.16) are of elliptic type (provided nm remains positive).
There are several numerical methods to solve this kind of equations (e.g. finite
element method, mixed finite element method, finite volume methods...). Here,
some finite volume schemes are used. The first scheme is ”classical” with a two
point discretization of the fluxes through the edges, see [44]. It leads to piecewise
constant approximate solutions and needs to be completed by a reconstruction of
the gradients ∇ψm, necessary for the computation of nm+1 in (6.19). The second
scheme is of mixed finite volume type as introduced by J. Droniou and R. Eymard
in [42], in which the construction of the gradients is intrinsic.

6.2.1 Mesh and notations

First, we introduce some notations that are useful for both schemes. It concerns the
mesh, the initial and boundary data.

A mesh of Ω is given by a family T of control volumes (open polygonal convex
disjoint subsets of Ω), a family E of edges in 2-d (faces in 3-d) and a set P of points of
Ω indexed by T : P = (xK)K∈T . For a control volume K ∈ T we denote by m(K)
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the measure of K and EK the set of edges of K. The (d-1)-dimensional measure of
an edge σ is denoted m(σ). In the case where σ ∈ E such that σ̄ = K̄ ∩ L̄ with K
and L being two neighboring cells, we note σ = K|L.

The set of interior (resp. boundary) edges is denoted by E int (resp. Eext), that is
E int = {σ ∈ E ;σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E ;σ ⊂ ∂Ω}). We note Eext

D (resp. Eext
N )

the set of σ ⊂ ΓD (resp. σ ⊂ ΓN). For all K ∈ T , we note Eext
K = EK ∩ Eext, Eext

D,K

(resp. Eext
N,K) the edges of K included in ΓD (resp. ΓN), and E int

K = EK ∩E int. Finally,
for σ ∈ EK , we denote by xσ its barycenter and by νK,σ the exterior unit normal
vector to σ.

Given an initial datum n0 and boundary data φ̄, ψ̄, their approximations on each
control volume or on each boundary edge are denoted by

n0
K =

1

m(K)

∫

K

n0,

φ̄σ =
1

m(σ)

∫

σ

φ̄,

ψ̄σ =
1

m(σ)

∫

σ

ψ̄,

We also set

fm
K = CK − nm

K , with CK =
1

m(K)

∫

K

C.

6.2.2 Classical finite volume scheme

Let us consider an admissible mesh of Ω given by T , E and P which satisfy Definition
3.8 in [44]. We recall that the admissibility of T implies that the straight line between
two neighboring centers of cells (xK ,xL) is orthogonal to the edge σ = K|L. Finally,
let us define the transmissibility coefficients :

τσ =
m(σ)

d(xK ,xL)
if σ = K|L ∈ E int

K and τσ =
m(σ)

d(xK ,Γ)
if σ ∈ Eext

K , (6.20)

and the size of the mesh :
h = max

K∈T
diam(K). (6.21)

In all the sequel, we assume that the points xK are located inside each control
volume. Let (φm

K)K∈T and (ψm
K)K∈T be the discrete unknowns. A finite volume

scheme to the mixed Dirichlet-Neumann problem (6.15)-(6.18) is defined by the
following set of equations (see [44]) :

−
∑

σ∈EK

dφm
K,σ = m(K)fm

K , (6.22)

−
∑

σ∈EK

nm
σ dψ

m
K,σ = 0, (6.23)
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where

dφm
K,σ =















τσ(φm
L − φm

K), σ = K|L,
τσ(φ̄σ − φm

K), σ ∈ Eext
D,K ,

0, σ ∈ Eext
N,K ,

dψm
K,σ =















τσ(ψm
L − ψm

K), σ = K|L,
τσ(ψ̄σ − ψm

K), σ ∈ Eext
D,K ,

0, σ ∈ Eext
N,K ,

nm
σ =







nm
K + nm

L

2
, σ = K|L,

nm
K , σ ∈ Eext

K .

The quantities dφm
K,σ and dψm

K,σ are the approximations of the fluxes through each
edge for each function i.e.

dφm
K,σ ≈

∫

σ

∇φm · νK,σ and dψm
K,σ ≈

∫

σ

∇ψm · νK,σ.

For given nm, since the equations (6.15)-(6.16) are linear, we obtain the piecewise
constant functions ψm and φm, unique solution of (6.22)-(6.23). Then we need to
define the gradient of ψm. Therefore, we use the reconstruction proposed in [45] ;
the approximate gradient is a piecewise constant function, defined on each control
volume by

wm
K =

1

m(K)

∑

σ∈EK

dψm
K,σ(xσ − xK), ∀K ∈ T .

Finally, from (6.12) we obtain the piecewise constant function nm+1 by:

nm+1
K = H−1

(

φm
K + εψm

K − ε

2
|wm

K |2
)

, (6.24)

with H−1 being the inverse function of H (the inversibility of H will be discussed
later).
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6.2.3 Mixed finite volume scheme

As seen previously, the definition of nm+1 through the algebraic equation (6.19)
needs construction of an approximate gradient, which is not usual in classical finite
volume schemes. However, the penalized mixed finite volume scheme introduced
by J.Droniou and R.Eymard in [42] for an elliptic equation is a scheme whose un-
knowns are the function, its gradient on each control volume and the fluxes through
each edge. Then the definition of the piecewise constant gradient of the solution is
intrinsic. Furthermore this scheme can be used on very general meshes.

Let us consider a mesh of Ω given by T , E and P which satisfy definition 2.1 in
[42]. We denote by (φm

K)K∈T and (ψm
K)K∈T the approximate values of φ and ψ, by

(vm
K)K∈T and (wm

K)K∈T the approximate gradients of φm and ψm, respectively. Let
ξ = (ξK)K∈T be a family of small positive numbers and

Fm
K,σ ≈ 1

m(σ)

∫

σ

∇φm · νK,σ and Gm
K,σ ≈ 1

m(σ)

∫

σ

∇ψm · νK,σ.

The penalized mixed finite volume scheme to the problems (6.15)-(6.16) and (6.17)-
(6.18) can be written as (see [42]) :

vm
K · (xσ − xK) + vm

L · (xσ − xL) + ξKm(K)FK,σ − ξLm(L)FL,σ = φm
L − φm

K ,

∀K ∈ M, ∀L ∈ NK with σ = K|L,
vm

K · (xσ − xK) + ξKm(K)FK,σ = φ̄σ − φm
K , ∀K ∈ M, ∀σ ∈ Eext

D,K ,

FK,σ + FL,σ = 0, ∀σ = K|L ∈ E int, FK,σ = 0 ∀σ ∈ Eext
N,K ,

m(K)vm
K =

∑

σ∈EK

FK,σ(xσ − xK), ∀K ∈ M,

−
∑

σ∈EK

FK,σ = m(K)fm
K , ∀K ∈ M,

wm
K · (xσ − xK) + wm

L · (xσ − xL) + ξKm(K)GK,σ − ξLm(L)GL,σ = ψm
L − ψm

K ,

∀K ∈ M, ∀L ∈ NK with σ = K|L,
wm

K · (xσ − xK) + ξKm(K)GK,σ = ψ̄σ − ψm
K , ∀K ∈ M, ∀σ ∈ Eext

D,K ,

GK,σ +GL,σ = 0, ∀σ = K|L ∈ E int, GK,σ = 0 ∀σ ∈ Eext
N,K ,

m(K)nm
Kwm

K =
∑

σ∈EK

GK,σ(xσ − xK), ∀K ∈ M,

−
∑

σ∈EK

GK,σ = 0, ∀K ∈ M.

Then nm+1
K is given by (6.24).
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In both schemes, the iterations on m are stopped when the difference between
nm and nm+1 is sufficiently small in L2(Ω) or L∞(Ω) norm. Notice that for the
penalized mixed finite volume scheme we have to solve two systems whose size is
3Card(M) + Card(E). However it is possible to proceed to an algebraic elimination
which leads for each one to a system of size Card(E int), following the same principles
as in the hybrid resolution presented in [42].

In all the sequel, the classical finite volume scheme is referred to the VF4-scheme
and the penalized mixed finite volume scheme to the DE-scheme. The schemes for
the bipolar case are almost the same. The only difference is that there are three
linear equations (instead of two) and two nonlinear algebraic equations (instead of
one), which can be solved exactly with the same methods.

6.3 Numerical results

We perform the numerical simulations in two space dimensions by taking the domain
Ω = [0, 1] × [0, 1]. A point x of Ω is denoted by its coordinates x = (x1, x2). Let us
define ΓN = {(x1, x2), x1 ∈ [0, 1], x2 ∈ {0, 1}} and ΓD = ΓD,l ∪ ΓD,r with

ΓD,l = {(x1, x2), x1 = 0, x2 ∈ [0, 1]},
ΓD,r = {(x1, x2), x1 = 1, x2 ∈ [0, 1]}.

The pressure function is taken to be P (s) = sγ with γ = 1 or 5/3, which implies for
the enthalpy :

H(s) =







ln(s), if γ = 1,

5

2
(s2/3 − 1), if γ = 5/3.

In the case γ = 1, H is defined from ]0,+∞[ to IR and admits an inverse function
on all IR defined by H−1(t) = exp(t). In the case γ = 5/3, H is only defined from
]0,+∞[ to ] − 5/2,+∞[. In order to define its inverse function on all IR we extend
the function by continuity by setting :

H−1(t) =











(

2

5
t+ 1

)3/2

, if t > −5/2,

0, else.

6.3.1 Validity of the schemes

To our knowledge, in the literature there do not exist numerical results to the steady-
state Euler-Poisson system. Therefore it is impossible to compare our results with
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those obtained by other numerical methods. To ensure that our schemes provide a
good approximation of the solution, we compare the numerical solutions obtained
with each scheme to exact solutions. To this end we consider one test case for the
unipolar system (6.11)-(6.13).

The electron density n, velocity potential ψ and electrostatic potential φ will be
indexed with 1 for the test case.

In this test case, the doping profile is defined as follows :

C(x1, x2) = 1 − 2εA2π4 exp(2πx1), (x1, x2) in Ω, (6.25)

where A is a given constant. This doping profile is strictly positive on Ω̄ provided
that A2ε is small (for instance, ε = 9, 5× 10−6 and A = 1). We supplement the sys-
tem (6.11)-(6.13) with the following mixed Dirichlet-Neumann boundary conditions

∇ψ1 · ν = ∇φ1 · ν = 0, on ΓN ,

ψ1 = A cos(πx2), φ1 =
1

2
A2επ2 − Aε cos(πx2), on ΓD,l, (6.26)

ψ1 = A exp(π) cos(πx2), φ1 =
1

2
A2επ2 exp(2π) − Aε exp(π) cos(πx2), on ΓD,r.

Then it is easy to check that the exact solution of (6.11)-(6.13) and (6.25)-(6.26) is
given by

n1(x1, x2) = 1,

ψ1(x1, x2) = A exp(πx1) cos(πx2), (6.27)

φ1(x1, x2) =
1

2
A2επ2 exp(2πx1) − Aε exp(πx1) cos(πx2), (x1, x2) ∈ Ω̄.

We choose ε = 9, 5×10−6 and A = 1. We start the computation with n0
1(x1, x2) =

1/2 on Ω. The computations are stopped when the relative L2-error between two
following iterations is smaller than 10−3.

We compute the errors between the numerical and exact solutions for different
mesh size for each scheme and for each value of γ. The results are shown in Figure 6.1.
We can see that for the two schemes and for each unknown, the errors are decreasing
with the mesh size h. The DE-scheme seems to be more efficient in particular for
the velocity and electrostatic potentials. Moreover, the errors are smaller in the case
γ = 5/3 than in the case γ = 1. They are of order of h for each quantity.

We now consider the initial density n0
1 = 1 and the same values for ε and A

as above. The required accuracy is of order O(h) in L2(Ω) norm for stopping the
iterations. The results are shown in Figure 6.2, from which we see that again the
errors are increasing functions of h. They are of the same order as previously for
each unknown. Again, they are smaller in the case γ = 5/3 than in the case γ = 1.
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Case γ = 1

a) Electron density b) Velocity potential c) Electrostatic potential
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Case γ = 5/3

c) Electron density d) Velocity potential c) Electrostatic potential

10
−2

10
−1

10
010

−4

10
−3

10
−2

DE−scheme
VF4−scheme

10
−2

10
−1

10
010

−3

10
−2

10
−1

10
0

DE−scheme
VF4−scheme

10
−2

10
−1

10
0

10
−4

10
−3

DE−scheme
VF4−scheme

Figure 6.1: Errors of the electron density, the velocity potential and the electrostatic
potential as functions of the mesh size for n0

1 ≡ 1/2.

6.3.2 Case of a ballistic diode

A ballistic diode is a semiconductor which consists of a weakly doped n-region S
between two highly doped n+-regions Ω \ S. It corresponds to the unipolar case
since in such devices the charge transport is only due to electrons. Here we want to
compute the numerical solution of the system (6.11)-(6.13) with the doping profile

C(x) =

{

1/2, if (x1, x2) ∈ S = [1/3, 2/3] × [0, 1],

1, else.

Let us take n0 = C and

φm = 0, on ΓD,l and φm = U, on ΓD,r, m ≥ 0. (6.28)



Numerical solutions 105

Case γ = 1

a) Electron density b) Velocity potential c) Electrostatic potential
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Case γ = 5/3

c) Electron density d) Velocity potential c) Electrostatic potential
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Figure 6.2: Error of the electron density, the velocity potential and the electrostatic
potential as a functions of the mesh size for n0

1 ≡ 1.

Here U corresponds to a given applied voltage. Since H(1) = 0, from (6.17) we have

ψm = 0, on ΓD,l and ψm = −U, on ΓD,r, m ≥ 0. (6.29)

For different values of γ, U and ε, the numerical solutions of the electron density,
velocity potential and electrostatic potential are given in Fig. 6.3, 6.4, 6.5, in which
the sub-figures a), b) and c) are obtained with the VF4-scheme and d), e) and f)
with the DE-scheme. In Fig. 6.3 and Fig. 6.5, we require an accuracy of order 10−8

in L∞(Ω) norm for stopping the iteration (the iteration numbers are respectively 11
and 8).

Note that the smallness condition on ε (see [80]), which ensures the strict el-
lipticity of the system, appears clearly in the numerical simulation. When ε is not
small enough, the gradient of the velocity potential becomes more and more large
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in the iteration. Moreover, due to the negative sign before |∇ψm
K |2 in the formula

(6.24), the condition n > 0 is not numerically satisfied and the matrix involved in
the computation of ψm becomes singular. A numerical example in this case is given
in Fig. 6.4 (the computation is stopped after 5 iterations).

In the case γ = 5/3, due to the definition of the inverse function of H, U should
satisfy U > −5/2. Indeed, for ε small enough, nm+1

K is nearly given by H−1(φm
K)

according to (6.24). If φm
K ≤ −5/2, then H−1(φm

K) = 0 and nm+1
K ≈ 0, so that

the matrix involved in the computation of ψm+1 becomes singular. That is why we
choose U = 1 in this case (see Fig. 6.5).

a) Electron density b) Velocity potential c) Electrostatic potential
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d) Electron density e) Velocity potential f) Electrostatic potential
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Figure 6.3: Case γ = 1, U = 1, ε = 10−2.
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a) Electron density b) Velocity potential c) Electrostatic potential
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d) Electron density e) Velocity potential f) Electrostatic potential

00.20.40.60.81

0

0.5

1

0

0.5

1

1.5

2

x
1

el
ec

tr
on

 d
en

si
ty

00.20.40.60.81

0

0.5

1

−1.5

−1

−0.5

0

x
1

ve
lo

ci
ty

 p
ot

en
tia

l

00.20.40.60.81

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x
1

el
ec

tr
os

ta
tic

 p
ot

en
tia

l
Figure 6.4: Case γ = 1, U = 1, ε = 1.

6.3.3 Bipolar case

Recall that in this case the system reads as follows

−div(p∇ψp) = 0, (6.30)

H(p) +
1

2
|∇ψp|2 = −φ+ ψp, (6.31)

−div(n∇ψn) = 0, (6.32)

H(n) +
ε

2
|∇ψn|2 = φ+ εψn, (6.33)

∆φ = n− p− C, in Ω. (6.34)

Let us define the initial hole density p0 = p0(x) and the initial electron density
n0 = n0(x) by :

p0(x) =

{

1/2, if (x1, x2) ∈ [1/3, 2/3] × [0, 1],

1, else,
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a) Electron density b) Velocity potential c) Electrostatic potential
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d) Electron density e) Velocity potential f) Electrostatic potential
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Figure 6.5: Case γ = 5/3, U = 1, ε = 10−2.

n0(x) =

{

1/4, if (x1, x2) ∈ [1/3, 2/3] × [0, 1],

1, else.

For simplicity we take a vanishing doping profile C ≡ 0 and supplement the system
(6.30)-(6.34) with the boundary conditions (6.28) for φm, m ≥ 0 and the following
Dirichlet boundary conditions for ψm

p and ψm
n , m ≥ 0:

ψm
p = ψm

n = 0, on ΓD,l and ψm
p = U, ψm

n = −U, on ΓD,r, (6.35)

Remark that the formula for computing the hole density pm+1 is

pm+1
K = H−1

(

−φm
K + ψm

p,K − 1

2
|∇ψm

p,K |2
)

, K ∈ T or M, m ≥ 0.

In this subsection the smallness condition on ε is still needed because of the
same reason as in the unipolar case. The common value of ε is ε = 10−2 and the
iterative number is still denoted byN . In Fig 6.6 and Fig. 6.8 the iteration is stopped
when the maximum of pm+1 − pm and nm+1 − nm is of order 10−8 in L∞(Ω) norm
(respectively after 5 and 9 iterations). For γ = 1, the numerical solutions of the
electron density, hole density and hole velocity potential are given in Fig. 6.6 and
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Fig. 6.7, in which the sub-figures a), b) and c) are obtained with the VF4-scheme
and d), e) and f) with the DE-scheme. In the computation, we need also that the
value of |U | to be small. An example for large |U | (U = 1) is given in Fig. 6.7 (for 5
iterations), from which we see that the hole density is near zero, so that the matrix
involved in the computation of ψp is almost singular. However, the computation of
the electron density and electron velocity potential can still be carried out, due to
the smallness value of ε. Finally, for γ = 5/3, the numerical solutions of the hole
density and electron density are shown in Fig. 6.8, in which the sub-figures a) and
b) are obtained with the VF4-scheme and c) and d) with the DE-scheme.

a) Hole density b) Electron density c) Hole velocity potential
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d) Hole density e) Electron density f) Hole velocity potential
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Figure 6.6: Case γ = 1, U = 10−1, ε = 10−2.



a) Hole density b) Electron density c) Hole velocity potential
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d) Hole density e) Electron density f) Hole velocity potential
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Figure 6.7: Case γ = 1, U = 1, ε = 10−2.
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a) Hole density b) Electron density
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c) Hole density d) Electron density
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Figure 6.8: Case γ = 5/3, U = 10−1, ε = 10−2.
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Part III

Quantum drift-diffusion model
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Chapter 7

The quasineutral limit in the
quantum drift-diffusion equations

This Chapter is an article in collaboration with Ansgar Jüngel submitted for publi-
cation.

7.1 Introduction

In charged particle transport, quasineutrality is a commonly used assumption in
order to simplify the model equations. Quasineutrality means that the difference
between the concentrations of positive ions and electrons is negligible compared to
a reference density. Formally, quasineutral models are obtained in the limit as the
ratio of the Debye length to a characteristic length tends to zero. Quasineutral
models are used, for instance, in semiconductor theory [92] and plasma physics
[94]. Recently, quasineutrality has been studied also in quantum models [12]. An
important quantum model are the quantum drift-diffusion equations which are a
simple quantum extension of the drift-diffusion model used in both semiconductor
and plasma theory (see [37] for a derivation and [38, 64] for reviews on macroscopic
quantum models).

In this paper we analyze rigorously the quasineutral limit in the (scaled) quantum
drift-diffusion equations in one space dimension for the electron density n(x, t), the
positively charged ion (or hole) density p(x, t), and the electrostatic potential V (x, t),

nt − Jn,x = 0, Jn = −ε
2

2
(n(log n)xx)x + (Pn(n))x − nVx, (7.1)

pt + Jp,x = 0, Jp =
ε2

2
(p(log p)xx)x − (Pp(p))x − pVx, (7.2)

λ2Vxx = n− p− C(x), (x, t) ∈ QT = Ω × (0, T ). (7.3)

115
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Here, Jn and Jp are the current densities and C(x) models fixed charged background
ions, usually called the doping concentration. The pressure functions Pn and Pp are
typically of the form Pα(x) = θαx

qα (α = n, p) for some θα > 0 and qα ≥ 1. The
parameter ε is the scaled Planck constant and λ > 0 is the ratio of the Debye
length to the characteristic length (e.g., the device diameter). The equations are
supplemented with the initial and boundary conditions

n = p = 1, nx = px = 0, V = VD for x ∈ {0, 1}, t > 0, (7.4)

n(·, 0) = nI , p(·, 0) = pI in Ω, (7.5)

where VD(x) = xU and U ∈ IR is the applied potential. In the case that the doping
vanishes at the boundary, the Dirichlet boundary conditions for n and p express
charge neutrality, whereas the Neumann boundary conditions have been employed
in numerical simulations of quantum semiconductor devices [49].

The quantum drift-diffusion model can be derived by the entropy minimization
principle from the Wigner-BGK equation in the diffusion limit [37] or from the
so-called quantum hydrodynamic equations in the zero-relaxation-time limit [62].
The existence of weak solutions to the stationary equations have been proved in
[6]; the transient equations in one space dimension are analyzed in [70] but only for
electrons and isothermal pressure Pn(n) = θnn. Numerical simulations can be found
in [70, 86].

Mathematically, the parabolic equations (7.1)-(7.2) are of fourth order. In par-
ticular, no maximum principles are available which complicates the analysis [69, 70].
In this context, we mention the so-called Derrida-Lebowitz-Speer-Spohn equation
[40], obtained from (7.1) for zero pressure and zero electric field. This equation has
recently attracted a lot of attention in the mathematical literature since it possesses
several Lyapunov functionals and there are connections to logarithmic Sobolev in-
equalities (see [41] and references therein).

The justification of the quasineutral limit in macroscopic models has been first
studied in [14] for a nonlinear Poisson equation (the ion density being fixed). The
limit in the drift-diffusion equations (i.e. (7.1)-(7.3) with ε = 0) has been proved
in [52, 67] assuming vanishing or at least not sign-changing doping concentrations.
Sign-changing doping profiles have been considered in [98]. The quasineutral limit
in the steady state Euler-Poisson equations has been investigated in [80, 83, 84, 95],
whereas in [29, 53, 54, 97] the time-dependent case has been analyzed. In [13, 58] the
limit in the Vlasov-Poisson system has been shown. To our knowledge, no analytical
results on the quasineutral limit in fluid-type quantum models are available up to
now.

In the quasineutral limit λ → 0 we obtain formally from (7.3) n = p and from
(7.1)-(7.2)

nt +
ε2

2
(n(log n)xx)xx =

1

2
(Pn(n) + Pp(n))xx, x ∈ Ω, t > 0, (7.6)
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with initial and boundary conditions

n = 1, nx = 0 for x ∈ {0, 1}, n(·, 0) = nI in Ω, t > 0. (7.7)

In this paper we make the limit rigorous for vanishing doping profile. First we show
the existence of weak solutions to (7.1)-(7.4) (for general doping concentrations). In
the literature, only results for the unipolar model are available with different bound-
ary conditions [70] or with zero temperature and zero electric field [69]. Therefore,
we include a proof for completeness. Moreover, our proof makes clear which quan-
tities are bounded uniformly in the parameter λ (in appropriate norms).

More specifically, we show that the “entropy”
∫

(n − log n)dx is nonincreasing
with respect to time and that the corresponding entropy production terms provide
λ-uniform bounds for log n and log p in L2(0, T ;H2(Ω)) and for n and p in L7/2(QT ).
Also the entropy

∫

n(log n − 1)dx is nonincreasing in time, providing the uniform
bounds

‖n− p‖L2(QT ) ≤ cλ, ‖Vx‖L2(QT ) ≤ cλ−1. (7.8)

These estimates are not sufficient to pass to the limit λ → 0 in (7.1)-(7.3). Indeed,
the sum of (7.1) and (7.2) leads to the drift term in weak formulation

∫

QT

(n− p)Vxφxdxdt ≤ ‖n− p‖L2(QT )‖Vx‖L2(QT )‖φx‖L∞(QT ) ≤ c,

where φ is some (smooth) test function and c > 0 a constant independent of λ.
Thus, the estimates (7.8) only show that the above drift term is uniformly bounded;
however, we need to prove that it converges to zero as λ→ 0. The main problem in
this limit is that the (negative) electric field Vx is of the order O(λ−1).

Our idea is to derive (instead of (7.8)) the estimates

‖√n−√
p‖L2(QT ) ≤ cλ, ‖(√n+

√
p)Vx‖L2(QT ) ≤ cλ−8/9. (7.9)

This gives
∫

QT

(n− p)Vxφxdxdt ≤ ‖√n−√
p‖L2(QT )‖(

√
n+

√
p)Vx‖L2(QT )‖φx‖L∞(QT ) ≤ λ1/9,

and hence, the drift term converges to zero as λ → 0. The exponent 8/9 in (7.9) is
connected with the exponents of some Gagliardo-Nirenberg inequalities (see Lemma
7.9). The first bound in (7.9) is a consequence of the estimate using the “entropy”
∫

(n− log n)dx. The proof of the second bound in (7.9) is more delicate. It follows
from an estimate of the electric energy λ2

∫

(V −W )2
xdx if W satisfies the boundary

data of V up to first order, i.e. W = V and Wx = Vx at x ∈ {0, 1}. Since Vx(0, t)
and Vx(1, t) are only of the order O(λ−1), W is of the same order and prevents an
appropriate estimate. To solve this problem, we approximate W by a function Wδ
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in such a way that Wδ is of the order O(1)+O(δλ−1) (in the H1(Ω) norm). Passing
to the limit δ → 0 then provides the needed estimate in (7.9).

Our main results are the following theorems.

Theorem 7.1. Let T > 0, U ∈ IR, C ∈ L∞(Ω), and 0 ≤ nI , pI ∈ L1(Ω) satisfying

∫

Ω

(

(nI − log nI) + (pI − log pI)
)

dx+

∫

Ω

(

nI(log nI − 1) + pI(log pI − 1)
)

dx <∞.

Furthermore, let Pn, Pp ∈ C1([0,∞)) be nondecreasing and assume that there exist
0 < q < 7/2 and CP > 0 such that

|Pα(x)| ≤ CP (1 + |x|q) for all x ≥ 0, α = n, p. (7.10)

Then there exists a weak solution n, p ∈ L7/2(QT ), V ∈ L∞(0, T ;H2(Ω)) to (7.1)-
(7.5) such that

n, p ≥ 0 in QT , log n, log p ∈ L2(0, T ;H2
0 (Ω)), nt, pt ∈ L1(0, T ;H−3(Ω)).

The idea of the proof is to use the exponential transformation n = ey and p = ez

as in [69] since this automatically gives nonnegative particle densities. First we show
the existence of weak solutions to a semi-discrete (elliptic) problem. Appropriate a
priori estimates, which are also useful for the quasineutral limit, allow to pass to the
limit of vanishing approximation parameter. We stress the fact that, although we
employ ideas of [69], the existence theorem is needed since first, there is no existence
result for the bipolar quantum drift-diffusion model in the literature; and secondly,
the approximation argument is needed in the proof of the quasineutral limit due to
the lack of regularity of solutions to (7.1)-(7.5).

It is possible to obtain an existence result for more general (non-homogeneous)
boundary data but the proof is very technical; we refer to [59] for a related problem
providing the needed mathematical tools.

Theorem 7.2. Let the assumptions of Theorem 7.1 hold and let, in addition, C(x) ≡
0, q ≤ 7/3 and nI = pI in Ω. Let (n(λ), p(λ), V (λ)) be a weak solution (in the sense
of Theorem 7.1) to (7.1)-(7.5). Then there exists a subsequence of (n(λ), p(λ), V (λ)),
which is not relabeled, such that, as λ→ 0,

n(λ) → n, p(λ) → n strongly in L3(QT ),

n
(λ)
t ⇀ nt, n

(λ)
t ⇀ nt weakly in L42/41(0, T ;H−3(Ω)),

log n(λ) ⇀ log n, log p(λ) ⇀ log n weakly in L2(0, T ;H2(Ω)),

satisfying (7.6)-(7.7).
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Our assumptions avoid boundary and initial layers. We refer to [67] for the
treatment of boundary layers and to [52] for the analysis of initial layers in the
drift-diffusion model (cf. [83] and Remark 7.2).

Taking the difference of equations (7.1) and (7.2) provides in the limit λ → 0
formally an equation for the electrostatic potential,

−((n+ p)Vx)x = (Pn(n) − Pp(n))xx in Ω, V (0, t) = 0, V (1, t) = U.

However, since Vx is of the order O(λ−1) we cannot justify this limit equation rig-
orously. In the drift-diffusion equations, this is possible under certain assumptions
(see [67]).

If uniqueness of solutions holds for the problem (7.6)-(7.7), the whole sequence
(n(λ), p(λ), V (λ)) converges. However, there is no general uniqueness result for the
limit problem. For a uniqueness theorem in the case of vanishing pressure under
additional assumptions, we refer to [41].

The proof of Theorems 7.1 and 7.2 uses in several places the fact that we con-
sider the one-dimensional equations. An existence proof for the multi-dimensional
equations for vanishing pressure and vanishing electric field has been shown in [55]
but only using periodic boundary conditions. The treatment of the quantum drift-
diffusion model in several dimensions with physically motivated boundary conditions
is currently not known.

Another interesting limit is the semiclassical limit ε → 0. For a result in the
stationary equations we refer to [6]. In [26] the limit has been shown in the transient
case with homogeneous Neumann boundary conditions. Our a priori estimates seem
to be not sufficient to perform the limit for the boundary conditions (7.4) (see
Remark 7.1).

The paper is organized as follows. In section 7.2 we derive some a priori estimates
needed for the existence result and we prove Theorem 7.1. The estimates are also
useful for the quasineutral limit. Section 7.3 is devoted to the derivation of additional
estimates independent of λ and the proof of Theorem 7.2.

7.2 Existence of solutions

7.2.1 A priori estimates

We divide the time interval (0, T ] for some T > 0 in N subintervals (tk−1, tk] with
tk = τk, k = 0, . . . , N , and τ = T/N is the time step. For given k ∈ {1, . . . , N} and
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yk−1, zk−1 ∈ H2
0 (Ω) we solve the semi-discrete system

1

τ
(eyk − eyk−1) +

ε2

2
(eykyk,xx)xx =

(

(Pn(eyk))x − eykVk,x

)

x
, (7.11)

1

τ
(ezk − ezk−1) +

ε2

2
(ezkzk,xx)xx =

(

(Pp(e
zk))x + ezkVk,x

)

x
, (7.12)

λ2Vk,xx = eyk − ezk − C(x) in Ω, (7.13)

for yk, zk ∈ H2
0 (Ω), Vk − VD ∈ H1(Ω), where VD(x) = xU , x ∈ Ω. We introduce the

piecewise constant functions

y(N)(x, t) = yk(x), z(N)(x, t) = zk(x), V (N)(x, t) = Vk(x) for x ∈ Ω, t ∈ (tk−1, tk],
(7.14)

where k = 1, . . . , N . First we show that the entropy

E
(1)
k =

∫

Ω

((eyk − yk) + (ezk − zk)) dx

is non-increasing. Let yk, zk ∈ H2
0 (Ω), Vk − VD ∈ H1

0 (Ω) be a solution to (7.11)-
(7.13).

Lemma 7.1. There exists a constant c(λ) > 0 which is independent of λ if C(x) ≡ 0
such that

E
(1)
k +

ε2

2

k
∑

j=1

τ

∫

Ω

(y2
j,xx+z

2
j,xx)dx+

1

λ2

k
∑

j=1

τ

∫

Ω

(eyj−ezj)(yj−zj)dx ≤ c(λ)E
(1)
0 . (7.15)

Proof. We employ 1 − e−yk ∈ H2
0 (Ω) as a test function in the weak formulation of

(7.11) to obtain

1

τ

∫

Ω

(eyk − eyk−1)(1 − e−yk)dx+
ε2

2

∫

Ω

(y2
k,xx − y2

k,xyk,xx)dx

= −
∫

Ω

(P ′
n(eyk)y2

k,x − Vk,xyk,x)dx. (7.16)

With the elementary inequality ex ≥ 1 + x for x ∈ IR we can write

(eyk − eyk−1)(1 − e−yk) = eyk − eyk−1 + eyk−1−yk − 1

≥ (eyk − yk) − (eyk−1 − yk−1).

Since yk,x = 0 on the boundary, the second integral on the left-hand side of (7.16)
becomes

ε2

2

∫

Ω

(

y2
k,xx −

1

3
(y3

k,x)x

)

dx =
ε2

2

∫

Ω

y2
k,xxdx.
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Thus, it follows from (7.16), taking into account that P ′
n(x) ≥ 0 by assumption,

1

τ

∫

Ω

(eyk − yk)dx+
ε2

2

∫

Ω

y2
k,xxdx ≤ 1

τ

∫

Ω

(eyk−1 − yk−1)dx+

∫

Ω

Vk,xyk,xdx.

We obtain a similar equation for zk. Then, adding both inequalities and using the
Poisson equation (7.13), we arrive at

1

τ
E

(1)
k +

ε2

2

∫

Ω

(y2
k,xx + z2

k,xx)dx ≤ 1

τ
E

(1)
k−1 +

∫

Ω

Vk,x(yk,x − zk,x)dx

=
1

τ
E

(1)
k−1 −

1

λ2

∫

Ω

(eyk − ezk − C(x))(yk − zk)dx

≤ 1

τ
E

(1)
k−1 −

1

λ2

∫

Ω

(eyk − ezk)(yk − zk)dx+
1

λ2
‖C‖L∞(Ω)

∫

Ω

(|yk| + |zk|)dx.

Since |x| ≤ ex − x for all x ∈ IR, this yields

E
(1)
k +τ

ε2

2

∫

Ω

(y2
k,xx+z2

k,xx)dx+
τ

λ2

∫

Ω

(eyk −ezk)(yk−zk)dx ≤ E
(1)
k−1+

τ

λ2
‖C‖L∞(Ω)E

(1)
k .

Hence, choosing τ > 0 small enough, we obtain (7.15).

An immediate consequence of the entropy estimate (7.15) (and the Poincaré
inequality) are the following uniform bounds for the functions y(N) and z(N) (see
(7.14)):

‖y(N)‖L∞(0,T ;L1(Ω)) + ‖z(N)‖L∞(0,T ;L1(Ω)) ≤ c(λ), (7.17)

‖ey(N)‖L∞(0,T ;L1(Ω)) + ‖ez(N)‖L∞(0,T ;L1(Ω)) ≤ c(λ), (7.18)

‖y(N)‖L2(0,T ;H2(Ω)) + ‖z(N)‖L2(0,T ;H2(Ω)) ≤ c(λ). (7.19)

Again, if C(x) ≡ 0, the constant c(λ) does not depend on λ. From these estimates
we are able to deduce more uniform bounds.

Lemma 7.2. There exists a constant c(λ) > 0 which does not depend on λ if
C(x) ≡ 0 such that

‖ey(N)‖L5/2(0,T ;W 1,1(Ω)) + ‖ez(N)‖L5/2(0,T ;W 1,1(Ω)) ≤ c(λ), (7.20)

‖ey(N)‖L7/2(QT ) + ‖ez(N)‖L7/2(QT ) ≤ c(λ), (7.21)

where we recall that QT = Ω × (0, T ).
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Proof. We employ the Gagliardo-Nirenberg inequality and the estimates (7.17),
(7.19) to find

‖y(N)‖L5/2(0,T ;W 1,∞(Ω)) ≤ ‖y(N)
x ‖L5/2(0,T ;L∞(Ω))

≤ ‖y(N)‖1/5

L∞(0,T ;L1(Ω))‖y(N)‖4/5

L2(0,T ;H2(Ω)) ≤ c(λ).

Therefore, with (7.17) and (7.18),

‖ey(N)‖L5/2(0,T ;W 1,1(Ω)) ≤ c
(

‖ey(N)‖L5/2(0,T ;L1(Ω)) + ‖(ey(N)

)x‖L5/2(0,T ;L1(Ω))

)

≤ c‖ey(N)‖L5/2(0,T ;L1(Ω)) + c‖ey(N)‖L∞(0,T ;L1(Ω))‖y(N)
x ‖L5/2(0,T ;L∞(Ω))

≤ c(λ).

This shows (7.20). In order to prove (7.21) we use again the Gagliardo-Nirenberg
inequality:

‖ey(N)‖7/2

L7/2(QT )
≤ c

∫ T

0

‖ey(N)‖L1(Ω)‖ey(N)‖5/2

W 1,1(Ω)dt

≤ c‖ey(N)‖L∞(0,T ;L1(Ω))‖ey(N)‖5/2

L5/2(0,T ;W 1,1(Ω))
≤ c(λ).

The bounds for ez(N)
are derived in a similar way.

Remark 7.1. The constants in (7.20)-(7.21) depend on ε since the estimates for
y(N) and z(N) in L2(0, T ;H2(Ω)) do so. Hence, most of the subsequent bounds also
depend on ε.

Lemma 7.3. There exists a constant c(λ) > 0 depending on λ such that

‖V (N)‖L2(0,T ;H1(Ω)) ≤ c(λ). (7.22)

Proof. By elliptic estimates,

λ2‖V (N)
x ‖L2(QT ) ≤ c

(

‖ey(N) − ez(N) − C(x)‖L2(0,T ;H−1(Ω)) + 1
)

≤ c
(

‖ey(N) − ez(N) − C(x)‖L2(0,T ;L1(Ω)) + 1
)

≤ c(λ),

since L1(Ω) injects continuously into H−1(Ω) in one space dimension.

Finally, we need an estimate for the discrete time derivative. For this, we intro-
duce the shift operator

(σNe
y(N)

)(x, t) = eyk−1(x), (σNe
z(N)

)(x, t) = ezk−1(x) for x ∈ Ω, t ∈ (tk−1, tk].
(7.23)
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Lemma 7.4. There exists a constant c(λ) > 0 depending on λ such that for s =
min{7/2q, 14/11} > 1,

‖ey(N) − σNe
y(N)‖Ls(0,T ;H−3(Ω)) + ‖ez(N) − σNe

z(N)‖Ls(0,T ;H−3(Ω)) ≤ τc(λ). (7.24)

Proof. We estimate the semi-discrete equation (7.11) in the norm of Ls(0, T ;H−3(Ω)).
This gives

τ−1‖ey(N) − σNe
y(N)‖Ls(0,T ;H−3(Ω)) ≤ ε2‖ey(N)

y(N)
xx ‖Ls(0,T ;H−1(Ω))

+ ‖Pn(ey(N)

)‖Ls(0,T ;H−1(Ω)) + ‖ey(N)

V (N)
x ‖Ls(0,T ;H−1(Ω)).

The first term on the right-hand side is bounded by Hölder’s inequality and (7.19),
(7.21):

‖ey(N)

y(N)
xx ‖Ls(0,T ;H−1(Ω)) ≤ c‖ey(N)

y(N)
xx ‖Ls(0,T ;Ls(Ω)) ≤ c‖ey(N)‖L2s/(2−s)(QT )‖y(N)

xx ‖L2(QT )

≤ c‖ey(N)‖L7/2(QT )‖y(N)
xx ‖L2(QT ) ≤ c(λ),

since 2s/(2 − s) ≤ 7/2 is equivalent to s ≤ 14/11. For the second term on the
above right-hand side we employ the growth condition on the pressure functions
and (7.21):

‖Pn(ey(N)

)‖Ls(0,T ;H−1(Ω)) ≤ c‖Pn(ey(N)

)‖Ls(0,T ;Ls(Ω)) ≤ c
(

1 + ‖ey(N)‖q

L7/2(QT )

)

≤ c(λ).

Finally, the last term on the right-hand side can be estimated by using (7.21) and
(7.22):

‖ey(N)

V (N)
x ‖Ls(0,T ;H−1(Ω)) ≤ c‖ey(N)

V (N)
x ‖Ls(0,T ;Ls(Ω))

≤ c‖ey(N)‖L2s/(2−s)(QT )‖V (N)
x ‖L2(QT ) ≤ c(λ).

Putting together the three inequalities gives (7.24). The proof for z(N) is analogous.

7.2.2 Proof of Theorem 7.1

First we show that the semi-discrete problem (7.11)-(7.13) admits a solution.

Lemma 7.5. Under the hypotheses of Theorem 7.1 there exists a sequence (yk, zk, Vk) ∈
(H2

0 (Ω))2 ×H2(Ω) with Vk(0) = 0 and Vk(1) = U satisfying (7.11)-(7.13).

Proof. Let yk−1, zk−1 ∈ H2
0 (Ω) be given. Let v, w ∈ H1(Ω) and solve first

λ2Vk,xx = ev − ew − C(x) in Ω, Vk(0) = 0, Vk(1) = U.



124 Ingrid Violet

This problem admits a unique solution Vk ∈ H2(Ω). Then we solve in H2
0 (Ω) the

linear problems

σ

τ
(ev − eyk−1) +

ε2

2
(evyk,xx)xx = σ

(

(Pn(ev))x − evVk,x

)

x
,

σ

τ
(ew − ezk−1) +

ε2

2
(ewzk,xx)xx = σ

(

(Pp(e
w))x + ewVk,x

)

x
,

where σ ∈ [0, 1]. There exists a unique solution (yk, zk) ∈ (H2
0 (Ω))2. This defines

the fixed-point operator S : (H1(Ω))2×[0, 1] → (H1(Ω))2, (v, w, σ) 7→ (yk, zk). Then
S is well defined and satisfies S(v, w, 0) = (0, 0). Furthermore, it is not difficult to
check that S is continuous and, in view of the compact embedding H2

0 (Ω) →֒ H1(Ω),
also compact. It remains to show that there is a uniform bound for all fixed points
of S(·, ·, σ). The estimates of section 7.2.1 establish the case σ = 1. The estimates
for σ < 1 are similar (and, in fact, independent of σ). This provides the wanted
bound in H1(Ω) and the Leray-Schauder fixed-point theorem can be applied to yield
the existence of a solution to (7.11)-(7.13).

Now we are able to prove Theorem 7.1. For this, we have to perform the limit
τ → 0 in (7.11)-(7.13). Actually, the uniform bounds (7.20) and (7.24) and the
compact embedding W 1,1(Ω) →֒ L1(Ω) allow to apply Theorem 5 of [93] (Aubin’s

lemma) yielding the existence of a subsequence of ey(N)
and ez(N)

(not relabeled)

such that ey(N) → v, ez(N) → w strongly in L1(QT ) as N → ∞ or, equivalently,
τ → 0. Moreover, again for a subsequence which is not relabeled,

y(N) ⇀ y, z(N) ⇀ z weakly in L2(0, T ;H2(Ω)) (7.25)

as τ → 0. The bounds (7.17) and (7.18) allow to use the same arguments as in the
proof of Theorem 1.2 in [59] showing that v = ey and w = ez. Since, by (7.21),

(ey(N)
) is bounded in L7/2(QT ) and ey(N) → ey a.e., the result in [75, Ch. 1.3 and

p. 144] yields

ey(N) → ey strongly in L2(QT ). (7.26)

Moreover, the same bound and hypothesis (7.10) imply that (Pn(ey(N)
)) is bounded

in Ls(0, T ;Ls(Ω)) for s = 7/2q > 1 and hence, by the same argument as before,

Pn(ey(N)

) → Pn(ey) strongly in L1(QT ). (7.27)

Finally, the bound (7.24) gives, up to a subsequence,

1

τ
(ey(N) − σNe

y(N)

) ⇀ (ey)t weakly in Ls(0, T ;H−3(Ω). (7.28)

The same limits hold for z(N). Moreover, by (7.22),

V (N) ⇀ V weakly in L2(0, T ;H1(Ω)). (7.29)
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The limits (7.25)-(7.29) allow to pass to the limit τ → 0 in the weak formulation of
(7.11),

∫ T

0

∫

Ω

1

τ
(ey(N) − σNe

y(N)

)φdxdt+
ε2

2

∫ T

0

∫

Ω

ey(N)

y(N)
xx φxxdxdt

=

∫ T

0

∫

Ω

(

Pn(ey(N)

)φxx + ey(N)

V (N)
x φx

)

dxdt

for all φ ∈ L∞(0, T ;H3(Ω)∩H2
0 (Ω)). The limit functions satisfy y, z ∈ L2(0, T ;H2

0 (Ω)),
V −VD ∈ L∞(0, T ;H1

0 (Ω)), which shows that the boundary conditions are satisfied.
Furthermore, the initial conditions hold in the sense of H−3(Ω). This finishes the
proof of Theorem 7.1.

7.3 The quasi-neutral limit

7.3.1 A priori estimates

For the quasi-neutral limit λ → 0 we need additional estimates. We recall that the
condition C(x) ≡ 0 implies that the uniform bounds (7.15)-(7.21) are independent
of λ.

Lemma 7.6. There exists a constant c > 0 independent of λ such that

‖ey(N)/2 − ez(N)/2‖L2(QT ) ≤ cλ. (7.30)

Proof. The entropy estimate (7.15) gives

∫

QT

(ey(N) − ez(N)

)(y(N) − z(N))dxdt ≤ cλ2.

Then the assertion follows if we can show that

2(
√
x−√

y)2 ≤ (x− y)(log x− log y) for all x, y ≥ 0. (7.31)

This inequality can be seen as follows. It is sufficient to consider x ≥ y > 0. Then
(7.31) is equivalent to

2(
√
x−√

y) ≤ (
√
x+

√
y) log

x

y

and

2

√

x/y − 1
√

x/y + 1
= 2

√
x−√

y√
x+

√
y
≤ 2 log

√

x

y
.
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Thus we only need to prove that

z − 1

z + 1
≤ log z for all z ≥ 1.

But this is a consequence of log z ≥ z − 1 ≥ (z − 1)/(z + 1) for z ≥ 1, thus proving
the lemma.

The following estimates are derived from the boundedness of the entropy

E
(2)
k =

∫

Ω

(eyk(yk − 1) + ezk(zk − 1) + 2) dx > 0.

Lemma 7.7. The following estimate holds:

E
(2)
k +

ε2

2

k
∑

j=1

τ

∫

Ω

(eyjy2
j,xx + ezjz2

j,xx)dx+
1

λ2

k
∑

j=1

τ

∫

Ω

(eyj − ezj)2dx ≤ E
(2)
0 . (7.32)

Proof. We employ the test function yk ∈ H2
0 (Ω) in the weak formulation of (7.11)

to obtain

1

τ

∫

Ω

(eyk − eyk−1)ykdx+
ε2

2

∫

Ω

eyky2
k,xxdx = −

∫

Ω

(P ′
n(eyk)eyky2

k,x − Vk,xe
ykyk,x)dx.

(7.33)
The convexity of x 7→ ex implies that ex − ey − ey(x− y) ≥ 0 and hence,

(eyk − eyk−1)yk ≥ (eyk − eyk−1)yk + eyk−1(yk − yk−1) − eyk + eyk−1

= eyk(yk − 1) − eyk−1(yk−1 − 1).

Thus it follows

1

τ

∫

Ω

eyk(yk − 1)dx+
ε2

2

∫

Ω

eyky2
k,xxdx ≤ 1

τ

∫

Ω

eyk−1(yk−1 − 1)dx+

∫

Ω

Vk,x(e
yk)xdx.

A similar inequality holds for zk. Adding both inequalities and then employing the
Poisson equation (7.13) gives

1

τ
E

(2)
k +

ε2

2

∫

Ω

(eyky2
k,xx + ezkz2

k,xx)dx ≤ 1

τ
E

(2)
k−1 −

1

λ2

∫

Ω

(eyk − ezk)2dx.

This gives the assertion.

From Lemma 7.7 immediately follows that

‖ey(N) − ez(N)‖L2(QT ) ≤ cλ

and therefore, for sufficiently small λ > 0,

‖V (N)
x ‖L2(QT ) ≤ c(1 + λ−2‖ey(N) − ez(N)‖L2(QT )) ≤ cλ−1.

In the L3 norm the exponent in λ is smaller as shown in the following lemma.
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Lemma 7.8. There exists a constant c > 0 independent of λ such that

‖ey(N) − ez(N)‖L3(QT ) ≤ cλ2/9, (7.34)

‖V (N)‖L3(0,T ;W 2,3(Ω)) ≤ cλ−16/9. (7.35)

Proof. By Hölder’s inequality,

‖ey(N) − ez(N)‖L3(QT ) ≤ ‖ey(N) − ez(N)‖2/9

L2(QT )‖ey(N) − ez(N)‖7/9

L7/2(QT )
≤ cλ2/9,

employing (7.21) and (7.32), which shows (7.34). The estimate (7.35) is a conse-
quence from (7.34):

‖V (N)
xx ‖L3(QT ) = λ−2‖ey(N) − ez(N)‖L3(QT ) ≤ cλ−16/9.

This finishes the proof.

The following lemma is our key result.

Lemma 7.9. There exists a constant c(ε) > 0 independent of λ such that, for
sufficiently small λ > 0,

‖(ey(N)/2 + ez(N)/2)V (N)
x ‖L2(QT ) ≤ cλ−8/9. (7.36)

Proof. The key idea is to define a special extension Wk(x) of the boundary data such
that Wk −Vk ∈ H2

0 (Ω) becomes an admissible test function in the weak formulation
of (7.11)-(7.12). The problem is that Vk,x(0) and Vk,x(1) are unbounded as λ → 0.
Therefore, we need to take special care in the definition of Wk. We define

Wk(x) =



















δ(Vk,x(0) − U)
(

x
δ

)3
+ 2δ(U − Vk,x(0))

(

x
δ

)2
+ δVk,x(0)x

δ
: x ∈ [0, δ]

xU : x ∈ [δ, 1 − δ]

δ(U − Vk,x(1))
(

1−x
δ

)3

+ 2δ(Vk,x(1) − U)
(

1−x
δ

)2 − δVk,x(1)1−x
δ

+ U : x ∈ [1 − δ, 1].

This function is continuously differentiable, is an element of H2(Ω) and satisfies

Wk(0) = 0, Wk(1) = U, Wk,x(0) = Vk,x(0), Wk,x(1) = Vk,x(1).

Let W (N)(·, t) = Wk if t ∈ (tk−1, tk]. We claim that, for sufficiently small λ > 0,

‖W (N)
x ‖L3(QT ) ≤ cδλ−16/9, (7.37)

‖W (N)
xx ‖L3(QT ) ≤ cλ−16/9. (7.38)
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Indeed, by elliptic estimates and (7.34), we have

‖W (N)
x ‖L3(QT ) ≤ c(1 + δ‖V (N)

x (0, ·)‖L3(0,T ) + δ‖V (N)
x (1, ·)‖L3(0,T ))

≤ c(1 + δ‖V (N)‖L3(0,T ;W 1,∞(Ω))) ≤ c(1 + δ‖V (N)‖L3(0,T ;W 2,1(Ω)))

≤ c(1 + δλ−2‖ey(N) − ez(N)‖L3(0,T ;L1(Ω))) ≤ cδλ−16/9.

This shows (7.37). In order to prove (7.38), we use (7.35):

‖W (N)
xx ‖L3(QT ) ≤ c(1 + ‖V (N)

x (0, ·)‖L3(0,T ) + ‖V (N)
x (1, ·)‖L3(0,T ))

≤ c(1 + ‖V (N)‖L3(0,T ;W 1,∞(Ω))) ≤ cλ−16/9.

Now we employ Wk − Vk ∈ H2
0 (Ω) as a test function in (7.11)-(7.12) and take

the difference of the resulting equations to obtain

1

τ

∫

Ω

((eyk − ezk) − (eyk−1 − ezk−1)) (Wk − Vk)dx

+
ε2

2

∫

Ω

(eykyk,xx − ezkzk,xx)(Wk − Vk)xxdx (7.39)

=

∫

Ω

(Pn(eyk) − Pp(e
zk))(Wk − Vk)xxdx+

∫

Ω

(eyk + ezk)Vk,x(Wk − Vk)xdx.

The first integral on the left-hand side can be estimated by means of the Poisson
equation (7.13) and Young’s inequality:

1

τ

∫

Ω

((eyk − ezk) − (eyk−1 − ezk−1)) (Wk − Vk)dx =
λ2

τ

∫

Ω

(Vk − Vk−1)x(Vk −Wk)xdx

=
λ2

τ

∫

Ω

(Vk −Wk)
2
xdx−

λ2

τ

∫

Ω

(Vk−1 −Wk−1)x(Vk −Wk)xdx

+
λ2

τ

∫

Ω

(Wk −Wk−1)x(Vk −Wk)xdx

≥ λ2

2τ

∫

Ω

(Vk −Wk)
2
xdx−

λ2

2τ

∫

Ω

(Vk−1 −Wk−1)
2
xdx+

λ2

τ

∫

Ω

(Wk −Wk−1)x(Vk −Wk)xdx.

Applying Young’s inequality to the last integral in (7.39) gives

∫

Ω

(eyk + ezk)Vk,x(Wk − Vk)xdx ≤ −1

2

∫

Ω

(eyk + ezk)V 2
k,xdx+

1

2

∫

Ω

(eyk + ezk)W 2
k,xdx.
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Thus, summation over k in (7.39) yields

λ2

2

∫

Ω

(VN −WN)2
xdx+

1

2

N
∑

k=1

τ

∫

Ω

(eyk + ezk)V 2
k,xdx

≤ λ2

2

∫

Ω

(V0 −W0)
2
xdx− λ2

N
∑

k=1

∫

Ω

(Wk −Wk−1)x(Vk −Wk)xdx

+
1

2

N
∑

k=1

τ

∫

Ω

(eyk + ezk)W 2
k,xdx+

ε2

2

N
∑

k=1

τ

∫

Ω

(eykyk,xx + ezkzk,xx)(Vk −Wk)xxdx

−
N
∑

k=1

τ

∫

Ω

(Pn(eyk) − Pp(e
zk))(Vk −Wk)xxdx

= I1 + · · · + I5.

In the following, we write the integrals I1, . . . , I5 in terms of y(N), z(N), V (N), and
W (N).

For the first integral I1 we notice that our assumption on the initial data gives
λ2V0,xx = ey0 −ez0 = 0 in Ω which, together with the boundary conditions V0(0) = 0,
V0(1) = U , shows that V0 is a linear function and in particular independent of λ.
Thus, also W0,x does not depend on λ and

I1 ≤ λ2‖V (N)
x (·, 0)‖2

L2(Ω) + λ2‖W (N)
x (·, 0)‖2

L2(Ω) ≤ c.

For I2 we use (7.37):

I2 ≤
2λ2

τ
‖W (N)

x ‖L2(QT )

(

‖V (N)
x ‖L2(QT ) + ‖W (N)

x ‖L2(QT )

)

≤ cδλ2/9

τ
(λ−1+δλ−16/9) ≤ cδ

τλ7/9
,

choosing δ ≤ λ7/9. Taking into account (7.21) and (7.37) gives

I3 ≤
1

2

(

‖ey(N)‖L3(QT ) + ‖ez(N)‖L3(QT )

)

‖W (N)
x ‖2

L3(QT ) ≤ cδ2λ−32/9,

and an application of Hölder’s inequality and (7.21), (7.32), (7.35), and (7.38) yield

I4 ≤ ε2

2

(

‖ey(N)/2y(N)
xx ‖L2(QT )‖ey(N)/2‖L6(QT ) + ‖ez(N)/2z(N)

xx ‖L2(QT )‖ey(N)/2‖L6(QT )

)

×
(

‖V (N)
xx ‖L3(QT ) + ‖W (N)

xx ‖L3(QT )

)

≤ cλ−16/9.

We proceed with the integral I5 which we estimate using the growth condition on
Pn and Pp and (7.35), (7.38):

I5 ≤
(

‖Pn(ey(N)

)‖L3/2(QT ) + ‖Pn(ey(N)

)‖L3/2(QT )

)

(

‖V (N)
xx ‖L3(QT ) + ‖W (N)

xx ‖L3(QT )

)

≤ c
(

1 + ‖ey(N)‖q

L3q/2(QT )
+ ‖ez(N)‖q

L3q/2(QT )

)

λ−16/9 ≤ cλ−16/9,
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since 3q/2 ≤ 7/2 is equivalent to our assumption q ≤ 7/3.

The above estimates yield, for sufficiently small λ > 0,

∫

QT

(ey(N)

+ ez(N)

)(V (N))2
xdxdt ≤ c

(

1 + λ−16/9 + δ2λ−32/9 + δτ−1λ−7/9
)

Letting δ → 0 then gives the assertion.

Remark 7.2. In order to avoid an initial time layer we have assumed that nI = pI .
The above proof shows that it is enough to require that ‖nI − pI‖H−1(Ω) is of the
order O(λ1/9). Indeed, the estimate

λ2‖V0,x‖2
L2(Ω) ≤ c(1 + λ−2‖ey0 − ez0‖2

H−1(Ω)) ≤ cλ−16/9

shows that I1 ≤ cλ−16/9 holds.

Remark 7.3. The assumption q ≤ 7/3 can be improved to q < 5/2 by more
technical effort. Indeed, this condition is only needed in the computation of the
integral I5. In order to show how I5 can be estimated assuming only q < 5/2, we
proceed as follows.

By the same arguments as in the proof of Lemma 7.8, we can derive

‖ey(N) − ez(N)‖Lr(QT ) ≤ cλθ, ‖V (N)‖Lr(0,T ;W 2,r(Ω)) ≤ cλθ−2

for 2 < r < 7/2 and θ = 2(7 − 2r)/3r ∈ (0, 1). Then

I5 ≤ c
(

1 + ‖ey(N)‖q

Lqr/(r−1)(QT )
+ ‖ez(N)‖q

Lqr/(r−1)(QT )

)

λθ−2 ≤ cλθ−2,

since qr/(r − 1) ≤ 7/2 is equivalent to q < 5/2. This yields

‖(ey(N)

+ ez(N)

)V (N)
x ‖L2(QT ) ≤ cλθ/2−1,

which is sufficient for the proof of Theorem 7.2. However, the proof of Lemma
7.10 below becomes more involved. Therefore, and since the improvement is only
marginal, we have assumed the stronger condition q ≤ 7/3.

Lemma 7.10. There exists a constant c > 0 independent of λ such that for s =
42/41,

‖ey(N)

+ ez(N) − σN(ey(N)

+ ez(N)

)‖Ls(0,T ;H−3(Ω)) ≤ cτ.

Recall that σN is the shift operator defined in (7.23).
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Proof. We estimate the sum of equations (7.11) and (7.12):

1

τ
‖ey(N)

+ ez(N) − σN(ey(N)

+ ez(N)

)‖Ls(0,T ;H−3(Ω))

≤ ε2

2
‖ey(N)

y(N)
xx + ez(N)

z(N)
xx ‖Ls(QT ) + ‖Pn(ey(N)

) + Pp(e
z(N)

)‖Ls(QT )

+ ‖(ey(N) − ez)V (N)
x ‖Ls(QT ).

The first term on the right-hand side is bounded by (7.19) and (7.21):

‖ey(N)

y(N)
xx ‖Ls(QT ) ≤ ‖ey(N)‖L2s/(2−s)(QT )‖y(N)

xx ‖L2(QT ) ≤ ‖ey(N)‖L21/10(QT )‖y(N)
xx ‖L2(QT ) ≤ c,

and similarly for the expression for z(N). Taking into account the growth assumption
on Pn and (7.21) we find

‖Pn(ey(N)

)‖Ls(QT ) ≤ c(1 + ‖ey(N)‖q
Lq(QT )) ≤ c,

and analogously for z(N). For the drift term we need Lemma 7.6 and (7.21):

‖ey(N)/2−ez(N)/2‖L21/10(QT ) ≤ ‖ey(N)/2−ez(N)/2‖8/9

L2(QT )‖ey(N)/2−ez(N)/2‖1/9

L7/2(QT )
≤ cλ8/9.

This yields, together with Lemma 7.9,

‖(ey(N) − ez(N)

)V (N)
x ‖Ls(QT ) ≤ ‖ey(N)/2 − ez(N)/2‖L21/10(QT )‖(ey(N)/2 + ez(N)/2)V (N)

x ‖L2(QT )

≤ cλ8/9λ−8/9 = c.

Putting together the above bounds gives the assertion.

7.3.2 Proof of Theorem 7.2

The results of section 7.2.2 allow to pass to the limit τ → 0 in the uniform estimates
of the previous section. This yields weak solutions y(λ), z(λ), and V (λ) satisfying the
equations

(ey(λ)

)t +
ε2

2
(ey(λ)

y(λ)
xx )xx =

(

(Pn(ey(λ)

))x − ey(λ)

V (λ)
)

x
, (7.40)

(ez(λ)

)t +
ε2

2
(ez(λ)

z(λ)
xx )xx =

(

(Pp(e
z(λ)

))x + ez(λ)

V (λ)
)

x
, (7.41)

the boundary and initial conditions (7.4)-(7.5) and the following uniform bounds:

‖ey(λ)‖L5/2(0,T ;W 1,1(Ω)) + ‖ez(λ)‖L5/2(0,T ;W 1,1(Ω)) ≤ c,

‖(ey(λ)

+ ez(λ)

)t‖L42/41(0,T ;H−3(Ω)) ≤ c,

‖y(λ)‖L2(0,T ;H2(Ω)) + ‖z(λ)‖L2(0,T ;H2(Ω)) ≤ c,

‖ey(λ)‖L7/2(QT ) + ‖ez(λ)‖L7/2(QT ) ≤ c
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as well as, by Lemmas 7.6 and 7.9,

‖ey(λ)/2 − ez(λ)/2‖L2(QT ) ≤ cλ, ‖(ey(λ)/2 + ez(λ)/2)V (λ)
x ‖L2(QT ) ≤ cλ−8/9. (7.42)

Thus, Aubin’s lemma and the arguments of section 7.2.2 show the existence of a
subsequence (not relabeled) such that, as λ→ 0,

ey(λ) → ey, ez(λ) → ey strongly in L3(QT ) and weakly in L7/2(QT ),

y(λ) ⇀ y, z(λ) ⇀ y weakly in L2(0, T ;H2(Ω)),

(ey(λ)

+ ez(λ)

)t ⇀ 2(ey)t weakly in L42/41(0, T ;H−3(Ω)).

These convergence results imply for all sufficiently smooth φ, as λ→ 0,

∫ T

0

〈(ey(λ)

+ ez(λ)

)t, φ〉H−3,H3dt → 2

∫ T

0

〈(ey)t, φ〉H−3,H3dt,
∫

QT

(ey(λ)

y(λ)
xx + ez(λ)

z(λ)
xx )φxxdxdt → 2

∫

QT

eyyxxφxxdxdt,

∫

QT

(Pn(ey(λ)

) + Pp(e
z(λ)

))φxxdxdt →
∫

QT

(Pn(ey) + Pp(e
y))φxxdxdt.

The delicate integral is the expression containg the drift term. Here we need (7.42):

∫

QT

(ey(λ) − ez(λ)

)V (λ)
x φxdxdt

≤ ‖ey(λ)/2 − ez(λ)/2‖L2(QT )‖(ey(λ)/2 + ez(λ)/2)V (λ)
x ‖L2(QT )‖φx‖L∞(QT )

≤ cλ · λ−8/9 ≤ cλ1/9 → 0.

These results allow to pass to the limit in the sum of the equations (7.40) and (7.41),

∫ T

0

〈(ey(λ)

+ ez(λ)

)t, φ〉H−3,H3dt+
ε2

2

∫

QT

(ey(λ)

y(λ)
xx + ez(λ)

z(λ)
xx )φxxdxdt

=

∫

QT

(Pn(ey(λ)

) + Pp(e
z(λ)

))φxxdxdt+

∫

QT

(ey(λ) − ez(λ)

)V (λ)
x φxdxdt,

which proves Theorem 7.2.



Chapter 8

Regularity and positivity of
solutions for a logarithmic
fourth-order parabolic equation

This Chapter is a work in collaboration with Ansgar Jüngel.

8.1 Introduction

The goal of this paper is to study the regularity properties of weak solutions to a
nonlinear fourth-order equation with periodic boundary conditions. More precisely,
we consider the following problem

ut + (u(log u)xx)xx = 0, x ∈ Ω := (0, 1), t > 0, (8.1)

with periodic boundary conditions and the following initial condition

u(x, 0) = u0(x), x ∈ Ω. (8.2)

Such an equation arises in the modeling of semiconductors which take into ac-
count the quantum effects due to the small size of the devices. Indeed, this kind
of equation appears, for instance, for zero pressure, in the quasineutrality limit of
the quantum drift-diffusion model (i.e. the limit as the ratio of Debye length to
a characteristic length tends to zero, see [72] (Chapter 7 here)). Moreover, it is a
one-homogeneous equation which is a simple example of a generalization of the heat
equation to higher-order operators. It is then important to study its solutions and
their regularity.

Mathematically, the parabolic equation (8.1) is of fourth-order and, in particular,
no maximum principle is available, which complicates the analysis [69, 70]. We
mention that (8.1) is the so-called Derrida-Lebowitz-Speer-Spohn equation derived
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in the context of fluctuations of a stationary non-equilibrium interface [40]. It has
recently been widely studied because of its remarkable properties. For instance, the
solutions are nonnegative and there are several Lyapunov functionals (see [41, 10,
17]). We refer to [63] for a systematic study. Moreover, there are connections to
logarithmic Sobolev inequalities (see [41] and references therein).

The first analytical result has been presented in [10]. In this work, the ex-
istence of local-in-time classical solutions with periodic boundary conditions has
been proved. A global-in-time existence result has been obtained for homogeneous
Dirichlet-Neumann boundary conditions in [69] and for periodic boundary condi-
tions in [41] with the same kind of method. Here, we also show a global-in-time
existence result using a time discretization (as done in [41]) but the approxima-
tion scheme is different. This new scheme allows us to obtain additional regularity
properties for the solutions.

The long-time behavior of solutions has been studied in [17] in the case of peri-
odic boundary conditions under restrictive regularity conditions on the initial data,
in [71] with homogeneous Dirichlet-Neumann boundary conditions and finally, in
[59] with non-homogeneous Dirichlet-Neumann boundary conditions. In particular,
it has been shown that the solutions converge exponentially fast to their steady-
state in various norms and in terms of entropy (see [69]). The decay rate has been
numerically computed in [18]. We also mention [70] in which a positivity-preserving
numerical scheme for the quantum drift-diffusion model has been proposed.

Concerning the multi-dimensional case, the only result, to our knowledge, is the
existence of global-in-time weak solutions (see [55]).

In the last years, the question of nonnegative or positive solutions of fourth-order
parabolic equations has also been investigated in the context of lubrication-type
equations, e.g. the thin film equation

ut + (f(u)uxxx)x = 0

(see, e.g., [7, 8]), where typically, f(n) = nα for some α > 0. This equation is
of degenerate type which makes the analysis easier than it is for (8.1), at least
concerning the positivity property. Notice that (8.1) is not of degenerate type. Note
that, up to now, the positivity property for solutions to equation (8.1) has only been
shown for times small enough (see [10]). Here using the regularity properties, we
are also able to prove the positivity for times large enough.

As said above, the main goal of this paper is to improve the known regularity
results for this equation. To this end, we first rewrite, for α ∈ [2/53(25− 6

√
10), 1],

(see appendix for the justification of the lowest bound) the equation (8.1) into

1

α
u1−α∂t(u

α) + (u(log u)xx)xx = 0. (8.3)
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This new form of the equation (8.1) allows us to extend the results given in [41].
Clearly a solution of (8.3) is also a solution of (8.1). Here, we need to show the
existence of solutions to equation (8.3). Indeed, it leads to a time discretization
which is different from the one used in [41] and we can not use the results shown in
this paper. In particular this new discretization allows us to prove that a solution
u of (8.1) satisfies uα ∈ L2(0, T ;H3(Ω)) and uα/2 ∈ L∞(0, T,H1(Ω)). Moreover we
can show that u ∈ L∞(0, T ;L∞(Ω)). Our main results are the following Theorems
8.1 and 8.2.

Theorem 8.1. Let u0 : Ω → IR be a nonnegative measurable function such that
∫

Ω
(u0 − log u0)dx <∞ and u0 ∈ H1(Ω). Let T > 0. We assume that α ∈ [2/53(25−

6
√

10), 1]. Then there exists a global weak solution u of (8.3)-(8.2) satisfying

u ∈ L5/2(0, T ;W 1,1(Ω)), log u ∈ L2(0, T ;H2(Ω)),

u ≥ 0 in Ω × (0,∞),

and for all T > 0 and all smooth functions φ,

∫ T

0

1

α
< (uα)t, φ >H−2,H2 dt+

∫ T

0

∫

Ω

u(log u)xx(u
α−1φ)xxdxdt = 0.

The initial datum is satisfied in the sense of H−2(Ω) := (H2
0 (Ω))∗.

To show this result, we use a change of variable (u = ey), and a time discretization
of (8.3). Then, we prove a priori estimates on the constructed sequence of solutions,
which allow us to pass to the limit to zero on the time step. Some of these a priori
estimates are obtained by using the method presented in [63]. However, due to the
form of (8.3), performing the vanishing time step limit is more complicated than in
[41]. Indeed, multiplying (8.3) by uα−1, we obtain the weak formulation

1

α

∫ T

0

< ∂t(u
α), φ >H−2,H2 dt+

∫ T

0

∫

Ω

u(log u)xx(u
α−1φ)xxdxdt = 0,

for any smooth test function φ. Then in the discrete problem, the second integral
yields a product of three terms (and not only two as in [41]). In such a situation, a
priori estimates and Aubin’s Lemma are not sufficient to obtain the strong conver-
gences needed to perform the limit. Therefore, we also give some preliminary results
which give strong convergence in one-space dimension with particular assumptions.

Theorem 8.2. Under the assumptions of Theorem 8.1, the solution u of (8.3)-(8.2)
verifies

uα ∈ L2(0, T ;H3(Ω)), uα/2 ∈ L∞(0, T ;H1(Ω)),

and u ∈ L∞(0, T ;L∞(Ω)).
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The proof of this Theorem uses some a priori estimates obtained for the proof
of Theorem 8.1 and, in this sense, is a direct consequence of Theorem 8.1.

The paper is organized as follow. In section 8.2, we give some preliminary results
on the semi-discretized in time problem: existence of solution to the discrete problem
and a priori estimates needed for the proofs of Theorems 8.1 and 8.2. These proofs
are given in section 8.3. Section 8.4 is devoted to the positivity property for times
large enough. Finally, technical Lemmas are proved in the appendix.

8.2 Preliminary results

The goal of this section is to obtain some preliminary results, and in particular some
a priori estimates, needed in the next section for the proofs of Theorems 8.1 and
8.2. First of all, let us set u = ey in problem (8.3)-(8.2). This gives

1

ατ
e(1−α)y∂t(e

αy) + (eyyxx)xx = 0, x ∈ Ω, t > 0, (8.4)

with periodic boundary conditions and the following initial condition

y(0, x) = log u0(x), ∀ x ∈ Ω. (8.5)

Now we semi-discretize in time the equation (8.4). To this end, let T > 0. We divide
the time interval [0, T ] in N subintervals (tk−1, tk] with tk = τk, k = 0, ..., N where
τ = T/N is the time step. For k ∈ {1, ..., N} and yk−1 given, we solve the following
equation

1

ατ
e(1−α)yk(eαyk − eαyk−1) + (eykyk,xx)xx = 0. (8.6)

Let k = 1, ..., N, we introduce the piecewise constant function

y(N)(t, x) = yk(x), for x ∈ Ω, t ∈ (tk−1, tk],

and the shift operator

(σN(y(N)))(t, x) = yk−1(x), for x ∈ Ω, t ∈ (tk−1, tk].

Using (8.6), y(N) is solution of the following equation

1

ατ
(ey(N)

)1−α
(

(ey(N)

)α − (σN(ey(N)

))α
)

+ (ey(N)

y(N)
xx )xx = 0. (8.7)

To prove the existence of solutions to problem (8.3)-(8.2), and then Theorem 8.1, we
need to let τ tends to 0, or equivalently N → ∞, in (8.7). To this end we need first
to prove the existence of solutions to (8.6), and then to obtain a priori estimates
which allow to pass to the limit.
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8.2.1 Existence of solution to (8.6)

Lemma 8.1. There exists a solution yk ∈ C∞(Ω̄) of (8.6).

Proof. The proof of this lemma is similar to the one given for Lemma 2 in [41].
Setting z = yk−1 and y = yk, we first consider, for a given ε > 0, the equation

(eyyxx)xx − εyxx + εy =
1

ατ
e(1−α)y(eαz − eαy), x ∈ Ω. (8.8)

In order to prove the existence of a solution to this approximate problem we employ
the Leray-Schauder fixed point Theorem. To this end, let w ∈ H1(Ω) and σ ∈ [0, 1]
be given, we consider

a(y, φ) = F (φ) for all φ ∈ H2(Ω), (8.9)

where,

a(y, φ) =

∫

Ω

(ewyxxφxx + εyxφx + εyφ)dx, F (φ) =
σ

ατ

∫

Ω

e(1−α)w(eαz − eαw)φdx

The application a(., .) is bilinear, continuous and coercive on H2(Ω) (see [41]), and
F is linear and continuous on H2(Ω). Therefore the Lax-Milgram Lemma pro-
vides the existence of a solution y ∈ H2(Ω) of (8.9). This defines a fixed-point
operator S : H1(Ω) × [0, 1] → H1(Ω), (w, σ) 7→ y. It holds S(w, 0) = 0 for all
w ∈ H1(Ω). Moreover, the functional S is continuous and compact (since the em-
bedding H2(Ω) →֒ H1(Ω) is compact). We need to prove a uniform bound for all
fixed points of S(., σ).

Let y be a fixed point of S(., σ), i.e., y ∈ H2(Ω) solvers for all φ ∈ H2(Ω)

∫

Ω

(

eyyxxφxx + εyxφx + εyφ
)

dx =
σ

ατ

∫

Ω

e(1−α)y(eαz − eαy)φdx. (8.10)

Using the test function φ = 1 − e−y yields

∫

Ω

y2
xxdx−

∫

Ω

yxxy
2
xdx+ ε

∫

Ω

e−yy2
xdx + ε

∫

Ω

y(1 − e−y)dx

=
σ

ατ

∫

Ω

e(1−α)y(eαz − eαy)(1 − e−y)dx

The second term on the left-hand side vanishes due to the periodicity condition since
yxxy

2
x = (y3

x)x/3. The third and fourth terms on the left-hand side are nonnegative.
Furthermore, we have

e(1−α)y(eαz − eαy)(1 − e−y) = ey(eαze−αy − 1) + (1 − eαze−αy),
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and using ex ≥ x+ 1, ∀x > 0 and 1 − xβ ≥ β(1 − x), ∀x ≥ 0, β ∈ (0, 1], we obtain

1 − eαze−αy ≤ −α(z − y), ey(eαze−αy − 1) ≤ α(ez − ey).

Then,

σ

ατ

∫

Ω

e(1−α)y(eαz − eαy)(1 − e−y)dx ≤ σ

τ

∫

Ω

[(ez − z) − (ey − y)]dx,

and we obtain
σ

τ

∫

Ω

(ey − y)dx+

∫

Ω

y2
xxdx ≤ σ

τ

∫

Ω

(ez − z)dx. (8.11)

As in [41], this shows that all fixed points of the operator S(., σ) are uniformly
bounded in H1(Ω). Notice that a uniform bound for y in H2(Ω) is also obtained.
The Leray-Schauder fixed point Theorem finally ensures the existence of a fixed
point of S(., 1), i.e., the existence of a solution y ∈ H2(Ω) to (8.8).

The limit ε → 0 can be performed in (8.8) and we obtain the existence of a
solution yk ∈ H2(Ω) to (8.6).

It remains now to prove that the solution yk to (8.6) lies in C∞(Ω̄). To this end,
let us set uk = eyk . We can rewrite (8.6) into

uk,xxxx =

(

2uk,xxuk,x

uk

−
u3

k,x

u2
k

)

x

− 1

ατ
u1−α

k (uα
k − uα

k−1). (8.12)

Since yk ∈ H2(Ω) →֒ W 1,∞(Ω), then uk ∈ H2(Ω) →֒ W 1,∞(Ω) and uβ
k ∈ L∞(Ω) for

all β > 0. Moreover, uk is strictly positive in Ω and in particular 1/uk ∈ L∞(Ω).
Thus uk,xxuk,x/uk ∈ L2(Ω) and u3

k,x/u
2
k ∈ L∞(Ω). This implies, in view of (8.12),

that uk,xxxx ∈ H−1(Ω) and then uk ∈ H3(Ω). In a same way, using (8.12), we can
now show that uk,xxxx ∈ L2(Ω) and uk ∈ H4(Ω). By bootstrapping, we finally obtain
uk ∈ Hn(Ω) for all n ∈ IN and hence uk ∈ C∞(Ω̄). Since uk is strictly positive, this
shows that yk = log uk ∈ C∞(Ω̄). This completes the proof of Lemma 8.1.

8.2.2 A priori estimates

In this part we will give some estimates on the sequence y(N). They will be needed
to pass to the limit N → ∞ (or equivalently τ → 0). First of all, as a direct
consequence of the proof of lemma 8.1 we have the following inequalities

‖y(N)‖L∞(0,T ;L1(Ω)) + ‖ey(N)‖L∞(0,T ;L1(Ω)) ≤ c, (8.13)

‖y(N)‖L2(0,T ;H2(Ω)) ≤ c. (8.14)

Then we have:
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Lemma 8.2. There exists a constant c(α) > 0 such that the following inequalities
hold

‖(ey(N)

)α/2‖L∞(0,T ;H1(Ω)) + ‖(ey(N)

)α/2‖L2(0,T ;H3(Ω)) ≤ c(α), (8.15)

‖[(ey(N)

)α/6]x‖L6(0,T ;L6(Ω)) ≤ c(α). (8.16)

Lemma 8.3. The following inequality holds

‖(ey(N)

)α‖L2(0,T ;H3(Ω)) ≤ c(α), (8.17)

with c(α) > 0 a constant.

For the sake of clarity, these technical Lemmas will be proved in the appendix.

Lemma 8.4. There exists a constant c(α) > 0 such that

‖[(ey(N)

)α/4]4x‖L3/2(0,T ;L3/2(Ω)) + ‖[(ey(N)

)α/3]3x‖L2(0,T ;L2(Ω)) ≤ c(α), (8.18)

‖[(ey(N)

)α/2]x‖L6(0,T ;L6(Ω)) + ‖[(ey(N)

)α/2]xx‖L3(0,T ;L3(Ω)) ≤ c(α). (8.19)

Proof. We have

‖[(ey(N)

)α/4]4x‖3/2

L3/2(0,T ;L3/2(Ω))
=

∫ T

0

(

∫

Ω

(3

2

)6

[(ey(N)

)α/6]6x(e
y(N)

)α/2dx

)

dt,

≤
(3

2

)6

‖(ey(N)

)α/2‖L∞(0,T ;L∞(Ω))‖[(ey(N)

)α/6]x‖6
L6(0,T ;L6(Ω)),

≤
(3

2

)6

‖(ey(N)

)α/2‖L∞(0,T ;H1(Ω))‖[(ey(N)

)α/6]x‖6
L6(0,T ;L6(Ω)),

≤ c(α),

from the Sobolev injection theorem, (8.15) and (8.16). In the same way, we have

‖[(ey(N)

)α/3]3x‖2
L2(0,T ;L2(Ω)) =

∫ T

0

(

∫

Ω

26[(ey(N)

)α/6]6x[(e
y(N)

)α/2]2dx

)

dt,

≤ 26‖(ey(N)

)α/2‖2
L∞(0,T ;L∞(Ω))‖[(ey(N)

)α/6]x‖6
L6(0,T ;L6(Ω)),

≤ 26‖(ey(N)

)α/2‖2
L∞(0,T ;H1(Ω))‖[(ey(N)

)α/6]x‖6
L6(0,T ;L6(Ω)),

≤ c(α),

which gives (8.18). Finally

‖[(ey(N)

)α/2]x‖6
L6(0,T ;L6(Ω)) =

∫ T

0

(

∫

Ω

36[(ey(N)

)α/6]6x[(e
y(N)

)α/2]4dx

)

dt,

≤ 36‖(ey(N)

)α/2‖4
L∞(0,T ;L∞(Ω))‖[(ey(N)

)α/6]x‖6
L6(0,T ;L6(Ω)),

≤ 36‖(ey(N)

)α/2‖4
L∞(0,T ;H1(Ω))‖[(ey(N)

)α/6]x‖6
L6(0,T ;L6(Ω)),

≤ c(α).
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Then, using the Gagliardo-Nirenberg inequality for the function f = [(ey(N)
)α/2]x we

obtain

‖[(ey(N)

)α/2]xx‖L3(Ω) ≤ ‖[(ey(N)

)α/2]x‖1/2

H2(Ω)‖[(ey(N)

)α/2]x‖1/2

L6(Ω),

≤ ‖(ey(N)

)α/2‖1/2

H3(Ω)‖[(ey(N)

)α/2]x‖1/2

L6(Ω),

that is

‖[(ey(N)

)α/2]xx‖3
L3(0,T ;L3(Ω)) ≤ c

∫ T

0

‖(ey(N)

)α/2‖3/2

H3(Ω)‖[(ey(N)

)α/2]x‖3/2

L6(Ω)dt,

In view of this, (8.15) and using the Hölder inequality, we have

‖[(ey(N)

)α/2]xx‖3
L3(0,T ;L3(Ω)) ≤ c‖[(ey(N)

)α/2]x‖3/2

L2(0,T ;H3(Ω))‖[(ey(N)

)α/2]x‖3/2

L6(0,T ;L6(Ω)),

≤ c(α).

This gives (8.19) and completes the proof of Lemma 8.4.

Lemma 8.5. Let s = 14/11. Then there exists a constant c(α) > 0 such that

‖(ey(N)

)α − (σNe
y(N)

)α‖Ls(0,T ;H−3(Ω)) ≤ c(α)τ. (8.20)

Proof. By (8.6) we have

1

τ
(eαyk − eαyk−1) = −αe(α−1)yk(eykyk,xx)xx. (8.21)

For clarity of presentation we note v = eyk and w = eyk−1 . We can write

αvα−1
(

v(log v)xx

)

xx
= 2(vα(log vα)xx)xx − (vα)xxxx +

4

α
((vα/2)2

x)xx

−c1(α)(vα/2)2
xx − c2(α)(v3

xv
α−3)x + c3(α)(vα/4)4

x,

where,

c1(α) =
4

α
(1 − α), c2(α) =

α

3
(1 − α)(3α− 1), c3(α) = α2

(

−α
2

4
+

7α

12
− 1

3

)( 4

α

)4

.

Then using (8.21) we obtain:

1

τ
(vα − wα) = (vα)xxxx − 2(vα(log vα)xx)xx −

4

α
((vα/2)2

x)xx + c1(α)(vα/2)2
xx

+c2(α)((vα/3)3
x)x − c3(α)(vα/4)4

x,
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which gives,

τ−1‖(ey(N)

)α − (σNe
y(N)

)α‖Ls(0,T ;H−3(Ω))

≤ ‖[(ey(N)

)α]xxxx‖Ls(0,T ;H−3(Ω)) + 2α‖[(ey(N)

)αy(N)
xx ]xx‖Ls(0,T ;H−3(Ω))

+
4

α

∥

∥

∥

[

((ey(N)

)α/2)2
x

]

xx

∥

∥

∥

Ls(0,T ;H−3(Ω))
+ |c1(α)| ‖[(ey(N)

)α/2]2xx‖Ls(0,T ;H−3(Ω))

+ |c2(α)|
∥

∥

∥

[

(ey(N)

)α/3)3
x

]

x

∥

∥

∥

Ls(0,T ;H−3(Ω))
+ |c3(α)| ‖[(ey(N)

)α/4]4x‖Ls(0,T ;H−3(Ω)).

Then,

τ−1 ‖(ey(N)

)α − (σNe
y(N)

)α‖Ls(0,T ;H−3(Ω))

≤ ‖[(ey(N)

)α]xx‖Ls(0,T ;H−1(Ω)) + 2α‖(ey(N)

)αy(N)
xx ‖Ls(0,T ;H−1(Ω))

+
4

α
‖[(ey(N)

)α/2]2x‖Ls(0,T ;H−1(Ω)) + |c1(α)| ‖[(ey(N)

)α/2]2xx‖Ls(0,T ;H−3(Ω))

+|c2(α)| ‖[(ey(N)

)α/3]3x‖Ls(0,T ;H−2(Ω)) + |c3(α)| ‖[(ey(N)

)α/4]4x‖Ls(0,T ;H−3(Ω)). (8.22)

As in [72] (Chapter 7) for the proof of Lemma 7.4, we can show that

‖(ey(N)

)αy(N)
xx ‖Ls(0,T ;H−1(Ω)) ≤ c(α), (8.23)

for s = 14/11. (Notice that the assumption s = 14/11 was not needed before). The
domain Ω being bounded in one space dimension, by the Sobolev injection Theorem,
since L1(Ω) is included in (L∞(Ω))′,

‖[(ey(N)

)α/2]2x‖Ls(0,T ;H−1(Ω)) ≤ c‖[(ey(N)

)α/2]2x‖Ls(0,T ;L1(Ω)). (8.24)

Moreover,

‖[(ey(N)

)α/2]2x‖L1(Ω) =

∫

Ω

[(ey(N)

)α/2]2xdx = ‖[(ey(N)

)α/2]x‖2
L2(Ω) ≤ ‖(ey(N)

)α/2‖2
H1(Ω).

Thus,

‖[(ey(N)

)α/2]2x‖s
Ls(0,T ;L1(Ω)) =

∫ T

0

‖[(ey(N)

)α/2]2x‖s
L1(Ω)dt ≤

∫ T

0

‖(ey(N)

)α/2‖2s
H1(Ω)dt,

≤ T‖(ey(N)

)α/2‖2s
L∞(0,T ;H1(Ω)),

which gives, using (8.24) and (8.15),

‖[(ey(N)

)α/2]2x‖Ls(0,T ;H−1(Ω)) ≤ c(α). (8.25)
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Now, proceeding in a same way than in [72] (Chapter 7) for the proof of Lemma
7.4, since s < 2, we have

‖[(ey(N)

)α]xx‖Ls(0,T ;H−1(Ω)) ≤ c‖[(ey(N)

)α]xx‖L2(0,T ;L2(Ω)) ≤ c‖(ey(N)

)α‖L2(0,T ;H2(Ω)),

which gives, using (8.17),

‖[(ey(N)

)α]xx‖Ls(0,T ;H−1(Ω)) ≤ c(α). (8.26)

We have, as above,

‖[(ey(N)

)α/2]2xx‖Ls(0,T ;H−3(Ω)) ≤ c‖[(ey(N)

)α/2]2xx‖Ls(0,T ;L1(Ω)),

and,

‖[(ey(N)

)α/2]2xx‖s
Ls(0,T ;L1(Ω)) =

∫ T

0

‖[(ey(N)

)α/2]2xx‖s
L1(Ω)dt =

∫ T

0

‖[(ey(N)

)α/2]xx‖2s
L2(Ω)dt,

= ‖[(ey(N)

)α/2]xx‖2s
L2s(0,T ;L2(Ω)),

which gives

‖[(ey(N)

)α/2]2xx‖Ls(0,T ;H−3(Ω)) ≤ c‖[(ey(N)

)α/2]xx‖2
L2s(0,T ;L2(Ω)).

Since s < 3/2, we get

‖[(ey(N)

)α/2]2xx‖Ls(0,T ;H−3(Ω)) ≤ c‖[(ey(N)

)α/2]xx‖2
L3(0,T ;L3(Ω)) ≤ c(α), (8.27)

using inequality (8.19). In a same way, using (8.18), we can show

‖[(ey(N)

)α/3]3x‖Ls(0,T ;H−2(Ω)) ≤ c‖[(ey(N)

)α/3]3x‖Ls(0,T ;L2(Ω)),

≤ ‖[(ey(N)

)α/3]3x‖L2(0,T ;L2(Ω)),

≤ c(α), (8.28)

and,

‖[(ey(N)

)α/4]4x‖Ls(0,T ;H−3(Ω)) ≤ c‖[(ey(N)

)α/4]4x‖Ls(0,T ;L1(Ω)),

≤ ‖[(ey(N)

)α/4]4x‖L3/2(0,T ;L3/2(Ω)),

≤ c(α). (8.29)

Now using (8.22), (8.23), (8.25), (8.26), (8.27), (8.28) and (8.29) we finally obtain
the inequality (8.20).
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Lemma 8.6. The following inequality holds

‖(ey(N)

)α/4‖L2(0,T ;H2(Ω)) ≤ c(α),

with c(α) > 0 a constant.

Proof. By definition

‖(ey(N)

)α/4‖L2(0,T ;H2(Ω)) =

∫ T

0

[

‖(ey(N)

)α/4‖2
L2(Ω)+‖((ey(N)

)α/4)x‖2
L2(Ω)

+‖((ey(N)

)α/4)xx‖2
L2(Ω)

]

dt.

By using (8.15), we can easily show that
∫ T

0

‖(ey(N)

)α/4‖2
L2(Ω)dt ≤ c(α),

and by using (8.18)
∫ T

0

‖((ey(N)

)α/4)x‖2
L2(Ω)dt ≤ c(α).

Moreover,

‖((ey(N)

)α/4)xx‖2
L2(QT ) =

∫ T

0

∫

Ω

(

α

4
y(N)

xx (ey(N)

)α/4 +

(

α

4

)2

(y(N)
x )2(ey(N)

)α/4

)2

dxdt,

≤ 2

(

α

4

)2 ∫ T

0

∫

Ω

(

y(N)
xx

)2

(ey(N)

)α/2dxdt+ 2

(

α

4

)4 ∫ T

0

∫

Ω

(y(N)
x )4(ey(N)

)α/2dxdt.(8.30)

We have by using (8.14) and (8.15)

2

(

α

4

)2 ∫ T

0

∫

Ω

(

y(N)
xx

)2

(ey(N)

)α/2dxdt

≤ 2

(

α

4

)2

‖(ey(N)

)α/2‖L∞(0,T ;L∞(Ω))‖y(N)
xx ‖2

L2(0,T ;L2(Ω)) ≤ c(α). (8.31)

Furthermore, using the Hölder inequality in view of (8.14), (8.15) and (8.16), we
have

2

(

α

4

)4 ∫ T

0

∫

Ω

(y(N)
x )4(ey(N)

)α/2dxdt = 2

(

α

4

)4(
6

α

)3 ∫ T

0

∫

Ω

y(N)
x ((ey(N)

)α/6)3
xdxdt,

≤ 2

(

α

4

)4(
6

α

)3 ∫ T

0

‖y(N)
x ‖L2(Ω)‖((ey(N)

)α/6)x‖3
L6(Ω)dt,

≤ 2

(

α

4

)4(
6

α

)3

‖y(N)
x ‖L2(0,T ;L2(Ω))‖((ey(N)

)α/6)x‖3
L6(0,T ;L6(Ω)) ≤ c(α). (8.32)

Finally, combining (8.31), (8.32) and (8.30) ends the proof.
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8.3 Existence and regularity of solutions

This section is devoted to the proofs of Theorems 8.1 and 8.2. First of all let us
give three results which establish strong convergence properties for well-prepared
sequences.

8.3.1 Convergence results

Lemma 8.7. Let Ω be bounded in IR. Let (gn)n be a sequence in QT = [0, T ] × Ω
such that

(A1) gn → g a.e. in QT ,

(A2) ‖gn‖L∞(QT ) ≤ c.

Then, gn → g strongly in Lp(0, T ;Lp(Ω)) for all 1 ≤ p <∞.

Proof. Let 1 ≤ p < ∞. Setting fn = gn − g, by assumption, fn → 0 a.e. in
QT . Moreover, since Ω is bounded, gn → g a.e. in QT and ‖gn‖L∞(QT ) ≤ c imply

‖g‖L∞(QT ) ≤ c. Hence, |fn(t, )̇|p ≤ c for all t ∈ [0, T ]. We apply now the Lebesgue
Theorem to the sequence (|fn(t, .)|p)n in QT and we obtain

∫

QT

|fn(t, x)|pdx −→ 0.

Then,
∫

QT

|gn(t, x) − g(t, x)|pdx −→ 0. (8.33)

Hence,

‖gn − g‖Lp(0,T ;Lp(Ω)) −→ 0.

Then, gn → g strongly in Lp(0, T ;Lp(Ω)). Finally, since we fixed any p in [1,∞[, the
result holds for all 1 ≤ p <∞.

Theorem 8.3. Let (gn)n be a sequence of functions in QT such that

(A1) gn ⇀ g weakly in L2(0, T ;H2(Ω)),

(A2) gn → g strongly in L2(0, T ;Lp(Ω)), ∀ 1 ≤ p <∞.

Then gn → g strongly in L2(0, T ;W 1,q(Ω)) for all 4
3
≤ q <∞.
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Proof. Let 4
3
≤ q <∞. We have to show that

‖gn − g‖L2(0,T ;W 1,q(Ω)) −→ 0 as n→ ∞.

We have,

‖gn − g‖L2(0,T ;W 1,q(Ω))

=

∫ T

0

(

‖gn(t, .) − g(t, .)‖q
Lq(Ω) + ‖(gn(t, .) − g(t, .))x‖q

Lq(Ω)

)2/q

dt,

≤ 2

∫ T

0

(

‖gn(t, .) − g(t, .)‖2
Lq(Ω) + ‖(gn(t, .) − g(t, .))x‖2

Lq(Ω)

)

dt,

≤ 2‖gn − g‖2
L2(0,T ;Lq(Ω)) + 2

∫ T

0

‖(gn(t, .) − g(t, .))x‖2
Lq(Ω)dt. (8.34)

Let θ = (4q − 2)/(5q) ∈ [0, 1]. Using the Gagliardo-Nirenberg inequality, we obtain

‖(gn(t, .) − g(t, .))x‖2
Lq(Ω) ≤ c‖gn(t, .) − g(t, .)‖2θ

H2(Ω)‖gn(t, .) − g(t, .)‖2(1−θ)

L1(Ω) .

Hence, using the Hölder inequality and assumption (A1),

∫ T

0

‖(gn(t, .) − g(t, .))x‖2
Lq(Ω)dt

≤ c

∫ T

0

‖gn(t, .) − g(t, .)‖2θ
H2(Ω)‖gn(t, .) − g(t, .)‖2(1−θ)

L1(Ω) dt,

≤
(

∫ T

0

‖gn(t, .) − g(t, .)‖2
H2(Ω)dt

)θ(
∫ T

0

‖gn(t, .) − g(t, .)‖2
L1(Ω)dt

)1−θ

,

≤ ‖gn − g‖2θ
L2(0,T ;H2(Ω))‖gn − g‖2(1−θ)

L2(0,T ;L1(Ω)) ≤ c‖gn − g‖2(1−θ)

L2(0,T ;L1(Ω)).

In view of assumption (A2), we then have

∫ T

0

‖(gn(t, .) − g(t, .))x‖2
Lq(Ω)dt −→ 0,

and using (8.34), we deduce that gn → g strongly in L2(0, T ;W 1,q(Ω)) for all q ∈
[4/3,∞[.

We also prove the following result

Theorem 8.4. Let (gn)n a sequence of functions in QT such that
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(A1) gn ⇀ g weakly in L2(0, T ;H3(Ω)),

(A2) gn → g strongly in L2(0, T ;Lp(Ω)), ∀ 1 ≤ p <∞.

Then gn → g strongly in L2(0, T ;W 2,q(Ω)) for all 3
2
≤ q <∞.

The proof of this Theorem only differs from the one of Theorem 8.3 by the choice
of θ (here we set θ = (6q − 2)/(7q)).

8.3.2 Proofs of Theorems 8.1 and 8.2

It now remains to pass to the limit τ → 0 (or equivalently N → +∞) to prove
Theorems 8.1 and 8.2. First of all let us rewrite equation (8.7) into

1

ατ

(

eαy(N) − σN

(

eαy(N))
)

+ e(α−1)y(N)
(

ey(N)

y(N)
xx

)

xx
= 0.

This last equation has the following weak formulation

1

α

∫ T

0

∫

Ω

1

τ

(

eαy(N) − σN

(

eαy(N))
)

φdxdt+

∫ T

0

∫

Ω

ey(N)

y(N)
xx

(

e(α−1)y(N)

φ
)

xx
dxdt = 0

(8.35)

We set w(N) = eαy(N)/4. Then

ey(N)

= (w(N))4/α, e(α−1)y(N)

= (w(N))4−4/α, and y(N) =
4

α
lnw(N).

The goal is now to rewrite the second integral in (8.35) as integrals of a function of

w(N), w
(N)
x and w

(N)
xx . First, we have

ey(N)

y(N)
xx

(

e(α−1)y(N)

φ
)

xx
= (w(N))4/α

( 4

α
lnw(N)

)

xx

(

(w(N))4−4/αφ
)

xx

=
4

α

(

4 − 4

α

)

(w(N)
xx )2(w(N))2φ− 4

α

(

4 − 4

α

)

w(N)
xx (w(N)

x )2w(N)φ

+
4

α

(

4 − 4

α

)(

3 − 4

α

)

w(N)
xx (w(N)

x )2w(N)φ− 4

α

(

4 − 4

α

)(

3 − 4

α

)

(w(N)
x )4φ

+
8

α

(

4 − 4

α

)

w(N)
xx w(N)

x (w(N))2φx −
8

α

(

4 − 4

α

)

(w(N)
x )3w(N)φx (8.36)

+
4

α
w(N)

xx (w(N))3φxx −
4

α
(w(N)

x )2(w(N))2φxx

Moreover, we can write

4

α

(

4 − 4

α

)

(w(N)
xx )2(w(N))2φ =

2

α

(

4 − 4

α

)

w(N)
xx (eαy(N)/2)xxw

(N)φ

− 4

α

(

4 − 4

α

)

w(N)
xx (w(N)

x )2w(N)φ
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Then (8.35) can be rewritten as

1

α

∫ T

0

∫

Ω

1

τ

(

eαy(N) − σNe
αy(N)

)

φdxdt

= − 2

α

(

4 − 4

α

)

[

∫ T

0

∫

Ω

w(N)
xx (eαy(N)/2)xxw

(N)φdxdt− 4

∫ T

0

∫

Ω

w(N)
xx (w(N)

x )2w(N)φdxdt

+4

∫ T

0

∫

Ω

w(N)
xx w(N)

x (w(N))2φxdxdt− 4

∫ T

0

∫

Ω

(w(N)
x )3w(N)φxdxdt

]

− 4

α

(

4 − 4

α

)(

3 − 4

α

)

[

∫ T

0

∫

Ω

w(N)
xx (w(N)

x )2w(N)φdxdt−
∫ T

0

∫

Ω

(w(N)
x )4φdxdt

]

− 4

α

[

∫ T

0

∫

Ω

w(N)
xx (w(N))3φxxdxdt−

∫ T

0

∫

Ω

(w(N)
x )2(w(N))2φxxdxdt

]

(8.37)

Then to complete the proof of Theorem 8.1, we now have to perform the limit
τ → 0 or equivalently N → ∞ in (8.37). Actually, the uniform bounds (8.17) and
(8.20) and the compact embedding W 3,2(Ω) →֒ W 2,q(Ω), for all 1 ≤ q < ∞, allow
to apply Theorem 5 of [93] (Aubin’s lemma) yielding the existence of a subsequence

of (ey(N)
)α (not relabeled) such that (ey(N)

)α → v strongly in L2(0, T ;W 2,q(Ω)), for

all q ∈ [1,∞[, as N → ∞. Hence, (ey(N)
)α → v strongly in L1(QT ). Moreover, from

(8.14), we have (up to a subsequence)

y(N) ⇀ y weakly in L2(0, T,H2(Ω)), N → ∞. (8.38)

Inequality (8.13) allows to use the same argument as in the proof of Theorem 1.2 in
[59], to prove that v = (ey)α. Hence,

(ey(N)

)α −→ (ey)α strongly in L2(0, T ;W 2,q(Ω)) ∀ q ∈ [1,∞[,

and,

(ey(N)

)α −→ (ey)α a.e..

Then

(ey(N)

)α/4 −→ (ey)α/4 a.e..

Using (8.15), we have

‖(ey(N)

)α/4‖L∞(QT ) ≤ c(α).

The assumptions of Lemma 8.7 then hold and we obtain the following convergence

(ey(N)

)α/4 −→ (ey)α/4 strongly in L2(0, T ;Lp(Ω)) ∀ p ∈ [1,∞[.
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Moreover, Lemma 8.6 implies

(ey(N)

)α/4 ⇀ (ey)α/4 weakly in L2(0, T ;H2(Ω)). (8.39)

Then the assumptions of Theorem 8.3 hold and we have

(ey(N)

)α/4 −→ (ey)α/4 strongly in L2(0, T ;W 1,q(Ω)) ∀ q ∈ [4/3,∞[,

or equivalently, noting w = (ey)α/4,

w(N) −→ w strongly in L2(0, T ;W 1,q(Ω)) ∀ q ∈ [4/3,∞[. (8.40)

Furthermore, using (8.15) and Lemma 8.7 applied to the sequence

(eαy(N)/2)N , we have

(ey(N)

)α/2 ⇀ (ey)α/2 weakly in L2(0, T ;H3(Ω)),

and,

(ey(N)

)α/2 −→ (ey)α/2 strongly in L2(0, T ;Lp(Ω)) ∀p ∈ [1,∞[.

Then, Theorem 8.4 yields

(ey(N)

)α/2 −→ (ey)α/2 strongly in L2(0, T ;W 2,q(Ω)) ∀ q ∈ [3/2,∞[, (8.41)

and, using lemma 8.5, we have

1

τ

(

eαy(N) − σNe
αy(N)

)

⇀ (eαy)t weakly in Ls(0, T ;H−3(Ω)). (8.42)

Finally, (8.40), (8.41) and (8.42) allow us to pass to the limit in (8.37). As in (8.36)
the obtained right-hand side can be rewritten as

−
∫ T

0

∫

Ω

eyyxx

(

e(α−1)yφ
)

xx
dxdt.

This completes the proof of Theorem 8.1.

Theorem 8.2 is a direct consequence from the a priori estimates obtained in
section 8.2.2. Indeed, the convergence shown in the proof of Theorem 8.1 allows us
to pass to the limit in the estimates (8.17) and (8.15), and we then obtain that

uα ∈ L2(0, T ;H3(Ω)) and uα/2 ∈ L∞(0, T ;H1(Ω)).

Finally, using the Sobolev injection Theorem, we have H1(Ω) →֒ L∞(Ω) for Ω
bounded in one dimension. Hence

u ∈ L∞(0, T ;L∞(Ω)).
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8.4 Positivity of solutions

This section is devoted to the proof, for times large enough, of the positivity of a
solution to problem (8.1)-(8.2) or (8.3)-(8.2) in the case when α = 1. More precisely,
we prove the following result:

Theorem 8.5. Let α = 1 and u be a solution of problem (8.3)-(8.2). We assume
that

∫

Ω
u0(x)dx > 0. Then there exists t1 > 0 such that:

∀ t > t1, ∀ x ∈ Ω, u(t, x) > 0.

To prove this Theorem, we use the two following Lemmas.

Lemma 8.8. Let α = 1 and u be a solution of problem (8.3)-(8.2). Then, for all
t ∈ [0, T ],

∫

Ω

u(t, x)dx =

∫

Ω

u0(x)dx = A, (8.43)

where A > 0 is a constant independent of x and t.

Proof. Setting uk = eyk in (8.6) and integrating over Ω, we obtain

1

τ

∫

Ω

(uk(x) − uk−1(x))dx = −
∫

Ω

(

uk(x)(log uk(x))xx

)

xx
dx = 0,

since for all k = 1, ..., N, uk is assumed to have periodic boundary conditions. This
gives that for all k = 1, ..., N,

∫

Ω

uk(x)dx =

∫

Ω

u0(x)dx = A,

and then for all t ∈ [0, T ],
∫

Ω

u(N)(t, x)dx = A. (8.44)

We pass to the limit N → ∞ in (8.44) and we obtain:

∫

Ω

u(t, x)dx = A,

for all t ∈ [0, T ]. This completes the proof of Lemma 8.8.

Lemma 8.9. Let α = 1 and u be a solution of (8.3)-(8.2). Then:

∀ T > 0, ‖(√u)x‖L∞(0,T ;L2(Ω)) ≤ ae−βT , (8.45)

where a = ‖(√u0)x‖L2(Ω) and β > 0 is a constant independent of x and t.
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Proof. Using inequality (8.51) given in Lemma 8.10 (in Appendix), we have for all
α ∈ [2/53(25 − 6

√
10), 1] :

∫

Ω

(u
α/2
k )2

xdx+ µα

k
∑

j=1

τ

∫

Ω

(u
α/2
j )xxxdx ≤

∫

Ω

(u
α/2
0 )2

xdx.

Using Poincaré inequality, we obtain

∫

Ω

(u
α/2
k )2

xdx ≤
∫

Ω

(u
α/2
0 )2

xdx− cα µ τ
k
∑

j=1

∫

Ω

(u
α/2
j )xdx,

where c is the Poincaré constant. Now, using the Gronwall Lemma, this gives

max
0≤k≤N

‖(uα/2
k )x‖L2(Ω) ≤ a1(α)e−β(α)T ,

where a1(α) = ‖(uα/2
0 )x‖L2(Ω) and β(α) = cµ α. This gives:

∀ T > 0, ‖((u(N))α/2)x‖L∞(0,T ;L2(Ω)) ≤ a1(α)e−β(α)T .

Then, letting N → ∞, we have

∀ T > 0, ‖(uα/2)x‖L∞(0,T ;L2(Ω)) ≤ a1(α)e−β(α)T ,

for all α ∈ [2/53(25 − 6
√

10), 1]. In particular, for α = 1, we obtain (8.45) with
β = β(1) and a = a1(1). This completes the proof of Lemma 8.9.

We are now able to prove Theorem 8.5. Using (8.45), for all T > 0,
∥

∥

∥

(

√

u(t, x)
)

x

∥

∥

∥

L2(Ω)
≤ ae−βT , ∀ t ∈ [0, T ].

Then, it is clear that for all ε > 0, there exists T0 > 0 such that for T > T0,
∥

∥

∥

(

√

u(t, x)
)

x

∥

∥

∥

L2(Ω)
≤ ε, ∀t ∈ [0, T ].

Hence
(

√

u(t, .)
)

x
−→ 0, when t→ ∞, strongly in L2(Ω),

and we can then deduce that (maybe for a subsequence)
(

√

u(t, .)
)

x
−→ 0 when t→ ∞, a.e. in Ω. (8.46)

Hence, there exists B > 0 a constant independent of x such that:
√

u(t, x) −→ B when t→ ∞, a.e. in Ω. (8.47)
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In particular,
∫

Ω

√

u(t, x)dx −→ B when t→ ∞, (8.48)

since mes(Ω) = 1 by definition. Moreover, by (8.47) we also have

u(t, x) −→ B2 a.e. in Ω, and,

∫

Ω

u(t, x)dx −→ B2, when t→ ∞. (8.49)

Using (8.43), we obtain from (8.49) that A = B2 and then B =
√
A. Hence, using

(8.48):
∫

Ω

√

u(t, x)dx −→
√
A when t→ ∞. (8.50)

Now, using (8.45), we have for all T > 0 :

∥

∥

∥

√
u−

∫

Ω

√

u(·, x)dx
∥

∥

∥

L∞(0,T ;L∞(Ω))
≤ ae−βT ,

and then for any T > 0,

∣

∣

∣

√

u(t, x) −
∫

Ω

√

u(t, x)dx
∣

∣

∣
≤ ae−βT , ∀t ∈ [0, T ], ∀x ∈ Ω.

As previously, this implies that

lim
t→∞

[
√

u(t, x) −
∫

Ω

√

u(t, x)dx] = 0,

which gives:

lim
t→∞

√

u(t, x) = lim
t→∞

∫

Ω

√

u(t, x)dx =
√
A > 0.

Then, finally, in the case α = 1, for times large enough, the solution u to problem
(8.3)-(8.2) is strictly positive. This ends the proof of Theorem 8.5.

Appendix :

Proof of Lemma 8.2.
First of all, let uk = eyk for all k ∈ {0, ..., N}. Then, Lemma 8.2 is a direct

consequence from the following result:

Lemma 8.10. Let k = 0, ..., N. Then

∫

Ω

(u
α/2
k )2

xdx+αµ
k
∑

j=1

τ

∫

Ω

(u
α/2
j )2

xxxdx+αµ
k
∑

j=1

τ

∫

Ω

(u
α/6
j )6

xdx ≤
∫

Ω

(u
α/2
0 )2

xdx (8.51)



152 Ingrid Violet

Proof. The proof is based on the method presented in [63]. First, multiply (8.6) by

the test function u
α/2−1
k (u

α/2
k )xx and integrate on Ω. Then,

0 =
1

ατ

∫

Ω

u1−α
k (uα

k − uα
k−1)u

α/2−1
k (u

α/2
k )xxdx+

∫

Ω

(uk(log uk)xx)xxu
α/2−1
k (u

α/2
k )xxdx

:=I1 + I2. (8.52)

Using integration by parts one has

I1 =
1

ατ

∫

Ω

u1−α
k (uα

k − uα
k−1)u

α/2−1
k (u

α/2
k )xxdx

= − 1

ατ

∫

Ω

[(u
α/2
k )2

x − (u
α/2
k−1)

2
x]dx−

1

ατ

∫

Ω

[(u
α/2
k−1)

2
x − (uα

k−1u
α/2
k )x(u

α/2
k )x]dx

= − 1

ατ

∫

Ω

[(u
α/2
k )2

x − (u
α/2
k−1)

2
x]dx−

α

4τ

∫

Ω

uα
k−1

(

uk−1,x

uk−1

− uk,x

uk

)2

dx, (8.53)

and

I2 =

∫

Ω

(uk(log uk)xx)xxu
α/2−1
k (u

α/2
k )xxdx

= −
∫

Ω

(uk(log uk)xx)x(u
α/2−1
k (u

α/2
k )xx)xdx. (8.54)

Proceeding as in [63], we denote ξi = ∂i
xuk/uk. We have

∫

Ω

(uk(log uk)xx)x(u
α/2−1
k (u

α/2
k )xx)xdx

=

∫

Ω

uα
k

(

uk,xxx

uk

− 2
uk,xuk,xx

u2
k

+
u3

k,x

u3
k

)

×
(

α

2

uk,xxx

uk

+ 4
α

2

(α

2
− 1
)uk,xxuk,x

u2
k

+
α

2

(α

2
− 1
)

(α− 3)
u3

k,x

u3
k

)

dx,

∫

Ω

(u
α/2
k )2

xxxdx

=

∫

Ω

uα
k

(

α

2

uk,xxx

uk

+ 3
α

2

(α

2
− 1
)uk,xxuk,x

u2
k

+
α

2

(α

2
− 1
)(α

2
− 2
)u3

k,x

u3
k

)2

dx,

∫

Ω

(u
α/6
k )6

xdx =

∫

Ω

uα
k

(

(α

6

)6 u6
k,x

u6
k

)

dx,

∫

Ω

(

u5
k,x

u5−α
k

)

x

dx =

∫

Ω

uα
k

(

5
uk,xxu

4
k,x

u5
k

− (5 − α)
u6

k,x

u6
k

)

dx = 0,

∫

Ω

(

u3
k,xuk,xx

u4−α
k

)

x

dx =

∫

Ω

uα
k

(

3
u2

k,xxu
2
k,x

u4
k

+
uk,xxxu

3
k,x

u4
k

− (4 − α)
u4

k,xuk,xx

u5
k

)

dx = 0.
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Now, set

P (ξ) = (ξ3 − 2ξ1ξ2 + ξ3
1)

(

α

2
ξ3 + 2α

(α

2
− 1
)

ξ2ξ1 +
α

2

(α

2
− 1
)

(α− 3)ξ3
1

)

=
α

2

(α

2
− 1
)

(α− 3)ξ6
1 −

α

2
(α− 2)(α− 5)ξ4

1ξ2 +
α

4
(α2 − 5α + 8)ξ3

1ξ3

−4α

(

α

2
− 1

)

ξ2
1ξ

2
2 + α(α− 3)ξ1ξ2ξ3 +

α

2
ξ2
3 ,

Q1(ξ) =

(

α

2
ξ3 + 3

α

2

(α

2
− 1
)

ξ1ξ2 +
α

2

(α

2
− 1
)(α

2
− 2
)

ξ3
1

)2

=
α2

4

(α

2
− 1
)2(α

2
− 2
)2
ξ6
1 + 3

α2

2

(α

2
− 1
)2(α

2
− 2
)

ξ4
1ξ2

+
α2

2

(α

2
− 1
)(α

2
− 2
)

ξ3
1ξ3 +

9α2

4

(α

2
− 1
)2

ξ2
1ξ

2
2

+3
α2

2

(α

2
− 1
)

ξ1ξ2ξ3 +
α2

4
ξ2
3 ,

Q2(ξ) =
(α

6

)6

ξ6
1 ,

T1(ξ) = −(5 − α)ξ6
1 + 5ξ4

1ξ2,

T2(ξ) = −(4 − α)ξ4
1ξ2 + 3ξ2

1ξ
2
2 + ξ3

1ξ3.

With the notations used in [63], we can write
∫

Ω

(uk(log uk)xx)x(u
α/2−1
k (u

α/2
k )xx)xdx =

∫

Ω

uα
kDP (uk)dx,

∫

Ω

(u
α/2
k )2

xxxdx =

∫

Ω

uα
kDQ1(uk)dx,

∫

Ω

(u
α/6
k )6

xdx =

∫

Ω

uα
kDQ2(uk)dx,

∫

Ω

uα
kDT1(uk)dx = 0,

∫

Ω

uα
kDT2(uk)dx = 0.

According to [63], it remains now to prove that there exists µ > 0 such that there
exist θ1, θ2 ∈ IR such that for all ξ ∈ IR

P (ξ) − µQ1(ξ) − µQ2(ξ) + θ1T1(ξ) + θ2T2(ξ) ≥ 0. (8.55)

Indeed, in this case there exists µ > 0 such that there exist θ1, θ2 ∈ IR such that
∫

Ω

uα
kDP+θ1T1+θ2T2(uk)dx ≥ µ

∫

Ω

uα
kDQ1(uk)dx+ µ

∫

Ω

uα
kDQ2(uk)dx,
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and then in view of (8.52)-(8.54)

1

ατ

∫

Ω

((u
α/2
k )2

x − (u
α/2
k−1)

2
x)dx+ µ

∫

Ω

(u
α/2
k )2

xxxdx+ µ

∫

Ω

(u
α/6
k )6

xdx ≤ 0,

we get (8.51). In our case, we have

P (ξ) − µQ1(ξ) − µQ2(ξ) + θ1T1(ξ) + θ2T2(ξ)

= a1ξ
6
1 + a2ξ

4
1ξ2 + a3ξ

3
1ξ3 + a4ξ

2
1ξ

2
2 + a5ξ1ξ2ξ3 + a6ξ

2
3 ,

with

a1 =
α

2

(α

2
− 1
)

(α− 3) − µ
α2

4

(α

2
− 1
)2(α

2
− 2
)2

− µ
(α

6

)6

− θ1(5 − α)

a2 = −α
2

(α− 2)(α− 5) − µ
3α2

2

(α

2
− 1
)2(α

2
− 2
)

+ 5θ1 − θ2(4 − α)

a3 =
α

4
(α2 − 5α + 8) − µ

α2

2

(α

2
− 1
)(α

2
− 2
)

+ θ2

a4 = −4α
(α

2
− 1
)

− µ
9α2

4

(α

2
− 1
)2

+ 3θ2

a5 = α(α− 3) − µ
3α2

2

(α

2
− 1
)

a6 =
α

2
− µ

α2

4

Using Mathematica (see Figure 8.1 at the end of Appendix), we obtain that for
2/53(25 − 6

√
10) < α ≤ 1 < 2/53(25 + 6

√
10), there exists µ > 0 such that there

exist θ1, θ2 ∈ IR satisfying the condition (ii) of lemma 7 in [41]. In particular, for
2/53(25 − 6

√
10) < α ≤ 1, there exists µ > 0 such that there exist θ1, θ2 ∈ IR such

that (8.55) is verified for all ξ ∈ IR. This completes the proof of lemma 8.10.

Proof of Lemma 8.3.
Let us denote uk = eyk , for all k ∈ {0, ..., N}, and U = ey(N)

, for simplicity of the
presentation. To prove Lemma 8.3, we need the following result

Lemma 8.11. There exists a constant c(α) > 0 such that

‖[Uα/2]2xx[U
α/2]2x‖L1(0,T ;L1(Ω)) ≤ c(α), (8.56)

with c(α) > 0 a constant.

Proof. We have,

‖(uα/2
k )2

xx‖2
H1(Ω) = ‖(uα/2

k )2
xx‖2

L2(Ω) + ‖[(uα/2
k )2

xx]x‖2
L2(Ω). (8.57)
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First,

‖[(uα/2
k )2

xx]x‖2
L2(Ω) = 4

∫

Ω

(u
α/2
k )2

xxx(u
α/2
k )2

xxdx

≤ 4‖(uα/2
k )xx‖2

L∞(Ω)‖(uα/2
k )xxx‖2

L2(Ω). (8.58)

Furthermore,

‖(uα/2
k )2

xx‖2
L2(Ω) = ‖(uα/2

k )xx‖4
L4(Ω),

and using the Gagliardo-Nirenberg inequality

‖(uα/2
k )xx‖4

L4(Ω) ≤ c‖uα/2
k ‖3

H3(Ω)‖uα/2
k ‖L2(Ω). (8.59)

Then using
√
a+ b ≤ √

a+
√
b for all a, b > 0 and (8.57)-(8.59):

‖(uα/2
k )2

xx‖H1(Ω) ≤ c

[

‖uα/2
k ‖3/2

H3(Ω)‖u
α/2
k ‖1/2

L2(Ω) + 2‖(uα/2
k )xx‖L∞(Ω)‖(uα/2

k )xxx‖2
L2(Ω)

]

,

and:

N
∑

k=1

τ‖(uα/2
k )2

xx‖H1(Ω) ≤ c

[

N
∑

k=1

τ‖uα/2
k ‖3/2

H3(Ω)‖u
α/2
k ‖1/2

L2(Ω)

+2
N
∑

k=1

τ‖(uα/2
k )xx‖L∞(Ω)‖(uα/2

k )xxx‖L2(Ω)

]

.

Furthermore,

N
∑

k=1

τ‖uα/2
k ‖3/2

H3(Ω)‖u
α/2
k ‖1/2

L2(Ω) =

∫ T

0

‖Uα/2‖3/2

H3(Ω)‖Uα/2‖1/2

L2(Ω)dt

≤ ‖Uα/2‖1/2

L∞(0,T ;L2(Ω))‖Uα/2‖3/2

L3/2(0,T ;H3(Ω))

≤ ‖Uα/2‖1/2

L∞(0,T ;H1(Ω))‖Uα/2‖3/2

L2(0,T ;H3(Ω))

≤ c(α) (8.60)

using (8.15). Now, using the Cauchy-Schwartz inequality

N
∑

k=1

τ‖(uα/2
k )xx‖L∞(Ω)‖(uα/2

k )xxx‖L2(Ω)

≤
(

N
∑

k=1

τ‖(uα/2
k )xx‖2

L∞(Ω)

)1/2( N
∑

k=1

τ‖(uα/2
k )xxx‖2

L2(Ω)

)1/2

,

≤ ‖[Uα/2]xx‖L2(0,T ;L∞(Ω))‖[Uα/2]xxx‖L2(0,T ;L2(Ω)).
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Then, using the Sobolev injection Theorem, since Ω is bounded, H1(Ω) →֒ L∞(Ω),
which gives in the preceding inequality

N
∑

k=1

τ ‖(uα/2
k )xx‖L∞(Ω)‖(uα/2

k )xxx‖L2(Ω)

≤ c‖[Uα/2]xx‖L2(0,T ;H1(Ω))‖[Uα/2]xxx‖L2(0,T ;L2(Ω)),

≤ c(α), (8.61)

with (8.15). Finally, using (8.60) and (8.61) we obtain

‖[Uα/2]2xx‖L1(0,T ;H1(Ω)) ≤ c(α). (8.62)

Using (8.15), we have [Uα/2]2x ∈ L∞(0, T ;L1(Ω)). Since by (8.62), [Uα/2]2xx ∈
L1(0, T ;H1(Ω)), using again the injection from H1(Ω) to L∞(Ω), the product
[Uα/2]2xx[U

α/2]2x is in L1(0, T ;L1(Ω)), which gives (8.56). This completes the proof
of Lemma 8.11.

We are now able to prove Lemma 8.3. We have

‖uα
k‖2

H3(Ω) = ‖uα
k‖2

L2(Ω) + ‖(uα
k )x‖2

L2(Ω) + ‖(uα
k )xx‖2

L2(Ω) + ‖(uα
k )xxx‖2

L2(Ω).

First,

‖uα
k‖2

L2(Ω) =

∫

Ω

(uα
k )2dx =

∫

Ω

(u
α/2
k )4dx ≤ ‖uα/2

k ‖4
L∞(Ω).

Moreover, since (uα
k )x = 2(u

α/2
k )xu

α/2
k ,

‖(uα
k )x‖2

L2(Ω) ≤ 4‖uα/2
k ‖2

L∞(Ω)‖(uα/2
k )x‖2

L2(Ω),

and using the Gagliardo-Nirenberg inequality

‖(uα
k )x‖2

L2(Ω) ≤ c‖uα/2
k ‖L∞(Ω)‖uα/2

k ‖2/3

H3(Ω)‖u
α/2
k ‖4/3

L2(Ω.

In a same way, since (uα
k )xx = 2(u

α/2
k )xxu

α/2
k + 2(u

α/2
k )2

x, we can show:

‖(uα/2
k )xx‖2

L2(Ω) ≤ c

[

‖uα/2
k ‖2

L∞(Ω)‖(uα/2
k )xx‖2

L2(Ω) + ‖uα/2
k ‖5/3

H3(Ω)‖u
α/2
k ‖7/3

L2(Ω)

]

.

Furthermore:

(uα
k )xxx = αuk,xxxu

α−1
k + 3α(α− 1)uk,xxuk,xu

α−2
k + α(α− 1)(α− 2)u3

k,xu
α−3
k (8.63)

(u
α/2
k )xxx =

α

2
uk,xxxu

α/2−1
k + 3

α

2
(
α

2
− 1)uk,xxuk,xu

α/2−2
k +

α

2
(
α

2
− 1)(

α

2
− 2)u3

k,xu
α/2−3
k

(8.64)
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Using (8.63) and (8.64) we can write:

(uα
k )xxx = 2u

α/2
k

(

(u
α/2
k )xxx +

3α2

4
uk,xxuk,xu

α/2−2
k +

3α2

4
(
α

2
− 1)u3

k,xu
α/2−3
k

)

, (8.65)

and

(uα
k )2

xxx = 4(u
α/2
k )2

[

(u
α/2
k )xxx +

3α2

4
uk,xxuk,xu

α/2−2
k +

3α2

4

(α

2
− 1
)

u3
k,xu

α/2−3
k

]2

,

which gives the following inequalities:

(uα
k )2

xxx≤ 4(u
α/2
k )2

[

2(u
α/2
k )2

xxx + 2

(

3α2

4
uk,xxuk,xu

α/2−2
k +

3α2

4

(α

2
− 1
)

u3
k,xu

α/2−3
k

)2]

≤ 8(u
α/2
k )2(u

α/2
k )2

xxx

+8(u
α/2
k )2

(

3α2

4
uk,xxuk,xu

α/2−2
k +

3α2

4

(α

2
− 1
)

u3
k,xu

α/2−3
k

)2

. (8.66)

We can show
(

3α2

4
uk,xxuk,xu

α/2−2
k +

3α2

4

(α

2
− 1
)

u3
k,xu

α/2−3
k

)2

=
9α4

64
(u

−α/2
k )2

(

u2
k,x

u2−α
k

)2

x

,

which gives in (8.66):

(uα
k )2

xxx ≤ 8(u
α/2
k )2(u

α/2
k )2

xxx +
9α4

8

(

u2
k,x

u2−α
k

)2

x

.

Then,

‖(uα
k )xxx‖2

L2(Ω) ≤ 8

∫

Ω

(u
α/2
k )2(u

α/2
k )2

xxxdx+
9α4

8

∫

Ω

(

u2
k,x

u2−α
k

)2

x

dx

≤ 8I3 + I4.

Moreover, we have:

I4 =
9α4

8

∫

Ω

(

4

α2
(u

α/2
k )2

x

)2

x

dx = 18

∫

Ω

(

(u
α/2
k )2

x

)2

x
dx = 64

∫

Ω

(u
α/2
k )2

xx(u
α/2
k )2

xdx,

and,

I3 =

∫

Ω

(u
α/2
k )2(u

α/2
k )2

xxxdx ≤ ‖uα/2
k ‖2

L∞(Ω)‖(uα/2
k )xxx‖2

L2(Ω)

≤ c‖uα/2
k ‖2

L∞(Ω)‖uα/2
k ‖2

H3(Ω),
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Then using all the above inequalities,

‖uα
k‖2

H3(Ω) ≤ c

[

‖uα/2
k ‖4

L∞(Ω) + ‖uα/2
k ‖2

L∞(Ω)‖uα/2
k ‖2/3

H3(Ω)‖u
α/2
k ‖4/3

L2(Ω)

+‖uα/2
k ‖2

L∞(Ω)‖(uα/2
k )xx‖2

L2(Ω) + ‖uα/2
k ‖5/3

H3(Ω)‖u
α/2
k ‖7/3

L2(Ω)

+‖uα/2
k ‖2

L∞(Ω)‖uα/2
k ‖2

H3(Ω) + ‖(uα/2
k )2

xx(u
α/2
k )2

x‖L1(Ω)

]

,

which gives

‖Uα‖L2(0,T ;H3(Ω)) ≤ c

[

N
∑

k=1

τ‖uα/2
k ‖4

L∞(Ω) +
N
∑

k=1

τ‖uα/2
k ‖2

L∞(Ω)‖uα/2
k ‖2/3

H3(Ω)‖u
α/2
k ‖4/3

L2(Ω)

+
N
∑

k=1

τ‖uα/2
k ‖2

L∞(Ω)‖(uα/2
k )xx‖2

L2(Ω) +
N
∑

k=1

τ‖uα/2
k ‖5/3

H3(Ω)‖u
α/2
k ‖7/3

L2(Ω)

+
N
∑

k=1

τ‖uα/2
k ‖2

L∞(Ω)‖uα/2
k ‖2

H3(Ω) +
N
∑

k=1

τ‖(uα/2
k )2

xx(u
α/2
k )2

x‖L1(Ω).

]

Thus, using the Sobolev injection Theorem (H1(Ω) →֒ L∞(Ω)) and the Hölder
inequality:

‖Uα‖L2(0,T ;H3(Ω)) ≤ c

[

‖Uα/2‖2
L∞(0,T ;H1(Ω))‖Uα/2‖2

L2(0,T ;H1(Ω))

+‖Uα/2‖2
L∞(0,T ;H1(Ω))‖Uα/2‖4/3

L2(0,T ;L2(Ω))‖Uα/2‖2/3

L2(0,T ;H3(Ω))

+‖Uα/2‖2
L∞(0,T ;H1(Ω))‖Uα/2‖2

L2(0,T ;H2(Ω))

+‖Uα/2‖2
L∞(0,T ;L2(Ω))‖Uα/2‖1/3

L2(0,T ;L2(Ω))‖Uα/2‖5/3

L2(0,T ;H3(Ω))

+‖Uα/2‖2
L∞(0,T ;H1(Ω))‖Uα/2‖2

L2(0,T ;H3(Ω))

+‖(Uα/2)2
xx(U

α/2)2
x‖L1(0,T ;L1(Ω))

]

.

Using (8.15) and (8.56) this finally gives (8.17). This completes the proof of Lemma
8.3.
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In[126]:=
a1 = Ha - 1L H2 a - 3L - m a Ha - 1L^2 Ha - 2L^2 - m �3 Ha�3L^5 - c1 H5 - 2 aL;
a2 = -2 Ha - 1L H2 a - 5L - 6 m a Ha - 1L^2 Ha - 2L + 5 c1 - 2 c2 H2 - aL;
a3 = H2 a^2 - 5 a + 4L - 2 m a Ha - 1L Ha - 2L + c2;
a4 = -8 Ha - 1L - 9 m a Ha - 1L^2 + 3 c2;
a5 = 2 H2 a - 3L - 6 m a Ha - 1L;
a6 = 1 - m a;

H* Check for which alpha there exists SOME m>0 *L

In[142]:=
Reduce@Exists@8m, c1, c2<, a > 0 && m > 0 &&
Ha6 > 0 && 4 a4 a6 > a5^2 && 4 a1 a4 a6 + a2 a3 a5 ³ a1 a5^2 + a2^2 a6 + a3^2 a4LD, RealsD

Out[142]=
1
��������

53
I25 - 6 �!!!!!!!10 M < a < 1

��������

53
I25 + 6 �!!!!!!!10 M

H* Calculate the optimal m in terms of alpha *L

In[146]:=
FullSimplify@N@Reduce@Exists@8c1, c2<, a > 0 && m > 0 &&

Ha6 > 0 && 4 a4 a6 > a5^2 && 4 a1 a4 a6 + a2 a3 a5 ³ a1 a5^2 + a2^2 a6 + a3^2 a4LD, RealsDDD

Out[146]=
0 < m &&
HHm < Root@-405 + 5670 a - 22113 a2 + 33372 a3 - 17172 a4 + 810 a #1 - 11340 a2 #1 + 40500 a3 #1 -

58158 a4 #1 + 29140 a5 #1 - 405 a2 #12 + 5670 a3 #12 - 15471 a4 #12 + 21870 a5 #12 -
12333 a6 #12 - 2916 a5 #13 + 2916 a6 #13 - 60 a7 #13 + 20 a8 #14 &, 1D &&

H0.113704 < a < 0.318835 ÈÈ 0.611681 < a < 0.829692LL ÈÈ
Hm < Root@-405 + 5670 a - 22113 a2 + 33372 a3 - 17172 a4 + 810 a #1 - 11340 a2 #1 +

40500 a3 #1 - 58158 a4 #1 + 29140 a5 #1 - 405 a2 #12 + 5670 a3 #12 -
15471 a4 #12 + 21870 a5 #12 - 12333 a6 #12 - 2916 a5 #13 + 2916 a6 #13 -
60 a7 #13 + 20 a8 #14 &, 3D && 0.318835 £ a && a £ 0.611681LL

Untitled−4 1

Figure 8.1: Mathematica’s program for the calculation of λ in the proof of Lemma
8.10. Here a stands for α/2 and m for µ.
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R. Acad. Sci. Paris, 321 (1995), 953-959.

[15] F.Brezzi, I.Gasser, P.A.Markowich and C.Schmeiser, Thermal equi-
librium states of the quantum hydrodynamic model for semiconductors in one
dimension, Appl. Math. Lett., 8 (1995), 47-52.

[16] F.Brezzi, L.D.Marini and P.Pietra, Numerical simulation of semiconduc-
tor devices, Comput. Meth. Appl. Mech. Engrg., Vol. 75 (1989), 493-514.
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[44] R.Eymard, T.Gallouët and R.Herbin, Finite volume methods, in Hand-
book of numerical analysis, (North-Holland), Vol. VII (2000), 713-1020.
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Università di Pavia, (2005).

[56] D.Gilbarg and N.S.Trudinger, Elliptic partial differential equations of
second order, Springer, Berlin, New-York, (1984).

[57] R.Glowinski, Numerical methods for nonlinear variational problems,
Springer-Verlag, New-York, (1984).

[58] E.Grenier, Oscillations in quasineutral plasmas, Commun. Partial Diff. Eqs.,
21 (1996), 363-394.
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