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Abstract

The description of the hadron dynamics still challenges modern theoretical physics. The cur-
rent approaches are striving to meet the demands of increasing experimental precision. They
either incorporate the massive amounts of data in various channels or rely on the theoretical
assumptions, which are valid only in a limited number of cases. In this context, it is crucial
to develop techniques which allow the accurate description of the existing data and simul-
taneously have a predictive power achieved through their model-independent nature. This
thesis is dedicated to the partial-wave dispersion relation approach, which is built upon the
fundamental properties of the scattering matrix, such as unitarity and analyticity.
We first apply this approach to study the S-wave ππ → ππ and πK → πK reactions,

in which the lightest scalar resonances σ/f0(500), f0(980) and κ/K∗(700) show up. The
contributions from the left-hand cuts are accounted for using the power expansion in a suitably
constructed conformal variable. The expansion coefficients are determined in a data-driven
manner by fitting the phase shifts to experimental and lattice data as well as Roy analyses.
For the ππ scattering, we present both a single- and coupled-channel analysis by additionally
including the KK̄ channel. For the latter, the central result is the Omnès matrix, which is
consistent with the most recent dispersive results on ππ → ππ and ππ → KK̄, respectively.
By performing an analytic continuation to the complex plane, we found poles associated with
the resonances σ/f0(500), f0(980) and κ/K∗(700) for the physical pion mass value and in the
case of σ/f0(500), κ/K∗0 (700) also for unphysical pion mass values.
The knowledge of the ππ → ππ amplitude allows us to perform a dispersive analysis of the

double-virtual photon-photon scattering to two pions which is very sensitive to hadronic final
state interaction through unitarity. This process is particularly important since it contributes
to the hadronic light-by-light scattering part of the anomalous magnetic moment of the muon.
For the S-wave, we use the obtained coupled-channel ππ, KK̄ Omnès matrix to account for the
σ/f0(500) and f0(980) resonances simultaneously. For higher energies, the f2(1270) resonance
shows up as a dominant structure which we approximate by a single channel ππ rescattering
in the D-wave. In the dispersive approach, the latter requires taking into account t- and u-
channel vector-meson exchange left-hand cuts, which exhibit an anomalous-like behaviour for
large space-like virtualities. We show how to incorporate such behaviour using an appropriate
contour deformation. We also focus on the kinematic constraints of helicity amplitudes and
explicitly show their correlations.
We furthermore extend the dispersive approach to the γγ → D+D− and γγ → D0D̄0 pro-

cesses, which are expected to contain the two charmonium resonances: χc0(2P ) and χc2(2P ).
While the latter is relatively well established from both experimental and theoretical sides,
the identification of the former remains dubious. For the S-wave contribution, we again
adopt a partial-wave dispersive representation and the D-wave χc2(3930) state is described
as a Breit-Wigner resonance. The resulting fits are consistent with the data on the invariant
mass distribution of the e+e− → J/ψDD̄ process. Performing an analytic continuation to
the complex s-plane, we find no evidence of a pole corresponding to the χc0(2P ) candidate
X(3860) reported by the Belle Collaboration. Instead, we find a clear bound state below the
DD̄ threshold at √sB = 3695(4) MeV, confirming the previous phenomenological and lattice
predictions.





Zusammenfassung

Die Beschreibung der Hadronendynamik ist nach wie vor eine Herausforderung für die moderne
theoretische Physik. Mit verschiedenen Ansätzen versucht man derzeit, den Anforderungen der
zunehmenden experimentellen Präzision gerecht zu werden. Sie beziehen entweder die riesigen
Datenmengen mit verschiedenen Kanälen ein oder stützen sich auf theoretische Annahmen,
die nur in einer begrenzten Anzahl von Fällen gültig sind. In diesem Zusammenhang ist es
von entscheidender Bedeutung, Techniken zu entwickeln, die eine genaue Beschreibung der
vorhandenen Daten ermöglichen und gleichzeitig eine Vorhersagekraft besitzen, die durch ihre
Modellunabhängigkeit erreicht wird. Diese Arbeit widmet sich dem Ansatz der Partialwellen
Dispersionsrelation, der auf den grundlegenden Eigenschaften der Streumatrix, wie Unitarität
und Analytizität, aufbaut.
Wir wenden diesen Ansatz zunächst an, um die S-Wellenreaktionen ππ → ππ und πK →

πK zu untersuchen, bei denen die leichtesten skalaren Resonanzen σ/f0(500), f0(980) und
κ/K∗(700) auftreten. Die Beiträge aus den linken Schnitten werden mit Hilfe der Potenzent-
wicklung in einer geeignet konstruierten konformen Variablen berücksichtigt. Die Expansions-
koeffizienten werden datengesteuert durch Anpassung der Phasenverschiebungen an experi-
mentelle Daten und Gitterdaten sowie Roy-Analysen bestimmt. Für die ππ-Streuung präsen-
tieren wir sowohl eine Einzel- als auch eine gekoppelte Kanalanalyse, indem wir zusätzlich
den KK̄-Kanal einbeziehen. Für letzteren ist das zentrale Ergebnis die Omnès-Matrix, die mit
den neuesten dispersiven Ergebnissen für ππ → ππ bzw. ππ → KK̄ übereinstimmt. Durch
eine analytische Fortsetzung in die komplexe Ebene fanden wir Pole, die mit den Resonanzen
σ/f0(500), f0(980) und κ/K∗(700) für den physikalischen Pionenmassenwert und im Fall von
σ/f0(500) und κ/K∗0 (700) auch für unphysikalische Pionenmassenwerte zusammenhängen.

Die Kenntnis der ππ → ππ-Amplitude erlaubt es uns, eine dispersive Analyse der doppelt-
virtuellen Photon-Photon-Streuung an zwei Pionen durchzuführen, die durch Unitarität sehr
empfindlich auf die hadronische Endzustandswechselwirkung ist. Dieser Prozess ist besonders
wichtig, da er zum hadronischen Halpern-Streuungsanteil des anomalen magnetischen Mo-
ments des Myons beiträgt. Für die S-Welle verwenden wir die ermittle gekoppelte Kanal
ππ, KK̄ Omnès Matrix, um die σ/f0(500)- und f0(980)-Resonanzen gleichzeitig zu berück-
sichtigen. Für höhere Energien zeigt sich die f2(1270)-Resonanz als eine dominante Struktur,
die wir durch eine einkanalige ππ-Rückstreuung in der D-Welle approximieren. Im dispersiven
Ansatz erfordert letzteres die Berücksichtigung von t- und u-Kanal-Vektor-Meson-Austausch-
Linksschnitten, die ein anomales Verhalten für große raumartige Virtualitäten zeigen. Wir zei-
gen, wie man ein solches Verhalten mit Hilfe einer geeigneten Konturdeformation einbeziehen
kann. Wir konzentrieren uns auch auf die kinematischen Beschränkungen der Helizitätsampli-
tuden und zeigen explizit deren Korrelationen.
Darüber hinaus erweitern wir den dispersiven Ansatz auf die Prozesse γγ → D+D− und

γγ → D0D̄0, von denen erwartet wird, dass sie die beiden Charmoniumresonanzen enthalten:
χc0(2P ) und χc2(2P ). Während letztere sowohl experimentell als auch theoretisch relativ gut
etabliert ist, bleibt die Identifizierung der ersteren zweifelhaft. Für den S-Wellen-Beitrag ver-
wenden wir erneut eine dispersive Partialwellendarstellung, und derD-Wellenzustand χc2(3930)
wird als Breit-Wigner-Resonanz beschrieben. Die sich daraus ergebenden Anpassungen sind
konsistent mit den Daten über die invariante Massenverteilung des e+e− → J/ψDD̄-Prozesses.
Bei der analytischen Fortsetzung in die komplexe s-Ebene finden wir keinen Hinweis auf



einen Pol, der dem von der Belle-Kollaboration berichteten χc0(2P )-Kandidaten X(3860) ent-
spricht. Stattdessen finden wir einen klaren gebundenen Zustand unterhalb der DD̄-Schwelle
bei √sB = 3695(4) MeV, was die früheren phänomenologischen und Gittervorhersagen bestä-
tigt.
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Chapter 1

Introduction

"Man, he took his time in the sun
Had a dream to understand
A single grain of sand"

"The Greatest Show on Earth",
Nightwish

From a physicist’s point of view, the highest form of appreciation for a theory is to subject
it to the immense number of tests designed to disprove it. It is this attitude that has allowed
many mathematically beautiful theories to be discarded as irrelevant to the observable world.
In this light, a theory that has withstood all theoretical and experimental scrutiny and pre-
dicted phenomena that became observable decades after its formulation is so exceptional. A
prime example of such a theory is the Standard Model (SM) of particle physics. Established
throughout the late 1960s and early 1970s [8–11] it is now a commonly accepted theory of the
elementary particle physics, hence the name.
Three out of four fundamental forces of nature: electromagnetic, weak and strong inter-

actions between elementary particles, are described within the Standard Model in the form
of gauge theories1. In 1979 Glashow, Salam, and Weinberg received the Nobel prize for the
unification of the electromagnetic and the weak interaction to the electroweak force [8–10].
Another Nobel Prize to Higgs and Englert was awarded much later, in 2013, after the discov-
ery of the Higgs boson at the Large Hadron Collider (LHC) at CERN [14, 15]. The existence
of such a boson was predicted nearly 60 years ago by Higgs [16], Brout and Englert [17], and
Guralnik, Hagen and Kibble [18], yet only with its experimental discovery the SM became fully
confirmed. The discovery of the Higgs boson was considered a significant success for the SM
since it resolved the long-standing question of the mass generation of fundamental particles.
The latter can be classified into fermions and bosons. The matter content of the SM includes
three generations of spin-1/2 quarks and leptons, the fundamental interactions are mediated
by spin-1 gauge boson fields, and the spin-0 Higgs boson is responsible for the Yukawa-type
interaction. Schematically, the family of the SM particles is depicted in Fig. 1.1.
Well before the discovery of the Higgs boson, it was known that SM could not provide a

comprehensive description of nature. It fails to incorporate the fourth known fundamental
force - gravity, encoded into Einstein’s theory of general relativity. Another evidence of SM
incompleteness comes from the rotational curves of galaxies, which suggest the existence of an
entirely new type of matter - dark matter. On top of that, the cosmological observations of
the curvature of the universe add dark energy to the discussion. Furthermore, the neutrino
oscillations are only possible if the neutrinos have finite masses, contradictory to the SM
formulation. Recently, the precise value of the mass of the W -boson, first observed in 1983
[19] seems to be at variance with SM predictions [20]. These and numerous other limitations
have opened the discussion of the possible physics scenarios beyond the Standard Model (BSM).
For the BSM searches, there are two possible pathways - either a direct search for new particles,

1For the pedagogical overview, we refer the interested reader to [12, 13]
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Figure 1.1: A schematic overview of the fundamental constituents of the Standard Model.

e.g. the supersymmetric partners of the SM particles at high energies, or the search for the
BSM signatures at low-energy and high-precision frontiers.

The prime example of the latter approach is the anomalous magnetic moment of muon
(g−2)µ problem, which shows a 4.2σ deviation between the current ultra-precise measurements
and the SM calculations, those indicating the possible BSM contributions. The theoretical
evaluation of this quantity, however, carries significant uncertainty. This uncertainty mainly
arises from the contributions of hadrons - composite objects made of quarks bound together by
the strong force. Hadrons are further divided into mesons made of an equal number of quarks
and antiquarks and baryons containing the odd number of valence quarks. Unfortunately,
the SM sector responsible for the strong interaction - the Quantum Chromodynamics (QCD)
- cannot describe the hadron dynamics employing standard perturbative techniques. This
problem originates in the behaviour of the strong coupling constant, discovered by Gross,
Wilczek [21] and Politzer [22] in 1973. Therefore, while accounting for the underlying QCD
properties, it is essential to develop theoretical frameworks capable of describing the hadron
behaviour.
In fact, the first hadrons were proposed and observed long before the formulation of QCD.

The first meson - pion (π) - was proposed as the nuclear force carrier by Yukawa in 1935 [23]
and discovered in cosmic rays in 1947 [24]. In the same year, a second meson - kaon (K) - was
discovered [25]. The rapid advances of the experimental setups created a cornucopia of the
newly observed hadrons, which until the formulation of QCD, were considered as elementary
particles. Fortunately, the knowledge of QCD supplemented by the techniques targeted to
describe the hadron interactions allows questioning their internal structure. In the original
formulation of QCD, only the most economical content was considered, namely quark and
antiquark pair for mesons and three quarks for baryons. The existence of more complicated
combinations, like four-quark meson, was not excluded; however, at that time, there were no
experimentally observed candidates for such configurations. Since then, a significant effort

2



Figure 1.2: Schematic representation of the conventional (a) and different non-conventional
mesons: tetraquark (b), molecule (c), hybrid (d) and glueballs (e, f). Here q and q̄
denotes the quark and antiquark, respectively, and g stands for gluon.

has been put into searching for the so-called non-conventional hadrons, for instance, a pen-
taquark discovery at LHCb [26]. Regarding the mesons, the possible non-standard mesonic
configurations are shown in Fig. 1.2. Usually, the searches for the non-conventional candi-
dates are mainly concentrated on looking for meson resonances with exotic quantum numbers
that cannot be formed from a fermion-antifermion pair. However, the already observed scalar
mesons with masses below 1 GeV, σ/f0(500), κ/K∗(700), a0(980), and f0(980) are frequently
considered as candidates for multiquark states - either tetraquarks or hadronic molecules.
In the grand scheme of things, the work outlined in this thesis aims to improve our current

understanding of the dynamics of different mesonic resonances, which are crucial in provid-
ing the data-driven assessment of the theoretical hadronic error of the anomalous magnetic
moment of the muon. The relevant theoretical concepts are outlined in Chapter 2. First, we
give an overview of the physics of strongly interacting particles within the Standard Model
framework. We also denote the tools developed to deal with the Quantum Chromodynamics
in non-perturbative regime: lattice QCD and effective field theories, particularly the Chi-
ral Perturbation Theory. The S-matrix theory, which gives rise to the dispersion relation
approach widely used in this thesis, is also discussed in the first Chapter. This Chapter
concludes with the anomalous magnetic moment of the muon problem, which motivates our
study of two-photon fusion reactions with a light meson final states. Chapter 3 is dedicated
to the meson-meson scattering in the N/D framework and the study of the lightest scalar
resonances appearing therein. We apply the data-driven dispersive approach to the ππ → ππ
and πK → πK systems. For the ππ system, we also take into account the coupled-channel
effects from intermediate KK̄ states. We extend the single-channel approach from the exper-
imental data to the lattice data, accounting for the dependence on the pion mass. All in all,
this allows us to recover the amplitude of meson-meson scattering needed to describe the final
state interaction in the γγ → ππ process, which is discussed in Chapter 4. There, we start

3



Chapter 1 Introduction

from the kinematics of the process, which involves space-like photons and the construction of
the basis of partial wave amplitudes free of kinematic singularities. Dispersive treatment of
this process encounters an anomalous threshold problem appearing at certain values of photon
virtualities, which we address in an elegant and compact manner. The application of this
approach leads to the prediction for the cross section of the γ∗γ∗ → ππ process for low photon
virtualities relevant for the anomalous magnetic moment of the muon problem. In Chapter 5
we apply the partial wave dispersive approach to study the states involving heavier particles:
γγ → DD̄. This process may contain the long-searched χc0(2P ) state, and we discuss what is
indeed hidden near the DD̄ threshold. Finally, in Chapter 6 we give a summary and outlook.
The technical details and derivations are collected in the Appendices.
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Chapter 2

Theoretical background

The primary goal of this chapter is to introduce the essential concepts and the foundations of
modern hadron physics. Naturally, an attempt to give a comprehensive overview of this broad
topic, including everything from the simplistic phenomenological models to the cutting edge
numerical simulations, let alone the rapid evolution of the experimental precision, would be
somewhat naïve and impractical. Therefore, while still striving to preserve the generality, we
will concentrate mainly on the theoretical aspects required throughout this thesis.
In Sec. 2.1, we start with the Standart Model sector, which is responsible for the strong

interactions - Quantum Chromodynamics. While embodying the theoretical elegance, due to
its non-Abelian nature and the limitations of the perturbative techniques, this theory does
not allow direct analytical predictions in terms of quark and gluon degrees of freedom in the
low-energy region, where the observable particles - hadrons - reside. We then discuss several
strategies developed to circumvent the limitations of genuine QCD. First, we briefly touch on
the effective field theories concept that amalgamates the ideas of old pion theories with the
internal symmetries of the QCD Lagrangian through the Weinberg conjecture. Second, we
consider lattice QCD, providing direct numerical calculations in the non-perturbative region,
which is thriving now in the era of steadily improving numerical techniques and growing
computational power. Then, aiming to construct the primary tool used throughout this thesis
- the dispersive formalism we dedicate a separate section to the scattering theory. In particular,
in Sec. 2.2 we pay additional attention to the discussion of the fundamental properties of the
S-matrix, such as unitarity, analyticity and crossing symmetry. These properties eventually
allow the construction of the non-perturbative approach, based on the partial-wave dispersion
relations commonly used to describe the hadron physics phenomena. Altogether, the material
given in this chapter culminates in Sec. 2.3 with the description of the anomalous magnetic
moment of the muon problem, rooted either in the imperfections of the Standard Model itself
or our current understanding of it - a question which partially requires the model-independent
dispersive treatment of the hadronic contributions to be evaluated.

2.1 QCD at low energies

In this thesis, we are interested in the reactions involving hadrons - the composite subatomic
particles made of quarks confined together by the strong interaction. Hadrons fall into two
families: baryons containing the odd number of quarks and, hence, fermions and mesons -
bosons made of an even number of quarks.
In the naïve quark model, mesons are described as a bound state of quark-antiquark pair.

They are classified by their quantum numbers JPC with parity P = (−1)L+1, charge conju-
gation C = (−1)L+S and the total angular momentum |L − S| ≤ J ≤ |L + S|, where L is
the orbital momentum of the quark-antiquark system and S = 0, 1 is the total spin. It is
sometimes also convenient to use the non-relativistic spectroscopic notation n2S+1LJ , where
n denotes the number of radial excitation. The states with L = 0 are called pseudoscalar
JPC = 0−+ and vector JPC = 1−− mesons and their radial excitations with L = 1 are called
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Chapter 2 Theoretical background

scalar JPC = 0++, axial-vector JPC = 1++, 1+− and tensor JPC = 2++ mesons. In prin-
ciple, the above definition of meson allows for states with broader quark and gluon content:
tetraquarks, hybrids, glueballs, which are usually referred as exotic mesons and can produce
the quantum numbers, not allowed otherwise, e.g. JPC = 1−+.

Unfortunately, Quantum Chromodynamics, which describes the interaction of quarks and
gluons, is not applicable through the standard perturbative approach in the low-energy region,
which is relevant to understand processes involving light hadrons. At the scale of interest, the
light pseudoscalar mesons themselves may serve as effective degrees of freedom. However, it is
still crucial to understand the underlying quark interaction and the internal QCD symmetries
upon which some methods more suitable for the description of the hadron dynamics are built.
This section is organized as follows. We start with the Lagrangian of Quantum Chromo-

dynamics and discuss its symmetries and other properties, including the running coupling
constant and the properties related to it. In Sec. 2.1.2, we briefly touch on the concept of the
effective field theories and a prominent example is the Chiral Perturbation Theory. The sec-
tion concludes with a very brief survey of lattice QCD in Sec. 2.1.3, which allows for many ab
initio numerical results in the non-perturbative regime, yet requires a lot of the computational
power.

2.1.1 QCD as a field theory
Quantum Chromodynamics (QCD) is the non-Abelian Yang-Mills theory that describes strong
interaction within the Standard Model. It is based on the SU(3)c symmetry group, where
index c stands for colour. The fundamental degrees of freedom are spin-1/2 fermions, called
quarks and vector gauge bosons - gluons, which mediate the strong interaction. The quarks are
characterized by mass, electrical charge and the colour charge, a quantum number inherent
to the QCD; gluons also carry the color charge. The quarks come in six different flavours:
f = {u, d, s, c, b, t} in addition to their three possible colours: red, green and blue. The
Lagrangian of QCD is given by:

LQCD =
∑
f

q̄f (iγµDµ −mf ) qf −
1
4G

(a)
µνG

(a)µν , (2.1)

where γµ are the Dirac γ-matrices, qf represent the quark bispinor field, andDµ is the covariant
derivative

Dµ = ∂µ − igstaAaµ . (2.2)

Here gs denotes the strong coupling constant, ta = λa/2 are the fundamental representation
group generators and Aaµ are the N2

c − 1 = 8 Yang-Mills gluon fields, i.e. there are eight kinds
of gluons. The G(a)

µν term stands for the field strength tensor

G(a)
µν = ∂µA

(a)
ν − ∂νA(a)

µ + gsf
abcA(b)

µ A(c)
ν , (2.3)

where fabc are the structure constants of SU(3) Lie algebra, defined as

fabc = 1
4iTr([λa, λb]λc) . (2.4)

The Gell-Mann matrices λa form the basis of all complex, traceless, Hermitian 3× 3 matrices,
which represent the fact, that the interaction between gluon and quark rotates the quark
colour.
The non-Abelian nature of QCD manifests itself in the term of the field strength tensor

(2.3), which is quadratic in the gluon field A(a)
µ and gives rise to three-gluon interaction terms

6



2.1 QCD at low energies

(proportional to gs) and four-gluon interaction terms (proportional to g2
s). Eventually, it leads

to the asymptotic freedom property, which we will discuss later. The phenomenon of gluon self-
interaction in QCD is unique: in abelian theory like Quantum Electrodynamics (QED) there is
no corresponding self-interaction between photons at tree level. Any interaction between two
photons arises from quantum loop effects.
The gauge principle imposes the local SU(3) transformation

qf → q′f = exp
(
−i

8∑
a=1

Θa(x)λ
(a)

2

)
qf = Uqf , (2.5)

where U ∈ SU(3) and Θa(x) = [Θ1(x), . . . ,Θ8(x)] is a set of independent real parameters.
The quark fields transform according to the fundamental representation of the SU(3) gauge
group, forming a colour triplet for each flavour f , while the gluon belongs to the adjoint
representation, forming a colour octet.
From the gauge-invariance, the QCD Lagrangian could also include the so-called σ-term of

a type

Lθ = g2
s θ̄

64π2 ε
µνρσ

8∑
a=1

G(a)
µν G̃

(a)ρσ , (2.6)

where G̃(a)ρσ is the dual of the gluon field tensor. This implies an explicit P and CP violation,
but is considered to be extremely small: the current limits from neutron electric dipole moment
best measured limits yield θ̄ . 10−10.

In fact, the QCD coupling constant αs = g2
s/4π is not constant at all. In QCD, the energy

dependence strongly affects the whole nature of the theory. This dependence is shown in Fig.
2.1 and it is a defining feature of QCD, encoded in βs(Q) function of the renormalization group
equation:

µ2dαs
dµ2 = β(as) = −αs

(
β0
αs
4π + β1

(
αs
4π

)2
+ β2

(
αs
4π

)3
+ . . .

)
. (2.7)

Hence the effective QCD coupling is defined as

αs(µ2) = 4π
β0 ln(µ2/Λ2)

[
1− 2β1

β2
0

ln[ln
(
µ2/Λ2)]

ln(µ2/Λ2) + . . .

]
, (2.8)

where β0 = 11 − 2/3nf , β1 = 51 − 19/3nf and nf is the number of flavours of quarks with
mass less than the characteristic scale Λ.
In the equation (2.7) for β0 > 0, there is an overall negative sign, which implies that the

coupling constant decreases at high energy. This property is known as the asymptotic freedom,
which allows for a standard perturbative expansion in terms of quarks and gluons degrees of
freedom. In contrast, for low energies, αs increases, resulting in the strong-coupling regime.
The scale Λ in equation (2.8) is the QCD parameter that defines the scale where the theory
becomes strongly coupled. The large value of αs at low energies is thought to be responsible
for confinement - the fact that the quarks and gluons are not observed as free particles but
are bound together to form the colour-singlet states - hadrons. The confinement poses a
severe challenge to our understanding of strong interaction. While QCD in principle encodes
as information regarding the strong interaction at all scales, the inability to use standard
perturbative techniques in the low energy regime and the fact that the underlying degrees of
freedom of QCD, quarks and gluons, are confined within hadrons hinders the connection to the
observable hadronic phenomena. Therefore, describing the strong interaction at low-energies
is a formidable task, which has lead to the development of several approaches operating on
QCD as a fundamental underlying theory. One of them is the effective field theory approach,
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30 9. Quantum Chromodynamics

in this category, removing this pre-average would not change the final result within the quoted
uncertainty.

αs(MZ
2) = 0.1179 ± 0.0010

α
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Figure 9.3: Summary of measurements of αs as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of αs is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

9.4.3 Deep-inelastic scattering and global PDF fits:
Studies of DIS final states have led to a number of precise determinations of αs: a combination [501]
of precision measurements at HERA, based on NLO fits to inclusive jet cross sections in neutral
current DIS at high Q2, provides combined values of αs at different energy scales Q, as shown
in Fig. 9.3, and quotes a combined result of αs(M2

Z) = 0.1198 ± 0.0032. A more recent study
of multijet production [373], based on improved reconstruction and data calibration, confirms the
general picture, albeit with a somewhat smaller value of αs(M2

Z) = 0.1165±0.0039, still at NLO. An

1st June, 2020 8:27am

Figure 2.1: The QCD coupling constant as as the function of the respective energy scale Q.
The figure is taken from [27] and the detailed explanation of each measurement
can be found therein.

which we will briefly describe in Sec. 2.1.2. It requires knowledge of QCD symmetries, where
in particular we will focus on the chiral symmetry.

In QCD, there is a large gap between the quark masses, three of them are much lighter
than the typical hadronic scale 1 GeV, and three are heavier. In the so-called chiral limit
one can put mu,md,ms → 01. The scale of 1 GeV is associated with the masses of ρ-meson,
mρ = 770 MeV or with the scale of the chiral symmetry breaking2. In the chiral limit, the
QCD Lagrangian containing only u, d, and s quarks can be rewritten as:

L0
QCD =

∑
f=u,d,s

(q̄f,RiγµDµqf,R + q̄f,Liγ
µDµqf,L)− 1

4G
a
µνG

aµν , (2.9)

where the left (L) and the right (R) chiral components do not interact with each other

qR = 1
2(1 + γ5)q , qL = 1

2(1− γ5)q . (2.10)

In the massless limit, the chirality eigenstates (means being left or right) coincide with the
helicity eigenstates. The Lagrangian L0

QCD has the global symmetry

SU(3)L × SU(3)R︸ ︷︷ ︸
chiral group

×U(1)V × U(1)A ,

1There is some freedom to choose the set of the lightest quarks, the s quark sometimes is not included, because
it has the mass ms = 95 MeV, while mu = 2.3 MeV, md = 4.8 MeV [27], therefore SU(3) symmetry is less
precise than SU(2).

2The scale of chiral symmetry breaking is usually defined based on the dimensional analysis of NLO terms
compared to LO terms as 4πfπ ≈ 1170 MeV, where fπ is the pion decay constant
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2.1 QCD at low energies

where V = L+R (vector) and A = L−R (axial). The Noether theorem implies the existence
of conserved currents associated with each symmetry of the Lagrangian. For our future inves-
tigation, we drop the question of the quark number symmetry U(1)V saying that it is realized
as a baryon number on the hadronic level and concentrate on the axial group U(1)A and the
chiral group. The eight currents L and R transform under the SU(3)L × SU(3)R as an octet
and a singlet. Instead of using the chiral currents, one often uses the vector and axial linear
combinations

V aµ = Raµ + Laµ = q̄γµ
λa

2 q ,

Aaµ = Raµ − Laµ = q̄γµγ5
λa

2 q . (2.11)

The axial symmetry group U(1)A gives the current, which is conserved on the classical level.
However, this symmetry is broken on the quantum level giving rise to the so-called axial
anomaly. For the singlet axial current, it holds

Aµ = q̄γµγ5q ⇒ ∂µA
µ = 3g2

s

32π2 εµνρσG
aµνGaρσ . (2.12)

We expect to see that the chiral symmetry is preserved in the hadron spectrum. However,
it turns out that the chiral symmetry is spontaneously broken down to the vector subgroup
SU(3)V . The Goldstone theorem states that if there is a spontaneously broken symmetry,
i.e. the ground state is not invariant under the chiral rotations, new massless bosons, so-
called Goldstone bosons, appear. The number of the Goldstone bosons is then equal to the
number of the broken axial generators of the SU(3)A. From the analysis of the hadron spec-
trum, one can identify the eight light pseudoscalar mesons with appropriate quantum numbers:
π+, π−,K+,K−,K0, K̄0 and η with JP = 0−. Their masses are relatively small compared to
the typical hadronic scale, though they are non-zero, so they appear as the pseudo-Goldstone
bosons.

Due to the small but non-zero quark masses of quarks, the mixing between the left- and
the right-hand quark fields appear, and therefore there is an additional explicit symmetry
breaking. The mass term M = diag{mu,md,ms} then appear as

LM = − (q̄RMqL + q̄LMqR) . (2.13)

The presence of the mass term modifies the divergence of currents, so together with the
symmetry breaking of the axial group and the vector group symmetry conservation, we obtain

∂µV
aµ = iq̄

[
M,

λa

2

]
−
q ,

∂µA
aµ = iq̄

[
M,

λa

2

]
+
γ5q ,

∂µV
µ = 0 ,

∂µA
µ = 2iq̄Mγ5q + 3g2

s

32π2 εµνρσG
aµνGaρσ . (2.14)

Now we can summarize all the symmetries of the strong interaction in terms of different
current properties. In the chiral limit, all of the currents are conserved, except the singlet axial
currentAµ, which has the anomaly. Due to the non-zero quark masses, all of the currents obtain
additional divergences, though the singlet vector current V µ being the sum of three flavour
currents, is always conserved. The eight vector currents V (a)µ are conserved in the case of
equal quark masses mu = md = ms, because [λa, 1]− = 0.
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In addition to the chiral symmetry, the QCD Lagrangian has another global symmetry. In
the limit mu = md 6= ms, LQCD is invariant under the global SU(2) transformation. The mass
difference mu −md is very small compared to ΛQCD, so this approximate symmetry is rather
accurately realized. Similarly to spin, which is also a SU(2) symmetry, it is called isospin.
Electromagnetic interactions, however, violate isospin symmetry since u- and d- quarks have
different electrical charges. If the electromagnetic interactions are turned off, the SM as a
whole becomes symmetric under isospin transformation if mu = md. In this isospin limit the
proton and neutron have equal masses.

2.1.2 Effective field theories
The main idea of effective field theories (EFT) is relatively intuitive. It states that as long as
we restrict ourselves to a specific energy domain, the physics at scales much bigger than the
chosen one should not influence the description of the system strongly and can be absorbed
into a set of low energy constants [28]. Therefore, the relevant degrees of freedom may be
different from the ones of the underlying theory. Regarding the strong interaction theory, this
comes naturally if one looks at the mass separation between the quarks and the observable
hadrons mentioned in the previous section. Moreover, the hadronic states are assumed to be
appropriate degrees of freedom due to the confinement. The application of the EFT relies on
the prominent statement by Weinberg [29]3. It states that

Quantum field theory itself has no content beyond analyticity, unitarity, cluster
decomposition and symmetry,

and therefore provides a link between the underlying theory and the effective one, which
allows ensuring that the obtained EFT is not just another phenomenology [32]. To imply this
theorem into the perturbation theory, one should write the most general Lagrangian consistent
with all symmetry principles of the underlying theory and use it to calculate the S-matrix for
any theory below a certain scale. Further, we will ascertain that the EFT approach can
significantly simplify the calculation. Moreover, for Quantum Chromodynamics in the non-
perturbative region, it gives a possibility to obtain the physical values in terms of observable
degrees of freedom.

It is crucial to define the scale separation for the construction of the EFT since the expansion
is considered to be in terms of the soft scale over the hard scale. Within the relevant example
of Chiral Perturbation Theory (χPT), the identification of both scales is discussed further on.
The Chiral Perturbation Theory is the theory describing the dynamics of the Goldstone

bosons. It combines the concept of the EFT together with the chiral symmetry properties of
QCD. Since we have already investigated the symmetry properties, we now need to identify
the scale separation to construct the proper effective theory. The hard scale comes naturally as
the mass mρ, while the soft scales are the Goldstone boson masses and the typical momentum
p of the process.
To construct the corresponding expansion, we need to choose the parametrization of the

Goldstone boson octet4

U = exp
(
iφ

f0

)
,

φ =
8∑

a=1
λaφa ≡


π0 + 1√

3η
√

2π+ √
2K+

√
2π− −π0 + 1√

3η
√

2K0
√

2K−
√

2K̄0 − 2√
3η

 , (2.15)

3In the referred work, it was mentioned as the known theorem, which was proven in [30, 31]
4Analogously, it can be done for the SU(2) theory. In this case, the matrix φ would consist only of pions.
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2.1 QCD at low energies

where f0 is the pion decay constant in the chiral limit coming from the matrix element of
π+ → µ+νµ decay.

The effective Lagrangian should be invariant under the SU(3)L×SU(3)R×U(1)V , moreover,
due to the spontaneous symmetry breaking, its ground state should be invariant under the
subgroup SU(3)V × U(1)V . The global U(1)V symmetry is satisfied trivially because the
pseudoscalar mesons have zero baryon number. The ground state of the system is φ = 0
and therefore U(φ = 0) = 1 is invariant under the SU(3)V . The matrix U is unitary and
transforming as

U → U ′ = RUL† , R ∈ SU(3)R , L ∈ SU(3)L . (2.16)

For now, we have all constituents to construct the effective Lagrangian of χPT. It is organized
as a series of terms with an increasing number of derivatives

Leff = L2 + L4 + L6 + . . . , (2.17)

where only terms with even numbers of the derivatives are present due to the Lorentz invari-
ance. The total number of terms is infinite, hence the number of generated Feynman diagrams.
However, this is no longer a problem involving the Weinberg power counting scheme, which
allows comparing the importance from the different diagrams by ordering them according to
the scaling p/Λ.

The leading order (LO) term of the effective Lagrangian containing the minimal number of
derivatives together with the contribution from the broken symmetry in the absence of the
external fields has the following form

L2 = f2
0
4 Tr(∂µU∂µU †) + f2

0B0
2 Tr(MU † + UM †) , (2.18)

where the constant B0 is connected to the chiral quark condensate so that

B0 = −〈q̄q〉
3f2

0
. (2.19)

The constants f0 and B0 are the part of so-called low-energy constants (LEC’s). With the
increasing number of terms in the Lagrangian, new LEC’s come into play. They can be
determined from the experiment or the underlying theory, making the construction of the
next-to-leading terms even more difficult. For instance, L4 contains 12 LEC’s and L6 is more
than 100.
Together with the complications of calculating the higher orders of the χPT Lagrangian,

the theory itself has the limitation provided by the definition of the high-energy scale. A
considerable amount of the hadronic interaction lies above the energy of 770 MeV, so different
methods are needed at higher energies (see Sec. 2.2). Still, the χPT is a powerful tool that
can impose essential constraints in the low energy region.

2.1.3 Lattice QCD
Aside from the effective field theories, there is another powerful approach aimed to tackle
the strong interaction in a non-perturbative manner - the lattice QCD. The main objective
of this technique is the QCD path integral, which is impossible to solve analytically, and the
numerical methods have to be implemented. The conceptual breakthrough occurred in 1974
when Wilson proposed to formulate the long-distance QCD on a Euclidean space-time lattice
[33], hence the name. This discretization implies that the quarks sit on the lattice sites and
interact through interconnected gluon links. Lattice QCD allows for a numerical solution
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Figure 2.2: The schematic representation of the discretized Euclidean space-time. Here q de-
notes the quark fields, U is the link variable connected to the gluon field and a is
the lattice spacing.

involving the Monte-Carlo generation of random samples of the possible lattice configurations,
weighted with a probability given by the QCD action.
In the path integral formalism [34], various observable parameters, for instance, the hadron

masses, can be studied in terms of the expectation values of the corresponding gauge-invariant
operators or correlation functions. For operator O this quantity is given by

〈O〉 = 1
Z

ˆ
DA

∏
f

DqfDq̄fO(qf , q̄f , A)eiSQCD(qf ,q̄f ,A) , (2.20)

where the partition function Z reads as

Z =
ˆ
DA

∏
f

DqfDq̄feiSQCD(qf ,q̄f ,A) . (2.21)

From Eq. (2.1) follows, that the QCD action SQCD(qf , q̄f , A) =
´
d4xLQCD can be further

separated into a sum of gluonic SG(A) and fermionic SF (qf , q̄f , A) parts:

SQCD(qf , q̄f , A) = SG(A) + SF (qf , q̄f , A) = SG(A) +
ˆ
d4x

∑
f

q̄f (iγµDµ −m)qf . (2.22)

The imaginary exponent in the integrand of Eq. (2.20) poses a problem for the numerical
integration since it oscillates strongly. It can be circumvented using the Wick rotation [35],
which implies the transition from the real time t to imaginary τ = ix0 and thus from Minkowski
to Euclidean space-time. The expectation value in Eq. (2.20) is then

〈O〉 = 1
Z

ˆ
DA

∏
f

DqfDq̄fO(qf , q̄f , A)e−S
E
QCD(qf ,q̄f ,A) , (2.23)

where SEQCD(qf , q̄f , A) is the Euclidean action given by

SEQCD(qf , q̄f , A) =
ˆ
d4xLEQCD = SG(A) +

ˆ
d4x

∑
f

q̄f (γµDµ +mf )qf , (2.24)

and the partition function Z modifies accordingly

Z =
ˆ
DA

∏
f

DqfDq̄fe−S
E
QCD(qf ,q̄f ,A) . (2.25)

12



2.1 QCD at low energies

Here the integral runs over all possible quark qf , anti-quark q̄f and gluon A fields configu-
rations. In order to numerically evaluate the obtained integrals, the Euclidean space-time is
then discretized to a hypercubic lattice Λ:

Λ = {xµ ∈ R4|xµ = anµ;n0 = 0, 1, . . . , Nt − 1;n1, n2, n3 = 0, 1, . . . , Ns − 1} , (2.26)

with Ns lattice points in the spatial and Nt lattice points in the time direction, which are
separared by the lattice spacing a (see Fig. 2.2)5. Therefore, it has a size of Nt · a in time
and Ns · a in spatial direction, which is equivalent to the spatial volume V3 = (Nsa)3. The
lattice spacing acts like an ultraviolet regulator, thus making the theory finite. Naturally, the
continuous theory is recovered by taking the limit of vanishing lattice spacing a → 0 and the
infinite volume V3 →∞.
The quark fields are defined on the lattice sites, i.e. q(x), q̄(x)→ q(n), q̄(n) with n ≡ nµ ∈ Λ.

To preserve the QCD gauge symmetry, the discretized gluon field has to be encoded in the
form of link variables, which connect the neighboring lattice sites:

Uµ(n) = eiaAµ(n) , (2.27)

so that it acts like a gauge transporter. The details on how the operators can be transcribed
to the discretized space-time can be found elsewhere [36, 37].
Considering the path integral from Eq. (2.25), one can notice that the Grassman-valued

quark fields can be integrated out, thus leading to

Z =
ˆ
DUe−SG(U)∏

f

det(D(U) +mf ) , (2.28)

where D(U) is a lattice Dirac operator. If the operator O depends on the quark and antiquark
fields qf and q̄f , integrating these fields out leads not only to the fermion determinant in the
denominator of Eq. (2.23) but also to a series of quark propagators (D(U) + mf )−1. The
evaluation of the fermion determinant is exceptionally challenging since it requires O((N3

s ×
Nt)3) computations. Early lattice simulations were limited to the quenched approximation,
where this determinant was put to 1. Physically, this approximation neglects the effect of
the vacuum quark loops. Instead, the determinant can be rewritten in terms of an integral
over so-called pseudofermion fields, which in turn introduces the different effective action
depending on the inverse Dirac operator (D(U)+mf )−1. From the computational perspective,
it implies inverting the large sparse matrix in order to evaluate the pseudofermionic action.
For (D(U) +mf ), the smallest eigenvalue is proportional to mf ; hence the computational cost
is inversely proportional to the quark mass. For this reason, the current lattice simulations
operate with higher quark and consecutively, pion masses (see Sec. 3.3.2 and 3.4.2).
In addition, there are several core issues arising from the lattice discretization. First, in

practical calculations, the lattice spacing a is non-zero, leading to the discretisation errors,
which can be controlled by carrying out the calculations at decreasing value of a and extrap-
olating the results. Second, the lattice discretisation breaks the rotational invariance, i.e. the
spatial rotational symmetry is reduced to the cubic symmetry group. Finally, the finite lattice
volume also introduces additional systematic errors.
However, despite the listed limitations, lattice QCD has shown tremendous progress in recent

years due to the rapid development of high-performance computing systems. For instance,
it was able to estimate the mesonic excitation spectrum shown in Fig. 2.3 by studying the
correlation functions of a type

Cij(t) = 〈0| Oi(t)Oj(t) |0〉 , (2.29)
5The typical present day lattices are asymmetric and have sizes of N3

s ×Nt ∼ 643×128 with the lattice spacing
of a ≈ 0.05− 0.1 fm.
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Figure 2.3: Lattice QCD results for the light-quark isoscalar (green/black) and isovector (blue)
meson spectrum. Each column corresponds to a given JPC . The calculations are
performed with mπ= 391 MeV on 243 × 128 lattice. The figure is taken from [38].

where O is a hadron creation operator constructed from quark and gluon fields, which, when
acting on the QCD vacuum |0〉 creates a so-called trial state with the quantum numbers J, P,C
of some hadron. In general, this trial state is not a hadron of interest but a linear superposition
of all states with these quantum numbers. More details on the structure and action of these
operators can be found, for instance, in [36, 38].
In this thesis, we are mainly interested in studying not the stable particles but resonances

(see Sec. 2.2.6) for which many fruitful results have become available in recent years. While
lattice QCD simulations cannot directly provide the resonance properties, methods have been
developed to circumvent this problem. In particular, the Lüsher formalism [39] relates infinite-
volume hadron scattering amplitude to the discrete spectrum of hadron states in a finite volume
and thus allows to extract the scattering amplitudes as the functions of energy. The analytical
parametrisation of the obtained scattering amplitudes can then be examined for their resonance
content. For instance, the σ/f0(500) resonance was studied in this manner in both single and
coupled channel ππ scattering on lattice [40, 41]. The single-channel result will be discussed
in more detail in Sec. 3.3.2.

Finally, the lattice QCD contribution in the study of the anomalous magnetic moment of
muon problem can hardly be overestimated, especially regarding the hadronic vacuum polari-
sation part (see Sec. 2.3).

2.2 S-matrix formalism

The effective field theories, including χPT, while leading to many accurate results in the
hadronic reactions below the characteristic scale, break down in an attempt to describe the
processes in the resonance region. This limitation can hardly be underestimated in light of the
recent experimental discoveries, enriching the spectrum of the observable particles with the
plethora of heavier states. In particular, the various resonance phenomena trial the boundaries
of the effective field theories’ applicability. For instance, already the processes involving the
first resonances of the ππ scattering: σ/f0(500) and ρ(770) put limits on the standard χPT
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scheme. On the other hand, lattice QCD, capable of producing numerous results from the first
principles, still struggles with the computational constraints to perform calculations for the
light quark mass values.
In fact, the hadronic sector has not yet been described flawlessly within one concept. The

S-matrix theory we will briefly cover in this section neither provides an ultimate solution nor
is novel, dating back to the proposal by Heisenberg in 1943 [42]. It is well suited to the
description of the hadronic processes due to the short range of the strong interactions; still, it
is not universal. This theory operates on the notion of the asymptotic states, meaning that a
long time before the interaction, the participating particles are effectively free with well-defined
quantum numbers, and the interaction itself happens in a finite time interval.
Despite the cautionary remarks mentioned above, the S-matrix theory is still one of the

most potent tools in hadronic physics. It abandons the question of the nature of underlying
fields and thus avoids the problems related to perturbative expansion in coupling constant.
Instead, the main focus of the S-matrix theory is the transition amplitude of the physical
process. Starting from the fundamental principles of the unitarity and maximal analyticity, it
allows to recover the full amplitude from the discontinuity across the branch cuts by employing
the dispersion relations. The resulting formalism yields model-independent results, which can
then be tested with experiment.
This section is dedicated to the main principles of the S-matrix theory, which result in the

dispersion relation approach extensively used throughout this work. We start with the main
objectives of the scattering theory, the kinematics, and the fundamental principles of unitarity
and the analyticity for the scattering amplitude. Then we will proceed with the dispersion
relations and discuss their most general form. We will also touch on the topic of resonances
which within the given framework arise naturally as the poles of the scattering amplitude on
the unphysical Riemann sheets. A more detailed yet pedagogical overview of the considered
topics can be found in [43–45].

2.2.1 The scattering process
Virtually all pieces of evidence regarding the behavior of subatomic particles that we possess
today come from scattering experiments. In such experiments, the particles collide and interact,
and the emerging particles are detected. There are two types of scattering events: elastic and
inelastic. In an elastic scattering event, the final state consists of the same particles as the
initial state. If the final state contains different particles, then the scattering event is said to
be inelastic. Following this definition, the decay process is always inelastic since it has one
particle in the initial state and multiple decays products in the final.
The particles entering the scattering experiment are considered to be effectively free, mean-

ing that a long time before scattering takes place, they are well-separated and do not interact
with each other. The same applies to the particles after the scattering. The states which
consist of such particles are called asymptotic states. We denote the initial state as |i〉 and the
final state as |f〉. The transition between the initial and final states can then be written as

Sfi = 〈f |S |i〉 , (2.30)

where S is called the scattering operator, which contains all the information regarding the time-
evolution from one asymptotic state to another. It is defined by the matrix elements between
all possible initial and final states. Altogether, these matrix elements form a scattering matrix,
or the S-matrix. It is Lorentz invariant, meaning that each matrix element is a scalar under
Lorentz transformations.
There are two ways how the final state |f〉 can emerge from the initial state |i〉. First, the

particles could not interact at all, so that the amplitude of this transition is given as 〈f |i〉.
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Figure 2.4: Schematic representation of the elastic 2 → 2 scattering of the identical spinless
particles and the definition of the s and t-channel processes

Therefore, the S-matrix can be decomposed into the trivial part and the part describing an
actual interaction, called the interaction or T -matrix:

S = 1 + iT , (2.31)

and the total matrix element will be a sum 〈f |S |i〉 = 〈f |i〉+ i 〈f | T |i〉.
The initial and final state can consist of the arbitrary number of particles. The general

scattering process involving N particles with momenta pi, i = 1 . . . N can be conveniently
described using a set of Lorenz-invariant variables, the number of which can be counted as
follows. There is a set of N four-momenta giving 4 × N variables and N on-shell condition
p2
i = 0. Another four constraints come from the total momentum conservation

∑
i k

µ
i = 0, µ =

0 . . . 3. In addition, there are three rotations and three Lorentz boosts, which characterize the
reference frame and do not affect the invariant amplitude. Hence, the total number of the
invariants needed to describe the N -point amplitude is

4(N − 1)−N − 3− 3 = 3N − 10 . (2.32)

The initial states of actual experiments consist of only two particles, and the number of
particles in the final state is limited by the total energy and quantum numbers of initial
and final states. Moreover, the multiparticle final state implies the complicated analytical
structure of the scattering amplitude and, hence, lies beyond the pedagogical introduction to
the scattering theory. Therefore, in this section we consider only 2 → 2 scattering where all
particles are on the mass-shell. For simplicity, we also narrow down to the elastic scattering
of the identical particles with masses mi = m and momenta pi, where i = {1, 2, 3, 4}. This
process is schematically shown in Fig. 2.4.
In principle, aside from mass and momentum, each particle entering the scattering process

is characterized by certain discrete quantum numbers like spin and isospin. However, to cover
the main properties of the S-matrix theory, it is sufficient to consider the scattering of the
scalar particles. Such 2 → 2 process can be described with the following invariants, called
Mandelstam variables [46]:

s = (p1 + p2)2 = (p3 + p4)2 ,

t = (p1 − p3)2 = (p2 − p4)2 ,

u = (p1 − p4)2 = (p2 − p3)2 . (2.33)

These variables are connected through the kinematic relation of the following form

s+ t+ u =
∑
i

m2
i = 4m2 . (2.34)
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hence only two of them are independent in accordance with the relation (2.32).
For the process shown on Fig. 2.4 the initial and final states are defined as |i〉 = |p1, p2〉 , |f〉 =
|p3, p4〉 and the transition matrix element, which determines the relevant part of the scattering
amplitude is given by

Tfi ≡ 〈f | T |i〉 = 〈p3, p4| T |p1, p2〉 . (2.35)

The Lorentz invariant transition amplitude T is then related to the elements from the T -matrix
by a momentum conserving δ-function

Tfi = (2π)4δ(p1 + p2 − p3 − p4)T (s, t, u) . (2.36)

From the relation (2.34) follows that the amplitude T (s, t, u) depends only on two Mandel-
stam invariants, the choice of which is specific to a particular process. Hereafter, we choose
to use T (s, t), or, recalling the kinematic relations for the Mandelstam variables (see App.
3.A), T (s, cos θ), where θ is the scattering angle in the center-of-mass system. The amplitude
T (s, cos θ) can be decomposed into the infinite series of partial waves. For the spinless particles
the s-channel partial wave expansion can be performed using the Legendre polynomials

T (s, cos θ) = N
∞∑
J=0

(2J + 1)PJ(cos θ)tJ(s) , (2.37)

where we introduced factor N = 2 for identical particles in initial and final states and N = 1
for non-identical. We introduced this factor to have the same unitarity relation for identical
and non-identical particles (see below). For the ππ → KK̄ system, considered in Chapter 3,
N = 1/

√
2.

The partial wave decomposition allows to transfer the angular dependence to the functions
with well-defined properties and to study the resonances and other features since they occur
in the channels with definite spin. Further, throughout this thesis, the partial wave amplitude
tJ(s), will be the main object of our study. In the experiment, however, neither the partial
wave nor the total amplitude is observed. The principal experimentally observable quantity,
the cross section σ(s), is proportional to the squared modulus of amplitude. We will come
back to this definition in the relevant sections.

2.2.2 Analyticity, unitarity, and crossing symmetry
To describe various hadronic phenomena, the dispersion relations we will be using are built
upon the fundamental principles, such as unitarity, analyticity and other invariance properties
of the S-matrix.
Regardless of interaction type, the total probability of the system starting from an initial

state |i〉 to end up in some state |f〉 must be conserved, i.e.
∑
f Pi→f = 1. This transition

probability can be defined simply as the squared matrix element

1 =
∑
f

Pi→f =
∑
f

| 〈f |S |i〉 |2 = 〈i|S†S |i〉 , (2.38)

Therefore, the conservation of probability requires that the S-matrix is unitary

S†S = SS† = 1 . (2.39)

By inserting Eq. (2.31) into Eq. (2.39), in terms of the interaction matrix T , the above
unitarity relation translates into

T − T † = iT T † . (2.40)
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If the intermediate states |n〉 are physically allowed, we can insert a complete set of them
to obtain

〈f | T |i〉 − 〈f | T † |i〉 = i(2π)4∑
n

δ4(pn − pi) 〈f | T † |n〉 〈n| T |i〉 . (2.41)

Equivalently, it can be written recalling the notation (2.35):

Tfi − T ∗if = i(2π)4∑
n

δ4(pn − pi)TfnT ∗in . (2.42)

As the consequence of time reversal invariance, which holds for the strong interaction of
hadrons, there is a symmetry of the matrix elements, i.e. 〈f |S |i〉 = 〈i|S |f〉. In the trivial
case of no interaction, the symmetry condition is automatically fulfilled 〈f |i〉 = 〈i|f〉, hence
the T matrix elements are symmetric Tfi = Tif and the unitarity condition (2.42) can be
simplified as

2ImTfi = (2π)4∑
n

δ4(pn − pi)TfnT ∗in . (2.43)

For the scattering amplitude T defined as in Eq. (2.36), below the inelastic threshold the
unitarity relation (2.43) implies:

2ImTfi =
∑
n

ˆ
dΦnTfnT

∗
in , (2.44)

where dΦn is a phase space of the intermediate multi-particle state n. In case of the elastic,
i.e. |i〉 = |f〉, 2→ 2 scattering the phase space factor is defined as

dΦ2 = β(s)
32π2dΩ , (2.45)

where β(s) = 2pcm/
√
s =

√
1− 4m2/s. To avoid the angular integration over dΩ, it is useful

to obtain the unitarity relation for the partial wave amplitudes (2.37)

Im t(s) = β(s)
16π |t(s)|

2θ(s− 4m2) , (2.46)

where we omitted the index J . The Heaviside-θ function is now included to emphasize that
the unitarity relation is valid above the two-particle threshold. The relation above refers
to the elastic unitarity or the single-channel process and works in the energy regime below
any inelastic threshold. It can be generalized for the case of two- and more coupled-channels
unitarity by replacing the single amplitude and the corresponding phase space factor with
matrices, introducing the matrix index ab, so that

Im tab(s) =
∑
c

tac(s)ρc(s)t∗cb(s) , (2.47)

where the sum goes over all intermediate states

ρc = 1
16πβc(s)θ(s− sc,thr) , (2.48)

where sc,thr is the threshold of the corresponding two particle system.
The unitarity relation constraints the real and imaginary parts of the amplitude. In single

channel, from the Eq. (2.46) follows that

|t(s)| ≤ 1
ρ(s) . (2.49)
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In addition, the amplitude t(s) can be parametrized as

t(s) = e2iδ(s) − 1
2iρ(s) , Re t(s) = sin 2δ(s)

2ρ(s) , Im t(s) = 1− cos 2δ(s)
2ρ(s) . (2.50)

By taking into account the limits of sin and cos functions, the resulting unitarity bound reads
as following

− 1
2ρ(s) ≤ Re t(s) ≤ 1

2ρ(s) , 0 ≤ Im t(s) ≤ 1
ρ(s) . (2.51)

Analogously, we can derive similar constraints for the coupled-channel case, however, we post-
pone it until Chapter 3.
Eq. (2.44) and subsequent ones imply that the unitarity property of the S-matrix has a con-

sequence on the analytical structure of the scattering amplitude. The first threshold generates
a branch cut of the amplitude in the complex s-plane starting at s = 4m2 and spanning to in-
finity. With growing energies, each new intermediate state produces an additional term in the
unitarity relation giving rise to further branch points at the inelastic thresholds. In principle,
only the positions of these branch points are fixed by unitarity relation and the choice for the
cuts to run along the positive real axis is a matter of commonly accepted convention, hence
the name right-hand cuts.
The purpose of the branch cuts is to unambiguously define the amplitude by selecting a single

sheet of the Riemann surface to arrive to the single-valued function. As long as we do not cross
any of the cuts, there is only one Riemann sheet, called the physical sheet on which the physical
value of the amplitude resides. Other Riemann sheets, called unphysical, can be reached by
burrowing through one or more branch cuts. Each sheet is specified by the branch cut, that
must be crossed to reach the physical sheet. Further we will see that establishing connection
between the amplitude behaviour on different Riemann sheets is essential for understanding
the properties of physical resonances.
The second attribute of the S-matrix, which causes the non-analytic structures of the scat-

tering amplitude is called crossing symmetry. It states, that the different kinematical regions
can be related to each other by means of the analytical continuation. Consider again the
process depicted on Fig. 2.4, described by the set of Mandelstam variables (2.33) for which s
represents the energy in the center-of-mass system

1(p1)2(p2)→ 3(p3)4(p4) . (2.52)

There are the following crossed processes

1(p1)3̄(−p3)→ 2̄(−p2)4(p4) ,
1(p1)4̄(−p4)→ 2̄(−p2)3(p3) ,

1(p1)→ 2̄(−p2)3(p3)4(p4) , (2.53)

where bars denote the antiparticles. The first two processes are called t-channel, u-channel
respectively, depending on which variable is chosen as the center-of-mass energy. The third
line in (2.53) represents the decay process, which requires the particle 1(p1) to be unstable
and is written for the completeness only, as for the particles with equal masses this process
is impossible. Note also, that this simple relations hold only for the full amplitude T (s, t, u),
while the partial-wave amplitudes are fixed in the certain channel. The physically allowed
regions for each channel are shown in Fig. 2.5.
In principle, the unitarity relation of the form (2.44) exists in each channel since there is no

prefered Mandelstam invariant. Therefore, each channel exhibits a branch cut starting from
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Figure 2.5: The Mandelstam plane for the elastic scattering of two particles in symmetrical
representation. The physical regions for each channel are depicted in light gray.
Note that in case of the unequal masses of interacting particles, there is also a
decay region according to Eq. 2.53 and the plane structure is more complicated.

4m2. The cuts in t- and u-channels are connected to the s-channel by means of the relation
(2.34). If we fix a certain value t = t0, the first u-channel branch cut u ≥ 4m2 begins at

s = −t0 − uthr + 4m2 = −t0 , (2.54)

and goes to the minus infinity s → −∞. Analogously if we fix u = u0, the first t-channel
branch cut is given as s = (−∞,−u0]. These branch cuts in the complex s-plane are called
the left-hand cuts.

Summarizing, together with the right-hand cuts running from 4m2 to infinity inherited
directly from the unitarity, the amplitude in general also has the left-hand cuts from the
crossed channels. This knowledge of the cut structure allows to consider the general analytic
properties of the amplitude6. The principle of the maximal analiticity [46, 47] states that the
amplitude has no other singularities that thus demanded by unitarity and crossing symmetry.
We note first, that the amplitude acquires an imaginary part due to the right and left-hand
cuts. In addition, for s below the lowest threshold the amplitude is typically real. According
to the Schwarz reflection principle, which states that for some analytic function, real on a
segment of the real axis, the following relation holds

T (s∗, t, u(s∗)) = T ∗(s, t, u(s)) . (2.55)

If for some real values of s the amplitude acquires an imaginary part, i.e. Im T 6= 0, the
Schwarz reflection principle implies the appearance of the cut

T (s− iε, t, u) = T ∗(s+ iε, t, u) 6= T (s+ iε, t, u) . (2.56)

Therefore, in principle two limits of the amplitude on the first Riemann sheet exist due the
presence of the branch cut - one above it and one below and it is essential to distinguish, which

6In fact, the demand of the amplitude T (s, t, u) to be an analytical function stems from the causality require-
ment [44].
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age BE BE

Figure 2.6: The he integration contour for the Cauchy theorem; left panel: the case with right-
hand cut only, e.g. pion vector form factor, right panel: the analytic structure of
the scattering amplitude with both left- and right-hand cuts.

one givess the correct physical result. From the perturbation theory follows that the physical
amplitude is given by approaching the right-hand cut from the upper-half of the s-plane

Tphysical = lim
ε→0+

T (s+ iε) , (2.57)

which is obtained from the iε prescription of Feynman propagators (see [43] for the details).
Note, that Schwarz’ reflection principle requirements are not always satisfied. For instance,

the physical systems exist for which the left and right hand cuts overlap and therefore, there
is no region where T (s, t, u) is real7. In this case, the imaginary part in the left hand side of
the Eq. (2.43) should be replaced by the discontinuity across the branch cut

Disc T (s) = T (s+ iε)− T (s− iε)
2i . (2.58)

However, such systems are beyond the scope of this thesis and further we will concentrate on
cases, where the left and right hand cuts are well-separated.

2.2.3 Dispersion relations
The above discussion of the general properties of the S-matrix aside from its pedagogical value,
has served the purpose to build foundation for the dispersion relations. Arguments concerning
the origin of analyticity from the causality requirement can be made in various branches of
classical physics, particularly in the theory of dispersion in optics, hence the name.
To construct the dispersion relation we invoke the Cauchy’s integral formula. For the com-

plex valued funtion t(s), which has only the right-hand cut, the following integral representation
holds:

t(s) = 1
2πi

˛
γs

t(s′)
s′ − s

ds′ , (2.59)

7In addition, for the general process, there is no symmetry of the matrix element, i.e. 〈f |S |i〉 6= 〈i|S |f〉 so
that the amplitude, which gives T ∗if is related to Tfi only by analytic continuation [48].

21



Chapter 2 Theoretical background

where the integration contour γs encircles the point on the s-plane as it shown in Fig. 2.6 (left
panel). If the function is analytic everywhere, except for the branch cuts , then the contour
can be deformed in a way, that it evades the cut and goes along the big circle γc. Let us
assume, that t(s)→ 0 as |s| → ∞. Then the contribution of the integral from the curved part
of the contour γc vanishes and only the integral over the branch cut remains:

t(s) = 1
2πi

∞̂

sthr

t(s′ + iε)− t(s′ − iε)
s′ − s

ds′ = 1
π

∞̂

sthr

Disc t(s′)
s′ − s

ds′ . (2.60)

The dispersion relation (2.60) allows to reconstuct the function t(s) in the whole complex
plane, provided the discontinuity along the right-hand cut. In case of the amplitude, this
discontinuity is fixed by the unitarity relation.
If the integral over the large circle does not vanish sufficiently fast, it is essential to introduce

subtractions, meaning that the additional power of s has to be included in the denominator of
the integral. One subtraction in Eq. (2.59) leads to

t(s) = 1
π

∞̂

sthr

Disc t(s)
s′ − s

ds′ = t(sM ) + s− sM
π

∞̂

sthr

Disc t(s′)
(s′ − sM )(s′ − s)ds

′ , (2.61)

where sM is a so-called subtraction point and t(sM ) is a subtraction constant formally given
by

t(sM ) = 1
π

∞̂

sthr

t(s′)
s′ − sM

. (2.62)

Note, that this integral is only convergent if t(s) drops with some positive power for s→∞.
The additional power of s in Eq. (2.61) results in an improved convergence at |s| → ∞. This
procedure can be performed as many times as required. If the amplitude behaves as the
polynomial of power n− 1, the formula (2.61) can be generalized

t(s) =
n−1∑
i=0

1
i! t

(i)(sM )(s− sM )i + (s− sM )n

π

∞̂

sthr

Disc t(s′)
(s′ − s)(s′ − sM )nds

′ . (2.63)

The disadvantage of this method is that the (n−1) additional parameters appear, that should
be determined independently. Note also that sometimes the dispersion relation is oversub-
tracted in order to reduce the dependence on the unknown high energy region. The subtraction
constants t(s0), can be fixed from χPT or experiment and then serve as a check of how much
the sum rule is saturated.
Some physical quantities hold the same analytical properties as the function t(s) considered

above, for instance, the pion vector form factor which will be discussed in more details in
Section 2.2.5. The total and partial wave scattering amplitudes have also the left-hand cuts
so the relation (2.60) has to be modified following the same arguments

t(s) = 1
π

sLˆ

−∞

Disc t(s′)
s′ − s

ds′ + 1
π

∞̂

sthr

Disc t(s′)
s′ − s

ds′ , (2.64)

where sL denotes the starting poing of the left-hand cut. In addition, some amplitudes may
have a singularity on the real axis corresponding to the bound state, which will be discussed
in the next sections. However, the power of the approach is already obvious - it allows to
reconstruct the amplitude on the whole s-plane having only the knowledge of its analytical
structure.
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2.2.4 N/D approach
Aiming to solve the Eq. (2.64), we first note that the unitatiry condition guarantees that
the partial-wave amplitudes at infinity approach at most constants. In accordance with that,
we can make one subtraction to suppress the high energy contribution under the dispersive
integral. Thus we rewrite the dispersion relation (2.64) as

t(s) = t(sM ) + s− sM
π

sLˆ

−∞

ds′

s′ − sM
Disc t(s′)
s′ − s

+ s− sM
π

∞̂

sthr

ds′

s′ − sM
Disc t(s′)
s′ − s

, (2.65)

the subtraction constant together with the left-hand cuts contributions can be combined into
the function U(s), so that

t(s) = U(s) + s− sM
π

∞̂

sthr

ds′

s′ − sM
Disc t(s′)
s′ − s

. (2.66)

The choice of the subtraction point sM will be discussed latter. We note, that at the
subtraction point the function U(s) is equal to the scattering amplitude

t(sM ) = U(sM ) . (2.67)

The equation (2.66) can then be solved by means of the N/D ansatz [49]:

t(s) = N(s)
D(s) , (2.68)

where the contributions of the left- and right-hand cuts are separated into N(s) and D(s)
functions, respectively. The unitarity relation for the amplitude t(s) along the right-hand cut
then implies

Discr.h.ct(s) = ρ(s)|t(s)|2 = ρ(s) |N(s)|2

|D(s)|2 ,

Discr.h.ct(s) = N(s)∗Discr.h.c
( 1
D(s)

)
+ 1
D(s)Discr.h.cN(s) = −N∗(s)Discr.h.cD(s)

|D(s)|2 , (2.69)

from which follows the unitarity relations for the D-function

Discr.h.cD(s) = −ρ(s)N(s) . (2.70)

Up to Castillejo-Dalitz-Dyson ambiguity (CDD) [50], which arises from the fact that the
unitarity relation Eq. (2.47) does not uniquely determine D(s) if t(s) vanishes at some value
of sCDD

8, the once-subtracted dispersive representation for the D-function is given by

D(s) = 1− s− sM
π

∞̂

sthr

ds′

s′ − sM
N(s′)ρ(s′)
s′ − s

, (2.71)

where due to the non-uniqueness of the N/D ansatz, we have normalized the D(s) function in
a way that D(sM ) = 1 and sM < sthr. To arrive at an integral equation for the N(s) function,

8 For detailed discussion of the CDD ambiguity in the N/D context we refer the reader to [51–57].
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we can write a once subtracted dispersion relation for the function (t(s) − U(s))D(s), taking
into account that

Discr.h.c((t(s)− U(s))D(s)) = U(s)ρ(s)N(s) ,
Discl.h.c((t(s)− U(s))D(s)) = 0 . (2.72)

Therefore, the dispersion relation for this function has the following form:

(t(s)− U(s))D(s) = a+ s− sM
π

ˆ

R

ds′

s′ − sM
U(s′)ρ(s′)N(s′)

s′ − s
. (2.73)

Recalling the relation (2.67) we can fix the subtraction constant a, so that

N(s)
D(s) − U(s) = 1

D(s)
s− sM
π

∞̂

sthr

ds′

s′ − sM
U(s′)ρ(s′)N(s′)

s′ − s
,

N(s) = U(s)D(s) + s− sM
π

∞̂

sthr

ds′

s′ − sM
U(s′)ρ(s′)N(s′)

s′ − s
. (2.74)

By inserting the dispersive representation for the D-function (2.71) we finally obtain the inte-
gral equation for the N -function

N(s) = U(s) + s− sM
π

∞̂

sthr

ds′

s′ − sM
ρ(s′)N(s′)(U(s′)− U(s))

s′ − s
. (2.75)

This integral equation can be solved numerically provided the input of U(s). Knowing theN(s)
function on the right-hand cut, the D(s) function is calculated from the dispersion relation
2.71 and the partial wave amplitude is reconstructed as N(s)/D(s). In other words, if the
discontinuities across all the left-hand cuts were known, the exact solution can be obtained by
N/D method. An important property of the equation (2.75) is that the input of U(s) is only
needed above the threshold, i.e. on the right-hand cut.
We mentioned before, that apart from the left- and right-hand cuts, the amplitude may have

poles on the real axis. This poles correspond to the bound states, with the binding energy sB
that can be found by searching for the zero of the D function below threshold:

D(sB) = 0 , sB < sthr . (2.76)

From this condition follows that

1− sB − sM
π

ˆ
R

ds′

s′ − sM
N(s′)ρ(s′)
s′ − sB

= 0 . (2.77)

Hence around the bound state it holds

t(s) ' N(sB)
D′(sB)(s− sB) , g2

B = −N(sB)
D′(sB) , (2.78)

where gB denotes the bound state coupling constant.
In this case the solution obtained using the set of N/D equations with input from U(s)

satisfies the dispersive representation (2.66) combined with the pole term

t(s) = U(s) + s− sM
sB − sM

g2
B

sB − s
+ s− sM

π

∞̂

sthr

ds′

s′ − sM
Disc t(s′)
s′ − s

, (2.79)
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2.2 S-matrix formalism

Including such a pole term into the definition of U(s) does not change the solution of N/D
equations or the integral equation for the N(s) function. We can show it explicitly by intro-
ducing the function Ũ(s) in a way that

Ũ(s) = U(s) + s− sM
sB − sM

g2
B

sB − s
. (2.80)

We start with the function Ñ(s) given by (2.75) where we replaced U(s) with Ũ(s):

Ñ(s) = Ũ(s) + s− sM
π

∞̂

sthr

ds′

s′ − sM
ρ(s′)Ñ(s′)(Ũ(s′)− Ũ(s))

s′ − s
,

= U(s) + s− sM
sB − sM

g2
B

sB − s
+ s− sM

π

∞̂

sthr

ds′

s′ − sM
ρ(s′)N(s′)(U(s′)− U(s))

s′ − s

+ s− sM
π

∞̂

sthr

ds′

s′ − sM
ρ(s′)N(s′)

s′−sM
sB−sM

g2
B

sB−s′ −
s−sM
sB−sM

g2
B

sB−s
s′ − s

,

= N(s) + s− sM
sB − sM

g2
B

sB − s
D(sB) ≡ N(s) . (2.81)

The last term in the above equation is eliminated by using the bound state condition (2.76).
The unitarity relation (2.70) implies, that for the inverse of D-function the following holds

Disc
( 1
D(s)

)
= −DiscD(s)

|D(s)|2 = ρ(s)t(s)
( 1
D(s)

)∗
. (2.82)

The function, that satisfies the above unitarity relations is called Omnés function: Ω(s) [58]

Disc Ω(s) = t(s)ρ(s)Ω∗(s) . (2.83)

It is analytic everywhere and contains the information regarding the right hand cuts. Therefore,
it satisfies the dispersion relation of the form:

Ω(s) = 1 + s− sM
π

∞̂

sthr

ds′

s′ − sM
Disc Ω(s)
s′ − s

. (2.84)

The simple relation (2.83) between the Omnés and D-functions holds only in the abscence of
bound state due to the condition (2.76). If there is a bound state in the system, this relation
changes:

Ω(s) = s− sB
sM − sB

1
D(s) . (2.85)

The advantage of the Omnés approach, is that for the single-channel case, the Omnés func-
tion can be obtained in the analytic form. We first parametrize it in terms of the phase shift
δ(s):

Ω(s± iε) = |Ω(s)|e±iδ(s) , (2.86)

with the convention δ(sthr) = 0. It is then frequently computed directly from the existing
parametrizations of the phase shift data and various assumptions about its asymptotic be-
haviour at infinity.
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i
i i

Figure 2.7: The schematic representation of the pion vector form factor F Vπ

The discontinuity of the Omnés function in the form (2.86) can be found as

1
2i(Ω(s+ iε)− Ω(s− iε)) = Ω(s+ iε) sin δ(s)e−iδ(s) ,

Disc (ln Ω(s)) = δ(s) . (2.87)

Invoking the once subtracted dispersion relation for the logarithm

ln Ω(s) = 1
π

ˆ
sthr

Disc(ln Ω(s′))
s′ − s

ds′ = 1
π

ˆ
sthr

δ(s′)
s′ − s

ds′ , (2.88)

we obtain the dispersive representation for the Omnés function

Ω(s) = exp

a+ s− sM
π

∞̂

sthr

δ(s′)
s′ − s

ds′

 = exp

s− sM
π

∞̂

sthr

δ(s′)
s′ − s

ds′

 , (2.89)

with the subtraction constant a defined by the normalisation condition Ω(sM ) = 1. Such
simple analytic form of the Omnés function can be obtained only in the single-channel case.
In the coupled-channel case it is essential to solve the full system of the N/D equations.

2.2.5 Pion vector form factor
The Omnés function has numerous applications in the scattering theory. In order to illustrate
how this method works in practice, we consider a classical problem showing the usefulness of
the dispersion relation approach: the pion vector form factor F Vπ (s), which has only the right
hand cuts.
On one hand, at low energy it can be calculated from NLO χPT as [59]:

F Vπ (s) = 1 + 1
6

1
(4πfπ)2 (L6 − 1)s+ 1

6f2
π

(s− 4m2
π)J̄(s) +O(s2) ,

J̄(s) = 1
16π2

(
2 + βπ(s) ln βπ(s)− 1

βπ(s) + 1

)
, (2.90)

where L6 is the NLO low-energy constant, βπ(s) =
√

1− 4m2
π/s and mπ is a pion mass.

However, this description breaks down very fast as the energy increases.
Aiming to implement the dispersive approach, we first note that the matrix element corre-

sponding to the transition of a photon to a pair of pions (see Fig. 2.7) is defined as

〈π+(p)π−(q)| Jµ(0) |0〉 = (p− q)µF Vπ (s) , (2.91)

where Jµ is the electromagnetic current. The pion vector form factor is normalized as F Vπ (0) =
1 to the value of the pion electric charge. The factor (p − q)µ imposes the gauge invariance
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when both pions are on-shell. The analytic structure of this amplitude is simple, as there are
no crossed channel exchanges and hence, only the right-hand cuts are present (see Fig. 2.6).
The discontinuity of this process can be calculated employing the standard Cutkosky rules [60]

(p−q)µDisc F Vπ (s) = i

2

ˆ
d4l

(2π)4 (2π)δ(l2−m2
π)δ((P−l)2−m2

π)T I(s, z)(P−2l)µF Vπ (s) , (2.92)

where T I(s, z) denotes the ππ amplitude of isospin I and P = p+ q, P 2 = s. Performing the
momentum integration, we obtain

(p− q)µDisc F Vπ (s) = i

64πβπ(s)F Vπ (s)
ˆ
dΩlT

∗
I (s, z)(P − 2l)µ , (2.93)

Invoking the partial wave decomposition (2.37) and the orthogonality condition for the
Legendre polynomials

(2J + 1)
1ˆ

−1

dzPJ(z)PJ ′(z) = 2δJJ ′ , (2.94)

it can be shown that only the J = 1 partial-wave amplitude remains. Hence, up to inelastic
corrections we have

Disc F Vπ (s) = ρ(s)F Vπ (s)t1∗1 (s)θ(s− 4m2
π) , (2.95)

where appart from the spin J = 1, we also restored the isospin I = 1 index of the ππ amplitude
t1∗1 (s). In this case the Watson final state interaction theorem, that states that the phase of
the form factor below inelastic thresholds is given by the two-particle scattering phase shift,
reads as

δFVπ = δ1
1(s) . (2.96)

The form factor can then be represented using a simple polynomial function P (s) and Omnés
function Ω1

1(s)
F Vπ (s) = P (s)Ω1

1(s) . (2.97)

Perturbative QCD suggests that up to logarithmic corrections F (∞) → 1/s and assuming
δ1

1(s→∞) = π, the polynomial function simplifies to P (s) = 1. Therefore, for the pion vector
form factor we have a simple expression:

F Vπ (s) = exp

 s
π

∞̂

4m2
π

δ1
1(s)

s′(s− s′)

 , (2.98)

which requires the input for the phase shift δ1
1(s) above threshold. Fortunately, for the p-wave

ππ scattering, the phase shift has been measured experimentally [61] and therefore the form
factor can be reconstructed in a data-driven manner.
The comparison between the NLO χPT (2.90) and dispersive (2.98) results is shown in

Fig. 2.8. It is clear, that further away from the threshold region the NLO χPT becomes
inadequate, while the dispersive result is far more accurate. Naturally, the above model does
not account for the full complexity of the pion vector form factor. Apart from the leading two-
pion intermediate contribution, there are additional isospin breaking effects resulting in the
narrow structures at ω and φ masses (see, for instance, [63] and references therein), however,
this lies far beyond the pedagogical example of Omnés function application.
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Figure 2.8: Energy dependence on the p-wave ππ phase shift (left) compared to the data from
[61] and pion vector form factor (right) against the data [62]. The dashed line
denotes the NLO χPT result and the solid line the dispersive result.

2.2.6 Resonances

Aside from the construction of the dispersion relations, knowledge of the analytical structure
of the scattering amplitude is vital for studying the resonance phenomena. The resonance is
an unstable and short-living state, which cannot be directly measured by experiment and has
to be analyzed from its more long-lived decay products. For the isolated resonance the mass
distribution is usually approximated by the non-relativistic Breit-Wigner formula (see App.
5.A). While from the data perspective, the resonance appears as, for instance, some peak in
the total cross section, most of the time [64] there is a direct correspondence between this
enhancement and an underlying feature of the scattering amplitude - either a pole or zero.
The position of the corresponding feature distinguishes the nature of states. The pole which
lies on the physical Riemann sheet corresponds to a bound states, while a resonance pole is
located in the complex plane on the unphysical Riemann sheets.
The study of the resonances is often impossible without analytical continuation of the scat-

tering amplitude to the complex s-plane. Some symmetric resonances can be approximated
with simple models, while for others, it may lead to wrong conclusions (see Chapter 5). In
addition, the broad resonances like σ/f0(500) cannot be in principle described by the sim-
ple parametrization. Moreover, the situation becomes even more complicated when there are
overlapping resonances with the same quantum numbers. Therefore, we have to rely on the
general analytical properties of the amplitudes.
For the partial wave amplitude tIJ on the first Riemann sheet (I), the unitarity relation

implies

tIJ(s+ iε)− tIJ(s− iε) = 2iρ(s)tIJ(s+ iε)tIJ(s− iε) ,

tIJ(s+ iε) = tIJ(s− iε)
1− 2iρ(s)tIJ(s− iε)

,

tIJ(s+ iε) ε→0= tIIJ (s− iε) ,

where tIIJ is the amplitude on the second Riemann sheet. We obtain that the value of the
amplitude at a given point on the unphysical sheet is now functionally determined by the value
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Figure 2.9: Imaginary part of a typical single–channel scattering amplitude without (left) and
with isolated resonance (right). The first Riemann sheet is shown in black and the
analytical continuation to the second Riemann sheet is shown in red.

of the physical amplitude. From the above relations follows the condition of the resonance:

tIIJ (s) = tIJ(s)
1− 2iρ(s)tIJ(s)

, resonance: 1− 2iρ(s)tIJ(s) = 0 . (2.99)

While all resonances considered in this work are located on the second Riemann sheet, it
is instructive to mention more complicated cases with multiple relevant thresholds and hence,
unphysical Riemann sheets. Since each opening channel starts a branch cut, it is clear than
in coupled-channel system the search for the resonances must not be limited only to the sheet
closest to the physical one. In principle, the amplitude can be analytically continuated to any
number of sheets and only the sign of the imaginary part will change with each crossing. As
an example, consider the system with two relevant thesholds. It is the case for the γγ → ππ
scattering, where first threshold is ππ and the second one is KK̄. The first resonance of
interest, σ/f0(500) is located far from the KK threshold, yet it experience some effects from it
(see Chapter 3). The f0(980) resonance is located in the vicinity of the KK̄ theshold, but also
on the second Riemann sheet. A more interesting case of the γγ → πη scattering. There, the
a0(980) resonance is located on the fourth Riemann sheet [65], which results in its cusp-like
appearance on the total cross section [66].
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2.3 Anomalous magnetic moment of muon

The significant part of this thesis is dedicated to the dispersive analysis of the two-photon
fusion reactions to a pair of pseudoscalar mesons (see Chapter 4). While the two-photon
processes are a very powerful probe to reveal the composition of the hadronic resonances [67],
their significance also cannot be underestimated in the light of another enigma of particle
physics - the anomalous magnetic moment of muon. Being one of the pinnacles of modern
precision experiments, this number challenges the Standard Model itself due to the discrepancy
of around 4 standard deviations between the experimental value and the theoretical prediction.
The second-largest contribution to the theoretical uncertainty arises from the hadronic light-
by-light scattering, to which the γ∗γ∗ → ππ, πη,KK̄ . . . reactions involving the space-like
photons, serve as an essential building block. Therefore, in this section, we aim to give a
brief overview of the anomalous magnetic moment of muon problem, concentrating on the
contributions relevant to this thesis. This section is based mostly on [68–71] and further
details can be found therein.
First, we briefly remind the general notion of the magnetic moment. For the elementary

particle of mass m with intrinsic angular momentum, or, spin ~S and charge q, the magnetic
moment is given as

~µ = g
q

2m
~S , (2.100)

where g is the gyromagnetic ratio. For electron, the relativistic quantum mechanics predicts
g = 2 [72]; however, this quantity acquires additional contributions from the radiative cor-
rections in relativistic quantum field theory. The first order QED correction was calculated
by Schwinger in 1948 and increased the value of g by α/π [73], where α is the fine structure
constant. Since then, significant progress has been made not only for the electron but for other
charged leptons as well, as they all naturally exhibit the magnetic anomaly al, defined as the
deviation from the Dirac theory prediction of gl = 2:

al = gl − 2
2 , (2.101)

where l stands for electron (e), muon (µ) or τ -lepton. This quantity can be very precisely
studied by experiment from the analysis of lepton’s motion in an external magnetic field [70]
and predicted theoretically, both with extremely high precision and, therefore, serve as a test
of the Standard Model. Any discrepancy between theoretical and experimental values has been
investigated thoroughly over the last decades due to the potential indication of the so-called
new physics, or physics beyond the Standard Model, contributions.

For the anomalous magnetic moment of electron, the most recent experimental measure-
ment achieved a precision of 0.24 parts-per-billion (ppb) [74]. On the other hand, while being
equivalently precise, the theoretical prediction is sensitive to the experimentally measured fine
structure constant. Depending on the value of α used as an input, the current tension between
the experimental and theoretical ae reaches −2.5,−1.7 or +1.6σ [68]. Even though measure-
ments on the electron are the most precise among all other leptons, its anomalous magnetic
moment is rather insensitive to strong and weak interactions. The study of heavier leptons
allows testing all sectors of the Standard Model, as they contribute significantly. Moreover,
aiming to unveil the possible effects of new physics, which contribution to al is expected to be
proportional to

aNPl ∼ m2
l

Λ2 , (2.102)

where ml is a lepton mass and Λ is a scale of new physics, the anomalous magnetic moment
of τ -lepton would be an ideal candidate. However, the τ -lepton has a relatively short lifetime,
thus resulting in the poor accuracy of experiment [75].
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2.3 Anomalous magnetic moment of muon

Figure 2.10: Schematic representation of the Standard Model contributions to the anomalous
magnetic moment of muon. Left to right: one-loop QED, one-loop EW with
Z-boson exchange, leading order HVP and HLbL contributions.

Therefore, it is not surprising that the anomalous magnetic moment of the remaining lep-
ton - muon has generated significant interest from both experimental and theoretical sides.
Compared to the electron, the larger mass of muon increases the sensitivity to the possible
new physics effects and enhances the hadronic sector contribution, which we will discuss later.
At the same time, experiments involving muon currently reach the unprecedented precision of
0.46 parts-per-million (ppm), resulting in a total number [76, 77]:

aexpµ = 116 592 061(41)× 10−11 . (2.103)

Moreover, having more considerable uncertainty compared to the electron, the anomalous
magnetic moment of muon is also less sensitive to the experimental input of the fine structure
constant.
The most up-to-date Standard Model prediction gives out the following value of aµ [7]:

aSMµ = 116 591 810(43)× 10−11 . (2.104)

The resulting difference between the experimental and theoretical values aexpµ − aSMµ = (251±
59)× 1011 has a significance of 4.2σ, which further motivates both the searches for the physics
beyond the Standard Model and better understanding of already included contributions.
The Standard Model prediction of the anomalous magnetic moment of muon consists of the

sum of the following contributions:

aSMµ = aQED
µ + aEWµ + aHVPµ + aHLbLµ , (2.105)

which are schematically shown in Fig. 2.10.
The QED contribution aQED

µ , which includes all photonic and leptonic loops starting from
the Schwinger result of α/2π has already been calculated up to the five-loop order resulting
in aQED

µ = 116 584 718.931(104) × 10−11. The electroweak contribution aEWµ consist of all
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Figure 2.11: Schematic representation of the hadronic light-by-light contributions to the
anomalous magnetic moment of muon.

interactions including at least one of W , Z or Higgs bosons and due to their masses is highly
suppressed: aEWµ = 153.6(1.0) × 10−11. The theoretical uncertainties of aµ mainly originate
from the hadronic contributions, which can be divided into two constituents: hadronic vacuum
polarization (HVP) and hadronic light-by-light (HLbL) processes.

At present, the HVP contribution dominates the overall theoretical uncertainty with the
value aHVPµ = 6845(40)×10−11, which includes the results of the data-driven approaches based
on the e+e− → hadrons cross section data. This data serves as an input into the dispersion
relation. In addition, lattice QCD has made significant progress towards the estimation of
the HVP contribution, however, until recently the uncertainties of most analyses were still
comparatively large [7]. In 2021, a first lattice result by BMW collaboration [78] with a sub-
percent uncertainty appeared, providing estimation for the leading order HVP contribution,
which favours the experimentally measured value of aµ over the results based on the dispersive
predictions.
Unlike the HVP contribution, for quite some time, the existing calculations of the HLbL

part were based on the hadronic models rather than being determined from data [71]. Since
HLbL gives the second largest contribution to overall theoretical uncertainty, it was crucial to
construct a data-driven model-independent approach to reduce it. The current phenomeno-
logical approach to HLbL scattering is mainly based on the dispersion relations and results in
the following contribution [7]:

aHLbLµ = 92(19)× 10−11 . (2.106)
The HLbL scattering is schematically shown in Fig. 2.11. It describes the process in which

an external photon interacts with three virtual photons via hadronic intermediate states.
These off-shell photons are then coupled to the muon. There is a clear hierarchy among
the different intermediate state contributions based on their mass. At low energies, there is
an exchange of light pseudoscalar mesons π0, η, η′. Then there is a contribution from heav-
ier scalar resonances like f0(980), a0(980), axial-vector mesons a1(1260), f1(1285) and tensor
f2(1270), a2(1320) above 1 GeV. In addition, there are loops with charged pions and kaons,
three pion and other multi-hadron intermediate states. Furthermore, the question of the HLbL
behavior at the asymptotically large values of momenta, or short-distance constraints (SDCs),
should be adressed as well. The contributions of the various intermediate states that have
been estimated and put together here do not satisfy the SDCs, which is still a subject for a
future work [6, 7].
In a similar manner, it is possible to include further intermediate states like πη and KK̄

up to a0(980) region, which requires proper dispersive treatment of πη,KK̄ coupled-channel
system.
The light pseudoscalar mesons π0, η, η′ contributions have been evaluated within the disper-

sive approach with uncertainty originating from the input of the transition form factors (see for
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instance [79]). The two-pion intermediate state in the f0(500) region was also accounted for in
the model-independent way [80]. This analysis was recently extended to the coupled-channel
ππ,KK̄ scenario [81] using the input from [2] described in Chapter 3 and compared to the
narrow width approximation used before for the f0(980).
Finally, it is important to list a few possible new physics explanations of the current discrep-

ancy between experimental and theoretical values of aµ. First, one of the natural explanations
involves the supersymmetric particle loops. However, there is yet no direct evidence in sup-
port of the supersymmetry interpretation. Another scenario, currently disfavored, involves a
dark photon, a hypothetical vector boson from the dark matter sector. For the comprehen-
sive overview of the beyond the Standard Model contributions to muon’s anomalous magnetic
moment, we refer to [82].
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Chapter 3

Data-driven dispersive analysis of the ππ and πK scattering

The ideas and methods described in the previous chapter have found numerous applications
in different strongly-interacting physics processes. The hadron-hadron interaction is a prime
example of such reactions. This Chapter will concentrate on describing the interaction of light
pseudoscalar mesons - the pion and the kaon, namely ππ → ππ and πK → πK scattering.
The importance of these processes can hardly be overestimated since they, in many instances,
appear as a part of the final state interaction of many reactions. Until recently, σ/f0(500),
f0(980), and κ/K∗(700) resonances appearing in the spectrum of these reactions were seen
as enigmatic due to their properties dissimilar to the expectations for the standard qq̄ states.
Thus they are serving as the candidates for the lightest exotic hadrons. Following an extensive
theoretical effort over the last decades, the various dispersive analyses have established the
pole positions corresponding to these resonances and described the ππ and πK amplitudes
with utmost precision.
However, the power of these analyses partially results from the inclusion of all possible data

input. Thus being meticulous in the description of the ππ → ππ and πK → πK scattering
for which the data is comparatively abundant, these analyses can not be straightforwardly
extended to the description of processes that are not so well understood from an experimental
point of view. In addition, with the increasing computational power, lattice QCD has become
a source of an entirely new type of data, requiring to extend the scope to values of the pion
mass larger than its value in nature. This valuable input is, however, still analysed within the
K-matrix approach, which, while being easy to implement, in many ways, is far from ideal
and sometimes even problematic. Thus, both the importance of ππ → ππ and πK → πK
scattering per se and the need to extend the existing theoretical developments to the new
types of data and less well-studied processes calls for a data-driven approach, which fully
accounts for the unitarity and analyticity requirements. This partial-wave dispersive approach
and its successful application to the σ/f0(500), f0(980) and κ/K∗(700) resonances will be the
main focus of this Chapter.
The Chapter is based on [2, 5] and it is organised as follows. In the next section, we will

briefly outline the importance of studying the ππ → ππ and πK → πK processes and related
resonances. In Sec. 3.2, we will focus on the formalism that we adopt. We will deepen the
ideas of the N/D method, particularly for the coupled-channel system and the left-hand cut
input required to solve the dispersion relation. Also, we will briefly comment on the input from
Chiral Perturbation Theory, which, although unable to describe the considered processes in
the resonance region, still provides important low-energy constraints that should be taken into
account. In Secs. 3.3 and 3.4, we will then present the numerical results. We will start with
I = 0, ππ single-channel analysis of both experimental and lattice data, which is followed by
the coupled-channel {ππ,KK̄} analysis of the experimental data. Finally, in Sec. 3.4, we will
focus on the πK, I = 1/2 scattering where κ/K∗(700)resonance reside. The analysis will be
performed for both experimental and lattice data. At the end of Secs. 3.3 and 3.4 we will also
show the results for the non-resonant channels. The Chapter ends with a summary of our main
results and a discussion of their importance for the following chapters and future applications.
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Figure 3.1: σ/f0(500) pole positions from various analyses included in PDG (2021) [83] list-
ings. Blue points denote the results of the Breit-Wigner analyses, orange points
- the most accurate dispersive predictions from [84–87]. The gray shaded area
covers the PDG estimate, while the darker area shows the conservative dispersive
estimate. Finally, the red point shows the result of the coupled-channel analysis of
the {ππ,KK̄} system presented in the present Chapter.

In App. 3.A we will provide the kinematical conventions for the 2→ 2 process and in App. 3.B
we introduce the bootstrap method, extensively used for uncertainty calculation in the present
and the following chapters.

3.1 Introduction

Understanding the strong interactions in the low-energy regime was always strongly connected
to investigating the hadron-hadron reactions. In particular, the meson-meson scattering has
long served as a tool to test both the low-energy and precision frontier of strong physics. In
addition, there is a renewed interest in the hadron spectroscopy, motivated by recent discoveries
of unexpected exotic hadron resonances [26, 92–94]. Currently, LHCb, BESIII, and COMPASS
collected data with unprecedented statistics, Belle-II and GlueX started to operate, and more
facilities are planned in the near future, such as PANDA and EIC. Besides, lattice QCD has
been applied to a broad range of hadron processes and recently was able to calculate the lowest
excitation spectrum with the masses of the light quarks near their physical values [95, 96].
Among others, the scalar mesons, especially the ones below 1 GeV are of great interest.

First, due to the violation of the mass hierarchy it is implausible that they could be a pure
conventional qq̄ states. In addition, there are some clear indications of the non-ordinary nature
of such mesons. The σ/f0(500) and κ/K∗(700) mesons, appearing as resonances in ππ → ππ
and πK → πK processes, respectively, serve as a prime example. As a matter of course,
any claims regarding the non-ordinary or exotic nature invoke some controversies surrounding
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Figure 3.2: f0(980) pole positions included in the PDG (2021) [83] listings. The gray band
covers the PDG estimate, which includes also other analyses on mass and width.
Orange points show the most accurate dispersive predictions from [86–88]. The
red point shows the result of the coupled-channel analysis of the {ππ,KK̄} system
presented in the present Chapter.

these mesons today.
The σ/f0(500) resonance enjoyed its peculiar position for quite a long time. For a com-

prehensive review on the history of combined theoretical and experimental effort in searching
σ/f0(500) we refer to [97] and also to Fig. 3.1, where all the relevant findings from PDG
listings are included, together with the results of the work presented in this Chapter. At the
same time, there are considerably fewer results for the κ/K∗(700) (see Fig. 3.3). As for the
f0(980) resonance, there is only a handful of studies available (see Fig. 3.2). Rather than
directly targeting the questions of their nature, in this Chapter we mainly aim to study the
properties such as pole positions and couplings.
To correctly identify resonance parameters one has to search for poles in the complex plane.

This is particularly important when there is an interplay between several inelastic channels or
when the pole is lying very deep in the complex plane. In these cases, the structure of the
resonance is quite different from a typical Breit-Wigner behaviour. In order to determine the
pole position of the resonance, one has to analytically continue the amplitude to the unphys-
ical Riemann sheets. At this stage, the right theoretical framework has to be applied. The
latter should satisfy the main principles of the S-matrix theory, namely unitarity, analyticity,
and crossing symmetry. These constraints were successfully incorporated in the set of Roy or
Roy-Steiner equations [98, 99]. In a practical application, however, the rigorous implementa-
tion of these equations is almost impossible, since it requires experimental knowledge of all
partial waves in the direct channel and all channels related by crossing. Therefore, the current
precision studies of ππ [84–86, 97, 100–103] and πK [89, 91, 104, 105] scattering are based on
a finite truncation, which in turn limits the results to a given kinematic region, and require a
large experimental data basis. Furthermore, applying Roy-like equations for coupled-channel
cases is quite complicated and has not been achieved in the literature so far. Because of the
above-mentioned difficulties, in the experimental analyses, it is a common practice to ignore
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Figure 3.3: κ/K∗(700) pole positions from various analyses included in PDG (2021) [83] list-
ings. Blue points denote the results of the Breit-Wigner analyses, orange points -
the most accurate dispersive predictions from [89–91]. The gray shaded area covers
the PDG estimate. Finally, the red point shows the result of the analysis of the
πK → πK system presented in the present Chapter.

the S-matrix constraints and rely on simple parameterizations. The most used ones are a
superposition of Breit-Wigner resonances or the K-matrix approach. The latter implements
unitarity, but ignores the existence of the left-hand cut and often leads to spurious poles in the
complex plane. A good alternative to the K-matrix approach and a complementary method
to Roy analysis is the so-called N/D technique [49], which is based on the partial-wave dis-
persion relations. In this method, the dominant constraints of resonance scattering, such as
unitarity and analyticity are implemented exactly. Since the time it was introduced by Chew
and Mandelstam [49], the N/D method has been extensively studied for different processes
[51–54, 106–110]. The required input to solve the N/D equation are the discontinuities along
the left-hand cut, which are typically approximated one way or another using chiral perturba-
tion theory (χPT). In our approach we extend the ideas of [107–110], where the left-hand cut
contributions were approximated using an expansion in powers of a suitably chosen conformal
variable. In contrast to [53, 54], however, we follow here a data-driven approach and adjust
the unknown coefficients in the expansion scheme to empirical data directly. In this way, the
model dependence is avoided, and the method can also be applied to the reactions which do
not include Goldstone bosons, like for instance the J/ψJ/ψ scattering [92].
In this Chapter, we apply the N/D method to both resonant and non-resonant ππ and πK

scattering in the S-wave. There are three main reasons for this choice.
First, the system of two pions (or pion and kaon) shows up very often as a part of the

final state of many hadronic interactions and therefore serves as input in various theoretical
or experimental data analyses, like e.g. η → 3π [111–115] , η′ → ππη [116–118], γγ → ππ
[119–121], e+e− → J/ψ(ψ′)ππ [122–124] (see also Chapter 4) or D → Kππ [125, 126].
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Second, even though the ππ → ππ (and to a lesser extent πK → πK and ππ → KK̄)
amplitudes are known very well from the Roy (Roy-Steiner) analyses [84–86, 89–91, 100–105,
127], in the practical dispersive applications the final state interactions (FSI) are implemented
with the help of the so-called Omnès function, which does not have left-hand cuts. Indeed, the
left-hand cuts are different for each production/decay mechanism, while the unitarity makes
a connection between the production/decay and the scattering amplitudes only on the right-
hand cut. In the N/D ansatz, the Omnès functions come out naturally, as the inverse of the
D-functions.
Third, recently, it has become possible to calculate ππ and πK scattering using lattice QCD

with almost physical masses [40, 128–135]. Since, both the σ/f0(500) and κ/K∗0 (700) states
lie deep in the complex plane, the reliable extraction of their properties requires the use of the
formalism that goes beyond the simple K-matrix parametrization and incorporates in addition
the analyticity constraint.

3.2 Dispersive formalism

In this section, we further develop the formalism outlined in the Sec. 2.2. While the main
ideas of unitarity and analyticity encoded in the dispersion relation stand the same, their
implementation in the case of the coupled-channel systems requires an additional discussion.
The N/D equations discussed in Sec. 2.2.4 transform into a (n×n) system of equations, with
each element requiring a proper left-hand cut input. Typically it is not always the case that the
required data is available in each channel, and therefore it is necessary to resort to other types
of constraints to describe the dynamics of the partial-wave amplitudes. In addition, when an
integral equation comes into play, the purely technical question of the fitting procedure and
error analysis arises naturally. This question appears to be unavoidable considering that the
study of resonances requires an analytical continuation of the scattering amplitude into the
complex s-plane and the complications related to it.

This section is organized as follows. We first present the extension of the N/D system to
the coupled-channel case. In Sec. 3.2.2, we discuss the importance of the left-hand cuts and
how they can be accounted for elegantly by employing the expansion in the conformal mapping
variable. The coefficients of this expansion will serve as the parameters of our model, and hence,
we will answer the question of how to determine them in a data-driven fashion while respecting
the constraints dictated by chiral perturbation theory in the low energy region. Finally, we
will focus on the fitting strategy and the nuances of the error analysis by implementing the
bootstrap approach. We will also address the systematic uncertainties arising mainly from
the parametrization of left-hand cuts and their effect on the analytical continuation of the
scattering amplitude into the complex s-plane.

3.2.1 Dispersion relations for the ππ and πK systems
The main object of our study is the s-channel partial-wave amplitude tab , which for 2 → 2
process is given by the following decomposition:

Tab(s, t) = Nab
∞∑
J=0

(2J + 1) t(J)
ab (s)PJ(cos θ) , (3.1)

where θ is the c.m. scattering angle and ab are the coupled-channel indices with a and b
standing for the initial and final state, respectively. For the following discussion, we focus
only on the S-wave (J = 0) and therefore will suppress the label (J). As it was mentioned
in Sec. 2.2.4, the different normalization factors (Nππππ = 2, NππKK̄ =

√
2 and NKK̄KK̄ =
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NπKπK = 1) are needed to ensure that the unitarity condition for identical and non-identical
two-particle states are the same and can be written in the matrix form as

Disc tab(s) ≡
1
2i (tab(s+ iε)− tab(s− iε))

=
∑
c

tac(s) ρc(s) t∗cb(s) , (3.2)

where the sum goes over all intermediate states. The phase space factor ρc(s) in Eq. (3.2) is
given by

ρc(s) = 1
8π

pc(s)√
s
θ(s− sth) , (3.3)

with pc(s) and sth being the center-of-mass three momentum and threshold of the correspond-
ing two-meson system. Within the maximal analyticity assumption [46, 47], the partial-wave
amplitudes satisfy the dispersive representation

tab(s) =
ˆ sL

−∞

ds′

π

Disc tab(s′)
s′ − s

+
ˆ ∞
sth

ds′

π

Disc tab(s′)
s′ − s

, (3.4)

where sL is the position of the closest left-hand cut singularity and the discontinuity along
the right-hand cut is given by (3.2). For unequal masses, as in πK scattering, the left-hand
singularities of the partial-wave amplitude do not all lie on the real axis and the integration
in the first term in Eq. (3.4) goes partly along the circle. We note, that the separation into
left and right-hand cuts given in (3.4) is only possible for the systems where no anomalous
thresholds are present [136, 137].
Again, we can subtract the dispersion relation given above in accordance with the unitarity

condition
tab(s) = Uab(s) + s− sM

π

ˆ ∞
sth

ds′

s′ − sM
Disc tab(s′)
s′ − s

, (3.5)

where we combined the subtraction constant together with the left-hand cut contributions into
the function Uab(s). The choice of the subtraction point sM will be discussed later. Just as
in the single-channel case (see Sec. 2.2.4) the solution to (3.5) can be written using the N/D
ansatz

tab(s) =
∑
c

D−1
ac (s)Ncb(s) , (3.6)

which leads to a system of linear integral equations in a matrix form [138, 139]

Nab(s) = Uab(s) + s− sM
π

∑
c

ˆ ∞
sth

ds′

s′ − sM
Nac(s′) ρc(s′) (Ucb(s′)− Ucb(s))

s′ − s
.

Dab(s) = δab −
s− sM
π

ˆ ∞
sth

ds′

s′ − sM
Nab(s′)ρb(s′)

s′ − s
. (3.7)

The integral equation for Nab(s) can be solved numerically given the input of Uab(s). Know-
ing the Nab(s) function on the right-hand cut, the Dab(s) function is calculated by (3.7) and
finally the partial-wave amplitude is produced with Eq. (3.6). In other words, if the discon-
tinuities across all the left-hand cuts were known1 the exact solution can be obtained by the
N/D method. An important property of Eq. (3.7) is that the input of U(s) is only needed on
the right-hand cut. In the case of many channels, both the diagonal and off-diagonal t-matrix

1in that case the subtraction constant is probably unnecessary to introduce.
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elements have a right-hand cut starting at the lowest threshold sth. However, only the input of
the off-diagonal Uab(s) is required outside the physical region, while in order to solve (3.7), the
input of the diagonal Uaa(s) is needed in the physical region due to the phase space factor. It
has a direct relevance for the {ππ,KK̄} case, where in the KK̄ → KK̄ channel the overlap of
left- and right-hand cuts happens, but only in the non-physical region, 4m2

π < s < 4(m2
K−m2

π),
and therefore does not require any modifications of the dispersion integrals. We also empha-
size that by means of Eq. (3.6), the scattering amplitude can be rigorously continued into the
complex plane, where one can determine pole parameters of the resonances. In our convention
the scattering amplitude in the vicinity of the poles on the unphysical Riemann sheets (or
physical Riemann sheet in the case of the bound state) is given by,

Nab tab(s) '
gpa gpb
sp − s

, (3.8)

where the normalization factor Nab comes from Eq. (3.1) and gpi denotes the coupling of the
pole at s = sp to the channel i = a, b.
We wish to comment on the case when there is a bound state in the system, since it happens

for the relatively large unphysical pion masses. In the coupled-channel case to find the binding
energy sB, one searches for a zero of the determinant of the Dab matrix for energies below
threshold,

det(Dab(sB)) = 0, sB < sth . (3.9)

In this case, the solution obtained using the set of N/D equations (3.6) with input from (3.16)
satisfies the dispersion relation (3.5) combined with the bound state term,

tab(s) = Uab(s) + s− sM
sB − sM

gBa gBb
sB − s

+ s− sM
π

ˆ ∞
sth

ds′

s′ − sM
Disc tab(s′)
s′ − s

. (3.10)

At the same time, it is straightforward to show that including such a bound state term into
the definition of Uab(s) does not change the solution of (3.6) or the integral equation (3.7),
provided that the residues gBa gBb are dialed properly using the det(Dab(sB)) = 0 condition.
The derivation for the single-channel case is given in Sec. 2.2.4.
The unitarity connects the partial-wave amplitudes in production (or decay) and scattering

processes. Therefore, the reactions like γp → ππp, γγ → ππ, J/ψ → ππγ, η → 3π, etc.
are very sensitive to the FSI. In a dispersive formalism, FSI are typically implemented with
the help of the so-called Omnès function [58, 140], Ωab(s), that fulfills the following unitarity
relation on the right-hand cut

DiscΩab(s) =
∑
c

t∗ac(s) ρc(s) Ωcb(s) , (3.11)

and analytic everywhere else in the complex plane, i.e. it satisfies a once-subtracted dispersion
relation

Ωab(s) = δab + s− sM
π

ˆ ∞
sth

ds′

s′ − sM
DiscΩab(s′)

s′ − s
. (3.12)

Therefore, for the case of no bound states or CDD poles, the Dab(s) function obtained in (3.7)
can be easily related to the Omnès function as

Ωab(s) = D−1
ab (s) . (3.13)
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As we showed in Sec. 2.2.4, for the single-channel case, the Omnès function can be expressed
in the analytic form in terms of the phase shift δ(s),

Ω(s) = D−1(s) = exp
(
s− sM
π

ˆ ∞
sth

ds′

s′ − sM
δ(s′)
s′ − s

)
, (3.14)

with the convention that δ(sth) = 0. Therefore, in single-channel approximations, the Omnès
function is frequently computed directly from the existing parametrizations of the phase-shift
data and various assumptions about its asymptotic behavior at infinity. The latter constrains
the asymptotic behavior of the Omnès function: for δ(∞) → απ one obtains Ω(∞) → 1/sα.
In our approach, the phase shift curves are obtained from fits to the data using the N/D
method. The high-energy asymptotic of the phase shift is coming from the approximation
of the left-hand cut by conformal expansion and subsequent solution of the once-subtracted
dispersion relation. As a result, in this scheme, the obtained Omnès function (or its inverse) is
always asymptotically bounded, if there is no bound state or CDD pole in the system. When
there is a bound state in the system, the relation between the Omnès function and the D(s)
function given in Eq. (3.14) changes,

Ω(s) =
(
s− sB
sM − sB

)
D−1(s) = exp

(
s− sM
π

ˆ ∞
sth

ds′

s′ − sM
δ(s′)
s′ − s

)
, (3.15)

where the extra factor (s−sB)/(sM−sB) removes the zero ofD(s). Due to this extra factor, the
obtained Omnès function grows linearly at infinity and satisfies the twice-subtracted version of
the dispersion relation given in Eq. (3.12). This can also be seen from the Levinson’s theorem,
which relates the contribution from the number of bound states nB to the phase shift at infinity
as δ(∞)→ −nB π (using the convention δ(sth) = 0).

For the multi-channel case, the Muskhelishvili-Omnès equations (3.12) do not have analytic
solutions [141, 142], and one needs to find a numerical solution, by employing for instance a
Gauss-Legendre procedure [142]. In order to achieve that, however, one needs to know the off-
diagonal scattering amplitude in the unphysical region and again make the assumption about
the high-energy asymptotics. On the other side, with the N/D method, both the scattering
amplitude and the Omnès function are obtained simultaneously from the fit to the available
data. Additional information about the off-diagonal scattering amplitude in the unphysical
region can be used as a constraint and not as a necessary requirement to obtain the Omnès
matrix. Also, as discussed above, in most of the cases the obtained Omnès function (or
its inverse) is asymptotically bounded. Therefore, this approach is useful in many practical
applications.
As a check of our numerical calculations, we verified that the Omnès functions obtained

using Eqs. (3.7) and (3.13) satisfy Eq. (3.12). All results presented below have been checked
to fulfill the partial-wave dispersion relation given in Eq. (3.5) or Eq. (3.10) in the case when
there is a physical bound state in the system. In addition we checked that there are no spurious
poles in the considered cases. For the non-resonant channels (I = 2, I = 3/2) we found out
that sometimes D(s) has an unphysical zero far away from the threshold on the first Riemann
sheet. To avoid this spurious bound state, we will impose in the fit the fulfilment of p.w.
dispersion relation which does not contain the bound state.

3.2.2 Left-hand cuts
With the construction of the N/D system a natural question arises on what input is required
to solve the integral equation for the N -function and consequently reconstruct the D-function
and the scattering amplitude. In fact, the D-function and in cases of no bound state, Omnés
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Figure 3.4: Left-hand cut singularities (solid black curves) in the complex s-plane for the ππ →
ππ (a) and πK → πK (b) scattering. In the plot we schematically show the position
of the closest left-hand cut singularity (sL), Adler zero (sA), threshold (sth) and the
expansion point (sE). Dashed lines determine the specific form of the conformal
map and subsequently the domain of convergence of the conformal expansion in
Eq. (3.16).

function is universal for every reaction involving the same final states. However, each reaction
differs by its left-hand cuts, the proper determination or parametrization of which are the core
problem for the whole partial-wave dispersion analysis. In a general scattering problem, little
is known about the left-hand cuts, except their analytic structure in the complex plane. The
progress has been made in [107–110], by considering an analytic continuation of Uab(s) to the
physical region, which is needed as input to Eq. (3.7), by means of an expansion in a suitably
contracted conformal mapping variable ξ(s),

U(s) =
∞∑
n=0

Cn ξ
n(s) , (3.16)

which is chosen such that it maps the left-hand cut plane onto the unit circle [143]. The form
of ξ(s) depends on the cut structure of the reaction (i.e. {ab}) and specified by the position
of the closest left-hand cut branching point (sL) and an expansion point (sE) around which
the series is expanded, ξ(sE) = 0. Since for the {ππ,KK̄} system all the left-hand cuts lie on
the real axis, −∞ < s < sL, one can use a simple function

ξ(s) =
√
s− sL −

√
sE − sL√

s− sL +
√
sE − sL

, (3.17)

where sL(ππ → ππ) = sL(ππ → KK̄) = 0 and sL(KK̄ → KK̄) = 4 (m2
K −m2

π). For the case
of πK → πK, the left-hand cut structure is a bit more complicated (see Fig. 3.4). In addition
to the left-hand cut lying on the real axis −∞ < s < (mK −mπ)2, there is a circular cut at
|s| = m2

K −m2
π. The conformal map that meets these requirements is defined as

ξ(s) = −
(
√
s−√sE)(

√
s
√
sE + sL)

(
√
s+√sE)(

√
s
√
sE − sL) , (3.18)

where sL(πK → πK) = m2
K −m2

π. The behavior of ξ(s) is shown in Fig. 3.5, where we used
the values of sE , discussed in Sec. 3.2.4. We note that, given the forms of ξ(s) in Eqs. (3.17)
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Figure 3.5: The behavior of the conformal variable ξ(s) for the ππ → ππ (left panel) and
πK → πK (right panel) scattering from Eqs. (3.17) and (3.18), respectively.

and (3.18), the series (3.16) truncated at any finite order is bounded asymptotically. This is
consistent with the assigned asymptotic behavior of U(s) in the once-subtracted dispersion
relation (3.5).
In principle the coefficients of the conformal expansion (3.16) can be determined in several

ways, for instance, by matching the function to the χPT results. However, this approach
leads to the additional model dependency which we aim to avoid. Instead, we determine the
unknown Cn in Eq. (3.16) and the optimal positions of sE directly from the data and use χPT
results only as constraints for the scattering lengths, slope parameters, and Adler zero values,
which will be discussed in the next section.
With the given form of the conformal expansion a natural question arises, of how many

terms are sufficient for the description of each particular process. The first answer comes from
the data analysis consideration. Once the χ2 becomes sufficiently close to 1, there is no need
to introduce any additional parameters. However, another argument stems from the conformal
expansion itself, by taking into account how fast it converges. For the problems considered
here, we find that there is no need to consider more than 4 terms in the expansion.

3.2.3 χPT input

For reactions involving Goldstone bosons, in principle, χPT allows to calculate the amplitude
over a finite portion of the closest left-hand cut and can be used to estimate Cn in (3.16) as it
has been done for other processes in [53, 54, 107–110]. However, it is not clear at which point
χPT calculated to a given order still represents a good approximation. In addition to that,
in order to merge the conformal expansion with the chiral expansion, the expansion point sE
should lie within the region where χPT can be computed safely. For instance, for the elastic
ππ → ππ scattering the natural choice would be to identify sE with the two-pion threshold.
However in that case, the last data point, which can be described with the elastic unitarity,
corresponds to ξ(s1/2

max = 0.7GeV) ' 0.45. On the other side, the faster convergence of the
sum in Eq. (3.16) can be achieved for the choice of sE in between the threshold and smax, i.e.
in the regions where χPT is at the limit of its applicability. Besides, for the coupled-channel
case, one needs to rely on SU(3) χPT, which converges slower than the SU(2) version of it.
In order to be consistent with χPT in the threshold region, we employ the effective range
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3.2 Dispersive formalism

expansion
2√
s
Re

(
t(s)
16π

)
' a+ b p2(s) + ... , (3.19)

where a is the scattering length and b is the slope parameter. For the ππ and πK scattering
both a and b have been calculated at NNLO in χPT [84, 144]. As expected, for the πK
scattering, the chiral convergence is a bit worse than for the ππ scattering [144], however the
results for the scattering length and slope parameter do not show large discrepancies with
the Roy-Steiner results [89, 91, 104, 105]. As for the Adler zero, we have checked that its
position does not acquire large higher order corrections, and for simplicity one can take the
LO result. In all numerical fits, however, we take the NLO result [59, 145, 146] as a central
value, with the uncertainties from the omitted higher orders as |NLO − LO|, which should
provide a conservative estimate. The NLO values for the low-energy constants are taken from
[147]. For the case of non-physical pion masses with mπ = 236 MeV and mπ = 239 MeV, we
only use Adler zero positions as a constraint, while for mπ = 391 MeV, where σ/f0(500) shows
up as a bound state, no constraints are imposed.
We note that the latter brings a stringent constraint on the scattering amplitude, since

for both ππ and πK scattering the Adler zero is located very close to the left-hand cut (see
Fig. 3.4), and cannot be determined precisely from the fit to the data. However, once the
Adler zero is imposed as a constraint, it improves drastically the convergence of (3.16) in the
threshold region.

3.2.4 The choice of sM and sE

Before entering the discussion of the results of the fits, we would like to briefly comment on
the freedom of the choice of the subtraction point sM in the dispersion relation (3.4). The
common choice in the application of the Omnès functions is sM = 0, due to its relation to
scalar form factors and matching to χPT. On the other side, one can fix sM at the threshold,
sM = sth, and then relate

∑nmax
n=0 Cn ξ

n(sth) to the scattering length. Similarly, one can fix
sM at the Adler zero2, sM = sA, which would imply that

∑nmax
n=0 Cn ξ

n(sA) = 0. The last
two choices can therefore reduce the number of fitted parameters by one. Eventually different
choices of sM redefine the fitted coefficients Cn in the Uab(s) function and the results of the
N/D method are immune to that (after computing the D-function, it can be re-normalized to
any other point below threshold). Since not in all the fits we impose threshold or Adler zero
constraints, we decided to make the choice

sM = 0 , (3.20)

in all the cases for simplicity. As for the expansion point sE , we choose it in the middle between
the threshold and the energy of the last data point that is fitted,

√
sE = 1

2 (√sth +
√
smax) . (3.21)

Note, that in the coupled channel case, sth in Eq. (3.21) denotes the physical threshold for the
diagonal terms Uab(s), while for the off-diagonal terms it is the lowest threshold. We emphasize,
that this particular choice guarantees a fast convergence of the conformal expansion (3.16) in
the region where the scattering amplitude is fitted to the data and also where it is needed as
input to Eq. (3.7).

2On the technical level, it may look that Adler zero could be accounted for as a CDD pole in the D-function
[148, 149]. However, every CDD pole physically corresponds to the genuine QCD state, while the existence
of the Adler zero is the property of the chiral symmetry. Therefore we encode it as a zero in the N -function
and not as a pole in the D-function.
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Chapter 3 Data-driven dispersive analysis of the ππ and πK scattering

3.2.5 Fitting procedure and error analysis
The free parameters in our approach are the conformal coefficients in (3.16), which determine
the form of the left-hand cut contribution Uab(s) in Eq. (3.5). Apart from the standard
χ2 criteria, the number of parameters is chosen in a way to ensure that the series (3.16)
converges. In several cases, however, we will be fitting Roy (Roy-Steiner) solutions, which are
smooth functions and their errors are fully correlated from one point to another. In these
cases, χ2/d.o.f loses its statistical meaning and can be < 1. In our fits, this scenario will
simply indicate that we obtained the N/D solution which is consistent with the Roy (Roy
Steiner) solutions, and we just make sure that the obtained uncertainty is consistent with that
from Roy analyses.
Unlike the physical region, where the reaction models are typically fitted to data, the pole

extraction may carry significant systematic uncertainties, especially if the pole lies deep in the
complex plane [150, 151]. To assess these, we vary the parameter sE around its central value
fixed to (3.21). We allow for a conservative variation by 25% of the difference √smax −

√
sth,

in order to have a compromise between √sth and √smax. Note, that the extreme choice of
50% would correspond to sE = sth or sE = smax, which we clearly want to avoid, since it
would bias the fit towards one or the other region. As it will be seen later, the σ/f0(500) and
κ/K∗0 (700) poles acquire noticeable systematic errors which are of the size of statistical ones.
However, even if we go to the extreme case of 50%, the statistical error will grow only by a
factor of two, compared to the case of 25%. This is different from the K-matrix fits (see for
instance [150]), which cannot extract accurately the pole parameters. We remind, that in our
approach, as opposed to K-matrix models, the obtained amplitudes satisfy p.w. dispersion
relations, which is an additional constraint on the amplitude both on the real axis and in the
complex plane.
As for the statistical uncertainty, our approach requires solving an integral equation and

searches for the pole in the complex s-plane. These facts make the traditional error analysis via
uncertainty propagation inconvenient or even not-applicable. Therefore, we opt for the Monte-
Carlo based technique namely parametric bootstrap to properly dial the statistical uncertainties
in our analysis. Its main principle relies on the idea of generating many artificial measurements,
using the assumed probabilty distribution of underlying data (or pseudo-data), which in turns
allows to extract the uncertainties of the derived quantities like pole positions and couplings in
a straightforward manner by applying the statistical criteria. The details about this method
as well as the simple application example can be found in App. 3.B.
In the following results, the first error will indicate the statistical uncertainty (i.e. reflect

the errors of the data and χPT input), while the second one will be associated with a variation
of sE . We admit that sE variation only accounts for the dominant part of the systematic
uncertainty and therefore only provides a lower bound on the systematic error.

3.3 Results for the ππ → ππ scattering

In this section we present the results of data-driven analysis of the S-wave ππ → ππ reaction
using the partial-wave dispersion relation approach. The I = 0 channel accommodates two
resonances: σ/f0(500) and f0(980). The data in this channel is relatively abundant [152–158],
however, some datasets are conflicting and have to be selected carefully [159]. Moreover, most
of the data has a large systematic uncertainty which may hinder the precision of the theoretical
analyses. Only recently the Roy-like analyses has reached an unprecedented precision in the
determination of the σ resonance with an input including the most recent and reliable data
on Kl4 decays [155]. While the f0(980) resonance has also been studied thoroughly within
this framework, no proper coupled channel analysis, accounting for the intermediate KK̄
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3.3 Results for the ππ → ππ scattering

√
sE , MeV C0 C1 C2 C3 χ2/d.o.f

ππ → ππ, I = 0 single-channel

Exp. 740 9.5(5) 38.0(1.4) 55.2(1.2) 31.1(2.9) 2.7
Roy 15.9(7) 51.8(1.7) 58.2(1.4) 24.4(3.0) 0.5

Table 3.1: Fit parameters entering Eq. (3.16) which were adjusted to reproduce available ex-
perimental data or Roy-like results for ππ → ππ , I = 0 scattering in the single
channel approach.

√
sA, MeV mπa m3

πb
√
sA

NLO, MeV mπa
NNLO m3

πb
NNLO

ππ → ππ, I = 0 single-channel

Exp. 90(9) 0.219(5) 0.275(6) 90(9) 0.220(5) [84] 0.276(6) [84]Roy 90(9) 0.220(5) 0.276(6)

Table 3.2: Fit results for the threshold parameters a and b defined in Eq. (3.19) and the
Adler zeros sA for ππ → ππ , I = 0 scattering in the single channel approach (left)
compared to χPT values (right).

interaction has been implemented so far.
This section is organized as following. First, we concentrate on the single-channel ππ scat-

tering. We compare the outcomes by fitting the available experimental data directly and by
using the Roy-like results as a pseudo-data in Sec. 3.3.1. Then in Sec. 3.3.2 we analyse the lat-
tice data for mπ = 236 and 391 MeV, which is available in the elastic region only. Afterwards,
in Sec. 3.2.1 we proceed with an analysis of the coupled-channel {ππ,KK̄} system, which
requires input from several channels. In some cases, the available input is very limited or,
in case of Roy-analyses, even conflicting. Finally, we present the results for the non-resonant
I = 2 channel, which is necessary for the analysis of the γγ → ππ process in Chapter 4.

3.3.1 I = 0 single channel approach
As a first step, we consider only the elastic ππ scattering, which should be enough to get a
realistic estimate of the resonance position of σ/f0(500), which is known to be connected almost
exclusively to the pion sector. The reason for that is twofold. In many practical applications
it is convenient to remove the KK̄ (or f0(980)) effects, which do not influence much the
σ/f0(500) pole parameters, but at the same time require a proper coupled-channel treatment.
Additionally, the current lattice QCD result for mπ = 236 MeV covers only the elastic region
[40]. Therefore, as a necessary prerequisite of a meaningful σ/f0(500) pole extraction for
unphysical pion masses, one has to test the N/D formalism first for physical quark mass
values, where the position of σ/f0(500) has already been obtained from the sophisticated Roy
analyses [84–86, 97, 100–103]. The inclusion of the KK̄ channel (or f0(980) resonance) will
allow for a slightly more precise evaluation of σ/f0(500) parameters and will be given in the
next subsection.
Relying only on the available data up to √smax = 0.7 GeV, where a strong influence of

the KK̄ threshold is not yet expected, we obtain a decent fit even without imposing chiral
constraints. The pole occurs at √sσ = 463(8)+6

−7 − i 217(6)+8
−9 MeV. The scattering length and

slope parameters turn out to be compatible with those of χPT due to the presence of Kl4 data.
As we discussed above, this is not the case for the Adler zero, which is located too close to the
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Figure 3.6: Results for the ππ → ππ scattering with J = 0, I = 0 in the single-channel
case. Left panel shows the comparison with the data, right upper panel shows
the convergence of the conformal expansion in Eq. (3.16), and right lower panel
show the corresponding Omnès function. In the phase shift plot two curves are
shown: fit to the experimental data [153–156] (dashed curve) and fit to the pseudo
data from Roy analysis [86, 97, 100, 101]. For the sake of comparison with the
coupled channel case (see Sec. 3.3.3), we adopted sE based on √smax = 1.2 GeV,
as discussed in the text.

left hand cut,

sA(χPTLO) = m2
π/2 , (3.22)

i.e. where the series (5.9) simply converges too slow. With the additional constraints for the
scattering length, slope parameter and Adler zero, the best fit result contains four parameters
and leads to √sσ = 435(7)+6

−8 − i 250(5)+6
−8 MeV. This result is compatible with the value√

sσ = 446(5)+6
−9 − i 230(5)+7

−9 MeV, obtained by replacing the experimental data with the
pseudo data from the Roy-like analysis [86, 100, 101]. As it is shown in Fig. 3.6 both N/D
fits are consistent within the error. This provides a proof for our expectation, that even in the
case where there is no available Roy analyses (like lattice QCD data), we can rely on the N/D
approximation. For our final result of the single-channel Omnès function with physical pion
mass, we opt for fitting the result of the Roy analysis [86, 100, 101], as the best representation
of the data. The values of the fitted parameters are collected in Table 3.1, which result in the
fast convergence of the conformal expansion (3.16) as shown in the left panel of Fig. 3.6. Note,
that in order to use these fit parameters as the starting values of the more complicated coupled-
channel fit, we have chosen sE here to be the same as for the coupled-channel case, where we
aim to describe the data up to √smax = 1.2 GeV. Also, this choice slightly improves the
obtained σ/f0(500) pole positions, since it pushes sE further away from the threshold region,
which is constrained accurately from χPT. In Table 3.2 we compare threshold parameters and
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3.3 Results for the ππ → ππ scattering

mπ, MeV √
sE , MeV C0 C1 C2 C3 χ2/d.o.f

ππ → ππ, I = 0 single-channel, lattice data

236 646 13.3(2.9) 64.4(1.6) 64.5(5.6) - 1.2
391 896 65.5(14.5) -293.7(47.8) 409.2(35.7) - 1.2

Table 3.3: Fit parameters entering Eq. (5.9) which were adjusted to reproduce the lattice data
from [40].

mπ, MeV √
sA, MeV mπa m3

πb
√
sA

NLO, MeV mπa
NNLO m3

πb
NNLO

ππ → ππ, I = 0 single-channel, lattice data

236 187(35) 0.98(19) 0.89(43) 150(18) 0.75− 0.87 [84] -
391 - -4.07(36) 67.0(19.0) - - -

Table 3.4: Fit results for the threshold parameters a and b defined in Eq. (3.19) and the
Adler zeros sA for ππ → ππ , I = 0 scattering in the single channel approach (left)
compared to χPT values (right).

Adler zeros to χPT values, while in Table 3.7 poles and couplings are collected. Overall we
achieve a good description of the Roy analyses results. In Fig. 3.6 we also show phase shift
and Omnès function. Note, that a similar result for the Omnès function can be obtained by
using the phase shift from the single-channel modified Inverse Amplitude Method (mIAM)
[149, 160–162] and Eq. (3.14). In this method, the dispersion relation is written for the
inverse amplitude, while the left-hand cut and subtraction constants are approximated by the
chiral expansion. The result closest to the Roy analysis for the σ/f0(500) pole is achieved by
performing two-loop mIAM fit [163]. In elastic N/D and mIAM approaches the KK̄ channel
is separated naturally from the ππ channel, which is beneficial for the practical applications.

3.3.2 I = 0: analysis of the lattice data
Apart from the experimental data, the recent lattice analysis [40] provided the results for the
energy levels for pion mass values of mπ = 236 MeV and mπ = 391 MeV. While the former
case is much closer to the physical pion mass, the lattice result for the larger mass deserves
special attention, since in that case σ/f0(500) shows up as a bound state. In the lattice
QCD analysis, the discrete energy spectrum in a finite volume is related to the infinite-volume
scattering amplitude through the Lüscher formalism [164, 165], which was extended in [166–
169] to the case of moving frames. In the case of elastic scattering at low energies it gives a
one-to-one relation to p cot δ. The lattice results for p cot δ with mπ = 236 MeV and mπ = 391
MeV were shown in [40]. To fit these data, we analytically continue p cot δ below threshold,
such that it does not produce any cusp behaviour at the threshold,

p(s) cot δ(s) =
√
s

2

( 1
t(s) + i ρ0(s)

)
16π , (3.23)

where ρ0 is the same as ρ in Eq. (3.3), but without the Heaviside step function.
For both mπ = 236 MeV and mπ = 391 MeV, we find that the three-parameter fit covers

the data quite well (see left panel of Fig. 3.7). Similar to the K-matrix fits performed in [40],
we found σ/f0(500) as a deep pole on the second Riemann sheet for mπ = 236 MeV and as a
bound state for mπ = 391 MeV. In our approach, however, the obtained scattering amplitudes
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Figure 3.7: Results for the ππ → ππ scattering with J = 0, I = 0 in the single-channel case
for the mπ = 236 MeV (upper plots) and mπ = 391 (lower plots). Left panels
show the comparison with the lattice data from [40] for p cot δ(s) function and
its mapping onto the δ(s) function above threshold, right upper panels show the
convergence of the conformal expansion in Eq. (3.16), and right lower panels show
the corresponding Omnès functions.
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Figure 3.8: The comparison between the different σ/f0(500) positions for different pion masses.
In red, the results of the present work are shown. Yellow points show the various
K-matrix analyses of the lattice data. Black points show the predictions from
mIAM [40].

satisfy p.w. dispersion relations, which is a stringent constraint on the real part of the inverse
of the amplitude. As a result, the pole position is determined much more precisely, see Table
3.7. We also checked that the obtained scattering length mπ a = 0.98(19) for mπ = 236 MeV
is consistent with the chiral extrapolation result mπ aNNLO = 0.75− 0.87 of [84] and therefore
including such additional constraint in the fit barely affects the results of the σ/f0(500) pole
and coupling.
It is instructive to compare the obtained pole positions of σ/f0(500) for non-physical pion

masses with the predictions of unitarized chiral perturbation theory (UχPT). The most popular
are two approaches: mIAM [163] and Bethe-Salpeter equation (BSE) [170]. Both observe
the same qualitative behaviour of the σ/f0(500) pole. With increasing pion mass values the
imaginary part of the pole decreases, then σ/f0(500) becomes a virtual bound state and as
mπ increases further, one of the virtual states moves towards threshold and jumps onto the
first Riemann sheet and becomes a real bound state. For mπ = 236 MeV, the extracted value
from lattice data is consistent with UχPT predictions for the real part, but somewhat lower
for the width,

√
sσ = 498(21)+12

−19 − i 138(13)+5
−10 (lattice +N/D),

√
sσ = 510− i 175 (mIAMNNLO, fitD), (3.24)
√
sσ = 490(15)− i 180(10) (BSENLO),

all in units of MeV. For mπ = 391 MeV the situation is a bit different. Since it is on the edge
of the applicability of χPT, the results of UχPT are very sensitive to the chiral order. Both
mIAM [161] and BSE [170] at one loop found σ/f0(500) as a virtual bound state for mπ = 391
MeV. However, including the higher-order corrections (two loop) in mIAM [163] predicted the
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Chapter 3 Data-driven dispersive analysis of the ππ and πK scattering

√
sE , MeV C0 C1 C2 C3 χ2/d.o.f

ππ → ππ, I = 0, coupled-channel

Exp., U11 740 17.5(1.1) 52.5(2.5) 50.6(2.6) 16.8(4.8) t11 : 1.0
U12 −7.8(4.5) −14.7(4.3) 2.9(7.1) − |t12| : 1.2
U22 1095 65.2(21.1) −230.6(46.6) 337.9(34.7) − δ12 : 1.7

Roy, U11 740 17.1(9) 52.1(2.0) 51.1(2.2) 17.2(3.6) t11 : 3.4
U12 11.2(1.2) 12.6(2.5) − − |t12| : 2.4
U22 1095 70.0(6.5) −216.2(58.0) 321.0(53.9) − δ12 : 1.8

Table 3.5: Fit parameters entering Eq. (3.16) which were adjusted to reproduce available
experimental (whenever possible replaced by the most recent Roy-like results) or
lattice data. SC and CC stand for single-channel and coupled-channel analyses,
respectively. See text for more details.

√
sA, MeV mπa m3

πb
√
sA

NLO
SC , MeV mπa

NNLO
SC m3

πb
NNLO
SC

ππ → ππ, I = 0 coupled-channel

Exp. 91(16) 0.219(10) 0.277(12) 90(9) 0.220(5) [84] 0.276(6) [84]Roy 90(15) 0.218(9) 0.278(11)

Table 3.6: Fit results for the threshold parameters a and b defined in Eq. (3.19) and the
Adler zeros sA for ππ → ππ , I = 0 scattering in the single channel approach (left)
compared to χPT values (right).

√
sp, MeV |gpa|/

√
Naa

√
sp, MeV |gpa|/

√
Naa

σ/f0(500)

Roy, SC 458(7)+4
−10 − i 245(6)+7

−10 ππ : 3.15(5)+0.11
−0.20 449+22

−16 − i 275(15)
[97]

ππ : 3.45+0.25
−0.29 [97]

Roy, CC 458(10)+7
−15 − i 256(9)+5

−8
ππ : 3.33(8)+0.12

−0.20 KK̄ : −
KK̄ : 2.11(17)+0.27

−0.11

Latt., 236 498(21)+12
−19 − i 138(13)+5

−10 ππ : 2.96(5)+0.05
−0.06

Latt., 391 758(5)(0) ππ : 3.91(26)(0)

f0(980)

Roy, CC 993(2)+2
−1 − i 21(3)+2

−4
ππ : 1.93(15)+0.07

−0.12 996+7
−14 − i 25+11

−6
[86, 87, 100, 101]

ππ : 2.3(2) [86, 100, 101]
KK̄ : 5.31(24)+0.04

−0.24 KK̄ : −

Table 3.7: Poles and couplings of the σ/f0(500) and f0(980) resonances calculated in data-
driven N/D approach compared with the results of Roy-like analyses. In our results,
the first error is the statistical one, while the second one comes from a variation of
sE and has a systematic nature.

conventional bound state very close to the lattice results
√
sσ = 758(5)(0) MeV (lattice +N/D),
√
sσ = 765 MeV (mIAMNNLO,fitD), (3.25)

confirming the proposed trajectory. In addition, another analysis of the same lattice data for
mπ = 236, 391 MeV has been performed in [171]. For mπ = 391 MeV, it was found that
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Figure 3.9: Results for the ππ → ππ, KK̄ scattering with J = 0, I = 0 in the coupled-channel
case for the 11 matrix element with 1 = ππ. Left panel shows the comparison with
the data, right upper panel show the convergence of the conformal expansion in
Eq. (3.16), right lower panels show the elements of the Omnès matrix. In the left
plot two curves are shown: fit to the experimental data [153–156] (dashed curve)
and fit to the pseudo-data from Roy analyses [86, 97, 100, 101] (thick curve).

the fit quality improves with the inclusion of a bound state and a virtual bound state with√
sσ = 774 ± 6 MeV and √sσ = 716 ± 28 MeV respectively. In [172], however, it was noted

that the the existence of a pair of two poles on the real axis could be merely an artefact of
a single-channel approach. Over this controversy, we do not include the results of [171] into
further comparison.
All in all, as pointed out in [40], it would be useful to perform lattice calculations between

236 and 391 MeV, to see what really happens in the transition region between a resonance
lying deep in the second Riemann sheet and the bound state. The comparison of the pole
positions from different studies for mπ = mphys

π , 236, 391 MeV is given in Fig. 3.8.
We leave the coupled-channel study of the existing lattice data on {ππ,KK̄} [41] with

mπ = 391 MeV for a future work. In our opinion, this channel has to be analysed together
with {πη,KK̄} lattice data [66], to shed more light onto the differences between the light
scalar resonances f0(980) and a0(980).

3.3.3 I = 0: coupled channel approach

While the single-channel analysis allows us to reproduce the low-energy behavior of the phase
shifts and gives very reasonable values of the σ/f0(500) pole parameters, a comprehensive
study of the region up to

√
s = 1.2 GeV should account for the interplay between ππ and

KK̄ channels. In our normalization (see Eqs. (3.1-3.3)), the two-dimensional t-matrix, with
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Figure 3.10: Results for the ππ → ππ, KK̄ scattering with J = 0, I = 0 in the coupled-
channel case. Top and bottom panels correspond to 12 and 22 matrix elements,
respectively, with 1 = ππ and 2 = KK̄. Left panels show the comparison with
the data, right upper panel in each set show the convergence of the conformal
expansion in Eq. (3.16), right lower panels of each set show the elements of the
Omnès matrix.

54



3.3 Results for the ππ → ππ scattering

�� �� ������ �� ���

�� �� ������ �� ���

��� ��� ��� ��� ���

-���

���

���

���

� [���]

� �
�
(�
)

Figure 3.11: Comparison between the coupled-channel N/D fits and the Roy-like solution from
[86, 100, 101]. The dashed curves are the fit solely to the experimental data, while
the solid curves take advantage of both the experimental data and the results of
Roy (Roy-Steiner) analyses on ππ → ππ ( ππ → KK̄).

channels denoted by 1 = ππ and 2 = KK̄, is given by

t(s) =

 η(s) e2 i δ1(s)−1
2 i ρ1(s) |t12(s)| eδ12(s)

|t12(s)| eδ12(s) η(s) e2 i δ2(s)−1
2 i ρ2(s)

 . (3.26)

Under assumption of two-channel unitarity, the inelasticity is related to |t12(s)| as

η(s) =
√

1− 4 ρ1(s) ρ2(s) |t12(s)|2 , (3.27)

and due to Watson’s theorem,

δ12(s) = δ1(s) + δ2(s) θ(s > 4m2
K) . (3.28)

In the physical region the t-matrix is fully described by experimental information on the ππ
phase shift δ1(s) [152–156] , the inelasticity η(s) (or |t12(s)| for s > 4m2

K [173–175]) and the
ππ → KK̄ phase δ12(s) [173, 174, 176].

Similar to the single-channel analysis, we first fit the available experimental data supple-
mented with constraints for scattering length, slope parameter and Adler zero from χPT in
the ππ → ππ channel. As for the ππ → KK̄ channel, the complication stems from two
facts. Firstly, the experimental data exist only in the physical region above KK̄ threshold.
Therefore, in order to stabilize the fits, we make sure that the obtained |t12(s)| stays small
around3 s = 0 as a manifestation of χPT. Secondly, the existing experimental data for both
|t12(s)| and δ12(s) contains incompatible data sets and requires to make some choice. Since the
phase δ12(s) is fully defined below KK̄ threshold by means of Watson’s theorem, we discard
the data from [174] as it suggests that ππ → KK̄ phase goes much lower than it is forced
by the presence of f0(980) resonance. Therefore, we fit the data from [173] and [176] which
are consistent due to the large error bars of the latter set. As for |t12(s)|, the two data sets
from [175] and [173, 174] should in principle be treated separately. However, only the data

3Specifically, at s = m2
π/2 we impose NLO χPT with a conservative error that covers LO χPT result.
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√
sE , MeV C0 C1 C2 C3 χ2/d.o.f

ππ → ππ, I = 2 single-channel

Exp. 740 -16.6(5) -28.0(1.0) 21.1(1.9) 36.4(3.6) 1.2
Roy -17.4(4) -30.1(9) 22.8(1.4) 41.5(2.9) 1.7

Table 3.8: Fit parameters entering Eq. (3.16) which were adjusted to reproduce available ex-
perimental data or Roy-like results for ππ → ππ , I = 2 scattering.

√
sA, MeV mπa m3

πb
√
sA

NLO, MeV mπa
NNLO m3

πb
NNLO

ππ → ππ, I = 2 single-channel

Exp. 196(1) -0.044(1) -0.080(1) 197(0) -0.044(1) [84] -0.080(1) [84]Roy 193(1) -0.044(1) -0.081(1)

Table 3.9: Fit results for the threshold parameters a and b defined in Eq. (3.19) and the
Adler zeros sA for ππ → ππ , I = 2 scattering in the single channel approach (left)
compared to χPT values (right).

from [175] is compatible with the ππ inelasticity around the KK̄ threshold. In order to de-
scribe the data from [173, 174], most likely one has to include the four-pion channel, which
is beyond the scope of the present paper. The best fit with (4, 4, 3) parameters in (11, 12, 22)
channels [175], provides σ/f0(500) and f0(980) poles at √sσ = 454(12)+6

−7 − 262(12)+8
−12 i MeV

and √sf0 = 990(7)+2
−4 − 17(7)+4

−1 i MeV. These results are remarkably close to the Roy (for
ππ → ππ) and Roy-Steiner solutions for (ππ → KK̄) as shown in Figs. 3.11, 3.9 and 3.10.
The large error bars arise from scarce experimental data around KK̄ threshold and almost
unconstrained |t12| in the unphysical region.
On the other hand, we have at our disposal very precise ππ → ππ Roy-like analyses from

[86, 100, 101] and ππ → KK̄ Roy-Steiner analyses from [89, 91, 104, 105, 127]. Unfortunately,
they do not come from the coupled-channel Roy-Steiner analyses and may display some in-
consistencies between each other. In particularly, the Roy results on the real and imaginary
parts of the t11(s) amplitude can constrain δ1(s) and η(s). The latter, in the two-channel
approximation, is related to |t12(s)| by Eq. (3.27) and turns out to be inconsistent with any
available Roy-Steiner solution on ππ → KK̄ [89, 91, 104, 105, 127]. Therefore in order to
avoid possible conflict in fitting two independent analyses, we impose ππ → KK̄ Roy-Steiner
solution only as constraint on |t12(s)| in the unphysical region 4m2

π < s < 4mK . Currently,
there are three competing solutions: one from Büttiker et al. [104] and two (CFDc and CFDb)
from Peláez et al. [91, 105]. We let the fit decide which solution to choose. As for the δ12,
we take advantage of experimental data of Cohen et al. [173] in the fit, which are quite pre-
cise. The good description of the data can be achieved with as low as (4, 2, 3) parameters in
(11, 12, 22) channels, respectively. The results of the fit are collected in Tables 3.5, 3.6 and 3.7
and shown in Figs. 3.9, 3.10. As expected, the values for the fit parameters in the 11-channel
do not deviate much from the single-channel analysis in Sec. 3.3.1. In the coupled-channel
analysis the σ/f0(500) pole position comes a bit closer to the Roy analysis value, than in the
single-channel study. Moreover, we are now in a position to calculate its coupling to the KK̄
channel, which we include in Table 3.7. By inspecting Table 3.5, one can also see the striking
similarity between the fit parameters in the 22 channel and the fit to lattice ππ → ππ data
with mπ = 391 MeV, for which there is a bound state. Similarly, f0(980) will be a bound state
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Figure 3.12: Results for the ππ → ππ I = 2 scattering. Left panel shows the comparison with
the data, right upper panel shows the convergence of the conformal expansion in
Eq. (3.16), and right lower panel show the corresponding Omnés function. In the
phase shift plot two curves are shown: fit to the experimental data [173, 179–181]
(dashed curve) and fit to the pseudo-data from Roy-Steiner analysis [97] (thick
curve).

in the 22 channel, if we eliminate its connection to the 11 channel, i.e. by putting U12 = 0.
This feature is not new and has already been observed in UχPT calculations, see for instance
[177]. As for the 12 channel, the fit clearly favours CFDc solution of [91, 105]. This is also
consistent with our previous "free" fit to to the experimental data, as shown by the dashed
curves in Fig. 3.10. On the left lower panels of Figs. 3.9 and 3.10 we show the elements of
the Omnès matrix calculated using Eq. (3.13). The previous version of them, with the fit to
[104, 127] has already been successfully applied for the dispersive coupled-channel study of
γ(∗)γ∗ → ππ(KK̄) [1, 4, 178] and e+e− → J/ψππ(KK̄) [124].

3.3.4 I = 2 channel
We now turn to the partial wave dispersion relation analysis of the non-resonant I = 2 ππ → ππ
scattering. The overall strategy remains the same for this channel, where we first fit the
available experimental data and then the pseudo-data from the Roy-like analysis and compare
the outcome. In fact, the data for the phase shift between the threshold and 1.2 GeV could be
described with as few as two parameters, yet to satisfy to satisfy the χPT constraints mentioned
before, it is necessary to introduce additional parameters. However, we notice that by fitting
either experimental data or the Roy analysis results, supplemented with χPT constraints, we
obtain an unphysical zero of D(s) far away from the threshold on the first Riemann sheet. To
avoid this artificial bound state, we impose in the fit the exact fulfilment of the partial-wave
dispersion relation given by Eq. (5.2). With these constraints, we obtain the four-parameter
fits with a good description of both experimental data and Roy-like analysis results. The fit
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Chapter 3 Data-driven dispersive analysis of the ππ and πK scattering

√
sE , MeV C0 C1 C2 C3 χ2/d.o.f

πK → πK, I = 1/2 single-channel

Exp. 833 17.8(2.5) -41.9(6.7) 27.5(7.7) -10.5(12.6) 6.2
Roy 16.1(8) -37.8(3.5) 32.9(2.7) -18.6(6.0) 1.2

Table 3.10: Fit parameters entering Eq. (3.16) which were adjusted to reproduce available
experimental data or Roy-like results for πK → πK , I = 1/2 scattering in the
single channel approach.

√
sA, MeV mπa m3

πb
√
sA

NLO, MeV mπa
NNLO m3

πb
NNLO

πK → πK, I = 1/2 single-channel

Exp. 480 (6) 0.220(12) 0.128(23) 480(6) 0.220 [144] 0.130 [144]Roy 480(6) 0.219(10) 0.113(10)

Table 3.11: Fit results for the threshold parameters a and b defined in Eq. (3.19) and the
Adler zeros sA for πK → πK , I = 1/2 scattering in the single channel approach
(left) compared to χPT values (right).

parameters are collected in Table 3.8, the threshold parameters and Adler zero in Table 3.9
and the resulting phase shifts, convergence and Omnès function are shown in Fig. 3.13.
Finally, having both I = 0 and I = 2 components of the ππ → ππ final state interaction,

we are able to produce the amplitudes and consequently, the cross sections of the γ∗γ∗ → ππ
process. We will come back to these results in Chapter 4 .

3.4 Results for the πK → πK scattering

In this section we first concentrate on the resonant I = 1/2 πK → πK scattering in which the
κ/K∗(700) resonance resides. This resonance presents a comparable enigma to the σ/f0(500),
especially considering the fact that the SU(3) χPT converges much slower than the SU(2)
version of it and hence less reliable predictions can be made. We will describe the single
channel πK → πK scattering based both on the experimental data and the results of the Roy
analyses. We will apply our method to the analysis of the lattice data for mπ = 239 MeV.
Finally, we will comment on the non-resonant I = 3/2 scattering.

3.4.1 I = 1/2 channel
For the πK → πK single channel analysis we begin by fitting the experimental data and
imposing constraints from χPT for the scattering length, slope parameter, and Adler zero.
The latter at LO is given by a simple relation,

sA(χPTLO) = 1
5

(
m2
π +m2

K + 2
√

4m4
π − 7m2

πm
2
K + 4m4

K

)
. (3.29)

The most precise calculation of the scattering length and slope parameter in χPT has been
performed at NNLO in [144]. While the result for the scattering length mπ a = 0.22 is consis-
tent with the recent Roy-Steiner predictions mπ a = 0.223(9) [91, 105], it seems that there is
a small tension in the slope parameter value m3

π b = 0.13 compared to m3
π b = 0.108(8) from

[91, 105]. The calculation of uncertainties is a bit cumbersome at NNLO and has not been
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Figure 3.13: Results for the πK → πK scattering with J = 0, I = 1/2 in the single-channel
approximation. Left show the comparison with the data, right upper panel show
the convergence of the conformal expansion in Eq. (3.16), lower right panel shows
the corresponding Omnès function. In the phase shift plot two curves are shown:
fit to the experimental data [157, 158] (dashed curve) and fit to the pseudo-data
from Roy-Steiner analysis [91, 105] (thick curve).

presented in [144]. Therefore in our fits we take NNLO χPT values as central results, but
include the conservative error-bar, such that it covers the recent Roy-Steiner results [91, 105].
As for the Adler zero, we take the NLO value, as explained at the beginning of Sec. 3.3. The
available experimental data for this process is scarce in the region close to the πK threshold,
and often contains the discrepancies even within one dataset [157]. Since we consider only the
single-channel approximation, we perform the fit till ηK threshold of the data from [157, 158].
In this way we also exclude the influence of the K∗0 (1430) resonance. We observe a similar
situation as for the ππ → ππ single-channel analysis, that fitting the experimental data [157,
158] or Roy-Steiner analysis of [91, 105] provides equivalent four parameter fits with κ/K∗0 (700)
pole positions at 689(24)+3

−2− i 263(33)+5
−8 MeV and 702(12)+4

−5− i 285(16)+8
−13 MeV, respectively.

In general, these results compare well with the Roy-Steiner pole position 653+18
−12 − i 280(16)

MeV which we take as a conservative average between [89, 104] and [91, 105]. The one-sigma
difference in the resonance mass can be attributed to the fact, that we are fitting Roy-Steiner
solution only in the elastic region. The results are collected in Tables 3.10, 3.11, 3.14 and in
Fig. 3.13.

We also look forward to the results of the KLF Collaboration, which plans to study πK
scattering using a secondary KL beam at Jefferson Lab [182]. It will further improve the
position of the κ/K∗0 (700) resonance.
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mπ, MeV √
sE , MeV C0 C1 C2 C3 χ2/d.o.f

πK → πK, I = 1/2 single-channel, lattice data

239 884 16.8(3.6) −49.1(2.5) 28.2(7.5) − 0.2

Table 3.12: Fit parameters entering Eq. (3.16) which were adjusted to reproduce available
lattice data for mπ = 239 MeV, πK → πK , I = 1/2 scattering in the single
channel approach.

mπ, MeV √
sA, MeV mπa m3

πb
√
sA

NLO, MeV mπa
NNLO m3

πb
NNLO

πK → πK, I = 1/2 single-channel, lattice data

239 472(8) 0.426(71) 0.277(68) 472(9) − −

Table 3.13: Fit results for the threshold parameters a and b defined in Eq. (3.19) and the
Adler zeros sA for πK → πK , I = 1/2 scattering in the single channel analysis of
the lattice data with mπ = 239 MeV (left) compared to χPT values (right).

√
sp, MeV |gpa|/

√
Naa

√
sp, MeV |gpa|/

√
Naa

κ/K∗0 (700)

Roy, SC 702(12)+4
−5 − i 285(16)+8

−13 πK : 4.12(14)+0.13
−0.18

653+18
−12 − i 280(16)

[89, 91, 104, 105] πK : 3.81(9) [91, 105]

Latt., 239 747(39)+2
−0 − i 265(16)+7

−6 πK : 4.19(18)+0.07
−0.06

Table 3.14: Poles and couplings of the κ/K∗0 (700) resonance calculated in data-driven N/D
approach compared with the results of Roy-like analyses. Roy, SC and Latt., 239
stand for single-channel analysis of the Roy data and the lattice data for mπ = 239
MeV, respectively. In our results, the first error is the statistical one, while the
second one comes from a variation of sE and has a systematic nature.

3.4.2 I = 1/2: analysis of the lattice data
For the unphysical pion mass, we again use recent lattice data from the Hadron Spectrum
Collaboration [134]. We analyse the data for mπ = 239 MeV, where an evidence of κ/K∗0 (700)
was observed in the p cot δ distribution. Due to large uncertainties, the pole position was
not determined by the lattice collaboration, calling for more sophisticated approaches that
include in addition to unitarity also the analyticity constraint. By employing the data-driven
N/D approach, the present data can be easily described with the two-parameter fit, leading
to χ2/d.o.f = 0.4. In this case, however, the Adler zero of the amplitude is located relatively
far from the χPT value, since the lattice data in the low p2 region suffers from the large
uncertainties. Also, as we discussed before, in the Adler zero region the conformal expansion
(3.16) does not converge well by construction and one has to impose Adler zero as a constraint,
which effectively calls for one additional parameter. In this way, the impact of two points with
prominently small errors at p2 ∼ 0.09 and ∼ 0.11 GeV2 is balanced out. The results of the fit
are collected in Tables 3.12, 3.13, 3.14 and Fig. 3.14.
Again we would like to compare our results for the pole position and coupling with predic-

tions of mIAM. According to [162], at mπ = 239 MeV, the imaginary part of the pole decreases
by ∼ 17%, while the real part and coupling slowly increase by ∼ 4% and ∼ 8% respectively.
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Figure 3.14: Results for the πK → πK scattering with J = 0, I = 1/2 of the lattice data [134]
with the mass mπ = 239 MeV. Left panel shows the comparison with the data,
right upper panel show the convergence of the conformal expansion in Eq. (3.16),
and right lower panel shows the corresponding Omnès function.

Our values extracted from the lattice data show a similar behavior, with the decrease in the
imaginary part of 7.0(7.7)%, increase in the real part and coupling of 6.4(5.8)% and 1.6(6.4)%,
respectively.

3.4.3 I = 3/2 channel
The situation for the non-resonant I = 3/2, πK scattering resembles the I = 2, ππ scattering.
Again, by fitting either experimental or Roy-Steiner pseudo-data we obtain an unphysical
bound state far away from the threshold. Hence, we impose in the fit the exact fulfilment of
p.w. dispersion relation given by Eq. (5.2) as an additional constraint and obtain the four-
parameter fits. The fit to experimental data give us the result consistent with Roy-Steiner
analysis [91, 105] including the slope parameter, which tends towards the valuem3

π b
Roy-Steiner =

−0.0471(49) (see Table 3.16). To minimize the uncertainties we also fitted directly the pseudo-
data from Roy-Steiner analysis. The phase shifts and Omnès function obtained from these fits
are shown in Fig. 3.15. The values of the fitted parameters, threshold parameters and Adler
zeros are collected in Tables 3.15 and 3.16 .

3.5 Summary and Outlook

In this Chapter, we presented a data-driven analysis of the S-wave ππ → ππ and πK → πK
reactions using the partial-wave dispersion relation. In this approach unitarity and analyticity
constraints are implemented exactly. We accounted for the contributions from the left-hand
cuts using the Taylor expansion in a conformal variable, which maps the left-hand cut plane
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√
sE , MeV C0 C1 C2 C3 χ2/d.o.f

πK → πK, I = 3/2

Exp. 818 −20.7(8) 34.8(3.0) 25.7(8.0) −52.0(11.3) 5.64
Roy −19.8(2) 34.0(1.6) 21.1(1.9) −46.4(4.5) 0.21

Table 3.15: Fit parameters entering Eq. (5.9) which were adjusted to reproduce the experi-
mental data (denoted Exp.) and the most recent Roy-like results (Roy).

√
sA, MeV mπa m3

πb
√
sNLOA , MeV mπa

NNLO m3
πb

NNLO

πK → πK, I = 3/2

Exp. 522(11) −0.048(5) −0.056(4) 526(11) −0.047[144] −0.027[144]Roy 524(9) −0.047(4) −0.053(1)

Table 3.16: Fit results for the threshold parameters a and b and the Adler zeros sA (left
columns) compared to χPT values (right columns). The uncertainties on NLO
Adler zero positions we estimated as |NLO− LO|, as explained in the text.

onto the unit circle. Then, the once subtracted p.w. dispersion relation was solved numerically
by means of the N/D method.
Using existing experimental information and threshold constraints from χPT we tested the

single-channel N/D formalism for the physical pion mass, where the positions of σ/f0(500) and
κ/K∗0 (700) have already been obtained from the sophisticated Roy and Roy-Steiner analyses.
We demonstrated that the results for the pole parameters are stable and almost do not change
if we replace the existing experimental data with the very precise pseudo-data generated by
Roy and Roy-Steiner solutions in the physical region. Moreover, in our approach no spurious
poles appear, in contrast to the K-matrix approach (see Fig. 3.16).
As a next step, we performed the fits to the lattice data of the Hadron Spectrum Collabo-

ration for mπ = 236, 391 MeV in the case of ππ → ππ and for mπ = 239 MeV in the case of
πK → πK. We provided an improved determination of the σ/f0(500) and κ/K∗0 (700) pole pa-
rameters compared to the simplistic K-matrix approach and also compared them with UχPT
predictions.
An important feature of the N/D method is that the Omnès function comes out naturally,

as the inverse of the D-function. The knowledge of the Omnès function, in turn, allows
employing the Muskhelishvili-Omnès representation for the vast majority of production/decay
reactions involving two pions (or pion and kaon) in the final state. While for the single-
channel case, the Omnès function can be obtained analytically from the parametrisation of
the phase shift, this is not the case for the coupled-channel case. In order to cover the f0(980)
region we extended our analysis for the coupled-channel {ππ,KK̄} case and extracted the
corresponding Omnès matrix. In our construction it is asymptotically bounded (i.e. it satisfies
once-subtracted dispersion relation) and therefore useful in many dispersive applications. The
unknown coefficients from the conformal expansion were adjusted to reproduce existing Roy
and Roy-Steiner analyses. The obtained Omnès matrix serves as an important building block,
which allows for the dispersive calculation of the isoscalar two pion/kaon contribution to the
hadronic light-by-light part [80, 183–185] of the anomalous magnetic moment of the muon
(g − 2)µ [7, 71]. In particularly, with the input from γ∗γ∗ → ππ,KK [1, 4, 178] one can
estimate dispersively the contribution from the f0(980) resonance, and compare it with narrow
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Figure 3.15: Results for the πK → πK scattering with J = 0, I = 3/2. Left panel show
the comparison with the data, upper right panel shows the convergence of the
conformal expansion in Eq. (3.16), and right lower panel show the corresponding
Omnès function. In the phase shift plot for the physical pion mass two curves
are shown: fit to the experimental data [157, 158] (dashed curve) and fit to the
pseudo-data from Roy-Steiner analysis [91, 105] (thick curve).
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Figure 3.16: ππ → ππ coupled-channel (left panel) and πK → πK single-channel (right panel)
scattering amplitudes in the complex s-plane. The red dots show the correspond-
ing thresholds and blue dots show the closest l.h.c.. On the left plot there are
σ/f0(500) and f0(980) resonances and on the right plot there is κ/K∗(700) reso-
nance. Note that the additional spurious poles do not appear within this method.

resonance results [186]. In the next Chapter, we will consider the two-photon fusion process
with two pion in the final state, where the obtained hadronic part will be used to determine
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Chapter 3 Data-driven dispersive analysis of the ππ and πK scattering

the two-photon couplings of σ/f0(500) and f0(980) resonance.
The proposed method is not only limited to the ππ and πK scattering. We considered these

reactions first because they show up as building blocks in many hadronic reactions/decays and
have been calculated recently using lattice QCD. In principle, the N/D method combined with
the conformal expansion for the left-hand cuts can be applied to any hadronic reaction where
there is data (experimental or lattice) which possesses a broad (or coupled-channel) resonance
that does not have a genuine QCD nature. For the latter (like for instance ρ or K∗ resonances)
one needs to extend the formalism to allow for CDD poles. Also, it has to be modified in the
presence of anomalous thresholds. We will come back to this method in Chapter 5 to study
the DD̄ scattering.

Appendices

3.A Kinematics and Mandelstam vabiables

In 2→ 2 process, for the initial particles with masses m1,m2 and four-momenta q1, q2 respec-
tively, in the center-of-mass (c.m.) frame, it holds:

qµ1 = {Eq1 , 0, 0, qcm} , Eq1 =
√
q2
cm +m2

1 ,

qµ2 = {Eq2 , 0, 0,−qcm} , Eq2 =
√
q2
cm +m2

2 , (3.30)

and for final particles, with masses m3,m4 and four-momenta p1, p2:

p1 = {Ep1 , pcm sin θ cosφ, pcm sin θ sinφ, pcm cos θ} , Ep1 =
√
p2
cm +m2

3 ,

p2 = {Ep2 ,−pcm sin θ cosφ,−pcm sin θ sinφ,−pcm cos θ} , Ep2

√
p2
cm +m2

4 , (3.31)

where θ is the scattering angle in the c.m. frame (see Fig. 3.17), qcm and pcm are the momenta
of the initial and final state. If the scattering plane is chosen to be azimuthal plane, i.e. φ = 0,
the relation (3.31) simplifies as

p1 = {Ep1 , pcm sin θ, 0, pcm cos θ} ,
p2 = {Ep2 ,−pcm sin θ, 0,−pcm cos θ} ,

(3.32)

It is often convenient to work with Lorenz-invariant Mandelstam variables [46], which are
defined as (see also Sec. 2.2.1):

s = (q1 + q2)2 = (p1 + p2)2 ,

t = (p2 − q2)2 = (p1 − q1)2 ,

u = (p2 − q1)2 = (p1 − q2)2 , (3.33)

and satisfy the relation
s+ t+ u = m2

1 +m2
2 +m2

3 +m2
4 . (3.34)

The c.m. three momenta qcm and pcm can then be expressed in terms of the total energy
√
s

as

qcm =

√
(s− (m1 +m2)2)(s− (m1 −m2)2)

4s = 1
2
√
s
λ1/2(s,m2

1,m
2
2) ,

pcm =

√
(s− (m3 +m4)2)(s− (m3 −m4)2)

4s = 1
2
√
s
λ1/2(s,m2

3,m
2
4) , (3.35)
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Figure 3.17: Definition of the scattering angle θ in the c.m. frame. The scattering plane is
chosen to be azimuthal plane.

where λ(x, y, z) ≡ x2 + y2 + z2 − 2xy− 2yz − 2zx is a Källén triangle function [187]. In terms
of the c.m. angle the Mandelstam variables have the following form:

t(s, z) = 1
2

(
m2

1 +m2
2 +m2

3 +m2
4 − s−

(m2
2 −m2

1)(m2
4 −m2

3)
s

)
+ 2zpcm(s)qcm(s) ,

u(s, z) = 1
2

(
m2

1 +m2
2 +m2

3 +m2
4 − s+ (m2

2 −m2
1)(m2

4 −m2
3)

s

)
− 2zpcm(s)qcm(s) , (3.36)

where z ≡ cos θ can be written as

z =
t− u− 1

s (m2
3 −m2

4)(m2
2 −m2

1)
4pcm(s)qcm(s) . (3.37)

While the processes described in this Chapter only include the spinless particles, it is in-
structive to consider 2→ 2 scattering involving photons. In this case, the polarization vectors
εµ(k, λ), where k is a momentum and λ is a helicity for a spin-one particles are defined as

εµ(p1,±1) =


0

∓ cos θ√
2
−i√

2
± sin θ√

2

 , εµ(p1, 0) =


pcm
m3

Ep1
m3

sin θ
0

Ep1
m3

cos θ

 ,

εµ(p2,±1) =


0

± cos θ√
2
−i√

2
∓ sin θ√

2

 , εµ(p2, 0) =


pcm
m4

−Ep2
m4

sin θ
0

−Ep2
m4

cos θ

 , (3.38)
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for the final particles, while for the initial particles:

εµ(q1,±1) =


0
∓1√

2
−i√

2
0

 , εµ(q1, 0) =


qcm
m1
0
0
Eq1
m1

 ,

εµ(q2,±1) =


0
±1√

2
−i√

2
0

 , εµ(q2, 0) =


qcm
m2
0
0
−Eq2
m2

 , (3.39)

3.B Bootstrap method

"All models are wrong, but some are
useful."

George Box, 1976

The ultimate goal of any fitting procedure is obtaining the maximum amount of helpful
information from the available data. In practice, for the theoretical model f(C) under con-
sideration, this translates to the problem of extracting the best estimates of its parameters
C = {C1 . . . CN} and consequently, assessing the validity of the result by means of the error
analysis. Most often, it is done by maximizing the likelihood function given the underlying
probability distribution of the data uncertainties. In case when the Gaussian distribution is
obeyed, it is equivalent to minimizing the sum of the square residuals, weighted inversely by
uncertainties σi in the individual measurements {xi, yi}, or χ2 function:

χ2(C) =
∑
i

(
yi − f(xi; C)

σi

)2
. (3.40)

The uncertainties in the estimation of the best parameters Ĉ = {Ĉ1 . . . ĈN} are collected in
the error or covariance matrix, which also includes the effects of the parameters correlations.
Within the least-square method it is usually defined as

cov(Ĉi, Ĉj) =
[

1
2

∂2χ2

∂Ci∂Cj

∣∣∣∣∣
C=Ĉ

]−1

=
[
H−1

]
ij
, (3.41)

where H stands for the hessian matrix, which is symmetric and related to the curvature of
χ2 function in parameter space at its minimum. In general, for nonlinear models, the χ2

hypersurface is essentially nonparabolic, hence H depends on the parameters.
While being relatively simple and straightforward to implement, the standard least square

method suffers from several drawbacks. For instance, Eq. (3.40) assumes that only statistical
errors are present in the given dataset. However, the systematic uncertainties σsyst inherent
to the actual experimental data can skew the results of the fit significantly. In the simplest
case, they can be attributed to the common scale factor ξ and the χ2 function can be modified
accordingly [188]

χ̃2(C) =
∑
i

(
ξyi − f(xi; C)

ξσi

)2
+
(
ξ − 1
σsyst

)2

, (3.42)
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Figure 3.18: Simulated data from Cauchy distribution for µ = 0,Γ = 1, I = 200.

where ξ is an additional parameter to be fitted. In general, this method fails numerically
to describe the multiple datasets with different systematics, hence different normalization
factors. Beyond the simplest case, the assumption of the common normalization factor is also
not applicable due to the systematic uncertainties varying from point to point or the presence
of correlation.
Another problem that stands before the standard least-square procedure is uncertainty prop-

agation. Once the optimal set of parameters is obtained as the result of the minimization
procedure, the uncertainties of any derived quantities η(C) = {η1(C) . . . ηM (C)}, including
the fitting function itself, can be estimated by implementing the error propagation formula for
the covariance matrix:

cov(η̂i, η̂j) ≈
∑
l,k

∂ηi
∂Cl

∂ηj
∂Ck

∣∣∣∣
C=Ĉ

cov(Ĉl, Ĉk) , (3.43)

where η̂ ≡ η(Ĉ). This approximation fails, however, if the theoretical model is significantly
non-linear. In this case, the calculation of the partial derivatives is quite challenging, even
with modern numerical techniques.
These and other complications can be addressed within a framework of various Monte-Carlo

techniques, a statistical tool for studying the problems based on the use of random numbers4,
which has made it possible to solve easily several estimation problems that would have been far
more difficult by other means. In physics, these methods are frequently used to evaluate the
complex integrals [189] or make simulations; however, the underlying concept of randomness
can be applied to a broader class of problems requiring drawing the estimates from some
probability distribution.
Among these, the bootstrap technique is widely used for fitting. For example, the nonpara-

metric bootstrap [190] employs the idea of random sampling with the replacement to infer
the variability in a statistic of interest. In this case, the main advantage is that all essential
information can be estimated from the sample on hand, without the requirement to perform
additional experiments or making assumptions on the underlying distribution [191]. In con-
trast, the parametric bootstrap assumes that each point of the original data is a realization

4In actual simulations, mainly the pseudo-random generators are used; however, the implied prefix "pseudo"
will be omitted for clarity hereafter.

67



Chapter 3 Data-driven dispersive analysis of the ππ and πK scattering

χ2/d.o.f Î µ̂× 10−2 Γ̂× 10−1

Eq. (3.40) 0.99 197.9± 2.2 0.9× 1.4 9.9± 0.2
NB = 102 1.01 197.6± 2.2 0.9× 1.2 9.9± 0.2
NB = 104 0.99 197.9± 2.2 0.9× 1.4 9.9± 0.2

Table 3.17: Comparison of the standard least squares fitting (3.40) with bootstrap technique
with different number of cycles (NB = 102, 104). For the bootstrap result we show
χ2/d.o.f = χ2

B/d.o.f− 1 for the comparison only, see text for the details.

of a random sample from an unknown probability distribution of a specific parametric type
approximated by the probability distribution of the measured value p(xi, yi).

Knowing the distribution for yi, new sample {xi, yBi }m of the same size as an initial dataset
can be generated according to p(xi, yi). The bootstrap cycle is then each k-th generated dataset,
for which the best parameters ĈB

k are estimated by the standard χ2-minimization procedure
and the resulting derived values ηB(C) are stored. This cycle is then repeated over the large
number NB of times resulting in a set ĈB

1 · · · ĈB
NB

which contains the information on the
probability distribution of each parameter, where the mean and the covariance matrix are
given as

ĈB = 1
NB

NB∑
k=1

CB
k , cov(ĈBi , ĈBj ) = 1

NB − 1

NB∑
k=1

(ĈBi,k − ĈBi )(ĈBj,k − ĈBj ) . (3.44)

The bootstrap technique requires a generation of large numbers of random samples from
specific probability distribution. For arbitrary distribution, one of the most common Monte
Carlo algorithm for random number sampling is inverse transformation method. It is based
on the fact that by inverting the cumulative distribution function (CDF), which is uniformly
distributed on [0, 1], the samples from the distribution itself can be obtained. However, for most
of the continuous distributions, there is no analytical expression for CDF, and hence, other
methods may be preferred. For the normally distributed data, there is a more computationally
efficient alternative - Box-Muller transformation [192]. If applied to the real data points, the
modified version of this transformation takes a pair of uniformly distributed random numbers
U1, U2 ∈ [0, 1] and produces numbers from the Gaussian distribution with non-unit variance
δyi and non-zero mean yi:

yBi = δyi
√
−2 lnU1 cos 2πU2 + yi , (3.45)

where the cos 2πU2 varies the data between yi ± σi and
√
−2 lnU1 is a weight function.

The advantage of the bootstrap method is that it can be applied in an automatic way to
any situation regardless of the complexity. However, to illustrate the concept, we follow [193,
194] and consider a simple toy model based on the Cauchy distribution with the following
probability density function (PDF):

f(x; I, µ,Γ) = I

πΓ
Γ2

(x− µ)2 + Γ2 , (3.46)

where I is an overall scale factor, µ is a peak position and Γ is half-width at half-maximum.
In physics, it appears as the Breit-Wigner distribution, which is appropriate for describing the
data corresponding to resonant behaviour (see App. 5.A). For this distribution, the CDF and
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Figure 3.19: Bootstrap result (NB = 104) for the probability distribution of the fitted param-
eters Î , µ̂, Γ̂ compared to the Gaussian distribution N (x0, σ

2) with corresponding
parameters x0, σ

2.

hence its inverse, the quantile function, are known analytically, so that x can be obtained5 as:

x = µ+ Γ tan
[
π

(
ξ − 1

2

)]
, (3.47)

where ξ is randomly sampled from [0, 1] and I = 1. In order to simulate the experimental
data, we repeat this procedure 104 times with the peak located at µ = 0, half width Γ = 1,
collect the samples falling into [-5, 5] range and rescale the output to I = 200. The resulting
100-bin histogramm is then shown on Fig. 3.18 with yi and σi as a height and uncertainty of
each bin respectively.
We then treat this artificial data as an experimental output and, using Box-Muller trans-

formation, generate bootstrap datasets, one of which is shown in Fig. 3.18. In general, the
number of bootstrap cycles is situation-specific and is vaguely defined as very large. Table 3.17
shows the comparison of the standard fitting procedure and bootstrap for different number of
runs. While the NB = 104 is a commonly accepted choice, even NB = 102 gives similar results
in the case of the large statistics. As expected, with the statistical uncertainties only, the boot-
strap output for the fit parameters coincides with the result of the minimization procedure in
Eq. (3.40) given the suffiently high number of cycles.

5The Cauchy distribution is also known as normal ratio distribution since it comes about as the ratio of two
normally distributed variables with zero mean. Therefore it is possible to generate samples using Box-Muller
transform as well.
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Each fit in Table 3.17 is characterized by the value χ2/d.o.f., where d.o.f denotes the de-
grees of freedom. In case when there are no additional constraints, d.o.f=(number of data
points)−N . In the case of the perfect fit hypothesis, each term in the sum in Eq. (3.40) will
be of order unity. Therefore, the value χ2/d.o.f. should be close to 1. Note that the pseudo-
datasets generated under the bootstrap procedure are not Cauchy-distributed themselves but
are randomly generated around the Cauchy-distributed original simulation. Therefore, the
average χ2

B/d.o.f. for fitting the pseudo-data should be close to 2. In Table 3.17 we show,
when applicable, the value of χ2/d.o.f = χ2

B/d.o.f− 1 for the comparison only.
The advantage of the parametric bootstrap method is that the only assumption is made

regarding the uncertainties distribution of the original dataset. However, the probability dis-
tribution of parameter is reconstructed as the result of sampling. The obtained results for I,Γ
and µ compared to the normal distributions N (µ, σ2) with respective parameters are shown
on Fig. 3.19. In more complicated cases, for instance, when the systematic uncertainties are
included, the probability distribution of parameters is not expected to have Gaussian shape,
illustrating the limitation of the standard least squares procedure. The detailed analysis of
this scenario can be found in [193, 194].
To summarize, the bootstrap technique provides a powerful tool for the analysis of the avail-

able data without complex analytical evaluations. The parametric version allows to overcome
additional complications, such as scarcity of data if the underlying distribution can be safely
assumed. Moreover, for the complex models the analytic expressions are often not available
and the bootstrap method serves as a simple yet rigorous tool for the error analysis. This is
exactly the situation described in Chapters 3 and 5, as the N/D method requires the numerical
solution of the integral equation and hence the standard error analysis for poles and couplings
is hardly possible.
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Chapter 4

Two photon fusion reaction with ππ final state

In the previous Chapter, we developed the approach required to describe the interaction of
the light mesons pair, in particular the ππ → ππ process, which allowed us to extract valuable
information regarding σ/f0(500) and f0(980) resonances. As we mentioned in Sec. 3.2, the
resulting Omnès function is ubiquitous for processes where the ππ final state interaction arises
since it contains only the right-hand cuts. We will take advantage of this universality by
considering the prime example of the γγ → ππ process. Perpetuating the resonance subject,
we note that the study of this reaction allows accessing the information regarding the σ/f0(500)
and f0(980) coupling to photons, which in principle paves the way for deciphering their internal
structure. Aside from this ambitious prospect, we also note that in the energy region from
threshold to 1.5 GeV considered in this Chapter lies another resonance, f2(1270) in D-wave.
While it can be safely considered a regular quark-model state, we will move further from the
simplistic Breit-Wigner parametrization and attempt to describe it in a dispersive manner as
well.
In Sec. 2.3 we brought up the importance of the two-photon fusion reaction with pseudoscalar

mesons in the final state for the understanding of the anomalous magnetic moment of the muon
problem. Providing a comparatively significant contribution to the theoretical uncertainty, the
input from these reactions is rather vaguely estimated up to date. In recent years some progress
has been achieved towards incorporating the ππ channel; however, the model-independent
inclusion of the higher intermediate states approximated in terms of scalar, axial-vector and
tensor resonances is still a work in progress. We note that the relevant input arises from the
γ∗γ∗ → ππ reaction, where an off-shell photon carries a finite spacelike-virtuality. Naturally,
both experiment and theory, including this work, first approached the special case of real
photons in the initial state, which allowed to accumulate relatively abundant datasets and a
large number of models designed to describe them. However, even for the single-virtual process,
the available experimental data from the Belle Collaboration [195] is limited to the neutral
pions pair in the final state and large photon virtualities. On other hand, BESIII Collabortation
has already collected the data in both π0π0 and π+π− channels for low photon virtuality
[196], emphasizing the necessity of the theoretical framework able to provide a prediction
for this data. Presenting such an approach in this Chapter, we, however, will refrain from
the chronological pathway from real to single-virtual to double-virtual cases along which it
has developed. Instead, we will present the general framework describing the double-virtual
scenario and comment on the special cases when needed.
This Chapter is based on [1, 2, 4], and it is organized as follows. In the next section, we will

expand on the importance of the γ∗γ∗ → ππ process in the view of the upcoming experimental
data for low spacelike virtualities and the (g − 2)µ problem. We will also provide a brief
overview of the existing theoretical approaches. In Sec. 4.2, we will extend the dispersive
formalism given in the previous sections to the systems with two incoming photons. We
will concentrate on the kinematic constraints of the partial wave amplitudes and discuss the
peculiar analytical structure of the vector-meson exchange left-hand cuts. Finally, in Sec. 4.3
we will provide the numerical results for different combinations of photon virtualities: total
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Contribution Value ×1011

Experiment 116 592 061(41)

QED 116 584 718.931(104)
Electroweak 153.6(1.0)
HVP (e+e−, LO + NLO + NNLO) 6845(40)
HLbL (phenomenology + lattice + NLO) 92(18)

Total SM Value 116 591 810(43)

Difference: δaµ := aexpµ − aSMµ 251(59)

Table 4.1: Summary of the contributions to aSMµ as compiled in [7] in comparison to the av-
erage experimental value of [76, 77]. See [6, 7] for the detailed explanation of each
contribution.

and differential cross sections, pion dipole polarizabilities and the two-photon couplings of
σ/f0(500) and f0(980) resonances. In App. 4.A we will provide an alternative approach to
treat the anomalous threshold problem and in App. 4.B we will outline the connection between
the general e+ + e− → e+ + e− + X cross section and the cross sections of the γ∗γ∗ → ππ
reactions considered in this Chapter.

4.1 Introduction

As we mentioned in Sec. 2.3, the existing tension between the present high-precision (g −
2)µ measurements and the theoretical calculations amounts to 4.2σ difference. The current
theoretical error entirely results from hadronic contributions (see Table 4.1). Forthcoming
data from the high luminosity e+e− colliders, in particular from the BESIII and Belle-II
Collaborations will further reduce the uncertainty in the HVP over the next years to make it
commensurate with the experimental precision on (g−2)µ. The remaining hadronic uncertainty
results from HLbL, where apart from the pseudo-scalar pole contribution, a further nontrivial
contribution comes from the two-particle intermediate states such as ππ, πη and KK̄ (see
Table 4.2). The rescattering of ππ and πη are responsible for the contribution from f0(500),
f0(980), f2(1270) and a0(980) which can be taken into account in a dispersive framework.
Among those, only f2(1270) can be interpreted within the quark model, as a state that does
not originate from long-range interactions [197]. Given the fact that it is relatively narrow, its
contribution to the (g − 2)µ can be accounted for in two ways: using a pole contribution as
it is given in [198] (updated in [186] using recent data from the Belle Collaboration [195]), or
through fully dispersive formalisms [80, 184, 199] and [185] with the input from γ∗γ∗ → ππ.
The comparison will shed light into the effective resonance description of other resonances such
as axial-vector contributions [69, 198].
Experimentally, two-photon fusion reactions are studied at e+e− colliders. The most precise

and comprehensive datasets for the γγ → π0π0, γγ → π+π− and γγ → π0η processes involving
quasi-real photons were obtained by the Belle Collaboration [200–202]. When both leptons
in the process e+e− → X are detected in the final state, this reaction allows to access the
two-photon process γ∗γ∗ → X where both photons have a space like virtuality. The first
measurement of the γγ∗ → π0π0 process has been reported recently by the Belle Collaboration
in [195] for Q2 in the region from 3.5 − 30 GeV2. At small momentum transfers, the BESIII
Collaboration is currently analyzing both π+π− and π0π0 production in the 0.2 GeV2. Q2 . 2
GeV2 range [196], corresponding with the most relevant kinematical region for quantifying the
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4.2 Dispersive formalism

Contribution Value ×1011

π0, η, η′-poles 93.8(4.0)
π,K-loops/boxes −16.4(2)
S-wave ππ rescattering −8(1)

subtotal 69.4(4.1)

scalars −1(3)tensors
axial vectors 6(6)
u, d, s-loops/short-distance 15(10)

c-loop 3(1)

total 92(19)

Table 4.2: Summary of constituents to the HLbL contribution to aSMµ as compiled in [7]. See
[6, 7] for the detailed explanation of each estimate.

HLbL contribution to (g − 2)µ.
Very close to threshold, the γγ → ππ process has been studied in χPT up to two-loop

accuracy [203, 204] as a tool to access pion polarizabilities. Such approaches however fail to
describe the resonance region, which require resummation techniques to comply with exact
unitarity [119–121, 205, 206]. Among those, the most established ones respect analyticity
properties of the S-matrix [119, 120, 206–208]. The energy range of applicability of such
dispersive techniques is typically limited by the inelastic contributions and inclusion of higher
partial waves. Extending such dispersive techniques to the partial-wave helicity amplitudes of
the single virtual γγ∗ → ππ process is not straightforward, as in addition to the well-known
low-energy constraints, partial-wave amplitudes exhibit kinematic constraints. For quite some
time, the dispersive analyses of γγ∗ → ππ have been limited to the S-wave and single-channel
description [80, 183, 184, 209] which only covers the σ/f0(500) resonance region. In this
Chapter we show the extension of the dispersive approach to the coupled-channel case by
including KK̄ intermediate states, where the D-wave contribution was first accounted in a full
dispersive framework in [178]. This will allow for a validation of such approach by forthcoming
BESIII data for the γ∗γ∗ → ππ reaction, which requires the careful uncertainty estimation.

In case of the double virtual process γ∗γ∗ → ππ the treatment of the kinematical constraints
becomes even more cumbersome and there is an additional complication related to the anoma-
lous threshold behavior as it was pointed out in [210]. We will show an alternative way of
taking this contribution into account using an appropriate contour deformation.

4.2 Dispersive formalism

In this section, we are aiming to show the application of the dispersive formalism to the
coupled-channel {γγ, ππ,KK̄} system. Since the intermediate states involving two photons are
proportional to e4 and therefore, suppressed, the expected (3×3) matrix dispersion relation can
be reduced to the (2×1) form, which requires the previously obtained hadronic rescattering part
as input. However, once we consider the processes involving a photon pair, the construction
of dispersion relation becomes less straightforward. In particular, it requires careful handling
of the kinematic constraints and singularities appearing in the partial-wave amplitudes.
This section is organized as follows. First, we define the helicity and partial-wave amplitudes
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noooooo

Figure 4.1: Feynman diagram for the two-photon production process with two pions in the
final state.

of the γ∗γ∗ → ππ(KK̄) process. Then, in Sec. 4.2.2, we discuss the kinematic constraints and
derive a new set of amplitudes, for which the dispersion relation can be written in Sec. 4.2.3.
We devote particular attention to the left-hand cuts. While the generalization of the Born l.h.c.
for the case with finite photon virtualities is relatively straightforward and only requires the
proper parametrization of the pion and kaon form factors in the space-like region, the vector
meson l.h.c. needed for the dispersive description of the f2(1270) resonance region, have a
complicated analytical structure which should be treated carefully as we show in Sec. 4.2.6.
The hadronic final state interaction in the S-wave is accounted for using the results of the
Sec. 3.3 and hence, in Sec. 4.2.7 we only discuss the J = 2 Omnés function.

4.2.1 Helicity amplitudes
The two-photon fusion reaction γ∗γ∗ → ππ is a subprocess of the unpolarized double tagged
process e+(k1)e−(k2)→ e+(k′1)e−(k′2)π(p1)π(p2) (see Fig. 4.1) which in Lorenz gauge is given
as

iM = i e2

q2
1q

2
2

[ῡ(k1) γµ υ(k′1)] [ū(k′2) γν u(k2)]Hµν ,

Hµν = i

ˆ
d4x e−i q1·x〈π(p1)π(p2)|T (jµem(x) jνem(0))|0〉 , (4.1)

with q1 ≡ k1 − k′1, where the momenta of leptons k′1 and k′2 are detected. This corresponds
with the kinematical situation where the photons with momenta q1 and q2 have finite space-
like virtualities, q2

1 = −Q2
1 and q2

2 = −Q2
2. In the single-virtual limit, the second lepton

momentum k′1 goes undetected and therefore, the photon with momentum q1 is quasi-real, i.e.
q2

1 = −Q2
1 ' 0. By contracting the hadronic tensor Hµν with polarization vectors, one defines

helicity amplitudes Hλ1λ2 which can be further decomposed into partial waves

εµ(q1, λ1) εν(q2, λ2)Hµν ≡ eiφ(λ1−λ2)Hλ1λ2

= eiφ(λ1−λ2)N
∑
J even

(2J + 1)h(J)
λ1λ2

(s) d(J)
Λ,0(θ) , (4.2)

where Λ = λ1 − λ2, d(J)
Λ,0(θ) is a Wigner rotation function and θ is the c.m. scattering angle.

The two-photon initial state implies that the C-parity quantum number of the final particles
should be positive, which excludes the isospin I = 1 state in case of two pions, and due to Bose
symmetry, only even-values of total angular momentum J are present in the p.w. expansion.
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4.2 Dispersive formalism

In Eq. (4.2), N = 1 for γ∗γ∗ → ππ andN = 1/
√

2 for γ∗γ∗ → KK̄ to ensure the same unitar-
ity relations for the identical and non-identical particles in the case of I = 0 (see also Sec. 3.2).
Further, we will work in the isospin limit, defining the helicity amplitudes HI,λ1,,λ2(KI,λ1,λ2)
for γ(∗)γ(∗) → ππ(KK̄) , which imply the following relations for I = 0 and I = 2:

H0,λ1,λ2 = −
2Hc

λ1λ2
+Hn

λ1λ2√
3

,

K0,λ1,λ2 = −
Kc
λ1λ2

+Kn
λ1λ2√

2
,

H2,λ1,λ2 =
√

2
3
(
Hn
λ1λ2 −H

c
λ1λ2

)
, (4.3)

where Hc
λ1λ2

(Kc
λ1λ2

) and Hn
λ1λ2

(Kn
λ1λ2

) are the corresponding amplitude for charged or neutral
pion (kaon) pairs.

4.2.2 Kinematic constraints
It is well known that p.w. amplitudes h(J)

λ1λ2
may have kinematic singularities or obey kinematic

constraints, such as zeros and singularities at threshold and pseudothreshold [107, 211, 212].
Therefore it is important to find a transformation to a new set of amplitudes which are more
appropriate to use in partial-wave dispersion relations. The key step is to decompose the
scattering amplitude into a complete set of invariant amplitudes Fi [213–215] (see also [216])

Hµν =
5∑
i=1

Fi L
µν
i , (4.4)

where the structures Lµνi are defined as

Lµν1 = qν1 q
µ
2 − (q1, q2) gµν ,

Lµν2 = (∆2 (q1, q2)− 2 (q1,∆) (q2,∆)) gµν −∆2 qν1 q
µ
2 − 2 (q1, q2) ∆µ ∆ν

+ 2 (q2,∆) qν1 ∆µ + 2(q1,∆) qµ2 ∆ν ,

Lµν3 = (t− u)
{(

Q2
1 (q2,∆)−Q2

2 (q1,∆)
)(

gµν − qν1q
µ
2

(q1, q2)

)

−
(

∆ν − (q2,∆) qν1
(q1, q2)

)(
Q2

1q
µ
2 + qµ1 (q1, q2)

)
+
(

∆µ − (q1,∆) qµ2
(q1, q2)

)(
Q2

2 q
ν
1 + qν2 (q1, q2)

)}
,

Lµν4 = Q2
1Q

2
2 g

µν +Q2
1 q

µ
2 q

ν
2 +Q2

2 q
µ
1 q

ν
1 + qµ1 q

ν
2 (q1, q2) ,

Lµν5 =
(
Q2

1 ∆µ + (q1,∆) qµ1
) (
Q2

2 ∆ν + (q2,∆) qν2
)
, (4.5)

with ∆ ≡ p1−p2 and each Lµνi satisfies a gauge invariance constraint, i.e. q1µ L
µν
i = q2ν L

µν
i =

0. The numbering of the Lorentz structures is chosen such that in the single virtual case only
Lµν1,2,3 contribute to the process [178] while in the real photon case only Lµν1,2 are relevant, which
coincide with the tensor structures used in [65, 206, 217]. The invariant amplitudes Fi are free
from kinematic singularities or constraints and depend on the Mandelstam variables for the
γ∗γ∗ → ππ subprocess, which we choose as (see App. 3.A)

s = (q1 + q2)2 , t = (p1 − q1)2 , u = (p1 − q2)2 . (4.6)
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Chapter 4 Two photon fusion reaction with ππ final state

The prefactor (t− u) in front of the tensor Lµν3 is chosen so as to make all five amplitudes Fi
even under pion and photon crossing symmetry (t↔ u) [209, 216].

The generalization of the Born contribution to the case of off-shell photons is performed
by multiplying the scalar QED result by the electromagnetic pion (kaon) form factors fi(Q2)
[216, 218] which lead to the following invariant amplitudes

FBorn
1 = −e

2 (4m2
i +Q2

1 +Q2
2
)(

t−m2
i

) (
u−m2

i

) fi(Q2
1) fi(Q2

2) ,

FBorn
2 = − e2(

t−m2
i

) (
u−m2

i

) fi(Q2
1) fi(Q2

2) ,

FBorn
3 = FBorn

4 = FBorn
5 = 0 , (4.7)

where i = π (K) for γ∗γ∗ → ππ (KK̄). As these Born terms coincide with the pion pole terms
obtained in a dispersive derivation, there is a full agreement between the results of [216, 218].
We note that the Born terms possess a double pole structure in the soft-photon limit, as a
manifestation of Low’s theorem [219].
The kinematic constraints can be obtained by analyzing projected helicity amplitudes in

terms of the quantities (for i = 1, . . . , 5)

AJi (s) = 1
(p q)J

ˆ 1

−1

dz

2 PJ(z)Fi(s, t) , (4.8)

which are free of any singularities due to the properties of the Legendre polynomials [211, 212].
In Eq. (4.8), q and p are initial and final relative momenta in the c.m. frame. Due to specifics
of our basis (4.5) all the results below are given for the Born subtracted p.w. amplitudes

h̄
(J)
λ1λ2
≡ h(J)

λ1λ2
− h(J),Born

λ1λ2
, (4.9)

where for S-wave it holds [80, 184, 199]

h̄
(0)
++(s)± h̄(0)

00 (s) ∼ (s− s(∓)
kin ) , (4.10)

s
(±)
kin ≡ − (Q1 ±Q2)2 ,

with Qi ≡
√
Q2
i (i = 1, 2) and s

(±)
kin are pseudo-thresholds (see App. 4.A). Note that in the

single virtual or real photon cases these constraints are required by the soft-photon theorem
[219] and have been implemented already in [120, 121, 209, 220, 221]. The kinematically
uncorrelated amplitudes for the s-wave can be obtained by dividing left-hand side (l.h.s.) of
Eq. (4.10) by its right-hand side (r.h.s.)

h̄
(0)
i=1,2(s) =

h̄
(0)
++(s)± h̄(0)

00 (s)
s− s(∓)

kin
. (4.11)

In [178] the kinematically unconstrained basis of the partial wave amplitudes were derived
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for the single virtual case. Below we extend this result for the double-virtual case for J = 2,

(s+Q2
1 +Q2

2) h̄(2)
+− + 2

√
2Q2

1Q
2
2 h̄− ∼ γ1(s) , (4.12)

√
2 h̄(2)

+− − h̄+ +
(
Q2

1 +Q2
2

)
h̄− ∼ γ1(s) ,

√
2 h̄(2)

+− +
(
s+Q2

1 +Q2
2

)
h̄− ∼ γ1(s) ,

√
6 s h̄(2)

+− − 2
√

3 s h̄+ + 3 s (s+Q2
1 +Q2

2) h̄0 + 6 s h̄(2)
++

+
√

3
(
s2 + 2

(
Q2

1 +Q2
2

)
s−

(
Q2

1 −Q2
2

)2
)
h̄− ∼ γ2(s) ,

6s (s+Q2
1 +Q2

2) h̄(2)
++ + 12Q2

1Q
2
2 s h̄0

−
√

6
(
s (Q2

1 +Q2
2) + (Q2

1 −Q2
2)2
)
h̄

(2)
+−

+ 2
√

3
(
s (Q2

1 +Q2
2) + (Q2

1 −Q2
2)2
)
h̄+

− 2
√

3
(
Q2

1 −Q2
2

)2
(s+Q2

1 +Q2
2) h̄− ∼ γ2(s) ,

with auxiliary factor γn(s) defined as

γn(s) ≡ λn(s,−Q2
1,−Q2

2) (s− 4m2
π) , (4.13)

where λ is the Källén triangle function and h̄+,−,0 were introduced for convenience

h̄+(s) ≡
√
s

Q2
h̄

(2)
+0(s) +

√
s

Q1
h̄

(2)
0+(s), (4.14)

h̄−(s) ≡
(√

s

Q2
h̄

(2)
+0(s)−

√
s

Q1
h̄

(2)
0+(s)

)
1

Q2
1 −Q2

2
,

h̄0(s) ≡ h̄
(2)
00 (s)
Q1Q2

.

We emphasize that in addition to the s(±)
kin points the p.w. amplitudes for J 6= 0 exhibit a

so-called centrifugal barrier factor at 4m2
π, which comes from the properties of the Legendre

polynomials entering p.w. expansion Eq. 4.2. The new set of amplitudes h̄(2)
i=1..5(s) can be

obtained similar to (4.11) by dividing l.h.s. of Eq. (4.12) by its r.h.s.1 We emphasize, that Eq.
(4.12) shows the correlation of the p.w helicity amplitudes explicitly, as compared to the result
based on the Roy-Steiner equations [183, 210], where kinematic constraints are contained in
the integral kernels. The full set of these off-diagonal kernels is given in [210], and the final
solution is obtained by diagonalization of the kernel matrix.

4.2.3 Dispersion relations for the γ(∗)γ(∗) → ππ system
The new set of amplitudes h̄(J)

1−5 contains only dynamical singularities. These are right and left-
hand cuts and one can write a dispersion relation in the following form (modulo subtractions
which will be discussed in Sec. 4.3)

h̄
(J)
i (s) =

ˆ 0

−∞

ds′

π

Disc h̄(J)
i (s′)

s′ − s
+
ˆ ∞

4m2
π

ds′

π

Disch(J)
i (s′)

s′ − s
, (4.15)

1 Note that when Q2
1 = Q2

2 (and pions in the final state) special care is required. In that case, H+0 = −H0+
and only four Lorentz tensors in (4.5) are independent. Therefore one needs to reshuffle Eq. (4.12) in such
a way that only four amplitudes h̄(J)

i survive. We checked that numerically the results for Q2
1 ≈ Q2

2 given
by (4.12) are consistent with the strict Q2

1 = Q2
2 limit.
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where we used that Disc h̄(J)
i (s) = Disch(J)

i (s) along the right-hand cut. The latter is deter-
mined by the unitarity condition and in the elastic approximation is given by

Disch(J)
i (s) = t(J)∗(s) ρ(s)h(J)

i (s) , (4.16)

ρ(s) = p(s)
8π
√
s
θ(s− 4m2

π) ,

where ρ(s) is a two-body phase space factor and t(J)(s) is the hadronic scattering amplitude,
which is normalized as Im(t(J))−1 = −ρ. For the energy region above 1 GeV, it is necessary to
take into account the inelasticity. The first relevant inelastic channel is KK̄ which is required
to capture the dynamics of the f0(980) scalar meson (see Sec. 3.3.3). For the coupled-channel
case, the phase-space function ρ(s) and the amplitude t(J)(s) turn into (2× 2) matrices, while
h

(J)
i will be written in the (2 × 1) form with elements h(J)

i and k
(J)
i which correspond to

γ∗γ∗ → ππ and γ∗γ∗ → KK̄ amplitudes, respectively. The solution to Eq. (5.2) is given by
the well known Muskhelishvili-Omnès (MO) method for treating the final-state interactions
[58]. It is based on writing a dispersion relation for h̄(J)

i (Ω(J))−1 [119], where the Omnès
function Ω(J) satisfies a similar unitarity constraint

DiscΩ(J)(s) = t(J)(s) ρ(s) Ω(J)∗(s) . (4.17)

In result we obtain,

h
(J)
i (s) = h

(J),Born
i (s) + Ω(J)(s)

[
−
ˆ ∞

4m2
π

ds′

π

Disc (Ω(J)(s′))−1 h
(J),Born
i (s′)

s′ − s

+
ˆ 0

−∞

ds′

π

(Ω(J)(s′))−1 Disc h̄(J)
i (s′)

s′ − s

]
, (4.18)

which can be straightforwardly generalized for the coupled-channel case. The Born subtracted
amplitudes along the left-hand cut (second term inside the brackets) are given by multi-pion
exchanges in the t and u channels which in practice can be approximated by resonance (R)
exchanges [119]. The dominant contribution is generated by vector mesons ω and ρ. The
contribution from other heavier resonances will be absorbed in an effective way by allowing for
a slight adjustment of the V Pγ coupling [178]. We also note that the double pole structure of
the Born amplitudes does not bring an extra complication to Eq. (4.18), since its singularities
lie outside of the physical region.
Here we note that there is a freedom of writing the dispersion relation. In principle, one

could write a dispersion relation for the combination (h̄(J)
i −h

(J),V
i )(Ω(J))−1 as it was done for

γγ∗ → ππ in [209]. However, in this case one needs to make an assumption on the high-energy
dependence of the real part of h(J),V

i , as was explained in [210]. In the present work, we
only take out the Born term in Eg. (4.18), and therefore only need to know the high-energy
behavior of the imaginary part of the vector mesons exchange entering the left-hand cut, which
does not have any polynomial ambiguities [119].

4.2.4 Left-hand cuts
The vector-meson exchange left-hand cuts are obtained by the effective Lagrangian which
couples photon, vector (V ) and pseudoscalar (P ) meson fields,

LV Pγ = eCV Pγ ε
µναβ Fµν ∂αP Vβ , (4.19)
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Figure 4.2: The behaviour of the vector-meson exchange amplitudes h0,V
++(s) and k0,V

++(s) for
γγ(∗) → ππ(KK̄) process. Left panel: Q2

1 = Q2
2 = 0 GeV2, right panel Q2

1 =
0, Q2

2 = 0.2 GeV2. The dashed lines indicate the closest s(−)
L corresponding to

ρ, ω and K∗ meson masses. Note the additional l.h.c. piece close to zero for the
single-virtual case.

where Fµν = ∂µAν − ∂ν Aµ. This Lagrangian density implies

F V exch
1 = −

∑
V

e2C2
V Pγ

2

(
4 t+Q2

1 +Q2
2

t−m2
V

+ 4u+Q2
1 +Q2

2
u−m2

V

)
f̃V,i(Q2

1, Q
2
2) ,

F V exch
2 =

∑
V

e2C2
V Pγ

2

(
1

t−m2
V

+ 1
u−m2

V

)
f̃V,i(Q2

1, Q
2
2) ,

F V exch
3 =

∑
V

e2C2
V Pγ

t− u

(
1

u−m2
V

− 1
t−m2

V

)
f̃V,i(Q2

1, Q
2
2) ,

F V exch
4 =

∑
V

e2C2
V Pγ

(
1

t−m2
V

+ 1
u−m2

V

)
f̃V,i(Q2

1, Q
2
2) ,

F V exch
5 = 0 , (4.20)

where we defined
f̃V,i(Q2

1, Q
2
2) ≡ fV,i(Q2

1) fV,i(Q2
2) , (4.21)

The couplings CV can be extracted from the experimentaly measured width of vector meson
radiative decays:

ΓV Pγ = e2C2
V (m2

V −m2
P )3

24πm3
V

. (4.22)

In the following we will use the modulus of the radiative couplings arising from the SU(3)
relations

gV Pγ ' Cρ±,0π±,0γ ' Cωπ0γ/3 , (4.23)

as the only fit parameter, as discussed in [178], yielding gV Pγ = 0.33 GeV−1. This value lies
within 10% with the PDG average gPDG

V Pγ = 0.37(2) GeV−1 [27], thus justifying the approxi-
mation of left-hand cuts by vector mesons. The slight difference accounts for the contribution
from other heavier left-hand cuts, which in general should be taken into account by imposing
Regge asymptotics. Such a study is however beyond the scope of the present analysis. In
Eq. (4.21) fV,π(Q2

i ) are vector meson transition form factors, which will be discussed in the
next section.
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Figure 4.3: Comparison of the pion (upper panel) and kaon (lower panel) form factors from
VMD prediction (dashed line) and simple monopole fits (solid line) to the available
data from [222–224] and [225–227] respectively. See text for the details.

In Fig. 4.2 we illustrate the behaviour of the vector-meson exchange amplitude h0,V
++(s) for

both real and a single-virtual case with Q2
2 = 0.2 GeV2. Note that in the single-virtual case,

the additional piece appears close to the threshold. In the double-virtual case, the analytical
structure of the vector-meson left-hand cuts is even more complicated. We will discuss it in
details in Sec. 4.2.6 and App. 4.A.

4.2.5 Pion, kaon and vector mesons form factors
As mentioned in the previous section, in order to account for the finite virtuality of the photon,
the Born l.h.c. should be multiplied by the electromagnetic pion (kaon) form factor. In the
space-like region q2 = −Q2 < 0 pion and kaon form factors in the are defined as [218]

〈π+(p′)|jµ(0)|π+(p)〉 = e
(
p+ p′

)
µ fπ

(
(p′ − p)2

)
,

〈K+(p′)|jµ(0)|K+(p)〉 = e
(
p+ p′

)
µ fK

(
(p′ − p)2

)
. (4.24)
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Figure 4.4: Comparison of the vector meson form factors from VMD predictions and the dis-
persive estimation of ωπ0 form factor [228]. See text for the details.

To evaluate them in the region of Q2 . 1 GeV2 we improve the vector meson dominance
(VMD) [229] prediction by performing the simple monopole fits

fπ(Q2) = 1
1 +Q2/m2

ρ

→ 1
1 +Q2/Λ2

π

,

fK(Q2) = 1/2
1 +Q2/m2

ρ

+ 1/6
1 +Q2/m2

ω

+ 1/3
1 +Q2/m2

φ

→ 1
1 +Q2/Λ2

K

. (4.25)

to the available data from [222–224] and [225–227] respectively, with the following parameters
Λπ = 0.727(5) GeV with χ2/d.o.f = 1.22 and ΛK = 0.872(47) GeV with χ2/d.o.f = 0.69 (see
Fig. 4.3)
For the vector meson contribution the vertex function is given as

〈V (k, λ)|jµ(0)|π(p)〉 = 2 eCV Pγ fV,π(Q2) εµαβγ kα pβ εγ∗(k, λ) , (4.26)

and VMD predicts following transition form factors (TFF):

fωπ0(Q2) = 1
1 +Q2/m2

ρ

,

fρ0π0(Q2) = fρ±π±(Q2) = 1
1 +Q2/m2

ω

,

fK∗±K±(Q2) = 3/2
1 +Q2/m2

ρ

+ 1/2
1 +Q2/m2

ω

+ 1
1 +Q2/m2

φ

,

fK∗0K0(Q2) = 3/4
1 +Q2/m2

ρ

+ 1/4
1 +Q2/m2

ω

+ 1/2
1 +Q2/m2

φ

. (4.27)

Unfortunately, for the vector meson TFF there is no data available in the spacelike region.
For the transition form factor fω,π(Q2) we use the dispersive analysis from [228] (see also
[230]), while for the TFF fρπ(Q2) the VMD model from Eq. (4.27) is used. We note, that in
the time-like region, Q2 < 0, more complicated parametrizations are needed.
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Figure 4.5: Left-hand cut singularities and the integration contour for non-anomaly case (a)
and its deformation for the anomaly case (b). See text for details.

4.2.6 Analytic structure of the left-hand cuts

In order to find a solution of the dispersion relations given in (4.18), one needs to understand
the singularity structure of the p.w. amplitudes h(J)

i as a function of the complex variable s.
For the space-like photons the p.w. Born amplitudes are real functions above the threshold
and do not bring any complexity. On the other hand, the vector-meson exchange left-hand
cut is determined by four branching points: s = 0, s = −∞ and

s
(±)
L = 1

2
(
2m2

π −Q2
1 −Q2

2 −m2
V −

(m2
π +Q2

1)(m2
π +Q2

2)
m2
V

)
± λ1/2(m2

V ,m
2
π,−Q2

1)λ1/2(m2
V ,m

2
π,−Q2

2)
2m2

V

. (4.28)

When one photon is real, the cut consists of two pieces: (−∞, s(−)
L ] and [s(+)

L , 0]. However,
when both photons carry a space-like virtuality, one has to be careful, since for Q2

1Q
2
2 >

(m2
V −m2

π)2 the left-hand branch point s(−)
L moves to the right and reaches the pseudo-threshold

point s(+)
kin and only then moves to the left (see Fig. 4.5). In this case the integration along the

cut acquires an additional piece [s(−)
L , s

(+)
kin ] which is related to an "anomalous" discontinuity

[136, 231]. In addition, the integral around s(+)
kin , in general, is non-zero and requires a special

care [210]. Indeed, according to (4.12), the J = 2 p.w. amplitude schematically

hV (s) = 1(
s− s(+)

kin

)2

ˆ 1

−1

z4 dz

t(s, z)−m2
V

, (4.29)

behaves like
(
s− s(+)

kin

)−9/2
. Splitting the contour path into an integral up to s(+)

kin − ε and a

circular integral of radius ε around s(+)
kin (dashed curve in Fig. 4.5) produces the cancellation

of two singular pieces. In [210], this was solved by using a fit function (which consists of an
appropriate square-root-like behavior and a polynomial) in the vicinity of the singular point.
We follow here a different strategy and enlarge the contour around s

(+)
kin such that one stays

away from possible numerical issues related to the anomaly piece (see Fig. 4.5). We propose
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Figure 4.6: Omnès functions for J = 2, I = 0 (left panel) and J = 2, I = 2 (right panel) using
the parametrization of Eq. (4.31). See text for the details.

to present hV (s) in the physical region as

hV (s) =
ˆ s

(−)
L −R

−∞

d s′

π

DischV (s′)
s′ − s

+
ˆ
CR

d s′

2πi
hV (s′)
s′ − s

+
ˆ 0

s
(+)
L

d s′

π

DischV (s′)
s′ − s

, (4.30)

where R is chosen such that sj = −Q2
1 −Q2

2 + 2m2
π − 2m2

V lies inside the circle. The location
of sj is determined by the condition that the imaginary part of the logarithm in (4.29) changes
sign and therefore requires a proper choice of the Riemann sheet which we want to avoid.
The merit of (4.30) is such that it works for both anomaly and non-anomaly cases, so one
can use it for any space-like Qi including the "transition" line when Q2

1Q
2
2 = (m2

V −m2
π)2. In

addition, it is independent on the degree of singularity and can be used equally well for higher
p.w. with J > 2. The generalization to the physical case with Omnès functions (4.18) is then
straightforward since all of the quantities are well defined at complex energies.

We also propose an alternative approach of treating the anomalous threshold problem. The
details of this approach and the anomalous threshold problem itself can be found in App. 4.A.
For time-like virtualities (which are not of interest in the present work) we refer the reader to
[209, 232] where different cases of overlapping left- and right-hand cuts are considered.

4.2.7 Hadronic input
For the hadronic input, we are implementing the results presented in the Chapter 3. For the
S-wave isospin I = 0 amplitude, we use the coupled-channel Omnès function, discussed in
Sec. 3.3.3 and for the I = 2 we use the single-channel result from Sec. 3.3.4. For the D-wave
I = 0, 2 amplitudes we use the single-channel Omnès function in terms of the corresponding
phase shifts,

Ω(2)
I (s) = exp

(
s

π

ˆ ∞
4m2

π

ds′

s′
δ

(2)
I (s′)
s′ − s

)
. (4.31)

Its numerical evaluation requires a high-energy parametrization of the phase shifts. We use a
recent Roy analysis [100] below 1.42 GeV, and let the phase smoothly approach π (0) for I = 0
(I = 2) respectively. The resulting Omnès functions are shown in Fig. 4.6
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Figure 4.7: Two-photon decay width of σ/f0(500) and f0(980) compared to the recent disper-
sive estimations from [87, 120, 208, 221, 233].

4.3 Numerical results

The constructed set of dispersion relations allows us to evaluate many physical quantities of
interest. Unfortunately, as we mentioned in Sec. 4.1 it is possible to confront the obtained
results directly with the data only in a limited number of scenarios. In some other cases, the
χPT calculations are readily available for comparison, but they have a minimal range of validity
in terms of the photon virtuality. Therefore, the major part of this section is dedicated to the
different predictions for the processes with virtualities not yet accesible by the experiment or
other models.
This section is organized as following. We first consider the case when both photons are

real, which allows to extract the two-photon couplings of the σ/f0(500) and f0(980) resonances.
In Sec. 4.3.2 we discuss the pion dipole polarizabilities which are related to the subtraction
constants in the dispersion relation. We will compare the S-wave results for unsubtracted and
once-subtracted versions of the dispersion relation for real and single-virtual cases, and will try
to understand the discrepancy between the obtained value for neutral pion dipole polarizability
and the NLO χPT prediction. Finally, in Sec. 4.3.3 we will provide the total and differential
cross sections. For the real case we will also compare the results to the available experimental
data.

4.3.1 Two-photon couplings of σ/f0(500) and f0(980)
As an application of the Omnès functions obtained in Sec. 3.3 and the γγ → ππ amplitude
h

(0)
0,++(s), we would like to extract the two-photon couplings of σ/f0(500) and f0(980). In

principle, the coupling to the external currents has the potential to infer the scalar meson
composition. Furthermore, it characterizes the interaction strength of σ/f0(500) and f0(980)
in the two-photon channel. The latter is important for the light-by-light sum rule applications
[186, 234–236] and serves as a key input to estimate the isoscalar two-pion (kaon) contribution
to the HLbL scattering for (g− 2)µ. The central result in this section will be obtained using a
coupled-channel dispersive representation, however, for σ/f0(500) we will employ as well the
single-channel representation both for physical and non-physical pion masses.
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4.3 Numerical results

|gpγγ |, GeV

σ/f0(500)

Exp., SC 5.6(1)(0) · 10−3 6.1(7) · 10−3 [120]
Exp., CC 5.6(2)+0.1

−0.1 · 10−3

Latt., 236 10.7(9)+0.1
−0.1 · 10−3

f0(980)

Exp., CC 4.0(8)+0.3
−1.1 · 10−3 3.8(1.4) · 10−3[87]

Table 4.3: Two photon couplings of the σ/f0(500) and f0(980) resonances calculated in the
data-driven N/D approach compared with the result of Roy-like analyses. SC and
CC stand for single- and coupled-channel analyses, respectively. In our results, the
first error is the statistical one, while the second one comes from a variation of sE
and has a systematic nature (see Sec. 3.2 for the details).

The two-photon couplings are extracted by calculating the residue of h(0)
0,++(s) at the pole

positions, sp. Following [207, 237], in our convention it is given by

g2
pγγ

g2
pππ

= −
(
ρ0(sp)h(0)

0,++(sp)
)2

, (4.32)

where h(0)
0,++(s) is evaluated on the first Riemann sheet for p = σ/f0(500), f0(980). An intuitive

way of re-expressing the two-photon couplings, shown in Table 4.3, is by using the formal
definition of the corresponding two-photon decay widths

Γp→γγ = |gpγγ |2

16πRe√sp
, (4.33)

where the pole positions sp for each case are listed in Sec. 3.3. Converted to (4.33), our results
read

Γσ→γγ = 1.37(13)+0.09
−0.06

[
1.38(9)+0.01

−0.01

]
keV,

Γf0(980)→γγ = 0.33(16)+0.04
−0.16 keV, (4.34)

Γmπ=236MeV
σ→γγ = 4.64(1.01)+0.88

−0.35 keV,

where in square brackets the single-channel approximation is shown. As expected, its Γσ→γγ
is almost indistinguishable from the coupled-channel case. In Fig. 4.3 we compare our results
with the recent dispersive estimates [87, 120, 208, 221, 233]. While the two-photon decay
width of f0(980) is consistent with the coupled-channel amplitude analysis of [221] and the
over-subtracted coupled-channel Muskhelishvili-Omnès analysis [87], the two-photon width of
σ/f0(500) is about 25% smaller than their values. On the other hand, the obtained two-
photon width of σ/f0(500) is consistent with the sophisticated Roy-Steiner analysis [120] and
other dispersive analyses from [208, 233]. Finally, we also predicted σ/f0(500) two-photon
coupling/width for the unphysical mπ = 236 MeV, which would be interesting to confront
with the direct lattice calculations.
We note, that the errors quoted in Eq. (4.34) correspond solely to the uncertainties in the

Omnès matrix. In principle, one can perform a more comprehensive study of the theoretical
uncertainties, by the inclusion of more distant left-hand cuts in γγ → ππ(KK̄). This would
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Chapter 4 Two photon fusion reaction with ππ final state

(α1 − β1)π± × 104, fm3 (α1 − β1)π0 × 104, fm3

cut-off, GeV2 −∞ −10 −1 −∞ −10 −1

π 4.8 7.9
ρ −4.5 −3.8 −1.4 −4.5 −3.8 −1.4
ω −9.6 −7.6 −2.2 −21.7 −19.3 −7.8

total −9.2 −6.5 1.3 −18.3 −15.2 −1.3

NLO χPT 6.0 −1.0
Experiment 4.0(1.2)stat(1.4)syst

Table 4.4: Different contributions to the dipole polarizabilities of pion extracted from the dis-
persive sum rule in comparison with the NLO χPT prediction and the recent COM-
PASS measurement for the charged case [238]. See text for the details.

require introducing subtraction constants which can be either fixed from the pion dipole polar-
izabilities or fitted directly to the cross-section data . We will discuss this choice in details in
the next sections. Doing so would likely enlarge the error, but we do not expect a significant
change of the central values, since the current description of the cross-section data, which is
parameter-free in the S-wave (see Sec. 4.3.3), is quite impressive.

4.3.2 Pion dipole polarizabilities
The Born-subtracted S-wave amplitude of the process h̄(0)

I,++ is related to the generalized dipole
polarizability of the pion (α1 − β1)π as

h̄
(0)
I,++(s,Q2) = 2πmπ(α1 − β1)Iπ (s+Q2) + ... . (4.35)

Re-expressing Eq. (4.18) in terms of the helicity amplitudes leads to the following sum rule for
the generalized dipole polarizability

(α1 − β1)Iπ = Ω(0)
I (−Q2)
2πmπ

[ ˆ 0

−∞

ds′

π

(Ω(0)
I (s′))−1 Disc h̄(0)

I,++(s′)
(s′ +Q2)2

−
ˆ ∞

4m2
π

ds′

π

Disc (Ω(0)
I (s′))−1 h

(0),Born
I,++ (s′)

(s′ +Q2)2

]
. (4.36)

Similar to [80] we calculated the dipole polarizabilities of charged and neutral pions (α1−β1)π,
as shown in (4.35). Unsubtracted dispersion relations allow us to extract the following charged
pion dipole polarizability: (α1 − β1)π± = 4.8 × 10−4 fm3, which is consistent with NLO χPT
(α1 − β1)χPTπ± = 6.0× 10−4 fm3 and with the recent COMPASS measurement: (α1 − β1)expπ± =
4.0(1.2)stat(1.4)syst × 10−4 fm3 [238]. For the neutral pion dipole polarizability we obtain
(α1 − β1)π0 = 7.9 × 10−4 fm3, thus being far from the NLO χPT value of (α1 − β1)χPTπ0 =
−1.0× 10−4 fm3.
Even though the charged channel is the dominant one, the question might arise of how

suitable the current input is when estimating (g − 2)µ. The neutral pion dipole polarizability
discrepancy may have origin in the correction from heavier l.h.c., i.e. the first term in Eq.
(4.36). The dominant l.h.c beyond the pion pole comes from vector meson t- and u-channel
exchanges. Since they are much stronger for the neutral channel due to ω-exchange, the π0

polarizabilities are expected to get large corrections [80]. Even though the dispersive integral
is formally convergent due to the asymptotically bounded behavior of our Omnès function and
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Figure 4.8: Comparison of the p.w. amplitudes |h(0)
I,++| for once-subtracted (dashed line) and

unsubtracted (solid line) dispersion relations; Born results are shown by the dotted
lines. First row: I = 0, single channel; second row: I = 0, coupled-channel; third
row: I = 2, single channel.

the discontinuity of the amplitude h̄0
I,++, it acquires significant corrections from the integration

over large negative s. In the Table 4.4 we show the contributions from π, ρ and ω to both
charged and neutral pion polarizabilities. The second term in (4.36) corresponds to the pure
π contribution. For the ρ and ω contributions we study also the dependence on the left-hand
cut cut-off, or the integration limit in the first term in (4.18). If the cut-off is taken as −1
GeV2, the result from combined contributions for the π0 match the NLO χPT value and
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Chapter 4 Two photon fusion reaction with ππ final state

the contribution from ω exchange is indeed, dominant. Therefore, the implementation of the
dispersion relations with higher intermediate states beyond ρ and ω corresponds to introducing
at least one subtraction, which can be fixed to the NLO χPT (with some adjustments as
explained below) given by [239]:

(α− β)π± = e2

4πmπ

{
8 (Lr9 + Lr10)

F 2
0

+ −Q
2

F 2
0

[
J̄ ′π(−Q2) + 1

2 J̄
′
K(−Q2)

]}
,

(α− β)π0 = e2

2πmπ

{
−Q2 −m2

π

F 2
0

J̄ ′π(−Q2) + −Q
2

4F 2
0
J̄ ′K(−Q2)

}
,

(α− β)K± = e2

4πmK

{
8 (Lr9 + Lr10)

F 2
0

+ −Q
2

F 2
0

[1
2 J̄
′
π(−Q2) + J̄ ′K(−Q2)

]}
,

(α− β)K0 = e2

8πmK

−Q2

F 2
0

{
J̄ ′π(−Q2) + J̄ ′K(−Q2)

}
, (4.37)

with F0 ' Fπ = 92.4 MeV and the following loop function

J̄i(s) = 1
16π2

[
2 + σi(s) log

(
σi(s)− 1
σi(s) + 1

)]
, σi(s) =

√
1− 4m2

i

s
. (4.38)

For Q2 = 0 we fix π± polarizability to the COMPASS result [238] while for π0 and K
(I = 0) we used (Lr9 + Lr10) = (0.84 ± 0.64) × 10−3 taken from [240] similar to [119]. The
Q2 dependence is fully governed by (4.37), where in the single channel case we used the pion-
loop contributions only. The comparison between unsubtracted and once-subtracted results
is shown in Fig. 4.8. For I = 0 the single channel descriptions coincide in the region of
f0(500) both for Q2 = 0, 0.2 GeV2 cases. The coupled-channel description, in turn, shows a
slight difference for Q2 = 0, which becomes significant for the finite Q2. This behaviour can
be ascribed to the lack of experimental information on the kaon polarizabilities and the poor
convergence of SU(3) χPT. For I = 2 we note the discrepancy of about 10%-25% (

√
s < 0.6

GeV) at Q2 = 0.2 GeV2, which, however, does not affect strongly the total cross section. Since
the NLO χPT is expected to be valid only in the region Q2 . 0.2 GeV2, the introduction of the
additional subtraction reduces the predictive power of the dispersion relations. In the future,
the upcoming data from the BESIII Collaboration in the range 0.2 . Q2 . 2.2 GeV2 [196]
will allow to fix the subtraction constant directly from the data and hence, extract essential
information on Q2-dependence of the polarizabilities.

4.3.3 Total and differential cross sections
The cross sections for the double virtual process γ∗γ∗ → ππ, which involve either two transverse
(TT ) photon polarizations or two longitudinal (LL) photon polarizations or one transverse and
one longitudinal (TL) photon polarization are defined by

dσTT
d cos θ = βππ

64π λ1/2(s,−Q2
1,−Q2

2)

(
|H++|2 + |H+−|2

)
,

dσTL
d cos θ = βππ

32π λ1/2(s,−Q2
1,−Q2

2)
|H+0|2 , (4.39)

dσLL
d cos θ = βππ

32π λ1/2(s,−Q2
1,−Q2

2)
|H00|2 ,

βππ = 2 p√
s
,
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where for the neutral pions one has to include a symmetry factor of 1/2. The quantities σTT ,
σTL, σLT and σLL enter the cross section for the process e+e− → e+e−ππ given in Refs.
[235, 241] (see App. 4.B). It sets the convention for the virtual photon flux factor, while the
convention for the wave functions of the longitudinally polarized photons is chosen as

εµ(q1, 0) = 1
Q1

(q, 0, 0, Eq1) , (4.40)

εν(q2, 0) = 1
Q2

(−q, 0, 0, Eq2) ,

Eqi =
√
q2 −Q2

i , q = λ1/2(s,−Q2
1,−Q2

2)
2
√
s

.

This convention reproduces the real photon limit continuously. Naturally, the processes involv-
ing real photons produce only the cross section σTT and the single-virtual process produces
cross sections σTT and σTL.
We first start the discussion with the real case γγ → ππ, for which the data is available both

for charged [200, 242, 243] and neutral [201, 244] channels. We implement rescattering in S-
and D-waves, while the partial waves beyond are approximated by the Born terms. Regarding
the S-wave, we find that the unsubtracted dispersion relation in Eq. 4.18, including Born
left-hand cuts alone, predicts a reasonable description of the f0(500) and f0(980) regions.
However, to describe the f2(1270) region in the D-wave, it is necessary to include heavier
left-hand cuts [119], which we approximate with only vector mesons exchanges and slightly
adjust the coupling gV Pγ = 0.33 GeV−1 in Eq. (4.20) to reproduce the f2(1270) peak in the
γγ → π0π0 cross-section. We emphasize that this is the only parameter we adjust to the real
photon data. We also note that the convergence of the unsubtracted dispersive integrals for
J = 2 is generally better than for J = 0 due to the centrifugal barrier factor. Therefore,
including vector meson left-hand cuts in the S-wave requires adding at least one subtraction,
which can be fixed from χPT. As we discussed in Sec. 4.3.2, for relatively small Q2, the results
of the two solutions are very similar. Since the finite Q2 prediction from χPT is expected to
get large corrections for Q2 > 0.25 GeV2 we opted to stay with the unsubtracted version of
the dispersion relations.
In Fig. 4.9 it is shown that with this choice, we achieve a reasonable agreement for both

charged and neutral channels. Note, that for the charged case the total result is below the sum
of S- and D-waves due to the presence of the incoherent sum of amplitudes squared in total
cross section (see App. 4.B.) The slight difference in the intermediate region in γγ → π+π−

total cross section, in principle, can be fixed by over-subtracting the dispersion relation and
fitting this unknown subtraction constant to the data, similar to the analysis in [119]. However,
our main goal in this approach is to have predictive power for the single and double virtual
processes. Our prediction for the spacelike single virtual case using the unsubtracted dispersion
relation is shown in Fig. 4.10 and 4.11 for σTT and σTL respectively. The latter is fully
determined by helicity-1 contribution and increases with increasing Q2

2 in the low Q2
2 regime.

We also notice that the angular distribution dσTL/d cos θ is forward peaked due to the Born
contribution. For the σTT , we emphasize the importance of the unitarization, which increases
the pure Born prediction at low energy by a significant amount.

The obtained results have to be further confronted with data; therefore, we attempt to
estimate the uncertainties of the given approach. For this purpose, we take into account
the fitting error for the gV Pγ , which contributes to the D-wave. The uncertainties of the
S-wave treatment mainly originate from the hadronic rescattering part since the Born terms
are well known. Previously, in [4] we estimated the hadronic uncertainty rather conservatively
and compared the results using two different data-driven coupled-channel Omnès functions:
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Chapter 4 Two photon fusion reaction with ππ final state

from our N/D analysis and from [245]. However, using the bootstrap technique in our N/D
analysis, which we discussed extensively in Sec. 3.2, we are now in a position to estimate the
hadronic contribution to the overall γγ → ππ in a more controlled and model-independent
manner. To further account for the uncertainties coming from the finite photon virtuality, we
include the errors of the monopole fit for pion and kaon electromagnetic form factors. For the
vector meson left-hand cuts, we include the dispersive estimation uncertainty of fωπγ(Q2) and
consider conservatively the error bar of the fρπγ(Q2) at Q2 = 0.5 GeV2 in the VMD treatment
to be at around 15%.
Finally, in Fig. 4.12 we present the σTT , σTL and σLL predictions for a fixed value Q2

1 = 0.5
GeV2 for one photon virtuality and different values Q2

2 = 0.25, 0.5, 0.75, 1.0 GeV2 for the sec-
ond photon virtuality. The last two Q2

2 points are above the anomaly point. Here for the σTL,
we again notice that the helicity-1 contribution increases with increasing virtualities. It is also
instructive to compare our approach with a dispersive study based on the Roy-Steiner equa-
tions. In [210], there is a different strategy for treating kinematic singularities and anomalous
thresholds. Secondly, there is a coupling between S-wave and D-wave with strength related
to the high-energy behaviour assumption. Thirdly, the extra subtraction in [210] leads to a
1/s singular behaviour, which is due to the truncation of the partial wave expansion. In our
approach, we solve a partial wave dispersion relation under the assumption of maximal analyt-
icity. For the S-wave and D-wave we perform a coupled-channel and single-channel dispersive
analysis, respectively and present a simpler implementation of the anomalous thresholds. Fur-
thermore, in the present approach, there is no coupling between S- and D-waves and no extra
1/s singularities. In [7], the comparison between [210] and our current results has been done.
Both approaches agree well up to the details due to a different treatment of the vector-meson
couplings, form factors, and the inclusion of the coupled-channel effects in the S-wave.

4.4 Summary and Outlook

In this Chapter, we have presented a dispersive analysis of the γ∗γ∗ → ππ reaction from
the threshold up to 1.5 GeV in the ππ invariant mass for several values of the photon space-
like virtualities. For the S-wave, we used a coupled-channel dispersive approach in order to
simultaneously describe the scalar σ/f0(500) and f0(980) resonances since the latter has a
dynamical {ππ,KK̄} origin. Since f2(1270) tensor resonance decays predominantly to two
pions, for the D-wave, we adopted a single-channel dispersive approach that requires t- and u-
channel vector-meson contributions to the left-hand cut. This contribution introduces the one
parameter fixed to the real photon data - the gV Pγ coupling, which lies well within the SU(3)
spread of the couplings determined from the experimental vector meson radiative decays.
Considering the S-wave resonances, we extracted their two-photon couplings and two-photon

decay width. For the σ/f0(500) resonance we performed the calculations for the unphysical
pion mass mπ = 236 MeV. The obtained results will serve as one of the relevant inputs to
constrain the hadronic piece of the light-by-light scattering contribution to the muon’s aµ [80,
184, 185, 199]. Especially it allows to estimate the contributions from f0(500), f0(980) and
f2(1270), where the latter can be compared with the narrow resonance result [186, 198] as it
was recently done for f0(980) in [81] using the results of the present work.
While for the real photon processes γγ → π+π− and γγ → π0π0, we have achieved a

reasonable description of the total cross section in comparison with the most recent data from
the Belle Collaboration [200, 201], there are still a few open issues before it can be fully
implemented in a (g − 2)µ calculation. First, one needs to validate a current treatment of
left-hand cuts by forthcoming BESIII data on the γγ∗ → π+π− and γγ∗ → π0π0 reactions
[196]. This is a prerequisite for a data-driven approach in quantifying the uncertainty of the
HLbL contribution to aµ. Second, for higher Q2, one has to incorporate constraints from
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Figure 4.9: Total σTT (left panels) and differential dσTT /d cos θ (right panels) cross sections for
the γγ → ππ Q2

1 = Q2
2 = 0 GeV2 case. Upper plots the results for the γγ → π+π−

scattering for angular coverage | cos θ| ≤ 0.6 in comparison to the data from [200,
242, 243] and lower plots show the results for the γγ → π0π0 scattering for angular
coverage | cos θ| ≤ 0.8 in comparison to the data from [201, 244]. The Born results
are shown by the dotted curve, the S- and D-wave contributions are shown by
dot-dashed and dashed curves respectively.
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Figure 4.10: Total σTT (left panels) and differential dσTT /d cos θ (right panels) cross sections
for the γγ∗ → ππ Q2

1 = 0, Q2
2 = 0.5 GeV2 case and the full angular coverage

| cos θ| ≤ 1. The upper plots show the results for the γγ∗ → π+π− scattering and
lower plots show the results for the γγ∗ → π0π0. The Born results are shown by
the dotted curve, the S- and D-wave contributions are shown by dot-dashed and
dashed curves respectively.
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Figure 4.11: Total σTL (left panels) and differential dσTL/d cos θ (right panels) cross sections
for the γγ∗ → ππ Q2

1 = 0, Q2
2 = 0.5 GeV2 case and the full angular coverage

| cos θ| ≤ 1. The upper plots show the results for the γγ∗ → π+π− scattering and
lower plots show the results for the γγ∗ → π0π0. The Born results are shown by
the dotted curve.
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Figure 4.12: Predictions for σTT , σTL, σLL cross sections for γ∗γ∗ → π+π− (left panels) and
γ∗γ∗ → π0π0 (right panels) for Q2

1 = 0.5 GeV2 and Q2
2 = 0.25, 0.5, 0.75, 1.0 GeV2

and for full angular coverage | cos θ| ≤ 1. The Born results for each set of Q2
1, Q

2
2

are shown by the dotted curves in corresponding colors.
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perturbative QCD for the vector transition from factors fV,π(Q2) which is the driving force
governing the Q2 dependence of the f2(1270) resonance [71]. This will be investigated in future
work.

Appendices

4.A Analytic structure of the left hand cuts

The analytical structure of the left hand cuts in the γ∗(Q1)γ∗(Q2)→ ππ process was discussed
in Chapter 4. In this Appendix, we mainly aim to introduce an alternative approach to treating
the anomalous thresholds problem, which appears when both photons carry non-zero spacelike
virtuality. For this purpose, we remind that the vector-meson left hand cut is determined by
four branching points, arising from the condition t(s(±)

L ,±1)−M2 = 0:

sL = 0 , sL = −∞ ,

s
(±)
L = 1

2

(
2m2 −Q2

1 −Q2
2 −M2 − (Q2

1 +m2)(Q2
2 +m2)

M2

)

±

√
λ(M2,m2 −Q2

1)
√
λ(M2,m2,−Q2

2)
2M2 , (4.41)

where M is the mass of the intermediate vector meson and λ(x, y, z) is a Källén triangle
function (see App. 3.A). In addition, there are two kinematic singularities:

qcm(s) ≡ λ1/2(s,−Q2
1,−Q2

2)
2
√
s

= 0 =⇒ s
(±)
kin = −(Q1 ±Q2)2 . (4.42)

The relative positions of these structures on the s-plane for the small photon virtualities are
shown in Fig. 4.13.
The implementation of the dispersion relations requires the integration of the amplitudes

over the left-hand cuts. If one of the photons is real, the cut consists of two pieces: (−∞, s(−)
L ]

and [s(+)
L , 0]. However, when both photons carry space-like virtuality, the left hand cut struc-

ture becomes more complicated depending on the values Q2
1 and Q2

2. To study this effect, we
consider the following type of integrals, which naturally appear in the vector-meson exchange
amplitudes:

Ln(s) ≡
1ˆ

−1

dz
zn

t(s, z)−M2 . (4.43)

It is convenient to work in the following notation:

t(s, z)−M2 ≡ α(s) + β(s)z ,

α(s) ≡ 1
2(2m2 −Q2

1 −Q2
2 − s)−M2 , β(s) ≡ 2pcm(s)qcm(s) . (4.44)

In the absence of the anomalous thresholds, the integrals of this type for an arbitrary integer
n can be expressed as a sum of two hypergeometric functions

Ln(s) =
2F1

(
1, n+ 1, n+ 2;−β(s)

α(s)

)
+ (−1)n2F1

(
1, n+ 1, n+ 2; β(s)

α(s)

)
(n+ 1)α(s) . (4.45)

The present analyses of the γ∗(Q1)γ∗(Q2)→ ππ reactions [1, 210] are limited to the S- and
D-waves only. Therefore, for the practical applications, it is sufficient to consider the terms
up to n = 2 , J = 4:
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Figure 4.13: Relative positions of left hand cuts and kinematic points for small values ofQ2
1, Q

2
2.

The integration contour is shown in grey.

L0(s) = − 1
β(s) log

(
X(s) + 1
X(s)− 1

)
,

L1(s) = 1
β(s)(2− α(s)L0(s)) ,

L2(s) = 1
β2(s)(−2α(s) + α2(s)L0(s)) ,

L3(s) = 1
β3(s)

(2
3β

2(s) + 2α2(s)− α3(s)L0(s)
)
,

L4(s) = 1
β4(s)

(
−2

3α(s)β2(s)− 2α3(s) + α4(s)L0(s)
)
. (4.46)

where we introduced the notation

X(s) ≡ −2m2 + 2M2 + s+Q2
1 +Q2

2
4pcm(s)qcm(s) . (4.47)

The above expressions for Ln(s) are given for the t-channel. For the u-channel, the integrals
with even index have the same form, while the odd ones acquire an overall factor of (−1).
According to the Cauchy theorem (see Sec. 2.2.3), the analytical function can be recon-

structed from its discontinuities along the branch cuts. Therefore, we introduce

LDisp
i (s) ≡

ˆ s−L

−∞

ds′

π

Im Li(s′)
s′ − s

+
ˆ 0

s+
L

ds′

π

Im Li(s′)
s′ − s

, (4.48)

so that the correctness of the amplitude behavior along the left hand cut is ensured by
requirement Li(s) = LDisp

i (s), i.e. the unsubtracted dispersion relation (4.48) is fulfilled.
Whether it happens automatically or not, depends on the relative dynamics of the branching
points s±L and pseudo-thresholds s(±)

kin with changing Q2
1, Q

2
2.

First, when the photon virtualities are small, all special points are well separated, and the
integration proceeds as normal. Then, with increasing values of Q2

1, Q
2
2 the left-hand branch

point s(−)
L moves to the right and reaches s(+)

kin at

s
(+)
kin = s

(−)
L =⇒ Q2

1Q
2
2 = (M2 −m2)2 . (4.49)

and only then moves to the left. Therefore, for the case of Q2
1Q

2
2 ≥ (M2 −m2)2 an additional

piece [s−L , s1
kin] shown on Fig. 4.15, which is related to an anomalous discontinuity [136, 231],

has to be considered.
The integrals Li(s) now diverge at the point s = s

(+)
kin . Appart from the method, used in

Sec. 4.2.6, it is also possible to deform the integration contour introducing the circle with
small radius r centered around s = s

(+)
kin (see Fig. 4.15). To demonstrate how this contour
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Figure 4.14: The dynamics of the branching points s±L and pseudo-thresholds s(±)
kin depending

on photons virtualities. The arrows represent the direction in which every point
moves with growing Q2

1, Q
2
2 (see text for the details).












































































































Figure 4.15: Integration contour for Ln(s) in the case Q2
1Q

2
2 ≥ (M2 − m2)2, which accounts

for the singularity at s(+)
kin .

deformation works we start by considering the simple case L0(s). The integration along the
additional [s(−)

L , s
(+)
kin ] piece

ˆ s
(+)
kin

s
(−)
L

ds′

π

Im [L0(s′ + iε)− L0(s′ − iε)]
s′ − s

=
ˆ s

(+)
kin

s−L

ds′

π

Im [Disc L0(s′)]
s′ − s

=
ˆ s

(+)
kin

s−L

ds′

π

Im [− iπ
pcm(s′)qcm(s′) ]
s′ − s

, (4.50)

brings a new term to LDisp
0 (s):

LDisp
0 (s) =

ˆ s−L

−∞

ds′

π

Im L0(s′)
s′ − s

+
ˆ 0

s+
L

ds′

π

Im L0(s′)
s′ − s

+
ˆ s

(+)
kin

s−L

ds′

π

Im [− iπ
pcm(s′)qcm(s′) ]
s′ − s

. (4.51)

The singularity in the last term is of a square root type 1/qcm(s′) ∼ 1/
√
s− s(+)

kin and
therefore is integrable, meaning that the integral over circle goes to zero, when r → 0. It
was checked numerically that the dispersion relation works for s = (4m2,∞) and the result is
shown in Fig. 4.16.
However, it is not the case for the further integrals. The same procedure for L2(s) leads to

the anomalous piece of the form

ˆ s
(+)
kin

s−L

ds′

π

Im
[
α2(s′)
β2(s′)

−iπ
pcm(s′)qcm(s′)

]
s′ − s

, (4.52)

The integral over the circle then adds:

ˆ s
(+)
kin−r

sL

ds′f(s′ + iε) +
ˆ sL

s
(+)
kin−r

ds′f(s′ − iε) +
ˆ −π
π

dφf(s(+)
kin + reiφ) . (4.53)
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Figure 4.16: Linear-log comparison between L0(s) and LDisp
0 (s) from Eq. (4.51).

The circular part of L2(s) can be further evaluated as

ˆ −π
π

dφf(s(+)
kin + reiφ) =

ˆ −π
π

ds′

π

1
s′ − s

1
2i

α2(s′)(−iπ)
4p3
cm(s′)q3

cm(s′)

∣∣∣∣∣
s′=s(+)

kin +reiφ

where qcm(s) =

√
s− s(+)

kin

√
s− s(−)

kin
2
√
s

=

∣∣∣∣√s− s(−)
kin

∣∣∣∣
2|
√
s|

√
s− s(+)

kin

= 1
s

(+)
kin − s

α2(s(+)
kin )

4|pcm(s(+)
kin )|3


∣∣∣∣√s(+)

kin − s
(−)
kin

∣∣∣∣
2
∣∣∣∣√s(+)

kin

∣∣∣∣

−3

︸ ︷︷ ︸
z

(
s,s

(+)
kin

)
ˆ −π
π

reiφidφ

π

1
2i

−iπ
i3(reiφ)3/2

=
z
(
s, s

(+)
kin

)
2
√
r

ˆ −π
π

e−iφ/2dφ = −
2z
(
s, s

(+)
kin

)
√
r

, (4.54)

where r << s
(+)
kin is assumed. The total expression for LDisp

2 (s) is then

LDisp
2 (s) =

ˆ s−L

−∞

ds′

π

Im L2(s′)
s′ − s

+
ˆ 0

s+
L

ds′

π

Im L2(s′)
s′ − s

+
ˆ s

(+)
kin−r

s−L

ds′

π

Im
[
α2(s′)
β2(s′)

−iπ
pcm(s′)qcm(s′)

]
s′ − s

−
2z
(
s, s

(+)
kin

)
√
r

. (4.55)

We keep only the leading order term to derive the singular component in Eq. (4.54), and
the next-to-leading term ∝

√
r is neglected. The numerical check is demonstrated in Fig. 4.17,

where ∆L2(s0) = (L2(s0)−LDisp
2 (s0))/L2(s0) is plotted against the variation of r and we choose

s0 = 1 GeV2. The obtained curve follows the square root dependence with high accuracy.
It can be seen from Fig. 4.17, that Eq. (4.55) give a rather good approximation for calculating

L2(s). Therefore, a similar approach could be expected to be successfully applied to L4(s).
However, in contrast to the L2(s) case, the next-to-leading term in the expansion for L4 is
also divergent. One possible solution is finding the optimal value of r, which would keep the
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Figure 4.17: Percentage error of LDisp
2 (s0) calculated with Eq. 4.55 (see text for the details).
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Figure 4.18: Percentage error of LDisp
4 (s) calculated with Eq. (4.56) and the next terms in the

expansion. Left panel: linear plot, right panel: linear-log plot.

next-to-leading order term ∝ r−1/2 small in comparison to the leading divergent term ∝ r−3/2

while simultaneously also making the non-divergent terms negligible. However, this choice will
introduce the dependence on the value of r and make the integration procedure less flexible
for higher Ln(s).

In this approach, we prefer to control the errors by extending the described method to
include the terms beyond the leading order. The general case for the integral over the circle
can be easily derived as
ˆ −π
π

reiφidφ

π

1
2i

−iπ
i2n+1(reiφ)(2n+1)/2 = (−1)n+1

2rn−1/2

ˆ −π
π

dφe−i(n−1/2)φ = (−1)n+1

2rn−1/2
4(−1)n

2n− 1

= − 2
2n− 1

1
rn−1/2 . (4.56)

The resulting accuracy depends then on the number of terms N in the expansion on the
nominator of L2n. The criteria for the optimal r and N are formulated as: in order to have
accuracy O(r1/2+m) we need to take N = n+m terms.

The comparison between the number of terms in the expansion for LDisp
4 (s) different values
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of m is plotted on Fig. 4.18. It shows that the series converges quite fast, and the inclusion
of large number of terms is excessive, considering the precision of the numerical integration
procedure itself.

4.B General cross section of the e+ + e− → e+ + e− +X process

The cross section for the process e(p1)+e(p2)→ e(p′1)+e(p′2)+X, with X being the produced
hadronic system, can be expressed in terms of the response functions for the γ∗γ∗ → X process:
four positive definite cross sections σTT , σLL, σTL, σLT , as well as four responses which can have
either sign, τTT , τTL, τaTT , τaTL (see [235] for the details), so that

dσ = α2

16π4Q2
1Q

2
2

2
√
X

s̃(1− 4m2/s̃)1/2 ·
d3~p′1
E′1

d3~p′2
E′2

×
{

4ρ++
1 ρ++

2 σTT + ρ00
1 ρ

00
2 σLL + 2ρ++

1 ρ00
2 σTL + 2ρ00

1 ρ
++
2 σTL

+ 2(ρ++
1 − 1)(ρ++

2 − 1)
(
cos 2φ̃

)
τTT + 8

[
(ρ00

1 + 1)(ρ00
2 + 1)

(ρ++
1 − 1)(ρ++

2 − 1)

]1/2 (
cos φ̃

)
τTL

+ 4h1h2
[
(ρ00

1 + 1)(ρ00
2 + 1)

]1/2
τaTT + 8h1h2

[
(ρ++

1 − 1)(ρ++
2 − 1)

]1/2 (
cos φ̃

)
τaTL

}
,

(4.57)

where h1 = ±1 and h2 = ±1 are both lepton beam helicities, φ̃ is the azimuthal angle between
both lepton planes, in the γγ c.m. frame, and we defined

X ≡ (q1 · q2)2 − q2
1q

2
2. (4.58)

The virtual photon density matrix elements have the following form:

ρ++
1 = 1

2

{
1− 4m2

Q2
1

+ 1
X

(2p1 · q2 − q1 · q2)2
}
,

ρ++
2 = 1

2

{
1− 4m2

Q2
2

+ 1
X

(2p2 · q1 − q1 · q2)2
}
,

ρ00
1 = 1

X
(2p1 · q2 − q1 · q2)2 − 1 ,

ρ00
2 = 1

X
(2p2 · q1 − q1 · q2)2 − 1 . (4.59)

The eight response functions depend upon three kinematical variables: s = (q1 + q2)2, Q2
1 and

Q2
2. In the convention of (4.57) the cross sections are defined as

dσTT
d cos θ = β(s)

128π
√
X

(|H++|2 + |H+−|2)
Q2

1=0
−−−→ β(s)

64π(s+Q2
2)

(|H++|2 + |H+−|2) ,

dσTL
d cos θ = β(s)

64π
√
X
|H+0|2

Q2
1=0
−−−→ β(s)

32π(s+Q2
2)
|H+0|2 ,

dσLT
d cos θ = β(s)

64π
√
X
|H0+|2

Q2
1=0
−−−→ 0 ,

dσLL
d cos θ = β(s)

64π
√
X|H00|2

Q2
1=0
−−−→ 0 . (4.60)
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where we showed also what happens in the single-virtual limit, i.e. when Q2
1 → 0 and used

β(s) =

√
1− 4m2

π

s
, X = 1

4(s+Q2
1 +Q2

2)2 −Q2
1Q

2
2 . (4.61)

Using the partial-wave decomposition (4.2) and Eq. (4.57) and integrating over cos θ ∈ [−1, 1]
one can show that

σTT (s) = β(s)
64π(s+Q2)

(
2|h(0)

I,++|
2 + 10|h(2)

I,++|
2 + 10|h(2)

I,+−|
2
)
,

σTL(s) = β(s)
32π(s+Q2)

(
10|h(2)

I,+0|
2
)
. (4.62)

We emphasize that Eq. (4.57) is a physical observable and the choice of convention for the
longitudinal polarization vector should not have any influence on it. However, the definition
of σTL depends on the convention, since off-shell photons are not physical states. In order to
have positive definite σTL cross section we use the following longitudinal polarization vectors

εµ(q1, 0) = 1
Q1

(
q, 0, 0, q0

)
,

εµ(q2, 0) = 1
Q2

(
−q, 0, 0, q0

)
, (4.63)

which implies the following normalization and completeness relation

εµ(q, λ)ε∗µ(q, λ′) = (−1)λδλ,λ′ ,∑
λ=±1,0

(−1)λεµ(q, λ)εν∗(q, λ) = gµν + qµqν

Q2 . (4.64)

Note, the factor (−1)λ in the relation above, which implies an extra sign for the helicity
amplitude involving longitudinal photon. For the case when one photon is virtual and one is
real, Eq. (4.57) simplifies and experimentally one can access the quantity [195]

σtot = σTT + εσTL , ε ≡ ρ00
2

2ρ++
2

= 1− x
1− x+ x2/2 , x ≡ q1 · q2

p1 · q2
, (4.65)

where the pre-factor ε lies in the region 0 < ε < 1 and depends on s,Q2. For the case of ε ' 1,
the completeness relation (4.64) can be used to obtain σtot without going into the frame

σtot(ε = 1) ∼
∑

λ1=±1,λ2=±1,0
|Hλ1,λ2 |2

=
∑

λ1=±1
εµ(q1, λ1)ε∗µ′(q1, λ1)

∑
λ2=±1,0

εν(q2, λ2)ε∗ν′(q2, λ2)HµνHµ′ν′ , (4.66)

where the first sum can be safely replaced by −gµµ′ , while in the second sum one has to take
into account (−1)λ2 in order to use a completeness relation (4.64). As a result one obtains

σtot(ε = 1) ∼
(
2|h(0)

I,++|
2 + 10|h(2)

I,++|
2 + 10|h(2)

I,+−|
2 + 10|h(2)

I,+0|
2
)
. (4.67)
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Chapter 5

Dispersive analysis of the γγ → DD̄ scattering data

In the previous chapters, we have shown that the partial-wave dispersive approach is a powerful
tool that can be applied even in the cases when the data is scarce (see, for instance, Sec. 3.3.2).
This feature proves to be particularly important when describing the interactions involving
heavier particles and, consequently, the higher energies. It is rather typical for such reactions
to have data with such low statistics that even the existence of a particular resonant state is
called into question, not to mention the exact determination of its position and other properties.
In this Chapter, we venture into the charmonium region by studying the two-photon fusion

reaction with a DD̄ meson pair in the final state. In this reaction, it is expected to observe two
charmonium-like states: χc0(2P ) and χc2(2P ). While the latter is unambiguously identified
with theX(3930) state found in several experimental setups, the former still raises controversies
over its assignment. There are some indications that χc0(2P ) can be identified with X(3860),
which appears as a broad S-wave resonance in the γγ → DD̄ and e+e− → J/ψDD̄ reactions,
at first glance, similar to the σ/f0(500) resonance. However, other theoretical works suggest
that the structure appearing in the cross section is caused by the bound state slightly below
the DD̄ threshold. By studying the ππ → ππ scattering from the lattice data with different
pion masses in Sec. 3.3.2, we showed that the considered dispersive approach could easily
distinguish between the bound state and the broad resonance. Therefore, the same technique
applied to the data for the γγ → DD̄ process can shed light on the structure observed in this
reaction and its properties.
This Chapter is based on [3] and it is organized as follows. First, in Sec. 5.1 we provide an

overview of the current experimental and theoretical results directed towards the identifica-
tion of χc0(2P ) and χc2(2P ) states. In Sec. 5.2 we describe how the partial-wave dispersive
formalism can be applied for the γγ → DD̄ system and present the details of the tensor
χc2(3930) resonance. We show our numerical results in Sec. 5.3, which included the analysis
of the γγ → DD̄ data and a post-diction to the e+e− → J/ψDD̄ process. A summary and
outlook are given in Sec. 5.4.

5.1 Introduction

In recent years, the growing interest in the charmonium mass region has been nourished with
new experimental discoveries (see Fig. 5.1). Ever since the Belle Collaboration discovered
the X(3872) [246] extremely close to the D0D̄∗0 threshold, a plethora of new states has been
observed. Nevertheless, only a few of them are unambiguously identified. For comprehensive
reviews, we refer to [247–252].
The only unambiguosly identified radially excited P -wave charmonium state up to date is

χc2(2P ), associated with the resonanceX(3930). First it was discovered by Belle Collaboration
[253] as a distinct peak near 3930 MeV in the DD̄ invariant mass distribution of the γγ → DD̄
reaction. This analysis obtained a mass of M = 3929 ± 5(stat) ± 2(syst) MeV and a total
width of Γ = 29 ± 10(stat) ± 2(syst) with the preferred quantum numbers of JPC = 2++.
Located between DD̄ and D∗D̄∗ thresholds, it decays predominantly into DD̄ pair in a D-
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Figure 5.1: The level scheme of meson states containing a minimal quark content of cc̄. States
included in PDG (2022) Summary Tables [27] are shown with solid lines; selected
states not in the Summary Tables, but with assigned quantum numbers, are shown
with dashed lines. The conventional qq̄ states are indicated with black lines, and
the candidates for an exotic structure are shown in red. The arrows indicate the
most dominant hadronic transitions. The states discussed in this Chapter are
shown in blue. The figure is adapted from PDG [27].

wave. Later, in the same γγ → DD̄ reaction the X(3930) resonance was observed with the mass
and total width ofM = 3926.7±2.7(stat)±1.1(syst) MeV with Γ = 21.3±6.8(stat)±3.6(syst)
by the BaBar Collaboration [254]. Again, the analysis of the angular distribution favored a
tensor over scalar interpretation. The obtained values for the mass, width and Γ(X(3930)→
γγ)B(X(3930) → DD̄) were consistent with the Belle results and with the expectations for
the χc2(2P ) state.
The χc2(3930) assignment was recently confirmed in completely different experiment, namely

the LHCb Collaboration found this state using proton-proton collision data with the mass and
width measured to be Mχc2(3930) = 3921.9± 0.6(stat)± 0.2(syst) MeV and Γχc2(3930) = 36.6±
1.9(stat)±0.9(syst) MeV [255] and later in the amplitude analysis of the B → D+D−K+ decay
withMχc2(3930) = 3926.8±2.4(stat)±0.8(syst) MeV and Γχc2(3930) = 34.2±6.6(stat)±1.1(syst)
[256]. The current average for the χc2(2P ) mass and width [27], including the Belle [253], BaBar
[254] and LHCb [255, 256] results stands as

Mχc2(3930) = 3922.2± 1.0 MeV , Γχc2(2P ) = 35.3± 2.8 MeV . (5.1)

The identification of χc0(2P ) state, which is expected to exist roughly in the same mass
region, however is still problematic. The first attempts of its assignment date back to 2010,
when a possible candidate has been observed by Belle Collaboration as a near threshold ωJ/ψ
mass enhancement in the exclusive B → KωJ/ψ decays [257], which was confirmed by BaBar
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Collaboration [258, 259]. This structure was later identified to be the same as X(3915) state
found by Belle Collaboration in γγ → ωJ/ψ [260] process with the mass M = 3915±3(stat)±
2(syst) MeV and width Γ = 17 ± 10(stat) ± (syst) MeV. In [261] the X(3915) assignment as
χc0(2P ) state was proposed and was later supported by the spin-parity analysis by the BaBar
Collaboration [262]. However, as it was pointed out in several other works [263–265], X(3915)
is a problematic candidate for χc0(2P ) due to its narrowness, dominant decay channels (which
contradict the expectations for χc0(2P )), and the small mass splitting with the well-established
χc2(3930).

In principle, when the Belle Collaboration reported X(3915) in [260], both assignments
JPC = 0++ and 2++ were acceptable. Soon after, BaBar Collaboration [262] suggested that it
has JPC = 0++ based on the helicity-2 dominance assumption, which originally comes from the
quark model calculations. The later reanalysis [266] of both Belle and BaBar data showed that
if X(3915) has an exotic nature (also [267]), this assumption may be relaxed, and helicity-0
contribution may also be sizable. In this case, the X(3915) being narrow JPC = 2++ resonance
is preferred by data, which implicitly suggests that it might be the same tensor resonance as
X(3930) In [268] it was found, that if the X(3915) is the D(∗)D̄(∗) hadronic molecule which
should exist as a spin partner of the X(3872), the data favors the scalar assignment. Still,
other exotic explanation, like tetraquark state [249, 269], can not be discarded.

The alternative candidate for χc0(2P ) state may have been already observed in the γγ → DD̄
process by both Belle [253] and BaBar [254] Collaborations somewhere in an energy range from
the DD̄ threshold up to the χc2(2P ) position. They fitted the DD̄ invariant mass spectrum
with a single Breit-Wigner function for the χc2(2P ) and some background functions. In [267],
γγ → DD̄ data were reanalyzed using two Breit-Wigner functions under the assumption that
the resonance structures dominate the invariant mass distribution. In other words, it was
assumed that the broad bump located around ∼ 3800 MeV, which was considered to be a
background in experimental analyses, may hide the broad resonance. By fixing the mass and
the width of χc2(2P ) to its experimental values the fit to data predicted the existence of
χc0(2P ) with Mχc0(2P ) = 3837.6 ± 11.5 MeV and Γχc0(2P ) = 221 ± 19 MeV. The later result
was reinforced by the Belle Collaboration [270], which in the analysis of e+e− → J/ψDD̄
data found the new charmonium-like state X(3860), that decays mainly to DD̄ channel. With
the mass 3862+26+40

−32−13 MeV, the width 201+154+88
−67−82 MeV and JPC = 0++ this state is currently

included in the PDG (2021) [27] as χc0(2P ). This assignment is supported by the constituent
quark model in [271], which also favors the hypothesis of X(3915) and X(3930) being the same
tensor state.
However, it is still an open question of what has been seen in γγ → DD̄ and e+e− → J/ψDD̄

processes. First, the statistics of the Belle data [270] for the e+e− → J/ψDD̄ process is
rather low close to the threshold. Second, unlike simple Breit-Wigner parametrizations, the
proper resonance analysis should account for the S-matrix constraints, such as unitarity and
analyticity. In [272] a unitary approach based on the Bethe-Salpeter equation was used to
describe the Belle data. No peak structure that justifies the claim for the X(3860) state
was found. The same observation was made in [273] regarding the γγ → DD̄ data from
the Belle [253] and BaBar [254] Collaborations. Instead, this analysis suggested that the
behaviour around the threshold is consistent with the DD̄ dynamics that encodes a bound
state, previously predicted in [274]. On another side, the recent coupled-channel {DD̄,DsD̄s}
analysis performed on the lattice with mπ = 280(3) MeV [275] suggests the existence of both:
a shallow bound state slightly below DD̄ threshold and the broad resonance, comparable to
X(3860). From the analysis at mπ = 400 MeV [276] the mass splitting between χc0(2P ) and
χc2(2P ) can be extracted, which, using the experimental mass of χc2(2P ) gives an estimation of
χc0(2P ) mass compatible with the value X(3860). Moreover, the situation gets more puzzling
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by the recent LHCb observation [256, 277] of two resonances, sitting at the same mass, the
χc0(3930) and the χc2(3930), with widths around 17 MeV and 34 MeV, respectively, and no
evidence of the broad X(3860) state.
The present ambiguity regarding the existing data and the character of the structures present

in γγ → DD̄ cross sections and e+e− → J/ψDD̄ calls for a theoretical approach that rigorously
implements both the unitarity and analyticity constraints and does not make any assumption
about underlying DD̄ dynamics. Within the partial-wave dispersive approach, which was
successfully used to analyze the ππ and πK scattering in Chapter 3, it is straightforward to
perform the analytical continuation of the scattering amplitudes to the unphysical regions and
identify the positions of the poles and bound states. Therefore, an application of this technique
to the DD̄ system can shed more light on the nature of the near-threshold enhancements seen
in the experiment.

5.2 Dispersive formalism

In this section we again consider the formalism outlined in the Sec. 2.2.4. We have already
applied this method extensively in Secs. 3.2 and 4.2, yet for the {γγ,DD̄} system there are some
details we are willing to discuss further. In contrast to the ππ and πK scattering considered in
Chapter 3, there is no separate data for the DD scattering phase shifts. Instead, the available
data is given for the cross sections of the γγ → D+D− and γγ → D0D̄0 processes. It is
also important to note, that for this case we do not have any additional constraints similar
to ones considered in 3.2 and rely on the data alone to establish the amplitudes. As for the
D-wave, we take into account only the contribution from the isoscalar χc2(3930) resonance
and approximate it by a simple Breit-Wigner form.
This section is organized as follows. First, we consider an N/D approach in application to

the {γγ,DD̄} system. Then, in Sec. 5.2.2 we specify the left-hand cut input. Finally, in 5.2.3
we show the approximation of the D-wave amplitude.

5.2.1 N/D approach for the {γγ,DD̄} system
In the same manner as in Sec. 3.2 we consider a 2 → 2 process described by the partial
wave amplitudes t(J)

I,ab, where ab are the coupled-channel indices with a and b standing for
the initial and final state, respectively. Again, we focus only on the S-wave, with isospin
I = 0, and therefore will suppress the labels I, J . The once write once-subtracted dispersive
representation is then (see Secs. 2.2.4 and 3.2.1)

tab(s) = Uab(s) + s

π

∑
c

ˆ ∞
sth

ds′

s′
tac(s′) ρc(s′) t∗cb(s′)

s′ − s
, (5.2)

where sth is the lowest threshold and sL is the position of the closest left-hand cut singularity.
As a consequence of the N/D ansatz, one needs to solve a system of linear integral equations

Nab(s) = Uab(s) + s

π

∑
c

ˆ ∞
sth

ds′

s′
Nac(s′) ρc(s′) (Ucb(s′)− Ucb(s))

s′ − s
,

Dab(s) = δab −
s

π

ˆ ∞
sth

ds′

s′
Nab(s′) ρb(s′)

s′ − s
, (5.3)

where the input of Uab(s) is required for s > sth only.
We aim to extract the S-wave photon fusion amplitude γγ → DD̄, which is the off-diagonal

term of the coupled channel {1 = γγ, 2 = DD̄} system. Note that for the S-wave, there is
only one γ(λ1)γ(λ2)→ DD̄ helicity amplitude with helicities λ1 = λ2 = +1. By neglecting γγ
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intermediate states in the unitary relation ρ1 = 0, and putting U11 = 0 (which is proportional
to e4 and hence suppressed, see also Sec. 4.2), the coupled-channel N/D solution reduced down
to the separate set of integral equations for the hadronic part

t22(s) = N22(s)/D22(s) , (5.4)

N22(s) = U22(s) + s

π

ˆ ∞
4m2

D

ds′

s′
N22(s′) ρ2(s′) (U22(s′)− U22(s))

s′ − s
,

D22(s) = 1− s

π

ˆ ∞
4m2

D

ds′

s′
N22(s′) ρ2(s′)

s′ − s
,

and for the γγ → DD̄ part

t12(s) = U12(s) +D−1
22 (s)

(
− s
π

ˆ ∞
4m2

D

ds′

s′
Disc(D22(s′))U12(s′)

s′ − s

)
. (5.5)

The latter requires as input the hadronic D22 function given in Eq. (5.4) as well as the γγ →
DD̄ left-hand cuts, U12.

For the case when there is no bound state in the system, Eq. (5.5) can be obtained from
writing the once-subtracted dispersion relation for the quantity Ω−1

22 (t12 − U12) [119, 121,
221], where Ω22 = D−1

22 is the Omnès function. However, it is important to emphasize that
Eqs. (5.4) and (5.5) are universal also for the case when there is a bound state in the system.
It is straightforward to show that adding a bound state into Uab(s),

Ũab(s) = Uab(s) + s

sB

g2
ab

sB − s
, (5.6)

does not change Eqs. (5.4) and (5.5) provided that the binding energy s = sB is determined
by

D22(sB) = 1− sB
π

ˆ ∞
4m2

D

ds′

s′
N22(s′) ρ2(s′)

s′ − sB
= 0 . (5.7)

For the case when there is a bound state in the system, Eq. (5.5) is equivalent to the once-
subtracted dispersion relation for the quantity Ω−1

22

(
t12 − Ũ12

)
, where the Omnès function is

now related to the D-function as Ω22 =
(

sB
sB−s

)
D−1

22 .

5.2.2 Left-hand cuts
To evaluate the dispersion relations in Eqs. (5.4) and (5.5), we need to specify the left-hand
cuts. For the photon-fusion process γγ → DD̄ the left-hand cuts can be well approximated by
the exactly calculable Born contribution (see also Sec. 4.2),

U12(s) = −2
√

2 e2m2
D

s β(s) log 1 + β(s)
1− β(s) , (5.8)

β(s) ≡ 2 p(s)√
s

=

√
1− 4m2

D

s
.

Heavier left-hand cuts exchanges start farther away from the physical region and typically
suppressed for the S-wave contribution [178]. Note, that the choice of the subtraction point in
Eq. (5.2) and consequently in Eq. (5.5) is motivated by the soft-photon theorem [219], which
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states that the Born term subtracted photon fusion amplitude must vanish at s = 0. As for
the DD̄ → DD̄ left-hand cuts, little is known about them, except their analytic structure in
the complex plane. Since we need the input for U22(s) only in the physical region, one can
approximate U22(s) by means of a model independent conformal expansion [107–110]

U22(s) =
∞∑
n=0

Cn ξ
n(s) , (5.9)

where the conformal mapping variable ξ(s)

ξ(s) =
√
s− sL −

√
sE − sL√

s− sL +
√
sE − sL

, (5.10)

maps the left-hand cut plane −∞ < s < sL onto the unit circle [143]. The position of the
closest left-hand cut branching point sL = 4(m2

D − m2
π) is determined by the t− and u−

channel exchange of two pions. The expansion point sE (at which ξ(sE) = 0) is chosen in the
middle of the region where we expect the S-wave contribution to dominate

√
sE = 1

2 (√sth +
√
smax) , (5.11)

with √smax = 3.86 GeV. We note that, given the form of ξ(s) in Eq. (5.10), the series (5.9)
truncated at any finite order is bounded asymptotically. This is consistent with the assigned
asymptotic behavior of U22(s) in the once-subtracted dispersion relation (5.2). In the next
section, we will determine the unknown Cn in Eq. (5.9) directly from the data.

Hereafter, to distinguish the amplitudes involving photons from the pure hadronic amplitude,
for the γγ → DD̄ p.w. amplitudes we adopt the notation of Sec. 4.2: h

(J)
I,λ1λ2

(s), where
λ1,2 = ±1 are photon helicities, so that

h
(0)
0,++(s) ≡ t12(s) . (5.12)

While it is natural to associate any resonant structure with the dynamics in the I = 0 chan-
nel, the I = 1 amplitude does not have known direct channel resonances and we approximate
it by the Born amplitude

h
(0)
1,++(s) = −2

√
2 e2m2

D

s β(s) log 1 + β(s)
1− β(s) . (5.13)

We note, however, that taking into account the I = 1 contribution is absolutely necessary to
obtain nonequal cross sections for the γγ → D+D− and γγ → D0D̄0 channels. For instance,
Eq. (5.13) combined with Eq. (5.8) gives a zero direct Born term for γγ → D0D̄0, leaving only
contributions via rescattering.

5.2.3 D-wave parametrization
For the D-wave in the γγ → DD̄ process we take into account only the contribution from
the isoscalar χc2(3930) resonance, which is a radially excited P -wave charmonium state. We
approximate it by a simple Breit–Wigner form, similar to how it was done for f2(1270) in the
γγ → ππ process in [120, 278] and for a2(1320) in the γγ → π0η process in [65, 217]. Is it
based on the effective Lagrangians of the following form

LRγγ = e2 gRγγ Φµν F
µλ F ν

λ ,

LRDD̄ = gRDD̄ Φµν ∂µD∂νD , (5.14)
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where Fµν is an electromagnetic tensor and Φµν is a massive spin-2 field. In the first line of
Eq. (5.14) it is assumed that the χc2(3930) resonance is predominantly produced in a state
with helicity-2. The D-wave amplitude is then given by

h
(2)
0,+−(s) = −e

2 gRγγ gRDD̄
10
√

6
s2 β2(s)

s−M2
R + iMR ΓR(s)

, (5.15)

where gRγγ , gRDD̄ denote χc2(3930) couplings to γγ and DD̄ channels, respectively. The
energy-dependent decay width of the resonance is parametrized as [202]

Γ(s) = ΓR

(
p(s)
p(M2

R)

)5

, (5.16)

with ΓR being the width of the resonance at rest. Note, that for simplicity we have not included
Blatt-Weisskopf factors in Eqs. (5.15) and (5.16), which only slightly change the cross section
in the considered region but introduce additional dependence on the unknown interaction
radius, which cannot be fixed given the quality of the present data. While for the mass and
the width of χc2(3930) we use PDG 2021 values MR = 3922.2 ± 1.0 MeV, ΓR = 35.3 ± 2.8
[27], the couplings gRγγ , gRDD̄ cannot be fixed due to unknown branching fractions and will
be absorbed into the unknown normalisation parameter (see Sec. 5.3.2). More details on the
derivation of the amplitude in Eq. 5.15 and a discussion regarding the Blatt-Weisskopf factor
can be found in App. 5.A.

5.3 Numerical results and interpretation

This section concentrates on the numerical results for the γγ → DD̄ process. We start by
discussing the quality of experimental data in Sec. 5.3.1 and the possible issues caused by it.
Then, in Sec. 5.3.2 we first show the results for the combined γγ → DD̄ fit. We then also
show the fit to γγ → D0D̄0 and γγ → D+D− channels and discuss the difference between the
results. In Sec. 5.3.3 we show the postdiction for the e+e− → J/ψDD̄ process. Finally, in
Sec. 5.3.4 we discuss the analogies between the γγ → DD̄ and γγ → KK̄ cases.

5.3.1 Experimental input
Before implementing the dispersive approach, we would like to comment on the quality of
data that serves as an input to our analysis. The statistics in both Belle [253] and BaBar
[254] γγ → DD̄ experiments are relatively low, and therefore the combined sum of charged
and neutral production modes was presented as the main result. In this way, the interference
between I = 0 and I = 1 contributions cancels out, and since the I = 1 amplitude is expected
to be smooth, it is natural to associate any structure in the combined data with the I = 0
resonances. However, it will become apparent that the separate treatment of the neutral and
charged channels is necessary to obtain the correct result for the I = 0, DD̄ dynamics. Since
the Born term contribution enters the D0D̄0 channel only via rescattering, one can expect
more events in the D+D− channel, which is not the case for the data on hand. In [273]
this discrepancy was attributed to the fact that more decay modes were analyzed for the
neutral channel in both experiments, and the additional artificial factor of 1/3 was included
to compensate for it. We, however, refrain from making any assumptions regarding the nature
of the difference and proceed with the given data in a standard way.
While the Belle data [253] is not efficiency corrected, the efficiency decreases by only 10%

for the invariant mass region between 3.8 and 4.2 GeV, and therefore, this effect is expected
to be negligible considering the resolution of the data itself. In addition, the data is provided
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C0 C1 C2
N2
N0
× 102 χ̃2

comb χ̃2
c χ̃2

n

Fit I
comb. Belle −64.5(16.1) 167.7(18.9) − 2.9(0.9) 0.91 9.84 2.88

Fit II
c, n Belle 888.1(16.0) −2315.1(0.5) 1613.5(11.9) 1.3(0.4) 1.08 0.96 0.98

Fit III
c, n BaBar 996.3(103.8) −2336.1(208.4) 1552.6(118.1) 0.6(0.2) 3.29 2.26 3.24

Table 5.1: Fit parameters entering Eqs. (5.9) and (5.19). Fit I is a fit to a combined σc(s) +
σn(s) data from the Belle Collaboration [253], while Fit II and Fit III are the fits
to the charged and neutral channel data from Belle [253] and BaBar Collaborations
[254], respectively. The individual χ̄2

comb/c/n ≡ χ
2
comb/c/n/d.o.f. show how good each

fit describe the combined, charged or neutral data-sets.

in terms of the events distribution, and to compare it with the cross sections, an additional
normalization factor has to be introduced as a fitting parameter. This fact limits the possibility
of extracting the meaningful two-photon couplings of the resonances or bound states. Even
though BaBar Collaboration provides efficiency corrected data, it is given only for the sum of
neutral and charged channels. Since the information in each channel separately is essential for
our analysis, we opt to use the non-efficiency corrected version of the data in each channel,
which, however, suffers from even lower resolution.

5.3.2 γγ → DD̄ cross sections
In the analysis of the γγ → DD̄ data, we limit ourselves to the region below 4.0 GeV, where
the leading contribution is coming from the S and D-wave amplitudes. The cross-sections for
individual partial waves in charged (c) or neutral (n) channels are given by

σ
(J)
c/n,λ1λ2

(s) = (2J + 1) β(s)
32π s |h

(J)
c/n,λ1λ2

(s)|2 , (5.17)

where the following relation between the isospin and particle basis holds

h
(J)
c,λ1λ2

(s) = − 1√
2

(h(J)
0,λ1λ2

(s) + h
(J)
1,λ1λ2

(s)) ,

h
(J)
n,λ1λ2

(s) = − 1√
2

(h(J)
0,λ1λ2

(s)− h(J)
1,λ1λ2

(s)) . (5.18)

As it was mentioned in Sec. 5.3.1, to fit γγ → DD̄ data we need to introduce the nor-
malization factor to convert the theoretical cross-section to the number of events from the
experimental plot and a factor N2, which accounts for the χc2(3930) couplings. The total
cross-section for the charged or neutral channels is then given by

σc/n(s) ≈ N0 σ
(0)
c/n,++(s) +N2 σ

(2)
c/n,+−(s) , (5.19)

where we neglected the helicity-0 component of the D-wave. In addition to the free parameters
N0, N2, there are also coefficients of the conformal expansion (5.9), which determine the form of
the left-hand cuts in (5.2) and have to be fitted to the data. Apart from the standard χ2 criteria,
their number is chosen in a way to ensure that the series (5.9) converges in the physical region.
The statistical uncertainties are then propagated using the parametric bootstrap technique
(see App. 3.B) for all parameters and derived quantities like pole positions.
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Figure 5.2: Fit results compared to the data from the Belle Collaboration [253]. The top panel
shows the charged and neutral cross sections. For comparison, in the bottom panel
the sum of both is presented.

As the first step, we consider the combined γγ → DD̄ data

σc(s) + σn(s) (5.20)

from the Belle Collaboration [253] alone as an input, similarly as it was done in [267]. We find
that the fit to this data is already saturated with only two conformal expansion parameters
and χ2

comb/d.o.f. = 0.91. Their values are listed in Table 5.1 (Fit I). For this fit we find a
pole located at the second Riemann sheet with √sP = 3765.3(11.4) − i 57.3(9.5) MeV, which
is around 100 MeV lower than the estimated values for the X(3860) in [267] and significantly
narrower. However, these results can not be directly compared, as the parameterization used
in [267] does not establish the pole position in the complex s-plane, and only the mass and the
width of the Breit-Wigner resonance are given. However, this fit can be misleading, since it
may not describe charged and neutral channels separately. In order to include this additional
information, apart from the standard χ2

comb/d.o.f. we introduce χ2
c/d.o.f. and χ2

n/d.o.f. tests,
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Figure 5.3: Convergence of the conformal expansion in Eq. (5.9) for Ci values from Fit II.

describing how well the given set of parameters reproduce the data in charged and neutral
channels, respectively. We find, that even though Fit I accurately describes the combined data,
it completely fails to account for the differences in separated data sets with χ2

c/d.o.f. = 9.84
and χ2

n/d.o.f. = 2.88.
As a natural continuation, we perform a fit aiming to describe neutral and charged channels

simultaneously. The best results are obtained with three conformal expansion parameters
leading to χ2

c/d.o.f. = 0.96 and χ2
n/d.o.f. = 0.98. If compared to the combined data, this fit

gives χ2
comb/d.o.f. = 1.08. The values of parameters are collected in Table 5.1 (Fit II) and the

resulting curves are shown in Fig. 5.2. For this fit, instead of the pole in the complex plane,
we find a bound state located under the DD̄ threshold at

√
sB = 3695(4)MeV . (5.21)

This bound state is stable against the variation of the sE parameter leading to negligible sys-
tematic uncertainties. We also checked explicitly that adding one more term in the conformal
expansion barely changes the χ2. Note that even though the convergence of U22 (see Fig. 5.3)
and consequently N22 is limited to energies s > sL, the applicability domain of D22 (which
does not have a left-hand cut) is the whole complex plane and Eq. (5.7) is valid for energies
sufficiently lower than the threshold.
From the Fit I we found, that fitting the combined data can lead to wrong results. Therefore,

we do not consider the combined dataset of the BaBar data [254], which is efficiency corrected.
Instead, we perform an auxiliary fit to the charged and neutral channels, which are not effi-
ciency corrected, to show that even in case of very low data resolution we are able to obtain
the aforementioned bound state with √sB = 3669.4(18.0) MeV. The resulting parameters are
again tabulated in Table 5.1 (Fit III) and shown in Fig. 5.2.
Regarding the energy region around χc2(3930) resonance, all fits provide similar results.

While the resonance structure itself is governed by the Breit-Wigner-like parametrization
(5.15), the height of the peak is partially defined by the tail of the S-wave contribution.
This interplay between S- and D-waves can be studied on the level of angular distribution,
for which the data from Belle Collaboration is provided in the region

√
s = [3.91− 3.95] GeV.

Adopting the parameters of Fit II, we find a good agreement with the data (see Fig. 5.6), show-
ing that for these energies the angular distribution has a characteristic D-wave behavior with a
constant shift from the S-wave contribution. Given the quality of the data, one cannot exclude
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Figure 5.4: Fit results compared to the data from the BaBar Collaboration [254]. The top
panel shows the charged and neutral cross sections. For comparison, in the bottom
panel the sum of both is presented.

that in the χc2(3930) region there is an additional small S-wave contribution from χc0(3930),
which was recently claimed by the LHCb Collaboration [256, 277] in the B+ → D+D−K+

decays. However, we refrain from including it (as opposed to [279]), since the γγ → DD̄ data
will not be able to constrain it.

5.3.3 e+e− → J/ψDD̄ process
By considering only S-wave rescattering in the DD̄ channel, the differential cross-section for
the process e+e− → J/ψDD̄ can be written as (see App. 5.B for the derivation)

dσ

d
√
s

= N
λ1/2(s, q2,m2

J/ψ)λ1/2(s,m2
D,m

2
D)

q6√s

∣∣∣D−1
22 (s)

∣∣∣2 , (5.22)

where q is the e+e− center of mass energy, with λ the Källén function. In Eq.(5.22), similar
to Eq.(5.5), the DD̄ final state interaction is accounted for through the D22 function. In this
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Figure 5.5: Angular distribution of the combined γγ → DD̄ data from the Belle Collabora-
tion [253] in the energy range 3.91 − 3.95 GeV compared to the theoretical curve
calculated using the Fit II parameters.

case, however, we use a simple model which only preserves unitarity in the direct s-channel
and neglects possible contributions from the crossed channels (i.e. left-hand cuts). The latter
are typically suppressed for the three-body decays, but at the same require solving a set of
Khuri-Treiman-type equations [111, 112, 228, 280, 281]. This study goes far beyond the scope
of this paper and requires precise Dalitz plot data.
With the limitations listed in Sec. 5.3.1, i.e. only a few available experimental points in the

near-threshold region, the data from [270] alone is not constraining enough to provide a unique
and meaningful solution without introducing additional assumptions. The same observation
has been made in [272]. Therefore, we only check the consistency with the γγ → DD̄ results
by taking the best set of conformal expansion parameters given by Fit II and adjusting only
the normalisation constant N in Eq. (5.22). Note, that we excluded the point

√
s ∼ 3930

MeV, where we expect a significant χc2(3930) contribution. The results for the invariant mass
distribution are shown in Fig. 5.6, where we choose the value of the e+e− c.m. energy in the
middle of the experimental region 9.46−10.87GeV. The data is described with χ2/d.o.f = 1.57,
indicating a very good agreement.
It is worth noting that both the analysis presented in this section and in [272] perform a one-

dimensional fit of the binned data without efficiency corrections. However, for the extraction
of X(3860) in [270], a multidimensional unbinned amplitude analysis with the generally non-
trivial angular distribution was used. Therefore, to determine what structure can be observed
in the e+e− → J/ψDD̄ reaction, the amplitudes given in this section need to be checked with
complete unbinned data in the fit performed by the experiment itself. For instance, it could
be done in the upcoming Belle-II analysis [282].

5.3.4 Analogy to the γγ → KK̄ scattering
It is instructive to compare the obtained results for the γγ → DD̄ process with a relatively well-
known case of γγ → KK̄. In the low-lying isoscalar S-wave sector, there are two resonances:
σ/f0(500) and f0(980). While σ/f0(500) is known to be connected almost exclusively to the
pion sector, f0(980) is a quasi-bound KK̄ state. If we eliminate the connection to the ππ
channel in the coupled-channel {ππ,KK̄} dispersive analysis of [2], then f0(980) resonance
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Figure 5.6: The invariant DD̄ mass distribution of the e+e− → J/ψDD̄ process measured by
the Belle Collaboration [270] compared to the S-wave dispersive result calculated
using the Fit II parameters. The gray area covers the region where we expect a
significant χc2(3930) contribution.

originally located at √sp = 993(2)+2
−1 − i 21(3)+2

−4 MeV becomes a pure KK̄ bound state with
a binding energy of √sB = 961MeV. A similar feature was also observed in unitarized chiral
perturbation theory calculations, see for instance [177]. On the level of cross-sections, if we
treat γγ → KK̄ (I = 1) case on the same footing as the γγ → DD̄ (I = 1) process by taking
only the Born terms1, then we observe a very similar pattern (compare Fig. 5.7 with upper
panels of Fig. 5.2). While in the neutral channel the Born terms enter only via rescattering, it
shows up stronger than the charged channel, due to destructive interference of the rescattering
contribution with a pure Born amplitude at the level of the cross-section.

Similar to f0(980), one can also expect that the bound state √sB = 3695(4) MeV found
in the single-channel {DD̄} approximation will become a pole on the unphysical Riemann
sheet once the channels {ππ,KK̄, ηη, ...} will be switched on. However, the couplings to these
channels are expected to be strongly suppressed due to their distant location [274].

5.4 Summary and outlook

In this Chapter, we presented a theoretical analysis of the reaction γγ → DD̄ from threshold
up to 4.0 GeV. In order to account for the DD̄ rescattering in the S-wave, we used a partial
wave dispersive representation, which implements constraints from analyticity and exact uni-
tarity. The left-hand cut contributions were accounted for by performing a model independent
conformal mapping expansion, whose coefficients were fitted to the experimental data. On top
of the S-wave, the well-established narrow D-wave resonance χc2(3930) was taken into account
explicitly in the s-channel.

In the analysis of the data from the Belle [253] and BaBar [254] Collaborations, we found that
it is crucial to simultaneously describe both charged γγ → D+D− and neutral γγ → D0D̄0

channels. Within our approach, we found no broad resonance X(3860) currently associated
with χc0(2P ) in PDG (2021) [27]. Instead, we found a bound state, located belowDD̄ threshold

1In the "real" world γγ → KK̄ (I = 1) channel has also a significant contribution from the a0(980) resonance
through the {γγ, πη,KK̄} coupled channels.
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Figure 5.7: The S-wave cross-sections for the reactions γγ → K+K− (red) and γγ → K0K̄0

(blue) under the assumption that I = 1 contribution is dominated by the Born
terms. Solid curves correspond to the hypothetical situation when there is no
coupling to the ππ channel and f0(980) is a pure bound state just below KK̄
threshold, while dashed curves come from the I = 0 {γγ, ππ,KK̄} coupled-channel
analysis [2]. The Born contribution is shown as a dot-dashed curve.

at √sB = 3695(4) MeV. The dataset for the invariant DD̄ mass distribution of the e+e− →
J/ψDD̄ reaction, in which the X(3860) resonance was reported [270], confirms the consistency
of our results. Using the S-wave DD̄ final state interaction, we described the e+e− → J/ψDD̄
process reasonably well, by adjusting only the overall normalization.
The bound state in the dispersive analysis without CDD poles qualifies for a molecular state.

It is also consistent with other theoretical predictions [274, 275, 283–289] and the absence of
the broad near-threshold resonance was recently observed by experimental analysis of the
LHCb Collaboration [256, 277]. The detailed study of the properties of the found bound state
X(3695), however, requires more refined experimental input which can be achieved at Belle II.
For this purpose it may be promising to search for the radiative decay ψ(3770)→ γX(3695),
in analogy with ψ(3770)→ γχc0 radiative decay measurement at BESIII [290]. Furthermore,
the existence such state X(3695) may be tested in direct production at PANDA@FAIR.

Appendices

5.A Breit-Wigner approximation for the χc2(3930) resonance

The unitarity and analyticity properties of the S-matrix are essential for studying the broad
resonances. In general, searching for the poles in the complex s-plane requires a proper ana-
lytical continuation of the scattering amplitude (see Sec. 2.2.6). However, the narrow, isolated
resonances located far from the relevant thresholds [27] can be approximated employing a
standard Breit-Wigner parametrization [291], which is widely used in experimental analyses.
Some D-wave resonances in two-photon fusion reactions serve as relevant examples: a2(1320)
in γγ → πη, and χc2(3930) in γγ → DD̄ (see. Chapter 5). They can be described as the
intermediate resonance state process γγ → R → MM , where R is a spin-2 resonance and
MM is a meson pair (Fig. 5.8).
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Figure 5.8: The tree-level diagram for the γγ → R→MM process.

The partial wave amplitudes are then derived from the effective Λ = 2 Lagrangian for each
of the vertices [278]:

LRγγ = e2gRγγTµνF
µλF νλ ,

LRMM = gRMMT
µν∂µM∂νM , (5.23)

where gRMM and gRγγ denote the resonance coupling constants to meson and photon pair
respectively. The propagator for the tensor particle with mass mR has the form [292]:

iDµναβ = i

∑
Λ ε
∗µν(P,Λ)εαβ(P,Λ)
P 2 −m2

R

, (5.24)

where εµν(P,Λ) (Λ = −2,−1, 0, 1, 2) is a symmetric and traceless polarization tensor for which
the following completness relation holds:

∑
Λ
εµν(P,Λ)

[
εαβ(P,Λ)

]∗
= 1

2

(
KµαKνβ +KµβKνα − 2

3K
µνKαβ

)
,

Kµν = −gµν + PµP ν

m2
R

. (5.25)

Using the notation of Fig. 5.8, the invariant amplitude of the s-channel process is given by

M = −2ie2gRγγgRMMp1µp2ν

1
2

(
KµαKνβ +KµβKνα − 2

3K
µνKαβ

)
s−m2

× (p1αε
λ
1 − pλ1ε1λ)(p2λε2β − p2βε2λ) , (5.26)

where ελi ≡ ε(pi, λi). In the center-of-mass (c.m.) system (see App. 3.A) for this choice of
Lagrangian the physical amplitude with equal photon helicities (Λ = 0)2 vanishes and the
resonance contributes only in case of opposite photon helicities (Λ = 2):

M++ = 0 ,

M+− = −ie2gRγγgRMM
1
8
s2β2(s) sin2(θ)

s−m2
R

, (5.27)

where β(s) = 2p(s)/
√
s, p(s) is a c.m. momentum and θ is a scattering angle. The J = 2 reso-

nance amplitude is derived from the above equation using the inverse Wiegner transformation:

h
(2)
+−(s) = −e2gRγγgRMM

1
10
√

6
s2β2(s)
s−m2

R

. (5.28)

2In general,M++ 6= 0, but is strongly suppressed.

117



Chapter 5 Dispersive analysis of the γγ → DD̄ scattering data





































































































.

.





































































































.

.

Figure 5.9: The R→MM (left) and R→ γγ (right) decay processes.

Therefore, when additional mechanisms are absent, the total D-wave cross section has a fol-
lowing form

σ(2)(s) =
e4g2

RMMg
2
Rγγ

1920πs
s4β5(s)

(s−m2
R)2 , (5.29)

where the threshold factors appear automatically.
In general, the absolute values of couplings gRMM and gRγγ can be extracted from the

radiative decay widths of the resonance in question to correponding channels.
The amplitudes for these decays, using the notations of Fig. 5.9 are

MRMM = gRMMp
µ
1p

ν
2εµν(P,Λ) ,

MRγγ = −2ie2gRγγεµν(P,Λ)
(
pµ1 ε

λ∗
1 − pλ1ε

µ∗
1

)
(p2λε

ν∗
2 − pν2ε∗2λ) . (5.30)

Then the partial can be calculated, performing a sum over polarizations:

ΓRMM = 1
2

ˆ
d3p̄1

(2π)32Ep1

ˆ
d3p̄2

(2π)32Ep2
(2π)4δ4(P − p1 − p2)1

5
∑
Λ
|MRMM |2 = g2

RMM

60π
p5(mR)
m2
R

,

ΓRγγ = 1
2

ˆ
d3q̄1

(2π)3(2|q̄1|)2 2πδ(MR − 2|q̄1|)
1
5
∑
Λ
|MRγγ |2 = e4m3

R

80π g2
Rγγ , (5.31)

and the couplings can be extracted given the experimental values of ΓRMM and ΓRγγ . For
the χc2(3930) resonance the numerical values of Γχc2(3930)DD̄ and Γχc2(3930)γγ have not been
measured and the product of correspondimg couplings is absorbed into the cross section nor-
malization parameter (see Chapter 5).
The Lagrangian-based result for the cross section in Eq. 5.29 needs to be modified, since

the physical resonances have the finite width ΓR, which then enters the denominator:

σ(2)(s) =
e4g2

RMMg
2
Rγγ

1920πs
s4β5(s)

(s−m2
R)2 +m2

RΓ2
R

. (5.32)

With a constant width, however, the cross section grows with energy due to the factor
β5(s) ∼ p5(s) in the numerator. In general, the factor p2L+1(s) in Breit-Wigner parametriza-
tion ensures a proper threshold behaviour and is often introduced manually if there is a relevant
threshold nearby, together with an energy-dependent expression for the width in denominator

ΓR −→ Γ(s) = ΓR

(
p(s)
p(M2

R)

)2L+1

. (5.33)

Among the different methods to supress the rapid growth of the width itself, the phenomeno-
logical Blatt-Weisskopf form factor BL(s) is commonly used [293]. In the D-wave, for instance,
it has the following form:

B2(s) = F2(p(s)r)
F2(p(m2

R)r)
, F2(x) = 1

9 + 3x2 + x4 , (5.34)
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Figure 5.10: Comparison between Lagrangian-based cross section with energy-dependend
width and Breit-Wigner parametrization including Blatt-Weisskopf factor for the
χc2(3930) resonance in γγ → DD̄ scattering, both normalized to 1 at the reso-
nance peak position. Here interaction radius is taken as r = 1.5 GeV−1.

where r is an effective interaction radius, which gives out the asymmetry of the resonance
line shape. The numerical values of this parameter vary around several GeV−1 in different
hadronic reactions. While the presence of Blatt-Weisskopf barrier factor both in the numerator
of the cross section and in the width can improve the data description, it adds an additional
uncertainty since the value of interaction radius can not be precisely defined for all resonances.
The Breit-Wigner parametrization with Blatt-Weisskopf factor [254] for a resonance, decay-

ing predominantly in one channel has a following form:

BW(s) =
(

p(s)
p(m2

R)

)2L+1
mR√
s

B2
L(s)

(s−m2
R)2 +m2

RΓ2
BL(s)

,

ΓBL(s) = ΓR

(
p(s)
p(m2

R)

)2L+1
mR√
s
B2
L(s) , (5.35)

where the factor mR/
√
s ≈ 1 scales the resonance effect on the energies far from the peak.

In case of multiple relevant channels Eq. (5.35) can be generalized by taking the sum of the
respective widths.
For the χc2(3930) resonance on the level of cross section the difference between the Lagrangian-

based result (5.29) with energy dependent width (5.33) and the Breit-Wigner parametrization
(5.35) is negligible (see Fig. 5.10), therefore, the Blatt-Weisskopf factor can be omitted.

5.B Cross section of the e+e− → J/ψDD̄ process

The process e+e− → J/ψDD̄ can be described by the diagram in Fig. 5.11 assuming that
the DD̄ pair comes from the resonance X. The cross section for this reaction is given by an

119



Chapter 5 Dispersive analysis of the γγ → DD̄ scattering data

.

.



































































































matzo

Figure 5.11: Feynman diagram for the process e+e− → J/ψDD̄ assuming that the DD̄ pair
comes from the resonance X.

integral over the phase space of the three particles in final state

σ = 1
2q2

ˆ (
d3~pJ/ψ

(2π)32EJ/ψ

)c.m. ˆ (
d3~pD

(2π)32ED

)r.f. ˆ (
d3~pD̄

(2π)32ED̄

)r.f.

× (2π)4δ4
(
q − pJ/ψ − pD − pD̄

)r.f.
|Me+e−→J/ψDD̄|

2 , (5.36)

where c.m. denotes the e+e− center of mass frame, r.f denotes the X(DD̄) rest frame (see
Fig. 5.12) and Me+e−→J/ψDD̄ is the amplitude of the e+e− → J/ψDD̄ process; here q =
pe+ + pe− . The integration over dφJ/ψ in this case is trivial and brings an overall factor of 2π
and the integration over d3~pD̄ gives

σ = 1
2q2

1
(2π)4

ˆ (
|~pJ/ψ|2d|~pJ/ψ|d cos θJ/ψ

2EJ/ψ

)c.m. ˆ (
d3~pD
2ED

)r.f.( 1
2ED̄

)r.f.

× δ
(√

s− 2
√
~p2
D +m2

D

)r.f.
|Me+e−→J/ψDD̄|

2 , (5.37)

where we introduce
√
s = (q0 −EJ/ψ)r.f.. From the energy conserving δ-function in Eq. (5.37)

follows that
√
s = (ED +ED̄)r.f. = (2ED)r.f.. We note, that in arbitrary frame s = (pD + pD̄)2.

To perform the integration over d|~pD|, we use

δ

(√
s− 2

√
~p2
D +m2

D

)
=
δ
(
|~pD| − 1

2
√
s
λ1/2(s,m2

D,m
2
D)
)

2 |~pD|√
~p2
D+m2

D

= 2ED̄
4|~pD|

δ

(
|~pD| −

1
2
√
s
λ1/2(s,m2

D,m
2
D)
)
, (5.38)

where λ(x, y, z) is a standard Källén function (see cf. App. 3.A). Therefore,

σ = 1
2q2

1
(2π)4

ˆ (
|~pJ/ψ|2d|~pJ/ψ|d cos θJ/ψ

2EJ/ψ

)c.m ˆ (
|~pD|2d|~pD|dΩD

2ED

)r.f

× 1
4|~pD|

δ

(
|~pD| −

1
2
√
s
λ1/2(s,m2

D,m
2
D)
)
|Me+e−→J/ψDD̄|

2

= 1
2q2

1
(2π)4

1√
s

(
|~pJ/ψ|2d|~pJ/ψ|d cos θJ/ψ

2EJ/ψ

)c.m. ( |~pD|dΩD

4

)r.f.
|Me+e−→J/ψDD̄|

2 . (5.39)

where we imply |~pD| = 1
2
√
s
λ1/2(s,m2

D,m
2
D). In the end we are aiming to obtain the differential

cross section dσ/d
√
s, therefore, using:

s = (q − pJ/ψ)2 = q2 − 2
√
q2EJψ +m2

J/ψ , d
√
s = −

√
q2
√
s

|~pJ/ψ|
EJ/ψ

d|~pJ/ψ| , (5.40)
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Figure 5.12: Kinematics of the e+e− → J/ψDD̄ process. Left panel: e+e− center-of-mass
frame; right panel: DD̄ pair rest frame. Here φRF = φ.

the differential cross section yields
dσ

dΩDd cos θJ/ψd
√
s

= 1
16q2

√
q2

1
(2π)4 |~pJ/ψ|

c.m.|~pD|r.f.|Me+e−→J/ψDD̄|
2 . (5.41)

In the c.m. frame for the J/ψ momentum holds

|~pJ/ψ|c.m. = 1
2
√
q2λ

1/2(s, q2,m2
J/ψ) , (5.42)

and Eq. 5.41 transforms to

dσ

dΩDd cos θJ/ψd
√
s

=
λ1/2(s,m2

D,m
2
D)λ1/2(s, q2,m2

J/ψ)
(2π)464q4√s

|Me+e−→J/ψDD̄|
2 . (5.43)

Now we want to put the amplitude Me+e−→J/ψDD̄ under closer inspection. First, for the
ultra-relativistic e+e− pair we can neglect their masses, so that

Me+e−→J/ψDD̄ = v̄(pe+ , se+)(ieγµ)u(pe− , se−)
(−i
q2 gµµ′

)
(−ie)Jµ

′

γ∗→J/ψDD̄ . (5.44)

The averaging over the initial states and summing over the final states reads as∑
i

∑
f

|Me+e−→J/ψDD̄|
2 = 1

2
∑
se−

1
2
∑
se+

∑
λJ/ψ

e4

q4

× v̄(pe+ , se+)γµu(pe− , se−)gµµ′Jµ
′

γ∗→J/ψDD̄

× ū(pe− , se−)γνv(pe+ , se+)gνν′Jν
′

γ∗→J/ψDD̄ , (5.45)

where λJ/ψ denotes J/ψ helicity. Using
∑
se−

u(pe− , se−)ū(pe− , se−) = /pe− , we obtain

∑
i

∑
f

|Me+e−→J/ψDD̄|
2 = e4

q4
1
4Tr

{
/pe+γ

µ
/pe−γ

ν
}
gµµ′gνν′

∑
λJ/ψ

Jµ
′

γ∗→J/ψDD̄J
ν′∗
γ∗→J/ψDD̄

= e4

q4

(
pµe+p

ν
e− + pνe+p

µ
e− − (pe− · pe+)gµν

)(
gµµ′ −

qµqµ′

q2

)
×
(
gνν′ −

qνqν′

q2

) ∑
λJ/ψ

Jµ
′

γ∗→J/ψDD̄J
ν′∗
γ∗→J/ψDD̄ , (5.46)
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since Tr {γµγνγργσ} = 4(gµνgρσ − gµρgνσ + gµσgνρ). We inserted the terms ∼ qµqµ′ , qνqν′ as
they give zero upon the contraction with the leptonic tensor and for which holds:

gµµ′ −
qµqµ′

q2 =
∑

λγ=−1,0,+1
εµ(q, λγ)ε∗µ′(q, λγ) . (5.47)

Therefore, we can rewrite Eq. 5.46:

∑
i

∑
f

|Me+e−→J/ψDD̄|
2 = e4

q4

(
pµe+p

ν
e− + pνe+p

µ
e− −

q2

2 g
µν

)∑
λγ

∑
λ′γ

εµ(q, λγ)ε∗ν(q, λ′γ)

×
∑
λJ/ψ

(
εµ′(q, λγ)Jµ

′

γ∗→J/ψDD̄

) (
εν′(q, λ′γ)Jν′

γ∗→J/ψDD̄

)∗

= e4

q4

(
pµe+p

ν
e− + pνe+p

µ
e− −

q2

2 g
µν

)
×
∑
λγ

∑
λ′γ

εµ(q, λγ)ε∗ν(q, λ′γ)
∑
λJ/ψ

HλγλJ/ψH
∗
λ′γλJ/ψ

, (5.48)

where HλγλJ/ψ denotes the helicity amplitude. In the c.m. system

pe− =
(√

q2

2 , 0, 0,+
√
q2

2

)
, εµ(q, λγ = +1) =

(
0,− 1√

2
,− i√

2
, 0
)
,

pe+ =
(√

q2

2 , 0, 0,−
√
q2

2

)
, εµ(q, λγ = +1) =

(
0,+ 1√

2
,− i√

2
, 0
)
,

q =
(√

q2, 0, 0, 0
)
, εµ(q, λγ = 0) = (0, 0, 0, 1) , (5.49)

so that we can evaluate the following expression(
pµe+p

ν
e− + pνe+p

µ
e− −

q2

2 g
µν

)
εµ(q, λγ)ε∗ν(q, λ′γ) = −q

2

2 δλγ0δλ′γ0 −
q2

2 (−δλγλ′γ ) . (5.50)

Therefore, for λγ = λ′γ = 0(
pµe+p

ν
e− + pνe+p

µ
e− −

q2

2 g
µν

)
εµ(q, λγ)ε∗ν(q, λ′γ) = 0 , (5.51)

and for λγ = λ′γ = +1 or λγ = λ′γ = −1(
pµe+p

ν
e− + pνe+p

µ
e− −

q2

2 g
µν

)
εµ(q, λγ)ε∗ν(q, λ′γ) = q2

2 . (5.52)

Since due to parity H+1λJ/ψ = H−1λJ/ψ in the unpolarized case,

∑
i

∑
f

|Me+e−→J/ψDD̄|
2 = e4

q2

∑
λJ/ψ

|H+1λJ/ψ |
2 , (5.53)

and the resulting differential cross section is

dσ

dΩDd cos θJ/ψd
√
s

= e4

(2π)464q6√s
λ1/2(s,m2

D,m
2
D)λ1/2(s, q2,m2

J/ψ)|H+1λJ/ψ |
2 , (5.54)
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where H+1λJ/ψ is helicity amplitude in e+e− c.m., where the resonance X is emitted at angle
θX and X decays in plane with azimuthal angle φ∗J/ψ. We assume, that close to threshold this
amplitude depends only on the DD̄ invariant mass so that the integration over dΩD gives 4π
and over d cos θJ/ψ gives 2, resulting in

dσ

d
√
s

= e4

(2π)332q6√s
λ1/2(s,m2

D,m
2
D)λ1/2(s, q2,m2

J/ψ)|H+1λJ/ψ |
2 . (5.55)

Following the arguments from Sec. 5.3.3, the production of the resonance X in DD̄ final
state interaction can be described by the inverse of the D22 function. Finally, by absorbing
all numerical prefactors into the normalisation constant N and obtain the cross section from
Eq. 5.22:

dσ

d
√
s

= N
λ1/2(s, q2,m2

J/ψ)λ1/2(s,m2
D,m

2
D)

q6√s
|D−1

22 (s)|2 . (5.56)
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Chapter 6

Thesis summary and outlook

In this thesis, we have analysed various hadronic processes using the dispersive approach, which
comprises the analyticity and unitarity constraints of the S-matrix. Here, we summarise the
obtained results and provide a brief overview of the prospects for future work.
First, we presented the results of the data-driven dispersive analysis of the S-wave ππ → ππ

and πK → πK reactions aimed primarily to study the properties of σ/f0(500), f0(980) and
κ/K∗(700) resonances. For the πK system, we performed the single-channel, and for the
ππ system, both single and coupled-channel analyses of the existing experimental data were
performed. In addition, we supplemented the data input by the threshold constraints and
Adler zeros from χPT for physical pion mass. By replacing the experimental data with the
pseudo data of high precision generated from the sophisticated Roy and Roy-Steiner analyses,
we found that the obtained pole parameters are stable, thus justifying the proposed treatment.
We also note that our approach does not suffer from the spurious poles in contrast to the K-
matrix approach commonly used for the resonance analysis. This advantage manifested itself
in the analysis of the lattice ππ data for mπ = 236, 391 MeV and πK data for mπ = 239
MeV, which allowed to extact the σ/f0(500) and κ/K∗(700) pole parameters in contrast to
the simple K-matrix parametrisation. We compared the results for the unphysical pion masses
with existing UχPT predictions, which allows to shed light on the structure and dynamics of
σ/f0(500) resonance, which for the large pion mass appears as the ππ bound state.
We then utilised the obtained coupled-channel Omnès function, which characterises two pi-

ons final state interaction in the two-photon fusion processes. The coupled-channel treatment
in the S-wave allowed us to simultaneously reproduce the σ/f0(500) and f0(980) resonances,
resulting in reasonable agreement with the experimental data for the real photon case. In
addition, we calculated the two-photon couplings and decay width of σ/f0(500) and f0(980)
resonances, with obtained results being consistent with other theoretical analyses. We also
calculated the pion dipole polarizabilities, which show some tension with the current χPT
prediction for the neutral pion case, indicating the importance of ω left-hand cut contribution.
For the tensor resonance f2(1270), we adopted the single-channel dispersive approach sup-
plemented by the vector-meson exchange left-hand cuts contribution. This D-wave treatment
introduced the coupling of the photon, vector and pseudoscalar meson fields gV Pγ , which is the
only parameter in our approach fitted to the real photon data. In this manner, we predicted
the cross sections for the single- and double-virtual γ(∗)γ∗ → ππ processes in the low spacelike
virtuality regime. The single virtual results have yet to be confronted with the upcoming data
from the BESIII Collaboration to confirm the validity of the dispersive technique further to
ensure the correctness of the input to the HLbL scattering part of the (g − 2)µ and to further
improve on the theoretical precision.
Third, we considered the γγ → DD̄ reaction, which is expected to produce two charmonium-

like resonances χc0(2P ) and χc2(2P ). We described the narrow tensor χc2(3930) resonance
using the Breit-Wigner parametrisation, while for the S-wave, we implemented a partial-wave
dispersion representation to account for the DD̄ rescattering. The simultaneous treatment
of the charged and neutral channel appears crucial to establishing the absence of the broad
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resonance X(3860), currently associated with χc0(2P ). Instead, we have found a DD̄ bound
state, located slightly below the threshold, which may qualify for the DD̄ molecule. This
finding was further reinforced by the description of the related e+e− → J/ψDD̄ process.
For all processes considered in this thesis, we established that provided sufficient data input

from the left-hand cuts; we are able to predict the stable results for several observables.
As an outlook of our research, we would like to outline several prospects.
Regarding the ππ and πK scattering, we mentioned that the current formalism has to be

extended to allow for the CDD poles, for instance, ρ or K∗. In addition, the slight discrep-
ancy between our κ/K∗(700) pole position and the result obtained in the Roy-like framework
indicates that the proper coupled-channel treatment is needed for the πK scattering as well.
As for the ππ scattering, we note that currently, the coupled-channel data from lattice is
available only for pion mass value mπ = 391 MeV; however, we anticipate that once the re-
sult for the lower pion masses is achieved, the application of our approach will be relatively
straightforward. On the other hand, for the DD̄ system, the lattice results are available from
the coupled-channel system, and hence, we are motivated to extend our current framework
to the coupled {DD̄,DsD̄s} scattering as well. Currently, the quality of experimental data
leaves no realistic opportunity to go beyond the single-channel final-state interaction for the
γγ → DD̄. In addition, the question of the χc0 presence in this reaction remains open. We
believe that with more refined experimental input, which is achievable at Belle II, we could
study the properties of obtained bound state X(3695) in more detail. The nature of this state
can also be tested by the future PANDA@FAIR experiment. On the subject of already existing
data, we consider the study of the J/ψJ/ψ scattering, recently measured by LHCb [92] quite
promising. The developed approach can be further extended to study other charmonium and
even bottomonium systems.
As a natural continuation of our two-photon project we consider the γγ → π0η,KK̄ scatter-

ing. We have already described both real and single-virtual γγ(∗) → π0η process in our earlier
works [65, 217], resulting in a reasonable description of the real photon data from Belle [202].
However, in order to provide a data-driven input from a0(980) resonance to HLbL part of
(g − 2)µ in the same manner as it was done for f0(980) resonance in [81], the coupled-channel
{π0η,KK̄} treatment has to be modified. Since there is no experimental data for the π0η
phase shifts currently available, we can follow the approach used in our γγ → DD̄ study and
fit the conformal expansion coefficients directly to the cross section data. The cross sections
for the single-virtual case with modified hadronic rescattering part are then to be confronted
with the upcoming data from BESIII.
Overall, we want to emphasise that among all physical interplays, the most important one

is the interaction between theory and experiment. Any theoretical prediction or analysis is
immaterial until confronted with experimental data, and therefore, we look forward to further
testing our approach in the light of growing experimental capabilities. Meanwhile, the partial-
wave dispersive approach developed in this work provides a very powerful tool for forthcoming
resonance analysis by both experimental as well as lattice collaborations.

126



Bibliography

[1] I. Danilkin, O. Deineka, and M. Vanderhaeghen, “Dispersive analysis of the γ∗γ∗ → ππ
process”, Phys. Rev. D 101, 054008 (2020), arXiv:1909.04158 [hep-ph].

[2] I. Danilkin, O. Deineka, and M. Vanderhaeghen, “Data-driven dispersive analysis of the
ππ and πK scattering”, Phys. Rev. D 103, 114023 (2021), arXiv:2012.11636 [hep-ph].

[3] O. Deineka, I. Danilkin, and M. Vanderhaeghen, “Dispersive analysis of the γγ → DD̄
data and the confirmation of the DD̄ bound state”, Phys. Lett. B 827, 136982 (2022),
arXiv:2111.15033 [hep-ph].

[4] O. Deineka, I. Danilkin, and M. Vanderhaeghen, “On the Importance of Left-hand Cuts
in the γγ∗ → ππ Process”, Acta Phys. Polon. B 50, 1901–1910 (2019).

[5] O. Deineka, I. Danilkin, and M. Vanderhaeghen, “Dispersive analysis of the ππ and
πK scattering data”, in 10th International workshop on Chiral Dynamics (Mar. 2022),
arXiv:2203.02215 [hep-ph].

[6] G. Colangelo et al., “Prospects for precise predictions of aµ in the Standard Model”,
(2022), arXiv:2203.15810 [hep-ph].

[7] T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard
Model”, Phys. Rept. 887, 1–166 (2020), arXiv:2006.04822 [hep-ph].

[8] S. Weinberg, “A Model of Leptons”, Phys. Rev. Lett. 19, 1264–1266 (1967).
[9] S. L. Glashow, “Partial Symmetries of Weak Interactions”, Nucl. Phys. 22, 579–588

(1961).
[10] A. Salam and J. C. Ward, “Electromagnetic and weak interactions”, Phys. Lett. 13,

168–171 (1964).
[11] G. ’t Hooft and M. J. G. Veltman, “Regularization and Renormalization of Gauge

Fields”, Nucl. Phys. B 44, 189–213 (1972).
[12] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory (Addison-

Wesley, Reading, USA, 1995).
[13] J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the standard model,

Vol. 2 (CUP, 2014).
[14] G. Aad et al., “Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716, 1–29 (2012),
arXiv:1207.7214 [hep-ex].

[15] S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with the CMS
Experiment at the LHC”, Phys. Lett. B 716, 30–61 (2012), arXiv:1207.7235 [hep-ex].

[16] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett. 12,
132–133 (1964).

[17] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons”,
Phys. Rev. Lett. 13, edited by J. C. Taylor, 321–323 (1964).

[18] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global Conservation Laws and
Massless Particles”, Phys. Rev. Lett. 13, edited by J. C. Taylor, 585–587 (1964).

127

http://dx.doi.org/10.1103/PhysRevD.101.054008
http://arxiv.org/abs/1909.04158
http://dx.doi.org/10.1103/PhysRevD.103.114023
http://arxiv.org/abs/2012.11636
http://dx.doi.org/10.1016/j.physletb.2022.136982
http://arxiv.org/abs/2111.15033
http://dx.doi.org/10.5506/APhysPolB.50.1901
http://arxiv.org/abs/2203.02215
http://arxiv.org/abs/2203.15810
http://dx.doi.org/10.1016/j.physrep.2020.07.006
http://arxiv.org/abs/2006.04822
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1016/0031-9163(64)90711-5
http://dx.doi.org/10.1016/0031-9163(64)90711-5
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1103/PhysRevLett.13.585


Bibliography

[19] G. Arnison et al., “Experimental Observation of Isolated Large Transverse Energy Elec-
trons with Associated Missing Energy at

√
s = 540 GeV”, Phys. Lett. B 122, 103–116

(1983).
[20] T. Aaltonen et al., “Precise measurement of the W -boson mass with the CDF II detec-

tor”, Phys. Rev. Lett. 108, 151803 (2012), arXiv:1203.0275 [hep-ex].
[21] D. J. Gross and F. Wilczek, “Ultraviolet Behavior of Nonabelian Gauge Theories”,

Phys. Rev. Lett. 30, edited by J. C. Taylor, 1343–1346 (1973).
[22] H. D. Politzer, “Reliable Perturbative Results for Strong Interactions?”, Phys. Rev.

Lett. 30, edited by J. C. Taylor, 1346–1349 (1973).
[23] H. Yukawa, “On the Interaction of Elementary Particles I”, Proc. Phys. Math. Soc. Jap.

17, 48–57 (1935).
[24] C. M. G. Lattes, G. P. S. Occhialini, and C. F. Powell, “Observations on the Tracks of

Slow Mesons in Photographic Emulsions. 2”, Nature 160, 486–492 (1947).
[25] G. D. Rochester and C. C. Butler, “Evidence for the Existence of New Unstable Ele-

mentary Particles”, Nature 160, 855–857 (1947).
[26] R. Aaij et al., “Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak

structure of the Pc(4450)+”, Phys. Rev. Lett. 122, 222001 (2019), arXiv:1904.03947
[hep-ex].

[27] P. A. Zyla et al., “Review of Particle Physics”, PTEP 2020, 083C01 (2020).
[28] B. Kubis, “An Introduction to chiral perturbation theory”, in Workshop on Physics and

Astrophysics of Hadrons and Hadronic Matter (Mar. 2007), arXiv:hep-ph/0703274.
[29] S. Weinberg, “Phenomenological Lagrangians”, Physica A 96, edited by S. Deser, 327–

340 (1979).
[30] H. Leutwyler, “On the foundations of chiral perturbation theory”, Annals Phys. 235,

165–203 (1994), arXiv:hep-ph/9311274.
[31] E. D’Hoker and S. Weinberg, “General effective actions”, Phys. Rev. D 50, R6050–

R6053 (1994), arXiv:hep-ph/9409402.
[32] R. Machleidt and D. R. Entem, “Chiral effective field theory and nuclear forces”, Phys.

Rept. 503, 1–75 (2011), arXiv:1105.2919 [nucl-th].
[33] K. G. Wilson, “Confinement of Quarks”, Phys. Rev. D 10, edited by J. C. Taylor, 2445–

2459 (1974).
[34] R. P. Feynman, “Space-time approach to nonrelativistic quantum mechanics”, Rev.

Mod. Phys. 20, 367–387 (1948).
[35] G. C. Wick, “Properties of Bethe-Salpeter Wave Functions”, Phys. Rev. 96, 1124–1134

(1954).
[36] M. Wagner, S. Diehl, T. Kuske, and J. Weber, “An introduction to lattice hadron spec-

troscopy for students without quantum field theoretical background”, in (Oct. 2013),
arXiv:1310.1760 [hep-lat].

[37] C. Gattringer and C. B. Lang, Quantum chromodynamics on the lattice, Vol. 788
(Springer, Berlin, 2010).

[38] J. J. Dudek, R. G. Edwards, P. Guo, and C. E. Thomas, “Toward the excited isoscalar
meson spectrum from lattice QCD”, Phys. Rev. D 88, 094505 (2013), arXiv:1309.2608
[hep-lat].

128

http://dx.doi.org/10.1016/0370-2693(83)91177-2
http://dx.doi.org/10.1016/0370-2693(83)91177-2
http://dx.doi.org/10.1103/PhysRevLett.108.151803
http://arxiv.org/abs/1203.0275
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://dx.doi.org/10.1143/PTPS.1.1
http://dx.doi.org/10.1143/PTPS.1.1
http://dx.doi.org/10.1038/160486a0
http://dx.doi.org/10.1038/160855a0
http://dx.doi.org/10.1103/PhysRevLett.122.222001
http://arxiv.org/abs/1904.03947
http://arxiv.org/abs/1904.03947
http://dx.doi.org/10.1093/ptep/ptaa104
http://arxiv.org/abs/hep-ph/0703274
http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://dx.doi.org/10.1006/aphy.1994.1094
http://dx.doi.org/10.1006/aphy.1994.1094
http://arxiv.org/abs/hep-ph/9311274
http://dx.doi.org/10.1103/PhysRevD.50.R6050
http://dx.doi.org/10.1103/PhysRevD.50.R6050
http://arxiv.org/abs/hep-ph/9409402
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://arxiv.org/abs/1105.2919
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/RevModPhys.20.367
http://dx.doi.org/10.1103/RevModPhys.20.367
http://dx.doi.org/10.1103/PhysRev.96.1124
http://dx.doi.org/10.1103/PhysRev.96.1124
http://arxiv.org/abs/1310.1760
http://dx.doi.org/10.1103/PhysRevD.88.094505
http://arxiv.org/abs/1309.2608
http://arxiv.org/abs/1309.2608


Bibliography

[39] M. Luscher, “Volume Dependence of the Energy Spectrum in Massive Quantum Field
Theories. 2. Scattering States”, Commun. Math. Phys. 105, 153–188 (1986).

[40] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J. Wilson, “Isoscalar ππ scat-
tering and the σ meson resonance from QCD”, Phys. Rev. Lett. 118, 022002 (2017),
arXiv:1607.05900 [hep-ph].

[41] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J. Wilson, “Isoscalar ππ,KK, ηη
scattering and the σ, f0, f2 mesons from QCD”, Phys. Rev. D 97, 054513 (2018),
arXiv:1708.06667 [hep-lat].

[42] W. Heisenberg, “Die „beobachtbaren größen“in der theorie der elementarteilchen”, Zeitschrift
für Physik 120, 513–538 (1943).

[43] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The analytic S-matrix
(Cambridge Univ. Press, Cambridge, 1966).

[44] V. N. Gribov, Strong interactions of hadrons at high emnergies: Gribov lectures on
Theoretical Physics, edited by Y. L. Dokshitzer and J. Nyiri (Cambridge University
Press, Oct. 2012).

[45] A. Martin and T. Spearman, Elementary particle theory (North-Holland Publishing
Company, 1970).

[46] S. Mandelstam, “Determination of the pion - nucleon scattering amplitude from disper-
sion relations and unitarity. General theory”, Phys. Rev. 112, 1344–1360 (1958).

[47] S. Mandelstam, “Analytic properties of transition amplitudes in perturbation theory”,
Phys. Rev. 115, 1741–1751 (1959).

[48] D. I. Olive, “Unitarity and the evaluation of discontinuities”, Il Nuovo Cimento (1955-
1965) 26, 73–102 (1962).

[49] G. F. Chew and S. Mandelstam, “Theory of low-energy pion pion interactions”, Phys.
Rev. 119, 467–477 (1960).

[50] L. Castillejo, R. H. Dalitz, and F. J. Dyson, “Low’s scattering equation for the charged
and neutral scalar theories”, Phys. Rev. 101, 453–458 (1956).

[51] A. P. Szczepaniak, P. Guo, M. Battaglieri, and R. De Vita, “P-wave pi pi amplitude
from dispersion relations”, Phys. Rev. D 82, 036006 (2010), arXiv:1005.5562 [hep-ph].

[52] P. Guo, R. Mitchell, and A. P. Szczepaniak, “The Role of P-wave inelasticity in J/ψtoπ+π−π0”,
Phys. Rev. D 82, 094002 (2010), arXiv:1006.4371 [hep-ph].

[53] I. V. Danilkin, L. I. R. Gil, and M. F. M. Lutz, “Dynamical light vector mesons in low-
energy scattering of Goldstone bosons”, Phys. Lett. B 703, 504–509 (2011), arXiv:1106.
2230 [hep-ph].

[54] I. V. Danilkin and M. F. M. Lutz, “Chiral dynamics with vector fields: an application
to ππ and πK scattering”, EPJ Web Conf. 37, edited by A. Wronska, R. Skibinski,
C. Guaraldo, S. Kistryn, and H. Stroeher, 08007 (2012), arXiv:1208.2568 [hep-ph].

[55] J. A. Oller, “Coupled-channel approach in hadron–hadron scattering”, Prog. Part. Nucl.
Phys. 110, 103728 (2020), arXiv:1909.00370 [hep-ph].

[56] J. A. Oller and D. R. Entem, “The exact discontinuity of a partial wave along the left-
hand cut and the exact N/D method in non-relativistic scattering”, Annals Phys. 411,
167965 (2019), arXiv:1810.12242 [hep-ph].

[57] Z.-H. Guo, J. A. Oller, and G. Ríos, “Nucleon-Nucleon scattering from the dispersive
N/Dmethod: next-to-leading order study”, Phys. Rev. C 89, 014002 (2014), arXiv:1305.
5790 [nucl-th].

129

http://dx.doi.org/10.1007/BF01211097
http://dx.doi.org/10.1103/PhysRevLett.118.022002
http://arxiv.org/abs/1607.05900
http://dx.doi.org/10.1103/PhysRevD.97.054513
http://arxiv.org/abs/1708.06667
http://dx.doi.org/10.1007/BF01329800
http://dx.doi.org/10.1007/BF01329800
http://dx.doi.org/10.1103/PhysRev.112.1344
http://dx.doi.org/10.1103/PhysRev.115.1741
http://dx.doi.org/10.1103/PhysRev.119.467
http://dx.doi.org/10.1103/PhysRev.119.467
http://dx.doi.org/10.1103/PhysRev.101.453
http://dx.doi.org/10.1103/PhysRevD.82.036006
http://arxiv.org/abs/1005.5562
http://dx.doi.org/10.1103/PhysRevD.82.094002
http://arxiv.org/abs/1006.4371
http://dx.doi.org/10.1016/j.physletb.2011.08.001
http://arxiv.org/abs/1106.2230
http://arxiv.org/abs/1106.2230
http://dx.doi.org/10.1051/epjconf/20123708007
http://dx.doi.org/10.1051/epjconf/20123708007
http://arxiv.org/abs/1208.2568
http://dx.doi.org/10.1016/j.ppnp.2019.103728
http://dx.doi.org/10.1016/j.ppnp.2019.103728
http://arxiv.org/abs/1909.00370
http://dx.doi.org/10.1016/j.aop.2019.167965
http://dx.doi.org/10.1016/j.aop.2019.167965
http://arxiv.org/abs/1810.12242
http://dx.doi.org/10.1103/PhysRevC.89.014002
http://arxiv.org/abs/1305.5790
http://arxiv.org/abs/1305.5790


Bibliography

[58] R. Omnes, “On the Solution of certain singular integral equations of quantum field
theory”, Nuovo Cim. 8, 316–326 (1958).

[59] J. Gasser and H. Leutwyler, “Chiral Perturbation Theory to One Loop”, Annals Phys.
158, 142 (1984).

[60] R. E. Cutkosky, “Singularities and discontinuities of Feynman amplitudes”, J. Math.
Phys. 1, 429–433 (1960).

[61] B. Hyams et al., “ππ Phase Shift Analysis from 600-MeV to 1900-MeV”, Nucl. Phys. B
64, 134–162 (1973).

[62] M. Fujikawa et al., “High-Statistics Study of the tau- —> pi- pi0 nu(tau) Decay”, Phys.
Rev. D 78, 072006 (2008), arXiv:0805.3773 [hep-ex].

[63] C. Hanhart, “A New Parameterization for the Pion Vector Form Factor”, Phys. Lett.
B 715, 170–177 (2012), arXiv:1203.6839 [hep-ph].

[64] G. Calucci, L. Fonda, and G. C. Ghirardi, “Correspondence between unstable particles
and poles in S matrix theory”, Phys. Rev. 166, 1719 (1968).

[65] I. Danilkin, O. Deineka, and M. Vanderhaeghen, “Theoretical analysis of the γγ → π0η
process”, Phys. Rev. D 96, 114018 (2017), arXiv:1709.08595 [hep-ph].

[66] J. J. Dudek, R. G. Edwards, and D. J. Wilson, “An a0 resonance in strongly coupled πη,
KK scattering from lattice QCD”, Phys. Rev. D 93, 094506 (2016), arXiv:1602.05122
[hep-ph].

[67] M. R. Pennington, “Hadronic structure from two photon collisions”, in KLOE-2 Physics
Workshop ’09 (June 2009), arXiv:0906.1072 [hep-ph].

[68] A. Keshavarzi, K. S. Khaw, and T. Yoshioka, “Muon g − 2: current status”, (2021),
arXiv:2106.06723 [hep-ex].

[69] F. Jegerlehner, The Anomalous Magnetic Moment of the Muon, Vol. 274 (Springer,
Cham, 2017).

[70] F. Jegerlehner and A. Nyffeler, “The Muon g-2”, Phys. Rept. 477, 1–110 (2009),
arXiv:0902.3360 [hep-ph].

[71] I. Danilkin, C. F. Redmer, and M. Vanderhaeghen, “The hadronic light-by-light con-
tribution to the muon’s anomalous magnetic moment”, Prog. Part. Nucl. Phys. 107,
20–68 (2019), arXiv:1901.10346 [hep-ph].

[72] P. A. M. Dirac, “The Quantum theory of electron. 2.”, Proc. Roy. Soc. Lond. A 118,
351 (1928).

[73] J. S. Schwinger, “On Quantum electrodynamics and the magnetic moment of the elec-
tron”, Phys. Rev. 73, 416–417 (1948).

[74] D. Hanneke, S. Fogwell, and G. Gabrielse, “New Measurement of the Electron Mag-
netic Moment and the Fine Structure Constant”, Phys. Rev. Lett. 100, 120801 (2008),
arXiv:0801.1134 [physics.atom-ph].

[75] S. Eidelman, M. Giacomini, F. V. Ignatov, and M. Passera, “The tau lepton anomalous
magnetic moment”, Nucl. Phys. B Proc. Suppl. 169, edited by F. Cei, I. Ferrante, and
A. Lusiani, 226–231 (2007), arXiv:hep-ph/0702026.

[76] G. W. Bennett et al., “Final Report of the Muon E821 Anomalous Magnetic Moment
Measurement at BNL”, Phys. Rev. D 73, 072003 (2006), arXiv:hep-ex/0602035.

[77] B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46
ppm”, Phys. Rev. Lett. 126, 141801 (2021), arXiv:2104.03281 [hep-ex].

130

http://dx.doi.org/10.1007/BF02747746
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1063/1.1703676
http://dx.doi.org/10.1063/1.1703676
http://dx.doi.org/10.1016/0550-3213(73)90618-4
http://dx.doi.org/10.1016/0550-3213(73)90618-4
http://dx.doi.org/10.1103/PhysRevD.78.072006
http://dx.doi.org/10.1103/PhysRevD.78.072006
http://arxiv.org/abs/0805.3773
http://dx.doi.org/10.1016/j.physletb.2012.07.038
http://dx.doi.org/10.1016/j.physletb.2012.07.038
http://arxiv.org/abs/1203.6839
http://dx.doi.org/10.1103/PhysRev.166.1719
http://dx.doi.org/10.1103/PhysRevD.96.114018
http://arxiv.org/abs/1709.08595
http://dx.doi.org/10.1103/PhysRevD.93.094506
http://arxiv.org/abs/1602.05122
http://arxiv.org/abs/1602.05122
http://arxiv.org/abs/0906.1072
http://arxiv.org/abs/2106.06723
http://dx.doi.org/10.1016/j.physrep.2009.04.003
http://arxiv.org/abs/0902.3360
http://dx.doi.org/10.1016/j.ppnp.2019.05.002
http://dx.doi.org/10.1016/j.ppnp.2019.05.002
http://arxiv.org/abs/1901.10346
http://dx.doi.org/10.1098/rspa.1928.0056
http://dx.doi.org/10.1098/rspa.1928.0056
http://dx.doi.org/10.1103/PhysRev.73.416
http://dx.doi.org/10.1103/PhysRevLett.100.120801
http://arxiv.org/abs/0801.1134
http://dx.doi.org/10.1016/j.nuclphysbps.2007.03.002
http://dx.doi.org/10.1016/j.nuclphysbps.2007.03.002
http://arxiv.org/abs/hep-ph/0702026
http://dx.doi.org/10.1103/PhysRevD.73.072003
http://arxiv.org/abs/hep-ex/0602035
http://dx.doi.org/10.1103/PhysRevLett.126.141801
http://arxiv.org/abs/2104.03281


Bibliography

[78] S. Borsanyi et al., “Leading hadronic contribution to the muon magnetic moment from
lattice QCD”, Nature 593, 51–55 (2021), arXiv:2002.12347 [hep-lat].

[79] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, “Pion-pole con-
tribution to hadronic light-by-light scattering in the anomalous magnetic moment of
the muon”, Phys. Rev. Lett. 121, 112002 (2018), arXiv:1805.01471 [hep-ph].

[80] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, “Rescattering effects in the
hadronic-light-by-light contribution to the anomalous magnetic moment of the muon”,
Phys. Rev. Lett. 118, 232001 (2017), arXiv:1701.06554 [hep-ph].

[81] I. Danilkin, M. Hoferichter, and P. Stoffer, “A dispersive estimate of scalar contributions
to hadronic light-by-light scattering”, Phys. Lett. B 820, 136502 (2021), arXiv:2105.
01666 [hep-ph].

[82] M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The Muon
Anomalous Magnetic Moment and Lepton Flavor Violation”, Phys. Rept. 731, 1–82
(2018), arXiv:1610.06587 [hep-ph].

[83] P. Zyla et al., “Review of Particle Physics”, PTEP 2020, and 2021 update, 083C01
(2020).

[84] G. Colangelo, J. Gasser, and H. Leutwyler, “ππ scattering”, Nucl. Phys. B 603, 125–179
(2001), arXiv:hep-ph/0103088.

[85] I. Caprini, G. Colangelo, and H. Leutwyler, “Mass and width of the lowest resonance
in QCD”, Phys. Rev. Lett. 96, 132001 (2006), arXiv:hep-ph/0512364.

[86] R. Garcia-Martin, R. Kaminski, J. R. Pelaez, and J. Ruiz de Elvira, “Precise deter-
mination of the f0(600) and f0(980) pole parameters from a dispersive data analysis”,
Phys. Rev. Lett. 107, 072001 (2011), arXiv:1107.1635 [hep-ph].

[87] B. Moussallam, “Couplings of light I=0 scalar mesons to simple operators in the complex
plane”, Eur. Phys. J. C 71, 1814 (2011), arXiv:1110.6074 [hep-ph].

[88] J. R. Pelaez, “Light scalars as tetraquarks or two-meson states from large N(c) and
unitarized chiral perturbation theory”, Mod. Phys. Lett. A 19, 2879–2894 (2004),
arXiv:hep-ph/0411107.

[89] S. Descotes-Genon and B. Moussallam, “The K*0 (800) scalar resonance from Roy-
Steiner representations of pi K scattering”, Eur. Phys. J. C 48, 553 (2006), arXiv:hep-
ph/0607133.

[90] J. R. Peláez, A. Rodas, and J. Ruiz de Elvira, “Strange resonance poles from Kπ
scattering below 1.8 GeV”, Eur. Phys. J. C 77, 91 (2017), arXiv:1612.07966 [hep-ph].

[91] J. R. Peláez and A. Rodas, “Determination of the lightest strange resonance K∗0 (700) or
κ, from a dispersive data analysis”, Phys. Rev. Lett. 124, 172001 (2020), arXiv:2001.
08153 [hep-ph].

[92] R. Aaij et al., “Observation of structure in the J/ψ -pair mass spectrum”, Sci. Bull. 65,
1983–1993 (2020), arXiv:2006.16957 [hep-ex].

[93] R. Aaij et al., “Observation of J/ψp Resonances Consistent with Pentaquark States
in Λ0

b → J/ψK−p Decays”, Phys. Rev. Lett. 115, 072001 (2015), arXiv:1507.03414
[hep-ex].

[94] C. Adolph et al., “Odd and even partial waves of ηπ− and η′π− in π−p → η(′)π−p at
191GeV/c”, Phys. Lett. B 740, [Erratum: Phys.Lett.B 811, 135913 (2020)], 303–311
(2015), arXiv:1408.4286 [hep-ex].

131

http://dx.doi.org/10.1038/s41586-021-03418-1
http://arxiv.org/abs/2002.12347
http://dx.doi.org/10.1103/PhysRevLett.121.112002
http://arxiv.org/abs/1805.01471
http://dx.doi.org/10.1103/PhysRevLett.118.232001
http://arxiv.org/abs/1701.06554
http://dx.doi.org/10.1016/j.physletb.2021.136502
http://arxiv.org/abs/2105.01666
http://arxiv.org/abs/2105.01666
http://dx.doi.org/10.1016/j.physrep.2017.12.001
http://dx.doi.org/10.1016/j.physrep.2017.12.001
http://arxiv.org/abs/1610.06587
http://dx.doi.org/10.1093/ptep/ptaa104
http://dx.doi.org/10.1093/ptep/ptaa104
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://arxiv.org/abs/hep-ph/0103088
http://dx.doi.org/10.1103/PhysRevLett.96.132001
http://arxiv.org/abs/hep-ph/0512364
http://dx.doi.org/10.1103/PhysRevLett.107.072001
http://arxiv.org/abs/1107.1635
http://dx.doi.org/10.1140/epjc/s10052-011-1814-z
http://arxiv.org/abs/1110.6074
http://dx.doi.org/10.1142/S0217732304016160
http://arxiv.org/abs/hep-ph/0411107
http://dx.doi.org/10.1140/epjc/s10052-006-0036-2
http://arxiv.org/abs/hep-ph/0607133
http://arxiv.org/abs/hep-ph/0607133
http://dx.doi.org/10.1140/epjc/s10052-017-4668-1
http://arxiv.org/abs/1612.07966
http://dx.doi.org/10.1103/PhysRevLett.124.172001
http://arxiv.org/abs/2001.08153
http://arxiv.org/abs/2001.08153
http://dx.doi.org/10.1016/j.scib.2020.08.032
http://dx.doi.org/10.1016/j.scib.2020.08.032
http://arxiv.org/abs/2006.16957
http://dx.doi.org/10.1103/PhysRevLett.115.072001
http://arxiv.org/abs/1507.03414
http://arxiv.org/abs/1507.03414
http://dx.doi.org/10.1016/j.physletb.2014.11.058
http://dx.doi.org/10.1016/j.physletb.2014.11.058
http://arxiv.org/abs/1408.4286


Bibliography

[95] R. A. Briceno, J. J. Dudek, and R. D. Young, “Scattering processes and resonances
from lattice QCD”, Rev. Mod. Phys. 90, 025001 (2018), arXiv:1706.06223 [hep-lat].

[96] M. R. Shepherd, J. J. Dudek, and R. E. Mitchell, “Searching for the rules that govern
hadron construction”, Nature 534, 487–493 (2016), arXiv:1802.08131 [hep-ph].

[97] J. R. Pelaez, “From controversy to precision on the sigma meson: a review on the status
of the non-ordinary f0(500) resonance”, Phys. Rept. 658, 1 (2016), arXiv:1510.00653
[hep-ph].

[98] S. M. Roy, “Exact integral equation for pion pion scattering involving only physical
region partial waves”, Phys. Lett. B 36, 353–356 (1971).

[99] G. E. Hite and F. Steiner, “New dispersion relations and their application to partial-
wave amplitudes”, Nuovo Cim. A 18, 237–270 (1973).

[100] R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira, and F. J. Yndurain,
“The Pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-
like equations up to 1100 MeV”, Phys. Rev. D 83, 074004 (2011), arXiv:1102.2183
[hep-ph].

[101] J. R. Pelaez, A. Rodas, and J. Ruiz De Elvira, “Global parameterization of ππ scattering
up to 2 GeV”, Eur. Phys. J. C 79, 1008 (2019), arXiv:1907.13162 [hep-ph].

[102] B. Ananthanarayan, G. Colangelo, J. Gasser, and H. Leutwyler, “Roy equation analysis
of pi pi scattering”, Phys. Rept. 353, 207–279 (2001), arXiv:hep-ph/0005297.

[103] H. Leutwyler, “Model independent determination of the sigma pole”, AIP Conf. Proc.
1030, edited by G. Rupp, E. Van Beveren, P. Bicudo, B. Hiller, and F. Kleefeld, 46–55
(2008), arXiv:0804.3182 [hep-ph].

[104] P. Buettiker, S. Descotes-Genon, and B. Moussallam, “A new analysis of pi K scattering
from Roy and Steiner type equations”, Eur. Phys. J. C 33, 409–432 (2004), arXiv:hep-
ph/0310283.

[105] J. R. Peláez and A. Rodas, “Dispersive πK → πK and ππ → KK̄ amplitudes from
scattering data, threshold parameters and the lightest strange resonance κ or K∗0 (700)”,
(2020), arXiv:2010.11222 [hep-ph].

[106] J. A. Oller and E. Oset, “N/D description of two meson amplitudes and chiral symme-
try”, Phys. Rev. D 60, 074023 (1999), arXiv:hep-ph/9809337.

[107] A. Gasparyan and M. F. M. Lutz, “Photon- and pion-nucleon interactions in a unitary
and causal effective field theory based on the chiral Lagrangian”, Nucl. Phys. A 848,
126–182 (2010), arXiv:1003.3426 [hep-ph].

[108] I. V. Danilkin, A. M. Gasparyan, and M. F. M. Lutz, “On causality, unitarity and per-
turbative expansions”, Phys. Lett. B 697, 147–152 (2011), arXiv:1009.5928 [hep-ph].

[109] A. M. Gasparyan, M. F. M. Lutz, and B. Pasquini, “Compton scattering from chiral
dynamics with unitarity and causality”, Nucl. Phys. A 866, 79–92 (2011), arXiv:1102.
3375 [hep-ph].

[110] A. M. Gasparyan, M. F. M. Lutz, and E. Epelbaum, “Two-nucleon scattering: Merging
chiral effective field theory with dispersion relations”, Eur. Phys. J. A 49, 115 (2013),
arXiv:1212.3057 [nucl-th].

[111] P. Guo, I. V. Danilkin, D. Schott, C. Fernández-Ramírez, V. Mathieu, and A. P. Szczepa-
niak, “Three-body final state interaction in η → 3π”, Phys. Rev. D 92, 054016 (2015),
arXiv:1505.01715 [hep-ph].

132

http://dx.doi.org/10.1103/RevModPhys.90.025001
http://arxiv.org/abs/1706.06223
http://dx.doi.org/10.1038/nature18011
http://arxiv.org/abs/1802.08131
http://dx.doi.org/10.1016/j.physrep.2016.09.001
http://arxiv.org/abs/1510.00653
http://arxiv.org/abs/1510.00653
http://dx.doi.org/10.1016/0370-2693(71)90724-6
http://dx.doi.org/10.1007/BF02722827
http://dx.doi.org/10.1103/PhysRevD.83.074004
http://arxiv.org/abs/1102.2183
http://arxiv.org/abs/1102.2183
http://dx.doi.org/10.1140/epjc/s10052-019-7509-6
http://arxiv.org/abs/1907.13162
http://dx.doi.org/10.1016/S0370-1573(01)00009-6
http://arxiv.org/abs/hep-ph/0005297
http://dx.doi.org/10.1063/1.2973552
http://dx.doi.org/10.1063/1.2973552
http://dx.doi.org/10.1063/1.2973552
http://arxiv.org/abs/0804.3182
http://dx.doi.org/10.1140/epjc/s2004-01591-1
http://arxiv.org/abs/hep-ph/0310283
http://arxiv.org/abs/hep-ph/0310283
http://arxiv.org/abs/2010.11222
http://dx.doi.org/10.1103/PhysRevD.60.074023
http://arxiv.org/abs/hep-ph/9809337
http://dx.doi.org/10.1016/j.nuclphysa.2010.08.006
http://dx.doi.org/10.1016/j.nuclphysa.2010.08.006
http://arxiv.org/abs/1003.3426
http://dx.doi.org/10.1016/j.physletb.2011.01.036
http://arxiv.org/abs/1009.5928
http://dx.doi.org/10.1016/j.nuclphysa.2011.07.005
http://arxiv.org/abs/1102.3375
http://arxiv.org/abs/1102.3375
http://dx.doi.org/10.1140/epja/i2013-13115-7
http://arxiv.org/abs/1212.3057
http://dx.doi.org/10.1103/PhysRevD.92.054016
http://arxiv.org/abs/1505.01715


Bibliography

[112] P. Guo, I. V. Danilkin, C. Fernández-Ramírez, V. Mathieu, and A. P. Szczepaniak,
“Three-body final state interaction in η → 3π updated”, Phys. Lett. B 771, 497–502
(2017), arXiv:1608.01447 [hep-ph].

[113] G. Colangelo, S. Lanz, H. Leutwyler, and E. Passemar, “η → 3π: Study of the Dalitz
plot and extraction of the quark mass ratio Q”, Phys. Rev. Lett. 118, 022001 (2017),
arXiv:1610.03494 [hep-ph].

[114] G. Colangelo, S. Lanz, H. Leutwyler, and E. Passemar, “Dispersive analysis of η → 3π”,
Eur. Phys. J. C 78, 947 (2018), arXiv:1807.11937 [hep-ph].

[115] M. Albaladejo and B. Moussallam, “Extended chiral Khuri-Treiman formalism for η →
3π and the role of the a0(980), f0(980) resonances”, Eur. Phys. J. C 77, 508 (2017),
arXiv:1702.04931 [hep-ph].

[116] T. Isken, B. Kubis, S. P. Schneider, and P. Stoffer, “Dispersion relations for η′ → ηππ”,
Eur. Phys. J. C 77, 489 (2017), arXiv:1705.04339 [hep-ph].

[117] S. Gonzàlez-Solís and E. Passemar, “η′ → ηππ decays in unitarized resonance chiral
theory”, Eur. Phys. J. C 78, 758 (2018), arXiv:1807.04313 [hep-ph].

[118] L. Gan, B. Kubis, E. Passemar, and S. Tulin, “Precision tests of fundamental physics
with η and η′ mesons”, Phys. Rept. 945, 1–105 (2022), arXiv:2007.00664 [hep-ph].

[119] R. Garcia-Martin and B. Moussallam, “MO analysis of the high statistics Belle results
on γγ → π+π−, π0π0 with chiral constraints”, Eur. Phys. J. C 70, 155–175 (2010),
arXiv:1006.5373 [hep-ph].

[120] M. Hoferichter, D. R. Phillips, and C. Schat, “Roy-Steiner equations for gamma gamma
-> pi pi”, Eur. Phys. J. C 71, 1743 (2011), arXiv:1106.4147 [hep-ph].

[121] L.-Y. Dai and M. R. Pennington, “Comprehensive amplitude analysis of γγ → π+π−, π0π0

and KK below 1.5 GeV”, Phys. Rev. D 90, 036004 (2014), arXiv:1404.7524 [hep-ph].
[122] D. A. S. Molnar, I. Danilkin, and M. Vanderhaeghen, “The role of charged exotic

states in e+e− → ψ(2S) π+π−”, Phys. Lett. B 797, 134851 (2019), arXiv:1903.08458
[hep-ph].

[123] Y.-H. Chen, L.-Y. Dai, F.-K. Guo, and B. Kubis, “Nature of the Y (4260): A light-quark
perspective”, Phys. Rev. D 99, 074016 (2019), arXiv:1902.10957 [hep-ph].

[124] I. Danilkin, D. A. S. Molnar, and M. Vanderhaeghen, “Simultaneous description of the
e+e− → J/ψ ππ (KK̄) processes”, Phys. Rev. D 102, 016019 (2020), arXiv:2004.13499
[hep-ph].

[125] F. Niecknig and B. Kubis, “Dispersion-theoretical analysis of theD+ → K−π+π+ Dalitz
plot”, JHEP 10, 142 (2015), arXiv:1509.03188 [hep-ph].

[126] F. Niecknig and B. Kubis, “Consistent Dalitz plot analysis of Cabibbo-favored D+ →
K̄ππ+ decays”, Phys. Lett. B 780, 471–478 (2018), arXiv:1708.00446 [hep-ph].

[127] J. R. Pelaez and A. Rodas, “ππ → KK̄ scattering up to 1.47 GeV with hyperbolic
dispersion relations”, Eur. Phys. J. C 78, 897 (2018), arXiv:1807.04543 [hep-ph].

[128] C. B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek, “K pi scattering for isospin 1/2
and 3/2 in lattice QCD”, Phys. Rev. D 86, 054508 (2012), arXiv:1207.3204 [hep-lat].

[129] S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K.-F. Liu, N. Mathur, and D. Mohler,
“Lattice study of light scalar tetraquarks with I=0,2,1/2,3/2: Are \sigma and \kappa
tetraquarks?”, Phys. Rev. D 82, 094507 (2010), arXiv:1005.0948 [hep-lat].

133

http://dx.doi.org/10.1016/j.physletb.2017.05.092
http://dx.doi.org/10.1016/j.physletb.2017.05.092
http://arxiv.org/abs/1608.01447
http://dx.doi.org/10.1103/PhysRevLett.118.022001
http://arxiv.org/abs/1610.03494
http://dx.doi.org/10.1140/epjc/s10052-018-6377-9
http://arxiv.org/abs/1807.11937
http://dx.doi.org/10.1140/epjc/s10052-017-5052-x
http://arxiv.org/abs/1702.04931
http://dx.doi.org/10.1140/epjc/s10052-017-5024-1
http://arxiv.org/abs/1705.04339
http://dx.doi.org/10.1140/epjc/s10052-018-6238-6
http://arxiv.org/abs/1807.04313
http://dx.doi.org/10.1016/j.physrep.2021.11.001
http://arxiv.org/abs/2007.00664
http://dx.doi.org/10.1140/epjc/s10052-010-1471-7
http://arxiv.org/abs/1006.5373
http://dx.doi.org/10.1140/epjc/s10052-011-1743-x
http://arxiv.org/abs/1106.4147
http://dx.doi.org/10.1103/PhysRevD.90.036004
http://arxiv.org/abs/1404.7524
http://dx.doi.org/10.1016/j.physletb.2019.134851
http://arxiv.org/abs/1903.08458
http://arxiv.org/abs/1903.08458
http://dx.doi.org/10.1103/PhysRevD.99.074016
http://arxiv.org/abs/1902.10957
http://dx.doi.org/10.1103/PhysRevD.102.016019
http://arxiv.org/abs/2004.13499
http://arxiv.org/abs/2004.13499
http://dx.doi.org/10.1007/JHEP10(2015)142
http://arxiv.org/abs/1509.03188
http://dx.doi.org/10.1016/j.physletb.2018.03.048
http://arxiv.org/abs/1708.00446
http://dx.doi.org/10.1140/epjc/s10052-018-6296-9
http://arxiv.org/abs/1807.04543
http://dx.doi.org/10.1103/PhysRevD.86.054508
http://arxiv.org/abs/1207.3204
http://dx.doi.org/10.1103/PhysRevD.82.094507
http://arxiv.org/abs/1005.0948


Bibliography

[130] L. Liu et al., “Isospin-0 ππ s-wave scattering length from twisted mass lattice QCD”,
Phys. Rev. D 96, 054516 (2017), arXiv:1612.02061 [hep-lat].

[131] Z. Fu and X. Chen, “I = 0 ππ s-wave scattering length from lattice QCD”, Phys. Rev.
D 98, 014514 (2018), arXiv:1712.02219 [hep-lat].

[132] D. Guo, A. Alexandru, R. Molina, M. Mai, and M. Döring, “Extraction of isoscalar ππ
phase-shifts from lattice QCD”, Phys. Rev. D 98, 014507 (2018), arXiv:1803.02897
[hep-lat].

[133] M. Mai, C. Culver, A. Alexandru, M. Döring, and F. X. Lee, “Cross-channel study of
pion scattering from lattice QCD”, Phys. Rev. D 100, 114514 (2019), arXiv:1908.01847
[hep-lat].

[134] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards, and C. E. Thomas, “The
quark-mass dependence of elastic πK scattering from QCD”, Phys. Rev. Lett. 123,
042002 (2019), arXiv:1904.03188 [hep-lat].

[135] G. Rendon, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies, A. Pochinsky, G.
Silvi, and S. Syritsyn, “I = 1/2 S-wave and P -wave Kπ scattering and the κ and K∗
resonances from lattice QCD”, Phys. Rev. D 102, 114520 (2020), arXiv:2006.14035
[hep-lat].

[136] S. Mandelstam, “Unitarity Condition Below Physical Thresholds in the Normal and
Anomalous Cases”, Phys. Rev. Lett. 4, 84–87 (1960).

[137] M. F. M. Lutz and C. L. Korpa, “On coupled-channel dynamics in the presence of
anomalous thresholds”, Phys. Rev. D 98, 076003 (2018), arXiv:1808.08695 [hep-ph].

[138] M. Luming, “Application of N/D and determinantal methods to Yukawa potential scat-
tering”, Phys. Rev. 136, B1120–B1133 (1964).

[139] P. W. Johnson and R. L. Warnock, “Solution of the unitarity equation with overlapping
left and right cuts: a tool for study of the s* and similar systems”, J.Math.Phys. 22,
385 (1981).

[140] N. I. Muskhelishvili, “Singular Integral Equations”, Singular Integral Equations, Wolters-
Noordhoff Publishing, Groningen (1953).

[141] J. F. Donoghue, J. Gasser, and H. Leutwyler, “The Decay of a Light Higgs Boson”,
Nucl. Phys. B 343, 341–368 (1990).

[142] B. Moussallam, “N(f) dependence of the quark condensate from a chiral sum rule”, Eur.
Phys. J. C 14, 111–122 (2000), arXiv:hep-ph/9909292.

[143] W. R. Frazer, “Applications of Conformal Mapping to the Phenomenological Represen-
tation of Scattering Amplitudes”, Phys. Rev. 123, 2180–2182 (1961).

[144] J. Bijnens, P. Dhonte, and P. Talavera, “pi K scattering in three flavor ChPT”, JHEP
05, 036 (2004), arXiv:hep-ph/0404150.

[145] V. Bernard, N. Kaiser, and U. G. Meissner, “Threshold parameters of pi K scattering
in QCD”, Phys. Rev. D 43, 2757–2760 (1991).

[146] A. Gomez Nicola and J. R. Pelaez, “Meson meson scattering within one loop chiral
perturbation theory and its unitarization”, Phys. Rev. D 65, 054009 (2002), arXiv:hep-
ph/0109056.

[147] J. Bijnens and G. Ecker, “Mesonic low-energy constants”, Ann. Rev. Nucl. Part. Sci.
64, 149–174 (2014), arXiv:1405.6488 [hep-ph].

134

http://dx.doi.org/10.1103/PhysRevD.96.054516
http://arxiv.org/abs/1612.02061
http://dx.doi.org/10.1103/PhysRevD.98.014514
http://dx.doi.org/10.1103/PhysRevD.98.014514
http://arxiv.org/abs/1712.02219
http://dx.doi.org/10.1103/PhysRevD.98.014507
http://arxiv.org/abs/1803.02897
http://arxiv.org/abs/1803.02897
http://dx.doi.org/10.1103/PhysRevD.100.114514
http://arxiv.org/abs/1908.01847
http://arxiv.org/abs/1908.01847
http://dx.doi.org/10.1103/PhysRevLett.123.042002
http://dx.doi.org/10.1103/PhysRevLett.123.042002
http://arxiv.org/abs/1904.03188
http://dx.doi.org/10.1103/PhysRevD.102.114520
http://arxiv.org/abs/2006.14035
http://arxiv.org/abs/2006.14035
http://dx.doi.org/10.1103/PhysRevLett.4.84
http://dx.doi.org/10.1103/PhysRevD.98.076003
http://arxiv.org/abs/1808.08695
http://dx.doi.org/10.1016/0550-3213(90)90474-R
http://dx.doi.org/10.1007/s100520050738
http://dx.doi.org/10.1007/s100520050738
http://arxiv.org/abs/hep-ph/9909292
http://dx.doi.org/10.1088/1126-6708/2004/05/036
http://dx.doi.org/10.1088/1126-6708/2004/05/036
http://arxiv.org/abs/hep-ph/0404150
http://dx.doi.org/10.1103/PhysRevD.43.R2757
http://dx.doi.org/10.1103/PhysRevD.65.054009
http://arxiv.org/abs/hep-ph/0109056
http://arxiv.org/abs/hep-ph/0109056
http://dx.doi.org/10.1146/annurev-nucl-102313-025528
http://dx.doi.org/10.1146/annurev-nucl-102313-025528
http://arxiv.org/abs/1405.6488


Bibliography

[148] D.-L. Yao, L.-Y. Dai, H.-Q. Zheng, and Z.-Y. Zhou, “A review on partial-wave dynamics
with chiral effective field theory and dispersion relation”, Rept. Prog. Phys. 84, 076201
(2021), arXiv:2009.13495 [hep-ph].

[149] A. Salas-Bernárdez, F. J. Llanes-Estrada, J. Escudero-Pedrosa, and J. A. Oller, “Sys-
tematizing and addressing theory uncertainties of unitarization with the Inverse Am-
plitude Method”, SciPost Phys. 11, 020 (2021), arXiv:2010.13709 [hep-ph].

[150] I. Caprini, “Finding the sigma pole by analytic extrapolation of pi pi scattering data”,
Phys. Rev. D 77, 114019 (2008), arXiv:0804.3504 [hep-ph].

[151] I. Caprini, P. Masjuan, J. Ruiz de Elvira, and J. J. Sanz-Cillero, “Uncertainty estimates
of the σ-pole determination by Padé approximants”, Phys. Rev. D 93, 076004 (2016),
arXiv:1602.02062 [hep-ph].

[152] S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatte, J. H. Fried-
man, T. A. Lasinski, G. R. Lynch, M. S. Rabin, and F. T. Solmitz, “Pi pi Partial Wave
Analysis from Reactions pi+ p —> pi+ pi- Delta++ and pi+ p —> K+ K- Delta++
at 7.1-GeV/c”, Phys. Rev. D 7, 1279 (1973).

[153] G. Grayer et al., “High Statistics Study of the Reaction pi- p –> pi- pi+ n: Apparatus,
Method of Analysis, and General Features of Results at 17-GeV/c”, Nucl. Phys. B 75,
189–245 (1974).

[154] R. Kaminski, L. Lesniak, and K. Rybicki, “Separation of S wave pseudoscalar and
pseudovector amplitudes in pi- p (polarized) —> pi+ pi- n reaction on polarized target”,
Z. Phys. C 74, 79–91 (1997), arXiv:hep-ph/9606362.

[155] J. R. Batley et al., “New high statistics measurement of K(e4) decay form factors and
pi pi scattering phase shifts”, Eur. Phys. J. C 54, 411–423 (2008).

[156] J. R. Batley et al., “Precise tests of low energy QCD from K(e4)decay properties”, Eur.
Phys. J. C 70, 635–657 (2010).

[157] P. Estabrooks, R. K. Carnegie, A. D. Martin, W. M. Dunwoodie, T. A. Lasinski, and
D. W.G. S. Leith, “Study of K pi Scattering Using the Reactions K+- p —> K+- pi+
n and K+- p —> K+- pi- Delta++ at 13-GeV/c”, Nucl. Phys. B 133, 490–524 (1978).

[158] D. Aston et al., “A Study of K- pi+ Scattering in the Reaction K- p —> K- pi+ n at
11-GeV/c”, Nucl. Phys. B 296, 493–526 (1988).

[159] R. Kaminski, J. R. Pelaez, and F. J. Yndurain, “The pion-pion scattering amplitude.
II. Improved analysis above bar K anti-K threshold”, Phys. Rev. D 74, [Erratum:
Phys.Rev.D 74, 079903 (2006)], 014001 (2006), arXiv:hep-ph/0603170.

[160] A. Gomez Nicola, J. R. Pelaez, and G. Rios, “The Inverse Amplitude Method and Adler
Zeros”, Phys. Rev. D 77, 056006 (2008), arXiv:0712.2763 [hep-ph].

[161] C. Hanhart, J. R. Pelaez, and G. Rios, “Quark mass dependence of the rho and sigma
from dispersion relations and Chiral Perturbation Theory”, Phys. Rev. Lett. 100,
152001 (2008), arXiv:0801.2871 [hep-ph].

[162] J. Nebreda and J. R. Pelaez., “Strange and non-strange quark mass dependence of elastic
light resonances from SU(3) Unitarized Chiral Perturbation Theory to one loop”, Phys.
Rev. D 81, 054035 (2010), arXiv:1001.5237 [hep-ph].

[163] J. R. Pelaez and G. Rios, “Chiral extrapolation of light resonances from one and two-
loop unitarized Chiral Perturbation Theory versus lattice results”, Phys. Rev. D 82,
114002 (2010), arXiv:1010.6008 [hep-ph].

135

http://dx.doi.org/10.1088/1361-6633/abfa6f
http://dx.doi.org/10.1088/1361-6633/abfa6f
http://arxiv.org/abs/2009.13495
http://dx.doi.org/10.21468/SciPostPhys.11.2.020
http://arxiv.org/abs/2010.13709
http://dx.doi.org/10.1103/PhysRevD.77.114019
http://arxiv.org/abs/0804.3504
http://dx.doi.org/10.1103/PhysRevD.93.076004
http://arxiv.org/abs/1602.02062
http://dx.doi.org/10.1103/PhysRevD.7.1279
http://dx.doi.org/10.1016/0550-3213(74)90545-8
http://dx.doi.org/10.1016/0550-3213(74)90545-8
http://dx.doi.org/10.1007/s002880050372
http://arxiv.org/abs/hep-ph/9606362
http://dx.doi.org/10.1140/epjc/s10052-008-0547-0
http://dx.doi.org/10.1140/epjc/s10052-010-1480-6
http://dx.doi.org/10.1140/epjc/s10052-010-1480-6
http://dx.doi.org/10.1016/0550-3213(78)90238-9
http://dx.doi.org/10.1016/0550-3213(88)90028-4
http://dx.doi.org/10.1103/PhysRevD.74.014001
http://dx.doi.org/10.1103/PhysRevD.74.014001
http://arxiv.org/abs/hep-ph/0603170
http://dx.doi.org/10.1103/PhysRevD.77.056006
http://arxiv.org/abs/0712.2763
http://dx.doi.org/10.1103/PhysRevLett.100.152001
http://dx.doi.org/10.1103/PhysRevLett.100.152001
http://arxiv.org/abs/0801.2871
http://dx.doi.org/10.1103/PhysRevD.81.054035
http://dx.doi.org/10.1103/PhysRevD.81.054035
http://arxiv.org/abs/1001.5237
http://dx.doi.org/10.1103/PhysRevD.82.114002
http://dx.doi.org/10.1103/PhysRevD.82.114002
http://arxiv.org/abs/1010.6008


Bibliography

[164] M. Luscher, “Signatures of unstable particles in finite volume”, Nucl. Phys. B 364,
237–251 (1991).

[165] M. Luscher and U. Wolff, “How to Calculate the Elastic Scattering Matrix in Two-
dimensional Quantum Field Theories by Numerical Simulation”, Nucl. Phys. B 339,
222–252 (1990).

[166] K. Rummukainen and S. A. Gottlieb, “Resonance scattering phase shifts on a nonrest
frame lattice”, Nucl. Phys. B 450, 397–436 (1995), arXiv:hep-lat/9503028.

[167] C. h. Kim, C. T. Sachrajda, and S. R. Sharpe, “Finite-volume effects for two-hadron
states in moving frames”, Nucl. Phys. B 727, 218–243 (2005), arXiv:hep-lat/0507006.

[168] N. H. Christ, C. Kim, and T. Yamazaki, “Finite volume corrections to the two-particle
decay of states with non-zero momentum”, Phys. Rev. D 72, 114506 (2005), arXiv:hep-
lat/0507009.

[169] L. Leskovec and S. Prelovsek, “Scattering phase shifts for two particles of different
mass and non-zero total momentum in lattice QCD”, Phys. Rev. D 85, 114507 (2012),
arXiv:1202.2145 [hep-lat].

[170] M. Albaladejo and J. A. Oller, “On the size of the sigma meson and its nature”, Phys.
Rev. D 86, 034003 (2012), arXiv:1205.6606 [hep-ph].

[171] X.-L. Gao, Z.-H. Guo, Z. Xiao, and Z.-Y. Zhou, “Scrutinizing ππ scattering in light of
recent lattice phase shifts”, (2022), arXiv:2202.03124 [hep-ph].

[172] E. van Beveren and G. Rupp, “Comment on ”Scrutinizing pion-pion scattering in light
of recent lattice phase shifts””, (2022), arXiv:2202.08809 [hep-ph].

[173] D. H. Cohen, D. S. Ayres, R. Diebold, S. L. Kramer, A. J. Pawlicki, and A. B. Wicklund,
“Amplitude Analysis of the K- K+ System Produced in the Reactions pi- p —> K- K+
n and pi+ n —> K- K+ p at 6-GeV/c”, Phys. Rev. D 22, 2595 (1980).

[174] A. Etkin et al., “Amplitude Analysis of the K0(s) K0(s) System Produced in the Reac-
tion pi- p —> K0(s) K0(s) n at 23-GeV/c”, Phys. Rev. D 25, 1786 (1982).

[175] R. S. Longacre et al., “A Measurement of π−p → K0(s) K0(s) n at 22-GeV/c and a
Systematic Study of the 2++ Meson Spectrum”, Phys. Lett. B 177, 223–227 (1986).

[176] A. D. Martin and E. N. Ozmutlu, “Analyses of KK̄ Production and Scalar Mesons”,
Nucl. Phys. B 158, 520–545 (1979).

[177] J. A. Oller and E. Oset, “Chiral symmetry amplitudes in the S wave isoscalar and isovec-
tor channels and the σ, f0(980), a0(980) scalar mesons”, Nucl. Phys. A 620, [Erratum:
Nucl.Phys.A 652, 407–409 (1999)], 438–456 (1997), arXiv:hep-ph/9702314.

[178] I. Danilkin and M. Vanderhaeghen, “Dispersive analysis of the γγ∗ → ππ process”,
Phys. Lett. B 789, 366–372 (2019), arXiv:1810.03669 [hep-ph].

[179] M. J. Losty, V. Chaloupka, A. Ferrando, L. Montanet, E. Paul, D. Yaffe, A. Zieminski,
J. Alitti, B. Gandois, and J. Louie, “A Study of pi- pi- scattering from pi- p interactions
at 3.93-GeV/c”, Nucl. Phys. B 69, 185–204 (1974).

[180] N. B. Durusoy, M. Baubillier, R. George, M. Goldberg, A. M. Touchard, N. Armenise,
M. T. Fogli Muciaccia, and A. Silvestri, “Study of the i=2 pi pi scattering from the
reaction pi- d —> pi- pi- p(s) p at 9.0 gev/c”, Phys. Lett. B 45, 517–520 (1973).

[181] W. Hoogland et al., “Measurement and Analysis of the pi+ pi+ System Produced at
Small Momentum Transfer in the Reaction pi+ p —> pi+ pi+ n at 12.5-GeV”, Nucl.
Phys. B 126, 109–123 (1977).

136

http://dx.doi.org/10.1016/0550-3213(91)90584-K
http://dx.doi.org/10.1016/0550-3213(91)90584-K
http://dx.doi.org/10.1016/0550-3213(90)90540-T
http://dx.doi.org/10.1016/0550-3213(90)90540-T
http://dx.doi.org/10.1016/0550-3213(95)00313-H
http://arxiv.org/abs/hep-lat/9503028
http://dx.doi.org/10.1016/j.nuclphysb.2005.08.029
http://arxiv.org/abs/hep-lat/0507006
http://dx.doi.org/10.1103/PhysRevD.72.114506
http://arxiv.org/abs/hep-lat/0507009
http://arxiv.org/abs/hep-lat/0507009
http://dx.doi.org/10.1103/PhysRevD.85.114507
http://arxiv.org/abs/1202.2145
http://dx.doi.org/10.1103/PhysRevD.86.034003
http://dx.doi.org/10.1103/PhysRevD.86.034003
http://arxiv.org/abs/1205.6606
http://arxiv.org/abs/2202.03124
http://arxiv.org/abs/2202.08809
http://dx.doi.org/10.1103/PhysRevD.22.2595
http://dx.doi.org/10.1103/PhysRevD.25.1786
http://dx.doi.org/10.1016/0370-2693(86)91061-0
http://dx.doi.org/10.1016/0550-3213(79)90180-9
http://dx.doi.org/10.1016/S0375-9474(97)00160-7
http://dx.doi.org/10.1016/S0375-9474(97)00160-7
http://arxiv.org/abs/hep-ph/9702314
http://dx.doi.org/10.1016/j.physletb.2018.12.047
http://arxiv.org/abs/1810.03669
http://dx.doi.org/10.1016/0550-3213(74)90131-X
http://dx.doi.org/10.1016/0370-2693(73)90658-8
http://dx.doi.org/10.1016/0550-3213(77)90154-7
http://dx.doi.org/10.1016/0550-3213(77)90154-7


Bibliography

[182] M. Amaryan et al., “Strange Hadron Spectroscopy with Secondary KL Beam in Hall
D”, (2020), arXiv:2008.08215 [nucl-ex].

[183] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, “Dispersive approach to
hadronic light-by-light scattering”, JHEP 09, 091 (2014), arXiv:1402.7081 [hep-ph].

[184] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, “Dispersion relation for
hadronic light-by-light scattering: two-pion contributions”, JHEP 04, 161 (2017), arXiv:1702.
07347 [hep-ph].

[185] V. Pauk and M. Vanderhaeghen, “Anomalous magnetic moment of the muon in a dis-
persive approach”, Phys. Rev. D 90, 113012 (2014), arXiv:1409.0819 [hep-ph].

[186] I. Danilkin and M. Vanderhaeghen, “Light-by-light scattering sum rules in light of new
data”, Phys. Rev. D 95, 014019 (2017), arXiv:1611.04646 [hep-ph].

[187] G. Källén, Elementary particle physics (Addison-Wesley, Reading, MA, 1964).
[188] G. D’Agostini, “On the use of the covariance matrix to fit correlated data”, Nucl.

Instrum. Meth. A 346, 306–311 (1994).
[189] P. Bevington and D. Robinson, Data reduction and error analysis for the physical sci-

ences (McGraw-Hill Education, 2003).
[190] B. Efron, “Bootstrap Methods: Another Look at the Jackknife”, Annals Statist. 7, 1–26

(1979).
[191] A. C. Davison and D. V. Hinkley, Bootstrap methods and their application, Cambridge

Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 1997).
[192] G. E. P. Box and M. E. Muller, “A Note on the Generation of Random Normal Devi-

ates”, The Annals of Mathematical Statistics 29, 610 –611 (1958).
[193] P. Pedroni and S. Sconfietti, “A new Monte Carlo-based fitting method”, J. Phys. G

47, 054001 (2020), arXiv:1909.03885 [physics.data-an].
[194] S. Sconfietti, “Nucleon polarizabilities from Compton scattering data”, PhD thesis (Uni-

versita’ Di Pavia, Pavia U., 2020).
[195] M. Masuda et al., “Study of π0 pair production in single-tag two-photon collisions”,

Phys. Rev. D 93, 032003 (2016), arXiv:1508.06757 [hep-ex].
[196] C. F. Redmer, “The two-photon physics program at BESIII”, Nucl. Part. Phys. Proc.

287-288, edited by C. Yuan, X. Mo, and L. Wang, 99–102 (2017).
[197] S. C. Frautschi, “Regge poles and s-matrix theory”, Regge poles and S-matrix theory,

Frontiers in physics, W.A. Benjamin (1963).
[198] V. Pauk and M. Vanderhaeghen, “Single meson contributions to the muon‘s anomalous

magnetic moment”, Eur. Phys. J. C 74, 3008 (2014), arXiv:1401.0832 [hep-ph].
[199] G. Colangelo, M. Hoferichter, B. Kubis, M. Procura, and P. Stoffer, “Towards a data-

driven analysis of hadronic light-by-light scattering”, Phys. Lett. B 738, 6–12 (2014),
arXiv:1408.2517 [hep-ph].

[200] T. Mori et al., “High statistics measurement of the cross-sections of gamma gamma —>
pi+ pi- production”, J. Phys. Soc. Jap. 76, 074102 (2007), arXiv:0704.3538 [hep-ex].

[201] S. Uehara et al., “High-statistics study of neutral-pion pair production in two-photon
collisions”, Phys. Rev. D 79, 052009 (2009), arXiv:0903.3697 [hep-ex].

[202] S. Uehara et al., “High-statistics study of eta pi0 production in two-photon collisions”,
Phys. Rev. D 80, 032001 (2009), arXiv:0906.1464 [hep-ex].

137

http://arxiv.org/abs/2008.08215
http://dx.doi.org/10.1007/JHEP09(2014)091
http://arxiv.org/abs/1402.7081
http://dx.doi.org/10.1007/JHEP04(2017)161
http://arxiv.org/abs/1702.07347
http://arxiv.org/abs/1702.07347
http://dx.doi.org/10.1103/PhysRevD.90.113012
http://arxiv.org/abs/1409.0819
http://dx.doi.org/10.1103/PhysRevD.95.014019
http://arxiv.org/abs/1611.04646
http://dx.doi.org/10.1016/0168-9002(94)90719-6
http://dx.doi.org/10.1016/0168-9002(94)90719-6
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1214/aoms/1177706645
http://dx.doi.org/10.1088/1361-6471/ab6c31
http://dx.doi.org/10.1088/1361-6471/ab6c31
http://arxiv.org/abs/1909.03885
http://dx.doi.org/10.1103/PhysRevD.93.032003
http://arxiv.org/abs/1508.06757
http://dx.doi.org/10.1016/j.nuclphysbps.2017.03.053
http://dx.doi.org/10.1016/j.nuclphysbps.2017.03.053
http://dx.doi.org/10.1140/epjc/s10052-014-3008-y
http://arxiv.org/abs/1401.0832
http://dx.doi.org/10.1016/j.physletb.2014.09.021
http://arxiv.org/abs/1408.2517
http://dx.doi.org/10.1143/JPSJ.76.074102
http://arxiv.org/abs/0704.3538
http://dx.doi.org/10.1103/PhysRevD.79.052009
http://arxiv.org/abs/0903.3697
http://dx.doi.org/10.1103/PhysRevD.80.032001
http://arxiv.org/abs/0906.1464


Bibliography

[203] J. Gasser, M. A. Ivanov, and M. E. Sainio, “Low-energy photon-photon collisions to
two loops revisited”, Nucl. Phys. B 728, 31–54 (2005), arXiv:hep-ph/0506265.

[204] J. Gasser, M. A. Ivanov, and M. E. Sainio, “Revisiting gamma gamma —> pi+ pi- at
low energies”, Nucl. Phys. B 745, 84–108 (2006), arXiv:hep-ph/0602234.

[205] J. A. Oller and E. Oset, “Theoretical study of the gamma gamma —> meson - meson
reaction”, Nucl. Phys. A 629, 739–760 (1998), arXiv:hep-ph/9706487.

[206] I. V. Danilkin, M. F. M. Lutz, S. Leupold, and C. Terschlusen, “Photon-fusion reactions
from the chiral Lagrangian with dynamical light vector mesons”, Eur. Phys. J. C 73,
2358 (2013), arXiv:1211.1503 [hep-ph].

[207] J. A. Oller, L. Roca, and C. Schat, “Improved dispersion relations for gamma gamma
—> pi0 pi0”, Phys. Lett. B 659, 201–208 (2008), arXiv:0708.1659 [hep-ph].

[208] J. A. Oller and L. Roca, “Two photons into pi0 pi0”, Eur. Phys. J. A 37, 15–32 (2008),
arXiv:0804.0309 [hep-ph].

[209] B. Moussallam, “Unified dispersive approach to real and virtual photon-photon scat-
tering at low energy”, Eur. Phys. J. C 73, 2539 (2013), arXiv:1305.3143 [hep-ph].

[210] M. Hoferichter and P. Stoffer, “Dispersion relations for γ∗γ∗ → ππ: helicity amplitudes,
subtractions, and anomalous thresholds”, JHEP 07, 073 (2019), arXiv:1905 . 13198
[hep-ph].

[211] M. F. M. Lutz and I. Vidana, “On Kinematical Constraints in Boson-Boson Systems”,
Eur. Phys. J. A 48, 124 (2012), arXiv:1111.1838 [hep-ph].

[212] Y. Heo and M. F. M. Lutz, “On kinematical constraints in the hadrogenesis conjecture
for the baryon resonance spectrum”, Eur. Phys. J. A 50, 130 (2014), arXiv:1405.1597
[hep-ph].

[213] W. A. Bardeen and W. K. Tung, “Invariant amplitudes for photon processes”, Phys.
Rev. 173, [Erratum: Phys.Rev.D 4, 3229–3229 (1971)], 1423–1433 (1968).

[214] R. Tarrach, “Invariant Amplitudes for Virtual Compton Scattering Off Polarized Nu-
cleons Free from Kinematical Singularities, Zeros and Constraints”, Nuovo Cim. A 28,
409 (1975).

[215] D. Drechsel, G. Knochlein, A. Y. Korchin, A. Metz, and S. Scherer, “Structure analysis
of the virtual Compton scattering amplitude at low-energies”, Phys. Rev. C 57, 941–952
(1998), arXiv:nucl-th/9704064.

[216] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, “Dispersion relation for
hadronic light-by-light scattering: theoretical foundations”, JHEP 09, 074 (2015), arXiv:1506.
01386 [hep-ph].

[217] O. Deineka, I. Danilkin, and M. Vanderhaeghen, “Theoretical analysis of the γγ(∗) →
π0η process”, EPJWeb Conf. 199, edited by N. Wrońska, A. Magiera, andW. Przygoda,
02005 (2019), arXiv:1808.04117 [hep-ph].

[218] H. W. Fearing and S. Scherer, “Virtual Compton scattering off spin zero particles at
low-energies”, Few Body Syst. 23, 111–126 (1998), arXiv:nucl-th/9607056.

[219] F. E. Low, “Bremsstrahlung of very low-energy quanta in elementary particle collisions”,
Phys. Rev. 110, 974–977 (1958).

[220] D. Morgan and M. R. Pennington, “What Can We Learn From γγ → ππ, KK̄ in the
Resonance Region”, Z. Phys. C 37, [Erratum: Z.Phys.C 39, 590 (1988)], 431 (1988).

138

http://dx.doi.org/10.1016/j.nuclphysb.2005.09.010
http://arxiv.org/abs/hep-ph/0506265
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.022
http://arxiv.org/abs/hep-ph/0602234
http://dx.doi.org/10.1016/S0375-9474(97)00649-0
http://arxiv.org/abs/hep-ph/9706487
http://dx.doi.org/10.1140/epjc/s10052-013-2358-1
http://dx.doi.org/10.1140/epjc/s10052-013-2358-1
http://arxiv.org/abs/1211.1503
http://dx.doi.org/10.1016/j.physletb.2007.11.030
http://arxiv.org/abs/0708.1659
http://dx.doi.org/10.1140/epja/i2008-10600-0
http://arxiv.org/abs/0804.0309
http://dx.doi.org/10.1140/epjc/s10052-013-2539-y
http://arxiv.org/abs/1305.3143
http://dx.doi.org/10.1007/JHEP07(2019)073
http://arxiv.org/abs/1905.13198
http://arxiv.org/abs/1905.13198
http://dx.doi.org/10.1140/epja/i2012-12124-4
http://arxiv.org/abs/1111.1838
http://dx.doi.org/10.1140/epja/i2014-14130-x
http://arxiv.org/abs/1405.1597
http://arxiv.org/abs/1405.1597
http://dx.doi.org/10.1103/PhysRev.173.1423
http://dx.doi.org/10.1103/PhysRev.173.1423
http://dx.doi.org/10.1007/BF02894857
http://dx.doi.org/10.1007/BF02894857
http://dx.doi.org/10.1103/PhysRevC.57.941
http://dx.doi.org/10.1103/PhysRevC.57.941
http://arxiv.org/abs/nucl-th/9704064
http://dx.doi.org/10.1007/JHEP09(2015)074
http://arxiv.org/abs/1506.01386
http://arxiv.org/abs/1506.01386
http://dx.doi.org/10.1051/epjconf/201919902005
http://dx.doi.org/10.1051/epjconf/201919902005
http://arxiv.org/abs/1808.04117
http://dx.doi.org/10.1007/s006010050067
http://arxiv.org/abs/nucl-th/9607056
http://dx.doi.org/10.1103/PhysRev.110.974
http://dx.doi.org/10.1007/BF01578139


Bibliography

[221] L.-Y. Dai and M. R. Pennington, “Two photon couplings of the lightest isoscalars from
BELLE data”, Phys. Lett. B 736, 11–15 (2014), arXiv:1403.7514 [hep-ph].

[222] E. B. Dally et al., “Measurement of the π− Form-factor”, Phys. Rev. D 24, 1718–1735
(1981).

[223] S. R. Amendolia et al., “A Measurement of the Pion Charge Radius”, Phys. Lett. B
146, 116–120 (1984).

[224] V. Tadevosyan et al., “Determination of the pion charge form-factor for Q**2 = 0.60-
GeV**2 - 1.60-GeV**2”, Phys. Rev. C 75, 055205 (2007), arXiv:nucl-ex/0607007.

[225] E. B. Dally et al., “DIRECT MEASUREMENT OF THE NEGATIVE KAON FORM-
FACTOR”, Phys. Rev. Lett. 45, 232–235 (1980).

[226] S. R. Amendolia et al., “A Measurement of the Kaon Charge Radius”, Phys. Lett. B
178, 435–440 (1986).

[227] M. Carmignotto et al., “Separated Kaon Electroproduction Cross Section and the Kaon
Form Factor from 6 GeV JLab Data”, Phys. Rev. C 97, 025204 (2018), arXiv:1801.
01536 [nucl-ex].

[228] I. V. Danilkin, C. Fernández-Ramírez, P. Guo, V. Mathieu, D. Schott, M. Shi, and A. P.
Szczepaniak, “Dispersive analysis of ω/φ→ 3π, πγ∗”, Phys. Rev. D 91, 094029 (2015),
arXiv:1409.7708 [hep-ph].

[229] S. J. J., Currents and mesons (University of Chicago Press, Chicago, USA, 1969).
[230] S. P. Schneider, B. Kubis, and F. Niecknig, “The ω− > π0γ∗ and φ− > π0γ∗ transition

form factors in dispersion theory”, Phys. Rev. D 86, 054013 (2012), arXiv:1206.3098
[hep-ph].

[231] R. Karplus, C. M. Sommerfield, and E. H. Wichmann, “Spectral Representations in
Perturbation Theory. 1. Vertex Function”, Phys. Rev. 111, 1187–1190 (1958).

[232] M. Hoferichter, G. Colangelo, M. Procura, and P. Stoffer, “Virtual photon-photon scat-
tering”, Int. J. Mod. Phys. Conf. Ser. 35, edited by P. Gauzzi and G. Venanzoni, 1460400
(2014), arXiv:1309.6877 [hep-ph].

[233] J. Bernabeu and J. Prades, “The sigma –> gamma gamma Width from Nucleon Elec-
tromagnetic Polarizabilities”, Phys. Rev. Lett. 100, 241804 (2008), arXiv:0802.1830
[hep-ph].

[234] V. Pascalutsa and M. Vanderhaeghen, “Sum rules for light-by-light scattering”, Phys.
Rev. Lett. 105, 201603 (2010), arXiv:1008.1088 [hep-ph].

[235] V. Pascalutsa, V. Pauk, and M. Vanderhaeghen, “Light-by-light scattering sum rules
constraining meson transition form factors”, Phys. Rev. D 85, 116001 (2012), arXiv:1204.
0740 [hep-ph].

[236] L.-Y. Dai and M. R. Pennington, “Pascalutsa-Vanderhaeghen light-by-light sum rule
from photon-photon collisions”, Phys. Rev. D 95, 056007 (2017), arXiv:1701.04460
[hep-ph].

[237] M. R. Pennington, “Sigma coupling to photons: Hidden scalar in gamma gamma —>
pi0 pi0”, Phys. Rev. Lett. 97, 011601 (2006).

[238] C. Adolph et al., “Measurement of the charged-pion polarizability”, Phys. Rev. Lett.
114, 062002 (2015), arXiv:1405.6377 [hep-ex].

[239] T. Fuchs, B. Pasquini, C. Unkmeir, and S. Scherer, “Virtual Compton scattering off the
pseudoscalar meson octet”, Czech. J. Phys. 52, edited by J. Adam, P. Bydzovsky, and
J. Mares, B135–B144 (2002), arXiv:hep-ph/0010218.

139

http://dx.doi.org/10.1016/j.physletb.2014.07.005
http://arxiv.org/abs/1403.7514
http://dx.doi.org/10.1103/PhysRevD.24.1718
http://dx.doi.org/10.1103/PhysRevD.24.1718
http://dx.doi.org/10.1016/0370-2693(84)90655-5
http://dx.doi.org/10.1016/0370-2693(84)90655-5
http://dx.doi.org/10.1103/PhysRevC.75.055205
http://arxiv.org/abs/nucl-ex/0607007
http://dx.doi.org/10.1103/PhysRevLett.45.232
http://dx.doi.org/10.1016/0370-2693(86)91407-3
http://dx.doi.org/10.1016/0370-2693(86)91407-3
http://dx.doi.org/10.1103/PhysRevC.97.025204
http://arxiv.org/abs/1801.01536
http://arxiv.org/abs/1801.01536
http://dx.doi.org/10.1103/PhysRevD.91.094029
http://arxiv.org/abs/1409.7708
http://dx.doi.org/10.1103/PhysRevD.86.054013
http://arxiv.org/abs/1206.3098
http://arxiv.org/abs/1206.3098
http://dx.doi.org/10.1103/PhysRev.111.1187
http://dx.doi.org/10.1142/S2010194514604001
http://dx.doi.org/10.1142/S2010194514604001
http://arxiv.org/abs/1309.6877
http://dx.doi.org/10.1103/PhysRevLett.100.241804
http://arxiv.org/abs/0802.1830
http://arxiv.org/abs/0802.1830
http://dx.doi.org/10.1103/PhysRevLett.105.201603
http://dx.doi.org/10.1103/PhysRevLett.105.201603
http://arxiv.org/abs/1008.1088
http://dx.doi.org/10.1103/PhysRevD.85.116001
http://arxiv.org/abs/1204.0740
http://arxiv.org/abs/1204.0740
http://dx.doi.org/10.1103/PhysRevD.95.056007
http://arxiv.org/abs/1701.04460
http://arxiv.org/abs/1701.04460
http://dx.doi.org/10.1103/PhysRevLett.97.011601
http://dx.doi.org/10.1103/PhysRevLett.114.062002
http://dx.doi.org/10.1103/PhysRevLett.114.062002
http://arxiv.org/abs/1405.6377
http://dx.doi.org/10.1007/s10582-001-0051-3
http://dx.doi.org/10.1007/s10582-001-0051-3
http://arxiv.org/abs/hep-ph/0010218


Bibliography

[240] G. Ecker, “Chiral low-energy constants”, Acta Phys. Polon. B 38, edited by H. Czyz,
M. Krawczyk, and G. Pancheri, 2753–2762 (2007), arXiv:hep-ph/0702263.

[241] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, “The Two photon
particle production mechanism. Physical problems. Applications. Equivalent photon
approximation”, Phys. Rept. 15, 181–281 (1975).

[242] J. Boyer et al., “Two photon production of pion pairs”, Phys. Rev. D 42, 1350–1367
(1990).

[243] H. J. Behrend et al., “An Experimental study of the process gamma gamma —> pi+
pi-”, Z. Phys. C 56, 381–390 (1992).

[244] H. Marsiske et al., “A Measurement of π0π0 Production in Two Photon Collisions”,
Phys. Rev. D 41, 3324 (1990).

[245] S. Ropertz, C. Hanhart, and B. Kubis, “A new parametrization for the scalar pion form
factors”, Eur. Phys. J. C 78, 1000 (2018), arXiv:1809.06867 [hep-ph].

[246] S. K. Choi et al., “Observation of a narrow charmonium-like state in exclusive B± →
K±π+π−J/ψ decays”, Phys. Rev. Lett. 91, 262001 (2003), arXiv:hep-ex/0309032.

[247] H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, “The hidden-charm pentaquark and
tetraquark states”, Phys. Rept. 639, 1–121 (2016), arXiv:1601.02092 [hep-ph].

[248] A. Esposito, A. Pilloni, and A. D. Polosa, “Multiquark Resonances”, Phys. Rept. 668,
1–97 (2017), arXiv:1611.07920 [hep-ph].

[249] S. L. Olsen, T. Skwarnicki, and D. Zieminska, “Nonstandard heavy mesons and baryons:
Experimental evidence”, Rev. Mod. Phys. 90, 015003 (2018), arXiv:1708.04012 [hep-ph].

[250] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, “Hadronic
molecules”, Rev. Mod. Phys. 90, 015004 (2018), arXiv:1705.00141 [hep-ph].

[251] M. Karliner, J. L. Rosner, and T. Skwarnicki, “Multiquark States”, Ann. Rev. Nucl.
Part. Sci. 68, 17–44 (2018), arXiv:1711.10626 [hep-ph].

[252] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A.
Vairo, and C.-Z. Yuan, “The XY Z states: experimental and theoretical status and
perspectives”, Phys. Rept. 873, 1–154 (2020), arXiv:1907.07583 [hep-ex].

[253] S. Uehara et al., “Observation of a chi-prime(c2) candidate in gamma gamma —> D
anti-D production at BELLE”, Phys. Rev. Lett. 96, 082003 (2006), arXiv:hep- ex/
0512035.

[254] B. Aubert et al., “Observation of the χc2(2p) Meson in the Reaction γγ → DD̄ at
BaBar”, Phys. Rev. D 81, 092003 (2010), arXiv:1002.0281 [hep-ex].

[255] R. Aaij et al., “Near-threshold DD̄ spectroscopy and observation of a new charmonium
state”, JHEP 07, 035 (2019), arXiv:1903.12240 [hep-ex].

[256] R. Aaij et al., “Amplitude analysis of the B+ → D+D−K+ decay”, Phys. Rev. D 102,
112003 (2020), arXiv:2009.00026 [hep-ex].

[257] K. Abe et al., “Observation of a near-threshold omega J/psi mass enhancement in
exclusive B —> K omega J/psi decays”, Phys. Rev. Lett. 94, edited by H.-S. Chen,
D.-S. Du, W.-G. Li, and C.-D. Lu, 182002 (2005), arXiv:hep-ex/0408126.

[258] B. Aubert et al., “Observation of Y(3940)→ J/ψω in B → J/ψωK at BABAR”, Phys.
Rev. Lett. 101, 082001 (2008), arXiv:0711.2047 [hep-ex].

[259] P. del Amo Sanchez et al., “Evidence for the decay X(3872) —> J/ psi omega”, Phys.
Rev. D 82, 011101 (2010), arXiv:1005.5190 [hep-ex].

140

http://arxiv.org/abs/hep-ph/0702263
http://dx.doi.org/10.1016/0370-1573(75)90009-5
http://dx.doi.org/10.1103/PhysRevD.42.1350
http://dx.doi.org/10.1103/PhysRevD.42.1350
http://dx.doi.org/10.1007/BF01565945
http://dx.doi.org/10.1103/PhysRevD.41.3324
http://dx.doi.org/10.1140/epjc/s10052-018-6416-6
http://arxiv.org/abs/1809.06867
http://dx.doi.org/10.1103/PhysRevLett.91.262001
http://arxiv.org/abs/hep-ex/0309032
http://dx.doi.org/10.1016/j.physrep.2016.05.004
http://arxiv.org/abs/1601.02092
http://dx.doi.org/10.1016/j.physrep.2016.11.002
http://dx.doi.org/10.1016/j.physrep.2016.11.002
http://arxiv.org/abs/1611.07920
http://dx.doi.org/10.1103/RevModPhys.90.015003
http://arxiv.org/abs/1708.04012
http://dx.doi.org/10.1103/RevModPhys.90.015004
http://arxiv.org/abs/1705.00141
http://dx.doi.org/10.1146/annurev-nucl-101917-020902
http://dx.doi.org/10.1146/annurev-nucl-101917-020902
http://arxiv.org/abs/1711.10626
http://dx.doi.org/10.1016/j.physrep.2020.05.001
http://arxiv.org/abs/1907.07583
http://dx.doi.org/10.1103/PhysRevLett.96.082003
http://arxiv.org/abs/hep-ex/0512035
http://arxiv.org/abs/hep-ex/0512035
http://dx.doi.org/10.1103/PhysRevD.81.092003
http://arxiv.org/abs/1002.0281
http://dx.doi.org/10.1007/JHEP07(2019)035
http://arxiv.org/abs/1903.12240
http://dx.doi.org/10.1103/PhysRevD.102.112003
http://dx.doi.org/10.1103/PhysRevD.102.112003
http://arxiv.org/abs/2009.00026
http://dx.doi.org/10.1103/PhysRevLett.94.182002
http://dx.doi.org/10.1103/PhysRevLett.94.182002
http://arxiv.org/abs/hep-ex/0408126
http://dx.doi.org/10.1103/PhysRevLett.101.082001
http://dx.doi.org/10.1103/PhysRevLett.101.082001
http://arxiv.org/abs/0711.2047
http://dx.doi.org/10.1103/PhysRevD.82.011101
http://dx.doi.org/10.1103/PhysRevD.82.011101
http://arxiv.org/abs/1005.5190


Bibliography

[260] S. Uehara et al., “Observation of a charmonium-like enhancement in the gamma gamma
—> omega J/psi process”, Phys. Rev. Lett. 104, 092001 (2010), arXiv:0912 . 4451
[hep-ex].

[261] X. Liu, Z.-G. Luo, and Z.-F. Sun, “X(3915) and X(4350) as new members in P-wave
charmonium family”, Phys. Rev. Lett. 104, 122001 (2010), arXiv:0911.3694 [hep-ph].

[262] J. P. Lees et al., “Study of X(3915) → J/ψω in two-photon collisions”, Phys. Rev. D
86, 072002 (2012), arXiv:1207.2651 [hep-ex].

[263] N. Brambilla et al., “Heavy Quarkonium: Progress, Puzzles, and Opportunities”, Eur.
Phys. J. C 71, 1534 (2011), arXiv:1010.5827 [hep-ph].

[264] E. J. Eichten, K. Lane, and C. Quigg, “New states above charm threshold”, Phys. Rev.
D 73, [Erratum: Phys.Rev.D 73, 079903 (2006)], 014014 (2006), arXiv:hep-ph/0511179.

[265] F.-K. Guo, C. Hanhart, G. Li, U.-G. Meissner, and Q. Zhao, “Effect of charmed meson
loops on charmonium transitions”, Phys. Rev. D 83, 034013 (2011), arXiv:1008.3632
[hep-ph].

[266] Z.-Y. Zhou, Z. Xiao, and H.-Q. Zhou, “Could theX(3915) and theX(3930) Be the Same
Tensor State?”, Phys. Rev. Lett. 115, 022001 (2015), arXiv:1501.00879 [hep-ph].

[267] F.-K. Guo and U.-G. Meissner, “Where is the χc0(2P )?”, Phys. Rev. D 86, 091501
(2012), arXiv:1208.1134 [hep-ph].

[268] V. Baru, C. Hanhart, and A. V. Nefediev, “Can X(3915) be the tensor partner of the
X(3872)?”, JHEP 06, 010 (2017), arXiv:1703.01230 [hep-ph].

[269] S. L. Olsen, “Is theX(3915) the χc0(2P )?”, Phys. Rev. D 91, 057501 (2015), arXiv:1410.
6534 [hep-ex].

[270] K. Chilikin et al., “Observation of an alternative χc0(2P ) candidate in e+e− → J/ψDD̄”,
Phys. Rev. D 95, 112003 (2017), arXiv:1704.01872 [hep-ex].

[271] P. G. Ortega, J. Segovia, D. R. Entem, and F. Fernández, “Charmonium resonances in
the 3.9 GeV/c2 energy region and the X(3915)/X(3930) puzzle”, Phys. Lett. B 778,
1–5 (2018), arXiv:1706.02639 [hep-ph].

[272] E. Wang, W.-H. Liang, and E. Oset, “Analysis of the e+e− → J/ψDD̄ reaction close
to the threshold concerning claims of a χc0(2P ) state”, Eur. Phys. J. A 57, 38 (2021),
arXiv:1902.06461 [hep-ph].

[273] E. Wang, H.-S. Li, W.-H. Liang, and E. Oset, “Analysis of the γγ → DD̄ reaction and
the DD̄ bound state”, Phys. Rev. D 103, 054008 (2021), arXiv:2010.15431 [hep-ph].

[274] D. Gamermann, E. Oset, D. Strottman, and M. J. Vicente Vacas, “Dynamically gen-
erated open and hidden charm meson systems”, Phys. Rev. D 76, 074016 (2007),
arXiv:hep-ph/0612179.

[275] S. Prelovsek, S. Collins, D. Mohler, M. Padmanath, and S. Piemonte, “Charmonium-
like resonances with JPC = 0++, 2++ in coupled DD, DsDs scattering on the lattice”,
JHEP 06, 035 (2021), arXiv:2011.02542 [hep-lat].

[276] L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G.
Edwards, B. Joo, and D. G. Richards, “Excited and exotic charmonium spectroscopy
from lattice QCD”, JHEP 07, 126 (2012), arXiv:1204.5425 [hep-ph].

[277] R. Aaij et al., “A model-independent study of resonant structure in B+ → D+D−K+

decays”, Phys. Rev. Lett. 125, 242001 (2020), arXiv:2009.00025 [hep-ex].

141

http://dx.doi.org/10.1103/PhysRevLett.104.092001
http://arxiv.org/abs/0912.4451
http://arxiv.org/abs/0912.4451
http://dx.doi.org/10.1103/PhysRevLett.104.122001
http://arxiv.org/abs/0911.3694
http://dx.doi.org/10.1103/PhysRevD.86.072002
http://dx.doi.org/10.1103/PhysRevD.86.072002
http://arxiv.org/abs/1207.2651
http://dx.doi.org/10.1140/epjc/s10052-010-1534-9
http://dx.doi.org/10.1140/epjc/s10052-010-1534-9
http://arxiv.org/abs/1010.5827
http://dx.doi.org/10.1103/PhysRevD.73.014014
http://dx.doi.org/10.1103/PhysRevD.73.014014
http://arxiv.org/abs/hep-ph/0511179
http://dx.doi.org/10.1103/PhysRevD.83.034013
http://arxiv.org/abs/1008.3632
http://arxiv.org/abs/1008.3632
http://dx.doi.org/10.1103/PhysRevLett.115.022001
http://arxiv.org/abs/1501.00879
http://dx.doi.org/10.1103/PhysRevD.86.091501
http://dx.doi.org/10.1103/PhysRevD.86.091501
http://arxiv.org/abs/1208.1134
http://dx.doi.org/10.1007/JHEP06(2017)010
http://arxiv.org/abs/1703.01230
http://dx.doi.org/10.1103/PhysRevD.91.057501
http://arxiv.org/abs/1410.6534
http://arxiv.org/abs/1410.6534
http://dx.doi.org/10.1103/PhysRevD.95.112003
http://arxiv.org/abs/1704.01872
http://dx.doi.org/10.1016/j.physletb.2018.01.005
http://dx.doi.org/10.1016/j.physletb.2018.01.005
http://arxiv.org/abs/1706.02639
http://dx.doi.org/10.1140/epja/s10050-021-00351-9
http://arxiv.org/abs/1902.06461
http://dx.doi.org/10.1103/PhysRevD.103.054008
http://arxiv.org/abs/2010.15431
http://dx.doi.org/10.1103/PhysRevD.76.074016
http://arxiv.org/abs/hep-ph/0612179
http://dx.doi.org/10.1007/JHEP06(2021)035
http://arxiv.org/abs/2011.02542
http://dx.doi.org/10.1007/JHEP07(2012)126
http://arxiv.org/abs/1204.5425
http://dx.doi.org/10.1103/PhysRevLett.125.242001
http://arxiv.org/abs/2009.00025


Bibliography

[278] D. Drechsel, M. Gorchtein, B. Pasquini, and M. Vanderhaeghen, “Fixed t subtracted
dispersion relations for Compton Scattering off the nucleon”, Phys. Rev. C 61, 015204
(1999), arXiv:hep-ph/9904290.

[279] D.-Y. Chen, J. He, X. Liu, T. Matsuki, and T. Matsuki, “Does the enhancement observed
in γγ → DD̄ contain two P -wave higher charmonia?”, Eur. Phys. J. C 72, 2226 (2012),
arXiv:1207.3561 [hep-ph].

[280] F. Niecknig, B. Kubis, and S. P. Schneider, “Dispersive analysis of ω− > 3π and φ− >
3π decays”, Eur. Phys. J. C 72, 2014 (2012), arXiv:1203.2501 [hep-ph].

[281] M. Albaladejo, I. Danilkin, S. Gonzalez-Solis, D. Winney, C. Fernandez-Ramirez, A. N. H.
Blin, V. Mathieu, M. Mikhasenko, A. Pilloni, and A. Szczepaniak, “ω → 3π and ωπ0

transition form factor revisited”, Eur. Phys. J. C 80, 1107 (2020), arXiv:2006.01058
[hep-ph].

[282] K. Chilikin et al., personal communication.
[283] C.-Y. Wong, “Molecular states of heavy quark mesons”, Phys. Rev. C 69, 055202 (2004),

arXiv:hep-ph/0311088.
[284] Y.-J. Zhang, H.-C. Chiang, P.-N. Shen, and B.-S. Zou, “Possible S-wave bound-states

of two pseudoscalar mesons”, Phys. Rev. D 74, 014013 (2006), arXiv:hep-ph/0604271.
[285] J. Nieves and M. P. Valderrama, “The Heavy Quark Spin Symmetry Partners of the

X(3872)”, Phys. Rev. D 86, 056004 (2012), arXiv:1204.2790 [hep-ph].
[286] C. Hidalgo-Duque, J. Nieves, and M. P. Valderrama, “Light flavor and heavy quark spin

symmetry in heavy meson molecules”, Phys. Rev. D 87, 076006 (2013), arXiv:1210.
5431 [hep-ph].

[287] C. Hidalgo-Duque, J. Nieves, A. Ozpineci, and V. Zamiralov, “X(3872) and its Partners
in the Heavy Quark Limit of QCD”, Phys. Lett. B 727, 432–437 (2013), arXiv:1305.
4487 [hep-ph].

[288] V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, U.-G. Meißner, and A. V. Nefediev,
“Heavy-quark spin symmetry partners of the X (3872) revisited”, Phys. Lett. B 763,
20–28 (2016), arXiv:1605.09649 [hep-ph].

[289] X.-K. Dong, F.-K. Guo, and B.-S. Zou, “A survey of heavy-antiheavy hadronic molecules”,
Progr. Phys. 41, 65–93 (2021), arXiv:2101.01021 [hep-ph].

[290] M. Ablikim et al., “Measurement of the branching fraction for ψ(3770)→ γχc0”, Phys.
Lett. B 753, 103–109 (2016), arXiv:1511.01203 [hep-ex].

[291] G. Breit and E. Wigner, “Capture of Slow Neutrons”, Phys. Rev. 49, 519–531 (1936).
[292] D. Spehler and S. F. Novaes, “Helicity wave functions for massless and massive spin-2

particles”, Phys. Rev. D 44, 3990–3993 (1991).
[293] J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics (Springer, New York,

1952).

142

http://dx.doi.org/10.1103/PhysRevC.61.015204
http://dx.doi.org/10.1103/PhysRevC.61.015204
http://arxiv.org/abs/hep-ph/9904290
http://dx.doi.org/10.1140/epjc/s10052-012-2226-4
http://arxiv.org/abs/1207.3561
http://dx.doi.org/10.1140/epjc/s10052-012-2014-1
http://arxiv.org/abs/1203.2501
http://dx.doi.org/10.1140/epjc/s10052-020-08576-6
http://arxiv.org/abs/2006.01058
http://arxiv.org/abs/2006.01058
http://dx.doi.org/10.1103/PhysRevC.69.055202
http://arxiv.org/abs/hep-ph/0311088
http://dx.doi.org/10.1103/PhysRevD.74.014013
http://arxiv.org/abs/hep-ph/0604271
http://dx.doi.org/10.1103/PhysRevD.86.056004
http://arxiv.org/abs/1204.2790
http://dx.doi.org/10.1103/PhysRevD.87.076006
http://arxiv.org/abs/1210.5431
http://arxiv.org/abs/1210.5431
http://dx.doi.org/10.1016/j.physletb.2013.10.056
http://arxiv.org/abs/1305.4487
http://arxiv.org/abs/1305.4487
http://dx.doi.org/10.1016/j.physletb.2016.10.008
http://dx.doi.org/10.1016/j.physletb.2016.10.008
http://arxiv.org/abs/1605.09649
http://dx.doi.org/10.13725/j.cnki.pip.2021.02.001
http://arxiv.org/abs/2101.01021
http://dx.doi.org/10.1016/j.physletb.2015.11.074
http://dx.doi.org/10.1016/j.physletb.2015.11.074
http://arxiv.org/abs/1511.01203
http://dx.doi.org/10.1103/PhysRev.49.519
http://dx.doi.org/10.1103/PhysRevD.44.3990


143



List of acronyms

BES Beijing Spectrometer
BNL Brookhaven National Laboratory
BSE Bethe-Salpeter Equation
BSM Beyond the Standard Model
BW Breit-Wigner
CC Coupled-Channels
CDD Castillejo-Dalitz-Dyson
CERN European Organization for Nuclear Research
χPT Chiral Perturbation Theory
COMPASS Common Muon and Proton Apparatus for Structure and Spectroscopy
DR Dispersion Relation
EFT Effective Field Theory
EIC Electron-Ion Collider
EW ElectroWeak
FAIR Facility for Antiproton and Ion Research
Fermilab Fermi National Accelerator Laboratory
HLbL Hadronic Light-by-Light scattering
HVP Hadronic Vacuum Polarization
IAM Inverse Amplitude Method
JLab Thomas Jefferson National Accelerator Facility
J-PARC Japan Proton Accelerator Research Complex
LEC Low-Energy Constant
LHC Large Hadron Collider
LO Leading Order
mIAM modified Inverse Amplitude Method
MO Muskhelishvili-Omnès
NLO Next-to-Leading Order
NNLO Next-to-Next-to-Leading Order
PANDA antiProton ANnihilation at DArmstadt
PDG Particle Data Group
QED Quantum ElectroDynamics
QCD Quantum ChromoDynamics
SC Single-Channel
SM Standard Model
TFF Transition Form Factor
UχPT Unitarized Chiral Perturbation Theory
VMD Vector Meson Dominance

144



Curriculum vitae

145









Acknowledgements

149




	Introduction
	Theoretical background
	QCD at low energies
	QCD as a field theory
	Effective field theories
	Lattice QCD

	S-matrix formalism
	The scattering process
	Analyticity, unitarity, and crossing symmetry
	Dispersion relations
	N/D approach
	Pion vector form factor
	Resonances

	Anomalous magnetic moment of muon

	Data-driven dispersive analysis of the  and K scattering
	Introduction
	Dispersive formalism
	Dispersion relations for the  and K systems
	Left-hand cuts
	PT input
	The choice of sM and sE
	Fitting procedure and error analysis

	Results for the  scattering
	I=0 single channel approach
	I=0: analysis of the lattice data
	I=0: coupled channel approach
	I=2 channel

	Results for the KK scattering
	I=1/2 channel
	I=1/2: analysis of the lattice data
	I=3/2 channel

	Summary and Outlook

	Appendices
	Kinematics and Mandelstam vabiables
	Bootstrap method

	Two photon fusion reaction with  final state
	Introduction
	Dispersive formalism
	Helicity amplitudes
	Kinematic constraints
	Dispersion relations for the (*)(*)  system
	Left-hand cuts
	Pion, kaon and vector mesons form factors
	Analytic structure of the left-hand cuts
	Hadronic input

	Numerical results
	Two-photon couplings of /f0(500) and f0(980)
	Pion dipole polarizabilities
	Total and differential cross sections

	Summary and Outlook

	Appendices
	Analytic structure of the left hand cuts
	General cross section of the e+ + e- e+ + e- + X process

	Dispersive analysis of the DbarD scattering data
	Introduction
	Dispersive formalism
	N/D approach for the {, DbarD} system
	Left-hand cuts
	D-wave parametrization

	Numerical results and interpretation
	Experimental input
	DbarD cross sections
	e+ e- J/DbarD process
	Analogy to the KbarK scattering

	Summary and outlook

	Appendices
	Breit-Wigner approximation for the c2(3930) resonance
	Cross section of the e+ e-J/DbarD process

	Thesis summary and outlook
	Bibliography
	List of acronyms
	Curriculum vitae
	Acknowledgements

