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Abstract. Homogeneous freezing of solution droplets is an important pathway of ice formation in the
tropopause region. The nucleation rate can be parameterized as a function of water activity, based on empiri-
cal fits and some assumptions on the underlying properties of super-cooled water, although a general theory is
missing. It is not clear how nucleation events are influenced by the exact formulation of the nucleation rate or
even their inherent uncertainty. In this study we investigate the formulation of the nucleation rate of homoge-
neous freezing of solution droplets (1) to link the formulation to the nucleation rate of pure water droplets, (2) to
derive a robust and simple formulation of the nucleation rate, and (3) to determine the impact of variations in the
formulation on nucleation events. The nucleation rate can be adjusted, and the formulation can be simplified to
a threshold description. We use a state-of-the-art bulk ice microphysics model to investigate nucleation events as
driven by constant cooling rates; the key variables are the final ice crystal number concentration and the maxi-
mum supersaturation during the event. The nucleation events are sensitive to the slope of the nucleation rate but
only weakly affected by changes in its absolute value. This leads to the conclusion that details of the nucleation
rate are less important for simulating ice nucleation in bulk models as long as the main feature of the nucleation
rate (i.e. its slope) is represented sufficiently well. The weak sensitivity of the absolute values to the nucleation
rate suggests that the amount of available solution droplets also does not crucially affect nucleation events. The
use of only one distinct nucleation threshold function for analysis and model parameterization should be reinves-
tigated, since it corresponds to a very high nucleation rate value, which is not reached in many nucleation events
with low vertical updrafts. In contrast, the maximum supersaturation and thus the nucleation thresholds reached
during an ice nucleation event depend on the vertical updraft velocity or cooling rate. This feature might explain
some high supersaturation values during nucleation events in cloud chambers and suggests a reformulation of
ice nucleation schemes used in coarse models based on a purely temperature-dependent nucleation threshold.

1 Introduction

Clouds are one of the most important components in the
Earth–atmosphere system. They influence the hydrological
cycle and Earth’s energy balance via interaction with radi-
ation. Clouds can cool the system by partly scattering and
reflecting incoming solar radiation (albedo effect) but also
warm the atmosphere by absorbing and re-emitting thermal
radiation as emitted by the Earth’s surface (greenhouse ef-

fect). While for liquid clouds a net cooling effect can be de-
rived, the radiative effect for clouds containing ice crystals is
still under debate. In particular, for pure ice clouds (so-called
cirrus clouds) at high altitudes in the low temperature range
(T < 235 K), the albedo effect and greenhouse effect are of
the same order of magnitude but have different signs, leading
to different net effects (see, for example, Fusina et al., 2007;
Joos et al., 2014; Gasparini et al., 2017). Thus, details in mi-
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2036 P. Spichtinger et al.: Impact of nucleation rates on nucleation events

crophysical properties of ice crystals might decide about a
net warming or cooling of cirrus clouds, as can be seen in
former model studies (e.g. Zhang et al., 1999). A key aspect
of ice crystals is their size which directly affects the scatter-
ing and absorption of radiation. Smaller crystals scatter in-
coming solar light more effectively; thus the optical depth τ
is directly dependent on the size, as can be seen in the usual
approximation (see, for example, Fu and Liou, 1993)

τ = IWC ·1z ·
(
a+

b

De

)
, (1)

where De denotes the effective diameter of the crystal, IWC
is the ice water content, 1z represents the vertical extent of
the cloud, and a and b are empirically derived constants.
Since the available water vapour is mainly determined by
thermodynamic conditions, the pathway of ice nucleation of-
ten determines the ice crystal number concentration in cir-
rus clouds and thus their effective size (assuming a certain
amount of available water vapour).

Ice crystals can be formed by very different nucleation
processes, which can be grouped into two major pathways,
namely in situ and liquid origin ice formation (e.g. Krämer
et al., 2016; Luebke et al., 2016; Wernli et al., 2016). The
overall term “in situ formation” refers to ice formation at
humidities below water saturation, whereas “liquid origin
formation” subsumes all formation processes where cloud
droplets are present and humidity is close to water saturation
(e.g. freezing of cloud droplets); see the definition in Wernli
et al. (2016). It is well known that the ice crystal number
concentration varies crucially as a function of the underlying
nucleation process, leading to potentially strong changes in
the resulting radiative effect (see, for example, Krämer et al.,
2020).

Despite the availability of many observational data and
laboratory experiments (e.g. Hoose and Möhler, 2012), and
also the development of new theoretical models (e.g. the soc-
cer ball model; see Niedermeier et al., 2011), the details of
ice nucleation at the molecular scale are still unknown.

A special situation occurs for the so-called homogeneous
freezing of super-cooled solution droplets (also short: homo-
geneous nucleation) at cold temperatures below 235 K. This
process describes the spontaneous freezing of super-cooled
aqueous solution particles containing a small amount of (usu-
ally inorganic) substances. Although the details of this freez-
ing process are also not completely understood on a molec-
ular scale, reproducible laboratory experiments allowed for
the formulation of an empirical fit for the nucleation rate
(Koop et al., 2000). Such a fit bears inherent but maybe also
unknown uncertainty, since we have no generally accepted
theory for comparison. Other fits or a change in the fit param-
eters might also lead to different formulations of nucleation
rates.

A priori, it is not clear how large the impact of the formu-
lation of nucleation rates might be on simulating nucleation
events in models resolving nucleation events in time. This

issue is the starting point of our investigation. We want to ad-
dress three different aspects. First, we want to link the former
formulation by Koop et al. (2000) to recent findings on pure
water in order to formulate a consistent framework for our
models. Second, we want to derive a robust and simple for-
mulation of the homogeneous nucleation rates, which can be
used for analytical as well as numerical investigations. Third,
we want to investigate the impact of variations of nucleation
rates (based on the new formulation) on nucleation events,
i.e. on the resulting ice crystal number concentrations.

From theory (e.g. Baumgartner and Spichtinger, 2019) and
former idealized box model simulations (e.g. Kärcher and
Lohmann, 2002; Ren and Mackenzie, 2005; Spichtinger and
Gierens, 2009), we know that ice crystal numbers as pro-
duced in homogeneous nucleation events driven by a con-
stant cooling rate (equivalent to a constant vertical velocity)
crucially depend on several parameters and, thus, also affect
the radiative properties of the formed ice cloud (see, for ex-
ample, calculations in Krämer et al., 2020; Joos et al., 2009).
Therefore, it is of high importance to understand the impact
of the formulation of nucleation rates on the resulting ice
crystal number concentrations.

We emphasize that all our investigations are meant in a
bulk sense; i.e. only integrated quantities such as the ice crys-
tal number and (total) ice crystal mass are considered. Using
this approach, we consider the case of a newly forming cirrus
cloud and do not focus on the freezing or forming details of
single ice crystals.

The study is structured as follows. In the next section, we
present the fit by Koop et al. (2000) and its empirical basis,
as related to water theories. In Sect. 3 we describe the simple
model used for idealized simulations for testing the impact of
different formulations of nucleation rates. In Sect. 4 the more
compact formulation of the nucleation rate along with sev-
eral approximations is discussed. The consequences of using
the proposed approximations are explored by idealized nu-
merical simulations. In Sect. 5 we investigate the impact of a
recently proposed formulation of the saturation vapour pres-
sure over super-cooled liquid water on the nucleation events
(Nachbar et al., 2019). In Sect. 6 a new formulation of the
nucleation rate based on results for freezing of pure super-
cooled water (Koop and Murray, 2016) is presented, and its
impact on the number concentration of nucleated ice crys-
tals is discussed. In Sect. 7 we investigate thresholds of ice
nucleation as well as the peak values of supersaturation dur-
ing nucleation events, Finally, we summarize the results and
draw some conclusions in Sect. 8.

2 Empirical fit of the nucleation rate

Nucleation events are investigated in the phase space
spanned by temperature and water activity of the aqueous so-
lution. The latter is defined as the ratio of saturation pressures
of water vapour over the solution psol and pure water pliq, as
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aw :=
psol
pliq

. In this representation, the melting curve for dif-
ferent inorganic solutions turns out to be solely temperature-
dependent; i.e. aiw(T ) := aw(Tm)= pice(T )

pliq(T ) (see Koop, 2015,
his Eq. 5), where pice denotes the saturation vapour pressure
over ice. The important insight here is that the freezing and
nucleation events also collapse to a single line in the diagram
(see Koop et al., 2000; Koop, 2004, 2015), which can be fit-
ted by shifting the melting curve (deviation 1aw ∼ 0.305).
This also means that the nucleation events do not depend on
the solute, which is at least true for most inorganic substances
(see, for example, Koop, 2004). Thus, the nucleation rate can
be solely parameterized as a function of1aw = aw−a

i
w. For

the fitting procedure in Koop et al. (2000), a polynomial of
degree 3 is used and results in the formulation

Jsol(1aw)= 10p3(1aw) with p3(x)=
3∑
k=0

akx
k (2)

of the homogeneous nucleation rate coefficient Jsol. The nu-
cleation rate coefficient is used to formulate the probability
of freezing of aqueous solution droplets. The fit was used in
the spirit of the representation of the nucleation rate for pure
water as derived by Pruppacher (1995). During this time,
three water theories were available, and the nucleation rate
(as a cubic polynomial) was chosen according to the stability
limit hypothesis (e.g. Mishima and Stanley, 1998), leading
to an unlimited increase in the rate (see, for example, Prup-
pacher, 1995, his Fig. 3). However, meanwhile this water the-
ory can be ruled out by experimental evidence; thus only the
two other water theories remain (singularity-free hypothesis
vs. liquid–liquid critical point; see Gallo et al., 2019, 2016),
which do not imply an unlimited increase in nucleation rates
of pure water (see, for example, Koop and Murray, 2016).
Thus, the heuristic basis for choosing a cubic polynomial as
a fit is not valid anymore.

Note that for atmospheric relevant conditions, both re-
maining water theories produce essentially the same results.
Only at very low temperatures T < 150 K, where highly vis-
cous or even glassy states of water occur, is a different be-
haviour predicted. Such temperatures are not relevant for in-
vestigations of ice clouds in the tropopause region, where
homogeneous freezing of solution droplets takes place. How-
ever, these theories provide the basis for the formulation of
the saturation vapour pressure over super-cooled water in no
man’s land (Murphy and Koop, 2005), combining heat ca-
pacities of liquid water and amorphous ice.

Finally, using the assumption of solution droplets being in
equilibrium with their environment and neglecting size ef-
fects, water activity equals the liquid water saturation ratio
Sliq due to

aw =
psol

pliq

in eq.
=

pv

pliq
= Sliq, (3)

where pv denotes the partial water vapour pressure. Using
this representation of aw together with the ice saturation ratio
Si =

pv
pice

, the computation

1aw = aw− a
i
w =

pv

pliq(T )
−
pice(T )
pliq(T )

= (Si− 1)
pice(T )
pliq(T )

= (Si− 1)aiw(T ) (4)

shows that 1aw only depends on the ice saturation ratio and
temperature.

Note that although recent measurements (Pathak et al.,
2021) corroborate the procedure in the study by Murphy and
Koop (2005), in a recent study by Nachbar et al. (2019) the
combination of liquid water and amorphous ice is called into
question, leading to a different formulation of the saturation
vapour pressure over super-cooled water and thus a differ-
ent water activity. In the following investigations, we will
also use this formulation in order to determine the sensitivity
of the nucleation events to the choice of a saturation vapour
pressure formulation. Note that for each choice, the water ac-
tivity aiw(T ) must be recalculated.

3 Model description

We begin with the description of the governing equations for
the relevant ice processes in a nucleation event, i.e. homoge-
neous nucleation and diffusional growth. Both processes are
key for determining the properties of the nucleation event,
such as the number of nucleated ice crystals and the evolu-
tion of the ice saturation ratio (e.g. its peak value). Of course,
other processes such as sedimentation and aggregation of
ice crystals are important for the evolution of ice clouds but
usually act on longer timescales, e.g. when the particles are
grown to larger sizes. Thus, we omit these processes and con-
centrate on nucleation and growth, as in former studies (e.g.
Kärcher and Lohmann, 2002; Baumgartner and Spichtinger,
2019).

We formulate the model in terms of averaged quantities for
ice crystal mass and number concentration (qi, ni), i.e. as a
two-moment scheme. Additionally, the saturation ratio with
respect to hexagonal ice, Si =

pv
pice(T ) , is used, with the partial

water vapour pressure, pv, and the saturation water vapour
pressure over hexagonal ice, pice(T ). Thus, the complete set
of equations for an adiabatically ascending air parcel can be
represented as

ṅi = Nucn (5)
q̇i = Nucq +Depq (6)

Ṡi = Cool+Deps (7)

Ṫ =
dT
dt

∣∣∣
adiabatic

+
dT
dt

∣∣∣
diabatic

=−
g

cp
w+

L

cp

dqi

dt

∣∣∣
phase

=−
g

cp
w+

L

cp

(
Nucq +Depq

)
(8)
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ṗ =
dp
dt

∣∣∣
adiabatic

=−gρw, (9)

including changes of temperature T and pressure p. In these
equations,w denotes the vertical velocity of the air parcel, cp
is the specific heat capacity of dry air (assumed as a constant;
see Baumgartner et al., 2020), L denotes the (constant) latent
heat of sublimation, and ρ is the air density. The assump-
tion of an ideal gas is adopted for air and water vapour. The
terms Nucn and Nucq denote changes due to nucleation, and
the terms Depq and Deps describe changes due to diffusional
growth of ice crystals. The term “Cool” denotes the impact
of adiabatic expansion due to upward motion with velocity
w; this is also reflected in the change of temperature and
pressure, using adiabatic lapse rate and hydrostatic pressure,
respectively. For temperature, we would have to consider di-
abatic changes due to latent heat release in phase changes.

Computing the total derivative of the saturation ratio us-
ing the representation Si =

p qv
ε0psi(T ) , where ε0 denotes the ra-

tio of molar masses of water and dry air, together with the
Clausius–Clapeyron equation yields

Cool=
∂Si

∂T

dT
dt

∣∣∣
adiabatic

+
∂Si

∂p

dp
dt

∣∣∣
adiabatic

=

[
Lg

cpRvT 2 −
g

RaT

]
Siw (10)

and

Deps =
∂Si

∂T

dT
dt

∣∣∣
diabatic

+
∂Si

∂qv

(
Nucq +Depq

)
=−

[
L2

cpRvT 2 +
1
qv

]
Si
(
Nucq +Depq

)
. (11)

To a good approximation, for cold temperatures the first term
in the brackets in Eq. (11), which describes latent heat release
due to phase changes, can be omitted. In the following, we
will omit the evolution in Eqs. (8) and (9) for temperature
and pressure; i.e. we assume these to be constant during the
nucleation event. Thus, we arrive at

Deps ≈−
p

ε0psi

(
Nucq +Depq

)
. (12)

As a result of assuming temperature and pressure as being
constant, only the vertical velocity w is an external param-
eter for the supersaturation. For the terms Nucx and Depx
(x = n, q, s), we have to keep temperature and pressure as
fixed parameters: T = Tenv and p = penv. This approach was
also used in former investigations (see, for example, Spre-
itzer et al., 2017; Baumgartner and Spichtinger, 2019).

The nucleation term can be described as

Nucn = JnucVdna, Nucq =m0Nucn, (13)

where Vd is the mean volume of a super-cooled solution
droplet, na is the number concentration of solution droplets,

and m0 is the mean mass of a newly frozen solution droplet,
which can be set to m0 = 10−16 kg. The nucleation rate for
the homogeneous freezing of solution droplets is denoted
by Jnuc. For comparison with former investigations (Kärcher
and Lohmann, 2002; Spichtinger and Gierens, 2009), we set
the number concentration of the background aerosol to quite
a large value of naρ = 104 cm−3

= 1010 m−3; since the re-
sulting ice crystal number concentration as produced in nu-
cleation events is usually some orders of magnitude smaller,
we do not have to care about a possible consumption of a
major part fraction of solution droplets. We will later discuss
the impact of this value in terms of nucleation events.

The diffusional growth of ice crystals is determined by the
growth rate

Depq = ni · 4πD∗v CGv(Si− 1)fv, (14)

with the diffusion constant for water vapour in air D∗v =
Dv(p,T )fD as corrected by the factor fD for the kinetic
regime, the capacity of ice crystals, C, assuming columnar
shape, the Howell factor Gv(p,T ) describing the impact of
latent heat, and the ventilation correction fv, respectively.
Note that the capacity also depends on the mean mass of the
ice crystal ensemble; i.e. C = C(m)= C(ni,qi). The details
of the formulation are given in Appendix A.

Combining the expressions from above, the reduced sys-
tem of equations reads

ṅi = Nucn (15)
q̇i = Nucq +Depq (16)

Ṡi =

[
Lg

cpRvT 2 −
g

RaT

]
Siw+

p

ε0psi

(
Nucq +Depq

)
(17)

Here we make the following remarks:

1. As shown in Spreitzer et al. (2017), it is possible to de-
termine and characterize the steady states of the reduced
system, which additionally includes sedimentation. This
leads to a nonlinear oscillator with a bifurcation dia-
gram, depending on the updraft velocity w and on the
temperature T .

2. The usefulness of this simple double-moment scheme
depends on the scales of the scenarios. We generally
found good agreement with such parcel models and
also on an LES (large eddy simulation) scale (and
even coarser resolution) with observations, more so-
phisticated models, and also theory (see, for exam-
ple, Spichtinger and Gierens, 2009; Spichtinger, 2014;
Baumgartner et al., 2022).

4 Investigations of the nucleation rates

Investigations of ice clouds in the cold temperature regime
(T < 235 K) need to include the nucleation process of ho-
mogeneous freezing of aqueous solution droplets. As pointed
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out in Sect. 1, the formulation by Koop et al. (2000) based on
water activity is a meaningful fit to experimental data. How-
ever, for theoretical investigations and the use in reduced or-
der models, a simpler but still accurate approximation would
be helpful. In the following we present a way to derive such
an approximation based on the original fit through measure-
ments by Koop et al. (2000) in addition to recent observations
for pure super-cooled water.

4.1 Correction of the nucleation rate

In the study by Koop and Murray (2016) a parameterization
of the nucleation rate of pure super-cooled water Jpure liq(T )
was derived, based on recent measurements. Thus, in the con-
text of homogeneous freezing of solution droplets, the nucle-
ation rate for pure water particles should coincide with the
nucleation rate of solution droplets Jsol at water saturation;
i.e. the condition

Jsol(1a∗w)
RH=1
≡ Jpure liq(T ) (18)

should hold for a value 1a∗w at water saturation, as claimed
and already used in the study by Koop et al. (2000). However,
evaluating these two formulations of the nucleation rates at
water saturation shows a similar qualitative behaviour down
to temperatures T ∼ 235K but a quantitative disagreement;
see the blue and black curve in Fig. 1. A reasonable require-
ment is that the values of both formulations should match in
the temperature range 235 K≤ T ≤ 240 K, since this range is
relevant for the freezing of pure water cloud droplets with
reasonable sizes. This temperature range at water satura-
tion is equivalent to the range of water activity difference
0.27≤1aw ≤ 0.31. The offset between the curves can be
corrected by shifting the logarithm of the nucleation rate for
solution droplets by a constant value. The value of the shift
was calculated by minimizing the square distance between
the curves in the respective temperature range. Thus, the cor-
rected nucleation rate for aqueous solution droplets reads

log10
(
Jsol,new(1aw)

)
= log10 (Jsol(1aw))+ δ, (19)

with δ =−1.522. The nucleation rates are given in SI units
(as used for all quantities throughout this study); i.e. [J ] =
m−3 s−1 (per cubic metre per second).

We make the following remarks:

– The nucleation rate of pure water droplets can be used
for a direct parameterization of the nucleation rate of
aqueous solution droplets. This will be carried out in
Sect. 6.1.

– The (new) disagreement (or small shift) of the rates
solely stems from the comparison with the new formula-
tion of Koop and Murray (2016), since originally the nu-
cleation rate for solution droplets was chosen in agree-
ment with measurements of nucleation rates for pure
water droplets (Koop et al., 2000).

Figure 1. Nucleation rates for pure super-cooled water droplets
(Koop and Murray, 2016, red) and aqueous solution droplets (Koop
et al., 2000) at water saturation (i.e. infinitely dissolved); original
values by Koop et al. (2000) in blue and shifted values (δ =−1.522)
in black (new reference nucleation rate Jsol,new). For the calcula-
tion, the saturation vapour pressure formulae by Murphy and Koop
(2005) are used.

– In the following we will refer to the corrected nucleation
rate as the “reference” nucleation rate, since, to the best
of our knowledge, it provides the best and most recent
fit for the homogenous nucleation rate of solution parti-
cles.

4.2 Nucleation rate as a function of T and Si

The general strategy of the study is to represent the exponent
of the nucleation rate by low-order polynomials in a thermo-
dynamic variable x; i.e.

J = 10pn(x), pn(x) :=
n∑
k=0

akx
k, degpn = n. (20)

For instance, the formulation of the nucleation rate for aque-
ous solution droplets by Koop et al. (2000) is based on a poly-
nomial of degree 3; i.e.

Jsol(1aw)= 10p3(1aw), p3(x)=
3∑
k=0

akx
k (21)

using the thermodynamic quantity x =1aw = aw− a
i
w.

Note that the nucleation rate Jpure liq for pure wa-
ter droplets is also based on the same structure; i.e.
log10(Jpure liq) is a polynomial of order 6 in the thermody-
namic variable T (see Koop and Murray, 2016). For analyti-
cal investigations of the homogeneous nucleation, it is desir-
able to represent log10(J ) by a polynomial of low degree. As
will be shown in the following, the formulation

log10(J )≈ pn(x), n= degpn ≤ 2 (22)
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with a polynomial yields sufficient agreement with the ref-
erence. For analytical investigations (e.g. using asymptotic
analysis), it is helpful to represent the nucleation rate using a
threshold for the humidity to account for the explosive char-
acter of nucleation events as used in the analysis by Baum-
gartner and Spichtinger (2019). Thus, for the nucleation rate
for super-cooled solution droplets, we make the following
ansatz:

J = 10pn(x)
= exp

(
A(T )(Si− Sc)+B(T )(Si− Sc)2

)
, (23)

where Sc = Sc(T ) is the temperature-dependent threshold
value for the saturation ratio. Note that the ansatz is consis-
tent (or even equivalent) with condition Eq. (22). In order to
describe J as a function of Si and T , we reformulate 1aw as

1aw = (Si− 1)aiw(T )

= (Si− Sc)aiw(T )+ (Sc− 1)aiw(T ) (24)

using a threshold Sc(T ) that corresponds to a fixed value J0
of the nucleation rate; i.e. J (Sc(T ),T )= J0. Taking the log-
arithm, this equality implies pn(x0)= j0 = log10(J0), with
x =1aw. As in former studies (see, for example, Koop
et al., 2000; Kärcher and Lohmann, 2002), we choose J0 =

1016 m−3 s−1
= 1010 cm−3 s−1. Note that this choice for the

parameterization is quite arbitrary and has no strict physical
interpretation, although one can argue with the cooling rates
of the underlying experiments and thus with the probability
of the freezing of droplets with a given volume within a cer-
tain predefined time interval (Koop et al., 2000).

Evaluating Eq. (24) at Si = Sc, we arrive at

p−1
n (j0)= x0 = (Si− Sc)aiw(T )+ (Sc− 1)aiw(T )

Si=Sc
= (Sc− 1)aiw(T ), (25)

leading to a description of the threshold

Sc =
1

aiw(T )
p−1
n (j0)+ 1

and

1aw = (Si− Sc)aiw(T )+p−1
n (j0) (26)

if the polynomial pn(x) can be inverted in the relevant range
0.26≤1aw ≤ 0.34. Combining the equations from above,
the nucleation rate can be represented as

log10J = p(1aw)= pn
(

(Si− Sc)aiw(T )+p−1
n (j0)

)
, (27)

which is a threshold description using the thermodynamic
variables Si and T . This representation amounts to a refor-
mulation of the original approximation, if the inverse func-
tion p−1

n (x) exists in the relevant range (i.e. pn(x) is strictly
monotonic). In the following, we consider the case of linear
and quadratic polynomials, as determined by ansatz (23).

1. First, we consider the case of a linear polynomial
p1(x)= a0+ a1x.
The inverse function of p1(x)= y is given by p−1

1 (y)=
y−a0
a1

, implying the threshold

Sc(T )=
1

aiw(T )
j0− a0

a1
+ 1. (28)

Substituting Eq. (28) into expression (27) yields

log10J (Si,T )= j (Si,T )

= j0+ a1a
i
w(T )(Si− Sc(T ))

= j0+A(T )(Si− Sc(T )), (29)

where A(T )= a1a
i
w(T ). The coefficients a0 and a1 can

be determined in different ways; see Sect. 4.3. Further-
more, approximations to the functions A(T ) and Sc(T )
can be investigated.

2. Second, we consider the case of a quadratic polynomial
p2(x)= b0+ b1x+ b2x

2
= a(x− b)2

+ c.
Since a quadratic function is not strictly monotonic in
general, inverting the quadratic polynomial leads to two
functions; i.e.

p−1
2 (y)= b±

√
y− c

a
. (30)

If one solution can be ruled out (e.g. due to physical
constraints), we can formulate

log10J = p2

(
(Si− Sc(T ))aiw(T )+p−1

2 (j0)
)

(31)

using the threshold description

Sc(T )=

(
b±

√
j0− c

a

)
1

aiw(T )
+ 1. (32)

Equivalently, we can derive a formulation

log10J = c0+ q1(T )(Si− Sc(T ))

+ q2(T )(Si− Sc(T ))2 (33)

with appropriate functions q1 and q2, which might be
useful for analytic investigations.
We will use this quadratic ansatz again for a direct ap-
proximation of the nucleation rate of pure water droplets
(see Sect. 6.1).

4.3 Linear polynomial fit for the nucleation rate

In this section we investigate approximations of the exponent
of the nucleation rate of aqueous solution droplets Jsol and
their impact on nucleation events in an idealized scenario. We
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concentrate on the reference formulation (Koop et al., 2000).
Since the polynomial p3(x) in the original formulation

Jsol(1aw)= 10p3(1aw), p3(x)=
3∑
k=0

akx
k (34)

nearly behaves as a linear polynomial in the relevant range
0.26≤1aw ≤ 0.34, it can be easily approximated by a lin-
ear relation; i.e. p3(x)≈ b0+ b1x. For this we can use two
different approaches: (i) using a least-squares fit and (ii) a
Taylor expansion at a prescribed value y0. While the first
approach is just a fitting procedure in the relevant range
0.26≤1aw ≤ 0.34, the second approach relies on an a priori
choice for the evaluation point y0 ∈ [0.26,0.34], and it is not
evident from the outset which value should be used to pro-
vide an accurate approximation. For this, we investigate the
sensitivity of p3 to a small perturbation ε = y− y0; i.e. we
consider

p3(y)= p3(y0+ ε)= p3(y0)+
dp3

dx

∣∣∣
y0
ε+O

(
ε2
)

(35)

≈ bt0+ bt1 · y = pt,y0 (y) (36)

with the coefficients

bt0 = p3(y0)−
dp3

dx

∣∣∣
y0
· y0

and

bt1 =
dp3

dx

∣∣∣
y0
. (37)

The Taylor approximation provides a range for the slope of
the linear approximation; these values motivate the sensitiv-
ity analysis in Sect. 4.5.2. In the relevant range 0.26≤ y ≤
0.34, for y =1aw we obtain slopes in the range 221≤ bt1 ≤
453. This investigation gives us a hint about possible varia-
tions in the slope, which will be used later for the sensitivity
analysis in Sect. 4.5.2.

In contrast, using a least-squares fitting routine for 0.26≤
1aw ≤ 0.34, we obtain a linear function

pls(x)= bls,0+ bls,1 · x, (38)

with bls,0 =−62.19267 and bls,1 = 254.7749. For further in-
vestigations, we only use the linear fit from Eq. (38). We ob-
serve that the linear fit pls(x) best approximates p3 close to
the inflection point xinfl ≈ 0.30756 (see Fig. 2, left panel).

For each linear approximation p(x)= b0+b1 ·x of p3(x),
the exponent of the nucleation rate and the saturation ratio
threshold become, as demonstrated in Sect. 4.2,

j (Si,T )= j0+ b1a
i
w(T )︸ ︷︷ ︸

:=A(T )

(Si− Sc(T )),

Sc(T )=
1

aiw(T )
j0− b0

b1
+ 1. (39)

Since aiw is a rather complicated function of temperature, it is
particularly useful in the context of analytical investigations
to have simpler approximations of this quantity. This moti-
vates us to approximate aiw and its inverse 1

aiw
in the relevant

temperature range 190≤ T ≤ 230 K by polynomials q(T )
of degree deg(q)≤ 2. Similarly, we can approximate the
nucleation threshold Sc(T ) by polynomials s(T ) of degree
deg(s)≤ 2. For the approximations we use a least-squares
procedure within the temperature range 190≤ T ≤ 230 K.
The results are presented in Fig. 2 (middle and right panels).

Combining the approximations q(T ) and s(T ) yields the
formulation

j (Si,T )= j0+ b1q(T )(Si− s(T ))

≈ j0+A(T )(Si− Sc(T )) (40)

of log10(J ). As can be seen in Fig. 2, the nucleation thresh-
old is accurately approximated by a linear relation (deviation
is smaller than 0.3 %). In former studies (e.g. Kärcher and
Lohmann, 2002; Ren and Mackenzie, 2005) linear fits were
derived for the nucleation thresholds; however, these fits de-
viate significantly more from the reference in comparison to
ours (see Fig. 2). The deviation depends on the respective
formulation (or approximation) of aiw.

4.4 Thresholds for prescribed nucleation rate values

The threshold description in Sect. 4.3 was based on the
choice j0 = 16, corresponding to a nucleation rate J =

1016 m−3 s−1. As already mentioned, the choice of j0 is
quite arbitrary, and these high values of J are very often not
reached in the numerical simulations (see Sect. 4.5). For a
better diagnostics of the nucleation events and the relative
strength of nucleation events, we introduce a similar concept
for nucleation thresholds, based on a prescribed nucleation
rate value J ∼ 10x0 . For this purpose we use Eq. (40) of the
nucleation threshold based on the linear approximation of the
nucleation rate with a fixed but arbitrary value x0 > 0 for the
nucleation rate value; hence, we can write

x0 = j (S0,T )= j0+A(T ) (S0− Sc(T ))

⇔ Scx0(T )= S0 =
x0− j0

A(T )
+ Sc(T ), (41)

where the functionA(T )= b1a
i
w(T ) only depends on the lin-

ear approximation of J , as stated in Sect. 4.2. Note that obvi-
ously Scx0(T )= Sc(T ) for x0 = j0. This leads to the formu-
lation of the nucleation rate

j (Si,T )= x0+A(T ) (Si− Scx0(T )) , (42)

with a general nucleation value x0 and its associated thresh-
old function Scx0(T ). The threshold function is just shifted
by the value x0−j0

A(T ) ; i.e. the type of the threshold function re-
mains the same. This formulation will be used for the theo-
retical investigations using small perturbations (see Sect. 4.6)
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Figure 2. Polynomial approximations of the nucleation rate (a), the ice water activity aiw(T )= pice(T )
pliq(T ) (b), and the saturation ratio threshold

Sc(T ) (c), respectively. Panel (b) also includes the approximations by Kärcher and Lohmann (2002) and Ren and Mackenzie (2005).

4.5 Numerical simulations of nucleation events for
different approximations

In the following we investigate the impact of our approxima-
tions of log10(J ) on nucleation events. The setup is as fol-
lows: we use the simple bulk ice physics model as described
by the set of ordinary differential equations (15), (16), and
(17) in Sect. 3. A nucleation event is ensured by assuming
a constant vertical velocity, which directly translates into a
constant adiabatic cooling of the air parcel and, thus, an ini-
tially increasing saturation ratio. Instead of changing the tem-
perature adiabatically, we directly control the supersaturation
as described in Sect. 3; this allows us to control the nucle-
ation event without the need to disentangle the different con-
tributions of temperature and supersaturation.

The nucleation event always shows the same qualitative
behaviour: due to the supersaturation source ∼ wSi with a
constant updraft w, the variable Si increases, and the nucle-
ation term produces ice crystals, which can grow by water
vapour diffusion, constituting a sink for supersaturation. The
peak value of Si is reached once the source and sink of super-
saturation balance. Afterwards the variable Si decreases due
to diffusional growth and thus shuts off the nucleation term.
The peak value depends crucially on the number of nucleated
ice crystals that are needed, to balance the source for Si by
the diffusional growth (depending on the product of number
concentration and mean radius of ice crystals). The number
concentration of ice crystals produced in the nucleation event
clearly depends on the vertical velocity w (source term) and
the environmental conditions (diffusion depends on temper-
ature and pressure). For details of the time evolution of nu-
cleation events, see Appendix B.

4.5.1 Standard approximation

We compare the following four different representations of
the nucleation rate using numerical simulations:

1. We represent the nucleation rate in the water activity
formulation by Koop et al. (2000) with the correction as
described in Sect. 4.1 (reference nucleation rate).

2. We represent the water activity approximated by the lin-
ear fit as described in Sect. 4.3 (see Eq. 38, linear regres-
sion).

3. We represent the nucleation rate as a function of Si an
T as described in Sect. 4.2, based on the formulation

log10J = j0+A(T )(Si− Sc(T )) (43)

of the exponent of the nucleation rate. We compare
the following two sets of approximations for A(T ) and
Sc(T ):

a. A linear approximation is used for A(T ) and a
quadratic approximation for Sc(T ), respectively.

b. A constant approximation is used for A(T ) and a
linear approximation for Sc(T ), respectively.

These are specific cases; however arbitrary combinations of
approximations for A(T ) and Sc(T ) might be used.

Figure 3 shows the approximated exponents of the nucle-
ation rate together with the (corrected) reference formulation
by Koop et al. (2000) for the three temperatures T = 196,
216, and 236 K as functions of 1aw. These temperatures are
chosen for direct comparison with former studies (Kärcher
and Lohmann, 2002; Spichtinger and Gierens, 2009). Evi-
dently, the linear fit with respect to water activity is very
close to the reference, and the same is true for the case of
a linear function A(T ) and a quadratic approximation Sc(T ).
For the simplest approximation (constant function A(T ) and
linear approximation Sc(T )), larger deviations from the ref-
erence nucleation rate can be seen. At T = 196 K, there is a
strong underestimation in the lower range of 1aw, whereas
for T = 236 K the underestimation is most pronounced for
higher values of1aw (green vs. black curves). In both cases,
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Figure 3. Different approximations of nucleation rate for different temperatures (a: T = 196 K, b: T = 216 K, c: T = 236 K). Black –
reference nucleation rate; red – linear fit to reference nucleation rate; blue – threshold description due to Eq. (43), using a linear approximation
for aiw and a quadratic threshold function Sc; green – threshold description due to Eq. (43), using a constant for aiw and a linear threshold
function Sc.

we expect deviations in the number concentrations of nucle-
ated ice crystals during the nucleation event and the maxi-
mum saturation ratio attained.

We investigate standard nucleation events in terms of
(i) the resulting ice crystal number concentration at the end
of the simulation as in former studies (e.g. Kärcher and
Lohmann, 2002; Spichtinger and Gierens, 2009) and (ii) the
maximum (peak) supersaturation, which was reached during
the nucleation event. Although the latter is usually not con-
sidered, it is of interest for comparisons with real measure-
ments, for example, in cloud chambers.

Figure 4 shows the results of the numerical simulations,
i.e. the number of nucleated ice crystals (top panel) and the
maximum saturation ratio (bottom panel) at environmental
pressure p = 200 hPa (the results are similar for other envi-
ronmental conditions).

Comparing the number of nucleated ice crystals and the
maximum saturation ratio, it is evident that the difference
between the reference calculation, based on the corrected nu-
cleation rate by Koop et al. (2000), and the simulations using
the approximated nucleation rates is rather small.

For almost all nucleation events, the deviation from the
reference simulations is not larger than ±15 %. To assess
these deviations, one should keep in mind that measure-
ments of ice crystal number concentrations are quite difficult,
and the uncertainties are usually larger than 15 %. For in-
stance, for the forward-scattering spectrometer probe instru-
ment, which was used in many flight campaigns (e.g. Voigt
et al., 2017), the uncertainty is estimated by about ∼ 10 %
(de Reus et al., 2009). Thus, the deviations in our simulations
and the uncertainties of realistic measurements are roughly
of the same order. This fact renders it presumably impossible
to decide on the correctness of any of the different formula-
tions and approximations of the nucleation rate based on the
available observations.

Finally, we conclude that a linear approximation of the
reference nucleation rate by Koop et al. (2000) is accurate

Figure 4. Comparison of different approximations of the nucleation
rate by Koop et al. (2000) for standard nucleation events driven by
a constant vertical velocity w. (a) Ice crystal number concentration
and (b) maximum supersaturation.
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Figure 5. Artificial change in the slope of the linear function in the
exponent of the nucleation rate. The fit to the reference curve is indi-
cated by the green line (slope b1 ∼ 250), a reduced slope (b1 ∼ 100)
is displayed in red, and an enhanced slope (b1 ∼ 500) is displayed
in blue.

enough to represent nucleation events in a physically mean-
ingful way. Thus, we can use this description as well as the
derived formulations of the nucleation rate as a function of
temperature T and saturation ratio Si in order to investigate
which parameters of the nucleation rates significantly affect
the outcome of nucleation events. This will be carried out in
the next section.

4.5.2 Impact of the parameters of the linear
approximation

Generally, we are interested in the impact of the formula-
tion of the nucleation rate on nucleation events. The original
parameterization by Koop et al. (2000) is based on a cubic
polynomial, which has slopes in the range 221≤ b ≤ 453;
see Sect. 4.3. The linear approximation is sufficiently good
for representing the reference rate; thus, we now use this sim-
ple linear representation log10J = b0+ b1 ·1aw in order to
test the sensitivity of nucleation events on the two parameters
b0, b1. Parameter b0 controls the absolute value of the nucle-
ation rate, while parameter b1 accounts for its steepness, i.e.
the slope.

In a first step, we investigate the impact of the slope of the
nucleation rate given by coefficient b1. One should keep in
mind that during the nucleation event, the value of 1aw =

(Si−1)aiw(T ) is increasing as Si increases; thus the exponent
of the nucleation rate basically grows linearly. Consequently,
an increase in the saturation ratio immediately translates into
an increase in 1aw; hence the abscissa in Fig. 5 may be
thought of as representing the saturation ratio. If high values
of the nucleation rate are already reached at lower supersat-
uration values, the nucleation is triggered earlier in compari-
son to the reference scenario.

However, an earlier onset of ice nucleation implies that the
newly nucleated ice crystals already start to grow by diffu-

sion. Consequently, the growing ice crystals tend to decrease
the saturation ratio and, if they are sufficiently numerous,
prematurely stop the nucleation event. In this case, fewer ice
crystals will nucleate, and a smaller maximum saturation ra-
tio will be reached compared to the reference. The opposite
mechanism is expected for smaller values of the nucleation
ratio in comparison to the reference; i.e. higher ice crystal
concentrations will occur together with a larger maximal sat-
uration ratio.

In order to illustrate this mechanism more quantitatively,
we artificially changed the slope of the linear function. The
reference slope b1 ≈ 255 is either reduced to a value of
b1 = 100 or enhanced to a value b1 = 500, which is moti-
vated by the values of the Taylor approximation, derived in
Sect. 4.3. In both cases, the parameter b0 of the linear func-
tion is adapted such that the inflection point of the polyno-
mial p3(1aw) at 1aw ∼ 0.311 is met for better comparison
with the reference simulations. The resulting nucleation rates
are displayed in Fig. 5, while the number of nucleated ice
crystals and the maximum ice saturation ratio during the nu-
cleation event are summarized in Fig. 6: the top panel shows
the concentrations of nucleated ice crystals, and the bottom
panel shows the maximum saturation ratio during the nucle-
ation events.

In the case of the enhanced or reduced slope, as indicated
in Fig. 5, we see the theoretically proposed behaviour in the
ice crystal number concentration exactly: the values are re-
duced for reduced slopes and enhanced for enhanced slopes.
The reductions are by up to a factor of 0.4, the enhancements
are by up to a factor of 2.4, and the largest changes can be
seen at the highest temperature T = 236 K.

In the bottom panel of Fig. 6, a dependency on temperature
and vertical velocity is seen. For very low vertical velocities,
the maximum supersaturation behaves as expected, i.e. re-
duced values for the reduced slope and enhanced values for
the enhanced slope. For very high vertical velocities, this be-
haviour is reversed; i.e. we see reduced values of Si,max for
enhanced slopes and enhanced values of Si,max for reduced
slopes. The transition slightly depends on the temperature.
This can be explained as follows: for low vertical velocities,
1aw (and thus the supersaturation) is always below the in-
flection point 1aw ∼ 0.311. Thus the nucleation rate is al-
ways smaller for the enhanced slope in comparison to the
reference, while it is always larger in comparison to the ref-
erence for the reduced slope. Therefore, in the case of an en-
hanced slope, the nucleation starts later compared to the ref-
erence. This leads to the behaviour as described above. How-
ever, beyond the inflection point, the behaviour is reversed,
and thus the resulting maximum supersaturation is now en-
hanced for a reduced slope, and it is reduced for an enhanced
slope. The inflection point is reached at different vertical ve-
locities for different temperatures, i.e. for lower temperatures
at lower values of w and for higher temperatures at higher
values of w. Note that only the maximum supersaturation is
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Figure 6. Impact of the slope on the idealized nucleation events.
(a) Ice crystal number concentrations and (b) maximum supersatu-
ration values. The colours are chosen as in Fig. 5; i.e. red squares
indicate a reduced slope, and blue triangles indicate an enhanced
slope, respectively.

affected upon1aw crossing the inflection point, while no in-
fluence on the number concentration of ice crystals is seen.

After having varied the slope of the nucleation rate, we
now turn to its absolute values and modify coefficient b0,
which translates into a change of values of J by 10b0 . In
order to investigate the sensitivity, we add a constant value
1b ∈ {−6, −3, 3, 6} to the coefficient b0, resulting in an in-
crease or decrease in the absolute value of the nucleation rate
by a factor of 101b. In Fig. 7 the results in terms of ice crys-
tal number concentration and maximum supersaturation are
displayed.

Maybe surprisingly, the absolute values of the number
concentrations of ice crystals in comparison to the refer-
ence formulation are not crucially affected (see Fig. 7, top
panel), although some deviations occur (up to a factor of 2).
The strongest deviations can be seen for warm temperatures
(T = 236 K) at very low vertical velocities. Overall, the rel-

Figure 7. Comparison of ice crystal number concentrations (a)
and maximum supersaturation (b–d, temperature T = 196, 216, and
236 K) for absolute changes in the nucleation rate by a factor 101b,
with 1b ∈ {−6, −3, 3, 6}.

ative deviations from the reference events in variables ni and
peak values of Si are within the interval [0.4, 2], but for ver-
tical velocities in the range w ≥ 0.05ms−1, the relative devi-
ation is within the interval [0.8, 1.4].

Comparing the influence of a scaling of the absolute values
of the nucleation rate and the steepness of the rate, we con-
clude that the correct steepness of the nucleation rate is much
more important than the absolute value of J . Even changes
by orders of magnitude in the values of the nucleation rate
have a minor impact on the number of nucleated ice crys-
tals. A similar conclusion was also drawn in the theoretical
study by Baumgartner and Spichtinger (2019). In that study,
the authors investigated a slightly simplified system of equa-
tions by means of asymptotic analysis. The simplified system
describes the temporal evolution of the number concentra-
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tion of ice crystals and the saturation ratio, and an approxi-
mate asymptotic solution was constructed. To leading order,
the approximate solution for the number concentration of ice
crystals was completely independent of the precise values
of the nucleation rate, but the steepness contributed directly.
The only necessary condition on the values of the nucleation
rate was that it attains large values, i.e. significantly larger
than the other coefficients within the equations.

For the maximum supersaturation values, the impact of the
absolute value of J is much more pronounced. As expected,
upon reduction of the nucleation rate by a factor of 101b with
1b ∈ {−6, −3} the supersaturation reaches much higher val-
ues of Si until the values of the rescaled nucleation rate be-
come large enough to initiate the nucleation of ice crystals.
For the enhancement of the absolute values of the nucleation
rate, the results are reversed: the maximum supersaturation
is reduced, since the enhanced nucleation rate attains values
that allow for the production of ice crystals for smaller sat-
uration ratios. This behaviour is represented in the bottom
panels of Fig. 7.

We remark that this idealized enhancement of the nucle-
ation rate can also be seen in the connection with the aerosol
number concentration na. A change of na by some orders of
magnitudes while no changes in J are applied has the same
effect as changing the absolute value of the nucleation rate
(or the parameter b0 in the argument of the exponential func-
tion). Thus, a strong reduction or enhancement of the avail-
able solution droplets will only slightly change the amount of
ice crystals in a nucleation event. Therefore, we can conclude
that for a meaningful approximation of the nucleation rate,
the exact number concentration of available aerosols is also
not crucial for the strength of the homogeneous nucleation
event but perhaps for the starting time of the event. Includ-
ing size effects of the solution droplets might additionally
change the picture quantitatively (see, for example, Baum-
gartner et al., 2020).

4.6 Impact of perturbations in Si and T on the
nucleation rate

In this section we investigate the impact of changes in Si
and/or T on the nucleation rate by employing a perturbation
analysis. A short explanation of this technique is given in Ap-
pendix D. In the real atmosphere, variations of the tempera-
ture due to dynamical processes will introduce such changes,
for example, from a passing or even breaking gravity wave.
In numerical simulations, these variations (also often called
fluctuations) are often artificially introduced (e.g. Jensen and
Pfister, 2004). In any case, the impact of such changes is in-
vestigated using perturbation analysis (also called asymptotic
analysis).

We start with the linear approximation of the nucleation
rate as formulated in Eq. (40) with A(T )= b1a

i
w(T ). We can

estimate the usual values of the function A(T ) in the temper-
ature range 190K≤ T ≤ 230 K using 0.51≤ aiw(T )≤ 0.66

such that 129≤ A(T )≤ 169. For a very simple but still suf-
ficiently accurate constant approximation of aiw(T ), we can
set aiw0 = 0.574312 (see Fig. 2, pink line), such that A(T )≈
A0 = b1a

i
w0 = 146.32. Finally we can state A(T )=O

(
ε−2)

with the usual perturbation approach ε ∼ 0.1, such that we
set A(T )= A∗ε−2 with A∗ =O(1) as ε→ 0. For the non-
dimensionalization of the threshold function in the linear ap-
proximation Sc(T )≈ s0+ s1T , we have to estimate the order
of the coefficients for the relevant temperature range. Using
190K≤ Tref ≤ 230 K and the definition T = Trefϑ with the
nondimensional temperature ϑ , we find

Sc(T )= sc(ϑ)= s0+ s1T = s0+ s1Trefϑ = σ0− σ1ϑ, (44)

with σ1 =−s1Tref. Obviously, s0 = σ0 = 2.27697=O(1)
and 0.66≤ σ1 ≤ 0.8, such that σ1 =O(1). Using the simplest
approximation A(T )= A0 and Sc(T )= s0+s1T for the gen-
eral formulation of the threshold function Scx0 (see Eq. 41),
we can simplify the expression as

Scx0(T )=
x0− j0

A0
+ s0+ s1T

=

(
x0− j0

A0
+ s0

)
︸ ︷︷ ︸

=:sx0

+ s1T

= sx0+ s1T . (45)

Using non-dimensionalization, we end up with the following
representation:

Scx0(T )= scx0(ϑ)= sx0+ s1T = σx0− σ1ϑ, (46)

where σx0 = sx0 and σ1 =−s1Tref. Finally, we use the esti-
mation A0 = A

∗ε−2 to obtain

σx0 =
(
A∗
)−1

ε2(x0− j0)+ σ0 = δ+ σ0. (47)

Since j0 =O
(
ε−1) and x0 =O

(
εβ
)

with β ≥−1, we
find σx0 = δ+ σ0 =O (ε)+O(1)=O(1). After non-
dimensionalizing the argument in the nucleation rate, we can
now investigate the response of the nucleation rate upon a
perturbation (i) in the saturation ratio (i.e. in the same way
as the numerical simulations are set up), (ii) in temperature,
and (iii) in adiabatic changes of temperature driving changes
in the saturation ratio simultaneously. In reality, case (iii) is
almost exclusively relevant.

First, we estimate the increase of J due to variations of Si
at a constant temperature T = Tref. For this purpose we start
at a given value of the saturation ratio Si, which corresponds
to a certain threshold x0 via the relation (41). We choose
this value as a reference value Sref = Scx0(Tref)= scx0(1)=
σ0− σ1; this corresponds to a reference value of the nucle-
ation rate J = Jref = Junit ·10x0 (with Junit = 1m−3 s−1). As-
suming the expansion

Si = S0+ εS1+ ε
2S2+ ε

3S3+O
(
ε4
)

(48)
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for the saturation ratio, where S0 = Srefσx0− σ1, we inves-
tigate the impact of such a perturbation on the exponent j .
Keeping the temperature fixed as in the numerical simula-
tions, we arrive at

j (Si,T )= j (s, t)= x0+A0 (Si− Sref)

= x0+A
∗ε−2

(
Sref

+ εS1+ ε
2S2+ ε

3S3+O
(
ε4
)
− Sref

)
= x0+ ε

−1A∗S1+A
∗S2+ εA

∗S3+O
(
ε2
)
. (49)

We are interested in the relative change of the nucleation
rates J (Si,T )

Jref
, which translates into j (Si,1)− j (Sref,1). By

definition, we have x0 = j (Sref,1); thus we obtain

j (Si,1)− j (Sref,1)=ε−1A∗S1+A
∗S2+ εA

∗S3

+O
(
ε2
)
. (50)

Inspecting Eq. (50), it is evident that a nonzero perturba-
tion term Sα in Eq. (48) is connected with the factor εα−2;
hence a change of order O (εα) in supersaturation translates
into a change of order O

(
εα−2) in the exponent of J . For

instance, a change by Si ∼ 0.01 translates into a change of
O(1) in j and thus in a change by a factor of 10 in the nucle-
ation rate J .

Second, we consider perturbations of temperature without
changing the saturation ratio, although this might not happen
in the atmosphere. Using the approach above with a constant
reference value of saturation, i.e. Sref = scx0(1)= σ0− σ1
and temperature perturbations ϑ = 1+ εϑ1+ ε

2ϑ2+ ε
3ϑ3+

O
(
ε4), we find the following expression:

j (sref,ϑ)= x0+A0 (Sref

−

(
σ0− σ1

(
1+ εϑ1+ ε

2ϑ2+ ε
3ϑ3+O

(
ε4
))))

= x0+A
∗ε−2

(
εϑ1+ ε

2σ1ϑ2+ ε
3σ1ϑ3+O

(
ε4
))

= x0+ ε
−1A∗σ1ϑ1+A

∗σ1ϑ2+ εA
∗σ1ϑ3+O

(
ε2
)
. (51)

The relative change of the nucleation rate is then given by

j (Sref,ϑ)− j (Sref,1)=x0+ ε
−1A∗σ1ϑ1+A

∗σ1ϑ2

+A∗σ1ϑ3ε+O
(
ε2
)
. (52)

Thus, a temperature perturbation ϑα of order O (εα) leads
to a relative change in j of order O

(
εα−2). Note the sign

of the perturbations, which turns into the opposite sign in
the change of j . Because of the strictly monotonic decrease
of the threshold function Scx0(T ), a negative temperature
change leads to a higher threshold and in turn to a lower nu-
cleation rate at a given saturation ratio.

Instead of perturbing the saturation ratio and the tem-
perature individually, these quantities are connected in the

real world. To a good approximation, their joint variation is
through a purely adiabatic change. Therefore, we finally in-
vestigate the impact of adiabatic temperature changes on the
saturation ratio and in turn on the nucleation rate. For this
purpose, we have to consider the dependence of Si on adia-
batic temperature changes. We start with the cooling source
term of the saturation ratio

dSi =

(
1
κ
−

L

RvT

)
Si

dT
T
. (53)

The term γ (T )= 1
κ
−

L
RvT

within the brackets has the values
−28.8≤ γ (T )≤−23.2 for 190K≤ T ≤ 230 K, such that
we find γ (T )=O

(
ε−1)
= γ ∗ε−1 and γ ∗ ∼−2.5< 0. Ap-

proximating the total differential in Eq. (53) with finite dif-
ferences 1Si and 1T , we arrive at

1Si

Si
= γ ∗ε−11T

T
. (54)

We set as an approximation Si = Sref and T = Tref, such that
we can set

1Si

Sref
= εlSl +O

(
εl+1

)
=O

(
εl
)
, (55)

with Sl =O(1). We assume l ≥ 1 since we do not consider
changes of the saturation ratio of order O(1). The analogous
expansion for the temperature reads

1T

Tref
= εkϑk +O

(
εk+1

)
=O

(
εk
)

with ϑk =O(1) ∀k ≥ 1. (56)

Combining these expansions, Eq. (53) becomes

1Si

Sref
= γ ∗ε−11T

Tref
= γ ∗ε−1

(
εkϑk +O

(
εk+1

))
= γ ∗tkε

k−1
+O

(
εk
)

(57)

or equivalently

εlSl =1Si = Srefγ
∗ϑkε

k−1
+O

(
εk
)
. (58)

The only non-trivial balance is achieved for l = k− 1; i.e.

Sk−1 = Srefγ
∗ϑk ⇔ Sk = Srefγ

∗ϑk+1. (59)

Note that l = k−1≥ 1; i.e. we have to consider k ≥ 2 for the
perturbation of temperature. This is a meaningful restriction
since we are interested in small changes of temperature in
the cold temperature regime, i.e. a change in the temperature
in the order of ∼ 1 K in physical units. Hence, we would not
expect adiabatic temperature changes of order O (ε), corre-
sponding to changes of order ∼ 10 K. Thus, we assume an
asymptotic expansion

ϑ = 1+ ε2ϑ2+ ε
3ϑ3+O

(
ε4
)

(60)
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for the temperature perturbation. We are generally interested
in adiabatic expansions due to vertical upward motion, which
in turn leads to decreasing temperatures; hence we conclude
ϑk < 0 for k ≥ 2. Since γ ∗ < 0, Eq. (59) leads to positive
changes in the saturation ratio sk > 0 for ϑk < 0. Generally,
warming due to adiabatic compression can be studied in the
same way by setting ϑk > 0.

Now we consider the nucleation rate in the formulation
for arbitrary thresholds x0 in the nucleation rate using Sref =

σx0− σ1 = scx0(1):

j (Si,T )= j (Si, t)= x0+A
∗ε−2 (Si− scx0(ϑ))

= x0+A
∗ε−2

(
Sref+ εS1+ ε

2S2+ ε
3S3

−

(
σx0− σ1

(
1+ ε2ϑ2+ ε

3ϑ3

))
+O

(
ε4
))

= x0+A
∗ε−2

(
εS1+ ε

2S2+ ε
3S3+ ε

2σ1ϑ2

+ε3σ1ϑ3+O
(
ε4
))

= x0+A
∗ε−2

(
εSrefγ

∗ϑ2+ ε
2Srefγ

∗ϑ3

+ε3Srefγ
∗ϑ4+ ε

2σ1ϑ2+ ε
3σ1ϑ3+O

(
ε4
))

= x0+A
∗ε−2

(
εSrefγ

∗ϑ2+ ε
2 (Srefγ

∗ϑ3+ σ1ϑ2
)

+ε3 (Srefγ
∗ϑ4+ σ1ϑ3

)
+O

(
ε4
))

= x0+A
∗Srefγ

∗ϑ2ε
−1
+A∗

(
Srefγ

∗ϑ3+ σ1ϑ2
)

+A∗
(
srefγ

∗ϑ4+ σ1ϑ3
)
ε+O

(
ε2
)
. (61)

Thus, for k ≥ 2 we find terms of the form
A∗ (srefγ

∗ϑk+1+ σ1ϑk)εk−2 of order O
(
εk−2). Com-

paring the nucleation rates, we find for the relative change

j (Si,T )− j (Sref,Tref)

= j (Si, t)− j (Sref,1)

= A∗Srefγ
∗ϑ2ε

−1
+A∗

(
Srefγ

∗ϑ3+ σ1ϑ2
)

+A∗
(
Srefγ

∗ϑ4+ σ1t3
)
ε+O

(
ε2
)
. (62)

For the relative impact of these terms, we use the estimations
γ ∗ <−2.3 and σ1 ≤ 0.8. We have to distinguish two scenar-
ios for perturbations ϑk < 0:

1. ϑk < 0 for all k ≥ 2. In this case we can assume

Srefγ
∗ϑk+1+ σ1ϑk > 0. (63)

Therefore, an adiabatic temperature perturbation ϑk of
order O

(
εk
)

(k ≥ 2) leads to relative changes in j of
order O

(
εk−3). Note that the changes in saturation ra-

tio are always dominant and larger than the changes in
the threshold, which changes j by order O

(
εk−2) in the

opposite direction.

2. ϑk < 0 and ϑk+1 = 0 for a distinct k ≥ 2. In this case,
the previously discussed temperature effect can be seen;

i.e. the nucleation threshold is changed, leading to a re-
duction of the nucleation rate exponent. This effect is
merely academic, since we have to switch off higher
perturbations in temperature, which is quite unlikely.

One should keep in mind that we investigated the relative
increase in the exponent of the nucleation rate. A relative
change of order O

(
εk
)

in the exponent translates into a rela-

tive change of order O
(

10ε
k
)

in the nucleation rate J , thus
ranging over several orders of magnitudes. For instance, in
the first scenario, changes of temperature of order ∼ 1K lead
to changes in j of about ∼ 10, which in turn translate into a
change of the nucleation rate J by a factor of 1010.

Overall, we can state that changes in Si are most important
for changing j , either stemming from adiabatic temperature
changes or driven directly as in our numerical studies.

5 Impact of saturation vapour pressure formulation

Since the formulation of the nucleation rate by Koop et al.
(2000) relies on the water activity, and thus on the function
aiw(T )= pice(T )

pliq(T ) , the saturation vapour pressure over liquid
water (i.e. in no man’s land) plays an important role. In this
section we investigate the impact of choosing another for-
mulation for pliq(T ) on the nucleation rate and thus on the
nucleation events.

5.1 New representation of saturation water vapour

In the formulation by Murphy and Koop (2005), the extrap-
olation of the saturation vapour pressure into the no man’s
land of the phase diagram of water is based on the assump-
tion that the state of amorphous ice is thermodynamically
equivalent to super-cooled liquid water. Therefore, the spe-
cific heat of liquid water can be extended in the super-cooled
regime using measurements of amorphous ice. This leads to
the established formulation in Murphy and Koop (2005).

Recently, a new representation of the saturation vapour
pressure over super-cooled liquid water was proposed by
Nachbar et al. (2019). In this study, the authors consider dif-
ferent states of water in the low temperature range. They
conclude that amorphous ice is thermodynamically different
from super-cooled water; thus they provide a different ex-
trapolation for the saturation vapour pressure (Nachbar et al.,
2019).

Although the deviation between the two curves is very
small – even in the low temperature range less than 10 %
– its impact on saturation ratios as well as on the nucleation
thresholds is quite large, as can be seen in Fig. 8.

The curves of water saturation as well as the nucleation
thresholds are systematically shifted to higher values. In ad-
dition, the new curves have a more linear shape than the
curves resulting from Murphy and Koop (2005). The ratio of
the saturation pressures over ice and liquid (i.e. the functions
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Figure 8. Water saturation
(
Si =

pliq
pice

)
and nucleation thresh-

old (for J = 1016 m−3 s−1) for different formulations of satura-
tion vapour pressure over super-cooled water – Murphy and Koop
(2005) vs. Nachbar et al. (2019).

aiw(T ) and 1
aiw(T ) behave differently), aiw(T ), is much closer

to a quadratic curve, as can be seen in the top panel of Fig. 9.
These new fits were used for the formulation of the approx-
imated nucleation rate. Thus, we do not change the general
approach for approximating the nucleation rate, etc.; we only
use a different representation of the function aiw(T ).

5.2 Numerical simulations of nucleation events

In Fig. 10 the results of the nucleation events using the new
representation of the saturation vapour pressure due to Nach-
bar et al. (2019) are shown. As for former experiments, the
ice crystal number concentration (top panel) and the maxi-
mum supersaturation values (bottom panel) are shown.

For the ice crystal number concentration, the impact of the
new formulation of pliq is small; the relative deviation from
the reference simulations using the original vapour pressure
formulation by Murphy and Koop (2005) is always smaller
than 15 %. The deviation increases with decreasing tem-
perature and is most prominent for lower vertical updrafts
(w < 1ms−1).

For the maximum saturation ratio, the change as compared
to the reference simulations is much more prominent. As can
be seen in Fig. 8 the nucleation thresholds for a value of
J = 1016m−3 s−1 are increasing with decreasing temperature
with a larger slope compared to the reference case. This be-
haviour can clearly be seen in the maximum supersaturation;
for decreasing temperature the maximum supersaturation is
increasing to higher values in comparison to the reference
simulations (Fig. 10, bottom panel). The increase does not
depend on the vertical velocities.

We remark that at the moment it is not clear which ther-
modynamic hypothesis and thus which resulting approxi-
mation for the saturation vapour pressure over liquid water

Figure 9. (a) Function aiw(T )= pice(T )
pliq(T ) (black line) and polyno-

mial approximations (red – quadratic, blue – linear, and pink – con-
stant). (b) Nucleation threshold Sc(T ) (black line) and polynomial
approximations (red – quadratic and blue – linear). Note that the for-
mer approximation by Kärcher and Lohmann (2002) (dark green) is
now very close to the new formulation, whereas the fit by Ren and
Mackenzie (2005) (turquoise) deviates significantly.

is physically correct; however the formulation by Murphy
and Koop (2005) seems to agree with recent measurements
(Pathak et al., 2021). In particular, it is not clear if the formu-
lation of Nachbar et al. (2019) can be extrapolated to values
T < 200 K. Thus, we cannot recommend using a certain for-
mulation.

6 Another approach to formulate the nucleation rate

Up to now we have always employed the reference nucle-
ation rate in our computations, i.e. the formulation as in Koop
et al. (2000) but corrected by a constant offset (see Sect. 4.1),
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Figure 10. Impact of the formulation of the saturation vapour pres-
sure by Nachbar et al. (2019) on the idealized nucleation events.
(a) Ice crystal number concentrations and (b) maximum supersatu-
ration values. The relative differences in number concentrations are
always smaller than 15 %.

in order to match the nucleation rate for pure water droplets
by Koop and Murray (2016) in a certain temperature range.
In this section we take a different point of view, assuming
that we can just directly adopt the formulation by Koop and
Murray (2016) for the nucleation rate of aqueous solution
droplets, providing an exact match of both curves by defini-
tion. In the following we discuss the consequences of using
such a direct approach in terms of nucleation events.

6.1 Direct fit to nucleation rate of pure water

In order to arrive at a direct fit, we assume that at water sat-
uration, the freezing of pure water droplets should behave
as the freezing of solution droplets at super-cooled states.
To avoid a complicated reformulation of the formula from
Koop and Murray (2016), in terms of the water activity1aw,
we use a quadratic polynomial fit to the original formula-
tion Jhom(T ) at water saturation; see Appendix C for details.

Figure 11. Freezing rate of water droplets (Koop and Murray, 2016,
black), a polynomial fit (red), and the nucleation rate of solution
droplets (Koop et al., 2000, corrected, blue), all depending on1aw.

Figure 11 presents the original data (black curve) together
with the quadratic fit (red curve) and the corrected formu-
lation of Koop et al. (2000) (blue curve) from Sect. 4.1. In
contrast to the (corrected) formulation by Koop et al. (2000),
the nucleation rate reaches a maximum at 1aw ∼ 0.345 and
decreases afterwards. As a result, there is a significant de-
viation between the two nucleation rates (JK2000 > JKM2016)
for the range 1aw > 0.32. Thus, we can expect that for cold
temperatures and/or high upward motions, there will be large
deviations in the ice crystal number concentrations produced
within nucleation events.

It should be kept in mind that the range of the param-
eterization of the nucleation rate as given in Koop et al.
(2000) is restricted to the interval 0.26≤1aw ≤ 0.34. As
a result, it is not clear if the parameterization works well
for values 1aw > 0.34. However, there are measurements
(see Laksmono et al., 2015) for the freezing of pure water
droplets that also show a kind of plateau at cold tempera-
tures (corresponding to high values of1aw). Thus, for higher
values 1aw > 0.34, we use the value JKM2016(1aw)=
JKM2016(0.34) to (a) mimic the plateau in the measurements
and (b) avoid numerical issues in the simulations. Assuming
that the nucleation rate does not depend on quantities other
than water activity, it may now be used in numerical simula-
tions of homogeneous nucleation events.

6.2 Numerical simulations of nucleation events

After having obtained the direct formulation of the nucle-
ation rate of Koop and Murray (2016), we now investigate its
impact on nucleation events using numerical simulations as
before. For completeness, two different types of simulations
are done: (1) simulations using the standard formulation of

Atmos. Chem. Phys., 23, 2035–2060, 2023 https://doi.org/10.5194/acp-23-2035-2023



P. Spichtinger et al.: Impact of nucleation rates on nucleation events 2051

Figure 12. Impact of the direct formulation of the nucleation rate
based on Koop and Murray (2016) on the idealized nucleation
events. Black triangles and lines indicate the reference simulation,
red squares and lines denote the use of the nucleation rate based
on Koop and Murray (2016), and blue squares and lines represent
the use of the nucleation rate based on Koop and Murray (2016)
together with the saturation vapour pressure due to Nachbar et al.
(2019). (a) Ice crystal number concentrations and (b) maximum su-
persaturation values.

pliq by Murphy and Koop (2005) and (2) simulations using
the new formulation of pliq by Nachbar et al. (2019). The
results of the simulations are shown in Fig. 12.

First we consider the ice crystal number concentrations
(top panel). For low vertical updrafts, the values of ni are
only slightly affected in case of using the adapted nucleation
rate. For higher vertical velocities, there is a reduction in the
produced ice crystal number concentrations; this reduction
increases with increasing vertical updrafts. This effect can be
explained as follows. The nucleation rates differ significantly
for higher values 1aw ≥ 0.31; i.e. the slope of the adapted
rate is (much) smaller than the original nucleation rate by
Koop et al. (2000). For higher updrafts, the supersaturation
reaches higher values, which is equivalent to higher values of

1aw. Thus, the nucleation rates differ for these high updraft
events, and fewer ice crystals are produced when using the
adapted nucleation rate. Apart from the influence at high ver-
tical velocities, there is almost no difference in the ice crystal
number concentrations between the nucleation events using
the different formulations.

Considering the values of maximum supersaturation (bot-
tom panel), there is a similar behaviour as for ni. At low ver-
tical velocities there is almost no difference between the ref-
erence nucleation rate and the newly adapted rate. In the case
of using the saturation vapour pressure according to Nachbar
et al. (2019), the observed shift in the maximum supersat-
uration values stems from the increased difference between
the values of the saturation vapour pressures at low temper-
atures; see Sect. 5. At higher updrafts (w > 0.5ms−1), the
maximum supersaturation values increase nonlinearly. For
the coldest temperature (T = 196 K), we note a dramatic in-
crease up to very high values (Si,max ∼ 1.8). However, note
that in all cases the values of the maximum supersaturation
stays below water saturation; hence no liquid origin ice for-
mation would occur.

7 Thresholds of ice nucleation

For the evaluation of measurements of ice clouds, the
possible range of supersaturation is often estimated using
the so-called Koop line, i.e. the supersaturation threshold
Sc(T ) which corresponds to a nucleation rate value J =
1016m−3 s−1

= 1010cm−3 s−1. In many investigations (see,
for example, Krämer et al., 2009), this function is used as an
upper bound for possible values of Si inside and also outside
of ice clouds. However, from our investigations in this study
so far, we have to carefully consider two different aspects
from a purely theoretical point of view:

1. The nucleation threshold assigned to the frequently used
value j0 = 16 is arbitrary chosen; there is no convincing
physical justification for using this particular value. In
Koop et al. (2000) different values J = 10j0 m−3 s−1,
with j0 ∈ [1, 17], are used, but for testing the impact
of droplet sizes, they used the value j0 = 16. Nucle-
ation of ice crystals is not a switching process; it oc-
curs gradually and smoothly, although the nucleation
rates are very steep functions of the supersaturation. The
size or strength of the nucleation event cannot be de-
termined just by the maximum of the supersaturation;
the amount of ice crystals as formed in the nucleation
event is determined by the integral over the supersatu-
ration curve (see, for example, the discussion in Dinh
et al., 2016). Thus, it is possible to form many crystals
in lower updrafts, even if the high nucleation threshold
is not reached. From our simulations, we observe that
the peak supersaturation for nucleation events depends
crucially on the vertical velocity, i.e. on the temperature
rate, which is prescribed during the event. This is quite
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obvious from the differential equation determining the
change of Si: the peak value is given by dSi

dt = 0, i.e.
when source and sink terms balance each other. Since
the source includes the vertical velocity linearly, the de-
pendence of the peak supersaturation on w is obvious,
although it is not linear.

2. As described above in Sect. 5, it is still not clear which
formulation of the saturation vapour pressure is phys-
ically correct. However, the use of the formulation by
Nachbar et al. (2019) leads to a higher saturation vapour
pressure and thus to a higher nucleation threshold, even
for arbitrary values j0 and its associated nucleation
threshold Scx0(T ).

Taking these two aspects into account, we can observe the
following behaviour. In Fig. 13 (top panel), we compare the
nucleation thresholds for the saturation vapour pressure ac-
cording to Murphy and Koop (2005) for j0 = 10 (red curve)
and j0 = 16 (dark blue curve), with the range of peak super-
saturations for vertical velocities 0.01ms−1

≤ w ≤ 2ms−1

(black vertical bar) and the maximum value for a very unre-
alistic value w = 10ms−1 (black crosses). For comparison,
the well-known Koop line as fit and proposed by Kärcher
and Lohmann (2002) is plotted (light blue curve). It is quite
obvious that for typical vertical velocity values the “clas-
sical” Koop line is not reached; i.e. the peak supersatura-
tion is below the threshold. Nevertheless, for strong cooling
rates (very high vertical velocities), as are used in experi-
ments in cloud chambers, high supersaturations are reached,
which still partly remain below the Koop line. If we change
the saturation vapour pressure to the formulation by Nach-
bar et al. (2019), the qualitative picture remains the same
(bottom panel in Fig. 13): even for high vertical updrafts the
high nucleation rates are reached; for moderate and small up-
drafts, the peak supersaturation stays well below the classical
nucleation threshold. However, the nucleation thresholds are
generally shifted to higher values of supersaturation due to
the different saturation vapour pressure formulation. It seems
that these values fit better to the experiments in the AIDA
cloud chamber as reported in Baumgartner et al. (2022) and
Schneider et al. (2021). This might be interpreted as a hint
that the formulation by Nachbar et al. (2019) might be the
more appropriate formulation for the saturation vapour pres-
sure, although the formulation by Murphy and Koop (2005)
agrees well with recent measurements (Pathak et al., 2021).
In any case, one has to consider the impact of the cooling rate
on the peak supersaturation in a nucleation event. Therefore,
the use of the Koop line in the currently applied way is mis-
leading and does not correspond to the actual physics of nu-
cleation events. Note that the temperature-dependent thresh-
old is used in some parameterizations of ice clouds in climate
and numerical weather prediction models (see, for example,
Kärcher et al., 2006; Köhler and Seifert, 2015). A simple but
albeit more realistic extension of such schemes would be a
threshold depending on both vertical velocity w and temper-

Figure 13. Comparison of nucleation thresholds (red curve: x0 =
10, blue curve x0 = 16) and the classical Koop line (light blue
curve). The black vertical bars indicate the range of peak super-
saturation ratios within the nucleation events, computed using ver-
tical velocities ranging from 0.01 to 2 ms−1. The black cross cor-
responds to the peak supersaturation ratio for the vertical velocity
of 10 ms−1. (a) Curves based on the water activity using the sat-
uration vapour pressure formulation by Murphy and Koop (2005)
and (b) the same for the saturation vapour pressure formulation by
Nachbar et al. (2019).

ature T ; a 2D fit to the maximum supersaturation data from
our simulations might be a first attempt in this direction.

Finally, we can also investigate the peak supersaturation
values for the new empirical nucleation rate formulation, as
derived in Sect. 6.1. Generally, we see the same behaviour as
for the reference simulations, with a monotonic increase of
peak supersaturation values with increasing vertical velocity
(see Fig. 14). The use of the saturation vapour pressure for-
mulation by Nachbar et al. (2019) additionally enhances the
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Figure 14. Same as in Fig. 13 but using the nucleation rate as em-
pirically derived in Sect. 6.1. (a) Curves based on the water activity
using the saturation vapour pressure formulation by Murphy and
Koop (2005) and (b) the same for the saturation vapour pressure
formulation by Nachbar et al. (2019).

peak values as seen before. However, the peak values for cold
temperatures and very high vertical velocities are strongly
enhanced in comparison with the reference simulations. Also
these high values are still in line with the measurements in
the AIDA chamber, as reported by Baumgartner et al. (2022)
and Schneider et al. (2021).

8 Summary and outlook

We have investigated the impact of the representation of nu-
cleation rates and diffusional growth on idealized nucleation
events, as driven by a constant vertical updraft (i.e. a con-
stant cooling rate). In a first step, we have investigated the

original formulation of the nucleation rate for homogeneous
freezing of aqueous solution droplets in the formulation by
Koop et al. (2000); for a better agreement with the nucleation
rate of pure water droplets, a simple shift could be applied.
For analytical purposes and simple model calculations, a less
complicated formulation is desired. We showed that a linear
fit to the original formulation depending on the difference
in water activity 1aw = aw− a

i
w is accurate enough to re-

produce the ice crystal number concentrations quantitatively.
Based on this linearization approach, we derived a thresh-
old formulation of the nucleation rate, which can be used for
analytical investigations, as already presented in Baumgart-
ner and Spichtinger (2019). Again, the new formulations are
good enough to represent nucleation events quantitatively as
compared to the reference nucleation formulation.

Using the linear approximation as a starting point, we
investigated the impact of different formulations on ideal-
ized nucleation events, changing the two relevant parameters
(slope and constant offset). These investigations led to the
first major results:

– The absolute values of the nucleation rate only have a
marginal impact on the resulting ice crystal number con-
centrations in a nucleation event. Even a scaling by up
to 6 orders of magnitudes did not severely affect the re-
sulting number concentrations. However, the maximum
supersaturations changed, and the resulting deviations
range up to a few percent of relative humidity. In addi-
tion, the time of nucleation onset is slightly shifted.

– The slope of the nucleation rate (or more precisely in
the argument of the exponential function) has a much
larger impact on the resulting nucleation event and the
ice crystal number concentration. Variations in the slope
change the number concentrations in the nucleation
events by up to a factor of 2.5 (in both directions). Also,
the maximum supersaturation is affected by a deviation
of a few percent of relative humidity.

As a final conclusion of this part of our work, we can state
that the shape of the nucleation rate is of high importance
for the representation of the nucleation process, whereas the
absolute strength of the rate is almost negligible, if the val-
ues are high enough. This shows that the nucleation process
(homogeneous freezing of solution droplets) itself is a quite
robust process; thus the accurate formulation is maybe less
critical than we thought. Also the amount of available solu-
tion droplets as controlled by the background aerosol does
not affect the nucleation events itself; it can be seen as a scal-
ing factor of the nucleation rate, in the same sense as in the
sensitivity analysis of changing the absolute values of nucle-
ation rates. As long as the amount of aerosol particles is some
orders of magnitude larger than the ice crystal number con-
centration as predicted for a nucleation event, this does not
play a role for the nucleation events, and we do not have to
care about exhausting the reservoir of solution droplets.
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We also investigated the impact of a recently published
formulation of the water saturation pressure based on a ther-
modynamic assumption of different phases of water in the
very low temperature range (Nachbar et al., 2019). This new
formulation leads to changes in the function aiw, which di-
rectly affected the nucleation rate based on 1aw. Follow-
ing the derivations of the threshold description, approxima-
tions were constructed. The new resulting functions aiw(T )
and Sc(T ) can be accurately approximated with polynomi-
als of smaller degrees, as compared to the standard formu-
lation. The new formulation of pliq only marginally changed
the resulting ice crystal number concentrations. However, the
impact on the maximum supersaturations increased with de-
creasing temperature up to few percent of relative humid-
ity. Overall, the two different representations of the satura-
tion vapour pressure over liquid water produced very simi-
lar, even almost identical, results. Thus, a decision about the
validity of a certain formulation must be left to extensive ex-
perimental measurements.

In a more speculative part of the study, we adapted the nu-
cleation rate of homogeneous freezing of pure water droplets
(Koop and Murray, 2016) as a new parameterization for ho-
mogeneous freezing of aqueous solution droplets. This rep-
resentation is quite similar for low values of1aw to the origi-
nal formulation by Koop et al. (2000) and its approximations.
However, for very high water activities (i.e. high supersatu-
rations as driven by large vertical updrafts), there is a sig-
nificant deviation from the reference nucleation rate. Thus,
for some cases in the parameter space (high updrafts and
low temperatures), there is a significant deviation in the num-
ber concentrations and, more obviously, in the maximum su-
persaturations, which almost reach water saturation in some
cases. This approach showed that the shape of the nucleation
rate is important for the resulting nucleation events; strong
deviations of the shape from its reference affect the results
of the nucleation event significantly. Whether this represen-
tation of the nucleation rate is a more accurate approxima-
tion to the actual physics of ice nucleation remains an open
question and might be an objective for experimental investi-
gations.

Finally, we investigated the commonly used threshold for
homogeneous nucleation (Koop line) in the light of peak su-
persaturation values during nucleation events. This threshold
corresponds to a nucleation rate of J = 1016m−3 s−1 but is
only rarely reached during nucleation events. Nucleation it-
self starts usually at much lower values of Si, corresponding
to lower values of the nucleation rate. The peak supersatu-
ration during a nucleation event, characterized as an equi-
librium between sources and sinks of supersaturation, de-
pends on temperature and vertical velocity. The peak super-
saturation is a much more physical quantity to investigate
the strength of a nucleation event. The peak supersatura-
tion as diagnosed from the numerical simulations might be
a more physical representation of ice nucleation in coarse-

resolution models in comparison to the frequently used nu-
cleation threshold.

It should be emphasized that all the results and conclu-
sions are meant in a bulk sense, i.e. for a large collection of
ice crystals such as a newly forming cirrus cloud. If one is
interested in the details of ice formation for a single or only
a small number of particles, then all details of the nucleation
rate might be equally important. In that respect, our study
shows that homogeneous cirrus formation is a robust physi-
cal process.

Appendix A: Model description – details

In this appendix, we present the details of the model as used
for the numerical simulations of the nucleation events. Note
that we use the mathematical (and also programming) nota-
tion of logarithms; i.e. log denotes the natural logarithm (to
base e).

A1 Background aerosol

For the aqueous solution droplets in the tropopause region,
we assume a size distribution of log-normal type:

fsol(r)=
na

√
2π logσr

exp

(
−

1
2

(
log(r/rsol)

logσr

)2
)

1
r

(A1)

with a modal radius rsol = 75 · 10−9 m and a geometric stan-
dard deviation σr = 1.5. These values are adapted from the
more complex model by Spichtinger and Gierens (2009),
using the fact that the dry aerosol population, as used in
Spichtinger and Gierens (2009), has grown to larger sizes by
water vapour uptake (i.e. assuming Köhler theory; see, for
example, Köhler, 1936). The mean volume of the solution
droplets

Vd = Vsol =
4
3
πr3

sol · exp
(

9
2

(logσr )2
)

(A2)

is calculated from the third moment of the log-normal distri-
bution.

A2 Mass distribution for ice crystals

For the ice crystals, we assume a mass distribution of log-
normal type

f (m)=
ni

√
2π logσm

exp
(
−

1
2

(
log(m/mm)

logσm

))
1
m

(A3)

with a parameter

r0 = exp
(

(logσm)2
)
, m=mm

√
r0 = 3 (A4)

representing the width of the distribution, as described in
Spichtinger and Gierens (2009). This distribution is used for
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the derivation of the rates in the system of ordinary differen-
tial equations for the mean quantities of ice mass and num-
ber concentration. The integration of weighting functions of
the type mk,k ∈ R+ leads to general moments, which can be
computed analytically:

µ[m]k :=

∞∫
0

mkf (m)dm

= ni ·m
k
m exp

(
1
2

(k logσm)2
)

= ni ·m
kr

k(k−1)
2

0 . (A5)

Note that for the averaged quantities, we obtain ni = µ[m]0,
qi = µ[m]1, respectively. Thus, we use a double-moment
scheme in our model.

A3 Diffusion constant

For the diffusion of water vapour in dry air, we use the fol-
lowing expression

Dv =Dv0

(
T

T0

)1.94(
p0

p

)
, (A6)

which is an empirical fit to measurement data (Hall and Prup-
pacher, 1976). Note that the valid temperature range is dif-
ferent in the book (Pruppacher and Klett, 2010) and in the
original article (Hall and Pruppacher, 1976). For analytical
investigations, a representation using a quadratic tempera-
ture dependence constitutes a good approximation for a re-
stricted temperature range. For the kinetic correction, we use
the function

fD(r,a,b)=
1

r
r+a
+
b
r

=
r2
+ ar

r2+ br + ab
, (A7)

where r denotes the radius of the ice crystal (using a bulk
density of ice ρb = 0.81kgm−3), and the parameters are
given by

a = λ ·Ccunn, b =
4Dv

αmcv
(A8)

using the mean free path of water molecules in air λ (acc.
to Pruppacher and Klett, 2010), the Cunningham correction
factor Ccunn = 0.7, and the mean velocity of water molecules
cv. We set the accommodation coefficient αm = 0.5 for com-
parison with former investigations (Kärcher and Lohmann,
2002); this value is also within the range as recommended in
recent work by Skrotzki et al. (2013).

For representing the growth rates for the ensemble of ice
crystals, by comparison with numerical integration we find
that using a shifted mean massm1 = c1 ·m, c1 ≈ 0.819 in the
kinetic correction function f (r1,a,b) is a good approxima-
tion.

A4 Howell factor

Latent heat release due to phase changes during diffusional
growth changes the surface temperature of the ice crystal. For
taking this into account, we use the Howell factor

Gv =

[(
L

RvT
− 1

)
L

T

D∗v
K∗T
+
RvT

psi

]−1

≈

[(
L

RvT
− 1

)
L

T

Dv

KT
+
RvT

psi

]−1

. (A9)

In the approximation, we neglect the kinetic corrections for
diffusion coefficient Dv and heat conductivity of air KT .

A5 Capacity of ice crystals

For ice crystals, we assume spherical shape for small crystals
and columnar shape for large crystals as in Spichtinger and
Gierens (2009); thus the shape factor, or capacity, can be de-
termined exactly using the electrostatic analogy (McDonald,
1963), using a prolate spheroid with semi axes a and b; the
capacity can be analytically expressed by

C =
Lε′

log( 1+ε′
1−ε′ )

(A10)

using the eccentricity ε′ =
√

1−
(
b
a

)2
and the length L of

the crystal, which in turn is a function of the crystal mass.
Note that the eccentricity changes with crystal growth since
the aspect ratio is changing (see Spichtinger and Gierens,
2009, their Eq. 17). We find a very good approximation to
the piece-wise definition of the capacity by Spichtinger and
Gierens (2009) depending on the ice crystal mass

C(m)≈ a1 ·m
b1 + a2 ·m

b2 (A11)

with constants

a1 = 0.015755mkg
1

b1 , b1 = 0.3,

a2 = 0.33565mkg
1

b2 , b2 = 0.43. (A12)

The representation of the capacity in the ice crystal ensem-
ble is given by the integration, leading to general moments
µ[m]bi .

A6 Ventilation correction

The empirical ventilation corrections usually depend on the
use of two dimensionless numbers, i.e. the Schmidt number
NSc and the Reynolds number NRe

NSc =
µ

Dvρ
, NRe =

ρ

µ
vtL (A13)

using the dynamic viscosity of air µ (e.g. Dixon, 2007).
Thus, the size of the ice crystal L is influencing the Reynolds
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number via the product vt(m)L, using the terminal velocity
vt for an ice crystal of mass m. The effect of ventilation, i.e.
the additional uptake of water vapour by the airflow around
the particle, crucially depends on the shape of the particles.
For columnar-shaped ice crystals, we adapt the empirical
quadratic fit by Liu et al. (2003) to the simulation data (Ji
and Wang, 1999) as follows:

fv = 1+ cχ ·χ2, cχ = 0.14856, χ =N
1
3

ScN
1
2

Re. (A14)

For the formulation of the terminal velocity of columnar-
shaped ice crystals, vt(m), we use the formulation by
Spichtinger and Gierens (2009), including also the correc-
tion for temperature and pressure, respectively. For repre-
senting the ensemble of ice crystals, by comparison with the
numerical integration, we find that using a shifted mean mass
m2 = c2 ·m with c2 = 1.5 in the formulation of the Reynolds
number leads to a very good agreement.

Appendix B: Reference simulation results

In this section we report on the results of the reference simu-
lations, using the corrected formulation of the nucleation rate
for super-cooled aqueous solution droplets by Koop et al.
(2000). For evaluating the quality of the simplified model,
we compare the number concentration of ice crystals as ob-
tained from standard nucleation events with results from lit-
erature, i.e. with a model using sophisticated particle physics
(Kärcher and Lohmann, 2002) and a complex bulk physics
scheme (Spichtinger and Gierens, 2009). In Fig. B1 the re-
sults are represented for the temperatures T = 196, 216, and
236 K at pressure p = 200 hPa, as prescribed in Kärcher and
Lohmann (2002).

In comparison, we see an overall good agreement of our
simple model with the more sophisticated models (Kärcher
and Lohmann, 2002; Spichtinger and Gierens, 2009). How-
ever, we have to remark here that the deviation in the results
for temperature T = 236 K at low vertical velocities is the re-
sult of the neglect of the ventilation correction in the model
by Kärcher and Lohmann (2002). In summary, our simplified
approach compares very well with the results of the other
studies.

In Fig. B2 a typical nucleation event is shown. Here, two
different nucleation parameterizations are used, the reference
by Koop et al. (2000) (black line) and the linear fit (red line).
There are small differences in the time evolution of the vari-
ables saturation ratio Si (left panel), number concentration ni
(middle panel), and mean massm (right panel), but in general
there is the same behaviour in both cases.

The source of supersaturation (i.e. cooling by vertical up-
draft and adiabatic expansion) leads to an increase in Si un-
til nucleation starts at about tstart ∼ 40s, i.e. at very low val-
ues of the nucleation rate. Si is still increasing since the sink
of depositional growth is not strong enough to reduce water
vapour efficiently; thus, the ice crystal number concentration

Figure B1. Comparison of ice crystal number concentrations as
obtained for typical nucleation events from different models. Red
squares – particle model by Kärcher and Lohmann (2002); blue
circles – complex two moment bulk scheme by Spichtinger and
Gierens (2009); and black line and triangles – simpler bulk model
from this study, indicated as new reference.

is further increasing due to permanent ice nucleation. At the
peak supersaturation, the source and sink of supersaturation
are balanced (tpeak ∼ 110s); after this time, Si is decreasing
due to the dominant growth term. The number concentration
does not change much from this time on, but as long as the
values of Si are large enough, ice nucleation still takes place.
At about t ∼ 125s the nucleation event is complete, and no
further nucleation takes place, since the nucleation rate is
too small. Note that during the time interval [tstart, tpeak] the
mean mass m is almost constant (this feature is more promi-
nent in the linear fit case), whereas for t > tpeak the mass in-
creases. For t < tpeak the nucleation is dominant; thus diffu-
sional growth just compensates for the number increase by
mass, whereas afterwards crystal growth is dominant over
nucleation. This feature was already seen in former investiga-
tions, which leads to a model reduction for analytical inves-
tigations (Baumgartner and Spichtinger, 2019). The different
nucleation parameterizations agree qualitatively for a nucle-
ation event; however, the nonlinear reference rate leads to
some variations. While for the linear fit case, the increase in
ni is approximately an exponential growth ni(t)∼ exp(αt),
and in turn the mean mass is almost constant in the rele-
vant time interval, for the reference case the change deviates
slightly from exponential growth.

Note that the thresholds of constant nucleation rates in
Fig. B2 (left panel) can be calculated from Eq. (39) using
the respective values for j0 (i.e. j0 ∈ {10,12,14,16}) in the
formulation of the supersaturation threshold.
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Figure B2. Representative example for a typical nucleation event for temperature T = 216 K and pressure p = 200 hPa with a forcing of
w = 1ms−1. Red line – reference nucleation rate after Koop et al. (2000) and black line – nucleation rate approximated by linear function as
given in Eq. (38). (a) Saturation ratio, (b) ice crystal number concentration, and (c) mean mass.

Appendix C: Simple fit for nucleation rate of pure
water droplets

In Koop and Murray (2016) a polynomial of degree 6 is
used for fitting the experimental values of the nucleation rate
for pure super-cooled water. Since polynomials of high de-
gree are difficult to evaluate numerically, we present fits with
polynomials of lower degrees, which are still accurate in the
relevant temperature range. The original formulation of the
nucleation rate is

Jhom(T )= 10pn(x), pn(x)=
n∑
i=0

ci · x
i,

x = T − Tm. (C1)

with a polynomial pn(x) of degree n= 6 using the melting
temperature of pure water Tm = 273.15 K. The coefficients
ci are reported in Koop and Murray (2016, Table VII), where
the nucleation rate is given in units of cubic centimetres per
second (cm−3 s−1). We reformulate the nucleation rate in SI
units (i.e. [J ] =m−3 s−1) by a factor of 106 and approximate
the logarithmic values log10(J ) by polynomials of degree 2
and 4, respectively; i.e.

p2(T )= a0+ a1 · T + a2 · T
2,

p4(T )= a0+ a1 · T + a2 · T
2
+ a3 · T

3
+ a4 · T

4. (C2)

The coefficients are given in Table C1. For this purpose, we
use a least-squares fit for the temperature range 225≤ T ≤
245 K, for which super-cooled water droplets can still ex-
ist (see, for example, Fig. 4 in Koop and Murray, 2016). In
Fig. C1 (top panel) the approximations are shown in compar-
ison with the original fit, while the ratio r = pi (T )

p(x) is shown
in the bottom panel.

As can be seen, the relative error for the polynomial fit
p4(T ) is less than 0.25 %, while even for the quadratic fit
p2(T ), the error is smaller than 2 %. For practical applica-
tions in the relevant temperature range 225≤ T ≤ 240 K, the
quadratic fit might be sufficient. If the original polynomial is
used, a sophisticated evaluation of the polynomial is recom-
mended (e.g. Horner scheme).

Figure C1. Polynomial fits of low degrees for the nucleation rate
as given by Koop and Murray (2016). (a) Reference and fits p2(T )
and p4(T ) and (b) ratio of reference and fits p2(T ) and p4(T ).

Appendix D: Perturbation analysis

The perturbation analysis or asymptotic analysis as applied in
Sect. 4.6 is a well-known technique to investigate the impact
of perturbations on a mathematical object such as a math-
ematical expression or the solution of an equation. A good
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Table C1. Coefficients for the polynomial fits of the nucleation rate by Koop and Murray (2016) as given in Eq. (C2).

Fit a0 a1 a2 a3 a4

p2(T ) −5369.61 46.96750 −0.10236 – –
p4(T ) −848 143.02 14 534.5767 −93.481032 0.26745460 −0.0002872

general introduction is given in Holmes (2013), and an ap-
plication in meteorology is explained in Klein (2010).

The basic idea is to introduce a small parameter ε, to ex-
pand the quantity of interest in powers of ε, i.e. ε, ε2, . . . , and
to substitute this expansion into the mathematical object of
interest (see Eq. 48 for such an expansion). Since the result-
ing expression should hold for any value of ε and even in the
limit ε→ 0, all the contributions from the various powers of
ε may be considered individually. Given that the parameter ε
is assumed as being small, effects that stem from terms with
higher powers of ε will only have a small impact, whereas
effects with a lower power of ε will be dominant.

For practical applications, it is common to also scale co-
efficients and parameters of the mathematical expression in
powers of ε. This step ensures that the mutual magnitudes
of the parameters stay consistent, even in the limit ε→ 0.
This task involves usually some free choices, and is known
as distinguished limit.

In the spirit of the works of Klein and Majda, the scal-
ing of the parameters is often done by assuming ε ∼ 0.1; i.e.
substituting this value of ε into the scaling of the parame-
ters yields a realistic value of the parameters (see, for exam-
ple, Hittmeir and Klein, 2018; Baumgartner and Spichtinger,
2019; Klein and Majda, 2006). As an example, the parame-
ter A(T )≈ A0 = b1a

i
w0 ≈ 149.32 is written as A0 = A

∗ε−2,
with A∗ =O(1), where the latter may be understood as A∗

being independent of ε. With A∗ ≈ 1.4932, the value ε ∼ 0.1
restores the original value of A0.

In essence, the goal is to determine the nonzero parts of
the expansion of the mathematical expression, and the re-
spective power of ε indicates how strong this contribution
is. As an example, if the final expansion is found to be
ε−1ω−1+ω0+εω1+O(ε2), then the term ω−1 will be dom-
inant since this term is associated with the lowest power of ε.
If the result would be the expansion ω0+ εω1+O(ε2), then
we may conclude that ω0 is the dominant part, and all ωk
values for k ≥ 1 only contribute small corrections (since ε is
small).

Another fruitful use of perturbation analysis is to allow
an equation to determine the possible matching powers of ε,
i.e. to answer the following question: which powers of ε are
needed to achieve a balance in the equation at hand? As an
example, from physical considerations we know that equa-
tion Eq. (59) holds. As a consequence, after having expanded
both sides of the equation in powers of ε, the expansions
on both sides must agree (otherwise the equation would not

hold). This is only possible if the powers of ε match; hence
the appropriate powers for ε may be inferred.
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