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In this paper, we present a data-driven analysis of the γ γ → D+ D− and γ γ → D0 D̄0 reactions from 
threshold up to 4.0 GeV in the D D̄ invariant mass. For the S-wave contribution, we adopt a partial-wave 
dispersive representation, which is solved using the N/D ansatz. The left-hand cuts are accounted for 
using the model-independent conformal expansion. The D-wave χc2(3930) state is described as a Breit-
Wigner resonance. The resulting fits are consistent with the data on the invariant mass distribution of 
the e+e− → J/ψ D D̄ process. Performing an analytic continuation to the complex s-plane, we find no 
evidence of a pole corresponding to the broad resonance X(3860) reported by the Belle Collaboration. 
Instead, we find a clear bound state below the D D̄ threshold at √sB = 3695(4) MeV, confirming the 
previous phenomenological and lattice predictions.

© 2022 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The growing interest in the charmonium mass region in re-
cent years is nourished with new experimental discoveries. Ever 
since the Belle Collaboration discovered the X(3872) [1] extremely 
close to the D0 D̄∗0 threshold, a plethora of new states has been 
observed. Nevertheless, only a few of them are unambiguously 
identified. For comprehensive reviews, we refer to [2]. One of the 
controversial examples is the identification of χc0(2P ) state. The 
first attempts of its assignment date back to 2010, when in [3]
it was proposed to identify χc0(2P ) with the narrow resonance 
X(3915) seen by the Belle [4] and BaBar [5] Collaborations. This 
assignment was later supported by the spin-parity analysis by the 
BaBar Collaboration [6]. However, as it was pointed out in several 
other works [7], X(3915) is a problematic candidate for χc0(2P )

due to its narrowness, dominant decay channels (which contradict 
the expectations for χc0(2P )), and the small mass splitting with 
the well-established χc2(3930).

The alternative candidate for χc0(2P ) state may have been al-
ready observed in the γ γ → D D̄ process by both Belle [8] and 
BaBar [9] Collaborations somewhere in an energy range from the 
D D̄ threshold up to the χc2(2P ) position. In [10], γ γ → D D̄ data 
were reanalyzed using two Breit-Wigner functions under the as-
sumption, that the invariant mass distribution is dominated by 
the resonance structures. In other words, it was assumed that the 
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broad bump located around ∼ 3800 MeV, which was considered 
to be a background in experimental analyses, may hide the broad 
resonance. By fixing the mass and the width of χc2(2P ) to its ex-
perimental values the fit to data predicted the existence of χc0(2P )

with Mχc0(2P ) = 3837.6 ± 11.5 MeV and �χc0(2P ) = 221 ± 19 MeV. 
The later result was reinforced by the Belle Collaboration [11], 
which in the analysis of e+e− → J/ψ D D̄ data found the new 
charmonium-like state X(3860), that decays mainly to D D̄ chan-
nel. With the mass 3862+26+40

−32−13 MeV, the width 201+154+88
−67−82 MeV 

and J P C = 0++ this state is currently included in the PDG (2021) 
[12] as χc0(2P ).

However, it is still an open question of what has been seen 
in γ γ → D D̄ and e+e− → J/ψ D D̄ processes. First, the statistics 
of the Belle data [11] for the e+e− → J/ψ D D̄ process is rather 
low close to the threshold. Second, the proper resonance anal-
ysis should account for the S-matrix constraints, unlike simple 
Breit-Wigner parametrizations. In [13] a unitary approach based 
on the Bethe-Salpeter equation was used to describe the Belle 
data. No peak structure that justifies the claim for the X(3860)

state was found. The same observation was made in [14] regarding 
the γ γ → D D̄ data from the Belle [15] and BaBar [16] Collabo-
rations. Instead, this analysis suggested that the behaviour around 
the threshold is consistent with the D D̄ dynamics that encodes 
a bound state, previously predicted in [17]. On another side, the 
recent coupled-channel {D D̄, Ds D̄s} analysis performed on the lat-
tice with mπ = 280(3) MeV [18] suggests the existence of both: a 
shallow bound state slightly below D D̄ threshold and the broad 
resonance, comparable to X(3860). Moreover, the situation gets 
more puzzling by the recent LHCb observation [19] of two reso-
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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nances, sitting at the same mass, the χc0(3930) and the χc2(3930), 
with widths around 17 MeV and 34 MeV, respectively, and no evi-
dence of the broad X(3860) state.

The present ambiguity regarding the existing data and the char-
acter of the structures present in γ γ → D D̄ cross sections and 
e+e− → J/ψ D D̄ calls for a theoretical approach, which rigorously 
implements both the unitarity and analyticity constraints and does 
not make any assumption about underlying D D̄ dynamics. Pre-
viously, the once-subtracted partial wave dispersion relation was 
successfully used for the analysis of the ππ and π K scattering 
in [20]. Within this framework, it is straightforward to perform 
the analytical continuation of the scattering amplitudes to the un-
physical regions and identify the positions of the poles and bound 
states. Therefore, an application of this technique to the D D̄ sys-
tem can shed more light on the nature of the near-threshold en-
hancements seen in the experiment.

This paper is organized as follows. In Sec. 2.1, we describe the 
partial wave dispersive formalism which we adopt for the S-wave 
in the D D̄ system. In Sec. 2.2 we present the details of the ten-
sor χc2(3930) resonance. We show our numerical results in Sec. 3, 
which included the analysis of the γ γ → D D̄ data in Sec. 3.2 and 
a post-diction to the e+e− → J/ψ D D̄ process in Sec. 3.3. A sum-
mary and outlook are given in Sec. 4.

2. Formalism

2.1. S-wave amplitudes

We consider a 2 → 2 process described by the partial wave 
(p.w.) amplitudes t( J )

I,ab , where ab are the coupled-channel indices 
with a and b standing for the initial and final state, respectively. In 
this subsection, we focus only on the S-wave, with isospin I = 0, 
and therefore will suppress the labels I, J . The unitarity condition 
can be written in the matrix form as

Disc tab(s) ≡ 1

2i
(tab(s + iε) − tab(s − iε))

=
∑

c

tac(s)ρc(s) t∗
cb(s) , (1)

where the sum goes over all intermediate states. The phase space 
factor ρc(s) in Eq. (1) is given by

ρc(s) = 1

8π

pc(s)√
s

θ(s − sth) , (2)

with pc(s) and sth being the centre-of-mass three momenta and 
threshold of the corresponding two-meson system. The unitarity 
condition guarantees that the partial-wave amplitudes at infinity 
approach at most constants. In accordance with that, and based on 
the maximal analyticity assumption [21], we write once-subtracted 
dispersive representation

tab(s) = tab(0) + s

π

sL∫
−∞

ds′

s′
Disc tab(s′)

s′ − s
+ s

π

∞∫
sth

ds′

s′
Disc tab(s′)

s′ − s

≡ Uab(s) + s

π

∑
c

∞∫
sth

ds′

s′
tac(s′)ρc(s′) t∗

cb(s′)
s′ − s

, (3)

where sth is the lowest threshold and sL is the position of the 
closest left-hand cut singularity. Our particular choice of the sub-
traction point at s = 0 will be discussed later. In the second line of 
Eq. (3), we combined the subtraction constant with the left-hand 
cut contributions into the function Uab(s). The solution to (3) can 
be obtained numerically using the N/D ansatz [22]
2

tab(s) =
∑

c

D−1
ac (s) Ncb(s) , (4)

where the contributions of left- and right-hand cuts are separated 
into N(s) and D(s) functions, respectively. As a consequence of this 
ansatz, one needs to solve a system of linear integral equations 
[23]

Nab(s) = Uab(s)+ (5)

s

π

∑
c

∞∫
sth

ds′

s′
Nac(s′)ρc(s′) (Ucb(s′) − Ucb(s))

s′ − s
,

Dab(s) = δab − s

π

∞∫
sth

ds′

s′
Nab(s′)ρb(s′)

s′ − s
, (6)

where the input of Uab(s) is required for s > sth only. Note also, 
that we assume that there are no Castillejo-Dalitz-Dyson (CDD) 
poles [24].

We aim to extract the S-wave photon fusion amplitude γ γ →
D D̄ , which is the off-diagonal term of the coupled channel {1 =
γ γ , 2 = D D̄} system. Note that for the S-wave, there is only one 
γ (λ1)γ (λ2) → D D̄ helicity amplitude with helicities λ1 = λ2 = +1. 
By neglecting γ γ intermediate states in the unitary relation ρ1 =
0, and putting U11 = 0 (which is proportional to e4 and hence sup-
pressed), the coupled-channel N/D solution reduced down to the 
separate set of integral equations for the hadronic part

t22(s) = N22(s)/D22(s) , (7)

N22(s) = U22(s) + s

π

∞∫
4m2

D

ds′

s′
N22(s′)ρ2(s′) (U22(s′) − U22(s))

s′ − s
,

D22(s) = 1 − s

π

∞∫
4m2

D

ds′

s′
N22(s′)ρ2(s′)

s′ − s
,

and for the γ γ → D D̄ part

t12(s) = U12(s) + D−1
22 (s)

⎛
⎜⎜⎝− s

π

∞∫
4m2

D

ds′

s′
Disc(D22(s′))U12(s′)

s′ − s

⎞
⎟⎟⎠ .

(8)

The latter requires as input the hadronic D22 function given in 
Eq. (7) as well as the γ γ → D D̄ left-hand cuts, U12.

For the case when there is no bound state in the system, Eq. (8)
can be obtained from writing the once-subtracted dispersion re-
lation for the quantity �−1

22 (t12 − U12) [25], where �22 = D−1
22 is 

the Omnès function [26]. However, it is important to emphasize 
that Eqs. (7) and (8) are universal also for the case when there 
is a bound state in the system. It is straightforward to show that 
adding a bound state into Uab(s),

Ũab(s) = Uab(s) + s

sB

g2
ab

sB − s
(9)

does not change Eqs. (7) and (8) provided that the binding energy 
s = sB is determined by

D22(sB) = 1 − sB

π

∞∫
4m2

D

ds′

s′
N22(s′)ρ2(s′)

s′ − sB
= 0 . (10)
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For the case when there is a bound state in the system, Eq. (8) is 
equivalent to the once-subtracted dispersion relation for the quan-

tity �−1
22

(
t12 − Ũ12

)
, where the Omnès function is now related to 

the D-function as �22 =
(

sB
sB −s

)
D−1

22 .

To evaluate the dispersion relations in Eqs. (7) and (8), we need 
to specify the left-hand cuts. For the photon-fusion process γ γ →
D D̄ the left-hand cuts can be well approximated by the exactly 
calculable Born contribution,

U12(s) = −2
√

2 e2m2
D

s β(s)
log

1 + β(s)

1 − β(s)
, (11)

β(s) ≡ 2 p(s)√
s

=
√

1 − 4 m2
D

s
.

Heavier left-hand cuts exchanges start farther away from the phys-
ical region and typically suppressed for the S-wave contribution 
[27]. Note, that the choice of the subtraction point in Eq. (3) and 
consequently in Eq. (8) is motivated by the soft-photon theorem 
[28], which states that the Born term subtracted photon fusion 
amplitude must vanish at s = 0. As for the D D̄ → D D̄ left-hand 
cuts, little is known about them, except their analytic structure in 
the complex plane. Since we need the input for U22(s) only in the 
physical region, one can approximate U22(s) by means of a model 
independent conformal expansion [29]

U22(s) =
∞∑

n=0

Cn ξn(s) , (12)

where the conformal mapping variable ξ(s)

ξ(s) =
√

s − sL − √
sE − sL√

s − sL + √
sE − sL

, (13)

maps the left-hand cut plane −∞ < s < sL onto the unit circle 
[30]. The position of the closest left-hand cut branching point 
sL = 4(m2

D − m2
π ) is determined by the t− and u− channel ex-

change of two pions. The expansion point sE (at which ξ(sE ) = 0) 
is chosen in the middle of the region where we expect the S-wave 
contribution to dominate

√
sE = 1

2

(√
sth + √

smax
)

, (14)

with 
√

smax = 3.86 GeV. We note that, given the form of ξ(s) in 
Eq. (13), the series (12) truncated at any finite order is bounded 
asymptotically. This is consistent with the assigned asymptotic be-
haviour of U22(s) in the once-subtracted dispersion relation (3). In 
the next section, we will determine the unknown Cn in Eq. (12)
directly from the data.

Hereafter, to distinguish the amplitudes involving photons from 
the pure hadronic amplitude, for the γ γ → D D̄ p.w. amplitudes 
we introduce the notation h( J )

I,λ1λ2
(s), where λ1,2 = ±1 are photon 

helicities, so that

h(0)
0,++(s) ≡ t12(s) . (15)

While it is natural to associate any resonant structure with the 
dynamics in the I = 0 channel, the I = 1 amplitude does not have 
known direct channel resonances and we approximate it by the 
Born amplitude

h(0)
1,++(s) = −2

√
2 e2m2

D

s β(s)
log

1 + β(s)

1 − β(s)
. (16)

We note, however, that taking into account the I = 1 contribution 
is absolutely necessary to obtain nonequal cross sections for the 
3

γ γ → D+D− and γ γ → D0 D̄0 channels. For instance, Eq. (16)
combined with Eq. (11) gives a zero direct Born term for γ γ →
D0 D̄0, leaving only contributions via rescattering.

2.2. D-wave amplitudes

For the D-wave in the γ γ → D D̄ process we take into ac-
count only the contribution from the isoscalar χc2(3930) reso-
nance, which is a radially excited P -wave charmonium state. We 
approximate it by a simple Breit–Wigner form, similar to how it 
was done for f2(1270) in the γ γ → ππ process in [31] and for 
a2(1320) in the γ γ → π0η process in [32]. Is it based on the ef-
fective Lagrangians of the following form

LRγ γ = e2 gRγ γ �μν F μλ F ν
λ ,

LR D D̄ = gR D D̄ �μν ∂μD ∂ν D , (17)

where F μν is an electromagnetic tensor and �μν is a massive 
spin-2 field. In the first line of Eq. (17) it is assumed that the 
χc2(3930) resonance is predominantly produced in a state with 
helicity-2. The D-wave amplitude is then given by

h(2)
0,+−(s) = −e2 gRγ γ gR D D̄

10
√

6

s2 β2(s)

s − M2
R + i MR �R(s)

, (18)

where gRγ γ , gR D D̄ denote χc2(3930) couplings to γ γ and D D̄
channels, respectively. The s-dependent decay width of the reso-
nance we parametrise as [33]

�(s) = �R

(
p(s)

p(M2
R)

)5

, (19)

with �R being the width of the resonance at rest. Note, that 
for simplicity we have not included Blatt-Weisskopf factors in 
Eqs. (18) and (19), which only slightly change the cross section 
in the considered region but introduce additional dependence on 
the unknown interaction radius, which cannot be fixed given the 
quality of the present data. While for the mass and the width 
of χc2(3930) we use PDG 2021 values MR = 3922.2 ± 1.0 MeV, 
�R = 35.3 ± 2.8 [12], the couplings gRγ γ gR D D̄ cannot be fixed 
due to unknown branching fractions and will be absorbed into the 
unknown normalisation parameter (see Sec. 3.2).

3. Results and discussion

3.1. Experimental input

Before implementing the dispersive approach, we would like to 
comment on the quality of data that serves as an input to our 
analysis. The statistics in both Belle [15] and BaBar [16] γ γ → D D̄
experiments are relatively low, and therefore the sum of charged 
and neutral production modes was presented as the main result. 
In this way, the interference between I = 0 and I = 1 contribu-
tions cancels out and since the I = 1 amplitude is expected to be 
smooth, it is natural to associate any structure in the combined 
data with the I = 0 resonances. However, it will become apparent 
that the separate treatment of the neutral and charged channels 
is necessary to obtain the correct result for the I = 0, D D̄ dy-
namics. Since the Born term contribution enters the D0 D̄0 channel 
only via rescattering, one can expect more events in the D+D−
channel, which is not the case for the data on hand. In [14] this 
discrepancy was attributed to the fact that more decay modes were 
analyzed for the neutral channel in both experiments and the ad-
ditional artificial factor of 1/3 was included to compensate for it. 
We, however, refrain from making any assumptions regarding the 
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Table 1
Fit parameters entering Eqs. (12) and (22). Fit I is a fit to a combined σc(s) +σn(s) data from the Belle Collaboration [15], while Fit II and Fit III are the fits to the charged and 
neutral channel data from Belle [15] and BaBar Collaborations [16], respectively. The individual χ̄2

comb/c/n ≡ χ2
comb/c/n/d.o.f. show how good each fit describe the combined, 

charged or neutral data-sets.

C0 C1 C2 N2/N0 × 102 χ̄2
comb χ̄2

c χ̄2
n

Fit I to combined Belle data -64.5(16.1) 167.7(18.9) – 2.9(0.9) 0.91 9.84 2.88

Fit II to D+ D−, D0 D̄0 Belle data 888.1(16.0) -2315.1(0.5) 1613.5(11.9) 1.3(0.4) 1.08 0.96 0.98

Fit III to D+ D−, D0 D̄0 BaBar data 996.3(103.8) -2336.1(208.4) 1552.6(118.1) 0.6(0.2) 3.29 2.26 3.24
nature of the difference and proceed with the given data in a stan-
dard way.

While the Belle data [15] is not efficiency corrected, the ef-
ficiency decreases by only 10% for the region of invariant mass 
between 3.8 and 4.2 GeV, and therefore, this effect is expected to 
be negligible considering the resolution of the data itself. In addi-
tion, the data is provided in terms of the events distribution and 
to compare it with the cross sections, an additional normalization 
factor has to be introduced as a fitting parameter. This fact lim-
its the possibility to extract the meaningful two-photon couplings 
of the resonances or bound states. Even though BaBar Collabo-
ration provides efficiency corrected data, it is given only for the 
sum of neutral and charged channels. Since the information in 
each channel separately is essential for our analysis, we opt to use 
the non-efficiency corrected version of the data in each channel, 
which, however, suffers from even lower resolution.

The Belle Collaboration [11] data for the invariant mass distri-
bution of the e+e− → J/ψ D D̄ reaction is also problematic. First, it 
is not acceptance corrected and hence the results should be taken 
with caution. Second, the resolution of this data is even poorer 
than for the γ γ → D D̄ case. The binning of 50 MeV does not allow 
to separate the narrow J P C = 2++ resonance χc2(3930), clearly 
seen in other experiments. This problem, however, can be circum-
vented by excluding one data point at ∼ 3930 MeV. Aiming to 
analyze the most relevant part of this data close to the thresh-
old, in total there are only five data points left, all with relatively 
large uncertainties.

3.2. Analysis of the γ γ → D D̄ process

In the analysis of the γ γ → D D̄ data, we limit ourselves to the 
region below 4.0 GeV, where the leading contribution is coming 
from the S and D-wave amplitudes. The cross-sections for individ-
ual partial waves in charged (c) or neutral (n) channels are given 
by

σ
( J )
c/n,λ1λ2

(s) = (2 J + 1)
β(s)

32π s
|h( J )

c/n,λ1λ2
(s)|2 , (20)

where the following relation between the isospin and particle basis 
holds

h( J )
c,λ1λ2

(s) = − 1√
2

(h( J )
0,λ1λ2

(s) + h( J )
1,λ1λ2

(s)) ,

h( J )
n,λ1λ2

(s) = − 1√
2

(h( J )
0,λ1λ2

(s) − h( J )
1,λ1λ2

(s)) . (21)

As it was mentioned in Sec. 3.1, to fit γ γ → D D̄ data we need to 
introduce the normalization factor to convert the theoretical cross-
section to the number of events from the experimental plot and 
a factor N2, which accounts for the χc2(3930) couplings. The total 
cross-section for the charged or neutral channels is then given by

σc/n(s) ≈ N0 σ
(0)
c/n,++(s) + N2 σ

(2)
c/n,+−(s) , (22)

where we neglected the helicity-0 component of the D-wave. In 
addition to the free parameters N0, N2, there are also coefficients 
4

of the conformal expansion (12), which determine the form of the 
left-hand cuts in (3) and have to be fitted to the data. Apart from 
the standard χ2 criteria, their number is chosen in a way to ensure 
that the series (12) converges in the physical region. The statistical 
uncertainties are then propagated using the parametric bootstrap 
technique for all parameters and derived quantities like pole posi-
tions.

As the first step, we consider the combined γ γ → D D̄ data

σc(s) + σn(s) (23)

from the Belle Collaboration [15] alone as an input, similarly as 
it was done in [10]. We find that the fit to this data is al-
ready saturated with only two conformal expansion parameters 
and χ2

comb/d.o.f. = 0.91. Their values are listed in Table 1 (Fit I). For 
this fit we find a pole located at the second Riemann sheet with √

sP = 3765.3(11.4) − i 57.3(9.5) MeV, which is around 100 MeV 
lower than the estimated values for the X(3860) in [10] and signif-
icantly narrower. However, these results can not be directly com-
pared, as the parameterization used in [10] does not establish the 
pole position in the complex s-plane, and only the mass and the 
width of the Breit-Wigner resonance are given. However, this fit 
can be misleading, since it may not describe charged and neutral 
channels separately. In order to include this additional information, 
apart from the standard χ2

comb/d.o.f. we introduce χ2
c /d.o.f. and 

χ2
n /d.o.f. tests, describing how well the given set of parameters re-

produce the data in charged and neutral channels, respectively. We 
find, that even though Fit I accurately describes the combined data, 
it completely fails to account for the differences in separated data 
sets with χ2

c /d.o.f. = 9.84 and χ2
n /d.o.f. = 2.88.

As a natural continuation, we perform a fit aiming to describe 
neutral and charged channels simultaneously. The best results are 
obtained with three conformal expansion parameters leading to 
χ2

c /d.o.f. = 0.96 and χ2
n /d.o.f. = 0.98. If compared to the combined 

data, this fit gives χ2
comb/d.o.f. = 1.08. The values of parameters are 

collected in Table 1 (Fit II) and the resulting curves are shown in 
Fig. 1. For this fit, instead of the pole in the complex plane, we 
find a bound state located under the D D̄ threshold at

√
sB = 3695(4)MeV . (24)

This bound state is stable against the variation of the sE parame-
ter leading to negligible systematic uncertainties. We also checked 
explicitly that adding one more term in the conformal expansion 
barely changes the χ2. Note that even though the convergence of 
U22 (see Fig. 2) and consequently N22 is limited to energies s > sL , 
the applicability domain of D22 (which does not have a left-hand 
cut) is the whole complex plane and Eq. (10) is valid for energies 
sufficiently lower than the threshold.

From the Fit I we found, that fitting the combined data can 
lead to wrong results. Therefore, we do not consider the combined 
dataset of the BaBar data [16], which is efficiency corrected. In-
stead, we perform an auxiliary fit to the charged and neutral chan-
nels, which are not efficiency corrected, to show that even in case 
of very low data resolution we are able to obtain the aforemen-
tioned bound state with 

√
sB = 3669.4(18.0) MeV. The resulting 
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Fig. 1. Fit results compared to the data from the Belle [15] (left panels) and BaBar [16] (right panels) Collaborations. The top panels show the charged and neutral cross 
sections. For comparison, in the bottom panels the sum of two are presented in both cases.
Fig. 2. Convergence of the conformal expansion in Eq. (12) for Ci values from Fit II.

parameters are again tabulated in Table 1 (Fit III) and shown in 
Fig. 1.

Regarding the energy region around χc2(3930) resonance, all 
fits provide similar results. While the resonance structure itself is 
governed by the Breit-Wigner-like parametrization (18), the height 
of the peak is partially defined by the tail of the S-wave contribu-
tion. This interplay between S- and D-waves can be studied on the 
level of angular distribution, for which the data from Belle Collab-
oration is provided in the region 

√
s = [3.91 − 3.95] GeV. Adopting 

the parameters of Fit II, we find a good agreement with the data 
(see Fig. 3), showing that for these energies the angular distribu-
tion has a characteristic D-wave behaviour with a constant shift 
from the S-wave contribution. Given the quality of the data, one 
cannot exclude that in the χc2(3930) region there is an additional 
small S-wave contribution from χc0(3930), which was recently 
claimed by the LHCb Collaboration [19] in the B+ → D+D−K +
5

decays. However, we refrain from including it (as opposed to [34]), 
since the γ γ → D D̄ data will not be able to constrain it.

3.3. Analysis of the e+e− → J/ψ D D̄ process

By considering only S-wave rescattering in the D D̄ channel, the 
differential cross-section for the process e+e− → J/ψ D D̄ can be 
written as

dσ

d
√

s
= N

λ1/2(s,q2,m2
J/ψ)λ1/2(s,m2

D ,m2
D)

q6
√

s

∣∣∣D−1
22 (s)

∣∣∣2
, (25)

where q is the e+e− centre of mass energy and the Källen func-
tion is defined by λ(x, y, z) ≡ x2 + y2 + z2 − 2(xy + xz + yz). In 
Eq. (25), similar to Eq. (8), the D D̄ final state interaction is ac-
counted for through the D22 function. In this case, however, we 
use a simple model which only preserves unitarity in the direct 
s-channel and neglected possible contributions from the crossed 
channels (i.e. left-hand cuts). The latter are typically suppressed 
for the three body decays, but at the same require solving a set of 
Khuri-Treiman-type equations [35,36]. This study goes far beyond 
the scope of this paper and requires precise Dalitz plot data.

With the limitations listed in Sec. 3.1, i.e. only a few available 
experimental points in the near-threshold region, the data from 
[11] alone is not constraining enough to provide a unique and 
meaningful solution without introducing additional assumptions. 
The same observation has been made in [13]. Therefore, we only 
check the consistency with the γ γ → D D̄ results by taking the 
best set of conformal expansion parameters given by Fit II and ad-
justing only the normalisation constant N in Eq. (25). Note, that 
we excluded the point 

√
s ∼ 3930 MeV, where we expect a sig-

nificant χc2(3930) contribution. The results for the invariant mass 
distribution are shown in Fig. 3, where we choose the value of 
the e+e− c.m. energy in the middle of the experimental region 
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Fig. 3. Left: Angular distribution of the combined γ γ → D D̄ data from the Belle Collaboration [15] in the energy range 3.91 − 3.95 GeV compared to the theoretical curve 
calculated using the Fit II parameters. Right: The invariant D D̄ mass distribution of the e+e− → J/ψ D D̄ process measured by the Belle Collaboration [11] compared to the 
S-wave dispersive result calculated using the Fit II parameters. The gray area covers the region where we expect a significant χc2(3930) contribution.
9.46 − 10.87 GeV. The data is described with χ2/d.o.f = 1.57, indi-
cating a very good agreement.

3.4. Analogy to the γ γ → K K̄ process and f0(980)

It is instructive to compare the obtained results for the γ γ →
D D̄ process with a relatively well-known case of γ γ → K K̄ . In 
the low-lying isoscalar S-wave sector, there are two resonances: 
σ/ f0(500) and f0(980). While σ/ f0(500) is known to be con-
nected almost exclusively to the pion sector, f0(980) is a quasi-
bound K K̄ state. If we eliminate the connection to the ππ chan-
nel in the coupled-channel {ππ, K K̄ } dispersive analysis of [20], 
then f0(980) resonance originally located at √

sp = 993(2)+2
−1 −

i 21(3)+2
−4 MeV becomes a pure K K̄ bound state with a binding en-

ergy of 
√

sB = 961 MeV. A similar feature was also observed in 
unitarized chiral perturbation theory calculations, see for instance 
[37]. On the level of cross-sections, if we treat γ γ → K K̄ (I = 1)

case on the same footing as the γ γ → D D̄ (I = 1) process by tak-
ing only the Born terms,1 then we observe a very similar pattern 
(compare Fig. 4 with upper panels of Fig. 1). While in the neu-
tral channel the Born terms enter only via rescattering, it shows 
up stronger than the charged channel, due to destructive interfer-
ence of the rescattering contribution with a pure Born amplitude 
at the level of the cross-section.

Similar to f0(980), one can also expect that the bound state √
sB = 3695(4) MeV found in the single-channel {D D̄} approxima-

tion will become a pole on the unphysical Riemann sheet once the 
channels {ππ, K K̄ , ηη, ...} will be switched on. However, the cou-
plings to these channels are expected to be strongly suppressed 
due to their distant location [17].

4. Conclusion and outlook

In this work, we presented a theoretical analysis of the reac-
tion γ γ → D D̄ from threshold up to 4.0 GeV. In order to account 
for the D D̄ rescattering in the S-wave, we used a partial wave 
dispersive representation, which implements constraints from an-
alyticity and exact unitarity. The left-hand cut contributions were 
accounted for by performing a model independent conformal map-
ping expansion, whose coefficients were fitted to the experimental 
data. On top of the S-wave, the well-established narrow D-wave 
resonance χc2(3930) was taken into account explicitly in the s-
channel.

1 In the “real” world γ γ → K K̄ (I = 1) channel has also a significant contribution 
from the a0(980) resonance through the {γ γ , πη, K K̄ } coupled channels.
6

Fig. 4. The S-wave cross-sections for the reactions γ γ → K + K − (red) and γ γ →
K 0 K̄ 0 (blue) under the assumption that I = 1 contribution is dominated by the 
Born terms. Solid curves correspond to the hypothetical situation when there is 
no coupling to the ππ channel and f0(980) is a pure bound state just below 
K K̄ threshold, while dashed curves come from the I = 0 {γ γ , ππ, K K̄ } coupled-
channel analysis [20]. The Born contribution is shown as a dot-dashed curve.

In the analysis of the data from the Belle [8] and BaBar [9]
Collaborations, we found that it is crucial to simultaneously de-
scribe both charged γ γ → D+D− and neutral γ γ → D0 D̄0 chan-
nels. Within our approach, we found no broad resonance X(3860)

currently associated with χc0(2P ) in PDG (2021) [12]. Instead, 
we found a bound state, located below D D̄ threshold at 

√
sB =

3695(4) MeV. The dataset for the invariant D D̄ mass distribu-
tion of the e+e− → J/ψ D D̄ reaction, in which the X(3860) res-
onance was reported [11], confirms the consistency of our results. 
Using the S-wave D D̄ final state interaction, we described the 
e+e− → J/ψ D D̄ process reasonably well, by adjusting only the 
overall normalization.

The bound state in the dispersive analysis without CDD poles 
qualifies for a molecular state. It is also consistent with other the-
oretical predictions [38,17,18,39,40] and the absence of the broad 
near-threshold resonance was recently observed by experimental 
analysis by LHCb Collaboration [19]. The detailed study of the 
properties of the found bound state X(3695), however, requires 
more refined experimental input which can be achieved at Belle II. 
For this purpose it may be promising to search for the radiative 
decay ψ(3770) → γ X(3695), in analogy with ψ(3770) → γχc0
radiative decay measurement at BESIII [41]. Furthermore, the ex-
istence such state X(3695) may be tested in direct production at 
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