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We study scalar one-loop amplitudes in massive ϕ3-theory within causal loop-tree duality. We derive a
recurrence relation for the integrand of the amplitude. The integrand is by construction free of spurious
singularities on H-surfaces. Taking renormalization and contour deformation into account, we obtain the
(integrated) amplitude by Monte Carlo integration. We have checked up to seven points that our results
agree with analytic results.
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I. INTRODUCTION

Loop-tree duality [1–31] uses Cauchy’s residue theorem
to reduce each loop momentum integration from a
D-dimensional integration to a (D − 1)-dimensional inte-
gration, where D denotes the number of space-time dimen-
sions. Typically the energy component of the loop
momentum is integrated out with the help of Cauchy’s
residue theorem. The remaining spatial loop momentum
integrations have the same dimensionality as the integra-
tions over the phase space of additional unresolved particles.
Loop-tree duality carries therefore the promise that infrared
divergences can be canceled locally at the integrand level,
making the need for any subtraction method obsolete.
However, a naive application of loop-tree duality will

generate several terms, where each term may have new
additional spurious singularities. These spurious singular-
ities reside on noncompact hyperbolic hypersurfaces, which
are called H-surfaces. On the other hand, it can be shown
that the physical infrared and threshold singularities of an
amplitude reside on compact ellipsoid hypersurfaces. These
hypersurfaces are called E-surfaces.
As the singularities on H-surfaces are spurious, they

cancel among the terms making up the loop-tree duality
representation of an amplitude [5]. For numerical efficiency
and stability it is desirable to make this cancellation
manifest. The result is called the causal loop-tree duality
representation [14,18,28]. Up to now, it is only known how
to do this on a graph-by-graph basis, where each Feynman
graph generates several terms in the causal loop-tree duality
representation. An important application of numerical

methods like loop-tree duality are of course processes with
many particles, where analytical methods run out of steam.
Clearly, a graph-by-graph approach, where in addition each
graph generates several terms is highly inefficient and
impractical.
In this paper we investigate the causal loop-tree duality

representation directly at the level of amplitudes. As an
example, we study scalar massive ϕ3-theory. We are
interested in the N-point one-loop amplitude

Að1Þ
N ðp1;…; pNÞ: ð1Þ

After ultraviolet renormalization, the amplitude is finite.
There are no infrared divergences (i.e., there are no infrared
1=ε-poles after integration), as all particles are assumed to
be massive. However, there will be threshold singularities.
We derive recursion relations for the causal loop-tree
duality representation, bypassing the need to talk about
Feynman diagrams.
This paper is organized as follows: In Sec. II we introduce

causal loop-tree duality. The main result of this paper is
derived in Sec. III, where the recurrence relation for the
integrand of the amplitude within the causal loop-tree
duality representation is worked out. For numerical results
we have to deal with renormalization and contour defor-
mation, this is done in Sec. IV and Sec. V, respectively. In
Sec. VI we validate our approach by comparing for up to
seven external particles our results with analytical results.
Our conclusions are given in Sec. VII. In Appendix A we
derive the number of causal terms per diagram. In
Appendix B we give the input data we used for the
numerical checks.

II. CAUSAL LOOP-TREE DUALITY

In this section we review causal loop-tree duality
(cLTD). We start in Sec. II A with the presentation of
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the cLTD representation of loop integrals. In Sec. II B we
investigate the structure of this representation in more
detail. A graphical representation of cLTD is introduced in
Sec. II C.

A. The causal representation for scalar
one-loop diagrams

We consider a scalar one-loop integral I, given by

I ¼
Z

dDk
ð2πÞD

1Q
N
j¼1 ½ðkþ qjÞ2 −m2

j þ iδ� ; ð2Þ

with loop momentum k and N external particles. The
momenta of the external particles are denoted by
p1;…; pN . The kinematics is shown in Fig. 1. The external
particles are taken as outgoing and satisfy momentum
conservation

XN
i¼1

pi ¼ 0:

The mass of propagator j is given by mj and the quantities
qj are linear combinations of external momenta,

qj ≔
Xj

i¼1

pi: ð3Þ

We also define a quantity for the difference of two
propagator momenta,

qij ≔ qi − qj:

By applying the residue theorem to Eq. (2), we obtain the
loop-tree duality representation [1] of the integral I,

I ¼ −i
Z

dD−1k
ð2πÞD−1

XN
i¼1

1

2Ei

1Q
N
j¼1;
j≠i

½ðEi − q0ijÞ2 − E2
j �
;

where Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗þ q⃗iÞ2 þm2

i − iδ
q

:

The propagators that are not set on-shell by taking the
residue are called dual propagators because they exhibit a
different iδ prescription than the original propagators.
As already extensively discussed in the literature, see,
e.g., [5–8,26,32], the dual propagators can become singular
on two different kinds of surfaces, which are called
H-surfaces and E-surfaces. The singularities on H-surfaces
are spurious and cancel analytically, although these so
called dual cancellations can lead to numerical instabilities.

For this reason a different representation, the causal loop-
tree duality representation [18,28], is an interesting alter-
native. In order to define causal loop-tree duality let us
consider the expressions

�Ei � Ej − q0ij: ð4Þ

Alternating signs in front of the energies define H-surfaces,
equal signs in front of the energies define E-surfaces.
Geometrically, H-surfaces correspond to the intersection of
two forward hyperboloids or two backward hyperboloids,
while E-surfaces correspond to the intersection of a forward
hyperboloid with a backward hyperboloid. We set

xij ≔ Ei þ Ej − q0ij: ð5Þ

Each xij defines an E-surface. In the causal loop-tree
duality representation only the xij’s (and the energy factors
Ei) appear as factors in the denominator.
In a similar approach to [28], we independently derived a

locally equivalent expression for the causal representation
for scalar one-loop diagrams,

Z
dDk
ð2πÞD

1Q
N
j¼1½ðkþ qjÞ2 −m2

j þ iδ�

¼ i
Z

dD−1k
ð2πÞD−1

ð−1ÞNQ
N
i¼1 ð2EiÞ

XN−1

NL¼1;
NR¼N−NL

X
AL⊔AR

F ðAL; AR; fxijgÞ;

ð6Þ

where we introduced a function F given by

FIG. 1. The labeling for a generic one-loop integral. The arrows
denote the momentum flow.
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F ðAL; AR; fxijgÞ ≔
XNR

m1¼1

1QNR
n1¼m1

xðl1Þðrn1 Þ
� � �

XmNL−3

mNL−2¼1

1QmNL−3
nNL−2¼mNL−2

xðlNL−2ÞðrnNL−2
Þ

×
XmNL−2

mNL−1¼1

1

½QmNL−2
nNL−1¼mNL−1

xðlNL−1ÞðrnNL−1
Þ�½
QmNL−1

nNL
¼1 xðlNL

ÞðrnNL
Þ�
: ð7Þ

The second sum in Eq. (6) runs over all partitions of the
ordered set A ≔ f1;…; Ng into two disjoint ordered
subsets AL and AR with cardinalities NL and NR, respec-
tively. The cardinalities are determined by the first sum in
the expression. Both ordered subsets inherit their order
from A and are given by AL ¼ fl1;…;lNL

g and
AR ¼ fr1;…; rNR

g. The representation given in Eq. (6)
is not unique but instead depends on the ordering of the

elements of A. A graphical representation of the function F
is given in Sec. II C.
For the indices of the xij’s we have

i ∈ AL; j ∈ AR: ð8Þ
To get more comfortable with the function F , we list
examples for AL ¼ fl1g, AL ¼ fl1;l2g and AL ¼
fl1;l2;l3g,

F ðfl1g; AR; fxijgÞ ¼
1QNR

n1¼1 xðl1Þðrn1 Þ
;

F ðfl1;l2g; AR; fxijgÞ ¼
XNR

m1¼1

1

½QNR
n1¼m1

xðl1Þðrn1 Þ�½
Qm1

n2¼1 xðl2Þðrn2 Þ�
;

F ðfl1;l2;l3g; AR; fxijgÞ ¼
XNR

m1¼1

1QNR
n1¼m1

xðl1Þðrn1 Þ

Xm1

m2¼1

1

½Qm1
n2¼m2

xðl2Þðrn2 Þ�½
Qm2

n3¼1 xðl3Þðrn3 Þ�
: ð9Þ

The parentheses that distinguish the indices on the E-surfaces introduced in this section only serve the readability and will
be omitted in what follows.

B. Structure of the causal representation

In this subsection we want to investigate the cLTD representation in more detail. Therefore we present some explicit
examples in the following. Let us start by presenting the causal representation of the 2-point function,Z

dDk
ð2πÞD

1Q
2
j¼1½ðkþ qjÞ2 −m2

j þ iδ� ¼ i
Z

dD−1k
ð2πÞD−1

1

4E1E2

�
1

x12
þ 1

x21

�
:

At this point we like to remind that the terms x12 and x21 are not the same, since the defining equations for the E-surfaces are
not symmetric in the indices, cf. Eq. (5). For the 3-point function we have,

Z
dDk
ð2πÞD

1Q
3
j¼1½ðkþ qjÞ2 −m2

j þ iδ� ¼ −i
Z

dD−1k
ð2πÞD−1

1

8E1E2E3

�
1

x13x12
þ 1

x23x21
þ 1

x32x31
þ 1

x13x23
þ 1

x12x32
þ 1

x21x31

�
;

and the causal representation of the 4-point function is given by

Z
dDk
ð2πÞD

1Q
4
j¼1½ðkþ qjÞ2 −m2

j þ iδ�

¼ i
Z

dD−1k
ð2πÞD−1

1

16E1E2E3E4

�
1

x14x13x12
þ 1

x24x23x21
þ 1

x34x32x31
þ 1

x43x42x41

þ 1

x14x13x23
þ 1

x14x24x23
þ 1

x14x12x32
þ 1

x14x34x32
þ 1

x13x12x42
þ 1

x13x43x42
þ 1

x24x21x31
þ 1

x24x34x31

þ 1

x23x21x41
þ 1

x23x43x41
þ 1

x32x31x41
þ 1

x32x42x41
þ 1

x14x24x34
þ 1

x13x23x43
þ 1

x12x32x42
þ 1

x21x31x41

�
: ð10Þ
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By investigating the examples given above one can see that
the causal representation consists of a product of on-shell
energies that multiplies a sum of terms whose denominator
is a monomial in the variables xij. The number of terms of
an N-point function for N ≥ 2 is given by the central
binomial coefficient,

Nterms ¼
�
2ðN − 1Þ
N − 1

�
: ð11Þ

The derivation of the above expression is given in
Appendix A. However, all terms in an N-point function
can be constructed from a small number of different E-
surfaces, given by

NE-surfaces ¼ 2 ·

�
N

2

�
; ð12Þ

making recurrence relations a favorable approach for
numerical evaluations. This can easily be seen by noticing
that an E-surface is described by two indices. Hence, the
number of E-surfaces is given by the number of possibil-
ities to draw two indices out of N. The factor of two
originates from the fact that the xij are not symmetric in i
and j and therefore the order in which the indices are drawn
matters. Table I shows the number of terms of the cLTD
representation and the number of E-surfaces for N-point
functions with 2 ≤ N ≤ 8. In order to construct recurrence
relations based on the cLTD representation we first need to
understand how to construct valid terms. Therefore, we
need to find criteria that have to be satisfied for a term to be
valid. Finding these criteria is what we will do in the
following.
If one carefully investigates the examples given at the

beginning of this subsection, one finds that each summand
contains all possible indices, and an index can never be on
the left- and on the right-hand side in the same summand.
This is manifested in Eq. (6), where the sum

P
AL⊔AR

runs
over all disjoint subsets whose union equals the set of all
indices. We can obtain more information about the structure
of causal terms by considering the right-hand side of
Eq. (7). Remember that the elements of AL are denoted
l1;…;lNL

and the elements of AR by r1;…; rNR
. In each

product in the denominator the index i of li ∈ AL is raised
by one, i.e., in the first product we have l1, in the second
one l2 and in the jth product we have lj as left index of the
E-surface. The products run over the right index r ∈ AR so

that the ith product runs frommi tomði−1Þ, i.e.,mi ≤ mði−1Þ.
The values of mi and mði−1Þ are determined by the sums in
Eq. (7) and are not important for the current discussion.
Consequently, the right index in the ith product runs from
rmi

to rmði−1Þ , so that we obtain the E-surfaces
xlirmi

;…; xlirmði−1Þ
as a result of this product. If we now

take a look at the previous product, we see that the right
index runs from rmði−1Þ to rmði−2Þ yielding the E-surfaces
xlði−1Þrmði−1Þ

;…; xlði−1Þrmði−2Þ
. Thus, the largest right index of

an E-surface appearing in the ith product, or equivalently,
accompanying the index li, is the same index as the
smallest index accompanying the index lði−1Þ, which is
in both cases the index rmði−1Þ .
Since this is still rather abstract, let us illustrate this in an

example. Consider a term of the 6-point function,

1

x16x15x35x32x42
: ð13Þ

For this term we have AL ¼ f1; 3; 4g and AR ¼ f2; 5; 6g
and we can see that the first two criteria are satisfied. Now
let us consider l2 ¼ 3. The largest index r ∈ AR accom-
panying the index l2 is r2 ¼ 5. The index l1 that denotes
the next smaller index in AL is 1. We see that the smallest
index r ∈ AR accompanying 1 is again r2 ¼ 5, which is
what we wanted. This must also be true for l3 ¼ 4. Here we
have r1 ¼ 2, which is also the smallest index appearing in
combination with l2 ¼ 3. Thus, the term in Eq. (13) is a
valid term.
To conclude this section, let us summarize the conditions

for valid terms:
(1) All indices of the defining set A must occur in the

term, i.e., AL ∪ AR ¼ A.
(2) Each index can only appear on one side, i.e.,

AL ∩ AR ¼ ∅.
(3) The largest index accompanying an index li ∈ AL

must be the smallest index accompanying the
index lði−1Þ ∈ AL.

C. Graphical representation

The purpose of this section is to give a graphical
representation of the function F defined in Eq. (7).
Before we start, let us introduce a more compact notation
for causal terms,

1

xl1rj…xlirk
≡ ðl1; rjÞ � � � ðli; rkÞ;

which we will use in the following.
The important quantities that we like to present in this

section will be called causal diagrams. A causal diagram
consists of left and right vertices which correspond to
elements of the sets AL and AR, respectively. Connecting

TABLE I. Comparison of the number of terms and the number
of E-surfaces of the cLTD representation of an N-point function.

N 2 3 4 5 6 7 8

Number of terms 2 6 20 70 252 924 3432
Number of E-surfaces 2 6 12 20 30 42 56
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two vertices defines an E-surface ðl; rÞ, where l ∈ AL
corresponds to a left vertex and r ∈ AR to a right vertex.
The most basic diagram consisting of two vertices, repre-
senting one E-surface, is shown in Fig. 2. There are ð N−2

NL−1
Þ

different topologies of causal diagrams each containing
ð N
NL
Þ different diagrams corresponding to the different

permutations of indices. A fixed topology together with
a set AL results in a unique causal diagram and hence a
unique term.
We will now give instructions on how to draw all causal

diagrams for given sets AL and AR:
(1) Draw NL vertices on the left-hand side and NR

vertices on the right-hand side of the diagram.
(2) Label the vertices on the left-hand side with the

indices of AL by respecting their order and do the
same with the vertices on the right-hand side, but
with the reversed order of AR.

(3) Connect the left and right vertices by straight lines,
such that:
(a) Each vertex has at least valency one
(b) A line always connects exactly one left vertex

with one right vertex.
(c) There are no intersections among the lines.

Point (3a) follows from the fact that all indices of the
ordered set A must occur in a causal term, cf. rule (1) in
Sec. II B. The fact that each E-surface carries one left index
l ∈ AL and one right index r ∈ AR is reflected in point
(3b). The last point (3c) is a direct consequence of rule (3)
in Sec. II B.
As an explicit example consider AL ¼ fl1;l2g of the

five point function. Following the rules we have ð3
1
Þ ¼ 3

different topologies of causal diagrams shown at the bottom
of Fig. 3. Each diagram contributes with ð5

2
Þ ¼ 10 terms,

corresponding to all possibilities of selecting two elements
l1 and l2 from the five elements of A. The three different
types of diagrams represent the following terms,

ðl1; r3Þðl2; r1Þðl2; r2Þðl2; r3Þ;
ðl1; r2Þðl1; r3Þðl2; r1Þðl2; r2Þ;
ðl1; r1Þðl1; r2Þðl1; r3Þðl2; r1Þ: ð14Þ

For completeness, all possible topologies of the 5-point
functions are shown in Fig. 3.

III. RECURRENCE RELATIONS

In this section we present our main results, a recursion
formula for scalar one-loop amplitudes within the cLTD
formalism. The goal of this section is to introduce an

alternative to the graph-by-graph approach for constructing
a scalar one-loop amplitude within the cLTD formalism.
Throughout this section we will use the convention
2 ≤ n ≤ N, where n refers to an n-point function while
N refers to the number of external particles. This describes
the situation, where (N − n) out of the N possible loop
propagators are pinched. We will use the notation for causal
terms that was introduced in Sec. II C.

A. Structure of the amplitude

Our standard examples will be one-loop N-point ampli-
tudes in scalar ϕ3-theory. These amplitudes are not cyclic
ordered. However, there is a dihedral symmetry at the level
of the Feynman diagrams, generated by the cyclic permu-
tations and the reflection. We therefore obtain ðN − 1Þ!=2
possible cyclic orders of the external legs. We split the
amplitude into contributions with a definite cyclic order.
The reason is the following: In Sec. V we define for each
cyclic order an individual contour deformation. We inte-
grate each cyclic order with this individual integration
contour. This is very natural in QCD and Yang-Mills
theory, where the cyclic order is induced by color ordering.
For a scalar ϕ3-theory it does no harm to introduce the
cyclic order by hand. Let us point out that for each cyclic
order we have exactly one N-point function.
Since the procedure of the algorithm is the same for each

cyclic order of the external legs, we will focus on one cyclic
order in what follows.
The ordered set A introduced in Sec. II Awill refer from

now on to the N-point function in the cyclic order under
consideration. We will denote the elements A by
ai ≔ σðiÞ modN, where σðiÞ is the corresponding cyclic
permutation of the index i. It is advantageous starting the
counting with 0, i.e., aj ∈ f0;…; N − 1g. The elements
are ordered by their indices such that the ordered set
reads A ¼ fa1;…; aNg.
Let us now investigate the structure of the one-loop

N-point amplitude. We will use the convention that the
smallest index is always a1 ¼ 0 since one can always shift
the momenta accordingly and use momentum conservation
to eliminate an index. This is also true for all n-point
functions (with n ≤ N). Combining this with the fact that
the causal terms of an n-point function carry exactly n
indices, an n-point function is specified by the remaining
(n − 1) indices. This leaves ðN−1

n−1Þ different combinations of
indices for an n-point function, and thus, ðN−1

n−1Þ n-point
functions per cyclic order.
This ansatz for the construction of the amplitude intro-

duces double counting between different cyclic orders that
has to be accounted for by symmetry factors, which will be
discussed in Sec. III D. In the following we consider the
standard order of the external legs.

FIG. 2. Causal diagram representing a single E-surface ðl; rÞ.
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B. Recursive construction of the integrand

Due to the exponential growth of terms of the cLTD
integrands with the number of external legs, we aim for a
method where we do not need to generate each term
individually. The algorithm essentially consists of two
steps. In the first step we generate a set of simple building
blocks, which we call base terms. The base terms may have
fewer indices. In the second step we dress recursively the

terms obtained so far with additional indices. The recursive
step generates a causal representation of a higher-point
function from a lower-point function.
For each term of a lower-point function we introduce an

ordered set A♭ containing all of its indices. The ordered set
A♭ is the analog of A for base terms. The sets A♭

L and A♭
R are

defined analogous to AL and AR, so that A♭
L⊔A♭

R ¼ A♭.
Elements in these sets are denoted by l♭

i ∈ A♭
L and r♭i ∈ A♭

R.

FIG. 3. The eight different topologies of causal diagrams of the five-point function.
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In Sec. III B 3 we show that for a given cyclic order we
generate each causal term only once, so that we do not need
to introduce symmetry factors within a given cyclic order.
Throughout this section we will only consider the case

where l♭
1 ¼ 0, i.e., 0 ∈ A♭

L. The terms with 0 ¼ r♭1 ∈ A♭
R

can be obtained analogously by exchanging the indices l
and r in the following.
Furthermore we will use the sets AL and AR rather

symbolically to refer to an index that will be added as a left
or a right index to the base term, respectively.

1. Generation of causal terms

The heart of the algorithm is the recursive construction of
causal terms starting from the base terms. In the first part of
this section we describe the structure of the base terms,
which we will prove in Sec. III B 2. We then construct new
terms by adding new vertices to causal diagrams by
respecting the rules established at the end of Sec. II B.

Base terms.—The base terms have the general form

ð0; r♭mÞ
�Ym
i¼2

ðl♭
i ; r

♭
m−iþ1Þðl♭

i ; r
♭
m−iþ2Þ

�
; ð15Þ

which we prove in Sec. III B 2. Here, we made use of the
identification l♭

1 ¼ 0. The indexm indicates the cardinality
of A♭

R and A♭
L, so that A♭ contains 2m elements. In other

words, the base terms can only be those terms that originate
from Feynman diagrams with an even number of external
legs, e.g., m ¼ 1 corresponds to bubbles, m ¼ 2 to
boxes etc.
Base terms correspond to a specific “zigzag”-topology of

causal diagrams, shown in Fig. 4 for the first examples
m ¼ 1, 2, 3.
Let us now discuss the first recursive step from a base

term with n points and indices A♭ to (nþ 1) points. In order
to generate a valid (nþ 1)-point term with the expression
in (15), we need an E-surface with an index ak ∈ A and
ak ∉ A♭ as a consequence of rule (1). Condition (2) allows

us to construct terms with either ak ∈ AL or ak ∈ AR. These
two cases are slightly different due to the fact that we
set l♭

1 ¼ 0.

Adding a left vertex.—Let us start with the case ak ∈ AL. In
order to fulfill condition (3), we have to know how many
indices li ∈ A♭

L exist, with i ¼ 1;…; N♭
L, that are smaller

than ak. Let us denote this number by s and let s > 0, so
that l♭

s < ak < l♭
sþ1, or just l♭

s < ak if s ¼ N♭
L. This is

illustrated in Fig. 5 for m ∈ f1; 2; 3g. The black lines
connect the vertices that belong to the base term, while the
blue lines lead to new vertices. The labels on the vertices of
valency one of these blue lines tell us how many left
vertices are above the new one, i.e., how many li ∈ A♭

L
exist that are smaller than ak.
Given condition (3) or Fig. 5, the index r♭ ∈ A♭

R
accompanying ak can now be determined. The smallest
index accompanying l♭

s is r♭m−sþ1, as can be seen from
expression (15). As a consistency check one can also take
a look at the largest index accompanying l♭

sþ1, if it
exists, which is also given by r♭m−sþ1. Thus, we can multiply
the term

ðak; r♭m−sþ1Þ ð16Þ

to expression (15). For s ¼ 0 the term in Eq. (16) does not
exist since then we would havem − sþ 1 ¼ mþ 1 > m ¼
N♭

L. Luckily, this does not lead to a problem because s ¼ 0
corresponds to the case where the new index ak is smaller
than all elements of A♭

L. However, we set l♭
1 ¼ 0, so this

case cannot occur.

Adding a right vertex.—Now consider the case ak ∈ AR.
Let the number of indices, r♭i ∈ A♭

R, that are smaller than ak
be given by t, so that r♭t < ak < r♭tþ1, or just r♭t < ak if
t ¼ N♭

R. Let us start again with the case that t > 0. In order
to construct a valid term with ak ∈ AR we note that each
right index r♭i ∈ A♭

R in expression (15) appears twice, once

FIG. 4. Base term causal diagram topology with fixed l♭
1 ¼ 0 and m ¼ 1, 2, 3 from left to right.
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as the smallest and once as the largest index of two
subsequent l♭

j ∈ A♭
L, except r

♭
1 which only appears once.

This is in perfect analogy to the previous case and can be
seen in Fig. 4, where all vertices have valency two, except
the top left and bottom right vertex, which have
valency one.
Condition (3) prohibits us from combining ak ∈ AnA♭

with an l♭
j ∈ A♭

L such that ak would be smaller or larger
than an r♭i accompanying l♭

j. The only possibility is thus to
combine ak with the left index that comes in combination
with r♭t and r♭tþ1. Then ak is neither the smallest nor the
largest index and hence we avoid incompatibilities with
the remaining factors of the term. Consequently, we can
multiply the factor

ðl♭
m−tþ1; akÞ ð17Þ

with expression (15).
The addition of an index ak ∈ AR to the base term is

illustrated in Fig. 6. The black lines build again the base
term and each red line connects it to a new vertex, in
analogy to Fig. 5.
For t ¼ 0 the term in Eq. (17) is not defined because

mþ 1 > m ¼ N♭
L. Note that in contrast to the case s ¼ 0,

the case t ¼ 0 can in principle occur since there is no
restriction for r♭1. Looking at Fig. 6, or considering
condition (3), it is clear that for t ¼ 0 we can only add

ðl♭
m; akÞ: ð18Þ

However, if we consider the base term with r♭1 replaced with
ak, we obtain the same term for t ¼ 1 as we would for the
previous base term for t ¼ 0. Therefore, excluding the case

t ¼ 0 prevents not only the introduction of a special case in
Eq. (17), but also double counting of terms generated by the
algorithm.
This point is illustrated in Fig. 7 for the 5-point function.

One can see that the case t ¼ 0 for the diagram on the left-
hand side yields the same term as the case t ¼ 1 on the
right-hand side. It is now natural to ask whether we can
have double counting also for t ≠ 0, e.g., by exchanging a
line ending on r♭j with one ending on ak for j ≠ 1. The short
answer is no because r♭1 corresponds to the only right vertex
with valency one, while all others have valency two. The
diagram would be disconnected and hence it would not
correspond to a valid term. The topic of uniqueness of
terms will be discussed in more detail in Sec. III B 3.
From this analysis we know that if t ≠ 0, we have two

terms that are compatible with the base term of our
recursion and incompatible with each other, so we can
directly multiply the sum of these two terms,

ðak; r♭m−sþ1Þ þ ðl♭
m−tþ1; akÞ ð19Þ

to (15). For t ¼ 0 we only multiply by the term in Eq. (16),
which is the one coming from adding a left index.

Adding multiple vertices.—As a next step let us assume that
we have already multiplied our base term by the above
expressions for some aj ∈ A. Let ak ∈ AnA♭, ak ≠ aj be
another index that we want to include in our term. The rules
of multiplying terms (16) or (19) are the same as before
adding the index aj to the base term, as we will now show.
Consider first the case of adding a left vertex, aj ∈ AL.

We have to consider two cases for multiplying a new factor
including ak to this term. The first case is given by

FIG. 5. Causal diagram for adding a left vertex to base terms (black lines) for m ¼ 1, 2, 3 from left to right. The blue lines illustrate
factors that can be multiplied to the base term to yield a valid term, resulting in a new topology of the causal diagram. Not all possibilities
of adding a blue line might be allowed. This depends on the set A♭

L.
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l♭
s < ak < l♭

sþ1, i.e., the index aj is either smaller than l♭
s

or larger than l♭
sþ1 and has thus no effect on the multi-

plication. Consequently, nothing changes in this case with
respect to before. This case is shown on the left-hand side
of Fig. 8.
As a next case we have l♭

s < aj < ak < l♭
sþ1 or

l♭
s < ak < aj < l♭

sþ1. In the first case, which is shown
on the right of Fig. 8, the relevant part of the term to which
we want to add the index ak is

ðl♭
s; r♭m−sþ1Þðl♭

s; r♭m−sþ2Þðaj; r♭m−sþ1Þðl♭
sþ1; r

♭
m−sÞ

× ðl♭
sþ1; r

♭
m−sþ1Þ:

This term was constructed so that the partner of aj (i.e., the
index accompanying aj), which is r♭m−sþ1, is the smallest
partner of l♭

s and the largest partner of l♭
sþ1. The partner of

ak must consequently be r♭m−sþ1, since it is the smallest
partner of aj and the largest partner of l♭

sþ1.
The case l♭

s < aj < ak < l♭
sþ1 can be discussed analo-

gously. The smallest partner of l♭
s is still r♭m−sþ1, which is

also the largest partner of aj. The discussion works
analogously for adding right indices.
This can be generalized to arbitrarily many indices aj

that are added to the base term. We have thus shown that the
rules for multiplying terms (16) and (19) apply not only for
base terms but for all terms that can be constructed with
these rules.
Algorithm 1 shows the basic principle of the generation

of causal terms. Here B denotes the set of base terms and
RB denotes the array which stores the results of the
multiplications for a base term B ∈ B. The employment

FIG. 6. Same as Fig. 5, but for the introduction of a new right vertex. The lines connecting the new vertex with the respective base term
diagram are shown in red.

FIG. 7. Causal diagram for adding a right vertex to base terms
with t ¼ 0 and t ¼ 1, which produce the same diagram.

FIG. 8. Causal diagram for adding two left vertices to base
terms with ak < aj for the 8-point function.
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of a differentRB for each base term is necessary in order to
avoid multiplications of expressions (16) or (19) to terms
that correspond to a different base term B0 that is not
compatible with the former terms. The indices s and t are
defined as before. The first loop in Algorithm 1 goes over all
base terms. As explained above, we employ for each base
term an individual RB to save all results constructed from
the base term B. Then we have to loop over all ak ∈ A, that
are not already elements of A♭, since we must introduce a
new index to the term. The distinction between t ¼ 0 and
t ≠ 0 is necessary to avoid double counting. Finally, we
multiply not only the base term, but also all terms that are
constructed from it, i.e., all terms in RB, by either
expression (16) or (19). As a final remark of this section
let us explicitly highlight topologies we generate from base
terms with m ¼ 1 for N ¼ 4 in Fig. 9. Note that there is no
base term generated for m ¼ 2, which would correspond to
an s ¼ 0. This is due to the fact that we sort vertices from
low to high on the left side and there exists no vertex with
index lower than 0. Therefore we will discuss the generation
of base terms to complete our algorithm in the next section.

2. Proof of the recursion start

The last missing piece for the generation of causal terms
is the generation of the base terms. We will show in this
section that the base terms are indeed of the form given
in Eq. (15).
The very first step of the algorithm is to generate all

E-surfaces, which will be stored in a matrix so that they are
computed only once in each step. The E-surfaces which

contain the 0-index are now used as base terms. We only
use those E-surfaces since all terms without the 0 as index
do not contribute to the amplitude. Note that the E-surfaces
are of the form of Eq. (15) since the empty product is
defined to be one.
Now Algorithm 1 generates unique causal terms where

each factor shares exactly one index with the base term. As
becomes clear from the argumentation in Sec. III B 1, we
obtain all of these terms. Consequently, we only miss the
terms that contain at least one factor that does not have an
index in common with the respective base term. The
lowest-point terms with this property will be our new base
terms for the next step of the recursion.
We find that 3-point terms do not have this property since

they consist only of two factors. Otherwise they would have
4 distinct indices but they must have exactly 3. The new
base terms are thus 4-point terms of the form

ð0; aiÞðak; ajÞðak; aiÞ;

where j < i, k ≠ i and k ≠ j. These terms are again of the
form of Eq. (15).
After rerunning Algorithm 1 with the new base terms, we

now obtain all causal terms except the ones with one or
more factors that share no index with the respective base
term, or alternatively, with at least two factors that have no
index in common with the original E-surface used to
generate the new base term. The same argument that
applied to the 3-point terms applies now to the 5-point
terms, so that the lowest-order terms with the desired
property are 6-point terms of the form of Eq. (15).
This goes on until all terms are generated.

3. Uniqueness of terms

It is important to be aware of potential double countings
of terms generated by Algorithm 1. We will now show that
each term that is generated by Algorithm 1 is unique. For a
single base term, this is easy to see. Since we work with
ordered sets we have a unique order of multiplications of
terms containing new indices ak ∈ AnA♭. A term contain-
ing aj and ak with j < k can only be generated by first
multiplying the base term with the term containing aj and
then multiplying it with the term containing ak, and not the
other way around. Consequently, the way a term is
generated is unique so that we have no double counting
in this case.

FIG. 9. Topologies generated by m ¼ 1 base terms for N ¼ 4.

Algorithm 1. Generation of causal terms.

1: for B ∈ B do
2: RB stores B
3: for ak ∈ AnA♭ do
4: if t ≠ 0 then
5: for R ∈ RB do
6: RB stores R · ½ðak; r♭m−sþ1Þ þ ðl♭

m−tþ1; akÞ�
7: end for
8: else
9: for R ∈ RB do
10: RB stores R · ðak; r♭m−sþ1Þ
11: end for
12: end if
13: end for
14: end for
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Next we have to show that starting with a base term B,
Algorithm 1 does not generate terms that can also be
generated by starting with a different base term B0. If we
denote with C the product of terms that is multiplied with
the base term, we want to show that

B · C ≠ B0 · C0 ð20Þ

for any base terms B and B0 and any valid products of
causal termsC andC0. In other words, we want to show that
there is no subexpression in B · C that can be identified with
another base term B0. To prove this we make use of the fact
that in each base term, all left indices l♭ ∈ A♭

L and all right
indices r♭ ∈ A♭

R appear exactly twice, except l♭
1 ¼ 0 and r♭1.

This can be directly deduced from Eq. (15).
Multiplication with the expression in (16) yields a new

left index that appears only once because the new index has
only one compatible right index r ∈ A♭

R. We can thus
conclude that the base term B0 must have the same set A♭

L
as B. The same argument holds for multiplication with the
factor in Eq. (17) except that the new index ak can be
smaller than r♭1. In this case, however, the term in Eq. (17)
does not exist, as argued below Eq. (17). Thus we find that
the base term B0 must also have the same set A♭

R as B.
Together with the fact that all base terms possess the same
topology, cf. Fig. 4, this shows that Eq. (20) is true and thus
concludes the proof of uniqueness.

4. Scaling behavior

In this section we want to investigate the scaling
behavior of the recursion compared to the naïve graph-
by-graph approach, where one sums up all contributions
from all relevant Feynman graphs. We assume that the
amplitude is structured as described in Sec. III A in both
approaches. Consequently, the factor ðN − 1Þ!=2 appears in
both cases, so we only consider scaling for one cyclic order.
Moreover, we assume that the E-surfaces are precomputed
and count only the multiplications of E-surfaces which
makes it much easier to compute the scaling behavior. The
cost of the computation of E-surfaces is negligible com-
pared to the rest of the amplitude.
To obtain the behavior for the graph-by-graph approach,

we recall that each n-point function consists of ð2ðn−1Þn−1 Þ
causal terms, cf. Eq. (11). Furthermore, as explained in
Sec. III A, there are ðN−1

n−1Þ different n-point functions in an

N-point amplitude. Combining these two facts yields the
total number of causal terms for one cyclic order in an
N-point amplitude,

Ngraph
terms ¼

XN−2

j¼0

�
N − 1

jþ 1

��
2ðjþ 1Þ
jþ 1

�
:

Since we want to count the number of multiplications, we
have to multiply each term in the sum by j,

Ngraph
× ¼

XN−2

j¼1

j
�
N − 1

jþ 1

��
2ðjþ 1Þ
jþ 1

�
; ð21Þ

due to the fact that each causal n-point term is a product of
(n − 1) E-surfaces.
To obtain the number of multiplications of our algorithm,

we proceed in two steps. First we compute the number of
terms that Algorithm 1 generates, and then proceed with the
number of base terms.
We can multiply a base term corresponding to an n-point

function, i.e., jA♭j ¼ n, with maximal (N − n) terms so that
all of these terms contribute to the N-point amplitude. This
leads to ðN−ðn−1Þ

2
Þ multiplications in Algorithm 1 for the

construction of all possible terms resulting from one base
term. Recall that for all base terms n is an even integer,
n ¼ 2m, where m ¼ 1;…; bN−1

2
c, and that m ¼ N♭

L ¼ N♭
R.

Thus, there are ð2mm Þ different base terms for each n-point
function. Together with the number of n-point functions
within a cyclic permutation of external legs of an N-point
amplitude we obtain,

XbN−1
2
c

j¼1

�
N − 1

2j − 1

��
2j

j

��
N − ð2j − 1Þ

2

�
: ð22Þ

The second contribution comes from the construction of the
base terms, which involves two multiplications per term.
This yields

2
XbN−2

2
c

j¼1

�
N − 1

2j − 1

��
2j

j

�
: ð23Þ

The full expression reads,

Nrec
× ¼

8>>><
>>>:

PN−2
2

j¼1

�
N − 1

2j − 1

��
2j

j

���
N − ð2j − 1Þ

2

�
þ 2

�
; N is even;

PN−3
2

j¼1

�
N − 1

2j − 1

��
2j

j

���
N − ð2j − 1Þ

2

�
þ 2

�
þ
�
N − 1

N − 2

��
N − 1

ðN − 1Þ=2

�
; N is odd:

ð24Þ
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The number of multiplications depends on whether N is
even or odd, which can be explained by recalling that the
base terms exist only for even n, as mentioned above.
The scaling with respect to the number of external legs

is shown as double logarithmic plot in Fig. 10. It compares
the scaling of the naïve graph-by-graph approach (blue)
to the scaling of the recursion (red) presented in this
section. The ratio of both scalings is shown in both plots as
a dashed green line. One can see in the plot on the left-
hand side, where 3 ≤ N ≤ 100, that both approaches scale
exponentially due to the exponential growth of Feynman
diagrams within the amplitude and the additional expo-
nential growth of causal terms per Feynman diagram.
However, the recursion scales better than the graph-by-
graph approach and the ratio between the two grows
exponentially.
Furthermore, the scaling of the recursion is not smooth

but depends on whether we go from an even number of
external legs to an uneven one or the other way around,
which can be seen in the plot on the right-hand side, where
the horizontal axis is zoomed in to the practically relevant
region 3 ≤ N ≤ 10. This behavior is not surprising if one
recalls Eq. (24), and can be traced back to the base terms
which appear only for even n.

C. Tree currents

Up to now we have only talked about the causal terms. In
order to compute a complete scattering amplitude, we also
need to take the trees into account that are part of the one-
loop Feynman diagrams. To do so, we note that there is a
one-to-one correspondence between products of tree cur-
rents and causal terms.

Recall that the indices of a causal term correspond to
momenta flowing through the propagators. Specifically for
an index ak we have the momentum qk, defined as

qk ≔
Xk
i¼1

pai : ð25Þ

This is just a generalization of the definition in Eq. (3) to
arbitrary permutations of the external legs.
Let us consider a term with subsequent indices aj and ak

with j < k. From this we can infer that the term corre-
sponds to a Feynman graph with a vertex connecting the
propagators with momenta qj and qk. This is illustrated in
Fig. 11. Since throughout this paper we work in ϕ3 theory,
we know that there must be a third edge to this vertex that is
part of a tree. The external legs of this tree are dictated by
momentum conservation because the third propagator must
carry the momentum

qk − qj ¼
Xk
i¼jþ1

pai : ð26Þ

However, it does not determine how the legs are ordered,
and, in fact, all permutations of these external legs
contribute to the amplitude. Thus, we can directly multiply
the causal term with a tree current, which can be generated
by employing the Berends-Giele recursion [33].
We can conclude that all tree currents for a causal term

are determined by its set of indices, A, by iterating through
the set and deducing the external momenta from the gap
between two neighboring indices, as shown in Eq. (26).

FIG. 10. Number of multiplications for one cyclic order for the recursion (red) compared to the graph-by-graph approach (blue) with
respect to the number of external legs (left: 3 ≤ N ≤ 100; right: 3 ≤ N ≤ 10). The ratio of these two scalings is shown as a dashed green
line in both plots.

KROMIN, SCHWANEMANN, and WEINZIERL PHYS. REV. D 106, 076006 (2022)

076006-12



D. Symmetry factors

The last missing piece of our algorithm are the symmetry
factors that take into account multiple appearances of terms
in different cyclic orderings. Before we provide a combi-
natorial derivation, we briefly comment on the intuition in
which contexts they arise.

1. Intuitive description

The symmetry factors are closely related to the tree
factors multiplying the loop integrands. Let us consider a
one-loop n-point function which can have nontrivial trees
connected to the loop propagators, like the one shown in
Fig. 12. There are three different sources causing double
counting.
The first one concerns trees like the one with legs p2 and

p3 in Fig. 12 where we are free to swap these two legs
without altering the numerical value associated to this
diagram. These two diagrams are generated in two different
cyclic orders, so we have to account for that by introducing
a symmetry factor. Note that the tree with legs p0 and p1

does not introduce a symmetry factor because we fix the leg
p0 in order to exclude the cyclic permutations of the legs.
The second source is related to the fact that we multiply

the loop integrands by tree currents instead of individual
trees. The tree currents contain trees corresponding to all
permutations of external legs that yield a different Feynman
diagram with a different numerical value. As an example,
consider the tree consisting of the three external legs p2, p3

and p4 of the diagram in Fig. 12. Exchanging p2 and p4

yields a different tree belonging to the same current as the
original tree. Consequently, we encounter this diagram also
in a different cyclic order. The first two sources taken

together yield a symmetry factor of 1=j! for each tree with j
external legs if none of these legs is p0, and 1=ðj − 1Þ!
otherwise. The third source for the double counting of
diagrams comes from the reflection symmetry of diagrams,
or equivalently the fact, that we can choose a different
direction for the routing of the loop momentum k. This
leads to different propagator momenta and thus contributes
to a different cyclic order. Therefore we obtain an addi-
tional factor of 1=2 for our symmetry factor.
Note that changing the direction of the momentum flow

leads to the same propagator momenta in the case of bubble
diagrams, since we always keep p0 fixed. Consequently,
the two propagator momenta are in both cases given by k
and kþ q, where q is the linear combination of external
momenta of the tree which has not p0 attached to it. Thus,
the factor of 1=2 seems to be unnecessary in the case of
bubbles. However, bubbles naturally come with a sym-
metry factor of 1=2, so that we obtain the same expression
for symmetry factors for all n-point functions within the
N-point amplitude.

2. Derivation of the symmetry factor

As becomes clear from the discussion above, the
symmetry factors appear on the level of Feynman diagrams,
i.e., all causal terms corresponding to the same Feynman
diagram obtain the same symmetry factor. More explicitly,
the loop integrand determines the possible tree currents that
can be multiplied to it and therefore it determines also the
symmetry factor. The loop integrand of an n-point function
can be specified by the set An, which contains n indices
corresponding to the n loop propagators. We write the
subscript n to distinguish it from the set A, which contains
all N indices.
Let us now turn to the derivation of the symmetry factors.

While in the previous sections we treated the cyclic orders

FIG. 12. A 6-point triangle diagram with nontrivial trees
attached to some of the legs exiting the loop.FIG. 11. A one-loop N-point scalar diagram with a tree

carrying the momenta pajþ1
;…; pak , where k > j. The tree is

denoted by a gray circle. The arrows indicate the direction of the
momentum flow.
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as self-contained separated pieces so that everything
applied equally to all cyclic orders, we now loosen this
structure and deal with the whole amplitude. This intro-
duces a new validity constraint for causal terms that was
guaranteed in the previous case and which will be derived
in the following. The new constraint relies on the fact that
an index corresponds to a specific linear combination of
external momenta, as indicated by Eq. (25). In a one-loop
diagram, the momentum flowing through a propagator is a
linear combination of momenta of external particles that
must be a subset or a superset of the external momenta
corresponding to a neighboring propagator. This is ful-
filled by construction within an individual cyclic order
because of Eq. (25). In this section we need to enforce this
constraint.
We want to derive the symmetry factors by counting how

often a certain combination of indices appears in the
amplitude, based on the symmetry of the cyclic orderings.
Furthermore, we can assign to each index the number of
external momenta participating in the sum of Eq. (25). For
an N-point function within a one-loop N-point amplitude
where we eliminate the largest index by means of momen-
tum conservation we have for each number j of external
particles exactly one index ajþ1 ∈ A, where 0 ≤ j ≤ N − 1.
Note that j starts at zero because a1 ¼ 0 and therefore the
momentum of the corresponding propagator consists
entirely of the loop momentum k. Hence, no external
momentum flows through this propagator and j must
be zero.
Our strategy is to first compute the number of times that

an individual index appears in the amplitude. Then we want
to find out the same for a specific valid combination of
two indices before generalizing this to n indices,
where n ≤ N − 1.
There is exactly one index for each number of external

momenta in a set A, and considering all permutations of the
momenta we have ðN−1

j Þ different linear combinations of j
external momenta in the amplitude. In total, we have
ðN − 1Þ!=2 cyclic permutations of external legs, so that
the number of times a specific index corresponding to a
linear combination of j external momenta appears in the
amplitude is given by

ðN − 1Þ!
2ðN−1

j Þ ¼ ðN − 1 − jÞ!j!
2

: ð27Þ

Next, we want to compute the number of times a specific
combination of i and j momenta occurs, where i > j.
Recall that the set of j external momenta has to be a subset
of the set of i external momenta. The number of combi-
nations of i different external momenta is given by the
binomial coefficient ðN−1

i Þ. Each of these combinations
contains ðijÞ combinations of j different external momenta,

so that ðN−1
i Þ · ðijÞ is the total number of combinations of j

external momenta that occur in the ðN−1
i Þ combinations of i

momenta. These combinations are not all distinct. We have
ðN−1

j Þ distinct combinations of j external momenta, so to
obtain the number of times a specific combination of j
external momenta occurs in the ðN−1

i Þ · ðijÞ combinations,

we have to divide by ðN−1
j Þ. This yields

�
N − 1

i

� ðijÞ
ðN−1

j Þ ¼
�
N − 1 − j

N − 1 − i

�
: ð28Þ

Now we can determine the number of times a specific
combination of i and j momenta occurs, as the number of
times the index j occurs, [Eq. (27)] divided by the number
of different combinations i that go along with the same
combination j [Eq. (28)],

ðN −1Þ!
2

�
N−1
j

��
N−1−j
N−1−i

�¼ ðN − 1− jÞ!j!
2

�
N−1−j
N−1−i

� ¼ ðN − 1− iÞ!ði− jÞ!j!
2

:

ð29Þ

This can be generalized to finding the number of combi-
nations of n ≤ N indices by using the set An, consisting of
the n indices. Each index must correspond to a different
number of external particles. We can generalize Eq. (29) to

ðN − 1Þ!
2
Q

n
i¼1

N−1−ji−1
N−1−ji

¼
�Yn
i¼1

ðji − ji−1Þ!
� ðN − 1 − jnÞ!

2
;

where ji ∈ An for 0 < i ≤ n and j0 ≡ 0.
The remaining part of the symmetry factor consists of a

factor of 2 for each term, which originates from the fact that
we can reverse the momentum flow, which will always
yield a different combination of indices for n ≥ 3 and thus
appears in the calculation. As discussed in Sec. III D 1, the
factor of 2 is also true for n ¼ 2, but the reason for the
appearance of this factor is different. The symmetry factor
reads,

S ¼
��Yn

i¼1

ðji − ji−1Þ!
�
ðN − 1 − jnÞ!

�−1
;

which is true for all n ≥ 2.

IV. UV RENORMALIZATION

The N-point one-loop amplitude in scalar ϕ3-theory
requires ultraviolet renormalization. In this section we give
the details how this is done within a numerical approach
based on causal loop-tree duality. Parts of the discussion
follow Ref. [13].
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We work in dimensional regularization with D ¼ 4 − 2ϵ and an arbitrary scale μ with mass dimension one. To be
consistent with existing literature we define scalar one-loop integrals in this section as

A0ðm2Þ ¼ eϵγEμ2ϵ
Z

dDk

iπD=2

1

k2 −m2
;

B0ðp2; m2
1; m

2
2Þ ¼ eϵγEμ2ϵ

Z
dDk

iπD=2

1

ðk2 −m2
1Þððk − pÞ2 −m2

2Þ
;

C0ðp2
1; p

2
2; p

2
3; m

2
1; m

2
2; m

2
3Þ ¼ eϵγEμ2ϵ

Z
dDk

iπD=2

1

ðk2 −m2
1Þððk − p1Þ2 −m2

2Þððk − p1 − p2Þ2 −m2
3Þ
; ð30Þ

with p2
3 ¼ ðp1 þ p2Þ2.

A. Scalar ϕ3 renormalization

We work with a scalar massive ϕ3 theory with the
Lagrangian

L0 ¼
1

2
ð∂μϕ0Þð∂μϕ0Þ −

1

2
m2

0ϕ
2
0 þ

1

3!
λðDÞ
0 ϕ3

0; ð31Þ
where the subscript 0 indicates bare quantities. These are
related to the renormalized quantities by the relations

ϕ0 ¼ Z
1
2

ϕϕ; λðDÞ
0 ¼ Zλλ

ðDÞ; m0 ¼ Zmm: ð32Þ
We set the coupling constant to

λðDÞ ¼ μϵS
−1
2

ϵ λ; ð33Þ
where Sϵ ¼ ð4πÞϵ expð−ϵγEÞ. The arbitrary scale μ is
introduced to keep the mass dimension of the renormalized
coupling λ equal to one. The renormalized Lagrangian is

L ¼ 1

2
ð∂μϕÞð∂μϕÞ −

1

2
m2ϕ2 þ 1

3!
λðDÞϕ3 þ LCT ð34Þ

with

LCT ¼ −
1

2
ðZϕ − 1Þϕ□ϕ −

1

2
ðZ2

mZϕ − 1Þm2ϕ2

þ 1

3!
ðZλZ

3=2
ϕ − 1ÞλðDÞϕ3: ð35Þ

The Feynman rules for this theory are

ð36Þ

The perturbative expansion of the renormalization con-
stants is

Za ¼ 1þ
X∞
n¼1

ZðnÞ
a

�
λ2

ð4πÞ2
�

n

; a ∈ fϕ; m; λg; ð37Þ

and we keep the first order terms for our next-to-leading-
order calculation.
Two popular renormalization schemes are the on-shell

scheme and the MS-scheme.

1. On-shell scheme

In the on-shell scheme we set the 3-point amplitude with

p2
1 ¼ p2

2 ¼ p2
3 ¼ m2 equal to iλ to fix Zð1Þ

λ . We find the
following values for the renormalization constants

Zð1Þ
ϕ ¼ 2 − ϵ

6m2
B0ðm2; m2; m2Þ − 1 − ϵ

3m4
A0ðm2Þ;

Zð1Þ
m ¼ 1

4m2
B0ðm2; m2; m2Þ;

Zð1Þ
λ ¼ −

3

2
Zð1Þ
ϕ þ C0ðm2; m2; m2; m2; m2; m2Þ: ð38Þ

2. MS-scheme

In the MS-scheme we find

Zð1Þ
ϕ ¼ 0

Zð1Þ
m ¼ 1

4m2

�
1

ϵ
− γE þ ln 4π

�

Zð1Þ
λ ¼ 0 ð39Þ

for the renormalization constants.

B. Local UV subtraction terms

In order to calculate the integrand numerically we use the
UV subtraction terms of [34] and apply loop-tree duality to
the expression. We choose ultraviolet subtraction terms that
have singularities on

ðk −QÞ2 − μ2UV ¼ 0; ð40Þ
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with Q and μUV both real. The UV subtraction will be
independent of Q and the mass μUV when adding the
analytic expression back to the amplitude according to
Eq. (45) which will be explained later in this section. The
only UV-divergent diagrams in massive scalar ϕ3-theory
are bubbles such that we only need to keep the first order in
an expansion of the loop propagators around the hyper-
surface defined by Eq. (40)

1

ðk − pÞ2 −m2
¼ 1

ðk −QÞ2 − μ2UV
þO

�
1

jkj3
�
: ð41Þ

The local subtraction term is hence given by

IUVsub
bub ðμ2UVÞ ¼ μ2ϵ

Z
dDk
ð2πÞD

1

ððk −QÞ2 − μ2UVÞ2

¼ μ2ϵ
i
4

Z
dD−1k
ð2πÞD−1

1

ððk⃗ − Q⃗Þ2 þ μ2UVÞ3=2

¼ i
ð4πÞ2

�
1

ϵ
− γE þ ln ð4πÞ − ln

μ2UV
μ2

þOðϵÞ
�
;

ð42Þ

where we applied loop-tree duality in the second equality.
This expression matches the 1=ϵ divergence of scalar
bubble diagrams.
The relation between the bare and renormalized n-point

amplitude in ϕ3 theory is

Aðp1;…; pn; λ; mÞ ¼ ðZ1=2
ϕ ÞnAbareðp1;…; pn; λbare; mbareÞ

¼ ðZ1=2
ϕ ÞnAbareðp1;…; pn; Zλλ; ZmmÞ;

ð43Þ

and after expanding in the coupling

Aðp1;…; pn; λ; mÞ ¼ Abareðp1;…; pn; λ; mÞ
þACTðp1;…; pn; λ; mÞ: ð44Þ

ACT contains all the counterterms coming from renormal-
ization. Even though the sum of the bare and counterterm
amplitude is UV finite, each amplitude itself is not.
Therefore we introduced local subtraction terms. Adding
and subtracting them [34],

A ¼ ðAbare −AUVÞ þ ðACT þAUVÞ; ð45Þ

leaves the first bracket locally finite, such that it can be
integrated numerically with Monte Carlo methods and the
second bracket can be calculated analytically. This gives us
the freedom to implement any renormalization scheme: The
choice of the renormalization scheme affects only ACT.

V. CONTOUR DEFORMATION

Having dealt with UV-divergences, there are only thresh-
old singularities remaining since we work in a massive
theory with no IR-divergences. It is possible to integrate the
threshold singularities numerically using contour deforma-
tion as already shown in the literature [7,27,35–38]. We
follow these references.
We deform the D − 1-dimensional loop momentum to

the complex space

k⃗ ¼ k0
!þ iλκ⃗ðk0!Þ; ð46Þ

with k⃗0 being real. κ⃗ðk⃗0Þ sets the deformation direction and λ
the magnitude. This deformation introduces a Jacobian,

���� ∂k⃗
∂k0
!
����; ð47Þ

which we compute numerically. Recall that within the
recursive implementation of the N-point amplitude we
define a contour deformation for each cyclic order. In terms
of Feynman graphs, there will be exactly one N-point
Feynman graph for a given cyclic order, plus several
subgraphs obtained by pinching some of the loop propa-
gators. The deformation for a givenN-point Feynman graph
is also valid for each subgraph, as each subgraph contains
only a subset of the E-surfaces of its parent graph. Without
loss of generality we fix the cyclic order to ð1;…; NÞ.
In this section we make the iδ-prescription explicit by

expanding energy factors around small values of δ,

Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2i þm2 − iδ

q
→ Ei −

iδ
2Ei

þOðδ2Þ ð48Þ

and use the notation of Ei for energy factors without the iδ
for the rest of this section. Further we define k⃗i ¼ k⃗þ q⃗i.
With this we recall, that within causal loop-tree duality we
only have E-surfaces with fixed iδ-prescription

xij ¼ Ei þ Ej − q0ij − i
δ

2

�
1

Ei
þ 1

Ej

�
; ð49Þ

since in the massive case Ei > 0; ∀ i.
We define the set of singular E-surfaces E for a given set

of external momenta ðp1;…; pnÞ by the existence con-
dition

q2ij ≥ 4m2: ð50Þ

We check this condition for all i ≠ j and put the pair of
indices in the set E, if Eq. (50) is fulfilled.
The contour deformation is defined with technical

parameters. From an analytical point of view, the contour
deformation is independent of these parameters. However
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they still influence the convergence of the integrand and are
hence subject to optimization. The parameters are chosen in
a way that they work for a generic set of external momenta,
even though individually a better performance can be
achieved by adjusting the parameters for specific cases.
We used values of [27,35–37] as references and expect
room for improvement by a proper analysis of these
parameters. We define

ffiffiffi
s

p ¼ max
fi;jg∈f1;…;Ng;i≠j

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðpi þ pjÞ2j

q 	
ð51Þ

as a parameter that scales with the external momenta. This
is motivated by the center of mass energy of the system. We

use k⃗ instead of k⃗0 for the deformed loop momentum in the
following.

A. Deformation direction

The full deformation direction we use is

κ⃗¼
X

fi;jg∈E
g

�⃗
kþ1

2
ðq⃗iþ q⃗jÞ;q0i −q0j ;γg

�
cijðk⃗;MEðq0i −q0jÞÞ · b⃗ij

þgðk⃗;Mg;γgÞ
XNsoft

a¼1

caðk⃗;ME;γEÞκ⃗a ð52Þ

and will be explained in the following. First, the technical
parameters are set to

Mg ¼ 0.7
ffiffiffi
s

p

ME ¼ 0.07

γg ¼ 0.7

γE ¼ 0.008: ð53Þ
Each N-point function has a set E of singular E-surfaces
according to the existence condition defined in Eq. (50).
The first part is a sum of direction vectors b⃗ij multiplied

by an antiselection function cij and a falloff function g, over
all singular E-surfaces E. In order to determine the
deformation direction b⃗ij we apply the deformation of
Eq. (46) to an E-surface defined in Eq. (5). We denote
energy factors, as well as E-surfaces, after the deformation
by a prime

E0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2i þm2 þ 2iλκ⃗ · k⃗i − λ2κ⃗2

q
ð54Þ

x0ij ¼ E0
i þ E0

j − q0ij; ð55Þ

and expand around small values of λ up to first order in λ to
make the imaginary part explicit,

x0ij → Ei þ Ej − q0ij þ iλκ⃗ ·

�
k⃗i
Ei

þ k⃗j
Ej

�
: ð56Þ

On singular E-surfaces xij ¼ 0 the deformation vector κ⃗
should fulfil the iδ-prescription. The natural choice for one
singularity is to choose the vector itself,

κ⃗ ¼ −
�
k⃗i
Ei

þ k⃗j
Ej

�
: ð57Þ

However, it turned out that in general the following
deformation vector produced better results,

κ⃗ ¼ −Ej

�
k⃗i
Ei

þ k⃗j
Ej

�
≡ b⃗ij; ð58Þ

which also has a negative projection on the deformation
direction in Eq. (56).
To define a complete deformation for an N-point

function we make use of the antiselection method, setting
the deformation to zero whenever it deforms in the wrong
direction. We define the helper functions, that have been
used for contour deformation in [35],

hθðt;MEÞ ¼
t

tþM2
E
θðtÞ ð59Þ

hδðt;MEÞ ¼
t2

t2 þM2
E
: ð60Þ

We further define

cijðk⃗;MEÞ
≡ Y

fl;mg∈E;fl;mg≠fi;jg
max ½hδðxlm;MEÞ; hθðb⃗ij · b⃗lm;MEÞ�;

ð61Þ

while the product is set to one if E has only fi; jg as
element. Far away from singular surfaces, cij ∼ 1, because
the first argument of the max function will be very close to
one. On singular E-surfaces, the first argument is zero, such
that only the second argument might give a nonzero
contribution. If the deformation deforms in the wrong
direction, the argument of hθ is either negative or zero,
such that cij ¼ 0 as soon as the deformation deforms in the
wrong direction on singular surfaces. Furthermore, we
multiply each contribution by a falloff function g defined as

gðk⃗;Mg; γgÞ≡ γgM2
g

k⃗2 þM2
g

: ð62Þ

The second part of Eq. (52) is the soft insertion part of the
deformation. This is required since the first part of the
deformation is not guaranteed to give a contribution on
intersections of multiple E-surfaces. It is again defined with
an antiselection principle. The basic idea is to test a number
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of predefined directions [37]. The number Nsoft of pre-
defined directions is a free technical parameter of the
algorithm. As this number goes to infinity, the method is
exact. In practice it turns out that the Cartesian coordinate
directions already work sufficiently well. Thus we use
Nsoft ¼ 3 and the standard basis,

κ⃗a ¼ Esofte⃗a; a ¼ 1; 2; 3 ð63Þ

e⃗1 ¼
0
@ 1

0

0

1
A; e⃗2 ¼

0
@ 0

1

0

1
A; e⃗3 ¼

0
@ 0

0

1

1
A; ð64Þ

with the technical parameter Esoft ¼ 0.03
ffiffiffi
s

p
. The coeffi-

cients are defined as

caðk⃗;ME; γEÞ ¼
Y

fi;lg∈E
dþa;i;lðk⃗;MEðq0i − q0l Þ; γEÞ

−
Y

fi;lg∈E
d−a;i;lðk⃗;MEðq0i − q0l Þ; γEÞ ð65Þ

with

d�a;i;lðk⃗;ME; γEÞ ¼ max½hδðxil; ffiffiffiffiffi
γE

p
MEÞ;

hθð�κ⃗a · b⃗il;
ffiffiffiffiffi
γE

p
MEÞ�: ð66Þ

The idea of this algorithm is the following: for each
point k⃗ and hence especially on the intersection of multiple
singularities each factor d�a;i;l checks whether �κ⃗a satis-
fies the iδ-prescription of the dual propagator l when
cutting the propagator i. Thus the prefactor ca is only
nonzero on singularities if the corresponding deformation
direction �κ⃗a fulfills the iδ-prescription of all singular xij
simultaneously.
We remark that with a finite number of predefined

directions one may construct counterexamples where no
correct deformation is found. This is unproblematic if the
probability for these events can be neglected. We further
remark that one may replace the soft deformation algorithm
with the computationally more expensive algorithm of
Ref. [27]. The latter guarantees a correct deformation.

B. Deformation magnitude

The scaling parameter λ in Eq. (46) should in principle be
as high as possible to avoid singularities and therefore
improve numerical convergence. However, it has three
constraints that limit its magnitude [27,35], namely the
continuity constraint λC, the complex pole constraint λCP
and the expansion validity constraint λexp. We set

λ ¼ minðλmax; λC; λCP; λexpÞ; ð67Þ

with λmax as a technical parameter of the deformation
which we set to 1. We explain the other parameter in the
following.

1. Continuity constraints

We start by defining

ai ¼ k⃗2i þm2

bi ¼ κ⃗ · k⃗i

ci ¼ κ⃗2; ð68Þ

and expand energy factors for small values of λ

E0
i¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiþ2iλbi−λ2ci

q
¼

λsmall

ffiffiffiffi
ai

p þλ
ibiffiffiffiffi
ai

p −λ2
aici−b2i
2a3=2i

þλ3ibi
aici−b2i
2a5=2i

þOðλ4Þ;

ð69Þ

for κ⃗; m ≠ 0. We restrict the real part to be greater or equal
to zero in order to avoid cutting the negative real axis and
therefore violate continuity

ai − λ2ci ≥ 0 ⇔ λ ≤ ϵcc

ffiffiffiffi
ai

pffiffiffiffi
ci

p ≡ λC;i;

ϵcc ∈ ð0; 1Þ; ∀ i ∈ f1;…; Ng; ð70Þ

with ϵcc ¼ 0.95. Therefore

λC ¼ min ðλC;1;…; λC;N; λC;UVÞ; ð71Þ

where λC;UV is the value for the energy appearing in the
local UV subtraction term.

2. Complex poles constraints

We calculate complex poles of E-surfaces by expanding
their two energy factors according to Eq. (69) up to second
order. We then set real and imaginary part separately to zero
as demonstrated in the following

EiþEj−q0ij−λ2
�
aici−b2i
2a3=2i

þajcj−b2j
2a3=2j

�
þiλ

�
biffiffiffi
a

p
i
þ bjffiffiffi

a
p

j

�

¼A−λ2Cþ2iλB¼0

⇒λ¼ i
B
C
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
C
−
�
B
C

�
2

s
; ð72Þ

with the definitions
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A ¼ Ei þ Ej − q0ij

B ¼ 1

2

�
biffiffiffi
a

p
i
þ bjffiffiffi

a
p

j

�

C ¼ aici − b2i
2a3=2i

þ ajcj − b2j
2a3=2j

: ð73Þ

We avoid these complex poles by defining

⇒ λ2ij ¼

8>>>>>>><
>>>>>>>:

A=4C∶2
�

B
C

�
2

< A
C�

B
C

�
2

− A
4C ∶0 < A

C < 2

�
B
C

�
2

�
B
C

�
2

− A
2C ∶

A
C < 0

; ð74Þ

along the lines of [35]. For the special case of i ¼ j, which
either appears in the prefactor of the causal representation
or the UV subtraction term, we recall that in the previous
Sec. V B 1 in Eq. (70) we constrained the real part of energy
factors to be greater or equal to zero, resulting in the
constraint

λ≤ ϵcc

ffiffiffiffi
ai

pffiffiffiffi
ci

p ≡ λC;i; ϵcc ∈ ð0;1Þ; ∀ i∈ f1;…;Ng: ð75Þ

This already guarantees that we will not have any complex
poles, since the real part is always greater than zero for
ϵcc ∈ ð0; 1Þ. Therefore there is no extra factor included for
complex poles of energy factors. Finally, the restrictions
from complex poles are summarized to

λCP ¼ min ðλCP;UV; min
fi;jg∈Eall

ðλijÞÞ; ð76Þ

where now Eall is the set of indices for all possible E-
surfaces, not only the singular ones as in E. This is due to
the fact that even though E-surfaces might not have a real
solution, they always have a complex solution.

3. Expansion validity constraints

In order to constrain the magnitude due to the expansion
of square root factors we recall the form of the energy factor
after applying contour deformation in Eq. (54),

E0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiþ 2iλbi− λ2ci

q
¼ ffiffiffiffi

ai
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2iλ

bi
ai
− λ2

ci
ai

s
: ð77Þ

and its expansion for small values of λ in Eq. (69)

1ffiffiffiffi
ai

p E0
i ¼
λsmall

1þλ
ibi
ai

−λ2
aici−b2i
2a2i

þλ3ibi
aici−b2i
2a3i

þOðλ4Þ:

ð78Þ

Using the definitions

1ffiffiffiffi
ai

p E0
i ¼ z0 þ iλz1 − λ2z2 þ iλ3z3 þOðλ4Þ; ð79Þ

we have the relation

z2
z0

¼ z3
z1
: ð80Þ

We require

λ2
z2
z0

¼ λ2
aici − b2i

2a2i
< ϵth; ð81Þ

with ϵth ¼ 0.95 in our implementation. This guarantees
that the contributions of higher orders fall off and is
implemented by the constraint

λ2exp ¼ ϵthminj∈f1;…;Ng



2aj

ajcj − b2j

�
: ð82Þ

C. Parametrization

Since Monte Carlo integrators usually provides random
numbers in a hypercube, we map the numbers ðx; y; zÞ ∈
½0; 1�3 to ðk1; k2; k3Þ ∈ ð−∞;∞Þ using the following trans-
formation

k1 ¼
x

x − 1
cos ð2πzÞ2

ffiffiffiffiffiffiffiffiffiffiffiffi
y − y2

q

k2 ¼
x

x − 1
sin ð2πzÞ2

ffiffiffiffiffiffiffiffiffiffiffiffi
y − y2

q
k3 ¼

x
x − 1

ð1 − 2yÞ

J ¼ 4π
x2

ðx − 1Þ4 ; ð83Þ

that has been used in [27]. J denotes the Jacobian of this
transformation.

VI. VALIDATION

In order to validate our method we compare the
Monte Carlo integrated result for one-loop amplitudes with
up to seven legs obtained from the causal loop-tree duality
representation with analytical results. We used the RAMBO
algorithm [39] to generate configurations of external
momenta that conserve overall momentum and satisfy the
on-shell conditions. By convention, we take the momenta of
particles 1 and 2 to have a negative energy component while
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the momenta of all other particles have a positive energy
component. The center of mass energy of the two incoming
particles is randomly generated. We set the unit of energy
equal to one (i.e., 1 GeV ¼ 1). We consider renormalized
amplitudes in the MS-scheme and use μ2UV ¼ 1.
The reference values were generated using FeynArts [40]

to output all possible diagrams of the amplitude and using
the Loop Tools package [41] for 4,5-point functions and the
Collier package [42] for 4–7-point functions to evaluate the
resulting integrals. For integration we use the Monte Carlo
integrator Vegas provided by the CUBA library [43,44]. We
integrated 500 4-point amplitudes, 50 5-point amplitudes, 4
6-point amplitudes and 4 7-point amplitudes. The number
of evaluations was set to 50 × 106 Monte Carlo points. We
observed that the Monte Carlo error reported by the
Monte Carlo integrator is orders of magnitudes higher
than the relative error compared to the reference value in
some cases. We therefore conclude that the Monte Carlo
error estimate is too high and do not report it. We first give
explicit results for one specific configuration of external
momenta for each amplitude in Table II. For efficiency
reasons we ignored factors of i stemming from propagators
and vertices which would result in an overall factor of
ð−1ÞN in the amplitude. The external momenta to repro-
duce these results are given in Appendix B.
Then we summarized the remaining results in Table III,

by giving the average relative error as well as its standard

deviation. The average relative error is obtained as the
relative error to the reference values. We want to stress that
the code itself as well as the contour deformation have not
been optimized yet using methods mentioned in [27,36].
For 1 million Monte Carlo integration points the 4-point
amplitudes usually take a few seconds each, 5,6-point a few
minutes and 7-point a few hours on a single standard PC. A
general remark of Table III is that the average error of the
imaginary part is usually smaller than the one of the real
part. Furthermore more external particles result in a slower
convergence.

VII. CONCLUSIONS

In this paper we considered renormalized one-loop
amplitudes in massive ϕ3-theory within causal loop-tree
duality. We derived a recurrence relation for the integrand
of the one-loop amplitude, which only contains causal
terms. The recurrence relation is directly based on the
causal representation and avoids Feynman diagrams. The
resulting integrand can be integrated numerically by
Monte Carlo methods. We have verified up to seven points
that our results agree with analytic results.
Our results are an important step toward the application

of loop-tree duality toward the calculations of realistic
observables and cross sections within this framework.
We expect the generalization to other theories (e.g.,

Yang-Mills, QCD) to be unproblematic, as these theories
differ only by numerator terms. The diagrams of ϕ3-theory
are the most general ones: Any other theory will only add
diagrams which are obtained by pinching some propaga-
tors. These additional diagrams do not introduce new
causal terms.
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APPENDIX A: DERIVATION OF THE NUMBER
OF CAUSAL TERMS PER DIAGRAM

In this appendix we derive the number of causal terms for
a single diagram given in Eq. (11). We start by calculating
the number of terms of F , cf. Eq. (7) by induction in NL,
the number of elements of the set AL. At this point we
remind the reader of the relationN ¼ NL þ NR since it will
be important in the following.
The case NL ¼ 1 is special since there is no sum, as can

be seen in the first line of Eq. (9). The hypothesis that we
want to prove is that the number of terms, NF

termsðNL;NRÞ
depending on the cardinalities NL and NR, is given by

TABLE II. Integration results separated into real and imaginary
(imag.) part.

Amplitude Numerical value Reference value Relative error

4-point real 3.7715 × 10−11 3.7728 × 10−11 3.2 × 10−4

4-point imag. 5.4217 × 10−11 5.4200 × 10−11 3.3 × 10−4

5-point real 1.4172 × 10−15 1.4153 × 10−15 1.4 × 10−3

5-point imag. −1.2211 × 10−14 −1.2209 × 10−14 2.1 × 10−4

6-point real 1.378 × 10−13 1.398 × 10−13 1.4 × 10−2

6-point imag. 9.243 × 10−13 9.209 × 10−13 3.7 × 10−3

7-point real −3.088 × 10−21 −3.051 × 10−21 1.2 × 10−2

7-point imag. −6.613 × 10−21 −6.655 × 10−21 6.4 × 10−3

TABLE III. Average error of integration results separated into
real and imaginary part.

Amplitude Average relative error Standard deviation

4-point real 1.5 × 10−3 8.8 × 10−3

4-point imag. 5.6 × 10−4 1.0 × 10−3

5-point real 3.2 × 10−3 8.7 × 10−3

5-point imag. 2.4 × 10−3 9.7 × 10−3

6-point real 4.9 × 10−3 6.4 × 10−3

6-point imag. 1.5 × 10−3 1.5 × 10−3

7-point real 1.5 × 10−2 1.2 × 10−2

7-point imag. 7.9 × 10−3 6.6 × 10−3
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NF
termsðNL;NRÞ≔

XNR

m1¼1

Xm1

m2¼1

…
XmNL−2

mNL−1¼1

1¼
�

N−2

NL−1

�
; ðA1Þ

for NL ≥ 1.
For NL ¼ 1 we trivially obtain NF

termsð1; NRÞ ¼
1 ¼

�
1þNR−2

0

�
.

Now suppose Eq. (A1) holds for NL. To show that it still
holds for ðNL þ 1Þ, let us replace the last ðNL − 1Þ sums
using Eq. (A1),

XNR

m1¼1

Xm1

m2¼1

…
XmNL−1

mNL
¼1

1 ¼
XNR

m¼1

�
mþ NL − 2

NL − 1

�
:

Now we can shift the index of the sum on the right-hand
side and use the identity

Xn
j¼k

�
j

k

�
¼

�
nþ 1

kþ 1

�

to obtain

XNR

m¼1

�
mþ NL − 2

NL − 1

�
¼

XN−2

m¼NL−1

�
m

NL − 1

�
¼

�
N − 1

NL

�
;

This proves Eq. (A1).
We are now able to compute the total number of terms

generated by the expression on the right-hand side of
Eq. (7),

Ntot
termsðNÞ ≔

XN−1

NL¼1;
NR¼N−NL

X
AL⊔AR

�
N − 2

NL − 1

�
:

Since the expression on the right-hand side only depends
on the cardinalities of the sets AL and AR but not on the
particular elements in them, we can simply count the
number of all partitions of the set f1;…Ng into two
disjoint subsets,

P
AL⊔AR

, which is given by

X
AL⊔AR

1 ¼
�
N
NL

�
: ðA2Þ

Plugging this into Eq. (A2), we arrive at

Ntot
termsðNÞ ≔

XN−1

NL¼1;
NR¼N−NL

�
N

NL

��
N − 2

NL − 1

�

¼
XN−1

NL¼1;
NR¼N−NL

�
N

NL

��
2ðN − 1Þ − N

N − 1 − NL

�

¼
�
2ðN − 1Þ
N − 1

�
;

where we used the Chu-Vandermonde identity to get to the
last line.

APPENDIX B: EXTERNAL MOMENTA

In this appendix we give the external momenta used for
the N-point amplitudes calculated in Table II. All momenta
are on-shell p2

i ¼ m2 ∀ i ¼ 1;…; N and the Nth momen-
tum is given by momentum conservation.

1. 4-point amplitude

p1 ¼ ð−141.10983711348885; 0.0; 0.0; 133.14844423055888Þ
p2 ¼ ð−141.10983711348885; 0.0; 0.0;−133.14844423055888Þ
p3 ¼ ð141.10983711348888;−49.09398540018926;−123.76633930886697;−0.4266762551018309Þ
m ¼ 46.72769980618679

2. 5-point amplitude

p1 ¼ ð−219.15224144836964; 0.0; 0.0; 213.5527212086298Þ
p2 ¼ ð−219.15224144836964; 0.0; 0.0;−213.5527212086298Þ
p3 ¼ ð159.3685658563847; 100.88986032846607; 103.57375828958654;−45.48749568353928Þ
p4 ¼ ð139.654501422648;−107.72894459349114;−35.08814424880286;−65.1439651949617Þ
m ¼ 49.223370427407076
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3. 6-point amplitude

p1 ¼ ð−71.35064013734655; 0.0; 0.0; 70.92438940359767Þ
p2 ¼ ð−71.35064013734655; 0.0; 0.0;−70.92438940359767Þ
p3 ¼ ð29.192886202212556;−4.118173727335252; 24.047177858045522;−14.012624711108641Þ
p4 ¼ ð42.54868938111772;−12.640455845618828; 1.733152867873708; 39.836681456496976Þ
p5 ¼ ð53.78230976095452; 21.065081112026018;−27.466568023795073;−40.41957454285356Þ
m ¼ 7.787479421222914

4. 7-point amplitude

p1 ¼ ð−332.36057016638324; 0.0; 0.0; 332.2385272592629Þ
p2 ¼ ð−332.36057016638324; 0.0; 0.0;−332.2385272592629Þ
p3 ¼ ð139.74515554691573;−39.48281923163617;−130.247185116811; 30.40356307378165Þ
p4 ¼ ð152.89374330062682; 4.2838059333724425;−148.2848545094504;−35.89760527381943Þ
p5 ¼ ð285.42775357977837;−5.4421142702661465; 280.0622653218135;−54.06851063939918Þ
p6 ¼ ð12.720773095787127; 0.512475927638319;−8.853020930392365;−1.4386976974916026Þ
m ¼ 9.006087159214037
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