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The isovector axial form factor of the nucleon plays a key role in interpreting data from long-baseline
neutrino oscillation experiments. We perform a lattice-QCD based calculation of this form factor,
introducing a new method to directly extract its z expansion from lattice correlators. Our final
parametrization of the form factor, which extends up to spacelike virtualities of 0.7 GeV2 with fully
quantified uncertainties, agrees with previous lattice calculations but is significantly less steep than
neutrino-deuterium scattering data suggests.
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I. INTRODUCTION

The axial form factor of the nucleon GAðQ2Þ plays a
central role in understanding the quasielastic part of GeV-
scale neutrino-nucleus cross sections. Particularly for the
upcoming long-baseline neutrino oscillation experiments
DUNE [1] and T2HK [2], these cross sections must be
known with few-percent uncertainties [3] to enable a
sufficiently reliable reconstruction of the incident neutrino
energy. In the absence of modern, high-quality experimen-
tal measurements of GAðQ2Þ [4], calculations for the axial
form factor from lattice QCD [5] are of crucial importance
in order to maximize the scientific output of neutrino-
oscillation experiments.
For a long time, the axial charge of the nucleon,

gA ≡GAð0Þ, has served as a benchmark quantity for lattice
QCD calculations [6], exemplifying the improvements of
recent years in terms of control over statistical and
systematic errors. The latter are caused mainly by the
excited-state contamination in Euclidean correlation func-
tions [7–10], as well as by the chiral and continuum
extrapolation. Many of the techniques developed have
been carried over and applied to nonvanishing momentum
transfer Q2, most recently in Refs. [11–16]. In comparison
to the calculation of the charge, a new source of systematics
arises for the form factor, namely the parametrization of the
Q2 dependence. Historically, an ad hoc dipole Ansatz was

used (see Ref. [4]), incurring an unquantified model
systematic. As a modern alternative, an Ansatz based on
the z expansion has been used extensively, leading to less
model bias at the cost of an increased statistical error on the
phenomenological determination of the mean square radius
hr2Ai ¼ ½−6GA

dGA
dQ2 �Q2¼0 [17]. The sensitivity to the parametri-

zation is also visible in lattice calculations, where the
different Ansätze lead to inconsistent results (see e.g., [13]).
In this article, we perform a high-statistics calculation of

GAðQ2Þ for momentum transfers up to 0.7 GeV2 using
lattice simulations with dynamical up, down and strange
quarks with an OðaÞ improved Wilson fermion action. We
employ a new analysis method that simultaneously handles
the issues of the excited-state contamination and the
description of the form factor’s Q2 dependence.

II. METHODOLOGY

The matrix elements of the local isovector axial current
Aa
μðxÞ ¼ ψ̄γμγ5

τa

2
ψ between single-nucleon states are para-

metrized by the axial form factor GAðQ2Þ and induced
pseudoscalar form factor GPðQ2Þ. We focus on the current
component orthogonal to the momentum transfer, thereby
projecting onto the axial form factor,

hNðp0; s0Þjq⃗ × A⃗að0ÞjNðp; sÞi

¼ GAðQ2ÞŪs0 ðp0Þq⃗ × γ⃗γ5
τa

2
UsðpÞ; ð1Þ

where q⃗ ¼ p⃗0 − p⃗,Q2 ¼ q⃗2 − ðEp0 − EpÞ2 and UsðpÞ is an
isodoublet Dirac spinor with momentum p and spin state s.
We employ Euclidean notation throughout.
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The setup for our lattice determination of the axial form
factor is very similar to the one we used in the case of the
electromagnetic form factors [18]. The nucleon two- and
three-point functions are computed as

C2ðp⃗; tÞ ¼ a3
X
x⃗

eip⃗·x⃗ΓβαhΨαðt; x⃗ÞΨ̄βð0Þi; ð2Þ

C3ðq⃗; t; tsÞ ¼ −ia6
X
x⃗;y⃗

eiq⃗·y⃗Γβα
q⃗ × s⃗
jq⃗ × s⃗j2

· hΨαðts; x⃗Þq⃗ × A⃗a¼3ðt; y⃗ÞΨ̄βð0Þi; ð3Þ

where Ψαðx⃗; tÞ denotes the proton interpolating operator

ΨαðxÞ ¼ ϵabcðũTaðxÞCγ5d̃bðxÞÞũαcðxÞ: ð4Þ

The quark fields ũ, d̃ are smeared with a Gaussian kernel
[19], using APE-smeared gauge fields [20], in such a way
that the smearing radius remains approximately constant as
a function of the lattice spacing. The nucleon mass is
extracted via a one-exponential fit to C2ð0⃗; tÞ, and the
relativistic dispersion relation is used for Ep. We have
chosen to compute the nucleon three-point function in the
rest frame of the final-state nucleon, p⃗0 ¼ 0, and the chosen
projection matrix Γ reads1

Γ ¼ 1

2
ð1þ γ0Þð1þ iγ5s⃗ · γ⃗Þ: ð5Þ

In practice, we have set s⃗ ¼ e⃗3, i.e., the nucleon spin is
aligned along the x3 axis. The transverse part q⃗ × A⃗a of the
axial current receives no additive OðaÞ improvement. For
its multiplicative renormalization, we employ the determi-
nation of ZA and bA from [21,22], respectively, while the
coefficient b̃A in the notation of [22] is neglected, since it
parametrizes a sea-quark effect and is expected to be small.
The accessible momentum transfers are discrete,

q⃗ ¼ 2πn⃗=L, n⃗ ∈ Z3 in a periodic box of size L × L × L.
For a givenvalue ofq ¼ 2πjn⃗j=L,weperformaveragesof the
two-point functions over all spatial momenta q⃗ of norm q,

C̄2ðq; tÞ ¼
X

q⃗∶jq⃗j¼q

C2ðq⃗; tÞ=
� X

q⃗∶jq⃗j¼q

1

�
: ð6Þ

We then use the ratio

Rðq⃗; t; tsÞ≡ C3ðq⃗; t; tsÞ
C̄2ð0; tsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̄2ðjq⃗j; ts − tÞC̄2ð0; tÞC̄2ð0; tsÞ
C̄2ð0; ts − tÞC̄2ðjq⃗j; tÞC̄2ðjq⃗j; tsÞ

s

ð7Þ

to build a momentum-averaged estimator for GAðQ2Þ,

Geff
A ðq; t; tsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eq

mþ Eq

s X0

q⃗∶jq⃗j¼q

Rðq⃗; t; tsÞ
.� X0

q⃗∶jq⃗j¼q

1

�
; ð8Þ

where the prime on the sum indicates that we impose the
additional constraint jq3j ≤ minðjq1j; jq2jÞ, which we have
found to slightly improve the signal. From here we construct
the summed insertion

Sðq; tsÞ≡ a
Xts−a
t¼a

Geff
A ðq; t; tsÞ;

¼ts→∞
b0ðqÞ þ tsGAðQ2Þ þ…; ð9Þ

with Q2 ¼ q2 − ðm − EqÞ2. The dots stand for excited-state
contributions that are of order e−Δts and tse−Δts , with Δ the
energy gap above the single-nucleon state.
As a novelty, we introduce a technique which is based on

fitting simultaneously the q and ts dependence of Sðq; tsÞ,
by parametrizing the axial form factor from the outset via
the z expansion (see [17,23] and Refs. therein),

GAðQ2Þ ¼
Xnmax

n¼0

anznðQ2Þ; ð10Þ

zðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffi
tcut

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffi

tcut
p : ð11Þ

The fit parameters are the coefficients an and the offsets
b0ðqÞ, which we keep as independent fit parameters for each
value of q. In the data analyzed below, we set nmax ¼ 2
without constraining the fit parameters by priors. We note
that setting nmax ¼ 3 would require the use of priors for the
highest-order term to stabilize the fit, but the results are
consistent with our preferred nmax ¼ 2 results. To obtain
the form factor at the physical point, thean are extrapolated to
the continuum and interpolated to the physical pion mass, at
which point the form factormay be evaluated at any virtuality
in the chosen expansion interval ½0; 0.7 GeV2�.
Our method relies on the fact that, for a given Q2

interval, the z expansion represents a general, systemati-
cally improvable parametrization of the form factor [23].
We have chosen to map Q2 ¼ 0 to the point z ¼ 0 and set
tcut ¼ ð3Mphys

π Þ2 to the three-pion kinematic threshold at
the physical pion mass for all gauge ensembles used, as this
choice reduces the pion-mass dependence of the an. We
find that the immediate parametrization of the form factor

1We have used the projection matrix given in Eq. (5) through-
out the calculation, with the exception of the nucleon mass
determination, for which we used the unpolarized projection
matrix Γ ¼ ð1þ γ0Þ=2.
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has a stabilizing effect as compared to the standard two-step
procedure of first obtaining the form factor independently
at discrete values of Q2, followed by a continuous para-
metrization of these data points. We return to this point in
the next section.
We perform fits to Sðq; tsÞ based on the second line of

Eq. (9), dropping the omitted terms, and including all
values of ts greater than or equal to a certain tmin

s . We
perform these fits for all possible values of tmin

s subject to
the requirements that at least two ts values enter the fit and
that the number of degrees of freedom be strictly positive,
thus defining a setΘ of tmin

s values on each gauge ensemble.
At small values of ts, contributions from excited states are
expected to be significant, whereas at large ts the signal-to-
noise ratio becomes poor. This leaves us with a relatively
small window of starting values tmin

s that can safely be used.
Rather than choosing a single tmin

s , we average the fit results
anðtmin

s Þ over all values tmin
s ∈ Θ, using as a weight factor a

“smooth window” function fðtmin
s Þ,

an ¼
X
tmin
s ∈Θ

fðtmin
s Þanðtmin

s Þ
.� X

tmin
s ∈Θ

fðtmin
s Þ

�
; ð12Þ

fðτÞ ¼ tanh
�
τ − tloww

Δtw

�
− tanh

�
τ − tupw
Δtw

�
; ð13Þ

with tloww ¼ 0.8 fm, tupw ¼ 1.0 fm and Δtw ¼ 0.08 fm. Note
that neither the statistical errors nor the covariance matrix
enter the average; the uncertainty on the latter is obtained
via the standard jackknife method (see e.g., Ref. [24]). The
average (12) represents very well what could be identified
as a plateau in the fit results, as illustrated in Fig. 1. The
three panels also illustrate the advantage of having to
scrutinize only very few observables for excited-state
effects, as opposed to having to do this for every Q2 value.
Having an extended set of ts values at our disposal, the
control over these effects is significantly improved as
compared to our previous summation-method results for
the vector form factors [18].

III. THE LATTICE CALCULATION

We use a set of 14 CLS (coordinated lattice simulations)
Nf ¼ 2þ 1 ensembles [25] that have been generated with
nonperturbativelyOðaÞ-improved Wilson fermions [26,27]
and the tree-level improved Lüscher-Weisz gauge action
[28]. They cover the range of lattice spacings from 0.050 to
0.086 fm and pion masses from about 350 down to
130MeV. Details of these ensembles, including the number
of configurations, the number of measurements and the
number of available source-sink separations ts, are listed in
Table I. All lattices used in this study have a fairly large
volume, which is indicated by MπL≳ 4.
For most of these ensembles, the fields obey open

boundary conditions in time [30] in order to prevent
topological freezing [31]. The reweighting factors needed
to correct for the treatment of the strange-quark determinant
during the gauge field generation were computed using the
method of Ref. [32]. Our setup to compute the nucleon two-
and three-point functions is similar to that used in our study
on the isovector charges of the nucleon [33].
As discussed in Sec. II, we perform simultaneous fits to

all data points with Q2 ≤ 0.7 GeV2 and source-sink sep-
arations ts ≥ tmin

s on each ensemble to obtain the coef-
ficients anðtmin

s Þ of the z expansion at the given pion mass,
lattice spacing and volume. Subsequently, the averaged
coefficients an are obtained via Eq. (12). Recall that in our
analysis, we incorporate the z expansion, which para-
metrizes the Q2 dependence of the form factor, directly
into the summation method. This can also be done in two
separate steps, first using the summation method to get the
value of the form factor at a given Q2, keeping track of the
correlation between the data at differentQ2 values, and then
parametrizing theQ2 dependence of the form factor using a
z expansion. The two methods should obviously give
compatible results, which we find to be the case. This is
illustrated in Fig. 2 on ensemble E250.

FIG. 1. Illustration of averaging over the minimum source-sink
separation tmin

s in the summation method for the near-physical
pion mass ensemble E250 of size 192 × 963 with a lattice spacing
of 0.064 fm. We perform the z-expansion fits for each ensemble
starting at different values of tmin

s . The results for coefficients a0,
a1 and a2 are shown here as the blue squares. The bands represent
the smooth-window averages over tmin

s , and the solid red line
shows the weight function Eq. (13) (arbitrarily normalized for
visibility), which is applied to all three coefficients.
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Our proposed method leads to larger correlation matri-
ces, and in some cases small eigenvalues can cause
difficulties in calculating the inverse of the matrix. If the
resulting correlation matrix is larger than 70 × 70, then we
slightly damp the off-diagonal correlations to avoid

numerical instabilities [34], a procedure that has been used
a number of times in lattice QCD calculations, see e.g.,
[35–38]. This regularization prescription reads

Creg
ij ¼ ð1 − xÞδijCii þ xCij ð14Þ

(without any summation convention in place), and we have
used x ¼ 0.985…0.995. The one-step fits are then very
stable and robust, and the damping of off-diagonal correla-
tions essentially only affects the χ2 of the fit. This is our
preferred method, as it gives readily a parametrization of the
shape of the form factor. The results of these fits are tabulated
ensemble-by-ensemble in Table II in Appendix A.
We then proceed to perform chiral and continuum

extrapolations of the coefficients an to the physical point,
including for each of them a term linear in a2. As for their
chiral behavior, we use the following three Ansätze:
(1) Linear in M2

π for all coefficients an.
(2) Again linear inM2

π for coefficients a1 and a2, and an
extended Ansatz containing a chiral logarithm for the
zeroth coefficient:

a0 ¼ gð0Þa þ gð1Þa M2
π þ gð3Þa M3

π − gð2Þa M2
π ln

Mπ

Mn

with

TABLE I. Overview of ensembles used in this study. The values β ¼ 3.40, 3.46, 3.55 and 3.70 correspond to lattice spacings
a ≈ 0.086, 0.076, 0.064 and 0.050 fm, respectively [29]. Columns T=a and L=a give the temporal and spatial size of the lattice, andMπ

andMN are the pion and nucleon masses. Nconf is the number of configurations used for each ensemble, and in column Nmeas we list the
number of measurements done at the largest source-sink separation. To keep the signal-to-noise ratio as a function of ts close to constant
for decreasing ts, the number of measurements is reduced by a factor of 2 in steps of Δts ≈ 0.2 fm for the periodic ensembles E250,
D450 and N451, while for all other ensembles this iterative reduction sets in only for ts < 1.0 fm. Nts is the number of available source-
sink separations in the range listed in column ts. However, in this study the smooth window of Eq. (13) gives a strong weight to those
values of tmin

s (the smallest value of ts included in the summation method) in the range 0.8…1.0 fm.

ID β T=a L=a Mπ [MeV] MπL MN [GeV] Nconf Nmeas ts [fm] Nts

H102 3.40 96 32 354 4.96 1.103 2005 32080 0.35…1.47 14
H105 3.40 96 32 280 3.93 1.045 1027 49296 0.35…1.47 14
C101 3.40 96 48 225 4.73 0.980 2000 64000 0.35…1.47 14
N101 3.40 128 48 281 5.91 1.030 1596 51072 0.35…1.47 14
S400 3.46 128 32 350 4.33 1.130 2873 45968 0.31…1.53 9
N451 3.46 128 48 286 5.31 1.045 1011 129408 0.31…1.53 9
D450 3.46 128 64 216 5.35 0.978 500 64000 0.31…1.53 17
N203 3.55 128 48 346 5.41 1.112 1543 24688 0.26…1.41 10
N200 3.55 128 48 281 4.39 1.063 1712 20544 0.26…1.41 10
D200 3.55 128 64 203 4.22 0.966 2000 64000 0.26…1.41 10
E250 3.55 192 96 129 4.04 0.928 400 102400 0.26…1.41 10
N302 3.70 128 48 348 4.22 1.146 2201 35216 0.20…1.40 13
J303 3.70 192 64 260 4.19 1.048 1073 17168 0.20…1.40 13
E300 3.70 192 96 174 4.21 0.962 570 18240 0.20…1.40 13

FIG. 2. Consistency check of the new method. We plot the
results of fits to single Q2 data (red data points) and compare
them to the result of the immediate z expansion (the blue error
band) on ensemble E250 using tmin

s ¼ 12. The red error band is a
z-expansion fit to the single Q2 data points (including correla-
tions), whereas the blue error band shows the fit where the z
expansion is directly incorporated into the summation method
[Eq. (9)]. Here tmin

s ¼ 12. The agreement is good, and the
immediate z expansion provides readily a model-independent
parametrization of the shape of the form factor.
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gð1Þa ¼ 4d16 −
ðgð0Þa Þ3
16π2F2

π
;

gð2Þa ¼ gð0Þa

8π2F2
π
ð1þ 2ðgð0Þa Þ2Þ;

gð3Þa ¼ gð0Þa

8πF2
πMn

ð1þ ðgð0Þa Þ2Þ − gð0Þa

6πF2
π
Δc3;c4 ;

where Mn ¼ 938.92 MeV is the nucleon mass and
Fπ ¼ 92.42 MeV the pion decay constant [39]. Here
Δc3;c4 ¼ c3 − 2c4 is a combination of low-energy
constants c3 and c4. The free fit parameters for the

zeroth coefficient’s chiral extrapolation are gð0Þa , d16
and Δc3;c4 .

(3) Same as Ansatz 2, but including M3
π terms for

coefficients a1 and a2.
Note that, while the coefficients an do not have common fit
parameters, they are correlated within an ensemble: these
correlations are taken into account in the fits.
We perform multiple extrapolations using the different fit

Ansätze described above with pion mass cuts Mπ < Mcut
π

with Mcut
π ½MeV� ∈ f300; 285; 265; 250g, as well as drop-

ping data from the coarsest lattice spacing, to get a handle
on systematic effects. Although we do not observe a strong
dependence on the volume, we include a term [40]

M2
πffiffiffiffiffiffiffiffiffiffi

MπL
p e−MπL ð15Þ

for the zeroth coefficient a0 to check for possible finite-size
effects (FSE) in some of the extrapolation fits. For a subset
of fits, we impose Gaussian priors on the coefficients
multiplying the a2 terms, restricting the difference between
the values at the coarsest lattice spacing and in the
continuum limit to at most 20%. This is motivated by a
tendency of these fits to attribute unnaturally large correc-
tions to discretization effects, especially for a1 and a2 that
are statistically less precise. We keep those fits that have a p
value better than 5% and provide a satisfactory description
of the data, especially at pion masses below 200 MeV.
Some examples of these fits based on different Ansätze and
pion mass cuts are shown in Appendix B.
While most of our fits have a good p value without

including the FSE term of Eq. (15), which tends to slightly
increase the uncertainties, we do include these fits in the
analysis in order to account for the systematic effect due to
finite-size corrections. Figure 3 illustrates this by compar-
ing a selected fit, Ansatz 3 with a pion mass cut of
300 MeV, with and without the FSE term. We can also
inspect finite-size effects directly by comparing our results
of the z-expansion fits on two ensembles at a pion mass of
280 MeV, H105 and N101, which differ only by their
spatial sizes, L ¼ 2.8 and 4.1 fm, respectively. We show the
results of the z-expansion fits on these two ensembles as a

function of tmin
s in Fig. 4. We find that the coefficients an

agree well, confirming that finite-size effects are small at
the current level of precision.
Since different fit Ansätze and cuts can be equally well

motivated, as in our previous study of the vector form
factors of the nucleon [18] we perform a weighted average
[41] over the resulting an, where the Akaike information
criterion (AIC) [42] is used to weight different analyses and
to estimate the systematic error associated with the varia-
tions of the global fit. Different versions of the AIC weights
have been developed and used over the years. Here we
choose [43]

wAIC ¼ Ne−
1
2
ðχ2þ2npar−ndataÞ; ð16Þ

where the minimum χ2, the number of fit parameters npar
and the number of data points ndata characterize the fit. N is
a normalization factor that ensures that the sum of the
weights is unity. The corresponding cumulative distribution
functions of the coefficients an and of the mean square
radius hr2Ai are well behaved and show no outliers. We
determine the central value from the 50th percentile, and

FIG. 3. Finite size effects: coefficient a0 (the axial charge) from
fit Ansatz 3 with a pion mass cut of 300 MeV, with and without
the FSE term [Eq. (15)]. The two fits are equally good, and are
both included in the AIC average.
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the full uncertainty as the interval from the 16th to the 84th
percentile. The decomposition of the error into its statistical
and systematic components is achieved following the
prescription proposed in [43]. More details of the model
averaging procedure are given in Appendix C.

IV. RESULTS

Our results for the coefficients of the z expansion of the
nucleon axial form factor in the continuum and at the
physical pion mass are

a0 ¼ 1.225� 0.039ðstatÞ � 0.025ðsystÞ;
a1 ¼ −1.274� 0.237ðstatÞ � 0.070ðsystÞ;
a2 ¼ −0.379� 0.592ðstatÞ � 0.179ðsystÞ ð17Þ

with a correlation matrix

Mcorr ¼

0
B@

1.00000 −0.67758 0.61681

−0.67758 1.00000 −0.91219
0.61681 −0.91219 1.00000

1
CA: ð18Þ

These results, meant to be inserted into Eqs. (10) and (11)
with tcut ¼ ð3Mπ0Þ2, lead to the following mean square
radius:

hr2Ai ¼ ð0.370� 0.063ðstatÞ � 0.016ðsystÞÞ fm2: ð19Þ

The axial charge gA ¼ a0 is in good agreement with our
previous determination [33] based on forward nucleon
matrix elements only. Since the latter method tends to yield
more precise results for a given dataset, we do not view the
present determination of gA as superseding that of Ref. [33],
and merely perform the comparison as a consistency check.
To see how the corrections due to finite lattice spacing

and finite volume affect the form factor, we can compare
our final result to the form factor obtained on our physical
pion mass ensemble, E250. This is illustrated in Fig. 5. At
smallQ2 the corrections are clearly visible, whereas at large
Q2 the two results agree within a fraction of the error.
We compare our result to other lattice QCD determi-

nations of the mean square radius in Fig. 6, finding good
agreement within errors. The comparison features only
lattice calculations with a full error budget, including a
continuum extrapolation; see Refs. [12,14–16,44] for
further lattice results. The NME21 result is from [11],
and the RQCD20 result is from [13]. Both studies para-
metrize the Q2 dependence of the form factor using a z
expansion (RQCD also use a dipole Ansatz as an alternative
parametrization, but that result is not shown in the figure).
For comparison, we show the average of the values
obtained from z-expansion fits to neutrino scattering and

FIG. 4. Direct comparison of the data as a function of tmin
s and

the “smooth window” average of Eq. (13) on two of the
ensembles, H105 and N101. These ensembles have the same
lattice spacing and quark masses, but differ by their volume. The
data points show good agreement, which indicates that any finite
size effects are small.

FIG. 5. Comparing our final result for the axial form factor, in
the continuum and infinite volume limit at the physical pion mass,
to our result on the physical mass ensemble E250. Any difference
between the two error bands is due to finite lattice spacing and
finite volume, and the comparison shows how large these
corrections are as a function of Q2.
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muon capture measurements [17]. Our result also agrees
well with the earlier two-flavor calculation by the Mainz
group [45], and with a more recent analysis [46] by the
same group that has been obtained via the conventional
two-step process of first determining the form factor at
discrete Q2 values and subsequently parametrizing it.
Perhaps even more interesting is the comparison of our

result for the axial form factor to data from pion electro-
production experiments [4] and to a z-expansion fit to
neutrino-Deuterium scattering data [47] in Fig. 7. While
our result agrees well with other lattice QCD calculations,

as can be seen by comparing this figure to Fig. 3 in the
review [5], there is a tension with the axial form factor
extracted from experimental deuterium bubble chamber
data [47]. This tension is strongest at large Q2, the
deuterium extraction being lower than the lattice prediction.
The authors of the Snowmass White Paper on Neutrino
Scattering Measurements [48] remark that, when translated
to the nucleon quasielastic cross section, this discrepancy
suggests that a 30–40% increase would be needed for these
two results to match. They also note that recent high-
statistics data on nuclear targets cannot directly resolve
such discrepancies due to nuclear modeling uncertainties,
and that new elementary target neutrino data would provide
a critical input to resolve such discrepancies.

V. CONCLUSIONS

In this paper, we have introduced a new method to
extract the axial form factor of the nucleon. It combines two
well-known methods into one analysis step: the summation
method ensures that excited-state effects are sufficiently
suppressed, and the z expansion readily provides the
parametrization of the Q2 dependence of the form factor.
Our main results are the coefficients of the z expansion,
given in Eq. (17). Systematic effects are included through
AIC averaging, which also provides the breakup into
statistical and systematic uncertainties and the correlations
among the coefficients. Our results are statistics limited,
implying that significant improvements are still straight-
forwardly possible, though computationally costly.
We observe good agreement with other lattice QCD

determinations of the axial form factor, which means that
the tension with the shape of the form factor extracted from
deuterium bubble chamber data is further strengthened.
Comparing our result for a0 ≡ GAð0Þ to the Particle Data
Group value for the axial charge, gA ¼ 1.2754ð13Þ [49],
which one might view as a benchmark, we find agreement
at the 1.1σ level. Also, using largely the same gauge
ensembles as in this work, we have previously found a good
overall agreement for the isovector vector form factors [18]
with phenomenological determinations, which are far more
precise than in the axial-vector case. Thus a nucleon axial
form factor falling off less steeply than previously thought
now appears more likely.
In the near future, we plan to perform a dedicated

calculation of various forward nucleon matrix elements,
including the axial charge, updating the results of Ref. [33].
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APPENDIX A: ENSEMBLE-BY-ENSEMBLE
RESULTS

Table II collects the fit results for the z-expansion
coefficients and their statistical correlations on each gauge
ensemble.

APPENDIX B: EXTRAPOLATION TO THE
PHYSICAL POINT

We include global fits with three different Ansätze for the
chiral behavior of the form factor and several pion mass
cuts in our final AIC average. We also take into account
finite volume corrections by including a volume-dependent
term [Eq. (15) in the main text] in some of our fits. We show
examples of these global fits in Figs. 8, 9, and 3. Figure 9
highlights the difference between Ansatz 2 and Ansatz 3,
whereas comparing Fig. 8 and the top panel of Fig. 9 shows
Ansatz 3 with different pion mass cuts (300 and 265 MeV,
respectively).

APPENDIX C: AKAIKE (AIC) MODEL AVERAGE

In this appendix, we give more details of the final step of
the analysis, the model average based on the AIC. As
discussed in Sec. III, we take systematic errors into account
by performing an AIC-based average over a set of chiral,
continuum and infinite-volume extrapolations. We choose
the weight [43]

wAIC
k ¼ Ne−

1
2
ðχ2kþ2npar;k−ndata;kÞ;

where the χ2k, the number of fit parameters npar;k and the
number of data points ndata;k describe the kth global fit. The
first two terms in the exponent correspond to the standard
AIC, and the last term is introduced to take into account fits
with different number of data points, i.e., fits with different
cuts in pion mass or lattice spacing. The weights are
normalized so that

P
i wi ¼ 1.

TABLE II. Our results for the coefficients a0, a1, a2 of the z expansion for each ensemble, as well as their

correlations ρai;aj ¼ ðhaiaji − haiihajiÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ha2i i − haii2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ha2ji − haji2

q
Þ. These are smooth window averages [see

Eq. (13)] of z-expansion fits to the sum Sðq⃗; tsÞ in Eq. (9) using different tmin
s .

ID a0 a1 a2 ρa0;a1 ρa0;a2 ρa1;a2

C101 1.177(20) −0.56ð12Þ −2.36ð29Þ −0.59707 0.30568 −0.85694
D200 1.193(28) −1.07ð17Þ −1.01ð42Þ −0.58273 0.35465 −0.87957
D450 1.205(20) −0.78ð11Þ −1.68ð30Þ −0.52813 0.13464 −0.76168
E250 1.310(40) −1.31ð28Þ −0.82ð72Þ −0.61384 0.29885 −0.87065
E300 1.151(29) −0.81ð19Þ −1.48ð48Þ −0.58834 0.31474 −0.88040
H102 1.157(16) −0.55ð11Þ −2.01ð33Þ −0.39306 0.12100 −0.89438
H105 1.199(52) −0.63ð42Þ −2.8ð1.1Þ −0.55469 0.33040 −0.93019
J303 1.188(33) −0.89ð20Þ −1.05ð52Þ −0.59229 0.24273 −0.84407
N101 1.216(15) −0.899ð86Þ −1.43ð21Þ −0.55315 0.22582 −0.81047
N200 1.247(35) −0.71ð21Þ −1.76ð54Þ −0.53414 0.24793 −0.86773
N203 1.123(23) −0.66ð13Þ −1.54ð35Þ −0.48820 0.18570 −0.83382
N302 1.164(34) −0.64ð26Þ −2.36ð70Þ −0.48779 0.21775 −0.91619
N451 1.243(16) −0.912ð99Þ −1.15ð26Þ −0.54656 0.27504 −0.84718
S400 1.178(23) −0.47ð18Þ −1.99ð51Þ −0.44271 0.18507 −0.91340
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The weights wAIC
i are interpreted as probabilities, and

the analyses follow a normal (Gaussian) distribution
Nðai;mk; σkÞ with a central value mk and a standard
deviation σk for the quantity ai.mk and σk are the jackknife
average and the jackknife error in the kth analysis. A joint
distribution function can then be defined as

X
k

wAIC
k Nðai;mk; σkÞ;

which includes both statistical and systematic uncertainties.
The corresponding cumulative distribution function (CDF)
reads

PðaiÞ ¼
Z

ai

−∞
da0i

X
k

wAIC
k Nða0i;mk; σkÞ:

The median of the CDF gives the central value of ai and its
total error is given by the 16% and 84% percentiles of the
CDF. Noticing that scaling σk by a factor of

ffiffiffi
λ

p
scales the

statistical error by
ffiffiffi
λ

p
, but does not scale the systematic

error, we determine the breakup of the total uncertainty into
statistical and systematic errors using λ ¼ 1 and λ ¼ 2.
In Fig. 10, we show the AIC averages and the corre-

sponding cumulative distributions for all coefficients ai as
well as for the mean square radius hr2Ai. These are all well
behaved and contain no outliers. The data points are
individual analyses, or fits, that give a good description
of the data with a p value better than 5%. These are the
analyses that enter the AIC procedure. The error band
shows the AIC average with the total (statistical and
systematic) uncertainty.

FIG. 8. Chiral and continuum extrapolations using fit Ansatz 3 (without the FSE term) and a pion mass cut of 300 MeV. The red circles
show the corrected lattice data at infinite volume, and with zero lattice spacing or physical pion mass, respectively, in the left and right
columns, whereas the gray data points are uncorrected.
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FIG. 9. Extrapolation in pion mass and lattice spacing using fit Ansatz 3 (top panel) and fit Ansatz 2 (lower panel) with a pion mass cut
of 265 MeV. No FSE term was included in these fits. The red circles show the corrected lattice data at infinite volume, and with zero
lattice spacing or physical pion mass, respectively, in the left and right columns, whereas the gray data points are uncorrected.
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