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Zusammenfassung 
 
In dieser Arbeit werden hydrophobes Lösungsverhalten und hydrophobe 

Wechselwirkungen in binären Lösungsmittel-Wasser-Mischungen mit Hilfe atomistischer 
Simulationen untersucht. Viele dieser Mischungen zeigen nicht-ideales Verhalten; die 

Lösungsmittelmoleküle aggregieren, obwohl sich auf makroskopischer Ebene stabile und 
homogene Mischungen ausbilden. Auf Kraftfeldern basierende atomistische Simulationen 

eröffnen eine Möglichkeit, atomare Strukturen und Wechselwirkungen mit den 

thermodynamischen Eigenschaften des Lösungsmittels in Verbindung zu bringen. Die 
erwarteten Eigenschaften hängen sehr stark von den Werten der Parameter ab, mit denen 

die molekularen Wechselwirkungen beschrieben werden.  
Im ersten Teil der Arbeit wird als binäre Mischung t-Butanol (TBA) und Wasser verwendet. 

Ausgehend von der Kirkwood-Buff-Theorie für Lösungen wird ein neues Kraftfeld 

entwickelt, das es ermöglicht, die Ausbildung von Alkohol-Alkohol-, Wasser-Wasser- und 
Alkohol-Wasser-Aggregaten in der Mischung zu beschreiben. Weiterhin können die 

Ableitungen der chemischen Potentiale der an der Mischung beteiligten Stoffe in 
Übereinstimmung mit experimentellen Daten bestimmt werden. 

Mit dem erstellten Kraftfeld ist das bevorzugte Lösungsverhalten und die Thermodynamik 

einer hydrophoben Verbindung in TBA-Wasser-Mischungen am Beispiel von Methan 
studiert worden. Dazu wurden Freie Energie-, Enthalpie- und Entropieänderungen des 

Lösungsvorgangs für verschieden konzentrierte TBA-Wasser-Mischungen berechnet und 

mit experimentellen Werten verglichen. Im Gegensatz zur Freien Energie verändern sich 
Enthalpie und Entropie nicht-monoton bei Änderung des Mischungsverhältnisses. Dies lässt 

sich auf die strukturelle Umverteilung des Lösungsmittels zurückführen, welche keinen 
Einfluss auf die Freie Energie ausübt, da sich di Beiträge von Enthalpie und Entropie 

nahezu kompensieren. Daher kann aus dem Verhalten von Lösungsenthalpie und -entropie 

ein genaueres Bild über die Anordnung der Lösungsmittelmoleküle um die gelöste Substanz 
gewonnen werden.  

Im zweiten Teil werden hydrophobe Wechselwirkungen in Harnstoff-Wasser-Mischungen 
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untersucht. Diese sind von großer Bedeutung in der Biologie (z.B. für das Falten bzw. 

Entfalten von Proteinen). Dennoch sind die Änderungen der Wechselwirkungen, die durch 
Erhöhen des Harnstoffanteils verursacht werden, noch nicht vollständig aufgeklärt. Dieses 

Problem wird anhand der Änderungen der Freien Energie (potential of mean force), der 
Enthalpie und der Entropie als Funktion des Abstandes zweier unpolarer Moleküle in 

Wasser und in einer wässrigen Harnstoff-Lösung (6.9 M) diskutiert. Dazu werden in 

Kapitel 5 die Enthalpie- und der Entropiebeiträge zum "potential of mean force" untersucht, 
die von Umstrukturierungen im Lösungsmittel abhängen. Dabei stellt man fest, dass der 

Zusammenschluss unpolarer Moleküle in einer wässrigen Harnstoff-Lösung genau wie in 
reinem Wasser thermodynamisch bevorzugt wird. Dies steht im Widerspruch zur bisherigen 

Meinung, dass sich Cluster unpolarer Moleküle vollständig in wässrigen Harnstoff 

Lösungen auflösen. Die Konsequenzen dieser Beobachtung für die Stabilität von Proteinen 
in konzentrierten Harnstofflösungen wird eingehend in Kapitel 6 diskutiert. 
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Summary 
 

In this thesis, atomistic simulations are performed to investigate hydrophobic solvation and 

hydrophobic interactions in cosolvent/water binary mixtures. Many cosolvent/water binary 
mixtures exhibit non-ideal behavior caused by aggregation at the molecular scale level 

although they are stable and homogenous at the macroscopic scale. Force-field based 
atomistic simulations provide routes to relate atomistic-scale structure and interactions to 

thermodynamic solution properties. The predicted solution properties are however sensitive 

to the parameters used to describe the molecular interactions.  
In this thesis, a force field for tertiary butanol (TBA) and water mixtures is parameterized 

by making use of the Kirkwood-Buff theory of solution. The new force field is capable of 

describing the alcohol-alcohol, water-water and alcohol-water clustering in the solution as 
well as the solution components’ chemical potential derivatives in agreement with 

experimental data. With the new force field, the preferential solvation and the solvation 
thermodynamics of a hydrophobic solute in TBA/water mixtures have been studied.  

First, methane solvation at various TBA/water concentrations is discussed in terms of 

solvation free energy-, enthalpy- and entropy- changes, which have been compared to 
experimental data. We observed that the methane solvation free energy varies smoothly 

with the alcohol/water composition while the solvation enthalpies and entropies vary non-
monotonically. The latter occurs due to structural solvent reorganization contributions 

which are not present in the free energy change due to exact enthalpy-entropy 

compensation. It is therefore concluded that the enthalpy and entropy of solvation provide 
more detailed information on the reorganization of solvent molecules around the inserted 

solute.  
Hydrophobic interactions in binary urea/water mixtures are next discussed. This system is 

particularly relevant in biology (protein folding/unfolding), however, changes in the 

hydrophobic interaction induced by urea molecules are not well understood. In this thesis, 
this interaction has been studied by calculating the free energy (potential of mean force), 

enthalpy and entropy changes as a function of the solute-solute distance in water and in 
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aqueous urea (6.9 M) solution. In chapter 5, the potential of mean force in both solution 

systems is analyzed in terms of its enthalpic and entropic contributions. In particular, 
contributions of solvent reorganization in the enthalpy and entropy changes are studied 

separately to better understand what are the changes in interactions in the system that 
contribute to the free energy of association of the nonpolar solutes. We observe that in 

aqueous urea the association between nonpolar solutes remains thermodynamically 

favorable (i.e., as it is the case in pure water). This observation contrasts a long-standing 
belief that clusters of nonpolar molecules dissolve completely in the presence of urea 

molecules. The consequences of our observations for the stability of proteins in 
concentrated urea solutions are discussed in the chapter 6 of the thesis.  
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Chapter 1 

 
 
Introduction 
 
 
Many biological processes are a matter of chemistry in aqueous solutions. The model 

studies can help to gain insight into the thermodynamics of these processes. Molecular 

interactions such as hydrophilic, hydrophobic and hydrogen bonding play an important role 
in aqueous mixtures. How these interactions affect the structure and thermodynamics of 

these mixtures, is central question. For the case of alcohol/water binary mixture, water and 
alcohol molecules are a homogeneous and stable mixture at the macroscopic scale, but 

inhomogeneities appear at the microscopic level because alcohol and water tend to self-

aggregate and a maximum of aggregation is present at intermediate concentrations.[1, 2] 
Atomistic simulation can provide an insight into molecular scale behavior of those 

alcohol/water binary mixtures that cannot be easily observed by means of conventional 
experimental studies. In particular, molecular dynamics (MD) can simulate the time 

dependent behavior of molecular systems and provide the structure, dynamics and 

thermodynamics of molecules in solution. The features of simulations of alcohol/water 
mixtures are usually very sensitive to the atomistic models (force fields) invoked. Generally 

force fields are parameterized using quantum mechanical calculations combined with an 
empirical approach for the non-bonded interaction parameters, which are tuned in order to 

reproduce liquid state properties such as densities, vaporization enthalpy, viscosity, 

diffusion constant, dielectric permittivity, etc. of the pure fluid. In my thesis, a force field 
for binary liquid mixtures of tert-butanol and water is developed based on the Kirkwood-

Buff (KB) theory of solution.[3] Recently, Weerasinghe and Smith have developed force 
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fields based on KB theory for solution mixtures (e.g., acetone/water,[4] methanol/water,[5] 

urea/water,[6] sodium chloride/water,[7] guanidium chloride/water[8]). Their KB derived force 
fields reproduce thermodynamics and molecular aggregation behavior in the binary 

mixtures. KB theory was first introduced in 1955, when Kirkwood and Buff formulated the 
relations for the derivatives of the chemical potentials with respect to concentrations, the 

partial molar volumes and compressibility in terms of volume integrals of the pair 

correlation functions.[3] Their formula was a one-way theory leading from the pair 
correlation functions to thermodynamic quantities through the so-called KB integrals 

(KBIs). After a long absence of studies on KB theory, in 1977, Ben-Naim has reported an 
inversion procedure using the measure of the thermodynamic quantities applied to ethanol 

and water mixtures to provide an insight into the molecular structure.[9] In the following 

years, few studies have been reported by Donkersloot for methanol/water and 
ethanol/water[10] and Patil for tert-butanol/water.[11] Then, in 1984, Matteoli and Lepori 

extended the KB theory for various binary mixtures such as methanol, ethanol, 1-propanol, 

1-butanol, 2-methyl-2-propanol, acetonitrile, acetone, dimethyl-sulfoxide, tetrahydrofuranm 
piperidine, pyridine, 1,4-dioxane, 2-aminoethanol, and 2-(dimethylamino)ethanol.[1] They 

suggested that one of the specific features of the aqueous/organic solutions was the 
existence of microheterogeneity[1, 12];  i.e., inhomogeneities at the molecular scale, 

particularly at intermediate concentrations. The link between microscopic structure and 

macroscopic properties involving excess chemical potentials, partial molar volumes, and 
compressibilities has been successfully provided by the KBIs. Nishikawa was the first to 

provide X-ray scattering data[13, 14] of the KB integrals. Neutron scattering measurements 
have been provided by Misawa et al. and Almásy et al.[15, 16] The microheterogeneities in 

aqueous methanol mixtures have been recently studied by Dixit et al.[17] using neutron-

scattering techniques coupled with a reverse Monte Carlo procedure. Computer simulations 
attempted by several authors[4, 18-23] have provided further visual evidence that these mixtures 

are highly inhomogeneous at the microscopic scale.  
Non-ideal behaviors in binary mixtures have been investigated with nonpolar solute 

solvation thermodynamics. Ben-Naim reported thermodynamic behavior of argon in 

aqueous solutions such as ethanol/water,[24] methanol/water,[25] p-dioxane/water[26] and 
ethylene-glycol/water[27]. He suggested that the effect of co-solvent on the structure of water 
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plays an important role on the solvation thermodynamics of argon. Some interesting 

features arise as the qualities of solvent are changed from pure water to pure organic 
solvent. General features in binary mixtures are the following. Enthalpy and entropy curves 

increase steeply from both the effects of argon and co-solvent on the structure of water in 
the range of 0 ! x(co-solvent) ! 0.25  and constantly converge in the high concentration 

range. He suggested that these features come from large clusters of water molecules linked 

by hydrogen bonds, and thus depend on the average cluster size. Increasing fraction of co-
solvent to water causes a steep decrease of the average water cluster size. As a result, large 

water clusters are destabilized in the range of 0 ! x(co-solvent) ! 0.25 . Beyond that region, 

large water clusters do not exist, so that a gas solute (argon) “sees” a normal liquid mixture. 

The co-solvent is supposed to destabilize the structure of water at dilute co-solvent 

concentration. Ben-Naim decomposed the solvation enthalpy and entropy changes of 
nonpolar solute in binary mixtures into two terms; i.e., a solute binding energy term and a 

solvent relaxation contribution term. In fact, the solute-solvent binding energy is a weak 
dispersion energy. The enthalpy and entropy changes will be strongly affected by the 

solvent reorganization energy. However, increases in both the enthalpy and entropy changes 

are compensated in the free energy denoted by !G = !H " T!S .   
Enthalpy and entropy changes – unlike free energy changes – have not been extensively 
studied separately in the past using atomistic computer simulations due to the large 

computational expense. Yet, aspects of solvation and reorganization of solvent molecules 

can usually be probed better through the entropy and enthalpy changes. In order to explain 
experimentally observed anomalies in the enthalpy and entropy changes, it is studied in 

terms of atomic-scale solvation mechanisms. With respect to atomistic models, calculations 
of enthalpy and entropy changes provide also a mean to better assess the quality of the force 

fields. 

In this thesis, two different binary liquid mixtures were examined, in which both 
hydrophobic solvation and hydrophobic interactions play an important role: 1. aqueous 

tertiary-butanol (TBA) mixtures and 2. aqueous urea mixtures. Figure 1.1 shows the 
chemical structures of the molecules. Aspects of hydrophobic solvation and hydrophobic 

interactions in these solutions are discussed with a focus on the atomic-scale distribution of 

the solvent molecules and solvation mechanisms.  
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Figure 1.1 Chemical structures for water and tertiary-butanol and urea as co-solvents 

which are simulated in this thesis. 
 

 

It has been shown that highly non-ideal behavior occurs in dilute aqueous TBA solutions[28-

32] because TBA has the largest nonpolar moiety among the series of alcohols fully miscible 

with water. This fact makes reliable descriptions of this system based on classical atomistic 
models very challenging. The solvation thermodynamics of inserting a methane solute in 

aqueous TBA mixtures is investigated in my thesis by comparing simulation results from 

our KB derived force field with experimental data on methane solvation free energies, 
enthalpies, and entropies. 

Furthermore, association of two nonpolar solutes (hydrophobic interaction) is also 
investigated in water and in aqueous urea solution. Figure 1.2 shows the association scheme 

of two nonpolar solutes in water. Association from solvent-separated distance (left) to 

contact distance (right) between two nonpolar solutes can be decomposed into three steps 
(de-solvation, solute association, then solvation). In here, de-solvation and solvation 

processes are related to solvent-reorganization. Thus, the association process can be 
considered as solute interaction and the changes of its surrounding solvent. In case of 

hydrophobic interaction in pure water, water forms a fluctuating hydrogen-bonded network, 

and insertion of solute molecules cleaves this network, which reorganizes itself around the 
solutes and eventually clusters them together. The nature of the solute molecule (e.g., the 

various polar and nonpolar parts that contain the charge distributions) plays an equally 
important role, but the crucial part is the bonded nature of the solvent. The topology and 
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strength of the hydrogen-bonded network of water give this particular liquid more 

anomalous properties than any other hydrogen-bonded solvent.[33]  
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
Figure 1.2 Association scheme of two nonpolar solutes (green) in water. Solvation free 

energy change ( !G ) from solvent separated distance to contact distance can be considered 

by de-solvation at the solvent separated distance (!G
desolvation

), association of two solutes 

(!U
interaction

), and solvation at the contact distance (!G
solvation

). In particular, de-solvation 

and solvation processes are related to solvent-reorganization.    

 
Urea is well known as a protein denaturant and is of high importance in protein folding 

research. In general, hydrophobic interactions are not stable in aqueous urea solution 
relative to water and this fact is generally used to argue that urea favours solvent exposure 

of the nonpolar interior of proteins.[33-38] The mechanism of protein denaturing however still 

is not well understood today.[38-46] In my thesis, I studied hydrophobic interactions in water 

!G
desolvation

!G
solvation

!U
interaction

!G

!G = !Gdesolvation + !Uinteraction + !Gsolvation

       = !Uinteraction + !Gsolvent reorganization
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and in urea/water mixtures in terms of potentials of mean force obtained from constraint-

bias simulations with force averaging. The so-obtained potentials of mean force (i.e., free 
energies of association along a radial distance coordinate) are decomposed in enthalpic and 

entropic parts, which are further separated in solute-solvent and solvent-solvent 
contributions. Altogether this provides a complete picture on the thermodynamics of solute 

association in the binary mixtures.  

The rest of this thesis is organized into six chapters. Chapter 2 describes shortly the 
techniques used in molecular dynamics simulation and analytical methods to calculate 

thermodynamic properties of liquid mixtures. Force field development and thermodynamics 
for the TBA and water mixtures are discussed in chapter 3. The following chapter 4 focuses 

on the methane solvation in TBA and water mixtures, comparing several force fields over a 

wide range of TBA concentrations. Our primary attention lies on the dilute TBA 
concentrations (TBA mole fractions smaller than 0.2) that show highly anomalous behavior 

of the enthalpy and entropy changes of methane solvation. The quality of the prediction and 

interpretation of methane solvation thermodynamics using our new force field (LV), 
discussed in chapter 3, are emphasized in this section. Pair hydrophobic interactions 

(aliphatic-aliphatic, aromatic-aromatic), induced by the present of urea comparing pure 
water, are studied in chapter 5 and 6. Chapter 5 will discuss the association free energy of 

neo-pentane - neo-pentane in pure water and in an aqueous urea solution in terms of the 

contributions of the entropy and enthalpy. In particular, enthalpy-entropy compensation in 
the free energy of hydrophobic interaction is emphasized. Chapter 6 describes new 

observations of the role of urea on the stability of hydrophobic interactions using the 
potentials of mean force of neo-pentane, toluene, 3-methylindole as prototypes of nonpolar 

amino side groups. These new observation is discussed with implication for protein 

denaturation. The conclusions are given in chapter 7. 
 

 
 

 

 



 

 

 

 

 
 

2.  Computational Methods 
 
 

2.1 Introduction  
 

Computational chemistry techniques have become an important tool for studies of 
energetic, structural, and dynamic aspects of molecular systems. These methods have been 

used for more than four decades to simulate the behavior of systems from simple molecules 
to complex biomolecular systems. Simulation techniques are constantly bring improved also 

through comparison with experimental data, and there now exists an array of methods at the 

computational chemists disposal. These approaches can be divided into two main 
categories, quantum chemistry methods, and statistical mechanics methods.  

Among the various computational chemistry methods, the most detailed are ab initio 
quantum mechanical (QM) methods which predict the atomic electronic structure. Using a 

QM level calculation, we can obtain various molecular properties such as the molecular 

geometry, relative stabilities, vibrational spectra, dipole moments, reactivity, and atomic 
charges. This method requires expensive computer time and resources. Thus, quantum 

chemistry methods are limited to just small molecular system. 

Large molecular system beyond the reach of QM can be simulated by classical statistical 

mechanics methods, such as Monte Carlo (MC) or molecular dynamics (MD). These 

methods are introduced to obtain properties and processes at the molecular scale. 

Parameters (so called, force fields) are built up to describe bonded/nonbonded atomic 

interactions. In principle, QM can be used to determine the interactions in small model 

species. These quantitative results of QM can be utilized as starting points for adjustable 

parameters for potential functions that constitute an empirical force field. In fact, there are 

many other methods for choosing the nonbonded parameters for statistical mechanical 
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simulations. In this thesis, a novel approach is introduced by using the Kirkwood-Buff (KB) 

theory[3] for developing force fields in liquid mixtures, which are our systems of interest. 

This is because information provided by the KB theory can predict good solution activities 

and solution structures of liquid mixtures at the various mixture compositions.  

Complex fluids or macromolecules such as proteins are modeled by a set of potential 

energy functions of bonded and nonbonded interactions. The macromolecular model can be 
simulated in vacuum or in the presence of solvent (typically water or small organic 

molecule mixtures). The MD method is a deterministic procedure. MD starts from an 
arbitrary configuration and an initial set of particle velocities, and Newton’s equations of 

motion of the system are integrated numerically as a function of time. (This thesis treats the 

details of MD techniques in the following section). On the other hand, MC is a stochastic 
method. The random MC trial moves are accepted with a probability. Depending on the 

interaction potentials and simulated systems, MD or MC are selected as a simulation 
method.  
In this thesis we are interested in the atomic-scale description of liquids at a degree of 

resolution where an atom is the smallest elementary entity. The computational chemistry 
method needed in such a description relies on concepts of classical statistical mechanics. 

For studying processes at an all-atom scale in condensed phases, computers are used to 
solve the complex integrals that are used in statistical mechanics to define relations between 

the fundamental molecular interactions and experimental observables. This approach 

supposes that the Hamiltonian, or total energy of the system, is known.  
This chapter is outlined as follows. First molecular dynamics and Monte Carlo methods are 

introduced. Then the functional forms of force fields and typical force field 

parameterizations are addressed. The next section is focused on molecular dynamics 
techniques, because molecular dynamics were used in all my simulations. Following this, 

free energy calculations and chemical potentials are presented for analyzing solvation 
effects, energetic contributions, and aggregations in liquid mixtures. In particular, the 

Kirkwood-Buff theory of solution, used in chapter 3 and chapter 4 of this thesis, is 

addressed in detail. 
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2.2 Statistical mechanics 
 
Molecular dynamics and Monte Carlo simulations generate information at the microscopic 

level, including atom positions and velocities. The conversion of this microscopic 

information to macroscopic observables such as pressure, energy, heat capacities, etc., 
requires statistical mechanics. Statistical mechanics calculates average properties starting 

from a proper atomistic model and then provides the link between these quantities and the 
atomistic description on a microscopic level. Thus, statistical mechanics methods relate 

thermodynamic and bulk properties to the distribution and motion of the atoms and 

molecules of an N-body system.  In the first place, molecular dynamics and Monte Carlo 
methods are briefly introduced. Afterward force fields and techniques are following.  

  

2.2.1 Molecular dynamics 
 

The Hamiltonian of a classical system of N point masses mi depends on the positions 
  

r
i

{ }of 

all point masses i=1,2,…,N and their momenta 
  

p
i

{ } . The classical Hamiltonian H is 

defined as the sum of the kinetic and potential energy. 

 

   

H ( p
i
,r

i
{ }) =

p
i

2

2m
ii=1

N

! +U ( r
i

{ })                 (2.1) 

 
The kinetic energy contribution to the Hamiltonian in the first term on the right hand side of 

eq. 2.1 uses particle masses, mi and velocities, while the potential energy part depends on 

the set of point mass positions 
  

r
i

{ } . 

Molecular dynamics is the time dependent simulation of molecules described by Newton’s 

equations of motions. Newton’s equation of motion (
  
f

i
= m

i
a

i
) can be used to generate a 

dynamical trajectory of a system of interacting particles. The negative gradient of the 

potential energy function 
  
U r

i
{ }( )  with respect to particle coordinate 

  
r

i
 equals the force 

  
f

i
 

acting on a particle i, 
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f
i
= !

"U ( r
i

{ })

"r
i

               (2.2) 

 

Newton’s equation of motion can be numerically integrated on a computer to yield particle 

velocities and positions as a function of time. The method is deterministic; once the 

positions and velocities of each atom are known at time t=0, the state of the system can be 

predicted at any time in the future. Numerical integration methods are addressed in 

subchapter 2.2.4.  
 
2.2.2 Monte Carlo 
 
Monte Carlo methods are commonly used in statistical mechanics. In particular, the 
Metropolis Monte Carlo technique[47] has been used extensively in liquid simulations. The 

Monte Carlo method is a stochastic process, i.e., atoms are moved randomly during 

simulation. The simulation starts from an arbitrary configuration, which is changed at each 

step with the probability of Boltzmann distribution, exp !"U / k
B
T( ) . 

This method obeys the detailed balance condition in the equilibrium state such as,  

 
Wi! j exp("Ui / kBT ) =Wj!i exp("Uj / kBT )                         (2.3) 

 

where Wi! j is a probability to go from the state i to the state j. The state i and j differ by the 

position of one particle, that is moved at a MC step. The probability to accept the move 

from state i to state j, equal to max 1,exp ! Uj !Ui( ) / kBT( )( )  by the Metropolis criteria. 

Likewise the W
i! j , the reverse process probability W

j!i  follows the 

max 1,exp ! Ui !Uj( ) / kBT( )( ) . Thus the contributions are the same in both direct and 

reverse probabilities such as, 
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max 1,exp ! Uj !Ui( ) / kBT( )( )
max 1,exp ! Ui !Uj( ) / kBT( )( )

= exp ! Uj !Ui( ) / kBT( )            (2.4) 

 

The condition of detailed balance given by eq. 2.3 implies that the average number of 

moves state i→j is the same as the average number of inverse moves state j→i. If the 

system in equilibrium is submitted to moves that obey the detailed balance condition, there 
will be no change in the probability of any conformation and the system will remain in 

equilibrium. 

Over the process of several million attempted steps, energetically accessible configurations 

of the system are explored. Usually the step size is adjusted so that approximately 50% of 

the attempted steps are accepted. For example, if the size of each step is very large, the 

change in energy is too large, thus this attempt will be rejected. If, on the other hand, the 

step size is too small, the step size restricts the sampling of configuration space, leading to 

slow convergence of calculated properties. Thus, for large biomolecules with many internal 

degrees of freedom, MC is generally less efficient than MD for the calculation of 

thermodynamic properties. Moreover MC does not provide direct dynamic information 

about the system, i.e., in MC the microscopic states are created randomly, there is no 

intrinsic time scale.  
 
2.2.3 Force fields 
 

In molecular systems the potential energy function 
  
U r

i
{ }( )  should describe all interactions 

between atoms that are covalently bonded as well as non-bonded interactions between 
atoms and molecules in the condensed phase. Because in our classical description we do not 

include electrons (that describe the chemistry of the system) we make the approximation 

that atoms, molecules and their mutual interactions can be described by analytical potential 
energy functions in which the parameters model the chemistry. The set of potential energy 

functions and their parameters is usually referred to as a force field. Some of the force field 
parameters can be obtained from quantum-chemical calculations (e.g., those that describe 

torsional transitions in molecules, vibrations of covalent bonds and bond angles) while 
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others are often parameterized (i.e., fitted) to reproduce solid or liquid state properties of 

the system. 
In the simplest form a force field is written as a sum of bonded and non-bonded interaction 

terms 
 

U =Ubond +Uangle +Udihedral +Uvdw +UCoulomb                                                           (2.4) 

 

The total potential is comprised of bonded terms (
 
U

bond
, 

 
U

angle
, 

 
U

dihedral
) and non-bonded 

terms (
 
U

vdw
,
 
U

Coulomb
). The bonded potentials are shown in detail in figure 2.1. The bond 

potential describes stretching of covalent bonds between atoms i and j and can be described 

with an harmonic potential. The bond angle vibration between a triplet of atoms i-j-k is 
described with an angle potential which is often chosen harmonic as well. For the dihedral 
potential, we can consider two types. Proper dihedral angles are defined according to �! , �� �t �h�e� 

�a�n�g�l �e� �b�e�t �w�e�e�n� �t �h�e� �i �j �k� �a�n�d� �t �h�e� �j �k�l � �p�l �a�n�e�s�. � Improper dihedrals are meant to keep planar 
groups planar (e.g., aromatic rings) or to prevent molecules from flipping over to their 

mirror image.  

The nonbonded potential is mainly divided in dispersion/repulsion interaction and 
electrostatic interaction. The typical features of intermolecular interaction are an attractive 

tail at large separations due to the Van der Waals interaction or Coulomb attractive 
interaction of charged species, while there is a steep repulsion at short separations caused by 

Pauli repulsion associated with the overlap of electron clouds belonging to non-bonded 

atoms/molecules. For the nonbonded Van der Waals interaction potential, a Lennard-Jones 
12-6 pair potential is often used: 

 

U
LJ
(r) = 4! " / r( )

12
# " / r( )

6( )                                                                             (2.5) 

 
where r is the interatomic pair separation, !  is the energy constant (or well depth) and !  is 

Lennard-Jones size parameter. 

It can provide a reasonable description of the properties of liquids, via computer simulation, 
if the parameters !  and !  are chosen appropriately.  
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Figure 2.1 The bond-, angle-, dihedral- and improper dihedral bonded potentials among atoms i, j, 

k, and  l. 

 

  

Since at this point we have assumed pairwise additivity of the nonbonded interaction 
potentials, it should be kept in mind that any nonpairwise (multibody) effect will effectively 
enter into the values of !  and !  in the parameterization against liquid state properties. 

The long-range interaction between charged or polar molecules is usually described by the 

Coulombic potential  
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U (rij ) =
qiqj

4!"
0
rij

                                                                                                   (2.6) 

 
where qi , qj are the partial electric charges on interaction sites i and j and !

0
 is the 

permittivity of free space. Partial electronic charges can be obtained from quantum-

chemical calculations (e.g., by using them as parameters that reproduce the electrostatic 
potential on the molecular surface, which is usually chosen just beyond the Van der Waals 

radius of the atoms where it is most important to model the intermolecular interactions 

correctly). In many cases, however, they are used as empirical parameters optimized to 
describe liquid state properties.  

Electrostatic interactions are long ranged and thus exceed half the box length for a typical 
simulation of ~ 500 molecules.[48] The obvious solution to this problem is to increase the 

size of the simulation box to reduce the artifact effect by screening neighbors. However, the 

simulation in large simulation box is expensive. Thus, methods such an Ewald summation 
and a reaction field provide appropriate tricks to handle long-range interaction. We 

introduce Ewald summation, particle mesh Ewald and reaction field for long-range forces in 
detail in section 2.2.6.   
So far, the simplest forms of force fields for bonded and nonbonded interactions were 

addressed. Typically, quantum mechanics and experimental data are used to parameterize 

these force fields. Accurate description of interaction potential determines the quality of 
modeling. Validation of results obtained from simulation is performed by comparing with 

observable values in experiment. To ensure accurate predictions from a given force field, 
the fitting process is repeated until the deviations between computed and observed values 

are sufficiently small. 

A main physical quantity in determining the structure of molecular systems is the energy. 
QM calculations provide energies, first and second derivatives of the energy with respect to 

atomic coordinates, and dipole moments for the models. Many other properties can be 
obtained as derivatives of the energy with respect to some other parameters such as atomic 

coordinates or electronic. The dynamics of molecular motion are also determined by these 

energies. 
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The use of quantum mechanical calculations, in particular ab initio calculations, to derive 

force fields has proven successful in a number of applications.[49-51] QM derived force fields 
have several advantages. It is possible to derive the properties of molecular systems without 

any input from experiments requiring difficult measurements. This interaction potential has 
a well-defined physical meaning for two-body or maybe three-body molecular interactions.  

The force fields for nonbonded interactions as mentioned above, consist of a Coulomb term 

and a Van der Waals term. Although it is theoretically possible to obtain charges for the 
Coulomb term in a force field by fitting to dipole and higher order moments, in practice, it 

is very difficult to get physically reasonable charges. Therefore, charges and Van der Waals 
parameters are usually obtained separately. The Van der Waals parameters have usually 

been obtained by fitting to crystal structure data and to heats of sublimation of molecular 

crystals.[52-57] It is also possible to obtain parameters from quantum mechanical calculations 
but it is computationally expensive owing to the large basis sets and high degree of electron 

correlation required for their description. Because Van der Waals interactions include 

dispersion, it would be necessary to use a high-level ab initio methods such as a high-order 
perturbation theory or coupled cluster approaches.  

The interaction parameters are capable to describe multi-body effects. Unfortunately, QM 
derived force fields consist of two-body energies and their physical descriptions. For 

example, tertiary butanol (it is dealt in chapter 3 and 4) has different dipole moments in the 

gas (1.66 Debye) and liquid state (2.52 Debye). As an another example, H2O shows big 
different dielectric permittivities values in liquid (~78 at 25°C) and gas (~1 beyond 100°C) 

states. To obtain meaningful transferable parameters, it is necessary to describe interactions 
including multi-body effects in order to be closed to experimental data. 

In practice, empirical and QM derived parameters are often combined. Generally empirical 

force fields can be obtained from experimental data such as structure parameters (x-ray 
crystallography, NMR), dielectric properties (static and dynamic dielectric constants), 

elastic constant, vibrational properties (modes of vibration, phonons), heat capacities, and 
densities.  

Force field parameters derived for the models can in many cases be transferred to the bulk 

state without any loss of generality. Force field transferability is important in practical 
simulations. When parameters have been carefully refined to reproduce observation for only 
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a model system, one can make a question how they will behave in new chemical 

environments. Transferability is also a considerable factor to develop the parameters. 
Parameters for interaction potentials should be selected in order to be modeling according to 

transferability and correct descriptions of properties of the systems.  

 

2.2.4 Integration of equation of motions 
 

A good MD program requires a good algorithm to integrate Newton’s equations of motion. 
In this sense, the choice of algorithm is important. A finite difference method is used to 

generate MD trajectories with continuous potential models, which we will assume to be 

pairwise additive. The essential idea is that the integration is broken down into many small 

stages, each separated by a fixed time !t . The total force on each particle in the 
configuration at a time t is calculated as the vector sum of its interactions with other 

particles. From the force we can determine the accelerations of the particles which are then 

combined with the positions and velocities at a time t to calculate the positions and 

velocities at a time t+!t . First, we introduce Verlet’s algorithm[58] which is one of the 
simplest. The Verlet algorithm uses the positions and accelerations at time t, and the 

positions from the previous step, r(t ! "t)  to calculate the new positions r(t + !t)  at 

t + !t . The velocity does not appear explicitly in the Verlet integration. The Verlet 
algorithm has some disadvantages for the implicit velocity term. Indeed the velocity is not 
available until the positions have been computed at the next step. In addition, the new 

position can be obtained from the current positions and the position from the previous time 

step. At t=0 there is no previous step for starting, starting velocities can be generated by 
taking random velocities from a Boltzmann distribution for a given temperature. 

As an improvement to the Verlet algorithm, the leap-frog algorithm[59] has been developed. 
It’s described by the following relationship, 

 

r(t + !t) = r(t) + !tv(t +
1

2
!t)               (2.7) 

v(t +
1

2
!t) = v(t "

1

2
!t) + !ta(t)               (2.8) 
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The leap-frog algorithm was used in our all MD simulations. The velocity   v(t + !t / 2)  is 

first calculated, from the velocities at time   t ! "t / 2  and the accelerations at time t. The 

positions r(t + !t)  are then deduced from the velocities just calculated together with the 

positions at time r(t) . The velocities thus ‘leap-frog’ over the positions to give their values 

at   t + !t / 2 . The leap-frog has an advantage over the Verlet algorithm as it explicitly 

includes the velocity. However, it has a disadvantage that the positions and velocities are 

not synchronized. This means that it is not possible to calculate the kinetic energy 
contribution to the total energy at the same time as the positions are defined. 

The velocity Verlet method[60] has been developed giving positions, velocities and 
accelerations at the same time. 

 

r(t + !t) = r(t) + !tv(t) +
1

2
!t

2
a(t)               (2.9) 

v(t + !t) = v(t) +
1

2
!t a(t) + a(t + !t)[ ]             (2.10) 

 
The velocity Verlet method has solved the disadvantages in the Verlet algorithm and the 

leap-frog method. The real advantage of the velocity Verlet algorithm is that it requires less 

computer memory, because only one set of positions, forces and velocities need to be 
carried at any one time. Also Beenan’s algorithm[61] and Predictor-corrector[62] integration 

methods have been used for integration methods. 

 

2.2.5 Periodic boundary conditions and cutoff distances 
 

Simulations are performed on a finite number of particles in a small volume, but should still 
represent the properties of infinitely large systems. We therefore need a trick to reduce 

boundary effects, because many particles will be at the surface of the finite volume. The 

classical way to minimize boundary effects in a finite system is to use periodic boundary 
conditions.  
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Figure 2.2 Periodic boundary conditions with a cubic box in two dimensions. Any particle 

that leaves the central box re-enters at the opposite side. Hence, attention need only be 

fixed on the central box. In calculating the force on an atom, the minimum image of all 

neighboring atoms is taken into account within an interaction cutoff radius Rc. The box size 

should be at least two times larger than correlation distance (g(r)=1) to avoid that the 

central atom interacts with another atom and its image at the same time.   
 
The atoms of the system that is to be simulated are put into a cubic, or more general into 

any periodically space filling box, which is surrounded by identical translated images of 

itself (figure 2.2).  
If a crystal is simulated, boundary condition is not a big artifact for its restricted periodic 

motion. For a molecule in solution, the periodicity is an artifact of the computation, so the 
effects of periodicity on the forces on the atoms should not be significant. When calculating 

the forces of the grey atom in the central box in figure 2.2, all interactions with atoms in the 

central box or their images in the surrounding boxes that lie within the spherical cut-off 
radius Rc are taken into account. The cutoff is chosen such that a particle in the primary box 

does not see its image in the surrounding boxes. When an atom leaves the central box at one 

side, it enters it with identical velocity at the opposite side at the translated image position. 
There are several possible shapes for unit cells such as cubic, rhombic dodecahedron, 

truncated octahedron. Cubic periodic conditions were used in our all simulation. (figure 2.2)  

   

   

   

Rc 



 
Computational methods 

19 

Under the periodic boundary conditions, the minimum central box image requires a total of 

N(N-1)/2 pairwise interaction calculations at every MD step. In order to reduce the 
computation time to calculate interactions, spherical cutoffs are applied by truncating the 

nonbonded interactions for each atom at large enough distances. The number of pairwise 

interactions for any atom is proportional to r3  where r is the spherical cutoff radius. 

Generally the cutoff distances in 7.5-15 Å ranges have been used. In any case, upper limit 

cutoff distance should be smaller than half box length.  Alternative truncation schemes use 
different cutoffs for different parts of the energy evaluation. Twin-range cutoffs, which 

were used in our all simulations, employ two types of truncation, an interior and exterior 
cutoff.  The interactions of all atoms in the interior cutoff range are calculated at every step 

of the simulation, while all others in the region between the interior and exterior ranges are 

recomputed only when the nonbonded list is updated. Because all interaction calculation at 
each step is time-consuming, thus it is updated every few steps of the simulation. At the 

cutoff distance, calculations for force and energy during simulation are required to truncate 
smoothly not to make any artifact.  

 

2.2.6 Electrostatic interactions 
 

In this section, Ewald method, particle mesh Ewald, and reaction field are introduced for 

describing electrostatic interactions. For accurate calculation of dielectric properties, the 

long-range forces should be dealt with properly depending on the simulated system 

environment.  

 

2.2.6.1 Ewald summation 
 

Ewald summation[63] is one of the most accurate methods for describing electrostatic 

interactions when periodic boundary conditions are used.[64] In fact, the electrostatic 

interactions are calculated between all atoms located in the central box and between all 
atoms of the central box with their images in the neighboring boxes. Ewald summation was 

first introduced as a method to calculate long-range interactions of the periodic images in 

crystals.  The electrostatic interaction energy in a periodic system is given by[65] 
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U =
1

2

'
qiqj

rij + nj=1

N

!
i=1

N

!
"

#

$
$

%

&

'
'n =0

(

!              (2.11) 

 
where rij = ri ! rj , The sum over n is the sum over all simple cubic lattice points, 

n = n
x
L,  n

y
L,  n

z
L( ) , where L is the length of a cubic box. The lattice vector n reflects the 

shape of the box and qi and qj are net atomic charges centered on atoms i and j. The prime 

indicates that we omit i=j for n = 0 . For simplicity of notation, all factors of 4!"
0
 are 

omitted. This sum is conditionally convergent, but very slow and time consuming. The unit 

cells are added; the first term has n = 0 , i.e., n = 0,0,0( ) ; second term, n = L , i.e., 

n = ±L,0,0( ), 0,±L,0( ), 0,0,±L( ) ; etc. Further terms were added to build up infinite 

system. 
The idea for slow and time consuming summation is to convert the single slowly-

converging sum eq. 2.11 into two quickly-converging terms and a constant term[48, 65] : i.e., 
U =Udirect +Ureciprocal +U0

. Unfortunately, the computational cost of the reciprocal part of 

the sum increases as N2 and it is not realistic for use in large systems. Furthermore, Ewald 

summation is appropriate method for crystal simulation than for solution simulation caused 

by the implied periodicity. Thus, we didn’t use Ewald summation in our simulations.   

 

2.2.6.2 Particle mesh Ewald 
 

In order to overcome intensive calculation of Ewald summation, Darden et al. proposed 
Particle mesh Ewald (PME) method for Ewald sums in large systems.[66, 67] PME divides the 

potential energy into Ewald’s standard direct sum and reciprocal sums.  

In fact, the PME method improves the performance of the reciprocal sum, i.e., the 
reciprocal sum is evaluated using fast Fourier transforms with convolutions on a grid where 

charges are interpolated to the grid point, instead of directly summing wave vectors. As a 

result, computational cost of PME, which is efficient and accurate for large molecular 
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systems, reduces to an NlogN scale. However, Ewald method is better in the very small 

system because it avoids the overhead in setting up grids and transforms. 

 

2.2.6.3 Coulombic interaction with reaction field 
 
The reaction field method assumes that dielectric permittivity is constant beyond the cutoff 

distance R
C

. Therefore, the reaction field method considers two contributions. The first is a 

short-range contribution from molecules located within a cutoff distance and the second 
comes from molecules outside a sphere, R

out
 which are considered to form a dielectric 

continuum ( !
RF

) producing a reaction field.[68] The magnitude of the reaction field A
i( )  

acting on molecule i is proportional to the dipole moment µ( )  of the cutoff sphere 

surrounding i, 
 

 Ai =
2 !RF "1( )
2!RF +1

1

RC
3

µ j

j#Rout

$                        (2.12) 

 

where the summation extends over the molecules in the cutoff sphere, including i, and R
C

is 

the radius of the cutoff sphere. The energy from the reaction field is denoted by ! 1
2
µ
i
" A

i
. 

Coulombic interaction (eq. 2.6) can be modified adopting the reaction field. i.e., treating the 

dielectric continuum environment beyond the cutoff distance RC with reaction field 

dielectric constant of !
RF

. 

In fact, difficulty of a potential calculation with reaction field is required to know the 

external dielectric constant !
RF

. Fortunately, the choice of !
RF

 is insensitive to determine 

the thermodynamic properties of a dipolar fluid.[48] In our simulations, the particle mesh 

Ewald and reaction field are used for the Coulomb interaction.  
 

 
 
 



 
Chapter 2 

22 

2.2.7 Temperature coupling 
 

During an MD simulation, Berendsen[69] or Nosé-Hoover[70, 71] methods are commonly used 
to keep the temperature constant.  

First of all, the Berendsen method goes toward the desired temperature T0 by scaling the 
velocities for thermal drift at each step. The Berendsen algorithm has weak coupling to an 

external bath to minimize the disturbance of the system, i.e., as possible to minimize 

influence on the trajectories.  
 

 m
i

d
2
r
i
t( )

dt
2

= F
i
+ m

i
!

T
0

T t( )
"1

#

$
%

&

'
(
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i
t( )

dt
          (2.13) 

 

where F
i
 is the force and the friction constant !  determines the strength of coupling to 

bath with the time dependent temperature, T(t) and the desired temperature T0 . Thus, a 

modified equation represents a proportional scaling of the velocities per time step in the 

algorithm from v to !vwith, 

 

 ! = 1+
"t
#
T

T
0

T
$1%

&'
(
)*

+

,
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.

/
0

1/2

             (2.14) 

 

where !
T

is a relaxation time. i.e., a long temperature relaxation time couples the system 

weakly to the heat bath. This approach effectively scales the atomic velocities at each time 

step to maintain a constant temperature during the simulation. 

The Nosé-Hoover thermostat introduces a thermal reservoir and a friction term in the 
equations of motion. The Nosé-Hoover method is denoted by,  

 

 
mi

d
2
ri t( )

dt
2

= Fi ! mi"
dri t( )

dt

d"

dt
=
1

Q
T ! T

0( )
             (2.15) 
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where !  is the friction parameter (or ‘heat bath’ variable), Q  is called as the mass 

parameter of reservoir which determines strength of the coupling in combination with the 

desired temperature (T0), and others are same descriptions in Berendsen method.  
The friction force is proportional to the product of each particle’s velocity and a friction 

parameter. This friction parameter is a fully dynamic quantity with its own equation of 
motion. The time derivative is calculated from the difference between the current kinetic 

energy and the desired temperature. The Nosé-Hoover thermostat method involves both 
position and momentum phase space variables. It describes an additional dynamic degree of 

freedom which corresponds to a heat bath. However the Nosé-Hoover thermostat produces 

an oscillating relaxation. The real time it takes to relax with the Nosé-Hoover thermostat 
takes 4-5 times longer than the relaxation time used with Berendsen weak coupling. The 

Nosé-Hoover method was used in all our simulations.  
 

2.2.8 Pressure coupling 
 

The system can be coupled to a ‘pressure bath’, similar to coupling to a ‘heat bath’. To 
simulate at constant pressure in an MD simulation, the volume is considered as a dynamical 

variable that changes during the simulation. Here, the Berendsen algorithm[69] and 

Parrinello-Rahman[72],[73] method are addressed as pressure coupling methods.  
The Berendsen algorithm for coupling to a constant pressure bath can be performed 

according to the same principle for coupling to a constant temperature. This rescales the 
coordinates and box vectors with a matrix µ , which has the change of a first-order kinetic 

relaxation of the pressure towards a desired pressure. An extra term is added to the 

equations of motion. Pressure scaling factor becomes such as, 

 

 µ = 1+
!t
"
P

# P t( ) $ P
0( )

%
&
'

(
)
*

1/3

             (2.16) 
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where !  is isothermal compressibility of the system, !
P

 is a relaxation time, P(t)  is time 

dependent pressure and P
0
 is the desired pressure. This is similar to the scaling pressure in 

constant pressure algorithm of Andersen.[74]  

The fluctuations in volume are important to calculate thermodynamic properties. Therefore 
the exact ensemble should be defined, which is not possible with the Berendsen algorithm. 

To reduce this problem, the Parrinello-Rahman barostat has been developed, similar to the 

Nosé-Hoover temperature coupling. This allows both volume and shape of the periodic cell 
to respond with the pressure tensor. The volume, V  of the periodic unit cell, or all three 

vectors, a,b,c{ }  of the unit-cell can be added as an extra generalized coordinates. The 

position r
i
of a particle i can be written in terms of 3! 3matrix, h  to form a,b,c{ }  and of a 

column vector s
i
with components !

i
,"

i
,#

i
, 

  

 r
i
= hs

i
= !

i
a +"

i
b + #

i
c             (2.17) 

 

In the Parrinello-Rahman method the dynamics of the unit cell matrix are governed by the 

equation, 

 
 
W!!h = ! " P

0( )#              (2.18) 

 

where W is the box ‘mass’ which is set to the total mass of the system in a box, 

! = V h
"1( )

T

which gives information of size and orientation of the MD cell, the 

superscript, T stand for transpose, P
0
 is the desired reference pressure, and  !  is the 

instantaneous pressure tensor. In scaled variables, pressure tensor ! is given by 
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where fij is the force on i due to j in unscaled form. In here, ! is the deterministic part of 

pressure tensor. 
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The Parrinello-Rahman barostat is commonly combined with the Nosé-Hoover thermostat 

because its equations of motion for the particles are also changed like the Nosé-Hoover 
thermostat. Just as for the Nosé-Hoover thermostat, the Parrinello-Rahman time constant is 

not equivalent to the relaxation time used in the Berendsen pressure coupling, but it takes 4-
5 times longer time. Also the Parrinello-Rahman coupling gives oscillations of the unit-cell 

vectors. Parrinello-Rahman pressure coupling was used in all our simulations. 

 

2.3 Free energy calculations 
 

Free energies play an important role in this thesis. Free energy changes relate to the stability 

of a chemical system, i.e., the tendency of the system to react or change. In this thesis the 

free energies of solvation of solute molecules in aqueous solvents are computed. The free 

energy of solvation is defined as the thermodynamic work of reversibly introducing the 

interactions between solute and solvent. The lower the solvation free energy the more 

favourable the solvation process will be. Not only solvation or solubility of solutes, but also 

the tendency of solutes to associate in solution is determined by a free energy. In the case of 

nonpolar solutes in aqueous media we speak of hydrophobic interactions. 

For small molecules such as noble gases (He, Ne, Ar, Kr, Xe) or methane, the test particle 

insertion (TPI) method is useful to calculate the free energy of solvation. However TPI 

converges very poorly in the case of larger molecules, because it is difficult to observe 

fluctuations in the pure solvent that create a cavity of the appropriate (large) size. In this 

case, the thermodynamic integration (TI) methods can be used to calculate a free energy. 

However, it is a more computationally expensive calculation. Additionally, the potential of 

mean force (PMF) method is useful to obtain a free energy of association along a 

coordinate. First, the partition function is addressed because it is an important key to 

calculate all macroscopic properties of the system.  

 
2.3.1 Partition function 
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At the constant temperature, the probability p
i
that the system occupies the ith microstate 

with energy E
i
, is given by the Boltzmann distribution. 

  

pi =
exp(!Ei / kBT )

Z
             (2.20) 

 

where Z is the normalization constant so that the sum of the probabilities is one p
i
= 1

i

!"#$
%
&'

. 

Thus, the normalization constant which is called the partition function, can be described 

such as, 
 

 Z = exp(!E
i
/ k

B
T )

i

"               (2.21) 

 
where the sum is over all the microstates of the system.  

Briefly consider the classical canonical partition function Q. The partition function is 
defined as, 

   

 
 

Q(T ,V ,N ) =
1

N !h
3N
!! dp

N
dr

N
exp "#H (pN ,r N )$% &'!         (2.22) 

 

where integration is performed over all particle momenta ( pN ) and positions ( r N ) and 

H p
N
, r

N( )  is the N-particle Hamiltonian. The h is Planck’s constant, and the factor N ! 

takes care of indistinguishability of the particles. The variable ! equals 1 / k
B
T . 

Hamiltonian can be described by kinetic energy and potential energy terms. 

 

 H p
N
, r

N( ) = p
i

2
/ 2m( )

i=1

N

! +U
N
r
N( )             (2.23) 
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where pi is the momentum vector of the ith particle presumed to posses only translational 

degree of freedom, mi is the mass of each particle i. The U
N
r
N( )  is the total potential 

energy of the system at the specified configuration r N . 
The integration over the momenta in the eq. 2.22 is 

 

 

h
!3N

dp
N

exp
!"

"

# !$ p
i

2
/ 2m( )

i=1

N

%&

'
(

)

*
+ = h

!1
dp

N
exp

!"

"

# !$ p2
/ 2m( )&

'(
)
*+

3N

                                                      = h
!1

2m / $( )
1/2

exp
!"

"

# (!x2
)dx&

'(
)
*+

3N

                                                       = 2,mkT( )
1/2

/ h&
'

)
*

3N

= -!3N

        (2.24) 

 

where ! = h / 2"mkT( )
1/2  is de Broglie wavelength and !"3N  is the momentum partition 

function.  Hydrogen is a light particle with a large uncertainty in its position ( !Hydeogen is 

!1Å at the room temperature) and can not be properly treated in classical mechanics. 

Hence, hydrogen atoms in atomistic simulations should be either constrained (for example 

via the SHAKE algorithm[75]), or coarse grained, via a united atom approach.  

The configurational partition function, Z
N

, is described by Z
N
= dr

N
exp !"U

N
(r

N
)( )# , 

thus, the canonical partition function can be rewritten, 

 

 Q T ,V ,N( ) = ZN
/ N !!

3N( )              (2.25) 

 

The free energy A is given in terms of the partition function Q by 

 
 A = !kBT lnQ                  (2.26) 

 

2.3.2 Widom test particle insertion 
 

A simple method for measuring the solvation free energy of a solute in a pure fluid or in a 
mixture is the test particle insertion method proposed by Widom.[76, 77] The TPI method has 
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been used extensively to investigate the solvation of small nonpolar molecules by 

measuring the energy of solute molecules randomly inserted into the solvent. To calculate 
the free energy change by an additional particle insertion, it is derived starting from a 

partition function. When an additional particle is inserted into the N-solvent system, the free 
energy change is described as, 

 

µ =
!A
!N

"
#$

%
&'
V ,T

= A N +1,V ,T( ) ( A(N ,V ,T )            (2.27) 

 

Substituting eq. 2.25 and 2.26 into eq. 2.27, 
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*
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./

                      = ( k
B
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1

(N +1))3

Z
N +1

Z
N

"

#$
%
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                      = k
B
T ln

(N +1)

V
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#$
%
&'
( k

B
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1

V
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N
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%
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                      = k
B
T ln 0)3( ) ( kBT ln

1

V

Z
N +1

Z
N

"

#$
%

&'

         (2.28) 

 
where the first term on the right side means that a particle with a kinetic energy wanders 

freely in entire volume and is indistinguishable with other particles. The second term 
indicates the free energy induced by insertion of an additional particle. 

Energy induced by an additional particle insertion is described by 

 
U

N +1
=U

N
+ B

S
                (2.29) 

 

where the binding energy BS is defined as B
S
=U

N +1
!U

N
; i.e., the difference of N+1 and N 

particle potential energies. The BS equals the interaction energy of the insertion particle (the 

solute) with all other molecule. 

Therefore, the second term in eq. 2.28 is derived as, 
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         (2.30) 

 
Therefore, the free energy change by the insertion of an additional particle, 

 

!A
S
" #k

B
T ln e

#$BS

NVT
                                    (2.31)                               

 

where the ensemble average is obtained over pure solvent configurations at constant 
pressure V and temperature T, subscript ‘s’ refers to solvation.  The method relies on the 

statistically accurate sampling of solvent configurations that permit the insertion of 

molecules with low values of B
S
. For that reason it is more efficient for small-sized solutes. 

 

2.3.3 Thermodynamic integration 
 
In case of larger solutes (e.g., >CH4), alternative methods are needed in which the solute is 

gradually introduced into the system. For this purpose we have used the thermodynamic 

integration (TI) method. This approach performs calculation of a free energy difference 
through integration. The TI formula for the solvation free energy, !A

S
, is given by,[78, 79] 

 

  

!A
S
=

"U (#)

"#0

1

$
#

d#                                                                                               (2.32) 

 

where ! is the coupling parameter that couples the interaction between solute and solvent, 

U !( )  is the energy describing the total potential interaction and 
 
!

!
denotes an average in 
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a canonical ensemble with Hamiltonian H !( ) . The path between initial and final states is 

specified using a coupling parameter ! , which is impacting simulation efficiency with 

adjusting a stepsize of ! .[80] The parameter !  regulates the strength of U  such that ! =0 

denotes the full solute-solvent interaction whereas ! =1 corresponds to the solute-solute 

interaction being completely switched off.  

In practice eq 2.32 is calculated by running a series of simulations, each with a different ! -

value, and numerically integrating over the free energy derivative 
  
!U / !"

"
. Figure 2.3 

shows the free energy change using the TI method for dissolving one tert-butanol molecule 

in water with different choices for !" .  

Free energy changes are -13.1 kJ/mol ( !" = 0.1), -11.6 kJ/mol ( !" !0.05). The difference 

of these two vales (2.5 kJ/mol) comes from extreme points which are not detected in the 
case of !" = 0.1. Sampling difficulties may arise near the endpoints (! = 0 and 1).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Thermodynamic integration of one tertiary butanol (OPLS)[81] and 1000 water 

(SPC)[82] mixtures. Free energy changes are -13.1 kJ/mol (!"=0.1; red), -11.6 kJ/mol 

(!" !0.05; black). 

 

!" # 0.05

!" = 0.1
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As it will be apparent from the figure, accurate calculation requires the sampling at more 

! -values in regions between ! = 0 and ! = 0.2 and regions between ! = 0.7 and ! = 0.9. 

This problem can be overcome to some extent by using smaller !  integration steps in the 

! -ranges. Choosing an appropriate !"  is required not to miss the significant path. 

Normally, nonlinear potential functions of ! are used.[79, 83] We note that, although we do 

not specify the ! -dependence of the Hamiltonian here, in practice this dependence can and 

must be chosen such that sharp extrema and singularities of 
  
!U / !"

"
 are avoided. 

 

2.3.4 Potential of mean force 
 
A potential of mean force (PMF)[84] is a free energy projected onto a coordinate. This may 

involve a reaction coordinate describing a conformational transition or, as used in this 

thesis, a simple distance between two solute molecules in a solvent. Then, we also speak of 

the free energy of association. The PMF involves association and desolvation energies when 

two molecules approach each other in solvent. There exist many methods to compute PMFs 

in molecular simulations. Here we discuss the constraint-bias method with force averaging. 

In this method a distance constraint is applied and the average constraint force – obtained 

by averaging over degrees of freedom of the solvent – is sampled at various values of the 

constraint distance r. Integrating the solvent-averaged constraint force from large 

(“infinite”) distance to distance !r , defines the PMF 
 
w r( )  

 

w(r) = F
c
( !r )

"

r

# !r
d !r                                                                                           (2.33) 

 
where Fc is the constraint force required to keep the solute pair fixed at distance r , and 

 
!

!r
 is an average value over fluctuations of the force. Alternatively the PMF may be 

obtained from a simulation where the probability distribution g(r)  of the degree of freedom 

r is accumulated. The PMF is then given by, 
 

w(r) = !kBT lng(r)                                                                                               (2.34) 
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Because we deal with a solute pair, g(r) is the solute-solute pair correlation function. k
B

 is 

the Boltzmann constant and T the temperature of the system.  
In case not only the distance between solutes but also their mutual orientation is of interest, 

one or more angles may need to be included.  For example, the interaction between two 
aromatic rings can be described with a distance r and angle !  between the two rings. The 

pair correlation functions for this two-dimensional relation is described by 
 

g r,!( ) = "n r,!( ) / "V                                                                                          (2.35) 

 

where !V = 2"r
2
sin#!r!# . The PMF is hence given by  

 

w r,!( ) = "kBT ln g r,!( )#$ %&                                                                                   (2.36) 

 
2.4 Chemical potential in molecular fluids 
 

In chapter three of this thesis we will make use of the Kirkwood-Buff (KB) theory of 
solution in parameterizing an alcohol/water force field. KB theory provides relations 

between derivatives of the solution component chemical potentials with mixture 

composition and the distributions of solvent molecules at the molecular scale. To introduce 
this theory we start here with introducing the concept of an ideal solvent mixture. Then we 

define non-ideal mixtures and relations between thermodynamic non-idealities and 
molecular distribution functions through KB theory. For an extensive description we refer 

to the book of Ben-Naim.[85] 

 

2.4.1 Ideal mixtures 
 

A fundamental quantity in the description of liquid mixtures is the chemical potential. The 

chemical potential measures how much the free energy of a system changes if one mole of 
particles is added to the system while keeping the number of other particle species (and the 
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temperature T and the pressure P) constant. Here we consider binary liquid mixtures 

composed of the components A and B. The chemical potential of component A is defined as 
 

µ
A
=

!G
!N

A

"

#$
%

&'
T ,P,NB

= G(T ,P,N
A
+1,N

B
) (G(T ,P,N

A,
N

B
)
 

       
  
= k

B
T ln(!

A
"

A

3 ) +W ( A | A, B)                                                      (2.37) 

 

where G is the free energy of the system, NA and NB are the number of A and B molecules in 

the system, !
A

is the number density of A component, !
A

3  is the momentum partition 

function of an A molecule, and W (A | A,B)  is the “coupling work” of A against an 

environment of A and B  molecules. Without loss of generality, we have assumed that A and 
B have no internal degrees of freedom. This coupling work W (A | A,B)  is equal to the free 

energy of solvation in eqs. 2.31 and 2.32.[85] The first term 
  
k

B
T ln(!

A
"

A

3 )  account for the 

fact that A has a kinetic energy, can wander around in a volume V and is indistinguishable 

from all other A-type molecules. The combination of indistinguishability (contribution 

  
k

B
T ln N

A
 in the chemical potential) and volume accessible (contribution 

  
!k

B
T lnV  in the 

chemical potential) causes the appearance of the number density !
A

 in 
  
k

B
T ln(!

A
"

A

3 ) . If we 

now assume that the A and B molecules are “very similar”[85] in the sense that interactions of 

A with A, A with B, and B with B can be approximated equal, the coupling work 

  W ( A | A, B)  will not depend on the ratio of A and B in the mixture and   W ( A | A, B)  is a 

constant (depending, of course, on P and T). For the sake of notation used later on, we will 

rename this constant and denote it 
  
k

B
T ln!

A
(P,T )  where 

  
!

A
(P,T )  is the mole fraction 

scale activity coefficient of A, which in this specific case depends on pressure and 

temperature but not on composition. Therefore, we can write 
 

  

µ
A
!

A
, P,T( ) = k

B
T ln !x

A
"

A

3( ) + k
B
T ln#

A

= k
B
T ln !"

A

3#
A( ) + k

B
T ln x

A

= µ
A

*
P,T( ) + k

B
T ln x

A

                                                        (2.39) 
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which is the chemical potential of A in an ideal liquid mixture.[86] To arrive at this 

expression we used 
 
!

A
= !x

A
, with ρ the total number (or molar) density of the liquid and 

xA the mole fraction of A in the system. Since we assumed that A and B are “very similar” in 

the way they interact we also expect that A and B are distributed randomly in the mixture 
with no preference of A to be solvated by A (or B) or B to be solvated by B (or A). 

 

Non-ideal solution behavior occurs if A and B are not “very similar” and A’s and B’s may 

prefer to interact with molecules of the same or the other kind. Then, 
  
k

B
T ln!

A
 will depend 

on the solution composition xA and the chemical potential of A is 

 

  

µ
A
!

A
, P,T( ) = k

B
T ln !"

A

3( ) + k
B
T ln x

A
+ k

B
T ln#

A
(P,T , x

A
)

= µ
A

+
P,T( ) + k

B
T ln x

A
+ k

B
T ln#

A
(P,T ,x

A
)

$ µ
A

+
P,T( ) + k

B
T ln a

A

                                        (2.40) 

 

where aA is the activity of component A. We suppose now that the activity coefficient 
 
!

A
 

decreases if xA increases, i.e., the coupling work of A with the system (solvation free energy 

of A) decreases. It is not difficult to imagine that this now may happen because A-type 
molecules like being surrounded by A-type molecules. Therefore the more A-type molecules 

available the less the work needed to add A-type molecule. The theory in the next section 
describes how to obtain quantitative information on the molecular-scale distribution of the 

molecules based on chemical potential derivatives with the composition. 

 
2.4.2 Kirkwood-Buff theory  
 
In this section, we will describe deviation from ideal behavior in liquid mixtures using the 

Kirkwood-Buff (KB) theory of solution[3] applied to binary systems. In particular, we use 

KB theory in this thesis to explain the non-ideal behavior of liquid mixtures, which show 



 
Computational methods 

35 

excess aggregation between molecules of the same species and repulsion among molecules 

of dislike species. 
The non-ideal behavior can be generalized with the number density in the configuration 
space of molecular pairs and fluctuations. First of all, the grand canonical ensemble ( µVT ) 

which contains 
 
N
1
,N

2
,!,N

C
molecules with multi-component mixture is introduced. 

Molecules can move in and out in the grand canonical system. For example, the average 

numbers of A and B molecules in mixtures are same in the bulk x
A

= x
B

= 0.5( ) . 

Nevertheless, local aggregation can be observed at the microscopic scale such as the 

schematic picture below. This picture shows the local aggregation of A molecule (red ball; 

local mole faction of A molecule, x
A
 is 0.67) within pair correlation distance ( R

C
) with the 

open-system (dash line), despite the average mole fractions of A and B molecules are same 

in the bulk. We assume that the central solute A sees the bulk composition 

x
A

= x
B

= 0.5( )  beyond the correlation distance and the pair correlation function 

g(r > RC )  over the correlation distance is assumed to be unity. The correlation volume (V
C

) 

equals the spherical volume with a diameter R
C

. 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

x
A

= x
B

= 0.5

x
A
(local) = 0.67

 
A

B

R
C

   Excess coordination of an “A” molecule (in the center of the dashed circle) 



 
Chapter 2 

36 

Therefore excess coordination number NAB is denoted by 

 

NAB = !BgAB
µVT

(r) dr "
VC

# !BVC = !B gAB
µVT

r( ) "1$% &'
VC

#  dr  

               = !B gAB
µVT
(r) "1#$ %&0

'

( 4)r2dr             (2.40) 

 

where gAB
µVT
(r)  is the pair correlation function between species A and B in grand canonical 

ensemble. The quantity !BgAB (r)4"r
2
dr  measures the average number of B molecules in a 

spherical shell of width dr at a distance r from the center of a A molecule. On the other 

hand, the quantity !
B
4"r2dr  measures the average number of B molecules in the same 

spherical shell, which has been chosen at random. Therefore, eq. 2.40 defines the excess (or 

deficiency) to the average number of B molecules in the spherical shell at distance r from a 

A molecule relative to the number obtained by eliminating the condition that molecule B is 
located at the origin. A positive value of N

AB
 indicates an excess of species B surrounding 

species A while a negative value of N
AB

 presents depletion of species B in the vicinity of 

species A. This quantity gives information about the affinity of B molecules towards A 

molecules. The excess coordination numbers are simply expressed such as N
AB

= !
B
G

AB
. 

Here, the G
AB

 are called Kirkwood-Buff integrals.  

Kirkwood-Buff integrals (KBIs) are defined as 

 

  
G

AB
! g

AB

µVT (r) "1( )4#r 2dr
0

$

%           

       = gAB
µVT
(r) !1( )

0

RC

" 4#r2dr                                                                              (2.41) 

 

where GAB (=GBA) is the KBI for solvent pairs A and B, 
 
g

AB

µVT is the corresponding pair 

correlation distribution function in the grand canonical ( µVT ) ensemble, and r is the 

distance between the centers of molecules A and B. The integration from zero to correlation 
distance, R

C
, should be same with the integration from zero to infinity. 
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Ben-Naim suggested how to calculate the KBIs from measured thermodynamic properties.[9] 

He presented relationships between experimental data such as partial molar volumes, 
isothermal compressibilities, partial vapor pressures and the quantities Gi j . 

Using thermodynamic quantities of mixtures such as partial molar volumes V
i
, isothermal 

compressibilities !
T

, and partial vapor pressures from experimental work, one can calculate 

Gij  values.[85] By computing the Gij  values from the pair correlation function gij obtained by 

simulations of liquid mixtures, we can directly connect simulated structural data with 

experimental thermodynamic data. This idea is schematically shown in the figure below. 

 
 

 
 

 

 
As a theory of solution, it is conveniently applied to the entire range of compositions. Thus, 

the KB theory has become a powerful tool in the study of particularly complex fluids such 
as water and aqueous solutions. 

 

From now on, these useful relationships are derived in detail.[85] The grand canonical 

ensemble description is characterized by variables µ,V ,T , where 
 
µ = µ

1
,µ

2
,!,µ

c( )  stands 

for the vector comprising the chemical potentials of all the c components of the system. For 

specified configurations, the indices ! and !  were used to denote the species, i.e., ! , !  

 
= 1,2,!,c . In this case, normalization condition for singlet and the pair distribution 

functions are expressed in following as, 

 

!"
1( )# r( )dr = N"                (2.42) 

!"#
2( )$$ r, %r( )drd %r = N" N" &1( )      if "  = #

                             = N"N#              if " ' #

                             = N"N# & N" ("#

             (2.43) 

gij Gij V
i
, !

T
, "µ

i
/ "#

j
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where  the symbol 
 
!  indicates an average in the grand canonical ensemble, !  is the 

number density, superscript (1) and (2) are denoted by a singlet and pair species, and the 
!"# is the Kronecker delta function which is unity for ! = "  and zero for ! " # . N

!
and 

N!  are the number of molecules ! and !  in the system. 

The singlet and pair densities are given by, 

 

!"

1( )
r( ) = !"                (2.44) 

!"#
2( )
r, $r( ) = !"!#g"#

2( )
r, $r( )              (2.45) 

 

where !" is the number density of species ! !" = N" /V( ) , !" is the number density of 

species !  ( !" = N" /V( ) , and g!"
2( )
r, #r( ) is the pair correlation function between species 

! and ! . 

From eq. 2.44 and eq. 2.45, the next relation is derived.  

 

!"#
2( )
r, $r( ) % !"

1( )
r( )!#

1( ) $r( )&' ()**  drd $r = !"!# g"#
2( )
r, $r( ) %1&' ()**  drd $r

                                                           = N"N# % N" N# % N" +"#

        (2.46) 

 
The G!"  according to eq. 2.44 is expressed as the following formula, 

 

G!" # g!" r( ) $1%& '(4)r
2
dr = V

N!N" $ N! N"

N! N"

$
*!"

N"

+

,
-

.

/
0

0

1

2         (2.47) 

 

where G!" is KBI to measure the preferential solvation and the right hand side term consists 

of the particle number fluctuations.  The integral extends over all position of a pair of type 
!" . This is a connection between the fluctuation in the number of various species and an 

integral involving only the spatial pair correlation functions for the corresponding pair of 
species !  and ! . This is an important point: the KBI, G!" , is the mediated relation 

between the radial distribution functions and the density fluctuations.  
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Meanwhile, the fluctuation averages are taken over all numbers of molecules 
 
N
1
,!,N

C
 and 

over the accessible phase space of each set of molecules with the probability distribution 
function. In here, the partition function !  is referred as the grand partition function or the 

open-system partition function. 
 

! = Q
NVT

N

" exp #µ $N( )                      (2.48) 

 
where the summation in eq. 2.48 is over all possible values of N. In eq. 2.48, 

 
N = N

1
,N

2
,!,N

c
 is the vector representing the composition of the system, where N

i
is the 

number of molecules of species i. The corresponding vector 
 
µ = µ

1,
µ
2,
!µ

c
 includes the 

chemical potential of each of the species. This is generalized with respect to all components 

for an open system. In eq. 2.48, µ !N = µ
i
N

i

i=1

c

" is the scalar product of the two vectors 

µ and N . Composition fluctuations in the grand canonical ensemble ( µVT ) are related to 

derivatives of the chemical potentials of the components.  

 

N! =
1

"
N!QNVT

exp #µ $N( )
N

%  

                   = k
B
T

! ln"
!µ#

$

%&
'

()
VT µ *#

               (2.49) 

 

where µ
!"
stands for the set 

 
µ
1
,µ

2
,!,µ

c
 excluding µ

!
. 

Differentiating eq. 2.49 with respect to µ! , we get 

 

kBT
! N"

!µ#

$

%
&

'

(
)
VT µ *#

=
+1

,2
N#QNVT exp #µ -N( )

N

.$%&
'
()
- N"QNVT exp #µ -N( )

N

.$%&
'
()

                                 +
1

,
N"N#QNVT

N

. exp #µ -N( )

                               = N"N# + N" N#

              (2.50) 
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With respect to interchanging the! and ! ,  

 

k
B
T

! N"

!µ#

$

%
&

'

(
)
VT µ *#

= k
B
T

! N#

!µ"

$

%
&

'

(
)
VT µ *"

= N"N# + N" N#           (2.51) 

 
The following equations are derived by combining eq. 2.51 with eq. 2.47 and the number 

densities of species ! and ! . 

 

k
B
T

V

! N"

!µ#

$

%
&

'

(
)
VT µ *#

= k
B
T

!+"

!µ#

$

%
&

'

(
)
T µ *#

= +"+#G"# + +","#                      (2.52) 

 

!µ"

!#$

%

&'
(

)*
VT µ +"

=
k
B
T

#$#"G$" + #$,$"

            (2.53) 

 
Finally, eq. 2.53 shows a connection between chemical potential derivatives and molecular 

distribution function. Ben-Naim presented how to derive the KBIs relationships.[85] 

Particle number fluctuations are related to derivatives of chemical potentials with respect to 
compositions. However, the derivatives of eq. 2.53 are taken at constant chemical 

potentials. In most practical cases, the experimentalist is more interested in derivatives at 
constant pressure, P and temperature, T. Using some simple manipulations in partial 

derivatives, eq. 2.54 and eq. 2.55 follow from eq. 2.53.[85]  

In the previous section 2.4.1, we introduced the chemical potential in the ideal/nonideal 
mixture using activity coefficient. The following relations between activity coefficient and 

KB integrals can be also derived with respect to molar concentration and mole fraction such 
as,  

 

! ln yA
! ln"A

#

$%
&

'(
T ,P

=
)"A GAA )GAB( )
1+ "A GAA )GAB( )

            (2.54) 
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 ! ln"
A

! ln x
A

#

$%
&

'(
T ,P

=
)*

B
x
A
G

AA
+G

BB
) 2G

AB( )
1+ *

B
x
A
G

AA
+G

BB
) 2G

AB( )
           (2.55) 

 

In here, different notations for molar activity coefficient, y and mole fraction activity 
coefficient, !  to distinguish the scale are used.   

If species A and B are “very similar” like an ideal mixture, interactions of A-A, A-B, and B-

B might be same, thus, G
AA

= G
AB

= G
BB

.  As a result, G
AA
!G

AB( )  term in molar scale and 

G
AA
+G

BB
! 2G

AB( )  term in the mole fraction scale will be close to zero. In another case,  

“A likes A” or “B likes B” in the A and B mixtures, i.e., G
AA

> G
AB

 or G
BB

> G
AB

, 

G
AA
!G

AB( )  term in molar scale and G
AA
+G

BB
! 2G

AB( )  term in the mole fraction scale 

will be positive. These relations give direct information of aggregation of binary liquid 

mixtures. 

So far, this section showed the details to induce relations between chemical potential 
derivatives and KB integrals. The KB theory is applicable for any kind of particles, not only 

for spherical molecules. Without any assumption, only the pair correlation functions appear 
in the relations. These are outstanding features in the KB theory. Therefore, the KB theory 

has become a powerful tool in the study of particularly complex fluids such as water and 

aqueous solutions. 
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3. A new force field of aqueous tertiary butanol 

solutions using atomistic simulations 

  
 

3.1 Introduction 
 

The structures of solutions depend on a balance of various intermolecular forces. In 
classical computer simulations, force fields are often developed by combining quantum 

chemically derived properties (bond lengths, angles, torsion barriers, partial atomic charges) 
and Lennard-Jones 12-6 potentials as well as partial atomic charges empirically 

parametrized to reproduce pure liquid properties such as its density and heat of 

vaporization.[87-90] The validity of these force fields in simulations of liquid mixtures may 
then be tested by comparison of, e.g., solution densities, heats of mixing, dielectric 

constants, diffusion constants, compressibility, etc. with experimental data[91-93] or by 
comparison of calculated and experimental binary phase behavior.[94, 95] Although 

reproduction of target properties such as the density and heat of mixing provides a 

reasonable assessment of the quality of intermolecular potential energy functions, a realistic 
picture of the solution structure cannot always be guaranteed to emerge. In recent studies, 

Weerashinge and Smith [4, 6-8] adopted an alternative strategy using the Kirkwood–Buff (KB) 

theory[3] of solution in parametrizing co-solvent force fields applicable for atomistic 
simulations of binary water/co-solvent mixtures. The KB theory relates integrals over pair 

distribution functions (i.e., KB integrals) to thermodynamic quantities such as isothermal 
compressibilities, partial molar volumes, and chemical potential (solution activity) 

derivatives. No approximations are made in this theory; therefore KB integrals obtained by 
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computer simulation can be directly compared with thermodynamic data obtained from 

experiment. In addition, the KB integrals provide a computational inexpensive route to 
solution activities, which normally are not available during force field development due to a 

large computational cost of calculating free energies by thermodynamic integrations (TI). In 
nonideal mixtures, activity coefficients (defined on a molar concentration scale) vary with 

the solution composition in such a way that the corresponding changes in the excess 

chemical potentials are of the order of a few kJ/mol. For tert-butanol/water mixtures the 
maximum change amounts to 2–3 kJ/mol (fig. 3.8). This small free energy change cannot be 

calculated with sufficient accuracy in TI calculations, which usually provide error bars of 
1–2 kJ/mol, but can be obtained very accurately from KB analyses, as we will show later 

on. Based on the KB approach Weerashinge and Smith developed models for urea,[6] 

acetone,[4] sodium chloride,[7] and guanidinium chloride[8] combined with three-site models 
(SPC/E,[96] SPC,[82] TIP3P[97]) for water. The advantage of the KB approach over alternative 

force field parametrization methods is that it guarantees the proper association behavior of 

solution components resulting from preferential interactions of molecules with molecules of 
the same or another kind, which must be described realistically when studying aspects of 

molecular recognition, ligand binding, chemical denaturation of proteins, etc. 
In this chapter we present a tertiary butanol (TBA) model developed to reproduce the 

solution thermodynamics and aggregation behavior of TBA/water mixtures over the full 

composition range at 298 K and 1 atm. The physical chemistry of alcohol/water mixtures is 
particularly interesting as a direct result of the balance between the complex mixtures of 

hydrophobic and hydrogen bonding interactions that occur between the amphiphilic 
alcohols and hydrophilic water molecules. TBA is the largest alcohol molecule in the series 

of monohydric alcohols remaining fully miscible with water. The solution, however, 

behaves highly nonideal and significant excess coordination of TBA by surrounding alcohol 
molecules occurs at low alcohol concentrations as a result of hydrophobic interactions 

between the tert-butyl groups. Computer simulation studies of dilute aqueous tert-butanol 
solutions have been reported previously.[28-32] In these studies detailed analyses of the 

structural aspects of tert-butanol hydration were made. However, none have described the 

solution thermodynamics and aggregation of tert-butanol or water in detail. Simulations of 
aqueous TBA solutions, using parameters taken from the OPLS[81] and GROMOS[89] force 
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fields to describe TBA combined with the SPC model[82] for water, indicated excessive 

aggregation of the alcohol and water molecules with almost a tenfold overestimate of the 
alcohol-alcohol and water-water KB integrals (see fig.3.1). The infinite dilution hydration 

free energies of the OPLS and GROMOS models in SPC water were found 6–7 kJ/mol 
larger than experiment. These observations clearly indicate that both TBA models are too 

strongly hydrophobic. We therefore decided to reparametrize the distribution and magnitude 

of the partial atomic charges of the GROMOS model resulting in a new, nonpolarizable, 
model with a larger dipole moment. The new model presented in this chapter reproduces the 

experimental KB integrals and their compositional dependencies. As a result, derivatives of 
solution activity coefficients, and the activity itself, are reproduced over the full range of 

solution compositions.  

In the chapter 2.4.2, we have introduced KB theory which is used in the current work. First 
of all, the simulation details of the molecular dynamics (MD) and a new force field for TBA 

and water mixtures are described. Then in the next section, the results in terms of KB 

analysis and solution structure using our KB-derived force field are presented and 
discussed.  
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3.2 Simulation details 
 

Simulations of TBA and water mixtures were carried out using the GROMOS96 bio-
molecular simulation package.[98, 99] In all simulations the temperature was kept constant at 

298  K by weakly coupling to a temperature bath with a relaxation time of 0.1  ps.[69] The 

pressure was maintained at 1 atm by also applying the weak coupling algorithm with a 

relaxation time of 0.5 ps[69] and an isothermal compressibility of 45.75 !10"5  (kJ  mol–1  nm–

3)–1. For nonbonded interactions, a twin-range method with cutoff radii of 0.8 and 1.4 nm 
was used. Outside the longer cutoff radius a reaction field correction was applied with a 

relative dielectric permittivity in the range between 12.5 (liquid TBA) and 64.8 (2 mol  % 

TBA in water). The integration time step was 2 fs, the pairlist for pairs within the inner 
cutoff and the energies and forces for pairs between the inner and outer cutoff radii were 

updated every 10 fs. All bond lengths were kept constant using the SHAKE algorithm[75] 

with a relative geometrical tolerance of 10–4. Details on the system sizes, compositions, and 
simulation times are summarized in table 3.1. For all mixtures, a cubic box with an edge 

length of !4 nm was prepared and simulated over a time span of 10–15 ns. All systems 
were equilibrated for at least 1 ns.  

In addition to calculating the solution activity coefficients, free energy calculations based on 

thermodynamic integration (TI; see the chapter 2.3.3) were performed. Free energy changes 
were calculated using at least 50 ! values. At each new ! , the system was first equilibrated 

for 50 ps after which the derivative in eq. 2.32 was sampled for at least 1 ns. A soft-core !  

scaling was used[99] to avoid singularities of the derivative at the end points. TI was used to 
calculate alcohol solvation free energies at mixture compositions 0.001 ! x

A
! 1. Except for 

the pure liquid TBA system, the free energies were computed by decoupling the nonbonded 
interactions between a single alcohol molecule and all other alcohol and water molecules of 

the system at constant P and T. The solvation free energy of TBA in its own pure liquid was 

calculated by decoupling the nonbonded interactions between all molecules of the system at 
constant V and T. 
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Table 3.1 Summary of MD simulations of TBA/water mixtures. The average system volumes 

were obtained using the partial atomic charges of set V in table 3.3. The numbers in 

parentheses correspond to larger system sizes. 

x
A

 NTBA NH2O tMD(ns) !
RF

 V (nm3) T (K) 

0.02 200 9800 14 64.8 329.5 301.8 
0.04 74(171) 1776(4096) 10(10) 64.8 65.29(150.82) 299.7(301.4) 
0.06 105(262) 1645(4096) 10(10) 64.0 65.26(164.53) 299.3(301.0) 
0.10 168(500) 1512(4096) 10(10) 50.7 71.73(201.76) 298.6(300.3) 
0.16 210 1100 10 36.1 66.14 299.7 
0.20 275(1000) 1100(4096) 10(10) 36.1 76.24(281.07) 297.5(299.4) 
0.30 336(1728) 784(4096) 10(10) 30.0 76.70(397.75) 296.9(298.9) 
0.50 432(2733) 432(2744) 10(10) 18.0 82.16(523.07) 296.3(298.2) 
0.60 450 300 10 15.0 81.36 296.1 
0.70 470 200 10 12.7 81.97 295.9 
0.80 480 120 10 11.9 81.50 295.8 
0.86 490 80 10 11.8 82.50 297.8 
0.90 500 55 10 11.8 83.04 295.7 
0.95 1045 55 10 12.5 172.95 297.6 
0.98 2695 55 10 12.5 444.10 297.8 
1.00 512 0 5 12.5 83.92 297.5 

 

 

3.3 tert-butanol and water models 
 
For the tert-butanol (TBA) model, a six-site TBA model which is treated with a united 
atom-methyl group, was used. The bonded as well as nonbonded interaction parameters for 

TBA were taken from the GROMOS53A6 force field.[89] All internal nonbonded 

interactions were excluded. 
The GROMOS53A6 Van der Waals interaction parameters of the central carbon atom and 

united atom methyl groups have been parameterized to, amongst other properties, reproduce 

free energies of hydrophobic hydration in SPC water[100] and are therefore expected to 
provide a reasonable description of hydrophobic interactions between tert-butyl groups.  
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Table 3.2 Summary of the tert-butanol and SPC water force field parameters. 

 Bonded terms 

 Bond lengths, nm 

O-H 0.100 

C-O 0.143 

C-CH3 0.153 

 
 
Angles, V !( ) =

1

2
k
!

cos! " cos!
0( )

2

 
 

 k
!
kJ / mol( )  !0 deg( )  

CH3-C-CH3 520 109.5 

H-O-C 450 109.5 

O-C-CH3 520 109.5 

 
 
Torsions,  V !( ) = K! 1+ cos "( )cos m!( )#$ %&  

 K! kJ / mol( )  cos !( )  m 

H-O-C-CH3 1.26 1.0 3 

 Nonbonded termsa 

Atom types C
12
i,i( ) 10!6

kJ mol
!1
nm

!12( )  C
6
i,i( ) 10!3

kJ mol
!1
nm

!6( )  qi e( ) b 

 tert-butanolc 
CH3 26.64624 (34.2124) 9.613802 (9.57465) 0.0 

C 205.3489 (7.59129) 2.397081 (2.52124) 0.337 

O 1.505529d/1.265625c(1.99550) 2.261954 (2.38253) -0.76 

H 0.0 (0.0) 0.0 (0.0) 0.423 

 SPC water 

OW 2.634129 2.617346 -0.82 

HW 0.0 0.0 0.41 
 

aNonbonded interaction function,  
V rij( ) = C12 i, j( ) / rij

12 ! C
6
i, j( ) / rij

6
+ qiqj / 4"#0 1 / rij + (#RF !1)rij

2
/ (2#RF +1)RC

3 ! 3#RF / (2#RF +1)RC$% &'
,  

RC, long-range cutoff radius. !
RF

, reaction field relative dielectric permittivity. Combination rules, 
C6(i,j)=C6(i,i)1/2C6(j,j)1/2; C12(i,j)=C12(i,i)1/2C12(j,j)1/2. 
bDerived in this work by parametrizing against solution activity data. The GROMOS and OPLS 
partial charges are listed in table 3.3. 
cOPLS nonbonded parameters[81] are listed within parentheses. 
dUsed for O–O and O–OW nonbonded interactions. 
eUsed for O–C and O–CH3 nonbonded interactions. 
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TBA molecule was also modeled by nonbonded 12-6 LJ parameters and partial atomic 
charges taken from the OPLS force field[81] in combination with the GROMOS bonded 

parameters. For water, the SPC model[82] was used. The GROMOS force field parameters 
have been summarized in table 3.2 together with the parameters for the SPC water.  

Short test runs indicated that the KB integrals were very sensitive to the magnitude of the 

TBA dipole moment, modeled by the set of partial charges located on the hydroxyl oxygen 
and hydrogen atom, and the central carbon atom, while not much being affected by changes 

of the nonbonded Lennard-Jones parameters. We therefore decided to only reparametrize 
the partial atomic charges. Table 3.3 summarizes the charge distributions examined in this 

work. The initial set of partial charges (denoted by the Latin symbol I) was taken from the 

GROMOS force field of methanol.[89, 101] The second set (II) was taken from the OPLS force 
field.[81] Because with both charge distributions the extent of alcohol-alcohol as well as 

water-water aggregation was too strong (see below), we decided to systematically increase 

the molecular dipole moment of TBA, which is shown for each set (I–VIII) of partial 
charges in the last column of table 3.3. 

 
 

 

Table 3.3 Partial atomic charges and corresponding TBA dipole moments evaluated in this 

work. 

 qC e( )  qO e( )  q
H
e( )  µ D( )  

I(GROMOS,CH3OH)[101] 0.266 -0.674 0.408 2.19 
II (OPLS)[81] 0.265 -0.700 0.435 2.26 

III 0.295 -0.740 0.445 2.41 
IV 0.320 -0.760 0.440 2.49 
V 0.337 -0.760 0.423 2.52 
VI 0.350 -0.760 0.410 2.55 
VII 0.370 -0.780 0.410 2.65 
VIII 0.410 -0.820 0.410 2.85 
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3.4 Results 

 
3.4.1 KB analysis 

 
In KB theory [3, 85] thermodynamic properties of a solution mixture are expressed in terms of 

KB integrals between solution components. In the chapter 2.4.2, we have introduced the KB 
theory. As we have seen eq. 2.41, KB integrals integrated from zero to correlation region, 

R
C

, are assumed to be equal to KB integrals integrated from zero to infinity. If R
C

 is small 

compared to the simulated system size, the KB integrals can be determined from simulation 

data in the NPT ensemble by assuming that 

 

Gij = gij
NPT

r( ) !1"# $%0

RC

& 4'r2dr                                                                                (3.1) 

 

where Gij  is the KB integral for the pair of species i and j, gij
NPT

r( ) is the corresponding 

radial distribution function in the isothermal-isobaric (NPT) ensemble, and r is the center of 

mass–center of mass distance. 
Figure 3.1 shows the KB integrals, obtained by using the GROMOS and OPLS force fields 

(see tables 3.2 and 3.3), presented as a function of the alcohol mole fraction of solution. The 

experimental KB integrals (red circle symbols) were obtained from small-angle x-ray 
scattering.[102] Although the KB integrals obtained from experiment have a large error 

 
! ± 100 cm

3
/ mol( ) , the GROMOS and OPLS force fields give rise to a strong 

overestimation of alcohol-alcohol and water-water aggregation. Analyses of the heats of 

mixing for 0.001 ! x
A
! 0.9 (table 3.4) and the free energy of hydration ( x

A
=0.001; table 

3.5) are consistent with this observation. While the heats of mixing are consistently positive 

and large with deviations up to 0.7 kJ/mol, the free energies of hydration are overestimated 

by 6–7 kJ/mol.  
The experimental free energy of hydration was obtained from the vapor pressure data 

reported by Koga[103] and the solution densities reported by Nakanishi[104] using the 

expression[105] RT ln yA = RT ln PA / !ART( )
eq

, where yA  is the molar scale activity 
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coefficient and P
A

 is the alcohol vapor pressure at equilibrium with the solution at an 

alcohol molar concentration !
A

. The experimental heats of mixing were also obtained from 

the work of Koga et al.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Kirkwood–Buff integrals for TBA-TBA pairs (GAA), water-water pairs (GWW), and 

TBA-water pairs (GAW) vs the TBA mole fraction (xA) in solution. Experimental data (red 

circle)[102], GROMOS nonbonded van der Waals parameters and partial atomic charges 

(green square)[106], OPLS[81] nonbonded van der Waals parameters and partial atomic 

charges (blue triangle). 
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Table 3.4. Heats of mixing, !H
m

(kJ  mol–1) using TBA partial atomic charge distributions I 

(GROMOS), II (OPLS), and V (table 3.3). 

x
A

 Expt. I II V 

0.001  !  -0.12 -0.12 -0.12 
0.04  !  0.07 -0.06 -0.10 
0.06  !  0.00 0.22 -0.09 
0.1 -0.52 0.08 0.09 -0.03 
0.2 -0.42 0.24 0.27 0.10 
0.3 -0.25 0.57 0.49 0.26 
0.5 0.17 0.84 0.73 0.53 
0.6 0.29 0.92 0.81 0.64 
0.7 0.35 0.87 0.62 0.60 
0.8 0.36 0.71 0.62 0.45 
0.9 0.29 0.40 0.25 0.29 

 

 

Using !H
m
= x

A
H

m

E
TBA( ) + 1" x

A( )Hm

E
(H

2
O) , in which H

m

E
(TBA) and H

m

E
(H

2
O)  are the 

excess partial molar enthalpies of the solution components reported in Ref. [103]. Solvent-

solvent radial distribution functions (rdf), used to compute KB integrals (eq. 3.1), were 

defined as follows. The alcohol-alcohol radial distribution function, gAA(r), is based on the 
distances r between the central carbon atoms of two TBA molecules, the water-water radial 

distribution function, gWW(r), is based on oxygen-oxygen distances, and the alcohol-water 
radial distribution function is based on central carbon-oxygen distances. 

The rdf and the corresponding KB integrals as a function of the integration distance r in eq. 

3.1 are displayed in fig. 3.2 for a 0.5 mole fraction of TBA. While for long enough 
integration distances the KB integrals should approach a constant value, we observe 

oscillations at distances up to 1.6 nm indicating that packing effects still play a role at these 
distances. One may assume, however, that these oscillations slowly die out and the Gijs will 

converge to values obtained by averaging over the last period of oscillation (between 1.1–

1.6 nm).  
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Figure 3.2 Upper panel, Alcohol-alcohol (solid line), water-water (dotted line), and 

alcohol-water (dash-dotted line) radial distribution functions. Lower panel, The 

corresponding Kirkwood–Buff integrals (eq. 2.45) as a function of integration distance. The 

rdf and KB integrals correspond to a TBA mole fraction 0.5 for the small system size 

(NTBA=432, table 3.1). (TBA partial atomic charges were from set V in table 3.3.) 

 
 

Consequently, some error is introduced in the values of GAA and GAW (±10–30 cm3/mol), 
while the GWW value seems to have a larger uncertainty. We note that converged values of 

the KB integrals were obtained only after 7–10 ns sampling time. Therefore, with all 

systems, simulation times up to 10 ns were performed. A second source of error in our 
calculations of the KB integrals may arise due to finite size effects. TBA/water mixtures 

exhibit fairly strong aggregation behavior, which may be artificially suppressed when 
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simulating too small systems. Figure 3.3 shows the KB integrals obtained at, respectively, 

0.1 (left panel) and 0.2 (right panel) mole fraction alcohol solution with two system sizes. 
The box lengths of the smaller systems are !4 nm, while those of the larger systems are 

!6 nm. In table 3.1, more details of the small and larger systems are summarized. Full lines 
represent the KB integrals obtained from simulations of the large systems, while dashed 

lines represent KB integrals obtained with the smaller system sizes. The major differences 

between the two systems are manifested in the longer-range correlations.  
 

 

 
 

Figure. 3.3 Alcohol-alcohol (upper panel), water-water (middle panel), and alcohol-water 

(lower panel) KB integrals for large (full line) and small (dashed line) system sizes (cf. 

table 3.1) at 0.1 mole fraction of TBA solution (left column) and at 0.2 mole fraction of TBA 

solution (right column). (TBA partial atomic charges were from set V in table 3.3.) 
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The larger systems clearly permit a stronger degree of water-water and TBA-TBA 

aggregation, while solvation of TBA by water becomes weaker. Unlike GAA, which shows 
an oscillating trend, GWW increases monotonically at distances between 1.0 – 2.0 nm. 

Typically, the water-water rdf slowly decays from !1.03 to 1.0 in this region. The alcohol-
water rdf on the other hand slowly increases from 0.97 to 1.0 at distances between 1.0 and 

2.0 nm, causing GAW to decrease and reaching a constant value at about 2.0 nm. We 

therefore decided to prepare larger systems (cf. table 3.1) for the solutions with alcohol 
mole fractions between 0.02 and 0.50 where the largest extent of excess aggregation 

behavior occurs (see below). All data presented below were extracted from the simulations 
with the large system size.  

Figure 3.4 shows the KB integrals for a given solvent composition presented versus the 

molecular dipole moments of the TBA models summarized in table 3.3. The dashed 
horizontal lines are the experimental values33 to be reproduced by our optimized TBA 

model. Clearly for µ< 2.5 D the systems exhibit too strong alcohol-alcohol and water-water 

aggregation while at the same time the solvation of alcohol by water is much too weak. For 
µ! 2.85D  the limit of ideal mixing is approached and all KB integrals tend to approach 

zero.  
 

 
Table 3.5 Infinite dilution free energies of hydration (xA=0.001) of TBA in SPC water for 

TBA partial atomic charge distributions I–VIII (table 3.3). 

 RT ln yA (kJ mol
!1
)  

Expt. -19.0 
I(GROMOS) -12.1 

II(OPLS) -13.1 
III -19.3 
IV -18.8 
V -19.4 
VI -17.4 
VII -18.3 
VIII -32.6 

 



 
Chapter 3 

56 

 

 
Figure 3.4 Alcohol-alcohol (upper panel, xA=0.1), water-water (middle panel, xA=0.2), and 

alcohol-water (lower panel, xA=0.2) KB integrals () presented vs the molecular dipole 

moment of the TBA models in table 3.3. Dashed horizontal lines correspond to the 

experimental KB integrals [102]. 

 

In the vicinity of the experimental KB integrals the curves make a rather sharp transition 

between these two extremes of solution behavior. If the TBA model was assigned a 
molecular dipole moment of !  2.5 D the experimental KB integrals were closely 

reproduced. Our final model (TBA partial charge distribution corresponding to set V in 
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table 3.3) has a dipole moment µ = 2.52 D compared to the gas phase experimental value of 

1.66 D.[107] The infinite dilution free energy of hydration of this TBA model is in agreement 
with the experimental value (table 3.5). 

 

 
Figure 3.5 Alcohol-alcohol (upper panel), water-water (middle panel), and alcohol-water 

(lower panel) KB integrals vs solution composition. Values computed using charge 

distribution set V (table 3.3) (), experimental data ()[102].  
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Figure 3.6 Excess coordination numbers (), Nij=ρjGij. The experimental data points () 

were obtained by combining the KB integrals reported by Nishikawa et al.[102]) and the 

solution densities reported by Nakanishi et al.[104]. 
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Figure 3.5 and 3.6 show the compositional dependence of the KB integrals and excess 

coordination numbers, Nij = ! jGij , (see the chapter 2.4.2) respectively, obtained with our 

final TBA model. The KB integrals are summarized in table 3.6. The agreement with 

experiment is satisfactory, in particular, when considering the uncertainties between 

different sets of experiments that may amount to differences of the KB integrals up to 
100 cm3/mol.[102] Excess alcohol-alcohol aggregation runs through a maximum at an alcohol 

mole fraction x
A
! 0.1 , while a maximum in excess water-water aggregation occurs 

at x
A
! 0.3 . 

 

 

Table 3.6 Summary of total number densities, ! = !
A
+ !

W
, and Kirkwood–Buff integrals 

for TBA partial atomic charge distribution V in table 3.3. For x
A
! 0.5 , KB integrals were 

obtained by averaging the Gij(R)s over intervals 1.7 ! R ! 2.5   nm. For xA>0.5, 

intervals1.1 ! R ! 1.6   nm were typically used. 

 

x
A

 ! mol cm
"3( )  G

AA
cm

3
mol

!1( )  G
WW

cm
3
mol

!1( )  G
AW

cm
3
mol

!1( )  

0.02 0.0504 110 -10 -100 
0.04 0.0471 273 18 -120 
0.06 0.0445 462 11 -310 
0.1 0.0389 639 393 -429 
0.2 0.0300 240 496 -432 
0.3 0.0243 63 897 -519 
0.5 0.0175 -65 727 -158 
0.6 0.0153 -15 622 -37 
0.7 0.0136 -34 520 -40 

0.8 0.0122 -81 483 -29 
0.9 0.0111 -84 301 -10 
0.95 0.0106 -172 592 -118 
0.98 0.0103 -72 1047 12 
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Table 3.7 shows the first shell coordination numbers obtained by integrating the rdf up to 

their first minimum. The numbers within parentheses denote excess first shell coordination 
numbers obtained by subtracting the number of molecules obtained by integrating over the 

same distance from a randomly chosen location in the fluid (i.e., the number of solvent 
components found by releasing the constraint of having solvent species A (or W) at the 

center of the spherical volume). Despite the excluded volume repulsion of the central 

solvent component playing a significant role within short radii up to 7 Å, the excess first 
shell TBA-TBA and water-water coordination numbers indicate that a significant attraction 

occurs (i.e., both numbers are positive) between components of the same kind.  

 

Table 3.7 First shell coordination numbers and excess first shell coordination numbers 

(within parentheses) for TBA partial atomic charge distribution V in table 3.3. The distance 

to the first minimum of the rdf was 7.8 Å for TBA-TBA, 3.4 Å for water-water and 4.1 Å for 

TBA-water. 

x
A

 N
AA

 N
WW

 N
AW

 N
WA

 
0.04 2.8 (0.6) 4.4 (0.1) 2.7 (-5.2) 0.1 (-0.2) 

0.06 3.6 (0.9) 4.6 (0.1) 2.6 (-4.8) 0.2 (-0.3) 

0.10 5.8 (1.1) 4.2 (0.7) 2.3 (-3.8) 0.3 (-0.4) 

0.20 8.0 (0.8) 3.6 (1.2) 1.9 (-2.3) 0.5 (-0.6) 

0.30 9.1 (0.3) 3.2 (1.5) 1.7 (-1.3) 0.7 (-0.6) 

0.50 10.4 (-0.1) 2.5 (1.6) 1.2 (-0.3) 1.2 (-0.3) 

0.60 10.9 (-0.2) 2.1 (1.4) 1.0 (-0.1) 1.5 (-0.2) 

0.70 11.2 (-0.2) 1.7 (1.3) 0.7 (0.0) 1.7 (0.1) 

0.80 11.4 (-0.4) 1.2 (0.9) 0.5 (0.1) 2.0 (0.3) 

0.86 11.4 (-0.5) 1.0 (0.8) 0.4 (0.1) 2.2 (0.4) 

0.90 11.5 (-0.5) 0.6 (0.5) 0.3 (0.1) 2.4 (0.7) 

0.95 11.5 (-0.6) 0.4 (0.3) 0.1 (0.0) 2.6 (0.8) 

0.98 11.6 (-0.6) 0.2 (0.1) 0.1 (0.0) 2.8 (1.0) 
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On the other hand, the excess first shell TBA-H2O and H2O-TBA coordination numbers are 

negative for x
A
< 0.7while becoming positive at higher alcohol mole fractions indicative of 

alcohol-water attraction in the alcohol-rich solutions. When the excess first shell 

coordination numbers are compared to the excess coordination numbers in fig. 3.6, it shows 
that a significant contribution to NAA stems from direct, first shell interactions. The major 

contribution to NWW, however, stems from indirect, longer-ranged correlations. It is probably 

this fact that causes water-water aggregation to equilibrate slower and GWW to have larger 
uncertainties (fig. 3.2). In fact, the largest uncertainties in experimental data sets[102] exist in 

the water-water KB integrals as well. 
Figure 3.7 (upper panel) shows the derivative of the mole fraction scale activity coefficient 

(eq. 2.55) versus the alcohol mole fraction of the solution. The experimental activity 

coefficient derivatives (open circles) were calculated from vapor pressure data reported by 
Koga[103] by taking finite differences.  

In terms of the notation used in Ref. [103], the mole fraction scale activity coefficient, !
A

 

(cf. the molar scale activity coefficient, yA ) is written as ln!
A
= G

m

E
(TBA) / RT , where 

Gm

E
(TBA) = RT ln(pA / xA pA

0
)  is the excess partial molar free energy of TBA on the mole 

fraction scale (pA denotes the TBA partial vapor pressure and pA
0  the vapor pressure of the 

pure liquid component). Also included are the activity coefficient derivatives obtained from 

SAXS studies by Nishikawa[102] (open squares). Clearly, the correct trends and magnitudes 
are observed in the solution activity derivates obtained from the simulations. With the 

GROMOS and OPLS models the activity derivatives lie below the experimental values (not 
shown) and reach a value of –1 at xA = 0.2 indicating that the solutions became unstable at 

this composition.[85] The line included in fig. 3.7 (upper panel) is a numerical fit using 

Wilson's equation[108] for the excess free energy of a binary solution. Wilson’s fit assumes 
ideal mixing entropy. This means that all deviations from ideal behavior come from 

differences between alcohol-alcohol, alcohol-water, and water-water interactions. In alcohol 
and water mixtures, the assumption of ideal mixing entropy is invalid. This equation has 

two adjustable parameters, which we used as fit parameters, but, in the original derivation, 

are related to the pure-component molar volumes and characteristic energy differences. In 
the water-rich region, where solvent-mediated hydrophobic interactions dominate, the fit 

poorly matches the data. 
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Figure 3.7 Upper panel, mole fraction scale activity coefficient derivatives as a function of 

the TBA mole fraction. Computed values (eq. 2.55) (TBA partial atomic charges from set V 

in table 3.3) (). Activity coefficient derivatives derived based on vapor pressure data 

()[103]. Activity coefficient derivatives obtained by combining (cf. eq. 2.55) SAXS-derived 

KB integrals of Nishikawa et al. [102] and solution density data of Nakanishi et al. ()[104] 

The dashed line is a fit to the data of Ref. [103] based on Wilson's equation[108]). Lower 

panel, RT ln!
A

vs the alcohol mole fraction obtained by numerical integration of the data 

in upper panel. 
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Most importantly, the data in fig. 3.7 indicate that the solution activities would be correctly 

reproduced on integration of these derivatives. To perform the integration we write the 
chemical potential of the alcohol as[85] 

 

µA T ,P, xA( ) = µA

p
T ,P( ) + RT ln xA + RT

! "xW#AW

1+ ! "xA "xW#AW

d "xW
0

xW

$  

                             ! µA

p
(T ,P) + RT ln xA + RT ln" A

                               (3.2) 

 

where µA

p  is the chemical potential of pure TBA. The lower panel in fig. 3.7 shows 

RT ln!
A

 presented versus the alcohol mole fraction. The agreement between the simulated 

and experimental data is quite satisfactory except in the lowest concentration region 
( x

A
! 0.04 ). 

Figure 3.7 provides a route to interpret compositional derivatives of mole fraction scale-

based activity coefficients in terms of solution structures. TheRT ln!
A

in terms of the free 

energy change due to interactions of species A with surrounding molecules A and W is 

interpreted (chapter 2.4.1). Changes of this quantity with the solution composition are 
determined by the values of the KB integrals GAA and GAW (eq. 2.55) only; i.e., the free 

energy ("coupling work") of solvating A changes with solution composition if A attracts or 

repels species of the same kind relative to species of the other kind. If A preferentially 
attracts A  (GAA>GAW), the coupling work will have a negative contribution (lowering the 

chemical potential) upon increasing A, while the opposite occurs if A preferentially attracts 
W  (GAW>GAA). If A neither attracts nor repels species of type A in comparison to species of 

type W (ideal solution), compositional changes will leave RT ln!
A

 unaffected.  

Here, we also show RT ln yA (with yA the activity coefficient on the molar concentration 

scale) in order to account for these interactions. Figure 3.8 shows RT ln yA  presented versus 

the alcohol molar concentration. The open circles represent the experimental values 

(i.e.,RT ln yA = RT ln(!A

vap
/ !A )eq )[105] obtained from Koga's vapor pressure data[103] together 

with the solution density data determined by Nakanishi.[104] Three well-defined regions can 

be distinguished. For 0.8<!
A

<2 mol/l, Henry's law applies ( RT ln yA  is constant) and 

neither preferential alcohol-alcohol nor preferential alcohol-water interactions occur. For 
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2<!
A

<9 mol/l, preferential alcohol-alcohol interactions dominate (negative slope), while 

for !
A

>9 mol/l preferential alcohol-water interactions take over (positive slope). The closed 

circles in fig. 3.8 are data obtained by integration of the molar scale activity coefficient 

derivatives (eq. 2.54) obtained by the KB analysis. Integration of eq. 2.54 yields 
RT ln yAdetermined up to an arbitrary constant, which we used to match the experimental 

curve. It is important, however, to also know the absolute values of RT ln yApredicted by 

our final model (model V). These we determined with TI calculations (eq. 2.32) The TI 

results are included in fig. 3.8 (squares).  

 

 
Figure 3.8 RT ln yA vs the alcohol molar concentration (mol/l). Computed values obtained 

by numerical integration of eq. 2.54 (TBA partial atomic charges from set V in table 3.3) 

(red circle). Experimental data RT ln yA = RT ln !A

vap
/ !A( )

eq
(see text) computed using 

vapor pressure[103] and solution density[104] data (white circle). Calculations based on free 

energy calculations by TI (eq. 2.32) (blue square). 
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The statistical error in these calculations amounts to ±1 kJ/mol. The nonideality of the 

solution causes the experimental solvation free energies to decrease by !2.5 kJ/mol when 

increasing the alcohol concentration from !
A

=1 mol/l to !
A

=9 mol/l.  

On this energy scale, the predictions obtained from the TI calculations scatter considerably 
with varying solution composition and therefore do not allow extracting compositional 

dependencies of the alcohol activity. The KB derived data, on the other hand, reproduce the 

experimental trend well. Despite the error bars intrinsic to the method, the TI results 
indicate that our final model closely reproduces the absolute values of the alcohol solvation 

free energies. The comparison of KB and TI predicted solution activities in fig. 3.8 clearly 
highlight the benefits of predicting the solution thermodynamics by the KB approach. We 

note that the model does not reproduce Henry's law behavior which occurs in the ideal 

dilute solution because the TBA/water mixture is a highly nonideal behavior at low TBA 
concentration. 

The solution density of model V is compared with the experimental densities[104] in fig. 3.9 
(upper panel). Also included are the solution densities as predicted using the GROMOS and 

OPLS models. Over the full composition range our model underestimates the solution 

density by 2.5% (pure SPC water) up to 4% (pure TBA). A slight improvement was 
obtained over the GROMOS model. The lower two panels in fig. 3.9 show the TBA and 

water partial molar volumes as a function of solution composition obtained by performing a 
tangent construction to the density data (circles). We also calculated the partial molar 

volumes (squares) of alcohol V
A

 and water V
W

 using the following relations,[85] 

 

V
A
=
1+ !

W
(G

WW
"G

AW
)

#
,    V

W
=
1+ !

A
(G

AA
"G

AW
)

#
                (3.3) 

 

where !
W

 and !
A

 are the number densities and  ! = "
A
+ "

W
+ "

A
"
W
G

AA
+G

WW
# 2G

AW( ) . 

The uncertainties in the KB integrals, however, introduced significant errors. Qualitatively 

correct trends are observed in the partial molar volumes; the alcohol partial molar volume 
(middle panel) is a strongly increasing function of composition in low mole fraction alcohol 

solution, while at higher mole fractions (xA>0.1) a much weaker variation with composition 
is observed. 
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Figure 3.9 Upper panel, mass densities (g/cm3) of TBA/H2O solutions. Experimental 

data[104] (). Calculated densities using GROMOS charges (table 3.3) (plus). Calculated 

densities using OPLS charges (table 3.3) and van der Waals nonbonded parameters (table 

3.2) (cross). Calculated densities using partial atomic charge set V (table 3.3) (red circle). 

Middle panel, partial molar volumes of TBA (KB derived partial molar volumes are 

depicted by the blue squares (eq. 3.3). Other symbols; see upper panel). Lower panel, 

partial molar volumes of water. The partial molar volumes were obtained by taking 

tangents in upper panel. 
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Our simulation results systematically run above the experimental values as a consequence 

of the too low solution density. Moreover, we do not observe a minimum at low alcohol 
concentrations, typical of alcohol/water systems. The water partial molar volume (lower 

panel), as observed experimentally, decreases from 18.1 cm3/mol (pure water) to 
!16.5 cm3/mol in 0.85 mole fraction TBA solution. The prediction from simulation again is 

in reasonable agreement with the experimental data. In the water-rich regions we 

overestimate the water partial molar volume because of a too low liquid density of SPC 
water. In the TBA-rich regions the simulation predictions lie below the experimental data. 

Figure 3.10 shows the heat of mixing, !H
mix

, the isothermal compressibility and the static 

relative dielectric permittivity, ! (0) of model V versus the mole fraction of alcohol solution 

with experimental data. For the heat of mixing, !H
mix

, our final model (V) follows the 

experimental[103] trend, but systematically overestimates !H
mix

 by !0.5  kJ/mol. Although 

there is an improvement over the OPLS and GROMOS models, the agreement with the 

experimental data could have been even better by using additional parameterizations. We 
found, however, that further improvement of !H

mix
 occurred at the expense of introducing 

larger disagreement with the experimental KB integrals. Enthalpies of mixing for nonionic 
aqueous solutions are difficult to reproduce in atomistic simulations and have recently been 

discussed by Perera and Sokolic for the case of the acetone-water mixture.[19] There it was 

shown that with various acetone force fields deviations of about 1 kJ/mol are common. 
Perera and Sokolic discuss that the mixing enthalpy has a S-shape dependence on the mole 

fraction of the organic solute and is exothermic in the water-rich region while turning 
endothermic in the solute-rich region. Similar behavior occurs in TBA-water. In Ref. [19] it 

is argued that in the solute-rich region the hydrogen-bonded network of water is strongly 

disrupted due to dominating solute percolation (leading to an unfavourable enthalpy of 
mixing), while in the water-rich region solute insertion stabilizes the water network (leading 

to a favourable enthalpy of mixing). From this interpretation it becomes clear that changes 

of water-water interactions upon solute insertion must be described realistically to 
reproduce mixing enthalpies. The 0.5 kJ/mol offset observed in fig. 3.10 could therefore be 

a feature caused by our choice of the SPC water model. Indeed solute-solvent interactions 
also play an important role in describing the heat of mixing correctly.  
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Figure 3.10 Upper panel, enthalpies of mixing !H
mix
(kJ / mol)  ; experimental data ()[103], 

GROMOS partial charges (plus), OPLS partial charges and nonbonded van der Waals 

parameters (cross), and TBA partial atomic charge set V (black circle). Middle panel, 

Isothermal compressibilities!
T

 (Pa–1); experimental data (white circle)[109], TBA partial 

atomic charge set V (black circle). Lower panel, Relative dielectric permittivities (0); 

experimental data (white circle)[110], TBA partial atomic charge set V (black circle). 
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We are, however, confident that our model describes these interactions correctly. As we 

discussed above, the solute activity (RT ln yA ) in fig. 3.8 is a direct measure of solute-

solvent interactions. The agreement with the experimental data in fig. 3.8 indicates that 

these interactions are well described by our model.  
The isothermal compressibility !

T
 (fig. 3.10, middle panel) was calculated by a finite 

difference approximation. Two additional 1 ns NVT simulations close to the original state 
point were performed using a ±5% change in density.[111] The compressibilities (model V) 

are slightly higher than experimental[109] counterparts because the density of model V is 

lower than experimental data. The compositional dependence of the calculated !
T

 closely 

follows the experiment. The lower panel in fig. 3.10 shows the static relative dielectric 
permittivity, ! (0), (model V) presented versus the solution composition. ! (0) was 

computed from the fluctuation of the total dipole moment of the system. The relation 

between the relative permittivity and the fluctuation of the total dipole moment depends on 
the way the long-range forces are evaluated. When applying a reaction field method, ! (0) 

can be obtained according to[112] 

 

! 0( ) "1( )
2!

RF
+1

2!
RF

+ ! 0( )

#

$%
&

'(
=
M

2 " M
2

3!
0
Vk

B
T

                      (3.4) 

 

where !
RF

 is the relative dielectric permittivity of the continuum that is used in the 

simulation (table 3.1), M the total dipole moment of the system, V the volume of the 

simulation box, kB is the Boltzmann constant, T the absolute temperature, and 0 is the 
dielectric permittivity of vacuum. In all cases (0) was computed from 10 ns trajectories to 

obtain well-converged values of <M2>. The experimental dielectric permittivities[110] are 
shown as open symbols. The computed values of ! (0) are lower than the experimentally 

observed values. In the water-rich region the underestimation can be explained from the fact 

that the SPC water model has a dielectric permittivity of 67 (compared to the experimental 
value of 78.5).[111] The underestimation in the TBA-rich region must be due to 

approximations in the TBA model and its parametrization. Also, the neglect of electronic 
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distortional polarizations may figure significantly in the low dielectric tert-butanol. Recall 
that only the reorientational contribution to ! (0) has been calculated.  

 

3.4.2 Solution Structure 

 

Figure 3.11 shows alcohol-alcohol (upper panel), alcohol-water (middle panel), and water-
water (lower panel) rdf at four alcohol concentrations. The alcohol-alcohol rdf (upper panel, 

left) shows a broad peak at ~ 5.8 Å due to hydrophobic interactions of the tert-butyl groups. 

With increasing alcohol concentration x
A
! 0.10 , alcohol-alcohol hydrogen bonding (upper 

panel, right) becomes more dominant at the expense of the hydrophobic interactions 

between tert-butyl groups. At the lowest alcohol concentration (4 mol  %) no alcohol-
alcohol hydrogen bonding is visible. Alcohol-water hydrogen bonding as well as water-

water hydrogen bonding gets more pronounced with increasing alcohol concentration. 

Comparison of the H-OW and O-HW rdf reveals that tert-butyl alcohol is a slightly better 
hydrogen bond donor than acceptor, in agreement with the work of Bowron et al.[113] 

Comparison of alcohol-water and water-water hydrogen bonding shows that water prefers 
to hydrogen bond to itself. At x

A
! 0.10 , the OW-OW and OW-HW rdf exceed unity up to 

distances of about 8–10 Å, suggesting that spatially extended network structures of 

hydrogen bonded water molecules exist at these solution compositions.  
Bowron et al. studied the aqueous solution structure of tert-butanol in the dilute and 

concentrated regions by neutron diffraction (ND) techniques using hydrogen/deuterium 
isotopic substitution.[113, 114] They extracted detailed information relating to the solution 

structure using an empirical potential structure refinement (EPSR) procedure. In this Monte 

Carlo (MC) procedure intermolecular potentials were iteratively adjusted such as to 
reproduce composite radial distribution functions, consisting of several site-site 

contributions. Based on the optimized potential energy functions, all site-site radial 
distribution functions were extracted from an ensemble of configurations generated in a 

subsequent MC simulation. This modeling procedure introduces some ambiguity in the 

derived pair correlation functions because the quality of the potential energy function often 
remains unclear. Figure 3.12 compares the TBA-TBA packing obtained from the MD 

simulations performed in the current work and the work from Bowron et al. in the dilute 
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region.[113] Shown are the radial distribution functions based on distances between the 

central carbon atoms of the alcohol molecules. The solid lines represent the results obtained 
in our simulations while the symbols are the data of Bowron et al.[113] The overall agreement 

between the two is quite satisfactory, given the differences in approximations made in this 
work and the EPSR modeling.  

 
 
Figure 3.11 Radial distribution functions at TBA mole fractions 0.04 (solid line), 0.1 (dash 

dotted), 0.3 (dashed), and 0.5 (dotted). C, central TBA carbon atom; O, TBA hydroxyl 

oxygen; H, TBA hydroxyl hydrogen; OW, HW, water oxygen and hydrogen. 
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Figure 3.12 TBA-TBA radial distribution functions at 0.16 (upper panel), 0.11 (middle 

panel), and 0.06 (lower panel) mole fractions. Full lines, simulation results (TBA partial 

atomic charge set V). RDFs () of Bowron et al. obtained from MC simulation based on 

neutron diffraction data.[113] 
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Figure 3.13 Upper panel, alcohol-alcohol (upper panel, left) radial distribution function in 

the pure liquid (dashed line) and at 0.86 alcohol mole fraction (solid line) from simulation 

using TBA partial atomic charges from set V in table 3.3. Alcohol-alcohol (upper panel, 

right) radial distribution function in the pure liquid (dashed line) and at 0.86 alcohol mole 

fraction (solid line) from neutron diffraction studies of Bowron et al.[114] Lower panel, left, 

water-water radial distribution functions at 0.86 mole fraction alcohol from simulation 

(solid line) and neutron diffraction (). Lower panel, right, alcohol-water radial 

distribution functions at 0.86 mole fraction alcohol from simulation (solid line) and neutron 

diffraction (). 
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The first peak at the 0.06 mole fraction alcohol solution (lower panel in fig. 3.12), which 

corresponds to the hydrophobic interaction between tertiary butyl groups, is observed at 
approximately the same distance (between 4.0 and 7.0 Å) and has equal peak height. The 

peak area corresponds to 3.3 alcohol centers (this work) and 2.8 alcohol centers (ND data), 
indicative that, on average, trimer solute aggregate configurations are favoured in aqueous 

solution of this concentration. The alcohol-alcohol correlations observed in our work are, 

however, somewhat weaker as can be seen from a slightly broader first peak and a weaker 
first minimum. Moreover, we observe evidence of alcohol-alcohol hydrogen bonding (the 

small shoulder at 4.7 Å) which is absent in the ND data at this concentration. For the 0.11 
and 0.16 mole fraction alcohol solutions the qualitative agreement with the ND data 

remains good, although a slight shift of the first peak to larger distances is observed. The 

peak areas for the 0.11 mole fraction alcohol solution correspond to 4.6 (this work) and 4.4 
(ND data) alcohol centers. For the 0.16 mole fraction alcohol solution these are 6.2 (this 

work) and 5.2 (ND data). At this mole fraction the longer range (>7 Å) features of the two 

alcohol-alcohol radial distribution functions are in good agreement, while at shorter 
distance evidence of alcohol-alcohol hydrogen bonding now becomes visible in the ND data 

too. 
Figure 3.13 show the solution structure at 0.86 mole fraction alcohol solution. The upper 

panel shows the alcohol-alcohol center radial distribution functions obtained from our 

simulations (left) and the ND study of Bowron et al. (right)[114]. For comparison the alcohol-
alcohol center radial distribution functions of pure liquid TBA are included. Clearly our 

simulations indicate much stronger alcohol-alcohol hydrogen bonding in the pure alcohol as 
well as in the 0.86 mole fraction alcohol solution. In pure TBA integrating the peak area up 

to 7.5 Å corresponds to 10.8 alcohol centers in agreement with the number found by ND. 

Integration up to 5.1 Å corresponds to 2 alcohol centers. In our simulations of pure TBA, 
therefore, a TBA molecule makes on average two hydrogen bonds with neighboring TBA 

molecules while the remaining 8.8 direct neighbors are not hydrogen bonded. Upon 
addition of water to pure liquid TBA, the ND results indicate loss of alcohol-alcohol 

hydrogen bonding and an enhancement of the packing of alcohol molecules with respect to 

themselves: the shoulder at 4.7 Å (H-bonding) in gAA(r) of pure TBA disappears (upper right 
panel), while the first peak at !5.6 Å increases to a larger value upon addition of water. A 
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similar but much weaker evidence of this phenomenon is seen in our simulations in the 

upper left figure; the number of hydrogen bonding TBA neighbors decreases to 1.7, while 
the number of nonhydrogen bonded first neighbors increases to 9. The water molecular 

center's distribution function, gWW(r) (lower panel left), shows good agreement between the 
ND data and our simulations. This function has a striking form characterized by a steep 

peak at !2.8 Å and a clear region of reduced water-water contacts between 5 – 10 Å. Our 

simulation thus supports the observation reported by Bowron of water molecules being 
segregated at this length scale and forming pockets containing clusters of two or three water 

molecules in concentrated solution of aqueous tert-butanol. The alcohol center—water 
radial distribution function observed in this work is compared to the one obtained by ND in 

the lower right panel of fig. 3.13. Although both functions are in good agreement at 

distances larger than 7 Å, two functions at short distance are qualitative different in the 
concentrated TBA solution.  
 

3.5 Conclusions 
 
A nonpolarizable tert-butanol model for atomistic simulations of tert-butanol and water 

mixtures based on the KB integrals was developed. The model combined with the SPC 
water model, performs very well at all tert-butanol mole fractions. The extent of the 

correlation volume in which radial distribution functions differ significantly from unity is 

such that large system sizes (box lengths larger than 6 nm) are required. Over the full range 
of compositions, strong aggregation behavior is observed; while alcohol-alcohol 

aggregation is strongest in the water-rich regions (xA<0.2), water-water aggregation persists 
over the full range of compositions. Short-ranged hydrophobic interactions between tert-

butanol molecules are mainly responsible for aggregation of the alcohol molecules, but the 

relatively large size of the tert-butanol molecules causes correlations due to packing 
features being visible up to distances beyond 1.8 nm. Long-ranged correlations persist also 

between water-water pairs and contribute almost exclusively to the excess aggregation 

(NWW) of water at alcohol mole fractions between 0.1 and 0.5, causing the water-water KB 
integrals to converge slowly. The long-ranged water-water correlations are not due to 

simple packing restrictions, but are caused by a significant strengthening of water-water 
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hydrogen bonding induced by presence of the alcohol in solution. Because water prefers to 

hydrogen bond to itself, spatially extended water network structures occur in water-rich 
solutions. In alcohol-rich solutions (xA>0.8), water molecules no longer form extended 

hydrogen bonded structures, however, long-ranged correlations remain. Water aggregates in 
small clusters of 3 – 4 molecules, which in the gWW(r) features as a high and broad first peak 

at distances 2.6<r<5 Å, while a water-depleted region occurs for larger distances up to 

10 Å, followed by tail oscillations characteristic to inter-cluster correlations. These 
structural features require, in addition to using large system sizes, long simulation times 

(10 ns), to equilibrate, in particular, the water structure and corresponding water-water KB 
integrals.  

The tert-butanol model developed in this work correctly predicts the aggregation behavior 

of the aqueous mixtures and, as a consequence, reproduces the experimental solution 
activities shown in figs. 3.7, 3.8. As an alternative method, thermodynamic integration (TI) 

has been used to compute the solution activities. It, however, clearly showed that the KB-

based approach performs superior. The statistical uncertainties in the TI calculations are 
!±1–2 kJ/mol, while over the entire range of solution compositions the (molar 

concentration scale) activity coefficients change by 2.5 kJ/mol at maximum. This small 
change of energy is accurately reproduced by the KB method. Results obtained for other 

properties not included in the original parameterization reproduce the experimental trends 

with solution composition. The solution densities and static dielectric permittivities are, 
however, underestimated. The TBA model parameterized in this work will be useful in 

future studies of TBA/water mixtures addressing aspects of, e.g., preferential (co)solvent 
interactions with dissolved solutes,[115] effects of TBA as a cosolvent on chemical reaction 

kinetics,[116] and salting-out mechanisms of this model amphiphile. In chapter 4, methane 

solvation thermodynamics in various aqueous TBA mole fractions using the current KB-
derived force field are discussed.    

 
 

 

 
 



 

 

 

 

4. Methane solvation  

            in tert-butanol and water mixtures 

 
 

4.1 Introduction 
 
In chapter 3, we developed a new force field for tert-butanol and water mixtures based on 
Kirkwood-buff integrals. Tertiary butanol is an amphiphilic alcohol with the largest 

hydrophobic moiety remaining fully miscible with water. Our new force field for tert-

butanol and water mixtures (further on in this thesis called as LV (Lee and Van der Vegt)-
model) reproduced the solvation thermodynamics and aggregation behavior over various 

TBA mole fractions.  
Binary solvent mixtures are used in many applications in chemistry and biology. They are 

used for example as reaction media to control the rates of chemical reactions, as selective 

solvents where chemically different groups of a solvated solute each preferentially interact 
with one of the solvent mixture components and as media for studying the stability of 

biomolecules. Mixtures of organic solvents (but also co-solutes such as inorganic salts, 

sugars, urea etc.) and water are of particular interest in biochemistry. Proteins are known to 
loose their stability in concentrated solutions of aqueous urea or guanidinium chloride[117] 

whereas they may be stabilized at low temperatures (cryopreservation)[118] in aqueous 
solutions of disaccharides (e.g., trehalose) or diols (e.g., ethylene glycol).[119, 120] The atomic-

scale mechanisms and their relation with physical-chemical properties of the solvent system 

are in many cases still incompletely understood and are topic of ongoing discussion in the 
literature.[22, 33, 38, 121] 
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To investigate what happens at a molecular scale it would be desirable to use detailed 

atomistic computer simulations. The applicability of this method relies on accurate force 
fields being available to describe the system under study. The solute/cosolvent/water 

systems mentioned above are however examples where available biomolecular force fields, 
despite their careful parameterizations and successful applications, may lack the required 

accuracy. A sensible approach would be to validate the thermodynamic properties of the 

mixed solvent system (without solute) predicted by the force fields against known 
experimental quantities such as the heat of mixing, density, viscosity, etc.  But not only the 

latter quantities, also the solvent species’ activity (chemical potential) derivatives should be 
reproduced. These derivatives provide information on preferential interactions that cause 

‘excess coordination’ of molecules of the same or the other kind.[3, 85] In aqueous/organic 

mixtures observed macro-miscibility often does not hold down to molecular length scales 
(micro-immiscibility) even in single-phase thermodynamically stable regions of the phase 

diagram away from any demixing line.[1, 20] It is not unlikely that this type of solvent phase 

nonideality is correlated with aspects of preferential solvation of solvated solute molecules: 
solutes can ‘choose’ to preferentially stay inside those regions of solvent richer in one type 

of solvent component.  
Pioneered by Weerasinghe and Smith,[4-8] a series of Kirkwood-Buff (KB)-derived force 

fields have recently been published, which guarantee the appropriate description the excess 

coordination in aqueous solution mixtures. More recently, the solution osmotic pressure, 
which is also very sensitive to the excess coordination of solution components, has been 

considered.[122] On the basis of some of these force fields, Van der Vegt et al.[115, 123] studied 
the preferential solvation of small gaseous molecules as well as hydrophobic interactions[124] 

in terms of thermodynamic driving forces. Özal and Van der Vegt[125] performed a detailed 

study of solvent reorganization contributions to solvation entropies and enthalpies of 
methane in mixtures of dimethyl sulfoxide and water. Although the solvation entropies and 

enthalpies, more than the free energies, depend sensitively on the proper description of 
solvent-solvent, cosolvent-cosolvent and solvent-cosolvent interactions[125] a direct 

validation was not possible due to the lack of corresponding experimental data. 

Interestingly, however, the authors[125] showed that the solvent reorganization enthalpy from 
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the 
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*  relation, where !
P

 is the isobaric thermal 

expansion coefficient of solvent, !
T

 is the solvent isothermal compressibility, !V
S

*  is the 

solvation volume of solute S and !U / !V( )
T

 is the solvent internal pressure, can be 

obtained indirectly from solvent equation of state data (i.e., the solvent ‘internal pressure’). 

In the chapter 3, a developed nonpolarizable force field for aqueous tert-butanol solutions 
was introduced. At 298 K, water and tert-butanol are miscible in all proportions, however, 

the solution is strongly non-ideal and exhibits significant aggregation of the amphiphilic 
alcohol molecules as well as the water molecules that try to keep their water-water 

hydrogen bonded network intact. The chapter 3 has shown that with one set of force field 

parameters the experimental Kirkwood-Buff integrals and the thermodynamic activity 
derivatives can both be reproduced as a function of solution composition. In chapter 4, this 

is extended to the study of methane solvation in tert-butanol and water mixtures. By 
comparison with experimental methane solubility data available for this system, including 

the methane solvation entropy and enthalpy, and comparison with alternative force fields, 

this work aims to provide a further validation of the tert-butanol-water KB-derived force 
field. Moreover, it gives some insights in relations between solvation free energies, 

entropies and enthalpies and aspects of excess coordination of solvent components.  
 

4.2. Computational details 
 

4.2.1 tert-butanol, water and methane models  
 
All parameters for LV force fields in tert-butanol and water mixtures are same in chapter 3 
(see the table 3.2). We also used the GROMOS[89] and OPLS[81] tert-butanol models 

described in the chapter 3.[126] The GROMOS TBA-model was combined with the SPC 

water model, while the OPLS TBA-model was combined with the SPC and TIP4P[97] water 
models. In combination with the SPC water model, the latter two force fields produce too 

large alcohol-alcohol and water-water aggregation (chapter 3).[126]  
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Methane was modeled as a united atom LJ-particle with parameters σ= 0.373 nm and ε= 

1.277 kJ/mol. Geometric mean mixing rules such as C
6
(i, j) = C

6
(i,i)

1/2
C
6
(i,i)

1/2 , 

C
12
(i, j) = C

12
(i,i)

1/2
C
12
(i,i)

1/2  were used to describe LJ interactions between chemically 

different atom types and groups. 
 

4.2.2 Simulation details  
 

For this chapter, all simulations were performed using the GROMACS package,[127] which 
is the fastest MD simulation software, whereas the previous work in chapter 3 was 

simulated using GROMOS96 package.   
Tert-butanol and water mixtures were studied at the TBA mole fractions and summarized in 

table 4.1. Details on system sizes and simulation times are also given in table 4.1. 

Geometries of all molecules were kept rigid by applying constraints to the interatomic 
distances within the molecules, using the SHAKE algorithm[75] with a relative geometric 

tolerance of 10-4. A twin-range cutoff scheme with 0.8 and 1.4 nm cutoff radii was applied. 
The nonbonded interactions in the range between these radii were updated every fifth time 

step. The equations of motion were integrated using the leap-frog algorithm using a time 

step of 2 fs. A reaction field approximation was used to account for truncation of 
electrostatic forces beyond the long range cutoff (1.4 nm). The reaction field relative 

dielectric permittivities are listed in table 4.1. Constant pressure (1 atm) and temperature 

simulations were performed using the Nose-Hoover thermostat[71, 128] and Rahman-Parrinello 

barostat[70, 73] with coupling times 
 
!

T
=  1.5 ps and 

 
!

P
=  2.5 ps. Simulations were performed 

at three temperatures: 278 K, 298 K, and 318 K. 
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Table 4.1 Summary of MD simulations of tert-butanol/water mixtures. The systems were 

also studied including ten methane solutes. V* is the volume of the pure solvent mixtures.  
 

x
TBA

 NTBA NH2O TMD(ns) !
RF

 V (nm3) V*(nm3) T (K) 

tert-butanol(LV-model)/water(SPC-model) 

0 0 1000 100 78.0 31.31 30.68 298 

0.04 74 1776 150 64.8 65.83 65.29 298 

0.06 105 1645 150 64.0 66.68 65.26 298 

0.10 168 1512 100 50.7 72.48 71.73 298 

0.20 275 1100 100 36.1 77.24 76.24 298 

0.30 336 784 100 30.0 77.72 76.70 298 

0.50 432 432 100 18.0 83.19 82.16 298 

0.70 470 200 100 12.7 83.08 81.97 298 

0.90 500 55 100 11.8 84.36 83.04 298 

1.0 500 0 100 11.8 83.10 82.13 298 

tert-butanol (GROMOS-model)/water(SPC-model) 

0.06 105 1645 100 64.0 67.61 66.69 298 

0.1 168 1512 100 50.7 73.76 72.82 298 

0.2 275 1100 100 36.1 78.97 77.96 298 

tert-butanol (OPLS-model)/water(SPC-model) 

0.06 105 1645 100 64.0 67.46 66.56 298 

0.10 168 1512 100 50.7 73.54 72.71 298 

0.20 275 1100 100 36.1 78.24 77.51 298 

tert-butanol (OPLS-model)/water(TIP4P-model) 

0.06 105 1645 100 64.0 66.74 65.76 298 

0.1 168 1512 100 50.7 72.89 71.78 298 

0.2 275 1100 100 36.1 78.03 76.83 298 
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4.2.3 Solvation free energies, enthalpies and entropies  
 

The solvation free energies are calculated using the Widom test particle insertion method 

(see the chapter 2.3.2).[76] The solvation free energy  !G  is obtained by evaluating the 
expression,[115] 

 

  
!G = "RT ln V e

"# / RT

NPT

/ V
NPT

$
%

&
'            (4.1) 

 
where !  denotes the methane binding energy with the solvent, R denotes the gas constant, 

T the temperature on the Kelvin scale and V the volume. The methane binding energy is 
evaluated at 125000 random locations in each solvent configuration stored every 1 ps by 

summing over all methane-solvent LJ interactions. The angular brackets 
  
!

NPT
 denote an 

averaging over constant pressure and temperature configurations of the solvent. In the 
simulation the averaging is performed over 100 ns simulation trajectories (table 4.1). The 

solvation entropy 
  
!S = " #!G / #T( )

P
 is calculated using a finite-difference assumption, 

 

  
!S(T ) = "

!G(T + dT ) " !G(T " dT )

2dT
             (4.2) 

 
where  T = 298 K and  dT = 20 K in our calculations. The solvation enthalpy (298 K) is 
obtained from the relation 

 
 
!H =!G + T!S                  (4.3) 

 
The statistical uncertainty of !G  (eq. 4.1) is smaller than 0.05 kJ/mol at all mixture 

compositions. The statistical uncertainty of T!S  (eq. 4.2) and !H (eq. 4.3) is below 0.8 
kJ/mol at all mixture compositions. Finite difference assumption for an entropy change (eq. 

4.2) is only valid for if the solvation entropy is constant over the selected temperature range. 

Because the solvation heat capacities may however be large,[129]  we decided to also 

determine !H and T!S  with a direct method. As an independent method, we calculated 

 !H  by subtracting the total potential energy of the solvent without solute from the potential 

energy of the solvated system (‘direct method’). This method requires the simulation of two 
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systems, in which the potential energies were averaged over 100 ns trajectories.  A 

contribution 
  
RT

2
!

P
 (with 

 
!

P
 the isobaric thermal expansion coefficient of the solvent 

mixture) needs to be subtracted from the enthalpy difference obtained by the direct method 
in order to remove the liberation contribution.[85, 125]  

Thus, !H (solvation) = !H (direct) " RT
2
#

P
. The correction term 

  
RT

2
!

P
 is non-negligible 

and amounts to 0.6-0.8 kJ/mol for the systems studied in this work. 

 
4.2.4 Solubility data  
 

We obtained the experimental methane solvation free energies, enthalpies and entropies 
from the solubility data reported by Wang et al.[120] These data are reported in mole fraction 

methane (
  
x

CH
4

) in the solution at equilibrium with a methane pressure P at temperature 

T.[120] We use the Ben-Naim definition of the solvation process and the corresponding free 

energy change[130] 

 

  
!G = "RT ln #

CH
4

/ #
CH

4

ig( )
eq

               (4.4) 

 
where 

  
!

CH
4

 and 
  
!

CH
4

ig  are the methane molar densities in the solution and ideal gas phase, 

respectively. Both phases are at equilibrium as denoted by the subscript eq. In terms of the 

variables 
  
x

CH
4

, P and T used in ref. [120] the solvation free energy becomes (assuming CH4 

is present at infinite dilution in the binary solvent) 

 

  

!G = " RT ln x
CH

4

" RT ln RT#
solv

/ P( )

= RT ln K
H
" RT ln RT#

solv
( )

             (4.5) 

 
where 

 
!

solv
 is the molar density of the pure solvent phase (i.e., the alcohol/water mixture) 

and 
 
K

H
 the Henry coefficient. Experimental information on 

 
!

solv
 was obtained from ref 

[104]. We note that 
 
K

H
 is usually expressed in units of atmospheres in which case 

 
RT!

solv
 

(second line in eq. 4.5) should also be expressed in these units. Wang et al.[120] reported 
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methane solubility data at 283.15 K, 288.15 K, 293.15 K, and 298.15 K. By applying the 

finite difference method (eq. 4.2) to the free energies obtained from eq 5 at 288.15 K and 
298.15 K we obtain the experimental solvation entropies at 293.15 K. The experimental 

solvation enthalpies at 293.15 K are next obtained from eq. 4.3 using the solvation entropies 
together with the experimental solvation free energies at 293.15 K. Note that the so-derived 

solvation enthalpies and entropies all apply at a temperature 5 K below the temperature (298 

K) used in our simulations. The discrepancy due to this difference in temperature we 

estimate based on the experimental heat capacity change 
 
!c

P
 (142 J/mol K) of solvating 

methane in water at 298 K.[131] Assuming this value remains constant in the 5 K temperature 

range results in a 0.7 kJ/mol difference in  !H  and  T!S  (i.e., the values being 0.7 kJ/mol 
higher at the higher temperature).  

 

4.3 Results and discussion 
 
4.3.1 Free energy of methane solvation  
 
Figure 4.1 shows the methane solvation free energies at 298 K and 1 atm presented versus 

the alcohol mole fraction xTBA of the solution. Transfer of the methane solute from pure 
water to pure tert-butanol causes the free energy to decrease with approximately 8 kJ/mol 

corresponding to a 25-fold increase of the methane solubility at 298 K. The shape of the 

curve (
  
!"G / !x

TBA
< 0 ) indicates[85, 115] that methane in TBA/water solution preferentially 

interacts with the alcohol molecules. Four TBA/water force field combinations have been 

used to calculate the  !G  data in figure 4.1: LV/SPC, GROMOS/SPC, OPLS/SPC and 
OPLS/TIP4P. The best agreement with the experimental data (squares) is observed for the 

LV/SPC model; the calculated data match the experimental values for xTBA up to 0.06; at 

larger alcohol mole fractions the free energies are slightly underestimates by the model. For 
xTBA up to 0.2, the GROMOS/SPC and OPLS/SPC models result in almost identical methane 

solvation free energies, which are however systematically lower than the experimental and 

LV/SPC values. The  !G  values obtained based on the OPLS/TIP4P solvent model are 
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slightly improved over those values obtained based on the corresponding OPLS/SPC model 

but are still systematically below the experimental and LV/SPC data.  
 

 
 

 
Figure 4.1 (a) Solvation free energy change over the various TBA/water concentration 

mixtures; experimental data (black square), LV/SPC (grey circle). GROMOS/SPC (plus), 

OPLS/SPC (cross), OPLS /TIP4P  (triangle). All points have ± 0.01 kJ / mol error. 

 

4.3.2 Preferential methane solvation  
 
Figure 4.2 shows methane-solvent radial distribution functions g(r). The radial distribution 

functions (RDFs) were obtained from simulations including ten methane solutes in the 
systems summarized in table 4.1. The left panel in fig. 4.2 shows the methane-TBA 

(methyl) RDF at TBA mole fractions 0.06, 0.1 and 0.2. The right panel shows the methane-

water (oxygen) RDFs at the same solution compositions. Methane preferentially interacts 
with TBA-methyl groups. All RDFs (left panel) show a first peak at 0.4 nm followed by a 

second and third peak superimposed on an exponential type decay of the RDF toward unity. 
The limiting value (RDF=1) is reached at approximately 1.5 nm with the LV/SPC model, 
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while with all other models box sizes are too small to observe this limit. For the methane-

water RDFs (right panel) the physical picture is reversed: a first peak is observed at 0.36 
nm, followed by a water depletion region (RDF<1) up to 1.5 nm for the LV/SPC model; 

with all other models the limiting value RDF=1 is not reached for distances up to 2 nm. 
First shell coordination numbers obtained by integrating the RDFs up to the first minimum 

are summarized in table 4.2. To quantify the excess amount of TBA and water vicinal to the 

methane solute, we calculated methane-solvent excess coordination numbers 
 
N

j

ex  defined 

as, 

 

  
N

j

ex
= !

j
g

Sj
(r) "1#

$
%
&0

R

' 4(r 2dr               (4.6) 

 
In eq. 4.6, 

 
!

j
 denotes the solvent component number density, 

  
g

Sj
(r)  the solute (CH4)-

solvent RDF, and R is an integration cutoff distance. Figures 4.3a and 4.3b show the 

methane-TBA and methane-water excess coordination numbers (R = 1 nm), respectively. 
The CH4-TBA excess coordination number (LV/SPC model) goes through a maximum at 

xTBA=0.1 while the CH4-water excess coordination number goes through a minimum at this 
solvent composition. With the GROMOS and OPLS models excess coordination numbers 

are found that exceed those obtained with the LV/SPC model by 50-60%. 
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Figure 4.2 The radial distribution functions versus the distance r at 0.06, 0.1, 0.2 TBA mole 

fractions; (a) methane-TBA(methyl), (b) methane-water(oxygen) 
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Table 4.2 First shell coordination numbers N j  and excess first shell coordination numbers 
N

j

ex  for methane-TBA(methyl) and methane-water(ow) with first shell distance, 0.53nm. 
 

xTBA 
Methane-TBA 

1st shell N j  ( N j

ex ) 
Methane-WATER 

1st shell N j  ( N j

ex ) 

tert-butanol(LV-model)/water(SPC-model) 
0.04 3.3(1.0) 13.7(-3.3) 

0.06 5.6(2.3) 9.8(-5.7) 

0.1 7.9(3.0) 5.9(-7.2) 

0.2 9.5(2.1) 3.3(-5.7) 

0.3 10.1(1.1) 2.2(-4.1) 

0.5 10.7(-0.2) 1.2(-2.1) 

0.7 11.0(-0.9) 0.6(-0.9) 

0.9 11.1(-1.3) 0.2(-0.2) 

tert-butanol(GROMOS-model)/water(SPC-model) 

0.06 7.0(3.8) 7.2(-9.3) 

0.1 8.4(3.8) 4.7(-9.2) 

0.2 9.7(2.6) 2.5(-7.0) 

tert-butanol(OPLS-model)/water(SPC-model) 

0.06 6.8(3.6) 7.5(-9.0) 

0.1 8.4(3.8) 4.8(-9.1) 

0.2 9.7(2.5) 2.7(-6.9) 

tert-butanol(OPLS-model)/water(TIP4P-model) 

0.06 7.5(4.3) 6.1(-10.7) 

0.1 9.1(4.1) 4.8(-10.1) 

0.2 10.6(2.9) 2.4(-7.9) 
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Figure 4.3 (a) The excess coordination number (R=1nm) for methane and TBA in LV/SPC 

(black circle), GROMOS/SPC (triangle), OPLS/SPC (cross), and OPLS/TIP4P (square); 

(b) The excess coordination number (R=1nm) for methane and water (oxygen) in LV/SPC 

(black circle), GROMOS/SPC(triangle), OPLS/SPC (cross) and OPLS/TIP4P (square). 
 

 

 
 



 
Chapter 4 

90 

4.3.3 Methane solvation enthalpy and entropy  
 
Figures 4.4a and 4.4b show the methane solvation enthalpies and entropies versus the 

alcohol mole fraction of the solution. Interestingly, these curves are non-monotonic in 

contrast to the solvation free energy (fig. 4.1); i.e., enthalpy and entropy changes are steeply 
increased in the very dilute alcohol solutions (0 < xTBA < 0.2), then the enthalpy is decreased 

and entropy is fluctuated constantly beyond xTBA= 0.2, whereas the solvation free energy is 
gradually decreased as increasing the alcohol mole fraction. Squares represent the 

experimental data obtained from solubility data (chapter 4.2.4). And methane solvation 

enthalpy and entropy in the LV/SPC model were obtained from two ways; i.e., finite 
difference method (grey circle) and direct calculation (red circle) (see the chapter 4.2.3). 

Right panel in fig. 4.4 shows enthalpies and entropies obtained from direct calculation of 
methane solvation in GROMOS/SPC, OPLS/SPC, and OPLS/TIP4P models in the range of 

0.06 - 0.2 TBA mole fractions. The experimental data indicate a rapid increase of  !H  with 
xTBA with a maximum obtained at xTBA=0.06. For larger xTBA the methane solvation enthalpy 

decreases. The methane solvation entropy rapidly increases up to xTBA ≈ 0.1 and then 

remains practically constant. With the LV/SPC model, the experimental enthalpy curve is 

qualitatively reproduced. The maximum is predicted at the appropriate alcohol 
concentration and is almost quantitatively reproduced. At higher TBA mole fractions 

(xTBA>0.06) the solvation enthalpies are underestimated while at higher alcohol dilution 

(xTBA<0.06) the solvation enthalpies are overestimated (see also the table 4.3). The same 
observations apply for the solvation entropies. Note that in pure water (xTBA=0), the methane 

solvation enthalpy and entropy are significantly overestimated. This is caused by a too large 

thermal expansion coefficient of the SPC water model resulting in a too large solvent 
reorganization energy.[122, 125] 

Based on the GROMOS and OPLS models the solvation enthalpies and entropies are poorly 
reproduced; although the downward trend of the enthalpy agrees with the experimental data, 

the sign is wrong, indicating that a significant, positive enthalpy contribution is missing.  
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Figure 4.4 Methane solvation enthalpies (a) and entropies (b) in experimental data (black 

square), LV/SPC (grey circle: finite difference; red circle: direct), GROMOS/SPC(blue 

circle: direct), OPLS/SPC (green cross: direct) and OPLS/TIP4P (yellow triangle: direct) 

with error bar over the TBA mole fractions.   

 
 

 

 

 



 
Chapter 4 

92 

 

 

Table 4.3 Thermodynamic data for methane solvation (298K, 1atm) in TBA and water 

mixtures. The experimental data (denoted with subscript exp) were obtained from ref [120]. 

The data calculated based on simulations (denoted with subscript sim) were obtained with 

the LV/SPC model using test-particle insertions and finite temperature differences (eqs. 4.1-

4.3). Units are kJ/mol. 

xTBA !Gexp  !G
sim

 !H exp
 !H

sim
 T!Sexp  T!S

sim
 

0.0 8.3 8.6 -11.5 -2.6 -19.8 -11.2 

0.01 8.4 8.6 -8.4 -0.7 -16.6 -9.2 

0.03 8.4  -7.7  -16.0  

0.04  8.2  2.9  -5.3 

0.06 8.1 7.6 4.6 4.5 -3.5 -3.1 

0.1 6.6 5.7 3.9 3.6 -2.7 -2.4 

0.15 5.3 4.7 3.5 1.1 -1.8 -3.6 

0.2  4.3  0.2  -4.1 

0.3 3.4 2.7 0.7 -1.0 -2.7 -3.7 

0.5  1.6  -2.9  -4.5 

0.6 2.0  0.3  -1.6  

0.7  1.0  -2.8  -3.8 

0.9  0.5  -3.5  -4.0 

1  1.0  -1.9  -2.9 
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Table 4.4 Solvation enthalpy contributions of LV/SPC-model. !H (direct)  obtained from 

taking direct energy differences with correction for removing the liberation contribution 

term, RT 2
!

P
, and !H ( finite)  obtained from temperature differences (see the section 

4.2.3). !H
VV

 and  !H
UV

are solvent reorganization energy and solute-solvent binding 

energy in TBA/water (298K, 1 atm) obtained with LV-model. Units are kJ/mol. Note that 

!H
UV

depends only weakly on the TBA/water solvent composition while !H
VV

 determines 

the compositional dependence of !H . 

xTBA !H (direct)  !H ( finite)  !H
VV

 !H
UV

 RT
2
!

P
 

0.0 -2.2±0.4  -2.6 11.2 -13.8 0.54 

0.01  -0.7 12.7 -13.4  

0.04 3.0±0.2  2.9 16.2 -13.3 0.71 

0.06 3.6±0.2  4.5 17.7 -13.2 0.76 

0.1 1.6±0.2  3.6 16.6 -13.0 0.83 

0.15  1.1 14.1 -13.0  

0.2 -0.3±0.4  0.2 13.1 -12.9 0.86 

0.3 0.2±0.4  -1.0 12.0 -13.0 0.88 

0.5 -3.2±0.5  -2.9 10.2 -13.1 0.86 

0.7 -5.0±0.5  -2.8 10.2 -13.0 0.87 

0.9 -5.4±0.9  -3.5 9.5 -13.0 0.86 

1 -2.5±0.8  -1.9 11.0 -12.9 0.87 
 

 

To better understand the enthalpy change, we decompose this quantity in solute-solvent 

(
 
!H

UV
) and solvent-solvent enthalpy (

 
!H

VV
) changes, i.e.,  

 

 
!H = !H

UV
+ !H

VV
                 (4.7)  

 

The solute-solvent enthalpy change 
 
!H

UV
 is the sum over all solute-solvent pair 

interactions and was obtained based on 100 ns simulations of the systems summarized in 
table 4.1 including ten methane solutes. The enthalpy associated with changes of solvent-
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solvent interactions 
 
!H

VV
(the solvent reorganization enthalpy) was obtained by subtracting 

the total potential energy of the solvent boxes in table 4.1 (sampled during 100 ns) from the 

‘solvent’ potential energy of the corresponding boxes containing the additional ten methane 
molecules. The ‘solvent’ potential energy of the boxes containing the methane solutes 

includes only the contributions of solvent-solvent interactions (alcohol-alcohol, alcohol-
water and water-water). Table 4.4 and figure 4.5 shows the contributions of solute-solvent 

enthalpy and solvent reorganization to the solvation enthalpy with solvation enthalpy 

changes (LV-model). Inspection of these data shows that the shape of the enthalpy curve 

(fig. 4.5) is entirely determined by the solvent reorganization enthalpy 
 
!H

VV
, the solute-

solvent enthalpy 
 
!H

UV
 changes only little with the solution composition.  

 

 
Figure 4.5 Methane solvation enthalpies !H (black circles) and contributions of solute-

solvent interactions !H
UV

 (blue squares) and solvent reorganization enthalpy !H
VV

(red 

triangles) for LV/SPC model.  
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Figure 4.6 shows snapshots of the methane (grey) solvation in the TBA and water mixtures. 

The snapshots include the solvents in the first solvation shell at the 0.1 TBA mole fraction. 
Left snapshot shows methane solvation in the LV/SPC model which is surrounded by TBA 

and water, whereas right snapshot shows methane first shell solvation in the GROMOS/SPC 
model which is solvated in an alcohol cluster.  

Table 4.5 shows the contribution of water-water, TBA-TBA, and TBA-water interactions to 

the reorganization energy 
 
!H

VV
. The largest contribution to the enthalpy maximum 

observed in fig. 4.5, results from changes in the TBA-water interaction.  
As we have seen in fig. 4.6 and table 4.5, alcohol clusters in water-rich composition region 

remain sufficiently hydrated to keep the system miscible. Water molecules are however 

expelled from the alcohol clusters by the introduction of methane.  
 

 
Table 4.5 Contributions of water-water, TBA-TBA and TBA-water interactions to the 

solvent reorganization energy 
 
!H

VV
at 298 K and 1 atm. The contribution were obtained by 

subtracting the potential energy components of a pure solvent box from the respective 

energy components of boxes including ten methane solutes. Averaging was performed over 

100 ns simulations (table 4.1). The error bars were obtained by block averaging. Units are 

kJ/mol. 

x
TBA

 
  
!H

H
2
O"H

2
O

 
 
!H

TBA"TBA
 

  
!H

TBA"H
2
O

 

0.04 80 ± 3 -16 ± 9 114 ± 17 

0.06 -5 ± 13 -35 ± 8 219 ± 19 

0.1 -41 ±22 -11 ± 13 210 ± 31 

0.2 -54 ± 42 14 ± 29 189 ± 64 

0.3 13 ± 42 91 ± 35 31 ± 72 

0.5 -63 ± 36 46 ± 33 151 ± 63 

0.7 -21 ± 37 86 ± 36 63 ± 68 

0.9 0 ± 8 131 ± 14 2 ± 18 
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Figure 4.6 Methane solvation snapshot for the LV/SPC (left) and GROMOS/SPC (right) 

model. Grey is methane, red is oxygen, and green is carbon and methyl group. Solvent 

configurations are shown around 6 Å of methane at the 0.1 TBA mole fraction.  

 

As shown in table 4.5, this lead to a significant enthalpy increase due to disruption of 
alcohol-water cohesive interactions. The endothermic heat of methane dissolution around 

x
A
= 0.1  (fig. 4.4a) is therefore explained by the atomic-scale picture where methane sticks 

to alcohol clusters and expels hydration water. Water expulsion is less relevant with the 

GROMOS and OPLS models, since these models produce too strong alcohol aggregation 

with alcohol clusters being significantly less hydrated (fig. 4.6)  
The solvation entropy (fig. 4.4b) follows the trend of the enthalpy (fig. 4.4a), however there 

is no clear maximum. Again the LV-model reproduces the experimental entropy curve 
better than do the other models. We note here that the solvent reorganization enthalpy 

occurs as a contribution 
  
!H

vv
/ T  in the entropy,[115, 123-125, 132] hence it is not surprising that 

the discrepancies in  !H , observed with the GROMOS and OPLS models, occur in the 
entropy changes too. 

 



 
Methane solvation in tert-butanol and water mixtures 

97 

4.3.4 Discussion  
 

The data in figs. 4.1 and 4.4 clearly indicate that the LV-model performs better in 
comparison with the other force field models. Moreover, the procedure of validating the 

solvation enthalpies and entropies (fig. 4.4) seems to provide good insight in the accuracy 
of the models. The discrepancies observed in these quantities, are larger than in the 

solvation free energy. This is not surprising if one recognizes that the solvent reorganization 

enthalpy is always exactly enthalpy-entropy compensating and therefore does not influence 
the free energy change.[123, 132] The discrepancies between the experimental thermodynamic 

data and the calculations based on the GROMOS and OPLS models directly correlate with 

the microscopic solvent structure. The LV-model has been parameterized to reproduce the 
experimental Kirkwood-Buff integrals which describe the extent of alcohol-alcohol, 

alcohol-water and water-water aggregation in the solvent mixture (chapter 3). We re-
analyzed the solvent-solvent aggregation in the presence of ten methane solutes but did not 

observe any significant changes in solvent aggregation. Since the thermodynamic solubility 

data are well - reproduced, we conclude that the solute ‘sees’ the appropriate solvent 
environment with the Kirkwood-Buff-derived LV-model. With GROMOS and OPLS the 

extent of alcohol-alcohol and water-water aggregation is significantly larger.[126] As 
suggested by the data in table 4.2 and fig. 4.3, with these models methane is solvated by 

larger (but non-physical) alcohol clusters. This leads to lower solvation free energies 

(because the methane solvation free energy in pure tert-butanol is lower than in pure water) 
and lower solvation enthalpies (because positive contributions of alcohol-water interactions 

to  !H  are underestimated). The solvation free energy is influenced mostly by the solute 
interaction with its solvation shells and in that sense it depends sensitively on a proper 

description of the preferential solvation by solvent components. The solvation enthalpy and 
entropy are influenced mostly by the changes in interactions between the solvent molecules 

and in that sense probe much better the quality of the force field describing the 
aqueous/organic solvent mixture.  
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4.4 Conclusions 
 
We performed atomistic computer simulation studies of methane solvated in mixtures of 

tert-butanol and water. In addition to aspects of preferential methane solvation in terms of 

radial distribution functions and excess coordination of solvent components, we calculated 
the methane solvation free energy, enthalpy and entropy based on four force field models 

available in the literature. Since preferential solvation of solutes by cosolvent or water 
molecules is likely to be coupled to aspects of cosolvent and water clustering in the solvent 

mixture, we used the our LV/SPC force field, which was parameterized to reproduce the 

Kirkwood-Buff integrals of the solvent mixture in the chapter 3. We also compared the 
GROMOS and OPLS force fields for tert-butanol where the former was combined with the 

SPC water model and the latter with the TIP4P and SPC water models. We find that the 
enthalpy and entropy changes of methane insertion are very sensitive to changes of solvent-

solvent interactions and therefore accurately probe the quality of the force fields for this 

solvent mixture. In particular, at dilute alcohol solution, methane sticks to hydrated alcohol 
clusters and expels alcohol hydration water. This process is responsible for an endothermic 

heat of methane solvation (as opposed to exothermic solvation in pure water) and an 

increase of the solvation entropy. Our LV-model provides the good description of the 
methane solvation free energies, enthalpies and entropies in aqueous tert-butanol solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
5. Enthalpy-entropy compensation  
  in the free energy of hydrophobic interactions  
 

 

5.1 Introduction 
 

In the chapter 4, preferential methane solvation in alcohol and water mixtures was discussed 
in terms of the solvation free energy, enthalpy and entropy. To understand preferential 

solvation in alcohol and water mixtures, the energy contributions were considered by 
splitting the contributions of solute-solvent and solvent-solvent interactions.  

In the case of methane insertion in TBA/water mixtures, the solvent-solvent energy changes 

significantly whereas the solute-solvent energy remains constant as the TBA mole fraction 
is changed. As we have seen in chapter 4, the solvent reorganization energy is a dominant 

contribution to the methane solvation. A decomposition of free energy into its energetic and 
entropic components provides useful insights in atomic-scale solvation mechanisms. 

Moreover, it is helpful in understanding solvation thermodynamics of hydrophobic 

interactions in liquid mixtures. In particular, it is important to know the exact enthalpy-
entropy compensation in the free energy. In this chapter, this process is discussed in detail. 

We study the implicit contribution of the solvent-solvent reorganization, also understand 

exact enthalpy-entropy compensation in the free energy, and investigate how important this 
effect is in solvation processes.   

For example, recently Özal and Van der Vegt et al. studied the methane solvation in terms 
of the free energy, enthalpy and entropy with two contributions of solute-solvent interaction 

and solvent reorganization interaction in various dimethyl sulfoxide and water 

concentrations.[125] They present that the entropy change of methane transfer from water to 
aqueous solutions of dimethyl sulfoxide is positive because dimethyl sulfoxide molecules, 

in preferentially solvating the nonpolar solute, release some of their hydration waters to the 



 
Chapter 5 

100 

bulk. However it is shown that this solvent reorganization process is enthalpy-entropy 

compensating in the free energy, therefore the entropy change cannot explain the 
preferential interaction of methane with dimethyl sulfoxide molecules. Van der Vegt et al. 

also presented the transfer of noble gases, methane, ethane, propane, n-butane, neo-pentane 
from pure water to various cosolvent (NaCl, urea, dimethyl sulfoxide, and acetone) and 

water mixtures. They reported that the enthalpy-entropy compensation becomes larger in 

the order NaCl, urea, dimethyl sulfoxide and acetone.[123] Aliphatic hydrocarbon solvation 
with increasing solute size in an aqueous urea solution was also studied by considering the 

solute-solvent and solvent-solvent interactions.[42]  
In this chapter we discuss the potential of mean force (PMF; see the chapter 2.3.4) of a neo-

pentane pair in pure water and an aqueous urea solution with particular emphasis on the 

energy and entropy contributions. Because urea is well known as a protein denaturant, the 
hydrophobic interactions in an aqueous urea solution will be essential in protein folding. 

For example, in water, nonpolar solute molecules associate with each other. This so-called 

hydrophobic interaction is one of the major driving forces in protein folding. In the 
simplest, longstanding view, pairing up offers the molecules the advantage of reducing the 

solvent-exposed surface area, reducing the number of first shell water molecules, and thus 
reducing the unfavourable entropy at 298 K.[133] This picture has been confirmed by 

computer simulation studies of the PMFs of bringing together two nonpolar molecules in 

water, which revealed that the contact pair is stabilized by the entropy while the solvent-
separated pair is stabilized by the energy (enthalpy).[134-136] 

A comparison is made with the same system in pure water and the observed urea-induced 
changes of the hydrophobic interaction are discussed in terms of the changes in these two 

quantities. In particular, effects of solvent reorganization that contribute to the energies and 

entropies but compensate (cancel) in the PMF are singled out. In aqueous urea these 
contributions are large and it will be shown that, therefore, the energetic and entropic 

components of the PMF cannot unambigiously be used to argue if minima of the PMF are 
stabilized by enthalpy- or entropy-driven molecular-scale processes. The molecular-

solvation mechanisms responsible for the large enthalpy-entropy compensation 

phenomenon occurring in the PMF as well as the mechanisms underlying the changes of the 
entropy will be discussed and quantified separately.   
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Herein, we evaluate the free energy, enthalpy, and entropy changes in solvating pair neo-

pentane in water and aqueous 6.9 M (mole fraction, 0.15) urea solution. In general, protein 
denaturation is observed in the concentrated urea solution. Experimentally urea solution is 

saturated beyond the 9 M (mole fraction, 0.25).[137, 138] 
Hydrophobic interactions in aqueous urea solution in relation to aspects of protein 

denaturation, will be discussed in detail in the chapter 6. In this chapter, enthalpic and 

entropic changes concerning to the PMFs of the pair neo-pentane in water and aqueous    
6.9 M urea solution are focused. 

 

5.2 Enthalpy and entropy compensation 
 

In this section, process of the enthalpy-entropy compensation in the solvation free energy is 
introduced. A separation of solute-solvent and solvent-solvent contributions to solvation 

enthalpy, entropy, and exact enthalpy-entropy compensation in the solvation free energy 

have been referred to in earlier studies.[115, 123, 132, 139-150] 
What is the enthalpy-entropy compensation in the free energy? On a particle insertion into 

the solvent, enthalpy and entropy changes at the same time are increased by inserted 

particle. In general, the free energy is described in the following as, 
 

!G = !H " T!S                  (5.1) 
 

In the eq. 5.1, the minus sign in the free energy gives rise to the compensation of enthalpy 
and entropy. 

In the chapter 2.3 and 2.4, the free energy and chemical potential were addressed using 
different approach methods. In the case of one solute insertion into the solvent, the 

Boltzmann factor exp(!"# ) is evaluated, where !  equals the interaction energy of the 

solute surrounding with all other solvent. It can be described in two ways such as,[77] 
 

 B = e
!"#

0
= 1 / e

"#

1
               (5.2) 
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where subscript 0 indicates average over solvent configurations before having inserted 

solute and subscript 1 stands for average over solvent configurations after having inserted 
solute. As it has been known, the Boltzmann factor B  is closely related to solvation 

thermodynamics. Thus, the solvation free energy, !G
S

 is given by 

 

!G
S
= "k

B
T ln B = k

B
T ln e

#$

1

       = $
1
+ k

B
T ln e

# $ " $
1

( )

1

        = !U
UV

" T!S
UV

              (5.3) 

 

where !
1
 indicates average interaction energy of an inserted solute with all other solvent, 

thus !
1
 is denoted by !U

UV
 which is a direct solute(U)-solvent(V) interaction. And 

!S
UV

is the solute-solvent entropy change, produced by creating molecular-sized cavity. It 

quantifies the excluded volume contribution.  

Unlike the free energy, the solvation enthalpy change, !H  and entropy change, !S  are 

ensemble dependent.[148, 151]  In the constant pressure system, the !H( )
P

and !S( )
P

are 

affected by local change caused interactions between the solute and its surrounding 

solvation shell. Thus, solvation enthalpy in the constant pressure ensemble is given by the 
sum of the solute-solvent binding energy and solvent-solvent reorganization energy. 

 

 

 

!H( )
P
! !U( )

P

           = "
1
+ U

N N +1
# U

N N
$% &'

           = !U
UV

+ !U
VV( )

P

              (5.4) 

 

where the term U
N N +1

! U
N N

"# $%  corresponds to the change induced by creating a 

molecular sized cavity (i.e., larger than inserted solute size). This is called the solvent 

reorganization energy, !U
VV( )

P
in constant pressure condition.  

Likewise, solvation entropy at constant pressure is given by 
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 !S( )
P
= !S

UV
+ !S

reo
              (5.5) 

 

where !S
UV

 is the solute-solvent entropy change, and !S
reo

 is solvent reorganization 

entropy change. However, the solvent reorganization term is implicit contribution in the 

solvation free energy because !U
VV( )

P
 and !S

reo
= !U

VV
/T  are exactly cancelled out such 

as the following relationship, 

 

 
!G

S
= !H( )

P
" T !S( )

P

       = !U
UV

+ !U
VV( )

P
" T !S

UV
+ !S

reo( )

       = !U
UV

" T!S
UV

           (5.6) 

 
Eq. 5.6 shows the enthalpy-entropy compensation in the solvation free energy.  The solute- 

induced disruptions of cohesive solvent-solvent interactions are always exactly cancel out in 

the free energy, hence only the solute-solvent interactions explicitly contribute to the free 
energy. Therefore, it is important to consider implicit solvent reorganization contribution in 

the solvation free energy. In fact, solvent reorganization is largely contributed in many 
solvation processes.  

 

5.3 Simulation details 
 

All simulations were performed using the SPC/E water model,[96] KBFF urea model[6] and 

GROMOS96 neo-pentane model.[100] An aqueous 6.9 M urea solution with 153 urea and 847 

water, and 1000 water for pure water system were designed in the cubic periodic box. All 
simulations using molecular dynamics were conducted at constant pressure (1 atm) and 

three different temperatures (273K, 298K, 323K) conditions. Nonbonded parameters and 
charges for models are shown in table 5.1. 

PMFs were calculated by simulating 80 independently equilibrated systems, in each 

applying a rigid constraint fixing the distance r between the mass centers of the two solutes 

at a preset value, 0.40 ≤ r ≤ 1.2 nm (using equi-distant spacings !r = 0.01nm), and 

integrating the average constraint force accumulated in each 10-20 ns simulation from 1.2 
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nm downward.  These long runs, which in total require more than 1µs  sampling time per 

PMF curve, are required to reduce the statistical uncertainty of the first PMF minimum to 

0.2 kJ/mol. The PMF was corrected with a term 
  
2k

B
T log(r)  to ensure that trivial entropy 

contributions, related to a larger volume element (  ~ r
2 ) sampled by the constrained but 

freely rotating solute pair at larger distance r, do not enter the PMF.  

To obtain the entropy   !S(r)  and energy   !H (r)  as a function of the solute-solute distance 

r, the PMFs (free energy change,   !G(r) ; theG  in chapters 4, 5 and 6 denotes free energy, 

and should not be confused with the Kirkwood-Buff integral G in chapters 2 and 3) were 

calculated at three temperatures (T=273 K, 298 K, and 323 K) and the entropy was obtained 

by taking the numerical finite difference 
  
!S(r) = " !G(r;T + !T ) " !G(r;T " !T )#$ %& / 2!T  

with T=298 K and ΔT=25 K. The energy was finally obtained from 

  !H (r) = !G(r) + T!S(r) . 

 

 

Table 5.1 Nonbonded parameters and partial charges of urea, water, and neo-pentane 

models. 

 

 
 
 
 

Model Atom C6(i,i)(10-3 kJ mol-1 nm6) C12(i,i)(10-6 kJ mol-1 nm12) qi(e) 

O 1.988E-03 1.764E-06 -0.675 

C 4.789E-03 1.375E-05 0.921 

N 1.810E-03 1.637E-06 -0.693 

Urea 
(KBFF) 

H 5.476E-06 8.520E-11 0.285 

O 2.617E-03 2.634E-06 -0.8476 
Water (SPC/E) 

H 0.0 0.0 0.4238 

C 2.397E-03 2.053E-04 0.0 Neopentane 
(GROMOS) CH3 9.614E-03 2.665E-05 0.0 
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5.4 Results 
 
The PMFs of the neo-pentane pair in water and aqueous urea solution are discussed with 

enthalpic and entropic changes in detail. First of all, PMFs in pure water and aqueous urea 

solution were simulated at the three different temperatures. Figure 5.1 shows the neo-
pentane pair PMF in water (a) and 6.9 M urea solution (b) at 273 K (dotted), 298 K (full), 

and 323 K (dashed). The first PMF minimum, further on in this thesis referred to as the 
contact minimum (CM), becomes deeper with increasing temperature in water as well as in 

urea solution.   

 

      
 

Figure 5.1 (a) neo-pentane pair PMF in water at 273K (dotted), 298K (full), and 323K 

(dashed). (b) neo-pentane pair PMF in 6.9 mol/l urea solution at 273K (dotted), 298K 

(full), 323K (dashed). The statistical uncertainty in the first minima is 0.2 kJ/mol. 

 

This indicates an increase of entropy in pairing the neo-pentane at the contact distance in 
both systems. This means that neo-pentane association at the CM distance is entropically 

favourable in water and aqueous urea solution. 
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Southall and Dill,[136] based on calculations with the Mercedes-Benz model of water,[152, 153] 

showed that the oscillations of the enthalpy and entropy correlate with water hydrogen 
bonding. They presented that two nonpolar molecules at the contact distance are stabilized 

by entropy, whereas solute pairing at the solvent separate distance is stabilized by enthalpy 
in water. Figure 5.2 shows the PMF, enthalpy and entropy related to the neo-pentane pairing 

distance, r at 298K in water (a) and aqueous urea solution (b). In water, the entropy 

stabilizes the CM, while the enthalpy destabilizes it. Note that these contributions have the 
same sign and therefore largely cancel out each other in the PMF. The second PMF 

minimum in fig 5.2a, further on in the thesis referred to as the solvent-separated minimum 
(SSM), is enthalpically favourable while being entropically unfavourable. Note that the 

location of the minimum in the   !H (r)  and   T!S(r)  curves does not coincide with the SSM 

of the PMF. This shift is caused by the water-water (hydrogen bonding) interactions being 
stronger at a slightly smaller distance. We observed a similar shift at the SSM in water and 

aqueous urea solution in fig. 5.3. Rick[135][154] showed a same trend of the entropy minimum 
relative to the SSM in his study of methane-methane interactions in water using a 

polarizable, fluctuating charge (FQ) model for water. 
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Figure 5.2 neo-pentane pair PMF (black) and the enthalpy (green) and entropy (red) 

contributions in water (a) and 6.9 mol/l urea solution (b) at T=298 K and P=1 atm. The 

data points in (a) and (b) indicated with a circle were obtained by subtracting the average 

enthalpy of a box with a neo-pentane-neo-pentane constraint distance of 0.57nm (and 

0.78nm in urea solution, 0.85nm in water) from the average enthalpy of a box with a neo-

pentane-neo-pentane constraint distance of 1.2nm. The average enthalpies were obtained 

from 100ns NPT simulation at T=298K. 

 

 
Figure 5.3 Solvent reorganization energy (green) in water (a) and 6.9 mol/l urea solution 

(b) at T=298K and P= 1 atm. The PMFs (black) are included for comparison. 
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In urea solution (fig. 5.2b), approach of the CM (r<0.7 nm) causes an increase of the 

entropy and a decrease of the enthalpy; hence the enthalpy and entropy changes are 
reinforcing in the PMF and the enthalpy in contrast to what is observed in water (fig. 5.2a) 

contributes favourably to the stability of the CM.  
The green circles with error bar in fig. 5.2 were obtained by subtracting the average 

enthalpy at the neo-pentane - neo-pentane constraint distance (water: 0.57nm, 0.85 nm, urea 

solution: 0.57nm, 0.78nm)) from the average enthalpy with a neo-pentane - neo-pentane 
constraint distance of 1.2nm. The average enthalpies were obtained from 100ns NPT 

simulation at T=298K. These data points show a similar trend with green line 

(!H = PMF + T!S ) although these data are shift up (water) and down (urea solution) of a 

similar amount relative to green line.  The tendency of the enthalpy ( !H ) and entropy 

( T!S ) curves to oscillate in-phase with comparable amplitudes means that significant parts 

will cancel in the PMF ( = !H " T!S ). Statistical-mechanical analyses of solvation 
processes have previously shown that the solvent reorganization enthalpy, defined as the 

change in the enthalpy of solvent-solvent interactions, is exactly enthalpy-entropy 

compensating in the section 5.2. That means that only those enthalpy- and entropy 
contributions deriving directly from the solute-solvent coupling determine the free energy 

change. Contributions deriving from solute-induced changes of cohesive solvent-solvent 
interactions do not affect the change of free energy. In urea solution we expect that 

compensating solvent-solvent contributions are large.  

Early experiments by Wetlaufer et al.[34] have shown that enthalpies and entropies of neo-
pentane transfer from water to aqueous urea solution are positive while the transfer free 

energy is negative. Neglecting (the obvious) enthalpy-entropy compensation of this process 
one would conclude the transfer to be entropically driven. Computer simulations3 and 

theoretical predictions based on scaled-particle-theory[155] however have indicated that the 

transfer is driven by favourable neo-pentane-urea Van der Waals interactions, not by the 
entropy. The combined experimental and theoretical work thus indicates that contributions 

of (compensating) solvent reorganization processes to the solvation enthalpy and entropy in 
aqueous urea are significantly larger than in water and affect the solute transfer 

thermodynamics in a way that these processes blur signatures of the true molecular driving 

force.  
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For the present case of a pairwise hydrophobic interaction, the solute pair (with separation 

distance r fixed) is considered as “one solute” and a decomposition scheme based on solute-
solvent and solvent-solvent contributions – as it has been used in solvation studies of a 

single solute[42, 115, 123, 125] – is applied to the enthalpy and entropy. 

The solute-solvent enthalpy change 
  
!H

UV
(r) , solvent-solvent enthalpy change 

  
!H

VV
(r)  

and solute-solvent entropy change 
  
!S

UV
(r)  are functions of the constrained distance r 

within the “solute”. The neo-pentane-neo-pentane Van der Waals interactions are included 

in 
  
!H

UV
(r) . The solvent reorganization enthalpy 

  
!H

VV
(r)  is obtained by taking the 

difference between   !H (r)  and 
  
!H

UV
(r) , the solute-solvent entropy change 

  
!S

UV
(r)  is 

obtained from the difference between 
  
!H

UV
(r) / T  and   !G(r) / T . We note that all changes 

in water-water, urea-water, or urea-urea hydrogen bonding and Van der Waals interactions 

with changing solute separation r will contribute to the solvent reorganization enthalpy.  

The solvent reorganization enthalpies 
  
!H

VV
(r)  in water and urea solution are shown in fig. 

5.3a and fig 5.3b, respectively, together with the PMFs. In water, the reorganization 

enthalpy oscillates. This is consistent with the observation of Southall and Dill[136] who 

showed that the enthalpy and entropy oscillations correlate with water-water hydrogen 
bonding. In the CM, hydrogen bonds are broken causing an increase of the enthalpy and 

entropy (eq. 5.1). In the SSM, hydrogen bonds are stabilized causing a decrease of, both, 

enthalpy and entropy. In urea solution, an oscillatory trend is also observed, however a 
rather deep minimum arises at the CM. Urea preferentially solvates the two nonpolar 

solutes (see fig. 5.4) and in bringing them into contact urea molecules are expelled from the 
gap in between the two solutes. The “released” urea molecules form hydrogen bonds with 

water and/or urea molecules in the bulk solution, causing a large, and negative, solvent 

reorganization enthalpy as observed in fig. 5.3b. The strengthening of solvent-solvent 
cohesive interactions in the bulk contributes negatively to the entropy. Because the entropy 

of the CM in aqueous urea (fig. 5.2b) is only marginally smaller than the entropy of the CM 
in water, despite solvent-solvent reorganization energy in urea solution is largely change at 

the CM, an additional process must occur in urea solution that increases the solute-solvent 

entropy 
 
!S

UV
 and compensates for the negative solvent reorganization entropy (

  
!H

VV
/ T ). 
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Figure 5.4 Water (left) and urea (right) number density maps for the neo-pentane at the 

SSM distance. Blue: zero density, green: average bulk solution density (22.9 water 

molecules per nm3, 4.13 urea molecules per nm3), red: twice the average bulk density. 

Notice that urea preferentially bridges between the hydrophobic solutes in the solvent-

separated state (right) 

 

This process will be addressed below. In water (fig. 5.3a) not only the trend of 
 
!H

VV
, but 

beyond r=0.7 nm also the magnitude matches the entropy  T!S  in fig. 5.2a. The entropy 

change in water at distances r>0.7 nm therefore is completely determined by the 

reorganization of water-water hydrogen bonds. 

Figures 5.5a and 5.5b show the contributions of the solute-solvent enthalpy 
 
!H

UV
 and 

solute-solvent entropy 
 
T!S

UV
 to the PMF in water and 6.9 M urea solution, respectively. In 

water, the CM is stabilized by the solute-solvent entropy but destabilized by the solute-

solvent enthalpy. The latter happens because the contact-pair has a smaller solvent 

accessible area than the solvent-separated pair. In the CM, both, 
 
!H

UV
 and 

 
T!S

UV
 are 

positive but smaller in magnitude than  !H  and  T!S  (fig. 5.2a), because the former 
quantities do not include the positive enthalpy and entropy contributions of hydrogen-bond 
reorganization (~ +3.5 kJ/mol; fig. 5.3a). The SSM (0.92 nm) is stabilized by the solute-

solvent entropy. In urea solution (fig. 5.5b) the CM is stabilized by the solute-solvent 

entropy and destabilized by the solute-solvent enthalpy. In the CM, both, 
 
!H

UV
 and 

 
T!S

UV
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are positive and larger in magnitude than  !H  and  T!S  (fig. 5.2b) because the solvent 
reorganization enthalpy, contributing to the latter two quantities, is negative (fig. 5.3b). The 

SSM is stabilized by the solute-solvent enthalpy. Solute-solvent enthalpic stabilization of 
the SSM in aqueous urea solution is caused by preferential interactions between urea and 

the aliphatic solutes. This preferential solvation phenomenon is driven by urea-hydrocarbon 

Van der Waals interactions3 and stabilizes the SSM because solute-intermediate urea 
molecules interact with two solutes at the same time (see fig. 5.4). The solute-solvent 

entropic stabilization of the CM can be understood better after considering the statistical 
mechanical expression for the solute-solvent entropy upon solute solvation,[125, 147] 

 

   

!S
UV

= k
B

ln P
ins
" k

B
# 2 " #

2( )$ 2
/ 2 +!

%
&'

(
)*a

.           (5.7) 

 

In eq. 5.7, 
 
k

B
 is the Boltzmann constant and 

  
! = 1 / k

B
T . The quantity 

 
P

ins
 is the probability 

that a randomly inserted solute molecule (or a solute pair separated at a fixed distance r) 

into a system of only solvent molecules will experience an attractive or zero interaction 

energy (
 
! " 0 ). Thus, 

  
k

B
ln P

ins
 may be viewed as a solute-solvent excluded volume 

contribution to the entropy. The second term on the right-hand-side of eq. 5.7 describes an 

additional entropy penalty related to how strongly attractive solute-solvent interactions 
(
 
! < 0 ; denoted by subscript a) bias the solvation shell composition.[125] In the 

(hypothetical) case that neo-pentane-urea dispersion interactions are of the same magnitude 

as neo-pentane-water dispersion interactions, the fluctuations (
 
! 2 " !

2

) of the solute-

solvent interaction energy !  are small and solute-solvent attractive interactions put little 

bias on the solvation shell composition. Favourable neo-pentane-urea attractive interactions 

do however cause a strong bias on sampling configurations with excess local urea 
concentrations. (see fig. 5.4) This biasing process leads to a selected, non-random solvation 

shell structure and a lowering of entropy which is stronger in the SSM than the CM. The 

solute-solvent entropy (fig. 5.5b) therefore stabilizes the CM relative to the SSM as well as 
larger solute-solute separations. On approaching the CM the solute-solvent enthalpy 

increases (fig. 5.5b) because favourable neo-pentane-urea Van der Waals interactions are 
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lost. Figures 5.6a and 5.6b show the contributions of the two terms on the right-hand-side of 

eq. 5.7 to the solute-solvent entropy in water and urea solution, respectively. The 

contribution 
  
k

B
T ln P

ins
 is very similar in both systems, whereas the second contribution 

indeed contributes positively to the solute-solvent entropy in passing from the SSM to the 

CM in aqueous urea solution.  
 

 

 

 
Figure 5.5 Solute-solvent energy (green), solute-solvent entropy (red) and the PMF (black) 

in water (a) and 6.9 mol/l urea solution (b) at T=298K and P= 1atm.  
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Figure 5.6 Solute-solvent entropy (red) and contributions (cf. eq. 5.6) of the insertion 

probability (blue) and solute-solvent energy fluctuations (green) in water (a) and 6.9 mol/l 

urea solution (b) at 298 K and 1 atm. Solute-solvent energy fluctuations were obtained by 

extending the MD simulations at each distance r to 50 ns. 

 
5.5 Conclusions 
   

In summary we have used concepts from solvation thermodynamics to argue that changes in 

the potential energy of cohesive solvent-solvent interactions are enthalpy-entropy 
compensating in the potentials of mean force of pairwise solute-solute interactions. For 

hydrophobic interactions in aqueous urea the compensating contribution is large and 
dominates the features of the enthalpy and entropy change upon solute-solute approach: in 

the contact minimum of the neo-pentane-neo-pentane potential of mean force in 6.9 M urea 

the system’s enthalpy (and entropy) is reduced relative to what is observed in pure water 
because solvent-solvent hydrogen bonds involving urea molecules become stronger. The 

energy and entropy decomposition turns out to be particularly useful in systems with more 
than one solvent component[42, 115, 123] and where preferential solvation by one of the solvent 

components affects the strength of the effective solute-solute pair interaction. Although, 

through the formation of urea-solvent hydrogen-bonds, the release of urea molecules from 
the neo-pentane solvation shells upon approaching the contact minimum leads to a 
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reduction of the system’s enthalpy and entropy, one should think of this solvent 

reorganization phenomenon merely as a “response effect” rather than a driving force. The 
molecular driving force stabilizing the contact pair is the solute-solvent entropy, which 

increases upon solute-solute approach. The latter happens because Van der Waals 
interactions bias the neo-pentane solvation shells to preferentially contain urea molecules. 

Part of the selected, non-random solvation shell structure is lost in the contact minimum 

causing an increase of solute-solvent entropy.  
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
6. Urea-induced changes of hydrophobic interactions 
 

 

6.1 Introduction 
 

So far, my thesis has been focused on solvation thermodynamics, solvation structures and 
hydrophobic interaction in binary liquid mixtures and water. In order to describe properly 

these properties, a force field development for binary liquid mixture has been performed. 

Additional studies were concerned with solvation thermodynamics and solvation structure 
of a simple hydrophobic solute (i.e., methane) using our developed model (LV force field).  

In chapter 5, pair potentials of mean force (PMFs) of nonpolar solutes in pure water and in 
aqueous urea solution were discussed in terms of free energy, enthalpy and entropy 

changes. In this chapter, hydrophobic interactions between aliphatic and aromatic solutes in 

urea solution are calculated. The effects of urea on the strength of these interactions are 
discussed in the context of protein denaturation in aqueous solutions of urea.  

Hydrophobic interactions play an important role in folding of proteins, formation of 

vesicles, membranes, etc. Because this interaction is mediated through the aqueous solvent, 
the stability of the above structures is particularly sensitive to external thermodynamic 

conditions. Hence, temperature, pressure, ionic strength, or the activities of co-solvents and 
co-solutes affect the magnitude of hydrophobic interactions and the stability of 

biomolecules.  

In the first part of this chapter, proteins are briefly introduced to understand their structure, 
stability and denaturation. Then, the previous studies related to our current work for 

hydrophobic interactions in the presence of urea are addressed.  
It is generally believed that hydrophobic contacts are dissolved in the presence of urea, 

thereby contributing to the denaturing process of globular proteins in concentrated urea 
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solutions.[33-38, 117, 156-159] Direct and indirect mechanisms have been discussed in the 

literature.[33, 38, 40, 160-163] The direct mechanism involves urea H-bonding to the peptide 
backbone, thereby favouring the denatured state. The indirect mechanism usually adopts a 

chaotrope argument: urea perturbs the water structure so that hydrophobic groups are more 
easily solvated. Despite recent indications in favour of a direct mechanism,[160, 162, 163] protein 

denaturing via both the direct and indirect mechanism has been emphasized as well.[33] 

In this work, three types of hydrophobic residues are considered; one is an aliphatic 
hydrocarbon (neo-pentane) and the other two are aromatic hydrocarbon molecules (toluene, 

3-methylindole). In fact, toluene and 3-methylindole are prototypes for the non-polar, 
uncharged side groups of the phenylalanine and trpytophan amino acids. Their chemical 

structures are shown in figure 6.1.  

In this chapter, I present potentials of mean force (PMFs) for aliphatic and aromatic pair 
interactions in water and in an aqueous 6.9 M urea solution at the molecular scale. It will be 

concluded that hydrophobic clusters do not dissolve entirely in aqueous urea but instead 

urea acts as a bridging-agent that keeps the hydrophobic pairs together (chapter 5). The 
implications of this finding for urea-induced protein denaturation will be discussed. 

 
Figure 6.1 Chemical structures for amino acid with side chain residue R.  In this thesis, 

neo-pentane, toluene, and 3-methylindole were used as prototypes of nonpolar amino acid 

side groups. 
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 NH - C
!
HR-CO [ ]   .

6.1.1 Proteins 
 

The amino acid is the elementary unit in all proteins. Twenty different amino acids exist in 

nature and all contain the same group H2NCαHRCOOH. The central carbon (called the 

alpha-carbon, Cα) is attached to a side group residue R. Amino acids in proteins are joined 

together by peptide bonds.  Thus, the poly-peptide repeat unit The 

linear amino acid sequence along the chain is referred as the primary structure.  
Folded proteins are characterized by a secondary and tertiary structure. The secondary 

structure refers to the spatial arrangements of parts of the polypeptide chain; these include 

! helices, ! sheets and turns. The way in which the various secondary structured motifs 

along the polypeptide chain pack together in the overall three-dimensional arrangement of 

the protein is referred to as the tertiary structure. The latter packing is driven by a variety of 
intermolecular forces including forces of covalent (di-sulfide bonds), electrostatic 

(hydrogen bonds, ionic interactions, dispersion), and hydrophobic nature. In particular, the 
latter interaction, driven by the hydrophobicity of nonpolar groups, causes the nonpolar 

amino acids to mainly pack inside the protein core. Polar and charged amino acids at the 

protein surface shield the core from its exposure to the aqueous solvent.   
Environmental changes may cause changes of the protein’s native shape and conformation. 

These changes are usually caused by heat, change of pH, denaturants (i.e., urea, guanidine 
hydrochloride, beta-mercaptoethanol, dithiothreitol), inorganic salts (i.e lithium bromide, 

potassium thiocyanate, sodium iodide), organic solvents (i.e., formamide, 

dimethylformamide, dichloro- and trichloroacetic acids and their salts), detergents (i.e., 
sodium dodecyl sulphate), high pressure and ultrasonic homogenization. Protein 

denaturation is a structural change in biomolecules that leads to the loss of its biological 
function.  

 

6.1.2 Protein denaturation studies using the PMFs  
 
Denaturation mechanisms are poorly understood in spite of extensive studies. In this thesis, 

based on simple models we discuss protein denaturation induced by urea. In the classical 

view of urea denaturation mechanism, two aspects are considered. One is that urea weakens 
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hydrophobic interaction with increasing the solubility of hydrocarbons,[34] and the other is 

that urea weakens the intra-molecular hydrogen bonds of proteins by binding directly to 

proteins themselves.  In general, urea is classified as a structure breaker; i.e., urea alters 

water structure such that solvent exposure of the protein core becomes thermodynamically 

favourable.[164] 

Numerous computer simulations have been performed to understand the role of urea at the 

molecular scale. Data on single nonpolar solute in water and urea solution do not suffice to 

completely understand protein unfolding. The solvent-mediated interactions among two or 

more nonpolar solutes should be considered. Methane-methane association hydrophobicity 

has been studied by Wallqvist et al. and Ikeguchi et al.[40, 160] 

Wallqvist et al.[160] first simulated potentials of mean force between two methane molecules 

in aqueous 6 M urea solution and in water. They examined the effect of charges on the 

effective hydrophobic interaction using “uncharged methane” and “charged methane” 
because proteins in compact conformation typically include charged residues on the surface. 

They reported that the urea molecules preferentially adsorb onto the charged hydrophilic 
residues on the surface while urea stabilized the contact hydrophobic association. The 

hydrogen bonding distribution of urea-water was found similar to the water-water hydrogen 

bonding distribution in bulk water. This means that urea does not break a water structure. 
Urea adsorption on the hydrophilic residues leads to a repulsion between the residues on the 

surface of proteins and gives rise to expose the hydrophobic residues in the protein core.  

Ikeguchi et al.[40] studied PMFs between two methane molecules in 7 M aqueous urea and 

in pure water. The PMFs showed that urea stabilized the methane-methane contact 

association. However, they calculated the transfer free energies of aliphatic molecules in 

water to aqueous urea solution to examine the solute-size effect on hydrophobic interaction 

by urea. Their results showed that hydrophobic interactions between larger hydrocarbons 

(more than two carbons) were destabilized by urea, while those between small 

hydrocarbons (methane, ethane) were stabilized by urea. Ikeguchi et al. suggested that the 

model of two methane molecules is not an appropriate approximation of the exposed 

hydrophobic groups of proteins. Hydrophobic interactions between the exposed larger 

hydrophobic groups might be weakened in aqueous urea.  
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Shimizu and Chan[38] investigated pair PMFs of nonpolar solutes (methane - methane, 

methane - neo-pentane, neo-pentane - neo-pentane) in water and in aqueous urea solution. 

They reported that urea (de) stabilized hydrophobic interaction depending on the size of 

hydrophobic solutes. One of their results (the neo-pentane pair PMFs) is shown in figure 

6.2(d) of this chapter. In fact, Shimizu and Chan[38] simulated neo-pentane as a spherical 

super-atom in an aqueous 6.0 M urea solution, and PMFs were taken to be zero at a 10 Å 

distance between the two neo-pentane particles. As can be seen in figure 6.2(d), neo-

pentane association is destabilized by urea at the contact distance, while methane - methane 

and methane - neo-pentane associations are not destabilized by urea in their simulation.[38]  
Unlike with aliphatic hydrocarbons, it is unclear if urea destabilizes hydrophobic 

interactions between aromatic hydrocarbons.  
Duffy et al.[39] used MC simulations to study interactions of urea and guanidinium with 

aromatic hydrocarbons by computing the free energy profiles of association. They 
suggested the possibility of direct interaction of urea/guanidinium with protein. Greater 

exposure of aromatic side chains in unfolding state will give an opportunity for favourable 

interactions with the urea. 
Chipot et al.[165] investigated the relative orientational preferences for benzene dimers and 

toluene dimers in a vacuum and in water. Chelli and Gervasio et al.[166]studied the aromatic-
aromatic amino acid interaction in various solvents: unbound, bound– phenylalanine-

phenylalanine (Phe-Phe), tyrosine-tyrosine (Tyr-Tyr), phenylalanine-tyrosine (Phe-Tyr), 

histidine-trpytophan (His-Trp) in vacuum, water, carbon tetrachloride, dimethyl sulfoxide 
and methanol. They reported the competition of the stacked, T-shaped or crossed 

interactions among the amino acids in different solvent. Stacking interactions are favourable 

in all solvents with the exception of the Tyr-Tyr interaction in carbon tetrachloride, where 
T-shaped structures are also important. Polar solvents such as water, methanol, dimethyl 

sulfoxide, prevent from forming the hydrogen bonding interaction between the two 
aromatic residues. Meanwhile hydrophobic solvent such as carbon tetrachloride (CCl4) 

stabilized the hydrogen bonding between two aromatic complexes. Therefore aromatic 

complex in CCl4 solvent was observed both of stacked and T-shaped structures.  
In the case of aromatic residues, hydrophobic interactions are mainly investigated in terms 

of relative structural arrangements of solute pairs in the various solvents. 
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6.2 Simulation details 
 
As model systems for the influence of urea on pair interactions of typical hydrophobic 

(nonpolar) amino acid residues, we investigated the potentials of mean force (PMFs, see the 

chapter 2) of neo-pentane, toluene and 3-methylindole in water and in an aqueous solution 
of 6.9 M urea by molecular dynamics (MD) simulations.  

MD simulations for the pair neo-pentane in water and in aqueous 6.9 M urea solution were 
performed based on two nonpolarizable urea models (OPLS[167] and KBFF[6]) and three 

rigid, nonpolarizable water models (SPC,[82] SPC/E,[96] and TIP4P[97]).  

In the case of aromatic-aromatic solutes (toluene, 3-methylindole), the GROMOS force 
field[89] was used to model the solutes; the aromatic- and indole rings are described in all-

atom detail while the methyl groups are treated with a single, united-atom interaction site. 
The SPC/E water model[96] was used while for urea the KBFF model[6] was used. Table 6.1 

shows the nonbonded interactions and partial charges for all models.  

In previous MD studies of urea-water mixtures the KBFF/SPC/E force field has been shown 
to provide an improved description of the solution structure and activity derivatives whereas 

the OPLS/SPC and OPLS/TIP4P force fields produced too large urea-urea and water-water 

aggregation.[6] We nonetheless examined PMFs with the different water and urea force 
fields to get a better idea of model dependencies. All systems contained two solutes  (neo-

pentane, toluene, or 3-methylindole as a solute), 1694 water and 306 urea molecules (2000 
waters in case of pure water) in a cubic box with an edge length of 3.9-4.2 nm. PMFs were 

calculated by simulating a series of 100 independently equilibrated systems, each applying a 

rigid constraint fixing the distance r between the mass centers of the two solutes at a preset 
value, 0.4<r<1.6 nm, and integrating the average constraint force accumulated in each 10-

20 ns simulation from 1.6 nm downward. At 1.6 nm all PMFs converge to zero. PMFs were 
corrected with a term 2kBTln(r) to ensure that (trivial) entropy contributions related to a 

larger volume element (~r2) sampled by the constrained but freely rotating solute pair at 

larger distance r do not enter the PMF. All simulations were conducted at constant pressure 
(1 atm) and temperature (298 K). All simulation settings were identical to those in reference 

42. 



 
Urea-induced changes of hydrophobic interactions 

121 

Table 6.1 nonbonded interaction and partial charges for urea, water, neo-pentane, toluene 

and 3-methylindole.  

 
 
 

Model Atom C6(i,i)(10-3 kJ mol-1 nm6) C12(i,i)(10-6 kJ mol-1 nm12) qi(e) 

Urea 

OPLS O 2.365E-03 1.591E-06 -0.390 

 C 4.890E-03 1.360E-05  0.142 

 N 3.355E-03 3.954E-06 -0.542 

 H 0.0 0.0  0.333 

KBFF O 1.988E-03 1.764E-06 -0.675 

 C 4.789E-03 1.375E-05  0.921 

 N 1.810E-03 1.637E-06 -0.693 

 H 5.476E-06 8.520E-11  0.285 

Water 

SPC O 2.617E-03 2.634E-06 -0.82 

 H 0.0 0.0   0.41 

SPC/E O 2.617E-03 2.634E-06 -0.8476 

 H 0.0 0.0  0.4238 

TIP4P O 2.552E-03 2.510E-06 0 

 D 0.0 0.0 -1.04 

 H 0.0 0.0  0.52 

neo-pentane 

GROMOS C 2.397E-03 2.053E-04 0.0 

 CH3 9.614E-03 2.665E-05 0.0 

LJ C5H12 7.567E-01 4.094E-02 0.0 

Toluene 

GROMOS C 2.341E-03 3.375E-06 -0.1/0.0(a) 

HC 8.464E-05 1.513E-08  0.1 
 

CH3 9.614E-03 2.665E-05  0.0 

3-Methylindole 

GROMOS C 2.341E-03 3.375E-06 -0.14/-0.21/0(b) 

 HC 8.464E-05 1.513E-08 0.14/0.31(b) 

 CH3 9.614E-03 2.665E-05 0.0 

 N 2.436E-03 3.389E-06 -0.1 

0.0 

-0.1 

-0.1 

-0.1 

-0.1 

-0.1 

(a) 
-0.21 

0.0 

0.0 

-0.14 

(b) 

0.31 
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6.3 Results 
 
First of all, I will discuss neo-pentane pair PMFs in water and in aqueous urea. As we have 

seen in chapter 5, the neo-pentane pair PMF has a minimum at the contact distance which is 
driven by entropy. Neo-pentane association at the solvent separated distance is energetically 

dominated (fig. 5.1).  In particular, at the contact distance of a neo-pentane pair in aqueous 

urea solution, the enthalpy and entropy are reduced relative to what is observed in pure 
water because urea molecules, that are expelled from the nonpolar solvation shells as these 

solutes approach, form hydrogen bonds with the solvent. At the solvent separated distance, 
urea preferentially solvates the two neo-pentanes and mediates their attraction at that 

distance by occupying the intra-solute region (fig. 5.4). 

Figure 6.2 shows the neo-pentane pair PMFs in pure water (solid lines) and in 6.9 M 
aqueous urea (dashed lines) for different combinations of water and urea models. Neo-

pentane is modeled with the GROMOS,[89] five-site, united atom model in which CH3-
groups are modeled with an effective interaction site [fig. 6.2 (a)-(c)]. We also included in 

fig. 6.2(d) the neo-pentane pair PMF, based on a single-site Lennard-Jones (LJ) model for 

neo-pentane, whose parameters were taken from Kuharski and Rossky,[37] previously 
studied by Shimizu and Chan.[38]  

Comparison of the well depths in the PMFs for water and aqueous urea in figs. 6.2(a)-(c) 
shows no evidence for urea-induced destabilization of the neo-pentane pair interaction. 

Rather, urea in our simulation stabilizes neo-pentane association at the contact distance. 

However, the first minimum of the PMF in aqueous urea in figure 6.1(d) is slightly shifted 
upward relative to the PMF in water. At the distance of the second minimum (solvent-

separated pair), urea stabilizes the hydrophobic interaction relative to water in all different 
model combinations. The statistical error, obtained by integrating the error in the mean 

constraint force from 1.6 nm downward, varies between 0.1 kJ/mol in the second minimum 

and 0.2 kJ/mol in the first minimum. 
Note however that urea-induced changes of this so-called contact pair (CP) are model 

dependent and fall just outside the error bar of the calculations. For all models, urea 

stabilizes the solvent separated pair (SSP) relative to the CP due to two corroborative 
effects: (1) the free energy basin of the SSP in aqueous urea is broader and is shifted to 
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larger distance than in pure water, (2) the free energy difference between the SSP and CP in 

urea solution decreases relative to that in pure water (except for the KBFF/SPCE system in 
figure 6.2b). 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 

 

Figure 6.2 PMFs for neo-pentane pair interactions in pure water (solid lines; water model 

in parentheses) and 6.9 M aqueous urea (dashed lines; urea/water models in parentheses). 

In (a)-(c) neo-pentane is modeled with the GROMOS,[89] five-site with united atom model of 

CH3-groups. In (d), neo-pentane is modeled with a spherical Lennard-Jones potential.[37] 
 

 

The second effect evidently causes the equilibrium CP↔SSP in aqueous urea to shift in 

favour of the SSP in comparison to the equilibrium in pure water. The first effect however 
shifts the equilibrium towards the SSP even further because it results in a larger volume 

 
! 4!r

2( )  available to the SSP. Both effects together cause a significant stabilization of the 
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SSP relative to the CP, the extent of which we quantified by computing the equilibrium 

constant Keq defined as 
   

                                                                                                                               

                                 (6.1) 

            

 
where [SSP] and [CP] denote the concentrations of SSPs and CPs, respectively, R1=7.8Å, 

R2=10.8Å (water), R2=11.1Å (aqueous urea), w(r) is the PMF, kB the Boltzmann constant 

and T=298 K the temperature. With the models studied in figs. 6.2(a)-(d), Keq in 6.9 M urea 
increases with 19% (OPLS/SPC), 6% (KBFF/SPC/E), 38% (KBFF/TIP4P), 36% 

(OPLS/TIP4P), and 45% (OPLS/TIP4P; LJ-neo-pentane) relative to pure water. Previous 
simulation studies have reported urea induced stabilization of methane-methane 

association.[40, 160] In contrast to these small solutes, based on the study in reference 38 where 

only the (urea-destabilized) CP was investigated and the SSP was neglected, hydrophobic 
interactions of relatively large nonpolar solutes are believed to be destabilized.[38] 

 
Just like the pair PMFs of aliphatic solutes in water and in aqueous urea solution, PMFs for 

toluene-toluene and 3-methylindole – 3-methylindole in water and 6.9 M urea solution were 

simulated. The hydrophobicity of aromatic hydrocarbons (i.e., benzene, toluene) has more 
complex mechanism than the hydrophobicity of aliphatic hydrocarbon.[146] Because the 

aromatic ring is a weak hydrogen bond acceptor, it is possible to make hydrogen bonds or 

! " ! interaction with neighboring aromatic ring or polar solvent. Another complexity is the 

anisotropic shape of the aromatic ring relative to aliphatic hydrocarbon. In earlier works, the 

relative importance of face-to-face stacked and the T-shaped interaction has been debated. 
Chipot et al.[165] studied the relative orientational preference of benzene-benzene and 

toluene-toluene dimers in a vacuum and in water. The effects of urea on the stability of 

aromatic pair interactions in water have not yet been investigated.  

Figure 6.3 shows the toluene-toluene and 3-methylindole – 3-methylindole pair PMFs in 

water and 6.9 M urea solution. While urea causes the free energy of the contact pair to shift 
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up slightly for toluene-toluene pair interactions, the contact pair for 3-methylindole – 3-

methylindole pair interactions shifts out to slightly larger distance. The second, solvent-
separated minimum is stabilized by urea for both systems. The association constant, defined 

as 
 

  
K

a
= 4! r

2 exp
0

14 Å

" #w(r) / k
B
T$% &'dr                                                                    (6.2) 

 

 

increases with 4 % (toluene) and 3 % (3-methylindole) relative to water. These relatively 

small changes happen because the contributions of the destabilized CP and stabilized SSP 

largely compensate. The fraction of solvent-separated states (obtained by using integration 
limits 0.8–1.1 nm for toluene and 0.9–1.2 nm for 3-methylindole) increases relative to water 

with 11% for both toluene and 3-methylindole. 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
Figure 6.3 PMFs for toluene-toluene (a) and 3-methylindole – 3-methylindole (b) pair 

interactions in SPC/E water (solid line) and 6.9M KBFF urea solution (dotted lines) at 298 

K and 1 atm. 
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Our observations can be explained on the basis of preferential urea-solute interactions. 

Figure 6.4 shows number density maps of water and urea molecules for the toluene. In the 
case of neo-pentane, 3-methylindole at the CP and SSP, these show a similar trend with 

toluene for the number density. Figure 6.5 shows snapshots for neo-pentane – neo-pentane 
(a), toluene – toluene (b), 3-methylindole – 3- methylindole (c) at the SSP in aqueous urea 

solution. In the fig. 6.4 and fig. 6.5, urea preferentially interacts with the nonpolar solutes.  

 
 

 
 

 

 
 

 

 
 

 

 

 

 

 

Figure 6.4 Urea and water number density maps for toluene-toluene at the CP (left) and 

SSP (right) based on the KBFF/SPC/E model. Blue: zero density, green: average bulk 

solution density, red: twice the average bulk density. Notice that urea preferentially bridges 

between the hydrophobic solutes in the solvent-separated state (below panel right).  

 

 

Urea 

 Water 

Axial coordinate (nm) 

Radial 
Coordinate 

(nm) 



 
Urea-induced changes of hydrophobic interactions 

127 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

(c) 
                   

 

 

(c) 

 

 

 

Figure 6.5 Snapshots for the neo-pentane – neo-pentane (a), toluene – toluene (b), 3-

methylindole – 3- methylindole (c) at the solvent separated distance (9.4Å, 9.3Å, 10.5Å) in 

aqueous urea solution. Each snapshot shows the urea and water configuration around two 

solutes. All snapshots were obtained from urea (KBFF) and water (SPC/E) model. 
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The SSP preferably contains urea molecules interstitial to the solute pair (figs. 6.4 and 6.5). 

The free energy minimum corresponding to the urea-separated neopentane pair (fig. 6.2) 
shifts out to larger distances because urea molecules have a larger excluded volume than 

water molecules. Trzesniak et al.[42] argued that preferential urea-hydrocarbon interactions 
are driven by dispersion energy. The urea-separated pair is stabilized (the free energy 

minimum is deeper than in water) because the interstitial urea molecules interact through 

dispersion forces with two nonpolar solutes at the same time.  

 

6.4 Implications for protein denaturation 
 

Our results suggest that, upon solvent exposure of the protein core, urea denaturing 
proceeds by swelling the protein through formation of urea-separated nonpolar contacts. 

Urea hydrogen bonding with peptide groups likely favours open denatured states, however, 
thermodynamically stable contact- and urea-separated pairs of nonpolar residues prevent 

this state of being reached. Hence, relatively compact denatured states with residual 

hydrophobic clustering may form resulting from the equilibrium between these competing 
forces. In this study we have not addressed urea-modulated polar- and charged interaction 

types important for protein folding. Also, we limited our attention to pairwise interactions. 

Thermodynamic behavior of proteins may well arise from many-body effects and a 
cooperative interplay of several interactions. Notwithstanding these obvious limitations of 

the present study, we believe our simulation results may provide a physical reasoning for 
experimental observations in which the urea denatured states of several proteins have been 

found to be relatively compact and to contain residual hydrophobic clustering[168, 169] or even 

elements of native like topology.[170, 171]  
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6.5 Outlook and conclusion 

 
Our results give some important information for protein denaturation induced by urea. We 

have shown that urea stabilized hydrophobic residues in our simulations. We also found that 

urea contributes to swell the system by bridging the two molecules.  
There are two main conclusions. First, compared to pure water, urea stabilized the 

hydrophobic interaction. Second, urea molecules play an important role in the interstitial 
region between nonpolar solutes. Urea molecules enter to the interstitial region and, since 

urea is bigger than water molecule, lead to an increased inter-molecular distance. However, 

the system is not fully swollen but rather becomes more stable due to the presence of urea 
as a bridge.  

The current work is limited to the simple nonpolar residues which is just a starting point for 
a protein denaturation study. In the future, it will be worth investigating the polar and 

charged residue interactions in various solvent environments and further, it can be extended 

to the studies of residues attached to polypeptide chains.  
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Chapter 7 

 
 
Conclusions 
 
 
This thesis describes the thermodynamics and structures of a selection of liquid mixtures. In 

this context, we performed a force field development for tert-butanol (TBA) and water 
mixtures, and validated this force field against other force fields and experiments for its 

thermodynamic properties. Using this new force field, we studied the molecular aggregation 
properties in TBA/water mixtures (298 K, 1 atm.), and discussed the aggregation in relation 

to the non-ideal thermodynamic properties of this mixture. Based on the validated 

TBA/water force field and the established knowledge on this cosolvent/water mixture, we 
could also study the hydrophobic solvation of gaseous solutes. In this context we were able 

to reproduce the experimental methane solvation thermodynamics and provide a detailed 
analysis of the solvation of methane in this cosolvent/water mixture. In addition to 

hydrophobic solvation we examined hydrophobic interactions (i.e., association of two 

nonpolar solutes in an aqueous environment) in pure water and an urea/water mixture with 
the aim to better understand the effects of the urea cosolvent on the strength of the 

hydrophobic interaction. 
 

The first part of this thesis deals with TBA/water mixtures and starts with the development 

of a new nonpolarizable tertiary-butanol (TBA) force field based on Kirkwood-Buff 
integrals (chapter 3). This model, combined with the SPC water model, performs very well 

over the full range of TBA mole fractions. Using our new force field (LV model), we have 
investigated thermodynamics and structures of TBA/water mixtures over a wide range of 
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TBA mole fractions, as mentioned in chapter 3. TBA and water mixtures are an important 

test system for understanding the aqueous solvation properties of small amphiphiles, as 
TBA contains the largest hydrophobic moiety in the series of alcohols remaining fully 

miscible with water. However, TBA and water mixtures show highly nonideal solution 
behavior in dilute TBA solutions. In the water-rich region (TBA mole fractions smaller than 

0.2), strong alcohol-alcohol aggregation is observed, while water-water aggregation occurs 

over the full range of compositions. The hydrophobic interactions between TBA molecules 
are the main cause of aggregation of these alcohol molecules. The LV model (TBA) 

developed in this work correctly predicts the aggregation behavior of the aqueous mixtures 
and reproduces the experimental solution activities, as shown in figs. 3.7 and 3.8. Results 

obtained for other properties (e.g., partial molar volumes, isothermal compressibilities) 

reproduce the experimental trends of solution composition. However, the solution densities 
and static dielectric permittivities are underestimated in our model.  

The TBA model parameterized in this work was next used in a study of hydrophobic 

solvation in various TBA/water mixtures (chapter 4). Here, aspects of preferential 
interaction of the TBA cosolvent molecules with the hydrophobic solute (methane) were 

examined. Experimental data for the methane solvation free energy, enthalpy, and entropy 
were compared with our simulation results based on three nonpolarizable TBA models (LV, 

GROMOS, OPLS) and two rigid nonpolarizable water models (SPC, TIP4P). Among the 

different combinations of TBA and water models, the LV/SPC had the best agreement with 
experimental data for solvation free energy, enthalpy and entropy. We concluded that the 

observed methane solubility is mainly due to entropic contributions in the dilute TBA mole 
fractions and energetic contributions in the larger TBA mole fractions (fig. 4.4). We also 

predicted the preferential solvation of methane by TBA clusters (figs. 4.2 and 4.3). TBA 

clusters of LV/SPC model in the dilute TBA concentration remain sufficiently hydrated to 
keep the system miscible. However, water molecules are expelled from the TBA clusters by 

the insertion of methane (table 4.5 and fig. 4.6). Moreover, we showed that details of 
solvent-solvent interactions are more accurately probed in the solvation entropies and 

enthalpies than in the free energies. The latter is important for testing and developing force 

fields that describe liquid solvents. 
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A further goal of this thesis was to understand association of hydrophobic molecules and 

their thermodynamics in aqueous urea solution. We simulated the potentials of mean force 
(PMFs) for neo-pentane - neo-pentane in 6.9 M aqueous urea solution and in pure water 

using molecular dynamics in chapter 5 and 6. We presented a study of the enthalpic and 
entropic contributions to these PMFs. In order to understand the main driving forces for 

thermodynamically favourable neo-pentane contact distances and solvent-separated 

distances in urea solution, we discussed solvation free energy, enthalpy and entropy change 
of solute-solvent and solvent-solvent in chapter 5. For hydrophobic interactions in aqueous 

urea, the enthalpy-entropy compensating contribution of the solvent reorganization energy 
is large and dominates the enthalpy and entropy change upon decreasing the solute-solute 

distance. In the contact distance of the neo-pentane – neo-pentane potential of mean force in 

6.9 M urea, the enthalpy (and entropy) is reduced relative to what is observed in pure water, 
because solvent-solvent hydrogen bonds involving urea molecules become stronger. The 

neo-pentane solvation shells preferentially contain urea molecules due to the dominance of 

the Van der Waals interactions (figs. 5.4 and 6.4). 
Although we investigated interactions between pairs of small hydrophobic solutes only, the 

above results give some important information on the mechanisms of protein denaturation. 
Chapter 6 was focused on the protein denaturation induced by urea. By comparing two 

nonpolar solutes (neo-pentane – neo-pentane, toluene-toluene, 3-methylindole – 3-

methylindole) potentials of mean force (PMFs) in pure water and in aqueous 6.9 M urea 
solution, we found that the urea molecules bias the PMF minima in an unexpected way.  

While the first PMF minimum (contact pair) in urea solution has the same shape and depth 
as the corresponding minimum in water, the second minimum (solvent-separated pair) in 

urea solution is broader, deeper and shifted out to a slightly larger distance (figs. 6.2 and 

6.3). This free energy minimum, characterized at the molecular scale by the solute pair 
being bridged by a urea molecule, is due to preferential urea - solute interaction. We found 

evidence that urea molecules act as a bridge of hydrophobic molecule pairs (fig. 6.5) and 
stabilize the interaction of two hydrophobic molecules. This observation is in contrast with 

the widely accepted view that the urea cosolvent causes solubilization of hydrophobic 

contacts.  
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The fact that urea preferentially interacts with the nonpolar solutes and keeps them together 

at a slightly larger spatial separation than in pure water, provides an indication that urea 
denatures proteins by swelling their nonpolar interior. 
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