Die Rolle der Globalstrahlung im Klimasystem Südwestdeutschlands -

Vergleichende statistische Untersuchungen zu ihrer

raumzeitlichen Variabilität

Dissertation zur Erlangung des Grades

Doktor der Naturwissenschaften

am Fachbereich Chemie, Pharmazie und Geowissenschaften

der

Johannes Gutenberg – Universität

in Mainz

Dr. phil. Eberhard Hasenfratz

geb. in St. Ingbert

Mainz 2006

D 77

Vorwort

Untersuchungen zur Globalstrahlung als fundamentale Größe im Klimageschehen sind durch zahlreiche Publikationen u. a. aus der Meteorologie, Bioklimatologie, Medizinmeteorologie und Ökologie dokumentiert. In der regionalen Klimageographie hat sie dagegen nur geringe Berücksichtigung gefunden. Das mag teilweise damit zu erklären sein, daß das Stationsnetz der Globalstrahlung erst seit der Mitte des 20. Jahrhunderts vom Deutschen Wetterdienst sukzessive aufgebaut wird (Hamburg 7/1949, Hohenpeißenberg 1/1953), wobei in Westdeutschland ein großer Teil der Stationen zwischen 1970 und 1980 den Betrieb aufgenommen haben. Jedoch decken inzwischen die Meßreihen eine ausreichende Zeitspanne ab, so daß im Hinblick auf eine seperative und synoptische klimageographische Betrachtung der Versuch unternommen werden konnte, die Bedeutung der Globalstrahlung in ihrer Beziehung zu anderen Klimaelementen anhand der Stationen im südwestdeutschen Raum anschaulich zu belegen. Es liegt in der Natur der Thematik, daß umfangreiche Tabellen entstehen, die im Anhang (A) abgelegt sind und über Querverweise mit dem Text in Verbindung stehen.

An dieser Stelle bedanke ich mich auch bei den Institutionen, die mir Daten bereitgestellt haben, insbesondere beim Deutschen Wetterdienst für die umfangreichen Datensätze, beim Institut für Rebenzüchtung, Geilweilerhof, einer Einrichtung der Bundesanstalt für Züchtungsforschung an Kulturpflanzen, für Meßreihen der Globalstrahlung, Luft – und Bodentemperatur von 1981 bis 1990 und schließlich bei der BASF, Limburgerhof, für 10' – Globalstrahlungssummen von 1/1995 bis 8/1998.

Worms, im Mai 2006

Eberhard Hasenfratz

	lnhaltsverzeichnis	Seite
	Vorwort	
	Verzeichnis der Abbildungen	
	Verzeichnis der Tabellen	
	Zusammenfassung / Summary	
1	Einleitung	1
1.1	Datengrundlage	2
•		
2	Problemstellung	2
2.1	Untersuchungen im Zeitbereich	5
2.2	Untersuchungen im Frequenzbereich	7
3	Strahlungsabsorption der Atmosphäre und normierte (relative) Globalstrahlung	8
3.1	Extraterrestrische Sonnenstrahlung	8
3.2	Globalstrahlung in der Rayleigh - Atmosphäre	9
3.3	Trübungsfaktor nach LINKE	10
3.4	Regressionsmodell nach ANGSTRÖM	10
4	Statistische Methoden	10
4.1	Methoden der Datenbeschreibung	10
4.2	Methoden zur Analyse von Zusammenhängen	11
5	Klimageographischer Überblick	12
5.1	Naturräumliche Verhältnisse	12
5.2	Relief und Klima	14
6	Klimatologische Bedeutung der Globalstrahlung	15
6.1	Erweiterung des radiometrischen Stationsnetzes	19
6.2	Die Globalstrahlung im Jahresgang	23
6.3	Hypsometrisch modifizierte Strahlungseinnahme	28
7	Lufttemperatur und Globalstrahlung	31
7.1	Zirkulationsspezifische Ausprägung derLufttemperatur im Jahresgang	31
7.2	Inversionslagen	33
7.3	Korrelation der Lufttemperatur mit der Globalstrahlung	37
7.3.1	Korrelation der Erdbodentemperatur mit der Globalstrahlung	40
8	Bewölkung und Strahlungseinnahme	42
8.1	Die Bewölkung im Jahresablauf	42
8.2	Variabilität der Bewölkung	46
8.3	Gesamttrübung der Atmosphäre : der Trübungsfaktor nach LINKE	51
8.4	Abhängigkeit der Strahlungseinnahme von der Bewölkung	53
8.4.1	Strahlungseinnahme und Veränderlichkeit der Bewölkung	57

		Seite
8.5	Jahresgang der Beziehung Globalstrahlung und Bewölkung	59
8.5.1	Die Globalstrahlung an Niederschlagstagen	62
8.6	Zusammenfassung zur Korrelations - und Regressionsanalyse mit ausgewählten	
	Klimaelementen	72
9	Variabilität der diffusen Sonnenstrahlung und der relativen Globalstrahlung	
	bei witterungsklimatologisch charakterisierten Zeitspannen	75
10	Ausprägung der relativen Globalstrahlung in witterungsklimatologisch	
	definierten Zeiträumen und nach Stationen - Versuch einer Klassifikation	79
10.1	Großwetterlagen mit ähnlicher Ausprägung der relativen Globalstrahlung	79
10.1.1	Sommerhalbjahr	82
10.1.2	Winterhalbjahr	83
10.1.3	Mittleres Jahr	86
10.2	Stationen mit ähnlicher Ausprägung der relativen Globalstrahlung	89
10.2.1	Sommerhalbjahr	89
10.2.2	Winterhalbjahr	93
10.2.3	Mittleres Jahr	96
10.2.4	Orographische Effekte	99
10.3	Zusammenfassung der Gruppenbildung mittels Diskriminanzanalyse	100
11	Zeitreihenanalyse	103
11.1	Spektrale Varianzanalyse (ASA) von Zeitreihen der Globalstrahlung und der	
	Luftemperatur	104
10.2	Relative Varianzspektren (ASA) auf der Basis von Tageswerten ausgewählter	
	Klimaelemente	110
10.3	Dynamisch (gleitende) ASA auf der Basis von Tageswerten des Gebietsmittels	
	der relativen Globalstrahlungs- und Lufttemperaturreihe	114
11.3.1	Varianzmaxima in Spektren mit bekannten klimatologischen Eigenschaften	119
11.4	Zusammenfassung zur Zeitreihenanalyse	124
	Literaturverzeichnis	125
	Verzeichnis der Tabellen und Diagramme im Anhang	
	Anhang A0 - A100	

Abbildungen im Text

Abb. 1 : Übersichtskarte zur Lage der Bodenstationen im Untersuchungsgebiet S. 4

Abb. 2 : Häufigkeitsverteilung der Großwetterlagen in v. H. im Sommer – und Winterhalbjahr S. 6

Abb. 3 : Auflösung der monatlichen Mittelwerte der Tagessummen des Gebietsmittels der direkten (B) und diffusen Sonnenstrahlung (D) sowie der Globalstrahlung (G) nach relativen Häufigkeitsstufen S. 17

Abb. 4 : Variabilität der Globalstrahlung bei zyklonalen und antizyklonalen Großwetterlagen. 10' – Summen, Station BASF-Limburgerhof S. 18

Abb. 5: a) Verteilung des relativen Fehlers b) Jahresgang des mittleren relativen Fehlers, a) u. b) bezogen auf alle Monate der Referenzstationen S. 21

Abb. 6: Monatsmittel der Tagessummen der gemessenen und berechneten Globalstrahlung und Gebietsmittel aus den acht radiometrischen Stationen S. 24-26

Abb. 7 : Jahresgang der relativen Globalstrahlung, Variationskoeffizient (V) und Schiefe (g) auf der Basis der Tagessummen S. 27

Abb. 8 : Die Globalstrahlung in v. H. der mittleren Jahressumme (1981-2000) in Abhängigkeit von der Höhenlage S. 29

Abb. 9 : a) Die Globalstrahlung i. v. H. der mittleren Jahressumme (1981-2000) im Jahresgang an den Stationen Feldberg und Mannheim b) Vergleich der Bewölkung bei antizyklonaler Witterung S. 29

Abb. 10 : Die Globalstrahlung in v. H. der mittleren Jahressumme (1981-2000) bei zyklonaler u. antizyklonaler Witterung an den Stationen Feldberg und Mannheim S. 30

Abb. 11 : Monatsmittel der Lufttemperatur (1981-2000) an den Stationen Feldberg (FE) und Mannheim (MA), differenziert nach Zirkulationsformen S. 32

Abb. 12 : Mittlerer Jahresgang des vertikalen Temperaturgradienten an ausgewählten Stationspaaren S. 34

Abb. 13 : Mittlerer monatlicher vertikaler Temperaturgradient, unterschieden nach überwiegend zyklonalem und antizyklonalem Witterungscharakter S. 34

Abb. 14 : Auswirkungen der Inversionslage vom 1.– 15. Februar 1993 auf verschiedene Klimaelemente S. 36

Abb. 15 : Lufttemperatur in Abhängigkeit von der Globalstrahlung für Mannheim und Feldberg S. 38

Abb. 16 : Abhängigkeit der Monatsmittel der täglichen Amplitude der Lufttemperatur v. d. Globalstrahlung, Regressionsgleichungen und Produktmoment-Korrelationskoeffizienten S. 39

Abb. 17 : Abhängigkeit der Luft – bzw. der Erdbodentemperatur von der Globalstrahlung am Beispiel der Daten vom Geilweilerhof bei Landau / Pf. S. 40

Abb. 18 : a) Abhängigkeit der täglichen Temperaturamplitude von der Strahlungseinnahme bei antizyklonaler Westlage an der Station Geilweilerhof 1982-1985 b) Verteilung der Residuen und angepaßte Normalverteilungen S. 41

Abb. 19 : Mittlerer Jahresgang der Bewölkung in 10tel Okta und des Variationskoeffizienten v an ausgewählten Stationen S. 44

Abb. 20 : Mittlerer Jahresgang der Bewölkung und des Variationskoeffizienten v nach Zirkulationstypen S. 45

Abb. 21 : Zusammenhang des relativen Bewölkungsunterschieds der Großwetterlagen (GWL) vom mittleren Bedeckungsgrad S. 47

Abb. 22 : Häufigkeitsverteilungen der Bewölkung S. 47

Abb. 23 : Zusammenhang von rel. Bewölkungsunterschied (v) und -mittel S. 49

Abb. 24 : Bewölkung und Variationskoeffizient v im mittleren Jahresgang, getrennt dargestellt bei zyklonalen und antizyklonalen Verhältnissen S. 49

Abb. 25 : Dendrogramm der Stationen nach Bewölkungsunterschieden (v) S. 50

Abb. 26 : a) Mittlerer Jahresgang des Trübungsfaktors n. LINKE (TL) 1981-2000; b) Mittlere Jahresgang von TL nach KASTEN et al. (1984) in der Zeitspanne 1979 – 1982 S. 51

Abb. 27 : Häufigkeitsverteilung des LINKE 'schen Trübungsfaktors im Sommer – und Winterhalbjahr; 5 Stationen 1981 – 2000, Tage < 1 Okta Bewölkung S. 52

Abb. 28 : a) Abhängigkeit der direkten (B) und diffusen Sonnenstrahlung (D) sowie der Globalstrahlung (G) von der Bewölkung; b) wie a), aber Relativwerte S. 54 / 55

Abb. 29 : wie Abb. 28: Normierung mit der Strahlungseinnahme bei wolkenlosem Himmel S. 56

Abb. 30 : Abhängigkeit der relativen Globalstrahlung von der Bewölkung am Beispiel der Bergstationen Hornisgrinde, Feldberg und Höchenschwand, unterschieden nach zyklonalen und antizyklonalen monatlichenVerhältnissen S. 57

Abb. 31 : Abhängigkeit der relativen Globalstrahlung (RG) von der relativen Veränderlichkeit der Bewölkung (v), bezogen auf die Großwetterlagen, für die Stationen Mannheim, Hornisgrinde, Feldberg und Beerfelden S. 58

Abb. 32 : Veränderlichkeit der Bewölkung (v) und mittlere Strahlungseinnahme (RG, RD) für alle GWL am Beispiel der Station Mannheim. S. 59

Abb. 33 : Dendrogramm nach dem average linkage – Verfahren. Datenbasis : Matrix der Korrelationskoeffizienten der Beziehung rel. Globalstrahlung und Bewölkung, einschließlich der rel. Stationshöhenlage S. 60

Abb. 34 : Ergebnisse der Diskriminanzananlyse aus der Matrix der Korrelationskoeffizienten der Beziehung rel. Globalstrahlung und Bewölkung S. 61

Abb. 35 : Mittlerer Jahresgang des monatlichen Korrelationskoeffizienten r der Gruppen 1-3 in der Beziehung relative Globalstrahlung und Bewölkung S. 62

Abb. 36 :Verhalten der relativen Globalstrahlung bei totaler Himmelsbedeckung (8 Okta). Mittlerer Jahresgang an trockenen Tagen und an Tagen mit Niederschlag S. 63

Abb. 37 : Isoplethen der relativen Häufigkeit von Bewölkung, rel.Globalstrahlung und rel. diffuser Sonnenstrahlung im mittleren Jahresgang bei täglichen Niederschlagssummen der Stationen Würzburg, Trier, Mannheim, Stuttgart und Freiburg a) 0.0 mm; b) 0.1 - 1.0 mm; c) 1.1-10.0 mm; d) $\geq 10.1 \text{ mm}$ S. 66-69

Abb. 38 : Abhängigkeit der Relativen Globalstrahlung (RG) von den zyklonal geprägten Tagen mit Niederschlag, bezogen auf die drei Stationsgruppen (s. Abb. 34). S. 71

Abb. 39 : LIU – JORDAN – Diagramm der Abhängigkeit des relativen Anteils der diffusen Sonnenstrahlung von der RG, bezogen auf die Luftmassen in den Halbjahren. Mittel aus den Stationen WU, MA, TR, ST und FR. S. 76

Abb. 40 : a) LIU – JORDAN – Diagramm der Abhängigkeit des relativen Anteils der diffusen Sonnenstrahlung von der RG bezogen auf GWL; b) Werte - Tabelle der GWL S. 77

Abb. 41 : LIU – JORDAN – Diagramm der Abhängigkeit des relativen Anteils der diffusen Sonnenstrahlung von der RG bezogen auf GWT; sonst wie Abb. 39 S. 78

Abb. 42 : Verlaufsschema der Analysen S. 80

Abb. 43 : Dendrogramm der GWL hinsichtlich der Strahlungseinnahme (RG) im Sommerhalbjahr für alle Stationen. Methode : Complete linkage, quadrierte Euklidische Distanz. S. 81

Abb. 44 : Lage der GWL im Diskriminanzraum - Sommerhalbjahr S. 82

Abb. 45 : Dendrogramm der GWL hinsichtlich der Strahlungseinnahme (RG) im Winterhalbjahr für alle Stationen. Methode : Complete linkage, quadrierte Euklidische Distanz. S. 83

Abb. 46 : Lage der GWL im Diskriminanzraum – Winterhalbjahr S. 84

Abb. 47 : Nach Rängen geordnete Ausprägung der RG in den einzelnen GWL der ermittelten GWL-Gruppen (standardisierte Werte) – Sommer- und Winterhalbjahr S. 85

Abb. 48 : Dendrogramm der GWL hinsichtlich der Strahlungseinnahme (RG) im mittleren Jahr für alle Stationen S. 86

Abb. 49 : Lage der GWL im Diskriminanzraum – Jahr S. 87

Abb. 50 : Nach Rängen geordnete Ausprägung der RG in den einzelnen GWL der ermittelten GWL-Gruppen (standardisierte Werte) – Jahr S. 88

Abb. 51 : Dendrogramm der GWL - spezifischen Abweichungen der einzelnen Stationen von der mittleren Station. Methode : Complete Linkage; quadrierte eukidische Distanz - Sommerhalbjahr S. 89

Abb. 52 : Lage der Stationen im Diskriminanzraum – Sommerhalbjahr S. 90

Abb. 53 : Abweichungen in den ermittelten Stationengruppen im Sommerhalbjahr. Die Darstellung in b) und c) summiert die Abweichungen der GWL- spezifischen RG, aus denen sich die GWT bzw. die diskriminanzanalytisch ermittelten GWL-Gruppen zusammensetzen S. 92

Abb. 54 : Dendrogramm der GWL - spezifischen Abweichungen der einzelnen Stationen von der mittleren Station. Methode n. Ward; quadrierte eukidische Distanz – Winterhalbjahr S. 93

Abb. 55: Lage der Stationen im Diskriminanzraum – Winterhalbjahr S. 94

Abb. 56 : Abweichungen in den ermittelten Stationengruppen im Winterhalbjahr; sonst wie in Abb. 53 S. 95

Abb. 57 : Dendrogramm der GWL - spezifischen Abweichungen der einzelnen Stationen von der mittleren Station. Methode : Complete Linkage; quadrierte eukidische Distanz – mittleres Jahr S. 96

Abb. 58: Lage der Stationen im Diskriminanzraum – mittleres Jahr S. 97

Abb. 59 : Abweichungen in den ermittelten Stationengruppen im mittleren Jahr; sonst wie in Abb. 53 S. 98

Abb. 60 : Verteilungsmuster der Stationen im Sommer – und Winterhalbjahr sowie im mittleren Jahr im Untersuchungsgebiet S. 101

Abb. 61 : a) Monatsmittel der Globalstrahlung und Residuen b) Tief-und Hochpaßgefilterte Zeitreihe S. 105

Abb. 62 : a) Mittlere monatliche Tagesmittel der Lufttemperatur und Fourier-Reihe b) Residuen c) Tief- und Hochaßgefilterte Reihe S. 106

Abb. 63 : ASA der Globalstrahlungsreihe a) Bereich > 12 Monate b) Bereich < 12 Monate S. 108 Abb. 64 : ASA der Lufttemperaturreihe a) Bereich > 12 Monate b) Bereich < 12 Monate S. 109

Abb. 65 : Relatives Varianzspektrum (ASA)Perioden < 60 Tage a) Relative Sonnenscheindauer b) relative Globalstrahlung S. 110

Abb. 66 : Relatives Varianzspektrum (ASA) Perioden < 60 Tage a) Relative d iffuse Sonnenstrahlung b) Relative direkte Sonnenstrahlung S. 111

Abb. 67: Relatives Varianzspektrum (ASA) Perioden < 60 Tage a) Lufttemperatur b) Bewölkung S. 112

Abb. 68 : Relatives Varianzspektrum (ASA) der Niederschlagsreihe; Perioden < 60 Tage S. 113

Abb. 69: ASA a) relativen Globalstrahlung b) Lufttemperatur (Gebietsmittel 1981 - 2000) S. 114

Abb. 70a : Dynamische ASA der relativen Globalstrahlung (Gebietsmittel aus 8 Stationen 1981 – 2000) S. 115

Abb. 70b : Dynamische ASA der relativen Globalstrahlung (Gebietsmittel aus 8 Stationen 1981 – 2000) signifikante relative Varianz S. 116

Abb. 71 a : Dynamische ASA der Lufttemperatur (Gebietsmittel aus 8 Stationen 1981 – 2000) S. 117

Abb. 71 b : Dynamische ASA der Lufttemperatur (Gebietsmittel aus 8 Stationen 1981 – 2000) signifikante relative Varianz S. 118

Abb. 72 : ASA (RG) : a) antizyklonale Tage, b) zyklonale Tage c) Zusammenschau ; Gebietsmittel 1981 – 2000 S. 120

Abb. 73: ASA (LT) a) antizyklonale Tage b) zyklonale Tage; Gebietsmittel 1981 – 2000 S. 121

Abb. 74 : ASA (RG) a) Großwetterlagen HM und BM (= GWT HM) b) GWL WZ; Gebietsmittel 1981 – 2000 S. 122

Abb. 75 : ASA (LT) a) Großwetterlagen HM und BM (= GWT HM) b) GWL WZ; Gebietsmittel 1981 – 2000 S. 123

Tabellen im Text

- Tab. 1: Stationen im Untersuchungsgebiet S. 3
- Tab. 2: Referenz und Satellitenstationen im Untersuchungsgebiet S. 19
- Tab. 3: Angström-Koeffizienten (a, b) der Referenzstationen und Produkt Moment Koeffizienten (r) S. 20
- Tab. 4 : Relativer Fehler (rF) in v. H. bei ausgewählten witterungsklimatologisch definierten Kollektiven
im Sommer- und Winterhalbjahr an den Referenzstationen S. 22
- Tab 5 : Durchschnittliche Lufttemperatur in °C für einige Stationen im Bereich des Oberrheingrabens und der Randgebirge S. 31
- Tab 6: Absolute (d) und relative Häufigkeit der Inversionstage, einschl. d. Tage mit Isothermie S. 33
- Tab. 7 :Korrelation (r) der Temperaturamplitude (TA) mit der Globalstrahlung (G), bezogen auf
Luftmassen (n. SCHERHAG). Klimastation Geilweilerhof 1982-1985.

- Tab. 8: Monatsmittel der Bewölkung S. 43
- Tab. 9: Ergebnisse des WILCOXON-Vorzeichen-Rang-Tests für Stationenpaare in Luv-Lee-Lage S. 44
- Tab. 10: Trübungsfaktor n. LINKE für ausgewählte Luftmassen im Winter- und Sommerhalbjahr S. 52
- Tab. 11 : Abhängigkeit der Monatsmittel der relativen Globalstrahlung von den Monatsmitteln der Bewölkung Regressionsparameter und Korrelationskoeffizienten S. 55
- Tab. 12 : Maxima und Minima der relativen Globalstrahlung (RG), relativen Veränderlichkeit der Bewölkung (v) und Bewölkung bei den GWL WW (winkelförmige Westlage), HM (Hoch über Mitteleuropa) und TM (Tief Mitteleuropa) für alle Stationen S. 58
- Tab.13 : Relative Strahlungseinnahme (RG, RD) an Tagen ohne und mit Niederschlag, zusammengefaßt in Niederschlagsklassen am Beispiel der Stationsgruppe Würzburg, Trier, Mannheim, Stuttgart und Freiburg
 a) Maßzahlen zu Häufigkeitsverteilungen der Bewölkung, RG und RD
 b) antizyklonal und zyklonal geprägte Tage im Sommer- und Winterhalbjahr. Ohne Übergangslagen S. 65
- Tab. 14 : Verteilung der RG und RD auf die Niederschlagsklassen in Abhängigkeit von den Großwettertypen S. 70
- Tab. 15:Standardisierte Diskriminanzkoeffizienten (D1 und D2) und mittlere D. (MD) der wichtigsten
Variablen in absteigender Rangfolge Sommerhalbjahr S. 90
- Tab. 16:Standardisierte Diskriminanzkoeffizienten (D1 und D2) und mittlere D. (MD) der
wichtigsten Variablen in absteigender Rangfolge Winterhalbjahr S. 94
- Tab. 17 : Standardisierte Diskriminanzkoeffizienten (D1 und D2) und mittlere D. (MD) der wichtigsten Variablen in absteigender Rangfolge –mittleres Jahr S. 97
- Tab. 18 : Beispiele zur Strahlungseinnahme bei Luv-Lee-Effekten im Untersuchungsgebiet S. 100

Zusammenfassung

Die astronomisch vorgegebenen Positionen der Erde regeln die Verteilung der von der Sonne empfangenen Energie. Sie wird von langfristigen Schwankungen des Abstandes der Erdbahn von der Sonne und von der Neigung der Erdachse beeinflußt. Andererseits unterliegt auch die Energieabstrahlung der Sonne lang- und kurzfristigen Veränderungen. Als Mittelwert aus Satellitenmessungen gilt an der Obergrenze der Erdatmosphäre, senkrecht zur Empfangsfläche, die Bestrahlungsstärke von 1368 W/m². Die extraterrestrische Bestrahlungsstärke wird mit dem Eintritt in die Erdatmosphäre durch die planetarische Albedo bereits um ca. 30 % reduziert. Ein Teil der Energie erreicht als direkte Sonnenstrahlung ohne wesentliche Veränderungen die Erdoberfläche. Der übrige Teil verliert durch Absorption, Streuung und Reflexion in der Stratosphäre und besonders in der Troposphäre seine Richtungskonstanz, abhängig von der jeweils herrschenden Dynamik des Witterungsgeschehens und wird deshalb diffuse Sonnenstrahlung genannt. Weitere Variationen der Bestrahlungsstärke werden mittelbar in der unteren Troposphäre durch orographisch induzierte Effekte ausgelöst. Überlagert durch die Unterschiede im Sommerund Winterhalbjahr ergibt sich insgesamt eine große Variationsbreite der Bestrahlungsstärke von direkter (B) und diffuser Sonnenstrahlung (D), die kumuliert in der Globalstrahlung (G) zusammengefaßt sind.

Die Untersuchungen beziehen sich auf Südwestdeutschland in der Beobachtungsperiode 1981 - 2000. Es gibt acht radiometrische Stationen zwischen 49° 59' (Geisenheim am Rhein) und 47° 41' (Konstanz). Würzburg liegt am weitesten im Nordosten und Trier am weitesten im Westen. Das Relief ist geprägt durch die zentrale morphologische Struktur des SSW - NNE streichenden Oberrheingrabens mit den Randgebirgen und Randsenken. Die größte hypsometrische Differenz findet man zwischen den Stationen Mannheim (106) und Feldberg im Schwarzwald (1486). Im Süden ist der Oberrheingraben offen. An seinem morphologischen Nordende grenzt er an den Taunus, der ein Teil des Südabfalls der variskisch streichenden Barriere des Rheinischen Schiefergebirges darstellt. Zwischen Pfälzerwald und Rheinischem Schiefergebirge dehnt sich das Saar-Nahe-Bergland aus. Rechtsrheinisch folgt östlich des Odenwalds das Bauland und die Mainfränkischen Platten. An den Schwarzwald schließt sich im Osten das Südwestdeutsche Schichtstufenland an und südöstlich das Bodenseebecken. Abhängig von der Strömungsrichtung der Luftmassen beobachtet man Stau- und Leelagen, insbesondere im Bereich der Randgebirge des Südabfall Oberrheingrabens und dem des Rheinischen Schiefergebirges, neben Witterungserscheinungen autochthonen Ursprungs.

Um die Abhängigkeit der Globalstrahlung von der geographischen Breitenlage und Sonnendeklination zu eliminieren, werden, wie bei der relativen Sonnenscheindauer, Relativwerte gebildet (RG, RD, RB). Bezugsniveau ist die Bestrahlungsstärke der Globalstrahlung nach ihrem Gang durch die staub-und wasserdampffreie Ravleigh-Atmosphäre (RG =100%). Das radiometrische Meßnetz wird von 8 auf 17 Stationen erweitert, indem über das Angström'sche Regressionsmodell die Sonnenscheindauer registrierenden Stationen einbezogen werden. Die Eignung der berechneten Strahlungseinnahme für die weitere Problemstellung wird diskutiert. Dabei stehen Vertrauensgrenzen der Strahlungseinnahme hinsichtlich der witterungsklimatologisch definierten Zeitspannen im Vordergrund. Neben der quantitativen Beschreibung der Jahresgänge der Globalstrahlung, wird exemplarisch die hypsometrische Verteilung der Strahlungseinnahme herausgestellt, differenziert nach zyklonaler und antizyklonaler Witterung.

Wie sich die RG auf die Temperatur der Luft, des Erdbodens und auf die Tagesamplitude auswirkt oder wie sich diese Variablen verhalten, wenn sich die RG verändert, wird mit linearen oder nichtlinearen Regressionsmodellen und der Korrelationsanalyse beantwortet. Ebenso kann man fragen, wie die relative Sonnenscheindauer und Bewölkung die RG verändern. In die Regressionsmodelle kann die RG entweder als unabhängige oder als abhängige Variable eingehen. Die Analysen bilden meist eine lineare Beziehung mit unterschiedlicher Stärke des Zusammenhangs (r) ab, wobei die Abhängigkeit der RG vom Bewölkungsgrad gegenläufig ist. Ist die unabhängige Variable die Veränderlichkeit der Bewölkung, gebildet aus dem Variationskoeffizienten v, dann ist die Beziehung proportional. Niedrige Veränderlichkeit, z. B. bei Altostratus, läßt nur eine geringe Strahlungseinnahme zu, hohe dagegen eine größere. Als Sonderfall sind die vornehmlich bei autochthoner Witterung im Winterhalbjahr verbreiteten Inversionswetterlagen einzustufen, die eine vertikale Zweiteilung der Strahlungseinnahme hervorrufen, wobei die Stationen über der Sperrschicht vollen Strahlungsgenuß registrieren und die Stationen darunter, je nach Andauer, zunehmend höhere Anteile diffuser Sonnenstrahlung.

Bereits die Diagramme nach LIU & JORDAN (1960), die die Abhängigkeit des mittleren prozentualen Anteils der GWL-bezogenen diffusen Sonnenstrahlung von der RG darstellen, zeigen, daß die Voraussetzungen für eine Gruppierung der GWL hinsichtlich der Ähnlichkeit bzw. Unähnlichkeit der Strahlungseinnahme gegeben sind. Dabei entspricht der Begriff GWL der Definition nach F. BAUR (1963), die GWL- Systematik folgt der Zusammenstellung nach HESS, P.& BREZOWSKY, H. (1977). Es liegt die Überlegung zugrunde, daß die in den GWL mitgeführten Luftmassen mit ihrem als Bewölkung sichtbaren Wassergehalt, die wesentlichen Filter sind, die die Intensität der Strahlungseinnahme auf der Empfangsfläche variieren.

In die Analyse gehen die Mittelwerte der RG aller GWL der 17 Stationen ein. Die durch die Clusteranalyse vorgruppierten GWL-spezifischen RG-Werte werden der Linearen Diskriminanzanalyse (LDA) zur Korrektur und endgültigen signifikanten Trennung der GWL-Gruppen zugeführt, wobei die Trefferqote der Zuordnung für die Halbjahre und das mittlere Jahr jeweils 100 % beträgt. Für das Sommerhalbjahr ergeben sich eine antizyklonale, subzyklonale und zyklonale GWL-Gruppe, für das Winterhalbjahr und mittlere Jahr eine zyklonale, subantizyklonale und antizyklonale. "Sub-" bedeutet, daß es zwar zyklonale, bzw. antizyklonale GWL sind, aber sich von der Kerngruppe signifikant unterscheiden. Im zweiten Schritt werden Stationen-Gruppen mit ähnlicher GWL-abhängiger Strahlungseinnahme gebildet. Die Variablen sind die stationenbezogenen GWL-spezifischen RG-Werte. Aus der Datenmatrix ergibt sich für die Halbjahre und das mittlere Jahr das mittlere Stationenprofil. Die Abweichung der Stationen davon bildet die Basis für die weiteren Clusteranalysen und LDA. Für Sommer- und Winterhalbjahr und mittleres Jahr werden je drei Stationengruppen ermittelt, deren räumliches Verteilungsmuster dargestellt ist.

Die Abhängigkeit der RG, RD, RB, Lufttemperatur (LT), Bewölkung und Niederschlag von der Zeit verfolgen die Aufdeckung von signifikanten, zyklischen Variationen, die gegebenenfalls klimatologisch relevanten Vorgängen zugeordnet werden. Äquidistante Zeitschritte werden vorausgesetzt. Dazu ist eine Vorbehandlung der Zeitreihen erforderlich, hauptsächlich die Detrendisierung und Filteroperationen umfaßt. Über die die Autokorrelations-Spektralanalyse (ASA) nach BLACKMAN, R. B. & TUKEY, J. W. (1958) werden die Varianzanteile auf die Frequenzen verteilt und auf Signifikanz getestet. Da die Zeitreihenlänge nur zwanzig Jahre umfaßt, ist im Periodenbereich > 1 Jahr die Möglichkeit eines Nachweises eingeschränkt. Bei einem Zeitschritt von einem Monat wird nur die ca. zweijährige Periode sicher nachgewiesen. Im Mittelpunkt steht deshalb der Periodenbereich \leq 30 Tage. Darin sind Witterungsregelfälle enthalten, Dauer der GWL und Frontendurchgänge. Integrierte Spektren der antizyklonalen und zyklonalen Tage von RG und LT werden verglichen. In der dynamischen ASA sind die Verteilungsmuster der Varianzanteile von RG und LT aufgeschlüsselt, außerdem nur die signifikanten Anteile, um Einblicke in die zeitliche Konstanz der signifikanten Varianzmaxima zu erhalten.

Summary

The positions of the earth given astronomically regulate the distribution of the energy received by the sun. It is influenced by long-term fluctuations of the orbit of the earth and the slope of the earth's axis. On the other hand the energy irradiation of the sun shows changes longly and short-termly. 1368 W/m² are the mean average value of the irradiance at the upper limit of the earth's atmosphere, vertical to the reception area. At admission into the earth's atmosphere the extraterrestrial irradiance is already reduced by the planetary Albedo by approx. 30 %. A part of the energy reaches the earth's surface as a direct sun radiation without essential changes. The other part loses its direction constancy depending on the dynamics of the weather conditions through absorption, dispersion and reflection in the stratosphere and particularly in the troposphere. It therefore is called diffuse solar radiation. Furthermore variations of the irradiance are indirectly produced by the relief in the lower troposphere. Together with the differences in the summer and winter half year a large variation of the irradiance by direct (B) and diffuse solar radiation (D), which is summarized accumulated in the global radiation (G).

The investigations refer to Southwest Germany in the observation period 1981 - 2000. There are eight radiometric stations between 49° 59 ' (Geisenheim at the Rhine) and 47° 41 ' (Constance). Würzburg is furthest located in the northeast and Trier furthest in the west. The relief is marked by the central morphological structure of the SSW-NNE going upper Rhine valley with the accompanying mountains and basins. One finds the greatest hypsometric difference between the stations Mannheim (106) and Feldberg (1486) in the Black Forest. The upper Rhine valley is open in the south. It delimits at its morphological northern end to the Taunus which represents a part of the southern side of the Rheinisches Schiefergebirge. The Saar-Nahe-Bergland extends between Pfälzerwald and Rheinisches Schiefergebirge. On the right sidely of the Rhine river the Bauland and the Mainfränkischen Platten follows east of the Odenwald. To the Black Forest the Südwestdeutsches Stufenland follows in the east and the Lake Constance basin southeastern. Depending on the flow direction of the air masses, one observes luv and lee situations particularly in the range of the accompanying mountains of the upper Rhine valley and the southern side of the Rheinisches Schiefergebirge besides weather conditions phenomena of an autochthonous origin.

To eliminate the dependence of the global radiation of the latitude and sun declination, relative values are formed as in the case of the relative sunshine duration (RG, RD, RB). Cover standard is the irradiance of the global radiation after its response by the clean and dry Rayleigh atmosphere (RG = 100%). The radiometric measuring net is enlarged from 8 on 17 stations by including over Angström's regression model the stations registering sunshine duration. The qualification of the calculated radiation taking for the further problem definition is discussed. Confidence limits of the radiation taking are in the foreground with regard to the weather conditions climatologically defined periods of time. Besides the quantitative description of the annual courses of the global radiation the hypsometrical distribution of the radiation taking is pointed out exemplarily, weather conditions differentiate to zyklonal and antizyklonal.

As the RG has an effect on the temperature of the air, the ground and on the day amplitude or as these variables behave if the RG changes you answer with linear or nonlinear regression models and the correlation analysis. One can as well ask how the RG is changed by the relative sunshine duration and clouds. The RG is in the regression models either when independent or when a dependent variable contained. The analyses usually show a linear relation with different strength of the correlation (r) off in which the dependence of the RG of the clouds degree is contrary. If the independent variable is the variability of the clouds, formed from the coefficient of variance v, then the relation is proportional. A low variability e.g. at Altostratus allows only a low radiation taking, high against this a greater. The inversions spread at autochthonous weather conditions in the winter half year mainly are regarded as a special case. You produce a vertical dichotomy of the radiation distribution, how the stations register to the power of RG over the depletion layer and the stations under this, depending on duration, increasingly more diffuse solar radiation.

Already the diagrams to LIU, B.Y.H. & JORDAN, R.C. (1960), show that the prerequisites for a grouping of the GWL are given to the RG with regard to the similarity or dissimilarity. The concept of the GWL corresponds to the definition after F. BAUR (1963), the GWL systematics follows the composition after HESS, P. & BREZOWSKY, H. (1977). In the following the air masses carried into the GWL with hers as clouds are assumed that are visible water content, the essential filters which varies the intensity of the global radiation on the reception area.

In the analysis the mean average values of the RG of all GWL are included of 17 stations. GWL specific RG values in front of grouped by the cluster analysis are supplied with to the linear discriminant analysis (LDA) for the correction and significant separation of the GWL groups. The following GWL-groups were found: in the summer term: antizyklonal, subzyklonal and zyklonal; in the winter half year and mean year: zyklonal, subantizyklonal and antizyklonal. "Sub-" means that it is zyklonale or antizyklonale GWL but is different from the main group significantly. In the second step station groups are formed with a similar GWL-dependent radiation taking. The variables are GWL-specific RG-values related to the stations. From the data matrix the mean section of the stations arises for the half-years and the mean year. The deviation of the stations of it forms the base for the further cluster analyses and LDA. Being investigated per three groups of stations and the spatial distribution pattern represented for summers and winter half year and mean year.

The RG, RD, RB, air temperature (LT), clouds and precipitation of the time pursue the uncovering of significant, cyclic variations which is if necessary assigned to climatologically relevant events for the dependence. Equidistant time steps are presupposed. To this a pretreatment of the time series which mainly covers the Detrendisierung and filter operations is required. About the autocorrelation spectrum analysis (ASA) after BLACKMAN, R. B. & TUKEY, J. W. (1958), the variance shares are distributed on the frequencies and tested on significance. Since the time series length contains only twenty years, the possibility of a proof is restricted in the period range of > 1 year. At a time step of a month only this one is proved for certain approx. two-year period of quasi bienniale Oscillation (QBO). The period range of \leq 30 days therefore is in the centre. Into this Witterungsregelfälle are contained, duration of the GWL and Frontendurchgänge. Integrated spectra of the antizyklonal and zyklonal days of RG and LT are compared. The distribution patterns of the variance shares of RG and LT are itemizedly, in addition only the significant shares to receive insights into the temporal constancy of the significant variance maxima in the dynamic ASA.

1 Einleitung

Die schwach elliptische Bahn der Erde um die Sonne, die Rotation um ihre eigene, gegenüber der Ekliptik um 23° 27' geneigte Achse und deren Richtungskonstanz im Raum, sind für das Klima unseres Planeten grundlegende himmelsmechanische Vorgaben. Aus ihnen leiten sich die Länge des Jahres, Rhythmus und Andauer der Jahreszeiten und die Länge von Tag und Nacht ab. Jedoch sind die Erdbahnparameter nicht konstant, sondern unterliegen langfristig periodischen Veränderungen, die hinsichtlich der Exzentrizität der Erdbahn ca. 95 ka betragen. Auch die Neigung der Erdachse weist eine Periode von ca. 41 ka auf, in der sie zwischen 22° 2' und 24° 30' variiert, ebenso die Richtung der Achsenneigung (Präzession) mit ca. 20 ka (SCHÖNWIESE, C.-D. 1994, S. 320). Außerdem unterliegt auch die solare Energieemission einer von der Sonne selbst erzeugten Variabilität. Unter den terrestrischen Einflüssen wirken Verteilung und Ausdehnung der Kontinente und Ozeane auf die atmosphärische Zirkulation modifizierend, die ihrerseits für die Sonnenstrahlung wie ein variabler Filter wirkt. Ebenso tragen langfristig plattentektonische Prozesse (Wilson-Zyklus) zu weiteren Veränderungen bei.

Die von der Sonne emittierte kurzwellige Strahlung erzeugt auf der Erde zwischen Äquator und den Polen ungleiche Erwärmung und führt zu unterschiedlicher Luftdruckverteilung. Daraus resultiert die komplexe Dynamik der Atmosphäre, die, für Europa über die Abhängigkeit der Zirkulation in der höheren Troposphäre von der Lage des Azorenhochs und des Islandtiefs, einer Typisierung zugänglich ist. Mit der Definition der Großwetterlage und der Schaffung einer Klassifikation für Europa, die von BAUR, F. (1944, 1947, 1963) entwickelt und von HESS, P. & BREZOWSKY, H. (1952) überarbeitet wurde (s. A 1-4; A = Anhang), ist eine praktikable witterungsklimatologische Bearbeitung möglich geworden.

Die in den Großwetterlagen transportierten Luftmassen sind unterschiedlicher Herkunft und haben unterschiedliche physikalische Eigenschaften hinsichtlich Temperatur, Wasserdampfgehalt, Aerosolbelastung etc.. Das bedeutet unterschiedliche Extinktion, Variabilität bei Bewölkung und Niederschlag mit Auswirkungen auf die Intensität und das Verhältnis von diffuser zu direkter Sonnenstrahlung. Am Entstehungsort erworbene Eigenschaften ändern sich auf dem Transportweg mehr oder weniger stark durch die von der Unterlage ausgehenden Labilisierungs - oder Stabilisierungseffekte. Ebenso können hypsometrische Eigenheiten des Reliefs zu Strömungshindernissen werden. Dieser überwiegend von horizontalem Austausch geprägten allochthonen Witterung steht die autochthone oder eigenbürtige gegenüber, bei der der Tagesgang der meteorologischen Elemente überwiegend von den örtlichen Verhältnissen geprägt ist.

Letztlich ist die Sonnenstrahlung die Energiequelle für die vielschichtigen Prozesse in der Atmosphäre. Sie modifiziert mittelbar die Extinktionseigenschaften der Atmosphäre und schafft so ständig neue Randbedingungen für die Intensität der Globalstrahlung an der Erdoberfläche. Hier setzt die Untersuchung ein, die die Verflechtungen der Globalstrahlung und ihrer Komponenten mit anderen Klimaelementen im Sinne der seperativen Klimageographie betrachtet, darüber hinaus aber auch Verbindungen zu synoptischen Kategorien aufzeigt. Als Untersuchungsgebiet eignet sich Südwestdeutschland, da auf relativ engem Raum variable hypsometrische Verhältnisse herrschen, wobei sich variskisch und rheinisch streichende tektonische Baueinheiten im Relief als Klimafaktor markant durchsetzen.

1.1 Datengrundlage

Die hauptsächlich vom Deutschen Wetterdienst (DWD) bereitgestellten Daten umfassen die Beobachtungsperiode 1981 - 2000 und beziehen sich auf die in Tab. 1 und Abb. 1 dargestellten Stationen Südwestdeutschlands. Außerdem gehen in die Untersuchung Datensätze der Klimastation Geilweilerhof (westlich Landau) ein, die vom Institut für Rebenzüchtung der Bundesanstalt für Züchtungsforschung an Kulturpflanzen unterhalten wird. Die Datensätze sind auf die Periode 1981 - 1990 begrenzt, ebenso die der Klimastation Limburgerhof (BASF), südlich Ludwigshafen. Von dieser Station liegen 10' - Summen der Globalstrahlung für die Jahre 1995 - 1998 vor. Vom DWD werden im Untersuchungsraum acht Strahlungsmeßstationen betrieben. Ihre Zahl reicht aus, weil der Globalstrahlung eine hohe örtliche Repräsentanz eigen ist. Neben Strahlungsmeßdaten liegen tägliche Meßwerte der Sonnenscheindauer, Bewölkung, Lufttemperatur und des Niederschlags vor, auch von 4 weiteren Stationen, die keine Strahlung messen. Hinzu kommen weitere 15 Stationen, von denen die Monatsmittel der Lufttemperatur, Bewölkung und des Niederschlags und Angaben über die Anzahl besonderer Tage vorliegen. Zu den metrisch skalierten Variablen zählen auch die theoretischen Konstrukte für jeden Tag, die die Bestrahlungsstärke extraterrestrisch und unter den Bedingungen der Rayleigh - Atmosphäre angeben sowie aus der Angström-Beziehung hergeleitete Zeitreihen.

Bei keiner Strahlungsmeßstation ist die Beobachtungsperiode lückenlos. Von n = 7305 erwarteten Tagesdaten fehlen zwischen 0.38% (Mannheim und Freiburg) und 0.86% (Konstanz). Saarbrücken mit 3.1% ist eine Ausnahme, weil der Meßbetrieb erst im August 1981 aufgenommen wurde. Ähnlich sind die Verhältnisse bei den übrigen Klimaelementen. Es gibt zwei Strategien mit Meßlücken umzugehen. Entweder werden die Zeitreihen auf gleiche Länge reduziert, um Verzerrungen zu vermeiden, oder fehlende Werte werden mit Mittelwerten benachbarter, vergleichbarer Stationen besetzt.

Zirkulationsformen, Großwetterlagen und Luftmassen (n. SCHERHAG, R. 1948) stellen nominal skalierte Variable dar, die für die Untersuchung kodiert werden. Sie sind alle vom DWD publiziert. Die jedem Tag zugeordnete Großwetterlage ist im 'Katalog der Großwetterlagen Europas...' enthalten (GERSTENGARBE, F.-W. et al. 1993), ebenso, zusammen mit den täglich an der Wetterstation Karlsruhe bestimmten Luftmassen, im Amtsblatt des DWD 'Die Großwetterlagen Europas' und in den `Monatlichen Witterungsberichten`. Wenn nicht anders vermerkt, liegen den Berechnungen die Datensätze des DWD aus dem Beobachtungszeitraum 1981 – 2000 zugrunde.

2 Problemstellung

Im wesentlichen verhält sich die Atmosphäre wie ein Filter, der die spektrale Energieverteilung der solaren Strahlung verändert und schwächt. Die Filtereigenschaften sind in den tieferen Stockwerken der Atmosphäre sehr heterogen ausgebildet. Der Streuung der solaren Strahlung in der Atmosphäre in trockener, staubfreier und reiner Luft (Rayleigh -Streuung) und partieller Absorption in der Ozonschicht steht die stärkste Schwächung in der Troposphäre gegenüber. Sie vereinigt ca. 75 % der Masse und fast den gesamten Wasserdampfgehalt der Atmosphäre. In ihr bewirkt die Dynamik des Wettergeschehens räumlich und zeitlich äußerst variable Filtereigenschaften, die sowohl die gesamte Intensität der Globalstrahlung als auch das Verhältnis von direkter und diffuser Sonnenstrahlung beeinflußt. Die wechselnden Eigenschaften resultieren aus der Alterung oder Transformation der Luftmassen. Mit wachsender Distanz vom Entstehungsort wandeln sich die Luftmassen hinsichtlich ihrer Stabilität, Trübung, Sichtverhältnisse, Temperatur und des Wasserdampfgehaltes unter dem Einfluß des Untergrundes (Meer, Festland) und der Strahlungsverhältnisse. Ebenso sind auch autochthone Luftmassen einer Alterung unterworfen..

Station	Abk.	φN	λΕ	m ü. NN	Klimaelemente	Interv.	Globalstr.
Geisenheim	GE	49° 59'	07º 57'	131	G,SD,LT,N, Bew	d	gem.
Würzburg	WÜ	49º 46'	09° 58'	275	G,D,SD,LT,N, Bew	d	gem.
Trier	TR	49° 45'	06° 40'	278	G, D,SD,LT,N, Bew	d	gem.
Mannheim	MA	49º 31'	08º 33'	106	G, D, SD, LT,N, Bew, ReIF	d	gem.
Limburgerhof 2)	LI	49° 24.5'	08º 24'	98	G, SD, LT,N	h, d	gem.
Saarbrücken 3)	SA	49º 13'	07º 07'	325	G, SD, LT, N, Bew	d	gem.
Geilweilerhof 1)	GH	49º 13'	08º 03'	195	G, LT, N, Bew	d	gem.
Stuttgart	ST	48° 50'	09º 12'	318	G,D(s.a. ST-Flugww)	d	gem.
Freiburg	FR	48º 00'	07º 51'	308	G, D, SD, LT, N, Bew, RelF	d	gem.
Konstanz	ко	47º 41'	09º 11'	450	G, SD, LT, N, Bew	d	gem.
Alzey	ΑZ	49° 44'	08º 07'	215	SD, LT, N, Bew, bes. T.	d	ber.
Beerfelden	BE	49º 34'	08° 58'	450	SD, LT, N, Bew, RelF, bes.T.	d	ber.
Buchen	ΒU	49º 31'	09º 19'	350	SD,LT,N,Bew,RelF,bes,T.	d	ber.
Kaiserslautern	KL	49º 26'	07º 44'	281	LT, N, Bew, bes. T.	d	ber.
Weinbiet 4)	WВ	49º 22.5'	08º 7.3'	553	SD, LT, N, Bew, ReIF, bes.T.	d	ber.
Bad Bergzabern	ΒZ	49º 06'	08° 00'	180	SD, LT, N, Bew, bes. T.	d	ber.
Karlsruhe	KA	49º 02'	08º 22'	112	SD, LT, N Bew, ReIF, bes.T.	d	ber.
Hornisgrinde	но	48º 37'	08º 12'	1122	SD,LT,N,Bew,RelF,bes,T.	d	ber.
Feldberg/Schw.	FE	47° 53'	08º 00'	1486	SD, LT, N, Bew, RelF,bes. T.	d	ber.
Höchenschw. 6)	нѕ	47º 44'	08º 10'	1008	SD,LT,N,Bew,RelF,bes,T.	d	ber.
KI. Feldberg/Ts.	KF	50º 13'	08° 27'	805	LT, N, Bew, bes.T.	m	
Frankfurt/Flugh.	FF	50° 03'	08º 36'	112	LT, N, Bew, bes. T.	m	
Deuselbach	DE	49º 46'	07º 03'	480	LT, N, Bew, bes.T.	m	
Bensheim 5)	BS	49º 41'	08º 38'	140	LT, N, Bew, ReIF, bes. T,	d	
Ruppertsecken	RU	49° 39'	07º 53'	461	LT, N, Bew, bes. T.	m	
Heidelberg	HD	49º 26'	08º 42'	111	SD,LT,N,Bew,RelF,bes,T.	d	
Pirmasens	PS	49º 13'	07° 35'	280	LT, N, Bew, bes. T.	d	
Heilbronn	HE	49º 09'	09º 14'	167	LT, N, Bew, bes. T.	m	
StuttgFlugww	STf	48º 41'	09º 14'	371	SD, LT, N, Bew , bes.T.	d	
Nagold-Pfrond.	NA	48º 36'	08º 14'	430	LT, N, Bew, bes. T.	m	
Sigmaringen	SG	48° 04'	09º 12'	580	LT, N, Bew, bes. T.	m	
lhringen 7)	IH	48° 03'	07º 38'	193	LT, N, Bew, bes. T.	m	
Bad Säckingen	SK	47º 34'	07º 56'	355	LT, N, Bew, bes. T.	m	

Tab. 1: Stationen im Untersuchungsgebiet. Beobachtungszeitraum 1981 - 2000.

Ausnahmen: 1) 1981 - 1990; 2) 10' - Intervalle der Globalstrahlung 1995 - 8/1998; 3) 8/1981 - 2000. 4) 1983 - 2000. 5) 1981 - 10/1989 6) 1981 - 9/1999 7) 1991 - 2000; G Globalstrahlung, D diffuse Sonnenstrahlung, SD Sonnenscheindauer, LT Luftemperatur, N Niederschlag, Bew Bewölkung. Anzahl besonderer Tage: heitere, trübe, heiße Tage; Sommertage, Frosttage, Tage mit Niederschlag, Tage mit Nebel. h Stundensummen, d Tagessummen bzw. mittlere Tageswerte, m Monatssummen bzw. Monatsmittel; gem gemessen, ber berechnet.

Daten : Deutscher Wetterdienst, außer Limburgerhof (BASF) und Geilweilerhof (Bundesanstalt für Züchtungsforschung, Institut für Rebenzüchtung).

Abb. 1 : Übersichtskarte zur Lage der Bodenstationen im Untersuchungsgebiet. (s. Tab. 1).

Im Gegensatz zu dieser zyklonalen Wettersituation tritt unter Hochdruckeinfluß (antizyklonal) eine Stabilisierung der Luftmassen ein, charakterisiert durch geringe Turbulenz und reduzierte Wolkenbildung.

Die von der dominierenden Großwetterlage herangeführten Luftmassen haben einen definierten Grad an Homogenität, eine Ausdehnung von ≥ 500 km und eine Mächtigkeit von ≥ 1000 m und weisen eine horizontale Temperaturdifferenz < 1 K / 100 km auf (MALBERG, H. 1994, S. 106). Großräumig sind die Großwetterlagen und die mitgeführten Luftmassen eingebunden in Zirkulationstypen, die nach der Lage des Subtropenhochs und den Strömungsverhältnissen in der 500 hPa - Fläche differenziert werden.

Die Zirkulationstypen sind deshalb von großer Bedeutung, weil sie in der unteren Troposphäre typische Wetterabläufe im Gefolge haben. BLÜTHGEN, J. (1965) bezeichnet sie deshalb auch als Steuerungstypen.

Für Europa sind dies das Azorenhoch und das Islandtief. Wird im 500 hPa – Niveau in 45° geographischer Breite der meridionale Temperaturgradient von 6° C / 1000 km überschritten, tritt eine Labilisierung der zonal gesteuerten Zirkulation ein. Der high-index-Typ (zonale Zirkulation) kann in den low-index-Typ (meridionale Zirkulation) umschlagen (WEISCHET, W. 1995, S. 227). Es können sich blockierende Hochdruckgebiete zwischen 50° und 70° n. Br. und im Süden, durch cut - off - Prozesse, Höhentiefdruckgebiete entwickeln. Ist das Subtropenhoch nach Nordosten bis ca. 50° n. Br. vorgerückt, spielen Eigenschaften zonaler und meridionaler Zirkulation zusammen. Es liegt dann gemischte Zirkulation vor. Die aus den drei Zirkulationsformen hervorgegangenen Großwetterlagen nehmen dabei eine zyklonale oder antizyklonale Prägung an (HESS, P. u. BREZOWSKY, H. 1977; GERSTENGARBE, F.-W. et al. 1993).

2.1 Untersuchungen im Zeitbereich

Folgende Diskussionspunkte stehen im Vordergrund:

- Einführung des Begriffs der relativen Globalstrahlung (RG), gemessen an der Intensität der Globalstrahlung in der Rayleigh-Atmosphäre,
- das Angström'sche Regressionsmodell und seine Anwendbarkeit zur Schätzung der RG, um über die relative Sonnenscheindauer das Stationsnetz zu erweitern,
- die Variabilität der RG und ihrer Komponenten, der diffusen (RD) und direkten Sonnenstrahlung (RB), im Jahresgang, differenziert nach Sommer- und Winterhalbjahr und nach zyklonalem und antizyklonalem Einfluß, einschließlich orographischer Effekte,
- Korrelation der RG mit Bewölkungsgrad, Lufttemperatur, Amplituden der Lufttemperatur und Bodentemperatur,
- sich signifikant unterscheidende Gruppen von Großwetterlagen (GWL), die hinsichtlich der Strahlungseinnahme ähnliche Transmissionseigenschaften aufweisen, und auf diesen Ergebnissen aufbauend, signifikant getrennte Stationsgruppen mit entsprechendem Profil der Strahlungseinnahme, jeweils nach Sommer- und Winterhalbjahr.

Das Klassifikationssystem der Großwetterlagen (Abb. 2) leitet sich aus der Zirkulationsform ab, die durch die Lage der Steuerzentren und die Lage der Frontalzonen gegeben ist, wobei für die Bestimmung der Zirkulationsform die Luftdruckverteilung in der 500 hPa - Fläche ausschlaggebend ist (GERSTENGARBE, F.-W. et al. 1993, S. 6). Großwetterlagen beziehen sich auf den europäischen Raum, einschließlich benachbarter Bereiche des Nordatlantiks.

müßte wie BLÜTHGEN, Eigentlich man. bereits J. (1965)bemerkt. von (1963, S. 15/16) definiert : "Der Begriff "Großwitterungslagen" sprechen. F. BAUR Witterung baut wohl auf dem des Wetters auf, bezieht sich aber auf einen größeren Zeitraum. Die Witterung ist das Gleichbleibende oder wenigstens annähernd Gleichbleibende in den atmosphärischen Erscheinungen während einer Aufeinanderfolge von mehreren Tagen. [...] Das Großwetter bezieht sich also ebenso wie die Witterung auf einen längeren Zeitraum, ist aber durchaus nichts Einheitliches, sondern besteht aus verschiedenen, unter Umständen sogar sehr verschiedenen Witterungen, die aber durch die Gleichzeitigkeit physikalisch miteinander verbunden sind". Weiter muß bedacht werden, daß es sich bei der Bestimmung einer Großwetterlage um eine Diskretisierung der kontinuierlich ablaufenden atmosphärischen Zirkulation handelt und durch den Ermessensspielraum des Bearbeiters eine subjektive Komponente enthalten kann.

Abb. 2 : Häufigkeitsverteilung der Großwetterlagen in v. H. im Sommer – und Winterhalbjahr der Periode 1981-2000. Sommerhalbjahre n = 3660 Tage, Winterhalbjahre n = 3645 Tage. z zonale, g gemischte, m meridionale Zirkulation (s. a. A 1 – 4).

Nicht einzuordnende Konstellationen bilden die Gruppe der Übergangslagen. Die Kriterien, nach denen sich Großwetterlagen und Luftmassen konstituieren, lassen vermuten, daß keine durchgehend signifikante Zuordnung der Strahlungseinnahme für witterungsklimatologisch definierte Zeitabschnitte zu erwarten ist. Außerdem sind Auswirkungen auf die Witterung in vielen Fällen jahreszeitlich unterschiedlich. Man denke z.B. an die Großwetterlage 'Hoch über Mitteleuropa' (HM), die einerseits im Frühling, Sommer und Herbst (Altweibersommer) hohen Strahlungsgenuß beschert, aber im Winter durch Nebel in tiefen Lagen und Hochnebel sich deutlich absetzt. Sowohl in der Intensität als auch in den Anteilen direkter und diffuser Sonnenstrahlung ist im Jahresgang bei gleicher Großwetterlage mit einer gewissen Variabilität zu rechnen.

An Klimastationen, die keine Strahlung messen, aber die Sonnenscheindauer aufzeichnen, kann mit der ANGSTRÖM-Beziehung (A. ANGSTRÖM 1924) näherungsweise die Intensität der Globalstrahlung über eine repräsentative radiometrische Station erschlossen werden. Weiterhin ermöglicht diese Beziehung Rückschlüsse auf die Transmissionseigenschaften der Atmosphäre. Eine weitere Variable in diesem Zusammenhang ist der berechnete Linke - Trübungsfaktor (s.u.), der für die Stationen angegeben werden kann, die außer der Globalstrahlung auch die diffuse Komponente messen. In die Berechnung des Linke - Trübungsfaktors geht die direkte Sonnenstrahlung ein, die sich aus der Differenz von Globalstrahlung und diffuser Sonnenstrahlung ergibt.

2.2 Untersuchungen im Frequenzbereich

Es gibt Strukturen in klimatologischen Zeitreihen, die mit den Methoden für den Zeitbereich nicht erschließbar sind. Das bezieht sich insbesondere auf zyklische Variationen, die, wenn sie nicht zufällig, sondern deterministisch einzuordnen sind, einen bedeutenden Informationsbeitrag liefern können. Für die Variablen Luftdruck, Lufttemperatur, Niederschlag u.a., aber auch für klimatologisch ebenfalls aussagekräftige Merkmale, wie z.B. Jahresringbreite bei Bäumen und Warwensequenzen, liegen neuere Analysen auf der Basis von Jahres- oder Monatsdaten vor (TAUBENHEIM, J. 1969, MESSERLI, P. 1979, SCHÖNWIESE, C.-D. (1969, 1974, 1980, et al. 1990, 1995), einschließlich der umfangreichen mathematisch-statistischen Methodik.

Die wesentlichen Ziele dieser Untersuchung sind :

- Die Ermittlung zyklischer Variationen aus den Zeitreihen der RG, RD, RB, relativer Sonnenscheindauer, Bewölkung, Niederschlag und der Lufttemperatur die sich in signifikanten Varianzmaxima der integrierten Spektren abbilden,
- der Vergleich der Spektren der zyklonalen und antizyklonalen Tage in den Zeitreihen der RG und Lufttemperatur und Möglichkeiten der Zuordnung zu klimatologisch interpretierbaren Prozessen,
- das Verhalten signifikanter Varianzmaxima der Zeitreihe der RG und der Lufttemperatur in der Zeit anhand der gleitenden oder dynamischen Spektralanalyse

Dazu (vgl.. SCHÖNWIESE, C.-D. 2000, S. 240 ff) wird die Varianz der Zeitreihe in ihrer Verteilung auf die Frequenzen geschätzt. Die 'klassische' Methode ist die von BLACKMAN, R.B. & TUKEY, J.W. (1958) entwickelte Autokorrelation-Spektralanalyse (ASA). Mathematisch stellt sie die Fourier-Transformation der Autokorrelationsfunktion (ACF) dar. Dabei wird die Zeitreihe, unter stetiger Versetzung um je eine Zeiteinheit (ZE), mit sich selbst korreliert. Die Anzahl (M) der Versetzungen (lag) kann bis zu einem Drittel der Zeitreihenlänge betragen. Maßgebend ist, daß die Anzahl der Freiheitsgrade beim Signifikanztest \geq 5 sein sollte, da sonst das Spektrum instabil werden kann.

Die Zeitreihe ist als Stichprobe aufzufassen, von deren Eigenschaften auf die Grundgesamtheit geschlossen wird. Dem Korrelogramm der ACF kann man entnehmen, nach wieviel Versetzungen die Korrelationskoeffizienten noch signifikant sind, also eine zeitliche Erhaltungsneigung oder Persistenz aufweisen. Davon hängt ab, welches theoretische Spektrum für die Feststellung der Signifikanz von Varianzmaxima dem Spektrum der Zeitreihe unterlegt wird. Bei Persistenz wählt man meist das 'rote Spektrum', sonst das 'weiße Spektrum'. Beide vertreten die Verhältnisse in der Grundgesamtheit. Werden Tagessummen oder ihre Relativwerte als Funktion der Zeit (Tage, Monate, Jahre) in eine spektrale Darstellung überführt, erschließt sich die Verteilung der Varianz auf die einzelnen Frequenzen. Um stabile Spektren zu erhalten, ist es vielfach notwendig, die Zeitreihe zuerst einer Vorbehandlung zu unterziehen. Damit sind hauptsächlich Filtertechniken gemeint, die einer Frequenzmißdeutung (aliasing) vorbeugen oder, wegen der endlichen Länge empirischer Zeitreihen, störende Nebenmaxima im Spektrum unterdrücken (leakage). Außerdem besteht die Forderung nach Stationarität der Zeitreihe. Das bedeutet, daß die ersten beiden Momente, arithmetisches Mittel (\neg) und Varianz (s²), von einer Vergrößerung der Stichprobe unabhängig sind. Ist das der Fall, spricht man von 'schwacher Stationarität', die für die Analyse ausreicht.

Eine Variante des integrierten Spektrums ist das gleitende oder dynamische. Die Methode ist die gleiche, der Unterschied besteht in der Auflösung des Spektrums nach der Zeit, wobei sich konstante Zeitspannen teilweise überlagern. Dadurch werden möglicherweise zeitlich veränderliche Eigenschaften der Varianzmaxima aufgedeckt, die im integrierten Spektrum kumulativ vorliegen. Neben der zeitlichen Variabilität signifikanter Varianzmaxima stellt sich auch die Frage nach dem räumlichen Verbreitungsmuster und die nach global oder nur regional wiederkehrenden Grundmustern spektraler Varianz. Das führt zur Frage nach den Ursachen, die in der Regel komplex sind, weil sie vielfach über die Dynamik der Troposphäre hinaus mit Vorgängen in der Stratosphäre gekoppelt sind. So haben SCHÖNWIESE, C.-D. et al. (1990) bestimmte Periodenbereiche ≥ 2 Jahre in langen Zeitreihen der Temperatur und des Niederschlags als global verbreitet nachgewiesen. Während für den Periodenbereich > 1 Jahr zahlreiche Untersuchungen vorliegen, ist der Bereich < 1 Jahr nur gelegentlich spektral bearbeitet, z. B. von P. BISSOLLI (1991), wo die Witterungsregelfälle im Blickpunkt stehen.

3 Strahlungsabsorption der Atmosphäre und normierte (relative) Globalstrahlung

3.1 Extraterrestrische Sonnenstrahlung

Der Vergleich der absoluten Meßwerte der Globalstrahlung für zeitgleiche Witterungsabschnitte wird durch den Breiteneffekt und durch ein fehlendes, klar definiertes Bezugsniveau erschwert. Der gebräuchlichste Bezugswert ist die extraterrestrische (zutreffender wäre extraatmosphärische) Sonnenstrahlung. Sie kann für jeden Ort der Erdoberfläche und für jeden Zeitpunkt berechnet werden. Der Quotient aus gemessener und extraterrestrischer Strahlung, von FUKUI, E. (1952) vorgeschlagen, wird vielfach als Transmissionsmaß der Atmosphäre für großräumige Vergleiche verwendet (u.a. LIU, B.Y.H. & JORDAN, R.C. 1960; GOLCHERT, H.J. 1981; KASTEN, F. et al. 1996 in Palz/Greif (ed.); HASENFRATZ, E. 1998, 2002).

Berechnung der extraterrestrischen Tagessummen der Sonnenstrahlung :

$G_{0dE} = (24/\pi) * \overline{I}_0 (\overline{r}/r)^2 * (\omega_0 \sin \varphi \sin \delta + \cos \varphi \cos \delta \sin \omega_0)$ (1)

- IoMittelwert der Solarkonstanten = 1.368 kW/m² (PMOD / WRC 1992)(PMOD Physik.- Met. Observatorium Davos, WRC World Radiation Center)
- r, \overline{r} aktueller, bzw. mittlerer Abstand Erde Sonne (tabelliert IQBAL 1983, S. 4/5)
- φ geographische Breite des Beobachtungsortes
- δ Deklination der Sonne (tabelliert IQBAL 1983, S.8/9)
- $ω_0$ Stundenwinkel der Sonne beim Untergang, wobei $ω \cos_0 = -tan φ * tan δ$ (2)

3.2 Globalstrahlung in der Rayleigh – Atmosphäre

Wie bereits GRUNOW, J. (1961, 1962) anmerkt, enthält die berechnete extraterrestrische Strahlung einen störend wirkenden, virtuellen Anteil im Jahresgang. Um diesen Nachteil zu eliminieren und zugleich noch einen anschaulicheren Jahresgang der Bezugswerte zu gewinnen, bezieht man die gemessenen Werte auf eine wasserdampf - und staubfreie Atmosphäre, die sog. Rayleigh - Atmosphäre. Außerdem geht in die Gleichung durch die Luftdruckkorrektur auch die Höhenlage der Bodenstation über NN ein. Die Relativwerte überschreiten den Wert 1 bzw. 100 % in der Regel nicht. Ausnahmen gibt es bei multipler Reflexion zwischen Schneedecke und tiefhängender Bewölkung, wobei die diffuse Sonnenstrahlung zunimmt (DIRMHIRN, I. 1964, S.99). Mit der Formel von H. P. BERLAGE (1928) können die Tagessummen für die Rayleigh - Atmosphäre berechnet werden:

$$G_{0dR}$$
 0.5 G_{0dE} (1 + q(m)^m)

(3)

(4)

(6)

G_{0dR} Tagessumme der Sonnenstrahlung, bezogen auf die Rayleigh - Atmosphäre

- G_{0dE} Tagessumme der extraterrestrischen Sonnenstrahlung
- q(m) Transmissionsfaktor der Rayleigh Streuung
- m optische Mächtigkeit der Atmosphäre als Funktion von Luftdruck und Sonnenhöhe

Der Transmissionsfaktor der Rayleigh - Streuung kann mit der Näherungsformel (zit. nach IQBAL, M. 1983, S.183) berechnet werden, bei einem Fehler < 0.2 %:

$q(m) = 0.615958 + 0.375566 \exp(-0.221185m_a)$

 m_a Luftmasse bei aktuellem Druck, entspricht $m * (p / p_0)$

Mit der Näherungsformel nach KASTEN, F. u. YOUNG, A.T. (1989), vgl. auch VDI 3789 Bl.3, Tl.3 (S. 45) erhält man die relative optische Luftmasse, bei einem Fehler von 0.5 % : $\mathbf{m} = 1 / [\sin \gamma + a * (\gamma + b)^{-c}]$ (5)

 γ = Sonnenhöhenwinkel; a = 0.50572; b = 6.07995°; c = 0.1.6364;

 $\sin\gamma = \sin\phi * \sin\delta + \cos\phi * \cos\delta * \cos\omega$ [s. (2)]

Um die relative optische Luftmasse m auf den mittleren Luftdruck p an der Bodenstation in der Höhe z Meter über NN zu reduzieren, wird die Druckkorrektur angebracht (VDI 3789 Bl. 3, Tl. 3, S. 45) :

$p/p_0 = \exp(-z/H_p)$

z = Höhe ü. NN in Meter; $p_0 = 1013.25$ hPa; $H_p = 8434.5$ m Druckskalenhöhe der Normalatmosphäre bei NN.

Schließlich berechnen sich die auf die Rayleigh - Atmosphäre bezogenen Relativwerte nach :

$$G_d / G_{0dR} = G_d * 100 / G_{0dR}$$
 (7)

und die Rückführung der Relativ- in Absolutwerte nach :

$$G_{d} = (G_{d} / G_{0dR}) * G_{0dR} / 100$$
(8)

3.3 Trübungsfaktor nach LINKE

Von besonderer Bedeutung ist der Linke - Trübungsfaktor (T_L), ein Maß, das angibt, wieviel Rayleigh - Atmosphären übereinander gestapelt, den Trübungsgrad der betreffenden Luftmasse ergeben. Trübungsfaktor gleich 1 ist der in der Troposphäre nicht erreichbare Idealwert der Rayleigh - Atmosphäre. Die Bestimmung des Linke - Trübungsfaktors ergibt sich aus den folgenden Beziehungen (vgl. KASTEN, F. et al. 1996, S. 43 in Palz/Greif (ed.); VDI 3789 Bl. 3, Tl. 3, S.65) :

$$T_{L} = \ln (1/\tau) / \delta_{R} * m * p / p_{0})$$
(9)

T_L Linke - Trübungsfaktor

 τ Transmissionsgrad I / I₀; I = an der Bodenstation empfangene direkte Sonnenstrahlung,

 I_0 = extraterrestrische Sonnenstrahlung über der Bodenstation (Berechnung s.o.).

Zeichnet die Bodenstation Global - und diffuse Stahlung auf, ergibt sich aus der Differenz die direkte Sonnenstrahlung.

 δ_R vertikale optische Dicke der Rayleigh - Atmosphäre; $m * p / p_0$ s. Gleichungen (5) u. (6)

3.4 Regressionsmodell nach ANGSTRÖM

Weitere optische Eigenschaften der durchstrahlten Atmosphäre können abgeleitet werden, wenn die relative Globalstrahlung als Funktion der relativen Sonnenscheindauer dargestellt wird. Von A. ANGSTRÖM (1924) zuerst formuliert, geben die Koeffizienten dieser linearen Regression für Monate oder längere Witterungsabschnitte Einblick in die mittlere Transmission. ANGSTRÖM hat dafür die extraterrestrische Sonnenstrahlung als Bezugsbasis verwendet. Ebenso kann die Sonnenstrahlung in der Rayleigh - Atmosphäre als Bezugsbasis dienen:

$$G / G_0 = a + b * S / S_0$$
 (10)

G /G_0Relative Globalstrahlung; G $_0$ bezogen entweder auf die extraterrestrische
Sonnenstrahlung oder die in der Rayleigh – Atmosphäre (in Wh/m²)Sgemessene Sonnenscheindauer (h)S_0astronomisch mögliche Sonnenscheindauer (h) $S_0 = (24 / \pi) / \omega_0$ s.o. Gl. (3)

4 Statistische Methoden

4.1 Methoden zur Datenbeschreibung

Einblick in die Datenstruktur geben zunächst die visuelle Inspektion des Jahresgangs, dann die mit den Methoden der deskriptiven Statistik gewonnenen Maßzahlen zur Charakterisierung empirischer Häufigkeitsverteilungen. Das bezieht sich exemplarisch auch auf Häufigkeitsverteilungen der Tagessummen und –werte der Globalstrahlung bei bestimmten Stufen der Sonnenscheindauer, Bewölkung, Lufttemperatur und des Niederschlags. Neben dem arithmetischen Mittel (A) mit Konfidenzintervall, Standardabweichung (s), Median (Me), Maximum – und Minimumwert werden als relatives Streuungsmaß der Variationskoeffizient

$$\mathbf{v} = (\mathbf{s} * \mathbf{100}) / |\mathbf{e}| \tag{11}$$

und als einfaches Maß für die Schiefe einer Verteilung

$$\mathbf{g} = (\mathbf{P} - \mathbf{M}\mathbf{e}) / \mathbf{s} \tag{12}$$

verwendet. Um die Stärke des Zusammenhangs zwischen zwei Variablen zu beschreiben, wird der PEARSON'sche Produktmoment – Korrelationskoeffizient r berechnet ($-1 \le r_{xy} \le 1$), dessen quadrierter Wert, das Bestimmtheitsmaß B ($0 \le B \le 1$), in einem Regressionsmodell Aussagen über die "erklärte" Varianz gestattet (vgl. BAHRENBERG, G. et al. 1990, S. 146 f).

4.2 Methoden zur Analyse von Zusammenhängen

Witterungsklimatologisch definierte Zeitspannen sind als kategoriale Variablen im Großwetterlagen - Katalog und in der Luftmassensystematik nach SCHERHAG, R. (1948) vorgegeben. Um im Vorfeld die Abhängigkeit der metrisch skalierten Strahlungseinnahme von kategorialen Variablen auf Signifikanz zu prüfen, ist die einfaktorielle Varianzanalyse mit multiplen Mittelwertvergleichen das geeignete Instrument. Die Prüfung der Mittelwertunterschiede auf Signifikanz erfolgt mit dem Tukey - HSD - Test bei einer Irrtumswahrscheinlichkeit von $\alpha = 0.05$. Für Vergleiche, z. B. derselben Großwetterlage an verschiedenen Stationen, wird der t-Test für gepaarte Stichproben verwendet.

Wenn mehrere Variablen in die Analyse eingehen, ist es meist notwendig eine gemeinsame Größenordnung herzustellen, die mit der Standardisierung erreicht wird. Dazu wird von jedem Meßwert (x_i) das arithmetische Mittel (P) subtrahiert und durch die empirische Standardabweichung (s) dividiert: $z_i = (x_i - \textcircled{P}) / s_x$. Mit dieser z - Transformation erhält man dimensionslose Variablen (arithmetisches Mittel = 0; Standardabweichung = 1) und über $x_i = s_x * z_i + \textcircled{P}$ wieder die Ausgangsvariablen.

Bei empirischen Untersuchungen mit räumlichem Bezug kommt es häufig vor, mehr als zwei Variablen gleichzeitig in die Analyse einzubeziehen, um z. B. die Verbreitungsmuster typischer Strukturen aufzudecken und auf ihre Signifikanz zu prüfen. Diese Vorgehensweise erfordert den Einsatz der multivariaten Analyse.

In der anstehenden Aufgabenstellung wird untersucht, ob es GWL gibt, die sich im Hinblick auf die Strahlungseinnahme an den Stationen (RG) ähnlich verhalten und in einer Gruppe zusammengefaßt werden können. Gefordert ist, daß sich die Gruppen signifikant von den benachbarten unterscheiden. Die GWL stellen also die abhängigen, nominal skalierten Variablen dar, und die unabhängige Variable ist die metrisch skalierte RG der einzelnen Stationen. Entsprechend verfährt man, wenn Gruppen ähnlicher Stationen gesucht sind. Man erhält jeweils eine Datenmatrix, die die Ausgangsbasis der Analyse darstellt. Für die hier vorliegenden Verhältnisse ist es zutreffender von Gruppen zu sprechen als von Typen, da das Untersuchungsgebiet hinsichtlich des Verteilungsmusters der RG nicht abgegrenzt ist, also fragmentarischen Charakter hat und außerdem die Anzahl der Stationen zu gering ist.

Ein geeignetes Verfahren ist die lineare Diskriminanzanalyse (LDA), deren Bedeutung für die Geographie besonders durch W.-D. ERB (1990) als eigenständige und vielseitig einsetzbare, leistungsfähige Methode der multivariaten Statistik herausgestellt worden ist.

Die LDA prüft u.a. bereits aufgedeckte Strukturen (Gruppen, Typen, Raumtypen, Regionen) auf den signifikanten Unterschied, verbessert gegebenenfalls die aus anderen Analysen vorgegebenen Gruppierungen und kann bei neuen, noch nicht zugeordneten Objekten

überprüfen, in welche der bereits vorhandenen Gruppen sie hineinpassen (vgl. BAHRENBERG, G. 1992, S. 218).

Der von der LDA zu prüfenden Gruppenstruktur liegen die Ergebnisse einer numerischen Klassifikation oder Clusteranalyse zugrunde. Die hier eingesetzten Methoden sind Complete linkage und das Verfahren nach Ward, beide gehören in die Gruppe der hierarchischagglomerativen Clusterverfahren. Jedem dieser Verfahren sind Tendenzen eigen. So neigt Complete linkage dazu, in sich geschlossene, homogene Gruppen zu bilden, während beim Ward-Verfahren auf die Tendenz zu gleich großen Gruppen hingewiesen wird (ib. S. 286).

Ausschlaggebend ist die Wahl des Proximitätsmaßes, d. h., die Vorschrift, nach der die Ähnlichkeit oder Distanz der zu klassifizierenden Objekte berechnet wird. So messen Distanzmaße die Unähnlichkeit zwischen den Objekten : Je größer der Abstand, um so unähnlicher sind sich die Objekte. Bei metrischer Skalierung hat sich die quadrierte Euklidische Distanz (EDQ) bewährt, die größere Distanzen stärker gewichtet. Die EDQ stellt einen Fall der Minkowski-Metrik dar, die auch als L_2 – Norm bezeichnet wird (ib. S.286, 282; BACKHAUS, K. 1994, S.261 f).

Wesentlich für die Beurteilung der Ergebnisse der LDA ist die Trennkraft der Diskriminanzfunktion. Dafür gibt es Wilks Lambda, das wohl am häufigsten eingesetzte Gütemaß : Je kleiner die Werte ausfallen, um so höher ist die Trennkraft einzuschätzen. Wenn die Variablen in ihrer Bedeutung für die Trennfähigkeit nicht klar zu überblicken ist, besteht die Option der schrittweisen Aufnahme in die Analyse. Von Bedeutung ist weiterhin die Berechnung des diskriminatorischen Beitrags der einzelnen Merkmalsvariablen und schließlich die Trefferquote, die in Prozent angegeben wird. Alle multivariaten Analysen sind nur über Standardprogramme zu bewältigen. Um so notwendiger sind zum Verständnis durchgerechnete Beispiele, die in ERB, W.-D. (1990) und BACKHAUS, K. et al. (1994), einschließlich der ausführlichen Erörterung des theoretischen Hintergrundes, aufgeführt sind.

Zu berücksichtigen und für die Anwendung aller statistischen Methoden geltend, ist, daß die Ergebnisse ausschließlich für die vorgegebene Variablenauswahl gültig sind und nur die Ausgangsbasis für die nachfolgende Interpretation sein können und nicht selbst schon eine Interpretation darstellen.

5 Klimageographischer Überblick

5.1 Naturräumliche Verhältnisse

Das auf relativ engem Raum hypsometrisch abwechslungsreich gestaltete Relief wird durch tektonisch vorgezeichnete, vielfach markant hervortretende Leitlinien strukturiert, die als Merkmale für die Abgrenzung naturräumlicher Einheiten höherer Ordnung dienen. Vielfach sind dies zum variskischen Rumpf zählende Gebirgsmassive, die durch tektonische Ereignisse geologisch jungen Alters gehoben und einer morphologischen Modellierung zugänglich wurden, an der die Entwicklung des Rheinsystems wesentlichen Anteil hat. Im Norden sind es Hunsrück und Taunus als Teil des Rheinischen Schiefergebirges mit SW - NE (variskisch) streichenden Härtlingszügen aus Taunusquarzit unterdevonischen Alters, dann, teilweise unter Buntsandsteinbedeckung, die Randgebirge des Oberrheingrabens und der Spessart). Die höchsten Erhebungen werden im Schwarzwald erreicht (Feldberg 1493, Hornisgrinde 1164). Inselartige, von der 500 und 700 m - Isohypse begrenzte Areale, zeichnen das variskische Streichen im Rheinischen Schiefergebirge nach. Höchste Erhebungen sind der Erbeskopf (816) im Hunsrück und der Große Feldberg im Taunus (880). Die waldreichen Mittelgebirge, häufig von Rodungsinseln durchsetzt, stehen im Kontrast mit Niederungen, Becken - und Gäulandschaften. Diese werden intensiv landwirtschaftlich genutzt, zumal die meist auf Löß entwickelten Böden sehr ertragreich sind.

Zwischen Hunsrück und Pfälzerwald dehnt sich das Saar - Nahe - Bergland aus, das vorwiegend aus Sedimenten und Magmatiten des Rotliegenden aufgebaut ist, mit variskisch streichenden Aufbrüchen des Oberkarbon im Südwesten. Die Erhebungen übersteigen selten das 500 m - Niveau. Beispiele sind die Rhyolith - Härtlinge Donnersberg (686) und Königsberg (568), die Baumholder Platte, wo Lavadecken des Rotliegenden maßgeblich das Relief mitgestalten oder die Kalmit (673) im Buntsandstein des Pfälzerwaldes. Den größeren Raum nehmen die Schichtstufenlandschaften aus Gesteinen mesozoischen Alters ein, die sich westlich und östlich der Randgebirge des Oberrheingrabens ausbreiten. Auf die Buntsandsteinstufen des Pfälzerwaldes folgend, sind es die Muschelkalkstufen, die im Zweibrücker Westrich (Unterer Muschelkalk), Blies- und Saargau vertreten sind. Im Südwestdeutschen Schichtstufenland reichen sie stratigraphisch bis in den Oberen Jura, wobei die Schichtstufe des Malm in der Schwäbischen Alb am auffälligsten ist, durch den Verlauf der 700 m - Isohypse angedeutet. Dem Charakter der Antiklinal - Schichtstufenlandschaft entsprechend, erfahren Abstände und Höhenlage der Schichtstufen eine zentral - periphere Abwandlung, die sich, vom Zentrum der Aufwölbung ausgehend, in einer fächerförmigen Divergenz zeigt. Hier erreicht die Schwäbischen Alb das 1000 m - Niveau (Lemberg 1015). Nördlich der Malm - Stufe schließen sich das Schwäbische Keuper - und Lias - Land und die Neckar - Tauber - Gäuplatten an. Markant treten in der Keuper - Stufe die teilweise über 500 m hohen Löwensteiner -, Waldenburger - und Limpurger Berge hervor. Überragt vom herauspräparierten Vulkanschlot des Katzenbuckels (626), dessen Aktivität in die Obere Kreide / Alttertiär datiert wird, folgen nach Nordwesten der Buntsandstein - Odenwald und die Mainfränkischen Platten. Südlich der Schwäbischen Alb breitet sich die Donau - Iller -Lech - Platte aus. Südwestlich davon befindet man sich bereits im Voralpinen Hügel - und Moorland mit dem thermisch begünstigten Bodenseebecken und westlich davon im Hochrheingebiet.

Aufgrund der geologischen Bauform und im Hinblick auf die Formung des Reliefs durch das Rheinsystem im Oberen Miozän, Pliozän und Pleistozän (ABELE, G. 1977), stellt der Oberrheingraben die beherrschende Landschaftsstruktur dar. Großräumig betrachtet ist er Teilstück eines Grabensystems, das vom Rhônegraben bis zum Mjösa-See nördlich Oslo mit und Verzweigungen Unterbrechungen zu verfolgen ist. Mit nordnordöstlichem Generalstreichen auf einer Länge von 300 km und bis zu 40 km Breite zwischen Basel und Wiesbaden, tritt der Oberrheingraben als lang gestreckte Senke mit meist steil abfallenden und bewaldeten Gebirgsrändern morphologisch eindrucksvoll in Erscheinung. Unterbrochen sind die Randgebirge durch größere tektonisch bedingte Erweiterungen des Oberrheingrabens mit niedrigerem Relief. Dazu gehören linksrheinisch das Zaberner Bruchfeld und das Mainzer Becken, rechtsrheinisch der Kraichgau mit der Langenbrückener Senke. Generell nimmt die Höhendifferenz zwischen Rheinniederung und Randgebirgen von Süden nach Norden ab. Das morphologische Nordende bildet der Taunuskamm und östlicher Hunsrück, dagegen ist das Südende zur Burgundischen Pforte hin offen.

Für diesen Kernbereich des Untersuchungsraumes sind in der geowissenschaftlichen Literatur Namen mit unterschiedlichem Inhalt gebräuchlich. Wegen der Kürze und Prägnanz hat sich die Bezeichnung "Oberrheingraben" offenbar durchgesetzt. Man verbindet damit zunächst eine geologische Struktur, die allerdings aus geologischer Sicht nicht notwendig auch morphologisch als Graben bzw. Hohlform erkennbar sein muß. Der Vorteil im Gebrauch liegt darin, daß die morphologische Begrenzung des Grabens als höher gelegenes Relief in die Vorstellung mit einbezogen wird und außerdem auf die geologische Bauform hingewiesen wird. Verbreitet ist auch "Oberrheinisches Tiefland". Damit wird zwar korrekt ein wesentliches Element der morphologischen Großform beschrieben, aber ohne Merkmale über die Art der Begrenzung. Aus den genannten Gründen sollte "Oberrheinische Tiefebene" ebenfalls vermieden werden. Außerdem wird dadurch zu weitgehend generalisiert, weil auch das Innere des Oberrheingrabens, das Tiefland, durch ein reichhaltiges Inventar an Reliefformen gestaltet ist. Beispiele sind die Vorhügelzone, die dem Ostabfall des Pfälzerwaldes vorgelagert ist, die Vorbergzone von Emmendingen über Freiburg bis Kandern oder die Vulkanruine des Kaiserstuhls, eines im Miozän tätigen Stratovulkans. Ebenso haben die aus den Randgebirgen dem Rhein zustrebenden Flüsse und Bäche das Relief im Oberrheingraben wesentlich mitgeformt. Das gilt z.B. im Hinblick auf die Bildung des Neckarschwemmkegels, aber auch für die, aus der Zerschneidung der Lößplatte hervorgegangenen Riedellandschaft der Vorderpfalz. Die Oberflächengestaltung der Rheinniederung ist, geologisch betrachtet, kurzlebiger. Zu Veränderungen trugen die zahlreichen Verzweigungen des Rheins zwischen Basel und Rastatt bei, dann, bis Mainz, vorwiegend Mäander unterschiedlichen Alters. Allerdings sind dies Relikte aus der Zeit, bevor TULLA und HONSELL zwischen 1817 und 1880 die Rheinkorrektion durchführten damit landschaftsökologische Veränderungen und einen tiefgreifenden und Kulturlandschaftswandel einleiteten.

5.2 Relief und Klima

Die Position des Untersuchungsgebietes zur atmosphärischen Zirkulation ist gekennzeichnet durch den größeren Abstand zum außertropischen Tiefdruckgürtel und die größere Nähe zum Subtropenhoch. Im Vergleich zum Raum nördlich der Mainlinie treten Hochdruckzentren häufiger auf, wobei das Maximum zwischen 48° und 50° N liegt (REINEL, H. 1960, HENDL, M. 1994, S. 41). Bereits BAND, G. (1955) hat anhand der Intensität einiger Klimaelemente den Bereich in Höhe des Mains als Wetterscheide beschrieben. Weitere Unterschiede zeigen sich in der Anzahl der Frontendurchgänge, die in Norddeutschland fast doppelt so häufig auftreten (HOINKA, K.P. 1985, S. 564). Die gleiche Tendenz ergibt die Untersuchung von ERIKSEN, W. (1971, S.163-178) zur jährlichen Frontenhäufigkeit über Europa. Auch bei der raumzeitlichen Verteilung der Sommertage und Niederschlagstage ist die Mainlinie in den meisten Jahren (1931 - 1978) Trennlinie gegensätzlicher Sommerwitterung (FRANKENBERG, P. 1984, S. 177-187). Weiterhin gilt für den Winter, daß von Norden nach Süden die Taglänge und damit auch die Strahlungseinnahme zunimmt.

Das Relief in seiner geographischen Breitenlage, Ozeandistanz, mittleren Höhenlage und Lage zu den Luftströmungen modifiziert die meteorologischen Vorgänge. Sie werden als orographische Effekte erfaßt, die in unterschiedlichen Größenordnungen auftreten. Bei mesoskaliger Betrachtungsweise sind Staueffekte auf der Luvseite der Gebirge und Föhn-Effekte auf der von der Luftströmung abgewandten Leeseite die bekanntesten Erscheinungen, mit weitreichendem Einfluß auf die Intensität der Klimaelemente. Am stärksten ist dieser Klimafaktor im Winter ausgeprägt. FLOHN, H. (1954, S. 91) führt das vor allem auf den größeren Durchsatz von Luftvolumina pro Zeiteinheit in der Westwinddrift zurück. Bei statistisch abgesicherter Beständigkeit spielen orographische Effekte eine wichtige Rolle bei der regionalisierenden Beschreibung und Kartierung des Klimas. Die Klimabezirke, wie sie in den Klima-Atlanten des DWD ausgewiesenen sind, decken sich in großen Zügen mit der naturräumlichen Gliederung höherer Ordnung.

Klimatologisch bedeutsam sind die orographischen Effekte für den Oberrheingraben bei Strömungen aus Südwest, West und Nordwest, die zwischen Rhein und Vogesen aufgrund der größeren Höhendifferenz von Vogesenkamm zur Rheinniederung stärker ausgeprägt auftreten als im nördlichen Oberrheingraben zwischen Rhein und Pfälzerwald. Ebenso liegt das morphologische Nordende des Oberrheingrabens bei Nordwest-Strömung im Einflußbereich der Leewirkung von Hunsrück und Taunus, was zusammen mit der Südexposition die Klimagunst des Rheingaus bewirkt. Dagegen können warmfeuchte Luftmassen aus dem westlichen Mittelmeerraum über die Burgundische Pforte in den Oberrheingraben vordringen.

Bedingt durch den Anströmwinkel der Luftmassen verändern sich Lage und Ausdehnung des unter dem Einfluß der Leewirkung stehenden Areals. Bei Nordwest-Strömung verlagert sich der Leebereich nach Süden, bei Südwest-Strömung nach Norden. Sowohl Nordwest- wie auch Südwestströmung erzeugen am Ostabfall der Vogesen und des Schwarzwaldes als den höchsten Mittelgebirgen im Untersuchungsgebiet, die markantesten Leelagen. Weniger ausgedehnt sind sie jeweils am Ostabfall des Pfälzerwaldes und den rechtsrheinischen Randgebirgen Spessart und Odenwald. Weitere Beispiele, die bei Nordwestströmung hervortreten, sind Rhein-Main-Tiefland, Alzeyer Hügelland und unteres Naheland (vgl. FLOHN, H. 1954, Karten 1 u. 2). Neue klimaökologische Untersuchungen für den Bereich des östlichen Nordpfälzer Berglandes haben FUCHS, H.-J. und WERNER, M. (2002, S.19-41) vorgelegt. Anschauliche Beschreibungen der Stau – und Föhnerscheinungen als Klimafaktor hat FLOHN, H. (1954, S. 84-93) zusammengestellt. Außerdem liegen von ILG, K. (1948) Beobachtungen für den Oberrhein vor und von FLOHN, H. (1948) für das Heilbronner Becken.

Leelagen bewirken im Mittel eine geringere Bewölkung, manchmal mit Altocumulus lenticularis, verminderte Niederschlagssummen, längere Sonnenscheindauer innerhalb der geographisch möglichen und dadurch eine erhöhte Strahlungseinnahme. Bei größeren Höhendifferenzen treten auch warme Fallwinde auf, wie am Ostabfall der Vogesen. Die wärmsten Areale breiten sich demnach am Ostfuß der westlichen Randgebirge aus. Vorübergehend kann es zu Inversionen kommen, wenn auf der Leeseite die trockenadiabatisch erwärmte Luft auf relativ kältere trifft. Eine differenziertere Untersuchung zeigt bei zyklonalen Westlagen für die Wintermonate an der Station Geilweilerhof, im Vergleich mit Saarbrücken-Ensheim, eine signifikant höhere Strahlungseinnahme im Leebereich, dagegen nur geringe Unterschiede beim Vergleich der mittleren Strahlungseinnahme an allen Tagen im Sommer (HASENFRATZ, E. 2002, S. 115 f).

6 Klimatologische Bedeutung der Globalstrahlung

Die von der Photosphäre der Sonne emittierte Strahlungsenergie ist der Motor der Vorgänge in der irdischen Atmosphäre, die in ihrer Summe als Wetter, Witterung und Klima wahrgenommen werden. Nur ein kleiner Anteil, der von der Sonne in alle Richtungen abgestrahlten Energie, kommt der Erde zugute. Es sind insgesamt 3.8 x 10²³ kW, davon entfallen auf den Querschnitt der Erde 1.7 x 10¹⁴ kW (HERRMANN, J. 1990, S.105). Der derzeit verwendete Wert der Strahlungseinnahme (Solarkonstante), außerhalb der Erdatmosphäre Satelliten gemessen und auf eine Fläche senkrecht von zur Strahlungsstromdichte bezogen, beträgt 1368 $Wm^{-2} \pm 5 Wm^{-2}$ (World Radiation Center Davos, Jahresbericht 1991, Davos 1992; SCHÖNWIESE, C.-D. 1994, S. 123). Im Perihel (Januar) liegt der Wert am höchsten, im Aphel (Juli) am niedrigsten. Die Erde schneidet einen Teil der Sonnenstrahlung aus, entsprechend ihrem kreisförmigen Querschnitt. Wegen des Verhältnisses des Erdquerschnitts zur Erdoberfläche von 1 : 4 (π r² / 4 π r² ; r = Erdradius) kommen auf der Erde 342 Wm⁻² an. Dabei ist die Extinktion in der Atmosphäre nicht berücksichtigt. Die Energie verteilt sich im Spektrum der solaren Strahlung auf den Bereich der ultravioletten (< 0.4 μ m), sichtbaren (0.4 bis 0.73 μ m) und infraroten Strahlung (0.73 bis 4 μm). Höchste Werte der spektralen Bestrahlungsstärke liegen mit 4.37 Wm⁻² im Wellenlängenintervall 0.450 bis 0.452 µm (VDI 3798, Blatt 3, 2001, S.30). Gamma - und Röntgenstrahlung (< 0.01 µm) und ein Teil der Ultraviolettstrahlung (≤ 0.2 µm) werden schon in der höheren Atmosphäre absorbiert und vorwiegend in Wärmeenergie überführt. Ebenso geschieht das in der lebenswichtigen Ozonschicht (obere Stratosphäre), die hohe spektrale Absorptionskoeffizienten im Wellenlängenbereich 0.280 bis 0.294 µm aufweist und daher diesen Teil der Ultraviolettstrahlung unschädlich macht (ib. S.30; SCHIRMER, H. et al. 1989, S.64). Die vom Deutschen Wetterdienst (DWD) an Bodenstationen eingesetzten Pyranometer nach Moll-Gorczynski messen die Summe der spektralen Bestrahlungsstärke im Intervall 0.3 bis 2.5 µm (DEHNE, K. 1977, S.209).

Bereits die planetarische Albedo führt zu einem Verlust der Strahlungseinnahme um ca. 30%. Reflexion, Absorption und Streuung beim Eintritt in die Erdatmosphäre führen zu weiteren Schwächung und Veränderung in der spektralen Energieverteilung, so daß am Erdboden im Mittel ca. 55 % der extraterrestrischen Strahlungsenergie empfangen werden. Durch die Reflexion der Empfangsfläche (Albedo) sind im Mittel weitere 4 % zu subtrahieren, so daß die effektive Strahlungseinnahme nunmehr 51 % beträgt. Davon entfallen im Mittel 28 % auf die direkte und 23 % auf die diffuse Sonnenstrahlung (GARP-Committee 1975). Die Summe beider Strahlungskomponenten wird Globalstrahlung genannt. Vielfach findet man in der Literatur für diffuse Sonnenstrahlung (DWD) auch die Bezeichnung diffuse Himmelsstrahlung.

Die Globalstrahlung, vermindert um den reflektierten Anteil, ist die kurzwellige Strahlungsbilanz. Gebietsmittel der Tagessummen und relative Tageswerte der Globalstrahlung und ihrer Komponenten im Jahresgang sind in A 61 – 66 zusammengestellt. Einblick in die Struktur der Monatsmittelwerte vermittelt ihre Auflösung nach der relativen Häufigkeit der Einstrahlungsstufen (Abb. 3). Wie sich der Wechsel von zyklonalen und antizyklonalen Großwetterlagen im Tagesgang der Globalstrahlung auswirkt, zeigt Abb.4.

Hinsichtlich der Streuungsvorgänge sind zwei Arten zu unterscheiden, die für die visuelle Wahrnehmung und das subjektive Empfinden der Ortshelligkeit von Bedeutung sind. So erzeugt die Mie-Streuung keine bestimmte Himmelsfarbe, sondern Grautöne mit helleren Bereichen um die Sonnenscheibe. Bestimmend sind dabei die stofflichen Eigenschaften der Partikel (Aerosole, Nebeltröpfchen), an denen das Licht gestreut wird und vor allem ihre größere Ausdehnung im Vergleich zu Lichtwellenlängen. Bei der Rayleigh-Streuung wird das Licht hauptsächlich an Luftmolekülen und Aerosolteilchen gestreut, deren Radius aber kleiner als die Wellenlängen des Lichts ist. Dabei tritt der kürzere (blaue) Wellenlängenanteil stärker hervor als der (rote) langwellige (vgl. ROEDEL, W. 1992, S. 21 ff).

Sind schon die Wechselwirkungen der solaren Strahlung mit der Atmosphäre schwierig zu erfassen, so gilt das auch für den vordergründig einfach erscheinenden Zusammenhang der Umsetzung der Globalstrahlung am Erdboden in Wärmeenergie. Er wird beeinflußt durch die Exposition und Neigung der Empfangsfläche, die Albedo und effektive Ausstrahlung im infraroten Bereich, das Verhältnis von fühlbarer zu latenter Wärme (Bowen - Ratio), die Eigenschaften advektiver Luftmassen und den Bodenwärmestrom (vgl. CHANG, J.-H. u. ROOT, B. 1975). Auch die Beobachtung, daß feuchte Böden tagsüber geringere Temperaturen erreichen als trockene, zeigt, daß ein Teil der Strahlungseinnahme für die Verdunstung aufgewendet wird, außerdem für turbulente Prozesse in der bodennahen Luftschicht, die unter dem Begriff des Wärmeaustauschs zusammengefaßt werden. Andererseits kommt der Globalstrahlung für die Biosphäre existentielle Bedeutung zu. Denn der von grünen Pflanzen verwertete Anteil der Strahlungseinnahme, die photosynthetisch aktive Strahlung (PAR), beträgt ca. 30 %. Sie umfaßt den Wellenlängenbereich 0.4 bis 0.7 μ m, mit Maxima bei 0.65 und 0.45 μ m (HÄCKEL, H. 1999, S.179).

Damit wird verständlich, daß die Globalstrahlung nicht nur in der Grundlagenforschung für den Energie- und Wasserhaushalt in der Atmosphäre, Bio -, Hydro -, Pedo - und Kryosphäre eine wesentliche Rolle spielt, sondern ihre Kenntnis für die Modellierung des Klimas unverzichtbar ist. Praktische Fragestellungen der Land- und Forstwirtschaft wie auch der Wasserwirtschaft ergeben sich aus der Tatsache, daß die Verdunstung im wesentlichen von der Globalstrahlung gesteuert wird. Eine weitere Anwendung liegt in der Klimaüberwachung, zusammen mit der Sonnenscheindauer und der Bewölkung (WENDLING, U. et al. 1997). Auch um Standorte für Solarenergieanlagen zu optimieren, sind Meßreihen der Sonnenscheindauer und Globalstrahlung erforderlich.

Abb. 3: Auflösung der monatlichen Mittelwerte der Tagessummen des Gebietsmittels der direkten (B), und diffusen Sonnenstrahlung (D) sowie der Globalstrahlung (G) nach relativen Häufigkeitsstufen (n = 7305 Tage). Gebietsmittel aus den Stationen Würzburg, Trier, Mannheim, Stuttgart und Freiburg (nur diese Stationen messen die diffuse Sonnenstrahlung); Periode 1981 - 2000

Abb. 4: Variabilität der Globalstrahlung bei zyklonalen und antizyklonalen Großwetterlagen am Beispiel von 10[°] - Summen im Januar 1995, registriert an der Klimastation der BASF-Limburgerhof. Nz Nordlage zyklonal, BM Hochdruckbrücke über Mitteleuropa, NWz Nordwestlage zyklonal, Wa Westlage antizykonal, WW winkelförmige Westlage; y-Achse Datum, x-Achse Tageszeit

Die Globalstrahlung wird vorwiegend an Bodenstationen des DWD und über Satellit gemessen (MÖSER, W. 1983, MÖSER, W. & RASCHKE, E. 1984), doch reichen die Meßreihen, von wenigen Ausnahmen abgesehen (Potsdam 1937, Hamburg 1949, Hohenpeißenberg 1953), nicht so weit zurück wie bei der Sonnenscheindauer (Kew bei London seit 1880). Es gibt aber die Möglichkeit, über das Regressionsmodell von ANGSTRÖM (s.o.) Schätzwerte zu errechnen.

Neben den fühlbaren Klimaelementen Lufttemperatur, Niederschlag und Wind haben Globalstrahlung, Sonnenscheindauer, Bewölkung und Sichtweite in ihrer Variabilität im Jahresgang einen besonderen Stellenwert, denn daraus resultiert die spezifische Ortshelligkeit, die eine bedeutende psychische Komponente im Hinblick auf die Wahrnehmung und Bewertung des Lebensraumes darstellt.

Zusammengefaßt unterliegen alle diese Vorgänge den astronomischen Vorgaben, Abstand der Erde von der Sonne, Neigung der Erdachse, Erdrotation und geographischen Breite des Beobachtungsortes, aus denen die räumliche und zeitliche Verteilung der Sonnenscheindauer und Strahlungsintensität im Tages - und Jahresgang berechnet werden kann (zuerst durch MILANKOWIC, M. 1930), jedoch ohne Berücksichtigung der Atmosphäre und den natürlichen Gegebenheiten der Erdoberfläche. Erst die wirklichen Verhältnisse erzeugen eine gesteigerte Variabilität der Sonnenscheindauer und Strahlungseinnahme, bedingt durch den ständigen Wechsel der Absorptions -, Transmissions - und Reflexionseigenschaften der in den Großwetterlagen transportierten Luftmassen und ihrer Interaktion mit der Erdoberfläche.

6.1 Erweiterung des radiometrischen Stationsnetzes

Mit dem Angström'schen Regressionsmodell (10) ist eine Möglichkeit gegeben, das radiometrische Stationsnetz zu erweitern. Das ist notwendig, da das Meßnetz des Deutschen Wetterdienstes die Hochlagen der Mittelgebirge im Untersuchungsgebiet nicht berücksichtigt. Außerdem ist vielfach die Verteilung der Stationen für klimageographische Fragestellungen ungünstig, in die das Relief einbezogen ist. Voraussetzungen für eine künftige Satellitenstation sind die tägliche Auswertung der Sonnenscheindauer und eine nahe gelegene Referenzstation, die möglichst im selben Klimabezirk liegt (Tab. 2).

Satellitenstation	Abk.	φN	λΕ	m ü. NN	Referenz-St.
Alzey	AZ	49° 44'	08º 27'	215	Geisenheim
Beerfelden	BE	49º 34'	08° 58'	450	Würzburg
Buchen	BU	49º 31'	09º 19'	350	Würzburg
Kaiserslautern	KL	49º 26'	07º 44'	281	Saarbrücken
Weinbiet	WB	49º 22.5'	08º 7.3'	553	Mannheim
Bad Bergzabern	ΒZ	49º 06'	08° 00'	180	Mannheim
Karlsruhe	KA	49º 02'	08º 22'	112	Mannheim
Hornisgrinde	но	48º 37'	08º 12'	1122	Hohenpeißenbg.
Feldberg	FE	47º 53'	08º 00'	1486	Hohenpeißenbg.
Höchenschwand	нѕ	47° 44'	08º 10'	1008	Hohenpeißenbg.

Tab. 2 : Referenz – und Satellitenstationen im Untersuchungsgebiet (s. a. Abb.1)

Dazu werden die Angström-Koeffizienten einer geeigneten radiometrischen Referenzstation über die tägliche Sonnenscheindauer ermittelt, um die Intensität der Globalstrahlung an der zuzuordnenden Station abzuschätzen. Oft reicht es für den Überblick, die mittleren Koeffizienten aus den Tagesdaten von zwanzig Jahren zu bestimmen, was bei vollständigen Datensätzen 7305 Wertepaaren entspricht. Als günstiger für die vorliegende Aufgabenstellung erweist es sich jedoch, die Koeffizienten für klimatologisch definierte Kollektive (zyklonale und antizyklonale Großwetterlagen), gesondert nach Sommer- und Winterhalbjahr oder für und Höchenschwand werden die in PALZ/GREIF (Hrsg., 1996, S. 157) mitgeteilten monatlichen Koeffizienten der Referenzstation Hohenpeißenberg übernommen. Ausführliche Tabellen der Angström – Koeffizienten etc. für alle radiometrischen Stationen befinden sich im Tabellenanhang (A 74 - 79).

Zeitintervall	Witterung	n Tage)*	Regr Koeff.	GE	WÜ	MA	SA
	zyklonal	1878	а	.20	.21	.19	.19
Sommer-			b	.60	.60	.59	.60
halbjahr IV-IX			r	.93	.93	.94	.93
	antizyklonal	1735	а	.25	.26	.23	.24
			b	.50	.50	.50	.51
			r	.94	.95	.95	.95
	UE	47					
	Σ	3660					
	zyklonal	1983	а	.16	.19	.17	.16
Winter-			b	.63	.62	.62	.65
halbjahr X-III			r	.90	.90	.90	.89
	antizyklonal	1623	а	.18	.20	.19	.20
			b	.55	.55	.52	.53
			r	.94	.94	.94	.94
	UE	39					
	Σ	3645					

Tab. 3 : Angström-Koeffizienten (a, b) der Referenzstationen und Produkt - Moment – Koeffizienten (r), UE Übergangslagen, die keiner zyklonalen oder antizyklonalen Ausprägung zuzuordnen sind; * Zahl der Tage bei vollständigen Datensätzen

Die berechneten Tagessummen der Globalstrahlung G ergeben sich aus der Gleichung

$$\mathbf{G} = \mathbf{G}_{0\mathrm{ex}} \left(\mathbf{a} + \mathbf{b} * \mathbf{S} / \mathbf{S}_0 \right)$$

G_{0ex} Tagessumme der berechneten extraterrestrischen Sonnenstrahlung in Wh/m²

- a + b Angström Koeffizienten
- S / S₀ Relative Sonnenscheindauer

Um die Güte des Angström'schen Regressionsmodells zu prüfen, werden von einer Referenzstation, hier am Beispiel von Mannheim, die gemessenen Tagessummen mit den berechneten verglichen. Die berechneten Tagessummen setzen sich aus den gesondert ermittelten Tagessummen der klimatologisch definierten Teilkollektive nach Tab. 3 zusammen. Abzüglich Übergangslagen und Meßlücken erhält man einen Datensatz von 7191 Wertepaaren. Die lineare Einfachkorrelation nach PEARSON ergibt r = 0.983, d. h., 96.63 % ($= r^{2}*10^{2}$) der Gesamtvarianz kann auf die Varianz der gemessenen Tagessummen

(13)

zurückgeführt werden. Ebenso wird r = 0.982 von den übrigen Referenzstationen nicht unterschritten. Die Regressionsresiduen zeigen keinen Trend (r = 0) und sind in guter Näherung normalverteilt. Würde man dagegen den Datensatz als e in Kollektiv zugrunde legen, betrüge das Bestimmtheitsmaß B nur 0.8892 bzw. 88.92 % "erklärte" Varianz (r = 0.943). - Wie gut gemessene Tagessummen der Globalstrahlung (G_{gem}) und berechnete (G_{ber}) übereinstimmen, beschreibt der relative Fehler (rF) :

$$rF = (G_{gem} - G_{ber}) / G_{ber} * 100$$
(14)

Auf diese Weise werden am Beispiel der vier Referenzstationen, die auf gemessenen Tagessummen basierenden Monatsmittel der Globalstrahlung mit den berechneten verglichen (Abb. 5 a,b), ebenso Mittelwerte der Globalstrahlungseinnahme bei zyklonaler bzw. antizyklonaler Witterung und ausgewählten Großwetterlagen, getrennt nach Sommer- und Winterhalbjahr (Tab. 4).

Abb. 5: a) Verteilung des relativen Fehlers **b)** Jahresgang des mittleren relativen Fehlers, a) u. b) bezogen auf alle Monate der Referenzstationen

Mit etwas größeren Abweichungen ist im Winterhalbjahr zu rechnen. Der wesentliche Grund ist der höhere Anteil diffuser Sonnenstrahlung, der vom Sonnenscheinautographen nicht fokussiert wird. Dieser Fehler wird sichtbar, wenn keine Sonnenscheindauer registriert wird, aber eine Globalstrahlungssumme gemessen wird, die sich fast ausschließlich auf die diffuse Sonnenstrahlung bezieht. Außerdem spricht der Sonnenscheinautograph erst an, wenn ein bestimmter Schwellenwert überschritten ist. Schließlich können subjektive Fehler bei der Auswertung des Brennstreifens den relativen Fehler erhöhen. Auf diesem Hintergrund würde

	gem. [Wh/m²]	ber.	rF(%)	n (Tage)	gem. [Wh/m²]	ber.	rF(%)	n (Tage)
zyklonal			SOMMER				WINTER	
GGe	3652	3687	-0.95	1498	1105	1078	2.50	1485
GWu	3893	3845	1.25	1872	1213	1183	2.54	1971
GMA	3712	3685	0.73	1871	1091	1100	-0.82	1966
GSa	3703	3682	0.57	1710	1036	1039	-0.29	1886
antizyklonal								
GGe	5398	5455	-1.04	1383	1492	1457	2.40	1284
GWu	5436	5425	0.20	1729	1582	1550	2.06	1580
GMA	5392	5350	0.79	1732	1602	1564	2.43	1622
GSa	5516	5570	-0.97	1584	1645	1627	1.11	1548
Wa								
GGe	4855	4901	-0.94	186	1381	1306	5.74	204
GWu	4923	4954	-0.63	234	1448	1394	3.87	242
GMA	4821	4891	-1.43	236	1428	1402	1.85	248
GSa	5060	5169	-2.11	227	1388	1396	-0.57	245
Wz								
GGe	3635	3658	-0.63	381	1024	1032	-0.78	599
GWu	3934	3915	0.49	466	1137	1133	0.35	772
GMA	3701	3718	-0.46	465	990	1046	-5.35	773
GSa	3683	3724	-1.10	450	897	959	-6.47	741
SWa								
GGe	4799	4956	-3.17	80	1530	1517	0.86	132
GWu	5413	5366	0.88	109	1625	1610	0.93	183
GMA	5200	5172	0.54	110	1621	1588	2.08	183
GSa	5300	5346	-0.86	93	1629	1674	-2.69	176
SWz								
GGe	3910	4012	-2.54	100	1072	1055	1.61	99
GWu	4303	4338	-0.81	163	1337	1287	3.89	115
GMA	4159	4198	-0.93	165	1226	1235	-0.73	115
GSa	4062	4086	-0.59	159	1140	1125	1.33	103
нм								
GGe	6265	6386	-1.89	147	1194	1246	-4.17	164
GWu	6292	6373	-1.27	182	1537	1553	-1.03	195
GMA	6208	6191	0.27	181	1474	1482	-0.54	201
GSa	6318	6351	-0.52	175	1568	1586	-1.13	190
TRW								
GGe	4000	3998	0.05	219	1398	1323	5.67	73
GWu	4175	4061	2.81	267	1555	1531	1.57	109
GMA	4031	3937	2.39	268	1474	1411	4.46	105
GSa	3863	3813	1.31	234	1395	1308	6.65	109

Tab. 4 : Relativer Fehler (rF) in v. H. bei ausgewählten witterungsklimatologisch definierten Kollektiven im Sommer- und Winterhalbjahr an den Referenzstationen. Wa antizyklonale bzw. Wz zyklonale Westlage, SWa antizyklonale bzw. SWz zyklonale Südwestlage, HM Hoch über Mitteleuropa, TRW Trog Westeuropa, GWu Globalstrahlung an der radiometrischen Station Würzburg etc.

eine Erweiterung des Angström'schen Regressionsmodells, von einer linearen Einfachregression durch Hinzunahme weiterer Prognosevariablen zu einem multiplen Regressionsmodell, keine nennenswerte Verringerung des relativen Fehlers bewirken.

Aus diesen Gründen gehen die berechneten Tagessummen nicht als Einzelwerte in die Untersuchung ein, sondern nur als Mittelwerte von Kollektiven mit $n \ge 30$. Damit sind die meisten, nach Sommer- und Winterhalbjahr unterschiedenen Großwetterlagen erfaßt.

6. 2 Die Globalstrahlung im Jahresgang

Sonnenstand und Bewölkung bestimmen im wesentlichen den Jahresgang der Strahlungseinnahme. Im Vergleich der Monatsmittel der Globalstrahlung aus den Tagessummen scheinen sich die Jahresgänge an den einzelnen Stationen wenig zu unterscheiden (Abb. 6 a-r; A 21-74). Man erwartet die höchste Strahlungseinnahme bei Sonnenhöchststand im Juni und die niedrigste beim Tiefststand im Dezember. Letzteres trifft zu, aber während die Stationen in Norddeutschland vielfach das Maximum im Juni ausbilden, liegt es hier im Juli. Bei einigen Stationen ist der Unterschied zum Juni allerdings gering. Die Verlagerung des Maximums in den Juli ist an die Veränderung der sommerlichen Luftdruckverteilung in Europa gebunden. Die in dieser Zeit mehrfach in nordwestliche Strömungen eingebetteten Schübe feuchtkühler und bewölkungsreicher Meeresluft sind Witterungsregelfälle, die als sog. europäischer Monsun bekannt sind. Sie überschreiten dabei im Mittel seltener die quer zur Strömung verlaufenden Mittelgebirgskämme oder erreichen abgeschwächt den süddeutschen Raum. Die damit einhergehende geringere Bewölkung läßt dadurch eine höhere Strahlungseinnahme zu. Im Norden tragen im Juni nördliche und östliche Strömungen mit niedrigeren Bedeckungsgraden zu einer höheren Strahlungseinnahme bei, während in dieser Zeit im Süden oft Tiefdruckgebiete aus dem Mittelmeerraum mit stärkerer Bewölkung die Globalstrahlungssumme herabsetzen.

Die mittleren Verhältnisse aus den acht radiometrischen Stationen zeigt Abb.6r. Das Gebietsmittel entspricht einer fiktiven Station in der Nähe von Karlsruhe, mit den Koordinaten 49° 06' n. Breite, 8° 19' ö. Länge und 274 m ü. NN. Die Maxima der Monatsmittel der Globalstrahlung schwanken zwischen 5.2 (Mannheim, Weinbiet, Feldberg) und 5.8 kWh/m² (Höchenschwand). Dabei dominiert der Einfluß der Höhe ü. NN und die Exposition der Station deutlich den der relativ geringen Unterschiede in der geographischen Breitenlage.

Anstelle der Häufigkeitsverteilungen, die auf diesem Aggregationsniveau in der Tendenz ähnlich sind, werden zur Beschreibung der Struktur des Jahresgangs für jeden Monat relative Maßzahlen zur Beurteilung empirischer Verteilungen errechnet. Für die Form der Häufigkeitsverteilung der Tagessummen der Globalstrahlung eignet sich ein einfaches Schiefemaß g, das die Lageparameter arithmetisches Mittel und Median und als Streuungsmaß die Standardabweichung miteinander in Beziehung setzt (**12**). Ein Betrag mit g < 0 bedeutet eine negative Schiefe mit den häufigsten Tagessummen im oberen Wertebereich, bei positiver Schiefe g > 0 im unteren und bei g = 0 eine symmetrische Verteilung der Tagessummen. In Abb. 7 a – c sind als Gebietsmittel die radiometrischen Stationen zusammengefaßt, die auch die diffuse Sonnenstrahlung messen. Die Verhältnisse würden für eine fiktive Station in 49° 10' n. Breite, 8° 27' ö. Länge in 257 m Höhe ü. NN zutreffen.

Der deutliche Jahresgang der Schiefe für die Globalstrahlung (Abb. 7 a) zeigt den häufigeren Teil der Werte im Winterhalbjahr auf die niedrigeren Werteintervalle konzentriert und den kleineren Teil weit gestreut in höheren Werteintervallen. Es liegen also für das Winterhalbjahr mehr oder weniger ausgeprägte L-förmige Häufigkeitsverteilungen vor, mit höchsten Schiefewerten im Februar und Dezember. Im Sommerhalbjahr kehren sich die Verhältnisse um, wenn man von der schwach positiven Schiefe im April absieht. Doch sind die Absolutbeträge der Schiefewerte gegenüber dem Winterhalbjahr erheblich niedriger, lediglich im August werden fast 15 % erreicht. Völlig gegensätzlich verhalten sich dagegen die Schiefewerte der diffusen und direkten Sonnenstrahlung (Abb. 7 b u. c).

Die Bildung des Gebietsmittels schließt eine Glättung ein, so daß man den Jahresgang der Schiefe und weiterer Maßzahlen an einzelnen Stationen zwar der Tendenz nach wiedererkennt, aber mit einer größeren Streuung der Beträge. Ein extremes Beispiel sind die

Bergstationen Hornisgrinde, Feldberg und Höchenschwand (Abb. 7 d-e).

Ergänzend zur Schiefe beschreibt der Variationskoeffizient v (11) die Veränderlichkeit der Tagessummen der Globalstrahlung und ihrer Komponenten im mittleren Jahresverlauf. Allen Stationen sind hohe Werte im Winterhalbjahr gemeinsam, die zum Sommerhalbjahr abnehmen und im Juli und August am niedrigsten sind. Die mittlere Veränderlichkeit zeigt bei

Abb. 6 g – l : s. Abb. 6 a-f

der direkten Sonnenstrahlung die größte Spannweite (Abb. 7 c). Im Winterhalbjahr übertrifft sogar die Standardabweichung das arithmetische Mittel (v > 100), im Sommerhalbjahr liegt der niedrigste Wert noch bei 62. Dagegen variiert die Veränderlichkeit der diffusen Sonnenstrahlung im Winterhalbjahr nur zwischen 25 und 32.5, bzw. 25 und 21 im Sommerhalbjahr (Abb. 7 b). Etwas größer ist die Spannweite von v der Globalstrahlung, 45 bis 51 im Winterhalbjahr und 31 bis 45 im Sommerhalbjahr. Variationskoeffizient und Schiefe sind auf der Basis der Monatswerte mit der Strahlungseinnahme negativ korreliert ($r_v = -0.88$; $r_g = -0.81$; n = 216), mit der Bewölkung positiv ($r_v = 0.77$; $r_g = 0.71$; n = 216). Bei

Abb. 6 m – r : s. Abb. 6 a-f

Monatswerten von $G \ge 4.25$ kWh / m² wird die Schiefe < 0, was etwa einem Bewölkungsgrad von ≤ 4.8 Achtel entspricht.

Weitere Strukturunterschiede zeigt der Jahresgang der relativen Globalstrahlung (Abb. 7). Als Bezugswert werden die Monatsmittel der Strahlungseinnahme in der Rayleighatmosphäre und zum Vergleich die der extraterrestrischen verwendet, wobei Divergenzen vor allem im Winterhalbjahr sichtbar werden. Wie bereits erörtert, wird die Rayleighatmosphäre aufgrund der in die Berechnung eingehenden Höhenlage der Empfangsfläche und wegen des anschaulichen Vergleichs bevorzugt. Wenn die Strahlungseinnahme gleich 100 gesetzt wird,

Abb. 7 a-f : Jahresgang der relativen Globalstrahlung. Variationskoeffizient (V) und Schiefe (g) auf der Basis der Tagessummen (z.B. Jan n = 620 Tage). **a**) Gebietsmittel der relativen Globalstrahlung, gemessen an der extraterrestrischen Strahlungseinnahme (G_{oex}) bzw. an der bei Rayleigh-Atmosphäre (G/G_{oray}) aus den Stationen, die auch die diffuse Sonnenstrahlung messen (TR, WU, MA, ST, FR); **b**) relative diffuse Sonnenstrahlung (D/G_o); **c**) relative direkte Sonnenstrahlung (B/G_o); **d**) - **f**) wie **a**) aber berechnete Globalstrahlung an den Bergstationen

gibt der Relativwert an, wieviel Prozent im Vergleich zur Rayleigh-Atmosphäre bzw. zu extraterrestrischen Verhältnissen im zugrunde gelegten Zeitabschnitt erreicht werden. Zerlegt man den mittleren Jahresgang der relativen Globalstrahlung in die Relativwerte der diffusen und direkten Sonnenstrahlung (Abb. 7 a-c; Abb. 4 a-c), dann wird deutlich, daß letztere den

größten Einfluß auf den Verlauf des Jahresgangs hat, und die relative diffuse Sonnenstrahlung mit geringer Jahresamplitude im wesentlichen die Relativwerte der Globalstrahlung nur anhebt. Allen Stationen sind höchste Relativwerte der Globalstrahlung im August gemeinsam, was dem niedrigsten Monatsmittel des im Jahresgang invers dazu verlaufenden Bewölkungsgrades entspricht. Abweichend vom Jahresverlauf an den Stationen in den Niederungen und den unteren Höhenlagen der Mittelgebirge zeigen die Bergstationen (Abb. 7 d-f) höhere Relativwerte im Winterhalbjahr und mehr oder weniger stark ausgeprägte Depressionen zu Beginn des Sommerhalbjahres, um dann die höchsten Werte im Juli und August zu erreichen. Die höheren Relativwerte in den Wintermonaten sind zum Teil auf Mehrfachreflexionen zurückzuführen, wie sie von Schneedecken oder ausgedehnten Wolkenfeldern unterhalb der Station ausgehen, wobei die diffuse Sonnenstrahlung zunimmt (vgl. DIRMHIRN, I. 1964, S.99 f).

6.3 Hypsometrisch modifizierte Strahlungseinnahme

Das BOUGUER-LAMBERT-BEER-Gesetz beschreibt die exponentielle Zunahme der Extinktion der Sonnenstrahlung auf ihrem Weg vom oberen Atmosphärenrand zur Erdoberfläche. Im konkreten Fall wird die zunehmende Extinktion in der unteren Troposphäre zusätzlich zur steigenden Luftdichte noch verstärkt durch den größeren Wasserdampfanteil, anthropogen bedingte Belastungen der Luft durch Staub, Aerosole und Schadgase. Dabei müssen auch die durch die Einstrahlung ausgelösten Folgeprozesse und ihre Rückwirkungen auf die Strahlungsintensität berücksichtigt werden. Deshalb würde man an hoch gelegenen Stationen im Sommerhalbjahr eine relativ höhere Strahlungseinnahme als an Stationen in der Niederung erwarten. Der kürzere Weg der Globalstrahlung und reinere Luft stützen die Annahme.

Der maximal mögliche, relative Anteil der Sonnenstrahlung im Sommerhalbjahr an der Jahressumme verändert sich mit der geographischen Breitenlage nur geringfügig, wenn der Einfluß der Atmosphäre und die Höhenlage unberücksichtigt bleiben. Die Berechnungen ergeben 71.9 % für die nördlichste Station (Geisenheim) und 70.3 % für die südlichste (Konstanz). Im Mittel kann man von 71 % der Jahressumme ausgehen, die im Sommerhalbjahr theoretisch verfügbar ist.

Betrachtet man aber für alle Stationen die Abhängigkeit des relativen Anteils der Globalstrahlung an der mittleren Jahressumme von der Höhenlage (Abb. 8), ergibt sich für den Juni (Sonnenhöchststand), bzw. für das Sommerhalbjahr, jeweils ein hochsignifikanter, negativ linearer Zusammenhang, d. h., mit zunehmender Höhe fällt der relative Anteil an der Jahressumme. Im Dezember (Sonnentiefststand) sind die Verhältnisse umgekehrt und ebenfalls hochsignifikant. Im Vergleich verzeichnen im Winterhalbjahr Stationen in niedrigen Höhenlagen gegenüber den Bergstationen eine relativ geringere Strahlungseinnahme, dagegen im Sommerhalbjahr eine relativ größere. Am Beispiel der niedrigsten und höchsten Stationslage sind die Verhältnisse im Jahresablauf dargestellt (Abb. 9).

Diese scheinbar widersprüchlichen Verhältnisse werden verständlich, wenn man den Jahresgang der Bewölkung an beiden Stationen verfolgt. Die im Winterhalbjahr zum Dezember hin abnehmende Sonnenscheindauer und Strahlungsintensität führt bei starker nächtlicher Ausstrahlung dazu, daß bei windschwacher Witterung sich über den Niederungen zählebige, tiefreichende Stratus-Bewölkung ausbreitet, von der die Bergstationen weniger betroffen sind. Meist handelt es sich um Absinkinversionen, die im Winterhalbjahr eine Zweiteilung der hypsometrischen Temperatur- und relativen Feuchteverteilung erzeugen (s.6.6.1).

Abb. 8 : Die Globalstrahlung in v. H. der mittleren Jahressumme (1981-2000) in Abhängigkeit von der Höhenlage; a) im Juni, b) im Dezember, c) im Sommerhalbjahr; n = 17 Stationen

Abb. 9 : a) Die Globalstrahlung i. v. H. der mittleren Jahressumme (1981-2000) im Jahresgang an den Stationen Feldberg und Mannheim b) Vergleich der Bewölkung bei antizyklonaler Witterung; n = Zahl der Tage

Hohe Albedo an der Obergrenze der Sperrschicht führt zu weiterer Abkühlung der darunterliegenden wasserdampfreichen Luftschicht, so daß die Ausdehnung in Bodennähe als

Nebel registriert wird. Bei antizyklonaler Witterung treten im Beispiel (Abb. 9 b) die Bewölkungsunterschiede im November, Dezember und Januar stärker hervor. Besonders die Großwetterlagen HM und BM haben einen großen Anteil an dieser Ausprägung.

Im Sommerhalbjahr führt die reichlich zugeführte kurzwellige Strahlung und ihre Umsetzung am Erdboden in Wärme zu konvektiven und turbulenten Vorgängen. Erwärmte und daher weniger dichte, wasserdampfreiche Luftvolumina steigen auf, dehnen sich aus und kühlen dabei ab. Ist das Kondensationsniveau erreicht, bildet sich Konvektionsbewölkung. Aber auch Kaltlufteinbrüche über erwärmter Landoberfläche oder feuchtlabil geschichtete Luft, die beim Überströmen einer Erhebung Kondensationswärme freisetzt, erzeugen Konvektionswolken.

Abb. 10 : Die Globalstrahlung in v. H. der mittleren Jahressumme (1981-2000) bei zyklonaler und antizyklonaler Witterung an den Stationen Feldberg und Mannheim

Betrachtet man die Strahlungseinnahme getrennt unter dem Einfluß von zyklonalen und antizyklonalen Großwetterlagen (Abb. 10), so erhält man, wie in Abb. 9, ein sehr ähnliches Verlaufsmuster der beiden Kurvenpaare, aber mit sehr unterschiedlichem Niveau der relativen monatlichen Anteile. Auffallend ist die relativ große Divergenz im Kurvenverlauf bei antizyklonalen Verhältnissen im Winterhalbjahr gegenüber der nur schwachen bei zyklonal geprägter Witterung.

Während also die kurzwellige Strahlungseinnahme der Stationen unter extraterrestrischen Bedingungen nur von der geographischen Breitenlage abhängt und die Jahressummen sich unwesentlich unterscheiden, kommt es unter terrestrischer Umgebung im Jahresablauf zu einer höhenbedingten Umverteilung. Im wesentlichen ist der Vorgang abhängig von der Verteilung des Wasserdampfes, der kurzwelligen Strahlungseinnahme tagsüber und der nächtlichen langwelligen Ausstrahlung. Geringere Strahlungseinnahme wie im Winterhalbjahr schränkt die Mobilisierung des Wasserdampfes ein. Wolken- bzw. Nebelbildung in den tieferen Lagen, damit niedrigere Globalstrahlungssummen und in der Höhe relativ größerer Strahlungsgenuß sind die Folge. Die Verhältnisse sind allerdings etwas komplexer, da nicht nur konvektive Luftmassenverlagerung, sondern auch advektive Luftmassenzufuhr beteiligt ist. Darauf weist der Verlauf des Kurvenpaares bei zyklonalen Verhältnissen in Abb. 10 hin. Aufschlußreich wäre für den Vergleich die gesonderte Betrachtung der diffusen Sonnenstrahlung an den Bergstationen, doch dazu liegen keine Daten vor. Zu erwarten wäre mit zunehmender Höhe bei wolkenlosem Himmel im Sommer und Winter eine leichte Abnahme der Intensität und bei bedecktem Himmel eine Zunahme (vgl. DIRMHIRN, I. 1964, S. 93).

7 Lufttemperatur und Globalstrahlung

7.1 Zirkulationsspezifische Ausprägung der Lufttemperatur im Jahresgang

Auch ohne die Klimadaten zu kennen, kann sich der interessierte Beobachter über die Auswirkungen der raumzeitlichen Verteilung der Lufttemperatur leicht einen Überblick verschaffen. Unterschiedliche Andauer der Vegetationsperiode und die daran geknüpften arbeitsphänologischen Zeitspannen in der Landwirtschaft geben dazu Hinweise. Insbesondere die Verbreitung des Weinbaus und das Vorkommen klimatisch anspruchsvoller Kultur – Zierund Wildpflanzen, von denen einige Arten erst in südlicheren Breiten erwartet werden, machen auf thermisch begünstigte Landschaften aufmerksam.

Dazu zählt im Vergleich zu den benachbarten Landschaften offensichtlich der Oberrheingraben. Seine Sonderstellung zeichnet sich ab in der über dem Gefrierpunkt liegenden mittleren Lufttemperatur im Januar, dem kältesten Monat und im mittleren Verlauf der 19° C-Juli-Isotherme. Letztere begrenzt ein asymmetrisch zur Grabenachse verlaufendes Areal von ca. 5 km Breite und ca. 33 km Länge zwischen Bad Dürkheim und Landau. Im Bereich der feuchten Rheinniederung sind höhere Temperaturen nicht zu erwarten, weil ein großer Teil der Strahlungseinnahme für die Verdunstung aufgewendet wird. Ausnahmen sind anthropogen erzeugte Temperaturanomalien in Gestalt von Wärmeinseln in den dichter besiedelten Räumen. Der mittlere Verlauf der 16° C-Isotherme in der Vegetationsperiode Mai

Stat	H [m]	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ	Jahr	∆ [K]
				(Oberr	hein	grab	ən ur	nd Ra	ndbe	ereich	e			
GE	131	1.7	2.1	6.5	9.8	14.3	17.0	19.4	19.0	14.9	10.0	5.4	3.1	10.3	17.7
AZ	215	1.3	1.6	6.1	9.3	14.1	16.5	19.0	18.7	14.6	9.8	4.7	2.5	9.9	17.7
MA	106	1.8	2.5	6.7	10.3	15.0	17.7	20.1	19.8	15.6	10.5	5.2	3.0	10.7	18.3
GH*	195	1.4	2.2	5.8	9.1	13.9	16.7	18.8	18.2	14.5	9.7	4.8	2.7	9.8	17.4
ΒZ	180	1.6	2.1	6.3	9.8	14.5	17.1	19.6	19.1	15.0	10.2	5.0	2.8	10.3	18.0
KA	112	2.0	2.7	7.0	10.4	15.0	17.8	20.4	20.1	15.7	10.7	5.4	3.2	10.9	18.4
IH**	193	2.5	3.4	7.2	10.6	15.2	18.0	20.0	19.7	14.9	10.3	5.5	3.4	10.9	17.5
FR	308	2.5	3.4	7.5	10.7	15.3	18.1	20.7	20.4	16.3	11.6	6.1	4.0	11.4	18.2
							Ran	dgeb	irge						
KF	805	-1.8	-1.8	1.5	5.0	9.8	12.1	14.6	14.7	10.9	6.5	1.6	-0.8	6.0	16.5
DE	480	0.6	0.8	4.3	7.2	11.9	14.4	16.9	16.8	13.1	9.0	4.1	1.8	8.4	16.3
TR	278	1.4	1.8	5.8	8.8	13.3	15.9	18.4	18.1	14.2	9.9	4.9	2.7	9.6	17.0
RU	461	0.0	0.6	4.6	7.9	12.5	15.2	17.8	17.8	13.7	9.0	3.7	1.3	8.7	17.8
BE	450	-0.1	0.4	4.4	7.9	12.6	15.1	17.6	17.5	13.5	8.8	3.5	1.1	8.5	17.7
PS	280	0.7	0.8	4.4	7.4	12.0	14.9	16.8	16.1	12.5	8.6	4.1	2.1	8.4	16.1
но	1122	-1.8	-2.1	0.5	3.5	8.3	10.9	13.6	13.6	10.1	6.5	1.4	-0.8	5.3	15.7
FE	1486	-2.3	-3.0	-1.1	1.5	6.2	8.7	11.7	11.8	8.5	5.3	0.5	-1.4	3.9	14.8
ко	450	0.5	1.2	5.4	9.0	13.9	16.7	19.3	18.8	14.7	9.9	4.3	1.9	9.6	18.8

Tab 5 : Durchschnittliche Lufttemperatur in °C für einige Stationen im Bereich des Oberrheingrabens und derRandgebirge. Bezugszeitraum 1981 – 2000; Δ [K] Jahresamplitude; (Stationskürzel s. Tab. 1) ** 1991 - 2000

bis Juli zeichnet den westlichen und östlichen Grabenrand nach. Das trifft auch für die 9°C-Isotherme der mittleren Jahrestemperatur zu. Ihre Auslenkung nach Westen und Osten über den generalisierten Grabenrand hinaus, zeigt an, daß u.a.. das Rhein–Main-Tiefland, Unteres Naheland, Kraichgau, Wormser Senkungsfeld und Teile des Rheinhessischen Tafel-und Hügellandes an der Klimagunst teilhaben. Eine Zusammenstellung des mittleren Jahresgangs der monatlichen Lufttemperatur für ausgewählte Stationen zeigt Tab. 5.

Von einer thermischen Besonderheit profitieren auch die Uferlandschaften des Bodensees. Aufgrund der niedrigen Albedo des Wassers bei höher stehender Sonne und damit größerer Strahlungseinnahme, außerdem durch die ca. viermal größere spezifische Wärmekapazität im Vergleich zur Luft, wirkt der Bodensee ausgleichend auf das Klima der unmittelbar angrenzenden Landschaften. Dadurch verlängert sich z. B. die Vegetationsperiode (Tage mit $\geq 5^{\circ}$ C Lufttemperatur) bis zu einem Monat, im Vergleich zur Andauer bis zu 200 Tagen im Schwäbischen Alpenvorland (Klimaatlas Baden-Württemberg, DWD 1953).

Bedingt durch die Erwärmung der Troposphäre von der Erdoberfläche her, wo die direkte Sonnenstrahlung in Wärmeenergie umgesetzt wird, nimmt die Lufttemperatur mit zunehmender Höhe ab. Dabei wirken u. a. horizontale und vertikale Austauschvorgänge modifizierend, wobei sich allochthone Wetterlagen abweichend von autochthonen verhalten. Auf dem Feldberg im Schwarzwald (1486) und der Hornisgrinde (1122) liegen die mittleren Jahrestemperaturen bei 3.9° C bzw. 5.3° C. Stuttgart-Flugwetterwarte (371) erreicht 9.2 ° C, Karlsruhe (112) 10.9° C und Freiburg (308) 11.4° C. Daraus errechnet sich für das Stationspaar Feldberg-Freiburg der mittlere jährliche vertikale Temperaturgradient zu 0.64 K/hm, Hornisgrinde-Karlsruhe zu 0.55 K/hm und 0.52 K/hm für Hornisgrinde-Stuttgart.

Abb. 11 : Monatsmittel der Lufttemperatur (1981-2000) an den Stationen Feldberg (FE) und Mannheim (MA), differenziert nach Zirkulationsformen

Die Genese des mittleren Jahresgangs der Lufttemperatur wird verständlicher, wenn getrennt nach den übergeordneten Luftströmungen im größeren Raum unterschieden wird. So zeigt die Auflösung der Monatsmittel der Lufttemperatur nach zonalen, gemischten und meridionalen Anteilen an der Zirkulation am Beispiel einer Tal – und Bergstation (Abb.11) im Winterhalbjahr ausgeprägtere Unterschiede als im Sommerhalbjahr. Am kleinsten ist die mittlere Jahresamplitude bei zonaler und am größten bei meridionaler Zirkulation. Der Verlauf des jeweils größeren mittleren monatlichen Temperaturbeitrags über das Jahr ist etwa bis April (bzw. März auf dem Feldberg) zonal bestimmt, bis etwa September von der gemischten Zirkulation dominiert, bzw. bis November (Feldberg) und dann wieder von der zonalen Zirkulation. Bei meridionaler Zirkulation treten im Januar (bzw. Februar auf dem Feldberg) die tiefsten Temperaturmittel auf. Nur in den Sommermonaten ist der Temperaturbeitrag gleich oder liegt über dem der zonalen Zirkulation (s. a. A 5-7).

7.2 Inversionslagen

Die Differenzierung nach Absink -, Aufgleit – oder Strahlungsinversion deutet bereits an, daß verschiedene Prozesse in der Troposphäre eine Temperaturumkehr einleiten können.Entgegen dem Normalfall der Temperaturabnahme mit zunehmender Höhe, bildet sich über der kälteren Luftschicht eine mehr oder weniger mächtige Schicht, in der die Temperatur zunimmt. Es entsteht eine stabile, vertikale Temperaturschichtung, die vertikale Konvektion und Turbulenz verhindert. Dabei wird die Untergrenze oft durch Wolken, Nebel – oder Dunstschichten angezeigt, bei längerer Andauer kann es zur Ansammlung von Luftschadstoffen kommen. Durchbrochen wird die Sperrschicht gelegentlich durch Schwaden aus Kühltürmen, die dann über der Grenzfläche Quellwolken erzeugen.

Bei weitem am häufigsten treten im Untersuchungsgebiet Absinkinversionen auf, wobei sich meist bei Großwetterlagen mit antizyklonalem Witterungscharakter absinkende Luftmassen trockenadiabatisch um 1 K / 100 m erwärmen. Ebenso können Luftmassen, die ein Gebirge überströmen und im Lee über kühlerer Luft absinken, diese Erscheinung hervorrufen. Äußerst selten sind dagegen Aufgleitinversionen nachzuweisen. Beiden gemeinsam ist die positive Differenz der Lufttemperatur beim Vergleich der Berg – mit der Talstation. Während aber in Absinkinversionen die relative Feuchte abnimmt, beobachtet man bei Aufgleitinversionen eine Zunahme. Das erklärt sich aus dem Aufgleiten feuchter und warmer Luftmassen an der Grenzfläche zur kälteren Luft im Bereich einer Frontalzone.

Inversionen sind Regelerscheinungen, die überwiegend in den Herbst – und Wintermonaten auftreten und zusammen mit Bodeninversionen den Jahresgang des mittleren vertikalen Temperaturgradienten beeinflussen (Abb.12). Eine Auszählung nach den oben angegebenen Kriterien und einschließlich der Tage mit Isothermie, ergab für die fünf Stationspaare (Tab.6) ein Häufigkeitsmaximum im Januar, bzw. für das Stationspaar Mannheim – Weinbiet im Oktober. Im Januar ist auch die mittlere Differenz am größten, um die es an den Bergstationen wärmer ist als an den Talstationen : 3.8 K für die Stationspaare Stuttgart – Hornisgrinde (Dez.: 3.4 K), Freiburg – Feldberg 3.7 K (Dez.: 3.5 K), Karlsruhe – Hornisgrinde 3.6 K (Dez.: 3.1 K) und 2.5 K (Dez.: 2.1 K) für Mannheim-Weinbiet.

Stationen	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ	Σ bzw. %
WB MA* (d)	71	73	62	28	22	9	10	26	55	97	81	90	624
WB MA (%)	12.7	14.3	11.1	5.2	3.9	1.7	1.8	4.7	10.2	17.4	15.0	16.1	9.5
HO KA (d)	110	63	5	-	-	-	-	-	2	71	91	94	436
HO KA (%)	17.7	11.2	0.8	-	-	-	-	-	0.3	11.5	15.2	15.2	6.0
HO ST (d)	153	94	20	-	-	-	-	2	17	110	120	137	653
HO ST (%)	24.7	16.6	3.2	-	-	-	-	0.3	2.8	17.7	20.0	22.1	8.9
FE FR (d)	132	56	3	-	-	-	-	-	1	49	93	109	443
FE FR (%)	21.3	9.9	0.5	-	-	-	-	-	0.2	7.9	15.5	17.6	6.1
HS KO** (d)	162	103	25	4	2	1	3	4	20	102	114	139	679
HS KO (%)	27.5	19.2	4.2	0.7	0.3	0.2	0.5	0.7	3.5	18.3	21.1	24.9	9.9

Tab 6 : Absolute (d) und relative Häufigkeit der Inversionstage, einschl. d. Tage mit Isothermie, 1981-2000. **FE** Feldberg, **FR** Freiburg, **ST** Stuttgart, **HO** Hornisgrinde, **KA** Karlsruhe. * Weinbiet (**WB**, 553 m) – Mannheim (**MA**, 106 m) 1983–2000; ** Höchenschwand (**HS**, 1008 m) – Konstanz (**KO**, 450 m) 1981–9 / 1999

Abb. 12 : Mittlerer Jahresgang des vertikalen Temperaturgradienten an ausgewählten Stationspaaren in Kelvin / 100 m. * Mannheim – Weinbiet 1983 – 2000, ** Konstanz-Höchenschwand 1981 – 9/1999, sonst 1981 -2000

Schärfere Unterschiede in der Verteilung des mittleren vertikalen Temperaturgradienten im Jahresablauf kommen zum Vorschein, wenn nach Tagen mit zyklonalem und antizyklonalem Witterungscharakter differenziert wird (Abb.13). Seine mittlere Jahresschwankung liegt in den beiden Beispielen um 0.2 K bei zyklonalen Verhältnissen, dagegen bei antizyklonalen um 0.5 bis 0.6 K. Inversionen treten überwiegend bei antizyklonalen Großwetterlagen auf, mit größten Schwankungen beim Großwettertyp HM (HM u. BM) mit 0.7 bzw.0.6 K.

Abb. 13 : Mittlerer monatlicher vertikaler Temperaturgradient, unterschieden nach überwiegend zyklonalem und antizyklonalem Witterungscharakter für die Stationspaare Karlsruhe (KA) - Hornisgrinde (HO) und Freiburg (FR) – Feldberg (FE) im Zeitraum 1981 – 2000

Zyklonale Lagen haben nur einen Anteil zwischen 12.6 und 14.6 %. An den Stationspaaren entfallen von 100 Inversionstagen 36 bis 40 Tage auf die Großwetterlagen Hoch und Hochdruckbrücke über Mitteleuropa (HM u. BM). Dabei schwankt die mittlere positive Temperaturdifferenz zwischen Berg- und Talstation zwischen 3.9 und 4.9 K bei HM und

zwischen 2.6 und 3.2 K bei BM. Die Maximalwerte streuen zwischen 10.6 und 11.9 K (HM) und 8.5 und 12.1 K (BM). Auffallend sind die Verhältnisse bei antizyklonaler Südlage. Hier sind Inversionslagen nur mit einer Häufigkeit von 7 bis 10% vertreten, weisen aber höhere mittlere Temperaturdifferenzen auf (bis 4.7 K) und Höchstwerte zwischen 10.4 und 14.8 K (14. – 16. Januar 1982).

Die Höhenlage der oberen Grenze der Sperrschicht kann mittels einer bei SCHULZ, L. (1963, S. 6) angegebenen graphischen Methode ermittelt werden : Zunächst wird die Kurve des vertikalen Verlaufs der 30jährigen Monatsmittel der Lufttemperatur für einen bestimmten Monat von Stationen in der näheren Umgebung gezeichnet. Ebenso konstruiert man die Kurve nur für die mittlere Lufttemperatur aller Inversionstage des betreffenden Monats aus möglichst vielen Jahren. Im Schnittpunkt beider Kurven liest man auf der Ordinate die Höhenlage ab. Die auf diese Weise für das Stationspaar Feldberg-Freiburg (Tab. 6) mit Hilfe weiterer neun Stationen geschätzten mittleren Höhenlagen der Obergrenze der Sperrschicht schwankt zwischen 960 m im Januar und 650 m im November. Im Dezember liegt sie bei 750 und im Februar bei 720 m. SCHULZ (ib.) hat für einige deutsche Mittelgebirge die Mächtigkeit von Inversionen ermittelt; für den Schwarzwald im Februar 1959 fand er die Obergrenze bei 780 m.

Die Verhältnisse während einer Inversionslage sollen mit weiteren Klimaelementen detaillierter betrachtet werde (Abb. 14 a-g). Als Beispiel dient die Zeitspanne vom 25. Januar bis zum 19. Februar 1993 für das Stationspaar Freiburg-Feldberg, in der vom 1. Bis 15. Februar eine relativ lang andauernde Inversion enthalten ist. Voraus geht vom 25. bis zum 27. Januar eine zyklonale Nordwest-Lage (NWz), in der überwiegend maritime Polarluft (mP) wirksam ist. Es folgen zwei Tage mit Übergangscharakter, die keiner Großwetterlage eindeutig zuzuordnen sind, z. T. noch unter dem Einfluß maritimer Polarluft. Schließlich ändern sich die Verhältnisse durch die Großwetterlage Hoch Mitteleuropa (HM), die bis zum 15. Februar andauert. Nach wechselndem Einfluß von kontinentaler Polarluft (cP) und kontinentaler gealterter Tropikluft (cTp) am 30. und 31. Januar dominiert letztere schließlich bis zum 16. Februar. Nach dem 15. Februar wird Hoch Mitteleuropa von einer zyklonalen Nordwest-Lage mit überwiegend maritimer Polarluft abgelöst. Verändert wird die Inversion am 5. Februar durch ein Aufreißen der Sperrschicht von nur eintägiger Andauer. Um so erstaunlicher ist, wie markant dieser Einschnitt sich z.B. in der Zeitreihe der Strahlungseinnahme und der Temperaturamplitude (Abb. 14 b, d) niederschlägt. Die Merkmale einer Inversion bleiben dabei erhalten.

Der mittlere Verlauf der Inversion zeigt an der Talstation, infolge zunehmender Trübung und niedrigerer Sonnenscheindauer, abnehmende Intensität der Strahlung. Dabei verschiebt sich die Zusammensetzung der Globalstrahlung zugunsten der diffusen Sonnenstrahlung bis zu einem Optimum bei mittleren Bewölkungsgraden, um dann bei bedecktem Himmel weiter abzunehmen. Über mehrere Tage wird keine direkte Sonnenstrahlung registriert, d.h., die Globalstrahlung besteht nur noch aus der diffusen Komponente (Abb. 14 b). Umgekehrt sind die Strahlungsverhältnisse an der Bergstation: Die Globalstrahlung nimmt zu, bei hohem Anteil der direkten Sonnenstrahlung. Hinzu tritt vielfach die hohe Albedo der Inversionsoberfläche, die ihrerseits zur Stabilisierung der Inversion beiträgt und die Albedo, die sich bei geschlossener Schneedecke einstellt.

Abb. 14 a-g (nächste Seite) : Auswirkungen der Inversionslage vom 1.– 15. Februar 1993 auf verschiedene Klimaelemente. Dargestellt ist die Zeitspanne 25. Januar (1) bis 19. Februar (26); RSD Relative Sonnenscheindauer; G Globalstrahlung; D diffuse, B direkte Sonnenstrahlung; LT Lufttemperatur; FR Freiburg, FE Feldberg, WB Weinbiet, MA Mannheim, HO Hornisgrinde, KA Karlsruhe, ST Stuttgart, HS Höchenschwand, KO Konstanz

Während im Mittel auf dem Feldberg 79 % der astronomisch möglichen Sonnenscheinstunden erreicht werden, sind es in Freiburg nur 34 %. Davon abhängig, liegt die Strahlungseinnahme während der Inversion für Freiburg 34 % unter dem 20jährigen Mittel, oberhalb der Sperrschicht aber 67 % darüber. Bedeutend ist auch der Unterschied bezüglich des Anteils der diffusen Komponente an der Globalstrahlung unterhalb der Sperrschicht. Sie beträgt im Mittel für Freiburg 59 % (direkte Sonnenstrahlung 41 %), während der Inversion dagegen 82 %, bzw. 18 % direkte Sonnenstrahlung.

Entsprechend liegt die Bewölkung bei 2.7 bzw. bei 5.3 Achtel und die relative Luftfeuchte bei 40.5 bzw. 86 %. Das gilt für die weitaus am häufigsten beobachteten Absinkinversionen. Anzeichen für Aufgleitinversionen, bei denen an der Bergstation eine Zunahme der relativen Feuchte gegenüber der Talstation beobachtet wird, sind z. B. an 20 Tagen des Beobachtungszeitraums auf dem Feldberg nachweisbar (vgl.auch HAVLIK, D. 1970).

Einblick in die Verbreitung und Ausprägung der beschriebenen Inversion vermittelt der Vergleich mit benachbarten Stationspaaren anhand der positiven Temperaturdifferenz (Abb. 14 g). Danach überragen auch, wie bereits die graphische Einschätzung nahelegt, die Stationen Hornisgrinde und Höchenschwand die Obergrenze der Sperrschicht. Allerdings bleibt die positive Temperaturdifferenz nicht durchgehend erhalten. Sie ist bei den Stationspaaren Höchenschwand- Konstanz und Hornisgrinde-Karlsruhe teilweise mit negativen Werten besetzt. Schwach und nur am 3. Februar ausgebildet sind die Inversionsmerkmale beim Stationspaar Weinbiet-Mannheim. An diesem Tag ist die positive Temperaturdifferenz Freiburg mit 9.6 K am höchsten.

7.3 Korrelation der Lufttemperatur mit der Globalstrahlung

Die Korrelation der Lufttemperatur mit der Globalstrahlung wurde bereits 1975 von CHANG, J.-H. & ROOT, B. auf der Basis von Monatsmitteln weltweit an 442 Stationen untersucht. Sie kommen zu dem Ergebnis, daß (nach der Klimaklassifikation von W. KÖPPEN) nur im Trockenklima (B), warm-gemäßigten (C) und borealen Klima (D) hinreichende Korrelationen vorliegen, nicht aber im Tropischen Regenklima ohne Winter (A) und im Schneeklima (E). Bezogen auf die Station Trier hat STEIN, N. (1979) für die Beziehungen zwischen Globalstrahlung, Lufttemperatur und Großwetterlagen, ausgehend von relativen Tageswerten, keine überzeugenden Zusammenhänge nachweisen können.

Um diese auf den ersten Blick plausibel erscheinende Korrelation im Untersuchungsgebiet darzustellen, werden die Monatsmittelwerte der Tagessummen der Globalstrahlung und die Monatsmittel der Lufttemperatur für die 17 Stationen berechnet und der Zusammenhang durch den Produktmoment-Korrelationskoeffizienten r ausgedrückt : Die Stärke des Zusammenhangs ist an allen Stationen auf dem 0.1 % - Niveau bei zweiseitiger Fragestellung signifikant. Am besten ist die Beziehung an der Station Karlsruhe mit r = 0.925 ausgeprägt, am schlechtesten mit r = 0.824 auf dem Feldberg. Zusammen mit Höchenschwand (r = 0.882) und Hornisgrinde (r = 0.861) ist die Korrelation an den Bergstationen am niedrigsten. Anschaulicher ist die Interpretation von r über das Bestimmtheitsmaß (r^2). So ist die Korrelation an der Station Feldberg nur zu 68 % durch die Varianz von Globalstrahlung und Lufttemperatur determiniert, dagegen sind es an der Station Karlsruhe 86 %. Man muß auf diesem Aggregationsniveau in Betracht ziehen, daß die Glättung der Variablenwerte durch Mittelwertbildung auch geringere Varianzen nach sich zieht. Um so mehr fallen die relativ niedrigen Bestimmtheitsmaße ins Gewicht, die auf weitere Variablen hinweisen, die in der Korrelation unberücksichtigt geblieben sind.

Es sind vor allem Vorgänge im langwelligen Bereich, die aus der Differenz von Ausstrahlung und atmosphärischer Gegenstrahlung resultieren, also der effektiven Ausstrahlung. Darauf ist die mehr oder weniger starke Abkühlung der Erdoberfläche zurückzuführen, die auch die unmittelbar darüber liegenden Luftschichten erfaßt. Weiterhin tragen advektive Luftmassen erheblich zur Variabilität der Klimaelemente bei, ebenso der vertikale Austausch, die Konvektion. Diese Vorgänge unterliegen in ihrer Intensität wiederum dem wechselnden Sonnenstand und damit einer weiteren Quelle der Variabilität.

Wie groß die Unterschiede des Beitrags zur Varianzaufklärung des beschriebenen Zusammenhangs sind, wenn man die Korrelation gesondert nach zyklonalen und antizyklonalen Verhältnissen berechnet, wird in Abb. 15 deutlich. Stellvertretend sind die nach der Höhenlage am weitesten voneinander entfernten Stationen dargestellt.

Abb. 15 : Lufttemperatur in Abhängigkeit von der Globalstrahlung für Mannheim (MA 106) und Feldberg (FE 1486); z zyklonal, az antizyklonal

Wesentliches Ergebnis ist die erheblich geringere Strahlungseinnahme bei zyklonalen Witterungsverhältnissen, bei leicht höherem Niveau der Lufttemperatur, insbesondere in tieferen Lagen. Bei antizyklonalen Verhältnissen ist der Zusammenhang etwas straffer als bei zyklonalen, mit einer Schwankungsbreite von r zwischen 0.81 (Feldberg) und 0.94 (Karlsruhe) bzw. 0.81 (Feldberg) und 0.89 (Karlsruhe, Bergzabern, Freiburg).

Hervorzuheben ist auch die mit zunehmender Höhenlage abnehmende Jahresamplitude der Lufttemperatur. In der Regel ist es die Differenz der Monatsmittel von Juli und Januar. Für Mannheim liegt die mittlere Jahresamplitude im Untersuchungszeitraum bei 18.3 K, auf dem Feldberg bei 14.8 K (Tab. 5). In der Periode 1951 – 1980 beträgt sie 18.1 bzw. 14.2 K (MÜLLER-WESTERMEIER, G. 1990). Der Kontrast tritt noch stärker hervor, wenn nach zyklonalen und antizyklonalen Anteilen und Zirkulationsformen in den einzelnen Monaten unterschieden wird (s. a. A 5 - A7):

1981 - 2000	zyklonal	antizyklonal	Zonale Zirk.	Gemischte Zirk.	Meridionale Zirk.		
Mannheim [K]	15.6 (Jul - Jan)	21.0 (Jul - Jan)	14.5 (Aug - Jan)	19.6 (Jul - Jan)	21.8 (Jul - Jan)		
Feldberg [K]	13.7 (Jul - Feb)	15.3 (Jul - Feb)	13.2 (Aug - Jan)	14.6 (Jul - Jan)	17.6 (Jul - Feb)		

Als aussagekräftigerer Indikator für die Strahlungseinnahme als die Lufttemperatur erweist sich ihre interdiurne Schwankung oder Tagesamplitude. Sie ist im Sommerhalbjahr größer als

Abb. 16 : Abhängigkeit der Monatsmittel der täglichen Amplitude der Lufttemperatur von der Globalstrahlung, Regressionsgleichungen und Produktmoment-Korrelationskoeffizienten

im Winterhalbjahr und abhängig von der Höhenlage der Station. Sowohl die Monatsmittel der Amplituden als auch ihre jährliche Schwankungsbreite auf den Gipfeln der Hochlagen in den Mittelgebirgen im Vergleich zum Tiefland sind relativ klein, was man in Abb. 16 am Beispiel von Mannheim und Feldberg nachvollziehen kann. Aufgrund der hoch liegenden Fläche, auf der die Umsetzung der kurzwelligen Strahlung in Wärme stattfindet, ist die aufliegende Luftschicht wärmer als die in gleicher Höhe in der freien Atmosphäre. Mit sinkender Strahlungseinnahme kühlt sich die Luft ab über der tagsüber als Heizfläche, jetzt aber als Ausstrahlungs- und Empfangsfläche für die langwellige Strahlung wirkenden Gipfelregion. Mit der Abkühlung nimmt die Luft an Dichte zu. Sie unterschreitet die Temperatur, die ein Luftquantum in gleicher Position in der freien Atmosphäre hat und gleitet hangabwärts. Diese Vorgänge zeigen in bescheidenerem Ausmaß, was in den Hochgebirgsmassiven stärker entwickelt ist und als "Massenerhebungseffekt" bezeichnet wird (vgl. WEISCHET, W. 1995, S. 116). Wie beim Verlauf der Lufttemperatur, ist auch der der Erdbodentemperatur letztlich von der Strahlungseinnahme abhängig. Modifizierend wirken dabei die physikalischen Eigenschaften der Bodenart, ihre Wärmeleitfähigkeit, Wärmekapazität und Wassergehalt. Zusätzliche Variabilität entsteht dadurch, daß die Bodenart nicht homogen ist und durch Vegetation, Niederschläge und Austrocknung ihre physikalischen Eigenschaften im Tages- und Jahresablauf verändert. Hinzu kommt die nächtliche Ausstrahlung, die für den kommenden Tag neue Randbedingungen setzt. Der Tages- und Jahresgang der Erdbodentemperatur ist dem der Lufttemperatur ähnlich, nur daß mit zunehmender Tiefe eine Verzögerung und Dämpfung der Amplitude eintritt. Deshalb kann angenommen werden, daß die Meßreihe aus Tageswerten der Erdbodentemperatur in 10 und 20 cm Tiefe in Abhängigkeit von der Strahlungseinnahme, gegenüber der ungleich größeren Streuung der Lufttemperatur, eine höhere Korrelation aufweist.

Die Kenntnis dieser Zusammenhänge ist für klimaökologische Fragestellungen notwendig, da die Lebensgemeinschaften im Boden (Bodenflora und –fauna) vom Wärmeumsatz an der Oberfläche des Erdbodens als Energiequelle für den Stoffhaushalt abhängig sind. Es ergibt sich daraus die Frage, wie die Tagesamplituden der Erdbodentemperatur aus der Variabilität der kurzwelligen Strahlungseinnahme über die Regressionsanalyse erklärt werden kann.

Abb. 17 : a) Abhängigkeit der Luft – bzw. der Erdbodentemperatur von der Globalstrahlung am Beispiel der Daten vom Geilweilerhof bei Landau / Pf., Beobachtungsperiode 1982-1985. b) s Res Standardabweichung d. Residuen, r Korrelationskoeff., p (%) Irrtumswahrsch. von r, n Anzahl der Datenpaare

Den Ergebnissen liegen die Tageswerte, bzw. Tagessummen der Zeitspanne 1982 – 1985 zugrunde, gemessen an der Klimastation Geilweilerhof, westlich von Landau (195 m ü. NN). Die Station gehört zur Bundesanstalt für Rebenzüchtung und wird von einem Meteorologen

geleitet. Die Daten umfassen Tagesmittel, Tagesmaximum und -minimum der Lufttemperatur (2 m ü. Grund), ebenso der Erdbodentemperatur und die in Wh / m^2 umgerechneten Tagessummen der Globalstrahlung. Die Bodenart ist sandiger Lehm und frei von Vegetation; die Globalstrahlung wird von einem Solarimeter (Typ CM2 von Kipp & Zonen) gemessen, das in der Nähe aufgestellt ist.

Nachgewiesen werden kann in den drei Fällen ein linearer, hoch signifikanter Zusammenhang (Abb. 17 a u. b). Die beste Schätzung der Temperaturamplitude mit der Globalstrahlung ergibt 89 % erklärte Varianz bei 10 cm Erdbodentiefe.

Ähnliche Ergebnisse erhielt DIRMHIRN, I. (1951, S. 216-219) in Wien aus ca. zweijährigen Messungen in 1 cm Tiefe, in unbewachsenem lehmig-humosem Substrat. Die Form der Punktwolke zeigt einen nicht linearen Zusammenhang. Weitere Angaben zur Qualität der Beziehung werden nicht mitgeteilt. Erklärt wird der leicht nach rechts gekrümmte Verlauf damit, daß die stark erhitzte, mit dem Boden in unmittelbarem Kontakt stehende Luftschicht starker Konvektion unterliegt, an deren Stelle dann kühlere Luft tritt. Der damit verbundene Verlust für die Bodenerwärmung bei hoher Strahlungseinnahme bewirkt die Krümmung der Kurve (ib. Abb. 1, S. 217).

Abb. 18 : a) Abhängigkeit der täglichen Temperaturamplitude der Lufttemperatur und Bodentemperatur von der Strahlungseinnahme bei antizyklonaler Westlage an der Station Geilweilerhof 1982-1985 b) Verteilung der Residuen und angepaßte Normalverteilungen

Diese Erscheinung ist mit den Daten vom Geilweilerhof wegen größerer Meßtiefe schwach ausgebildet, aber signifikant, wie z.B. bei antizyklonaler Westlage (Wa), die mit n = 98 Tagen und einem mittleren Bewölkungsgrad von 4.5 Okta vertreten ist (Abb.18a). So liegt bei einer Beschreibung mit quadratischer Regressionsgleichung für die Abhängigkeit der Temperaturamplitude von der Strahlungseinnahme in 10 cm **Bodentiefe** der Korrelationskoeffizient bei r = 0.94, 0.93 bei -20 cm und 0.78 bei zwei Meter über Grund. Die Überprüfung der Residuen durch Anpassung einer Normalverteilung (Abb.18b) bestätigt die visuell anzunehmende Signifikanz für beide Bodentiefen mit r = 0.98, für die Daten über Grund ist die Anpassung geringer (r = 0.92). Die Aufschlüsselung des Jahresgangs der Temperaturamplituden nach ausgewählten witterungsklimatologisch definierten Kollektiven zeigt sowohl für die Verhältnisse über Grund als auch im Boden große Unterschiede (Tab. 7).

		zyklonal	antizykl.	Wa	Wz	GWT HM	тм	heit. Tage	Bew 00	Bew 80
r	[2 m ü Gr]	0.72	0.79	0.78	0.63	0.87	0.85	0.76	0.80	0.18*
r	[-10 cm]	0.90	0.92	0.94	0.89	0.92	0.90	0.91	0.89	0.54*
r	[-20 cm]	0.87	0.90	0.93	0.84	0.91	0.89	0.91	0.89	0.43*
В	ew [10tel O.]	61	37	45	62	33	69	< 16	-	-
n	[Tage}	784	646	98	219	253	55	197	59	187

Tab. 7 : Weitere Ergebnisse der Regressionsanalyse mit witterungsklimatologisch definierten Kollektiven,bezogen auf die Klimastation Geilweilerhof 1982-1985. * lineare Regression; GWT Großwettertyp

Auffällig ist dabei, daß r an Tagen ohne Bewölkung niedriger ausfällt als z. B. bei GWT HM oder TM, obwohl hier die Bewölkung im Mittel zwischen 3.3 und 6.9 Okta liegt. Die Erklärung liegt im wesentlichen im nicht linearen Verhalten der diffusen Sonnenstrahlung gegenüber dem Bedeckungsgrad und der Höhenlage des Meßortes, wie in Abschnitt 8.1 erläutert wird. Andererseits überrascht der relativ geringe Unterschied von r beim Vergleich aller zyklonaler und antizyklonaler Tage. Jedoch treten auf dem Aggregationsniveau der Großwetterlagen Kontraste stärker hervor, wie beim Vergleich antizyklonaler und zyklonaler Westlage (Tab. 7).

8 Bewölkung und Strahlungseinnahme

Sonnenhöhe und Bewölkung tragen erheblich zur Variation der Globalstrahlung am Erdboden bei. Dabei wird in der Bewölkung nur der sichtbare Wassergehalt der Troposphäre erfaßt, während das gasfömige Wasser und der Aerosolgehalt, die die diffuse Komponente der Globalstrahlung maßgeblich verändern, unberücksichtigt bleiben. Im Hinblick auf Reflexion und Absorption der Strahlung (Wolkenalbedo), wären also vor allem Angaben zur Wolkenart und –dichte von Bedeutung sowie zur ihrer räumlichen Verteilung, die aber nicht verfügbar sind. Weitere Einflüsse gehen von der aus Satellitendaten errechneten Kondensstreifendichte aus, die regional bis etwa 1% der Himmelsbedeckung betragen kann (KÖPKE, P. 1999, S. 13). Ein Maß für die gesamte Extinktion der direkten Sonnenstrahlung stellt der in 8.4 beschriebene Trübungsfaktor nach LINKE dar.

In der Regel geht die Bewölkung als Bedeckungsgrad in die Beschreibung ein, geschätzt in zehntel Okta. Mittelwerte der Himmelsbedeckung und Sonnenscheindauer, damit auch die Strahlungseinnahme, verhalten sich nahezu gegenläufig. Als visuell ermittelter Schätzwert ist der Bedeckungsgrad wegen der subjektiven Komponente mit höherer Streuung behaftet. Im folgenden werden die Bewölkungsverhältnisse im Überblick dargestellt.

8.1 Die Bewölkung im Jahresablauf

Im Jahresgang der Bewölkung (Tab.8) liegt bei allen Stationen das Minimum der Monatsmittel im August, das Maximum im Dezember. Die Spannweite ist durch Beerfelden und Alzey markiert. Beerfelden hat im Mittel über das gesamte Jahr die höchsten Bedeckungsgrade, Alzey die niedrigsten. Aus den bereits genannten Gründen fallen die Werte in den Wintermonaten der Bergstationen Hornisgrinde, Feldberg und Höchenschwand niedriger aus als bei den meisten übrigen Stationen. Höchenschwand weicht auch beim Vergleich der Bergstationen durch seine exponierte Lage im Lee des Hochschwarzwaldes zwar nicht in der Tendenz, aber in der Höhe des Bedeckungsgrades erheblich ab. An allen Stationen wird eine ausgeprägte Abnahme der Bewölkung bis zum August sichtbar, die von einem sekundären Maximum im Juni unterbrochen wird und an allen Stationen nachweisbar, aber unterschiedlich stark entwickelt ist. Daran sind vor allem die wolkenreicheren zyklonalen West -, Nordwest – und Nordlagen beteiligt, darunter auch Witterungsregelfälle, wie z. B. Schafskälte (10.–12.6.) und Siebenschläfer (27.6.–1.7.) (s. SCHÖNWIESE, C.-D. 1994, S. 208).

Die Jahresmittel streuen zwischen 49 zehntel Okta (Alzey) und 63 (Beerfelden / Odenwald), ebenso fällt die Jahresamplitude mit 11 (Feldberg, FE) und 24 (Alzey, AZ und Buchen, BU) relativ gering aus. Bad Bergzabern (BZ) bleibt hier wegen Datenunsicherheit unberücksichtigt (s. 8.2). Über das ganze Jahr ist Beerfelden (BE) die wolkenreichste Station mit geringen Schwankungen, wie die Jahresamplitude ausweist. Am niedrigsten sind die Jahresamplituden an den Stationen Feldberg, Hornisgrinde und Beerfelden ausgeprägt. Wolkenärmer sind Alzey und Höchenschwand (HS). Dazwischen reihen sich u. a. Hornisgrinde (HO), Feldberg, Freiburg (FR) und Trier (TR) ein. Die Bewölkungsverhältnisse von Alzey mit den niedrigsten Sommerwerten erklären sich zum großen Teil aus der Leelage zu den umgebenden Gebirgen. So werden wolkenreiche zyklonale Nordwest-, West- und Südwestwetterlagen über dem niedrigeren rheinhessischen Tafel- und Hügelland in ihrer Wirksamkeit zugunsten autochthoner Witterung geschwächt. Ähnlich liegen die Verhältnisse, wenn man Beerfelden (450) mit dem ca. 25 km östlich, bereits im Bauland, im Lee des südlichen Odenwaldes gelegenen Buchen (350) vergleicht. Ebenso profitiert Höchenschwand (1008) in südost exponierter Ortslage am Nordrand des Hotzenwaldes von seiner Lage im Lee des Hochschwarzwaldes. In Abb. 19 sind dazu die Jahresgänge von vier Stationen dargestellt, die als repräsentativ hinsichtlich ihrer Lage im Relief gelten können. Die gestrichelten Kurven zeigen den Verlauf des Variationskoeffizienten v, dessen Bedeutung weiter unten erläutert wird.

Stat.	m ü NN	J	F	М	Α	М	J	J	Α	S	0	Ν	D	Jahr	Jahresampl.
MA	106	61	54	53	52	50	52	47	44	49	55	60	64	53	20
KA	112	62	56	54	53	51	53	46	44	49	56	61	64	54	20
GE	131	63	56	53	51	50	50	46	45	50	57	62	65	54	20
BZ*	180	54	51	48	45	43	44	41	41	44	48	52	54	47	13
AZ	215	59	52	49	45	42	46	40	38	44	51	58	62	49	24
WU	275	61	54	54	52	48	51	47	43	49	54	62	64	53	21
TR	278	63	57	55	53	53	54	48	46	52	57	62	66	56	20
FR	308	63	57	55	56	54	55	48	46	51	58	61	64	56	18
ST	318	56	53	53	53	51	52	46	44	48	53	56	61	52	17
SA	325	63	56	54	52	51	51	45	44	49	56	61	65	54	21
BU	350	63	57	56	53	48	50	46	42	50	56	64	66	54	24
BE	450	68	64	65	62	59	60	58	56	59	63	68	70	63	14
ко	450	67	60	56	55	52	54	48	47	53	60	65	68	57	21
WB	553	60	54	52	52	49	50	44	42	49	53	58	62	52	20
нѕ	1008	53	51	52	51	49	49	41	41	45	49	53	57	49	16
но	1122	58	56	59	56	54	57	51	48	54	56	60	62	56	14
FE	1486	55	56	59	59	57	59	52	49	54	57	58	60	56	11

Tab. 8: Monatsmittel der Bewölkung in 10tel Okta, berechnet aus den Tagesmitteln 1981 – 2000. * s. Text

Abb. 19 : Mittlerer Jahresgang der **Bewölkung** in 10tel Okta und des **Variationskoeffizienten** v an ausgewählten Stationen, berechnet aus den Tagesmitteln 1981 – 2001

Weil die Bewölkungsverhältnisse in Luv- und Lee-Lagen auch die Strahlungseinnahme modifizieren, reicht eine qualitative Herleitung aus der Lage der Stationen im Relief nicht aus. Es gilt, beim Vergleich von zwei Stationen die Signifikanz oder Insignifikanz der Unterschiede des mittleren täglichen Bedeckungsgrades während der Andauer bestimmter Großwetterlagen festzustellen. Formal geht es um zwei verbundene Stichproben, d. h., zur selben Zeit erhobene Daten an verschiedenen Orten. Die Häufigkeitsverteilungen der Stichproben entsprechen nicht der Normalverteilung, sondern nehmen linksschiefe Formen an.

Stat.	GWL	a	S	v	Ме	n	Z-Wert WILC	Sign.
BE	Wz	70	11.4	16.3	73	1241	-15.37	s.
BU	Wz	65	16.9	26.0	70	1241		
BE	SWz	64	15.3	23.9	70	275	-6.92	s.
BU	SWz	59	20.3	34.4	63	275		
BE	NWz	72	11.4	15.8	77	364	-9.51	s.
BU	NWz	66	16.5	25.0	73	364		
FE	Wz	68	16.1	23.7	73	1166	-21.86	s.
HS	Wz	58	20.7	35.7	63	1166		
FE	SWz	63	17.5	27.8	70	255	-9.96	s.
HS	SWz	54	21.3	39.4	57	255		
FE	NWz	69	17.3	25.1	77	343	-9.74	s.
HS	NWz	61	20.7	33.9	70	343		
SA	Wz	66	13.0	19.7	70	591	-7.60	s.
GH	Wz	63	14.8	23.5	67	591		
SA	SWz	61	15.6	25.6	63	142	-2.66	s.
GH	SWz	58	19.2	33.1	63	142		
SA	NWz	62	18.3	29.5	70	193	-0.68	n.s.
GH	NWz	62	17.5	28.2	67	193		
AZ	GWT SW, SE, S	51	23.5	46.1	53	1080	-13.84	s.
GE	GWT SW, SE, S	58	20.9	36.0	63	1080		
AZ	SWz	53	20.3	38.3	57	188	-7.95	s.
GE	SWz	63	15.1	24.0	67	188		

Tab. 9 : Ergebnisse des **WILCOXON-Vorzeichen-Rang-Tests** für die Bewölkungsgrade der Stationenpaare in **Luv-Lee-Lage** während der angegebenen GWL; GH Geilweilerhof, a Arithm. M., s Standardabw., v Variationskoeff., Me Median; s. sign., n.s. nicht sign.; vorgegeb. Irrtumswahrscheinlichkeit $\alpha = 0.05 = 5\%$

Abb. 20 : Mittlerer Jahresgang der **Bewölkung** und des **Variationskoeffizienten** v nach **Zirkulationstypen** an ausgewählten Stationen, berechnet aus den Tagesmitteln 1981 – 2000

Unter diesen Bedingungen ist der Vorzeichen-Rangtest nach WILCOXON der Problemstellung angepaßt (DIEHL, J.M. & ARBINGER, R. 2001, S. 565 ff). Die Prüfstatistik untersucht, ob die Hypothese H₀, die Tagesmittel der Bedeckungsgrade während einer bestimmten GWL, an zwei Stationen zur selben Zeit beobachtet, sich zufällig unterscheiden oder durch die Alternativhypothese H₁, bei signifikantem Unterschied, widerlegt wird. Es wird eine Irrtumswahrscheinlichkeit $\alpha = 0.05$ zugrunde gelegt, d. h., die statistische Sicherheit liegt bei 95 %. Es besteht also das Risiko, daß im Mittel in 5 von 100 Fällen falsch entschieden wird. In Tab. 9 sind die Testergebnisse zusammengefaßt. Bis auf den Vergleich der Stationen Saarbrücken und Geilweilerhof für Tage mit zyklonaler Nordwestlage, bei dem sich die Nullhypothese nicht widerlegen ließ, bestätigen alle übrigen Beispiele, im Rahmen der angegebenen Verläßlichkeit, das Vorhandensein signifikanter Luv-Lee-Effekte.

Wie der Tab. 8 zu entnehmen ist, verlaufen die mittleren Jahresgänge zwar auf unterschiedlichem Niveau, sind aber in der Tendenz sehr ähnlich. Doch sind durch die Mittelwertbildung Eigenheiten verdeckt, die erst bei Berücksichtigung der großräumigen Strömungen sichtbar werden. Bereits die Betrachtung nach dem Anteil der zonalen, gemischten und meridionalen Zirkulation und getrennt nach Sommer- und Winterhalbjahr, zeigt wesentliche Unterschiede (A15 – 17). Innerhalb des Zirkulationstyps ergeben sich wiederum Gegensätze, wenn der Bewölkungsgrad auf zyklonale und antizyklonale Großwetterlagen bezogen wird (A 80).

Im Jahresgang, bei zonaler Zirkulation (identisch mit dem Großwettertyp West), wirken sich im wesentlichen die Anteile zyklonaler und antizyklonaler Westlagen aus (Wz, Wa). Außer im August, wo Wz und Wa fast gleich häufig auftreten, dominiert in den übrigen Monaten Wz. Insgesamt ist in der Beobachtungsperiode Wa mit 24 % an der zonalen Zirkulation beteiligt (A2). Dagegen entfallen bei gemischter Zirkulation von hundert Tagen 69 auf antizyklonale Großwetterlagen, davon allein 34 auf die Lage Hochdruckbrücke über Mitteleuropa (BM), aber nur 14 auf Hoch über Mitteleuropa (HM). Das hat eine Absenkung des Bewölkungsgrades besonders im Sommerhalbjahr zur Folge. Bei meridionaler Zirkulation dominieren leicht, mit 58%, Tage mit zyklonalem Charakter. Die Jahresgänge zeichnen sich daher im Vergleich durch relativ niedrige Jahresschwankungen aus (Abb. 20).

8.2 Variabilität der Bewölkung

Ein weiteres wesentliches Merkmal, das zur Charakterisierung der Bewölkung verwendet wird, ist ihre Veränderlichkeit. Sie ist gegeben durch den mittleren Abstand der Tagesmittelwerte vom Monatsmittel, die Standardabweichung s. Da der Betrag der Standardabweichung von der Größe der Ausgangswerte abhängt, eignet sich s nicht für den Vergleich der Stationen, Monate oder witterungsklimatologischer Kollektive. Die notwendige Normierung wird durch die Bildung des Variationskoeffizienten v erreicht, indem s der Bewölkungsgrade in v.H. ihres Mittelwertes berechnet wird (**11**).

Man erhält damit ein Maß für die relativen Bewölkungsunterschiede oder Veränderlichkeit, das auch in Verbindung mit der Globalstrahlung verwendet wird (8.4). In Abb. 21 ist der Zusammenhang der relativen Bewölkungsunterschiede und Bewölkungsmittelwerten der Großwetterlagen (GWL) am Beispiel von 17 Stationen dargestellt, differenziert nach zyklonaler und antizyklonaler Prägung. Eingezeichnet sind außerdem die Witterungsabschnitte, die keiner GWL eindeutig zugehören, die sog. Übergangslagen.

Es besteht ein enger, linearer und hoch signifikanter Zusammenhang mit negativer Steigung der beiden Regressionsgeraden. D. h., je geringer die Bewölkungsmittelwerte sind, um so höhere relative Bewölkungsunterschiede sind zu erwarten. Dabei nehmen die antizyklonalen GWL (r = -0.84) den größten Bereich ein, mit einer Spannweite von v = 25 bis 113 % und der Bewölkungsmittel von 2 bis 6.5 Okta. Hier übersteigt bei v = 113 % die Standardabweichung der Bewölkung sogar den Bewölkungsmittelwert. Dagegen sind die zyklonalen GWL (r = -0.70) auf den Bereich v = 11.5 bis 45 % verteilt, bei Bewölkungsmitteln zwischen 4.8 und 7.5 Okta. Es entsteht so eine Überlappung (Ü) der beiden Punktwolken. In diesen Bereich fallen auch die meisten Übergangslagen.

Damit bestätigt sich, was bereits FLOHN, H. (1954, S. 51) angemerkt hat, daß die meisten Tage mit antizyklonaler Prägung heitere Tage sind (< 2 Achtel), alle trüben Tage (> 6 Achtel) aber nicht zwangsläufig mit zyklonaler Witterung in Verbindung gebracht werden dürfen.

Abb. 21 : Zusammenhang des relativen Bewölkungsunterschieds der Großwetterlagen (GWL) vom mittleren Bedeckungsgrad, unterschieden nach zyklonalen (n = 272) und antizyklonalen Verhältnissen (n = 237). 17 Stationen im Zeitraum 1981 –2000, 29 GWL / Station u. Übergangslagen. Ü Überlappungsbereich

Abb. 22 : Häufigkeitsverteilungen der Bewölkung zum Zweck des Vergleichs der problematischen Daten der Station Bad Bergzabern (BZ) mit den Nachbarstationen. Der Verteilung von BZ ist eine Gauß'sche Normalverteilung angepaßt (unterbrochene Linie). MA Mannheim, SA Saarbrücken, WB Weinbiet, GH Geilweilerhof, KA Karlsruhe

Die beiden Cluster unterhalb der Regressionsgeraden (Abb. 21) bilden die Verhältnisse der Station Bad Bergzabern ab. Durch ihre Lage tragen sie erheblich zur Erniedrigung des Korrelationskoeffizienten bei, denn ohne diese Station würde der Zusammenhang bei den zyklonalen GWL r = -0.85 und bei den antizyklonalen r = -0.93 betragen. Auffällig sind die geringen Spannweiten der Bewölkungsmittel der GWL sowohl bei den antizyklonalen (3.8 -5 Okta) als auch bei den zyklonalen (4.8 - 5.7 Okta). Wie der Vergleich mit dem mittleren Jahresgang (1951-1980; MÜLLER-WESTERMEIER, G. 1990) zeigt, besteht zunächst kein Anlaß den Daten zu mißtrauen. Die größten Differenzen findet man in den Wintermonaten, wo das Mittel bis zu einem Okta, im Sommerhalbjahr bis zu 0.4 Okta niedriger gegenüber dem aus 30 Jahren ausfällt. Betrachtet man jedoch die Häufigkeitsverteilungen der Bewölkungsgrade der benachbarten Stationen im Umkreis von ca. hundert Kilometern (Abb. 22), so zeigt sich die in unseren Breiten typische asymmetrische Form der Häufigkeitspolygone mit dem Maximum bei 70 < 80 10tel Okta und ein weit schwächer entwickeltes in den Klassen mit niedrigen Bedeckungsgraden. Die Asymmetrie wird durch den Vergleich des arithmetischen Mittels mit dem Median hervorgehoben :

	MA	SA	AZ	BU	BE	WB	KA	GH	BZ
Arithm M	53	54	49	54	63	52	54	51	47
Median	60	60	53	60	67	57	60	57	47
n	7305	7305	7181	7275	7305	6575	7305	3652	7305

Die Verteilung von Bad Bergzabern ist in zweifacher Hinsicht atypisch, weil sie von den Verhältnissen der Stationen in der Umgebung total abweicht und nahezu einer idealen Gauß'schen Normalverteilung folgt. Dem entsprechend sind Durchschnittswert und Median kongruent. Eine Gauß'sche Normalverteilung läßt sich mit r = 0.985 anpassen. Daß die Bewölkungsgrade nicht die wirklichen Verhältnisse darstellen, wird auch bei Überprüfung ihrer Korrelation mit der relativen Sonnenscheindauer offenkundig. So fällt das Bestimmtheitsmaß (B) wesentlich niedriger als bei den übrigen Stationen aus, d. h., nur 50 % der Gesamtvarianz der relativen Sonnenscheindauer werden auf die Varianz der Bewölkung zurückgeführt, während B im Mittel der übrigen Stationen bei 71 % liegt. Hiermit wird mit hoher Wahrscheinlichkeit angenommen, daß die, statistisch gesehen, als Ausreißer geltenden Daten das sonst fast komplementäre Verhalten zur Sonnenscheindauer eingeschränkt erfüllen. Deshalb kann der Datensatz der mittleren täglichen Bewölkung von Station Bad Bergzabern nur unter Vorbehalt verwendet werden.

Weitere Verteilungsmuster zeigen sich, wenn zusätzlich nach Winter- und Sommerhalbjahr unterschieden wird. Als Kollektive werden an Stelle der Großwetterlagen die Monatsmittel von vier Stationen gewählt (MA, AZ, BE, FE), die nach ihrer Lage im Relief als repräsentativ gelten können. Dazu wurden die zyklonalen und antizyklonalen Anteile der Monate aus den Tagesmitteln der Bewölkung errechnet (Abb. 23).

Auch hier besteht in den vier Datenkollektiven ein enger, hoch signifikanter Zusammenhang (r = -0.92), der am stärksten im Sommerhalbjahr bei antizyklonaler Prägung (r = -0.97) auftritt. Die höheren Bewölkungsunterschiede (v) im Vergleich der Halbjahre sind bei antizyklonaler Witterung im Sommerhalbjahr ausgebildet. Sie verteilen sich auf die Bedeckungsgrade 2.7 bis 5.3, dagegen im Winterhalbjahr auf 3.6 bis 6.5 Okta. Bei zyklonalen Monatsanteilen liegen die Bewölkungsunterschiede und die Variationsbreite der Bedeckungsgrade wesentlich niedriger. Außerdem ist der Abstand der Halbjahre wesentlich kleiner. Entsprechend diesem negativen Zusammenhang, verlaufen Bedeckungsgrad und Bewölkungsunterschied im Jahresgang invers zueinander (Abb.19).

Abb. 23 : Zusammenhang von rel. Bewölkungsunterschied (v) und -mittel am Beispiel der Monatsmittelwerte aus Tagesmitteln von 20 Jahren für 4 Stationen in Abb. 24 (MA, AZ, BE, FE), bezogen auf Sommer- und Winterhalbjahr und unterteilt in zyklonale und antizyklonale Verhältnisse

Abb. 24 : Bewölkung und Variationskoeffizient v im mittleren Jahresgang, getrennt dargestellt bei **zyklonalen** und **antizyklonalen** Verhältnissen an ausgewählten Stationen (MA Mannheim, AZ Alzey, BE Beerfelden, FE Feldberg)

Dies kann man auch beobachten, wenn der Jahresgang nach Zirkulationstypen aufgeschlüsselt ist (Abb. 20).

Spaltet man aber die Jahresgänge nach zyklonalen und antizyklonalen Monatsanteilen auf, treten stationsspezifische Verläufe stärker hervor. Am Beispiel der Datensätze von Abb. 23, als Zeitreihen in Abb. 24 dargestellt, ist dies offensichtlich: Über mehrere Tage beharrende und im Jahresgang wiederholt auftretende Luftdruckverteilungen in einem größeren Raum (GWL) transportieren Luftmassen, die im wesentlichen reliefinduzierten Einflüssen unterliegen (s. 5.2, Tab. 9).

Beim Vergleich der einzelnen Jahresgänge der Bewölkungsunterschiede (v) fallen Ähnlichkeiten auf, die sich mit Hilfe der Clusteranalyse zu Gruppen ordnen. Ausgehend von den Monatsmitteln der Bewölkungsunterschiede, unterteilt nach zyklonalen und antizyklonalen Anteilen, ergibt sich eine Datenmatrix aus 16 Stationen x 24 Variablen. In Tabelle A 84 sind diese Daten enthalten. Das Ergebnis ist in Abb. 25 als Dendrogramm dargestellt, hier nach der Methode von Ward. Mit anderen Clusterverfahren durchgeführte Analysen ergaben davon keine wesentlichen Abweichungen.

Trennt man auf dem Verschmelzungsniveau 6 das Dendrogramm auf, dann sind drei Gruppen und die von allen übrigen isolierte Station Beerfelden zu unterscheiden. Wählt man ein niedrigeres Niveau, etwa bei 4, zeigt sich, bedingt durch die Leelage, die Sonderstellung der Station Höchenschwand, im Vergleich zur größeren Ähnlichkeit der Stationen Feldberg und Hornisgrinde. Auch das Cluster, das von den Stationen Alzey und Buchen gebildet wird, weist auf den ähnlichen Jahresgang der Bewölkungsunterschiede aufgrund der Leelage hin. Auf dem niedrigsten Verschmelzungsniveau sind die Stationen in der nördlichen Oberrheinniederung vereint (außer Würzburg). Das benachbarte Cluster faßt auf gleichem

0 5 10 15 20 25 Station Nr + MA 4 15 KA WU 2 GE 1 5 SA WΒ 14 7 FR TR 3 ST б 8 KO 12 AZBU 13 9 HO 10 FE HS 11 BE 16

Verschmelzungsniveau

Abb. 25 : Dendrogramm der **Stationen nach Bewölkungsunterschieden** (v). Methode nach WARD, quadrierte Euklidische Distanz

Niveau Stationen zusammen, die meist um 200 bis 300 m höher liegen (Ausnahme Weinbiet). Die beiden Cluster, vertreten durch den mittleren Jahresgang der in ihnen enthaltenen Stationen, weichen nur geringfügig voneinander ab, bei zyklonalen Verhältnissen weniger als bei antizyklonalen. Daß trotzdem zwei Cluster unterschieden werden, ist auf höhere Monatsmittel der Bewölkungsunterschiede (niedrigere Bedeckungsgrade) bei den Stationen der nördlichen Oberrheinniederung, gegenüber den höher gelegenen Stationen im zweiten Cluster zurückführbar. Ausgenommen bei antizyklonalen Lagen im November und Januar sind die Werte aufgrund von Nebelbildung in den Niederungen herabgesetzt.

Insgesamt ermöglicht der Variationskoeffizient (v) des Bewölkungsgrades, der als relativer Bewölkungsunterschied interpretiert wird, eine zusätzliche Information zum Mittelwert. Das ist auch deshalb vorteilhaft, weil der Mittelwert aus schief verteilten Datensätzen gewonnen wird. Bezogen auf witterungsklimatologisch definierte Kollektive zeichnen sich bei Verwendung des Bewölkungsunterschiedes für Ähnlichkeitsgruppierungen geeignete stationsspezifische Jahresgänge besser ab.

8.3 Gesamttrübung der Atmosphäre : der Trübungsfaktor nach LINKE

Um die Schwächung der direkten Sonnenstrahlung beim Gang durch die Atmosphäre zu erfassen, wurden verschiedene Trübungsmaße entwickelt, wie z.B. der Trübungskoeffizient nach ANGSTRÖM, A. (1930) oder nach SCHÜEPP, W. (1949). Beide Trübungsmaße erfassen die Schwächung durch das in der Atmosphäre enthaltene Aerosol. Der Trübungsfaktor nach LINKE, F. (1939, 1943, 1953) beschreibt dagegen die Schwächung für den gesamten Gehalt an Aerosolen, Spurengasen, Dunst und Wasserdampf und erlaubt zudem eine anschauliche Interpretation. So mißt der Trübungsfaktor die optische Dicke der Atmosphäre im Vergleich zur staub- und wasserdampffreien Atmosphäre über der betreffenden Station zu diesem Zeitpunkt das 6-fache der optischen Dicke der Rayleigh-Atmosphäre beträgt.

Abb. 26 : a) Mittlerer Jahresgang des **Trübungsfaktors n. LINKE** (T_L) 1981-2000; **b**) Mittlere Jahresgang von T_L nach KASTEN et al. (1984) in der Zeitspanne 1979 – 1982, 14 Stationen in Westdeutschland (s. Text)

Berechnungen des Trübungsfaktors für 14 Stationen im westdeutschen Raum in der Zeitspanne 1979 – 1982 sind von KASTEN, F. et al. (1984) publiziert. Zugrunde liegen die mittleren Monatsmittel der Stundenmittel der direkten Sonnenstrahlung in wolkenlosen Stunden. Der mittlere Jahresgang für die Durchschnittsstation ist in Abb. 26 (b) hinzugefügt.

Eine Berechnung setzt voraus, daß an radiometrischen Stationen auch die diffuse Sonnenstrahlung gemessen wird, so daß als Komplement auch die direkte Sonnenstrahlung verfügbar ist (9). Das trifft im Untersuchungsgebiet für die Stationen Würzburg, Trier, Mannheim, Stuttgart und Freiburg zu. Datenbasis sind die Tage in der Zeitspanne 1981 – 2000 mit < 1 Okta Bewölkung (Abb. 26; n = 2146).

Abb. 27 : Häufigkeitsverteilung des LINKE'schen Trübungsfaktors T_L im Sommer –und Winterhalbjahr; T Tropik-, P Polarluftmassen; 5 Stationen 1981 – 2000 (WU, TR, MA, ST, FR), Tage < 1 Okta Bewölkung

LUMA	a T _L WiHj	min T_L	max T _L	n (Tage)	a T _L SoHj	min T _L	max T _L	n (Tage)
сР _т	5.5	2.9	9.4	55	5.2	4.0	14.4	28
mΡ _τ	-	-	-	-	5.9	4.0	9.2	25
сP	4.4	2.2	8.9	204	5.0	3.4	7.3	42
mP	4.8	3.0	11.5	55	5.8	3.7	10.1	67
сР _А	3.9	2.5	11.0	99	5.5	3.3	9.9	31
mP _A	4.4	2.0	8.1	56	5.0	2.7	8.3	30
mTs	-	-	-	-	5.9	4.5	11.3	20
mT	4.3	2.7	10.3	18	-	-	-	-
сТр	4.9	2.4	12.9	483	5.8	2.8	11.7	649
mTp	5.5	2.9	14.4	27	5.6	3.3	10.5	42

Tab. 10 : Trübungsfaktor n. LINKE T_L für ausgewählte Luftmassen im Winter- (WiHj) und Sommerhalbjahr (SoHj), a arithmetisches Mittel; 5 Stationen

Im allgemeinen nimmt der Trübungsfaktor mit steigender Temperatur und damit höherem Wasserdampfgehalt zum Sommer hin zu, um dann im Herbst und Winter wieder kleinere Werte anzunehmen. Die Maxima verteilen sich auf Juli und August, die Minima auf Dezember und Januar. Die Stationen Trier, Stuttgart und Freiburg verhalten sich im Sommerhalbjahr sehr ähnlich, dagegen weichen Mannheim und Würzburg stärker vom

mittleren Jahresgang ab. Auffallend sind für alle Stationen die niedrigeren Werte im Winterhalbjahr, wo man doch annehmen könnte, daß die starke Dunstbildung in den Wintermonaten höhere Werte erzeugt. Aber offenbar ist der Wasserdampf im Vergleich zum Dunst in der Wirkung die dominierendere Komponente (vgl. MÖLLER, F. 1973, II, S. 31).

Insgesamt sind die Jahresgänge des Trübungsfaktors in der Tendenz ähnlich, in der Amplitude leicht abweichend. Hier spiegeln sich die Verhältnisse der in den Großwetterlagen mitgeführten Luftmassen, die großräumig den Verlauf prägen, aber nur untergeordnet die Eigenheiten der Stationslage abbilden (vgl. KASTEN, F. et al. 1984, S. 30).

Unterschieden nach Luftmassen, wegen zu schmaler Datenbasis zusammengefaßt nach Polarund Tropikluft, fällt vor allem die große Schwankungsbreite der Trübungsfaktoren auf (Abb. 27). Sie variiert im Winterhalbjahr für alle Polarluftmassen zwischen 2 und 11.5 (n = 477), für alle Tropikluftmassen zwischen 4.9 und 14.4 (n = 532), bzw. im Sommerhalbjahr 2.7 bis 14.4 (n = 223) und 2.8 bis 11.7 (n = 728). Im Mittel liegt in beiden Halbjahren der Trübungsfaktor für Polarluft im Vergleich zur Tropikluft um ca. 0.5 niedriger. Die mittleren Trübungsfaktoren für die häufiger vorkommenden Luftmassen im Winter- und Sommerhalbjahr sind in Tab. 10 zusammen gestellt, wobei aufgrund ihrer Häufigkeit nur cP (kontinentale Polarluft) und cP_A (kontinentale arktische Polarluft) im Winterhalbjahr und cTp (kontinentale gealterte Tropikluft) in beiden Halbjahren als repräsentativ gelten können. Die restlichen Fälle dienen einer vorläufigen Orientierung.

8.4 Abhängigkeit der Strahlungseinnahme von der Bewölkung

Zwischen Globalstrahlung und Bewölkung besteht eine negative Korrelation: niedrigen Bedeckungsgraden entspricht eine hohe Strahlungseinnahme. Tritt an Stelle des Bedeckungsgrades der Variationskoeffizient v als Maß für die Bewölkungsunterschiede, ist Korrelation positiv: niedrigerer Variabilität entspricht die eine niedrigere Strahlungseinnahme. Eine hohe Korrelation, bzw. ein hoher Wert des erklärten Varianzanteils ist bei der Verwendung von Tageswerten nicht zu erwarten, weil, wie eingangs angedeutet, der nicht kondensierte Wasserdampf und das Aerosol nicht in die Betrachtung eingehen. Gerade diese Komponenten sind ausschlaggebend für den Betrag des diffusen Strahlungsanteils, der zusammen mit der direkten Sonnenstrahlung die Summe der Strahlungseinnahme bildet. Die diffuse Sonnenstrahlung wird im Untersuchungsgebiet nur an fünf Stationen gemessen, die aber so verteilt sind, daß sie für die witterungsklimatologische Aufschlüsselung der Meßreihen in den Niederungen und den unteren Mittelgebirgslagen als Leitfaden dienen können.

Die Abhängigkeit der Absolutwerte der einzelnen Strahlungskomponenten und der Globalstrahlungssumme von den vorgegebenen Bewölkungsstufen (n > 100 Tage / Stufe), zeigt am Beispiel von Mannheim und Freiburg einen straffen, nichtlinearen, hoch signifikanten Zusammenhang (Abb. 28 a), der r = -0.90 nicht unterschreitet (Freiburg, diffuse Sonnenstrahlung) und den Höchstwert (r = -0.97) bei direkter Sonnenstrahlung an der Station Mannheim (Regressionsgleichungen in Abb. 28 c). Bedingt durch die an der Rayleigh-Atmosphäre normierten Strahlungswerte, ergeben sich (Abb. 28 b) Korrelationen mit $r = \pm 0.99$. Die diffuse Sonnenstrahlung ist hier in Prozent der Globalstrahlung ausgedrückt. Verlauf und Korrelation sind bei den restlichen Stationen sehr ähnlich. Weil die Regressionsgleichungen von derselben Bauart sind, wurde auf eine Wiedergabe verzichtet.

Während man in den Globalstrahlungskurven (Abb. 28 a, b) die Verhältnisse der direkten Sonnenstrahlung wiedererkennt, verhält sich die diffuse Sonnenstrahlung abweichend. Obwohl die Streubreite gering ist, kann man ein langsames Ansteigen bis zu mittleren Bedeckungsgraden beobachten, danach eine mit der Globalstrahlung konvergierende Abnahme bis zum höchsten Bedeckungsgrad, wobei die Globalstrahlung mit dem Betrag der diffusen Strahlung identisch werden kann (Abb. 28 a). Dies zeigt auch der Verlauf ihres relativen Anteils an der Globalstrahlung (Abb.28 b).

Daß man trotz hoher Korrelationen mit Hilfe der quadratischen Regressionsgleichungen erhebliche Prognosefehler begehen kann, ergibt sich bei eingehender Betrachtung der Kurven von direkter Sonnenstrahlung und Globalstrahlung (Abb. 28 a). Es fällt auf, daß die höchsten Strahlungseinnahmen nicht bei wolkenlosem Himmel auftreten, sondern erst im Bereich zwischen 1 und 2 Okta. Etwas schwächer ist dies auch bei der diffusen Sonnenstrahlung ausgebildet. Erklärt wird dies durch die Erscheinung, daß hohe Wolken wie Cirrus, Cirrocumulus und Cirrostratus, die in 5 bis 13 km Höhe auftreten, die Sonnenstrahlung abweichend von den mittelhohen und tiefen Wolken beeinflussen. Das trifft ebenso für Wolken zu, die mehrere Wolkenstockwerke durchstoßen können, wie z.B. Cumulonimbus oder Cumulus. Dabei wird durch die Reflexion an den Eiskristallen der Cirren die Extinktion der direkten Sonnenstrahlung herabgesetzt, sodaß es zusammen mit der diffusen Sonnen-

	Station	Regressions-GI. (y =)	r	r² (%)	n (Bew-Stufen)	р(%)
G	Mannheim	4785.22+20.73x-0.87x ²	-0.96	92	25	0.001
D	Mannheim	1269.70+21.59x+0.23x ² -0.007x ³	0.94	88	25	0.001
в	Mannheim	3670.6-26.9x-0.267x ²	-0.97	94	25	0.001
G	Freiburg	4796.54+38.84x-1.06x²	-0.95	90	25	0.001
D	Freiburg	1313.67-2.92x+0.92x²-0.0116x³	0.90	81	25	0.001
в	Freiburg	3742.75-1.92x-0.586x ²	-0.96	92	25	0.001
G	Feldberg	4417.84+56.10x-1.185x ²	-0.95	90	25	0.001
G	Hornisgrinde	5169.09+16.85x-0.775x ²	-0.97	94	25	0.001
G	Höchenschw.	5037.27+10.13x-0.70x ²	-0.97	94	25	0.001
Abb	. 28 c)					

Abb. 28 : a) Abhängigkeit der direkten (B) und diffusen Himmelsstrahlung (D) sowie der Globalstrahlung (G) von der Bewölkung; b) wie a), aber Relativwerte. MA Mannheim, FR Freiburg; G_{N0} Strahlungseinnahme bei Bedeckungsgrad 0 c) Regressionsgleichungen für a) und Bergstationen; p Irrtumswahrscheinlichkeit

strahlung zu einer Zunahme der Globalstrahlungssumme kommt. Bei Cumulus – Bewölkung bewirkt die Bestrahlung der hoch reichenden und grell-weißen Flanken eine Verstärkung der diffusen Sonnenstrahlung, die zusammen mit der durch die Wolkenzwischenräume einfallenden direkten Sonnenstrahlung eine Zunahme der Globalstrahlung hervorruft (vgl. RIEKER, T. 1970, S.23; SCHULZE, R. 1970, S. 80; KASTEN, F. & CZEPLAK, G. 1980, S. 177 ff). Eine vergleichbare Situation entsteht an Bergstationen, wenn unterhalb der Empfangsfläche eine die Inversionsobergrenze markierende Wolkendecke die Strahlung reflektiert, was zur Erhöhung der diffusen Sonnenstrahlung führt. Ähnliches geschieht bei Reflexion an einer Schneedecke oder Mehrfachreflexionen zwischen Empfangsfläche und tiefhängender Wolkendecke (vgl. DIRMHIRN, I. 1964, S. 99). Nachweisen läßt sich dies nur mit gemessenen Daten. Die Sonnenscheindauer als erklärende Variable im Regressionsmodell ist dafür unempfindlich.

	HüNN [m]	Regressionsgl.(y=)	r	r²	n [Mon]	p[%]
MA	106	92.723 - 0.928x	-0.956	0.91	12	0.002
KA	112	94.172 - 0.925x	-0.973	0.95	12	0.001
GE	131	93.767 - 0.943x	-0.983	0.97	12	0.001
BZ*	180	105.780 - 1.328x	-0.981	0.96	12	0.001
ΑZ	215	90.552 - 0.990x	-0.966	0.93	12	0.001
WU	275	89.030 - 0.831x	-0.970	0.94	12	0.001
TR	278	101.447 - 1.059x	-0.968	0.94	12	0.001
FR	308	99.254 - 0.979x	-0.961	0.92	12	0.002
ST	318	86.994 - 0.801x	-0.937	0.88	12	0.005
SA	325	94.302 - 0.953x	-0.983	0.97	12	0.001
BU	350	85.987 - 0.764x	-0.978	0.96	12	0.001
BE	450	123.888 - 1.280x	-0.983	0.97	12	0.001
ко	450	97.306 - 0.943x	-0.970	0.94	12	0.001
WB	553	81.501 - 0.742x	-0.973	0.95	12	0.001
HS	1008	81.993 - 0.682x	-0.927	0.86	12	0.007
но	1122	81.197 - 0.613x	-0.912	0.83	12	0.012
FE	1486	76.478 - 0.573x	-0.816	0.67	12	0.150

Tab. 11: Bestimmung der Regressionsgeraden y = a + bx und der Korrelationskoeffizienten als Maß für die**Abhängigkeit** der **Monatsmittel der relativen Globalstrahlung** von den **Monatsmitteln der Bewölkung** (p = Irrtumswahrscheinlichkeit)

Die Abhängigkeit der relativen Globalstrahlung von der Bewölkung auf dem Aggregationsniveau der Monatsmittel läßt sich als Modell einer linearen Einfachregression darstellen (Tab. 11). Dabei ist die Streuung um die Regressionsgerade bei den meisten Stationen gering, was sich in hohen Beträgen der Korrelationskoeffizienten niederschlägt, bzw. in hohen Beträgen der erklärten Varianz. Entsprechend liegt die Irrtumswahrscheinlichkeit bis auf wenige Ausnahmen im hoch signifikanten (≤ 0.001) und sehr signifikanten (≤ 0.01) Bereich. Abweichend davon zeigt die Station Hornisgrinde einen schwächeren Zusammenhang, der noch signifikant ist (≤ 0.05), während die Daten der Station Feldberg die Anforderung des Regressionsmodells nicht erfüllen. Die übliche Interpretation der Regressionsgleichung, indem die Bewölkung gleich 0 gesetzt wird, um im Parameter a den Betrag der relativen Strahlungseinnahme bei unbewölktem Himmel zu erhalten, ist hier nicht statthaft, da dieser Bewölkungsgrad als Monatsmittel nicht vorkommt. Ebenso gilt das für die relative Strahlungseinnahme bei 80 Okta Bewölkung. Die Regressionsgleichungen gelten also nur für das vorliegende Aggregationsniveau im Rahmen der verwendeten Datenbasis.

Abb. 29 : Abhängigkeit der relativen Globalstrahlung von der Bewölkung, differenziert nach Mittelwerten der zyklonalen und antizyklonalen Großwetterlagen (GWL) einschließlich der Übergangslagen. 16 Stationen (ohne Bad Bergzabern)

Wie bereits die Untersuchung der Bewölkungsverhältnisse gezeigt hat, erzeugt die Differenzierung des Zusammenhangs von relativer Globalstrahlung und Bewölkung nach zyklonalen und antizyklonalen Witterungsabschnitten überlappende Punktwolken (Abb. 29). Dabei bilden die Mittelwerte der zyklonalen Großwetterlagen (GWL) ein klar begrenztes Cluster (Relative Globalstrahlung 28 < 47 %; Bewölkung 51 < 75 Okta), während im Feld der antizyklonalen GWL die Punktwolke zwar stark streut, aber auch Cluster erkennen läßt. Zwei Cluster zeichnen sich ab, deren Zentren etwa bei 51 % bzw. 48 % relativer Globalstrahlung und bei 44 bzw. 49 Okta liegen. Wie eine Auszählung ergibt, sind am häufigsten die GWL BM und HB bzw. Wa, NWa und Na beteiligt. Die drei höchsten Werte

der mittleren Strahlungseinnahme mit den niedrigsten mittleren Bewölkungsgraden im antizyklonalen Feld sind (in abnehmender Reihe) den Stationen Feldberg, Hornisgrinde und Höchenschwand bei GWL HM zugeordnet. Ebenso wie bei den antizyklonalen GWL ist, wie

Abb. 30 : Abhängigkeit der relativen Globalstrahlung von der Bewölkung am Beispiel der Bergstationen Hornisgrinde HO, Feldberg FE und Höchenschwand HS, unterschieden nach zyklonalen und antizyklonalen monatlichenVerhältnissen

bereits o. erörtert, an den niedrigsten Bewölkungsgrad nicht zwangsläufig auch die höchste Strahlungseinnahme gekoppelt und umgekehrt. Die Häufigkeitsverteilung der hundert niedrigsten auf die GWL bezogenen Globalstrahlungsmittel im zyklonalen Feld (28 < 36 %; Bewölkung 60 < 75 Okta) zeigt, daß die GWL TM (16 %) den höchsten Anteil bildet, gefolgt von HNFz (14 %), NEz (13 %), WS und NWz (je 12 %), WW (11 %) und SEz (10 %). Erstaunlich gering ist Wz mit 3 % und TRM mit 6 % vertreten. Die restlichen 3 % entfallen auf Sz. Im Vordergrund stehen also mit einem Anteil von 46 % GWL der meridionalen Zirkulation, gefolgt von denen der gemischten (28 %) und zonalen (26 %).

In der Regel ist der Zusammenhang von relativer Globalstrahlung und Bewölkung bei den antizyklonalen GWL in der Regel strenger als bei den zyklonalen. Wenn man die GWL ohne diese Unterscheidung der Berechnung zugrunde legt, weisen fast alle Stationen eine zusammenhängende Punktwolke auf. Das ist bei den Bergstationen Hornisgrinde und Feldberg nicht der Fall (Abb. 30). Hier liegen nicht die Mittelwerte von GWL zugrunde, sondern die auf den Monat bezogenen Mittel der antizyklonalen und zyklonalen Tage. Bei beiden Stationen bilden antizyklonale und zyklonale Monatsanteile deutlich voneinander getrennte Cluster. Auffällig ist die Konzentration im zyklonalen Feld auf Bewölkungsgrade 60 < 75 Okta bei einer Strahlungseinnahme im Bereich 32 < 42 %. Zum Vergleich sind auch die Verhältnisse von Höchenschwand eingezeichnet. Witterungsklimatologisch deutet das Cluster der zyklonalen Monatsanteile für beide Stationen auf Staueffekte hin.

8.4.1 Strahlungseinnahme und Veränderlichkeit der Bewölkung

Wie bereits im Abschnitt 8.4 eingangs kurz dargestellt, beschreibt die Abhängigkeit der Globalstrahlung von der Veränderlichkeit der Bewölkung einen positiven, linearen Zusammenhang. Um witterungsklimatologische Aussagen zu ermöglichen, beziehen sich im

Beispiel (Abb. 31) die Regressionen auf die Ausprägung der Großwetterlagen an ausgwählten Stationen. Obwohl sich durch Regression zweiten Grades das Modell noch geringfügig optimieren ließe, wurde die lineare Regression der Einfachheit wegen bevorzugt.

Abb. 31 : Abhängigkeit der relativen Globalstrahlung (RG) von der relativen Veränderlichkeit der Bewölkung (v), bezogen auf die Großwetterlagen, für die Stationen Mannheim, Hornisgrinde, Feldberg und Beerfelden

	m ü NN	RG	Bew v	Bew	RG	Bew v	Bew	RG	Bew v	Bew
		ww	ww	ww	HM	HM	HM	ТΜ	TM	ΤM
MA	106	32	16	68	58	85	31	29	19	69
KA	112	34	16	68	58	84	33	31	20	69
GE	131	30	15	69	56	89	33	29	20	69
AZ	215	33	29	61	53	99	30	32	24	67
WU	275	36	22	66	59	88	30	32	20	68
TR	278	29	17	69	60	80	34	28	18	70
FR	308	35	18	68	58	80	35	31	18	71
ST	318	37	19	65	63	87	27	32	21	67
SA	325	29	16	68	59	86	32	28	19	69
BU	350	35	18	69	60	97	29	32	20	70
BE	450	32	12	72	61	48	44	31	13	73
ко	450	37	19	67	51	70	42	35	19	69
WB	553	32	19	65	60	83	29	28	19	67
HS	1008	39	27	64	66	113	20	34	24	67
но	1122	34	18	72	74	104	21	30	17	73
FE	1486	35	17	71	76	84	25	29	16	73

Tab. 12 : Maxima und Minima der relativen Globalstrahlung (RG), relativen Veränderlichkeit der Bewölkung (v) und Bewölkung bei den GWL WW (winkelförmige Westlage), HM (Hoch über Mitteleuropa) und TM (Tief Mitteleuropa) für alle Stationen

Bei allen Stationen ergibt sich ein hochsignifikanter Zusammenhang mit r = 0.89 (Konstanz) ≤ 0.97 (Hornisgrinde, Feldberg). Auffallend ist, daß hier wiederum keine einheitliche Punktwolke der GWL vorliegt, sondern die Aufteilung in zwei Cluster, die mehr oder weniger gut ausgebildet sind. Der Cluster, bestehend aus den GWL mit niedriger relativer Veränderlichkeit der Bewölkung und niedriger relativer Strahlungseinnahme, deckt sich mit den zyklonalen GWL, bzw. mit den überwiegend allochthonen, der andere mit den antizyklonalen GWL, bzw. überwiegend autochthonen Witterungsabschnitten. Eine extreme Position nehmen dabei die winkelförmige Westlage (WW) und Tief Mitteleuropa (TM) im zyklonalen und Hoch über Mitteleuropa (HM) im antizyklonalen Bereich ein. In Verbindung mit dem mittleren Bewölkungsgrad der GWL sind die Wertepaare in Tab. 12 für alle Stationen aufgeführt.

Abb. 32 : Veränderlichkeit der Bewölkung (v) und **mittlere Strahlungseinnahme** (RG, RD) für alle GWL am Beispiel der Station **Mannheim.** (Überblick GWL : s. Abb.2 u. A 0 - A 4))

Eine Zusammenschau der mittleren Verhältnisse aller GWL, am Beispiel der Station Mannheim, vermittelt Abb. 32. Für die übrigen Stationen gelten ähnliche Ausprägungen. Bemerkenswert ist zunächst die Zäsur zwischen zyklonalen und antizyklonalen GWL. Im Mittel erreicht die relative Globalstrahlung (RG) bei den antizyklonalen GWL 51 % der bei der Rayleigh – Atmosphäre möglichen Strahlungseinnahme, bei den zyklonalen dagegen nur 37 %. Entsprechend beträgt die relative Veränderlichkeit der Bewölkung 58 % bzw. 26 %. Während die mittlere relative Globalstrahlung starken Schwankungen in beiden Witterungsbereichen unterworfen ist, schwankt die relative diffuse Sonnenstrahlung (RD) bei den einzelnen GWL nur unwesentlich um den Mittelwert von 25 %. Es ist also hauptsächlich die direkte Sonnenstrahlung, die aufgrund der GWL-spezifischen Bewölkungsunterschiede die Variabilität der Globalstrahlung erzeugt.

8.5 Jahresgang der Beziehung Globalstrahlung und Bewölkung

Der Zusammenhang von Tageswerten der relativen Globalstrahlung und des Bewölkungsgrades (565 – 620 Wertepaare / Monat und Station), läßt sich am besten mit Regressionsgleichungen zweiten Grades beschreiben. Als Maß für die Strenge des
Zusammenhangs dieser Abhängigkeit wird der Produktmoment – Korrelationskoeffizient r bestimmt. Auf alle Stationen angewendet, erhält man so eine aus 16 Stationen x 12 Monate aufgebaute Korrelationsmatrix. Sie ist die Grundlage, um der Frage nach räumlichen Verteilungsmustern nachzugehen. Weil der Zusammenhang umgekehrt proportional ist – je niedriger der Bedeckungsgrad, um so höher die relative Strahlungseinnahme – hat r ein negatives Vorzeichen, wird hier aber in Absolutwerten angegeben.

Der Jahresgang von r kommt durch die unterschiedlichen Anteile von zyklonalen und antizyklonalen GWL zustande. Wie bereits o. dargelegt, ist r bei antizyklonalen GWL ausgeprägter als bei zyklonalen, örtlich modifiziert durch die Anzahl der Nebeltage, Höhenlage und Exposition zur Transportrichtung der Luftmassen. Bereits bei der Betrachtung der Korrelationsmatrix (A86) fällt die relativ große Spannweite von r in den Wintergegenüber den Sommermonaten auf : z.B. 0.66 (Alzey) bis 0.92 (Feldberg) im Januar, 0.80 (Würzburg, Trier, Geisenheim) bis 0.88 (Hornisgrinde) im August. Ebenso ist die Amplitude des Jahresgangs von r bei den einzelnen Stationen sehr unterschiedlich : z.B. r = 0.88 bis 0.92 (Hornisgrinde) oder r = 0.66 bis 0.85 (Alzey). Dies stützt die Vermutung, daß die Matrix latente Gruppierungen enthält.

Im Dendrogramm der Clusteranalyse nach dem average linkage – Verfahren (Abb. 31), wobei in die Matrix zusätzlich die relative Höhenlage der Stationen eingeht, zeichnen sich zunächst zwei große Cluster ab, die Bergstationen (HS, HO, FE) und die übrigen Stationen. Bei letzteren sind wiederum zwei Cluster zu unterscheiden, die ebenfalls die Höhenabhängigkeit im Intervall 275 bis 350 m betonen (WU, FR, TR, ST, SA, BU), und mit abnehmender Homogenität des Clusters schließen sich die höher gelegenen Stationen (450 bis 553 m; BE, KO, WB) an. Davon hebt sich das Cluster mit niedriger gelegenen Stationen ab (106 bis 215m; MA, KA, GE, AZ). Insgesamt wird deutlich, daß die Clusterbildung von der relativen Stationshöhenlage dominiert ist.

Verschmelzungsniveau

Abb. 33 : Dendrogramm nach dem average linkage – Verfahren. Datenbasis : Matrix der Korrelationskoeffizienten der Beziehung rel. Globalstrahlung und Bewölkung, einschließlich der rel. Stationshöhenlage

Trennt man das Dendrogramm etwa auf dem Verschmelzungsniveau 5 auf, ergeben sich drei Gruppen. Da die Station Feldberg auf diesem Niveau isoliert ist und formal als Ausreißer gelten müßte, wurde sie in die Gruppe aufgenommen. Die gefundene Gruppierung ist vorläufig und dient der sich anschließenden Diskriminanzanalyse, die bereits eine Gruppierung voraussetzt.

Abb. 34 : Ergebnisse der Diskriminanzananlyse aus der Matrix der Korrelationskoeffizienten der Beziehung rel. Globalstrahlung und Bewölkung

Mit denselben Variablen, aber ohne die relative Stationshöhe, wird die Diskriminanzanalyse mit schrittweiser Auswahl der Variablen durchgeführt. Weil drei Gruppen vorgegeben sind, ergeben sich zwei Diskriminanzfunktionen. Von den zwölf Variablen, den monatlichen Korrelationskoeffizenten, wählt der Algorithmus die Verhältnisse im Januar und Februar aus. Sie reichen aus, um die drei Gruppen signifikant zu trennen (Abb. 32). Die restlichen Monate tragen nicht signifikant zur Verbesserung der Diskriminanz (Unterschiedlichkeit) bei. Aufnahmekriterium ist Wilks Lambda (s. BACKHAUS, K. et al. 1994, S. 120 ff).

Beide Diskriminanzfunktionen (DF) zusammen erreichen eine hoch signifikante Trennung der Gruppen (DF 1 : $0.000 \le 0.05 = \alpha$). Nach Extraktion der ersten DF unterscheiden sich die mittleren Diskriminanzwerte der drei Gruppen ebenfalls noch hoch signifikant (DF 2 : $0.0017 \le 0.05 = \alpha$). Insgesamt gelingt eine Trennung der Stationengruppen zu 100 %.

Der mittlere Jahresgang des Korrelationskoeffizienten einer jeden ermittelten Stationengruppe ist in Abb. 33 dargestellt. Wie bereits die Clusteranalyse gezeigt hat, bestätigt sich auch hier die Bedeutung der Stationshöhenlage als Randbedingung, an die insbesondere die Häufgkeit der Tage mit Strahlungs- und Advektionsnebel in den Herbst – und Wintermonaten gebunden ist. Sie setzen durch den höheren Anteil der diffusen Sonnenstrahlung an der Globalstrahlung,

Abb. 35 : Mittlerer Jahresgang des monatlichen Korrelationskoeffizienten r der Gruppen 1 - 3 in der Beziehung relative Globalstrahlung und Bewölkung

was sich bis zum völligen Ausfall der direkten Sonnenstrahlung steigern kann, den Korrelationskoeffizienten herab. Am stärksten kontrastieren die Stationen in den Niederungen (Gruppe 2) mit denen in den höchsten Lagen des Schwarzwaldes (Gruppe 3). Die relativ große Distanz einzelner Stationen zum Gruppenzentroid, weist auf weitere orographisch bedingte Eigenheiten. Die größt mögliche Übereinstimmung findet man bei den Stationen Freiburg, Saarbrücken, Würzburg und Weinbiet in Gruppe 1. In dieser Gruppe ist die Streuung um das Gruppenzentroid relativ klein, mit Ausnahme der Station Konstanz (s.a. Abb.31). Insgesamt zeigt das Ergebnis eine signifikante und interpretierfähige Unterscheidung in drei Stationsgruppen, deren Gültigkeit streng genommen nur für die Tageswerte der Periode 1981 – 2000 zutrifft.

8.5.1 Die Globalstrahlung an Niederschlagstagen

Die allgemeine Schwächung der Globalstrahlung wird an Regentagen durch die Art der Niederschlagsbildung weiter modifiziert. Zyklonalregen, aber auch Staueffekte wirken sich auf die Strahlungseinnahme aus, die dadurch stark reduziert sein kann. Andererseits beobachtet man bei Konvektionsbewölkung, bedingt durch Reflexion der Sonnenstrahlung an den vertikal aufstrebenden Wolkenflanken, eine Erhöhung der Strahlungseinnahme (s. 8.4). Höhere Extinktion der Globalstrahlung beobachtet man bei den Wolkenarten (Zusatz "opacus") Altocumulus, Altostratus, Stratocumulus, Stratus und Nimbostratus (vgl. KASTEN, F. et al. S. 27/28 u. 80-82). Die wichtigsten Parameter sind der Bedeckungsgrad, die horizontale und vertikale Ausdehnung, Dichte und Höhenlage der Wolken (Stockwerk). Vielfach läßt sich Wolkenbildung und Niederschlag als Teil der Wetterwirksamkeit von Fronten einordnen, wobei bestimmte Wolkenarten, bzw. Wolkenart - Sequenzen, typologische Bedeutung erlangen können. Z. B. bildet sich eine markante Frontbewölkung, wenn Kaltluft auf labilisierte, geschichtete Warmluft trifft. Während in der Warmluft die Labilität u.a. durch Altocumulus castellanus angezeigt ist, baut sich über der Aufgleitfront, mehrere tausend Meter vertikal ausgedehnt, Cumulonimbus auf, oft gekrönt von einem Amboß (incus). Dieser Vorgang löst im Sommer häufig Gewitter und Starkregen aus. Nach

der Frontensystematik von FAUST, H. (1951) und SCHNEIDER-CARIUS, K. (1953) (vgl. a. BORCHERT, G. 1978, S.117-122), handelt es sich um eine aktive, d.h. der Bodenfront in der Höhe vorauseilende Ana – Kaltfront. Im Gegensatz dazu steht die aktive Ana-Warmfront. Sie entsteht beim Aufgleiten von Warm- auf Kaltluft am Boden. Der Bodenfront einige hundert Kilometer voraus, bildet sich eine typische Sequenz von Wolkenarten. Angeführt von einem Cirrenschirm als Schlechtwetterbote, folgen in Richtung Bodenfront Cirrostratus und schließlich Altostratus mit großflächigem, bis zu zwölf Stunden anhaltendem Landregen.

Abb. 36 : Verhalten der **relativen Globalstrahlung** bei **totaler Himmelsbedeckung** (8 Okta). Mittlerer Jahresgang an **trockenen Tagen** und an **Tagen mit Niederschlag**, bezogen auf die in der Diskriminanzanalyse (Abb.34) ermittelten **drei Stationsgruppen** (a-c) :

- a) Würzburg, Trier, Freiburg, Stuttgart, Saarbrücken, Buchen, Beerfelden, Konstanz, Weinbiet
- b) Mannheim, Karlsruhe, Geisenheim, Alzey
- c) Höchenschwand, Hornisgrinde, Feldberg

Über die Signifikanz der Unterschiede siehe Text

Um die Frage zu beantworten, ob ein signifikanter Unterschied in der Strahlungseinnahme an niederschlagsfreien Tagen und an Niederschlagstagen bei gleich starker Bewölkung besteht, werden zunächst von allen Stationen die relative Globalstrahlung der Tage mit totaler Bewölkung (8 Okta) ausgezählt und die Strahlungseinnahme als Monatsmittel im Jahresgang getrennt nach trockenen Tagen und Tagen mit ≥ 1 mm Niederschlag dargestellt (vgl. Abb. 36):

Relative Globalstrahlung bei			J	F	М	Α	М	J	J	Α	S	0	Ν	D	
Bew 8 Okta o	5. N	dschl.	16 Stat.	22.2	22.2	22.1	23.7	21.1	23.3	25.7	25.9	24.6	20.7	21.5	21.6
Bew 8 Okta	≥	1mm	16 Stat.	23.9	22.8	22.2	20.9	19.4	21.1	21.3	20.3	20.7	19.6	21.3	22.5

Tage mit 8 Okta Bewölkung eignen sich deshalb gut, weil Schätzfehler bei der Bestimmung der Himmelsbedeckung nahezu ausgeschlossen sind.

Der Anteil der Tage mit totaler Himmelsbedeckung an den einzelnen Stationen hat eine große Spannweite und weist auf den Einfluß von Luv –und Leelagen. Den niedrigsten Anteil, 7.6 %, hat Stuttgart im Lee des Schwarzwaldes, den höchsten mit 32.6 % die Station Hornisgrinde. Insgesamt sind von der Summe aller Tage der 16 Stationen 15.5 % Tage mit 8 Okta Bewölkung. Davon sind 9.6 % (n = 11263), bezogen auf die Periode 1981-2000, Tage mit \geq 1 mm Niederschlag und 5.9 % (n = 6891) niederschlagsfreie Tage. Im Mittel aller Stationen liegt die relative Strahlungseinnahme bei 22% der Strahlungseinnahme der Rayleigh – Atmosphäre, an trockenen Tagen geringfügig höher als an Niederschlagstagen, gültig für jeweils 8 Okta Bewölkung.

Wie aus den Durchschnittszeilen hervorgeht, zeigt sich jedoch in den Sommermonaten eine deutliche Schwächung der Strahlungseinnahme an Niederschlagstagen. Die Prüfung auf Signifikanz geschieht über den MANN-WHITNEY-U-Test, ein nichtparametrischer Test, weil die Werte, wie der Q-Q-Plot ausweist, nicht normalverteilt sind. Im vorliegenden Fall kann die Nullhypothese, daß die Unterschiede in den mittleren Jahresgängen der Strahlungseinnahme bei 8 Okta Bewölkung ohne Niederschlag und mit ≥ 1 mm Niederschlag / Tag zufällig sind, mit einer Irrtumswahrscheinlichkeit von 5 % zurückgewiesen werden.

Es liegt nahe, die über die Diskriminanzanalyse aus der Abhängigkeit der Strahlungseinnahme von der Bewölkung ermittelten drei Stationengruppen (Abb. 34) hinsichtlich ihrer Beziehung zum Niederschlag zu untersuchen. Als Datenbasis liegen wieder die Tage mit 8 Okta Bewölkung zugrunde, differenziert nach niederschlagsfreien Tagen und Tagen mit 0.1 bis 1.0 mm, 1.1 bis 10 mm und \geq 10.1 mm Niederschlag, jeweils im Jahresgang (Abb. 36 a-c; Datensatz in A 87). Die Anwendung des U – Tests liefert folgende Ergebnisse :

	Gr1: mittlere Mittelgebirgsl.			Gr2:	Niederu	ngen	Gr3 : Gipfellage Schwarzw.			
Niederschl. [mm]	0.1-1.0	1.1-10.0	≥ 10.1	0.1-1.0	1.1-10.0	≥ 10.1	0.1-1.0	1.1-10.0	≥ 10.1	
Signifikanz :	0.114	0.000	0.000	0.114	0.012	0.000	0.219	0.114	0.052	
Verbale Bez. :	nicht sign.	hoch sign.	hoch sign.	nicht sign.	sign.	hoch sign.	nicht sign.	nicht sign.	nicht sign.	

Mit Ausnahme der Bergstationen im Schwarzwald ist der Unterschied der Strahlungseinnahme für die Tage, die in die Intervalle 1.1-10 mm und \geq 10.1 mm Niederschlag fallen, im Vergleich zu den niederschlagslosen Tagen bei gleichem Bedeckungsgrad von 8 Okta, nicht zufällig. Diese Testergebnisse können trotzdem nur als vorläufig gelten, weil der Bedeckungsgrad immer noch eine große Variabilität der oben genannten Parameter zuläßt. Mittelbar weisen die Ergebnisse darauf hin, daß die dunkleren und dichteren Regenwolken eine stärkere Absorption der Globalstrahlung bewirken (s.u.).Ebenso dürfte der mit Regentropfen und verdunstendem Wasser erfüllte Raum zwischen

der Unterseite der Wolke und der Erdoberfläche die Strahlungseinnahme bei länger andauernden Niederschlagsereignissen merklich beeinflussen.

Aufbauend auf den Ergebnissen der Signifikanztests, werden in einer Zusammenschau die Bewölkung, relative Globalstrahlung und diffuse Sonnenstrahlung im Jahresgang mit Isoplethen der relativen Häufigkeit der Intensitätsstufen aufgeschlüsselt und nach den vorgenannten Niederschlagsintervallen unterschieden. Zum Vergleich sind die Verhältnisse für die niederschlagsfreien Zeitspannen vorangestellt (Abb. 37 a-d). Die Ausgangsdaten der Darstellung repräsentieren nicht die mittleren Tageswerte der Stationsgruppe, sondern die Tageswerte der einzelnen Stationen (Würzburg, Trier, Mannheim, Stuttgart und Freiburg). Dadurch wird die gesamte Variationsbreite der dargestellten Klimaelemente erfaßt. Die Auswahl dieser Stationen der mittleren Mittelgebirgslage, mit Ausnahme von Mannheim, ist hier wiederum an die Datenverfügbarkeit der diffusen Sonnenstrahlung gebunden.

Der Zusammenhang von Strahlungseinnahme und Niederschlag folgt der allgemeinen Tendenz, daß mit zunehmenden Tagesniederschlägen die relative Globalstrahlung (RG) abnimmt. Auffällig ist auch die relativ große Differenz der Werte beim Übergang von niederschlagsfreien Verhältnissen zu denen mit Niederschlag. Das führt zur einer mittleren Abschwächung der relativen Strahlungseinnahme um 17 bis 27% (Tab.13a, RG). Ebenso gilt das für die relative diffuse Sonnenstrahlung (RD), die mit 1 bis 8 % aber schwächer ausgeprägt ist.

a)	Bew	Bew	Bew	Bew	RG	RG	RG	RG	RD	RD	RD	RD
N [mm]	0.0	0.1-1.0	1.1-10	≥10.1	0.0	0.1-1.0	D 1.1-10	≥10.1	0.0	0.1-1.0	1.1-10	≥10.1
x	42	63	67	71	54	37	32	27	27	26	23	19
Varkoeff.	57	24	18	16	34	46	52	64	29	30	35	43
Median	43	67	70	73	59	36	30	22	27	27	24	19
n	18651	5927	9784	1967	18651	5927	9784	1967	18651	5927	9784	1967
b)	-		Sor	nmer -	Halb	jahr			Winter	- Hall	ojahr	
N [m m]		. 0.0	D	0.1-1.0	1.1-	10.0	≥ 10.1	0.0	0.1-1.	0 1.1	-10.0	≥ 10.1
Bew	antizyk	d. 3	2	55		58	60	43	6	5	69	74
	zyklon	al 5	0	61		66	70	55	6	6	70	75
RG	antizyk	d. 6	2	45		43	41	51	3	3	31	25
	zyklon	al 5	1	39		35	29	46	3	5	28	19
RD	antizyk	d. 2	4	25		25	24	27	2	5	23	20
	zyklon	al 2	7	26		24	20	29	2	6	22	16
n [Tage]	antizył	d. 311	0	1737	3	8562	916	2688	227	9	4216	690
	zyklon	al 659	0	737	1	1040	275	6093	108	7	825	55
Σ		. 970	0	2474	2	1602	1191	8781	336	6	5041	745

Tab. 13 : Relative **Strahlungseinnahme** (RG, RD) an Tagen ohne und mit **Niederschlag**, zusammengefaßt in Niederschlagsklassen am Beispiel der Stationsgruppe Würzburg, Trier, Mannheim, Stuttgart und Freiburg **a**) Maßzahlen zu Häufigkeitsverteilungen der Bewölkung, RG und RD **b**) **antizyklonal** und **zyklonal** geprägte Tage im **Sommer- und Winterhalbjahr**. Ohne Übergangslagen !

Abb. 37 : Isoplethen der relativen Häufigkeit von Bewölkung, rel. Globalstrahlung und rel. diffuser Sonnenstrahlung im mittleren Jahresgang bei täglichen Niederschlagssummen der Stationen Würzburg, Trier, Mannheim, Stuttgart und Freiburg; Klassenbreite 5/10 Okta bzw. 5 % a) Tage mit 0.0 mm Niederschlag; n = 18~651 Tage

Abb. 37 b: wie Abb. 36 a, aber für Tage mit einer Niederschlagssumme von 0.1 bis 1.0 mm; n = 5927 Tage

0

10

20

Abb. 37 c: wie Abb. 36 a, aber für Tage mit Niederschlagssummen von 1.1 bis 10.0 mm; n = 9784 Tage

Abb. 37 d: wie Abb. 36 a, aber für Tage mit Niederschlagssummen \geq 10.1 mm; n = 1967 Tage

		Sohj.			Wihj.			Sohj.			Wihj.		
N [mm]	0.0	0.0	0.0	0.0	0.0	0.0	0.1-1	0.1-1	0.1-1	0.1-1	0.1-1	0.1-1	
GWT	RGa	RD	RB	RGa	RD	RB	RGa	RD	RB	RGa	RD	RB	
w	48	27	25	54	30	16	58	26	16	65	27	8	
sw	40	26	34	46	28	26	55	26	19	63	26	11	
NW	45	27	28	54	27	19	59	25	16	68	25	7	
нм	36	23	41	48	27	25	47	24	29	66	26	8	
тм	58	29	13	64	27	9	67	25	8	69	27	4	
Ν	45	26	29	46	31	23	60	26	14	63	27	10	
NE	48	25	27	45	28	27	68	23	9	59	31	10	
E	45	26	29	52	29	19	56	27	17	65	26	9	
SE	44	28	28	55	29	16	54	26	20	69	25	6	
s	46	27	27	54	29	17	60	25	15	66	26	8	
•													
•		Sohi.			Wihi.			Sohi.			Wihi.		
		· · · ,			•••••			,		,-			
N [mm]	1.1-10	1.1-10	1.1-10	1.1-10	1.1-10	1.1-10	≥10.1	≥10.1	≥10.1	≥10.1	≥10.1	≥10.1	
GWT	RGa	RD	RB	RGa	RD	RB	RGa	RD	RB	RGa	RD	RB	
w	62	25	13	71	23	6	64	22	14	78	18	4	
sw	57	24	19	68	24	8	57	22	21	74	18	8	
NW	63	25	12	77	20	3	74	20	6	80	18	2	
НМ	50	24	26	62	26	12	59	25	16	83	16	1	
тм	73	21	6	75	23	2	79	17	4	88	11	1	
Ν	64	24	12	73	23	4	70	21	9	83	16	1	
NE	66	23	11	72	24	4	68	21	11	-	-	-	
Е	65	24	11	71	24	5	66	23	11	89	11	0	
SE	60	23	17	74	22	4	68	20	12	82	16	2	

Tab. 14 : Verteilung der RGa , RD und RB auf die Niederschlagsklassen in Abhängigkeit von denGroßwettertypen. Rga = 100-RG (s.Text), GWT Großwettertyp, RG relative Globalstrahlung, RD diffuse,RB direkte Sonnenstrahlung;Datengrundlage wie bei Abb. 37 und Tab. 13

Weiteren Einblick gibt der Variationskoeffizient v (Tab. 13a). Daß mit zunehmendem Niederschlag auch die Unterschiede in der Bewölkung abnehmen, bedeutet eine geringere Standardabweichung und damit einen niedrigeren Variationskoeffizienten. Umgekehrt verhält sich v bei der relativen Global- und diffusen Sonnenstrahlung. Je höher die Niederschlagsklasse, um so kontrastreicher fallen im Mittel die Unterschiede zwischen mehr oder weniger geschlossener Bewölkung und Zeitspannen geringerer Himmelsbedeckung aus, bis zu Wolkenlücken, sodaß größere Variationsbreiten der Strahlungseinnahme bewirkt werden. Daraus resultieren höhere Standardabweichungen und damit größere Variationskoeffizienten.

Die auf das gesamte Kollektiv bezogenen mittleren Verhältnisse enthalten weitere Verteilungsmuster der relativen Strahlungseinnahme, die als Isoplethendiagramme dargestellt und in Tab. 13 b, unterschieden nach antizyklonal und zyklonal geprägten Tagen im Sommerund Winterhalbjahr, zusammengefaßt sind. Der Jahresgang in Isoplethendarstellung im Sinn von Tab. 13 b ist hier nicht zulässig, da bei einigen Monaten die Ereignismasse nicht ausreicht, um eine Artefaktenbildung auszuschließen. Im Vergleich zur relativen Strahlungseinnahme an niederschlagsfreien Tagen findet man im Winterhalbjahr die größte Schwächung der RG zwischen 11 und 27 % und der RD zwischen 3 und 13 % bei zyklonalen Verhältnissen, bei antizyklonaler Ausprägung zwischen 18 und 26 % (RG) und 2 bis 7 % (RD). Abweichend davon bleibt die geringe Schwächung der RD im Sommerhalbjahr an antizyklonalen Tagen in allen Niederschlagsklassen fast unverändert, beträgt aber bei RG 17 bis 21 %. An zyklonalen Tagen liegt RD zwischen 1 und 7 %, RG bei 12 bis 22 %.

Man beobachtet, daß der Betrag der Schwächung von RG und RD im Sommer- und Winterhalbjahr beim Vergleich 'Tage ohne Niederschlag' mit 'Tage 0.1 bis 1.0 mm Niederschlag' nur geringfügig von einander abweicht.

Wie aus dem Vergleich von Abb. 37a mit b hervorgeht, verändert sich im wesentlichen der Jahresgang von RG, während RD nach Intensität und Verlauf der Isoplethen nur geringfügige Unterschiede aufweist. D. h., die Veränderung geht auf Kosten der relativen direkten Sonnenstrahlung. Erst in den höheren Niederschlagsklassen (Abb. 37c, d) kommt es zu stärkerer Deformation der Isoplethen beider Komponenten, die sich in Intensitätsminderung und stärkerer Differenzierung nach Winter- und Sommermonaten äußert und sich in gesteigerter Schiefe der monatlichen Verteilungen niederschlägt.

Die oben beschriebenen Verhältnisse werden im wesentlichen auch auf der Ebene der Großwetterlagen und –typen bestätigt (Tab. 14; A 88, 89). Dadurch, daß bei den genannten Stationen die RD gegeben ist, kann auch die relative direkte Sonnenstrahlung bestimmt werden (RB = RG – RD), außerdem der relative Strahlungsverlust als Komplement der RG im Vergleich zu der, die die Rayleigh-Atmosphäre durchläßt (Rga = 100 - RG).

Abb. 38 : Abhängigkeit der **Relativen Globalstrahlung** (RG) von den **zyklonal geprägten Tagen mit Niederschlag**, bezogen auf die drei Stationsgruppen (s. Abb. 34). Die Niederschlagswerte sind Klassenmitten der Klassenbreite von 1 mm Niederschlag

Zu den unterschiedlichsten GWT zählen HM (GWL HM + BM) und TM, die beide der gemischten Zirkulationsform zugeordnet werden. Neben dem mittleren Strahlungsverlust (Rga) zwischen der unteren und höchsten Niederschlagsklasse ist es aufschlußreich, das Verhältnis von RD und RB zu verfolgen. Im Sommerhalbjahr ist anfangs bei den antizyklonalen GWL der relative Anteil von RB größer als RD. Bei der GWL HM nimmt RB erst in der höchsten Niederschlagsklasse stärker ab und unterschreitet RD. Diese Verhältnisse pausen sich noch in der GWT HM durch. Für die zyklonalen GWL im Sommer- und Winterhalbjahr und für die antizyklonalen GWL im Winterhalbjahr gilt, daß in fast allen Niederschlagsklassen die RD dominiert. Die Ausnahmen sind die antizyklonalen GWL SWA, HM, NA, HNA und NEA an Tagen mit 0.0 Niederschlag. Innerhalb der Niederschlagsklassen zeigt RD im Gegensatz zu RB eine geringe Variationsbreite.

Abweichend von den übrigen zyklonalen GWL ist mit dem Auftreten der GWL bzw. GWT TM bereits im Mittel der Tage mit 0.0 mm Niederschlag sowohl im Sommer- als auch im Winterhalbjahr ein höherer Strahlungsverlust verbunden. In der Klasse ≥ 10.1 mm Niederschlag wächst der Strahlungsverlust auf 79 bzw. 88 % an, ähnlich der GWT E, bei der die RB gegen Null geht und die RD einen Anteil von nur 11 % erreicht.

Die bisherigen Ergebnisse nach relativ breiten Niederschlagsklassen deuten zumindest an, daß sich mit zunehmendem Niederschlag die Strahlungseinnahme vermindert. Damit geht zwar die Zunahme der Bewölkung einher; es zeigte sich jedoch, daß am Beispiel der gleich dichten Bewölkung von 8 Okta für alle Niederschlagsklassen, sich gegenüber der Kategorie der niederschlagslosen Tage signifikante Unterschiede ergeben, die nur auf Extinktionsvorgänge in Verbindung mit Niederschlag zurück geführt werden können.

Um zu prüfen, ob sich der Abhängigkeit der RG vom Niederschlag mit einer signifikanten Regressionskurve beschrieben werden kann, werden Niederschlagsklassen mit einer Klassenbreite von 1 mm gebildet und aus den zugeordneten Tageswerten der RG das arithmetische Mittel berechnet (Abb. 38). Datengrundlage sind die drei Stationsgruppen (s. Abb. 34, 35).

Für die Niederschlagstage mit antizyklonalem Charakter ist die Streuung so stark, daß die Punktwolken keine Tendenz erkennen lassen und sich somit keine signifikanten Regressionen ergeben. Ziemlich gut ist dagegen der Zusammenhang bei zyklonal geprägten Niederschlagstagen zu beschreiben. Die beste Anpassung gelingt mit hochkorrelierenden Potenzfunktionen, wobei die Stationsgruppe 1 mit $r^2 = 86$ % erklärter Streuung den höchsten Koeffizienten verzeichnet, gefolgt von den Gruppen 2 ($r^2 = 83$ %) und 3 ($r^2 = 71$ %). Gemeinsam ist den Punktwolken eine mit wachsendem Niederschlag zunehmende Streuung, die besonders in der Gruppe 3, mit der größten Variationsbreite der Niederschlagshöhe, den kleineren Korrelationskoeffizienten bewirkt.

8.6 Zusammenfassung zur Korrelations - und Regressionsanalyse mit ausgewählten Klimaelementen

Bedingt durch die Struktur und Dynamik der Troposphäre erfährt die durchgehende kurzwellige Strahlung eine breite Variation der Intensität. Ihre Abhängigkeit von der Sonnenscheindauer ergeben die höchsten Korrelationskoeffizienten im Vergleich zu den übrigen Klimaelementen. Damit der Vergleich der Stationen möglich ist, werden wegen des Breitenlage-Effekts die absoluten Meßwerte in Relativwerte überführt. Für die Globalstrahlung liegen für die Normung die Transmissionseigenschaften der Rayleigh-Atmosphäre zugrunde, für die Sonnenscheindauer die astronomisch mögliche. Im Streudiagramm zeigen alle Stationen eine gute Anpassung des Angström`schen Regressionsmodells der Form y = a + bx + e, wobei "e" die von der Regressionsgeraden zufällig abweichenden Werte (Residuen) darstellen. Die zufälligen Abweichungen setzen sich aus Fehlern zusammen, die den Instrumenten anhaften und denen, die beim Auswerten entstehen. Weiter muß berücksichtigt werden, daß der Sonnenscheinautograph nur auf die direkte Sonnenstrahlung anspricht. Um den Fehler in den darauf aufbauenden Analysen klein zu halten, werden nur Mittelwerte klimatologisch definierter Kollektive verwendet.

Trotz der meßtechnisch bedingten Einschränkung ist die Korrelation gut geeignet, für vergleichbare Stationen, die nur die Sonnenscheindauer messen, die Globalstrahlung zu berechnen. Dies wird durch einen weiteren Umstand begünstigt: Die Stärke der Korrelation von einer Station zu benachbarten Stationen nimmt nur langsam ab, es liegt eine relativ hohe örtliche Repräsentanz vor.

Um den Einfluß der hypsometrischen Verhältnisse auf die Verteilung der Globalstrahlung zu erfassen, wird die Höhenlage ü. NN als unabhängige Variable eingesetzt und als abhängige der relative Anteil der Globalstrahlung an ihrer mittleren Jahressumme. Die lineare Einfachregression ergibt für den Winter einen hoch korrelierten, positiven Zusammenhang, d.h., mit zunehmender Höhe nimmt der relative Anteil der Globalstrahlung an der Jahressumme zu. Im Sommer ist es umgekehrt. Zugrunde liegen die Beziehungen zwischen Strahlungseinnahme, Lufttemperatur und Wasserdampfgehalt.

Im Winter ist die Konvektion mangels Energiezufuhr eingeschränkt. Tiefreichende Wolken und zählebiger Nebel liegen über den Niederungen, während die Gipfellagen häufig wolkenarm bis - frei sind. Im Sommer steht mehr Energie zur Verdunstung des Wassers zur Verfügung. Wasserdampf wird vertikal mobilisiert und erreicht schließlich das Kondensationsniveau. Die Folge ist eine stärkere Bewölkung in den hohen Lagen. Die Variable "Höhe ü. NN" impliziert also mehrere Variablen und hat in diesem Zusammenhang eine mehr heuristische Bedeutung.

Der Umsatz der kurzwelligen Strahlung am Erdboden in Wärmestrahlung ist ein komplexer Vorgang, der sich durch die Beschaffenheit des absorbierenden Substrats und die voraus gegangene Witterung sehr variabel gestaltet. Ein wesentlicher Hinweis, daß die Globalstrahlung den Tages- bzw. Jahresgang der Lufttemperatur steuert, geht aus dem mittleren sinusförmigen Verlauf der Kurven hervor. Allerdings unterliegt der tatsächliche Kurvenverlauf durch advektive Luftmassen starken Deformationen, während autochthone Witterungsabschnitte sich der idealen Kurve nähern.

Die Abhängigkeit der Lufttemperatur von der Globalstrahlung zeigt aufgrund dieser Deformationen große Abweichungen von der Regressionsgeraden, was sich in relativ niedrigen Korrelationskoeffizienten ausdrückt. Etwas höher fallen die Korrelationen aus, wenn anstelle der Lufttemperatur ihre Tagesamplitude eingesetzt wird. Die quadratische Regression ist, je nach Stationslage, verschieden ausgeprägt. Stationen in Beckenlage haben eine wesentlich größere Jahresamplitude der Lufttemperatur als die in Gipfellagen des Schwarzwaldes. Das zeigt sich z.B. deutlich bei den Stationen Mannheim, Höchenschwand und Feldberg. Während die Gipfellagen fast ständig starken Winden ausgesetzt sind, was eine Nivellierung der Maximum- und Minimumwerte der Lufttemperatur zur Folge hat, sind Beckenlagen meist windschwach. Weiterhin trägt in den Gipfellagen gemäß dem "Gesetz der großen Massenerhebungen" ein leichter Anstieg der Lufttemperatur zu kleineren Tagesamplituden bei, im Vergleich zur gleichen Höhenlage in der freien Atmosphäre.

Auch die Tagesamplituden der Erdbodentemperatur sind mit der Globalstrahlung gut korreliert, wie am Beispiel der Station Geilweilerhof dargelegt ist. Die beste Anpassung des Zusammenhangs beschreibt das quadratische Regressionsmodell. Gegenüber des weniger straffen Zusammenhangs 2 Meter über Grund stellt man eine höhere Korrelation bei -10 cm fest, die meist bei -20 cm leicht abnimmt. Dabei spielen eine Reihe von Randbedingungen eine große Rolle : Beschaffenheit der Bodenoberfläche, wo die absorbierte kurzwellige Sonnenstrahlung in Wärme gewandelt wird, Wasser- und Luftgehalt des Porenraumes, Bodenart u.a. Für Zeitabschnitte, die von einer bestimmten Luftmasse beherrscht sind, ergeben sich unterschiedlich straffe, hoch signifikante Korrelationen. Allgemein findet man für die Summe der Tage mit Tropikluft (T) höhere r – Werte als bei Polarluft (P). Im Mittel liegen die Tagesamplituden bei Tropikluft, bezogen auf die genannten Meßhöhen, über denen der Polarluft, verbunden mit niedrigerem Bewölkungsgrad und höherer Strahlungseinnahme. Bei Untergliederung von T und P nach trocken kontinentaler und feucht maritimer Prägung deuten sich weitere Zusammenhänge an, die teilweise, wegen zu geringer Ereignismasse, nicht generalisierbar sind.

Sonnenscheindauer und Globalstrahlung werden von der Bewölkung verschieden beeinflußt. Während die Sonnenscheindauer die Zeitspanne angibt, in der die Empfangsfläche der direkten Sonnenstrahlung ausgesetzt ist, ist bei der Globalstrahlung der Vorgang wegen den Absorptions- und Reflexionseigenschaften der Wolken schwieriger zu erfassen. Einerseits unterliegt die Schätzung des Bedeckungsgrades subjektiven Einflüssen, z.B. Überschätzung durch Kulissenwirkung, andererseits verbergen sich dahinter für die Globalstrahlung relevante Bewölkungsmuster.

Bei Verwendung von Tageswerten unterliegt die Globalstrahlung in Abhängigkeit von der Bewölkung einer relativ starken Streuung. Prägnant tritt die Art des Zusammenhangs erst hervor, wenn den Mittelwerten der Bewölkungsstufen (3, 7, 10, 13...10tel Okta) die entsprechenden Mittelwerte der Strahlungseinnahme zugeordnet werden. Für die Global- und direkte Sonnenstrahlung ermittelt man, bei straffem Zusammenhang, eine negative Beziehung zweiter Ordnung und eine positive dritter Ordnung bei der diffusen Sonnenstrahlung. Während mit zunehmender Bewölkung die direkte Sonnenstrahlung gegen Null konvergiert, entspricht der Konvergenzpunkt von Global- und diffuser Sonnenstrahlung dem Zustand, wo bei totaler Bewölkung die Globalstrahlung nur noch aus diffuser Sonnenstrahlung besteht.

Als wesentliche Ergänzung zu den Klassen der Bedeckungsgrade kann ein Maß für ihre Veränderlichkeit gelten, das formal Variationskoeffizient (v) eines Datenkollektivs genannt wird. Die Variable steht in positiver linearer Beziehung zur Globalstrahlung: Je geschlossener die Bewölkung ist, um so kleiner ist v und damit auch die Strahlungseinnahme.

Schwieriger sind die Verhältnisse hinsichtlich der Strahlungseinnahme an Niederschlagstagen zu beurteilen. Die Testergebnisse zeigen bei ≥ 1 mm Niederschlag signifikante und hoch signifikante Unterschiede in der Strahlungseinnahme, im Vergleich zu niederschlagslosen Tagen bei gleichem Bedeckungsgrad. Der Versuch, die Abhängigkeit der Globalstrahlung von Tagen mit Niederschlag über eine Regressionsgleichung zu beschreiben, ist nur mit zyklonal geprägten Niederschlagstagen erfolgreich und folgt der Form $y = a + bx^c$. An antizyklonal geprägten Tagen mit höheren, konvektiven Niederschlägen ist keine signifikante Ordnung zu erkennen.

9 Variabilität der diffusen Sonnenstrahlung und der relativen Globalstrahlung bei witterungsklimatologisch charakterisierten Zeitspannen

Verkürzt ausgedrückt stellen GWL den typisierten mittleren Rahmen für die im Luftdruckfeld über Europa transportierten Luftmassen dar, die sich ständig durch die Einstrahlung und die Beeinflussung durch die Unterlage in ihrem physikalischen Zustand ändern und damit auch im Hinblick auf die Transmissionseigenschaften. Die zunächst hier zugrunde liegenden kleinsten witterungsklimatologisch definierten Einheiten sind die Luftmassen. In der Typisierung nach SCHERHAG, R. (1948) wird die schon von der norwegischen Schule praktizierte Unterscheidung von Tropik – und Polarluft differenziert nach dem Ursprungsgebiet, dem Transportweg (kontinental, maritim) und nach wesentlichen Alterungseigenschaften (erwärmt, abgekühlt).

Um die Abhängigkeit der Globalstrahlung von den Luftmassen zu erfassen, sind nur Tage verwendbar, die von einer Luftmasse regiert werden. Diese Einschränkung und fehlende Meßwerte reduzieren das Kollektiv, sodaß für das Sommer – und Winterhalbjahr nur rd. 72 % aller Tage zur Verfügung stehen. Dabei spielt die diffuse Sonnenstrahlung eine wesentliche Rolle, da sie das Ergebnis der Reflexion an den Luftmolekülen, Wolken, Dunst, Nebel, den Eiskristallen in den Wolken des mittleren und oberen Stockwerks und dem Aerosol darstellt. Daher ist ihr Anteil an der Globalstrahlung geeignet, Luftmassen nach ihrer Durchlässigkeit in Abhängigkeit von der Globalstrahlung zu unterscheiden. Diese Beziehung geht zurück auf LIU, B.Y.H. & JORDAN, R.C. (1960, S.8), die Monatsmittel eingesetzt haben und dabei einen negativen nichtlinearen Zusammenhang feststellten.

vorliegenden (Abb.39-41) den Kollektiven werden auf Tagessummen In der Strahlungseinnahme basierende halbjährliche Mittel der betreffenden Luftmassen, GWL und GWT aus den fünf, die diffuse Sonnenstrahlung messenden Stationen verwendet. Wegen der großen örtlichen Repräsentanz der Globalstrahlung und insbesondere der diffusen Sonnenstrahlung dürften bei gleichem Aggregationsniveau die Ergebnisse auf das Kollektiv der übrigen Stationen übertragbar sein, ohne einen allzu großen Fehler zu begehen. Für die am höchsten gelegenen Schwarzwaldstationen gilt dies nicht, weil von seiten des DWD keine gemessenen Werte von vergleichbaren Nachbarstationen vorhanden sind und dadurch auch keine Approximation möglich ist.

Wie aus Abb. 39 hervorgeht, liegt in beiden Halbjahren eine straffe negative Korrelation vor. Dabei findet eine klare Differenzierung in die bewölkungsärmeren kontinentalen und die bewölkungsreicheren maritimen Luftmassen statt. Aus den Abständen der Luftmassen untereinander ergeben sich bezüglich der beiden Variablen Hinweise auf Ähnlichkeiten bzw. Unähnlichkeiten. Ansätze zur Clusterbildung sind in beiden Gruppen ersichtlich. Den größten Gegensatz bilden im Sommerhalbjahr die kontinentale, gealterte Tropikluft (cTp) oder Festlandsluft, die ihren Ursprung in Mitteleuropa hat und die maritime, gealterte Polarluft (mP_T). Letztere entsteht im Bereich der Polarmeere und Grönland und erfährt auf dem Weg über das Gebiet der Azoren eine Labilisierung, verbunden mit Schichtbewölkung, Nebel und Nieselregen, also Eigenschaften, die den Anteil der diffusen Sonnenstrahlung an der RG ansteigen läßt. Sie wird von West – und Nordwestlagen herangeführt.

Im Winterhalbjahr liegen die Luftmassen zwischen den Extremen "kontinentale, arktische Polarluft" (cP_A) und "maritimer, gealterter Tropikluft" (mTp). cP_A tritt bei Nordostlagen auf, sie hat ihr Entstehungsgebiet im nördlichen Sibirien, ist stabil geschichtet, weist geringe Bedeckungsgrade auf und ist trocken, was letztlich mit sehr guten Sichtverhältnissen

Abb. 39 : LIU – JORDAN – Diagramm der Abhängigkeit des relativen Anteils der diffusen Sonnenstrahlung von der RG, bezogen auf die Luftmassen in den Halbjahren. Mittel aus den Stationen WU, MA, TR, ST und FR. Sommerhalbjahr n = 2650 Tage, Winterhalbjahr n = 2656 Tage

einhergeht. Hinsichtlich der Strahlungseinnahme gegensätzlich verhält sich mTp, die aus dem nordöstlichen Atlantikbereich kommt und demnach vornehmlich bei Westlagen auftritt. Um die Regressionsgerade sind die kontinentalen Luftmassen ungleichmäßig angeordnet, insbesondere ist der große Abstand zwischen cP_A und den übrigen kontinentalen Luftmassen auffällig. Die Grenze zu den maritimen Luftmassen hat nicht den Charakter einer Zäsur wie im Sommerhalbjahr, vielmehr tritt im Bereich 68 bis 72 % diffuser Sonnenstrahlung eine Häufung aus den Luftmassen beider Gruppen auf. Die "kontinentale Tropikluft" (cT) entfällt wegen nicht ausreichender Ereignismasse. Der Einfluß der einzelnen Luftmassen hinsichtlich der Strahlungseinnahme im Jahresablauf relativiert sich mit der Eintrittshäufigkeit :

	n [Tage]	сР _т	mTs	mΡ _τ	сТ	сP	mΤ	mP	сТр	сР _А	тTр	mΡ _A	Sum [%]
SoHj	3660	0.6	3.1	12.5	0.8	2.0	3.5	12.9	20.4	0.9	9.4	6.3	72.4
WiHj	3645	1.7	0.6	8.5	-	6.9	4.1	11.9	20.9	2.5	8.7	7.1	72.9

Entsprechend dem Jahresgang der Bewölkung liegt im Sommerhalbjahr der Anteil der diffusen Sonnenstrahlung an der RG niedriger als im Winterhalbjahr: bei den kontinentalen Luftmassen zwischen 42 und 50.6 %, bei den maritimen zwischen 56 und 65 %; im Winterhalbjahr zwischen 56.5 und 70.2 %, bzw. 71.6 und 79 %. Im einzelnen sind die kontinentalen Luftmassen hinsichtlich des relativen Anteils der diffusen Sonnenstrahlung kontrastreicher als die maritimen. Z. B. beläuft sich der Unterschied bei cTp (8) und cP_T (1) auf rd. 26 %. Dies sind Folgen der negativen langwelligen Strahlungsbilanz, wie sie häufig durch starke Ausstrahlung in bewölkungsarmen bis klaren Nächten zustande kommt. Die damit verbundene Abkühlung läßt Bodennebel entstehen, wenn die Taupunkttemperatur unterschritten ist (Bodeninversion). Während im Sommer die Bodennebel sich nach Sonnenaufgang bald auflösen, sind sie im Winter beständiger. Ebenso tragen die in der kalten Jahreszeit häufigeren Absinkinversionen zur Erhöhung des diffusen Strahlungsanteils bei, wenn bei windschwachen Verhältnissen in wasserdampfreicher Luft unterhalb der Inversion sich Hochnebel ausbreiten, mit verstärkenden Folgen bei längerer Andauer (vgl. mit Abb. 14).

- 76 -

Abb. 40 : a) LIU – JORDAN – Diagramm der Abhängigkeit des relativen Anteils der diffusen Sonnenstrahlung von der RG bezogen auf GWL; b) Werte - Tabelle der GWL; (abzüglich Meßlücken und U=unbestimmte GWL): Sommerhj. antizykl. n = 1703 Tage, zykl. n = 1814 Tage; Winterhj. antizykl. n =1570 Tage, zykl. n = 1941 Tage; sonst wie Abb. 39

Bezieht man die Strahlungseinnahme auf die GWL, dann ergibt sich in den Halbjahren ein ähnlich strenger Zusammenhang (Abb. 40 a,b). Sehr deutlich tritt im Sommerhalbjahr die Segregation der zyklonalen von den antizyklonalen GWL hervor. Sie ist im Winterhalbjahr zwar ebenfalls klar ausgebildet, doch ist im Grenzbereich beider Strömungsarten keine deutliche Zäsur erkennbar. Deutlich zeigt sich beim Vergleich der Halbjahre der ambivalente Witterungscharakter der meisten antizyklonalen GWL, die im Winter Züge ähnlich den zyklonalen GWL annehmen. Die Erklärung dafür wurde bereits im Zusammenhang mit den kontinentalen Luftmassen gegeben.

In den Halbjahren kommt es zu Häufungen einiger GWL, die man als Ausdruck der Ähnlichkeit bezüglich der Strahlungseinnahme deuten darf. Hinweise auf eine Ordnung nach zonaler, gemischter und meridionaler Zirkulation sind nicht zu erkennen. Offenbar ist die zyklonale und antizyklonale Strömung das alleinige Ordnungskriterium. Die Spannweite erstreckt sich im Sommerhalbjahr von der GWL HM mit niedrigstem Anteil an diffuser, bzw. höchstem Anteil an direkter Sonnenstrahlung bis zur GWL TM. Im Winterhalbjahr ist die

Abb. 41 : LIU – JORDAN – Diagramm der Abhängigkeit des relativen Anteils der diffusen Sonnenstrahlung von der RG bezogen auf **GWT**; n = 3550 Tage, Sommerhj. n = 3563 Tage; sonst wie Abb. 39

Rangfolge verändert. Mit relativ großem Abstand von HM weist NEa den kleinsten Anteil an diffuser Strahlung auf. Außerdem zeigt diese GWL nur sehr schwach den unterschiedlichen Witterungscharakter in den Halbjahren an (Abb. 40 b). Vereinigt man die Tageswerte der einzelnen Strömungen in den Halbjahren in einem Mittelwert, dann ergibt sich für die antizyklonalen im Sommerhalbjahr ein relativer Anteil der diffusen Sonnenstrahlung von 47.3 % (RG : 57.6), im Winterhalbjahr zu 65.8 % (RG : 46.7) und bei zyklonaler Strömung 68.1 % (RG : 40.4), bzw. 80.5 % (RG : 33.7).

Eine andere, vereinfachte Gliederung, faßt Großwetterlagen zu Typen zusammen (GWT), wobei nicht nach zyklonaler und antizyklonaler Strömung unterschieden wird (Abb. 41). Im Vordergrund steht als Ordnungskriterium zunächst die Zirkulationsform und dann die Hauptströmungsrichtung der Luftmassen. Bezieht man die mittleren Strahlungsverhältnisse auf diese Kollektive, ergeben sich um die beiden Regressionsgeraden die folgenden Verteilungen : Neben der in allen Darstellungen auftretenden Verschiebung in Form einer Zunahme des diffusen Strahlungsanteils und der Abnahme bei der RG vom Sommer- zum Winterhalbjahr, wird hier die Spannweite in beiden Halbjahren von GWT der gemischten Zirkulation bestimmt. Während "Tief Mitteleuropa" (5) identisch mit der gleichlautenden GWL ist, liegt bei "Hoch Mitteleuropa" (4) der Zusammenschluß der GWL HM und BM zugrunde.

Die Neigung, Cluster auszubilden, ist im Sommerhalbjahr stärker ausgeprägt. So setzen sich die GWT Südwest (2), Ost (8) und Südost (9) mit relativ niedrigem Anteil diffuser Sonnenstrahlung deutlich von den GWT West (1), Nordwest (3), Nord (6) und Nordost (7) ab. Marginal dazu liegt GWT Süd (10) und die in U (11) vereinigten, nicht eindeutig der Luftdruckverteilung einer bestimmten GWL zuordenbaren Tage.

Im Winterhalbjahr ist die Schwankungsbreite des prozentualen Anteils der diffusen Sonnenstrahlung an der RG mit 24 % um fast 12 % niedriger als im Sommerhalbjahr. Hauptsächlich bedingt durch den antizyklonalen Anteil in den GWT, paust sich auch hier die Veränderung in der Strahlungseinnahme durch, sodaß es zu einer Umverteilung gegenüber dem Sommerhalbjahr kommt, wobei z. B. die sonst von GWT Hoch Mitteleuropa (4) stark abweichenden GWT Südwest (2) und Nordost (7) sich einander nähern.

10 Ausprägung der relativen Globalstrahlung in witterungsklimatologisch definierten Zeiträumen und nach Stationen - Versuch einer Klassifikation

Die Klassifizierungsversuche basieren auf den spezifischen RG-Werten, während witterungsklimatologisch definierter Zeitspannen, unterschieden nach den 17 radiometrischen Stationen. Wegen der geringen Anzahl der Stationen im Verhältnis zur Ausdehnung des Untersuchungsgebietes ist die Anwendung eines Interpolationsalgorithmus, wie z.B. das Kriging-Verfahren, unzulässig und würde zu Artefakten führen. Eine "flächendeckende" Regionalisierung ist also nicht möglich. Trotz dieser Einschränkung kann mit Hilfe multivariater Verfahren, hier der hierarchischen Cluster- und Linearen Diskriminanzanalyse (LDA), wenigstens eine interpretierbare, gruppenspezifische Verteilung der RG hinsichtlich ähnlicher, bzw. unähnlicher Zeitspannen, wie auch der Stationen erreicht werden.

Naheliegend wäre für die Analyse, die Variabilität der mittleren RG-Jahresgänge heranzuziehen. Allerdings sind die Differenzen von Station zu Station auf diesem Aggregationsniveau nicht groß, wenn man von den hoch gelegenen Stationen absieht. Dies ist bedingt durch den Informationsverlust bei der Mittelbildung und durch die allgemein größere örtliche Repräsentanz im Vergleich mit anderen Klimaelementen. Das bedeutet, daß der Korrelationskoeffizient von einer Station zu den umliegenden Stationen nur langsam abnimmt (vgl. HASENFRATZ, E. 1998, S.28-34). Wendet man auf eine solche Datenmatrix mit den Monaten als Variablen in der Kopfzeile und den Stationen in der Randspalte, gruppengenerierende Verfahren an, dann werden zwei Stationsgruppen gebildet, bestehend aus den drei höchstgelegenen Stationen und den restlichen.

Die geringe Aussagekraft der RG-Monatsmittel kann verbessert werden, wenn sie nach ihrem Anteil an der zonalen, gemischten und meridionalen Zirkulation aufgespalten sind. Wie bereits beschrieben, steuert die Zirkulationsform die Ausprägung des Luftdruckfeldes in Bodennähe, d.h., daß sie charakteristische Wetterabläufe impliziert. In den Zeitspannen einer vorherrschenden Zirkulationsform sind die unterschiedlich verteilten zyklonalen und antizyklonalen Komponenten nur schwach erkennbar. Bei zonaler Zirkulation dominiert die zyklonale, bei gemischter die antizyklonale und bei meridionaler besteht ein leichter Überhang der zyklonalen Komponente. Im Fall der Stationengruppierung für das Sommerund Winterhalbjahr erhält man ein formal gutes Ergebnis. Die Stationen verteilen sich jeweils auf drei Gruppen, die, außer den Stationen des Hochschwarzwaldes im Winterhalbjahr, aber keinen überzeugenden Interpretationsansatz ermöglichen. Dies bestätigt auch die gruppenspezifische Häufigkeitsverteilung der RG-Werte. Trotzdem ist das Ergebnis von heuristischem Wert. An diesem Beispiel zeigt sich instruktiv, daß der Einsatz statistischer Methoden keine endgültigen Antworten garantiert, sondern nur die optimale Position für die angestrebte Interpretation vorbereitet.

10.1 Großwetterlagen mit ähnlicher Ausprägung der relativen Globalstrahlung

Im nächsten Ansatz wird zuerst die Frage gestellt, ob man im Großwettergeschehen, getrennt nach Sommer-,Winterhalbjahr und Jahr, Gruppen von GWL findet, durch die sich die RG signifikant unterscheidet. In diesem Fall sind die Stationen die Variablen, in der Randspalte stehen die GWL. Für alle Variablen ist hinsichtlich der Fehlerminimierung die Voraussetzung einer genügend umfangreichen Ereignismasse erfüllt. Alle Daten sind standardisiert (z-Transformation), d.h., der Mittelwert der x-Skala wird zum Nullpunkt der z-Skala, und die Standardabweichung s erhält die Länge 1. Diese Maßnahme gewährt die Vergleichbarkeit und vereinfacht die graphische Darstellung. Die Rohdaten sind im Anhang dokumentiert (A 90, 91, 92). Die Vorgehensweise bei der Analyse zeigt Abb. 42. Wie bereits aus dem LIU – JORDAN – Diagramm hervorgeht (Abb. 40), sind die GWL weder gleichmäßig noch zufällig, sondern in unregelmäßigen Verdichtungen um die Regressionsgerade verteilt.

Abb. 42 : Verlaufsschema der Analysen

Dies gibt Anlaß zur Vermutung, daß Gruppen oder Cluster von GWL vorkommen, durch die sich die Strahlungseinnahme ähnlich verhält. Im wesentlichen liegt, neben zahlreichen Randbedingungen, die Verteilung des Wassers in der Troposphäre zugrunde. Stark vereinfacht läßt geringere Bewölkung eine größere, höhere Bewölkungsgrade eine verminderte Strahlungseinnahme zu. Die Verbindung zu den GWL ist dadurch gegeben, daß höhere Werte der RG vorwiegend an antizyklonale, durch vertikale Absinkbewegung mit Wolkenauflösung gekennzeichnete GWL gebunden sind, niedrigere RG meist an zyklonale GWL, die atlantische Luftmassen mit stärkerem Wolkenaufkommen und Niederschlag transportieren.

Unter Einschluß aller Stationen als Variablen werden für das Sommer- und Winterhalbjahr und das mittlere Jahr zunächst Clusteranalysen nach dem complete linkage – Verfahren (entferntester Nachbar) mit der quadrierten Euklidischen Distanz der standardisierten RG – Werte als Unähnlichkeitsmaß gerechnet. Mit dem Ward – Verfahren erhält man vergleichbare Ergebnisse, doch reproduziert complete linkage insgesamt homogenere Cluster und neigt weniger zur Verkettung der Objekte (vgl. BAHRENBERG, G. et al. 1992, S. 286 f.). Die zugehörige Matrix der Rohdaten im Anhang ist aus Gründen des Platzbedarfs um 90° gedreht.

Verschmelzungsniveau

Abb. 43 : Dendrogramm der **GWL** hinsichtlich der **Strahlungseinnahme** (RG) im **Sommerhalbjahr** für alle Stationen. Methode : Complete linkage, quadrierte Euklidische Distanz.

10.1.1 Sommerhalbjahr

Trennt man das Dendrogramm (Abb. 43) für das Sommerhalbjahr auf dem Verschmelzungsniveau 4 auf, dann werden drei Gruppen separiert. Gruppe 1 enthält ausnahmslos antizyklonale GWL, wobei wiederum die solitäre Stellung von HM auffällt. Gruppe 2 und 3 differenzieren die zyklonalen GWL in solche, die höhere und solche, die stärker reduzierte Strahlungseinnahme zulassen. Dabei ist Gruppe 3, wenn man das Dendrogramm im Niveau bei 2.5 auftrennt, weiter in die GWL um TM mit den niedrigsten RG – Werten und die restlichen GWL aufgeteilt. Damit ergibt sich eine interpretierbare Gruppierung als Voraussetzung für die Durchführung der Diskriminanzanalyse. Sie ist notwendig, weil aus der durch den Clusteralgorithmus erzeugten Gruppierung nicht ableitbar ist, ob die Gruppen unkorreliert (orthogonal) sind. Orthogonal wären sie, wenn in der Clusteranalyse die Faktorwerte einer vorangestellten Hauptkomponentenanalyse verwendet würden, die im vorliegenden Fall aber nicht durchführbar ist.

In die Analyse gehen die 17 Stationen als Variablen ein. Aufgrund der drei durch die Clusteranalyse vorgegebenen Gruppen werden maximal zwei Diskriminanzfunktionen (D1 und D2) ermittelt. D1 und D2 tragen signifikant zur Trennung der Gruppen bei. Wie aus der Tabelle in Abb. 44 zu entnehmen ist, liegt die größte relative Bedeutung mit 84.2 % Varianzanteil bei D1 und mit 15.8 % bei D2. Außerdem weisen die kanonischen Korrelationskoeffizienten (0.98 und 0.90) und Wilks Lambda auf die gute Trennfähigkeit hin.

Abb. 44 : Lage der GWL im Diskriminanzraum - Sommerhalbjahr

Die Übertragung der Diskriminanzwerte in das Koordinatensystem veranschaulicht das Ergebnis : D1 trennt Gruppe 1, die ausschließlich die antizyklonalen GWL vereinigt, von den in zwei Gruppen (2 und 3) aufgespaltenen zyklonalen GWL. D2 trennt die Gruppen 2 und 3. Die antizyklonalen GWL bilden die kompakteste Gruppe, wobei durch den größeren Abstand vom Zentroid wieder die Sonderstellung von GWL HM hervortritt. Bei GWL TM (Gruppe 3) ist dagegen die Distanz zum Zentroid weniger auffallend. Die mittlere RG liegt für die antizyklonalen GWL in Gruppe 1 im Sommerhalbjahr bei 57 %, für die subzyklonalen GWL in Gruppe 2 bei 42 % und für die zyklonalen GWL in Gruppe 3 bei 35 %. Die Trefferquote beläuft sich auf 100 %. Läge eine zufällige Zuordnung vor, würde sie 33.3 % betragen.

10.1.2 Winterhalbjahr

Wie das Dendrogramm (Abb. 45) ausweist, sind die Verhältnisse im Winterhalbjahr nicht so eindeutig. Die günstigste Gruppenbildung ergibt sich, wenn das Dendrogramm im Verschmelzungsniveau 6 aufgetrennt wird.

Abb. 45 : Dendrogramm der GWL hinsichtlich der Strahlungseinnahme (RG) im Winterhalbjahr für alle Stationen. Methode : Complete linkage, quadrierte Euklidische Distanz.

Damit sind in der ersten Gruppe die meisten zyklonalen GWL vereinigt, während die beiden übrigen Gruppen antizyklonale GWL enthalten, mit Ausnahme von NZ und NEZ. Diese bilden auf dem niedrigsten Verschmelzungsniveau eine eigene Gruppe. Das gilt auch für die GWL WW, TM und HNFZ in der ersten Gruppe. Innerhalb der antizyklonalen GWL zeigt sich eine ausgeprägte Heterogenität, die sich in der Bildung von Untergruppen äußert (SWA und HM) oder einzelne GWL, die erst auf höherem Verschmelzungsniveau integriert werden (HNA und NEA).

Diese Verhältnisse bilden sich etwas modifiziert auch in den Ergebnissen der Diskriminanzanalyse ab (Abb. 46). Die Gütekriterien entsprechen nicht ganz denen der Analyse für das Sommerhalbjahr bei gleicher Trefferquote. Die ungleich höhere Trennkraft von D1 unterscheidet die Gruppe 1 mit ausschließlich zyklonalen GWL von Gruppe 2 und 3, die sich aus antizyklonalen GWL zusammensetzen. D2 trennt vor allem die Gruppe 2 von Gruppe 3. Die Gruppen sind zwar signifikant unterschiedlich, doch gibt es in Gruppe 2 bei GWL SEA Anzeichen einer Tendenz zu Gruppe 3.

Abb. 46 : Lage der GWL im Diskriminanzraum – Winterhalbjahr

Wie im Sommerhalbjahr ist in Gruppe 3 GWL HM weiter vom Zentroid entfernt, ebenso HNFA. In Gruppe 1 sind es die GWL WS, WW, TRM, SWZ und NZ, die einen größeren Abstand zum Zentroid aufweisen. Die größere Distanz von Gruppe 1 zu 2 und 3 drückt sich in den mittleren RG–Werten aus. Sie liegen für die zyklonalen GWL (1) bei 34 %, bei den subantizyklonalen (2) bei 44 % und den antizyklonalen (3) bei 51 %.

Um die Unterschiede in den ermittelten GWL-Gruppen hervorzuheben, sind die am Gesamtmittelwert des Sommer- und Winterhalbjahres orientierten und standardisierten mittleren RG-Werte der GWL in eine Rangordnung überführt (Abb. 47). Man sieht, daß sich die Spannweite der Abweichungen vom jeweiligen Gesamtmittelwert im Sommerhalbjahr zwischen den GWL TM und HM bewegt, im Winterhalbjahr zwischen TM und NEA.

Abb. 47 : Nach Rängen geordnete Ausprägung der RG in den einzelnen GWL der ermittelten GWL-Gruppen (standardisierte Werte) – Sommer- und Winterhalbjahr

Es fällt auf, daß im Winterhalbjahr in der GWL-Gruppe "zyklonal" NZ vom erwarteten Trend abweicht und als Grenzfall einzustufen ist. Ebenfalls problematisch ist die Unterscheidung im Grenzbereich der GWL BM in der Gruppe "subantizyklonal" und NA in der Gruppe "antizyklonal". Bereits in Abb. 40 wird aus der Punkteverteilung um die Regressionsgerade diese Unschärfe sichtbar. Um eine optimale Lösung zu finden, wird das Gütekriterium der effektivsten Trennkraft herangezogen, das in Wilks Lambda gegeben ist (vgl. BACKHAUS, K. et al. 1994, S. 118). Je niedriger dieser Wert für beide Diskriminanzfunktionen ausfällt, um so größer ist die Trennkraft. Nach Ausschöpfung mehrerer Möglichkeiten, stellt die vorliegende Gruppierung die optimale Lösung dar.

10.1.3 Mittleres Jahr

Schließlich ist von Interesse, welche der GWL-spezifischen RG-Gruppierungen im mittleren Jahr dominieren (Matrix der Rohdaten s. A 92). Dazu zeigt das Dendrogramm einen relativ einfachen Aufbau (Abb. 48). Zyklonale und antizyklonale GWL bilden zwei große Cluster, die auf niedrigerem Verschmelzungsniveau in zwei Teilcluster verzweigen. Man erkennt wiederum die Gruppe mit schwächer zyklonalem Charakter, also etwas höheren RG-Werten als bei den eigentlich zyklonalen GWL, vergleichbar mit der Zusammensetzung in der Gruppe "subzyklonal" im Sommerhalbjahr, aber ohne NWZ und WW. Ähnlich verhält es sich bei den antizyklonalen GWL, die ebenfalls zwei Teilcluster bilden, wobei das mit den GWL HM und BM die eigentlich antizyklonale Gruppe mit höheren RG-Werten darstellt.

Verschmelzungsniveau

Abb. 48 : Dendrogramm der **GWL** hinsichtlich der **Strahlungseinnahme** (RG) im **mittleren Jahr** für alle Stationen. Methode : Complete linkage, quadrierte Euklidische Distanz.

Das Dendrogramm liefert als nächstliegende Vorgabe für die Diskriminanzanalyse eine 4-Gruppen-Lösung, bei der wiederum die Gruppenbezeichnungen subzyklonal, zyklonal, subantizyklonal und antizyklonal berechtigt sind (im Dendrogramm von oben nach unten). Im Ergebnis stellt sich heraus, daß die Zentroide der subzyklonalen und zyklonalen GWL-Gruppen so eng benachbart sind, daß eine Fusion der beiden Gruppen gerechtfertigt ist. Die größere Ähnlichkeit der beiden Gruppen gegenüber den beiden übrigen, kann aus dem niedrigeren Verschmelzungsniveau im Dendrogramm abgeleitet werden.

Eine 3-Gruppenlösung ergibt sich, wenn das Dendrogramm etwa im Niveau 4 aufgetrennt wird (Abb. 49). In die Analyse werden alle Variablen (Stationen) simultan aufgenommen. Weil drei Gruppen zu untersuchen sind, werden zwei Diskriminanzfunktionen (D) berechnet. D1 und D2 tragen in unterschiedlichem Maß zur signifikanten Unterscheidung der Gruppen bei. Die Bedeutung von D1 ist mit einem Varianzanteil von mehr als 75 % wesentlich größer als die von D2. Weiterhin zeigen kanonische Korrelationskoeffizienten und Wilks Lambda an,

Abb. 49: Lage der GWL im Diskriminanzraum – mittleres Jahr

daß D1und D2 eine befriedigende Trennung bewirken. D1 trennt die Gruppe der zyklonalen GWL (1) von den beiden antizyklonalen GWL-Gruppen, während D2 hauptsächlich die subantizyklonalen GWL (2) von den antizyklonalen (3) scheidet. Keines der Cluster kann als homogen bezeichnet werden. Im Cluster der Gruppe 1 zeichnet sich eine Zäsur ab, die noch erkennen läßt, daß sie ursprünglich aus zwei Gruppen hervorgegangen ist. GWL BM und HM in Gruppe 3 sind Außenseiter, ebenso die GWL SEA, HB und NWA in Gruppe 2.

Abb. 50 : Nach Rängen geordnete Ausprägung der RG in den einzelnen GWL der ermittelten GWL-Gruppen (standardisierte Werte) – mittleres Jahr

Die Ergebnisse zeigen, daß die GWL-spezifische RG auf der Basis der mittleren Werte des Sommer- und Winterhalbjahres und des mittleren Jahres sich im wesentlichen auf die signifikant getrennten zyklonalen und antizyklonalen GWL-Gruppen zurückführen läßt. Außerdem separiert die Analyse im Sommerhalbjahr signifikant eine Gruppe, bestehend aus zyklonalen GWL, deren RG-Werte für die Aufnahme in die Gruppe "zyklonal" zu hoch sind. Deshalb ist diese Gruppe mit der Bezeichnung "subzyklonal" belegt. Entsprechend verhält es sich im Winterhalbjahr und im mittleren Jahr mit der GWL-Gruppe "subantizyklonal", deren RG-Werte zu niedrig ausfallen, um noch in die Gruppe "antizyklonal" aufgenommen zu werden. Die Zusammenfassung der mittleren RG-Werte zeigt die Abstände der Gruppenmittelpunkte für das mittlere Jahr, verglichen mit den übrigen Zeitspannen:

Sommerhj.	RG Mittel	Winterhj.	RG Mittel	Jahr	RG Mittel
antizyklon.	57	zyklonal	34	zyklonal	37
subzyklon.	42	subantiz yklon.	44	subantizyklon.	50
zyklonal	35	antizyklonal	51	antizyklonal	55

Gemessen am jeweils standardisierten Gesamtmittel, ergibt sich für das Winterhalbjahr eine größere Streubreite der an antizyklonale GWL gebundenen RG-Werte (Abb. 47); dies gilt auch für das mittlere Jahr und ist beeinflußt durch die mehr oder weniger entwickelte Ambivalenz der Strahlungseinnahme bei Inversionen (Abb. 50). Die ermittelten Gruppen weisen darauf hin, daß sie nicht nur von formal – deskriptiver Bedeutung sind, sondern sich genetisch in das Großwettergeschehen einfügen und damit einer Interpretation zugänglich werden.

10.2 Stationen mit ähnlicher Ausprägung der relativen Globalstrahlung

10.2.1 Sommerhalbjahr

Ausgehend von derselben Datenmatrix (A 93 a-c), aber modifiziert, indem die Abweichungen vom Mittel der Stationen gebildet werden, wird nach Stationengruppen gesucht, die hinsichtlich der GWL-spezifischen RG-Werte im Sommer - und Winterhalbjahr und dem mittleren Jahr sich signifikant voneinander unterscheiden (Abb. 42, 2). Erste Hinweise für das Sommerhalbjahr vermittelt das Dendrogramm (Abb. 51). Eine von mehreren möglichen Gruppierungen ergibt sich, wenn die Auftrennung im Niveau zwischen 16 und 17 erfolgt.

Die 1. Gruppe vereinigt 11 Stationen, die unterschiedliche Grade der Ähnlichkeit erkennen lassen. Am ähnlichsten sind offenbar die Stationenpaare Trier und Saarbrücken, Karlsruhe und Bad Bergzabern, Würzburg und Buchen und Mannheim und Beerfelden, wie aus der Verschmelzung auf dem niedrigsten Niveau hervorgeht. Außerdem zerfällt die Gruppe 1 in zwei Untergruppen, wobei die Stationen der kleineren Gruppe sich westlich und nördlich des Rheins befinden und die der anderen östlich davon.

Bemerkenswert ist die große Ähnlichkeit von Buchen und Würzburg. Obwohl Buchen von Beerfelden nur ca. 27 km entfernt ist, von Würzburg aber ca. 50 km, kann als Erklärung die Lage im Lee des südlichen Odenwaldes gelten, die im Vergleich zu Beerfelden der Station Buchen eine strahlungsbegünstigtere Position zuweist.

Gruppe 2 vereinigt die Stationen Konstanz, Freiburg und Höchenschwand, also im wesentlichen die Stationen im südlichen Bereich des Untersuchungsgebietes. Wie die Struktur in diesem Teilcluster ausweist, sind die Ähnlichkeiten innerhalb der Gruppe heterogen, ähnlich der 3. Gruppe mit Hornisgrinde und Feldberg.

Ob diese vorläufige Gruppierung sich auch bei der Prüfung auf Signifikanz bestätigen wird, zeigt die Diskriminanzanalyse.

Abb. 51 : Dendrogramm der GWL - spezifischen Abweichungen der einzelnen Stationen von der mittleren Station. Methode : Complete Linkage; quadrierte eukidische Distanz - Sommerhalbjahr

Im nächsten Schritt werden die 29 Variablen simultan in die Analyse übernommen. Für die drei vorgegebenen Gruppen können maximal zwei Diskriminanzfunktionen ermittelt werden. Wie aus dem Ergebnis ersichtlich ist (Abb. 52), tragen beide zu einer signifikanten Trennung der Gruppen bei. Allerdings sind sie in ihrer relativen Bedeutung sehr unterschiedlich : Während der Varianzanteil bei D1 mit fast 95 % weitaus am bedeutendsten ist, entfallen auf D2 nur rd. 5 %. Sowohl Wilks Lambda als auch die kanonischen Korrelationskoeffizienten als Indikatoren verweisen auf eine sehr gute Gruppentrennung. Hervorzuheben ist die geringe Streuung der Stationen um das Zentroid. D1 trennt die Stationengruppen 1 und 3 von der Gruppe 2 und D2 die Gruppe 3 von Gruppe 1 und 2.

Abb. 52 : Lage der Stationen im Diskriminanzraum – Sommerhalbjahr

GWL	D1	D2	MD	GWL	D1	D2	MD
SEA	22,926	-1,433	21.830	SZ	7,766	,133	7.377
BM	-16,177	,899	15.398	WA	-3,688	-,653	3.533
нм	-15,240	2,753	14.603	NWA	3,644	1,233	3.521
HNFA	-13,876	,653	13.202	SA	-3,271	-,923	3.151
НВ	13,230	-1,380	12.626	HFA	2,283	-,090	2.171
HNA	9,191	-2,393	8.844	NA	-1,892	,620	1.827
NEA	7,735	1,316	7.408	SWA	1,111	-,162	1.063

Tab. 15 : Standardisierte **Diskriminanzkoeffizienten** (D1 und D2) und **mittlere D.** (MD) der wichtigsten Variablen in absteigender Rangfolge – **Sommerhalbjahr**

Wie sich anhand der standardisierten Diskriminanzkoeffizienten die Trennfähigkeit auf die wichtigsten Variablen verteilt, vermittelt Tab. 15. Auf D1 und D2 bezieht sich der mit den

Varianzanteilen gewichtete Mittelwert (MD), wobei nur die Absolutbeträge in die Rechnung eingehen. Z.B. für die Variable HM : $15.240 \times 0.949 + 2.753 \times 0.051 = 14.603$. MD ist in absteigender Rangordnung angegeben. Weiter geht daraus hervor, daß für die Trennfähigkeit von D1 vor allem antizyklonale GWL der meridionalen und gemischten Zirkulation eine herausragende Rolle spielen, zyklonalen GWL dagegen keine Bedeutung zukommt. Für die Trennkraft von D2 haben die GWL HM, HNA, SEA und HB größeres Gewicht.

Die Diskriminanzanalyse wird nicht nur eingesetzt, um vorgegebene Gruppierungen zu optimieren und auf Orthogonalität zu prüfen oder neue Objekte Gruppen zuzuordnen, sondern auch um Gruppenunterschiede zu erklären (vgl. BAHRENBERG, G. et al. 1992, S. 316).

Bereits aus der Betrachtung der Jahresgänge auf der Grundlage der Monatsmittel ist ersichtlich, daß die Unterschiede von Monat zu Monat relativ gering sind. Bedingt ist dies durch die Verwendung der für den Vergleich der Stationen untereinander notwendigen Relativwerte, die die Amplitude des Jahresverlaufs dämpfen. Zum Vorschein kommen die Unterschiede, wenn die Abweichungen zum mittleren Verteilungsprofil der GWLspezifischen RG, dem Mittel aus den 17 Stationen, der zugrunde gelegten Zeitspanne gebildet werden :

$$[\Delta X_{i (RG GWL Stat Gr 1, 2, 3)} = X_{i (RG GWL Stat Gr 1, 2, 3)} - X_{(mittlere Station)}]$$

Die Aufschlüsselung der als signifikant ermittelten Stationengruppen geschieht in drei Schritten (Abb. 53 a-c) :

a) Zunächst wird die Abweichung der RG (%) einer jeden GWL von der mittleren Verteilung der Strahlungseinnahme im Sommer- und Winterhalbjahr sowie im mittleren Jahr, angeordnet nach den als signifikant ermittelten GWL-Gruppen, in Abhängigkeit von den Stationengruppen dargestellt;

b) dann bezogen auf die GWT, wobei die Abweichungen der einzelnen GWL, die die betreffenden GWT zusammensetzen, kumuliert werden; schließlich

c) die Summe der Abweichungen der GWL-Gruppen in ihrer Verteilung auf die einzelnen Stationengruppen.

Im Überblick unter – bzw. überschreiten im Sommerhalbjahr die Abweichungen nur in wenigen Fällen die 5 % - Marke (Abb. 53 a). Die umfangreichste Stationengruppe (1) weicht nur geringfügig vom Mittel aller Stationen ab, das in Gruppe 2 vor allem von der subzyklonalen GWL-Gruppe stärker über- und von Gruppe 3, einschließlich der zyklonalen GWL-Gruppe unterschritten wird. Nach GWT geordnet (Abb. 53 b), treten in Gruppe 2 insbesondere die (kumulierten) positiven Abweichungen der GWT West, Nordwest, Nord und Süd hervor, während sie in Gruppe 3, mit Ausnahme von GWT Nordwest, negativ ausfallen. In Abhängigkeit von den diskriminanzanalytisch gefundenen GWL-Gruppen konzentriert sich der Gegensatz von Gruppe 2 und 3 auf die subzyklonalen und zyklonalen GWL, bei gleicher, leicht positiver Tendenz der antizyklonalen Gruppe (Abb. 53 c).

Diese Gegensätze leiten sich ab aus der Lage der Meßstation zum Kondensationsniveau und den orographisch- dynamischen Verhältnissen. Die beiden Stationen des Hochschwarzwaldes Mittelgebirgen weisen auf die bei im Sommerhalbjahr häufig anzutreffende Konvektionsbewölkung hin, die die Strahlungseinnahme reduziert, aber auch auf Staueffekte, die bei advektiven Luftmassen maritimer Herkunft stärker entwickelt sind und, im Sommer schwächer als im Winter, bei West, Nord- und Südlagen wirksam werden. Umgekehrt kommt es im Lee der Hochschwarzwaldgipfel zur Wolkenauflockerung und dadurch höherem Strahlungsgenuß, wie es die Station Höchenschwand zeigt (Tab.18). Es sind vor allem die Westlagen, die am stärksten vom Mittel der Stationen abweichen, wobei WZ und WW allein schon je 6 % beitragen (A 93 a). Für die Station Konstanz ist der Einfluß des Bodensees von Bedeutung, weil infolge verminderter Reibung der Luftmassen über der Wasserfläche absteigende Luftströmung entsteht, die zur Verringerung der Wolkendichte führt. Außerdem sinkt die Lufttemperatur über der Wasserfläche und stabilisiert die Luftmassen. Bei Station

Abb. 53 : Abweichungen in den ermittelten Stationengruppen im Sommerhalbjahr. Die Darstellung in b) und c) summiert die Abweichungen der GWL- spezifischen RG, aus denen sich die GWT bzw. die diskriminanzanalytisch ermittelten GWL-Gruppen zusammensetzen

Freiburg bringen West-, Nordwest- und Nordlagen positive, die Südostlage deutlich negative Abweichungen vom Stationenmittel (A 93 a). Zur Erklärung kann ein Einfluß der Erhebungen im Nordwesten der Freiburger Bucht, Kaiserstuhl und Lahr – Emmendinger Vorberge, in Verbindung mit kanalisierter Strömung im Windfeld vermutet werden (vgl. MALBERG, H. 1994, S. 291; ib. 1986, S. 188-196; MALBERG, H. & BÖKENS, G. 1984, S. 11-15).

10.2.2 Winterhalbjahr

Im Dendrogramm für das Winterhalbjahr zeichnen sich im Niveau bei 3 zunächst vier Cluster ab. Die unterschiedlichen Verschmelzungsebenen innerhalb dieser Cluster geben Hinweise auf den Ähnlichkeitsgrad der enthaltenen Stationen. Große Ähnlichkeit haben offenbar TR, SA, MA und GE, die das erste Cluster bilden, dann HO, HS und FE, die im dritten Cluster zusammengefaßt sind. Darin sind sich HO und HS ähnlicher, während FE von den beiden Stationen einen größeren Abstand einnimmt. Die übrigen Stationen sind im zweiten Cluster vereint, wobei AZ und KO auch als eigenes Cluster aufgefaßt werden kann. Ob sich diese Zuordnung vertreten läßt, entscheidet die Diskriminanzanalyse.

Aus den simultan in die Diskriminanzanalyse einbezogenen Variablen erfolgt unter der Vorgabe der drei Gruppen im Dendrogramm eine vollständige Zuordnung (Abb. 55). Wie den Beträgen der Korrelationskoeffizienten und Wilks Lambda zu entnehmen ist, kann die Trennung der Stationsgruppen als gut bezeichnet werden. Mit einem Varianzanteil von 87 % trennt D1 die Gruppen 1 von 2und 3, mit 13 % D2 die Gruppen 1 und 2 von 3. Im Vergleich zur Gruppierung aus dem Dendrogramm registriert die Diskriminanzanalyse keine falsche Zuordnung. Dagegen bemerkt man innerhalb der Gruppen eine leichte Neuordnung der Ähnlichkeitsverhältnisse. Während die Stationen in Gruppe 1 sich eng um das Zentroid anordnen, zeigt sich in Gruppe 3, daß die in der Clusteranalyse angetroffene größere Ähnlichkeit der Stationen HO und HS gegenüber FE auch durch die Lage im Diskriminanzraum bestätigt wird. Etwas heterogener erweist sich die Anordnung der Stationen in Gruppe 2. Aus der im Dendrogramm größten zusammenhängenden und sehr ähnlich erscheinenden Stationengruppe stellt die Diskriminanzanalyse den Unterschied der Stationen BZ (180 m) und WB (553 m) heraus, was aufgrund der Höhenlage (horizontale Distanz 35 km) plausibel ist.

Verschmelzungsniveau

Abb. 54 : Dendrogramm der GWL - spezifischen Abweichungen der einzelnen Stationen von der mittleren Station. Methode n. Ward; quadrierte eukidische Distanz - Winterhalbjahr

Abb. 55: Lage der Stationen im Diskriminanzraum – Winterhalbjahr

Die in Tab. 16 enthaltenen standardisierten Diskriminanzkoeffizienten zeigen in der Rangfolge die diskriminatorische Bedeutung der wichtigsten Merkmalsvariablen und ihre Stellung im System der GWL. Außer den GWL der GWT Nordost sind zyklonale Vertreter aller GWT vertreten. Nach den mittleren Diskriminanzkoeffizienten (MD) betrachtet, hat GWT West mit GWL WW die größte, WZ und WS geringere Bedeutung. Die nächst wichtige Rolle spielt GWT Ost mit GWL HFZ und untergeordnet HNFZ, gefolgt von NZ (GWT Nord). Diese Rangfolge trifft auch für D1 zu, während bei D2, mit insgesamt niedrigeren Werten, Vertreter der GWT Nord (TRM, HNZ, NZ) und Ost (HFZ, HNFZ) von größerem Einfluß sind. Die Kontraste zwischen D1 und D2 kommen besonders bei GWL WW, SEZ (GWT Südost), TRM und WZ zum Vorschein.

GWL	D1	D2	MD	GWL	D1	D2	MD
ww	20,167	2,375	17.854	ТВ	4,685	3,474	4.528
HFZ	11,982	4,467	11.005	WZ	-4,937	-,652	4.380
NZ	-10,038	-2,611	9.072	HNZ	-2,320	-5,338	2.712
NWZ	8,471	-2,023	7.633	HNFZ	-2,557	1,015	2.357
SWZ	-7,498	-2,093	6.795	TRM	,502	9,250	1.639
SEZ	-6,987	-,197	6.104	ws	-1,597	-1,348	1.565
тм	-5,900	-3,725	5.617	TRW	-1,257	-2,302	1.393

Tab. 16 : Standardisierte **Diskriminanzkoeffizienten** (D1 und D2) und **mittlere D.** (MD) der wichtigsten Variablen in absteigender Rangfolge – **Winterhalbjahr**

Abb. 56 : Abweichungen in den ermittelten Stationengruppen im Winterhalbjahr. Die Darstellung in b) und c) summiert die Abweichungen der GWL - spezifischen RG, aus denen sich die GWT bzw. die diskriminanzanalytisch ermittelten GWL-Gruppen zusammensetzen

Das Winterhalbjahr zeichnet sich im Vergleich zum Sommerhalbjahr durch größere Differenz zum Mittel der Stationen und durch stärkere Polarisation der Abweichungstendenzen aus (Abb. 56 a). Das trifft auf die Gruppe der subantizyklonalen und antizyklonalen GWL-
Gruppen häufiger zu als auf die zyklonalen und ist in Gruppe 3 mit den Stationen des Hochschwarzwaldes besonders stark ausgeprägt. Am Beispiel der GWL HM wird die mittlere Strahlungseinnahme in dieser Gruppe um 20 % überschritten, dagegen liegt sie in den Gruppen 1 und 2 um rd. 4 % unter dem Mittel.

Deutlicher abzulesen sind die Verhältnisse, wenn die Abweichungen auf die GWT bezogen werden (Abb. 56 b). Während sich die positiven (kumulierten) Abweichungen in Gruppe 1 auf die GWT Nord, Nordost und Ost beschränken und unter den übrigen GWT insbesondere die GWT West, Südwest und Süd negative Abweichungen > 5 % aufweisen, unterscheidet sich Gruppe 2 durch größere negative Abweichungen bei GWT HM, Nord und Ost und dem Gleichstand mit dem Mittel der Stationen bei GWT West. Die bis auf GWT Nordost positiven Abweichungen in Gruppe 3 werden dominiert von GWT HM und Süd.

Die Verteilung der Abweichungen vom Mittel der Stationen, in Abhängigkeit von den diskriminanzanalytisch gefundenen GWL-Gruppen, zeigen den ausgeprägten Kontrast der Gruppe 3 zu dem in Gruppe 1 und 2 (Abb. 56 c). Einer der Gründe ist, wie beschrieben, in den im Winterhalbjahr häufiger auftretenden inversen Temperaturschichtung in der unteren Troposphäre zu suchen, wobei die Stationen der Gruppe 3 die Sperrschicht überragen und einen höheren Strahlungsgenuß verzeichnen als die in Gruppe 2 unterhalb davon. Im Unterschied zu Gruppe 2 ist in Gruppe 1 die Summe der Abweichungen von der mittleren Strahlungseinnahme bei den antizyklonalen GWL leicht positiv. In den übrigen GWL-Gruppen ist die Tendenz gleich, bei unterschiedlich negativer Abweichung.

10. 2. 3 Mittleres Jahr

Für die Verhältnisse des mittleren Jahres ergibt sich aus dem Dendrogramm (Abb. 57) eine Lösung mit drei Cluster, wenn man die Trennlinie bei 6 setzt. Auch eine Lösung mit vier Cluster wäre möglich, doch ist die Entscheidung, für die Diskriminanzanalyse drei Gruppen vorzugeben, durch die besseren Gütekriterien der Trennfähigkeit gerechtfertigt.

Abb. 57 : Dendrogramm der GWL - spezifischen Abweichungen der einzelnen Stationen von der mittleren Station. Methode : Complete Linkage; quadrierte eukidische Distanz – mittleres Jahr

Abb. 58 : Lage der Stationen im Diskriminanzraum – mittleres Jahr

GWL	D1	D2	MD	GWL	D1	D2	MD
SWZ	-22,457	3,475	21.831	WS	10,018	-1,641	9.742
HNZ	-16,398	1,844	15.918	TRW	7,787	-1,790	7.589
ww	15,804	-4,576	15.433	SZ	-5,450	1,421	5.317
WZ	13,558	3,536	13.227	NWZ	-5,169	-3,048	5.099
NZ	-13,351	3,461	13.025	SEZ	-2,850	-,089	2.759
HFZ	13,205	-1,094	12.805	ТВ	-1,275	2,291	1.309
TRM	13,042	-1,189	12.651	ТМ	-1,036	-1,577	1.054

Tab. 17 : Standardisierte **Diskriminanzkoeffizienten** (D1 und D2) und **mittlere D.** (MD) der wichtigsten Variablen in absteigender Rangfolge –**mittleres Jahr**

Die Cluster im Dendrogramm werden ohne Korrekturen von der Diskriminanzanalyse übernommen (Abb. 58). Nur gruppenintern kommt es teilweise zu einer abweichenden Gewichtung der Ähnlichkeit bei Mannheim und Karlsruhe (Gruppe 1), Bad Bergzabern und Alzey (Gruppe 2), Feldberg und Hornisgrinde bzw. Höchenschwand (Gruppe 3). Wie die Varianzanteile ausweisen, dominiert D1 mit einer Varianzaufklärung von rd. 97 %. D1 trennt die Stationengruppe 3 von 1 und 2, D2 die Gruppe 1 von 2. Maßgebenden Einfluß auf die Trennung der Stationsgruppen haben ausschließlich die zyklonalen GWL (Tab. 17). Dabei entfallen die höchsten Beträge der mittleren Diskriminanzfunktion (MD > |9|) auf die GWT Südwest, Nord, West und Ost, GWT Nordwest, Südost, Süd und Tief Mitteleuropa sind dagegen schwächer vertreten. Dies gilt auch für D1, während bei D2 sich die höheren Werte

Abb. 59 : Abweichungen in den ermittelten Stationengruppen im mittleren Jahr. Die Darstellung in b) und c) summiert die Abweichungen der GWL - spezifischen RG, aus denen sich die GWT bzw. die diskriminanzanalytisch ermittelten GWL-Gruppen zusammensetzen

(D2 > |3|) auf die GWT West, Südwest, Nord und Nordwest verteilen.

Gemessen am Jahresmittel der Stationen und wiederum aufgelöst nach GWL, treten in den Abweichungen der Stationengruppen die Gegensätze deutlich hervor, insbesondere die der Gruppe 3 gegenüber 2 und schwächer bei Gruppe 1 (Abb. 59 a). Gruppe 1 steht dem Mittel der Stationen am nächsten. Subantizyklonale und antizyklonale GWL der Gruppen 2 und 3 kontrastieren am stärksten, dagegen entspricht die zyklonale GWL-Gruppe in der Summe der Abweichungen in Gruppe 2 dem Jahresmittel. Die höchsten positiven Abweichungen findet man mit > 10 % bei HM und SA in Gruppe 3 vor. In Gruppe 2 wird das Mittel der Stationen zu 7.5 % bzw. 6.5 % unterschritten, in Gruppe 1 liegen beide GWL nahe am Mittel.

Einen besseren Überblick gewinnt man, wenn die Abweichungen vom Jahresmittel in den GWT kumuliert sind (Abb. 59 b). Fast zwei Drittel der Stationen sind in Gruppe 1 vereinigt, die sich überwiegend nur durch geringfügige negative Abweichungen vom Mittel aller Stationen abheben. Bedeutender sind die Unterschiede von Gruppe 2 und 3. Die Strahlungseinnahme bei GWT HM (HM, BM) in Gruppe 2 liegt z. B. 11 % unter, in der 3.Gruppe 16 % über dem Jahresmittel. Unbedeutend sind dagegen in beiden Gruppen die GWT Tief Mitteleuropa und Nordost (NEA, NEZ).

In Abhängigkeit von den über die Diskriminanzanalyse ermittelten GWL-Gruppen, ergeben sich die Verteilungsmuster der kumulierten Abweichungen in den Stationengruppen (Abb. 59 c). Der gravierendste Gegensatz ist, wie im Winterhalbjahr, zwischen Gruppe 3 und den übrigen Gruppen ausgebildet. Unbedeutend ist der Beitrag der zyklonalen GWL-Gruppe, die in Gruppe 1 das Jahresmittel nur schwach unterschreitet, in Gruppe 2 sich kaum davon unterscheidet, aber in Gruppe 3 um fast 20 % übersteigt. Hinsichtlich der subantizyklonalen GWL-Gruppe unterscheiden sich die Gruppen durch die geringe Unterschreitung des Jahresmittels um 7 % bei Gruppe 1 gegenüber 27 % in der 2. Gruppe und einer Überschreitung um 50 % in der 3. Gruppe. Die antizyklonale GWL-Gruppe entspricht in Gruppe 1 dem Jahresmittel, das in der 2.Gruppe um 20 % unterschritten wird und in Gruppe 3 das Jahresmittel um 20 % übersteigt.

Die ähnliche Tendenz im Vergleich zum Winterhalbjahr ist nicht zu übersehen. Zu berücksichtigen ist allerdings, daß die Zusammensetzung der diskriminatorisch ermittelten GWL-Gruppen im Winterhalbjahr und dem mittleren Jahr sich leicht unterscheiden. Trotzdem ist die Annahme berechtigt, daß sich die Verhältnisse des Winterhalbjahres in den Grundzügen im mittleren Jahr durchpausen..

10. 2. 4 Orographische Effekte

Auf dem Aggregationsniveau der vorausgegangenen Analysen können orographische Effekte, hier insbesondere Luv–Lee–Phänomene, nur indirekt erschlossen werden. Erst mit dem Vergleich von GWL- bzw. GWT–spezifischer Strahlungseinnahme zweier Stationen in entsprechender topographischer Position ist ein Nachweis möglich. Dazu reicht nicht aus, nur den quantitativen Unterschied der Anomalie festzustellen, sondern es ist auch notwendig, mit einem Testverfahren die Abweichung auf Signifikanz zu prüfen. Da es sich statistisch um zwei Stichproben handelt, deren Werte zeitgleich sind und unter zwei Bedingungen (= Stationen) gemessen wurden, ist ein Test für abhängige Stichproben anzuwenden.

Die Beispiele sind dem Winterhalbjahr entnommen, weil in diesem Zeitraum Luv–Lee– Effekte markanter hervortreten als im Sommerhalbjahr. Bedingt ist dies hauptsächlich durch die stärkere Ausprägung der allgemeinen Zirkulation, die u. a. in der Geschwindigkeit des Luftmassendurchgangs äußert (vgl. FLOHN, H. 1954, S.91).

Grundsätzlich sind Luv–Lee-Effekte eine häufige Erscheinung, nur gibt es zu wenige Stationen, um sie nachzuweisen (Tab. 18). Ein günstiges Beispiel ist die Station Geisenheim im Rheingau am Südabfall des variskisch streichenden Taunuskamms. Vergleichsstationen im Rheinischen Schiefergebirge, im Luv-Bereich bei Nordlagen, sind zu weit entfernt : Bonn rd. 100 km und Gießen rd. 80 km. Stattdessen wird die rd. 30 km südlich Geisenheim gelegene Station Alzey dazu in Beziehung gesetzt, von der angenommen wird, daß sie außerhalb des Lee-Bereichs liegt.

	Station	ΦN	λΕ	ΗüNN	n (Tage)	RG [Mittel]	GWT / GWL	Student's t	Signifikanz
(1)	Geisenheim	49° 59'	07º 57'	131	457	42.3	Nord Wihj.	9.53	h.s
(2)	Alzey	49° 44'	08º 07'	215	457	36.7			
(1)	Bad Bergzabern	49° 06'	08º 00'	180	1228	35.4	West Wihj.	15.64	h.s
(2)	Saarbrücken	49° 13'	07º 07'	325	1228	29.7			
(1)	Höchenschwand	47° 44'	08º 10'	1008	792	50.7	West Sohj.	19.04	h.s
(2)	Feldberg	47° 53'	08° 00'	1486	792	43.9			
(1)	Höchenschwand				131	43.2	NWZ Sohj.	5.55	h.s
(2)	Feldberg				131	37.9			
(1)	Buchen	49° 31'	09º 19'	350	779	34.9	WZ Wihj.	11.73	h.s
(2)	Beerfelden	49° 34'	08° 58'	450	779	31.8			

Tab. 18 : Beispiele zur Strahlungseinnahme bei Luv-Lee-Effekten im Untersuchungsgebiet

Der Unterschied in der Strahlungseinnahme im Winterhalbjahr bei GWT Nord erweist sich als hoch signifikant. Ebenso verhält es sich beim Vergleich der Stationen Saarbrücken – Ensheim (Flughafen) und Bad Bergzabern am westlichen Rand des Oberrheingrabens im Winterhalbjahr bei GWT West.

Zwischen den Stationen Feldberg und Höchenschwand lassen sich dagegen im Winterhalbjahr bei dieser GWT keine signifikanten Unterschiede feststellen, wohl aber im Sommerhalbjahr. Dies gilt auch für die GWL NWZ im Sommerhalbjahr. Etwas kleiner, aber hoch signifikant, fällt die Differenz in der Strahlungseinnahme zwischen südlichem Odenwald und Bauland aus, vertreten durch die Stationen Beerfelden und Buchen bei GWL WZ im Winterhalbjahr. Alle Beispiele wurden zusätzlich zum Student-t-Test auch dem t-Test nach Ferguson unterzogen, der die Ergebnisse auf gleichem Signifikanzniveau bestätigt, ausgenommen Höchenschwand und Feldberg im Sommerhalbjahr bei GWL NWZ.

10.3 Zusammenfassung der Gruppenbildung mittels Diskriminanzanalyse

Die erste Problemstellung ist darauf ausgerichtet, Gruppen von klimatologisch definierten Zeitspannen zu ermitteln, die innerhalb der Gruppe hinsichtlich der Strahlungseinnahme möglichst homogen sind und sich von den benachbarten Gruppen signifikant unterscheiden. Als günstig haben sich die Zeitspannen der Großwetterlagen (GWL) erwiesen, die für jeden Tag bestimmt sind. Das in den mitgeführten Luftmassen enthaltene Wasser stellt als Bewölkung die wesentliche Filterkomponente dar, die die Intensität der Globalstrahlung auf die Empfangsfläche modifiziert. Anstelle der GWL wären auch die Luftmassen aussagekräftig, doch scheitert dies an dem Umstand, daß vielfach mehrere Luftmassen an einem Tag registriert werden und dadurch für die Analyse die Ereignismasse nicht ausreicht.

Das Maß für die Strahlungseinnahme ist die relative Globalstrahlung (RG), die in v.H. angibt, wie groß der Anteil ist, im Vergleich zur Strahlungseinnahme unter den Bedingungen der Rayleigh-Atmosphäre .

Die Analysen umfassen das Sommer- und Winterhalbjahr und das mittlere Jahr. Im Vorlauf ordnet die Clusteranalyse die GWL zu Gruppen, deren Anzahl von der Diskriminanzanalyse übernommen und gegebenenfalls inhaltlich korrigiert wird. In allen Fällen wird die Zuordnung zu 100 % erreicht, wobei sich für die drei Zeiträume je drei, sich signifikant unterscheidende GWL-Gruppen ergeben : im Sommerhalbjahr die antizyklonale, subzyklonale und zyklonale, im Winterhalbjahr und im mittleren Jahr die zyklonale, subantizyklonale und antizyklonale Gruppe (Abb. 47, 50). Die Vorsilbe "sub" markiert, daß

Abb. 60 : Verteilungsmuster der Stationen im Untersuchungsgebiet. Sommer – und Winterhalbjahr sowie im mittleren Jahr; in Verbindung mit den Abb. 52, 53, 55, 56, 58 und 59

es sich zwar um zyklonale bzw. antizyklonale GWL handelt, aber zu den Kerngruppen ein signifikanter Unterschied besteht. Dabei steht z.B. die subzyklonale Gruppe der zyklonalen näher als der antizyklonalen, was auch aus dem Gruppenmittel hervorgeht. Außerdem zeigt das mittlere Jahr, daß es von den Verhältnissen des Winterhalbjahres überprägt ist.

Die Ergebnisse werden mit denen der zweiten Problemstellung in Beziehung gesetzt, die zum Ziel hat, Gruppen von Stationen mit ähnlicher GWL-abhängiger Strahlungseinnahme für das Sommer- und Winterhalbjahr und das mittlere Jahr zu isolieren. Da Relativwerte zugrunde liegen, ist der Breiteneffekt eliminiert, so daß hauptsächlich die orographisch modifizierte GWL-spezifische Strahlungseinnahme in den Vordergrund rückt. Die Variablen sind jetzt die stationenbezogenen und GWL-spezifischen RG-Werte aus der Datenmatrix der ersten Problemstellung. Aus dieser Datenmatrix wird für jede Zeitspanne das mittlere Stationenprofil errechnet. Die Abweichung davon für jede Station bildet die Ausgangsbasis für die weiteren Analysen (A 93 a-c). Bei gleicher Vorgehensweise wie bei der ersten Fragestellung werden für die drei Zeitspannen jeweils drei Stationengruppen signifikant unterschiedlicher Zusammensetzung ermittelt (Abb. 53, 56, 59), deren räumliche Verteilungsmuster in Abb. 60 dargestellt sind.

Die vorliegenden Ergebnisse gelten für das Untersuchungsgebiet in den genannten Zeitspannen. Sie sind aber vergleichbar mit Ergebnissen aus anderen Räumen, wenn dieselbe Methode auf Daten der gleichen Zeitspanne angewandt wird. Zu den Voraussetzungen zur Anwendung der Diskriminanzanalyse müßte im idealen Fall die multivariate Normalverteilung der Daten gesichert sein. In der Realität ist diese Forderung in der Regel nicht erfüllt. Es wurde aber nachgewiesen (LACHENBRUCH, P. A. 1975; ERB, W.-D. 1990, S. 5, 57), daß eine schwache Verletzung dieser Voraussetzung toleriert wird, so daß trotzdem brauchbare Ergebnisse erzielt werden.

Die unterschiedliche Verteilung der Strahlungseinnahme auf der Erdoberfläche, im Vergleich zum ungestörten Strahlungsfeld unter den Bedingungen der Rayleigh-Atmosphäre, ist einerseits auf die Dynamik der Luftdruckverteilung und den daraus resultierenden Großwetterlagen zurückführbar. Die mitgeführten Luftmassen erfahren dabei, abhängig von ihrer Herkunft und der überquerten Unterlage, Veränderungen der Eigenschaften, die für die Strahlungseinnahme auf der Erdoberfläche relevant sind. Wie letztlich das Verhältnis von direkter zur diffusen Sonnenstrahlung auf der Empfangsfläche beschaffen ist, hängt weitgehend von den Filtereigenschaften der GWL-spezifischen Bewölkung ab, die wegen der möglichen Wolkenarten, ihrer räumlichen Verbreitung und Dichte eine potentielle Quelle der Variabilität darstellt und von der Position der Empfangsfläche zum Kondensationsniveau.

Die anderen Randbedingungen sind durch das Relief gegeben, mit dem die Dynamik der Troposphäre in Beziehung steht und deshalb in der Zusammenschau als orographisch – dynamisch umschrieben wird. Bereits die hypsometrischen Verhältnisse nehmen Einfluß, indem hoch liegende Stationen wegen des kürzeren Strahlenweges, geringerer Luftdichte, niedrigerem Wasserdampf- und Aerosolgehalt und damit schwächerer Extinktion, eine höhere Strahlungseinnahme registrieren, im Gegensatz zu den Stationen der Niederungen. Folgenreicher kann sich die vorherrschende Streichrichtung des Reliefs auf advektive Luftmassen auswirken. Im Untersuchungsgebiet ist es die variskische Streichrichtung (SW-NE), die den Südabfall des Rheinischen Schiefergebirges und auch den Verlauf der nach Norden abfallenden Schichtstufe der Schwäbischen Alb generalisierend nachzeichnet und das rheinische Streichen (SSW – NNE), dem die Randgebirge des Oberrheingrabens folgen.

Prozesse in der Troposphäre, die reliefinduzierte Veränderungen des Bedeckungsgrades zur Folge haben, dadurch die Sonnenscheindauer und damit auch die Intensität der Strahlungseinnahme einschränken oder erhöhen, werden als orographische Effekte eingeordnet. Luv-Lee-Erscheinungen zählen zu den bekanntesten, wobei der Luvbereich einen größeren Raum einnimmt als der von der Leewirkung beeinflußte Bereich. Beispiele sind der Rheingau bei Nord- und Nordwestlagen oder der Ostabfall des Pfälzerwaldes bei West-, Südwest- und Nordwestlagen, das Bauland im Lee des Buntsandstein-Odenwaldes oder der Hotzenwald und die Baar im Lee des Hochschwarzwaldes (Tab. 18).

Die oben genannten günstigen Umstände der Strahlungseinnahme in den Hochlagen gegenüber den Niederungen werden unter dynamischer Sicht relativiert und führen zu einem in großen Zügen höhenabhängigen Verteilungsmuster der Globalstrahlung. Im Sommerhalbjahr führt der hohe Energieumsatz in den wasserreichen Niederungen zur Mobilisation des Wasserdampfes, der durch Konvektion in größere Höhe gelangt und wegen der niedrigeren Umgebungstemperatur kondensiert, so daß die Gipfelbereiche von Wolken eingehüllt werden. Damit verbunden ist eine (in v. H. der Jahressumme) geringere Strahlungseinnahme gegenüber der Niederung. Im Winterhalbjahr kehrt sich die Situation um. Die jetzt vorwiegend relative Strahlungsgunst in den Hochlagen wird zudem durch Inversionswetterlagen verstärkt (Abb. 8, 9, 10).

11 Zeitreihenanalyse

Eine Zeitreihe liegt vor, wenn sich die numerischen Werte, z. B. eines Klimaelements, auf die zugehörigen Zeitabschnitte beziehen. Dazu wird gefordert, daß die Zeitschritte gleichgroß oder äquidistant sind und in einer Richtung fortschreiten ($\Delta t = \text{const.}$). Im Gegensatz zu dieser diskreten Darstellung ist die Zeitfunktion eine stetige Funktion der betreffenden Variablen in Abhängigkeit von der Zeit. Sie kann nachträglich durch Auftrennen in äquidistante Zeitschritte in eine Zeitreihe überführt werden. Die Werte der in die Analyse einbezogenen Variablen ergeben sich auf verschiedene Weise: Z. B. liegen Lufttemperatur und Bewölkung in Tagesmittelwerten vor, die aus Messungen bzw. Schätzungen zu bestimmten Terminen hervorgegangen sind, während Sonnenscheindauer, Globalstrahlung und Niederschlag Stunden- bzw. Tagessummen angegeben, aus denen wiederum Mittelwerte beliebiger, aber gleichabständiger Zeitschritte gebildet werden können.

Ziel der Analyse ist die Erschließung zeit-varianter Eigenheiten der Reihen, wenn zuvor die Frage nach der Homogenität geklärt ist. Weil die Zeitreihen der Globalstrahlung, klimatologisch betrachtet, relativ kurz sind und weder ein Standort- noch ein Instrumentenwechsel vermerkt ist, kann Homogenität angenommen werden. Grundsätzlich ist davon auszugehen, daß in einer unbehandelten Zeitreihe zwei Komponenten ihren Verlauf bestimmen, die deterministische Komponente und die stochastische. Die deterministische Komponente kann mit linearen, zyklischen oder polynomialen Trendmodellen erfaßt werden. Ist das optimale Trendmodell gefunden und die Signifikanz nachgewiesen, wird die deterministische Komponente eliminiert. Die Residuen enthalten jetzt noch die stochastische Komponente, einschließlich der reinen Zufallsdaten.

Eine weitere Voraussetzung (s.a. 2.2), um Verzerrungen der Ergebnisse im Fortgang der Analyse zu vermeiden, ist die Sicherung der Stationarität. Sie ist erfüllt, wenn arithmetisches Mittel, Varianz und höhere statistische Momente, wie z. B. Schiefe und Exzeß bei Erweiterung der Zeitreihe sich invariant verhalten, also unabhängig von der Zeit sind. Dieser Zustand ist bei empirischen Daten nicht zu erreichen. Deshalb wird in der Regel dieser Anspruch reduziert, indem man die Stationarität nur für die ersten beiden Momente anstrebt ("schwache Stationarität"). Stationarität wird wiederum vorausgesetzt, wenn die Erhaltungssneigung im inneren Aufbau der stochastischen Komponente mittels Autokorrelationsanalyse aufgedeckt werden soll. Erhaltungsneigung charakterisiert die Datenabhängigkeit einer zeit-varianten Reihe , wobei z. B. im einfachen Fall ein Meßwert von dem vorhergehenden oder noch weiter zurückreichend, abhängig ist. Liegt keine Erhaltungsneigung vor, handelt es sich um eine Zeitreihe mit rein zufälligen Daten (weißes Rauschen). Das Maß für die Stärke und Signifikanz der Autokorrelation ist der gleichnamige Koeffizient r(k). Dieser mißt den Zusammenhang der zeit-varianten Variablen bei früheren Zeitschritten (k = 1, 2,...) im Vergleich mit der gegenwärtigen Ausprägung. Darauf aufbauend wird mit der Fourieranalyse der Autokorrelationsfunktion die Verteilung der auf die Frequenz bezogenen Varianz errechnet, um gegebenenfalls signifikante Maxima bzw. zyklische Variationen zu ermitteln, die klimatologisch zugeordnet werden können (Autokorrelations-Spektralanalyse, ASA, BLACKMAN & TUKEY 1958). Die umfangreichen mathematisch-statistischen Grundlagen mit zahlreichen regionalen Beispielen für diese Methode sind u.a. in SCHÖNWIESE, C.-D. (1969, 1974, 1990, 2000) dargestellt. Ein anderes, inzwischen häufig eingesetztes Verfahren, die Maximum–Entropie-Spektralanalyse (MESA), leitet sich aus der Informationstheorie ab und hat den Vorzug, den langperiodischen Bereich des Spektrums besser aufzulösen als die ASA, dagegen ist die Ermittlung der Signifikanz schwerer handhabbar (vgl. ib. 2000, S. 217 f).

11. 1 Spektrale Varianzanalyse (ASA) von Zeitreihen der Globalstrahlung und der Lufttemperatur

Die Ausgangsdaten für die Globalstrahlung sind die Tagessummen in Wh/m² und die Tagesmitteltemperatur in °C in der Zeitspanne 1981 – 2000. Daraus werden die Monatsmittelwerte berechnet. Um den unterschiedlichen Monatslängen Rechnung zu tragen, wird die Globalstrahlung als mittlere tägliche Strahlungssumme des betreffenden Monats dargestellt, entsprechend dazu die mittlere Tagestemperatur.

Auswahlkriterium für die Stationen war eine möglichst lückenlose Meßwertreihe der Tagessummen der Globalstrahlung. Nach abnehmender geographischer Breitenlage angeordnet, sind das die Stationen Würzburg, Trier, Mannheim, Stuttgart und Freiburg, deren Zeitreihe sich jeweils aus 240 Monatswerten zusammensetzen und 20 Jahreszyklen bilden. Im Sinne der Zeitreihenanalyse sind es zyklische Variationen (Jahresgänge), weil zwar die zeitlichen Abstände konstant sind, die Amplituden aber variieren. Wären auch die Amplituden konstant, würde es sich um Perioden handeln.

Im vorliegenden Fall ist der Jahresgang für die spektrale Aufschlüsselung der Varianz hinderlich, weil er auf der Frequenz f = 1 / 12 (f = 0.0833) den größten Teil der Zeitreihenvarianz bindet und dadurch die übrigen, möglicherweise klimatologisch interpretierbaren Varianzmaxima, unterdrückt. Die Eliminierung des Jahresgangs wird durch die Anpassung einer Fourier – Reihe der Form

$f(t) = A_0 + A_1 \cos(2\pi t/12) + B_1 \sin(2\pi t/12) + C_1 \cos(2\pi t/12)$ (15)

(t = 1, 2 ...Nr. des Monats) fast erreicht (vgl. HASENFRATZ, E. 2002, S. 101). Dabei wird die Anpassung für jeden einzelnen Jahresgang getrennt durchgeführt, um gegebenenfalls verborgene lineare Trends auszuschalten. Durch Subtraktion der angepaßten Monatswerte von der Originalreihe erhält man die Residualreihe, die nun Gegenstand der weiteren Analyse ist (Abb. 61a). Daß der Jahresgang offenbar nicht vollständig eliminiert ist, geht aus dem Vergleich der Originalreihe mit der Residualreihe hervor. Vielfach wird gerade im oberen Bereich der Jahresamplitude (Sommer) eine stärkere Auslenkung der Residualreihe beobachtet, was auf die größere Variabilität der Werte in diesem Jahresabschnitt zurückzuführen ist. Um auch den restlichen Anteil des Jahresgangs zu erfassen, werden Filteroperatioen angewandt. Um Phasenverschiebungen auszuschließen, muß der Filter symmetrisch sein. Am geeignetsten sind der Gauß'sche Tiefpaßfilter (vgl. SCHÖNWIESE, C.-D. 2000, S. 257 ff), hier mit L = 12 Δ t, d. h., daß durch die Filterung hohe Frequenzen (= kleine Perioden) zurückgehalten, aber niedrige Frequenzen = lange Perioden > 12 Monate durchgelassen werden. Umgekehrt ist der Gauß'sche Hochpaßfilter H = 12 Δ t durchlässig für Perioden < 12 Monate und wird errechnet, indem man die tiefpaßgefilterte Reihe von der

Abb. 61 : a) Monatsmittel der Globalstrahlung und Residuen b) Tief-und hochpaßgefilterte Zeitreihe

Abb. 62 : a) Mittlere monatliche Tagesmittel der Lufttemperatur und Fourier-Reihe b) Residuen c) Tief- und hochpaßgefilterte Reihe

Originalreihe subtrahiert. Bei diesen Filteroperationen verkürzt sich die Zeitreihe allerdings um jeweils 6 Monate am Anfang und am Ende (Abb. 61b). Auf die gleiche Weise ist die Zeitreihe der Lufttemperatur vorbehandelt (Abb. 62 a,b,c).

Für die einzelnen Stationen ist die Zeitreihe auf der Basis von Monatswerten relativ kurz, was sich auf die Nachweismöglichkeit der gesuchten Varianzmaxima auswirkt. Deshalb werden die Zeitreihen der fünf genannten Stationen aneinandergereiht. Das entspricht der sog. stationyear- Methode, wie sie in der Hydrologie angewandt wird (SCULTETUS, H. R. 1969, S. 83).

Zwar wird dadurch der Informationsgehalt über die zwanzig Jahre hinaus nicht erhöht, aber die Bedingungen verbessert, damit Varianzmaxima stärker hervortreten. Für die ASA liegt also die von Jahresgang und Trend bereinigte und gefilterte Zeitreihe in der Länge von n = 1188 Monaten vor, die in der Autokorrelation einer zeitlichen Verschiebung von M = 238 unterworfen wird. Dies entspricht rd. 1/5 des Stichprobenumfangs.

Schließlich wird die Qualität des Spektrogramms erheblich gesteigert, wenn über die gefundene zyklische Varianz Aussagen zur ihrer Signifikanz möglich sind. Dies setzt (vgl. SCHÖNWIESE, C.-D. 2000, S. 244-249) als Nullhypothese entweder einen reinen Zufallsprozeß voraus, was als weißes Spektrum bezeichnet wird oder, wie in allen hier behandelten Varianzspektren, ein rotes Spektrum (Sp_R, Markov-Spektrum), weil in der Autokorrelation noch signifikante Erhaltungssneigung vorgefunden wird. Dieses theoretische Hintergrundspektrum (R) wird geschätzt nach

$$Sp_{R}(k) = (1 - r_{1}^{2}) / (M (1 + r_{1}^{2} - 2r_{1} \cos (\pi k / M)))$$
(16)

wobei r_1 der signifikante Autokorrelationskoeffizient nach der 1. Zeitverschiebung (lag) und k = 1, 2...M ist. Die Vertrauensgrenzen (VG) werden berechnet (PANOFSKY, H. A. & BRIER, G. W. 1958 zit. n. SCHÖNWIESE, C.-D. 2000, S. 247) nach

VG (Sp) = Sp_R
$$\chi^2 (\alpha, \phi) / \phi$$
 $\phi = (2n - M/2) / M$ (17, 18)

(α Irrtumswahrscheinlichkeit, ϕ Freiheitsgrade)

In den beiden vorgenannten Zeitreihen der Globalstrahlung und Lufttemperatur beträgt ϕ = 9.48. Die Spektrogramme der Globalstrahlung und Lufttemperatur für den Bereich > 12 Monate (Abb. 63a, 64 a) zeigen deutlich die Wirkung des Tiefpaßfilters auf der Frequenz 0.0833 und, wie oben ausgeführt, den steilen Abfall im langperiodischen Bereich, der die Beschränkung der Zeitreiheninformation auf 20 Jahre unterstreicht. Der dominierende Varianzanteil ist bei der Globalstrahlung in dem Varianzmaximum bei 23.8 Monaten ≈ 2 Jahre vereinigt, bei der Lufttemperatur bei 29.7 Monaten = 2.47 Jahre. Sie markieren die Quasi-bienniale Oszillation (QBO). Beide übersteigen die Vertrauensgrenze von 99 %, sie sind also hochsignifikant. Das bedeutet, daß in der Grundgesamtheit diese zyklische spektrale Struktur vorhanden ist. Bereits in den Zeitreihen der meisten in Bodennähe gemessenen Klimaelemente nachgewiesen, zählt sie zu den relativ wenigen, bei denen die zu ihrer Entstehung führenden Prozesse hinreichend untersucht sind. Für lange Temperatur - und Niederschlagsreihen ist sie weltweit nachgewiesen (SCHÖNWIESE, C.-D., MALCHER, J., HARTMANN, C. 1990; LABITZKE, K. 2005). Ihre Streubreite beträgt 1.9 – 2.5 Jahre, bei einem Mittelwert von 2.2 Jahren (vgl. auch die Zusammenstellung bei SCHÖNWIESE, C.-D. 1969, S. 49, 50). Ein weiteres signifikantes Varianzmaximum liegt in der Globalstrahlungsreihe bei 34 Monaten ≈ 3 Jahre, das mit dem in Abständen von 3 bis 8 Jahren auftretenden El Nino - Ereignis in Verbindung gebracht wird; ebenso das nicht signifikante Maximum bei 47.6 Monaten \approx 4 Jahre, das auch in der Temperaturreihe vertreten ist, aber unter der vorgegebenen Vertrauensgrenze bleibt. In längeren Zeitreihen treten diese zyklischen Strukturen i. d. R. signifikant hervor.

Abb. 63: ASA der Globalstrahlungsreihe a) Bereich > 12 Monate b) Bereich < 12 Monate

Unter den signifikanten Maxima mit Perioden < 24 Monate ist beiden Zeitreihen das bei 15.9 Monaten \approx 1.3 Jahre gemeinsam, kann aber keinem klimatologischen Ereignis zugewiesen werden, ebenso wie die übrigen hochsignifikanten Maxima in der Temperaturreihe, bis auf das Maximum bei 14.9 Monaten \approx 437 Tage. Das entspricht der CHANDLERschen Periode der Polbewegung (KERTZ, W. 1992, S.100 f). Daß ein klimatologisch relevanter Zusammenhang besteht, wird bereits von F. BAUR (1948, S. 72, 73) vermutet und hat in neuerer Zeit durch die Steigerung der Meßgenauigkeit und durch die Fortschritte in der Physik des Erdkörpers die Diskussion angeregt.

Abb. 64 : ASA der Lufttemperaturreihe a) Bereich > 12 Monate b) Bereich < 12 Monate

Wie man den Abb. 63 b und 64 b entnehmen kann, ändert sich im Bereich < 12 Monate die Struktur der Varianzverteilung auf den Frequenzen. Die kleinste darstellbare Periode beträgt 2 Monate, entsprechend der Nyquist - Frequenz $f_{max} = \frac{1}{2} \Delta t$, $T_{min} = 2\Delta t$. Am Verlauf des roten Hintergrundspektrums und den daran geknüpften Vertrauensgrenzen leitet sich eine Zunahme der Varianz in Richtung der kleineren Perioden ab, was auch P. BISSOLLI (1991, S. 220, 221) beschrieben hat und als "blaues Rauschen" bezeichnet.

Beide Spektren enthalten eine Reihe hochsignifikanter Maxima, die schon aus anderen Zeitreihen bekannt sind. In beiden Darstellungen fällt das Maximum bei 6 Monaten auf, das mit der 6-monatigen Luftdruckschwankung erklärt wird, hervorgerufen durch die Differenz der Bestrahlungsintensität in unterschiedlich geographischer Breite (SCHWERDTFEGER, W.& PROHASKA, F. 1956, zit. n. SCHÖNWIESE, C.-D. 1969, S. 45). Auch wurde das hochsignifikante Maximum bei 4.8 Monaten in der Temperaturreihe bereits in Zeitreihen des Luftdrucks, der Solarkonstanten und der Sonnenfleckenzahl von TAKAHASHI (1959)

Abb. 65 : Relatives Varianzspektrum (ASA)Perioden < 60 Tage a) Relative Sonnenscheindauer b) Relative Globalstrahlung

nachgewiesen (ib.). Für die hochsignifikanten Maxima bei 2 und 3 Monaten kann ein Zusammenhang mit der Erhaltungsneigung der Zirkulationsformen vermutet werden (siehe auch GERSTENGARBE, F.-W. et al. 1993, Abb. 3.1, 3.35 - 3.38; Tab. 3.8, 3.40).

11.2 Relative Varianzspektren (ASA) auf der Basis von Tageswerten ausgewählter Klimaelemente

Ausgangsdaten sind die Zeitreihen von relativer Sonnenscheindauer (RSD), relativer Globalstrahlung (RG), relativer diffuser (RD) und direkter Sonnenstrahlung (RB), Lufttemperatur, Bewölkung und Niederschlag, alle am Beispiel der Station Mannheim für die

Abb. 66 : Relatives Varianzspektrum (ASA) Perioden < **60 Tage** a) Relative diffuse Sonnenstrahlung b) Relative direkte Sonnenstrahlung

Zeitspanne 1981 – 2000 (n = 7305 Tage). Um das Maximum bei einem Jahr zu unterdrücken, ist jede Reihe mit H = 60 Δ t hochpaßgefiltert. Dieser Gauß'sche Filter gilt für diesen Zweck als optimal (BISSOLLI, P. 1991, S.127). Dadurch reduziert sich jede Zeitreihe um 30 Tage am Anfang und 30 Tage am Ende, so daß die Ausgangsreihe für die Berechnungen n = 7245 Tage umfaßt. Weil mit der ASA insbesondere die Varianzmaxima der Perioden < 60 Tage dargestellt werden sollen, genügt eine Verschiebung von M = 183. Es werden also T_{max} = 2M Δ t im relativen Varianzspektrum erscheinen. Aufgrund der Hochpaßfilterung fällt das Spektrum aber schon bei T = 60 Tagen (f = 0.0166) steil ab.

Die Ergebnisse der ASA zeigen Ähnlichkeiten in der Verteilung der relativen Varianz bei der RSD und RG (Abb. 65 a, b). Das ist zu erwarten, da das Angström'sche Regressionsmodell (Abschnitt 3.4) hohe Korrelationen der beiden Variablen aufweist. Ersetzt man RG durch RB (Abb. 66 b), tritt die Ähnlichkeit der beiden Spektren noch überzeugender hervor, weil, wie

Abb. 67: Relatives Varianzspektrum (ASA) Perioden < 60 Tage a) Lufttemperatur b) Bewölkung

schon erörtert, die RB in der Globalstrahlungssumme dominiert und der diffuse Anteil (RD) in der Angström–Beziehung den Korrelationskoeffizienten leicht vermindert. Der Unterschied im relativen Varianzspektrum der beiden Komponenten (Abb.66 a, b) ist offensichtlich, wobei der deutlich geringere relative Varianzanteil der RD im Periodenbereich > 9 Tage zu beachten ist. Dagegen übertreffen im Bereich < 3 Tage die Varianzanteile die von RSD, RG und RB. Im Vergleich zu den Spektren von RSD, RG und RB weist der flache Verlauf des roten Hintergrundspektrums der RD auf eine relativ geringe Autokorrelation, was auf die schwache Erhaltungsneigung der RD-Daten zurückzuführen ist. Auffällig sind die deutlich niedrigeren Varianzen im Bereich > 7 Tage und, abweichend von den übrigen Spektren, mehr signifikante Maxima im Abschnitt < 3 Tage. Ähnlich verhält sich das Spektrum der Niederschlagsreihe (Abb. 68), dessen Struktur stärker von den örtlichen Gegebenheiten geprägt wird.

Abb. 68 : Relatives Varianzspektrum (ASA) der Niederschlagsreihe; Perioden < 60 Tage

Im Gegensatz dazu sind die Spektren der Lufttemperatur und Bewölkung (Abb. 67 a, b), im Vergleich mit allen untersuchten Reihen am stärksten von einer hohen Erhaltungsneigung der Daten geprägt, was im steilen Abfall der roten Hintergrundsspektren zum Ausdruck kommt. Auffallend ist beim Temperaturspektrum die Verflachung im Bereich < 3 Tage ohne signifikante Varianzmaxima im Rahmen der vorgegebenen Vertrauensgrenzen.

Bei der näheren Betrachtung der signifikanten Varianzmaxima stellt man mehr oder weniger gut entwickelte Häufungsbereiche fest, die, allerdings nur generalisierend, klimatologisch faßbaren Ereignissen zugewiesen werden können. Bezieht man die RG-, RB- und RD-Spektren der übrigen Stationen mit ein (A 94 - 96), erhärtet sich die Feststellung, daß die signifikanten Maxima im längerperiodischen Bereich (etwa > 4 Tage) häufiger vertreten sind. Ausgenommen ist das RD-Spektrum.

Unter den Maxima im hochfrequenten (kurzperiodischen) Abschnitt (2 < 3 Tage) erscheint häufiger die Periode 2.3 Tage (nicht im Spektrum der Lufttemperatur). Bezüglich der Andauer ist eine Zuordnung zu den Großwetterlagen zu kurz, dagegen ist es gerechtfertigt in diesem Periodenbereich die Rhythmik von Frontendurchgängen zu sehen. Die Erhaltungsneigung der Witterungsregelfälle bzw. Großwetterlagen kommt in 3 – 12 tägigen Perioden zum Ausdruck (BISSOLLI, P. 1991, S 215), während im Bereich 15 – 45 Tagen in älteren Zeitreihen vielfach zyklische Strukturen, wie z. B. die 30 tägige Luftdruckwelle gefunden wurden (ib. S. 216). Signifikante Maxima sind in diesem Abschnitt zahlreich vertreten, z. B bei 30.5 Tagen im Temperaturspektrum (Abb. 67 a). Am beständigsten in den vorliegenden Spektren ist das Varianzmaximum bei 20.3 Tagen, das vielfach auch die höchste relative Varianz auf sich vereinigt (s. a. A 94 - 96), in der Temperaturreihe aber nicht signifikant enthalten ist. Die Existenz dieser zyklischen Struktur ist in der Grundgesamtheit gesichert; daß sie kein Artefakt ist, wird durch den Nachweis in den Zeitreihen der genannten Klimaelemente gestützt. Eine gesicherte klimatologische Einordnung ist nicht möglich. Neben Maxima in dieser Größenordnung in Luftdruckreihen, sind auch solche für die Erhaltungsneigung von Zyklonen nachgewiesen (ib. S. 216; SCHÖNWIESE, C.-D. 1969, S.44). Erschwert wird die Zuordnung durch Vergleich oder Analogieschluß auch dadurch, daß signifikante spektrale Varianzmaxima keine konstanten Größen sind.

Abb. 69 : ASA a) relativen Globalstrahlung b) Lufttemperatur (Gebietsmittel 1981 - 2000)

11. 3 Dynamische (gleitende) ASA auf der Basis von Tageswerten des Gebietsmittels der relativen Globalstrahlungs- und Lufttemperaturreihe

Die bisherige integrierte Darstellung der Spektren gibt keinen Einblick in die Struktur der Varianzen zu bestimmten äqidistanten Zeitabschnitten. Ein durch die ASA ermitteltes relatives Varianzmaximum kann z. B. in verschiedenen Zeitabschnitten seine Struktur nahezu unverändert beibehalten, innerhalb eines Periodenintervalls pendeln oder sich abschwächen und wieder erscheinen, wobei signifikante mit insignifikanten Zeitspannen alternieren. Dies soll an den Zeitreihen der RG und Lufttemperatur (LT) gezeigt werden. Ausgangsdaten sind die Tageswerte des Gebietsmittels aus den 8 Stationen, die die Globalstrahlung messen (WÜ, GE, MA, TR, SA, ST, FR, KO); dasselbe gilt für die LT–Reihe. Beide Zeitreihen sind wiederum mit dem Gauß'schen Hochpaßfilter H = $60\Delta t$ vorbehandelt. Wie aus den integrierten Spektren ersichtlich (Abb. 69 a, b), ist die Erhaltungsneigung in der LT–Reihe viel stärker entwickelt, und hochsignifikante Varianzmaxima sind häufiger als im RG–Spektrum. Beiden integrierten Spektren ist das Ausbleiben signifikanter zyklischer Strukturen

Abb. 70 a) : Dynamische ASA der relativen Globalstrahlung (Gebietsmittel aus 8 Stationen 1981 – 2000)

im Bereich < 4 Tage gemeinsam, was teilweise durch die Mittelung bedingt ist; außerdem gibt es, bis auf T = 4,8 und 5.9 Tage, keine Übereinstimmung unter den signifikanten Perioden. Das Verteilungsmuster der über die ASA erhaltenen relativen Varianzen wird für jedes Zeitintervall nach Frequenz bzw. Periode aufgeschlüsselt und durch Isoplethen gleicher Varianz rekonstruiert. Die Zeitreihen sind in Subintervalle mit einer Länge von je 966 Tagen unterteilt und werden übergreifend um jeweils 483 Tage verschoben, was insgesamt 14 äquidistante Zeitspannen ergibt.

Abb. 70 b : Dynamische ASA der relativen Globalstrahlung (Gebietsmittel aus 8 Stationen (1981 – 2000) signifikante relative Varianz

Wegen der Verkürzung der Zeitreihen durch die Hochpaßfilterung liegt der Beginn am 31. Januar 1981 und endet mit dem 1. Dezember 2000. Die Diagramme (Abb. 70 a, b; 71 a, b) stellen den Periodenbereich bis zu T = 7.2 bzw. 7.5 Tage dar. Die Fortsetzung für die RG - Reihe ist im Anhang abgelegt (A 97 a, b; A 99); für die LT-Reihe ist der Abschnitt T < 7.8 Tage in A 98 abgebildet. Nach T < 4.4 Tage treten kaum noch relevante Strukturen auf.

Abb. 71 a : Dynamische ASA der Lufttemperatur (Gebietsmittel aus 8 Stationen 1981 – 2000)

Den Verteilungsmustern von RG und LT ist gemeinsam, daß mit abnehmender Periode (aufsteigender Frequenz) die Beständigkeit der relativen Varianz in der Zeit unregelmäßig abnimmt und schließlich ausdünnt. Etwa im Periodenbereich < 11 Tage wird bei der LT die inselhafte Struktur der Varianzverteilung von einer überwiegend flächigen und gleichförmigen abgelöst. Bei der RG bleibt das inselhafte Muster erhalten, ist aber häufiger unterbrochen durch Bereiche niedrigerer Varianz. Neben der Struktur des gesamten Verteilungsmusters kommt dem signifikanten Anteil die größere Bedeutung zu.

Abb. 71 b : Dynamische ASA der Lufttemperatur (Gebietsmittel aus 8 Stationen 1981 – 2000) signifikante relative Varianz

Die Darstellungen (Abb. 70 b; 71 b) zeigen dazu wiederum die Verteilung in Isoplethen gleicher Varianz, die über dem Signifikanzniveau von 90 % liegt, gewonnen durch Subtraktion des relativen, roten Hintergrundspektrums im Signifikanzniveau 90 % vom gesamten relativen Spektrum. Wesentliches Ergebnis ist, daß die signifikanten Varianzanteile, die im integrierten Spektrum vielfach als Maximum kenntlich sind, zeitlich nicht perennieren. Zu ähnlichen Ergebnissen kommen SCHÖNWIESE, C.-D. et al. (1990), bei der Beschreibung des Periodenbereichs ≥ 2 Jahre in den dynamischen Spektren der Temperatur und des Niederschlags.

Diese zeitliche Instabilität hat Auswirkungen auf die Interpretation der Spektren. Sie beeinflußt z. B. Aussagen über die Wahrscheinlichkeit von Witterungsregelfällen. Die ermittelten signifikanten Varianzen haben also strenggenommen keineswegs Geltung für die gesamte Zeitreihe. U. a. zeigt sich dies gravierend bei dem markant in den meisten integrierten RG–Spektren festgestellten Varianzmaximum bei 20.3 Tagen, das hier (Abb. 70 b) ca. 7 Jahre, von 1986 bis 1993, signifikant anhält. Die längste signifikante Andauer von 1981 bis 1992 findet sich bei der LT im Maximum bei ~ 12 Tagen (Abb. 71 b).

Weitere Merkmale, die sich zur differenzierteren Beschreibung eignen, sind die durch die Isoplethen erfaßte Verteilung der signifikanten Bereiche in der Zeit und die Spurtreue. Die Form ist bei der RG im Grundriß meist elliptisch bis spindelförmig, während bei der LT vielfach Verschmelzungsformen auftreten. Bezüglich der Spurtreue findet man bei den zyklischen Strukturen mehrere Varianten : die selten vorkommende strenge Konstanz mit Überleitung zu geringfügigen Oszillationen bis zur Ablösung von der bisherigen Spur.

11.3.1 Varianzmaxima in Spektren mit bekannten klimatologischen Eigenschaften

Die Ergebnisse zeigen, daß die dynamische ASA auch im Periodenbereich < 1 Jahr zur spektralen Strukturaufklärung von zyklischen klimatologischen Erscheinungen einsetzbar ist. Dabei stellt sich allerdings heraus, daß es relativ viele signifikante Perioden gibt, aber nur wenige sich in einen klimatologischen Zusammenhang stellen lassen. Außerdem können vor Jahrzehnten identifizierte Perioden nicht unbesehen mit aktuellen Befunden in Beziehung gesetzt werden, da sie keine konstanten Größen darstellen, sondern mehr oder weniger nicht voraussagbaren Veränderungen unterworfen sind.

Mit einer Zeitreihe, in der nur Tage mit einer synoptisch relevanten klimatologischen Eigenschaft berücksichtigt werden und die übrigen Tage, ohne diese Eigenschaft, auf Null gesetzt sind, kommen nur die spezifischen Perioden zum Vorschein. Auf diese Weise verfährt man z. B. auch, wenn eine zentrierte Zeitreihe mit Lücken vorliegt (SCHLITTGEN, R. 2001, S. 183).

Im vorliegenden Fall ist die Unterscheidung der Tage mit zyklonalem von denen mit antizyklonalem Charakter naheliegend, ebenso für häufig auftretende GWL oder GWT. Unter denselben Ausgangsbedingungen der RG– und LT–Zeitreihe wie zuvor (Abb. 69 a,b), werden zunächst integrierte Spektren für antizyklonale und zyklonale Tage berechnet (Abb. 72 a-c; Abb. 73 a,b), außerdem für die GWL HM und BM, bzw. GWT HM und GWL WZ (Abb. 74 a,b; Abb.75 a,b). Für die Auswahl der GWL war die Häufigkeit im Jahresgang ausschlaggebend.

Kennzeichnend für die RG - und LT-Spektren ist die relativ hohe Autokorrelation, die sich besonders in LT-Spektren durch den steilen Verlauf des theoretischen roten Hintergrundspektrums (R) ausdrückt und auf die ausgeprägte Erhaltungsneigung oder Persistenz der Ausgangsdaten hinweist. In den Spektren für die Tage mit antizyklonalem Charakter liegt die Erhaltungsneigung höher als bei den Spektren der zyklonalen Tage. Dieser Unterschied ist in den RG-Spektren markanter ausgebildet als bei den LT-Spektren. Entsprechendes gilt für die auf den Großwettertyp Hoch Mitteleuropa (GWL HM und BM) und die GWL WZ bezogenen Spektren. Neben diesem Unterschied im Erscheinungsbild der Spektren finden sich auch in ihrer Struktur spezifische Merkmale. Unabhängig vom Signifikanzniveau beobachtet man häufig, daß im RG–Spektrum der antizyklonalen Tage den Frequenzen mit Kulmination der relativen Varianz, im Spektrum der zyklonalen Tage Depressionen gegenüberstehen (Abb.72 c). Bei den LT-Spektren ist diese Regelhaftigkeit selten nachzuweisen. Dagegen ist festzustellen, daß Perioden, die im LT-Spektrum der antizyklonalen Tage durch hohe Signifikanz auffallen, im Spektrum der zyklonalen Tage auf niedrigerem Signifikanzniveau oder auch im nicht signifikanten Bereich auftreten und umgekehrt (Abb. 73 a,b und vollständige LT-Spektren in A 100).

Abb. 72 : ASA (RG) : a) antizyklonale Tage, b) zyklonale Tage c) Zusammenschau ; Gebietsmittel 1981 - 2000

Weitere Struktureigenschaften ergeben sich aus der Verteilung der Perioden in Verbindung mit den Vertrauensgrenzen. Deutlich sind in den Spektren der antizyklonalen und zyklonalen Tage relativ dicht aufeinanderfolgende, signifikante Perioden von nicht signifikanten Abschnitten zu unterscheiden. Letztere liegen im LT – Spektrum der antizyklonalen Tage im Periodenbereich 13 bis 30 Tage und im Abschnitt < 3 Tage. Beim RG–Spektrum der antizyklonalen Tage ist eine Zäsur im Bereich zwischen 7.5 und 5.46 Tage erkennbar.

Abb. 73: ASA (LT) a) antizyklonale Tage b) zyklonale Tage; Gebietsmittel 1981 - 2000

Darauf folgt im Abschnitt < 4.8 Tage der nicht mehr signifikante Bereich. Davon weicht das Spektrum der zyklonalen Tage stark ab. Auffällig ist die Lücke im Periodenbereich zwischen 12.5 und 6 sowie zwischen 3.5 und 2.3 Tagen.

Welche Bedeutung den zyklischen Strukturen beizumessen ist, erschließt sich erst durch die Angabe des Grades der Verläßlichkeit ihres Auftretens in der Grundgesamtheit. Dazu dienen die über den Chi² - Test, auf der Grundlage des roten Hintergrundspektrums (R), errechneten Vertrauensgrenzen (VG; **16**, **17**, **18**). Dadurch wird es möglich, die in den dynamischen Spektren dargestellten signifikanten Zyklen klimatologischer Ereignisse mit antizyklonalem oder zyklonalem Charakter im Rahmen der statistischen Verläßlichkeit zuzuordnen, sofern keine Überschneidungen durch eng benachbarte Strukturen eintreten. Demnach bezeichnen in den RG–Spektren (Vgl. Abb. 72 a mit 70 b und A 97 b) die Varianzmaxima bei 20.3, 9.4, 7.5, 5.46 und 4.8 Tagen antizyklonale Zyklen. Ob das im integrierten Spektrum schwach

Abb. 74 : ASA (RG) a) Großwetterlagen HM und BM (= GWT HM) b) GWL WZ; Gebietsmittel 1981 – 2000

signifikante Maximum bei 5.6 Tagen mit dem punktuellen im dynamischen Spektrum in Verbindung gebracht werden kann, ist fraglich. Denkbar wäre, daß bei einer erweiterten Zeitreihe die Varianzmaxima 5.46 und 5.6 miteinander verschmelzen. Eine andere Unstimmigkeit zeigt das Maximum bei 11.1 Tagen, das zwar das Signifikanzniveau Si = 95% erreicht, aber sich im dynamischen Spektrum nur andeutet.

Als zu den zyklonalen Tagen gehörig (Vgl. Abb. 72 b mit 70 b und A 97 b), können die Maxima im Periodenbereich bei 18.3, 14.1, 5.9 und 4.3 Tagen gelten. Das Maximum bei 21.5 Tagen (Si = 95 %) ist im dynamischen Spektrum möglicherweise durch das antizyklonale bei 20.3 Tagen verdeckt. Im Fall des Maximums bei 14.1 Tagen, das im Spektrum der antizyklonalen Tage nur schwach signifikant ist (Si = 90 %), aber im zyklonalen Bereich Si = 99 % erreicht, ist zumindest die Dominanz des zyklonalen Einflusses gesichert. Nur andeutungsweise erscheint im dynamischen Spektrum ein Maximum bei 2.3 Tagen neben einem bei 2.2 Tagen (A 99). Dagegen registriert das dynamische Spektrum etwa für die Jahre 1994 bis 1998 ein Maximum bei 2 Tagen, das im integrierten Spektrum nicht ausgewiesen ist. Ebenso kann das Varianzmaximum bei 3.5 Tagen nicht bestätigt werden. Es scheint, daß es mit der im dynamischen Spektrum für eine kurze Zeitspanne nachgewiesenen zyklischen Struktur bei 3.33 Tagen in Zusammenhang steht.

Abb. 75 : ASA (LT) a) Großwetterlagen HM und BM (= GWT HM) b) GWL WZ; Gebietsmittel 1981 – 2000

Während in den Spektren der RG hochsignifikante Varianzmaxima eher selten anzutreffen sind, treten sie in den LT-Spektren der antizyklonalen und zyklonalen Tage im länger- wie auch im kürzerperiodischen Bereich häufiger auf (Abb. 73 a,b; A 100). Allerdings bricht die Präsenz signifikanter Maxima schon bei 4.4 Tagen ab, was auch im dynamischen Spektrum bestätigt ist (A 98). Überhaupt macht sich in den dynamischen LT–Spektren die Neigung zu clusterartigen Verdichtungen bemerkbar, die stellenweise die Zuordnungen der Maxima erschweren (Abb. 71 b; A 98). Hinzu kommt, wie bereits oben erwähnt, daß die meisten Maxima sowohl im integrierten Spektrum der antizyklonalen als auch der zyklonalen Tage in unterschiedlichem Signifikanzniveau erscheinen, im Gegensatz zu den RG–Spektren. Zu den wenigen Varianzmaxima, die nur im LT–Spektrum der antizyklonalen Tage

vorkommen, gehört z. B. das bei 30.5 Tagen. Im dynamischen Spektrum (Abb. 71 b) ist es aber lediglich für die ersten drei Jahre nachweisbar. Zu den gesicherten Maxima zählen auch die bei 8.9, 8.3 und 5.1 Tagen, die im dynamischen Spektrum manchmal durch eng benachbarte Maxima nicht so deutlich hervortreten. Nur im Spektrum der zyklonalen Tage sind Maxima bei 22.9, 21.5 und, hochsignifikant, bei 8.7 Tagen vertreten. Sie sind auch im dynamischen Spektrum klar zu unterscheiden. Wenn auch graduelle Unterschiede im Signifikanzniveau bestehen, erkennt man in der Verteilung der Maxima bei antizyklonalen und zyklonalen Tagen einige Ähnlichkeiten. Sie sind z. B. gut im Periodenbereich 5.3 bis 4.4 Tage ausgebildet. Das hochsignifikante Maximum bei 4.1 Tagen im integrierten Spektrum der antizyklonalen Tage wird im dynamischen Spektrum nicht bestätigt.

Die Darstellung GWT – bzw. GWL – spezifischer Spektren der RG und LT am Beispiel der GWT HM und der GWL WZ zeigt hinsichtlich der Erhaltungsneigung, wie erwartet, große Ähnlichkeit mit den Spektren der antizyklonalen und zyklonalen Tage (Abb. 74 a,b; Abb. 75 a,b). Im Hinblick auf die Verteilung der signifikanten Varianzmaxima zeichnet sich die jeweilige Eigenart der GWT bzw. GWL ab. Unterschiedlich ist die Streubreite der Maxima. Sie belegt beim RG – und LT – Spektrum der GWT HM den Periodenbereich von 17.4 bis 4 Tagen, bzw. von 14 bis zu 3 Tagen, bei GWL WZ von 11.4 bis 2.6 Tagen bzw. 7 bis 2.6 Tagen. Außerdem gilt auch hier, daß, anders als in den LT – Spektren, in den RG – Spektren selten hochsignifikante Maxima (Si = 99 %) vorkommen. Aus dem Vergleich geht weiterhin hervor, daß RG – und LT – Spektrum der GWT HM stark voneinander abweichen, dagegen stellt man für die GWL WZ eine Übereinstimmung in den (unterschiedlich signifikanten) Varianzmaxima im Periodenbereich < 4.3 Tage fest.

11.4 Zusammenfassung zur Zeitreihenanalyse

Die latent in den Zeitreihen der Globalstrahlung, Sonnenscheindauer, Lufttemperatur, Bewölkung und Niederschlag enthaltenen zyklischen Variationen werden über die Autokorrelations – Spektralanalyse (ASA) dargestellt und die auf die einzelnen Frequenzen verteilten Varianzanteile auf ihre Signifikanz getestet. Dabei zeigt die Autokorrelation für alle untersuchten Zeitreihen eine mehr oder weniger ausgeprägte Erhaltungsneigung, aus der für die Berechnunng der Vertrauensgrenzen die Anpassung eines "roten" Spektrums (Markov-Spektrum) als theoretisches Spektrum resultiert.

Weil die Zeitreihenlänge zwanzig Jahre nicht übersteigt, sind auch die Erwartungen im längeren Periodenbereich > 1 Jahr eingeschränkt, wie aus dem Beispiel der Globalstrahlung und Lufttemperatur bei einer Äquidistanz von einem Monat hervorgeht. Durch Aneinanderreihung von fünf ausgewählten Stationen (station – year – Methode) erhält man eine größere Datenbasis, die zwar nicht den Periodenbereich erweitert, aber signifikante Varianzmaxima möglicherweise stärker hervortreten läßt. Für die weitere Analyse werden nicht die Rohwerte verwendet, sondern, wegen der Eliminierung der dominierenden Jahresamplitude, die Residuen aus der angepaßten Fourier-Reihe, die weiteren Filteroperationen unterworfen werden.

Als klimatologisch indiziert können die hochsignifikanten Varianzmaxima im Periodenbereich 1.9 bis 2.5 Jahre gelten, die der Quasi biennialen Oszillation (QBO) zugeordnet werden und das Maximum bei 6 Monaten, das durch die Differenz der Bestrahlungsintensität in unterschiedlicher geographischer Breite erklärt ist. Die weiteren Spektren auf der Basis von Tageswerten der oben genannten Klimaelemente erschließen im Periodenbereich \leq 30 Tage zahlreiche signifikante zyklische Strukturen, die selten eindeutig klimatologisch erklärt werden können. In Anlehnung an bisherig publizierte Untersuchungen sind Periodenbereiche abgrenzbar, die Witterungsregelfällen und Großwetterlagen zugeordnet werden. Ebenso sind signifikante Varianzmaxima im Periodenbereich um 2 Tage vertreten, die auf Frontendurchgänge hinweisen, wobei sich ihr Vorkommen auf integrierte Spektren der zyklonalen Tage eingrenzen läßt. Die Aufschlüsselung der ermittelten Varianzmaxima in den integrierten Spektren mit der gleitenden oder dynamischen ASA ergibt, daß diese zyklischen Strukturen zeitlich nicht durchgehend präsent sind. Der nach zyklonalen und antizyklonalen Tagen getrennt durchgeführten Spektralanalyse der relativen Globalstrahlung (RG) und der Lufttemperatur (LT) liegt jeweils das Gebietsmittel aus 8 Stationen zugrunde, für die die gemessenen Globalstrahlungssummen vorliegen. Sowohl die beiden Spektren von RG und LT als auch die Spektren antizyklonaler und zyklonaler Tage unterscheiden sich in Erhaltungsneigung und Verteilung der Varianzmaxima grundlegend, ebenso bei den Spektren der GWT HM und GWL WZ. Häufig beobachtet man, daß bei der RG den Kulminationen der Varianz im Spektrum der antizyklonalen Tage, im Spektrum der zyklonalen Tage Depressionen gegenüberliegen, dagegen bei den beiden LT-Spektren vielfach ein gradueller Unterschied in der Signifikanz ausgebildet ist. Mit Hilfe dieser Spektren, deren Eigenschaften klimatologisch zugeordnet sind, kann ein großer Anteil der nach der Zeit aufgelösten signifikanten zyklischen Strukturen in den dynamischen Spektren mit zyklonalen oder antizyklonalen Prozessen in Verbindung gebracht werden.

LITERATURVERZEICHNIS :

ABELE, G. (1977) : Morphologie und Entwicklung des Rheinsystems aus der Sicht des Mainzer Raumes. In : Mainz und der Rhein-Main-Nahe-Raum. Festschrift zum 41. Deutschen Geographentag. Mainz

ANGSTRÖM, A. (1924) : Report to the International Commission for Solar Research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society, 50, S. 121 - 125

ANGSTRÖM, A. (1930) : On the atmospheric transmission of sun radiation. II. Geogr. Annaler 12, S. 130-159

ATLAS ÜBER DIE SONNENSTRAHLUNG EUROPAS. Bd. 1 : Globalstrahlung auf die horizontale Empfangsebene (1984). Hrsg. v. W. Palz, Kommission der Europäischen Gemeinschaften. Bearb. v. F. Kasten, H.J. Golchert, R. Dogniaux, M. Lemoine. 2. verb. u. erw. Auflage, Brüssel und Luxemburg

BACKHAUS, Kl., ERICHSON, B., PLINKE, W. & R. WEIBER (1994) : Multivariate Analysemethoden. Berlin, London, Paris. 7. Aufl.

BAHRENBERG G., GIESE E., J. NIPPER (1990, 1992) : Statistische Methoden in der Geographie. Bd. 1: Univariate und bivariate Statistik. 3., überarb. Aufl. - Bd. 2 : Multivariate Statistik. 2. Auflage. Stuttgart

BAND, G. (1955) : Ist der Main eine Wetterscheide ? Die breitenmäßige Verteilung einiger Klimagrößen. Ztschr. f. Met., Bd. 9, H. 1, S. 14 - 21

BARTEL, H. (1972) : Statistik II für Psychologen, Pädagogen und Sozialwissenschaftler. Stuttgart (UTB 30) BAUR, F. (1948) : Einführung in die Großwetterkunde. Wiesbaden

BAUR, F. (1963) : Großwetterkunde und langfristige Wettervorhersage. Frankfurt /M.

BECKER, N. & ENDLICHER, W. (1980) : Zur witterungsabhängigen Differenzierung der Globalstrahlung in den südbadischen Weinbaubereichen. Berichte d. naturforschenden Gesellschaft Freiburg i. Br., 70, S. 3-17

BENDIX, J. & H. MEIER (1997) : Untersuchungen zur Inversions-und Nebelklimatologie Nordrhein-Westfalens. Petermanns Geographische Mitteilungen, Band 141, S. 117-124

BENER, P. (1963) : Der Einfluß der Bewölkung auf die Himmelsstrahlung. Arch. Met. Geoph. Bioklim. Ser. B, Bd. 12, H. 3/4, S. 442 – 457

BERLAGE, W. (1928) : Zur Theorie der Beleuchtung einer horizontalen Fläche durch Tageslicht. Meteorologische Zeitschrift Bd. 45, S. 174-180

BISSOLLI, P. (1991) : Eintrittswahrscheinlichkeit und statistische Charakteristika der Witterungsregelfälle in der Bundesrepublik Deutschland und Westberlin. (= Ber. d. Inst. f. Meteorologie und Geophysik d. Univ. Frankfurt/M., Nr. 88) Frankfurt/M.

BJELANOVIC, M. (1967) : Mesoklimatische Studien im Rhein - und Moselgebiet. Ein Beitrag zur Problematik der Landesklimaaufnahme. Diss. Bonn

BLACKMAN, R. B. & J. W. TUKEY (1958) : The Measurement of Power Spectra. Dover, New York

BLÜTHGEN, J. (1965) : Synoptische Klimageographie. Geographische Zeitschrift 53, S. 10 - 50

BLÜTHGEN J., W. WEISCHET (1980) : Allgemeine Klimageographie. (= Lehrbuch der allgemeinen Geographie, Bd. II, hrsg. v. E. Obst) 3. Aufl. Berlin

BÖGEL, R. (1956) : Untersuchungen zum Jahresgang des mittleren geographischen Höhengradienten der Lufttemperatur in den verschiedenen Klimagebieten der Erde. Berichte des Deutschen Wetterdienstes Bd. 4, Nr. 26, Bad Kissingen

BÖER, W. (1965) : Methoden zur Schaffung von Grundlagen für eine Witterungsklimatologie. Z. f. Meteorologie

BORCHERT, G. (1978, 1993) : Klimageographie in Stichworten. Kiel

BORTZ, J. (1988) : Statistik für Sozialwissenschaftler. 3. neu bearb. Aufl., Berlin, Heidelberg, New York

BRANDTNER, E. (1974) : Die Bewertung geländeklimatischer Verhältnisse in Weinbaulagen. 2 Bde., DWD - Zentralamt, Abt. Agrarmeteorologie, Offenbach a.M.

BROCKWELL, P., DAVIS, R. (2002) : Introduction to time series and forecasting. 2. Aufl. New York, Berlin, Heidelberg

BRORS, H. B. (1986) : Untersuchung zur Globalstrahlung in der Bundesrepublik Deutschland. Aachener Geographische Arbeiten, H. 17, Aachen

BUDYKO, M. L. (1963) : Der Wärmehaushalt der Erdoberfläche. Fachl. Mitt. d. Geophysik. Beratungsdienstes d. Bundeswehr im Luftwaffenamt, Reihe 1, Nr. 100. Porz - Wahn

BÜRGER, K. : (1953) : Klimatologische Studie über die Temperaturverhältnisse der Großwetterlagen Mitteleuropas am Beispiel von Karlsruhe und Bremen. Ber. d. DWD Nr. 6, Bad Kissingen

BÜRGER, K. : (1958) : Zur Klimatologie der Großwetterlagen. Ein witterungsklimato- logischer Beitrag. Ber. d. DWD Nr. 45, Offenbach a.M.

CHANG, J.-H. & B. ROOT (1975) : On the Relationship between Mean Monthly Global Radiation and Air Temperature. Arch. Met. Geoph. Biokl., Ser. B, 23, S.13-30

CLAUß, G., H. EBNER (1979) : Grundlagen der Statistik. 3., verb.Aufl. Thun u. Frankfurt/M.

COLLMANN, W. (1953/54) : Idealwerte der Globalstrahlung. Ann. Met. 6, S. 117 - 122)

COLLMANN, W. (1958) : Diagramme zum Strahlungsklima Europas. Ber. d. DWD, Bd. 6, Nr. 42, S. 1 - 8

CZEPLAK, G., NOIA, M., RATTO, C. (1991) : An assessment of a statistical method to estimate solar irradiance at the earth's surface from geostationary satellite data. Renewable Energy, 1, S. 737-743

DEHNE, Kl. (1977) : Meßinstrumente zur Beobachtung der Strahlungsintensität. Informationswerk Sonnenenergie Bd. 3, S. 199 - 217

DEUTSCHER WETTERDIENST : Die Großwetterlagen Europas. 34. - 43. Jg., 1981 - 1990, Offenbach a. M.

DEUTSCHER WETTERDIENST : Monatlicher Witterungsbericht. 29. - 38. Jg., 1981 - 1990, Offenbach a. M.

DEUTSCHER WETTERDIENST, Meteorologisches Observatorium Hamburg (1982 - 1991) : Ergebnisse von Strahlungsmessungen in der Bundesrepublik Deutschland sowie von speziellen Meßreihen am Met. Obs. Hamburg. Nr. 6 - 15 (1981 - 1990), Hamburg

DEUTSCHER WETTERDIENST, Meteorologisches Observatorium Hamburg (1986): Ergebnisse von Strahlungsmessungen in der Bundesrepublik Deutschland. Sonderreihe : Meßdaten aus zurückliegenden Jahren. Bd. E : Stationen Freiburg, Konstanz, Trier, Weihenstephan und Würzburg. Hamburg

DEUTSCHER WETTERDIENST (1950) : Klima - Atlas von Hessen. Bad Kissingen

DEUTSCHER WETTERDIENST (1953): Klima – Atlas von Baden - Württemberg. Bad Kissingen

DEUTSCHER WETTERDIENST (1957) : Klima - Atlas von Rheinland - Pfalz. Bad Kissingen

DIEHL, J.M. & ARBINGER, R. (2001) : Einführung in die Inferenzstatistik. Eschborn

DIRMHIRN, I. (1951) : Tagesschwankung der Bodentemperatur, Sonnenscheindauer und Bewölkung. Wetter und Leben Bd. 3, S. 216-219

DIRMHIRN, I. (1964) :Das Strahlungsfeld im Lebensraum. Frankfurt/M.

DITTMANN, BARTH, LANG & MÜLLER-WESTERMEIER (1995) : Objektive Wetterlagenklassifikation. Berichte des Deutschen Wetterdienstes Nr. 197, Offenbach a. M.

ECKES, Th. & ROSSBACH, H. (1980) : Clusteranalysen. Stuttgart, Berlin, Köln, Mainz

ERB, W.-D. (1990) : Anwendungsmöglichkeiten der linearen Diskriminanzanalyse in Geographie und Regionalwissenschaft. Schriften d. Zentrums f. reg. Entwicklungsforschung d. Justus-Liebig-Univ. Gießen Bd. 39, Hamburg

ERIKSEN, W. (1971) : Die Häufigkeit meteorologischer Fronten über Europa und ihre Bedeutung für die klimatische Gliederung des Kontinents. Erdkunde XXV, S. 163 - 178

ERIKSEN, W. (Hg) (1985) : Klimageographie. Wege der Forschung. Band 615. Darmstadt

FAUST, H. (1951) : Kaltfronten und Gewitter. Berichte des Deutschen Wetterdienstes in der US-Zone Nr. 24

FLACH, E. (1968) : Vergleichende bioklimatische Untersuchungen zum Verhalten der Sonnenscheindauer und der kurzwelligen Wärmestrahlung im Hochgebirge und Flachland. Zeitschrift für Angewandte Bäder-und Klimaheilkunde. 15. Jahrgang, März 1968, Nr. 1

FLOHN, H. (1948) : Stau - und Föhnerscheinungen im Heilbronner Becken. Meteorologische Rundschau, H. 11/12, S. 345 - 346

FLOHN, H. (1954) : Witterung und Klima in Mitteleuropa. Forschungen z. dt. Landeskde. Bd.78, Stuttgart

FLOHN, H. (1958) : Luftmassen, Fronten und Strahlströme. Met. Rdsch., 11. Jg., H. 1, S. 7 - 13

FOITZIG, L. & H. HINZPETER (1958) : Sonnenstrahlung und Lufttrübung. Leipzig

FRANKENBERG, P. & M. KAPPAS (1991) : Temperatur - und Wetterlagentrends in Westdeutschland. Mannheimer Geographische Arbeiten H. 30

FRANKENBERG, P. (1984) : Zur Sommerwitterung in der Bundesrepublik Deutschland. Erdkunde Bd. 38, S. 177 - 187

FRANKENBERG, P. (1993) : Trends und Schwankungen der Witterung in Mitteleuropa. Geogr. Rdsch. 45, H. 2, S. 88 - 94

FRANKENBERG, P. [Hg] (1988) : Zu Klima, Boden und Schutzgebieten im Rhein-Neckar-Raum. Mannheimer Geographische Arbeiten H. 24

FUCHS, H.-J. & WERNER, M. (2002) : Zur Klimaökologie des Donnersberges in der Nordpfalz. Mitt. Pollichia 87, S.19 - 41

FUKUI, E. (1952) : Transmission ratio, a climatological expression of solar penetration through the atmosphere. Geoph. Mag. Tokyo, 23, S.429 - 436

GARP Committee (US Global Atmospheric Research Programme) (1975) : Understanding Climatic Change. Nat. Ac. Sci. Washington

GEIGER, R. (1950) : Das Klima der bodennahen Luftschicht. 3. Aufl. Braunschweig

GERSTENGARBE, F.-W. & P.C. WERNER (1993) : Katalog der Großwetterlagen Europas nach Paul Hess und Helmuth Brezowsky. 1881 - 1992. 4. vollst. neu bearb. Aufl. (= Ber. d. DWD 113), Offenbach a. M.

GILGEN, H., M. WILD, A. OHMURA (1998) : Means and Trends of Shortwave Irradiance at the Surface Estimated from Global Energy Balance Archive Data. Journal of climate. Bd. 11, S. 2042-2061

GOLCHERT, H. J. (1981) : Mittlere monatliche Globalstrahlungsverteilungen in der Bundesrepublik Deutschland. Met. Rdsch. 34, S. 143 - 151

GOMOLKA, K., KALB, M., VENT-SCHMIDT, V. (1980) : Das Klima im nördlichen Oberrheingraben. Deutscher Wetterdienst

GRABAU, J. (1987) : Klimaschwankungen und Großwetterlagen in Mitteleuropa seit 1881. Geographica Helvetica Nr.1, S. 35 - 40

GRUNOW, J. (1958) : Über die Beziehungen zwischen Sonnenscheindauer und Bewölkung. Met. Rdsch. 11, H. 4, S. 127 - 131

GRUNOW, J. (1961) : Die relative Globalstrahlung, eine Maßzahl der vergleichenden Strahlungsklimatologie. Wetter und Leben, 13. Jg., H. 3-4, S. 47 - 56

GRUNOW, J. (1962) : Sonnenschein und Globalstrahlung auf dem Hohenpeißen- berg. Ber. d. DWD Nr. 81, Offenbach a. M.

GRUNOW, J. (1966) : Bemerkungen zur Berechnung von Relativwerten der Tagessummen der Globalstrahlung. Met. Rdsch. 19. Jg., H. 2, S. 50 - 54

HÄCKEL, H. (1985, 1999) : Meteorologie. Stuttgart (UTB 1338)

HANN, J. (1870) : Die Wärmeabnahme mit der Höhe an der Erdoberfläche und ihre jährliche Periode. Sitz. Ber. Kais. Akad. Wiss. Wien, Math.-naturw. Cl. Bd.61, II, S. 65-81

HANN, J. (1908) : Handbuch der Klimatologie. Bd. 1 : Allgemeine Klimalehre. 3. Aufl. Stuttgart

HANN, J. (1908) : Die Temperaturabnahme mit der Höhe in der Serra da Estrella. Meteorologische Zeitschrift 25, S. 132-134

HARTUNG J., ELPELT B. & K.-H. KLÖSENER (1995) : Statistik. Lehr - und Handbuch der angewandten Statistik. 10. durchges. Aufl., München

HASENFRATZ, E. (1988) : Die Globalstrahlung im Rhein - Neckar - Raum. In Frankenberg, P. (Hg), Zu Klima, Boden- und Schutzgebieten im Rhein-Neckar-Raum. Mannheim

HASENFRATZ, E. (1998) : Sonnenstrahlung und Großwetterlagen. Zur witterungsklimatologisch bedingten Variabilität der Globalstrahlung im westdeutschen Raum. Landauer Universitätsschriften, Bd. 4, Landau

HASENFRATZ, E. (2002) : Zum Jahresgang der Globalstrahlung im nördlichen Oberrheingraben und ihrer Abhängigkeit von den Witterungsverhältnissen. Geoöko Bd.23, S. 93-117 Bensheim

HAVLIK, D. (1970) : Inversionswetterlagen im südlichen Oberrheingebiet. Meteorologische

Rundschau 23. Jg., Heft 5, Seite 129-134

HEIGEL, K. (1952) : Föhnstatistik und Aerologie. Ber. d. DWD i. d. US - Zone, 42, S. 128 - 130

HEIGEL, K. (1963) : Die Häufigkeit von Inversionen und Föhnvorgängen am Hohenpeißenberg. Wetter und Leben 15, S. 231 - 234

HEINRICH, U.(1994) : Flächenschätzung mit geostatistischen Verfahren - Variogrammanalyse und Kriging. In : Schröder, Vetter, Fränzle (Hg) : Neuere statistische Verfahren und Modellbildung in der Geoökologie, S. 145 -164. Braunschweig, Wiesbaden

HELD, G. (1977) : Das Globalstrahlungsklima von Österreich. Met. Rdsch. 30. Jg., H. 2, S. 33 - 42

HENDL, M. (1994) : Klima. In : Liedtke, H. & J. Marcinek (Hg), Physische Geographie Deutschlands, S. 23 - 118, Gotha

HERRMANN, J. (1990) : dtv - Atlas zur Astronomie. 10. Aufl. München

HESS, P. & H. BREZOWSKY (1977) : Katalog der Großwetterlagen Europas. Ber. d. DWD Nr. 113, Offenbach a. M.

HINZPETER, H. (1953) : Studie zum Strahlungsklima von Potsdam. Veröff. d. Meteorologischen und Hydrologischen Dienstes der DDR, Nr. 10, Berlin

HINZPETER, H. (1958) : Vergleichende Prüfung von Formeln zur Berechnung von Globalstrahlungssummen. Arch. Met. Geoph. Biokl. Ser. B, Bd. 9, H. 1, S. 60 - 72

HOFFMANN, L. (1980) : Möglichkeiten einer Klimaklassifikation mit Hilfe der zweimaligen Anwendung der Faktorenanalyse. Ber.d. DWD Nr. 152, Offenbach a. M.

HOINKA, K.P. (1985) : On Fronts in Central Europe. Beitr. Phys. Atmosph. Vol. 58, Nr. 4, S. 560 - 571

ILG, K. (1948) : Föhn und Stau am Oberrhein. Wetter und Klima, S. 150 - 161, 218 - 224

IQBAL, M. (1983) : An introduction to solar radiation. Toronto

KAEMPFERT, W. & A. MORGEN (1952) : Die Besonnung. Diagramme der solaren Bestrahlung verschiedener Lagen. Ztschr. f. Met. H. 5, S. 138 - 146

KALB, M. (1981) : Angaben zur Häufigkeit und Höhe bodennaher Inversionen aus klimatologischen Beobachtungen an Bodenstationen. Natur und Landschaft. 56. Jg., H. 1, S. 3

KASTEN F., DEHNE K., BEHR, H.D. & U. BERGHOLTER (1984) : Die räumliche und zeitliche Verteilung der diffusen und direkten Sonnenstrahlung in der Bundesrepublik Deutschland. BMFT - FB - T84 - 125

KASTEN, F. & G. CZEPLAK (1980) : Solar and terrestrial radiation dependent on the amount and type of cloud. Solar energy 24, Nr. 2, S. 177 - 189

KASTEN, F. & H.-J. GOLCHERT (1981) : Statistik der Globalstrahlung an acht Stationen des Deutschen Wetterdienstes. Ber. d. DWD Nr. 156

KASTEN, F. (1981) : Measurement and Analysis of Solar Radiation Data. Energy and Buildings 3, S. 1 - 29

KASTEN, F., K. DEHNE, H.D. BEHR u. U. BERGHOLTER (1984) : Die räumliche und zeitliche Verteilung der diffusen und direkten Sonnenstrahlung in der Bundesrepublik Deutschland. Forschungsber. BMFT-FB-T84-125

KASTEN, F., A.T. YOUNG (1989) : Revised optical air mass tables and approximation formula. Applied optics. Bd. 28, S. 4735-4738

KEMPER, F. - J. & W. SCHMIEDECKEN (1977) : Faktorenanalysen zum Klima Mitteleuropas. Ein Beitrag zum Problem der Kontinentalität sowie zur Aussagefähigkeit von Faktorenwerten. Erdkunde Bd. 31, S. 255 – 272

KERTZ, W. Einführung in die Geophysik. Bd. 1 1992, Bd. 2 1989. Mannheim, Wien, Zürich (= B.I. Nr. 275, 535

KLAUS, D. (1978) : Perioden - und Hauptkomponentenanalyse der Großwetter- lagenhäufigkeiten Europas und der Ozeantemperaturfluktuationen des Nordatlantiks. Met. Rdsch. 31, H. 2, S. 47 - 55

KLAUS, D. (1984) : Hat sich das Klima Mitteleuropas geändert ? 100 Jahre europäische Großwetterlagenstatistik. In : Ber. z. dt. Ldskde. 58/1, S. 147 - 182

KLAUS, D. (1993) : Zirkulations - und Persistenzänderungen des europäischen Wettergeschehens im Spiegel der Großwetterlagenstatistik. Erdkunde Bd. 47, S. 85 – 104

KLEISS, M. (1963) : Inversionen in der unteren Troposphäre im Raum Karlsruhe – Stuttgart.

Berichte des DWD 12, Nr. 90. Offenbach a. M.

KNEPPLE, R. (1965) : Zur Berechnung von Normalwerten der Globalstrahlung an wolkenlosen Tagen. Met. Rdsch. 18, S. 54 - 58

KNOCH, K. (1963) : Die Landesklimaaufnahme. Wesen und Methodik. Ber. d. DWD Nr. 85, Offenbach a. M.

KÖPKE, P. (1999) : Solare Strahlung. In: Klimaänderungen in Bayern und ihre Auswirkungen. BayFORKLIM, S. 12 - 18

KUNZ, St. (1983) : Anwendungsorientierte Kartierung der Besonnung in regionalem Maßstab. Geographica Bernensia G 19

LABITZKE, K. (2005): On the solar cycle QBO relationship: a summary. Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 27, Issue 1-2, p. 45-54

LABITZKE, K. u. WEBER, K. (2001): Insolations-Wechsel als Anfachung hochfrequenter Klima-Oszillationen. LACHENBRUCH, P. A. (1975) : Diskriminant analysis. London

Nova Acta Leopoldina NF, Nr. 331, S.161-172

LANG, R. (1980) : Die Bedeutung der Abschattung für die Sonnenstrahlung - dargestellt am Beispiel des Allinger Talkessels. Acta Albertina Ratisbonensia 39

LAUTENSACH, H. u. R. BÖGEL (1956) : Der Jahresgang des mittleren geographischen Höhengradienten der Lufttemperatur in den verschiedenen Klimagebieten der Erde. Erdkunde 10, S. 270 - 282

LIEPERT, B.G., G.J. KUKLA (1997) : Decline in Global Solar Radiation with Increased Horizontal Visibility in Germany between 1964 and 1990. Journal of climate. Bd. 10, S. 2391-2401

LINDER, A. & BERCHTOLD, W. (1982) : Statistische Methoden III. Multivariate Verfahren. Basel, Boston, Stuttgart

LINKE's Meteorologisches Taschenbuch. Neue Ausgabe II. Hrsg. F. Bauer, Leipzig 1953

LINKE, F. (1939) : Die Extinktion der Sonnenstrahlung in trüber Luft. Gerlands Beitr. Geophys. 55, S. 221 - 233 LINKE, F. (1943) : Sicht. In : Handbuch der Geophysik Bd. 8, S. 621 - 650, Berlin

LIU, B.Y.H. & R.C. JORDAN (1960) : The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Solar Energy 4, S. 1 - 19

MAEDE, H. & H. MATZKE (1951) : Wetterlagenbedingte oder spezifische Sonnenscheindauer in Greifswald. Ztschr. f. Met. 5, H. 10, S. 304 - 312

MALBERG, H. (1986) : Die topographischen Auswirkungen des Oberrheingrabens auf die Strömungs -, Temperatur-, Feuchte -und Luftdruckverhältnisse im Vergleich zum synoptischen Grundzustand während Mesoklip. Meteorologische Rundschau 39, Nr. 6, S. 188 – 196

MALBERG, H. & BÖKENS, G. (1984) : Orographische Einflüsse auf die Strömungsverhältnisse im südlichen Oberrheingraben. Met. Rdsch. 37, S. 11 -15

MALBERG, H. (1994) : Meteorologie und Klimatologie. Eine Einführung. 2. überarb. Aufl., Berlin, Heidelberg

MANIER, G. & H. FUCHS (1978) : Bestimmung der direkten Sonnenstrahlung und der diffusen Himmelsstrahlung aus synoptischen Wetterbeobachtungen. Met. Rdsch. 31. Jg., H. 4, S. 120 - 127

MATZKE, H. (1953) : Beiträge zur Kenntnis der Globalstrahlung in Greifswald. Abhandlungen des Meteorologischen und Hydrologischen Dienstes der DDR II/16, Berlin

MESSERLI, P. (1979) : Beitrag zur statistischen Analyse klimatologischer Zeitreihen. Geographica Bernensia G10, Bern

MILANKOVIC, M. (1930, 1936): Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. In: Köppen, W. & R. Geiger, Handbuch der Klimatologie , Bd. 1 : Allgemeine Klimalehre, Teil A (Reprint 1972)

MÖLLER, F. (1929) : Statistische Untersuchungen über die Konstanz der Luftkörper. Gerlands Beiträge zur Geophysik Bd. 21, S. 387 - 435

MÖLLER, F. (1973) : Einführung in die Meteorologie. Physik der Atmosphäre. 2 Bde. Mannheim (= B.I. Hochschultaschenb. Bd. 276 u. 288)

MORGEN, A. (1952) : Der Trierer Geländebesonnungsmesser. Ber. d. DWD i. d. US - Zone Nr. 42

MORGEN, A. (1957) : Die Besonnung und ihre Verminderung durch Horizontbegrenzung. Veröff. d. meteorol. u. hydrol. Dienstes d. DDR Nr. 12, S. 1 -16

MÖSER, W. (1983) : Globalstrahlung aus Satellitenmessungen. Köln

MÖSER, W. u. RASCHKE, E. (1984) : Incident solar radiation over Europe estimated from METEOSAT data. J. Appl. Met., 23, S. 166-170

MÜLLER-WESTERMEIER, G. (1990) : Klimadaten der Bundesrepublik Deutschland Zeitraum 1950-1980. Deutscher Wetterdienst

NEUWIRTH, F. (1978) : Beziehung zwischen den Monatswerten der Globalstrahlung und der Sonnenscheindauer in Österreich. Arch. Met. Geoph. Biokl., Ser. B, Bd. 26, H.2/3, S. 171 - 182

NEUWIRTH, F. (1979) : Beziehungen zwischen Globalstrahlung, Himmelsstrahlung und extraterrestrischer Strahlung in Österreich. Arch. Met. Geoph. Biokl., Ser. B, Bd. 27, S. 1 - 13

NEUWIRTH, F. (1980) : Die Approximation des Jahresganges der kurzwelligen Strahlungskomponenten in Österreich durch Fourier-Reihen. Arch. Met. Geoph. Biokl. Ser. B, Bd. 28, S. 317 - 329

NEUWIRTH, F. (1981) : Die Abhängigkeit der relativen Globalstrahlung von Zeit und Ort in Österreich. Arch. Met. Geoph. Biokl. Ser. B, Bd. 29, S. 253 - 268

NEUWIRTH, R. (1959) : Unterschiede in der Staubbelastung zwischen Ebene und Höhenlage. Meteorologische Rundschau 12, S. 144-147

NEUWIRTH, R. (1960) : Ergebnisse von Aerosoluntersuchungen und ihre Bedeutung für die Kurortklimatologie. Heilbad und Kurort 12, S. 184-186

NIPPER, J. (1981) : Autoregressiv - und Kriging - Modelle . Zwei Ansätze zur Erfassung raumvarianter Strukturen. Zürcher Geogr. Schriften 1, S. 31 - 45

OLBERG, M. (1982) : Zur statistischen Beurteilung von Analyseergebnissen geophysikalisch - meteorologischer Beobachtungsreihen. Gerlands Beitr. Geophys., Bd. 91, H. 4, S. 281 - 290

PALZ, W., GREIF, J. (Eds.) (1996) : European Solar Radiation Atlas. Solar Radiation on Horizontal and Inclined Surfaces. 3rd Edition. Compiled by F. Kasten et al. Berlin, Heidelberg, New York

PALTRIDGE, G.W. & PLATT, C.M.R. (1976): Radiative Processes in Meteorology and Climatology. Developments in Atmospheric Science 5. Amsterdam, Oxford, New York

PANOFSKY, H. A. & BRIER, G. W. (1958): Some Applications of Statistics to Meteorology. Pennsylvania State Univ., Univ. Park (USA)

RASCHKE, E. (1989) : Der Strahlungshaushalt der Erde. Die Naturwissenschaften. Bd. 76, S. 351-357

REINEL, H. (1960) : Die Zugbahnen der Hochdruckgebiete über Europa als klimatologisches Problem. Erlanger Geographische Arbeiten H. 10

REKLIP (Regio - Klima - Projekt 1995) : Klimaatlas Oberrhein Mitte - Süd, Textband. Zürich, Offenbach, Strasbourg

RIEKER, T. (1970) : Der Einfluß der Wolkenarten auf die Globalstrahlung. Met. Rdsch. 23. Jg., H. 1, S. 22 - 24 ROBINSON, N. (1966) : Solar Radiation. Amsterdam, London, New York

ROEDEL, W. (1992) : Physik unserer Umwelt. Die Atmosphäre. Berlin, Heidelberg

ROTT, H. (1976) : Über die Globalstrahlung in einer Rayleigh - Atmosphäre und die Beziehung zwischen Relativwerten von Globalstrahlung und Sonnenschein. Wetter und Leben 28, S. 1 - 10

SACHS, L. (1978) : Angewandte Statistik. 5., neubearb. u. erw. Aufl. Berlin, Heidelberg, New York

SAUBERER, F. (1952) : Beiträge zur Kenntnis des Strahlungsklimas von Wien. Wetter und Leben, Bd. 4, S. 187-192

SCHERELIS, G. & W. D. BLÜMEL (1988) : Geostatistik und ihre Anwendungsperspektiven in der Geoökologie am Beispiel des Kriging - Verfahrens. Karlsruher Manuskripte zur Mathematischen u. Theoretischen Wirtschafts - und Sozialgeographie H. 92

SCHERHAG, R. (1948) : Neue Methoden der Wetteranalyse und Wetterprognose. Berlin

SCHIRMER, H. (1949) : Luv - und Leegebiete im nordwestdeutschen Flachland. Met. Rdsch. 2. Jg., H. 3/4, S. 91 - 92

SCHIRMER, H. (1978) : Die klimatische Gliederung des Gebietes der Landesarbeitsgemeinschaft Hessen, Rheinland-Pfalz, Saarland. In: Beiträge zur Raumplanung in Hessen, Rheinland-Pfalz, Saarland. 3.Teil. Hannover

SCHIRMER, H., BUSCHNER, W., CAPPEL, A., MATTHÄUS, H.G. & SCHLEGEL, M. (1987) : Meyers kleines Lexikon Meteorologie. Mannheim, Wien, Zürich

SCHIRMER, H., BUSCHNER, W., CAPPEL, A., MATTHÄUS, H.G. & SCHLEGEL, M. (1989) : Wie funktioniert das ? Wetter und Klima. Mannheim, Wien, Zürich

SCHLITTGEN, R. (2001) : Angewandte Zeitreihenanalyse. München, Wien

SCHLITTGEN, R., STREITBERG, B. (1999) : Zeitreihenanalyse. 8. überarb. Aufl. München, Wien

SCHMAUSS, A. (1938) : Über Klimaschwankungen. Das Wetter 55, 241,277

SCHNEIDER-CARIUS, K. (1953) : Die Grundschicht der Troposphäre. Leipzig

SCHÖNE, W. (1957) : Die Globalstrahlung in Gotha. Zeitschrift für Meteorologie, Bd. 11, S. 199-211

SCHÖNWIESE, C.-D., MALCHER, J., HARTMANN, C. (1990): Globale Statistik langer Temperatur - und Niederschlagsreihen. Berichte des Instituts für Meteorologie und Geophysik der Universität Frankfurt am Main Nr. 65

SCHÖNWIESE, C.-D. (1969) : Spektrale Varianzanalyse klimatologischer Reihen im langperiodischen Bereich. Münchener Universitäts-Schriften, Naturwiss. Fak., Wiss. Mitt. Nr. 15

SCHÖNWIESE, C.-D. (1980) : Regionale Zuordnung der spektralen Varianz langer europäischer Temperaturreihen und Anwendung in einem statistisch - prognostischen Filtermodell für das Alpenvorland. Met. Rdsch. 33. Jg., H. 6, S. 167 - 174

SCHÖNWIESE, C.-D. (1994) : Klimatologie. Stuttgart (UTB 1793)

SCHÖNWIESE, C.-D. (1995) : Klimarhythmen, Phänomene, Ursachen und Störungen. Universitas H. 10, S. 934 – 948

SCHÖNWIESE, C.-D. (1985, 2000) : Praktische Statistik für Meteorologen und Geowissenschaftler. Stuttgart

SCHÖNWIESE C.-D., RAPP J., FUCHS, T. & DENHARD, M. (1993) : Klimatrend - Atlas Europa 1891 - 1990. Ber. d. Zentr. f. Umweltforschung Univ. Frankfurt a. M. Nr. 20

SCHREITMÜLLER, K.-R. (1978) : Verfügbarkeit der Sonnenenergie am Beispiel der Bundesrepublik Deutschland. VDI - Ber. Nr. 306, S. 13 - 31

SCHRÖDER W., VETTER, L. & O. FRÄNZLE [Hrsg] (1994) : Neuere statistische Verfahren und Modellbildung in der Geoökologie. Braunschweig, Wiesbaden

SCHÜEPP, W. (1949) : Die Bestimmung der atmosphärischen Trübung aus Aktinometermessungen. Arch. Met. Geoph. Biokl., Ser. B, H. 1, S. 257 - 346

SCHÜEPP, W. (1960) : La conversion du rayonnement sphérique en rayonnement global. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 10, S. 311-341

SCHULZ, L. (1963) : Die winterliche Hochdrucklage und ihre Auswirkung auf den Menschen. Berichte des Deutschen Wetterdienstes Nr. 88, Offenbach a. M.

SCHULZE, R. (1963) : Über die Vorzüge der Verwendung der "Relativen Bestrahlung" für strahlungsklimatologische Betrachtungen. Arch. Met. Geoph. Biokl., Ser. B, Bd. 11, H. 3, S. 281 - 291

SCHULZE, R. (1970) : Strahlenklima der Erde. Darmstadt

SCULTETUS, H. R. (1969) : Klimatologie. Das Geographische Seminar – Praktische Arbeitsweisen. Braunschweig

SHUMWAY, R.H. & STOFFER, D.S. (2000) : Time series - Analysis and its applications. New York, Berlin, Heidelberg

SIEGENTHALER, J. (1933) : Bodentemperaturen in Abhängigkeit von äußeren meteorologischen Faktoren. Gerlands Beiträge zur Geophysik Bd. 40, S305-332

STANHILL, G., S. MORESHET (1992) : Global radiation climate changes: The world network. Climatic change. Bd. 21, S. 57-75

STEIN, N. (1979): Zum Verhältnis von Globalstrahlung und Lufttemperatur in Abhängigkeit von Großwetterlagen. Mitt. Nr. 12 d. Lehrstuhls f. Biogeographie der Universität des Saarlandes, Saarbrücken

STEINHAUSER F., ECKEL, O. & F. LAUSCHER [Hrsg. u. Bearb.] (1958) : Klimatographie von Österreich. Österreichische Akademie der Wissenschaften. Denkschriften der Gesamtakademie, Bd. 3, 1. Lieferung, Wien

STEINHAUSER, F. (1977) : Die Veränderlichkeit der Tagessummen der Globalstrahlung in den Ostalpen. 74. -75. Jahresber. d. Sonnblickvereins f. d. Jahre 1976/77, S. 11 - 19

STEISSLINGER, B. (1994) : Einfluß von Temperaturinversionen auf Konzentration und Verteilung von Luftverunreinigungen. Fortschrittberichte VDI, Reihe 15: Umwelttechnik Nr.122, Düsseldorf

STELLMACHER, R. (1971) : Einige Methoden der statistischen Analyse, angewandt auf das Problem der Klimaklassifikation. Abh. d. Met. Dienstes d. DDR Nr. 99 (= Bd. XIII), S. 5 - 40

STIER, W. (2001) : Methoden der Zeitreihenanalyse. Berlin, Heidelberg

STREIT, U. (1975) : Erzeugung synthetischer Abflußdaten mit Hilfe eines zeit- und raumvarianten Modells im Einzugsgebiet der Lahn. Erdkunde Bd. 29, S. 92 – 105

TAKAHASHI, K. (1959) : Further studies on the influence of change of solar activity upon the meteorological phenomena. Pap. in Met. Geoph. 10, 55

TAUBENHEIM, J. (1969) : Statistische Auswertung geophysikalischer und meteorologischer Daten. Leipzig TRAPP, R. & F. KASTEN (1988) : Kleinskalige Variabilität der Sonnenstrahlung. Ber. d. DWD Nr. 177, Offenbach a.M.

TREPTE, S., P. WINKLER (2000) : Langfristige Abnahme der Globalstrahlung. Deutscher Wetterdienst Klimastatusbericht 2000

TULLER, S.E. (1976) : The relationship between diffuse, total and extraterrestrial solar radiation. Solar Energy, Vol. 18, S. 259 - 263

VDI 3789 Blatt 2 (1994) : Umweltmeteorologie - Wechselwirkungen zwischen Atmosphäre und Oberflächen. Berechnung der kurz- und langwelligen Strahlung. Berlin

VDI 3786 Blatt 10 (1999) : Umweltmeteorologie - Messung der Lufttrübung durch Aerosolpartikeln mit Sonnenphotometern

VDI 3789 Blatt 3 (2001) : Umweltmeteorologie - Wechselwirkungen zwischen Atmosphäre und Oberflächen. Berechnung der spektralen Bestrahlungsstärken im solaren Wellenlängenbereich. Berlin

WACHTER, H. (1968) : Häufigkeitsverteilungen klimatologischer Größen. Berichte des Deutschen Wetterdienstes Nr. 107 (Band 15), darin über Zirkumglobalstrahlung S. 32-34

WEBER, E. (1986) : Grundriß der biologischen Statistik. 9. durchges. Aufl., Stuttgart

WENDLING, U. et. al. (1997) : Modellierung des Zusammenhangs von Globalstrahlung, Sonnenscheindauer und Bewölkungsgrad als Beitrag zur Klimabewachung. DWD Nr. 45

WEISCHET, W. (1995) : Einführung in die Allgemeine Klimatologie. 6. Aufl., Stuttgart

WORLD RADIATION CENTER (1992) : Jahresbericht 1991. Physikalisch - Meteorologisches Observatorium Davos. Davos / Schweiz

Elektronische Medien :

ASTSA (1994) Zeitreihenanalyse von McQuarrie & R. H. Shumway Univ. of California, Davis USA HANNOVER GRAPHICS Version 4.8 (1991) von Uwe Hoppmann; Hannover

SPSS 10.0G (1999), Chicago SPSS Inc.

XACT SciLab Version 5.00e (1997) von A. Beissner, R. Genske, M. Prall, P. Weinholz; Hamburg
Anhang

TABELLEN und DIAGRAMME

Anmerkungen:

a) Die Tabellen beziehen sich auf die Beobachtungsperiode 1981 – 2000

Ausnahmen :

Limburgerhof (LI) 01. 01. 1981 - 31. 12. 1990 Weinbiet (WB) 01.01.1983 -31. 12. 2000 **Geilweilerhof** (GH) 01. 01. 1981 - 31. 12. 1990 Nagold-Pfronden (NA) Monatsw. 01. 1981 -03.1995 **Ihringen** (IH) Monatsw. 01. 1991 -12.2000 Höchenschwand (HS) 01.01. 1981 - 30. 09. 1999 Größere Beobachtungslücken : Heidelberg (HD) : Totalausfall 28.02.1986 - 01.05.1986 Kaiserslautern (KL) zahlreiche Ausfälle, eingeschränkt verwendbar *Globalstrahlung* : 01. 01. 1981 - 31. 07. 1981 Saarbrücken (SA) Sonnenscheindauer : Heidelberg (HD) 01.10. 1987 - 31.12. 2000 01. 04. 1994 - 26. 05. 1994 Buchen (BU) Hornisgrinde (HO) 01. 01. 1981 - 30. 06. 1982; 01. 07. 1986 - 31. 08. 1986 Stuttgart (ST) 01. 01. 1981 - 31. 10. 1989

b) *Relativwerte der Strahlungseinnahme* beziehen sich auf die Verhältnisse in der Rayleigh-Atmosphäre (= 100) Erläuterung im Text

Abkürzungen*

_

Nr	GWL	Großwetterlage GWT Gr	roßwettertyp
		Zonale Zirkulation	
1	Wa	Westlage, antizyklonal	
2	Wz	Westlage, zyklonal	
3	Ws	Südliche Westlage	West
4	ww	Winkelförmige Westlage	
		Gemischte Zirkulation	
5	SWa	Südwestlage, antizyklonal	
6	SWz	Südwestlage, zyklonal	Südwest
7	NWA	Nordwestlage, antizyklonal	
8	NWz	Nordwestlage, zyklonal	Nordwest
9	нм	Hoch über Mitteleuropa	Hoch Mitteleuropa
10	BM	Hochdruckbrücke über Mitteleuro	pa
11	тм	Tief Mitteleuropa	Tief Mitteleuropa
		Meridionale Zirkulation	
12	Na	Nordlage, antizyklonal	
13	Nz	Nordlage, zyklonal	
1 4	HNa	Hoch Nordmeer-Island, antizyklor	nal
15	HNz	Hoch Nordmeer-Island, zyklonal	Nord
16	нв	Hoch Britische Inseln	
17	TRM	Trog Mitteleuropa	
18	NEa	Nordostlage, antizyklonal	Nordost
19	NEz	Nordostlage, zyklonal	Nordost
20	HFa	Hoch Fennoskandien, antizyklona	al
21	HFz	Hoch Fennoskandien, zyklonal	Oct
22	HNFa	Hoch Nordmeer-Fennoskandien,	antizyklonal
23	HNFz	Hoch Nordmeer- Fennoskandien,	zyklonal
24	SEa	Südostlage, antizyklonał	• • • •
25	SEz	Südostlage, zykional	Südost
26	Sa	Südlage, antizyklonal	
27	Sz	Südlage, zyklonal	• • •
28	ТВ	Tief Britische Inseln	Süd
29	TRW	Trog Westeuropa	
	Ue		
	1	n. HESS u. B	REZOWSKY 1977, S. 4

* Abkürzungen der Stationsnamen in Tab. 1 im Textteil

A 0 : Verzeichnis der Großwetterlagen Europas

GWL	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ	n
Wa	7.9	6.7	7.4	2.2	0.8	3.8	8.6	13.6	9.7	7.1	2.3	9.4	485
Wz	24.7	20.7	16.8	5.3	7.1	13.8	15.7	13.1	21.5	18.7	20.8	26.5	1245
Ws	4.0	1.2	2.3	2.3	1.8	4.8	0.0	0.0	0.0	3.2	2.7	6.9	179
WW	2.6	1.6	1.1	2.3	0.5	1.7	0.8	0.0	0.7	1.8	3.3	1.9	111
SWa	5.5	3.0	3.9	4.2	3.6	3.0	1.1	3.6	2.7	6.3	6.3	5.0	293
SWz	1.9	1.4	2.7	4.7	5.8	3.8	3.2	4.4	5.2	6.5	3.5	2.7	280
NWA	2.4	2.8	2.1	1.0	1.5	2.0	2.9	1.8	7.0	4.2	6.3	2.7	223
NWz	6.8	8.9	12.7	5.0	2.9	2.2	4.7	4.2	2.5	1.5	1.7	6.9	364
HM	6.3	8.7	1.6	4.8	5.7	5.2	5.2	3.4	5.7	4.4	4.7	7.7	383
BM	10.7	8.1	15.2	12.7	10.5	11.8	15.2	19.4	11.5	11.0	7.5	8.4	866
ТМ	0.0	3.5	0.8	5.3	4.5	3.3	0.7	1.5	2.5	0.7	1.3	1.5	154
Na	0.0	0.2	1.1	0.5	1.5	1.2	1.3	1.1	0.0	0.0	1.8	0.0	53
Nz	2.9	2.8	2.6	1.8	1.9	0.8	0.0	3.1	1.8	1.5	3.0	1.8	146
HNa	1.6	3.2	0.5	5.3	2.4	4.0	0.3	2.4	2.0	1.3	0.0	2.1	152
HNz	1.5	1.8	0.0	2.0	6.6	1.5	3.2	2.6	1.2	0.3	0.0	0.7	130
HB	0.8	2.7	2.4	4.8	2.9	6.5	7.7	2.1	2.0	4.7	3.5	2.1	257
TRM	3.2	2.7	7.6	5.3	3.1	10.3	6.0	4.0	6.2	3.6	9.2	2.6	387
NEa	0.0	0.7	0.8	0.7	0.7	3.3	1.1	3.2	0.0	0.0	0.5	0.0	67
NEz	0.8	0.0	0.0	0.0	1.5	0.7	2.6	1.5	0.0	0.0	0.8	0.5	51
HFa	0.8	4.4	6.5	0.5	3.9	0.0	3.2	4.5	2.7	1.5	1.8	1.3	189
HFz	0.0	3.4	0.5	4.8	1.8	0.0	1.9	0.0	0.0	0.5	1.8	0.5	91
HNFa	0.5	1.2	1.5	0.0	7.9	1.0	4.0	1.3	1.0	1.1	0.0	1.0	126
HNFz	4.5	1.2	0.0	1.7	0.0	1.2	0.0	0.3	2.3	1.9	1.5	0.5	92
SEa	3.4	2.3	1.0	1.2	0.7	1.2	1.3	0.0	1.8	5.0	4.0	1.1	139
SEz	0.5	2.3	0.7	1.5	1.5	0.0	0.0	0.0	0.0	0.5	0.5	1.0	50
Sa	3.9	0.0	1.1	0.8	3.2	1.2	0.3	0.8	0.8	4.2	2.8	1.1	125
Sz	0.8	0.0	0.0	1.0	0.0	0.5	0.0	0.0	1.3	0.7	0.5	0.0	29
ТВ	0.0	1.1	3.1	3.5	3.9	1.0	2.9	4.7	3.2	2.4	1.8	1.1	175
TRW	1.1	2.8	2.6	12.7	10.8	9.7	4.4	2.9	3.7	4.7	4.8	1.9	377
Ue	1.0	0.5	1.6	2.0	1.5	0.5	1.8	0.8	1.2	1.1	1.0	1.1	86
Tage (n)	620	565	620	600	620	600	620	620	600	620	600	620	7305

A 3: Relative Häufigkeit der Großwetterlagen (GWL) in den einzelnenMonaten (z.B. von 620 Januartagen 1981-2000 sind 24.7% Wz-Tage) - 137 -

GWL	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	окт	ΝΟΥ	DEZ	n (Tage)
Wa	10.1	7.8	9.5	2.7	1.0	4.7	10.9	17.3	12.0	9.1	2.9	12.0	485
Wz	12.3	9.4	8.4	2.6	3.5	6.7	7.8	6.5	10.4	9.3	10.0	13.2	1245
Ws	14.0	3.9	7.8	7.8	6.2	16.2	0.0	0.0	0.0	11.2	8.9	24.0	179
ww	14.4	8.1	6.3	12.6	2.7	9.0	4.5	0.0	3.6	9.9	18.0	10.8	111
SWa	11.6	5.8	8.2	8.5	7.5	6.1	2.4	7.5	5.5	13.3	13.0	10.6	293
SWz	4.3	2.9	6.1	10.0	12.9	8.2	7.1	9.6	11.1	14.3	7.5	6.1	280
NWA	6.7	7.2	5.8	2.7	4.0	5.4	8.1	4.9	18.8	11.7	17.0	7.6	223
NWz	11.5	13.7	21.7	8.2	5.0	3.6	8.0	7.1	4.1	2.5	2.8	11.8	364
НМ	10.2	12.8	2.6	7.6	9.1	8.1	8.4	5.5	8.9	7.1	7.3	12.5	383
BM	7.6	5.3	10.9	8.8	7.5	8.2	10.9	13.9	8.0	7.9	5.2	6.0	866
тм	0.0	13.0	3.3	20.8	18.2	13.0	2.6	5.8	9.7	2.6	5.2	5.8	154
Na	0.0	1.9	13.2	5.7	17.0	13.2	15.1	13.2	0.0	0.0	20.8	0.0	53
Nz	12.3	11.0	11.0	7.5	8.2	3.4	0.0	13.0	7.5	6.2	12.3	7.5	146
HNa	6.6	11.8	2.0	21.1	9.9	15.8	1.3	9.9	7.9	5.3	0.0	8.6	152
HNz	6.9	7.7	0.0	9.2	31.5	6.9	15.4	12.3	5.4	1.5	0.0	3.1	130
НВ	2.0	5.8	5.8	11.3	7.0	15.2	18.7	5.1	4.7	11.3	8.2	5.1	257
TRM	5.2	3.9	12.1	8.3	4.9	16.0	9.6	6.5	9.6	5.7	14.2	4.1	387
NEa	0.0	6.0	7.5	6.0	6.0	29.9	10.5	29.9	0.0	0.0	4.5	0.0	67
NEz	9.8	0.0	0.0	0.0	17.7	7.8	31.4	17.7	0.0	0.0	9.8	5.9	51
HFa	2.7	13.2	21.2	1.6	12.7	0.0	10.6	14.8	8.5	4.8	5.8	4.2	189
HFz	0.0	20.9	3.3	31.9	12.1	0.0	13.2	0.0	0.0	3.3	12.1	3.3	91
HNFa	2.4	5.6	7.1	0.0	38.9	4.8	19.8	6.4	4.8	5.6	0.0	4.8	126
HNFz	30.4	7.6	0.0	10.9	0.0	7.6	0.0	2.2	15.2	13.0	9.8	3.3	92
SEa	15.1	9.4	4.3	5.0	2.9	5.0	5.8	0.0	7.9	22.3	17.3	5.0	139
SEz	6.0	26.0	8.0	18.0	18.0	0.0	0.0	0.0	0.0	6.0	6.0	12.0	50
Sa	19.2	0.0	5.6	4.0	16.0	5.6	1.6	4.0	4.0	20.8	13.6	5.6	125
Sz	17.2	0.0	0.0	20.7	0.0	10.3	0.0	0.0	27.6	13.8	10.3	0.0	29
ТВ	0.0	3.4	10.9	12.0	13.7	3.4	10.3	16.6	10.9	8.6	6.3	4.0	175
TRW	1.9	4.2	4.2	20.2	17.8	15.4	7.2	4.8	5.8	7.7	7.7	3.2	377
Ue	7.0	3.5	11.6	14.0	10.5	3.5	12.8	5.8	8.1	8.1	7.0	8.1	86
Tage (n)	620	565	620	600	620	600	620	620	600	620	600	620	7305

A 4 : Relative Häufigkeit der einzelnen Großwetterlagen im Jahresgang (z.B. 485 Wa-Tage verteilen sich zu x% auf die Monate der Jahre 1981-2000

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	50.7	54.7	86.1	109.0	138.2	171.3	194.4	195.5	158.3	110.2	78.2	50.8
HD	57.8	61.0	92.6	109.8	142.0	172.2	194.8	196.1	163.0	117.4	85.2	57.1
KA	53.0	57.8	90.1	110.2	140.9	171.6	197.6	199.0	161.6	113.3	81.1	52.9
GE	46.7	50.1	80.5	98.5	130.8	162.3	185.1	186.0	149.9	104.4	75.8	49.3
ΒZ	47.3	50.9	83.0	103.6	133.0	164.9	189.1	188.5	152.5	106.0	74.3	48.3
ΑZ	46.3	47.6	80.2	100.2	130.0	158.8	183.9	185.2	150.0	104.5	71.7	45.8
WU	37.2	41.6	71.6	95.6	128.9	157.8	180.6	183.7	145.9	99.9	66.0	37.6
TR	43.2	45.0	73.4	90.9	120.2	149.7	174.9	175.2	141.6	98.8	70.4	44.7
FR	63.0	68.0	97.6	114.4	146.3	176.4	202.2	205.2	169.7	123.7	91.4	63.5
SA	38.2	41.9	71.8	88.2	117.2	148.4	173.6	176.0	141.6	97.5	66.4	40.2
ΒU	30.5	34.5	64.5	87.7	121.3	151.3	174.1	174.9	138.7	92.2	59.5	33.1
ST	37.4	43.5	73.5	93.3	126.8	156.5	180.2	182.6	147.4	100.3	67.5	38.9
ко	32.6	39.3	74.6	96.9	131.5	161.9	187.8	192.0	152.2	103.4	67.1	36.6
ΒE	27.4	32.5	62.1	80.7	111.6	142.4	165.9	171.2	135.3	89.9	56.4	29.6
WB	27.8	31.9	61.7	78.1	106.5	138.1	165.1	172.6	133.1	89.6	51.8	33.8
HS	7.1	14.2	38.6	54.5	87.3	119.6	149.7	156.6	118.2	73.2	36.0	15.0
но	-2.0	2.9	21.6	35.9	70.3	99.6	125.2	133.8	102.4	60.4	24.8	3.6
FE	-14.1	-9.2	5.8	16.6	49.0	79.1	107.7	118.4	86.5	46.3	11.3	-6.0

A 5 : Monatsmittel der Lufttemperatur in 10tel ^oC bei **zonalem Zirkulationstyp**. Die Stationen sind nach ihrer Höhenlage ü. NN angeordnet.

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	10.4	24.1	69.5	108.6	152.7	193.6	206.7	205.5	161.4	107.1	45.7	18.1
HD	17.1	32.9	78.6	114.0	155.4	196.2	209.4	208.3	166.8	116.7	54.4	25.6
KA	12.0	26.5	72.3	111.1	154.1	196.5	211.0	208.8	162.1	109.8	46.8	18.8
GE	10.9	20.4	67.0	105.5	146.6	186.2	200.4	196.6	154.0	106.3	49.7	20.9
ΒZ	8.3	22.0	66.9	105.8	148.2	188.5	203.1	199.1	155.3	105.3	43.0	16.1
ΑZ	6.3	19.0	63.3	100.3	145.0	182.7	194.0	193.6	149.9	101.5	41.8	13.2
WU	-3.4	11.1	57.5	97.9	142.6	184.4	195.5	193.0	150.4	98.8	35.5	3.7
TR	10.4	22.2	63.3	97.1	138.2	178.8	191.0	188.6	149.4	104.7	44.9	17.2
FR	15.7	35.0	78.5	115.2	158.7	199.8	216.3	211.9	169.5	119.9	53.5	26.4
SA	6.9	19.2	58.7	94.5	136.1	176.5	190.7	187.9	149.0	102.4	42.5	14.8
ВU	-8.6	1.9	47.3	87.6	134.0	175.9	188.0	184.8	139.8	89.5	29.1	-0.5
ST	-4.2	9.2	53.3	92.2	137.9	178.2	192.6	188.3	145.1	97.1	33.4	5.1
KO	-5.0	11.7	57.7	95.8	141.4	183.6	200.9	193.5	153.8	102.0	35.9	7.1
BE	-4.5	8.8	49.6	88.3	130.6	172.2	183.7	182.9	143.9	95.3	34.0	3.0
WB	-2.4	12.2	45.2	85.2	127.9	167.9	183.2	183.7	140.6	97.4	34.2	4.1
HS	-11.7	-3.6	25.7	58.3	105.5	146.0	167.3	161.3	125.9	84.5	27.3	-10.1
НΟ	-18.5	-10.9	11.0	42.9	89.4	129.7	145.3	145.7	110.2	75.0	22.9	-10.0
FE	-18.2	-17.7	-2.4	23.6	68.3	109.3	127.8	126.3	95.2	66.0	20.4	-12.5

A 6 : Monatsmittel der Lufttemperatur in 10tel °C bei gemischtem Zirkulationstyp

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	-18.2	-1.4	48.1	96.9	150.0	168.0	200.1	192.6	146.6	97.9	38.7	5.7
HD	-14.1	6.4	55.0	102.1	153.0	168.3	202.6	195.3	150.6	105.9	46.3	10.3
KA	-17.2	-1.5	49.5	96.5	149.2	168.1	202.7	194.3	145.8	99.9	40.7	6.7
GE	-17.8	-5.0	45.8	92.0	142.8	163.4	194.9	186.2	141.6	95.1	41.3	5.9
ΒZ	-20.2	-5.8	43.2	91.2	144.2	162.9	195.2	185.2	140.3	94.6	37.0	4.4
ΑZ	-26.7	-16.4	42.5	86.5	140.6	156.4	189.3	182.2	135.9	87.8	31.8	-2.1
WU	-33.9	-20.3	32.6	85.3	140.0	157.0	188.5	180.8	133.5	86.0	27.2	-9.5
TR	-23.1	-10.6	39.0	80.9	132.2	151.1	183.3	177.1	133.4	92.1	36.3	2.6
FR	-16.7	2.6	52.3	99.0	149.8	171.1	203.0	194.9	149.6	105.3	44.2	10.0
SA	-27.2	-13.4	34.2	78.4	129.9	148.6	180.7	174.8	129.2	87.6	31.1	-1.8
ΒU	-36.8	-26.7	24.5	76.0	130.8	148.5	181.9	172.4	125.0	78.8	21.5	-12.7
ST	-33.4	-19.9	29.6	79.6	132.1	151.3	183.5	175.5	130.6	86.0	25.0	-9.7
KO	-23.6	-11.1	33.8	84.9	138.5	158.0	189.0	180.0	134.2	92.6	31.3	0.2
ΒE	-38.0	-26.0	23.0	70.5	125.1	140.7	174.8	168.8	124.0	80.5	19.8	-15.3
WB	-40.1	-29.9	17.9	67.1	120.6	135.8	171.6	167.7	120.9	78.1	16.5	-18.6
HS	-38.8	-43.7	-4.0	43.0	97.1	117.1	155.5	143.8	100.3	65.8	5.6	-22.6
НΟ	-41.6	-52.8	-15.7	27.9	81.2	98.8	135.2	128.2	89.4	57.8	-1.8	-28.3
FE	-42.2	-62.3	-33.4	7.0	59.9	76.2	113.6	108.1	69.3	45.7	-12.9	-34.2

A 7 : Monatsmittel der Lufttemperatur in 10tel °C bei meridionalem Zirkulationstyp

_	141	-

Station	H [m]	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ	Jahr	so	WI	SO/WI
Mannheim	106	44	40	50	54	73	73	80	46	61	59	55	57	692	199	141	1.41
Frankf. Flugh.	112	45	38	50	44	60	59	65	52	58	59	49	57	636	176	140	1.26
Karlsruhe	112	61	55	57	58	77	84	71	47	64	75	66	80	795	202	196	1.03
Geisenheim	131	40	34	38	38	48	54	60	41	50	52	42	51	548	155	125	1.24
Heilbronn	167	54	49	56	50	84	80	83	54	65	70	58	73	776	217	176	1.23
Bergzabern	180	73	62	64	56	70	77	65	47	65	83	73	92	827	189	227	0.83
Ihringen	193	30	33	33	56	81	75	73	55	76	56	55	47	670	203	110	1.85
Geilweilerh.	195	61	55	52	44	64	68	60	45	55	69	68	77	718	173	193	0.90
Alzey	215	38	34	41	44	58	54	61	42	51	53	47	50	573	157	122	1.29
Würzburg	275	46	35	47	41	59	63	60	49	46	53	41	57	597	172	138	1.25
Trier-P.	278	71	53	62	57	66	73	71	54	68	78	64	80	797	198	204	0.97
Pirmasens	280	81	71	74	62	81	82	69	53	78	98	82	104	935	204	256	0.80
Kaiserslautern	281	59	46	59	56	63	64	57	45	56	82	50	79	716	166	184	0.90
Freiburg	308	52	53	62	77	112	98	96	79	89	78	67	84	947	273	189	1.44
Saarbrücken	325	78	60	69	63	75	76	78	57	73	94	81	101	905	211	239	0.88
Buchen	350	83	63	71	53	62	63	70	49	64	78	62	94	812	182	240	0.76
Säckingen	355	88	82	75	95	109	117	112	89	96	95	92	110	1160	318	280	1.14
Stuttgart	371	41	37	44	54	85	85	85	62	60	58	47	55	713	232	133	1.74
Nagold	430	79	58	69	73	86	86	79	80	68	74	65	86	903	245	223	1.10
Beerfelden	450	110	83	101	69	87	87	82	59	89	111	91	123	1092	228	316	0.72
Konstanz	450	45	49	50	65	89	105	102	85	77	62	66	70	865	292	164	1.78
Ruppertsecken	461	49	43	46	49	67	61	63	51	61	67	55	64	676	175	156	1.12
Deuselbach	480	69	57	64	54	67	67	66	57	75	80	64	77	797	190	203	0.94
Sigmaringen	580	51	50	48	61	85	103	85	75	56	61	57	70	802	263	171	1.54
KI. Feldbg.	805	88	78	88	68	89	97	93	66	92	104	87	95	1045	256	261	0.98
Hornisgrinde	1122	175	160	195	157	172	182	180	123	169	179	178	214	2084	485	549	0.88
Feldberg	1486	141	110	115	102	159	161	164	130	146	172	148	172	1720	455	423	1.08

A 8 : Mittlere Monatssummen des Niederschlags (mm) an ausgewählten Stationen und das Verhältnis der Sommer- zu den Winterniederschlägen

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	48	51	46	56	59	50	39	25	39	48	49	53
HD	52	53	46	58	57	51	40	29	42	48	54	58
KA	56	52	49	59	59	48	38	28	39	52	59	56
GE	47	44	42	44	48	39	30	23	35	42	50	47
ΒZ	60	53	48	52	59	46	32	25	39	51	58	56
ΑZ	43	43	39	41	44	46	35	24	34	45	46	46
WU	50	44	43	53	48	43	39	25	39	43	50	49
TR	65	60	58	55	63	49	38	30	42	56	61	59
FR	47	50	50	55	59	50	34	33	40	48	50	51
SA	65	61	54	53	63	53	38	25	42	54	64	60
ΒU	63	53	51	52	49	48	41	26	43	53	61	58
ST	45	41	35	51	56	45	37	29	36	46	47	40
KO	49	44	46	55	51	57	35	29	36	43	47	47
BE	70	63	60	59	65	56	46	29	44	57	70	66
WB	49	52	44	42	54	41	36	22	35	45	56	48
HS	66	59	58	60	64	57	36	28	42	55	66	61
НΟ	70	67	64	70	71	66	50	35	48	65	73	69
FE	69	61	64	67	71	61	43	38	47	60	69	63

A 9 : Monatsmittel der Niederschlagsbereitschaft in ∨. H. bei zonalem Zirkulationstyp, bezogen auf Tage mit ≥ 1 mm Niederschlag

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	22	18	27	31	31	30	22	22	18	21	19	22
HD	24	23	29	30	29	28	22	22	18	21	19	24
KA	21	23	26	28	30	29	24	22	20	22	18	24
GE	23	17	25	27	23	26	21	20	19	18	16	25
ΒZ	20	22	27	29	28	25	25	19	20	22	16	27
ΑZ	22	18	23	28	23	24	19	20	18	19	17	21
WU	21	20	29	26	26	24	20	18	17	21	15	22
TR	26	23	30	25	28	28	24	21	20	26	22	26
FR	24	25	27	34	33	31	29	25	23	22	19	22
SA	25	22	29	30	26	27	20	23	20	27	24	27
ΒU	28	27	28	28	28	26	18	21	19	23	16	26
ST	23	22	26	27	34	28	27	24	21	19	15	21
KO	19	23	25	31	35	34	30	28	20	16	17	22
BE	31	30	33	34	31	27	22	23	22	27	21	29
WB	17	22	25	28	28	29	20	23	18	18	13	24
HS	29	30	31	33	37	36	26	30	22	25	20	29
НО	33	36	38	40	42	36	31	28	24	28	24	39
FE	31	32	36	40	43	41	37	32	27	29	26	37

A 10: Monatsmittel der Niederschlagsbereitschaft in ∨. H. bei gemischtem Zirkulationstyp, bezogen auf Tage mit ≥ 1 mm Niederschlag

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
MA	18	23	29	29	38	39	40	30	36	28	34	28
HD	19	22	29	28	37	35	37	31	36	28	32	32
KA	22	25	29	35	36	38	39	29	35	34	32	29
GE	19	23	25	24	33	32	29	26	36	27	30	26
ΒZ	22	27	31	31	35	36	35	27	34	33	31	30
ΑZ	21	24	27	29	31	31	36	27	30	31	30	25
WU	20	22	20	27	31	36	34	28	25	24	28	17
TR	23	26	32	33	36	41	38	32	36	32	34	32
FR	24	35	38	38	42	40	44	35	42	39	33	34
SA	21	28	32	35	37	39	33	31	39	35	32	29
ΒU	23	26	29	31	35	34	37	29	33	28	33	28
ST	21	24	29	34	41	39	40	36	34	31	27	24
KO	21	28	32	35	35	40	44	43	36	29	35	28
BE	24	30	35	33	39	41	38	33	37	30	37	33
WB	20	31	29	35	36	34	35	26	31	28	35	25
HS	24	37	41	40	45	43	45	43	45	39	35	40
HO	36	48	50	45	48	51	46	42	49	40	45	47
FE	29	42	51	51	54	50	52	50	47	43	42	44

A 11: Monatsmittel der Niederschlagsbereitschaft in ∨. H. bei meridionalem Zirkulationstyp, bezogen auf Tage mit ≥ 1 mm Niederschlag

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
MA	4.2	4.8	4.8	4.6	4.8	4.6	6.6	6.4	6.3	5.7	5.8	5.0
HD	4.5	5.4	4.9	5.2	5.8	4.8	7.0	5.7	6.7	6.6	6.3	5.4
KA	6.0	6.9	5.1	5.2	6.1	5.9	6.2	5.4	7.7	7.7	6.0	7.3
GE	4.0	4.4	3.6	4.2	3.8	4.3	4.5	4.3	5.7	5.8	4.1	4.9
ΒZ	7.0	8.2	6.4	5.8	6.1	6.0	6.8	6.7	7.6	9.7	6.9	8.6
ΑZ	4.3	5.0	3.9	4.6	4.4	3.6	5.6	5.1	6.2	5.5	4.7	5.2
WU	4.9	5.1	4.9	3.5	4.0	5.0	4.8	5.9	5.2	6.7	4.3	5.9
TR	6.3	6.2	5.3	5.1	5.1	5.7	5.4	7.0	7.3	7.7	5.9	6.7
FR	4.6	5.6	5.3	6.2	7.9	8.8	9.1	8.5	9.8	7.1	7.0	7.4
SA	7.0	7.1	6.2	6.3	6.1	5.7	7.1	7.1	7.8	9.7	7.2	8.7
ΒU	7.6	8.2	6.3	5.6	4.8	5.4	5.8	6.5	6.7	9.2	6.0	8.8
ST	4.4	5.0	4.4	4.6	4.7	5.9	6.5	7.3	6.8	6.4	5.3	6.2
KO	4.8	6.2	5.2	5.8	4.5	6.8	7.5	6.5	7.3	7.1	6.7	6.8
BE	8.9	9.3	8.2	6.8	6.3	6.5	7.2	6.6	9.3	11.6	7.9	9.8
WB	4.4	5.2	4.1	4.1	5.1	4.0	4.6	7.0	6.2	6.1	4.6	5.8
HS	15.1	15.7	10.6	12.8	8.1	9.0	8.3	8.0	11.1	15.5	13.0	18.0
HO	11.7	12.2	11.9	13.4	13.2	13.2	14.2	12.5	17.9	15.2	15.2	15.2
FE	10.7	11.7	8.8	8.7	12.8	12.3	12.0	11.7	14.5	15.2	13.0	14.4

A 12 : Monatsmittel der Niederschlagsdichte in v. H. bei zonalem Zirkulationstyp, bezogen auf Tage mit ≥ 1 mm Niederschlag

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
MA	4.1	4.9	5.2	4.9	6.1	7.3	8.5	5.0	8.4	4.9	4.8	4.6
HD	4.6	4.8	5.6	4.8	6.6	7.5	8.6	6.6	7.6	5.4	5.7	4.7
KA	5.1	5.3	5.9	5.1	5.8	6.9	7.1	5.9	6.1	5.9	6.8	4.9
GE	3.9	3.9	4.2	4.2	4.9	5.9	9.8	6.0	6.1	4.6	4.8	3.6
ΒZ	5.7	5.5	6.3	4.6	6.0	8.4	5.6	6.4	6.4	5.2	8.0	5.1
ΑZ	3.2	2.9	4.7	4.6	5.7	5.6	7.3	4.8	6.1	4.1	4.7	3.4
WU	4.4	3.0	5.2	5.5	6.1	4.8	6.0	5.6	5.3	4.3	4.6	3.5
TR	4.8	4.0	5.1	5.3	4.8	5.2	8.1	6.2	5.9	5.3	5.8	4.7
FR	5.0	4.4	4.7	5.5	8.7	7.9	8.0	7.4	7.9	6.0	6.6	6.0
SA	5.4	5.0	6.3	5.2	7.1	6.5	9.6	7.1	6.7	5.7	6.3	5.3
ΒU	5.3	4.9	7.6	5.3	5.7	7.0	8.1	6.6	6.4	4.4	7.2	4.7
ST	3.6	4.0	4.7	5.6	6.1	6.8	8.2	6.3	7.0	4.6	5.3	4.6
KO	3.7	4.3	4.0	5.9	8.5	7.8	10.0	8.1	7.8	5.4	7.3	4.7
BE	6.7	6.1	9.1	6.1	6.2	7.9	7.2	7.3	8.0	7.5	8.4	6.2
WB	3.9	3.9	4.4	4.3	6.3	5.3	6.0	4.4	5.6	3.7	4.7	3.6
HS	12.1	10.8	10.3	5.9	8.6	8.5	8.6	7.7	6.4	8.8	17.2	8.6
HO	13.1	14.0	16.6	10.7	11.3	13.0	12.4	11.6	13.6	11.2	11.9	9.9
FE	9.1	8.1	7.9	6.0	10.3	10.3	10.1	10.9	9.2	11.0	13.8	7.0

A 13 : Monatsmittel der Niederschlagsdichte in ∨. H. bei gemischtem Zirkulationstyp, bezogen auf Tage mit ≥ 1 mm Niederschlag

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	4.6	3.8	4.1	6.0	6.5	6.7	7.5	5.6	5.6	6.5	5.1	4.2
HD	4.7	3.5	4.5	5.3	7.1	8.1	7.4	6.0	6.7	6.6	5.4	4.2
KA	4.0	4.2	4.7	5.5	7.4	8.4	6.7	5.5	6.2	5.8	5.6	4.7
GE	3.0	3.5	3.5	4.4	5.0	6.0	6.4	6.1	5.0	6.0	4.2	4.1
ΒZ	4.1	4.3	5.0	6.3	6.5	7.6	7.3	5.7	6.8	6.2	6.6	5.2
ΑZ	3.1	3.7	4.0	4.5	6.4	6.6	6.5	6.2	6.1	5.8	5.1	4.4
WU	2.5	3.4	4.0	3.9	6.5	7.1	7.1	7.5	6.5	5.5	4.2	5.6
TR	2.7	3.9	4.6	6.0	6.4	6.9	6.9	5.7	7.0	6.1	4.5	4.8
FR	5.1	4.9	5.4	7.4	8.9	7.7	8.3	8.5	8.1	7.2	5.7	6.6
SA	3.6	3.8	4.9	6.1	6.4	6.9	8.4	6.5	6.8	6.8	6.4	5.8
ΒU	4.1	4.3	5.3	5.3	6.0	5.7	7.3	5.6	7.0	6.2	4.4	4.9
ST	3.3	3.3	4.4	5.0	7.6	8.7	8.1	6.4	6.2	5.8	4.7	4.5
KO	3.7	4.9	4.7	6.0	8.0	9.5	8.6	8.5	9.5	6.5	5.9	6.8
ΒE	5.5	4.7	5.6	5.9	7.8	7.2	7.7	5.9	8.2	7.5	5.7	5.3
WB	3.9	3.7	3.8	4.6	6.6	7.0	6.1	5.7	6.2	6.5	4.8	4.4
HS	11.1	9.0	7.5	8.0	7.8	8.6	9.0	8.3	9.2	8.9	7.6	8.6
НΟ	10.0	8.3	9.9	10.9	11.0	10.8	14.0	10.2	11.0	11.8	10.2	9.3
FE	9.1	5.5	6.2	6.8	8.8	9.7	12.5	9.2	11.8	11.0	7.3	6.5

A 14 : Monatsmittel der Niederschlagsdichte in v. H. bei meridionalem Zirkulationstyp, bezogen auf Tage mit ≥ 1 mm Niederschlag

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	66	64	59	59	63	60	53	46	57	59	66	69
HD	66	64	56	54	60	57	51	40	52	59	66	70
KA	65	64	60	59	62	61	53	45	55	59	66	68
GE	66	65	58	59	63	58	53	47	56	59	65	68
ΒZ	53	53	47	49	47	45	45	40	45	48	52	57
ΑZ	60	57	51	49	53	52	44	39	49	55	60	64
WU	64	64	60	58	59	58	53	45	54	60	64	69
TR	69	67	61	59	64	62	56	49	59	62	69	71
FR	65	65	62	62	62	62	53	47	54	60	66	67
SA	69	65	61	59	62	61	53	47	58	61	68	70
ΒU	68	65	61	58	58	58	53	44	56	63	68	71
ST	60	59	57	58	59	58	52	44	52	55	62	64
KO	66	65	61	61	59	61	52	47	55	61	64	68
BE	72	70	67	67	67	65	60	56	63	68	72	74
WB	64	60	58	56	59	58	50	43	55	57	64	65
HS	61	57	57	56	55	55	44	39	48	54	61	61
НΟ	70	65	65	65	66	66	58	49	61	66	72	69
FE	67	64	66	66	65	66	56	50	58	63	68	66

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
MA	56	49	51	49	45	45	39	38	39	50	57	58
HD	55	49	47	40	38	38	33	34	36	48	55	58
KA	57	50	52	49	46	45	39	38	41	52	57	60
GE	63	51	53	49	45	42	39	39	41	53	61	60
ΒZ	54	48	48	44	41	42	38	39	40	47	50	50
ΑZ	58	47	47	42	36	38	33	34	35	47	58	59
WU	59	50	53	48	44	44	39	39	40	51	59	59
TR	59	52	52	51	48	46	40	41	44	52	58	60
FR	57	51	50	52	49	48	41	40	43	52	55	59
SA	57	50	50	49	47	44	37	39	40	49	56	59
ΒU	58	51	55	47	43	41	37	37	41	51	59	60
ST	49	48	51	49	47	45	38	38	40	48	48	56
ко	67	55	52	51	48	46	40	41	46	56	65	68
BE	64	60	64	59	56	54	53	53	52	60	62	65
WB	53	51	50	49	45	43	36	38	41	47	51	57
HS	44	41	46	45	45	41	35	37	37	41	41	51
НО	47	47	54	52	49	48	42	42	45	47	47	54
FE	44	48	53	54	53	52	45	44	46	48	46	51

A 16 : Monatsmittel der Bewölkung in 10tel Achtel bei gemischtem Zir kulationstyp

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	60	51	51	53	50	53	49	48	52	55	59	63
HD	60	51	50	47	46	49	45	43	51	53	58	64
KA	63	54	52	55	52	53	48	49	54	58	60	63
GE	60	52	50	51	51	52	48	49	53	58	61	65
ΒZ	56	52	48	45	44	46	42	45	47	50	53	55
ΑZ	60	53	50	46	43	48	44	42	48	53	56	62
WU	59	51	50	53	49	53	49	47	54	53	62	64
TR	60	54	55	53	54	55	50	50	56	58	61	64
FR	67	56	55	58	55	55	51	51	56	61	62	65
SA	61	53	53	53	52	51	47	48	53	57	60	64
ΒU	63	55	52	55	49	52	49	47	54	54	63	66
ST	58	53	51	55	51	54	48	49	53	56	58	61
ко	70	61	56	58	54	55	50	53	59	64	66	68
BE	69	64	64	62	60	61	59	61	63	63	69	71
WB	62	53	50	53	49	52	47	46	53	55	60	64
HS	54	55	54	53	50	51	45	47	53	55	56	58
но	55	58	59	58	56	58	53	54	58	57	61	62
FE	52	58	61	62	58	60	56	55	60	59	59	60

A 17: Monatsmittel der Bewölkung in 10tel Achtel bei meridionalem Zirkulationstyp

- 150 -

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	15.0	18.7	27.8	34.4	31.9	33.7	41.5	50.5	35.5	25.5	16.2	11.7
HD	10.1	7.4	18.9	22.3	24.6	31.1	37.2	45.9	37.4	20.8	15.9	10.0
KA	16.8	22.2	30.6	37.4	35.1	38.3	47.0	54.6	41.8	28.7	18.6	12.6
GE	15.1	12.9	30.9	30.1	29.6	31.4	39.4	47.2	33.5	24.8	16.0	11.5
ΒZ	16.3	20.0	32.3	38.1	35.1	38.8	46.1	52.5	41.2	30.8	17.6	12.2
ΑZ	14.6	19.5	31.8	36.1	35.9	34.7	43.3	51.4	35.4	24.1	16.3	10.9
WU	16.4	19.9	26.5	33.2	32.9	31.4	38.9	49.0	34.4	24.4	16.0	12.1
TR	9.4	15.1	24.9	31.4	28.9	33.4	39.7	49.5	30.4	22.0	11.2	7.2
FR	21.7	23.7	30.2	36.7	34.7	38.1	48.3	56.3	44.6	31.6	23.3	16.8
SA	9.6	17.4	25.6	31.9	29.9	33.6	43.3	52.0	34.0	24.1	12.5	9.1
ВU	14.7	19.4	27.0	33.9	33.4	32.8	40.8	51.9	36.4	25.4	15.0	10.8
ST	27.6	32.7	32.0	34.8	37.7	34.0	36.9	51.6	38.0	26.9	20.2	17.3
ко	20.7	23.4	31.6	37.7	39.7	37.9	48.0	55.7	42.3	31.3	24.1	17.8
BE	9.3	18.9	24.9	31.2	29.8	31.3	39.2	49.6	34.0	22.8	11.3	7.4
WB	15.4	26.0	27.5	32.9	31.0	33.1	42.2	49.9	34.7	29.8	17.4	15.2
HS	16.1	24.9	28.9	34.1	38.6	40.4	52.5	59.5	44.4	31.8	19.7	15.4
НО	11.5	20.3	22.1	27.0	27.4	27.9	38.9	48.8	34.2	23.1	12.1	10.7
FE	18.7	24.5	22.8	28.0	25.1	27.7	38.9	49.6	36.3	26.9	18.8	19.7

A 18 : Monatsmittel der Relativen Sonnenscheindauer (in v. H. d. astronomisch möglichen) bei zonalem Zirkulationstyp

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	25.6	36.0	34.6	46.7	52.5	53.8	58.1	58.3	53.6	36.4	26.2	21.7
HD	15.4	37.3	32.0	41.9	35.4	46.0	56.8	58.5	53.4	35.3	22.7	17.7
KA	27.9	38.7	37.6	46.9	52.9	54.9	61.1	61.4	55.1	37.7	29.7	22.5
GE	17.8	33.4	36.2	45.9	50.1	50.9	60.4	57.1	50.6	32.6	19.2	19.5
ΒZ	18.8	37.2	37.0	45.9	51.8	53.1	61.0	60.8	53.5	33.3	25.8	19.4
ΑZ	16.4	29.2	33.4	46.2	52.7	52.4	57.0	56.2	47.6	27.4	17.1	15.4
WU	23.6	34.4	33.0	44.7	48.5	50.7	54.9	53.9	50.3	34.8	22.1	19.2
TR	21.4	33.5	34.9	42.6	51.2	54.3	58.1	56.1	49.3	34.2	23.0	20.3
FR	28.6	38.4	41.5	45.2	50.1	56.1	61.4	61.3	55.0	42.1	35.1	24.8
SA	27.2	38.4	38.0	44.0	51.4	54.9	60.3	58.7	53.7	39.0	29.0	22.7
ΒU	25.3	33.6	34.5	46.7	48.6	48.6	55.0	57.9	52.4	36.3	24.2	18.7
ST	41.5	36.6	37.9	45.7	51.6	55.0	57.5	53.8	51.3	42.3	37.6	31.6
ко	15.8	32.4	39.9	46.0	48.9	55.5	59.4	58.2	48.7	31.7	16.8	12.5
BE	24.9	35.4	34.4	44.2	46.6	47.9	52.2	54.2	51.0	38.2	26.6	19.7
WB	30.6	36.4	36.1	42.9	49.0	50.9	55.9	56.0	51.5	44.0	35.2	24.8
HS	29.6	40.8	39.4	42.4	47.2	50.8	60.6	58.1	53.4	45.9	36.9	22.3
но	40.4	37.3	33.7	42.4	47.4	50.5	58.6	59.3	52.4	45.8	43.8	26.4
FE	50.8	47.4	41.0	41.0	44.2	47.3	55.2	54.4	51.1	51.0	54.0	41.0

A 19 : Monatsmittel der Relativen Sonnenscheindauer (in v. H. der astronomisch möglichen) bei gemischtem Zirkulationstyp

	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
MA	19.8	35.1	36.0	39.8	44.7	40.6	45.6	45.5	36.3	30.6	23.2	16.3
HD	16.9	34.0	35.1	45.1	34.8	40.7	41.9	33.3	27.0	16.5	24.9	11.8
KA	15.7	31.7	36.5	40.5	44.6	43.5	48.7	49.0	39.1	29.2	24.1	16.9
GE	21.2	33.1	35.1	39.4	43.5	38.5	46.0	42.6	29.4	27.4	23.9	12.7
ΒZ	12.8	30.7	34.5	40.2	45.1	42.7	47.5	46.5	40.7	26.9	22.3	10.6
ΑZ	12.8	25.9	31.9	41.5	45.0	39.2	45.3	46.4	34.3	21.2	17.0	12.4
WU	19.9	31.7	34.1	36.4	43.1	37.4	43.0	42.2	35.2	29.9	20.2	16.4
TR	20.5	30.4	33.3	39.2	41.5	39.5	44.9	44.9	32.3	27.0	20.3	16.2
FR	16.0	29.5	35.1	36.9	42.1	44.0	48.1	47.7	38.2	29.3	21.9	17.8
SA	17.9	32.5	34.0	39.4	42.0	41.8	47.2	47.0	36.6	27.9	22.3	16.7
ΒU	16.3	30.0	35.0	38.2	42.1	36.8	43.0	44.3	35.3	29.9	18.6	13.1
ST	21.5	32.8	31.7	34.7	44.7	34.7	46.3	50.6	39.0	31.0	26.3	20.9
ко	12.6	25.0	33.6	38.2	43.3	42.3	47.8	44.7	33.5	22.9	16.7	16.3
BE	15.0	32.2	34.7	36.6	40.2	36.7	42.2	42.7	36.6	31.6	19.5	11.0
WB	18.6	32.0	36.0	36.9	41.4	37.6	46.0	46.8	36.1	30.0	22.7	18.5
HS	19.0	26.5	32.1	36.1	41.3	40.4	49.5	44.4	35.0	30.6	21.9	15.0
НО	24.5	26.7	30.7	33.6	39.8	38.0	42.7	44.2	34.4	32.9	22.2	17.1
FE	40.6	33.0	29.1	31.2	34.6	33.4	40.4	39.7	30.9	33.5	30.0	28.5

A 20 : Monatsmittel der Relativen Sonnenscheindauer (in v. H. der astrono - misch möglichen) bei meridionalem Zirkulationstyp

Гад	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	518	935	1799	3218	4466	5861	5318	4961	3483	1860	865	659
2	465	1114	1860	3302	4990	5148	5585	5074	3579	1976	1034	531
3	468	872	1657	2968	4864	5161	5495	4914	3281	1989	1143	581
4	578	969	2001	2647	4406	4777	5111	5166	3450	2272	1213	481
5	627	1028	2025	2830	4434	5343	4945	5331	3566	2026	1071	841
6	618	965	2003	3349	4641	4853	4991	5305	3653	1957	1080	640
7	708	1260	1807	3230	4743	4768	5155	5299	3291	1941	799	490
8	699	824	2453	3293	4972	5106	5263	4653	3428	1586	890	511
9	487	1190	2656	4054	4991	4963	5500	5180	3634	2021	917	560
10	498	1201	2576	3884	4331	5715	5787	4482	3643	1904	874	569
11	589	1265	2472	3440	4702	4851	5523	5103	3326	1765	873	464
12	639	1372	2536	3074	4497	4849	5743	4346	3084	1692	947	524
13	770	1454	2670	3938	4754	5007	5453	4715	3125	2018	850	607
14	760	1665	2254	3815	4832	5256	5255	4805	2856	1976	798	561
15	767	1444	2430	3752	5392	5542	5267	5305	2605	1515	647	418
16	632	1561	2482	4245	5680	5397	5468	5099	2867	1684	873	568
17	702	1747	2237	3714	5498	5796	5085	4911	2993	1513	798	346
18	656	1571	2737	4612	4956	5376	4476	5044	3142	1371	889	349
19	555	1540	2357	4028	4711	6036	5561	4552	2819	1750	798	491
20	653	1733	2636	4492	5264	4937	5476	4467	3006	1328	724	466
21	654	1838	2556	4508	4105	5139	5439	4485	2881	1756	839	553
22	710	1848	2982	4308	4920	5061	5535	4641	2807	1754	753	552
23	691	1909	2266	4733	4840	5701	5222	4120	2544	1325	685	458
24	738	1753	2303	4793	5562	4648	5605	3760	2806	1544	652	471
25	809	1756	2594	4714	5198	5162	4942	4082	2769	1272	694	446
26	879	1985	2657	4355	5817	5227	4883	3569	2653	1420	707	534
27	956	1828	3150	4311	5097	5900	4784	3574	2654	1585	646	551
28	923	1715	3126	4190	4634	5647	4947	3813	2725	1255	542	616
29	910	-	2886	4663	4987	5338	5372	4242	2694	1342	700	624
30	949	-	3095	4750	5318	5128	5813	3836	2192	1373	648	672
31	1076	-	3219	-	6149	-	5009	4036	-	1091	-	700

A 21: Geisenheim - Mittlere Tagessummen der Globalstrahlung in Wh/m²

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	32	36	40	45	48	54	48	50	44	34	27	36
2	28	42	40	46	53	47	50	51	46	37	33	29
3	28	32	35	41	51	47	50	50	42	37	37	32
4	35	35	42	36	46	44	46	53	45	43	41	27
5	37	36	42	38	46	49	45	55	47	39	36	48
6	36	33	41	44	48	44	45	55	49	39	38	37
7	41	43	36	42	49	43	47	55	44	39	28	29
8	40	27	48	43	51	46	48	49	46	32	32	30
9	28	39	51	52	51	45	50	54	50	42	34	33
10	28	38	49	49	44	52	53	47	51	40	33	34
11	32	39	46	43	47	44	51	54	47	38	33	28
12	35	42	47	38	45	44	53	47	44	37	37	32
13	41	43	48	49	47	45	50	51	45	45	34	37
14	40	49	40	47	48	47	49	52	41	44	32	35
15	40	41	43	45	53	50	49	58	38	35	27	26
16	32	44	43	51	55	48	51	56	43	39	37	36
17	35	48	38	44	53	52	48	54	45	36	34	22
18	32	43	46	54	48	48	42	56	48	33	39	22
19	27	41	39	47	45	54	52	51	44	43	36	31
20	31	45	43	52	50	44	52	51	47	33	33	30
21	31	47	41	52	39	46	52	51	46	45	39	35
22	33	46	48	49	47	45	53	54	45	46	35	35
23	31	47	36	54	46	51	50	48	41	35	33	29
24	33	42	36	54	52	42	54	44	46	42	32	30
25	35	42	40	52	49	46	48	48	46	35	34	28
26	38	46	40	48	54	47	47	43	45	40	36	34
27	40	42	47	47	48	53	47	43	46	45	33	35
28	38	39	46	46	43	51	49	46	48	37	28	39
29	37	-	42	50	46	48	53	52	48	40	37	39
30	38	-	44	51	49	46	58	48	39	42	35	42
31	42	-	46	-	57	-	50	50	-	34	-	43

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	689	1264	1894	3197	4366	6017	5614	5044	3817	2312	1286	689
2	546	1231	1993	3086	5363	5687	6347	5337	3537	1934	1027	639
3	683	1036	1938	3293	4826	4777	5642	4944	3368	2287	1260	663
4	755	1343	1927	2902	4133	5038	5479	5142	3790	2618	1186	548
5	811	1133	2144	3250	4264	5632	5255	5512	3788	2461	1203	827
6	590	1058	2128	3331	4631	5150	4794	5328	3570	2078	1089	688
7	699	1329	2182	3512	5392	4761	5288	5111	3603	2222	998	591
8	695	993	2374	3233	5385	4812	5223	4742	3606	1841	883	649
9	610	1307	2470	3880	5195	5459	5281	5246	3868	2147	1057	585
10	553	1387	2449	3745	4517	5582	5625	4821	3798	1930	1051	556
11	672	1554	2862	3656	4672	5030	5834	5204	3583	1917	971	495
12	851	1592	2778	3520	4816	4687	5884	4654	3469	1649	1008	537
13	802	1477	2634	3608	4677	5066	5863	4719	3320	2131	807	641
14	935	1638	2303	3615	4989	5375	5531	4768	3260	2086	767	547
15	841	1644	2238	3848	5186	5748	5199	5431	3005	1942	930	502
16	838	1708	2669	4331	5860	5069	5361	4855	2848	1788	914	678
17	820	1809	2461	3910	5726	5381	5321	5009	3089	1694	868	553
18	795	1633	2565	4105	5684	5339	4278	4996	3092	1639	953	403
19	821	1582	2655	3622	4875	6302	5078	4702	3272	1702	745	508
20	695	1695	2617	4908	5651	5503	5396	4543	3160	1642	793	511
21	936	1881	2928	4712	4229	4893	5543	4831	3270	1799	885	571
22	843	1916	2882	4800	4620	5257	5643	4569	2857	1834	828	564
23	765	1854	2595	4952	5076	5055	5257	4025	2705	1731	870	622
24	795	1929	2840	4806	5390	5269	5572	4158	2921	1510	704	456
25	830	1795	2871	4849	5626	5554	4931	3915	2962	1623	611	543
26	962	2135	2999	5011	5532	4606	5426	3769	2481	1704	689	566
27	1010	1967	2953	4513	5590	5660	4744	3752	2909	1707	571	630
28	941	1960	2965	4443	5103	5851	5175	3360	2848	1525	708	642
29	1030	-	3082	4261	4843	6080	5207	4261	2875	1322	730	652
30	1087	-	3313	4503	5690	5795	5627	4628	2429	1277	759	757
31	1275	-	3123	-	6094	-	5292	4175	-	1254	-	712

A23: Würzburg - Mittlere Tagessummen der Globalstrahlung in Wh/m²

- 157 -

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	41	47	41	45	46	55	51	50	48	42	40	37
2	32	45	43	43	57	52	57	54	45	35	32	34
3	40	37	41	45	51	44	51	50	43	43	41	36
4	44	47	40	39	43	46	50	52	49	49	39	30
5	47	39	44	43	44	51	48	56	50	47	40	46
6	34	36	43	44	48	47	44	55	47	41	37	39
7	39	44	43	46	55	43	48	53	48	44	35	34
8	39	32	46	42	55	44	48	49	49	37	31	37
9	34	42	47	50	52	49	48	55	53	44	38	34
10	30	43	46	47	45	50	52	51	52	40	39	33
•												
11	36	48	53	46	47	45	54	55	50	41	37	29
12	45	48	51	44	48	42	54	50	49	35	39	32
13	42	43	47	44	46	46	54	51	47	47	32	39
14	48	47	41	44	49	48	51	52	47	46	31	33
15	43	47	39	46	51	52	48	59	44	44	38	31
16	42	47	46	52	57	45	50	53	42	41	38	41
17	40	49	42	46	55	48	50	55	46	40	37	34
18	38	44	43	48	55	48	40	56	47	39	41	25
19	39	41	44	42	47	56	48	53	50	41	33	31
20	32	44	43	57	54	49	51	51	49	41	35	32
21	43	47	47	54	40	44	53	55	51	45	40	35
22	38	47	46	54	44	47	54	53	46	47	38	35
23	34	45	40	56	48	45	50	47	44	45	41	39
24	35	46	44	54	51	47	54	49	48	40	34	28
25	35	42	44	54	53	50	48	46	49	44	30	34
26	40	49	45	55	52	41	53	45	42	47	34	35
27	42	44	44	49	52	51	46	45	50	48	29	39
28	38	44	43	48	47	53	51	41	49	44	36	39
29	41	-	45	46	45	55	51	52	50	39	38	40
30	42	-	47	48	53	52	56	57	43	38	40	46
31	49	-	44	-	56	-	53	52	-	38	-	43

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	517	677	1329	1847	2400	2735	2918	2477	2115	1313	824	499
2	466	722	1323	1726	2544	3051	3052	2411	1998	1356	731	472
3	499	728	1337	1893	2303	2465	2847	2464	1843	1406	816	466
4	502	818	1494	1834	2564	2757	3254	2594	2055	1276	796	421
5	522	768	1265	1955	2372	2780	2780	2415	1881	1331	775	517
6	436	748	1264	2165	2446	2913	2788	2284	1811	1340	748	485
7	563	882	1365	1912	2661	2646	2682	2443	2068	1381	730	485
8	533	818	1435	2031	2508	2715	2610	2504	1778	1268	708	442
9	514	943	1384	2129	2545	2976	2672	2495	1911	1286	722	477
10	448	931	1294	2068	2474	2748	2753	2321	1681	1164	760	460
11	502	966	1457	2081	2732	2945	2783	2203	1806	1209	737	430
12	602	973	1500	2148	2642	3021	2921	2282	1943	1150	643	454
13	601	982	1410	2201	2703	2758	3128	2402	1775	1280	613	488
14	581	1010	1535	2107	2509	2863	2750	2404	1837	1232	598	430
15	586	942	1378	1987	2508	2867	2948	2220	1766	1198	679	419
16	592	976	1629	1989	2582	2867	2988	2566	1841	1152	632	489
17	473	1084	1597	1982	2671	3208	2840	2577	1840	933	607	472
18	514	983	1601	2314	2783	3115	2621	2381	1754	1046	617	347
19	594	1141	1505	2214	2444	3118	2838	2451	1728	1123	527	420
20	526	1007	1758	2372	2778	2771	2761	2488	1623	1008	556	386
21	681	1096	1734	2336	2786	2689	2732	2221	1753	924	600	471
22	631	1123	1794	2330	2735	3087	2918	2354	1624	1035	594	391
23	633	1272	1577	2272	2578	2908	2687	2324	1570	929	591	434
24	641	1159	1648	2241	2695	3130	2618	2391	1587	892	545	424
25	651	1162	1600	2526	2432	2917	2358	2323	1382	962	473	409
26	640	1242	1719	2447	2549	2552	2716	2014	1427	976	555	433
27	724	1116	1878	2190	2602	3182	2642	2200	1479	1016	466	479
28	691	1303	1772	2346	2877	3166	2582	2213	1550	997	505	506
29	752	-	1896	2204	2915	3002	2573	2114	1536	856	532	452
30	711	-	2083	2508	2563	2803	2503	2224	1448	828	474	521
31	730	-	2056	-	2510	-	2571	2158	-	886	-	538

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	31	25	29	26	25	25	26	25	27	24	26	26
2	28	26	28	24	27	28	28	24	25	25	23	25
3	29	26	28	26	24	23	26	25	24	26	26	25
4	29	29	31	25	27	25	29	26	27	24	26	23
5	30	26	26	26	25	25	25	25	25	26	26	29
6	25	25	25	29	25	26	25	23	24	26	26	27
7	32	29	27	25	27	24	24	25	28	27	25	28
8	30	27	28	26	25	25	24	26	24	26	25	25
9	28	30	27	27	26	27	24	26	26	26	26	28
10	24	29	24	26	25	25	25	24	23	24	28	27
11	27	30	27	26	27	27	26	23	25	26	28	25
12	32	29	27	27	26	27	27	24	27	25	25	27
13	31	29	25	27	27	25	29	26	25	28	24	29
14	30	29	27	26	25	26	25	26	27	27	24	26
15	30	27	24	24	25	26	27	24	26	27	28	25
16	30	27	28	24	25	26	28	28	27	27	26	30
17	23	30	27	23	26	29	27	28	28	22	26	29
18	25	26	27	27	27	28	25	27	27	25	26	21
19	28	30	25	26	23	28	27	28	27	27	23	26
20	25	26	29	27	27	25	26	28	25	25	25	24
21	31	28	28	27	27	24	26	25	28	23	27	29
22	28	28	28	26	26	28	28	27	26	27	27	24
23	28	31	25	26	24	26	26	27	25	24	28	27
24	28	28	25	25	25	28	25	28	26	24	26	26
25	28	27	24	28	23	26	23	27	23	26	23	25
26	27	29	26	27	24	23	26	24	24	27	27	27
27	30	25	28	24	24	29	26	26	25	29	23	29
28	28	29	26	25	27	28	25	27	27	29	26	31
29	30	-	27	24	27	27	25	26	27	25	27	28
30	28	-	30	27	24	25	25	27	26	25	25	32
31	28	-	29	-	23	-	26	27	-	27	-	32

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	172	587	565	1350	1966	3282	2696	2567	1702	1000	462	190
2	80	510	671	1361	2819	2636	3295	2926	1539	578	296	168
3	184	309	601	1399	2523	2312	2795	2480	1525	882	443	197
4	253	525	434	1068	1569	2281	2225	2548	1735	1342	390	127
5	289	366	879	1295	1893	2852	2475	3097	1907	1130	428	310
6	154	310	864	1166	2185	2236	2007	3044	1759	737	341	203
7	136	447	817	1601	2731	2116	2607	2668	1536	840	268	106
8	162	175	939	1202	2877	2097	2612	2237	1828	573	175	207
9	96	364	1086	1750	2650	2483	2609	2751	1957	861	335	108
10	105	456	1155	1677	2043	2834	2873	2499	2117	765	292	96
11	170	588	1405	1575	1940	2085	3051	3001	1776	709	234	65
12	249	619	1279	1372	2175	1666	2963	2372	1526	498	366	83
13	201	495	1224	1407	1974	2308	2735	2317	1545	851	194	153
14	354	629	768	1508	2480	2512	2781	2363	1423	854	169	117
15	255	703	861	1861	2678	2881	2251	3211	1239	743	250	83
16	246	732	1040	2342	3278	2202	2373	2288	1007	636	282	189
17	347	725	864	1928	3055	2173	2480	2431	1249	761	261	81
18	281	649	965	1791	2901	2225	1657	2615	1337	594	336	56
19	227	441	1150	1407	2431	3184	2240	2250	1545	578	218	88
20	169	689	859	2536	2873	2732	2635	2055	1537	635	238	126
21	255	785	1194	2376	1443	2204	2811	2611	1517	874	285	100
22	212	793	1088	2470	1885	2170	2725	2215	1233	799	234	173
23	132	583	1018	2679	2498	2147	2571	1701	1135	802	279	188
24	155	770	1192	2565	2695	2140	2954	1767	1334	619	159	32
25	179	633	1271	2323	3194	2637	2572	1592	1580	661	138	133
26	322	893	1280	2564	2983	2055	2710	1755	1054	729	134	132
27	287	851	1076	2323	2988	2478	2101	1553	1430	691	106	152
28	250	657	1193	2098	2226	2685	2593	1147	1297	528	203	136
29	278	-	1187	2057	1928	3078	2634	2147	1339	465	198	200
30	376	-	1230	1994	3128	2992	3124	2404	981	448	285	236
31	545	-	1067	-	3584	-	2721	2018	-	369	-	175

A 27 : Würzburg - Mittlere Tagessummen der direkten Sonnenstrahlung in Wh/m²

-

-

-

-

-

-

-

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	454	1047	1729	3260	4388	5974	5377	5097	3176	2237	1106	785
2	487	1112	1701	3241	4820	5154	5531	5146	3332	2185	1086	560
3	518	900	1798	2775	4750	4899	5564	4983	3480	2132	1241	618
4	617	1016	2038	2855	4507	4706	5402	5335	3477	2472	1330	542
5	605	931	2108	2860	4729	5145	4972	5531	3866	1774	1145	746
6	559	950	1885	3424	4396	4399	4990	5348	3675	1830	1123	633
7	568	1237	1809	3116	4685	4672	5223	4871	3462	1885	781	556
8	619	829	2410	3232	4818	5308	5473	4503	3621	1653	898	548
9	449	1281	2644	3892	4463	5505	5437	5288	3742	2002	960	554
10	533	1175	2759	3627	4354	5742	5616	4517	3619	1915	875	524
11	583	1359	2572	3402	4455	4887	5862	5007	3306	1796	948	446
12	680	1422	2674	2958	4205	5196	5755	4277	3157	1646	1012	533
13	871	1471	2653	3863	4583	5448	5513	4736	3093	2168	936	491
14	685	1639	2335	3846	4593	5570	4734	4687	2703	2134	878	553
15	643	1419	2394	4102	5284	5785	4967	5588	2500	1495	772	488
16	743	1656	2446	4183	5686	5639	5574	5131	2721	1725	898	568
17	730	1607	2087	4025	5533	5700	5034	4790	2636	1818	813	342
18	651	1757	2750	4440	4617	5504	4626	5018	3186	1675	960	320
19	555	1529	2311	4320	5056	5928	5464	4694	3012	1702	827	492
20	686	1637	2585	4412	5158	5077	5664	4593	2937	1478	698	431
21	759	1843	2621	4548	4481	5287	5317	4575	3196	1906	896	450
22	732	1961	2793	4201	5388	4888	5492	4565	2785	1802	706	487
23	675	1824	2143	4488	5217	5233	5506	4494	2672	1632	823	522
24	760	1832	2091	4776	5349	4752	5562	3756	2811	1484	655	527
25	865	1781	2508	4137	5157	5428	5033	4265	2730	1397	737	462
26	816	1897	2600	3850	5674	5378	5090	3438	2681	1586	685	472
27	867	1858	2982	4226	4940	5443	4985	3757	2823	1580	545	476
28	905	1380	3037	4698	4812	5360	5277	4090	2603	1168	636	539
29	959	-	3031	4437	5068	5428	5568	4129	2686	1456	686	632
30	1100	-	3264	4638	5488	5431	5628	3928	2363	1372	707	584
31	1119	-	3103	-	6154	-	4965	3900	-	1115	-	606

A 29 : Trier - Mittlere Tagessummen der Globalstrahlung in Wh/m²

- 163 -

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	27	39	38	45	47	55	48	51	40	40	34	42
2	29	41	37	45	51	47	50	52	42	40	34	30
3	30	32	38	38	50	45	50	50	45	40	40	34
4	36	36	42	38	47	43	49	54	45	47	44	30
5	35	32	43	38	49	47	45	56	51	34	38	42
6	32	32	38	45	45	40	45	55	49	36	38	36
7	32	41	36	41	48	42	48	50	46	37	27	32
8	34	27	47	42	49	48	50	47	49	33	32	31
9	25	41	51	50	45	50	50	55	51	41	35	32
10	29	37	52	46	44	52	51	48	50	40	32	31
11	31	42	48	43	44	44	54	53	46	38	36	26
12	36	43	49	37	42	47	53	46	44	35	39	32
13	45	43	48	47	45	49	51	51	44	47	37	29
14	35	47	41	47	45	50	44	51	39	47	35	33
15	33	40	42	49	52	52	46	61	36	34	31	30
16	37	46	42	50	55	51	52	56	40	40	37	35
17	36	44	35	48	54	51	47	53	39	43	34	21
18	31	47	46	52	45	49	43	56	48	40	41	20
19	26	40	38	50	49	53	51	53	46	41	36	30
20	32	42	42	51	49	45	54	52	46	36	31	27
21	35	46	42	52	43	47	50	52	50	48	40	28
22	33	49	44	48	51	44	52	52	44	46	32	30
23	30	44	33	51	49	47	53	52	43	43	39	32
24	33	44	32	53	50	43	53	44	46	39	31	33
25	37	42	38	46	48	49	49	50	45	38	36	28
26	34	44	39	42	53	48	49	41	45	44	34	29
27	36	42	44	46	46	49	49	45	48	44	27	29
28	36	31	44	51	45	48	52	49	45	33	32	33
29	38	-	44	48	47	49	55	50	47	43	35	38
30	43	-	47	50	51	49	56	48	42	41	37	35
31	43	-	44	-	57	-	49	49	-	34	-	36

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	395	654	1224	1753	2358	2991	2926	2332	1897	1362	783	555
2	382	686	1154	1860	2338	2833	3086	2500	1876	1424	836	411
3	378	653	1318	1731	2389	2698	2914	2585	1638	1335	858	444
4	431	662	1367	1861	2360	2795	3092	2453	1977	1397	838	413
5	455	590	1358	1752	2339	3022	3072	2418	1890	1218	738	538
6	428	597	1076	1981	2505	2901	2797	2289	1803	1199	807	508
7	446	831	1204	1927	2595	2694	2713	2418	1842	1303	632	452
8	540	697	1285	1987	2630	2970	2647	2292	1779	1217	616	447
9	430	946	1380	2158	2164	2870	2601	2263	1747	1178	764	433
10	452	889	1199	1850	2699	2856	2760	2207	1794	1185	760	393
11	422	898	1320	2053	2717	3095	2581	2096	1824	1101	698	400
12	524	789	1329	1797	2484	2914	2819	2239	1788	1083	691	432
13	542	907	1402	2212	2275	2542	2731	2362	1636	1155	668	422
14	456	931	1408	1859	2307	2947	2541	2352	1614	1171	656	406
15	465	819	1340	2263	2648	2710	2864	2315	1753	1037	553	394
16	519	938	1375	2153	2765	2979	2780	2448	1468	1138	663	438
17	419	1044	1440	2046	2686	2717	2607	2354	1535	1071	567	328
18	520	968	1535	1960	2499	2785	2842	2207	1721	962	544	311
19	438	968	1511	2107	2646	2891	2552	2211	1678	1013	580	398
20	537	1123	1689	2227	2798	2282	2429	2244	1485	1003	519	355
21	622	1102	1521	2273	2680	3123	2394	2336	1669	1067	662	340
22	549	1103	1626	2512	2990	2932	2569	2211	1644	872	526	349
23	535	1267	1460	2332	2931	2951	2539	2438	1320	882	585	375
24	564	1036	1301	2148	2814	2883	2553	2202	1622	871	531	425
25	513	1177	1610	2220	2321	2880	2411	2204	1328	938	542	345
26	542	1065	1510	2030	2532	2806	2575	2024	1404	1045	495	361
27	642	1098	1502	2151	2735	2900	2713	2133	1475	960	482	411
28	687	1033	1815	2406	2777	2901	2580	2183	1448	838	509	357
29	648	-	1661	2120	2497	2628	2427	2040	1520	881	479	455
30	651	-	1781	2258	2705	2789	2383	2003	1377	856	523	438
31	709	-	1812	-	2580	-	2382	1963	-	795	-	471

- 165 -

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	24	24	27	24	25	27	26	23	24	25	24	29
2	23	25	25	26	25	26	28	25	24	26	26	22
3	22	23	28	24	25	25	26	26	21	25	28	24
4	25	23	28	25	25	25	28	25	26	26	27	23
5	26	20	28	23	24	27	28	25	25	23	25	30
6	24	20	22	26	26	26	25	23	24	23	28	29
7	25	28	24	25	27	24	25	25	25	26	22	26
8	30	23	25	26	27	27	24	24	24	24	22	26
9	24	30	26	28	22	26	24	24	24	24	28	25
10	25	28	23	23	27	26	25	23	25	25	28	23
11	23	27	24	26	27	28	24	22	25	23	26	24
12	28	24	24	22	25	26	26	24	25	23	26	26
13	28	27	25	27	22	23	25	25	23	25	26	25
14	23	27	25	23	23	26	24	25	23	26	26	25
15	24	23	23	27	26	24	27	25	26	23	22	24
16	26	26	24	26	27	27	26	27	22	26	27	27
17	21	28	24	24	26	24	24	26	23	25	24	20
18	25	26	26	23	24	25	27	25	26	23	23	19
19	21	25	25	25	25	26	24	25	26	25	25	25
20	25	29	27	26	27	20	23	25	23	25	23	22
21	29	28	24	26	26	28	23	27	26	27	30	21
22	25	27	26	29	28	26	24	25	26	22	24	22
23	24	31	23	26	28	26	24	28	21	23	27	23
24	25	25	20	24	26	26	25	26	27	23	25	26
25	22	28	24	25	22	26	23	26	22	25	26	21
26	23	25	23	22	24	25	25	24	24	29	24	22
27	26	25	22	23	25	26	26	26	25	27	24	25
28	28	23	27	26	26	26	25	26	25	24	26	22
29	26	-	24	23	23	24	24	25	27	26	25	28
30	25	-	25	24	25	25	24	25	25	25	27	26
31	27	-	26	-	24	-	24	24	-	24	-	28

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	59	393	505	1508	2030	2983	2451	2764	1279	875	323	230
2	105	427	547	1381	2483	2320	2445	2646	1455	762	250	149
3	141	248	479	1045	2361	2201	2650	2398	1842	797	383	174
4	186	354	671	994	2147	1911	2310	2882	1500	1075	492	128
5	150	341	750	1108	2390	2123	1900	3113	1976	556	407	208
6	131	353	810	1443	1890	1498	2193	3059	1872	631	316	125
7	122	406	605	1189	2090	1978	2510	2454	1620	582	149	104
8	79	132	1125	1245	2188	2338	2827	2210	1842	435	282	100
9	19	336	1263	1734	2299	2635	2836	3025	1994	824	196	121
10	82	286	1560	1778	1655	2886	2856	2311	1824	729	115	131
11	162	461	1252	1349	1738	1793	3281	2911	1481	695	250	46
12	156	633	1345	1162	1722	2281	2936	2038	1369	562	321	101
13	329	563	1251	1651	2308	2906	2782	2373	1457	1013	268	69
14	229	708	927	1987	2285	2624	2192	2335	1089	963	222	147
15	178	600	1054	1839	2636	3075	2103	3272	747	458	219	94
16	224	718	1071	2030	2921	2660	2795	2682	1253	588	236	130
17	311	563	648	1979	2848	2983	2427	2436	1101	747	246	14
18	132	788	1215	2480	2118	2719	1784	2811	1465	713	416	8
19	116	561	799	2213	2410	3038	2913	2483	1333	689	247	93
20	149	513	895	2185	2359	2795	3234	2349	1452	475	179	76
21	137	741	1100	2276	1800	2165	2922	2239	1527	839	234	109
22	183	858	1167	1689	2398	1957	2922	2354	1141	930	180	138
23	140	557	683	2156	2285	2282	2967	2056	1352	750	239	147
24	195	797	789	2628	2536	1869	3009	1554	1189	613	124	102
25	352	604	898	1917	2836	2548	2622	2060	1402	459	195	117
26	274	832	1090	1820	3143	2572	2515	1414	1277	541	191	111
27	225	760	1479	2075	2205	2543	2273	1624	1349	620	64	65
28	218	348	1222	2292	2034	2459	2698	1906	1155	330	127	183
29	311	-	1370	2318	2571	2801	3141	2088	1165	575	207	177
30	449	-	1483	2380	2784	2642	3245	1925	987	516	185	146
31	411	-	1291	-	3574	-	2583	1937	-	320	-	136

A 33 : Trier - Mittlere Tagessummen der direkten Sonnenstrahlung in Wh/m²

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	3	15	11	21	22	27	22	28	16	16	10	12
2	6	16	12	19	26	21	22	27	18	14	8	8
3	8	9	10	14	25	20	24	24	24	15	12	9
4	11	12	14	13	22	17	21	29	19	20	16	7
5	9	12	15	15	25	19	17	32	26	11	14	12
6	7	12	16	19	19	14	20	31	25	12	11	7
7	7	13	12	16	21	18	23	25	22	12	5	6
8	4	4	22	16	22	21	26	23	25	9	10	6
9	1	11	24	22	23	24	26	32	27	17	7	7
10	4	9	29	22	17	26	26	24	25	15	4	8
11	9	14	23	17	17	16	30	31	21	15	9	3
12	8	19	25	14	17	21	27	22	19	12	12	6
13	17	17	22	20	23	26	26	25	21	22	10	4
14	12	20	16	24	22	24	20	25	16	21	9	9
15	9	17	18	22	26	28	20	36	11	10	9	6
16	11	20	18	24	28	24	26	29	19	14	10	8
17	15	15	11	23	28	27	23	27	16	17	10	1
18	6	21	20	29	20	24	17	31	22	17	18	1
19	6	15	13	26	23	27	27	28	20	17	11	6
20	7	13	15	25	23	25	31	27	23	12	8	5
21	6	19	18	26	17	19	28	26	24	21	11	7
22	8	21	18	19	23	18	28	27	18	24	8	9
23	6	14	11	24	22	20	28	24	22	20	11	9
24	8	19	12	29	24	17	29	18	19	16	6	6
25	15	14	14	21	27	23	25	24	23	12	9	7
26	11	19	16	20	29	23	24	17	21	15	9	7
27	9	17	22	23	21	23	22	19	23	17	3	4
28	9	8	18	25	19	22	26	23	20	9	6	11
29	12	-	20	25	24	25	31	25	20	17	11	11
30	17	-	21	25	26	24	32	24	18	15	10	9
31	16	-	18	-	33	-	26	24	-	10	-	8
Гад	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
-----	------	------	------	------	------	------	------	------	------	------	------	-----
1	546	1028	1930	3163	4488	6092	5100	4850	3501	2103	1264	693
2	554	1084	1669	3060	5282	5366	5982	5213	3317	1742	1143	593
3	625	901	1716	3015	4651	4700	5571	5035	3326	2315	1191	630
4	652	1092	1936	2887	4045	4897	5364	5284	3650	2504	1168	540
5	690	1074	2097	3000	4364	5438	5030	5449	3600	2255	1302	768
6	589	1018	1949	3224	4046	4752	4900	5263	3438	2013	1076	677
7	672	1273	2016	3482	5520	4561	5322	5064	3421	1940	898	624
8	664	802	2281	3209	5236	4839	4929	4487	3619	1754	911	579
9	645	1420	2475	3757	4999	5061	5316	5056	3602	1975	1105	535
10	693	1388	2517	3519	4228	5304	5448	4895	3622	1746	1071	519
11	627	1348	2672	3600	4656	5017	5515	4868	3397	1916	911	361
12	729	1432	2619	3144	4389	4618	5517	4351	3289	1530	1042	555
13	963	1534	2578	3434	4569	4899	5548	4598	3040	1990	803	641
14	823	1617	2335	3606	4528	5108	5337	4545	3070	2171	814	590
15	819	1617	2152	3919	5276	5569	5076	5102	2601	1822	913	556
16	776	1657	2459	4308	5718	5111	5173	4898	3036	1693	825	598
17	644	1635	2108	3917	5498	5587	5081	4825	3024	1764	909	479
18	718	1646	2505	4123	5108	5485	3972	4879	3298	1588	947	356
19	721	1491	2305	3706	4683	6301	5113	4758	3249	1781	709	518
20	628	1711	2508	4927	5450	5362	5406	4436	3317	1552	888	441
21	909	1837	2810	4782	4109	4779	5449	4648	2974	1790	902	532
22	834	2185	2828	4553	4847	4977	5558	4335	2801	1761	695	569
23	751	1905	2332	5108	5235	5089	5154	4022	2826	1533	853	590
24	679	1853	2448	4525	5619	5055	5961	3797	2849	1552	698	497
25	723	1752	2497	4753	5452	5563	4962	3896	2879	1410	931	487
26	824	1915	2608	4572	5219	4766	4994	3543	2547	1589	847	437
27	997	2005	2885	4543	5529	5854	4747	3738	2996	1721	560	642
28	856	1611	2906	4294	4937	5407	4976	3235	2823	1390	775	634
29	1018	-	3002	4485	4624	5624	5158	4154	3032	1301	692	679
30	993	-	3100	4289	5546	5726	5488	4431	2428	1191	670	646
31	1194	-	3101	-	6081	-	4918	4084	-	1184	-	665

A 35 : Mannheim - Mittlere Tagessummen der Globalstrahlung in Wh/m²

- 169 -

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	32	38	42	44	48	56	46	48	44	38	39	36
2	32	39	36	42	56	49	54	52	42	32	36	31
3	36	32	36	41	49	43	50	51	43	43	38	34
4	37	38	40	39	42	45	49	54	47	47	38	29
5	39	37	43	40	45	50	46	56	47	43	43	42
6	33	34	39	42	42	43	45	54	45	39	36	38
7	37	42	40	45	56	41	48	52	46	38	31	35
8	36	26	44	41	53	44	45	47	49	35	32	33
9	35	45	47	48	50	46	49	53	49	40	40	31
10	37	43	47	44	42	48	50	52	50	36	39	30
11	33	41	49	45	47	45	51	52	47	40	34	21
12	38	43	48	39	44	42	51	46	46	33	40	33
13	50	45	46	42	45	44	51	49	43	43	31	38
14	42	46	41	44	45	46	49	49	44	48	32	35
15	41	45	37	47	52	50	47	56	38	41	37	33
16	38	46	42	51	56	46	48	54	45	39	34	36
17	31	44	36	46	53	50	48	53	45	41	38	29
18	34	44	42	48	49	49	37	54	50	38	40	22
19	34	39	38	43	45	56	48	53	50	43	31	31
20	29	44	41	57	52	48	51	50	51	38	39	27
21	41	46	45	55	39	43	52	53	47	45	40	32
22	37	54	45	52	46	45	53	50	45	45	32	35
23	33	46	36	57	50	46	49	47	46	40	39	36
24	29	44	38	51	53	45	57	44	47	41	33	30
25	31	41	38	53	51	50	48	46	48	38	45	30
26	34	44	39	50	49	43	48	42	43	44	41	26
27	41	45	43	50	52	53	46	45	51	48	28	39
28	34	36	42	47	46	49	49	39	49	40	39	38
29	40	-	43	48	43	51	51	51	53	38	35	41
30	38	-	44	46	51	52	54	55	43	35	35	38
31	45	-	44	-	56	-	49	51	-	36	-	39

A 36 : Mannheim - Mittlere Tageswerte der Relativen Globalstrahlung

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	27	23	28	26	25	25	25	24	25	24	25	25
2	25	23	24	25	24	26	28	22	25	23	25	25
3	27	22	26	24	23	24	26	26	22	25	24	24
4	27	24	29	23	24	24	29	26	27	24	26	24
5	27	24	27	24	24	25	27	25	24	27	27	27
6	25	22	24	27	24	26	26	23	24	25	26	25
7	28	29	25	24	25	24	24	24	26	24	23	29
8	30	21	25	25	26	25	24	24	22	25	24	26
9	29	29	24	28	24	25	25	25	24	23	27	25
10	29	29	25	24	25	24	25	24	22	23	29	23
11	25	27	25	25	28	26	24	23	24	25	25	19
12	26	24	26	24	26	26	25	23	26	23	27	25
13	31	27	24	26	26	24	26	26	23	25	22	28
14	30	28	25	24	23	26	25	25	25	27	24	27
15	29	26	22	25	24	25	26	23	23	24	25	25
16	25	24	25	25	24	25	27	27	26	26	24	29
17	22	26	23	22	26	28	24	27	26	24	25	25
18	25	24	27	25	25	25	23	25	26	22	24	20
19	24	26	22	23	22	28	26	25	27	27	21	26
20	23	25	26	26	26	22	23	25	24	23	25	21
21	29	29	27	25	26	24	23	23	26	26	29	25
22	26	29	27	26	25	27	25	24	26	25	24	22
23	24	28	22	27	24	27	24	28	24	23	26	24
24	23	24	22	24	24	26	25	27	24	24	26	24
25	22	28	23	28	22	28	23	26	23	24	28	23
26	25	24	24	26	22	25	25	23	24	26	30	22
27	27	23	23	24	24	28	25	26	25	27	23	28
28	25	25	24	24	27	25	24	25	25	26	27	28
29	26	-	27	23	24	25	25	25	27	24	26	26
30	25	-	27	24	25	25	25	27	25	24	23	27
31	28	-	25	-	23	-	24	24	-	25	-	30

A 38 : Mannheim - Mittlere Tageswerte der Rel. diffusen Sonnenstrahlung

- 172 -

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	88	414	626	1276	2139	3332	2357	2436	1517	781	461	216
2	131	446	536	1250	3017	2483	2861	3002	1338	487	356	127
3	166	273	481	1238	2448	2098	2706	2486	1598	991	434	177
4	186	405	523	1145	1695	2222	2163	2751	1532	1221	371	104
5	205	381	762	1163	2001	2661	2038	3029	1793	851	485	270
6	149	376	765	1138	1727	1863	2057	3053	1622	735	318	224
7	167	388	741	1624	3099	1911	2669	2755	1468	743	236	100
8	114	147	970	1263	2687	2087	2299	2215	1971	490	235	120
9	105	493	1192	1598	2574	2289	2571	2678	1848	845	351	107
10	144	464	1197	1634	1764	2629	2738	2609	2052	651	276	122
11	146	447	1293	1622	1877	2128	2939	2727	1706	706	229	31
12	228	610	1205	1188	1814	1682	2800	2216	1417	453	327	130
13	354	619	1212	1281	1906	2203	2724	2140	1433	851	228	159
14	222	645	910	1669	2198	2258	2612	2277	1325	962	210	142
15	233	690	871	1882	2833	2808	2289	2998	999	757	281	138
16	261	780	1021	2218	3234	2325	2237	2455	1266	560	229	114
17	195	688	722	2057	2854	2507	2498	2404	1289	738	320	71
18	201	728	869	1986	2558	2698	1487	2603	1574	681	388	26
19	218	485	961	1762	2432	3200	2390	2496	1495	666	216	85
20	140	745	875	2667	2684	2857	3026	2262	1759	605	309	92
21	258	676	1145	2599	1332	2097	3027	2599	1341	762	253	117
22	258	1020	1086	2284	2171	1997	2925	2203	1183	784	161	207
23	194	751	901	2683	2685	2075	2638	1640	1318	643	288	201
24	135	843	1033	2352	3036	2116	3380	1513	1379	659	154	95
25	199	532	952	2240	3056	2485	2554	1685	1515	512	336	112
26	226	853	1020	2199	2829	2025	2462	1600	1139	645	232	78
27	326	1002	1359	2309	2927	2746	2145	1573	1541	760	97	172
28	236	486	1279	2044	2073	2601	2508	1204	1401	476	229	171
29	348	-	1164	2351	2018	2846	2633	2100	1468	459	181	240
30	336	-	1192	2033	2878	2988	2930	2259	1028	382	228	200
31	459	-	1308	-	3639	-	2542	2142	-	359	-	151

A 39 : Mannheim - Mittlere Tagessummen der direkten Sonnenstrahlung in Wh/m²

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	5	15	14	18	23	31	21	24	19	14	14	11
2	8	16	11	17	32	23	26	30	17	9	11	7
3	10	10	10	17	26	19	24	25	20	18	14	10
4	11	14	11	15	18	20	20	28	20	23	12	6
5	12	13	16	15	21	24	18	31	23	16	16	15
6	8	13	15	15	18	17	19	31	21	14	11	12
7	9	13	15	21	32	17	24	28	20	15	8	6
8	6	5	19	16	27	19	21	23	27	10	8	7
9	6	16	23	20	26	21	24	28	25	17	13	6
10	8	14	22	21	18	24	25	27	28	13	10	7
11	8	14	24	20	19	19	27	29	24	15	9	2
12	12	18	22	15	18	15	26	24	20	10	12	8
13	18	18	22	16	19	20	25	23	20	19	9	9
14	11	18	16	20	22	20	24	25	19	21	8	8
15	12	19	15	23	28	25	21	33	15	17	11	8
16	13	21	18	26	32	21	21	27	19	13	9	7
17	9	19	12	24	28	22	23	27	19	17	13	4
18	10	19	14	23	25	24	14	29	24	16	16	2
19	10	13	16	20	23	29	23	28	23	16	9	5
20	6	19	14	31	26	26	29	26	27	15	14	6
21	12	17	18	30	13	19	29	30	21	19	11	7
22	11	25	17	26	21	18	28	25	19	20	7	13
23	8	18	14	30	25	19	25	19	21	17	13	12
24	6	20	16	26	29	19	32	18	23	17	7	6
25	8	12	14	25	29	22	25	20	25	14	16	7
26	9	20	15	24	26	18	24	19	19	18	11	5
27	13	23	20	25	27	25	21	19	26	21	5	10
28	9	11	19	22	19	23	25	15	24	14	11	10
29	14	-	17	25	19	26	26	26	26	13	9	14
30	13	-	17	22	27	27	29	28	18	11	12	12
31	17	-	18	-	34	-	25	27	-	11	-	9

A 40 : Mannheim - Mittlere Tageswerte der Rel. direkten Sonnenstrahlung

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	486	1099	1797	3255	4801	6006	5616	4950	3418	2176	1290	806
2	582	1040	1757	2955	5078	5143	5932	5194	3499	1876	1252	729
3	609	956	1782	3101	4696	4749	5604	4843	3614	2047	1427	663
4	655	1198	2020	2972	4271	5127	5840	5387	3593	2516	1240	557
5	649	1108	2386	3040	4328	5218	4957	5510	3436	2186	1216	793
6	554	1021	2144	2876	4527	4690	4722	5717	3378	2053	1287	674
7	631	1240	1869	3281	5173	3977	4974	4887	3251	1835	943	631
8	644	1013	2476	3402	4912	5072	4794	4987	3662	1896	869	591
9	503	1398	2680	3651	4681	5411	5937	5315	3765	1944	981	535
10	529	1303	2793	3512	4123	5503	5632	4987	3796	1908	984	592
11	596	1420	2874	3584	4529	4958	5771	4841	3379	1880	961	432
12	810	1409	2810	3142	4067	4896	5557	4508	3171	1474	1090	528
13	969	1518	2871	3121	4499	4871	6043	4954	3185	2013	1012	656
14	723	1492	2409	3618	4431	5078	5250	4646	3225	2257	755	553
15	775	1449	2388	3909	5169	5929	5392	5168	2581	1924	926	612
16	844	1633	2797	4219	5572	5231	5340	5136	3203	1703	707	574
17	786	1649	2417	3869	5614	5914	5403	4923	2940	1785	873	504
18	620	1723	2506	4009	4325	5712	4524	4813	3422	1676	985	346
19	620	1600	2248	4052	4769	6364	5647	4922	3167	1901	798	539
20	704	1667	2319	4425	4994	5660	5425	4745	3257	1459	830	435
21	825	1977	2638	4518	3816	5053	5994	4921	2873	1810	855	491
22	736	2149	2831	4392	4762	5360	5765	4429	2871	1736	746	523
23	748	1935	2367	4843	5221	5456	5721	4312	2813	1678	825	583
24	701	1824	2461	4391	5417	4876	5814	4173	2837	1605	668	462
25	892	1824	2364	4409	5561	5674	5235	4027	2767	1553	806	420
26	763	1861	2688	4158	5208	4615	5494	4034	2497	1529	871	461
27	1004	1911	2661	4630	5247	5403	5060	3859	3005	1584	577	557
28	944	1504	2962	4440	4695	5709	5172	3674	2717	1314	710	628
29	944	-	3228	4613	4763	6089	5357	4444	2893	1251	673	624
30	965	-	3185	4398	5289	6005	5597	4316	2613	1180	676	688
31	1065	-	3041	-	5836	-	5275	3969	-	1200	-	599

A 41 : Saarbrücken - Mittlere Tagessummen der Globalstrahlung in Wh/m²

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	27	40	38	45	51	55	51	49	43	39	39	41
2	33	37	37	40	53	47	53	52	44	34	38	37
3	34	33	37	42	49	43	51	49	46	37	44	34
4	36	41	41	40	44	47	53	54	46	47	39	29
5	35	37	48	40	45	47	45	56	45	41	39	42
6	30	33	42	38	46	43	43	58	44	39	42	36
7	34	40	36	42	53	36	45	50	43	36	32	34
8	34	32	47	44	50	46	44	52	49	37	30	32
9	26	43	50	46	47	49	54	55	51	39	34	30
10	27	39	52	44	41	50	52	52	52	39	35	33
11	30	42	52	45	45	45	53	51	47	39	35	24
12	41	41	50	39	40	44	51	48	44	31	40	30
13	48	43	51	38	44	44	56	53	45	43	38	37
14	35	42	42	44	43	46	49	50	46	49	29	32
15	37	40	41	47	50	53	50	56	37	43	36	35
16	40	44	47	50	54	47	50	56	47	38	28	33
17	37	44	40	45	54	53	50	54	43	41	35	29
18	29	45	41	47	42	51	42	53	51	39	41	20
19	28	41	36	47	46	57	53	55	48	45	33	31
20	31	42	37	51	48	51	51	53	50	35	35	25
21	36	49	42	51	36	45	57	56	45	44	37	29
22	32	52	44	50	45	48	55	51	45	43	33	31
23	32	46	36	54	49	49	55	50	45	43	37	34
24	29	43	37	49	51	44	56	48	46	42	30	27
25	37	42	35	49	52	51	50	47	45	41	37	25
26	31	42	40	45	49	41	53	48	41	41	41	27
27	40	42	39	50	49	48	49	46	51	43	28	32
28	37	33	43	48	44	51	50	44	46	37	34	36
29	36	-	46	49	44	55	53	54	50	35	33	36
30	36	-	45	47	49	54	55	53	46	34	34	39
31	39	-	42	-	54	-	52	49	-	35	-	34

A 42 : Saarbrücken - Mittlere Tageswerte der Relativen Globalstrahlung

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	645	1025	1666	3559	4430	5552	4780	5057	3739	2412	1310	864
2	586	1518	1951	2434	5507	5460	5653	4824	3389	2053	1138	729
3	605	1072	2018	2394	4478	4860	4795	4941	3693	2349	1216	818
4	788	1457	1861	3094	3830	4690	5188	4749	3631	2519	1100	708
5	701	1120	2243	3291	4553	5095	5453	5004	3631	2381	1304	803
6	663	825	2412	2914	4269	3931	5224	4529	3772	2244	1142	619
7	932	1376	1947	3015	4654	3382	5478	4902	3775	2003	1359	670
8	717	810	2497	2582	4872	4517	4959	5136	3921	2059	1043	796
9	736	1212	2663	2790	4889	4794	5897	4694	3638	2059	1391	631
10	631	1313	2348	2772	4162	5639	5775	4478	3508	1831	1218	745
11	721	1834	2751	3738	4564	4594	5905	4643	3777	2155	1179	681
12	750	1773	2484	3368	4959	4582	6269	4127	3418	1448	1459	585
13	1024	2150	2754	2984	4678	5022	6129	4518	3308	2281	1255	734
14	916	1532	2052	3400	4588	5307	5917	4974	3537	2087	1180	757
15	858	1840	2598	4455	4582	5215	6061	5020	2767	1863	1124	581
16	886	2126	2358	4522	5832	4856	5161	5008	3363	1931	1105	507
17	572	1842	2416	4475	5670	6149	4832	4843	2867	1908	975	529
18	633	1849	2632	4549	5816	5083	3909	5064	3348	1570	1225	420
19	584	1831	2815	4650	4735	5742	5431	4926	3405	1894	1049	705
20	755	1808	2811	4581	5166	4874	5478	3940	3349	1563	776	658
21	842	2024	3218	3664	3782	4937	5729	4817	2950	1841	823	661
22	874	2259	2938	4066	4223	4512	5681	4617	3099	2090	686	687
23	918	1998	3166	4219	4850	5152	5052	4047	2995	1829	1047	684
24	893	2336	2776	4728	5040	5075	5480	3879	3122	1964	799	687
25	982	1884	2949	4998	5197	6066	4811	3696	2849	1716	855	532
26	816	1650	2869	3920	5646	5033	5328	3307	2538	1640	925	485
27	1127	2047	3234	4440	5122	5956	4677	3819	3255	1863	876	636
28	981	1480	2669	4476	4112	5188	4848	3579	3509	1467	927	618
29	1157	-	3040	4378	4267	5477	5268	4261	3528	1012	770	657
30	1086	-	2736	4524	5027	5975	5193	4676	2795	1293	807	718
31	1067	-	2490	-	5597	-	4916	4053	-	1087	-	773

A 43 : Geilweilerhof - Mittlere Tagessummen der Globalstrahlung in Wh/m² 1981 - 1990

A 44 : Geilweilerhof - Mittlere Tageswerte der Relativen Globalstrahlung 1981-1990

- 177 -

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	773	1496	2158	3224	4323	5871	5761	5071	3648	2230	1699	795
2	748	1137	1864	3020	5051	5380	6146	5105	3569	2044	1542	679
3	806	1111	1950	3217	5062	4987	5269	5050	3466	2278	1616	754
4	870	1507	2165	2833	3997	4786	5766	5145	3808	2564	1288	635
5	893	1401	2493	3160	4135	5297	5008	5535	3700	2611	1370	787
6	788	1224	2149	3055	4153	4479	4912	5096	3617	2103	1238	716
7	716	1331	2213	3652	5630	4496	5333	5147	3697	2149	1240	772
8	846	1205	2375	3311	5276	4854	5051	4700	3803	1946	1195	863
9	811	1385	2740	3865	4607	5168	5312	5130	3755	2223	1194	688
10	749	1526	2587	3631	4287	5601	5348	4976	3865	2033	1244	666
11	672	1564	2873	3763	4171	4810	5271	5142	3659	1870	1129	561
12	944	1744	2641	3374	4501	4704	6042	4543	3436	1499	1313	619
13	954	1559	2754	3073	4414	5350	5773	4436	3067	2083	1067	748
14	1057	1579	2398	3688	4714	4658	5458	4689	3179	2232	862	688
15	1018	1711	2328	4020	5432	5900	5258	5193	3000	1986	1001	690
16	936	1834	2717	4538	5549	5219	5266	4860	3087	1913	881	804
17	910	1664	2308	3798	5473	5463	5202	5044	3265	1760	932	647
18	802	1660	2455	3882	5031	5284	4095	5089	3198	2003	1184	565
19	920	1702	2663	3929	4819	5994	5066	5127	3511	1957	839	594
20	788	1693	2753	4803	5432	5417	5436	4948	3398	1644	1051	592
21	1056	1995	2915	4845	4048	4971	5765	4829	3073	1671	988	655
22	846	2217	2825	4525	4555	5023	6054	4803	3026	1995	806	614
23	943	1819	2688	5056	5309	4773	5431	4274	2903	1854	952	700
24	1012	1993	2758	4467	5657	5148	5588	4142	2811	1803	868	781
25	958	1825	2686	4891	5674	5652	4971	3963	2992	1614	1023	614
26	996	2212	2713	4746	5311	4789	5589	3919	2621	1827	1040	630
27	1164	2341	2889	4485	5401	5638	5025	3882	3222	1682	681	743
28	1116	2036	3053	4203	4883	5467	5099	3480	3117	1703	898	774
29	1170	-	3089	4112	4855	5978	5241	4297	3001	1289	769	856
30	1247	-	3093	4149	5557	6242	5681	4442	2438	1433	843	717
31	1293	-	3108	-	5751	-	5293	4190	-	1659	-	939

A 45 : Stuttgart - Mittlere Tagessummen der Globalstrahlung in Wh/m²

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	42	53	46	44	46	54	52	50	45	39	50	39
2	40	39	39	41	53	49	55	51	45	36	46	34
3	43	38	40	43	53	45	48	51	44	41	49	38
4	46	50	44	38	41	44	52	52	49	47	40	32
5	47	46	49	41	42	48	45	56	48	49	43	40
6	41	39	42	40	42	41	45	52	47	40	40	37
7	37	42	42	47	57	41	48	53	49	41	41	40
8	43	37	45	42	53	44	46	49	51	38	40	46
9	41	42	51	49	46	47	48	53	50	44	41	37
10	37	45	47	45	43	50	49	52	52	41	43	36
11	33	45	52	47	41	43	48	54	50	38	40	30
12	46	50	47	41	44	42	56	48	48	31	47	34
13	46	44	48	37	43	48	53	47	43	44	39	41
14	50	43	41	44	46	42	50	50	45	48	32	38
15	48	46	40	48	53	53	49	56	43	43	38	38
16	43	49	46	54	54	47	49	53	45	42	34	45
17	41	43	38	44	53	49	49	55	48	40	37	36
18	36	42	40	45	48	47	38	56	47	46	47	32
19	41	43	43	45	46	54	48	57	53	46	34	33
20	34	42	44	55	52	48	51	55	52	39	44	33
21	45	48	46	55	38	44	55	55	47	40	42	37
22	35	53	44	51	43	45	57	55	47	49	34	35
23	39	43	41	56	50	43	52	49	46	46	41	40
24	41	46	42	49	53	46	53	48	45	46	38	44
25	38	41	40	54	53	51	48	46	49	42	46	35
26	39	49	40	52	49	43	54	46	43	48	47	35
27	45	51	42	49	50	50	49	46	54	45	31	42
28	42	44	44	45	45	49	50	42	53	47	42	43
29	43	-	44	44	45	54	51	52	51	36	37	48
30	45	-	43	44	51	56	56	54	42	41	41	40
31	46	-	43	-	53	-	52	51	-	48	-	52

Гад	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	540	796	1301	1714	2338	2771	2811	2475	2037	1252	912	478
2	521	706	1291	1844	2371	2864	2884	2317	2032	1432	800	470
3	517	756	1377	1905	2264	2695	2664	2401	1753	1218	867	478
4	577	843	1489	1785	2328	2681	3076	2359	2094	1346	846	460
5	586	767	1403	1918	2371	2866	2973	2387	1819	1332	847	469
6	517	747	1333	1932	2358	2886	2760	2180	1849	1220	786	495
7	520	842	1373	2063	2504	2486	2844	2313	1923	1211	834	570
8	571	782	1456	2060	2541	2731	2420	2422	1675	1273	824	600
9	624	916	1410	2092	2442	2942	2680	2371	1870	1206	769	544
10	559	955	1360	1970	2369	2738	2745	2053	1754	1268	820	433
11	505	983	1446	2120	2538	2884	2408	2111	1718	1136	737	488
12	571	1010	1404	2132	2572	2832	2907	2276	1850	1103	720	473
13	618	952	1476	2007	2558	2722	3003	2258	1726	1176	688	487
14	631	985	1491	2163	2423	2788	2855	2325	1821	1169	628	474
15	577	1042	1451	2069	2344	2839	2815	2277	1784	1128	716	458
16	558	957	1536	2110	2504	2765	2770	2434	1776	1166	640	557
17	518	1038	1528	1909	2672	3065	2709	2456	1694	932	624	446
18	570	984	1566	2281	2730	2669	2511	2428	1518	1010	667	441
19	576	1093	1683	2264	2417	2912	2573	2226	1681	1111	559	483
20	554	975	1814	2256	2532	2535	2419	2244	1622	1080	639	424
21	696	1144	1768	2199	2623	2742	2484	1881	1592	1079	684	494
22	645	1100	1696	2274	2681	2852	2471	2184	1680	1024	604	447
23	634	1150	1640	2178	2583	2697	2678	2367	1518	918	618	481
24	668	1152	1593	2202	2610	2773	2619	2279	1547	912	597	521
25	683	1258	1521	2535	2400	2885	2435	2273	1504	938	587	460
26	716	1118	1591	2380	2392	2782	2746	2102	1422	961	590	478
27	730	1171	1621	2318	2563	2955	2559	2043	1419	999	486	536
28	768	1362	1797	2482	2826	2703	2617	2068	1390	1014	527	527
29	674	-	1828	2225	2695	2712	2564	2273	1422	813	501	535
30	725	-	1894	2433	2705	2704	2463	2350	1375	893	502	502
31	762	-	1730	-	2438	-	2479	2084	-	938	-	563

_

-

-

-

-

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	233	701	857	1511	1985	3100	2950	2597	1612	977	787	317
2	227	431	573	1176	2680	2515	3262	2789	1537	613	742	209
3	289	356	574	1313	2798	2292	2605	2649	1712	1060	749	276
4	293	664	676	1048	1669	2105	2690	2785	1715	1217	442	175
5	306	634	1090	1242	1764	2431	2035	3148	1881	1280	523	318
6	271	477	816	1123	1796	1593	2152	2916	1768	883	452	221
7	195	489	840	1589	3125	2010	2489	2833	1773	938	406	201
8	275	423	919	1251	2735	2123	2631	2278	2128	673	371	263
9	187	469	1330	1773	2164	2226	2632	2759	1885	1017	425	144
10	189	571	1227	1660	1917	2863	2604	2923	2111	765	425	233
11	168	581	1427	1643	1633	1926	2863	3031	1942	735	392	72
12	373	734	1237	1242	1929	1873	3136	2267	1586	396	592	147
13	336	607	1278	1067	1856	2628	2770	2178	1342	907	379	261
14	426	594	907	1524	2292	1870	2603	2364	1358	1062	234	213
15	440	669	877	1952	3088	3060	2443	2915	1215	858	285	232
16	378	876	1181	2428	3045	2454	2496	2425	1311	747	241	248
17	392	626	779	1889	2801	2398	2493	2588	1570	828	308	201
18	232	676	889	1601	2302	2615	1585	2661	1680	992	517	125
19	344	610	980	1665	2402	3083	2493	2901	1830	846	281	110
20	235	718	938	2548	2901	2882	3017	2704	1776	564	412	168
21	360	850	1146	2646	1425	2230	3282	2948	1481	592	303	161
22	201	1118	1129	2251	1874	2171	3583	2619	1347	972	201	168
23	309	670	1048	2878	2726	2076	2753	1907	1385	936	333	219
24	344	841	1164	2265	3048	2375	2969	1863	1264	891	271	260
25	275	567	1164	2356	3274	2767	2536	1690	1488	676	436	154
26	280	1094	1122	2366	2920	2008	2843	1818	1199	866	450	152
27	435	1170	1268	2166	2838	2683	2466	1839	1803	683	195	207
28	349	674	1255	1721	2057	2764	2483	1412	1727	690	371	248
29	497	-	1261	1887	2160	3266	2677	2024	1580	476	268	320
30	522	-	1199	1716	2852	3538	3218	2092	1063	540	341	215
31	531	-	1378	-	3313	-	2814	2106	-	721	-	376

A 49 : Stuttgart - Mittlere Tagessummen der direkten Sonnenstrahlung in Wh/m²

- 184 -	
---------	--

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	647	1338	2057	3444	4301	5720	6306	5210	3681	2531	1619	889
2	754	1181	1681	3343	4904	5496	5804	5347	4113	2231	1413	797
3	772	1237	1780	3317	4581	5445	4999	5350	3539	2414	1403	825
4	878	1485	2423	2783	4083	4903	5635	5248	3631	2551	1252	789
5	900	1405	2739	3248	4133	5450	5379	5532	4058	2739	1228	820
6	713	1278	2437	3199	4118	4633	5156	5188	3832	2068	1356	890
7	695	1172	2630	3232	5426	4684	5662	5447	3960	2181	1217	812
8	956	1065	2586	3147	5036	4980	5237	4970	3919	2145	1167	727
9	811	1499	2935	3790	4680	5341	5518	5289	4073	2575	1158	604
10	642	1484	3031	3347	4336	5775	5064	4771	3973	2379	1282	538
11	691	1432	2972	3664	4463	5504	5387	5229	3499	1858	1158	590
12	852	1732	2715	3403	4085	4742	6069	4571	3561	1517	1243	634
13	923	1747	3068	3392	4193	5233	5819	4936	3063	2246	781	733
14	998	1515	2928	3819	4418	5176	5384	5093	3125	2251	755	633
15	1047	1622	2379	4435	5390	6280	5871	5524	2922	2018	908	749
16	989	1656	2686	4401	5339	5604	5476	5125	3514	1775	881	889
17	954	1420	2378	3984	5285	6234	5228	5302	3427	2004	1137	617
18	912	1589	2357	3858	4774	5653	4818	5239	3483	2330	1086	603
19	803	1729	2451	3883	4784	6279	5657	5236	3612	2024	878	618
20	793	1512	2762	4539	5163	5405	6053	5023	3616	1621	1051	621
21	1028	2059	2891	4808	3980	5123	6357	5070	3132	1766	1185	547
22	894	2305	2906	5035	5086	5024	6135	5149	3226	1977	842	597
23	860	1892	2345	4968	6071	4882	5495	4720	2896	1708	1000	745
24	895	2079	2912	4661	5585	5417	5756	3922	2924	1874	996	646
25	861	1865	2936	4802	6320	6345	5078	4070	2871	1521	1084	602
26	896	2000	2773	4475	5038	4747	5719	4174	2572	1879	1171	567
27	1105	2295	2993	4377	5286	5553	5244	3905	3395	1662	713	650
28	900	1721	2804	3925	5118	6112	5448	4086	3004	1649	831	856
29	1212	-	3286	4059	4945	6416	5843	4689	3091	1148	869	823
30	1074	-	3092	3593	5644	6415	5468	4809	2653	1325	755	742
31	1270	-	3064	-	5373	-	5358	4527	-	1469	-	671

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	33	45	42	47	45	52	57	52	45	44	46	41
2	38	39	34	45	51	50	52	53	51	39	41	37
3	39	40	35	44	47	50	45	53	44	43	41	39
4	44	47	47	36	42	45	51	53	46	46	37	37
5	44	44	53	42	42	49	49	56	52	50	37	39
6	35	39	46	41	42	42	47	53	49	38	42	43
7	34	35	49	41	55	42	51	56	51	41	38	40
8	46	31	48	40	51	45	48	51	51	41	37	36
9	38	43	53	47	47	48	50	55	54	50	38	30
10	30	42	54	41	43	52	46	50	53	47	42	27
11	32	40	52	45	44	49	49	55	47	37	39	30
12	39	47	47	41	40	43	56	48	49	31	43	32
13	42	47	53	41	41	47	54	52	42	46	27	37
14	44	40	49	45	43	46	50	54	44	47	27	33
15	46	42	40	52	52	56	54	59	41	43	33	39
16	43	42	44	51	52	50	51	55	50	38	32	46
17	41	36	39	46	51	56	49	58	49	44	42	32
18	38	39	38	44	46	51	45	57	51	52	41	31
19	33	42	39	44	46	56	53	58	53	46	34	32
20	32	36	43	51	49	48	57	56	54	37	41	33
21	41	48	44	54	38	46	60	57	47	41	47	29
22	35	53	44	56	48	45	58	58	49	47	34	31
23	33	43	35	55	57	44	52	54	45	41	41	39
24	34	46	43	51	52	48	55	45	46	46	41	34
25	32	41	43	52	59	57	49	47	46	38	46	31
26	33	43	40	48	47	42	55	49	41	48	50	30
27	40	49	43	47	49	50	51	46	55	43	31	34
28	32	36	40	42	47	55	53	48	50	43	37	44
29	43	-	46	43	46	58	57	56	52	31	39	43
30	37	-	43	38	52	58	54	58	45	36	34	38
31	43	-	42	-	49	-	53	55	-	41	-	34

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
1	497	791	1239	1687	2446	2638	2649	2258	1903	1287	863	438
2	512	740	1228	1875	2367	2642	2568	2160	1915	1417	865	514
3	520	888	1147	1702	2097	2711	2589	2278	1646	1208	826	519
4	546	853	1431	1745	2169	2603	2895	2308	1843	1171	786	529
5	595	714	1367	1940	2222	2869	3085	2373	2031	1416	773	523
6	459	766	1339	1987	2417	2836	2990	2100	1826	1163	818	543
7	522	752	1376	1924	2259	2397	2790	2407	1659	1197	781	576
8	560	721	1391	1763	2487	2666	2693	2301	1540	1313	777	538
9	588	727	1456	1776	2394	2743	2705	2258	1697	1210	726	500
10	534	894	1282	1884	2382	2591	2531	2017	1749	1231	696	421
11	449	961	1477	2179	2615	3043	2459	2019	1631	994	686	426
12	556	993	1469	1949	2343	2910	2779	2090	1734	996	663	460
13	584	914	1486	2053	2427	2843	2771	2396	1671	1230	610	516
14	613	889	1502	2023	2529	2766	2679	2192	1719	1178	587	504
15	673	938	1445	2007	2343	2937	2652	2001	1670	1085	677	481
16	684	969	1452	2104	2329	2697	2529	2301	1913	1040	603	571
17	582	966	1481	1880	2556	2808	2679	2450	1614	1015	709	439
18	641	889	1343	2029	2591	2834	2544	2143	1351	1105	572	440
19	532	1018	1396	2165	2549	2699	2401	1936	1544	1093	646	480
20	589	889	1749	2214	2601	2439	2210	2114	1740	1059	644	445
21	709	1019	1691	2032	2369	2472	2335	1953	1513	1125	722	401
22	542	1029	1525	2111	2605	2729	2424	2151	1690	1073	586	424
23	630	1052	1468	2298	2568	2709	2563	2106	1518	1025	655	497
24	641	1093	1567	2447	2551	2653	2223	2023	1555	964	671	495
25	597	1221	1612	2214	2151	2847	2283	2293	1630	950	697	472
26	620	1046	1487	2131	2332	2773	2428	2078	1300	978	578	437
27	724	1257	1543	2450	2338	2804	2536	2076	1369	897	425	501
28	706	1161	1645	2394	2661	2792	2591	2181	1336	998	596	527
29	744	-	1856	2114	2592	2645	2318	2050	1446	761	577	521
30	757	-	1735	2161	2398	2764	2291	2110	1290	878	486	551
31	825	-	1648	-	2331	-	2456	1840	-	884	-	534

- 187 -

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	25	26	25	23	26	24	24	22	23	22	24	20
2	26	24	25	25	25	24	23	21	24	25	25	24
3	26	29	23	23	22	25	23	23	21	21	24	24
4	27	27	28	23	22	24	26	23	23	21	23	25
5	29	22	26	25	23	26	28	24	26	26	23	25
6	22	23	25	25	25	26	27	21	23	21	25	26
7	25	23	26	24	23	22	25	25	22	22	24	28
8	27	21	26	22	25	24	24	24	20	25	25	26
9	28	21	26	22	24	25	25	23	22	23	24	25
10	25	25	23	23	24	23	23	21	23	24	23	21
11	21	27	26	27	26	27	23	21	22	20	23	22
12	25	27	26	24	23	26	25	22	24	20	23	23
13	26	25	25	25	24	25	25	25	23	25	21	26
14	27	24	25	24	25	25	25	23	24	25	21	26
15	30	24	24	24	23	26	25	21	24	23	24	25
16	30	25	24	25	22	24	23	25	27	22	22	30
17	25	24	24	22	25	25	25	27	23	22	26	23
18	27	22	21	23	25	25	24	23	20	25	22	23
19	22	25	22	25	24	24	22	21	23	25	25	25
20	24	21	27	25	25	22	21	24	26	24	25	23
21	28	24	26	23	22	22	22	22	23	26	29	21
22	21	24	23	24	25	24	23	24	26	25	24	22
23	25	24	22	25	24	24	24	24	24	25	27	26
24	25	24	23	27	24	24	21	23	24	24	28	26
25	22	27	24	24	20	25	22	26	26	24	29	25
26	23	22	22	23	22	25	23	24	21	25	25	23
27	26	27	22	26	22	25	25	24	22	23	18	26
28	25	24	23	26	25	25	25	26	22	26	26	27
29	26	-	26	22	24	24	23	24	24	20	26	27
30	26	-	24	23	22	25	22	25	22	24	22	28
31	28	-	23	-	21	-	24	22	-	25	-	27

- 188	-
-------	---

Тад	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	150	547	818	1757	1856	3082	3657	2952	1777	1244	756	451
2	242	441	453	1468	2537	2854	3237	3187	2198	814	548	282
3	252	349	633	1615	2484	2734	2410	3072	1893	1206	577	306
4	331	632	993	1039	1914	2300	2740	2940	1788	1380	467	260
5	305	691	1373	1308	1912	2581	2294	3158	2027	1323	455	297
6	254	512	1098	1212	1701	1797	2166	3088	2007	905	537	346
7	173	420	1255	1308	3167	2287	2872	3040	2301	984	436	236
8	397	343	1195	1384	2549	2314	2544	2670	2379	832	390	189
9	223	772	1478	2014	2286	2598	2813	3031	2375	1365	432	104
10	108	590	1749	1463	1954	3184	2533	2754	2224	1148	586	117
11	242	471	1495	1485	1848	2461	2928	3210	1869	864	472	163
12	296	739	1246	1454	1742	1832	3291	2481	1827	521	581	174
13	339	833	1582	1339	1767	2390	3048	2540	1392	1016	171	217
14	385	626	1426	1796	1889	2410	2705	2901	1406	1073	168	130
15	374	684	934	2428	3047	3342	3219	3523	1252	933	231	268
16	305	688	1234	2297	3010	2907	2946	2824	1601	735	278	318
17	372	454	898	2104	2729	3426	2549	2853	1813	989	428	177
18	271	700	1014	1829	2182	2819	2274	3096	2132	1225	514	162
19	272	711	1055	1718	2236	3580	3257	3300	2069	931	231	138
20	204	624	1013	2325	2562	2966	3844	2909	1876	561	407	176
21	319	1039	1200	2776	1611	2651	4023	3118	1619	641	464	147
22	352	1276	1381	2924	2481	2295	3710	2998	1535	904	256	173
23	230	840	877	2670	3504	2173	2932	2614	1378	682	346	249
24	254	987	1345	2214	3034	2764	3533	1899	1369	911	325	152
25	264	644	1324	2589	4169	3498	2796	1777	1240	571	387	130
26	276	954	1285	2344	2706	1975	3292	2097	1272	901	593	130
27	381	1039	1450	1928	2948	2749	2709	1829	2026	766	288	149
28	195	560	1159	1531	2458	3320	2857	1904	1669	651	236	328
29	468	-	1430	1945	2354	3771	3525	2638	1645	387	292	302
30	317	-	1358	1431	3245	3651	3178	2698	1363	447	269	192
31	445	-	1416	-	3042	-	2902	2687	-	585	-	136

A 55 : Freiburg - Mittlere Tagessummen der direkten Sonnenstrahlung in Wh/m²

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	8	18	17	24	19	28	33	29	22	21	21	21
2	12	14	9	20	26	26	29	32	27	14	16	13
3	13	11	13	21	26	25	22	31	24	21	17	14
4	16	20	19	14	20	21	25	30	23	25	14	12
5	15	21	26	17	20	23	21	32	26	24	14	14
6	12	16	21	16	17	16	20	31	26	17	17	17
7	8	13	23	17	32	21	26	31	30	18	14	12
8	19	10	22	17	26	21	23	27	31	16	12	9
9	11	22	27	25	23	23	26	31	31	26	14	5
10	5	17	31	18	19	29	23	29	30	23	19	6
11	11	13	26	18	18	22	27	34	25	17	16	8
12	14	20	22	18	17	16	30	26	25	11	20	9
13	15	22	27	16	17	21	28	27	19	21	6	11
14	17	17	24	21	18	22	25	31	20	22	6	7
15	16	18	16	29	30	30	30	38	18	20	8	14
16	13	18	20	27	29	26	27	31	23	16	10	16
17	16	11	15	24	26	31	24	31	26	22	16	9
18	11	17	16	21	21	25	21	34	31	27	19	8
19	11	17	17	20	21	32	31	36	31	21	9	7
20	8	15	16	26	24	26	36	32	28	13	16	9
21	13	24	18	31	15	24	38	35	25	15	18	8
22	14	29	21	33	23	21	35	34	24	21	10	9
23	9	19	13	30	33	19	28	30	21	16	14	13
24	10	22	20	24	28	25	34	22	21	22	14	8
25	10	14	19	28	39	31	27	21	20	14	16	7
26	10	21	19	25	25	18	32	24	20	23	25	7
27	14	22	21	21	27	25	26	21	33	20	13	8
28	7	12	16	16	23	30	28	23	28	17	10	17
29	16	-	20	21	22	34	34	32	28	10	13	16
30	11	-	19	15	30	33	31	33	23	12	12	10
31	15	-	19	-	28	-	29	33	-	16	-	7

- 190 -

Tag	JAN	FEB	MAE	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	590	1275	1951	3723	4264	5758	6505	5407	3695	2457	1326	657
2	784	1087	1846	3543	5144	5618	5951	4863	4200	2352	1461	763
3	832	1138	1977	3394	5265	5111	4992	5413	3484	2086	1301	625
4	913	1439	2331	2951	4004	4705	6032	5213	3484	2390	1143	600
5	918	1120	2681	3240	4054	5571	4977	5143	3834	2510	1253	689
6	725	1182	2606	3212	4160	4514	5107	4741	4004	1822	1217	698
7	808	1313	2651	3439	5723	4891	5356	4961	3848	2343	1323	738
8	955	1114	2606	3692	5048	5283	5328	4957	3869	1912	1180	678
9	784	1323	2890	3805	5096	5863	5444	4853	3953	2267	950	638
10	847	1501	3033	4076	5089	5758	5504	4715	3978	2280	1051	463
11	653	1360	2901	3828	4370	5087	5524	5456	3604	1779	1044	665
12	831	1552	2610	3327	4253	4957	5834	4895	3800	1473	1056	635
13	794	1648	2891	3659	4263	5320	5578	4907	3002	2144	791	791
14	736	1609	2880	3955	4445	4804	5708	5179	3266	2036	791	580
15	908	1475	2444	4295	5443	5902	5865	5194	3070	2038	967	694
16	631	1752	2617	4389	5671	5701	5426	5303	3226	1986	875	808
17	873	1525	2209	3913	5777	5887	5106	4674	3138	1700	1010	644
18	934	1703	2531	3281	4968	5534	4815	5189	3242	1602	814	627
19	711	1780	2628	3992	5287	6365	5401	5224	3368	1555	791	685
20	743	1565	2654	4569	5194	5778	5699	5319	3109	1719	1031	661
21	994	2076	3028	4786	3959	4943	6329	5132	3073	1364	888	697
22	819	2295	3263	5528	4992	4844	6288	5458	3019	1657	868	569
23	824	1882	2588	5454	6253	5099	5328	4569	2861	1599	821	807
24	945	2001	3200	4712	5373	5168	5190	3522	2787	1674	944	601
25	763	1974	3249	4961	6074	6410	4912	3930	2594	1664	869	606
26	920	1818	2915	4804	5237	4764	5588	3880	2365	1607	809	709
27	1071	2143	3020	4741	5825	6058	4948	3565	2950	1370	608	793
28	1037	1930	3151	4425	5112	5703	5164	3565	2575	1510	877	784
29	1050	-	3591	4351	4927	6136	5923	4573	2703	1254	620	850
30	991	-	3544	3936	5935	6352	5842	4762	2364	1109	501	756
31	1342	-	3544	-	5843	-	4931	4462	-	1519	-	678

A 57: Konstanz - Mittlere Tagessummen der Globalstrahlung in Wh/m²

Tag	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	29	42	39	50	44	53	58	53	45	42	37	29
2	38	35	37	47	53	51	53	48	52	41	41	34
3	40	36	39	45	54	46	45	54	43	37	37	28
4	44	45	45	38	41	43	54	52	44	42	33	28
5	44	34	51	42	41	50	45	52	49	45	37	32
6	34	35	49	41	42	41	46	48	51	33	37	33
7	38	39	49	43	58	44	49	50	50	43	41	35
8	44	32	47	46	51	48	48	51	50	36	37	32
9	36	37	52	47	51	53	50	50	52	43	30	31
10	38	42	54	50	50	52	50	49	53	44	34	22
11	29	37	51	47	43	46	50	57	48	35	34	32
12	37	42	45	40	42	44	53	51	52	29	35	31
13	35	44	49	44	42	48	51	52	41	43	27	39
14	32	42	48	47	43	43	53	55	45	42	27	29
15	39	38	40	50	53	53	54	56	43	43	34	35
16	27	44	43	51	55	51	50	57	46	42	31	41
17	36	38	35	45	55	53	47	51	45	37	37	32
18	38	41	40	38	47	49	45	57	47	35	30	32
19	29	42	41	45	50	57	50	57	49	35	30	35
20	29	37	41	51	49	52	53	59	46	39	39	33
21	39	48	46	53	37	44	60	57	46	31	34	35
22	32	52	49	61	47	43	59	61	46	39	34	29
23	31	42	38	60	59	45	51	52	44	38	33	41
24	35	44	47	52	50	46	49	40	43	40	38	30
25	28	43	47	54	57	57	47	45	41	41	36	31
26	33	39	42	52	49	43	54	45	38	40	34	36
27	38	45	43	51	54	54	48	42	48	35	26	40
28	36	40	44	47	47	51	50	42	42	39	37	39
29	36	-	50	46	45	55	58	54	45	33	27	43
30	33	-	49	41	54	57	57	57	40	30	22	38
31	45	-	48	-	53	-	48	54	-	41	-	34

	ZF	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ
MA	1	32	33	37	43	41	42	45	48	42	36	31	29
GE	1	32	33	40	42	40	42	46	50	42	36	31	30
WU	1	37	37	42	45	43	43	46	52	44	39	33	33
TR	1	26	30	37	42	39	42	46	51	40	34	28	25
FR	1	37	37	40	44	42	45	50	53	48	40	36	33
SA	1	26	32	36	41	39	41	48	51	41	34	27	26
ST	1	39	41	42	45	41	43	47	51	45	41	36	36
KO	1	39	37	43	46	45	45	49	53	46	41	36	36
MA	2	40	45	42	49	52	53	54	53	52	44	39	37
GE	2	35	44	43	49	51	54	55	54	51	42	35	35
WU	2	41	47	44	50	52	54	56	55	53	46	38	38
TR	2	38	46	44	48	52	55	56	54	52	45	39	37
FR	2	41	47	48	49	51	55	57	56	53	47	44	39
SA	2	41	46	45	49	51	54	56	55	53	46	41	38
ST	2	47	48	44	50	51	53	56	55	52	47	46	41
KO	2	34	44	48	50	51	55	55	55	50	40	32	31
MA	3	38	47	45	46	48	46	47	47	44	40	38	36
GE	3	38	44	44	46	49	46	48	48	42	38	36	35
WU	3	40	47	48	47	50	47	49	48	44	42	37	37
TR	3	39	44	44	46	47	46	48	48	42	40	38	37
FR	3	36	42	44	44	46	48	49	49	44	40	36	35
SA	3	38	44	45	45	47	47	49	48	43	39	37	36
ST	3	39	45	45	44	47	45	48	47	44	40	40	37
KO	3	33	39	45	46	49	48	49	47	41	34	32	33

A 59 : Monatsmittel der **Rel. Globalstrahlung** - bei zonaler (1), gemischter (2) und meridionaler (3) Zirkulationsform (ZF)

- 192 -

	ZF	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
WU	1	29	27	27	27	27	27	26	26	26	26	25	26
TR	1	22	23	24	25	26	26	25	26	25	24	24	21
MA	1	25	23	24	26	25	26	25	25	25	24	23	24
ST	1	28	26	26	27	25	26	25	25	25	25	26	27
FR	1	25	23	23	25	24	25	24	23	23	23	23	24
WU	2	27	28	26	25	25	25	26	26	25	27	26	27
TR	2	25	27	24	25	24	25	24	25	24	26	27	27
MA	2	27	25	24	24	24	25	25	25	25	25	26	26
ST	2	26	26	25	25	24	24	25	25	24	24	26	27
FR	2	25	23	24	24	23	24	24	23	23	24	25	26
WU	3	29	29	29	26	25	26	26	26	25	24	26	28
TR	3	28	27	27	25	26	26	25	25	24	24	26	28
MA	3	28	28	27	25	25	26	25	25	24	24	26	27
ST	3	29	28	28	25	24	25	25	25	24	24	26	27
FR	3	27	26	26	24	24	25	24	24	23	24	25	25
	ZF	JAN	FEB	MAR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
WU	ZF 1	JAN 8	FEB 11	MAR 15	APR 18	MAI 17	JUN 17	JUL 20	AUG 25	SEP 18	ОКТ 13	NOV 8	DEZ 6
WU TR	ZF 1 1	JAN 8 4	FEB 11 7	MAR 15 13	APR 18 17	MAI 17 14	JUN 17 16	JUL 20 21	AUG 25 25	SEP 18 15	ОКТ 13 11	NOV 8 4	DEZ 6 3
WU TR MA	ZF 1 1	JAN 8 4 7	FEB 11 7 10	MAR 15 13 13	APR 18 17 17	MAI 17 14 15	JUN 17 16 16	JUL 20 21 20	AUG 25 25 23	SEP 18 15 17	OKT 13 11 12	NOV 8 4 7	DEZ 6 3 6
WU TR MA ST	ZF 1 1 1	JAN 8 4 7 11	FEB 11 7 10 15	MAR 15 13 13 16	APR 18 17 17 18	MAI 17 14 15 16	JUN 17 16 16 17	JUL 20 21 20 21	AUG 25 25 23 26	SEP 18 15 17 21	OKT 13 11 12 16	NOV 8 4 7 10	DEZ 6 3 6 9
WU TR MA ST FR	ZF 1 1 1 1	JAN 8 4 7 11 12	FEB 11 7 10 15 14	MAR 15 13 13 16 17	APR 18 17 17 18 19	MAI 17 14 15 16 18	JUN 17 16 16 17 20	JUL 20 21 20 21 26	AUG 25 23 23 26 30	SEP 18 15 17 21 24	OKT 13 11 12 16 17	NOV 8 4 7 10 13	DEZ 6 3 6 9 9
WU TR MA ST FR WU	ZF 1 1 1 1 2	JAN 8 4 7 11 12 14	FEB 11 7 10 15 14 19	MAR 15 13 13 16 17 18	APR 18 17 17 18 19 25	MAI 17 14 15 16 18 27	JUN 17 16 16 17 20 29	JUL 20 21 20 21 26 30	AUG 25 25 23 26 30 29	SEP 18 15 17 21 24 28	OKT 13 11 12 16 17 19	NOV 8 4 7 10 13 12	DEZ 6 3 6 9 9 9 11
WU TR MA ST FR WU TR	ZF 1 1 1 1 2 2	JAN 8 4 7 11 12 14 13	FEB 11 7 10 15 14 19 19	MAR 15 13 13 16 17 18 20	APR 18 17 17 18 19 25 23	MAI 17 14 15 16 18 27 28	JUN 17 16 16 17 20 29 29	JUL 20 21 20 21 26 30 31	AUG 25 25 23 26 30 29 29	SEP 18 15 17 21 24 28 27	OKT 13 11 12 16 17 19 20	NOV 8 4 7 10 13 12 12	DEZ 6 3 6 9 9 9 11 10
WU TR MA ST FR WU TR MA	ZF 1 1 1 1 2 2 2	JAN 8 4 7 11 12 14 13 14	FEB 11 7 10 15 14 19 19 19	MAR 15 13 13 16 17 18 20 18	APR 18 17 17 18 19 25 23 25	MAI 17 14 15 16 18 27 28 28	JUN 17 16 16 17 20 29 29 28	JUL 20 21 20 21 26 30 31 29	AUG 25 23 26 30 29 29 29	SEP 18 15 17 21 24 28 27 27	OKT 13 11 12 16 17 19 20 19	NOV 8 4 7 10 13 12 12 12 13	DEZ 6 3 6 9 9 11 10 11
WU TR MA ST FR WU TR MA ST	ZF 1 1 1 1 2 2 2 2 2	JAN 8 4 7 11 12 14 13 14 21	FEB 11 7 10 15 14 19 19 19 22	MAR 15 13 13 16 17 18 20 18 19	APR 18 17 17 18 19 25 23 25 25	MAI 17 14 15 16 18 27 28 28 28 27	JUN 17 16 16 17 20 29 29 29 28 29	JUL 20 21 20 21 26 30 31 29 31	AUG 25 23 26 30 29 29 29 30	SEP 18 15 17 21 24 28 27 27 28	OKT 13 11 12 16 17 19 20 19 22	NOV 8 4 7 10 13 12 12 12 13 21	DEZ 6 3 6 9 9 11 10 11 15
WU TR MA ST FR WU TR MA ST FR	ZF 1 1 1 1 2 2 2 2 2 2	JAN 8 4 7 11 12 14 13 14 21 16	FEB 11 7 10 15 14 19 19 22 23	MAR 15 13 13 16 17 18 20 18 19 24	APR 18 17 17 18 19 25 23 25 25 25	MAI 17 14 15 16 18 27 28 28 27 28	JUN 17 16 16 17 20 29 29 28 29 31	JUL 20 21 20 21 26 30 31 29 31 33	AUG 25 23 26 30 29 29 29 30 33	SEP 18 15 17 21 24 28 27 27 28 30	OKT 13 11 12 16 17 19 20 19 22 23	NOV 8 4 7 10 13 12 12 12 13 21 19	DEZ 6 3 6 9 9 11 10 11 15 13
WU TR ST FR WU TR MA ST FR WU	ZF 1 1 1 1 2 2 2 2 2 3	JAN 8 4 7 11 12 14 13 14 21 16 11	FEB 11 7 10 15 14 19 19 22 23 18	MAR 15 13 13 16 17 18 20 18 19 24 19	APR 18 17 17 18 19 25 23 25 25 25 25 20	MAI 17 14 15 16 18 27 28 28 27 28 27 28 24	JUN 17 16 16 17 20 29 29 28 29 31 21	JUL 20 21 20 21 26 30 31 29 31 33 23	AUG 25 23 26 30 29 29 29 30 33 22	SEP 18 15 17 21 24 28 27 27 28 30 18	OKT 13 11 12 16 17 19 20 19 22 23 17	NOV 8 4 7 10 13 12 12 13 21 19 11	DEZ 6 3 6 9 9 11 10 11 15 13 9
WU TR MA ST FR WU TR ST FR WU TR	ZF 1 1 1 1 2 2 2 2 2 3 3	JAN 8 4 7 11 12 14 13 14 21 16 11 11	FEB 11 7 10 15 14 19 19 22 23 18 17	MAR 15 13 13 16 17 18 20 18 19 24 19 17	APR 18 17 17 18 19 25 23 25 25 25 25 20 21	MAI 17 14 15 16 18 27 28 27 28 27 28 24 22	JUN 17 16 16 17 20 29 29 28 29 31 21 20	JUL 20 21 20 21 26 30 31 29 31 33 23 23	AUG 25 23 26 30 29 29 29 30 33 22 23	SEP 18 15 17 21 24 28 27 27 27 28 30 18 18	OKT 13 11 12 16 17 19 20 19 22 23 17 15	NOV 8 4 7 10 13 12 12 13 21 19 11 11	DEZ 6 3 9 9 11 10 11 15 13 9 9
WU TR MA ST FR WU TR A ST FR WU TR MA	ZF 1 1 1 1 2 2 2 2 2 3 3 3 3	JAN 8 4 7 11 12 14 13 14 21 16 11 11 10	FEB 11 7 10 15 14 19 19 22 23 18 17 18	MAR 15 13 13 16 17 18 20 18 19 24 19 17 18	APR 18 17 17 18 19 25 23 25 25 25 25 25 20 21 21	MAI 17 14 15 16 18 27 28 27 28 27 28 27 28 24 22 23	JUN 17 16 16 17 20 29 29 29 28 29 31 21 20 20	JUL 20 21 20 21 26 30 31 29 31 33 23 23 23	AUG 25 23 26 30 29 29 29 30 33 22 23 23	SEP 18 15 17 21 24 28 27 27 28 30 18 18 18 20	OKT 13 11 12 16 17 19 20 19 22 23 17 15 16	NOV 8 4 7 10 13 12 12 13 21 19 11 11 12	DEZ 6 3 6 9 9 11 10 11 15 13 9 9 9 9
WU TR MA ST FR WU TR A ST WU TR A ST	ZF 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3	JAN 8 4 7 11 12 14 13 14 21 16 11 11 10 10	FEB 11 7 10 15 14 19 19 22 23 18 17 18 17	MAR 15 13 13 16 17 18 20 18 19 24 19 24 19 17 18 17	APR 18 17 17 18 19 25 23 25 25 25 25 25 20 21 21 19	MAI 17 14 15 16 18 27 28 27 28 27 28 27 28 24 22 23 23	JUN 17 16 16 17 20 29 29 29 29 29 31 21 20 20 20	JUL 20 21 20 21 26 30 31 29 31 33 23 23 23 23 23	AUG 25 23 26 30 29 29 29 30 33 22 23 23 23	SEP 18 15 17 21 24 28 27 27 28 30 18 18 18 20 20	OKT 13 11 12 16 17 19 20 19 22 23 17 15 16 16	NOV 8 4 7 10 13 12 12 13 21 19 11 11 12 14	DEZ 6 3 6 9 9 11 10 11 15 13 9 9 9 9 11

A 60 : Monatsmittel der **Rel. diffusen** (oben) und **Rel. direkten Sonnenstrahlung** (unten) bei zonaler (1), gemischter (2) und meridionaler (3) Zirkulation (ZF)

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	619	1235	1963	3273	4430	5979	5636	5042	3573	2302	1399	756
2	622	1146	1756	3116	5139	5422	5980	5290	3549	1981	1245	680
3	686	1029	1859	3075	4732	4943	5401	5073	3501	2304	1350	696
4	754	1277	2093	2857	4139	4889	5607	5205	3672	2562	1227	615
5	780	1179	2339	3136	4264	5403	5119	5499	3764	2407	1251	778
6	648	1099	2116	3129	4269	4721	4884	5295	3605	2018	1197	719
7	670	1273	2178	3410	5357	4573	5359	5095	3619	2040	1028	680
8	756	980	2355	3282	5166	4936	5164	4737	3715	1911	1007	674
9	665	1382	2638	3798	4820	5262	5436	5197	3800	2147	1094	592
10	633	1392	2668	3544	4341	5577	5386	4862	3789	1999	1112	570
11	645	1451	2805	3653	4524	5089	5602	5054	3496	1867	1023	480
12	807	1584	2704	3336	4378	4744	5827	4477	3402	1565	1125	558
13	903	1558	2736	3415	4445	5120	5754	4714	3069	2091	885	669
14	899	1598	2475	3678	4630	5202	5326	4771	3124	2180	807	600
15	874	1603	2293	4106	5330	5902	5289	5295	2764	1918	918	593
16	860	1702	2610	4377	5626	5277	5289	5006	3087	1741	865	706
17	811	1627	2271	3937	5523	5652	5211	5020	3050	1804	950	536
18	776	1657	2481	4068	5073	5483	4326	4996	3288	1861	1022	451
19	764	1607	2501	3873	4850	6228	5219	4961	3281	1858	789	549
20	718	1658	2597	4712	5294	5444	5556	4720	3336	1593	913	510
21	938	1924	2869	4710	4204	4972	5714	4801	3063	1764	952	547
22	825	2102	2834	4670	4862	5008	5731	4644	2981	1879	791	567
23	799	1857	2455	4957	5385	5020	5394	4293	2808	1690	901	639
24	836	1930	2619	4586	5569	5242	5677	4003	2850	1639	790	582
25	847	1797	2623	4650	5655	5693	5053	4009	2872	1535	865	544
26	894	2035	2737	4534	5289	4727	5329	3814	2573	1690	895	524
27	1026	2097	2926	4456	5405	5598	4903	3794	3080	1685	615	629
28	944	1749	2962	4336	4974	5636	5190	3651	2899	1508	761	684
29	1086		3144	4256	4866	5905	5374	4344	2911	1295	748	727
30	1108		3162	4144	5587	5946	5551	4455	2495	1311	744	695
31	1229		3080		5816		5190	4165		1342		706

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	480	706	1290	1800	2390	2773	2821	2410	1982	1321	841	476
2	462	698	1224	1804	2372	2871	2924	2291	1965	1356	805	481
3	475	725	1278	1779	2242	2626	2777	2464	1734	1302	837	471
4	505	767	1427	1779	2385	2713	3127	2469	2028	1292	803	457
5	529	704	1349	1904	2321	2880	2973	2420	1851	1357	783	501
6	456	699	1256	2014	2404	2881	2849	2192	1842	1248	792	495
7	511	842	1316	1939	2483	2568	2725	2383	1908	1247	732	527
8	551	736	1368	1953	2551	2760	2603	2348	1669	1275	721	497
9	539	895	1374	2051	2433	2861	2690	2350	1798	1187	740	478
10	508	919	1300	1941	2428	2732	2705	2194	1700	1189	768	428
11	469	942	1419	2091	2709	2958	2544	2128	1730	1135	715	413
12	549	917	1432	2007	2533	2948	2824	2194	1832	1079	681	434
13	591	934	1420	2102	2546	2717	2903	2403	1678	1194	639	488
14	576	957	1470	2047	2438	2847	2737	2287	1756	1188	606	454
15	578	933	1383	2056	2425	2834	2785	2167	1695	1122	664	433
16	575	943	1480	2095	2500	2802	2824	2423	1800	1108	621	502
17	488	1016	1469	1912	2658	3017	2687	2485	1679	999	627	424
18	552	949	1550	2175	2652	2820	2581	2289	1593	1004	589	375
19	529	1045	1473	2134	2449	2925	2638	2217	1680	1113	555	446
20	539	991	1725	2267	2671	2552	2421	2248	1620	1019	596	387
21	672	1105	1710	2186	2680	2680	2492	2075	1599	1030	654	424
22	586	1099	1668	2262	2720	2920	2599	2204	1663	1005	577	395
23	598	1183	1513	2364	2612	2866	2577	2325	1503	939	601	438
24	614	1090	1522	2228	2669	2892	2510	2269	1550	897	585	450
25	594	1206	1525	2420	2357	2926	2413	2259	1455	943	569	418
26	621	1112	1590	2271	2419	2711	2598	2012	1387	971	571	410
27	698	1136	1601	2262	2575	3012	2567	2117	1435	978	466	471
28	695	1200	1719	2375	2818	2873	2582	2141	1426	951	536	479
29	699		1829	2176	2676	2749	2473	2107	1494	827	520	476
30	702		1862	2285	2602	2759	2463	2168	1387	853	486	493
31	752		1789		2423		2436	2006		864		520

A 62 : Mittlere Tagessummen der diffusen Sonnenstrahlung in Wh / m² -Gebietsmittel aus den Stationen Trier, Würzburg, Mannheim, Stuttgart und Freiburg

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	ΝΟΥ	DEZ
1	139	528	672	1473	2040	3206	2815	2632	1591	982	558	280
2	160	448	532	1312	2767	2551	3056	2999	1584	625	440	199
3	211	303	581	1296	2489	2317	2624	2609	1768	1003	514	225
4	250	510	666	1077	1754	2176	2480	2737	1644	1270	424	158
5	251	476	990	1233	1943	2523	2147	3079	1913	1051	468	278
6	192	400	860	1115	1865	1840	2035	3102	1763	770	405	223
7	159	431	862	1471	2874	2005	2634	2712	1711	793	295	153
8	205	244	986	1329	2615	2176	2561	2389	2046	636	286	178
9	126	488	1264	1747	2387	2401	2747	2846	2002	960	354	114
10	125	473	1368	1603	1914	2844	2682	2668	2089	811	344	143
11	176	510	1386	1561	1815	2132	3057	2926	1766	732	308	67
12	259	667	1273	1328	1846	1796	3003	2283	1569	485	444	124
13	312	624	1316	1314	1899	2403	2851	2311	1390	897	246	181
14	323	640	1005	1631	2192	2355	2589	2485	1368	993	201	146
15	296	669	910	2051	2905	3068	2504	3127	1069	797	253	160
16	285	759	1129	2282	3126	2475	2466	2583	1287	633	244	204
17	323	611	802	2025	2866	2635	2523	2535	1372	804	323	112
18	224	708	931	1893	2421	2663	1745	2707	1694	857	434	76
19	235	562	1028	1739	2401	3304	2581	2744	1600	745	234	103
20	179	667	872	2445	2623	2891	3135	2472	1716	574	317	123
21	266	819	1159	2524	1524	2292	3223	2726	1464	734	298	123
22	239	1003	1166	2409	2142	2088	3131	2440	1317	875	214	171
23	201	675	942	2593	2774	2155	2817	1967	1305	751	300	201
24	222	840	1097	2358	2901	2350	3167	1734	1300	741	205	131
25	253	591	1098	2230	3297	2767	2640	1750	1417	593	296	126
26	272	923	1147	2264	2869	2016	2731	1801	1186	719	324	114
27	328	961	1326	2194	2830	2586	2335	1677	1645	707	149	157
28	249	549	1243	1961	2156	2762	2608	1511	1474	557	225	206
29	387		1315	2080	2189	3155	2901	2237	1416	468	228	252
30	406		1301	1858	2985	3187	3088	2287	1108	457	258	202
31	477		1292		3393		2754	2159		477		186

A 63 : Mittlere Tagessummen der direkten Sonnenstrahlung in Wh / m² -Gebietsmittel aus den Stationen Trier, Würzburg,Mannheim, Stuttgart und Freiburg - 197 -

1 35 44 42 45 47 55 51 50 45 41 42 38 2 35 40 37 43 54 50 54 53 45 36 38 35 3 38 36 39 42 49 45 49 51 54 54 36 38 32 5 43 39 47 41 44 49 46 56 49 45 40 41 6 35 36 42 41 44 43 44 54 47 39 39 38 7 36 41 42 44 55 41 49 50 38 34 37 9 35 43 50 48 49 47 50 54 51 43 38 33 10 33 42 49 <	Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
2 35 40 37 43 54 50 54 53 45 36 38 35 3 38 36 39 42 49 45 49 51 44 42 42 36 4 42 43 43 43 44 45 51 53 47 48 39 32 5 43 39 47 41 44 43 44 54 47 39 39 38 7 36 41 42 44 55 41 49 50 38 34 37 9 35 43 50 48 49 47 50 54 51 43 38 33 10 33 42 49 41 43 54 48 47 33 41 31 11 33 43 51 45 47	1	35	44	42	45	47	55	51	50	45	41	42	38
3 38 36 39 42 49 45 49 51 44 42 42 36 4 42 43 43 43 44 51 53 47 48 39 32 5 43 39 47 41 44 43 44 56 49 45 40 31 6 35 36 42 41 55 41 49 52 48 40 35 37 8 40 31 45 42 52 45 47 49 50 38 34 37 9 35 43 50 48 49 47 50 54 51 53 48 39 37 27 13 35 44 48 42 44 46 53 50 43 43 38 14 44 45 43	2	35	40	37	43	54	50	54	53	45	36	38	35
4 42 43 43 38 43 45 51 53 47 48 39 32 5 43 39 47 41 44 49 46 56 49 45 40 41 6 35 36 42 41 55 41 49 52 48 40 35 37 8 40 31 45 42 52 45 47 49 50 38 34 37 9 35 43 50 48 49 47 50 54 51 43 38 33 10 33 42 49 44 43 50 49 51 53 48 39 37 27 11 33 43 51 45 47 49 51 45 33 38 14 44 45 43 44	3	38	36	39	42	49	45	49	51	44	42	42	36
5 43 39 47 41 44 49 46 56 49 45 40 41 6 35 36 42 41 44 43 44 52 48 40 35 37 8 40 31 45 42 52 45 47 49 50 38 34 37 9 35 43 50 48 49 47 50 54 51 43 38 33 10 33 42 49 44 43 50 49 51 52 41 40 32 11 33 43 51 45 46 51 53 48 39 37 27 12 41 46 49 41 43 43 54 48 47 33 41 31 14 44 45 43 44 45 47 49 51 45 45 43 41 33 32	4	42	43	43	38	43	45	51	53	47	48	39	32
6 35 36 42 41 44 43 44 54 47 39 39 38 7 36 41 42 44 55 41 49 52 48 40 35 37 8 40 31 45 42 52 45 47 49 50 38 34 37 9 35 43 50 48 49 47 50 54 51 43 38 33 10 33 42 49 44 43 50 49 51 52 41 40 32 11 33 43 51 45 46 51 53 48 39 37 27 12 41 46 49 41 43 44 45 54 48 47 31 34 14 44 45 47 49	5	43	39	47	41	44	49	46	56	49	45	40	41
36 41 42 44 55 41 49 52 48 40 35 37 8 40 31 45 42 52 45 47 50 54 51 43 38 33 9 35 43 50 48 49 47 50 54 51 43 38 33 10 33 42 49 44 43 50 49 51 52 41 40 32 11 33 43 51 45 46 51 53 48 39 37 27 12 41 46 49 41 43 43 54 48 47 33 48 33 38 14 44 45 43 44 45 47 49 51 45 41 38 31 16 41 46 44	6	35	36	42	41	44	43	44	54	47	39	39	38
8 40 31 45 42 52 45 47 49 50 38 34 37 9 35 43 50 48 49 47 50 54 51 43 38 33 10 33 42 49 44 43 50 49 51 52 41 40 32 11 33 43 51 45 45 46 51 53 48 39 37 27 12 41 46 49 41 43 43 54 48 47 33 41 31 13 45 44 48 42 44 46 53 50 43 45 33 38 14 44 45 43 44 45 47 49 51 45 49 33 34 16 41 46 44	7	36	41	42	44	55	41	49	52	48	40	35	37
93543504849475054514338331033424944435049515241403211334351454546515348393727124146494143435448473341311345444842444653504345333814444543444547495145473134154244394952534957404236341641464452554749554539344117384338465351495545393441183643414749494155494342261935414145465649555044333220324242545149555044333221414745544054545347473533223651445354 <td< td=""><td>8</td><td>40</td><td>31</td><td>45</td><td>42</td><td>52</td><td>45</td><td>47</td><td>49</td><td>50</td><td>38</td><td>34</td><td>37</td></td<>	8	40	31	45	42	52	45	47	49	50	38	34	37
10 33 42 49 44 43 50 49 51 52 41 40 32 11 33 43 51 45 46 51 53 48 39 37 27 12 41 46 49 41 43 43 54 48 47 33 41 31 13 45 44 48 42 44 46 53 50 43 45 33 38 14 44 45 43 44 45 47 49 51 45 47 31 34 15 42 44 39 49 52 53 49 51 45 39 34 41 16 41 46 44 52 55 47 49 55 45 39 34 41 17 38 43 38 46 53 51 49 55 50 44 33 32 10	9	35	43	50	48	49	47	50	54	51	43	38	33
11 33 43 51 45 46 51 53 48 39 37 27 12 41 46 49 41 43 43 54 48 47 33 41 31 13 45 44 48 42 44 46 53 50 43 45 33 38 14 44 45 43 44 46 53 50 43 45 33 38 14 44 45 43 44 45 47 49 51 45 37 31 34 15 42 44 39 49 55 40 42 36 34 16 41 46 44 52 55 47 49 55 45 41 38 31 17 38 43 38 46 53 51 49 55 45 41 33 32 18 36 41 47 49	10	33	42	49	44	43	50	49	51	52	41	40	32
113343514545465153483937271241464941434354484733413113454448424445505043453338144445434445474951454731341542443949525349574042363416414644525547495545413831173843384653514955454138311836434147494941554943422619354141454656495550443332203242425451495253513839302141474554404454545448434132223651445366515454544843413222365154405454544642363423344438 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
12 41 46 49 41 43 43 54 48 47 33 41 31 13 45 44 48 42 44 46 53 50 43 45 33 38 14 44 45 43 44 45 47 49 51 45 47 31 34 15 42 44 39 49 52 53 49 57 40 42 36 34 16 41 46 44 52 55 47 49 55 45 41 38 31 17 38 43 38 46 53 51 49 55 45 41 38 31 18 36 43 41 47 49 49 41 55 49 43 42 26 19 35 41 41 45 46 49 55 50 44 33 32 20	11	33	43	51	45	45	46	51	53	48	39	37	27
1345444842444653504345333814444543444547495145473134154244394952534957404236341641464452554749554539344117384338465351495545413831183643414749494155494342261935414145465649555044333220324242545149525351383930141474554405454484341322032424254514953513839301414745544054544843413222365144534645545347473533233444385651455446464236342435455154534552	12	41	46	49	41	43	43	54	48	47	33	41	31
144445434445474951454731341542443949525349574042363416414644525547495545393441173843384653514955454138311836434147494941554943422619354141454656495550443332203242425451495253513839302141474554404454545448434132223651445346455453474735332334443856514552494543403724354540515249454340372535413951535146464236342635454051524543403232274046415050504845 <t< td=""><td>13</td><td>45</td><td>44</td><td>48</td><td>42</td><td>44</td><td>46</td><td>53</td><td>50</td><td>43</td><td>45</td><td>33</td><td>38</td></t<>	13	45	44	48	42	44	46	53	50	43	45	33	38
15 42 44 39 49 52 53 49 57 40 42 36 34 16 41 46 44 52 55 47 49 55 45 39 34 41 17 38 43 38 46 53 51 49 55 45 41 38 31 18 36 43 41 47 49 49 41 55 49 43 42 26 19 35 41 41 45 46 56 49 55 50 44 33 32 20 32 42 42 54 51 49 55 50 44 33 32 21 41 47 45 54 40 44 54 54 48 43 41 33 32 22 36 51 44 53 46 45 54 53 47 47 35 33	14	44	45	43	44	45	47	49	51	45	47	31	34
16 41 46 44 52 55 47 49 55 45 39 34 41 17 38 43 38 46 53 51 49 55 45 41 38 31 18 36 43 41 47 49 49 41 55 49 43 42 26 19 35 41 41 45 46 56 49 55 50 44 33 32 20 32 42 42 54 51 49 52 53 51 38 39 30 20 32 42 42 54 51 49 52 53 51 38 39 30 21 41 47 45 54 40 44 53 46 54 54 48 43 41 32 22 36 51 44 53 46 45 54 53 47 40 33	15	42	44	39	49	52	53	49	57	40	42	36	34
17 38 43 38 46 53 51 49 55 45 41 38 31 18 36 43 41 47 49 49 41 55 49 43 42 26 19 35 41 41 45 46 56 49 55 50 44 33 32 20 32 42 42 54 51 49 52 53 51 38 39 30 20 32 42 42 54 51 49 52 53 51 38 39 30 20 32 42 42 54 54 49 53 51 38 31 33 32 20 32 42 42 54 54 54 53 51 34 41 32 33 21 41 47 45 54 45 54 53 47 47 45 33 33	16	41	46	44	52	55	47	49	55	45	39	34	41
1836434147494941554943422619354141454656495550443332203242425451495253513839302141474554404454544843413222365144534645545347473533233444385651455249454340372435454051524754464642363425354139515351494747404032263646415049425245434552362636464150494252454345323627404643485050484552462936283738434746515154443837402941 \cdot 4546555555443837402941 \cdot 455253	17	38	43	38	46	53	51	49	55	45	41	38	31
19 35 41 41 45 46 56 49 55 50 44 33 32 20 32 42 42 54 51 49 52 53 51 38 39 30 21 41 47 45 54 40 44 54 54 48 43 41 32 22 36 51 44 53 46 45 54 53 47 47 35 33 22 36 51 44 53 46 45 54 53 47 47 35 33 23 34 44 38 56 51 45 52 49 45 43 40 37 24 35 45 40 51 52 47 54 46 42 36 34 25 35 41 39 51 53 51 49 42 36 34 26 36 46	18	36	43	41	47	49	49	41	55	49	43	42	26
20 32 42 42 54 51 49 52 53 51 38 39 30 21 41 47 45 54 40 44 54 54 48 43 41 32 22 36 51 44 53 46 45 54 53 47 47 35 33 23 34 44 38 56 51 45 52 49 45 43 40 37 24 35 45 40 51 52 47 54 46 46 42 36 34 25 35 41 39 51 53 51 49 47 47 40 40 32 26 36 46 41 50 49 42 52 45 43 45 42 30 27 40 46 43 48 50 50 48 45 52 46 29 36	19	35	41	41	45	46	56	49	55	50	44	33	32
21 41 47 45 54 40 44 54 54 48 43 41 32 22 36 51 44 53 46 45 54 53 47 47 35 33 23 34 44 38 56 51 45 52 49 45 43 40 37 24 35 45 40 51 52 47 54 46 46 42 36 34 25 35 41 39 51 52 47 54 46 46 42 36 34 25 35 41 39 51 52 47 46 46 42 36 34 26 35 41 50 51 49 47 40 40 32 36 26 36 46 43 50 50 48 45 52 46 29 36 27 40 45 46	20	32	42	42	54	51	49	52	53	51	38	39	30
21414745544044545448434132223651445346455453474735332334443856514552494543403724354540515247544646423634253541395153514947474040322636464150494252454345423027404643485050484552462936283738434746515144494237402941 \cdot 454645535353503737423041 \cdot 4544525355443837403041 \cdot 43 \cdot 53 \cdot 5151 \cdot 40 \cdot 403145 \cdot 43 \cdot 53 \cdot 51 \cdot 40 \cdot 40	•												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	41	47	45	54	40	44	54	54	48	43	41	32
23 34 44 38 56 51 45 52 49 45 43 40 37 24 35 45 40 51 52 47 54 46 46 42 36 34 25 35 41 39 51 53 51 49 47 47 40 40 32 26 36 46 41 50 49 42 52 45 43 45 42 30 26 36 46 41 50 49 42 52 45 43 42 30 27 40 46 43 48 50 50 48 45 52 46 29 36 28 37 38 43 47 46 51 51 44 49 42 37 40 29 41 45 46 45 53 53 53 50 37 37 42 30 41	22	36	51	44	53	46	45	54	53	47	47	35	33
24 35 45 40 51 52 47 54 46 46 42 36 34 25 35 41 39 51 53 51 49 47 47 40 40 32 26 36 46 41 50 49 42 52 45 43 45 42 30 27 40 46 43 48 50 50 48 45 52 46 29 36 28 37 38 43 47 46 51 51 44 49 42 37 40 29 41 45 46 45 53 53 53 50 37 37 42 30 41 45 46 52 53 55 54 38 37 40 31 45 43 53 53 51 51 40 54 40 40 54 55 55 44 38 37	23	34	44	38	56	51	45	52	49	45	43	40	37
25 35 41 39 51 53 51 49 47 47 40 40 32 26 36 46 41 50 49 42 52 45 43 45 42 30 27 40 46 43 48 50 50 48 45 52 46 29 36 28 37 38 43 47 46 51 51 44 49 42 37 40 29 41 45 46 45 53 53 53 50 37 37 42 30 41 45 46 45 53 53 55 44 38 37 42 30 41 45 43 53 51 51 51 40 53 40 31 45 43 53 53 51 51 40 40 40 40	24	35	45	40	51	52	47	54	46	46	42	36	34
26 36 46 41 50 49 42 52 45 43 45 42 30 27 40 46 43 48 50 50 48 45 52 46 29 36 28 37 38 43 47 46 51 51 44 49 42 37 40 29 41 45 46 45 53 53 53 50 37 37 42 30 41 45 46 52 53 55 54 38 37 40 31 45 43 53 53 51 51 40 53 40 51 40 54 40	25	35	41	39	51	53	51	49	47	47	40	40	32
27 40 46 43 48 50 50 48 45 52 46 29 36 28 37 38 43 47 46 51 51 44 49 42 37 40 29 41 45 46 45 53 53 53 50 37 37 42 30 41 45 44 52 53 55 54 38 37 40 31 45 43 53 53 51 51 40 54 40	26	36	46	41	50	49	42	52	45	43	45	42	30
28 37 38 43 47 46 51 51 44 49 42 37 40 29 41 45 46 45 53 53 53 50 37 37 42 30 41 45 44 52 53 55 55 44 38 37 40 31 45 43 53 53 51 51 40 40 40	27	40	46	43	48	50	50	48	45	52	46	29	36
29 41 45 46 45 53 53 50 37 37 42 30 41 45 44 52 53 55 55 44 38 37 40 31 45 43 53 51 51 51 40 40	28	37	38	43	47	46	51	51	44	49	42	37	40
30 41 45 44 52 53 55 44 38 37 40 31 45 43 53 51 51 40 40 40	29	41		45	46	45	53	53	53	50	37	37	42
31 45 43 53 51 51 40 40	30	41		45	44	52	53	55	55	44	38	37	40
	31	45		43		53		51	51		40		40

Тад	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	27	25	28	25	25	25	25	24	25	23	25	24
2	26	25	26	25	25	26	26	23	25	24	25	25
3	26	25	26	24	23	24	25	25	22	24	26	24
4	28	26	29	24	25	25	28	25	26	24	25	24
5	29	23	27	25	24	26	27	25	24	26	25	26
6	25	23	25	26	25	26	26	22	24	24	26	27
7	27	27	26	25	25	23	25	25	25	24	25	28
8	29	23	26	25	26	25	24	24	22	25	25	27
9	28	28	26	26	24	26	25	24	24	24	26	26
10	26	28	24	24	24	25	25	23	23	24	27	24
11	24	28	26	26	27	27	23	22	24	24	26	23
12	28	27	26	25	25	27	26	23	26	23	25	25
13	29	27	25	26	25	24	27	26	24	26	24	28
14	28	27	26	25	24	26	25	25	25	26	23	26
15	28	26	24	25	24	25	26	24	24	25	26	25
16	27	25	25	25	24	25	26	26	26	25	25	29
17	23	27	25	22	26	27	25	27	25	23	25	25
18	25	25	26	25	26	25	24	25	24	23	24	22
19	24	27	24	25	23	26	25	25	25	26	23	26
20	24	25	28	26	25	23	23	25	25	25	25	23
21	29	27	27	25	25	24	24	24	25	25	28	25
22	25	27	26	26	26	26	25	25	26	25	25	23
23	25	28	23	26	25	26	25	27	24	24	27	26
24	26	25	23	25	25	26	24	26	25	23	27	26
25	24	28	23	27	22	26	23	26	24	25	26	24
26	25	25	24	25	23	24	25	24	23	26	27	24
27	28	25	23	25	24	27	25	25	24	27	22	27
28	27	26	25	26	26	26	25	26	24	26	26	28
29	27		26	23	25	25	24	26	26	23	25	27
30	26		26	24	24	25	24	27	24	25	24	28
31	28		25		22		24	25		25		30

A 65 : Mittlere Tageswerte der **Relativen diffusen Sonnenstrahlung** Gebietsmittel aus den Stationen Trier, Würzburg, Mannheim, Stuttgart und Freiburg

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	8	19	14	20	22	29	25	26	20	17	17	14
2	9	16	11	18	29	23	28	30	20	11	13	10
3	12	11	12	18	26	21	24	26	22	18	16	12
4	14	17	14	14	18	20	22	28	21	24	13	8
5	14	16	20	16	20	23	19	31	25	20	15	15
6	10	13	17	15	19	17	18	32	23	15	13	12
7	8	14	17	19	29	18	24	28	23	15	10	8
8	11	8	19	17	26	20	23	25	27	13	10	10
9	7	15	24	22	24	22	25	30	27	19	12	6
10	6	14	25	20	19	26	25	28	29	17	12	8
11	9	15	25	19	18	19	28	31	24	15	11	4
12	13	19	23	16	18	16	28	24	22	10	16	7
13	15	18	23	16	19	22	26	25	20	19	9	10
14	16	18	18	20	21	21	24	27	20	22	8	8
15	14	18	16	25	28	28	23	34	15	18	10	9
16	14	20	19	27	30	22	23	28	19	14	10	12
17	15	16	13	24	28	24	24	28	20	18	13	6
18	10	18	15	22	23	24	16	30	25	20	18	4
19	11	14	17	20	23	30	24	31	24	18	10	6
20	8	17	14	28	25	26	30	28	26	14	13	7
21	12	20	18	29	14	21	31	31	23	18	13	7
22	10	24	18	27	20	19	30	28	21	22	9	10
23	9	16	15	29	26	19	27	23	21	19	13	12
24	9	20	17	26	27	21	30	20	21	19	9	8
25	10	14	16	25	31	25	25	20	23	16	14	7
26	11	21	17	25	27	18	26	21	20	19	15	7
27	13	21	19	24	26	23	23	20	28	19	7	9
28	10	12	18	21	20	25	25	18	25	16	11	12
29	15		19	22	20	28	28	27	24	13	11	14
30	15		18	20	28	29	30	28	19	13	13	12
31	17		18		31		27	27		14		11

A 66 : Mittlere Tageswerte der **Relativen direkten Sonnenstrahlung** -**Gebietsmittel** aus den Stationen Trier, Würzburg, Mannheim, Stuttgart und Freiburg

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	1632	2628	4523	7125	9391	10871	11084	9994	7924	5484	3178	1840
2	1645	2681	4597	7209	9456	10897	11068	9939	7845	5404	3117	1814
3	1659	2735	4678	7292	9519	10927	11052	9885	7768	5323	3056	1790
4	1675	2791	4760	7374	9581	10951	11034	9827	7689	5241	2994	1768
5	1691	2848	4841	7456	9642	10975	11014	9771	7610	5158	2936	1747
6	1708	2905	4924	7538	9704	10997	10993	9713	7531	5078	2879	1726
7	1728	2965	5006	7620	9762	11017	10971	9653	7452	4997	2823	1707
8	1749	3026	5090	7702	9819	11036	10946	9593	7373	4918	2767	1690
9	1770	3086	5173	7782	9877	11055	10922	9533	7293	4838	2714	1673
10	1792	3151	5256	7861	9933	11071	10895	9472	7211	4760	2660	1659
11	1816	3214	5342	7941	9989	11087	10867	9408	7132	4681	2609	1644
12	1843	3278	5426	8021	10042	11100	10838	9345	7051	4602	2558	1631
13	1869	3346	5509	8098	10095	11113	10807	9282	6968	4524	2509	1620
14	1897	3411	5595	8177	10146	11124	10775	9215	6887	4447	2461	1610
15	1927	3481	5679	8254	10199	11132	10742	9150	6805	4369	2414	1601
16	1957	3549	5765	8330	10246	11142	10707	9083	6723	4293	2369	1593
17	1989	3620	5849	8407	10294	11146	10672	9015	6641	4217	2325	1585
18	2023	3691	5936	8482	10342	11152	10635	8947	6559	4144	2282	1581
19	2057	3764	6022	8557	10388	11156	10595	8879	6475	4069	2240	1576
20	2093	3835	6107	8629	10434	11158	10557	8810	6394	3996	2200	1573
21	2131	3909	6193	8704	10475	11159	10517	8740	6311	3923	2160	1570
22	2170	3985	6277	8777	10519	11157	10475	8667	6228	3850	2123	1570
23	2210	4059	6363	8848	10561	11156	10431	8597	6146	3778	2087	1570
24	2250	4135	6448	8919	10600	11150	10388	8524	6062	3708	2051	1572
25	2292	4212	6535	8990	10636	11147	10342	8451	5980	3638	2016	1575
26	2337	4291	6619	9058	10676	11139	10295	8377	5897	3571	1984	1580
27	2382	4369	6704	9126	10711	11132	10248	8302	5814	3502	1953	1584
28	2429	4448	6788	9194	10746	11122	10198	8227	5732	3435	1923	1590
29	2476		6872	9262	10779	11110	10149	8152	5649	3370	1894	1598
30	2525		6957	9328	10812	11098	10097	8076	5567	3304	1866	1607
31	2577		7041		10840		10046	8001		3240		1617

A 67 : Geisenheim - berechnete Tagessummen der Sonnenstrahlung in Wh / m² bei Rayleigh - Atmosphäre

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	1677	2680	4576	7169	9421	10890	11101	10019	7962	5533	3230	1886
2	1690	2732	4650	7253	9486	10917	11085	9965	7884	5453	3168	1860
3	1704	2786	4730	7335	9549	10946	11070	9911	7807	5372	3107	1836
4	1720	2843	4812	7417	9610	10970	11052	9854	7729	5290	3046	1813
5	1736	2900	4893	7498	9671	10994	11032	9799	7650	5208	2987	1793
6	1754	2957	4975	7580	9732	11015	11011	9741	7571	5128	2931	1772
7	1773	3017	5058	7661	9791	11035	10989	9681	7493	5047	2874	1753
8	1795	3079	5141	7743	9847	11054	10964	9622	7414	4968	2818	1736
9	1815	3139	5224	7822	9905	11073	10941	9562	7334	4889	2764	1718
10	1838	3204	5307	7901	9960	11089	10914	9501	7253	4810	2711	1704
11	1863	3266	5392	7981	10016	11104	10886	9437	7174	4732	2659	1689
12	1890	3331	5476	8060	10068	11118	10857	9375	7093	4653	2609	1676
13	1916	3399	5560	8137	10122	11130	10827	9312	7011	4575	2559	1665
14	1945	3464	5645	8216	10172	11141	10794	9246	6930	4498	2511	1654
15	1974	3534	5729	8292	10224	11150	10762	9181	6849	4420	2464	1645
16	2005	3602	5815	8368	10271	11159	10727	9114	6767	4344	2419	1637
17	2037	3673	5898	8444	10319	11164	10692	9047	6685	4269	2375	1630
18	2071	3744	5985	8518	10366	11169	10656	8979	6603	4196	2331	1625
19	2106	3817	6071	8593	10412	11173	10616	8911	6520	4121	2289	1620
20	2142	3888	6155	8665	10457	11175	10578	8843	6440	4048	2249	1617
•												
21	2180	3962	6240	8740	10498	11176	10539	8774	6357	3975	2209	1615
22	2219	4038	6325	8812	10541	11174	10497	8701	6274	3902	2171	1614
23	2259	4112	6411	8882	10583	11173	10453	8631	6192	3830	2135	1615
24	2299	4188	6495	8953	10622	11167	10410	8559	6109	3760	2099	1616
25	2342	4265	6581	9023	10658	11164	10365	8487	6027	3690	2064	1619
26	2387	4344	6665	9092	10698	11156	10319	8413	5944	3623	2032	1624
27	2432	4421	6749	9158	10732	11149	10271	8338	5862	3554	2000	1628
28	2479	4501	6833	9226	10767	11139	10222	8263	5780	3487	1970	1635
29	2527		6917	9294	10800	11127	10173	8190	5697	3422	1941	1642
30	2576		7001	9359	10832	11116	10121	8114	5615	3356	1913	1652
31	2628		7085		10860		10071	8039		3292		1661

A 68 : Würzburg - berechnete Tagessummen der Sonnenstrahlung in Wh / m² bei Rayleigh - Atmosphäre

-	202	-

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	1680	2683	4579	7172	9423	10891	11102	10021	7965	5537	3234	1890
2	1693	2736	4654	7256	9488	10917	11086	9966	7887	5457	3173	1864
3	1708	2790	4734	7337	9551	10947	11070	9912	7809	5375	3111	1840
4	1724	2847	4816	7420	9612	10970	11053	9855	7731	5293	3050	1817
5	1740	2904	4896	7501	9672	10994	11032	9800	7652	5211	2991	1796
6	1757	2961	4979	7583	9734	11015	11012	9742	7574	5132	2934	1776
7	1777	3021	5061	7664	9792	11036	10990	9683	7495	5051	2878	1756
8	1798	3083	5145	7746	9849	11055	10965	9623	7417	4971	2822	1739
9	1819	3143	5227	7825	9907	11073	10942	9563	7337	4893	2768	1722
10	1842	3207	5311	7904	9961	11089	10915	9503	7256	4814	2715	1707
11	1867	3270	5396	7984	10017	11105	10887	9439	7177	4735	2663	1692
12	1893	3335	5480	8063	10069	11119	10858	9377	7096	4657	2612	1679
13	1920	3403	5563	8139	10123	11131	10828	9314	7014	4578	2563	1668
14	1948	3468	5648	8218	10173	11141	10795	9248	6933	4502	2514	1657
15	1978	3538	5733	8295	10225	11150	10762	9182	6852	4424	2467	1648
16	2009	3606	5818	8370	10272	11159	10728	9116	6770	4348	2423	1640
17	2041	3677	5902	8446	10320	11164	10693	9049	6688	4273	2379	1633
18	2075	3748	5988	8520	10367	11169	10656	8981	6606	4199	2335	1628
19	2109	3821	6074	8595	10413	11174	10617	8913	6523	4124	2293	1624
20	2146	3892	6158	8667	10458	11176	10579	8845	6443	4052	2252	1620
21	2184	3966	6244	8742	10499	11177	10540	8776	6360	3979	2213	1618
22	2222	4041	6328	8814	10542	11174	10498	8703	6277	3906	2175	1618
23	2263	4116	6414	8884	10584	11173	10454	8633	6195	3834	2138	1618
24	2303	4192	6498	8955	10623	11168	10411	8561	6112	3764	2103	1620
25	2346	4269	6584	9025	10659	11164	10367	8489	6030	3694	2068	1623
26	2391	4348	6668	9093	10699	11157	10320	8415	5948	3627	2036	1627
27	2436	4425	6752	9160	10733	11150	10273	8340	5865	3558	2004	1632
28	2483	4504	6836	9228	10768	11140	10223	8266	5783	3491	1974	1638
29	2530		6920	9295	10800	11127	10174	8192	5701	3426	1944	1646
30	2580		7004	9361	10833	11116	10123	8116	5619	3360	1916	1655
31	2632		7088		10861		10073	8041		3296		1665

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	1704	2707	4599	7183	9422	10880	11089	10016	7972	5553	3257	1914
2	1717	2760	4673	7266	9487	10906	11073	9961	7894	5474	3195	1888
3	1732	2814	4753	7347	9549	10935	11058	9908	7817	5392	3134	1864
4	1748	2870	4835	7429	9610	10959	11040	9851	7739	5311	3073	1841
5	1764	2928	4915	7511	9670	10982	11020	9796	7661	5229	3014	1820
6	1782	2985	4997	7592	9731	11004	11000	9739	7582	5150	2958	1799
7	1801	3044	5080	7673	9789	11024	10978	9680	7504	5069	2901	1781
8	1822	3106	5163	7754	9845	11043	10953	9620	7426	4990	2846	1763
9	1843	3166	5245	7833	9902	11061	10930	9561	7346	4911	2792	1746
10	1866	3230	5328	7911	9957	11077	10903	9501	7266	4833	2738	1732
11	1891	3293	5413	7991	10012	11092	10876	9438	7187	4754	2687	1716
12	1918	3358	5497	8069	10064	11106	10847	9376	7107	4676	2636	1703
13	1944	3425	5580	8146	10117	11118	10817	9313	7025	4598	2587	1693
14	1972	3490	5665	8224	10167	11128	10785	9248	6944	4522	2538	1682
15	2002	3560	5749	8300	10219	11137	10752	9183	6864	4444	2491	1672
16	2033	3628	5834	8375	10266	11146	10718	9117	6782	4368	2447	1665
17	2065	3699	5917	8451	10313	11151	10683	9050	6701	4293	2402	1657
18	2099	3769	6003	8525	10360	11156	10646	8982	6619	4220	2359	1652
19	2134	3842	6089	8599	10405	11161	10608	8915	6536	4145	2317	1648
20	2170	3914	6173	8671	10450	11162	10570	8848	6456	4072	2277	1645
21	2208	3987	6258	8745	10491	11163	10531	8778	6374	3999	2237	1642
22	2247	4062	6342	8816	10534	11161	10489	8706	6291	3927	2199	1642
23	2287	4137	6427	8886	10575	11160	10446	8637	6209	3855	2163	1642
24	2327	4213	6512	8957	10614	11154	10403	8565	6127	3786	2127	1643
25	2370	4289	6597	9027	10650	11151	10359	8493	6045	3716	2092	1647
26	2415	4368	6681	9094	10689	11144	10312	8420	5963	3649	2060	1651
27	2460	4445	6765	9161	10723	11136	10266	8345	5881	3580	2028	1656
28	2507	4524	6848	9228	10758	11127	10217	8271	5799	3513	1998	1662
29	2554		6932	9295	10790	11114	10168	8197	5717	3448	1968	1670
30	2604		7016	9360	10823	11103	10117	8122	5635	3382	1940	1679
31	2655		7099		10850		10067	8047		3318		1689
Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
-----	------	------	------	------	-------	-------	-------	-------	------	------	------	------
1	1770	2782	4675	7246	9467	10909	11115	10053	8027	5624	3332	1982
2	1783	2835	4749	7329	9531	10934	11099	9999	7950	5545	3271	1956
3	1798	2889	4829	7410	9593	10963	11084	9946	7874	5464	3209	1931
4	1814	2946	4910	7491	9653	10987	11066	9890	7796	5382	3148	1908
5	1830	3003	4991	7572	9712	11010	11046	9836	7718	5301	3089	1887
6	1848	3061	5073	7652	9773	11031	11026	9779	7641	5222	3032	1866
7	1868	3121	5154	7733	9830	11051	11005	9720	7563	5141	2976	1847
8	1890	3182	5237	7813	9885	11070	10980	9662	7485	5063	2920	1829
9	1911	3242	5319	7891	9942	11087	10957	9603	7406	4984	2866	1812
10	1934	3307	5402	7969	9996	11103	10931	9543	7326	4906	2812	1797
11	1959	3370	5486	8048	10051	11118	10904	9481	7248	4828	2761	1782
12	1986	3435	5570	8126	10103	11132	10875	9419	7169	4750	2709	1769
13	2013	3502	5652	8202	10155	11144	10845	9357	7087	4672	2660	1758
14	2041	3568	5737	8279	10205	11154	10814	9292	7007	4596	2611	1747
15	2072	3637	5821	8355	10256	11163	10782	9228	6927	4518	2564	1737
16	2103	3705	5905	8430	10302	11171	10748	9163	6846	4443	2519	1730
17	2135	3776	5988	8505	10349	11176	10714	9096	6765	4368	2475	1722
18	2170	3847	6074	8578	10395	11181	10677	9029	6684	4295	2431	1717
19	2204	3919	6159	8652	10440	11186	10639	8963	6602	4220	2388	1713
20	2241	3991	6242	8722	10485	11187	10602	8896	6522	4148	2348	1709
21	2280	4064	6327	8796	10525	11188	10563	8827	6440	4075	2308	1707
22	2318	4139	6411	8867	10567	11186	10522	8756	6358	4003	2269	1706
23	2359	4214	6496	8936	10608	11185	10479	8687	6277	3931	2233	1707
24	2400	4290	6580	9006	10646	11180	10437	8615	6194	3861	2197	1708
25	2443	4366	6665	9076	10681	11176	10393	8544	6113	3792	2162	1711
26	2488	4445	6748	9142	10720	11168	10347	8471	6031	3724	2129	1716
27	2533	4521	6831	9208	10754	11162	10300	8398	5950	3656	2097	1721
28	2581	4600	6914	9275	10788	11152	10252	8324	5868	3589	2067	1727
29	2628		6997	9342	10820	11140	10204	8251	5786	3524	2037	1735
30	2678		7080	9406	10852	11129	10153	8176	5705	3458	2009	1745
31	2730		7163		10879		10104	8102		3394		1754

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	1834	2851	4741	7295	9495	10918	11120	10072	8068	5683	3399	2047
2	1847	2903	4814	7378	9558	10943	11105	10019	7992	5604	3338	2021
3	1862	2958	4894	7458	9619	10971	11089	9967	7916	5524	3277	1996
4	1878	3015	4975	7538	9678	10994	11072	9911	7839	5443	3216	1973
5	1894	3072	5055	7618	9737	11017	11052	9857	7762	5362	3157	1951
6	1912	3129	5136	7698	9797	11038	11033	9801	7685	5283	3100	1930
7	1932	3189	5218	7778	9854	11057	11011	9744	7608	5203	3044	1911
8	1954	3251	5300	7858	9908	11076	10988	9686	7531	5125	2988	1893
9	1976	3311	5382	7935	9964	11093	10965	9627	7453	5047	2934	1876
10	1999	3376	5464	8012	10018	11109	10939	9568	7374	4969	2880	1861
11	2024	3438	5548	8091	10072	11124	10912	9506	7296	4891	2828	1845
12	2051	3503	5631	8168	10123	11137	10883	9446	7217	4814	2777	1832
13	2078	3571	5713	8243	10174	11149	10854	9385	7136	4736	2728	1821
14	2107	3636	5797	8320	10223	11159	10823	9320	7057	4661	2679	1810
15	2138	3706	5880	8395	10273	11168	10791	9257	6977	4583	2632	1801
16	2169	3774	5964	8468	10319	11176	10758	9192	6896	4508	2587	1793
17	2201	3844	6047	8543	10365	11181	10724	9126	6817	4433	2542	1785
18	2236	3915	6132	8615	10411	11186	10688	9060	6736	4360	2498	1780
19	2271	3987	6217	8688	10455	11190	10651	8994	6654	4286	2455	1776
20	2308	4058	6299	8758	10499	11192	10614	8928	6575	4214	2415	1773
21	2346	4131	6384	8831	10539	11192	10576	8860	6494	4141	2374	1770
22	2386	4207	6466	8901	10580	11190	10535	8790	6413	4069	2336	1769
23	2426	4281	6551	8970	10621	11189	10492	8721	6332	3998	2300	1770
24	2468	4357	6634	9039	10658	11184	10451	8651	6250	3928	2264	1771
25	2511	4432	6719	9108	10694	11181	10408	8580	6169	3859	2227	1774
26	2556	4511	6801	9174	10732	11173	10362	8508	6088	3791	2195	1779
27	2601	4587	6884	9239	10765	11166	10316	8435	6007	3723	2163	1784
28	2649	4666	6966	9305	10799	11157	10269	8362	5926	3656	2133	1791
29	2697		7048	9371	10830	11145	10221	8290	5845	3592	2102	1799
30	2746		7131	9434	10862	11134	10171	8216	5764	3526	2074	1808
31	2798		7213		10888		10122	8142		3462		1818

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	окт	NOV	DEZ
1	1971	2997	4880	7400	9553	10936	11130	10112	8154	5808	3544	2186
2	1984	3050	4953	7481	9615	10960	11116	10061	8079	5731	3483	2160
3	1999	3104	5032	7559	9674	10988	11101	10009	8005	5651	3422	2135
4	2016	3162	5112	7639	9732	11010	11084	9956	7930	5571	3361	2111
5	2033	3219	5191	7717	9789	11032	11066	9903	7855	5491	3302	2090
6	2051	3276	5271	7795	9847	11053	11046	9848	7779	5414	3246	2068
7	2071	3336	5352	7874	9903	11071	11026	9792	7704	5335	3189	2049
8	2093	3398	5433	7952	9955	11089	11002	9736	7628	5257	3133	2031
9	2115	3458	5514	8028	10010	11106	10980	9679	7551	5180	3079	2013
10	2139	3522	5596	8104	10062	11121	10955	9621	7473	5103	3025	1998
11	2164	3585	5679	8180	10115	11136	10929	9561	7397	5026	2973	1982
12	2191	3650	5760	8256	10164	11148	10901	9502	7319	4949	2922	1969
13	2219	3717	5841	8329	10215	11160	10873	9442	7240	4872	2872	1958
14	2248	3782	5925	8405	10262	11170	10842	9379	7162	4797	2823	1946
15	2279	3852	6007	8478	10311	11178	10812	9317	7084	4721	2776	1937
16	2311	3919	6090	8550	10355	11186	10779	9254	7004	4646	2731	1929
17	2343	3989	6171	8623	10400	11190	10746	9190	6926	4572	2686	1921
18	2379	4059	6255	8694	10445	11195	10712	9125	6846	4500	2641	1916
19	2414	4132	6338	8765	10488	11199	10675	9061	6766	4426	2598	1911
20	2451	4202	6420	8834	10530	11200	10639	8996	6688	4354	2558	1908
21	2490	4275	6503	8905	10569	11202	10602	8930	6608	4282	2517	1905
22	2529	4350	6584	8973	10609	11199	10562	8861	6528	4211	2478	1905
23	2570	4423	6668	9040	10648	11198	10521	8794	6448	4139	2442	1905
24	2612	4498	6750	9108	10685	11193	10481	8725	6368	4070	2405	1907
25	2655	4574	6833	9175	10719	11190	10439	8656	6288	4001	2369	1910
26	2701	4652	6914	9240	10756	11182	10394	8586	6208	3935	2336	1915
27	2746	4727	6995	9303	10788	11176	10350	8514	6128	3867	2304	1920
28	2795	4805	7076	9367	10820	11167	10303	8443	6048	3800	2273	1927

29 2842 30 2893

31 2945

7319

10908

7157 9432 10852 11155 10257 8372 5968 3736 2243 1935

7238 9494 10882 11144 10209 8299 5888 3670 2214 1945

10161 8227

3606

1955

Tag	JAN	FEB	MÄR	APR	MAI	JUN	JUL	AUG	SEP	ОКТ	NOV	DEZ
1	2036	3068	4949	7455	9589	10956	11148	10141	8202	5872	3614	2253
2	2049	3121	5022	7536	9650	10980	11133	10090	8127	5795	3553	2226
3	2065	3176	5100	7614	9710	11007	11119	10040	8054	5715	3492	2201
4	2082	3233	5180	7692	9766	11030	11102	9986	7979	5636	3431	2178
5	2098	3290	5259	7770	9823	11051	11084	9935	7905	5556	3373	2156
6	2117	3348	5339	7848	9881	11071	11065	9880	7830	5479	3316	2134
7	2137	3408	5420	7925	9935	11090	11044	9824	7755	5400	3259	2114
8	2159	3469	5501	8003	9988	11108	11021	9768	7680	5323	3203	2096
9	2181	3529	5581	8078	10042	11124	10999	9713	7603	5246	3149	2078
10	2205	3594	5662	8153	10093	11139	10974	9655	7526	5169	3095	2063
11	2231	3656	5745	8229	10145	11153	10948	9596	7450	5093	3043	2047
12	2259	3721	5826	8304	10194	11166	10921	9538	7373	5016	2992	2034
13	2286	3788	5907	8377	10244	11177	10893	9478	7295	4940	2942	2022
14	2316	3853	5989	8452	10291	11186	10863	9416	7217	4865	2893	2011
15	2347	3923	6071	8525	10339	11195	10833	9354	7139	4789	2845	2001
16	2378	3990	6153	8596	10383	11203	10801	9292	7060	4714	2800	1993
17	2411	4060	6235	8668	10427	11207	10768	9228	6982	4640	2755	1985
18	2447	4130	6318	8738	10471	11212	10734	9164	6904	4568	2710	1980
19	2482	4202	6401	8809	10514	11216	10697	9100	6824	4495	2667	1976
20	2519	4273	6482	8877	10556	11217	10662	9037	6746	4423	2626	1973
21	2559	4346	6564	8948	10594	11218	10626	8971	6667	4351	2585	1970
22	2598	4420	6645	9015	10634	11216	10586	8902	6587	4280	2547	1970
23	2640	4494	6728	9082	10673	11215	10545	8836	6508	4209	2510	1970
24	2682	4569	6809	9149	10708	11210	10506	8768	6428	4140	2473	1972
25	2725	4644	6892	9216	10742	11206	10464	8699	6349	4071	2437	1975
26	2771	4721	6973	9279	10779	11199	10420	8629	6269	4005	2404	1980
27	2817	4797	7053	9342	10810	11193	10377	8559	6190	3937	2371	1985
28	2865	4875	7134	9406	10842	11183	10330	8488	6110	3870	2340	1992
29	2913		7214	9469	10873	11172	10284	8418	6030	3806	2309	2000
30	2963		7295	9531	10903	11161	10236	8345	5951	3740	2280	2010
31	3015		7375		10928		10189	8274		3676		2020

	GE	WU	TR	MA	SA	ST	FR	ко	HP*
a									
Jan	.17	.20	.17	.18	.17	.19	.18	.19	.25
Feb	.19	.22	.18	.18	.18	.22	.18	.20	.25
Mar	.19	.22	.18	.19	.18	.22	.19	.21	.25
Apr	.21	.22	.19	.20	.19	.23	.19	.21	.22
Mai	.21	.22	.21	.20	.20	.23	.19	.20	.19
Jun	.23	.24	.22	.22	.22	.23	.21	.21	.19
Jul	.22	.24	.22	.21	.22	.25	.21	.20	.20
Aug	.21	.24	.21	.21	.21	.24	.21	.20	.19
Sep	.20	.22	.20	.20	.20	.23	.19	.19	.21
Okt	.18	.20	.18	.18	.18	.21	.19	.18	.20
No∨	.17	.18	.18	.17	.17	.18	.17	.17	.22
Dez	.16	.19	.16	.17	.16	.19	.17	.18	.24
Jahr	.19	.21	.19	.19	.18	.21	.19	.19	.22
b									
Jan	.57	.56	.60	.55	.58	.52	.56	.59	.60
Feb	.54	.55	.60	.56	.57	.51	.58	.57	.61
Mar	.58	.57	.63	.58	.60	.55	.59	.57	.60
Apr	.58	.58	.61	.58	.60	.56	.60	.58	.61
Mai	.57	.57	.58	.57	.57	.56	.59	.59	.63
Jun	.55	.55	.56	.54	.54	.56	.57	.59	.63
Jul	.53	.52	.55	.53	.53	.51	.55	.57	.59
Aug	.52	.52	.54	.51	.53	.51	.54	.55	.61
Sep	.54	.55	.57	.53	.55	.52	.55	.57	.61
Okt	.57	.56	.61	.54	.55	.52	.54	.58	.62
Nov	.56	.57	.58	.54	.55	.53	.56	.58	.61
Dez	.58	.58	.60	.55	.58	.51	.57	.58	.59
Jahr	.58	.57	.60	.56	.58	.55	.58	.58	.61
r									
Jan	.89	.90	.91	.89	.89	.92	.90	.89	
Feb	.92	.94	.93	.94	.94	.92	.94	.94	
Mar	.95	.94	.95	.95	.95	.93	.95	.95	
Apr	.95	.95	.95	.96	.96	.93	.96	.96	
Mai	.95	.95	.96	.96	.95	.93	.96	.96	
Jun	.95	.95	.95	.95	.96	.94	.96	.96	
Jul	.95	.95	.96	.96	.96	.93	.96	.96	
Aug	.95	.95	.95	.95	.95	.94	.96	.96	
Sep	.95	.95	.94	.95	.96	.93	.96	.96	
Okt	.94	.95	.94	.94	.94	.93	.94	.94	
No∨	.92	.93	.92	.92	.92	.91	.93	.91	
Dez	.89	.88	.89	.89	.89	.89	.91	.90	
Jahr	.94	.94	.95	.95	.95	.93	.95	.95	

A 75 : Angström-Koeffizienten a, b und Produkt-Moment-Korrelationskoeffizienten r der Stationen Geisenheim (GE), Würzburg (WU), Trier (TR), Mannheim (MA), Saarbrücken (SA), Stuttgart (ST), Freiburg (FR) und Konstanz (KO) im Zeitraum 1981-2000. Ausnahme : Stuttgart 10 /1989 – 2000. Die Daten für Hohenpeissenberg sind aus PALZ / GREIF (Hrsg. 1996, S.157) übernommen

	GE	WU	TR	MA	SA	ST	FR	ко	HP*
a+b			·		•		•		
Jan	.74	.76	.77	.73	.75	.71	.74	.78	.85
Feb	.73	.77	.78	.74	.75	.73	.76	.77	.86
Mar	.77	.79	.81	.77	.78	.77	.78	.78	.85
Apr	.79	.80	.80	.78	.79	.79	.79	.79	.83
Mai	.78	.79	.79	.77	.77	.79	.78	.79	.82
Jun	.78	.79	.78	.76	.76	.79	.78	.80	.82
Jul	.75	.76	.77	.74	.75	.76	.76	.77	.79
Aug	.73	.76	.75	.72	.74	.75	.75	.75	.80
Sep	.74	.77	.77	.73	.75	.75	.74	.76	.82
Okt	.75	.76	.79	.72	.73	.73	.73	.76	.82
Nov	.73	.75	.76	.71	.72	.71	.73	.75	.83
Dez	.74	.77	.76	.72	.74	.70	.74	.76	.83
Jahr	.77	.78	.79	.75	.76	.76	.77	.77	.83

A 76 : Summe der Angström-Koeffizienten a+b. Sonst wie A 75

	GE	WU	TR	MA	SA	ST	FR	ко
SoHj zykl a	.20	.21	.19	.19	.19	.22	.19	.19
b	.60	.60	.61	.59	.60	.57	.61	.61
a+b	.80	.81	.80	.78	.79	.79	.80	.80
r	.93	.93	.93	.94	.93	.90	.95	.95
antizykl a	.25	.26	.24	.23	.24	.26	.22	.22
b	.50	.50	.52	.50	.51	.49	.53	.54
a+b	.75	.76	.76	.73	.75	.75	.75	.76
r	.94	.95	.95	.95	.95	.93	.96	.96
WiHjzykla	.16	.19	.16	.17	.16	.19	.17	.19
b	.63	.62	.67	.62	.65	.57	.63	.60
a+b	.79	.81	.83	.79	.81	.76	.80	.79
r	.90	.90	.90	.90	.89	.90	.92	.91
antizykl a	.18	.20	.20	.19	.20	.20	.20	.19
b	.55	.55	.57	.52	.53	.51	.53	.57
a+b	.73	.75	.77	.71	.73	.71	.73	.76
r	.94	.94	.95	.94	.94	.92	.94	94

A 77 : Angström-und Korrelationskoeffizienten im Sommer-und Winterhalbjahr nach zyklonaler und antizyklonaler Witterung. Sonst wie A75

		GE	WU	TR	MA	SA	ST	FR	ко
SoHj	а	.21	.23	.21	.21	.21	.23	.20	.20
-	b	.55	.55	.57	.54	.55	.54	.56	.57
a	+b	.76	.78	.78	.75	.76	.77	.76	.77
	r	.95	.95	.95	.95	.95	.93	.96	.96
WiHj	а	.17	.20	.17	.18	.17	.20	.18	.19
	b	.58	.57	.61	.56	.58	.53	.57	.58
a	+b	.75	.77	.78	.74	.75	.73	.75	.77
	r	.93	.93	.93	.93	.93	.92	.93	.93
SoHj zon	а	.22	.23	.21	.21	.20	.23	.20	.20
	b	.54	.54	.57	.53	.55	.53	.56	.57
a	+b	.76	.77	.78	.74	.75	.76	.76	.77
	r	.93	.94	.94	.93	.95	.92	.96	.95
gem	а	.21	.24	.21	.21	.21	.25	.20	.20
	b	.54	.53	.56	.54	.55	.51	.56	.56
a	+b	.75	.77	.77	.75	.76	.76	.76	.76
	r	.95	.95	.96	.96	.96	.93	.97	.96
mer	а	.21	.22	.21	.21	.21	.23	.20	.20
	b	.56	.57	.58	.55	.56	.55	.58	.59
a	+b	.77	.79	.79	.76	.77	.78	.78	.79
	r	.95	.95	.95	.95	.95	.93	.96	.96
WiHj zor	na	.16	.19	.15	.16	.15	.20	.17	.19
	b	.64	.61	.69	.60	.64	.55	.60	.58
a	+b	.80	.80	.84	.76	.79	.75	.77	.77
	r	.92	.92	.91	.91	.91	.90	.93	.92
gem	а	.18	.20	.18	.18	.18	.20	.19	.19
	b	.56	.56	.59	.54	.55	.52	.55	.58
a	+b	.74	.76	.77	.72	.73	.72	.74	.77
	r	.93	.94	.94	.94	.94	.93	.94	.94
me	ra	.19	.21	.20	.19	.19	.19	.19	.19
	b	.55	.56	.58	.55	.57	.53	.58	.59
a	+b	.74	.77	.78	.74	.76	.72	.77	.78
	r	.93	.92	.93	.93	.93	.91	.93	.92

A78 : Angström-und Korrelationskoeffizienten für Sommer-und Winterhalbjahr und gesondert nach Zirkulationstyp. Sonst wie A75

	GE	WU	TR	MA	SA	ST	FR	ко
JAN zona	.16	.19	.14	.16	.14	.19	.16	.20
b	.61	.62	.71	.58	.70	.51	.62	.57
a+b	.77	.81	.85	.74	.84	.70	.78	.77
gem a	.17	.20	.18	.19	.18	.20	.19	.19
b	.56	.54	.56	.52	.54	.50	.53	.58
a+b	.73	.74	.74	.71	.72	.70	.72	.77
mer a	.18	.21	.20	.19	.20	.18	.20	.19
b	.54	.54	.56	.56	.56	.53	.58	.62
a+b	.72	.75	.76	.75	.76	.71	.78	.81
zykl a	.17	.20	.16	.17	.16	.19	.16	.20
b	.60	.62	.68	.61	.72	.56	.66	.59
a+b zy	.77	.82	.84	.78	.88	.75	.82	.79
antizykl a	.17	.19	.18	.18	.19	.18	.20	.19
b	.55	.55	.56	.52	.54	.51	.51	.58
a+b azy	.72	.74	.74	.70	.73	.69	.71	.77
FEB zon a	.16	.20	.16	.16	.16	.22	.17	.18
b	.64	.60	.66	.64	.64	.53	.62	.60
a+b	.80	.80	.82	.80	.80	.75	.79	.78
gem a	.19	.21	.19	.18	.20	.21	.18	.21
b	.53	.55	.59	.54	.54	.51	.57	.54
a+b	.72	.76	.78	.72	.74	.72	.75	.75
mer a	.21	.24	.21	.21	.20	.24	.19	.21
b	.52	.53	.57	.52	.57	.49	.58	.58
a+b	.73	.77	.78	.73	.77	.73	.77	.79
zykl a	.19	.21	.17	.17	.17	.21	.17	.18
b	.59	.59	.65	.61	.62	.55	.64	.62
a+b	.78	.80	.82	.78	.79	.76	.81	.80
antizykl a	.19	.22	.21	.20	.20	.23	.21	.22
b	.53	.54	.56	.52	.54	.48	.53	.52
a+b	.72	.76	.77	.72	.74	.71	.74	.74
MAR zon a	.18	.22	.17	.17	.17	.22	.18	.21
b	.63	.61	.67	.61	.61	.55	.62	.56
a+b	.81	.83	.84	.78	.78	.77	.80	.77
gem a	.19	.20	.17	.18	.17	.21	.20	.21
b	.58	.58	.64	.57	.61	.55	.58	.57
a+b	.77	.78	.81	.75	.78	.76	.78	.78
mer a	.21	.25	.21	.21	.21	.23	.19	.22
b	.55	.52	.59	.55	.58	.55	.59	.59
a+b	.76	.77	.80	.76	.79	.78	.78	.81
zykl a	.17	.21	.16	.17	.16	.20	.17	.20
b	.64	.63	.68	.65	.68	.61	.66	.61
a+b	.81	.84	.84	.82	.84	.81	.83	.81
antizykl a	.21	.23	.22	.22	.21	.24	.22	.23
b	.54	.53	.58	.53	.55	.51	.54	.54
a+b	.75	.76	.80	.75	.76	.75	.76	.77

A 79 a-d : Angström-Koeffizienten nach Monaten, unterschieden nach Zirkulationstyp, zyklonal und antizyklonal geprägter Witterung

	GE	WU	TR	MA	SA	ST	FR	ко
APR zon a	.22	.23	.21	.20	.19	.25	.18	.22
b	.58	.58	.59	.58	.62	.54	.63	.57
a+b	.80	.81	.80	.78	.81	.79	.81	.79
gem a	.20	.22	.20	.19	.20	.24	.19	.21
b	.57	.57	.60	.58	.59	.55	.58	.57
a+b	.77	.79	.80	.77	.79	.79	.77	.78
mer a	.20	.22	.19	.20	.19	.22	.20	.21
b	.59	.58	.63	.58	.61	.58	.60	.59
a+b	.79	.80	.82	.78	.80	.80	.80	.80
zykl a	.19	.21	.18	.19	.18	.22	.18	.20
b	.62	.62	.66	.62	.65	.60	.64	.62
a+b	.81	.83	.84	.81	.83	.82	.82	.82
antizykl a	.23	.26	.22	.23	.23	.26	.23	.24
b	.53	.52	.57	.54	.55	.51	.54	.53
a+b	.76	.78	.79	.77	.78	.77	.77	.77
MAI zon a	.20	.22	.20	.19	.19	.19	.20	.19
b	.60	.59	.61	.63	.61	.58	.59	.61
a+b	.80	.81	.81	.82	.80	.77	.79	.80
gem a	.20	.23	.20	.20	.19	.25	.20	.20
b	.58	.55	.58	.57	.57	.53	.58	.59
a+b	.78	.78	.78	.77	.76	.78	.78	.79
mer a	.21	.22	.21	.20	.21	.22	.19	.21
b	.57	.59	.58	.57	.56	.58	.60	.60
a+b	.78	.81	.79	.77	.77	.80	.79	.81
zykla	.19	.21	.19	.18	.19	.21	.18	.19
b	.63	.62	.63	.63	.62	.59	.64	.65
a+b	.82	.83	.82	.81	.81	.80	.82	.84
antizykl a	.25	.25	.24	.23	.22	.26	.23	.23
b	.51	.53	.54	.52	.53	.52	.54	.54
a+b	.76	.78	.78	.75	.75	.78	.77	.77
JUN zon a	.22	.24	.21	.21	.20	.23	.21	.20
b	.59	.56	.59	.58	.58	.57	.60	.61
a+b	.81	.80	.80	.79	.78	.80	.81	.81
gem a	.24	.26	.24	.23	.24	.26	.20	.21
b	.53	.52	.53	.53	.52	.51	.57	.58
a+b	.77	.78	.77	.76	.76	.77	.77	.79
mer a	.22	.24	.22	.22	.23	.21	.21	.21
b	.55	.56	.57	.54	.54	.59	.56	.58
a+b	.77	.80	.79	.76	.77	.80	.77	.79
zykla	.21	.23	.21	.21	.21	.21	.20	.19
b	.61	.60	.59	.58	.57	.60	.60	.63
a+b	.82	.83	.80	.79	.78	.81	.80	.82
antizykl a	.26	.27	.25	.25	.25	.26	.23	.24
b	.50	.51	.51	.50	.50	.51	.54	.53
a+b	.76	.78	.76	.75	.75	.77	.77	.77

	GE	WU	TR	MA	SA	ST	FR	ко
JUL zon a	.23	.24	.23	.22	.22	.26	.21	.19
b	.52	.53	.53	.52	.53	.49	.56	.59
a+b	.75	.77	.76	.74	.75	.75	.77	.78
gem a	.23	.26	.21	.22	.22	.28	.22	.20
b	.51	.49	.55	.52	.53	.46	.52	.56
a+b	.74	.75	.76	.74	.75	.74	.74	.76
mer a	.21	.23	.21	.21	.22	.23	.21	.20
b	.54	.54	.56	.54	.52	.54	.56	.57
a+b	.75	.77	.77	.75	.74	.77	.77	.77
zykl a	.20	.22	.20	.20	.20	.24	.20	.19
b	.59	.58	.58	.56	.56	.56	.59	.60
a+b	.79	.80	.78	.76	.76	.80	.79	.79
antizykl a	.25	.27	.24	.24	.25	.28	.22	.20
b	.49	.48	.51	.49	.48	.46	.53	.56
a+b	.74	.75	.75	.73	.73	.74	.75	.76
AUG zon a	.22	.25	.22	.21	.22	.22	.20	.21
b	.52	.49	.53	.49	.51	.54	.54	.53
a+b	.74	.74	.75	.70	.73	.76	.74	.74
gem a	.22	.25	.21	.21	.21	.24	.21	.21
b	.50	.51	.53	.51	.53	.51	.54	.52
a+b	.72	.76	.74	.72	.74	.75	.75	.73
mer a	.20	.22	.21	.21	.21	.25	.21	.19
b	.55	.55	.54	.53	.53	.49	.55	.59
a+b	.75	.77	.75	.74	.74	.74	.76	.78
zykl a	.19	.22	.19	.19	.20	.23	.19	.18
b	.58	.57	.59	.57	.56	.52	.59	.59
a+b	.77	.79	.78	.76	.76	.75	.78	.77
antizykl a	.24	.26	.24	.23	.24	.26	.23	.23
b	.48	.48	.50	.48	.49	.49	.51	.51
a+b	.72	.74	.74	.71	.73	.75	.74	.74
SEP zon a	.20	.22	.19	.19	.19	.22	.19	.19
b	.54	.55	.60	.54	.56	.52	.57	.57
a+b	.74	.77	.79	.73	.75	.74	.76	.76
gem a	.20	.23	.21	.21	.20	.24	.19	.20
b	.52	.52	.54	.51	.56	.50	.54	.55
a+b	.72	.75	.75	.72	.76	.74	.73	.75
mer a	.20	.21	.20	.21	.19	.22	.19	.19
b	.58	.56	.59	.54	.57	.52	.56	.59
a+b	.78	.77	.79	.75	.76	.74	.75	.78
zykla	.19	.20	.19	.19	.18	.21	.18	.18
b	.57	.61	.59	.58	.60	.54	.59	.60
a+b 	.76	.81	.78	.77	.78	.75	.77	.78
antizyki a	.25	.25	.24	.24	.24	.27	.21	.20
b	.47	.49	.52	.47	.48	.46	.52	.54
a+b	./2	./4	./6	.71	./2	.73	./3	.74

	GE	WU	TR	MA	SA	ST	FR	ко
OKT zon a	.16	.20	.16	.17	.16	.22	.18	.18
b	.62	.59	.66	.58	.60	.52	.55	.58
a+b	.78	.79	.82	.75	.76	.74	.73	.76
gem a	.18	.22	.20	.20	.20	.20	.20	.18
b	.57	.54	.58	.52	.52	.52	.52	.58
a+b	.75	.76	.78	.72	.72	.72	.72	.76
mer a	.18	.20	.19	.19	.19	.20	.19	.18
b	.55	.57	.59	.54	.56	.53	.56	.56
a+b	.73	.77	.78	.73	.75	.73	.75	.74
zykl a	.16	.19	.16	.16	.16	.20	.17	.18
b	.65	.61	.66	.63	.64	.57	.61	.59
a+b	.81	.80	.82	.79	.80	.77	.78	.77
antizykl a	.20	.22	.21	.20	.22	.21	.22	.18
b	.53	.54	.56	.50	.50	.50	.49	.57
a+b	.73	.76	.77	.70	.72	.71	.71	.75
NOV zon a	.14	.17	.15	.16	.14	.18	.16	.17
b	.67	.60	.70	.59	.68	.59	.61	.59
a+b	.81	.77	.85	.75	.82	.77	.77	.76
gem a	.16	.19	.19	.18	.19	.20	.18	.18
b	.56	.55	.57	.51	.52	.50	.51	.58
a+b	.72	.74	.76	.69	.71	.70	.69	.76
mer a	.19	.18	.19	.18	.18	.17	.18	.17
b	.52	.57	.55	.54	.53	.54	.58	.58
a+b	.71	.75	.74	.72	.71	.71	.76	.75
zykla	.16	.18	.16	.16	.16	.18	.16	.17
b	.60	.60	.63	.59	.59	.56	.60	.59
a+b	.76	.78	.79	.75	.75	.74	.76	.76
antizykl a	.18	.19	.20	.20	.20	.19	.19	.17
b	.53	.54	.53	.49	.50	.51	.52	.57
a+b	.71	.73	.73	.69	.70	.70	.71	.74
DEZ zon a	.15	.18	.14	.15	.15	.18	.16	.19
b	.65	.61	.69	.60	.63	.57	.60	.57
a+b	.80	.79	.83	.75	.78	.75	.76	.76
gem a	.17	.19	.17	.17	.17	.19	.18	.17
b	.53	.55	.55	.51	.54	.50	.54	.61
a+b	.70	.74	.72	.68	.71	.69	.72	.78
mer a	.17	.19	.19	.19	.18	.18	.18	.18
b	.60	.58	.60	.56	.59	.49	.57	.58
a+b	.77	.77	.79	.75	.77	.67	.75	.76
zykla	.15	.18	.14	.16	.14	.18	.16	.18
b	.70	.65	.73	.62	.68	.57	.64	.58
a+b	.85	.83	.87	.78	.82	.75	.80	.76
antizykl a	.18	.19	.18	.18	.19	.18	.19	.17
b	.52	.54	.54	.51	.52	.49	.51	.58
a+b	.70	.73	.72	.69	.71	.67	.70	.75

Großwetterlagen	MA	KA	GE	ΒZ	ΑZ	WU	TR	FR	ST	SA	вU	BE	ко	WB	HS	но	FE
m ü. NN	106	112	131	180	215	275	278	308	318	325	350	450	450	553	1008	1122	1486
Winterhalbjahr (X - III)																	
Wa	55	54	58	48	52	57	60	53	48	58	58	65	58	52	38	48	45
Wz	66	66	66	52	60	65	68	66	62	68	68	72	65	64	63	72	70
SWa	47	48	56	47	48	50	54	45	40	49	49	57	55	46	30	39	42
SWz	63	63	67	50	58	62	67	64	59	65	66	69	65	62	59	67	67
NWa	54	53	56	48	51	57	54	51	52	52	58	64	56	52	41	52	47
NWz	67	68	65	55	63	67	67	68	67	66	69	74	68	64	66	73	71
НМ	39	43	45	47	42	39	41	43	32	40	39	48	58	36	21	21	21
BM	50	51	53	48	49	53	52	51	49	51	54	62	59	49	43	46	45
ТМ	73	72	73	58	71	72	72	72	69	72	75	76	71	73	69	75	73
Na	52	52	53	45	44	55	52	52	55	53	54	63	58	53	48	57	59
Nz	57	59	54	52	51	58	59	61	60	58	60	67	63	56	54	66	66
HNa	39	45	39	53	42	35	39	52	48	43	41	57	64	45	50	47	46
HNz	64	70	67	57	66	66	65	64	66	66	67	74	70	65	63	69	64
НВ	51	54	50	47	52	52	52	53	56	48	55	61	58	52	49	52	46
TRM	65	65	64	54	59	64	67	67	63	66	67	72	66	64	65	72	71
HFa	38	39	39	45	45	39	43	46	41	42	41	58	55	41	45	44	42
HFz	60	60	62	56	60	61	60	64	62	58	67	71	68	59	65	62	63
HNFa	45	48	46	48	47	44	48	56	48	50	49	63	60	45	55	48	56
HNFz	69	71	68	59	72	69	69	73	70	69	71	77	75	69	69	70	64
SEa	48	54	53	50	49	48	51	57	47	54	53	63	61	52	45	44	45
SEz	63	67	66	60	69	62	67	67	60	67	66	70	68	74	66	69	66
Sa -	59	63	63	56 	60	58	58	67	49	58	60	63	69	58	41	44	47
Sz	67	67	69	57	63	66	69	70	60	72	69	71	71	68	54	61	66
TB	61	62	65	55	59	62	66	63	58	64	61	68	63	64	63	66	69
IRW Occurrent albiaba (W. NO	63	62	67	53	59	62	67	64	59	65	62	68	65	63	59	64	67
Sommernalbjanr (IV -IX)	10	4.0	4.0	10	24	10	10	4.0	4.0	40	4.0	50			0.0		45
VV2	42	4Z	43	40	34 50	43 50	40	43	43 50	4Z	40 50	53 65	44 50	4 I 5 7	30 50	44 65	40
VVZ S)0/a	12	11	46	40 20	02 26		40	45	11	47	20	50		42	25	40	47
SW2	42 55	55	40 58	18	18	5/	49 50	4J 58	41 53	47 57	50 54	52 61	56	4Z 55	50	42 58	47 59
NW/a	38	37	41	36	31	42	41	34	38	35	38	55	30 30	36	27	38	37
NW/z	61	62	60	49	57	61	62	61	59	57	62	68	62	58	54	69	65
HM	22	22	19	30	15	20	26	26	23	24	17	39	25	22	20	22	30
BM	36	37	36	38	30	36	37	42	38	36	35	51	43	36	38	42	46
TM	68	67	68	52	65	66	69	70	66	68	68	72	68	65	66	73	73
Na	44	45	45	38	38	49	44	36	45	37	45	55	44	40	37	48	45
Nz	57	60	57	43	51	57	56	59	57	54	59	65	60	52	55	63	63
HNa	37	38	37	36	30	36	39	42	39	35	33	50	42	36	37	40	46
HNz	57	56	58	49	50	54	62	61	57	56	57	66	61	55	54	63	65
НВ	40	39	38	39	35	43	40	40	42	36	37	52	44	38	39	40	47
TRM	62	64	61	49	57	62	63	65	62	60	64	69	66	60	60	70	69
NEa	36	34	33	39	30	35	35	39	38	33	36	51	37	33	35	39	44
NEz	67	66	67	55	61	69	63	66	67	62	69	72	69	66	64	71	70
HFa	34	35	35	40	28	35	37	40	37	36	37	51	42	35	37	41	44
HFz	53	54	52	46	49	55	54	59	56	51	57	64	60	53	56	61	62
HNFa	41	43	41	41	31	38	45	46	43	43	37	53	46	40	41	46	50
HNFz	64	62	67	52	60	64	66	66	62	67	65	72	65	63	61	66	70
SEa	35	39	36	36	27	31	41	44	38	39	33	54	43	33	34	43	46
SEz	62	67	66	54	57	62	69	72	64	68	65	71	69	61	68	69	72
Sa	40	41	43	39	29	38	48	44	40	43	42	52	42	40	35	44	45
Sz	58	65	56	50	58	54	62	63	58	61	60	67	62	58	57	60	64
ТВ	58	59	60	49	53	57	62	62	57	61	59	65	59	58	57	64	65
TRW	59	60	59	47	54	58	61	63	59	60	59	66	62	58	59	64	66

A 80 : Mittlere Bewölkung in 10tel Okta. Ausgewählte Stationen nach Großwetterlagen, getrennt nach Winter- und Sommerhalbjahr. Datenunsicherheit bei BZ

	MA	KA	GE	ΒZ	AZ	WU	TR	FR	ST	SA	BU	BE	ко	WB	HS	но	FE
a) Bewölk.																	
m ü NN	106	112	131	180	215	275	278	308	318	325	350	450	450	553	1008	1122	1486
J (10tel O.)	61	62	63	54	59	61	63	63	56	63	63	68	67	60	53	58	55
F	54	56	56	51	52	54	57	57	53	56	57	64	60	54	51	56	56
Μ	53	54	53	48	49	54	55	55	53	54	56	65	56	52	52	59	59
А	52	53	51	45	45	52	53	56	53	52	53	62	55	52	51	56	59
Μ	50	51	50	43	42	48	53	54	51	51	48	59	52	49	49	54	57
J	52	53	50	44	46	51	54	55	52	51	50	60	54	50	49	57	59
J	47	46	46	41	40	47	48	48	46	45	46	58	48	44	41	51	52
А	44	44	45	41	38	43	46	46	44	44	42	56	47	42	41	48	49
S	49	49	50	44	44	49	52	51	48	49	50	59	53	49	45	54	54
0	55	56	57	48	51	54	57	58	53	56	56	63	60	53	49	56	57
Ν	60	61	62	52	58	62	62	61	56	61	64	68	65	58	53	60	58
D	64	64	65	54	62	64	66	64	61	65	66	70	68	62	57	62	60
b)Varikoeff.																	
J (%)	36	34	33	26	39	36	34	34	42	34	36	24	25	35	52	49	51
F	47	46	46	29	49	46	42	44	47	45	46	30	38	44	57	52	48
М	47	47	46	29	53	44	42	45	44	43	45	25	42	46	50	44	41
А	43	44	46	31	59	44	41	40	40	43	47	27	41	42	50	44	37
Μ	46	46	46	32	63	48	41	42	43	44	53	30	45	47	51	45	39
J	39	41	43	27	51	41	37	37	38	40	48	28	40	39	45	41	33
J	49	50	49	35	61	49	46	47	46	49	54	30	50	49	57	50	42
А	52	54	52	32	63	52	48	51	50	50	58	30	51	50	58	53	46
S	48	49	49	29	58	46	42	47	46	47	50	31	43	45	57	48	44
0	41	41	39	25	48	41	36	37	41	40	44	26	33	41	54	47	42
Ν	35	35	33	24	40	34	32	35	39	35	33	23	29	37	53	43	43
D	32	31	32	22	34	32	29	32	34	31	31	20	24	34	47	41	42

A 81 : a) Monatsmittel der Bewölkung in 10tel Okta, b) Variationskoeffizient v aus den Tagesmittel der Bewölkung. Datenunsicherheit bei BZ

62 60

64 65 64 66 61 68 71

D

m

63 63 65 55 62

	Zirk	MA	KA	GE	ΒZ	ΑZ	WU	TR	FR	SA	BU	ST	ко	BE	WB	нs	но	FE
J	z	24	25	24	25	31	25	19	27	18	24	28	25	15	24	37	28	29
F	z	26	26	26	22	35	26	23	27	27	27	32	27	16	30	44	36	34
Μ	z	34	32	34	25	44	31	28	30	29	32	33	33	20	32	38	33	30
А	z	29	28	30	17	48	31	29	26	26	33	28	29	19	31	40	31	24
Μ	z	22	23	22	24	41	23	18	23	22	31	23	27	17	26	38	27	24
J	z	24	25	26	26	37	26	23	23	24	31	24	27	18	25	33	25	21
J	z	36	37	38	27	50	36	33	37	37	43	34	39	25	37	51	39	36
А	z	46	48	47	30	59	47	42	46	46	54	47	47	31	45	59	50	43
s	z	32	35	34	27	46	33	28	38	31	37	34	38	23	31	49	34	37
0	z	32	34	32	28	37	30	25	33	31	30	35	31	19	31	47	34	35
Ν	z	21	21	25	19	32	26	17	22	19	20	24	28	13	23	36	22	25
D	z	20	22	20	21	25	22	17	24	20	20	25	22	13	26	40	29	32
J	g	46	45	36	27	44	43	44	46	46	48	58	28	31	49	72	68	72
F	g	56	57	53	34	62	53	50	55	54	55	57	48	38	49	76	68	61
Μ	g	53	53	50	31	62	48	49	54	50	49	50	49	28	52	62	53	49
А	g	50	53	51	34	66	51	46	48	48	58	48	49	32	49	62	52	44
М	g	54	54	55	36	74	56	50	51	52	63	50	54	35	53	60	56	46
J	g	49	50	56	28	65	52	48	45	50	62	50	50	34	48	56	52	40
J	g	58	61	61	38	74	60	55	58	60	65	56	63	35	60	67	62	48
А	g	62	65	61	33	69	62	56	61	58	69	58	61	35	57	67	62	55
S	g	64	64	65	35	74	61	56	60	60	66	59	53	38	59	71	62	55
0	g	48	46	45	23	56	44	45	46	50	51	47	38	31	51	69	60	52
Ν	g	43	44	35	29	43	40	40	46	44	41	54	31	31	50	76	62	60
D	g	43	41	44	25	44	44	40	42	43	43	45	26	27	44	59	54	55
J	m	40	34	41	25	42	42	39	29	37	37	39	23	24	35	50	53	52
F	m	55	50	57	28	48	55	48	47	51	50	48	35	31	50	48	47	44
Μ	m	49	50	51	29	49	49	44	46	45	50	47	42	23	50	47	42	39
А	m	41	40	45	32	56	42	41	37	42	41	36	38	26	39	44	40	34
Μ	m	45	43	44	31	60	46	38	39	42	51	41	42	29	46	47	40	36
J	m	38	40	43	27	48	39	36	38	40	45	36	39	28	38	42	40	32
J	m	47	47	46	35	56	46	43	43	46	50	44	46	29	45	52	46	38
А	m	45	46	46	30	60	46	43	43	44	50	42	41	24	45	48	44	38
S	m	43	43	43	23	52	40	38	39	44	45	41	34	27	41	46	42	37
0	m	42	40	39	25	48	47	36	32	37	49	39	29	27	39	42	44	37
Ν	m	37	37	37	24	44	34	36	34	36	34	36	28	22	35	44	39	39
D	m	32	32	32	19	33	33	30	29	31	29	30	24	18	29	40	40	40

A 83 : Mittlere monatliche Variationskoeffizienten aus den Tagesmittel der Bewölkung, aufgeschlüsselt nach Zirkulationsformen; z zonal, g gemischt, m meridional. Datenunsicherheit bei BZ

- 218 -

-	21	9	_

	GE	WU	TR	MA	SA	ST	FR	ко	но	FE	HS	AZ	BU	BE	WB	KA
xzyjan	66	66	69	66	69	64	69	67	73	70	65	64	69	73	66	67
∨zyjan	25	23	18	22	18	23	21	22	21	22	29	25	21	13	22	21
xaz yjan	60	55	56	54	56	46	55	67	39	36	37	54	55	62	53	55
∨az yjan	42	50	49	51	49	61	48	30	78	80	82	53	51	32	49	47
xzyfeb	64	63	64	63	64	62	66	66	69	69	63	58	66	71	62	64
∨zyfeb	28	28	27	28	28	28	28	26	27	26	33	36	27	17	27	29
xaz yfeb	45	44	47	43	45	41	46	53	39	41	35	44	45	56	44	45
∨az yfeb	70	66	58	68	64	67	62	50	78	69	84	65	65	41	63	64
xzymar	63	63	65	64	64	62	66	65	71	71	63	58	65	70	62	65
∨zymar	25	26	22	25	24	25	24	25	24	22	29	34	26	18	25	24
xazymar	41	43	44	40	42	42	41	45	44	45	39	39	44	59	41	41
∨azymar	69	62	61	68	60	64	66	59	63	57	70	74	64	30	66	69
xzyapr	60	59	61	60	60	60	65	64	66	68	60	54	62	67	59	62
∨zyapr	30	31	28	29	29	28	25	26	27	23	33	40	29	19	29	28
xaz yapr	39	40	41	40	40	42	43	42	41	46	36	30	38	53	41	40
∨azyapr	64	60	57	59	60	54	58	58	64	52	74	87	69	36	58	63
xzymai	61	59	63	60	61	60	64	63	66	67	60	54	61	67	59	61
∨zymai	27	28	22	28	25	25	25	27	24	22	32	40	30	19	28	26
xazymai	38	35	41	37	39	39	42	40	40	45	36	27	33	50	37	38
∨azymai	63	65	57	63	60	58	57	62	62	52	70	86	76	38	63	63
xzyjun	61	61	64	62	61	61	64	63	67	67	56	56	61	67	60	62
vzyjun	23	22	19	22	22	22	22	26	23	20	32	33	27	16	23	23
xazyjun	37	39	42	40	38	41	43	43	43	49	38	34	35	50	39	40
∨az yjun	60	57	51	53	55	52	50	53	56	43	57	70	67	37	52	56
xzyjui	60	59	01	6U 07	58	57	60	6U 20	05	63	52	53	59	66	55	58
vzyjui	20	28	23	27	27	27	28	28	27	20 40	39	30	33	18	28	28
xazyjui	30	30 62	3/ 50	30	34 62	00 هم	37 50	37	38 64	42 50	ు కం	29 01	30 60	20	33 60	30
vaz yjul	56	54	50	55	02 56	50	59	57	62	50 60	50	01 50	09 55	30 62	52	56
xzyaug	20	22	27	20	20	22	27	22	21	21	14	30 71	26	22	20	22
vzyaug	36	36	27	32	29	36	38	30	38	12	25	20	33	22 51	34	25
vazvaug	64	64	59	63	61	59	61	61	65	72 54	67	78	72	34	61	66
xzvsen	61	60	63	61	62	58	62	62	67	66	57	56	62	68	61	61
vzvsen	26	27	23	25	24	27	27	28	25	24	34	34	29	17	24	27
xazvsep	37	37	40	35	35	37	38	43	40	41	32	29	36	49	37	36
vazvsep	68	62	57	67	63	62	63	55	66	59	80	81	69	39	60	67
xzvokt	65	63	66	64	65	61	66	66	71	69	62	59	66	70	63	65
vzvokt	23	23	20	23	22	24	22	22	22	21	30	31	25	15	22	23
xazvokt	50	45	49	46	46	45	50	55	43	44	37	44	46	57	45	48
vazyokt	50	54	48	55	53	53	49	41	65	56	73	62	59	33	53	53
xzynov	66	65	68	66	67	62	65	66	70	68	62	60	68	72	64	65
vzynov	26	27	22	25	23	27	27	26	25	26	36	33	24	16	25	26
xazynov	58	57	54	53	53	48	55	64	45	43	40	54	58	62	51	55
vazynov	42	43	44	46	47	53	45	32	61	61	73	50	43	30	50	46
xzydez	69	69	71	70	71	66	70	68	73	71	66	65	71	75	67	69
vzydez	19	19	15	16	16	18	17	20	20	20	27	24	19	11	19	18
xazydez	59	57	58	56	57	53	57	67	48	44	45	58	60	65	55	57
∨azydez	45	47	43	47	46	49	46	29	62	64	69	46	44	28	48	45

A 84 : Monatsmittel ${\bf x}$, mittl. monatl. Variationskoeffizent ${\bf v}$ der ~zyklonalen und antizyklonalen Anteile

WUG	WU B	WUD	TR G	TR B	TR D	MA G	MA B	MA D	ST G	ST B	ST D	FR G	FR B	FR D
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.34	1.39	1.23	1.35	1.38	1.25	1.22	1.25	1.13	1.32	1.38	1.38	1.38	1.42	1.42
1.43	1.43	1.44	1.29	1.31	1.22	1.29	1.32	1.24	1.42	1.50	1.50	1.42	1.49	1.49
1.53	1.57	1.43	1.43	1.43	1.41	1.41	1.44	1.36	1.47	1.47	1.47	1.56	1.62	1.62
1.51	1.45	1.64	1.37	1.34	1.44	1.45	1.40	1.56	1.49	1.49	1.49	1.53	1.58	1.58
1.45	1.36	1.67	1.35	1.26	1.59	1.44	1.38	1.59	1.47	1.43	1.43	1.57	1.61	1.61
1.50	1.40	1.76	1.29	1.21	1.50	1.27	1.17	1.50	1.34	1.28	1.28	1.52	1.49	1.49
1.38	1.21	1.79	1.21	1.06	1.62	1.29	1.17	1.57	1.45	1.40	1.40	1.35	1.26	1.26
1.25	1.08	1.64	1.14	0.98	1.57	1.08	0.91	1.47	1.35	1.20	1.20	1.25	1.17	1.17
1.22	1.01	1.69	1.18	1.03	1.59	1.15	0.94	1.66	1.28	1.11	1.11	1.30	1.17	1.17
1.20	0.95	1.79	1.14	0.94	1.67	1.14	0.89	1.71	1.24	1.04	1.04	1.33	1.20	1.20
1.12	0.86	1.71	1.16	0.90	1.82	1.11	0.84	1.74	1.27	1.01	1.01	1.29	1.14	1.14
1.12	0.82	1.83	1.10	0.82	1.86	1.11	0.79	1.86	1.20	0.92	0.92	1.21	1.00	1.00
1.10	0.74	1.93	1.04	0.71	1.92	1.09	0.77	1.86	1.18	0.85	0.85	1.18	0.94	0.94
0.99	0.62	1.84	0.94	0.61	1.83	0.92	0.56	1.75	1.04	0.70	0.70	1.11	0.84	0.84
0.89	0.50	1.79	0.89	0.52	1.87	0.86	0.53	1.64	0.91	0.51	0.51	1.08	0.76	0.76
0.78	0.41	1.64	0.84	0.47	1.80	0.81	0.44	1.69	0.91	0.53	0.53	0.95	0.61	0.61
0.84	0.42	1.83	0.76	0.41	1.70	0.78	0.42	1.63	0.84	0.43	0.43	0.94	0.58	0.58
0.79	0.39	1.73	0.70	0.34	1.64	0.72	0.35	1.57	0.75	0.36	0.36	0.97	0.59	0.59
0.73	0.32	1.68	0.72	0.34	1.72	0.73	0.33	1.67	0.82	0.37	0.37	0.90	0.51	0.51
0.73	0.30	1.74	0.69	0.28	1.77	0.68	0.28	1.63	0.71	0.28	0.28	0.85	0.44	0.44
0.67	0.23	1.69	0.60	0.21	1.65	0.60	0.20	1.53	0.62	0.19	0.19	0.74	0.30	0.30
0.54	0.14	1.46	0.44	0.10	1.31	0.43	0.10	1.22	0.44	0.08	0.08	0.58	0.20	0.20
0.37	0.06	1.10	0.30	0.04	0.97	0.32	0.05	0.97	0.31	0.03	0.03	0.38	0.07	0.07
0.20	0.01	0.65	0.15	0.01	0.54	0.19	0.01	0.61	0.21	0.01	0.01	0.21	0.01	0.01
	WU G 1.00 1.34 1.43 1.53 1.51 1.45 1.50 1.38 1.25 1.22 1.20 1.12 1.12 1.10 0.99 0.78 0.89 0.78 0.73 0.73 0.67 0.54 0.37 0.20	WU GWU B1.001.001.341.391.431.431.531.571.511.451.451.361.501.401.381.211.251.081.260.951.120.821.120.821.120.821.120.821.120.500.780.510.780.410.840.420.730.320.730.320.540.140.370.0660.200.011	WU GWU BWU D1.001.001.001.341.391.231.431.431.441.531.571.431.511.451.641.451.361.671.501.401.761.381.211.791.251.081.641.200.951.791.210.861.711.120.821.831.100.741.930.990.621.840.890.501.790.780.411.640.730.321.680.730.321.680.730.321.680.730.301.740.670.231.690.540.141.460.370.061.100.200.010.655	WU GWU BWU DTR G1.001.001.001.001.341.391.231.351.431.431.441.291.531.571.431.431.511.451.641.371.451.361.671.351.501.401.761.291.381.211.791.211.251.081.641.141.221.011.691.181.200.951.791.141.120.861.711.161.120.821.831.001.100.741.931.040.990.621.840.940.890.501.790.890.780.411.640.840.790.391.730.700.730.301.740.690.670.231.690.600.540.141.460.440.370.061.100.30	WU GWU BWU DTR GTR B1.001.001.001.001.001.341.391.231.351.381.431.431.441.291.311.531.571.431.431.431.511.451.641.371.341.451.641.371.261.451.451.361.671.291.211.501.401.761.291.211.381.211.791.211.061.251.081.641.140.981.221.011.691.140.941.200.951.791.140.941.210.861.711.160.901.120.821.831.100.821.100.741.931.040.710.890.621.840.940.610.890.501.790.890.520.780.411.640.840.470.840.421.830.700.340.730.301.740.690.280.670.231.680.720.340.730.301.740.690.210.370.041.460.440.100.370.061.100.300.040.370.061.100.300.04	WU GWU BWU DTR GTR BTR D1.001.001.001.001.001.001.341.391.231.351.381.251.431.431.441.291.311.221.531.571.431.431.431.411.511.451.641.371.341.441.451.361.671.351.261.591.501.401.761.291.211.501.501.401.761.291.211.501.381.211.791.211.061.621.221.081.641.140.981.571.221.011.691.181.031.591.200.951.791.140.941.671.210.861.711.160.901.821.120.821.831.100.821.861.100.741.931.040.711.920.990.621.840.940.611.830.890.501.790.890.521.870.780.411.640.840.471.800.730.301.740.690.281.770.670.321.690.600.211.650.540.141.460.440.101.310.370.661.100.300.040.970.500.611.6	WU GWU BWU DTR GTR BTR DMA G1.001.001.001.001.001.001.001.341.391.231.351.381.251.221.431.431.441.291.311.221.291.531.571.431.431.431.411.411.511.451.641.371.341.441.451.451.361.671.351.261.591.441.501.401.761.291.211.501.271.381.211.791.211.061.621.291.251.081.641.140.981.571.081.221.011.691.181.031.591.151.200.951.791.140.941.671.141.120.861.711.160.901.821.111.120.821.831.040.711.921.090.990.621.840.940.611.830.920.890.501.790.890.521.870.880.790.621.840.940.611.800.810.780.411.640.840.471.800.810.790.391.730.700.341.640.720.730.301.740.690.281.770.680.670.331.69	WU GWU BWU DTR GTR BTR DMA GMA B1.001.001.001.001.001.001.001.001.341.391.231.351.381.251.221.251.431.431.441.291.311.221.291.321.531.571.431.431.411.411.441.441.511.451.641.371.341.441.451.401.451.361.671.351.261.591.441.381.501.401.761.291.211.501.271.171.381.211.791.211.061.621.291.171.251.081.641.140.981.571.080.941.200.951.791.140.941.671.140.841.200.951.791.140.901.821.110.941.120.861.711.160.901.821.110.791.100.741.931.040.811.410.790.311.100.741.931.040.611.830.920.560.890.621.840.940.611.830.920.560.780.411.640.840.471.800.410.430.790.391.730.700.341.640.720.35	WU GWU DTR GTR BTR DMA GMA A1.001.001.001.001.001.001.001.001.001.341.391.231.351.381.251.221.231.241.431.431.441.291.311.221.291.321.241.531.571.431.431.431.411.441.361.561.511.451.641.371.341.441.451.401.561.451.361.671.351.261.591.441.381.571.501.401.761.291.211.501.271.171.571.511.401.671.291.211.601.621.291.171.571.531.641.140.981.571.080.911.471.471.251.081.641.140.981.571.080.911.471.261.091.691.140.981.571.080.911.471.210.861.711.160.941.671.140.841.741.120.821.831.040.911.831.110.791.861.140.841.640.940.611.830.920.561.750.890.501.790.840.711.800.810.441.610.840.410	WU GWU BWU DTR GTR DMA DMA DMA DST G1.001.001.001.001.001.001.001.001.001.001.341.391.231.351.381.221.221.231.131.321.431.441.241.231.231.241.421.441.441.421.531.571.431.431.441.441.441.441.461.471.511.451.641.371.241.441.441.461.471.471.511.451.641.371.241.441.441.361.471.511.451.641.371.241.451.401.561.491.511.451.641.371.251.471.571.451.501.401.761.251.261.271.171.571.571.521.081.641.140.981.571.080.911.471.571.251.081.641.140.981.571.080.911.471.571.251.081.641.140.981.571.681.411.441.441.261.681.711.681.691.611.641.641.611.261.681.711.681.681.611.641.611.611.611.210.861.71<	WU GWU BWU DTR GTR DIR DMA BMA DST GST B1.001.001.001.001.001.001.001.001.001.001.001.341.391.321.351.321.221.201.321.241.321.381.351.571.431.421.201.211.221.201.321.241.421.501.511.571.431.431.431.441.441.451.401.561.491.491.451.461.671.351.211.501.411.441.561.491.491.451.401.671.291.211.501.441.501.471.431.431.451.401.671.291.211.501.411.501.471.431.431.451.401.691.291.211.501.411.501.451.431.441.451.401.611.291.211.501.411.551.451.451.451.451.401.611.291.211.501.411.551.451.451.451.451.461.411.691.211.611.621.611.451.451.451.451.411.691.611.611.621.611.611.611.611.421.611.611.611.	WU GWU DWU DTR GTR BTR DMA GMA BMA DST GST BST D1.00 </th <th>WU GWU BWU DTR GTR DIR AMA BMA DST GST DST DFR G1.00<!--</th--><th>WU GWU DTR GTR BTR DMA GMA BMA DST GST BST DFR GFR B1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.341.391.321.351.381.221.221.211.321.321.381.381.341.411.431.441.441.441.441.441.441.441.441.441.441.451.451.451.451.451.451</th></th>	WU GWU BWU DTR GTR DIR AMA BMA DST GST DST DFR G1.00 </th <th>WU GWU DTR GTR BTR DMA GMA BMA DST GST BST DFR GFR B1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.341.391.321.351.381.221.221.211.321.321.381.381.341.411.431.441.441.441.441.441.441.441.441.441.441.451.451.451.451.451.451</th>	WU GWU DTR GTR BTR DMA GMA BMA DST GST BST DFR GFR B1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.341.391.321.351.381.221.221.211.321.321.381.381.341.411.431.441.441.441.441.441.441.441.441.441.441.451.451.451.451.451.451

Bew	FE G _N /G ₀	HO G _N / G ₀	HS G _N /G ₀	BEW	FE G _N /G ₀	HO G _N / G ₀	HS G _N /G ₀
0	1.00	1.00	1.00	43	1.39	1.05	0.99
3	1.44	1.19	1.12	47	1.33	0.99	0.89
7	1.48	1.16	1.30	50	1.19	0.91	0.80
10	1.63	1.27	1.25	53	1.07	0.74	0.74
13	1.66	1.25	1.25	57	1.02	0.76	0.73
17	1.69	1.30	1.20	60	1.02	0.73	0.74
20	1.69	1.18	1.22	63	1.00	0.72	0.74
23	1.61	1.15	1.16	67	0.95	0.64	0.63
27	1.55	1.07	1.06	70	0.88	0.62	0.56
30	1.57	1.07	1.07	73	0.74	0.52	0.47
33	1.55	1.10	1.08	77	0.58	0.49	0.42
37	1.52	1.06	1.02	80	0.41	0.31	0.30
40	1.48	1.01	1.02				

A 85 : Mittlere Tagessummen der Globalstrahlung (G), bzw. direkten (B), bzw. diffusen Sonnenstrahlung (D) für die Bewölkungsstufen (10tel Okta), normiert an der Strahlungseinnahme bei wolkenlosem Himmel. G_N / G_0 bzw. B_N / B_0 bzw. D_N / D_0 ; N Bewölkungsstufe

- 221 -	
---------	--

	ΗüNN	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
MA	106	77	85	83	83	85	82	86	83	83	83	80	77
KA	112	80	85	84	86	85	85	88	87	85	83	80	82
GE	131	76	83	81	81	81	80	82	80	81	80	78	77
AZ	215	66	79	81	82	85	84	84	84	84	78	69	70
WU	275	79	83	81	81	84	82	85	80	81	79	78	77
TR	278	81	84	84	82	82	82	84	80	81	80	78	81
FR	308	79	83	82	81	83	82	84	83	82	79	79	79
ST	318	81	83	84	84	85	83	86	83	82	82	80	80
SA	325	79	83	86	83	82	82	85	82	82	82	81	82
BU	350	84	85	85	86	87	85	87	85	85	86	83	80
BE	450	83	85	81	83	87	85	86	82	83	84	83	83
ко	450	70	78	78	82	81	82	86	83	76	73	73	71
WB	553	79	83	86	84	88	85	89	87	85	87	84	84
HS	1008	84	88	86	86	89	82	87	86	86	86	85	83
но	1122	91	91	92	90	90	90	92	88	90	91	88	90
FE	1486	92	91	89	87	86	85	89	87	87	88	89	90

A 86 : Produktmoment-Korrelationen (r absolute Werte, gerundet): Tageswerte der **relativen Globalstrahlung** in Abhängigkeit von den Tagesmitteln der **Bewölkung** in 10tel Okta nach Monaten (1981–2000)

	Gru 1	Gru 1	Gru 1	Gru 1	Gru 2	Gru 2	Gru 2	Gru 2	Gru 3	Gru 3	Gru 3	Gru 3
N [mm]	ohne N.	0.1-1.0	1.1-10.0	≥10.1	ohne N.	0.1-1.0	1.1-10.0	≥10.1	ohne N.	0.1-1.0	1.1-10.0) ≥10.1
	RG	RG	RG	RG	RG	RG	RG	RG	RG	RG	RG	RG
J	21.6	21.5	20.6	19.3	20.6	20.6	20.6	17.5	31.2	30.5	31.0	30.1
F	22.2	21.4	19.9	17.6	20.4	19.4	18.6	17.3	30.4	28.8	28.9	28.4
М	21.7	19.4	18.8	17.8	20.0	19.4	18.0	16.9	29.7	27.7	28.2	27.7
А	25.5	20.3	19.4	16.8	24.3	23.3	20.9	17.1	25.6	25.7	24.8	24.3
М	19.3	19.9	19.1	16.1	24.1	20.9	20.6	18.2	22.6	21.8	21.5	21.1
J	23.6	22.1	20.2	16.9	24.1	24.8	20.9	19.8	21.2	25.0	23.3	22.3
J	25.8	24.7	21.0	17.7	25.4	24.2	21.0	19.4	29.8	23.7	23.7	22.6
А	24.7	23.7	19.8	16.0	30.2	22.0	21.5	19.4	30.2	26.7	22.3	21.5
S	25.6	20.3	18.8	17.2	26.0	24.0	20.4	17.4	27.8	25.9	24.6	24.0
0	19.9	19.8	17.8	16.1	20.2	19.6	19.1	15.5	25.3	23.5	23.1	22.9
Ν	20.3	20.4	19.5	17.2	21.1	19.5	19.0	15.6	28.7	27.2	26.8	26.5

A 87 : Verhalten der **relativen Globalstrahlung** bei **totaler Himmelsbedeckung** (8 Okta). Mittlerer Jahresgang an **trockenen Tagen** und an **Tagen mit Niederschlag**, bezogen auf die in der Diskriminanzanalyse (Abb.34) ermittelten **drei Stationsgruppen** (1-3) :

1 Würzburg, Trier, Freiburg, Stuttgart, Saarbrücken, Buchen, Beerfelden, Konstanz, Weinbiet

- 2 Mannheim, Karlsruhe, Geisenheim, Alzey
- 3 Höchenschwand, Hornisgrinde, Feldberg

Über die Signifikanz der Unterschiede siehe Text

		0	.0 mr	n N		(D.1-	1.0 m	mΝ	l	1	.1-1(0.0 m	m N			≥10.	1 mm	ιN	
SommerHj.	Bew	RG	RGa	RD	RB	Bew	RG	RGa	RD	RB	Bew	RG	RGa	RD	RB	Bew	RG	RGa	RD	RB
WA	38	59	41	25	34	59	43	57	26	17	61	43	57	27	16	60	43	57	24	19
WZ	49	53	47	27	26	62	40	60	26	14	65	36	64	24	12	68	31	69	21	10
WS	52	49	51	28	21	60	43	57	26	17	65	37	63	25	12	73	26	74	21	5
ww	54	49	51	28	21	59	40	60	26	14	67	38	62	25	13	68	44	56	23	21
SWA	37	62	38	25	37	57	46	54	26	20	55	48	52	24	24	55	52	48	22	30
SWZ	45	56	44	26	30	58	44	56	27	17	63	39	61	25	14	67	34	66	22	12
NWA	35	60	40	26	34	58	46	54	25	21	62	43	57	26	17	-	-	-	-	-
NWZ	49	50	50	28	22	63	37	63	25	12	68	31	69	23	8	73	26	74	20	6
HM	21	68	32	21	47	43	61	39	23	38	45	57	43	23	34	59	41	59	25	16
BM	32	61	39	25	36	54	44	56	25	19	57	43	57	25	18	59	41	59	24	17
тм	58	41	59	29	12	67	34	66	25	9	71	27	73	21	6	75	21	79	17	4
NA	41	58	42	26	32	59	41	59	24	17	54	41	59	23	18	-	-	-	-	-
NZ	50	50	50	28	22	60	38	62	27	11	67	30	70	23	7	75	21	79	18	3
HNA	33	62	38	25	37	54	48	52	27	21	62	40	60	26	14	60	43	57	27	16
HNZ	50	53	47	28	25	59	42	58	27	15	64	38	62	24	14	70	33	67	22	11
НВ	34	61	39	24	37	64	33	67	24	9	66	35	65	23	12	70	28	72	21	7
TRM	53	46	54	28	18	63	37	63	26	11	68	33	67	24	9	73	24	76	18	6
NEA	29	64	36	25	39	60	38	62	26	12	60	37	63	23	14	58	35	65	22	13
NEZ	59	40	60	25	15	72	25	75	20	5	71	29	71	22	7	68	29	71	21	8
HFA	27	64	36	24	40	51	47	53	26	21	65	35	65	25	10	68	38	62	25	13
HFZ	47	51	49	28	23	58	45	55	29	16	64	34	66	22	12	66	35	65	24	11
HNFA	33	63	37	25	38	54	47	53	26	21	61	44	56	25	19	59	43	57	25	18
HNFZ	55	43	57	26	17	67	39	61	29	10	70	26	74	22	4	75	21	79	17	4
SEA	33	64	36	26	38	44	53	47	27	26	50	48	52	26	22	48	48	52	27	21
SEZ	60	46	54	29	17	62	40	60	26	14	67	30	70	20	10	78	14	86	13	1
SA	37	61	39	24	37	55	44	56	26	18	53	48	52	25	23	57	54	46	29	25
SZ	53	50	50	26	24	64	31	69	21	10	61	39	61	26	13	71	34	66	22	12
тв	52	51	49	28	23	55	45	55	27	18	62	40	60	25	15	68	35	65	21	14
TRW	48	53	47	27	26	62	39	61	26	13	66	36	64	24	12	70	28	72	20	8

A 88 : Zusammenhang der Strahlungseinnahme im Sommerhalbjahr von den Niederschlagsklassen und Großwetterlagen. Rga = 100 - RG; 100 = RG bei Rayleigh-Atmosphäre; RB = relative direkte Sonnenstrahlung; RD+RB+(100-RG) =100. Aus den gemessenen Tagessummen der Stationen Würzburg, Trier, Mannheim, Stuttgart und Freiburg 1981-2000

		0.	0 mm	ηN		(D.1-1	1.0 m	m N			1.1	-10.0	mm	۱N		≥ 1().1 mi	mΝ	
WINTERHJ.	Bew	RG	RGa	RD	RB	Bew	RG	RGa	RD	RB	Bew	RG	RGa	RD	RB	Bew	RG	RGa	RD	RB
WA	49	48	52	28	20	65	34	66	25	9	66	32	68	23	9	70	33	67	23	10
WZ	56	46	54	29	17	65	35	65	25	10	69	28	72	22	6	74	20	80	17	3
ws	54	46	54	32	14	67	37	63	30	7	72	30	70	24	6	76	19	81	16	3
ww	61	43	57	30	13	70	33	67	27	6	72	27	73	22	5	75	19	81	17	2
SWA	42	56	44	27	29	61	37	63	27	10	67	34	66	25	9	70	28	72	17	11
SWZ	52	52	48	29	23	63	37	63	26	11	68	30	70	23	7	72	24	76	19	5
NWA	48	48	52	28	20	68	30	70	24	6	73	22	78	20	2	-	-	-	-	-
NWZ	55	43	57	27	16	68	32	68	25	7	72	24	76	20	4	77	19	81	18	1
HM	35	55	45	27	28	64	35	65	26	9	61	46	54	29	17	79	16	84	16	0
BM	46	50	50	27	23	67	33	67	25	8	70	30	70	23	7	79	18	82	16	2
ТМ	64	36	64	27	9	73	31	69	27	4	76	25	75	23	2	79	12	88	11	1
NA	43	57	43	28	29	64	31	69	23	8	71	21	79	19	2	-	-	-	-	-
NZ	44	57	43	31	26	62	39	61	29	10	69	30	70	25	5	74	21	79	19	2
HNA	35	60	40	29	31	59	39	61	27	12	70	29	71	23	6	79	15	85	15	0
HNZ	55	51	49	37	14	63	43	57	30	13	74	32	68	27	5	76	13	87	13	0
НВ	48	46	54	27	19	67	30	70	23	7	75	23	77	21	2	-	-	-	-	-
TRM	55	47	53	31	16	65	36	64	28	8	71	28	72	23	5	77	18	82	16	2
NEA	28	66	34	30	36	47	49	51	34	15	-	-	-	-	-	-	-	-	-	-
NEZ	56	45	55	27	18	67	34	66	28	6	72	28	72	24	4	-	-	-	-	-
HFA	37	54	46	27	27	64	33	67	23	10	71	29	71	24	5	-	-	-	-	-
HFZ	51	46	54	29	17	71	34	66	28	6	72	27	73	24	3	-	-	-	-	-
HNFA	42	55	45	30	25	60	37	63	25	12	66	34	66	26	8	-	-	-	-	-
HNFZ	68	35	65	30	5	69	34	66	27	7	74	24	76	21	3	80	11	89	11	0
SEA	43	50	50	28	22	69	29	71	23	6	71	29	71	23	6	77	20	80	17	3
SEZ	57	41	59	30	11	68	32	68	26	6	74	22	78	21	1	78	16	84	15	1
SA	54	45	55	29	16	69	31	69	25	6	69	32	68	23	9	71	35	65	30	5
sz	61	40	60	28	12	64	31	69	26	5	76	18	82	16	2	-	-	-	-	-
ТВ	52	50	50	29	21	62	36	64	27	9	67	31	69	24	7	74	20	80	19	1
TRW	53	49	51	29	20	64	36	64	26	10	70	30	70	23	7	78	17	83	16	1

A 89 : Zusammenhang der Strahlungseinnahme im Winterhalbjahr von den Niederschlagsklassen und Großwetterlagen. Rga = 100 - RG; 100 = RG bei Rayleigh-Atmosphäre; RB = relative direkte Sonnenstrahlung; RD+RB+(100-RG) =100. Aus den gemessenen Tagessummen der Stationen Würzburg, Trier, Mannheim, Stuttgart und Freiburg 1981-2000

GWL	MA	KA	GE	ΒZ	AZ	WU	TR	FR	ST	SA	BU	BE	ко	WВ	HS	но	FE
WA	53.1	56.4	54.0	55.5	55.0	54.4	55.0	57.0	54.5	55.1	55.5	55.3	54.8	53.1	58.3	55.9	55.4
WZ	39.9	43.4	40.5	43.6	43.1	42.6	39.6	44.8	42.5	39.7	43.7	41.9	45.2	40.2	48.2	38.9	39.6
ws	38.3	40.3	37.9	41.3	41.5	41.1	37.2	38.6	39.4	36.5	40.9	38.2	40.2	38.7	41.0	35.3	32.4
ww	40.6	42.7	38.9	42.5	41.9	42.7	38.0	46.8	42.5	39.9	42.7	39.6	45.7	38.6	47.8	39.9	40.6
SWA	55.9	57.7	53.6	55.3	55.7	58.0	55.1	58.9	57.4	55.4	56.9	57.3	59.0	53.9	59.9	60.8	58.3
swz	44.9	46.7	43.9	46.5	46.4	46.7	43.8	46.9	46.1	43.7	47.7	46.9	47.3	44.7	48.5	46.1	45.8
NWA	55.3	57.6	54.7	56.5	54.1	55.4	56.9	62.1	57.7	57.7	56.5	54.9	58.1	54.2	62.9	61.9	64.0
NWZ	35.8	38.8	37.7	40.4	40.2	38.1	37.6	41.2	39.7	38.6	39.4	37.3	40.7	37.5	43.2	36.5	37.9
нм	66.5	66.6	66.9	64.2	65.5	67.5	66.9	66.2	66.9	67.3	67.1	66.1	64.7	64.7	67.8	71.9	67.6
вм	57.3	56.7	57.6	56.1	57.7	57.8	58.5	55.3	55.9	57.5	58.0	56.8	53.9	54.9	55.7	57.2	53.6
тм	30.2	33.7	30.1	33.6	34.6	32.1	28.5	32.0	31.7	28.3	33.9	31.9	35.1	30.0	33.9	29.5	27.7
NA	52.8	51.6	54.1	49.5	53.9	48.7	58.1	62.9	53.7	57.9	50.3	52.4	56.3	51.2	56.7	55.3	55.3
NZ	40.3	41.9	42.4	42.5	44.7	42.8	41.2	42.4	41.2	43.0	42.3	40.2	42.9	39.2	42.0	39.1	36.5
HNA	57.4	57.1	58.5	55.9	57.5	57.3	60.0	57.9	57.0	59.2	57.1	57.1	57.0	54.8	58.6	59.8	54.6
HNZ	42.9	44.4	42.6	44.1	43.7	45.0	41.7	45.4	44.1	43.0	44.4	43.5	44.6	41.1	44.2	41.6	38.3
НВ	55.0	56.0	55.3	53.6	55.1	53.4	56.6	57.2	53.9	57.6	54.6	53.9	53.7	53.5	54.9	58.0	54.1
TRM	36.1	38.2	37.3	39.4	39.7	37.4	36.5	37.5	36.6	37.9	37.2	36.5	36.1	35.2	37.8	32.9	31.4
NEA	56.8	56.7	57.5	56.5	58.7	57.0	58.3	55.7	56.1	57.5	56.7	56.9	57.7	56.9	55.5	61.3	54.0
NEZ	33.0	32.2	35.3	31.8	33.9	30.2	36.0	30.9	29.5	35.2	32.3	31.9	31.8	30.9	32.6	30.9	29.8
HFA	58.1	57.9	57.9	56.0	57.2	56.6	57.4	55.6	56.4	57.6	57.8	58.3	55.7	56.3	56.1	57.4	52.8
HFZ	44.2	44.4	44.2	43.8	44.3	42.6	46.8	43.1	41.8	46.0	44.7	44.0	44.6	42.1	44.3	44.3	41.5
HNFA	56.9	54.5	57.5	53.9	55.8	59.0	52.3	55.3	56.4	54.5	57.0	55.9	57.2	53.1	53.0	53.6	49.9
HNFZ	34.6	35.8	31.3	34.2	32.7	34.2	30.0	34.1	34.8	30.8	33.6	36.3	39.4	32.4	39.2	35.7	36.1
SEA	59.8	57.9	60.6	57.1	58.7	62.5	57.2	59.4	59.5	57.7	60.9	58.8	58.3	56.1	60.4	58.7	56.9
SEZ	39.3	36.7	39.0	35.9	39.7	42.4	34.1	27.5	36.3	33.3	41.7	41.2	33.3	38.4	31.5	34.3	30.6
SA	57.8	56.4	56.5	54.2	56.1	57.5	55.3	56.6	57.4	56.6	56.1	56.8	59.2	55.5	59.2	56.5	54.4
SZ	41.7	40.9	39.8	39.2	41.2	45.4	38.4	39.1	42.9	37.7	43.9	44.5	46.6	41.0	44.1	40.7	40.6
тв	41.8	44.0	39.4	43.3	43.0	44.9	41.7	43.4	42.5	40.1	45.2	43.2	44.7	40.2	44.0	40.3	38.3
TRW	42.1	41.1	41.5	41.7	42.5	43.7	40.1	40.1	40.2	40.2	42.2	41.2	41.5	39.4	41.0	39.1	37.0

GWL	MA	KA	GE	ΒZ	AZ	WU	TR	FR	ST	SA	BU	BE	ко	WB	HS	но	FE
WA	40.6	42.5	38.2	41.9	36.5	41.2	37.8	48.2	47.1	39.1	41.7	41.2	41.5	42.6	56.8	54.8	63.2
WZ	30.5	34.1	32.7	34.4	33.0	35.4	27.1	34.6	36.9	27.3	34.9	31.8	38.3	33.7	39.4	35.0	37.3
ws	33.2	32.6	32.6	31.7	31.7	36.5	28.8	30.5	37.2	29.6	32.6	30.2	35.1	31.5	35.1	32.8	33.1
ww	27.3	29.7	26.2	29.2	29.0	32.8	24.8	29.7	33.9	23.6	31.0	28.3	32.7	29.6	33.8	31.9	32.2
SWA	47.9	50.9	39.8	46.6	40.1	48.6	46.3	55.9	56.3	48.6	49.4	51.3	42.9	50.9	62.3	63.0	68.1
swz	35.1	38.6	31.3	36.2	33.1	37.7	32.0	37.8	39.8	34.4	37.7	34.9	39.0	35.2	43.5	39.3	40.3
NWA	41.5	43.7	41.1	42.0	36.2	39.4	41.9	47.5	43.3	45.4	39.5	40.3	43.0	43.8	52.8	50.4	63.4
NWZ	28.6	31.8	32.7	33.3	31.6	33.0	28.3	30.3	31.9	29.3	33.2	30.5	33.6	31.5	39.1	33.3	37.1
НМ	49.6	49.9	45.8	45.8	41.8	52.2	53.0	51.0	58.6	52.2	53.3	56.6	38.3	54.6	65.5	75.9	84.0
вм	44.6	44.0	43.4	41.5	37.5	43.8	46.1	46.2	45.9	46.9	43.4	44.8	38.4	44.3	51.0	56.2	62.6
тм	27.0	25.4	26.4	25.5	24.8	30.6	26.9	29.3	31.4	27.7	29.0	27.3	33.8	24.2	33.6	32.2	33.6
NA	46.5	44.1	45.3	45.8	43.1	40.8	47.6	46.9	41.0	49.0	44.5	43.8	42.4	44.2	50.2	46.5	50.3
NZ	41.3	39.4	45.4	41.7	39.0	44.4	42.0	37.7	41.1	40.7	41.5	37.9	36.5	41.5	42.2	38.6	41.9
HNA	56.5	44.9	58.3	44.2	43.9	59.8	57.8	44.3	46.1	50.6	51.5	52.9	35.2	49.7	46.2	54.2	64.5
HNZ	39.2	32.3	38.6	29.8	30.5	42.7	38.7	40.0	39.9	36.7	32.0	29.7	34.1	29.4	39.6	39.4	46.7
НВ	41.9	40.3	43.1	41.1	36.2	41.9	44.1	43.5	39.3	45.0	40.6	41.6	37.5	41.0	47.5	47.9	58.5
TRM	34.1	33.4	35.9	34.3	33.9	37.7	32.1	34.4	36.0	32.7	35.3	31.9	36.9	32.7	36.3	32.7	34.4
NEA	66.3	58.9	64.9	59.6	55.0	58.7	66.4	64.8	56.6	65.9	50.7	57.0	60.7	53.3	62.4	58.4	59.5
NEZ	37.3	37.6	44.9	38.0	35.6	35.7	43.6	30.8	37.8	38.9	34.8	34.3	33.0	38.1	34.4	35.0	33.6
HFA	52.0	48.6	49.9	44.5	43.7	50.6	52.5	46.9	49.8	51.0	49.0	51.8	40.1	45.9	52.3	58.1	61.8
HFZ	38.6	36.4	35.9	34.7	30.5	39.3	41.0	38.7	36.5	42.6	36.0	38.1	31.6	35.6	36.6	38.5	44.6
HNFA	50.6	45.9	45.9	43.6	37.9	51.8	50.3	44.1	48.7	49.5	47.5	47.2	40.8	47.1	51.4	51.8	54.4
HNFZ	31.7	27.0	31.2	25.7	25.3	31.9	33.9	28.7	30.3	32.6	30.3	28.4	26.4	27.5	32.7	35.5	45.0
SEA	43.7	42.6	40.4	37.6	34.7	42.8	45.4	40.5	46.6	42.7	42.2	45.1	36.7	42.7	50.2	57.0	61.8
SEZ	35.4	31.1	28.9	28.2	25.2	34.7	32.6	30.5	38.2	29.6	30.4	31.6	35.3	29.7	38.9	39.8	41.5
SA	40.4	38.1	33.1	34.5	29.3	38.7	40.4	39.8	49.1	40.9	38.8	43.6	32.1	40.5	54.4	59.4	62.0
SZ	36.7	32.9	31.3	30.8	30.8	30.6	29.6	29.7	32.7	30.1	33.1	32.7	33.4	38.3	42.6	42.4	44.1
тв	35.3	37.4	31.7	33.7	30.5	37.6	32.7	37.6	41.2	33.3	36.0	34.4	38.6	34.2	37.5	37.6	35.7
TRW	37.5	37.7	32.7	35.1	32.3	39.4	32.8	37.6	39.5	34.4	40.0	37.9	37.1	35.0	40.2	40.4	40.0

GWL	MA	KA	GE	ΒZ	AZ	WU	TR	FR	ST	SA	BU	BE	ко	WВ	HS	но	FE
WA	46.7	49.3	45.9	48.5	45.5	47.6	46.2	52.5	50.7	46.9	48.4	48.1	48.0	47.7	57.6	55.4	59.4
WZ	34.1	37.6	35.6	37.9	36.8	38.1	31.8	38.4	39.0	31.9	38.2	35.6	40.9	36.1	42.7	36.5	38.2
WS	34.7	34.9	34.2	34.6	34.7	37.9	31.3	33.0	37.9	31.7	35.1	32.6	36.7	33.7	36.9	33.5	32.9
ww	31.6	33.9	30.3	33.5	33.2	36.0	29.1	35.2	36.7	28.9	34.8	32.0	36.9	32.5	38.3	34.5	34.9
SWA	50.9	53.5	45.0	49.9	45.9	52.1	49.6	57.0	56.7	51.1	52.2	53.6	48.9	52.0	61.4	62.2	64.4
swz	40.9	43.3	38.7	42.2	40.9	43.0	38.9	43.2	43.5	39.9	43.6	42.0	43.9	40.8	46.4	43.3	43.5
NWA	47.6	49.8	47.0	48.4	44.1	46.5	48.5	53.9	49.6	50.8	47.0	46.8	49.6	48.4	57.3	55.5	63.7
NWZ	31.2	34.3	34.5	35.8	34.7	34.8	31.6	34.2	34.7	32.6	35.4	32.9	36.2	33.7	40.6	34.5	37.4
нм	57.6	57.8	55.8	54.6	53.1	59.5	59.6	58.2	62.5	59.4	59.9	61.1	50.9	59.4	66.6	74.0	76.2
BM	51.8	51.3	51.5	49.8	49.0	51.8	53.2	51.4	51.6	53.0	51.7	51.7	47.3	50.3	53.7	56.8	57.5
тм	29.2	31.2	29.0	31.2	31.7	31.6	28.0	31.2	31.6	28.1	32.4	30.5	34.7	28.3	33.8	30.3	29.5
NA	50.5	48.9	51.0	48.2	50.0	45.9	54.3	57.1	49.2	54.7	48.2	49.3	51.3	48.7	54.4	52.2	53.5
NZ	40.9	40.4	44.2	42.0	41.3	43.7	41.7	39.5	41.2	41.6	41.8	38.8	39.1	40.6	42.1	38.8	39.7
HNA	57.1	53.0	58.4	51.9	52.8	58.2	59.3	53.2	53.2	56.3	55.2	55.7	49.5	53.0	54.4	57.9	58.0
HNZ	42.2	42.1	41.8	41.3	41.2	44.6	41.2	44.4	43.3	41.8	42.0	40.8	42.6	38.8	43.3	41.1	39.9
НВ	50.0	50.0	50.7	48.9	47.9	49.0	51.8	51.9	48.3	52.8	49.2	49.2	47.5	48.7	52.1	54.1	55.8
TRM	35.2	36.0	36.7	37.1	37.1	37.5	34.5	36.1	36.3	35.5	36.3	34.4	36.4	34.1	37.1	32.8	32.7
NEA	58.5	57.1	58.8	57.0	58.0	57.3	59.7	57.3	56.2	59.0	55.6	56.9	58.3	56.3	56.8	60.8	55.0
NEZ	34.1	33.6	37.8	33.4	34.3	31.6	38.0	30.9	31.6	36.1	32.9	32.5	32.1	32.7	33.1	32.0	30.8
HFA	54.9	53.1	53.7	50.0	50.2	53.5	54.8	51.1	53.0	54.2	53.3	55.0	47.6	50.9	54.1	57.8	57.5
HFZ	41.8	41.0	40.6	39.9	38.4	41.1	44.3	41.2	39.5	44.5	41.0	41.5	39.0	39.3	41.0	41.8	42.8
HNFA	55.3	52.3	54.5	51.3	51.3	57.2	51.8	52.5	54.4	53.2	54.6	53.7	53.0	51.6	52.6	53.1	51.1
HNFZ	32.8	30.2	31.2	28.7	28.0	32.7	32.5	30.6	31.9	32.0	31.5	31.2	31.1	29.3	35.1	35.6	41.8
SEA	48.0	46.7	45.8	42.8	41.1	48.0	48.5	45.5	50.0	46.7	47.1	48.7	42.4	46.3	53.0	57.5	60.5
SEZ	36.8	33.1	32.5	31.0	30.4	37.5	33.1	29.4	37.5	30.9	34.5	35.1	34.6	32.8	36.2	37.8	37.6
SA	46.5	44.5	41.3	41.4	38.8	45.4	45.6	45.7	52.0	46.4	44.9	48.3	41.6	45.8	56.1	58.4	59.3
SZ	39.6	37.6	36.3	35.8	36.9	39.3	34.8	35.2	38.7	34.6	39.4	39.6	41.1	39.9	43.5	41.4	42.1
тв	39.6	41.8	36.8	40.1	38.9	42.5	38.7	41.5	42.1	37.8	42.1	40.3	42.7	38.2	41.8	39.4	37.5
TRW	40.8	40.1	39.0	39.8	39.5	42.5	38.0	39.4	40.0	38.5	41.6	40.2	40.2	38.2	40.8	39.5	37.9

A 92 : Rohdaten der RG für die Cluster – und Diskriminanzanalyse - Jahr

GWL	Mittel	MA	KA	GE	ΒZ	AZ	wu	TR	FR	ST	SA	BU	BE	ко	WB	НS	но	FE
WA	55.19	-2.09	1.21	-1.19	0.31	-0.19	-0.79	-0.19	1.81	-0.69	-0.09	0.31	0.11	-0.39	-2.09	3.11	0.71	0.21
WZ	42.20	-2.30	1.20	-1.70	1.40	0.90	0.40	-2.60	2.60	0.30	-2.50	1.50	-0.30	3.00	-2.00	6.00	-3.30	-2.60
ws	38.75	-0.45	1.55	-0.85	2.55	2.75	2.35	-1.55	-0.15	0.65	-2.25	2.15	-0.55	1.45	-0.05	2.25	-3.45	-6.35

WZ	42.20	-2.30	1.20	-1.70	1.40	0.90	0.40	-2.60	2.60	0.30	-2.50	1.50	-0.30	3.00	-2.00	6.00	-3.30	-2.60
ws	38.75	-0.45	1.55	-0.85	2.55	2.75	2.35	-1.55	-0.15	0.65	-2.25	2.15	-0.55	1.45	-0.05	2.25	-3.45	-6.35
ww	41.85	-1.25	0.85	-2.95	0.65	0.05	0.85	-3.85	4.95	0.65	-1.95	0.85	-2.25	3.85	-3.25	5.95	-1.95	-1.25
SWA	57.01	-1.11	0.69	-3.41	-1.71	-1.31	0.99	-1.91	1.89	0.39	-1.61	-0.11	0.29	1.99	-3.11	2.89	3.79	1.29
swz	46.04	-1.14	0.66	-2.14	0.46	0.36	0.66	-2.24	0.86	0.06	-2.34	1.66	0.86	1.26	-1.34	2.46	0.06	-0.24
NWA	57.68	-2.38	-0.08	-2.98	-1.18	-3.58	-2.28	-0.78	4.42	0.02	0.02	-1.18	-2.78	0.42	-3.48	5.22	4.22	6.32
NWZ	38.86	-3.06	-0.06	-1.16	1.54	1.34	-0.76	-1.26	2.34	0.84	-0.26	0.54	-1.56	1.84	-1.36	4.34	-2.36	-0.96
НМ	66.73	-0.23	-0.13	0.17	-2.53	-1.23	0.77	0.17	-0.53	0.17	0.57	0.37	-0.63	-2.03	-2.03	1.07	5.17	0.87
вм	56.50	0.80	0.20	1.10	-0.40	1.20	1.30	2.00	-1.20	-0.60	1.00	1.50	0.30	-2.60	-1.60	-0.80	0.70	-2.90
тм	31.58	-1.38	2.12	-1.48	2.02	3.02	0.52	-3.08	0.42	0.12	-3.28	2.32	0.32	3.52	-1.58	2.32	-2.08	-3.88
NA	54.16	-1.36	-2.56	-0.06	-4.66	-0.26	-5.46	3.94	8.74	-0.46	3.74	-3.86	-1.76	2.14	-2.96	2.54	1.14	1.14
NZ	41.45	-1.15	0.45	0.95	1.05	3.25	1.35	-0.25	0.95	-0.25	1.55	0.85	-1.25	1.45	-2.25	0.55	-2.35	-4.95
HNA	57.46	-0.06	-0.36	1.04	-1.56	0.04	-0.16	2.54	0.44	-0.46	1.74	-0.36	-0.36	-0.46	-2.66	1.14	2.34	-2.86
HNZ	43.21	-0.31	1.19	-0.61	0.89	0.49	1.79	-1.51	2.19	0.89	-0.21	1.19	0.29	1.39	-2.11	0.99	-1.61	-4.91
НВ	55.08	-0.08	0.92	0.22	-1.48	0.02	-1.68	1.52	2.12	-1.18	2.52	-0.48	-1.18	-1.38	-1.58	-0.18	2.92	-0.98
TRM	36.69	-0.59	1.51	0.61	2.71	3.01	0.71	-0.19	0.81	-0.09	1.21	0.51	-0.19	-0.59	-1.49	1.11	-3.79	-5.29
NEA	57.05	-0.25	-0.35	0.45	-0.55	1.65	-0.05	1.25	-1.35	-0.95	0.45	-0.35	-0.15	0.65	-0.15	-1.55	4.25	-3.05
NEZ	32.25	0.75	-0.05	3.05	-0.45	1.65	-2.05	3.75	-1.35	-2.75	2.95	0.05	-0.35	-0.45	-1.35	0.35	-1.35	-2.45
HFA	56.77	1.33	1.13	1.13	-0.77	0.43	-0.17	0.63	-1.17	-0.37	0.83	1.03	1.53	-1.07	-0.47	-0.67	0.63	-3.97
HFZ	43.92	0.28	0.48	0.28	-0.12	0.38	-1.32	2.88	-0.82	-2.12	2.08	0.78	0.08	0.68	-1.82	0.38	0.38	-2.42
HNFA	55.05	1.85	-0.55	2.45	-1.15	0.75	3.95	-2.75	0.25	1.35	-0.55	1.95	0.85	2.15	-1.95	-2.05	-1.45	-5.15
HNFZ	34.42	0.18	1.38	-3.12	-0.22	-1.72	-0.22	-4.42	-0.32	0.38	-3.62	-0.82	1.88	4.98	-2.02	4.78	1.28	1.68
SEA	58.85	0.95	-0.95	1.75	-1.75	-0.15	3.65	-1.65	0.55	0.65	-1.15	2.05	-0.05	-0.55	-2.75	1.55	-0.15	-1.95
SEZ	36.19	3.11	0.51	2.81	-0.29	3.51	6.21	-2.09	-8.69	0.11	-2.89	5.51	5.01	-2.89	2.21	-4.69	-1.89	-5.59
SA	56.59	1.21	-0.19	-0.09	-2.39	-0.49	0.91	-1.29	0.01	0.81	0.01	-0.49	0.21	2.61	-1.09	2.61	-0.09	-2.19
SZ	41.63	0.07	-0.73	-1.83	-2.43	-0.43	3.77	-3.23	-2.53	1.27	-3.93	2.27	2.87	4.97	-0.63	2.47	-0.93	-1.03
тв	42.35	-0.55	1.65	-2.95	0.95	0.65	2.55	-0.65	1.05	0.15	-2.25	2.85	0.85	2.35	-2.15	1.65	-2.05	-4.05
TRW	40.86	1.24	0.24	0.64	0.84	1.64	2.84	-0.76	-0.76	-0.66	-0.66	1.34	0.34	0.64	-1.46	0.14	-1.76	-3.86

A 93a : Abweichung [ΔRG] vom GWL-spezifischen Mittel der Stationen im Sommerhalbjahr

- 229 -

GWL	Mittel	wu	MA	TR	AZ	SA	GE	ко	BE	KA	FR	BU	ΒZ	wв	но	ST	HS	FE
WA	44.41	-3.21	-3.81	-6.61	-7.91	-5.31	-6.21	-2.91	-3.21	-1.91	3.79	-2.71	-2.51	-1.81	10.39	2.69	12.39	18.79
WZ	33.91	1.49	-3.41	-6.81	-0.91	-6.61	-1.21	4.39	-2.11	0.19	0.69	0.99	0.49	-0.21	1.09	2.99	5.49	3.39
WS	32.64	3.86	0.56	-3.84	-0.94	-3.04	-0.04	2.46	-2.44	-0.04	-2.14	-0.04	-0.94	-1.14	0.16	4.56	2.46	0.46
ww	29.75	3.05	-2.45	-4.95	-0.75	-6.15	-3.55	2.95	-1.45	-0.05	-0.05	1.25	-0.55	-0.15	2.15	4.15	4.05	2.45
SWA	51.11	-2.51	-3.21	-4.81	-11.01	-2.51	-11.31	-8.21	0.19	-0.21	4.79	-1.71	-4.51	-0.21	11.89	5.19	11.19	16.99
swz	36.82	0.88	-1.72	-4.82	-3.72	-2.42	-5.52	2.18	-1.92	1.78	0.98	0.88	-0.62	-1.62	2.48	2.98	6.68	3.48
NWA	44.42	-5.02	-2.92	-2.52	-8.22	0.98	-3.32	-1.42	-4.12	-0.72	3.08	-4.92	-2.42	-0.62	5.98	-1.12	8.38	18.98
NWZ	32.30	0.70	-3.70	-4.00	-0.70	-3.00	0.40	1.30	-1.80	-0.50	-2.00	0.90	1.00	-0.80	1.00	-0.40	6.80	4.80
ΗМ	54.59	-2.39	-4.99	-1.59	-12.79	-2.39	-8.79	-16.29	2.01	-4.69	-3.59	-1.29	-8.79	0.01	21.31	4.01	10.91	29.41
BM	45.92	-2.12	-1.32	0.18	-8.42	0.98	-2.52	-7.52	-1.12	-1.92	0.28	-2.52	-4.42	-1.62	10.28	-0.02	5.08	16.68
тм	28.75	1.85	-1.75	-1.85	-3.95	-1.05	-2.35	5.05	-1.45	-3.35	0.55	0.25	-3.25	-4.55	3.45	2.65	4.85	4.85
NA	45.41	-4.61	1.09	2.19	-2.31	3.59	-0.11	-3.01	-1.61	-1.31	1.49	-0.91	0.39	-1.21	1.09	-4.41	4.79	4.89
NZ	40.75	3.65	0.55	1.25	-1.75	-0.05	4.65	-4.25	-2.85	-1.35	-3.05	0.75	0.95	0.75	-2.15	0.35	1.45	1.15
HNA	50.62	9.18	5.88	7.18	-6.72	-0.02	7.68	-15.42	2.28	-5.72	-6.32	0.88	-6.42	-0.92	3.58	-4.52	-4.42	13.88
HNZ	36.43	6.27	2.77	2.27	-5.93	0.27	2.17	-2.33	-6.73	-4.13	3.57	-4.43	-6.63	-7.03	2.97	3.47	3.17	10.27
нв	43.00	-1.10	-1.10	1.10	-6.80	2.00	0.10	-5.50	-1.40	-2.70	0.50	-2.40	-1.90	-2.00	4.90	-3.70	4.50	15.50
TRM	34.39	3.31	-0.29	-2.29	-0.49	-1.69	1.51	2.51	-2.49	-0.99	0.01	0.91	-0.09	-1.69	-1.69	1.61	1.91	0.01
NEA	59.95	-1.25	6.35	6.45	-4.95	5.95	4.95	0.75	-2.95	-1.05	4.85	-9.25	-0.35	-6.65	-1.55	-3.35	2.45	-0.45
NEZ	36.67	-0.97	0.63	6.93	-1.07	2.23	8.23	-3.67	-2.37	0.93	-5.87	-1.87	1.33	1.43	-1.67	1.13	-2.27	-3.07
HFA	49.91	0.69	2.09	2.59	-6.21	1.09	-0.01	-9.81	1.89	-1.31	-3.01	-0.91	-5.41	-4.01	8.19	-0.11	2.39	11.89
HFZ	37.36	1.94	1.24	3.64	-6.86	5.24	-1.46	-5.76	0.74	-0.96	1.34	-1.36	-2.66	-1.76	1.14	-0.86	-0.76	7.24
HNFA	47.56	4.24	3.04	2.74	-9.66	1.94	-1.66	-6.76	-0.36	-1.66	-3.46	-0.06	-3.96	-0.46	4.24	1.14	3.84	6.84
HNFZ	30.83	1.07	0.87	3.07	-5.53	1.77	0.37	-4.43	-2.43	-3.83	-2.13	-0.53	-5.13	-3.33	4.67	-0.53	1.87	14.17
SEA	44.28	-1.48	-0.58	1.12	-9.58	-1.58	-3.88	-7.58	0.82	-1.68	-3.78	-2.08	-6.68	-1.58	12.72	2.32	5.92	17.52
SEZ	33.04	1.66	2.36	-0.44	-7.84	-3.44	-4.14	2.26	-1.44	-1.94	-2.54	-2.64	-4.84	-3.34	6.76	5.16	5.86	8.46
SA	42.06	-3.36	-1.66	-1.66	-12.76	-1.16	-8.96	-9.96	1.54	-3.96	-2.26	-3.26	-7.56	-1.56	17.34	7.04	12.34	19.94
SZ	34.22	-3.62	2.48	-4.62	-3.42	-4.12	-2.92	-0.82	-1.52	-1.32	-4.52	-1.12	-3.42	4.08	8.18	-1.52	8.38	9.88
тв	35.59	2.01	-0.29	-2.89	-5.09	-2.29	-3.89	3.01	-1.19	1.81	2.01	0.41	-1.89	-1.39	2.01	5.61	1.91	0.11
TRW	37.04	2.36	0.46	-4.24	-4.74	-2.64	-4.34	0.06	0.86	0.66	0.56	2.96	-1.94	-2.04	3.36	2.46	3.16	2.96

A 93b : Abweichung [ΔRG] vom GWL-spezifischen Mittel der Stationen im Winterhalbjahr

- 230 -	

GWL	Mittel	MA	KA	GE	ΒZ	AZ	WU	TR	FR	ST	SA	BU	BE	ко	WB	HS	но	FE
WA	49.67	-2.97	-0.37	-3.77	-1.17	-4.17	-2.07	-3.47	2.83	1.03	-2.77	-1.27	-1.57	-1.67	-1.97	7.93	5.73	9.73
WZ	37.02	-2.92	0.58	-1.42	0.88	-0.22	1.08	-5.22	1.38	1.98	-5.12	1.18	-1.42	3.88	-0.92	5.68	-0.52	1.18
ws	34.49	0.21	0.41	-0.29	0.11	0.21	3.41	-3.19	-1.49	3.41	-2.79	0.61	-1.89	2.21	-0.79	2.41	-0.99	-1.59
ww	33.66	-2.06	0.24	-3.36	-0.16	-0.46	2.34	-4.56	1.54	3.04	-4.76	1.14	-1.66	3.24	-1.16	4.64	0.84	1.24
SWA	53.32	-2.42	0.18	-8.32	-3.42	-7.42	-1.22	-3.72	3.68	3.38	-2.22	-1.12	0.28	-4.42	-1.32	8.08	8.88	11.08
swz	42.24	-1.34	1.06	-3.54	-0.04	-1.34	0.76	-3.34	0.96	1.26	-2.34	1.36	-0.24	1.66	-1.44	4.16	1.06	1.26
NWA	50.26	-2.66	-0.46	-3.26	-1.86	-6.16	-3.76	-1.76	3.64	-0.66	0.54	-3.26	-3.46	-0.66	-1.86	7.04	5.24	13.44
NWZ	34.65	-3.45	-0.35	-0.15	1.15	0.05	0.15	-3.05	-0.45	0.05	-2.05	0.75	-1.75	1.55	-0.95	5.95	-0.15	2.75
ΗМ	60.36	-2.76	-2.56	-4.56	-5.76	-7.26	-0.86	-0.76	-2.16	2.14	-0.96	-0.46	0.74	-9.46	-0.96	6.24	13.64	15.84
BM	51.96	-0.16	-0.66	-0.46	-2.16	-2.96	-0.16	1.24	-0.56	-0.36	1.04	-0.26	-0.26	-4.66	-1.66	1.74	4.84	5.54
тм	30.72	-1.52	0.48	-1.72	0.48	0.98	0.88	-2.72	0.48	0.88	-2.62	1.68	-0.22	3.98	-2.42	3.08	-0.42	-1.22
NA	51.02	-0.52	-2.12	-0.02	-2.82	-1.02	-5.12	3.28	6.08	-1.82	3.68	-2.82	-1.72	0.28	-2.32	3.38	1.18	2.48
NZ	41.02	-0.12	-0.62	3.18	0.98	0.28	2.68	0.68	-1.52	0.18	0.58	0.78	-2.22	-1.92	-0.42	1.08	-2.22	-1.32
HNA	55.12	1.98	-2.12	3.28	-3.22	-2.32	3.08	4.18	-1.92	-1.92	1.18	0.08	0.58	-5.62	-2.12	-0.72	2.78	2.88
HNZ	41.91	0.29	0.19	-0.11	-0.61	-0.71	2.69	-0.71	2.49	1.39	-0.11	0.09	-1.11	0.69	-3.11	1.39	-0.81	-2.01
нв	50.46	-0.46	-0.46	0.24	-1.56	-2.56	-1.46	1.34	1.44	-2.16	2.34	-1.26	-1.26	-2.96	-1.76	1.64	3.64	5.34
TRM	35.64	-0.44	0.36	1.06	1.46	1.46	1.86	-1.14	0.46	0.66	-0.14	0.66	-1.24	0.76	-1.54	1.46	-2.84	-2.94
NEA	57.56	0.94	-0.46	1.24	-0.56	0.44	-0.26	2.14	-0.26	-1.36	1.44	-1.96	-0.66	0.74	-1.26	-0.76	3.24	-2.56
NEZ	33.38	0.72	0.22	4.42	0.02	0.92	-1.78	4.62	-2.48	-1.78	2.72	-0.48	-0.88	-1.28	-0.68	-0.28	-1.38	-2.58
HFA	53.22	1.68	-0.12	0.48	-3.22	-3.02	0.28	1.58	-2.12	-0.22	0.98	0.08	1.78	-5.62	-2.32	0.88	4.58	4.28
HFZ	41.10	0.70	-0.10	-0.50	-1.20	-2.70	0.00	3.20	0.10	-1.60	3.40	-0.10	0.40	-2.10	-1.80	-0.10	0.70	1.70
HNFA	53.15	2.15	-0.85	1.35	-1.85	-1.85	4.05	-1.35	-0.65	1.25	0.05	1.45	0.55	-0.15	-1.55	-0.55	-0.05	-2.05
HNFZ	32.13	0.67	-1.93	-0.93	-3.43	-4.13	0.57	0.37	-1.53	-0.23	-0.13	-0.63	-0.93	-1.03	-2.83	2.97	3.47	9.67
SEA	48.15	-0.15	-1.45	-2.35	-5.35	-7.05	-0.15	0.35	-2.65	1.85	-1.45	-1.05	0.55	-5.75	-1.85	4.85	9.35	12.35
SEZ	34.16	2.64	-1.06	-1.66	-3.16	-3.76	3.34	-1.06	-4.76	3.34	-3.26	0.34	0.94	0.44	-1.36	2.04	3.64	3.44
SA	47.18	-0.68	-2.68	-5.88	-5.78	-8.38	-1.78	-1.58	-1.48	4.82	-0.78	-2.28	1.12	-5.58	-1.38	8.92	11.22	12.12
sz	38.58	1.02	-0.98	-2.28	-2.78	-1.68	0.72	-3.78	-3.38	0.12	-3.98	0.82	1.02	2.52	1.32	4.92	2.82	3.52
тв	40.11	-0.51	1.69	-3.31	-0.01	-1.21	2.39	-1.41	1.39	1.99	-2.31	1.99	0.19	2.59	-1.91	1.69	-0.71	-2.61
TRW	39.76	1.04	0.34	-0.76	0.04	-0.26	2.74	-1.76	-0.36	0.24	-1.26	1.84	0.44	0.44	-1.56	1.04	-0.26	-1.86

A 93c : Abweichung [ΔRG] vom GWL-spezifischen Mittel der Stationen im mittleren Jahr

A 94 : Relative Varianzspektren (ASA) : Relative Globalstrahlung; Periodenbereich < 60 Tage

A 95 : Relative Varianzspektren (ASA) : Relative direkte Sonnenstrahlung; Periodenbereich < 60 Tage

A 96 : Relative Varianzspektren (ASA) : Relative diffuse Sonnenstrahlung; Periodenbereich < 60 Tage

A 97 a : Dynamische ASA der relativen Globalstrahlung (Gebietsmittel aus 8 Stationen 1981 – 2000) Periodenbereich < 7 Tage

A 97 b : Dynamische ASA der relativen Globalstrahlung (Gebietsmittel aus 8 Stationen 1981 – 2000) signifikante relative Varianz Periodenbereich < 7 Tage

A 98 : Dynamische ASA der Lufttemperatur (Gebietsmittel aus 8 Stationen 1981 – 2000) signifikante relative Varianz; Periodenbereich < 7 Tage

A 99 : Dynamische ASA der relativen Globalstrahlung (Gebietsmittel aus 8 Stationen 1981 – 2000) Signifikante relative Varianz; Periodenbereich < 3 Tage

A 100 : ASA Lufttemperatur a) antiyklonale Tage b) zyklonale Tage; Gebietsmittel aus 8 Stationen 1981 – 2000