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Abstract: Ataluren and Gentamicin are translational readthrough drugs (TRIDs) that induce pre-
mature termination codon (PTC) readthrough, resulting in the production of full-length proteins
that usually harbor a single missense substitution. FAM161A is a ciliary protein which is expressed
in photoreceptors, and pathogenic variants in this gene cause retinitis pigmentosa (RP). Applying
TRIDs on fibroblasts from RP patients due to PTC in the FAM161A (p.Arg523*) gene may uncover
whether TRIDs can restore expression, localization and function of this protein. Fibroblasts from six
patients and five age-matched controls were starved prior to treatment with ataluren or gentamicin,
and later FAM161A expression, ciliogenesis and cilia length were analyzed. In contrast to control
cells, fibroblasts of patients did not express the FAM161A protein, showed a lower percentage of
ciliated cells and grew shorter cilia after starvation. Ataluren and Gentamicin treatment were able
to restore FAM161A expression, localization and co-localization with α-tubulin. Ciliogenesis and
cilia length were restored following Ataluren treatment almost up to a level which was observed in
control cells. Gentamicin was less efficient in ciliogenesis compared to Ataluren. Our results provide
a proof-of-concept that PTCs in FAM161A can be effectively suppressed by Ataluren or Gentamicin,
resulting in a full-length functional protein.

Keywords: FAM161A; retinitis pigmentosa; fibroblasts; ataluren; gentamicin; translational read-
through drugs; TRIDs

1. Introduction

Inherited retinal diseases (IRDs) can be caused by at least 300 different mutated genes
(https://sph.uth.edu/retnet/, accessed on 25 December 2021) and can be inherited by
autosomal recessive (AR), autosomal dominant (AD) and X-linked manners. The most
common IRD is retinitis pigmentosa (RP), with a prevalence of 1:4500 in Europe and the
USA [1–4], and much higher prevalence in the vicinity of Jerusalem (1:2100) [5]. There are
dozens of different genes which can cause RP, one of which is FAM161A that was identified
by us and others in 2010 [6,7], as a cause of ARRP when mutated. Since then, several studies
were performed to uncover its function [8–11]. The FAM161A gene contains seven exons
and encodes for several transcripts, two of which (with and without exon 4) were studied,
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but their exact difference in function or localization is still unclear [6,7]. The FAM161A gene
is responsible for about 10% of nonsyndromic RP cases in the Jewish population in Israel
and for more than 33% of nonsyndromic RP cases of North African Jewish ancestry [12]. So
far, more than 100 RP patients with bi-allelic FAM161A mutations were identified in this
population [12] due to only two founder mutations in exon 3: a frameshift (c.1355_6del)
and a nonsense (c.1567C>T, p.R523*).

In the murine retina, Fam161a was localized in photoreceptor inner segments, con-
necting cilia, the synaptic regions of the outer and inner plexiform layers and ganglion
cells [11,13]. Different studies showed that in the murine and human retinas, FAM161A
is localized at the base of the connecting cilium, the basal body region and the adjacent
centriole in photoreceptor cells [10,11,13]. Proteomics analyses show that FAM161A is part
of the cytoskeleton fraction of the murine photoreceptor sensory cilium complex and a
component of human centrosomes [14]. In addition, FAM161A was shown to be a part of
microtubule-organizing centers, to have a role in stabilization of existing microtubules [11]
and in the assembly of the primary cilium in cell cultures [10]. There are two different
mouse models for Fam161a, displaying much shorter connecting cilia in photoreceptor cells
before their degeneration, indicating that FAM161A has a role in stabilizing the photorecep-
tor connecting cilium as well [15,16]. FAM161A directly binds to microtubules and increases
the acetylation of α-tubulin [10,11]. It was found to be a member of the Golgi-centrosomal
interactome, a network of proteins interconnecting Golgi maintenance, intracellular trans-
port and centrosome organization [9]. During cell cycle, FAM161A follows the centrosome
through all stages of mitosis [9]. Thus, FAM161A is likely to be a multifunctional protein
that is important for photoreceptor ciliary function as well as centrosomal functions.

In the current study, we focused on a founder nonsense mutation, FAM161A-c.1567C>T
(p.R523*), that causes ARRP. Nonsense mutations, also known as pre-mature termination
codons (PTC), affect translation, as it turns a coding triplet into a stop codon. PTCs cause
either the degradation of mRNA by the nonsense mediated decay (NMD) surveillance
or early termination of the translation process producing a short protein, which is often
non-functional [17].

In the last few years, a gene-based therapy that is based on suppressing pathogenic
nonsense mutations using translational read-through drugs (TRIDs) emerged. TRIDs are
small molecules such as Ataluren (PTC124, under commercial name TranslarnaTM) and
aminoglycoside antibiotics such as Gentamicin (aminoglycoside) which were described
to induce PTC readthrough [17–20]. TRIDs reduce proofreading of codon–anticodon
recognition in the ribosome, allowing the translation machinery to suppress different
PTCs with different efficacy. This readthrough of a pathogenic nonsense mutation results
in the synthesis of a full-length protein [18,21]. In most cases, PTC readthrough results
in translation of a full-length protein with a different amino acid (compared to WT) at
the location of the mutated codon [22,23]. Because the altered amino acid is equivalent
to a missense change, the functionality of the protein might be variable, from a fully
functional protein to non-functional or even toxic products [24]. To date, numerous studies
demonstrated that the recovered proteins can be functional [25,26]. Moreover, in recessive
and X-linked diseases, a relatively small amount of functional or partially functional protein
might slow disease progression or result in a milder phenotype [27].

Ataluren was recently approved for treating a nonsense mutation causing Duchenne
muscular dystrophy (DMD) in the USA and the EU, exhibiting a good safety profile and
clinical benefit in the 6 min walk test in patients when taken orally, indicating its safety for
systemic use [28]. Ataluren was also proved in an animal model to be safe and efficient for
treatment of aniridia caused by a nonsense mutation in PAX6. In particular, as an eye drop
formulation (START), Ataluren can be applied on eyes, and it is able to penetrate and be
efficient to treat all the different layers of the eye in small rodents [29,30].

Here, we demonstrate the efficacy of Ataluren and Gentamicin on restoring protein
expression and ciliogenesis in fibroblasts from six patients with RP caused by a homozygous
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FAM161A nonsense mutation (c.1567C>T). Our results provide a proof-of-concept that PTCs
in FAM161A can be treated with TRIDs.

2. Materials and Methods
2.1. Patients

Skin biopsies were collected from the inner side of the arm of six patients with a
confirmed homozygous nonsense mutation in FAM161A (c.1567C>T, p.Arg523*; Figure S1,
see Supplementary Materials) and five age-matched healthy controls. All patients were di-
agnosed with RP following ERG testing and retinal imaging, and their clinical features were
previously described [12]. None of the patients were on drugs or vitamins for managing RP.
All participants in the study signed an informed consent form that adhered to the tenets of
the declaration of Helsinki before drawing skin and/or blood samples. Ethical approval
for this study was obtained from the Hadassah-Hebrew University Medical Center.

2.2. Cell Culture Treatment

Primary skin fibroblasts were grown in RPMI medium with 10% fetal bovine serum
and antibiotics (penicillin and streptomycin) at 37 ◦C in 5% CO2. Early passage (up
to 5th passage) of primary skin fibroblasts were plated in 9 cm cell culture plates and
grown to 80% confluence. Ciliary growth was induced by Opti-MEM-Reduced Serum
Medium (ThermoFisher Scientific, Waltham, MA, USA) for 48 h. Cells were treated with
different TRIDs, which were added for 48 h to Opti-MEM media: Ataluren (Selleckchem, cat.
Number S6003) and Gentamicin (Sigma-Aldrich, St. Louis, MO, USA) at a concentration
previously described to promote a remarkable PTC read through (10 µg/mL Ataluren and
1 mg/mL Gentamicin, respectively [31]). DMSO (Dimethylsulfoxide) was used as a solvent
and as a control for Ataluren.

A total of 300 cells from each patient or healthy control were examined (3 independent
experiments, 100 cells each, Table S2, see Supplementary Materials), and the following
measurements were evaluated in treated and untreated cells from patients and healthy con-
trols: cilia growth (PCTN2 ab—ABCAM (Cambridge, UK), ab99341 and Actub ab—Sigma,
T6793), cilia length (as was measured by Image-J software, version 1.53k), formation of
microtubules (by α-tubulin ab—Sigma, T9026) and FAM161A expression (using commercial
antibody-rabbit anti-FAM161A, HPA032119, Sigma-Aldrich). Measurements of cilia which
were lower than 1 µm were not included in the analyses.

2.3. Microscopy and Image Processing

The immunofluorescence staining of specimens was analyzed using a Leica DM6000B
microscope using LAS-AF software (Leica, Bensheim, Germany). The following objectives
were used: 506174: ∞/0.17/0, HCX PLANAPO, 60x/0.75 PH2 and 506182: ∞/0.17/0,
HCX PL APO, 63x/1.32O/L PH3CS. Pictures were taken with the same intensities. Flu-
orescence images processing was performed with LAS-AF Leica imaging software and
CanvasX/ImageJ/Fiji software [32,33]. For quantification of FAM161A, α-tubulin, Actub
and PCN2 expression levels of the fluorescence intensities of each one of the proteins in
250 healthy untreated cells (50 from each participant) and 900 cells from patients (50 cells
from each treatment, total of 150 cells from patient) were measured using ImageJ, and the
corrected total cell fluorescence (CTCF) was calculated (arbitrary unit). CTCF = Integrated
Density—(Area of selected cell × Mean Fluorescence of background readings) [34].

2.4. Statistical and Genetic Analyses

Statistical analyses were preformed using MS-Excel. The student’s t-test was per-
formed to prove the significance of observed differences (unpaired, two-tailed, assum-
ing equal variance). The significance levels were set when p < 0.05 (*), p < 0.01 (**),
p < 0.001 (***).

The possible pathogenicity of the missense changes was evaluated using PolyPhen-2
(available online: http://genetics.bwh.harvard.edu/pph2/, accessed on 15 September 2021),

http://genetics.bwh.harvard.edu/pph2/
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MutationTaster (available online: http://www.mutationtaster.org/, accessed on 15 September
2021) and SIFT (available online: http://sift.jcvi.org/, accessed on 15 September 2021).

3. Results

The current study focuses on nonsense mutation c.1567C>T; p.Arg523* in the FAM161A
gene, located in exon 3 (Figure S1, see Supplementary Materials) within the conserved
UPF0564 domain that binds microtubules. Arginine at position 523 is highly conserved
among various species including zebrafish (Table 1), indicating that this residue might be
important for protein structure or function.

Table 1. Evolutionary conservation of the altered amino acid in the FAM161A gene. The arginine (R,
marked in red) that is altered in the analyzed nonsense mutation is fully conserved through all species.
Accession numbers of protein sequences are: human (NP_001188472), chimpanzee (XP_016804096),
rhesus monkey (XP_028687476), cow (XP_005212882), dog (XP_038536623), rat (XP_017454620),
mouse (XP_006514891) and zebrafish (XP_686612).

Species Protein Sequence

Human PPVPTVSSRGREQAVRRSLE
Chimpanzee PPVPTVSSRGREQAVRRSLE

Rhesus monkey PPVPTVSSRGREQAVRRSLE
Cow PPTPTVSSRGREQATRRSLE
Dog PPMPTVSSRGREQATRRSLE
Rat PPMPTASSRGREQAIRKSLE

Mouse PPMPTASSRGREQAIRKSLE
Zebrafish SAKITDAAKKRQEAVRKVLE

To evaluate the potential effect of different TRIDs on this mutation, we collected skin
biopsies and established fibroblasts’ cell lines from six ARRP patients who are homozygous
for FAM161A-p.R523*. Utilizing in silico tools, we analyzed all possible outcomes of treating
p.R523* with TRIDs (Table S1, see Supplementary Materials), and all alternative amino
acids (except arginine) have physical properties that are different from the WT. It should
be noted, however, that these tools are prone to non-accurate predictions and that no
pathogenic missense variants were so far reported in FAM161A, indicating that the protein
can tolerate such variants. Nonetheless, we extended our research and analyzed the effects
of the recovered FAM161A protein expression in patient-derived fibroblasts following
TRIDs treatment.

3.1. FAM161A Expression in Human Fibroblasts

We assessed the expression pattern of FAM161A in fibroblast cells by immunofluores-
cence labeling of FAM161A in fibroblast cells that were induced to ciliogenesis. The analysis
revealed FAM161A expression only in the control cells (Figure 1A,Q) but not in FAM161A
patient cells (Figure 1B). We subsequently performed double staining of FAM161A and
α-tubulin, a molecular marker for microtubules in fibroblasts. We observed α-tubulin
expression in 94% of the control cells (Table S2, see Supplementary Materials). All control
fibroblasts showed localization of α-tubulin in well-organized, fiber-like structures which
constitute the microtubule network (Figure 1E). Staining of FAM161A (Figure 1I) over-
lapped with the microtubule labeling produced by anti-α-tubulin antibodies (Figure 1M),
confirming the previously described interaction of FAM161A and microtubules [11]. In
starved fibroblasts from FAM161A patients, immunolabeling of α-tubulin appeared in 85%
of cells (compared to 94% in cells from controls—Table S2, see Supplementary Materials),
it was also significantly fainter and less structured when compared to control fibroblasts
(Figure 1F,R). Extremely faint or even no FAM161A staining was observed in fibroblasts
from FAM161A patients (Figure 1J,N).

http://www.mutationtaster.org/
http://sift.jcvi.org/
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Figure 1. FAM161A expression and co-expression with α-tubulin in fibroblast cells. (A–D) FAM161A
expression (red) after 48 h of starvation in cells from a healthy control (A), cells from FAM161A patient
without treatment (B), following Gentamicin treatment (C) and Ataluren treatment (D). Double stain-
ing of α-tubulin (red) and FAM161A (green) in starved fibroblasts from healthy control cells (E,I,M),
untreated fibroblasts from FAM161A patient (F,J,N) and cells from the same patient treated with Gen-
tamicin (G,K,O) and Ataluren (H,L,P). DAPI: nucleus (blue). Scale bar 25 µm. (Q,R) Quantification of
FAM161A (Q) and α-tubulin (R) expression levels in fibroblasts. Fluorescence intensities of FAM161A
and α-tubulin in healthy untreated cells (orange) and untreated (yellow) Gentamicin-treated (blue)
and Ataluren-treated (purple) cells from patients were measured using ImageJ, and the corrected
total cell fluorescence (CTCF) was calculated (arbitrary units). The significance levels were set when
p < 0.05 (*), p < 0.01 (**), p < 0.001 (***).
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3.2. FAM161A Expression Following TRIDs Treatment

In order to study the effect of TRIDs on FAM161A expression and localization, we
treated fibroblast cells of FAM161A patients with either Gentamicin or Ataluren. Partial
restoration of FAM161A protein expression was observed in fibroblast cells of FAM161A
patients 48 h following TRID treatments (Figure 1C,D,K,L,Q). Quantification of the fluores-
cence intensities revealed a significant increase in the FAM161A expression in Gentamicin-
treated and Ataluren-treated cells when compared to untreated patient cells (Figure 1Q). Ex-
pression of α-tubulin was observed in 91.1% of patients’ cells treated with Gentamicin and
93.6% of patients’ cells treated with Ataluren (Table S2, see Supplementary Materials). In
addition, treated cells showed fiber-like staining of α-tubulin (Figure 1G,H) and FAM161A
(Figure 1K,L) which co-localized (Figure 1O,P), indicating restoration of both FAM161A
expression and function. The effect of Ataluren was more pronounced than that of Gentam-
icin, as evidenced by the stripe-like orientation of α-tubulin, the co-localization of α-tubulin
and FAM161A and the quantification of the fluorescence intensities (Figure 1O–Q; Table S2,
see Supplementary Materials).

3.3. Ciliogenesis Analysis in Fibroblasts

Since FAM161A encodes a ciliary protein, we analyzed ciliogenesis of primary cilia in
FAM161A patient-derived fibroblasts compared to controls. After triggering ciliogenesis by
starvation for 48 h, fibroblasts from five controls and six FAM161A patients were stained
with anti-acetylated tubulin (Actub, green), a ciliary marker, anti-pericentrin2 (PCTN2,
red), a basal body marker, and DAPI (blue) (Figure 2). Acetylated tubulin stainings
were detectable in cilia and the cytoplasm of the fibroblasts; however, the staining was
weaker in untreated and Gentamicin treated patient cells compared to healthy controls and
Ataluren treated patient cells (Figure 2A–F). Pericentrin was detected at the base of cilia;
but interestingly, quantification of immunofluorescence labeling of pericentrin revealed a
reduced staining in untreated and Gentamicin treated patient cells, providing the first hint
of reduced ciliogenesis in FAM161A patient cells (Figure 2A–E,G). The reduced acetylated
tubulin labeling and pericentrin labeling could be restored by Ataluren treatment (Figure 2;
Figure S2, see Supplementary Materials).

We subsequently compared the percentage of ciliated cells as well as cilia length
between controls and patients’ cells (Figure 3A,B; Table 2). Control cells had a significantly
higher percentage of ciliated cells when compared to FAM161A patients’ cells (1107 ciliated
cells out of 1500 in control group [73.8%] vs. 617 out of 1800 cells originated from FAM161A
patients [34.3%], p < 0.001; Figure 3A, Table 2). In addition, ciliated control cells had
significantly longer cilia as compared to FAM161A mutant cells (average of 2.95 µm in
control cells compared to 2.13 µm in FAM161A patient cells, p < 0.001; Figure 3B, Table 2).
Performed t-tests did not show any significant differences in ciliogenesis or cilia length
between young and old participants.

We subsequently examined the effect of Gentamicin or Ataluren treatment on pa-
tients’ fibroblast cell lines. Treatment with DMSO as a control did not show any effect
on the percentage of ciliated cells or cilia length (Table 2 and Table S3, see Supplemen-
tary Materials). Gentamicin treatment had no effect on the percentage of ciliated cells in
treated versus untreated cells, both of healthy controls or patients (Table 2 and Table S3,
see Supplementary Materials). However, patient cells treated with Gentamicin had longer
cilia compared to untreated cells (3.14 µm vs. 2.13 µm, p < 0.001, Table 2) and revealed
strong expression of acetylated tubulin along the cilia and very blur staining of acetylated
tubulin in other cellular areas (Figure 2D,F). On the other hand, Ataluren treatment of
patient cells showed an effect on both parameters, resulting in a higher percentage of
ciliated cells (66.6% compared to 34.4%, p < 0.001) (Figure 3A, Table 2 and Table S3, see
Supplementary Materials) and longer cilia (3.1 µm vs. 2.13, p < 0.001) (Figure 3B, Table 2).
No significant difference between the numbers of ciliated cells was observed in healthy cells
versus Ataluren-treated patient cells, demonstrating that Ataluren can restore ciliogenesis
in FAM161A patient cells. We observed that Ataluren treatment in patients resulted in
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cilia being 2% longer compared to cilia of healthy control cells. So far, we do not know
if an increase in cilia length in this low range might have physiological consequences in
Ataluren-treated patients. Furthermore, we observed restored expression of acetylated
tubulin along microtubules in Ataluren treated patient cells (Figure 2E,F), while as expected,
Ataluren had no effect on control cells.

Figure 2. Ciliogenesis in fibroblast cells of FAM161A patients following TRID treatment. Im-
munofluorescence analysis of fibroblast cells from healthy controls (A) and FAM161A patient cells
(B–E) after triggering ciliogenesis by starvation for 48 h. Antibodies against acetylated tubulin
(Actub, green) marker for cilia, pericentrin (PCTN2, red) stains the basal body, and nuclei are
stained by DAPI (blue). Cilia are marked with white arrows. FAM161A patient cells were left
untreated (B), or treated with DMSO as control (C), Gentamicin (D) or Ataluren (E). Scale bar
25 µm. (F,G) Quantification of Actub (F) and PCNT2 (G) expression levels in fibroblasts. Fluores-
cence intensities of Actub and PCNT2 in healthy untreated cells (orange) and untreated (yellow)
Gentamicin-treated (blue) and Ataluren-treated (purple) cells from patients were measured using
ImageJ, and the corrected total cell fluorescence (CTCF) was calculated (arbitrary units). The
significance levels were set when p < 0.001 (***).
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Figure 3. Ciliogenesis and cilia length analyses. (A) A boxplot displaying percentage of ciliated
cells among untreated fibroblasts from five healthy controls and six FAM161A patients (untreated or
after different treatments), obtained in three independent experiments (a total of 300 cells per each
healthy control or patient were counted). For quantification of the percentage of ciliated cells, the
number of DAPI stained nuclei was correlated to the number of ciliated cells (Figure 3A; y-axis).
(B). Boxplot of cilia length on untreated fibroblasts from five healthy controls (n = 1107 cells) and six
FAM161A patients (untreated or after different treatments) (n = 3075), obtained in three independent
experiments. The ciliary length was determined based on the acetylated tubulin staining (Figure 3B;
y-axis). The significance levels were set when p < 0.05 (*), p < 0.01 (**), p < 0.001 (***).

Table 2. Summary of ciliogenesis and cilia length analyses. Summary of the average percentage
(%) of ciliated cells and cilia length in fibroblasts from healthy controls and patients without any
treatment and following different treatments.

Untreated DMSO Gentamicin Ataluren

%
Ciliated

Cells

Cilia
Length

%
Ciliated

Cells

Cilia
Length

%
Ciliated

Cells

Cilia
Length

%
Ciliated

Cells

Cilia
Length

Healthy
controls

Average 73.8 2.95 76.91 3.05 74.16 3.11 77.33 3.01
SEM 3.25 0.04 1.99 0.08 1.97 0.07 2.83 0.05

Patients
Average 34.27 2.13 33.83 2.06 36.11 3.14 66.61 3.1

SEM 2.8 0.04 2.02 0.05 2.19 0.06 4.36 0.07

4. Discussion

Mutations in FAM161A are currently the most common cause for nonsyndromic
ARRP in the Jewish population with more than 100 affected patients in the Israeli Jewish
population due to only two pathogenic variants [12]. One of these pathogenic variants
modifies the codon for arginine in position 523 into a PTC. In the current study, we aimed
to provide a proof of concept that biallelic FAM161A patients harboring the c.1567C>T
(p.Arg523*) mutation on at least one allele can potentially benefit from TRIDs therapy.

Previous studies showed FAM161A expression in different cell lines: hTERT-RPE-1,
cos-7, HeLa and other ciliated cells [9–11]. Here we show for the first time that FAM161A is
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expressed in human fibroblast cells in which ciliogenesis can be triggered by starvation.
Moreover, we demonstrate that in control cells FAM161A is co-localized with α-tubulin
indicating its association with microtubules, as previously reported in other cells [10,11].
On the other hand, FAM161A patient-derived cells show a very weak FAM161A expression
and modified α-tubulin expression. The observed weak expression might be either due
to spontaneous read-through of the nonsense mutations, a phenomenon observed previ-
ously [35], or expression of a short nonfunctional protein. However, this low expression
level is not enough for normal cell function, namely binding to microtubules and increasing
the acetylation of α-tubulin [13].

FAM161A was reported previously to be a ciliary protein, and two mouse models
were reported with significantly short cilia in photoreceptor cells, indicating that absence
of this protein causes shorter cilia [15,16]. To this end, we show here that ciliogenesis
(triggered by starvation) in FAM161A mutated fibroblast cells is reduced as compared to
controls, and the generated cilia were significantly shorter. We assume that absence or
extremely low expression of FAM161A affects cilia production and structure not only in
mice photoreceptors but also in human fibroblasts, and potentially in the human retina
as well.

In the present study, we used two different TRIDs, Gentamicin and Ataluren. Gen-
tamicin was previously reported as efficient read-through treatment for different genetic
disorders in cell cultures, animal models and humans [36]. It was also shown as an efficient
drug for genetic eye diseases such as choroideremia and ocular coloboma in zebrafish
models [37], and Usher syndrome in cellular models (HEK293T and fibroblasts) and mouse
retinal explants [31,38]. Several side effects were reported, such as retinal-, nephron- and
ototoxicity [26,38,39], which made Gentamicin not practical for long term use (systemically
or directly administrated to the eye), though in several studies it was shown to be dose
dependent [37,38]. We used a concentration that was previously reported efficient and
not toxic to fibroblast cells [31], although other concentrations might be efficient as well.
One of the limitations of this study is the use of only one concentration of each drug.
Examining different concentrations of the drugs may result in protein expression and cilia
length that are closer to the results obtained from healthy controls. In the current study,
Gentamicin treatment was able to restore FAM161A expression weakly and partially restore
co-localization with α-tubulin, but did not improve the percentage of ciliated cells. Similar
findings were reported previously after Gentamicin treatment of USH2A patient-derived
fibroblasts [31].

Previous studies demonstrated the read-through efficacy of Ataluren on several dis-
eases causing PTCs, both in cellular [31,35,40] and animal models of eye disorders [29].
Furthermore, Ataluren was approved for the treatment of Duchenne muscular dystrophy
(DMD) and cystic fibrosis (CF) caused by in-frame nonsense mutations in the US and
has orphan drug status and conditional authorization for DMD in Europe [17]. More re-
cently, topical application of Ataluren was shown to revert congenital tissue malformation
defects in a mouse model for Aniridia [30]. In the current study, we demonstrated that
Ataluren was able to restore FAM161A expression in FAM161A-mutated cells as well as
its co-localization with α-tubulin along the microtubules (similar to the level that was
observed in cells from healthy controls).

Read-through of a PTC could result in the integration of an amino acid that is different
from the original one. The probability of the amino acid being integrated at the PTC site
varies depending on the stop codon and the applied TRIDs [22,23,31]. The alternative
amino acid might have an impact on the stability, localization and/or function of the
resulting FAM161A protein. However, the series of analyses performed in the current
study, including staining with FAM161A antibody showing restored FAM161A staining
and co-localization of FAM161A with anti α-tubulin and functional cilia analysis, resulted
in better ciliogenesis and longer cilia length in patient-derived cells treated with Ataluren.

TRIDs, and mainly Ataluren, were shown to induce read-through of nonsense muta-
tions in genes that are expressed in the retina effectively. Different systems of drug delivery
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to the vitreous and the retina are currently under development and approval [41,42] and
may in the future serve as an efficient platform for Ataluren delivery to photoreceptors.

In this study, we demonstrated that small molecules such as Ataluren and aminogly-
cosides such as Gentamicin can successfully read-through a nonsense FAM161A mutation
resulting in functional rescue of FAM161A in human fibroblasts. This study provides
further evidence that Ataluren, Gentamicin and possibly other similar compounds have
the potential to restore expression and function of FAM161A in patients with the nonsense
mutation p.Arg523*, which causes RP. Our results provide a proof-of-concept that PTCs in
retinal genes can be treated with TRIDs.
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com/article/10.3390/ijms23073541/s1.
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