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Striatal hub of dynamic and stabilized prediction
coding in forebrain networks for olfactory
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Identifying the circuits responsible for cognition and understanding their embedded com-

putations is a challenge for neuroscience. We establish here a hierarchical cross-scale

approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings,

in order to disentangle local network contributions to olfactory reinforcement learning. At

mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with

higher-order cortices. While primary olfactory cortices respectively contribute only some

value components, the downstream olfactory tubercle of the ventral striatum expresses

comprehensively reward prediction, its dynamic updating, and prediction error components.

In the tubercle, recordings reveal two underlying neuronal populations with non-redundant

reward prediction coding schemes. One population collectively produces stabilized predic-

tions as distributed activity across neurons; in the other, neurons encode value individually

and dynamically integrate the recent history of uncertain outcomes. These findings validate a

cross-scale approach to mechanistic investigations of higher cognitive functions in rodents.
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Complex functions like association learning involve a chain
of cognitive processes comprising the recognition of
unexpected outcomes and the updating of reward pre-

dictions (RP)1,2. In the framework of reinforcement learning, the
RP associated with a conditioned stimulus (CS) is updated by a
prediction error at the unconditioned stimulus (US). The pre-
diction error computes the mismatch between the predicted value
and the actual outcome2–8. Functional magnetic resonance ima-
ging (fMRI) in humans suggests that forebrain regions contribute
to a different extent to the computation of the RP and prediction
error9–12. In translational rodent and primate models, deeper
mechanistic insights have emerged from the study of few cell
types and brain regions, most notably dopamine neurons in the
ventral tegmental area3,4,6,8,13–16. Neuronal correlates underlying
stimulus-outcome learning are examined in rodents frequently
with odor cues. In analogy to human olfactory learning17–21,
rodent olfactory and higher-order cortices, as well as striatal
regions appear to differ in their contribution to stimulus value
and reward outcome coding8,13,22–32. Comparisons between the
region-specific contributions to the associative process are how-
ever limited, since only one or few regions are respectively studied
under the same task conditions and, often, outside of an explicit
reinforcement learning framework.

To identify the forebrain regions involved in these computa-
tions, a possible solution would be fMRI in task-performing
rodents combined with behavioral parametrization. This would
provide a translational discovery approach to leverage animal
models amenable to mechanistic dissection. Recent developments
demonstrate the potential of fMRI for describing reward and fear
circuits in awake, passive mice33–35 or connectivity during resting
state in mouse mutants36. Even though fMRI has become a
standard tool to assess task-related brain activity in humans, to
date, only very few fMRI studies exist in rodents during task
performance37, and none examine whether BOLD correlates
reflect the task information of the local cellular coding.

To address these issues, we develop here a hierarchical cross-
scale approach, from behavioral modeling and fMRI to cellular
recordings, for an olfactory stimulus-outcome learning task with
different reward probabilities. As a first step, we model the
learning to formulate specific hypotheses about RP and prediction
error signals; on such behavioral correlates, we then regress the
fMRI data from mice performing the task in the scanner. We aim
here to identify a functional network of forebrain regions and
their respective contributions to RP and prediction error com-
putations. We then validate with single-unit recordings whether
the BOLD signal reflects the task-related information of the local
neuronal code. Finally, we dissect coding mechanisms underlying
these RP signals in olfactory reinforcement learning.

Results
Reward prediction and its updating by the recent outcome
history. To disentangle the regions involved in distributed com-
putations of reward prediction and prediction error in the mouse
forebrain, a cohort of 23 animals, examined later with fMRI, was
habituated to a head-fixed setup and trained on stimulus-
outcome pair associations. Mice were conditioned to odor stimuli
that signaled different probabilities of upcoming reward (100%—
geranium, 50%—ylang–ylang, or 0%—rose; hereafter, these trial
types are labeled CS100, CS50, or CS0, respectively) (Fig. 1a).
Across sessions, odor and reward contingency pairs were kept
unchanged. The odor stimulus was presented for 1 s followed by a
1.7 s wait interval before the water drop was delivered with the
given reward probability (Fig. 1a). The water port was positioned
so that mice had to actively lick to sense and retrieve the reward.
After training, mice performed above criterion and licked in more

than 80% of CS100 and CS50 trials, but not in the CS0 trials
(Supplementary Fig. 1a). Lick intensities in the waiting window
correlated with the probability of reward to that odor cue (Fig. 1b,
c and Supplementary Table 1 for statistical test). In ten trained
mice, we monitored pupil responses as a second proxy for the
animals’ reward expectation (Fig. 1d and Supplementary Fig. 1b,
c). Pupil dilation equally reflected the stimulus-specific RP
(Fig. 1e). Thus, mice learned to predict reward outcomes upon CS
presentation.

We used reinforcement-learning modeling to parametrize the
RP value associated at CS with each odor (‘VðCSÞ’), and the
prediction error at US (‘δðUSÞ’). We built a temporal difference
(TD) model with the learning rate (‘α’) set as a free parameter and
optimized on the pupil responses of the behavioral sessions. The
average of the learning rates was used to build a TD model
applied throughout the study. Exploiting the generative power of
the TD model, we simulated 100 sessions and observed that the
average of VðCSÞ across sessions approached the true reward
frequencies associated with each CS (Fig. 2a). As expected, the
absolute value of δ at the time of potential reward became small
in CS100 and CS0, but remained large for CS50 trials (Fig. 2b). In
CS50 trials, the average reward probability was at chance level
throughout the session. Yet, the RP value was dynamically
updated at each trial to integrate local fluctuations on the
outcome probabilities. According to the TD model, the RP
associated with a CS at each time instance t results from the
integration of the whole history of rewards paired (or not) with
each instance of CS. Each obtained reward will increase the RP
associated with CS50 while the absence of reward will diminish it.
Consistently, when dividing CS50 trials according to the outcome
of the preceding CS50 trial, the recent outcome history was
reflected in the state values of the TD model (Fig. 2c, d) and
confirmed behaviorally by the pupil responses during the waiting
interval (Fig. 2e). Thus, animals learned to predict reward
outcome at CS modulating RP by the recent outcome history of
uncertain rewards as predicted by the TD model.

Regional specializations for olfactory reward prediction in
forebrain networks. We employed fMRI to localize forebrain
regions involved in olfactory RP, modulation by recent outcome
history, and the prediction error. A Bruker 9.4 T rodent MR
scanner was used to image mice during task performance. A
mouse MRI cradle was designed with odor and lick ports, con-
nectors for head bars, and a cover over the back of the mouse
(Fig. 3a). Mice were habituated to the cradle and head fixation in
mock scanners, progressively adding the task paradigm, and then
increasing levels of MRI sound recorded during an fMRI session.
After completion of this training (Supplementary Fig. 1d), the
cohort of 23 mice underwent fMRI. No anesthesia or sedation
was used at any stage of the fMRI experiment, including habi-
tuation and image acquisition. To reduce stress and assure task
performance, mice performed 20–30 preparatory trials before
commencing the BOLD imaging sequence. In order to maintain
comparable levels of satiety and motivation as the 150-trial ses-
sions outside the scanner, also inside the scanner only 120 trials
(following the preparatory trials) were considered. Sessions where
animals did not lick at reward were stopped and the animals were
not used for further sessions. Of the 67 completed scanning
sessions, 51 sessions in 18 animals performed above criterion
(>80% correct hits and rejections per session) (Supplementary
Fig. 1e–g).

We investigated a larger forebrain network comprising the
olfactory bulb, the primary olfactory and prefrontal cortices, and
the ventral and dorsal striatum (Fig. 3b). Upon preprocessing, we
computed three different general linear models (henceforth
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termed GLM 1, GLM 2, and GLM 3) on the BOLD time series of
51 sessions, modeling CS and US timepoints as events, which
were parametrically modulated as described below, and con-
volved with a previously determined mouse hemodynamic
response function38 (see “Methods” and Supplementary Fig. 2a–d
for detailed information about preprocessing and model designs;
for complementary analyses see Supplementary Fig. 3, and for
additional control analyses see Supplementary Fig. 4). The
average magnitude of BOLD responses (computed as percent
signal change) was mostly in the range between 0 and 2%
(Supplementary Fig. 2e), similar to a prior behaving fMRI study
in rodents39.

When parametrically modulating the CS regressor with the
model-estimated RP value at CS, VðCSÞ (GLM 1), we observed

broad recruitment of brain regions (Fig. 3c; for a schematic
summary of task-related regional activations see Supplementary
Fig. 3g) with positive signals in the olfactory bulb, the medial
prefrontal cortex (mPFC) and the agranular insular cortex.
Negative BOLD signals to VðCSÞ were found in olfactory primary
cortices, namely the ventral parts of the anterior olfactory nucleus
and partially also the anterior piriform cortex (aPC). The dorsal
striatum and the two ventral striatal brain regions, consisting of
the olfactory tubercle (Tu) and nucleus accumbens (NAc), were
also correlated with VðCSÞ.

If reward prediction is the dominant feature of a region,
response intensities should reshape and follow monotonically the
predicted reward probability of the CS after learning. GLM 1 does
however not distinguish between a strict monotonic neuronal
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Fig. 1 Trained mice display differential anticipatory responses to olfactory stimulus-outcome pairs. a Mice were trained to learn stimulus-outcome
pairs: Three different odors (CS) were applied for 1 s followed by a fixed waiting period of 1.7 s before a drop of water was delivered (US). Licking behavior
and pupil diameter were monitored simultaneously. Stimulus CS100 and CS50 predicted US with different reward probabilities (100% and 50%). Stimulus
CS0 was never rewarded. The time interval between CS onsets of consecutive trials (trial duration) was jittered between 10 and 12 s. b Evolution of average
lick rates ± SEM differentiated trial types (n= 69 training sessions in 23 animals, 3 sessions per animal). c Lick rate in the waiting window differentiated the
respective trial types with CS100 > CS50 > CS0 (n= 69 training sessions in 23 animals; one-way ANOVA with Tukey post hoc comparisons). d Video
frames illustrating pupil images 1 s before and 5 s after the onset of CS100 (left). Average change ± SEM of the baseline subtracted pupil diameter also
differentiated trial types (right; n= 10 sessions in ten animals). e In the waiting period, average (±SEM) percentage change of pupil diameter revealed a
similar pattern as licking (n= 10 sessions in ten animals; one-way ANOVA with Tukey post hoc comparisons). In the figure: * indicates P < 0.05 (see
Supplementary Table 1 for exact P values and test details). Box plots: The bounds of the box represent 25th to 75th percentiles. The center indicates the
median. The lower and upper whiskers represent the minimum and maximum values. Source data are provided as a Source Data file.
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representation of VðCSÞ (CS100 > CS50 > C0), and a simple
binary differentiation between presence or absence of reward
expectation (e.g., CS100=CS50 > CS0). Both types of representa-
tions would result in a significant correlation with VðCSÞ. Indeed,
CS100 and CS50 recruited similar brain regions, unlike CS0
(Supplementary Fig. 3a–d). To probe which brain regions
represent RP in a monotonic fashion, such that higher reward
expectation is reflected by a stronger BOLD or neuronal response
(i.e., CS100 > CS50 > CS0), we computed a separate GLM 2,
where the three CS trial types were modeled with individual
regressors. We determined BOLD correlates of monotonic RP by
intersecting significance maps of specific contrasts ((CS100 >
CS50) ∩ (CS50 > CS0), or vice-versa for negative contrasts
(CS100 < CS50) ∩ (CS50 < CS0), Supplementary Fig. 3e, f).
Within the VðCSÞ-significant regions, monotonic RP was
expressed primarily in a network comprising the mPFC and
agranular insular cortex, as well as striatal circuits (Tu, NAc and
lateral striatum) and the olfactory bulb as a primary olfactory
region (Fig. 3d). This monotonic RP network was largely
determined by the narrow contrast between the two rewarded
stimuli CS100 and CS50 (Supplementary Fig. 3e). Again, the Tu
and NAc displayed monotonic RP with negative contrasts. We
then investigated, among the regions representing VðCSÞ, which
brain regions participated in the RP updating based on the recent
outcome history, as predicted by the TD model (cf. Fig. 2c, d). To
this end, the CS50 regressor was parametrically modulated by the
binary outcome of the preceding CS50 trial (Supplementary
Fig. 1h, i). Among the regions representing VðCSÞ, the three
striatal regions and the early olfactory processing circuits
(olfactory bulb, anterior olfactory nucleus) reflected the cue-
specific outcome-history updating (Fig. 3e).

In the TD model, the prediction error δ at US is r � VðCSÞ. In
humans, most brain regions contribute to either one of the two
components of the prediction error at US (r or �VðCSÞ), and
only few regions compute both40,41. To test for BOLD correlates
of the prediction error at US, we set up GLM 3, where we
parametrically modulated the US regressor with �VðCSÞ and
with r within the same GLM. We found correlates of r (Fig. 3f) in
the lateral NAc, the posterior Tu, the dorsal striatum and,
additionally, also in the insula. In contrast, �VðCSÞ at US
(Fig. 3g) involved broadly a ventral stream of olfactory and
striatal regions and additionally the insular cortex. The intersec-
tion of r and �VðCSÞ (Fig. 3h) included the lateral NAc, but
comprised also the posterior Tu, and partially the insular cortex;
thus indicating a relatively confined set of candidate regions that
could be involved in the prediction error at US for olfactory
stimulus-outcome learning. Co-localization of both prediction
error components (r and �VðCSÞ) could in principle emerge also
from two independent processes. The expression of the prediction
error in candidate regions will be therefore further explored by
electrophysiology.

In summary, (monotonic) RP and the prediction error
components recruited only specific olfactory, prefrontal, and
striatal regions, respectively. Among them, few regions, including
the Tu, also displayed RP updating by the recent cue-specific
outcome history. Further, the contribution of the aPC as a
primary olfactory cortex to these computations was relatively
restricted compared to other olfactory regions.

Task-related functional connectivity of the aPC and Tu. From
the previous analyses, the Tu appeared as hotspot for the com-
putation of all RP aspects. This can result either from local
processes or from interactions with other connected regions (or
both). Together with the olfactory bulb, one of the main sources
of direct synaptic inputs to Tu is the aPC42. Yet, aPC neither

reflected monotonic value nor dynamic value updating and,
somewhat surprisingly for a sensory cortex, peaked at US with its
value association (cf. Fig. 3c, g). One reason for the functional
differentiation of aPC and Tu may reside in their respective task-
related functional connectivity with other regions. We therefore
first examined the relationships of Tu or aPC with the odor-
reward association learning network of olfactory, striatal and
higher-order regions (Fig. 4a). Task-related functional con-
nectivity was computed using beta-series correlations, based on
an adapted GLM that modeled each event (CS and US) in each
trial as a separate regressor43. Briefly, task-related functional
connectivity (henceforth also called “functional connectivity” for
brevity) between either Tu or aPC and regions-of-interests (ROIs)
contained within the network was first determined by computing
the Pearson’s correlation coefficient between the series composed
of the region-averaged GLM beta weights of each trial. This
correlation was computed at CS and US for each trial type
(Fig. 4b, c). Note that this method is correlational in nature and
does not allow inferences about causality or common synaptic
inputs. These analyses revealed that both Tu and aPC were
embedded in a ventral stream of functional connectivity, which
included NAc and olfactory regions, such as the anterior olfactory
nucleus. aPC and Tu displayed strong functional connectivity
with each other (Fig. 4b, c). Yet, while the distributed network
functionally correlating with aPC was relatively uniform across
stimuli, compatible with stimulus detection, the functional con-
nectivity of the Tu network differentiated between rewarded and
unrewarded CS (especially in the coordination of the dorsal
striatum and higher-order cortices), in line with the role of Tu in
value computation. These findings were confirmed by a voxel-
based analysis between each seed region (Tu and aPC) and all the
voxels contained within the odor-reward association-learning
network, accounting for possible intraregional differentiations
(Fig. 4d, e and Supplementary Fig. 5a, b). Consistent with dif-
ferential circuits recruited in go and no-go trials, the functional
connectivity for both Tu and aPC differed between CS0 and the
rewarded CS (Supplementary Fig. 5c, d). This differentiation
continued into US. Further, a confined functional connectivity
differentiation was found at US between rewarded and non-
rewarded CS50 trial outcomes selectively for Tu with NAc and
the anterior olfactory nucleus. Thus, in summary, although the
aPC and Tu displayed strong task-related functional connectivity
with each other, they differed in their task-dependent co-activa-
tions with the odor-reward association-learning network.

Task-related neuronal population coding in the olfactory cor-
tex and striatum. The differential embedding of the aPC and Tu
in task-related functional connectivity further supported their
distinct roles in olfactory-association learning. We next validated
whether the local cellular activity confirms the encoding of the RP
and prediction error components as revealed by fMRI and
investigated their underlying coding mechanisms. Specifically, we
wondered how the cellular coding of value prediction and error is
solved in the Tu. Further, we addressed the relative paucity in
value coding of the aPC that appeared to evolve surprisingly late
for a primary sensory cortex after the stimulus onset. Finally, we
wondered how the task-related BOLD negativity may be inter-
preted in light of the principal neuron activity of the two regions.

To dissect the local cellular coding underlying the computa-
tions of the aPC and Tu, we performed chronic single-unit
recordings in a separate cohort of 11 mice with a custom-
designed tetrode array. Dual-site recordings comprised 16
tetrodes per brain region (Fig. 5a and see also Supplementary
Fig. 6a–c). We examined trained animals that performed the task
above criterion (Supplementary Fig. 6d–f) and obtained 169
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putative striatal projection neurons with baseline firing below
5 Hz in the Tu (Supplementary Fig. 6g, h). In addition, we
obtained 486 regular firing neurons in the aPC with baseline
firing below 10 Hz. To capture coherent positive and negative
changes in the population firing rate, we computed the deflection
from baseline of the population vector during the trial (Fig. 5b).
We computed the Euclidean distance between the population
vector at each time instance and at baseline, to detect changes in
angle or rate of the population activity. In the Tu, population
activity coded for the predicted reward value of the stimulus at CS
and during the waiting period (Fig. 5c, d). We quantified then to
which extent different odors and outcomes recruited the same
units. By computing the Pearson cross-correlation between the
average instantaneous population vectors associated with differ-
ent CS, we found progressive recruitment of units encoding cross-
stimulus reward anticipation during the waiting period of CS50
and CS100 trials, and progressive decorrelation between the
rewarded and non-rewarded CS trials (Fig. 5e). At US, population
trajectories during CS50 trials diverged according to the outcome
and, in case of reward, were pushed closer to the trajectory of
CS100 trials (Fig. 5f).

The aPC displayed different population responses (Fig. 5g–j).
In contrast to the Tu, aPC population activity was most
pronounced during CS (Fig. 5g), as expected for a primary
sensory cortex, and did not reflect RP (Fig. 5g, h). The CS onset
triggered a correlated detection response across all trial types in
aPC (Fig. 5i). This was also seen in the initial upshot of the
population trajectories common to all stimuli (Fig. 5j, contrary to
the Tu cf. Fig. 5f). Thus, while aPC had a pronounced detection
response to olfactory stimuli, the Tu population coded for
monotonic RP both during odor presentation as well as during
the anticipatory waiting in trained animals.

Task-inhibited value responses dominate aPC. We then aimed
to better understand what cellular activity patterns underlie the
negative BOLD correlates of value in the aPC. In trained mice,

after an initial positive response to CS detection, negative mean
population rate changes prevailed during waiting and upon US
for all trial types (Fig. 6a, b). Interestingly, this negative rate
change encoded predicted stimulus value during waiting, but not
at CS, and responded to different reward outcomes at US
(Fig. 6b). The population coding, and also the fMRI data, were
examined in animals trained for at least two weeks in the specific
task. As learning may modify the proportions between excited
and inhibited responses44, we wondered whether the pre-
dominance of task-inhibited responses emerged with training. We
thus analyzed the first session the animal ever faced the task with
the three stimuli CS100, CS50, and CS0 (Fig. 6c and Supple-
mentary Fig. 7a–c). Throughout the training, all animals had been
presented with the same odor identity-reward probability asso-
ciations. At the beginning of the first session, the odors elicited
different mean responses not reflecting reward probabilities, but
most likely intrinsic odor properties (Supplementary Fig. 7c and
Supplementary Table 1 for statistical test). In this initial training
session, the net population rate response was relatively balanced
(Fig. 6c). With training, the fraction of units with task-excited
responses did not change. Yet, their relative contribution in the
CS50 and CS100 trials markedly dropped due to the increase of
task-inhibited responses (Supplementary Fig. 7d, e).

The development of value coding at the single-unit level would
require an acquired generalization in the unit responses to
rewarded stimuli. However, aPC units with task-excited responses
did not change their selectivity with learning (Fig. 6d–f).
Considering the strong changes in task-inhibited responses,
learning appeared to affect units negatively modulated by the
task. To confirm this observation and account for a potential
heterogeneity of aPC subpopulations contributing to RP coding,
we clustered neurons of trained animals according to their task
activation profiles (Fig. 6g). Units clustered in a variety of
subpopulations and fell into three main groups according to their
dominant characteristics. The main subpopulations consisted of
transient CS-excited units (Fig. 6h) and a large group of task-
inhibited units (Fig. 6j). Moreover, an additional smaller group of
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without outliers; outliers indicated by circles. Source data are provided as a Source Data file.
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units displayed heterogeneous sustained activity during waiting
(Fig. 6i). Neither of the two task-excited cluster groups showed
monotonic RP in their average response (Supplementary Fig. 7f,
g), which was, however, again reflected in the task-inhibited
population (Fig. 6j and Supplementary Fig. 7h). Thus, with
training, aPC shifted toward task-inhibited responses that
contributed to value coding.

Parallel populations encode reward prediction in Tu. We then
examined the cellular dynamics underlying the RP and prediction
error correlates in the olfactory striatum revealed by fMRI. In
trained mice, the mean population firing responses encoded RP at
CS and during waiting, as well as reward surprise at US (Fig. 7a,
b). As expected, during the first session, reward surprise, but not
RP, dominated task responses (Fig. 7c). Value coding began to
emerge during the first session with the stimulus responses to the
fully-rewarded CS100 differentiating from the other stimuli
(Supplementary Fig. 8a and Supplementary Table 1 for statistical
test). Notably, the mean rate changes to CS0 were still positive in
this first training session. With subsequent learning, the fraction
of units with task-excited responses dropped in CS0 trials and
increased in the rewarded trial types. As in aPC, training
increased the fraction of Tu units with task-inhibited responses
across trial types (Supplementary Fig. 8b, c). Contrary to aPC, the
number of Tu units responding to more than one CS increased
both for task-excited and task-inhibited responses (Fig. 7d–f). As
expected for learned categorization of stimuli according to their
predicted outcome value, the increase was caused by shared
responsiveness to both CS50 and CS100 (Fig. 7g–i). This trend
characterized all task epochs. However, we found some notable
differences in the responsiveness of Tu units during the CS and
the subsequent waiting interval. At CS, the total number of units
with shared responsiveness to CS50 and CS100 was smaller than
the sum of units responsive selectively to CS50 or CS100 (Fig. 7g).
During waiting, instead, the large majority of recruited units
shared responsiveness to CS50 and CS100 (Fig. 7h). This differ-
ence could suggest the presence of distinct functional Tu sub-
populations active at different task epochs, and heterogeneity in
the RP coding scheme during stimulus presentation and the
subsequent anticipation of reward while waiting.

To investigate the existence of distinct functional subpopulations
in Tu, we clustered neurons of trained animals according to their
task activation profiles (Fig. 7j). Tu units divided into three major
groups. Task-excited units with transient activity at CS (transient
cluster, Fig. 7k), task-excited units with ramping activity during the
waiting window (ramping cluster, Fig. 7l), and units with task-
inhibited responses (inhibited cluster, Fig. 7m). The transient
cluster encoded monotonic RP at CS, which decayed shortly after
the odor presentation had ceased (Fig. 7k and Supplementary
Fig. 8d). Within the ramping clusters, instead, monotonic RP
coding evolved during waiting (Fig. 7l and Supplementary Fig. 8e).
In contrast to the task-excited clusters, the average firing rate of the
inhibited cluster did not significantly encode a monotonic RP
(Fig. 7m and Supplementary Fig. 8f). These findings suggest that
stimulus-triggered and anticipatory RP were encoded by parallel
task-excited neuronal populations in the Tu.

Transient and ramping units differently encode monotonic RP
in Tu. To better understand the coding mechanisms employed by
such functionally distinct neuronal clusters, we examined whether
the RP was computed in single neurons, whose rate response
reflects the full set of reward probabilities, or only at the popu-
lation level. While more than half of the units in the ramping
clusters displayed a monotonic RP coding (Fig. 8a, b), in the
transient cluster only a quarter did so, and exclusively during

odor presentation (Fig. 8a, b and Supplementary Fig. 9a). Con-
sidering that the CS-bound value coding units are reinforced
from pre-existing odor-specific responses28, we wondered whe-
ther the single units not encoding monotonic RP still contributed
collectively to it. Indeed, upon removal of all units with mono-
tonic RP coding in the transient cluster, the cumulative firing rate
of the remaining units still reflected a robust population coding of
the monotonic RP (Fig. 8c). This was not the case in the ramping
cluster (Supplementary Fig. 9b). Thus, while the ramping cluster
encoded the full information at the single-unit level, the transient
cluster employed largely a distributed coding scheme. Only a few
task-inhibited units individually encoded a monotonic RP (Fig. 8a
and Supplementary Fig. 9a). In contrast to Tu, only a small fraction
of all aPC units encoded monotonic RP above chance level (Sup-
plementary Fig. 9c), with the exception of a few units from the
task-inhibited cluster. In fact, the occurrence of units with response
intensities monotonically ordered (CS100 > CS50 > CS0 and
CS0 > CS50 > CS100) passed the chance level for all cluster groups
in Tu (while no other intensity permutation did), but only for the
task-inhibited cluster groups in aPC.

To understand whether the Tu units with transient CS-bound
value coding and those with ramping anticipation are differen-
tially involved in prediction error computations at US, we tested if
single units encoded reward surprise and if they differentiated
outcomes between reward and non-reward in CS50 trials (Fig. 8d).
Reward surprise was defined by a larger rate change in rewarded
CS50 than in CS100 trials from the waiting period to the US
response. Note that negative surprise for unrewarded CS50 trials
was not tested because phasic negative responses to US from the
wait plateau cannot be distinguished from the progressive passive
return to baseline. Approximately half of the units in both the
transient- and ramping clusters significantly encoded either
reward surprise or outcome discrimination, with a large fraction
of them significant for both discrimination and surprise. It is
important to note that ramping neurons had a more sustained
and pronounced response to reward than transient neurons (cf.
Fig. 7k, l), both relative to baseline (Supplementary Fig. 8d, e) and
to the anticipatory ramp (Supplementary Fig. 8g). In the task-
inhibited cluster, only a minority of units displayed surprise or
outcome discrimination at US (Fig. 8d). In the aPC, roughly a
quarter of units in all response clusters uniformly encoded
outcome discrimination or reward surprise (Supplementary
Fig. 9d).

In summary, two parallel populations in the Tu—both
encoding the prediction error—distinguished for the coding of
RP in different task components: The CS-bound RP was
computed with the information distributed in single neurons
responsive to specific CS, while anticipatory RP was computed as
full information already in single neurons with ramping activity
in anticipation of reward.

Reward prediction is updated by its recent outcome history.
We finally examined how the multiple circuits encoding RP in the
Tu and aPC updated according to the recent outcome history. We
divided the CS50 trials based on the outcome of the preceding
CS50 trial (Fig. 9a). To compare this effect with the unselective
effect of recent rewards associated with other CS (termed here
“satiety”), we also examined the modulation of expected value in
CS50 trials depending on whether the previous trial was CS100 or
CS0 (Fig. 9b). We found that during waiting, anticipatory licking
following CS50 was positively modulated if the previous CS50
was rewarded, integrating information of at least four prior CS50
trials (Fig. 9c–e), even though other trial types were interspersed
(Supplementary Fig. 10a). Satiety had, instead, the opposite effect
on the licking behavior. The prior experience of either a CS0 or a
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CS100 trial increased or decreased, respectively, the intensity of
anticipatory licking in CS50 trials (Fig. 9c, f).

We then tested whether the task-related global population
activity would also reflect such outcome history. Confirming the
results from the analysis of the BOLD responses, we observed that
recent rewards in CS50 trials positively modulated future CS50
responses in the Tu (Fig. 10a, left), but not in the aPC (Fig. 10a,
right). In contrast, satiety did not change the population response
in Tu (Fig. 10b, left) but negatively modulated the response to
CS50 in the aPC (Fig. 10b, right and Supplementary Fig. 10d, e).
While monotonic RP was encoded by both transient and ramping
Tu populations, RP updates by the cue-specific outcome history

were significant only in the ramping population during waiting
(Fig. 10c, d and Supplementary Fig. 10b). Notably, in the ramping
population, satiety had the opposite effect of the cue-specific
history (Supplementary Fig. 10c).

In summary, the ventral striatal circuit performed parallel
computations of the RP in two neuronal populations. One
population responded to CS and provided a stable representation
of the RP. The second population encoded the anticipated RP
during the waiting period before US and integrated the
expectation update based on the recent cue-specific outcome
history. Cue-specific updating of the RP differed in its direction
from satiety that modulated more prominently the aPC.
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Discussion
The hierarchical approach developed in this study may serve as a
discovery strategy for key circuits in complex behavioral tasks and
to reconcile findings in selected brain regions at the system level.
The hierarchical approach starts from behavioral modeling to
then identify task-relevant brain circuits with functional imaging.
Upon such regional identification, the cellular and network
coding mechanisms are studied at finer grain resolution by means
of electrophysiological recordings; thereby providing a systematic
cross-scale integration from behavior, over mesoscale networks,
to cellular functions.

Functional MRI in awake rodents offers the opportunity to
assess the functional recruitment of deep and superficial circuits
during task performance, and the absence of sedation/anesthesia
reduces confounds to the hemodynamic response. Several aspects
are critical when interpreting BOLD responses. Seminal work has
provided insights into the neuronal basis of BOLD responses to
isolated sensory stimuli in animals45–47. Even though BOLD
changes reflect activity patterns of projection neurons, in some
regions, such as the striatum, BOLD and rate changes can have an
inverse relation48,49. Moreover, little is known about the relation
between population rate coding and BOLD signals during com-
plex tasks. BOLD responses correlate with regional blood flow
that is regulated for instance through nitric oxide synthesized by
interneurons in an activity-dependent fashion50–52. These inter-
neurons can, but do not need to, be positively correlated with
principal neuronal activity50. It is, therefore, possible that inputs
from sensory or reward-coding regions may differentially inner-
vate and drive these interneurons. These factors may eventually

generate the observed opposing BOLD contrasts for the RP and
prediction error components, even though principal neurons
responded to both with the same direction of firing rate changes.
Therefore, when using fMRI as a localizer for task-related activity
as in this study, both positive and negative BOLD associations can
be informative but, at present, cannot serve to predict the specific
character of the underlying neuronal activity.

Several factors need to be considered in (behaving) fMRI. Even
though the mouse hemodynamic response function is several-fold
faster than in primates, it will only partially separate sequential
task events that occur typically in the range of seconds. In our
experiment, image acquisition and trial onsets were temporally
non-aligned in order to increase the effective sampling frequency.
Nonetheless, low temporal resolution remains a general limitation
of fMRI, and is especially relevant in paradigms where two events
(like CS and US) are presented in close temporal proximity.
Further, fMRI has a relatively low signal-to-noise ratio even at
high field strength, which we aimed to compensate with repeated
imaging and an optimized training scheme to generate sufficient
cohort sizes. Importantly, Echo Planar Imaging is sensitive to
motion-induced distortions of the magnetic field, evoked for
instance by head movement during licking activity and chest
movement during respiration. Superficial lateral and ventral brain
structures like Tu and aPC are particularly susceptible to the
effects of head and jaw motion. We employed a combination of
denoising methods to minimize head-motion effects (see the
section “Functional MRI denoising” for a detailed discussion).
The motion level that we observed in the behavioral task, is
expected given data of recent awake resting-state imaging in
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mice36. Optimizing the head fixation, and modified acquisition
techniques (such as continuous field mapping53,54), may further
aid in reducing these effects. Nevertheless, active reward retrieval
is an essential component of reinforcement-learning tasks.
Therefore, in many paradigms including ours, the artifacts caused
by jaw movements, swallowing or breathing, are correlated with
the effects of interest, limiting the possibility to completely
remove motion effects from the BOLD data (see also “Methods”).
Similarly, while we aimed at separating the neuronal correlates of
motor activity from that of reward expectation/experience (by
including licks as an additional regressor), we cannot assume a
perfect separation between these two processes, due to the cor-
relation between reward expectation/consumption and licking
activity. However, in support of that motion does not explain the
CS responses, the BOLD response patterns were preserved when
only trials with low motion were included (see the section
“Functional MRI denoising” and Supplementary Fig. 4). In
summary, functional MRI served here as a discovery tool, and the
limitations discussed above highlight the importance of

corroborating and disentangling regional BOLD recruitments
with the electrophysiological recordings.

Through the mesoscale fMRI approach, we found that RP and
prediction error components were differentially represented
among the primary olfactory cortices, subcortical circuits, and
higher-order brain regions. The identified regions formed a larger
ventral functionally connected odor-reward-association-learning
network with some notable differentiations. While forebrain
regions broadly contributed to value-related information, the
complete monotonic RP involved a narrower network. In the
olfactory regions, monotonic RP was represented partially in the
olfactory bulb. Learning to predict outcome has been shown to
modify neuronal representations in the olfactory bulb, possibly
through top-down mechanisms55–57. Olfactory cortices segre-
gated in their respective contributions to task computations,
despite their shared input from the olfactory bulb and the dense
reciprocal connections between the anterior olfactory nucleus and
aPC. As detailed by single-unit recordings, while in Tu the CS-
excited mean rate responses developed monotonic value coding,
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such re-arrangement was less prominent in the aPC. Rather, aPC
appeared to partially preserve the influence of initial odorant
features expressed before learning, in line with the known role of
aPC in stimulus identity representation. Compatible with this,
functional connectivity of the aPC was notably similar across CS
associated with different reward probabilities. During the waiting
period, however, task-inhibited monotonic RP responses emerged
at the cellular level.

Functional segregation was also observed in higher-order
cortices. The mPFC and agranular insular cortex contributed to
monotonic RP, but differed in their contribution to the prediction
error. While the insula correlated both with the value and reward
components of the prediction error at US, the mPFC did not
correlate significantly with prediction error in our task. Prefrontal
and insular regions prominently project to the lateral striatum
and NAc as well as the Tu23,31. In the Tu, additional direct inputs
from the olfactory cortices and the olfactory bulb converge23,31.
Tu and NAc represented all RP and prediction error aspects in
the olfactory reinforcement-learning task, including dynamic
value updating. In line with anatomical input gradients from
sensory and reward regions58, posterior parts of the Tu correlated
with the reward component of the prediction error at US. Also,
prediction error components were localized in the lateral NAc
shell, consistent with its contribution to positive reinforcement59.
Finally, the dorsal striatum similarly reflected CS-bound value
signals, but was dominated by the reward component of the
prediction error at US. There is an important difference between
the dorsal and ventral striatum. While the dorsal striatum is
known to encode the value of particular actions given a particular
CS, the ventral striatum has been suggested to encode the
expected reward value of CS12.

Supporting the translatability of these fMRI findings in mice,
conditioning in human fMRI studies recruited homologous pre-
frontal and ventral striatal regions involved across stimulus
modalities9,11,12,40,41,60 as well as modality-specific correlates in
olfactory cortices or insular regions17–21. The largely non-
overlapping forebrain representations of reward and value com-
ponents of the prediction error at US observed here match those
in humans40,41. Consistent with humans, in our study the mouse
NAc represented both the reward and the value components of
the prediction error at US. The Tu, which also represented both
prediction error components at US, has rarely been explicitly
examined in humans, but a recent fMRI study highlights its
unique role in appetitive odor representations61. Here we show
that mouse Tu displayed a CS- and US-sensitive functional
connectivity with the other brain regions while contributing to
multiple facets of stimulus-outcome learning.

Recent studies have revealed that Tu neurons are recruited by
stimuli that predict rewards upon conditioning22,26–28,31. In these
studies, the duration of the conditioned stimulus partially over-
laps with US. To better capture reward anticipation, in the pre-
sent study, we separated the CS and US by a waiting gap. Upon
learning, we observed the evolution of two prominent task-
excited populations of Tu units computing either a transient
stimulus-bound RP or a ramping anticipatory RP during the
waiting period. The transient stimulus-bound RP signal was
encoded by the sum of distributed odor responses of multiple
units, many of which were selective for only one odor, but that
collectively encoded monotonic RP. This RP signal emerged at CS
after cross-session learning and was little influenced by the recent
outcome history or satiety; consequently, generating a stabilized
representation of the RP. The stability of the RP representation at
CS may relate to its formation through synaptic plasticity62. In
fact, the stimulus-response potentiation evolves gradually upon
repeated pairing of the odor with phasic dopamine in awake
mice28. Once emerged, these RP-coding CS signals in the Tu are

in a position to drive downstream RP responses of midbrain
dopamine neurons (DAN)28.

In contrast to this CS-bound signal, the ramping anticipatory
RP signal evolved during the waiting interval after the stimulus
has ceased. Ventral striatal anticipatory ramping activity is also
found during waiting in head-fixed primates63 and thought to
reflect anticipatory timing to reward64,65 informing prefrontal
cortices66. Within the Tu, the ramping RP signal was encoded
redundantly, with multiple single units responding to all rewar-
ded odors proportionally to their associated value. Value update
was fast and stimulus-specific, in line with the modeled RP. The
faster value updating of the ramping population could be inter-
preted as a neuronal implementation of the TD model, where
values more proximal to the prediction error at US are more
quickly updated than the distal ones at CS. While stimulus-bound
RP responses drive DAN at CS, this might not be the case for Tu
ramping activity. In fact, DAN do not express anticipatory
ramping in head-fixed trace conditioning14,15 but only when
animals approach rewards in space15,16,67. Finally, the enhanced
responsiveness to reward of the anticipatory ramping population
compared to the CS-bound RP population adds to their differ-
entiation. Potentially, such differentiations could map on the
anterior–posterior gradients for a prediction error value and
reward representations found here, different olfactory and
reward-related projection gradients58,68, or direct- and indirect-
pathway Tu neurons27. Taken together, the different coding
strategies, the non-overlapping neuronal clusters, the functional
dissociation of the two RP signals from DAN, and the different
responsiveness to reward, support the presence of parallel net-
works for stabilized and dynamic reward prediction in Tu.

The hierarchical approach presented here, with its cross-scale
analysis, can be applied broadly to reveal the computations in
brain networks and can foster the discovery of key brain regions
and mechanisms in cognitive and translational sciences. Here, the
approach identified the olfactory tubercle of the ventral striatum
as one of the key circuits to compute multiple non-redundant
olfactory reward predictions in parallel networks of projection
neurons. While the CS-bound stabilized RP signal provides an
initial safe estimate to drive dopamine midbrain neuron coding,
the subsequent anticipatory RP dynamically integrates recent
experiences in preparation of reward retrieval. This olfactory
prediction coding hub operates within a network identified by
fMRI of functionally segregated olfactory and higher-order
regions.

Methods
Animals and husbandry. Ten-week-old male C57BL/6N mice were obtained
directly from Charles River Laboratories (23 animals for the fMRI measurements,
11 animals for single-unit recordings). Food and water were given ad libitum,
except when water supply was controlled for behavioral training. Mice were housed
individually at a 12 h’ day-and-night-cycle (room temperature 24 °C, air humidity
55%). Mice were 3–6 months old when recordings and fMRI were performed. All
procedures were in accordance with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals and the EU 2010/63 directive, and approved
by the local animal welfare authority (Referat 35, Regierungspräsidium Karlsruhe,
Karlsruhe, Germany). Only mice of one sex were used in the study to minimize
confounding effects of sex-related distress or distraction elicited by residual scents
in the recording apparatus and MRI cradle.

Implantation of the head bar. All surgeries used standard aseptic procedures and
conformed to common veterinary practice. Analgesia (meloxicam, Metacam
Boehringer Ingelheim) was administered before and after surgery. At least 12-
week-old mice were anesthetized with isoflurane. The animals were then trans-
ferred to a stereotactic apparatus with nonrupturing ear bars and placed in a
custom-built platform of the same dimension as the MRI cradle. It was ensured
that the fixed licking spout of the MRI cradle was at the same height as the animal’s
lower lip at a distance of 5 mm. A roughly circular flap of skin was removed from
the skull and lidocaine was administered topically. The lateral and nuchal muscles
were left intact. The skull was cleaned and disinfected. Tissue adhesive (3 M
Vetbond) was applied to the margins of the skin attached to the circumference of
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the exposed skull to avoid soft tissue damage and contamination. The remaining
periost on the exposed skull was removed. A layer of dental glue (C&B Superbond,
Sun medical) was applied on the (inter)parietal bone, followed by a layer of dental
cement (Kulzer Palladur) that connected the custom-designed head bar produced
with stereolithography (Accura55, 3D-Systems). Animals received additionally a
subcutaneous injection of buprenorphine directly after surgery. All animals
recovered within 10–20 min after cessation of isoflurane anesthesia. Thereafter,
they were transferred to their home cages in good general condition. If signs of
post-surgery pain were observed, additional meloxicam was administered. All
animals were monitored daily during the entire experiment.

MRI-compatible behavioral setup. We developed an MRI-compatible setup for
the odor-guided reward learning task (see Fig. 3 and Supplementary Figs. 1 and 2).
The apparatus comprised of an MRI cradle, an olfactometer, a programmable
syringe pump for reward delivery (AL4000-220, World Precision Instruments), an
optical licking detector, and Arduino microcontrollers (Arduino Mega 2560).
Odors were delivered using a custom-made olfactometer. Odors were kept in the
liquid phase (diluted 1:100 in mineral oil) in dark vials and mixed into a nitrogen
stream that was diluted by 1:10 into a constant air stream in the olfactometer. The
following natural flower odors were used: geranium, ylang–ylang and rose (Sigma
Aldrich W250813, W311936, and W523704, respectively). Water as reward was
delivered through an independent tubing system and controlled by a high-
precision water pump. Odorized air and water were both guided from the setup
located in the control room to the animal bed inside the magnet bore through 1/32
inch I.D. inert Polytetrafluoroethylene tubing (NResearch) connected to the odor
and lick ports. Odor valves and syringe pumps were controlled through Arduino
microcontrollers. A single delivery tubing was used for all odors. For all MRI
experiments, a 3.0 m long tubing was used to deliver the odorized air to the odor
port. For this tubing, the latency for odor detection at the odor port after the final
valve opening at the olfactometer was determined initially with 1:10 diluted amyl
acetate outside the scanner with a photo-ionization detector (miniPID, Auror-
aScientific). The latency was ~400 ms. Thus, air was exchanged in the tubing by
clean air at least 25 times between two consecutive odor applications (considering
the airflow rate of the olfactometer). The steepness (time from 10 to 90% of peak)
of the odor onset was ~20 ms and the offset approx. 40 ms (time from 90 to 10% of
peak). The olfactometer was placed in the MR control room and the odor port
placed in front of the snout of the animal head fixed on the MRI cradle (Fig. 3a).
Animals were head-fixed without the need of sedation or anesthesia.

Licking behavior was measured using a custom-made MRI-compatible optical
lickometer. Infrared light was delivered via fiber optics and miniature roof prisms
from an LED source (Thorlabs M660F1; 660 nm), collimated at the lick port with
lenses (Thorlabs 354140-B) and returned to the control room via another optic
fiber to the detector (Thorlabs DET10A2). Animals were positioned so that, when
licking, their tongue broke the beam on each lick. Output signals from the
olfactometer, the optical lick detector, the water pump, and TTL pulses from the
scanner were all recorded with the same RHD2000 interface board (Intan
Technologies) with a sampling frequency of 1 kHz. These data were used to align
trial times during analyses. For training outside the scanner, a custom-made
simplified MRI cradle was used.

Behavioral training. Mice were trained in an odor-guided reward learning task to
learn associations of stimulus-outcome pairs. Three days before behavioral train-
ing, water intake was controlled in their home cages (90% of baseline bodyweight
was targeted). Bodyweight was monitored daily and always maintained above 85%
of baseline bodyweight. Mice were placed in the head-fixed setup for habituation.
The habituation sessions did not exceed 15 min. In general, mice habituated to
head fixation after 2–3 days. Then, conditioning sessions started. Each trial started
with 1 s of odor presentation followed by a waiting period of 1.7 s. Reward (5 μl
water) was delivered immediately after the waiting window (see Fig. 1a, middle).
Reward timing and reward size were not varied. Licking responses had no influence
on whether reward was delivered or not. The trial duration was randomly drawn
from a uniform distribution between 10 and 12 s. The training is comprised of two
stages. In Stage 1, a single odor was presented and rewarded at 100%. When mice
licked consistently, they progressed to the next stage. Stage 2 corresponded to the
final paradigm and consisted of three distinct odors delivered in a pseudo-random
order to keep the proportion of odors constant between sessions. No stimulus was
consecutively applied more than three times in a row. No more than three con-
secutive trials were rewarded. Animals performed 150 trials per session (in the MR-
environment, the first 20–30 trials of which were regarded for acclimatization).
Odor cues predicted reward at 100, 50, and 0% (hereafter, the odor cues were
labeled CS100, CS50, and CS0, respectively) (see Fig. 1a). Across sessions, the odor
and reward contingency pairs were unchanged. The first session of Stage 2 was
considered the “first training session” in Figs. 6 and 7. Generally, CS100 and CS50
were treated as “Go” cues and odor CS0 as a “No-go” cue. If mice licked at least
three times during the anticipatory window (from 1.5 to 2.8 s after odor onset) or
in the reward window (from 2.8 to 4.1 s), it was considered as a go-response.
Fulfilling the lick criterion during “Go” trials was regarded as “Hit”, while it was
assessed as “False alarm” during “No-go” trials. Not meeting the lick criterion was
regarded as “Correct rejection” for “No-go” trials and as “Miss” for “Go” trials.
There was no punishment for false choices. The performance within each session

was calculated as (in percent):

Performance ¼ number of ′Hit′ trials + number of ′Correct rejection′ trials
total number of trials

ð1Þ
After mice designated for functional imaging reliably performed the task above

the criterion (>80% performance, normally after 6–12 training sessions), a sham
coil was placed above the head and recorded MRI pulse sequence noise was
replayed in ‘mock scanning sessions’ to acclimate mice to the MRI environment.
Sound levels in the mock scanner were increased gradually to the noise levels in the
scanner bore. In the behavioral analysis, only sessions with performance higher
than 80% were included.

Both human and animal subjects are expected to experience elevated stress
levels in MRI due to limitations of movement and scanner noise. Thus, in general,
it can be assumed that learning in the scanner occurs under elevated stress
conditions. As described above, habituation to the MRI environment and noise
served to reduce physiological stress parameters and motion69,70. The efficacy of
the habituation procedure is supported in this study by the comparable behavioral
performance observed inside and outside the scanner (Supplementary Fig. 1a, f).

Pupil imaging. Pupils were imaged unilaterally in 10 trained mice (one session per
mouse). Pupil data was collected in the recording chamber with ambient light
illumination (blue LED, 465 nm). To fully capture the pupil dynamics during task
performance, the intensity of the LED light was set so that the pupil was moder-
ately dilated. DinoCapture 2.0 software was used for video recording. Videos were
acquired at 20 frames per second (1280 × 1024 pixel) with a digital infrared USB
camera (AD4113T-I2V Dino-Lite Pro2 digital microscope) providing infrared
illumination by LEDs (940 nm). Infrared illumination did not affect pupil diameter.
At the beginning and at the end of each session, an additional infrared LED was
switched on for 1 s in order to generate timestamps. The timestamps were then
used for post hoc alignment of the pupil and behavioral data.

Pupil diameter analysis. Pupil diameter was detected frame-wise using in-house
developed MATLAB scripts based on a pulse-coupled neural network (PCNN)
algorithm. Briefly, pupil videos were read into MATLAB and converted to grays-
cale. Then, pupil videos were automatically centered and cropped around the pupil.
Based on the adjusted frames, the PCNN algorithm calculated binary images
reliably segmenting the pupil from the surrounding tissues. A convex hull was
fitted to the contour of the detected pupil area. The pupil radius was detected for
each frame by calculating the mean distance between all points on the convex hull
and its midpoint. Outliers in the detection, e.g., during blinks, were excluded from
the data by removing the entire trial (exclusion criterion: increase or decrease in
pupil diameter of more than 5% within two frames). The accuracy of the algo-
rithmic fit was verified visually for each session. Pupil diameter was expressed as a
percent change from baseline. The baseline was derived from the average pupil
diameter in the time window from −2 to 0 s relative to odor onset. Mean responses
were calculated for each trial type for each animal and, in turn, averaged to get the
group response ± SEM. Pupil data were tested for normality using a
Kolmogorov–Smirnov test. An ANOVA test was performed between CS100, CS50,
and CS0 trials during the waiting window (from 1 s to 2.5 s relative to odor onset).

Reinforcement-learning model. We parametrized the RP and prediction error
with a temporal difference model TD(0) with no eligibility trace or discount
factor71. The model was designed on a trial-by-trial basis. In each trial, we con-
sidered three timepoints: the baseline before the trial started (t= 0), the odor
presentation (t= 1), and the reward delivery (t= 2). Each timepoint was char-
acterized by a state s defined by the trial epoch and, when present, the co-occurring
stimulus, for a total of five states. At t= 0, there was only one possible state s0. At
t= 1, there were three possible states s1 corresponding to the three conditioned
stimuli (CS100, CS50, CS0). At t= 2, there was only one state s2 representing the
moment in the trial associated with the unconditioned stimulus (the specific
presence/absence of reward in each trial is captured in the model by the separate
variable rt , see next paragraph).

To each state st was assigned a value VðstÞ, reflecting the RP. Further, an
outcome rt was assigned to each timepoint. rt encodes the reward at time t as a
binary variable 1 or 0. At baseline and during CS presentation, respectively, r0 and
r1 were set to 0. At US, r2 was 1 in case of reward and 0 otherwise. V s2

� �
was set to

0 as the model was designed on a trial basis and t= 2 was the last timepoint of
the trial.

The values V st
� �

were updated trial by trial by a prediction error δ. The
prediction error compares two successive value predictions and is defined as:

δt ¼ rt þ V st
� �� V st�1

� � ð2Þ
Intuitively, the current reward rt and the current expectation for the immediate

future VðstÞ are summed and compared to the preceding expectation Vðst�1Þ. A
positive/negative prediction error δ has the effect of increasing/decreasing the value
of the previous state according to:

V st
� � V st

� �þ αδtþ1 ð3Þ
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with learning rate α (in our model, α was set as free parameter and estimated using
pupillary data, see next paragraph). For example, a reward delivery (r2 = 1) after
CS50 will lead to a positive δ2, and this will update (increase) the value of the
CS50 stimuli Vðs1Þ.

In the main text, we refer to Vðs1Þ as V CSð Þ, Vðs2Þ as V USð Þ, and δ2 as δðUSÞ.

Parameter estimation and selection. The learning rate α was set as free para-
meter of the model and estimated using pupillary data from the pupil imaging
sessions described above (n= 10 sessions). The average pupil dilation d (or more
precisely the average percent change of pupil dilation from baseline) was modeled
as a function of the expected value V and the prediction error δ:

d tð Þ ¼ ∑
t

τ2N¼0
aτVðst�τ Þ þ ∑

t�1

τ2N¼0
bτ δðt � τÞ
�� �� ð4Þ

where t ¼ f0; 1; 2g (0 for the baseline, 1 for the odor presentation and 2 for the
reward time). aτ and bτ were set as free model parameters. d(t) indicated the
average pupil dilation at different times in the trial: we defined d(0) as the average
dilation in the interval from −2 to 0 s; d(1) as the average dilation in the interval
from 0 to 2.7 s, and d(2) as the average dilation in the interval from 2.7 to 5.4 s. The
model parameters ϑ ¼ fα; aτ ; bτg were estimated minimizing the distance between
the modeled (Eq. (4)) and the real average pupil dilation.

After the average learning rate α had been estimated on the basis of the
10 sessions with pupil imaging (estimated α= 0.28), it was used to build a temporal
difference model for 151 different trial realizations. Of those, 100 realizations were
simulated on as many CS-US sequences, randomly generated with the algorithm
used for the behavioral sessions, and used to produce Fig. 2a, d; and 51 were
simulated on the actual trial sequences of the fMRI sessions and used in the fMRI
analyses. We applied the learning rules in Eqs. (2) and (3) to model learning
(Fig. 2a, b). In this way, we formulated specific predictions on RP updates and
regressed on them the fMRI data of mice performing the task in the scanner to
identify key forebrain regions. The initial condition of the values of all stimuli was
set to 0 in the simulations of Fig. 2a, d and set to 0, 0.5, and 1 for CS0, CS50, and
CS100 respectively in the fMRI sessions (as the animal were already performing
when the fMRI scanning started, c.f. Supplementary Fig. 1f, h).

Functional MRI acquisition. Experiments were conducted on a small-animal
9.4 Tesla MRI scanner (94/20 Bruker Biospec, Ettlingen, Germany) with Avance III
hardware, BGA12S gradient system with a maximum strength of 705 mT/m, and
running ParaVision 6 software. We utilized a whole-body linear volume trans-
mitter coil combined with an anatomically shaped 4-channel receive-only coil
array. Mice underwent fMRI scans after habituation to the MRI environment (see
above). Awake mice were head-fixed in the MRI cradle; their trunks were gently
held within a plastic cylindrical tube to further prevent massive body motion. Once
positioned inside the scanner bore, the task was initiated, allowing the subject to
orient to the task and minimize distress. The 20–30 trials presented before the
onset of the fMRI sequence were not recorded. A localizer sequence was used to
confirm the correct positioning of the animal and a fieldmap was acquired. Before
the fMRI scan started, the main magnetic field (B0) was homogenized by automatic
shimming (map shim, shim volume covering all relevant brain regions). After shim
calculation, an additional fieldmap was acquired for later correction of geometrical
distortions. The fMRI time series were acquired while mice performed the odor
task using an echo-planar imaging (EPI-FID) sequence with the following para-
meters: TR/TE: 1300/17 ms; flip angle: 50°; 21 slices; matrix size: 64 × 64; slice
thickness: 0.5 mm; interslice gap: 0.1 mm; voxel size: 0.25 × 0.25 × 0.6 mm; 1400
volume acquisitions. More posterior slices frequently had ventral signal dropout
due to B0-field inhomogeneity; therefore, only slices from +4.2 mm to 0 mm
anterior to Bregma (comprising the olfactory bulb, striatal regions, anterior
olfactory, and higher-order cortices) were considered (cf. Figure 3b). Note, how-
ever, that multiple-comparison correction during statistical inference, unless
otherwise indicated, was always based on the voxels in all slices originally acquired.
Each EPI session lasted 24 min. The behavioral session was followed by a high-
resolution T2-weighted RARE anatomical image acquisition (TR/TE 1200/50 ms,
matrix size 96 × 113 x 48, voxel size 0.16 × 0.16 × 0.31 mm, RARE factor 16). To
increase statistical power, animals were repeatedly measured (up to 5 sessions per
animal), but not more than once per day. Mice that did not lick at reward in the
scanner were excluded from further measurements to avoid unnecessary distress.
This yielded a dataset of 67 sessions from 23 animals. Of these, 51 sessions from 18
animals fulfilled the performance criterion described above and were included in
fMRI group statistics.

Image data processing. All data were processed using Statistical Parametric
Mapping version 12 (SPM12) (http://www.fil.ion.ucl.ac.uk/spm/) and custom-
written MATLAB scripts. After brain extraction using in-house developed code
based on a pulse-coupled neural network algorithm, structural images were non-
linearly normalized by segmentation to high-resolution tissue probability maps72,
which had been transformed to Paxinos space. fMRI data were preprocessed with
the following steps73: discarding the first five volumes in the series to avoid
influences of magnetization before the scanner achieves steady state, correction for
head movement by realignment to the middle volume using a rigid-body

transformation, correction for geometrical distortions using the acquired B0-field
maps, slice-timing correction, and spatial normalization to a mouse brain template
in the Paxinos stereotactic coordinate system, by applying the nonlinear normal-
ization parameters of the structural images to the functional images. Normalized
functional images were additionally smoothed with a 0.6-mm isotropic Gaussian
kernel.

Functional MRI denoising. Functional MRI is susceptible to movement artifacts,
which is of particular concern given the association between the paradigm, licking
activity and corresponding head and jaw motion. To quantify head motion,
absolute values of the realignment parameters’ first derivative were averaged
per session for the three translations and three rotations (see Supplementary
Fig. 2b). To account for motion artifacts, we explored several denoising methods.
Regression of realignment parameters, which is widely applied, has several short-
comings, as it depends on the accuracy of the realignment process, does not reliably
capture nonlinear or delayed effects, is anatomically unspecific and does not dif-
ferentiate between task-correlated neuronally based activity and artifacts74,75. The
latter effect is of particular concern in the context of task-based fMRI, where
motion is correlated with the effect of interest. Indeed, we found that plausible
gray-matter activation in response to rewarded CS types (e.g., in dorsal striatum)
was substantially decreased (while areas of deactivation became more extended)
when the six realignment parameters and their derivatives were included in the
GLM, exclusively or in addition to the other denoising methods described
subsequently.

Removal of high-motion volumes (termed “scrubbing” or “censoring”) has been
shown to outperform motion regression under certain conditions76,77, but again
suffers from important drawbacks, namely that it is difficult to find valid criteria for
frame removal, especially in the context of task-based fMRI77. Further, excessive
amounts of data may be removed with the corresponding loss of temporal degrees
of freedom75,78, even when delayed movement effects are not addressed. In task-
based fMRI, censoring may inherently introduce bias and disproportionately affect
image frames of certain kinds, such as during rewarded trials or in high
motivational states.

Other approaches have been proposed that allow for a more specific removal of
presumed motion artifacts, by considering their typical spatial and/or temporal
characteristics. Among these methods, we explored Wavelet Despiking, which
exploits the divergent frequency characteristics of motion artifacts, and despikes
the BOLD timecourse locally in a temporal, spatial, and frequency sense78.
However, Wavelet Despiking has not been systematically assessed in task-related
fMRI, where the frequency spectrum may be more heterogeneous than in resting-
state fMRI. Additionally, in rodents, the hemodynamic response function (HRF) is
faster than in primates38,39,79 and therefore has a weaker low-pass filtering effect,
potentially allowing true neuronally based BOLD signal to contain higher
frequencies. In line with this, we found Wavelet Despiking to introduce implausible
temporal “smearing” such that activations started slightly before the trial. Such
effects would have been of particular concern since events were relatively close in
time in our paradigm.

We, therefore, alternatively, employed group-independent component analysis
(ICA) for removing motion-related noise, using the fastICA toolbox (http://
research.ics.aalto.fi/ica/fastica/)37. ICA-based denoising exploits typical anatomical
patterns of motion artifacts, and has been applied in previous awake rodent
imaging36,37. In our group-ICA, 4 (out of 25) components were manually identified
as motion-related (see Supplementary Fig. 2d); their session-specific time courses
were removed before reconstructing the images. Criteria for component removal
were typical location at the edges of the brain and/or in and around ventricles. One
widespread, anatomically unspecific component C1 in Supplementary Fig. 2d) was
also removed due to high correlations with realignment parameters and with the
mean cerebrospinal fluid (CSF) timecourse. ICA was performed after other
preprocessing including smoothing, to maximize signal-to-noise ratio and
anatomical overlap between sessions/subjects for ICA, and also in accordance with
previously described ICA denoising procedures37,75. As a limitation of this
denoising method, it should be noted that the components classified as motion-
related due to their typical location at the surface of the brain and around ventricles
(C2 and C4) overlap with the regions showing value- and reward-associated BOLD
responses (including Tu and aPC). Given that in our paradigm, there is an inherent
correlation between the parameters of interest (value and reward), licking activity
and head motion, a perfect separation of neuronally based BOLD response and
BOLD changes caused by jaw/head motion is, per se, not possible. Therefore,
residual effects of head motion could remain in the data, or some BOLD responses
reflecting true task-related neuronal activity might be falsely removed as part of the
ICA components classified as motion (especially in the regions that are located
superficially, including aPC and Tu).

We, therefore, tested whether the BOLD response patterns were affected by
stratification into “low-motion” and “high-motion” events. We also assessed
whether for the critical feature of value coding, namely the contrast of CS50 and
CS100 at CS, the anatomical pattern was preserved in trials with low frame-wise
displacement (FD). FD was computed for each image frame as the sum of the
absolute values of the derivatives of the six realignment parameters80. Granjean
et al. defined an FD threshold of 0.1 mm81, and Gutierrez-Barragan et al. used
0.075 mm82. For our stratification, we defined low-motion CS trials by a maximum
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FD of 0.05 mm in the two image frames at and following the CS timepoint. These
image frames include the peak of the CS response as modeled by the fast-peaking
mouse HRF. We selected all sessions (n= 16) with at least 10 trials (per trial type)
with low motion during CS and delay. This threshold was chosen to yield a
balanced number of low- vs. high-motion CS100 events, low- vs. high-motion CS50
events, and low-motion CS50 vs. low-motion CS100 events (with an average of
FD < 0.05 and FD ≥ 0.05 trials of 21.5 and 18.5, respectively, for CS50, and of 18.4
and 21.6 for CS100). The low- and high-motion CS100 events were modeled by
separate regressors, substituting the CS100 event regressor in GLM 2. Low- and
high-motion CS50 events were modeled analogously. The BOLD response patterns
to CS100 were similar between strata (Supplementary Fig. 4a–c), and reflected the
patterns found in the main analysis (cf. Supplementary Fig. 3b). Further, in the
low-motion trials, the pattern of the contrast between CS100 and CS50 at CS was
also preserved (Supplementary Fig. 5d compared to Supplementary Fig. 3e).
Together, the data support that these main effects are robust against the effects of
motion.

As described below, we included CSF time courses in all SPM general linear
models, to further account for physiological and nonphysiological noise. Lick
events were also included in the model (see below), which served as an additional
control for the effects of head motion, which is highly correlated with licking
activity.

Functional MRI analysis. As mentioned, the HRF varies significantly between
species, with faster kinetics in mice compared to humans38,39,79. We, therefore,
used a mouse-specific HRF estimated by our group38. In all models, CS and US
timepoints were modeled as events (“stick functions”, duration 0 s).

Specifically, we computed three different general linear models (GLM; SPM12)
at the session-wise analysis level:

GLM 1: First, to locate the brain regions encoding reward prediction, we
modeled all CS timepoints (irrespective of trial type) as one event type, and
parametrically modulated this with the V(CS) estimated from the TD model. The
four event types at the US timepoint (reward after CS100; reward after CS50, non-
reward after CS50, non-reward after CS0) were each modeled with a separate event
regressor. In this model as in all other models, lick events were also modeled as
events (i.e., convolved with the HRF), to disentangle neuronal correlates of motor
activity from correlates of reward expectation and prediction error per se. The
bursts of licks, convolved with the HRF, translated into predicted hemodynamic
responses in such a way that a higher number of licks within the burst lead to a
higher amplitude of the predicted hemodynamic response. Therefore, this regressor
might be reasonably expected to model the correlates of licking activity in a
quantitative fashion, with the limitation that there is a high co-variance between
licking activity and the effects of interest (neuronal correlates of reward expectation
and consumption), such that we cannot expect a perfect statistical separation
between these two processes (see also “Discussion”). In addition, time series
averaged over cerebrospinal fluid voxels were added as a nuisance regressor.

GLM 2: Second, to disentangle more specific components of value coding,
especially monotonic RP and recent outcome history, we created a separate GLM,
where all CS event types (CS100, CS50, and CS0) and all US event types (reward
after CS100; reward after CS50, non-reward after CS50, non-reward after CS0)
were each modeled with a separate stick function regressor. The CS50 regressor was
parametrically modulated by the recent CS50 outcome history (namely whether the
last CS50 trial had been rewarded or not). Note that such a parametric modulation
with recent outcome history would not be equally informative in GLM 1, since
V(CS) is already included in GLM 1 as a parametric modulator, and partially
contains the variability of interest (outcome history) (cf. Fig. 2d). Analyses of
monotonic RP and outcome history were restricted to those voxels that were
significantly associated with V(CS) at the group level, based on the GLM 1. Note
that in this model (GLM 2), the same variability (namely the reward/non-reward
outcome of a given CS50 trial) is modeled twice, firstly at the US timepoint of the
trial itself, and secondly as a parametric modulator (outcome history) of the next
CS50 trial. However, since the trial duration (jittered between 10 and 12 s) is long
compared to the assumed duration of the hemodynamic response in mice38,39, it is
unlikely that an effect of the parametric modulator should be driven by a prolonged
hemodynamic response to the preceding CS50 reward event itself. Also note that in
a majority of cases, the previous CS50 trial is not the immediately preceding trial
(since a given trial is preceded in two-third of cases by CS0 or CS100 trials).
Further, note that the history modulation was also observed in neuronal recordings
from the Tu.

GLM 3: Third, to test which brain regions encode the prediction error
components (V(CS), r) at the US timepoint, we computed a GLM where the three
CS event types (CS100, CS50, CS0) were modeled with separate stick regressors,
and all US event types were modeled by one single stick regressor, and the latter
was parametrically modulated by two regressors, namely −V(CS) and r. While
V(CS) was estimated by the TD model (identical to GLM 1), we used binary values
for r (1 and 0 representing reward and no reward, respectively). Of note, we did not
orthogonalize one of the two parametric modulators with respect to the other; in
this way, the order of entering the two parametric modulators did not influence the
parameter estimation, and the effects of the variability shared between the two
parametric modulators were removed. In other words, the effect of each parametric
modulator was adjusted for the other83.

Statistical maps representing the betas of the regressors of interest were then fed
into group statistics. For this, we used the SPM12-based Sandwich Estimator
toolbox (SwE). SwE is specifically designed for repeated measures of neuroimaging
data and allows the number of sessions per subject to vary84. The equivalent of
one-sample t tests was used within the SwE framework to test for effects on the
group level. Unless otherwise stated, the significance threshold was set to P < 0.025
false discovery rate (FDR)-corrected, for two-sided testing. Voxels surpassing the
significance threshold were gray-matter masked.

To explore the magnitude of BOLD responses, percent signal change (PSC) was
computed from the beta estimates using the ArtRepair toolbox for SPM (https://
cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html). In
Supplementary Fig. 2e, this is shown for the following event types, whose beta
estimates were computed in GLM 2, namely: CS100, CS50, CS0, reward after
CS100, reward after CS50, and no reward after CS50. In order to account for
regional variation in signal intensities with a surface receiver coil (lower signal
intensity at the ventral portions of the brain), we modified the method by scaling
the PSC not to the whole-brain signal intensity, but to the region-wise signal
intensity (i.e., beta of the constant term averaged over the respective region, not
over the whole brain). Compared to the original method, this leads to relatively
larger PSC values for the ventral regions (Tu and aPC), which have both lower
absolute signal intensities and lower absolute response magnitudes, compared to
more dorsal regions (e.g., dorsal striatum).

Task-related functional connectivity analysis. The beta-series correlation ana-
lysis was based on previously described methods for seed- and ROI-based task-
related functional connectivity in humans85, including utilization of the BASCO
toolbox43. In the context of event-related designs with many repetitions, as is the
case in our design, it has been suggested that the beta-series method has more
statistical power compared to the psychophysiological interaction (PPI) method86.
Specifically, the same preprocessed and spatially normalized images as for the
univariate fMRI analysis (see Fig. 3), were incorporated into another session-wise
GLM, in which each event (CS and US) of each trial was modeled as a separate
regressor to obtain the respective beta weights. For example, since there were 40
trial presentations of the CS100 trial type in each session, this resulted in the
estimation of 40 corresponding beta weights at CS and 40 corresponding beta
weights at US. For ROI-based analyses, betas were averaged over all voxels of a
given region.

We then examined the event-related seed-ROI functional connectivity by
computing, for each event type (e.g., US timepoint of CS100 trial type), the
Pearson’s correlation coefficient. This correlation was computed between the beta-
series of either Tu or aPC and that of other regions in the odor-reward association-
learning network. The group-level significance of the Fisher z-transformed (inverse
hyperbolic tangent) coefficients was tested using a one-sample t test (P < 0.05,
Bonferroni-corrected for multiple comparisons, see Fig. 4b, c). The mean Fisher z-
transformed results were subsequently converted into their hyperbolic tangent to
derive the group-level correlation coefficients. The odor-reward association-
learning network contained the following ROIs: olfactory bulb, anterior olfactory
nucleus, aPC, as well as Tu, NAc, dorsal striatum, orbitofrontal cortex, mPFC and
agranular insular cortex (see Fig. 4a). ROI parcellations were anatomically defined
as per Paxinos and Watson (2009), with the exception of a refined parcellation for
the aPC seed, which comprised the anterior portion of the piriform cortex
delimited posteriorly at +0.8 mm relative to Bregma. The posterior piriform cortex
was not included in the task-related connectivity analyses as its posteroventral parts
were affected by signal dropout (see also section “Functional MRI acquisition”). To
further investigate functional connectivity at below-ROI resolution, we performed
an analogous analysis in a voxel-wise manner. Specifically, we correlated the mean
beta-series of each seed region (Tu or aPC) with the beta-series of each voxel (2014
voxels total) contained within the odor-reward association-learning network. The
beta-series correlation maps were derived for each session, Fisher z-transformed,
and used for group-level analyses. At the group level, one-sample t tests were
computed to examine the correlated or anti-correlated seed network activity (see
Fig. 4d, e and Supplementary Fig. 5a, b) and paired t tests for the differential
connectivity assigned to specific condition pairs (e.g., CS100 versus CS0) (see
Supplementary Fig. 5c, d). For both analyses, the significance threshold was set to
P < 0.025, FDR-corrected for multiple comparisons.

Electrophysiological recording array. We used an in-house designed tetrode
array for dual-site recordings28. In brief, custom-designed printed circuit boards
(PCB) (±10 μm, Würth Electronics) with a soldered Molex SlimStack connector
served as an electrode interface board (EIB). The tetrodes, spun from 12.5-μm
teflon-coated tungsten wire (California Fine Wire), were placed parallel to each
other with the help of a guiding scaffold. The tetrodes were fixed to the PCB with a
drop of liquid acrylic adhesive. For electrical contact, the single wires were soldered
to the EIB after threading them through 200-μm vias and through holes. For
protection, the single wires were coated with a two-component epoxy. The tetrode
tips were gold-plated with a NanoZ-device (Multi Channel Systems), targeting an
impedance of 300 kOhm. During recordings, the arrays were connected to the
IntanRHD2164 head stages using a custom-built adapter (Molex SlimStack con-
nector to two 36 Omnetics Nano Strip connectors). A custom-built titanium head
bar was glued to the array.
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Implantation of recording array. Eleven male C57BL/6 mice were implanted with
two 16-tetrode arrays, each positioned in Tu and aPC. Pre- and post-surgery
analgesia was administered. Mice were anesthetized with isoflurane and attached to
a stereotactic apparatus with nonrupturing ear bars. A roughly circular flap of skin
was removed from the skull and local anesthesia was administered. The lateral and
nuchal muscle insertions were left intact. Tissue adhesive (3 M Vetbond) was
applied to the margins of the remaining skin and holes drilled into the skull above
the brain regions of interest and above the cerebellum for grounding. We then
coated the skull using Super-Bond C&B (Sun Medical). An insulated copper wire
attached to the recording array was connected to a small gold pin (Neuralynx) and
placed into the cerebellum. The tetrodes were inserted into the target regions with a
motorized 3-axis micromanipulator (Luigs&Neumann) (target coordinates relative
to the center of the respective array for Tu: 1.6 mm anterior to bregma, 1.3 mm
lateral from bregma and 4.9 mm ventral from dorsal brain surface; target coordi-
nates for aPC: 1.4 mm anterior to bregma, 2.3 mm lateral from bregma, and
3.8 mm ventral from the medial dorsal brain surface). Once the target depth was
reached, dental cement (Kulzer Palladur) was applied to fix the recording array in
the final position. Animals recovered in their home cage and were monitored after
surgery.

At the end of recording sessions, mice were euthanized and perfused with
paraformaldehyde (4%). Due to low levels of scar formation and microglial
activation with this tetrode array, we could not reliably detect fiber tracts in
histological sections with Nissl staining. Therefore, the head was postfixed in PFA
4% for at least 2 weeks before sectioning. Rostrocaudal and mediolateral placement
in the borders of Tu and aPC were confirmed histologically before sectioning (see
Supplementary Fig. 6b). Subsequent removal of the tetrode array left visible scars in
the tissue so that the recording location could be confirmed by post hoc histological
examination (see Supplementary Fig. 6c).

Electrophysiology head-fixed setup. The same olfactometer and behavioral
control system setup configuration as in the fMRI was used for the electro-
physiological study. Single-unit recordings were conducted using two Intan 64
channel RHD 2164 miniature amplifier boards connected to the RHD2000 inter-
face board. Software provided by Intan Technologies was used for data storage.
Data were sampled at 30 kHz during neural recordings.

Behavioral paradigm. The same training procedure, task, performance criteria,
and behavioral analyses were applied to the electrophysiology cohort as for the
fMRI cohort.

Poisson regression on the licking data. To assess whether the anticipatory licking
in the delay period of CS50 trials was influenced by (1) the cue-specific outcome of
the previous CS50 trials (outcome history) and by (2) the outcome of previous
CS100 and CS0 trials (satiety), we conducted two separate multiple Poisson
regressions on the licking data (see Fig. 9e, f). The Poisson model was defined by
the equation: log μt

� � ¼ β � X where μt is the expected value of the anticipatory
licking in the current CS50 trial, X is the regressor matrix and the β are the
regression coefficients. The columns of the matrix X are the regressor vectors. The
elements of the regressor matrix assumed values xijϵf1;�1g, where 1 codes for a
rewarded trial and −1 for an unrewarded trial. In case (1), the regressor vectors X
were built as described, using the n-back CS50→ R and CS50→N trials
(n= 1,2,…,N with N= 6). In case (2), the regressor vectors X were built as
described, using the n-back CS100 and CS0 trials (n= 1,2,…,N with N= 6).

To better compare the anticipatory licking from different sessions, the

coefficients of each regressor n were standardized as follows β�n ¼ βn �
σðx�;nÞ
σðμt Þ and, for

better interpretability, transformed as β�n ! expðβ�nÞ � 1. Thus, a positive β�n
indicates a positive correlation between the anticipatory licks and the n-th regressor
when the other regressors are constant. Vice-versa, a negative β�n indicates a
negative correlation. We performed one regression per session and plotted the
average standardized coefficients ( �β�) for each animal (n= 88 sessions in 11
animals).

Data preprocessing: spike detection. Noise and movement artifacts affecting all
recorded channels were reduced by conducting a median subtraction. Therefore,
we calculated the median voltage trace of all channels from the same recording site
and subtracted the median from each recorded channel. The resulting signal was
passed via a band-pass filter (300–5000 Hz, 4th-order Butterworth filter, built-in
MATLAB function). All local maxima crossing a certain amplitude threshold (7.5×
of the median absolute deviation of the filtered signal) were identified as spiking
events. To prevent a multiphasic spike from being detected multiple times, the
minimum distance between threshold crossing peaks was set to 1 ms. If a spiking
event was detected on more than one channel of the same tetrode, it was assigned
to the timestamp of the highest detected peak. For each cluster, waveforms were
obtained by extracting −10 to +21 sampling points around the peak.

Data preprocessing: spike sorting. We clustered the detected spiking events
using a custom-built graphical user interface in MATLAB developed by A.

Koulakov (CSHL). Single units were separated based on different metrics including
peak height or amplitude of the spikes and the respective principal components
over channels. When spiking events were predominantly recorded on one channel,
the first three principal components of the waveforms were considered. Single-unit
quality was quantified using the mlib toolbox by Maik Stüttgen (Version 6, https://
de.mathworks.com/matlabcentral/fileexchange/37339-mlib-toolbox-for-analyzing-
spike-data). In particular, we estimated cluster quality through refractory period
violations (fraction of spikes during the refractory period <2 ms) and waveform
variance. Only if clusters had a ratio of refractory period violations to the total
number of spikes of less than 2%, they were considered as single units. In Tu, units
with less than 5 Hz baseline firing rate were classified as putative striatal projection
neurons and considered for subsequent analysis. Single units with a firing rate
>5 Hz were excluded as fast-spiking neurons from the Tu or from the neighboring
anterior ventral pallidum. A total number of 169 putative striatal projection neu-
rons were included in the analysis. In aPC, a total of 486 putative principal units
with less than 10 Hz baseline firing rate were included in the analysis.

Analysis of single-unit responses. We classified single units according to their
task-related spiking activity. We calculated averaged spike counts for all trial types
for the baseline, CS, waiting and US windows (baseline: from −1.5 to −0.5 s; CS:
from 0 to 1 s; waiting: from 1 to 2.5 s; US: from 2.7 to 3.7 s relative to odor onset).
Single units were considered as responsive during CS, waiting or US if they showed
a significant difference compared to baseline (Friedman test, P < 0.05 with Benja-
mini correction for multiple comparisons on all units tested for each trial type and
each task window). Single units displaying a significant increase in spiking activity
were defined as “task-excited” while units displaying a decrease were defined as
“task-inhibited” (see Figs. 6d–f and 7d–i and Supplementary Figs. 7d, e and 8b, c).

Population analysis: the population vector. The session-specific population
vector vst ¼ ½frs;1t ; ¼ ; frs;nt � is a vector composed of the firing rate of n simulta-
neously recorded neurons during a time-bin centered at time t= 1…T, with T total
number of time steps per trial. Given the relatively small cell yield per session,
session-specific population vectors were concatenated to compose a global popu-
lation vector V t ¼ ½v1t ; ¼ ; vSt �. Trials of different sessions were concatenated by
matching CS, trial order, and, for CS50, trial outcome. Since, in CS50 trials, reward
was delivered with a 0.5 probability, not all sessions had the same number of
rewarded CS50 trials. Population vectors for CS50 were, thus, built by selecting the
minimum number of trials available among sessions and, in sessions with super-
numerary trials, by omitting the last trials.

Population analysis: deviation from baseline. To investigate the temporal evo-
lution of aPC and Tu responses to CS and US, we computed the deviation of the
population vector from its baseline configuration. At each time step t, deviation
from baseline was computed as Euclidean distance between the population vector
Vt and the baseline vector B. The B vector was composed of the firing rate of each
unit in the window −2 to −1.25 s before odor onset averaged across all trials. To
reduce trial-to-trial variability, such analysis was performed by using the popula-
tion vectors �Vt , built by grouping population vectors Vt of consecutive trials in
pairs and averaging. This procedure reduces the number of samples available but
produces more stable population responses. For visualization, population vectors
were computed on bins of 500 ms, moved in time with steps of 125 ms. Statistical
tests of changes in population response to different trial types were conducted on
distances computed with non-overlapping bins of 250 ms.

Population analysis: cross-trial correlation. To assess if the different trial types
recruit overlapping sets of units and to quantify the degree of such overlap
throughout the trial progression, we computed the Pearson cross-correlation
between the population vectors of trials with different trial types. Trials were first
grouped according to their CS trial type. Then, for each time step t, each vector Vt
was cross-correlated, at turn, with the Vt vectors of all trials from other CS trial
types. For example, to quantify the degree of overlap between the set of units
supporting the encoding of CS100 and CS0 during the trial we computed, at every
time step t, the average Pearson cross-correlation between Vt of all CS100 trials
with Vt of all CS0 trials. An increase (decrease) in cross-correlation will imply an
increase (decrease) in the size of the subpopulation commonly recruited by the two
stimuli at a certain time t. As above, such analysis was performed by using
population vectors �Vt , built by grouping population vectors Vt of consecutive trials
into groups of two and averaging. Population vectors were computed on bins of
500 ms, moved in time with steps of 125 ms.

Population analysis: population trajectories. To visualize the differences
between the temporal evolution of the population vectors in response to different
CS and trial types, we averaged the population vectors Vt across all trials to obtain,
for each trial type, a matrix of size N × T. To improve the reconstruction of the
neuronal dynamics87, we applied time embedding on the multivariate time series
obtained. We used m= 4 delayed coordinates with a delay constant of one bin.
Finally, for visualization, we reduced with PCA the space dimensionality to 3.
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Identification of functional unit clusters. To identify functional unit clusters
within aPC and Tu populations we used a clustering approach adapted from
Cohen et al.14. Functional clusters were established according to the similarity in
unit responses to different trial types. We first quantified the deviation at time t of
the response of each unit to its baseline distribution by computing the area under
the receiver operating characteristic curve (auROC). The baseline distribution was
computed by pooling the firing rate of the unit in the window from −1.8 to −1.4 s
before odor onset. The distribution of the unit response at time t was computed
similarly, but pooling from a window of 500 ms shifted along the trial in steps of
125 ms. auROC values were computed for each unit and each condition—that is
CS0, unrewarded CS50, rewarded CS50, CS100—and concatenated as shown in
Fig. 6g and Fig. 7j. The values 0, 0.5 and 1 indicate lower, equal, and higher firing
rates than during baseline, respectively. We then performed PCA on the con-
catenated profiles and applied hierarchical clustering. Hierarchical clustering was
performed on the Euclidian distance between vectors comprising of the first five
PCs of each unit. For aPC and Tu, we used a cutoff in the linkage tree of 0.45 and
0.5, respectively. Such cutoffs were chosen to balance between generality and
representativeness of the clusters with respect to their composing units.

Complete and distributed coding. To assess if aPC and Tu encoded a monotonic
RP in a homogenous or distributed fashion (Fig. 8 and Supplementary Fig. 9), we
tested each unit for monotonic RP coding and single CS dominance. To test
monotonic RP coding during CS and the waiting period, we computed the unit
firing rate in the CS window (0 to 1 s after odor onset) and waiting period (1 to
2.5 s after odor onset), respectively. Unit responses were computed for each trial tr
and grouped by CS into R0tr , R50tr , R100tr . Units from the transient-, ramping-,
and sustained clusters were labeled as monotonic RP coding if R0tr

� �
< R50tr
� �

and R50tr
� �

< R100tr
� �

when tested with a two-tailed Wilcoxon rank-sum test (P
value <0.05). If the test for monotonic RP coding failed, units were further tested
for CS dominance. CS dominance required that responses to the CS with stronger
unit response were significantly higher than those to the CS with the second-
strongest response (two-tailed Wilcoxon rank-sum test, P value < 0.05). For units
from the inhibited clusters, monotonic RP was established by testing
R0tr

� �
> R50tr
� �

and R50tr
� �

> R100tr
� �

while CS dominance required that
responses to the CS with the strongest task-inhibited response dropped to sig-
nificantly lower response rates than those to the CS with the second-lowest
response.

Reward surprise. To test if a unit encoded surprise in receiving an unexpected

reward (reward surprise) we tested if the rate jump dtr ¼ fraftertr � frpriortr from prior
to after US onset was bigger for rewarded CS50 trials than for CS100 trials. To
encode surprise we enforced two prerequisites: (a) the average rate jump for CS50
rewarded trials had to be positive, d50tr

� �
trials>0; (b) the rate jump for CS50

rewarded trials had to be bigger than that for CS100 in a two-tailed Wilcoxon rank-
sum test (significance fixed at P value < 0.05), d50tr

� �
> d100tr

� �
. From visual

inspection of the activation profile of Tu and aPC units, two characteristic US
response profiles emerged, with different latency from US and different duration.
Clustering units in transient- or ramping populations did not segregate the two
response profiles. To capture both response types, we computed reward surprise in
two distinct trial windows. To capture short-latency short-duration responses,

fraftertr was computed in the window from 2.7 to 3.2 s after odor onset. To capture

longer latency responses with longer duration, fraftertr was computed in the window
from 3.2 to 4.5 s after odor onset. In both cases, frpriortr was the firing rate of the unit
at trial tr in the 500 ms window prior US delivery. All units were tested in both
windows and were flagged as encoding reward surprise if significant in either
window. The criteria listed here were applied to all units from the transient-,
ramping- and sustained clusters. For units from the inhibited cluster, reward
surprise required: (a) d50tr

� �
trials<0; (b) d50tr

� �
< d100tr

� �
.

Outcome discrimination. To assess if a unit encoded outcome discrimination, we

used a two-tailed Wilcoxon rank-sum test and tested if fraftertr

n o
for CS50 rewarded

trials was bigger than fraftertr

n o
for CS50 unrewarded trials. We did not consider the

extremely rare opposite case, thereby focusing on the mechanisms contributing to
the computation of the prediction error. Similar to the test for reward surprise, we
tested both short- and long-latency responses and tested units from the task-
inhibited cluster using the opposite inequity sign (see “Reward surprise”).

Chance level for monotonic RP coding. We selected all #discriminative units units
which showed a different response intensity to the three CS. This was obtained by
requiring a P value < 0.05 when testing the responses of each unit to different pairs
of odors with a two-tailed Wilcoxon rank-sum test. Since the number of permu-
tations without repetition of n= 3 elements is n!= 6, the number of units with a
specific order in odor response (e.g., CS100 > CS50 > CS0) expected by chance
is #discriminative units=6.

Data analysis. Behavioral and electrophysiological data were analyzed using built-
in and custom-made MATLAB routines (Mathworks) and SPSS (IBM). fMRI
sessions were analyzed using SPM12 and the SPM12-based Sandwich Estimator
toolbox (SwE) at the group level.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The fMRI and electrophysiology data generated in this study are under active use by the
reporting laboratory; all data presented in this manuscript are available upon reasonable
request (for MRI data: christian.clemm@zi-mannheim.de, for electrophysiology data:
wokelsch@uni-mainz.de). BOLD fMRI statistical maps and electrophysiological single-
unit spike counts are available for download at https://doi.org/10.6084/m9.figshare.c.
6000757.v1. Source data are provided with this paper.

Code availability
Matlab code and pipeline description for pupil data analyses and MRI brain mask
creation are available at https://github.com/DrCarbonCIMH/extractPupil and https://
github.com/DrCarbonCIMH/extractBrain, respectively.
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