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Abstract
This review describes the basic principles of radiometal-theranostics and its dawn based on the development of the positron-
emitting 86Y and 86Y-labeled radiopharmaceuticals to quantify biodistribution and dosimetry of 90Y-labeled analogue thera-
peutics. The nuclear and inorganic development of 86Y (including nuclear and cross section data, irradiation, radiochemical 
separation and recovery) led to preclinical and clinical evaluation of 86Y-labeled citrate and EDTMP complexes and yielded 
organ radiation doses in terms of mGy/MBq 90Y. The approach was extended to  [86/90Y]Y-DOTA-TOC, yielding again yielded 
organ radiation doses in terms of mGy/MBq 90Y. The review further discusses the consequences of this early development 
in terms of further radiometals that were used (68Ga, 177Lu etc.), more chelators that were developed, new biological targets 
that were addressed (SSTR, PSMA, FAP, etc.) and subsequent generations of radiometal-theranostics that resulted out of that.

Keywords Theranostics · Radiometals · Positron emission tomography (PET) · Radionuclide therapy (RNT) · 
Endoradiotherapy (ERT) · Peptide receptor radionuclide therapy (PRRT) · Radiopharmaceuticals · Radiotracers

Introduction

The term "theranostics" overlaps with terms such as "person-
alized medicine" or "precision oncology" insofar as medi-
cal decisions, procedures and/or products are tailored to the 
individual patient. This includes technologies to produce 
customized pharmaceutical products that contain individual 
dosages for one or more active ingredients. Diagnostic tests 
used to select appropriate therapies are referred to as "com-
panion diagnostics".

In the context of radiopharmacy and molecular imaging, 
the concept is particularly succinct: the ultimate object is 
successful therapy with appropriate short-range particle 

emitters (α or β−), crucially built on therapy-deciding and 
-accompanying diagnosis with photon emitters.

With the goal of patient-specific treatment, potent  
radiopharmaceuticals are used in a diagnostic (ideally using 
positron emitters for quantitative PET/CT) and a therapeu-
tic variant. The diagnostic radiopharmaceutical is used 
to verify tumor indication and staging for an individual 
patient. Conversely, it verifies that the radiopharmaceutical 
at hand is a target-specific and selective molecule: the ide-
ally suited for a specific patient. Precise diagnostic imaging 
also allows quantitative dosimetric information (expressed 
in terms of maximum radiation dose to the target tissue and 
tolerable dose to healthy organs) for the therapeutic vari-
ant of the theranostic agent. This is applied with optimal 
radioactivity of the appropriate radiopharmaceutical in the 
individual patient. Finally, post-therapeutic imaging with the 
diagnostic variant of the theranostic is part of the assessment 
of treatment success for the individual patient.

In the context of radiopharmacy and nuclear medicine, 
radiopharmaceuticals available in both a diagnostic (usually 
for PET/CT) and a therapeutic form are the central instru-
ments. The transition from the diagnostic to the therapeutic 
derivative is made by substituting the diagnostic radionu-
clide by its therapeutic counterpart—where the oncological 
target should be identical and the pharmacological proper-
ties of the two variants should not differ. In cases where 
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the theranostic pair is from nuclides of different elements 
(“mismatched pair”, e.g. gallium-68 and lutetium-177) the 
properties are not identical but very similar so the in vivo 
behaviour should not differ significantly. Radiotheranostics, 
by definition, share the same physiology in that they address 
the same oncologic target. Figure 1 gives an overview over 
four typical molecular design options from a radiochemical/
radiopharmaceutical perspective.

Option A (Fig. 1A) represents the specificity of individ-
ual radioisotopes to already have an oncologically relevant 
function in its ionic form. This includes, above all, the his-
torically first implementation of the theranostic concept—it 
dates back more than 80 years. SAUL HERTZ realized the 
concept of thyroid diagnostics and therapy in the form of 
a single radionuclide, which offers both diagnostically and 
therapeutically relevant radiation: 131I [1, 2].

Additional “chemistry” is not required—the physiological 
function of the isotope in the form of iodide  [131I]I− is suffi-
cient. Another example of option A is the use of the calcium 
mimetics 89Sr or 223Ra for the therapy of bone metastases; 
here, the cations  Sr2+ or  Ra2+ already have an effect due to 
their affinity for the hydroxyapatite structure of the bones 
too and are applied as chloride salts  [89Sr]SrCl2 and  [223Ra]
RaCl2, respectively [3–5]. Diagnostic analogues such as 18F 
as  [18F]F−, 99mTc-bisphosphonates or modern 68 Ga-labeled 
bisphosphonates are all also effective "bone seekers" [6–11].

Option B (Fig. 1B) involves the rather rare clinically real-
ized design of radiometallic-labeled complexes for therapy, 
where the physiological role is not from the metal but from a 

property of the ligand. Typical representatives are 186/188Re-
HEDP complexes [12, 13].

Options C and D represent a paradigm shift. The trans-
port function for the radioisotope to a concrete oncological 
target is taken over by a defined targeting vector (proteins 
such as antibodies, proteins as receptors, messenger ana-
logues, inhibitors, amino acids, but also inorganic species). 
Now, neither the radioisotope nor the radiometallic ligand 
complex should have any physiological significance, but on 
the contrary should be physiologically inert to the greatest 
possible extent.

Option C applies to radiohalogens, especially 131I. Clini-
cally relevant cases are 131I-MIBG and 131I-labeled tyrosine 
derivatives for the therapy of glioblastoma and other dis-
eases, respectively [14–17]. The radioiodine is introduced 
into the targeting vector in a covalent bond in such a way that 
the physiological role of guanidine or tyrosine is not dimin-
ished significantly. In the ideal concept of radiotheranostics, 
the substitution of 123I or 124I for the therapeutic isotope 
131I is sufficient to generate the potent diagnostic variant. 
Regardless of the type of iodine isotope, the pharmacokinet-
ics of the theranostic remain absolutely identical.

Option D concerns radiometals. Unlike aliphatic or aro-
matic halogenation, the radiometal cannot be directly cova-
lently coupled to a targeting vector, but requires a bifunc-
tional chelating moiety. Docking such a relatively large 
chemical moiety to a small targeting vector can lead to 
major pharmacological interference (binding affinities, lipo-
hilicity, etc.). Therefore, in terms of medicinal chemistry, 
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Fig. 1  Principal options of the molecular designs of Radiotheranos-
tics. A: direct injection of radionuclide, B: injection of complexed 
radiometal, C: covalent coupling of a radionuclide to a targeting vec-

tor (red), D: radiometal complexed by bifunctional chelator (BFC) 
which is covalently bound by a linker to the targeting vector and a 
possible spacer
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optimizations of the chelator, as well as in linker and spacer 
units, play a major role [18].

In nuclear medicine, the clinical routine of a theranostic 
application (its logical and logistical processes) can be rep-
resented in five stages.

Quantitative diagnostics (PET/CT) 
with the diagnostic derivative of the theranostic 
agent

First, disease and disease state are evaluated for an indi-
vidual patient using an appropriate diagnostic radiopharma-
ceutical. Conversely, or simultaneously with this, it is veri-
fied that the radiopharmaceutical at hand is a target-specific 
molecule: the ideally suited for that individual patient.

Structural translation of the diagnostic 
into a therapeutic radiopharmaceutical

This central pillar of theranostics is the task of radiophar-
maceutical chemistry. How to replace the positron emitter 
of the PET/CT form of the theranostic with a beta or alpha 
emitter without compromising the specificity of the radiop-
harmaceutical? This task is subdivided into sub-areas: (1) 
What is the appropriate combination of the diagnostic/thera-
peutic radionuclide? From this, (2) what are the chemical 
properties of the chosen theranostic radionuclide and how 

this must affect (3) the structure of the theranostic in terms 
of stable radiolabeling. Finally, (4) the appropriate structure 
must be characterized in vitro and in preclinical studies to 
demonstrate broad agreement in pharmacological properties 
with the diagnostic derivative of the theranostic.

Pretherapeutic dosimetry

Diagnostic imaging with the PET/CT form of the theranostic 
agent can be converted into quantitative dosimetric informa-
tion in the form of time-activity correlations. In experimen-
tally obtained time-activity correlations of the diagnostic 
derivative of the theranostic agent for healthy organs and 
lesions, the emission profile and physical half-life of the 
therapeutic radionuclide are now substituted. This is used 
to determine the optimal radioactivity (expressed in terms 
of maximum radiation dose to the target tissue and tolerable 
dose to healthy organs) of the appropriate radiotheranostic 
on the individual patient, cf. Figure 2.

Therapy

The therapeutic derivative of the theranostic is ideally 
applied at the activity level determined from the prether-
apeutic dosimetry. This application can be repeated after 
appropriate times.

A B

C

Fig. 2  Simplified illustration on the determination of radiation doses 
based on quantitative uptake kinetics obtained by the diagnostic PET 
tracer of the theranostic agent. A, B and C describe different pharma-
cology of the theranostic. The integral (e.g. the grey area for B) gives 

the cumulative radiation dose D, which is obtained from the kinetics, 
i.e. the biological and physical half-lives expressed by λbiol and λphys, 
respectively. S is the S-factor representing transformation energies of 
a given radionuclides and A is the activity injected
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Post‑therapeutic monitoring

Usually, the outcome of therapy is followed by quantita-
tive imaging with the diagnostic derivative of the thera-
nostic agent. Ideally, lesion size and SUV values will have 
decreased compared to pre-therapy.

The 1990s: 86Y/90Y matched isotope 
pair and prototype of radiometal‑based 
theranostics

Nuclear chemistry and physics know more than 3000 radio-
active isotopes—in contrast, the number routinely used in 
the field of diagnostic as well as therapeutic nuclear medi-
cine is small. This is due to the fact that important selection 
criteria such as type and energy of the emissions, physi-
cal half-life and, above all, availability have to be fulfilled 
together.

For PET, these would be the short-lived "organic" radio-
nuclides 11C, 13N, 15O, halogens such as 18F, 124I, and radio-
metals such as 82Rb, 64Cu, 68Ga, 86Y and others. In the field 
of therapeutics, 131I, 89Sr, 90Y, 153Sm, 177Lu, 161Tb, 186/188Re, 
225Ac and others are used. Realistically (i.e., if one does 
not want to speculate on further "exotic" nuclides whose 
transformation properties appear promising but whose avail-
ability for clinical routine is currently only wishful thinking) 
very few ideal combinations result from this selection.

Radioiodide [*I]I−

Historically, the most important combination is, in fact, only 
one radionuclide—which offers both diagnostically and ther-
apeutically relevant radiation. Radioiodine 131I is one of the 
best-known radionuclides that can be used directly in its 
anionic form as iodide  [131I]I−. Like nonradioactive iodide, 
it is accumulated in the thyroid gland. After administration, 
radioiodide is rapidly taken up by the thyroid via the sodium 
iodide symporter (NIS), and excess radioiodide is excreted 
renally. For administration, they are all formulated as sodium 
iodide in slightly basic aqueous solutions. They can be taken 
orally or administered by injection. Scintigraphic images of 
the thyroid gland allow identification of various diseases and 
dysfunctions of the organ, such as local foci of hyperthyroid-
ism or hypothyroidism. Because of their long half-life, these 
iodine isotopes are usually provided by outside vendors for 
routine clinical use. For example,  [131I]NaI is usually sup-
plied in capsule form with radioactivity already calibrated 
for specific patients. Several radioisotopes of iodine are suit-
able for molecular imaging and also enable PET (124I) or 
SPECT (123I, 131I).

However, the spectrum of theranostically significant target-
ing vectors utilizing radioiodine is limited. A major challenge 

with radioiodinated compounds is the stability in vivo due to 
the weak C-I bond. Deiodination can be catalyzed by deiodi-
nases, different enzymes like iodothyronine deiodinase (DIO1-
3) for example, or proteolytic cleavage of peptides that contain 
iodine-substituted tyrosine units [19]. Cavina et al. gave an 
extensive review discussing the stability of radioiodinated 
pharmaceuticals depending on their molecular structures [20].

86Y/90Y

In the early 1990s, several laboratories began to consider using 
a SPECT radionuclide as a surrogate for a therapeutic radionu-
clide, e.g. 111In ( t

1∕2 = 2.8 d ), a trivalent metal, as a surrogate 
for 90Y, another trivalent metal [21, 22]. The use of various 
other metallic radionuclides has also been discussed [21, 22].

While the β−-emitting therapeutic radionuclide 90Y 
( t
1∕2 = 2.7 d ) had been available for a long time via the 

90Sr/90Y generator system and was used for various thera-
pies, there was no possibility of quantifiable imaging with 
90Y-labeled therapeutics at that time—the patient remained 
a “black box”. Therefore, the β+-emitter 86Y had to be first 
developed for medical use [23–25]. This included the evalu-
ation and optimization of radionuclide production [23, 24], 
radiolabeling and its analytics as well as first pilot in vivo 
studies to learn about the in vivo quantification via PET [25]. 
With a half-life of t

1∕2 = 14.7 h and a fraction of 32% posi-
tron emission it was suitable to reproduce the pharmacology 
of analogous 90Y-pharmaceuticals well [26–32]. Rösch et al. 
[33] gives a retrospective overview of the various aspects of 
the radiochemical and nuclear development work including 
nuclear data, cyclotron irradiation, chemical processing, qual-
ity control, etc. of 86Y and 86Y-labeled pharmaceuticals, the 
methodology established to quantify the molecular imaging of 
86Y-labeled compounds in the form of multiple and long-term 
PET recordings, and finally, application examples that high-
lighted the ultimate goal of radiotheranostics, namely to deter-
mine the radiation dose of the 90Y-labeled compound in mGy 
or mSv per MBq of 90Y injected, based on the long-term PET 
measurements with 86Y analogues (Fig. 3). Of historical note, 
in addition to the methodological aspect, is the specific dem-
onstration of the approach for the case of  [90Y]Y-DOTA-TOC 
[29, 30]. Sandoz initially exercised the  [86Y]Y-DOTA-TOC 
program as a diagnostic arm of  [90Y]Y-DOTA-TOC before 
this entered the clinic. This was then realized first in baboons 
(Fig. 4) [29, 30] and later in patients (Fig. 5) [31, 34].

The 2000s: 177Lu/68Ga

Biological targets

The most important radiotracer for nuclear medicine oncol-
ogy imaging is 2-deoxy-2-[18F]fluoro-D-glucose  ([18F]
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FDG). Cancer cells obtain their energy mainly through 
aerobic glycolysis which is very inefficient. To compen-
sate for this, the glycolysis rate is upregulated as well as 
the oxidative phosphorylation (Warburg effect).  [18F]FDG 
is a glucose analogue which is likewise phosphorylated by 
the enzyme hexokinase. The  [18F]FDG-6-phosphate on the 
other hand cannot be metabolized further which results in an 
accumulation in the cancer cell (metabolic trapping) that can 
be visualized via PET. Consequently, this makes  [18F]FDG 
an almost universal oncological imaging tool. However, 
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radiopharmaceutical chemistry does not have a therapeutic 
counterpart of glycolysis metabolism. Therefore, for tumor 
therapy, alternative oncological targets need to be identified 
and the appropriate radiopharmaceuticals developed, ide-
ally for both PET/CT imaging and therapeutics. Figure 6 
provides a schematic overview of the relevant targets and 
classes of target vectors for this purpose.

Other targets are based on the increased metabolism and 
requirement of substances and building blocks for the high 
proliferation rate of tumor cells. Radiotracers as analogs 
of DNA and RNA building blocks are compounds such as 
5-[18F]fluorouracil,  [11C]thymidine, or 3′-deoxy-3′-[18F]
fluorothymidine, which allow determination of the prolif-
eration status of tumor cells by PET imaging.

Another important mechanism for oncological target-
ing is enhanced amino acid transporter activity by tumor 
cells. O-(2-[18F]fluoroethyl)-L-tyrosine  ([18F]FET) and 
 [11C-methyl]-L-methionine are the most commonly used 
radiolabeled amino acid analogs. In the context of thera-
nostics, iodinated analogs are another approach.

However, it appeared that the transmembrane receptors 
represent the most attractive target in radiotheranostics. 
Typically, the corresponding targeting vectors are radi-
ometal-labeled tracers, which is in particular relevant for 

their therapeutic application. For diagnostic analogs, also 
18F-labeled modifications are being applied.

Radionuclides

The turn of the millennium saw a dramatic change in the 
theranostic isotopes utilized in the 1990s: The approach 
to produce carrier free 177Lu and the appearance of the 
68Ge/68Ga-radionuclide generator.

Although 90Y was and still is an extremely important 
therapeutic isotope in theranostics and nuclear medicine in 
general, 177Lu ( t

1∕2 = 6.65 d ) became relevant because of 
the lower energy of the emitted β− particles. The 176Lu(n,γ) 
production pathway was easily established and gives good 
yields due to the high cross section, yet the content of 176Lu 
carrier and the contamination with the long-lived isomer 
177mLu appeared to be critical for theranostics targeting e.g. 
saturable oncological targets such as GPC receptors. The 
indirect 176Yb(n,γ)177Yb �

−

→
 177Lu production pathway sug-

gested an alternative option [36]. It is now commercially 
realized at TBq scale and GMP levels [37].

With the start of the new millennium, the Obninsk team 
provided a 68Ge/68Ga-radionuclide generator providing the 
positron-emitting trivalent radiometal 68Ga ( t

1∕2 = 68min ) 
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Fig. 6  Selected targets for PET imaging in oncology and correspond-
ing radiotracers: 2-deoxy-2-[18F]fluoro-D-glucose  ([18F]FDG), O-(2-
[18F]fluoroethyl)-L-tyrosine  ([18F]FET). GLUT = glucose transporter, 
AAT = amino acid transporter, GPCR = G protein-coupled receptors, 

SST = somatostatin, mAb = monoclonal antibody, PSMA = prostate-
specific membrane antigen, FAP = fibroblast activation protein, 
PS = protein synthesis [35]
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in a chemical environment easily to label radiopharmaceu-
ticals by its diluted hydrochloric acid eluent system and 
its low contamination levels of long-lived parent isotope 
68Ge ( t

1∕2 = 271 d ) [38]. The post-processing chemistry 
introduced by Zhernosekov et al. [39] and Asti et al. [40] 
translated this generator to nuclear medicine. This was 
crucial to the increasing success of 68Ga and its routine 
applications in PET diagnosis. This has been discussed in 
several reviews in detail, e.g. by Rösch and Riss [41] as 
well as Rösch and Baum [42], or different reports and book 
chapters [43, 44].

The 2000s: 177Lu/68Ga and theranostic 
octreotides for NET

A look at the surface proteins expressed by tumor cells 
reveals an astonishing number and variety of potential tar-
gets. The metabolism and other cellular functions of tumor 
cells appear to be completely unregulated. As a result, the 
expression of surface proteins is dramatically increased on 
tumor cells, which can easily reach a million-fold overex-
pression compared to normal cells. Moreover, several tumor 
entities (over)express (specific) transmembrane proteins that 
are hardly or only very restrictedly expressed in healthy tis-
sues. Transmembrane receptors are large protein structures 
located in the cell membrane. These receptors have three 
main domains: the transmembrane, extracellular, and intra-
cellular domains. The extracellular domain is the part of 
the cell surface that is recognized by specific ligands. In 
contrast, the intracellular domain is the part that generates 
a signal inside the cell by activating (effector) proteins or 
enzymes.

One prominent family is the G protein-coupled receptors 
(GPCRs), in which the intracellular domain is coupled to the 
so-called G protein, which is responsible for further signal 
transduction in the cell. Some GPCRs undergo endocytosis 
after ligand binding, which is a major advantage because it 
effectively traps the radiotracer inside the tumor cell.

Clearly, these surface structures are generally potential 
targets for tumor diagnosis and therapy. The most important 
transmembrane receptor class of the last decade in nuclear 
medicine is the human somatostatin receptor (hSSTR) fam-
ily. Out of the five subtypes, hSSTR2 is the most impor-
tant subtype, and to a much lesser extent hSSTR1, 3, and 5. 
hSSTRs are highly overexpressed in neuroendocrine tumors 
and some other human tumor types. Expression of hSSTR2 
on tumor cells can reach 2.5-million-fold overexpression. 
Physiological expression of hSSTR2 in healthy tissues is 
very limited and is mainly found in the spleen. Therefore, 
hSSTR2 offers ideal properties as a target for tumor imag-
ing (and therapy). In addition, the hSSTR family undergoes 

endocytosis after ligand binding, resulting in very efficient 
trapping of the ligand in the addressed cell.

The native ligand, somatostatin, is a peptide hormone 
of 14 or 28 amino acids (two isoforms). Somatostatin 
has a plasma half-life of only 2  min and is therefore 
unsuitable for molecular imaging. The truncated deriva-
tive octreotide, a much smaller cyclic peptide, has been 
developed as a somatostatin analog for the treatment 
of acromegaly and for the treatment of neuroendocrine 
tumors. In an initial approach, octreotide was conju-
gated to DTPA as a chelating system for radiolabeling 
with indium-111. 111In-labeled DTPA-octreotide is 
available as Octreoscan© for SPECT imaging [45, 46]. 
Further developments led to the corresponding deriva-
tive,  [DOTAo-D-Phe1-Tyr3]-octreotide (DOTA-TOC), 
with the chelating agent DOTA for radiolabeling with 
various radiometals and a strongly enhanced affinity for 
hSSTR2 [47–50]. The theranostic pair 86Y/90Y was used 
for research and development as described in the previous 
chapter. [29–31, 34] Later on, for clinical routine applica-
tion the theranostic pair was changed to 68Ga/177Lu due 
to the better availability of these radionuclides. Together 
with another variant, DOTA-TATE, DOTA-TOC is the 
major precursor for radiolabeled somatostatin analogs 
[51].  [68Ga]Ga-DOTA-TOC/TATE are the most com-
monly used tracers in routine clinical practice for PET 
imaging of hSSTR2-positive tumors and metastases (cf. 
Figure 7).

Lessons to learn for the design of theranostic 
monomers

The key component is the system oncological target/specific 
targeting vector. The chelator is covalently attached either 
directly to the targeting vector (amid coupling is the pre-
ferred method usually utilizing a -COOH group at the chela-
tor and an amine at the targeting vector).

A first lesson to learn was that for therapeutic applica-
tion macrocyclic chelators are much better suited because 
of the thermodynamic and kinetic stability of the chelates, 
cf. 111In-labeled DTPA-octreotide for SPECT imaging vs. 
90Y-, 177Lu or 225Ac-labeled DOTA-TOC/-TATE therapeutics 
[51]. Pioneering work by H. Mäcke and others revealed, that 
the chelate is influencing the pharmacology of the thera-
nostic compound [52, 53]. Accordingly, careful tailoring of 
the chelator and the radiometal belong to the challenges in 
radiopharmaceutical chemistry. Figure 8 depicts some of the 
non-macrocyclic and cyclic chelators and some bifunctional 
derivatives introduced around the turn of the millennium.

The proof-of-principle peptidic radiometal theranostics: 
90Y-, 177Lu-, 225Ac-labeled DOTA-TOC/-TATE to treat neu-
roendocrine tumors: 90Y-DOTA-TOC therapies of neuroen-
docrine started in the last years of the last millennium, and 
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systematic experiences were obtained in the 2000s [47, 48, 
54–56]. Figure 9 gives a representative illustration of such 
applications. Obviously, the theranostic concept became a 

great success, and many patients benefited from this treat-
ment. However, only decades later, this was validated by a 
systematic and successful clinical phase III study [57].
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Fig. 7  PET imaging with  [68Ga]Ga-DOTA-TATE in patients suffering from neuroendocrine cancer [35]
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The 2010s: more oncological vectors

In addition to the key/lock systems SSTR/octreotide deriva-
tives for neuroendocrine tumors and PSMA/PSMA inhibi-
tors for prostate cancer (PCa), there are other examples that 
have been validated for the diagnosis of other cancers in 
nuclear medicine. The chemical design is exactly the one of 
option D in Fig. 1. The key component is the system onco-
logical target / specific targeting vector, while the chelator 
remains a common chelate.

PSMA/PSMA inhibitor

The prostate-specific membrane antigen (PSMA) has been 
identified as a suitable target for prostate cancer diagnosis 
and therapy. The corresponding binding motif is a PSMA 
inhibitor. Over time the very small peptidomimetic struc-
ture of Glu-urea-Lys (KuE) has established itself as the by 
far most commonly used PSMA-targeting vector. Several 
radiolabeled derivatives have been developed for molecular 
imaging with 18F, 68Ga and other radionuclides. The most 
successful and clinically used diagnostic ligand is the 68Ga-
labeled ligand from DKFZ Heidelberg, which uses an HBED 
chelate: PSMA-11 ((EuK)-Ahx-HBED-CC, see Fig. 11A) 
[59, 60]. A comparative study with  [18F]fluoromethylcholine 
showed a much higher contrast which enabled the visualiza-
tion of small metastases despite low PSA levels [61]. Fig-
ure 10 shows PET imaging of prostate cancer with  [68Ga]
Ga-PSMA-11.

Figure 11 shows three of the most common KuE-based 
radiopharmaceuticals routinely used for the diagnosis of 
prostate cancer by PET/CT.

PSMA-617 (Fig. 11 B) has a DOTA chelator which ena-
bles theranostic application in contrast to PSMA-11 which 
can only be labeled with 68Ga for diagnostic PET. Unlike 
with  [177Lu]Lu-DOTA-TATE, where over 15 years have 
passed between the first application and the approval [51], 
the approval process  [177Lu]Lu-PSMA-617 is going a lot 
faster. Between the original unleashing in 2015 by Benesova 
et al. [62] and the start of the phase III clinical VISION 
trial in 2018 only 3 years and only 7 years until its recent 
approval passed [63]. Several big studies were published 
quickly in the early years which helped to accelerate the 
process [64, 65].

Besides that, efforts were made to establish 18F-labeled 
PSMA-inhibitors where  [18F]F-DCFPyL was investigated 
heavily which lead to two phase III studies that resulted in a 
recent FDA approval [66, 67].  [18F]F-PSMA-1007 (Fig. 11 
C) has also increasingly found its way into clinical routine 
over the last few years [68–70].

Hydroxyapatite in bone metastases/
Bisphosphonates

Malignant tumors of the prostate, breast and other organs 
often lead to the formation of painful bone metastases in 
advanced stages. The disease is related to the activity of 
osteoblasts and osteoclasts, which are the active components 
of bone growth. The inorganic bone matrix itself consists 
mainly of calcium hydroxyapatite. Conventional drugs 
and diagnostic and therapeutic radiopharmaceuticals all 
share a high binding affinity to the inorganic matrix and/
or the enzymes that regulate bone growth. Drugs for the 
treatment of osteoporosis are often used as bisphosphonate 

Fig. 9  90Y-DOTA-TOC therapies of neuroendocrine cancer; 
PRRT = peptide receptor radiation therapy.  [68Ga]Ga-DOTA-TOC 
PET images prior (left) treatment and after / between successive 

applications of first  [90Y]Y-DOTA-TOC followed by two cycles of 
 [177Lu]Lu-DOTA-TOC (Courtesy by R. P. Baum) [58]
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components. Bisphosphonates resemble pyrophosphate but 
are metabolically stable due to the replacement of the cen-
tral oxygen atom with a carbon atom. In addition, this car-
bon atom allows the attachment of two functional groups. 
By using a hydroxy group as a substituent, the affinity for 
hydroxyapatite can be increased.

Utilizing bisphosphonates as a targeting vector, a series 
of theranostic tracers were developed with high binding 
potency to bone metastases. The first generation of bispho-
sphonates were the DOTA-conjugated precursors BPAMD, 
BPAPD and BPPED that were investigated as 68Ga-labeled 

derivatives in PET diagnosis [7–9]. Further the precursor 
were labeled with the therapeutic nuclides 177Lu- and 225Ac 
and have been successfully applied in patient studies [11, 
71–73]. Figure 12 shows the structure of BPAMD and its 
PET- and ERT-application in vivo.

CAFs / FAP inhibitors

In contrast to specific molecular tumor targets such as the 
somatostatin receptor in neuroendocrine tumors and the 
prostate-specific membrane antigen in prostate cancer, the 
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Fig. 10  [68Ga]Ga-PSMA-11 PET imaging in patients suffering from 
prostate cancer [58]. a Maximum Intensity Projection (MIP) of a 
PET/CT at 1  h p.i. b Fusion PET/CT image. The primary prostate 

cancer tumor (12) as well as the lymph node metastases (11) can be 
visualized with a very high contrast (Courtesy of Afshar-Oromieh, 
DKFZ, Heidelberg, Germany) [35]
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Fig. 11  Representative theranostic PSMA inhibitors: PSMA-11 labeled with 68Ga (A), PSMA-617 labeled with 68Ga, 177Lu, 225Ac and others 
(B), PSMA-1007 labeled with 18F (C)
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tumor microenvironment has recently been identified as a 
suitable target for cancer diagnosis and therapy. Cancer is a 
heterogeneous disease that arises in an extremely complex 
microenvironment. Malignant tumors are composed not only 
of cancer cells but also of a large majority of endogenous 
host stromal cells (e.g., fibroblasts, vascular and immune 
cells) and extracellular matrix (ECM) components, collec-
tively referred to as the tumor microenvironment (TME) 
[74]. The stromal cells within the tumor (tumor stroma) 
comprise the majority of the total tumor mass (up to 90%) 
and are connected by a desmoplastic reaction [75]. Among 
all cells within the TME matrix, fibroblasts are considered 
dominant cells whose biological functions play a strong 
role in all stages of cancer progression and metastasis. 
Cancer-associated fibroblasts (CAFs) are thought to have 
potent tumor-modulating effects and are found in most solid 
tumors. In general, CAFs account for up to 80% of all fibro-
blasts in TME. CAFs are identified by the expression of 
several specific biomarkers on their surface, such as SMA 
(Smooth Muscle Actin), S100A4 or FSP-1 (Fibroblast-Spe-
cific Protein 1), PDGFR/ (Platelet-Derived Growth Factor 
Receptors), and FAP (Fibroblast Activation Protein). Fibro-
blast Activation Protein alpha (FAPα or FAP), also known as 
Seprase, is a type II membrane-bound serine protease asso-
ciated with fibrosis, tissue repair, inflammation, and ECM 
degradation. FAP contains two types of enzymatic activ-
ity: dipeptidyl peptidase and endopeptidase. Endopeptidase 
enables FAP to mediate proteolytic processing of collagen I 

cleaved by matrix metalloproteinase, leading to prevention 
of morphogenesis, tissue remodeling and repair [76–78].

FAP appears to be a promising target in oncology because 
it is not expressed in normal fibroblasts and in the stroma 
of benign epithelial tumors, whereas it is significantly 
increased in the stromal compartments of various malignant 
tumors. The challenge for radiopharmaceutical chemistry is 
to develop molecular targeting vectors with high affinity for 
FAP and high selectivity towards related proteases. Recently, 
molecular antibodies, small peptides, and inhibitors have 
been transformed into molecular imaging probes, with inhib-
itors utilizing the (4-quinolinoyl)-glycyl-2-cyanopyrrolidine 
scaffold representing the most exciting class [79, 80]. The 
inhibitor structure UAMC1110 showed nanomolar affinity 
and the best selectivity towards the concurring enzymes pro-
lyl endopeptidase (PREP) and dipeptidyl peptidases DPPIV, 
DPPVIII and DPPIX [80].

Radiopharmaceutical chemists at the German Cancer 
Research Center in Heidelberg pioneered the translation of 
this inhibitor into effective diagnostic radiopharmaceuticals 
by coupling chelators to the amine of the quinoline moiety 
of the inhibitor and introducing a series of linker and spacer 
motifs [81, 82]. At the University in Mainz (Germany) a 
linker based on squaric acid (SA), which links several 
bifunctional chelators (DATA 5m, DOTA, etc.) to the inhibi-
tor was used [83, 84]. Currently, 68Ga-labeled derivatives 
such as FAPI-04, FAPI-46, DATA 5m.SA.FAPi and DOTA.
SA.FAPi (cf. Figure 13) are being investigated in vivo.

Fig. 12  BPAMD, a DOTA-conjugated first-generation bisphosphonate labeled with 68Ga or 177Lu and its use in theranostics of disseminated 
bone metastases [35]
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These first generation of FAPi-radiotracers show prom-
ising value in the diagnosis of many different tumor types 
and provide new information, also in comparison with 
established oncologic tracers such as  [18F]FDG [85, 86]. 
Figure 14 shows an exemplary PET image of of a thyroid 
cancer patient visualized with  [68Ga]Ga-DOTA.SA.FAPi.

Outlook: more oncological vectors and new 
radioisotopes

Radioisotopes

In radiotherapy, it is the desired action of particle-induced 
ionization of α or β− emitters on tumor DNA. It requires 

the identification of the most successful radionuclide can-
didates which offer adequate nuclear parameters, specific 
activities and effective production routes including yield, 
purity, and cost. Routine clinical availability is the key issue. 
As of today, the number of such therapeutic isotopes is rela-
tively low, yet important carrier-free β− emitters such as 90Y 
and 177Lu are available even at a GMP level. Availability of 
225Ac, in contrast, is limited.

However, there is a substantial risk that the supply chain 
of those radionuclides cannot satisfy the demand of e.g. 
radiolabeled PSMA inhibitors. The growing number of reg-
istered theranostic radiopharmaceuticals and their dramati-
cally growing demand even for the well-established radionu-
clides ask for upscaling production capacities. Interestingly, 
the use of nuclear reactors dedicated to nuclear energy also 
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Fig. 13  Representative FAP inhibitor-based precursor for potential theranostic application: FAPI-04 (A), FAPI-46 (B), DOTA.SA.FAPi (C), 
DATA 5m.SA.FAPi (D)
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for isotope production is a fascinating avenue. In parallel, 
alternative production routes such as the potential of pho-
tonuclear reactions are being investigated-asking for dedi-
cated facilities. Finally, research and development towards 
new radionuclides must continue-with 161Tb representing an 
important example (cf. Figure 15). Other candidates are still 
pending routine commercial availability on larger activities 
such as 211At or 212Pb.

New oncological targets and new design 
of targeting vectors

The dominant systems of target/targeting vectors are Soma-
tostatin receptors (NET patients)/octreotides and PSMA 
(prostate cancer patients)/PSMA inhibitors-both quantified 
in successful clinical phase III trials and being registered 
drugs. In addition, in the last decade new systems have been 
translated from bench to bedside such as the TME / FAP 
inhibitors or peptides as mentioned, as well as the inorganic 
vectors for the system Hydroxyapatite (bone metastases) / 
bisphosphonates. Yet there are many more examples, just 
to mention bombesine-based targeting vectors targeting 
Gastrin-releasing protein receptor (GRPR) also known as 
bombesin type-2 receptor for use in prostate cancer [87, 88], 
the chemokine receptor CXCR4 ligands [89] and RGD-con-
taining cyclic peptides targeting αvβ3 and other integrines 
[90–92] for different types of cancer, new SSTR antagonists 
for NET [93–95] etc. This is an ongoing progress.

However, there are also some new developments in radi-
opharmaceutical chemistry. One example to mention is 
the creation of homo- and hetero-multimers. The principal 
designs are illustrated in Fig. 16 with a bifunctional chelator 
as the central unit which has at least two functional groups 
for the coupling with the linker and the targeting vector. 
Furthermore, additional spacer units may be required.

The effect of multivalency on affinity, avidity and selec-
tivity of receptor-ligand interactions is known for several 

decades [96, 97]. Based on this, multimeric designs found 
its way into radiopharmaceuticals in the 2000s mainly tar-
geting the integrin αvβ3 with RGD-containing cyclic pep-
tides such as c[RGDfK] as targeting vectors [98–100] but 
also with aptamers targeting  MUC1 [101]. A 64Cu-labeled 
RGD-tetramer (64Cu-DOTA-E{E[c(RDGfK)]2}2) showed 
first promising results indicating a prolonged tumor reten-
tion time while tumor uptake and blood clearance were rapid 
[100].

Notni et al. developed a new bifunctional chelator TRAP 
(triazacyclononance-triphosphinate) which showed superior 
68Ga-labeling properties compared to DOTA and NOTA 
(milder reaction conditions, broader pH range during labe-
ling, higher specific activities while retaining high complex 
stability) and simultaneously allowed the conjugation of 
three targeting vectors [102]. A following study with 68Ga-
TRAP(RGD)3 (“68Ga-Avebtrin”, Fig. 17) could demonstrate 
the superiority of the RGD trimer compared to RGD mono-
mers [103].

The concept was expanded to tetraazacyclododecane 
scaffold which resulted in the chelator DOTPI [104]. This 
allowed for the synthesis of tetramers and the radiolabeling 
with a broader range of radiometals such as 177Lu which ena-
bles therapeutic applications. As a proof-of-concept DOTPI 
was conjugated with the PSMA-targeting vector KuE via 
 CuI-catalyzed alkyne-aide cycloaddition (CuAAC, Huis-
gen-reaction) and copper-free strain-promoted alkyne-aide 
cycloaddition (SPAAC) with DBCO (dibenzyocyclooctyne) 
and investigated [105].

The chelator sarcophagine (Sar) is especially suited to 
form stable and kinetically inert complexes with  CuII. Fig-
ure 18A shows the PSMA dimer SarbisPSMA which was 
labeled with 64Cu. In vivo-investigation in comparison to 
the monomer SarPSMA showed far superior tumor uptake, 
tumor-to-background ratio and longer tumor retention of the 
dimer [106].

Besides PSMA also Gastrin-releasing peptide receptors 
(GRPRs) are interesting targets and strongly expressed in 
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Fig. 15  Selected positron emitters (left) and α or β− emitters (right) 
with established theranostic application with 161Tb being about to 
enter the clinics

Fig. 16  Schematic designs of chelator-based multimeric radiophar-
maceuticals
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several types of cancer such as prostate cancer which can 
be targeted with bombesin (BBN)-derived peptides. Here, 
also several attempts were made to investigate homodimeric 
bombesin radiotracers [88, 108, 109].

Recently the dimeric concept was translated to FAP inhib-
itor-based radiopharmaceuticals since the first-generation of 
FAPIs like FAPI-04 and FAPI-46 and other monomers (cf. 
Figure 13) suffer from short tumor retention time limiting its 
translation towards therapy using radionuclides with longer 
half-lives such as 177Lu or 225Ac. Figure 18B shows the 
structure of DOTAGA.(SA.FAPi)2 which was labeled with 

68Ga and 177Lu [107]. In comparison with  [177Lu]Lu-DOTA.
SA.FAPi,  [177Lu]Lu-DOTAGA.(SA.FAPi)2 showed higher 
tumor uptake, faster clearance and longer tumor retention 
time. Even after 7 days p.i. the tumor lesions could still be 
visualized via whole-body scintigraphy [110]. The slighty 
higher uptakes in colon and kidneys were tolerated well by 
the patients.

Other groups also published FAPi dimers such as  [177Lu]
Lu-BiOncoFAP [111] and  [68Ga]Ga-DOTA-2P(FAPI)2 
[112] recently and showed similar results in murine in vivo 
studies regarding the biodistribution and pharmacokinetics.

Fig. 17  Structure of TRAP(RGD)3 which can be labeled with 68Ga [103]

A

B

Fig. 18  Structure of SarbisPSMA (A) and DOTAGA.(SA.FAPI)2 (B) [106, 107]
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Heterodimers also appeared in recent years having a 
similar molecular design than the homodimers but with two 
different targeting vectors. Most of the combinations try to 
simultaneously target GRPRs and integrins with a bombesin 
derivative and a cyclic RGD peptide [113–115]. PSMA-
BBN [116, 117] and recently the first PSMA-FAP heter-
odimer [118] have also been published. Some PCa patients 
are PSMA-negative so they do not overexpress PSMA. This 
means that cannot be visualized via a monomeric PSMA 
radiotracer. A heterodimer could therefore be interesting to 
improve the rate of successful diagnosis or therapy. It has 
also been reported that the enzymes are both overexpressed 
in different malignant tumors at the same time [119, 120].

Besides that, a combination of one of an established 
oncological targeting vector and a human serume albumin 
(HSA) binding moiety emerged in radiopharmaceuticals. In 
most cases 4-(p-iodophenyl)butyric acid oder Evans Blue 
(EB) are used as a HSA binding moiety [121]. These moi-
etites bind reversibly to albumin which results in a prolonged 
circulation in the blood and therefore a delayed renal clear-
ance. This results in a prolonged tumor retention also which 
is why a higher accumulated radiation dose can be deposited 
in the tumor region. This approach has been investigated 
for SSTR and PSMA in humans. This could be confirmed 
e.g. with 177Lu-EB-TATE and 177Lu-EB-PSMA-617 with 
a 7.9- and 5.7-fold higher dose to the tumor compared to 
the monomeric derivatives, respectively [121–123]. But the 
drawbacks were also observed since the radiation dose is 
increased in healthy tissue as well which can result in overall 
lower tumor-to-background ratios. Much higher uptake was 
also observed in the kidneys (3.2- and sixfold) and espe-
cially the bone marrow (18.2- and sixfold) which can be 
critical. Even when lower initial activities are needed to treat 
a patient (particularly interesting for 225Ac) the uptake in 
healthy tissue increases roughly in the same order of mag-
nitude than in the tumor [121–123].

Conclusion

Since the 1990s huge progress was made in radiometal-based 
theranostics in every field concerning radiopharmaceuti-
cals. This includes new methods to produce radionuclides 
(improved production routes of established radionuclides 
as well as making new radionuclides available for routine 
use), improved labeling chemistry (acyclic vs. macrocyclic 
chelators), new oncologic targets (SSTR, PSMA, FAP, …) 
combined with new targeting vectors (TOC/TATE, PSMA 
and FAP inhibitors, …), sophisticated linker and spacer 
chemistry. The development in this field still is ongoing with 
new molecular designs (dimers and multimers with multiple 
targeting vectors) and most importantly the ever-increasing 
interaction of diagnosis and therapy.
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