The Oxidative Capacity of the Atmosphere around the Arabian Peninsula:

Ship-based Atmospheric Measurements of OH and HO₂ Radicals using Laser Induced Fluorescence Spectroscopy

Dissertation

Zur Erlangung des Grades

"Doktor der Naturwissenschaften

Im Promotionsfach Chemie"

Am Fachbereich Chemie, Pharmazie,

Geographie und Geowissenschaften

der Johannes Gutenberg-Universität, Mainz,

ausgeführt am

Max-Planck-Institut für Chemie,

Mainz

Vorgelegt von

Sebastian Manuel Tauer

Geboren in Trier

Mainz, 2022

1. Gutachter:

2. Gutachter:

Tag der Mündlichen Prüfung:

26.01.2023

Abstract

The oxidative capacity of the atmosphere is largely governed by the radicals OH and HO₂ (HO_x), which are the primary self-cleaning agents of the atmosphere. A measure for the strength of the self-cleaning is the recycling probability of HO_x, that varies strongly with atmospheric composition and temperature. Due to climate change, global temperatures are expected to rise, which will lead to a change in atmospheric composition from increased emissions of biogenic VOC. Coupled with decreasing NO_x emissions from combustion processes, it is important to understand the impact of these changes on the recycling probability and, thus, the oxidative capacity.

To study the oxidative capacity under high temperatures and VOC loading, the Air Quality and Climate Change in the Arabian **Ba**sin (AQABA) ship-based field campaign was conducted in the summer of 2017, starting in Toulon, France travelling around the Arabian Peninsula and back. The Arabian Gulf is characterized by intense solar radiation and high ambient temperatures, combined with strong emissions from the exploitation of its rich oil and gas reserves. As a comparison with the cooler and less polluted Mediterranean Sea, the Arabian Gulf can give insight into the impact of rising global temperatures on the recycling probability under conditions of large anthropogenic VOC emissions. The radicals OH and HO₂ were measured by the ground-based *HydrOxyl Radical Measurement Unit based on* fluorescence *Spectroscopy* (HORUS).

Despite higher primary production in the Arabian Gulf $(2.3\pm0.2\cdot10^7 \text{ molec cm}^{-3} \text{ s}^{-1})$, Mediterranean Sea: $1.3\pm0.2\cdot10^7$ molec cm⁻³ s⁻¹), radical concentrations were lower by a factor of >1.5 and the recycling probability $(15\pm10\%(1\sigma)@0.1 \text{ pptv NO})$ showed values greatly decreased compared to the Mediterranean Sea $(57\pm5\%(1\sigma)@0.1 \text{ pptv NO})$. Boxmodel calculations, investigating the reason for the reduced recycling probability compared to the Mediterranean Sea, show an increased importance of radical-radical reactions in the Arabian Gulf, due to high concentrations of RO₂ radicals. These reactions can cause radical recycling or destruction. While radical destruction directly decreases the recycling probability through termination of the radical propagation, radical recycling from these reactions caused an indirect decrease, as they could not be included in the calculation.

Throughout the recycling of HO_x in the troposphere, tropospheric O_3 is produced, which causes plant stress and is harmful for the respiratory system of humans and animals. Therefore, the radical recycling probability has a direct impact on the net ozone production rate (NOPR). The NOPR was calculated using, measured NO and HO_2 and calculated RO_2 concentrations. It is expected, that the NOPR has a maximum at the crossover point between its NO_x -limited and VOC-limited regimes. However, no NO concentration was found throughout the AQABA campaign, where the NOPR peaked. Due to this finding, it was concluded that NOPR was NO_x -limited in the marine boundary layer during the whole campaign.

Kurzfassung

Die Oxidationskapazität der Atmosphäre wird größtenteils durch die Radikale OH und HO₂ (HO_x) bestimmt, welche die primären "Reinigungsmittel" in der Atmosphäre sind. Ein Maß für die Stärke der Selbstreinigungskraft ist die Rezyklierungswahrscheinlichkeit (RZWK) von HO_x, welche abhängig von atmosphärischer Zusammensetzung und Temperatur stark schwanken kann. Durch den Klimawandel werden höhere globale Temperaturen erwartet, was zu einer Veränderung in der Zusammensetzung der Atmosphäre, durch erhöhte Emission von biogenen VOC, führt. Verbunden mit geringeren NO_x Emissionen aus Verbrennungsprozessen, ist es wichtig, den Einfluss dieser Veränderung auf die RZWK und die Oxidationskapazität zu verstehen.

Um die Oxidationskapazität bei hohen Temperaturen und VOC-Belastung zu untersuchen, fand die schiffbasierte Air Quality and Climate Change in the Arabian Basin (AQABA) Messkampagne im Sommer 2017 statt und wurde von Toulon, Frankreich um die Arabische Halbinsel und zurück durchgeführt. Der Arabische Golf wird charakterisiert durch intensive Sonneneinstrahlung und hohe Umgebungstemperaturen, gepaart mit starken Emissionen durch das Erschließen seiner reichen Öl- und Gasvorkommen. Im Vergleich zum kühleren und weniger verschmutzten Mittelmeer, kann der Arabische Golf Einblick auf den Einfluss von steigenden Temperaturen auf die RZWK bei hohen anthropogenen VOC Emissionen geben. Die Radikale OH und HO₂ wurden durch das *HydrOxyl Radical Measurement Unit based on fluorescence Spectroscopy* (HORUS) gemessen.

Trotz hoher Primärproduktion im Arabischen Golf $(2.3\pm0.2\cdot10^7 \text{ molec cm}^{-3} \text{ s}^{-1})$ Mittelmeer: $1.3\pm0.2\cdot10^7 \text{ molec cm}^{-3} \text{ s}^{-1})$ waren die Radikalkonzentrationen um einen Faktor >1.5 geringer und die RZWK ($15\pm10\%$ (1σ) @ 0.1 pptv NO) zeigte deutlich erniedrigte Werte verglichen mit dem Mittelmeer ($57\pm5\%$ (1σ) @ 0.1 pptv NO). Modellrechnungen, zur Untersuchung der geringeren RZWK im Vergleich zum Mittelmeer, zeigen einen erhöhten Einfluss von Radikal- Radikal-Reaktionen im Arabischen Golf, welche durch hohe RO₂ Konzentrationen verursacht werden. Diese Reaktionen können Radikalrezyklierung und -zerstörung verursachen. Während Radikalzerstörung die RZWK durch Radikalkettenabbruch direkt verringert, kann Radikalrezyklierung dies durch diese Reaktionen indirekt, da sie in der Berechnung der RZWK nicht berücksichtigt werden konnten.

Während des Rezyklierens von HO_x in der Troposphäre kann troposphärisches O_3 produziert werden, welches Stress in Pflanzen hervorruft und für die Atmungsorgane von Menschen und Tieren schädlich ist. Dadurch hat die RZWK einen direkten Einfluss auf die Netto-Ozon-Produktionsrate NOPR. Die NOPR wurde mithilfe von NO und HO₂ Messungen und berechneten RO₂ Konzentrationen bestimmt. Es wird erwartet, dass die NOPR ein Maximum am Übergangspunkt zwischen NO_x-limitiertem und VOC-limitierten Regime aufweist. Während AQABA konnte allerdings keine NO Konzentration gefunden werden, bei der NOPR ein Maximum erreicht. Daraus folgt, dass NOPR während der gesamten Kampagne NO_x-limitiert war.

Contents

1 The Atmosphere	1
1.1 The oxidative capacity of the atmosphere	1
1.2 Marine Boundary Layer	2
1.3 Hydroxyl- and Hydroperoxyl radical chemistry in the troposphere	4
1.3.1 HO _x sources	4
1.3.2 HOx recycling	5
1.3.3 HO _x sinks	7
1.4 Organic peroxy radicals	7
1.4.1 Production	7
1.4.2 Loss	8
1.5 Ozone production	0
2 HO _x measurement techniques and the HORUS instrument	2
2.1 OH Measurement techniques	2
2.1.1 LIF FAGE	2
2.2 HO ₂ Measurement techniques	5
2.2.1 LIF FAGE1	5
2.3 HO _x observations using numerical box models	5
2.4 HORUS10	6
2.4.1 Instrument setup10	6
2.4.2 Calibration	0
3 Characterization and correction of RO ₂ interferences	4
3.1 Estimation of ambient RO ₂	4
3.1.1 RO ₂ Estimation using NO _x /O ₃ PSS	4
3.1.2 RO ₂ estimation using HO ₂ and OH reactivity	5
3.2 Analytical and numerical calculation of the HORUS-internal RO ₂ conversion using NO titration	_
3.2.1 Cost effective estimate of the RO ₂ conversion to OH efficacy based on the internal temperature and pressure in HORUS	
3.2.2 Model based estimate of the ambient RO ₂ concentration based on titration of RO by NO	
3.3 Validation of CAABA/MECCA estimates of HORUS internal conditions	4

3.4 Summary	41
4 AQABA field campaign	43
4.1 Instrumentation	44
4.2 Regional characteristics	44
4.2.1 Back-trajectories during AQABA	45
4.3 Observations	48
4.3.1 NO _x and O ₃	48
4.3.2 HCHO, H ₂ O ₂ and ROOH	49
4.3.3 Methane	52
4.3.4 HONO	52
4.3.5 VOC / OVOC	53
4.3.6 OH reactivity	56
4.4 OH and HO_2^*	58
4.4.1 Calibration	58
4.4.2 Measurements of OH and HO ₂ *	61
4.5 RO ₂ interference characterization during AQABA	63
4.5.1 Estimation of RO ₂ mixing ratios	63
4.5.2 Correction of RO_2 interference in HO_2^*	64
4.5.3 Corrected HO ₂ mixing ratios	65
5 Stability of tropospheric OH concentration	66
5.1 OH primary production	66
5.2 OH secondary production	69
5.3 OH recycling probability	70
5.3.1 Missing secondary production rate	72
5.3.2 Investigating RO _x losses	74
5.4 Summary	
6 Net Ozone Production Rate	84
6.1 Net ozone production rate from measured HO ₂ and estimated RO ₂	84
6.2 NOPR dependence on NO and HO _x production	90
6.3 Summary	94
7 Summary and Conclusions	96

8 Bibliography	
A. Supplementary Data	110
B. CAABA/MECCA chemical mechanism	114
C. Datasheets	179

List of Tables

Table 3.1 Parameter for temperature and pressure dependency for relative HO ₂ interference				
from RO _{2 sat} and RO _{2 unsat} . Parameters were calculated for $c(NO) = 5.64 \cdot 10^{14}$ molec cm ⁻³				
Table 3.2 RO ₂ used to estimate reaction rate constant uncertainty				
Table 3.3 Rate constants and errors used for CAABA/MECCA simulation. Errors do not				
represent literature uncertainty, but were chosen to account for RO ₂ from different saturated				
or unsaturated VOC				
Table 3.4 Lower and upper error Irel sat and Irel unsat				
Table 4.1 Excerpt of instrumentation installed during AQABA 2017. Only species listed,				
which are used within this work				
Table 4.2 Overview of measured NO_x (top panel) and O_3 (bottom panel) median mixing				
ratios in ppbv including 1 st and 3 rd quantile (taken from Tadic et al. (2020)				
Table 4.3 Overview of measured HCHO (top panel), H2O2 (middle panel) and ROOH				
(bottom panel) median mixing ratios in ppbv including 1 st and 3 rd quantile (taken from				
Dienhart et al. (2022))				
Table 4.4 Systematic uncertainties during actinometric measurement				
Table 5.1 HO2 uptake coefficients for different surfaces 75				
Table 5.2 Groups of RO_x loss reactions, with number of reactions found in				
CAABA/MECCA and example for each group78				
Table 6.1 Rate constants used to calculate NOPR with measured data				
Table 6.2 Rate constants used to calculate <i>HHloss</i> and <i>NHloss</i>				

List of Figures

Figure 1.1 Composition of the Atmosphere, taken from Seinfeld (1998)1 Figure 1.3 Simplified schematic of HO_x chemistry. Radical production (green), recycling Figure 1.4 Recycling mechanism of RO₂ formed from isoprene under low-NO conditions. Different reaction pathways were omitted for simplicity and can be found in Peeters, Figure 1.5 Production of RO₂ through oxidation of benzene. Taken and modified from Figure 1.6 Reaction scheme of alkyl peroxy radical (left) and β-hydroxy alkyl peroxy radical (right). (taken and modified from Fuchs et al. (2011))......9 Figure 1.7 OH concentrations (solid line) and net ozone production rate (dashed line) as a function of NO mixing ratio. Taken from Schumann and Huntrieser (2007)11 Figure 2.1 Schematic view of the pressure-dependent LIF-FAGE sensitivity as a function of internal pressure (light blue line), OH transmission (dotted-dashed dark blue line), internal density (green line) and quenching (dashed red line). (modified version of Faloona Figure 2.2 Schematic representation of the timing of photon counting process that is used to quantify OH concentrations by LIF-FAGE technique. The detectors are switched off during the laser pulse (dark grey areas) by electronic gating. The detector is switched on at t_1 and the integrated area (light grey) is proportional to OH number concentration. At t_2 the detector is switched off again before the next laser pulse (Taken from Faloona et al. (2004), modified).....14 Figure 2.3 Schematic setup of the dye laser system. The incoming 532 nm wavelength laser beam is focused by the collecting lens onto the dye cell. The fluorescence from the pyrromethene-597 laser dye is selectively amplified at 616 nm inside the optical resonator. Using a nonlinear doubling crystal (BBO), UV light at 308 nm is produced. Taken from Figure 2.4 Schematic setup of the HORUS detection system. Sample air is drawn through the IPI at a rate of ~50 L/min. About 10 L/min is drawn through a critical orifice into the low-pressure detection cell. Laser light with a wavelength of 308 nm is used to excite OH radicals and fluorescence is detected by multi-channel plate detector (MCP). After adding excess amount of NO, HO₂ radicals are converted to OH and can be measured in the same Figure 2.5(a) The laser beam is periodically tuned on (green line) and off OH resonance (red lines) to measured HORUS internal fluorescence background signal. (b) Measured signal of on-off resonance toggling. On (green areas) and off (red and yellow areas) resonance are alternated approx. every 5 sec. Off resonance is also alternated between frequency above (red area) and below (yellow) OH resonance line at 308 nm......20

Figure 2.6 Schematic gas flow plan of the calibration setup used for the HORUS
instrument. (Taken from Kubistin (2009))
Figure 2.7 By injecting a scavenger into the sample air, background OH can be obtained
(red shaded area). Atmospheric OH can be obtained from the difference of total OH (blue
shaded area) and background OH. (taken from Novelli et al. (2014))
Figure 3.1 Relative HO ₂ interference for RO _{2 sat} vs. pressure (a) and temperature (b),
respectively. The data obtained from CAABA/MECCA (red) was fitted (blue) with Eq.13
for the pressure dependency and Eq.14 for the temperature dependency, respectively. The
range of x was chosen to encompass conditions normally encountered during HORUS
measurements. The NO concentration was $5.64 \cdot 10^{14}$ molec cm ⁻³
Figure 3.2 Combination of the equation describing $I_{rel,p}$ (blue dots) and $I_{rel,T}$ (red dots)
spanning a surface, which characterizes I_{rel} for a given temperature and pressure. I_{rel} from
$RO_{2 \text{ sat}}(I_{rel \text{ sat}})$ (a) shows a dependency of both pressure and temperature, while I_{rel} from
$RO_{2 \text{ unsat}}$ (<i>I_{rel unsat}</i>) (b) only shows a temperature dependency and stays constant for different
pressures
Figure 3.3 Lower (blue) and upper (red) relative error margin of I_{rel} /[RO ₂] vs. the fraction
of RO _{2 sat}
Figure 3.4 Internal OH produced by HO ₂ and RO ₂ as seen during NO titrations. Total
internal OH (blue) consists of OH produced by HO ₂ (red) and the sum of OH produced by
all RO ₂ present during measurement (yellow)
Figure 3.5 Example of NO titration measured with HORUS (blue), with total modeled
internal OH (red), and modeled internal OH from HO ₂ (yellow), RO _{2 sat} (purple) and RO ₂
unsat (green). The vertical line set to the NO concentration injected during normal
measurements
Figure 3.6 Mixing ratio of OH generated from different RO _{2 sat} . Shown points represent
measured NO titrations, while dotted lines represent modeled data. Modeled data of both
MA-RO ₂ and PA-RO ₂ describe the measured NO titrations, while measurements of BA-
RO ₂ are underestimated by the corresponding model (taken from Kunkler (2021))35
Figure 3.7 Mixing ratio of OH generated from different RO _{2 unsat} . Shown points represent
measured NO titrations, while dotted lines represent modeled data. Modeled data of PE-
RO_2 and $BE-RO_2$ underestimates measured data, while modeled data of $EE-RO_2$ and IE -
RO ₂ describe measurements within error estimation (taken from Kunkler (2021))
Figure 3.8 Normalized OH signal from PE-RO ₂ (red) and BE-RO ₂ (blue) vs. laser power
inside of the White cell, with a NO mixing ratio of $9 \cdot 10^{-4}$. The lines show the linear fit for
both RO_2 (solid line) and the 95 % confidence interval (dashed lines) (taken from Kunkler
(2021))
Figure 3.9 Normalized OH signal for PE-RO ₂ vs. NO mixing ratio for different laser
repetition rates (2000, 3000, 4000 Hz). The OH signal with 4k Hz repetition rate is slightly
higher than with lower repetition rate, indicating multiple excitations of OH (taken from
Kunkler (2021))

Figure 3.10 Mixing ratio of OH generated from the oxidation of benzene vs. NO mixing ratio. The shown points represent measured NO titrations, with 2 σ error margin. The dotted lines show modeled data, with OH from the bicyclic RO₂ bBZ-RO₂ (green), OH from Figure 3.11 Schematic overview of the reaction pathway of bicyclic peroxy radical of benzene 4. Produced HO₂ is shown in green, while HO₂, which is used up is shown in red Figure 4.1 Map of the track covered by the AQABA field campaign in 2017. Starting in Toulon, France, measurements were taken through the Mediterranean Sea, Suez Canal, Red Sea, Arabian Sea and Arabian Gulf......43 Figure 4.2 Kommandor Iona (Hays Ships Ltd.) (left) and CAD drawing of Main Deck and Forecastle Deck (right). The HO_x inlet was located on the forecastle deck (a). A 6 m high common inlet was used for measurements of NO_x, O₃, HCHO, H₂O₂, ROOH, SO₂, CO, VOC, OVOC and OH reactivity (b). For measurements of aerosol particles, a silica gel aerosol dryer was installed approx. 12 m above sea level (c) (Celik et al., 2020)......44 Figure 4.3 Ship track of the Kommandor Iona during AQABA (black). The cruise was Figure 4.4 HYSPLIT back-trajectories of leg 1 of the Gulf of Aden, the Arabian Sea, and the Gulf of Oman (a), and the Arabian Gulf (b). The black line shows the ship track. The color of the trajectories shows the age of the air mass in hrs (D. Walter, personal Figure 4.5 HYSPLIT back-trajectories of leg 2 of the AQABA campaign. The Arabian Gulf, the Gulf of Oman, the Arabian Sea, and the Gulf of Aden are shown in panel (a). The Red Sea is shown in panel (b). The Suez Canal is shown in panel (c), and the Mediterranean Sea is shown in panel (d). The black line shows the ship track. The color of the trajectories shows the age of the air mass in hrs (D. Walter, personal communication, 23. Nov.2017). Figure 4.6 Ship cruises with color-scaled NOx mixing ratios (logarithmic scale) during (a) the first and (b) the second leg, and color-scaled O₃ mixing ratios (linear scale) during (c) the first and (d) the second leg. Note that both NO_x and O_3 have been filtered for Figure 4.7 Overview and data coverage of HCHO, H₂O₂ and organic hydroperoxide measurements during both legs of the AQABA ship campaign (graphs on the left represent the first leg). Contaminated HCHO data (e.g. by ship exhausts) was removed from the dataset with a stack filter, therefore there is less HCHO data coverage during the first leg Figure 4.8 Overview of ship cruises with color-scaled mixing ratios of methane during the first (a) and the second leg (b). The data was filtered for contamination of the ship's own

Figure 4.9 Overview of HONO data measured during AQABA. Color-scaling indicates the Figure 4.10 Volume mixing ratios of selected NMHC species over the eight regions. For each box, the central red line indicates the median mixing ratio for both campaign legs. The bottom and top edges of the box indicate the 25th (q1) and 75th (q3) percentiles respectively. The boxplot draws points as outliers if they are greater than $q_3+w\times(q_3-q_1)$ or less than q1–w×(q3–q1). The whiskers correspond to $\pm 2.7 \sigma$ and 99.3 % coverage if the data are normally distributed. The ship track of the first leg is shown in the map with the green line, the second leg with the red line. (Taken from Bourtsoukidis et al. (2019))54 Figure 4.11 Mixing ratios of selected oxygenated VOC (OVOC) over the eight regions during the AQABA campaign. The top and bottom edges of each box indicate the 25th and 75th percentiles, respectively. The red line indicates the median for each box. The whiskers correspond to $\pm 2.7 \sigma$ and 99.3 % coverage if the data is normally distributed. The ships track is shown in the middle panel......55 Figure 4.12 Overview of total OH reactivity around the Arabian Peninsula during the AQABA campaign. OH reactivity during (a) leg 1 (5-31 July 2017) and (b) leg 2 (3-31 August 2017). The maximum in the color scales is set to 20 s⁻¹ for better visibility of differences, although there are a few data points above this value. Arrows depict general wind directions for the respective regions. (c) Total OH reactivity medians by region, and pie charts showing the contribution of compound classes for data points where speciated OH reactivity \geq LOD (exception: pie charts of Mediterranean and Arabian seas show the average of all data points, due to the low number of points above LOD). (d) Average OH reactivity and speciation by region for all data points, including those where speciated OH reactivity was below the LOD. Error bars show the total uncertainty of the measurement. (e) Average mixing ratio of VOCs = trace gases in parts per billion by compound class and region (except for the class of inorganic compounds other than NO_x). Port calls and bunkering are excluded from all averages. (Taken from Pfannerstill et al. (2019))...........57 Figure 4.13 Actinic flux density of the pen ray lamp used in the calibration of the HORUS instrument. Error bars indicate the propagated statistical variability of the calculated flux Figure 4.14 Sensitivity over time during AQABA. Two detectors were used during the campaign. c_{OH} (blue) is the sensitivity of the OH detector. c_{HO_2} (red) is the sensitivity of the HO₂ detector towards HO₂, and $c_{OH(HO_2)}$ (yellow) is the sensitivity of the HO₂ detector towards OH. coH(HO2) is necessary to correct for remaining atmospheric OH detected by the Figure 4.15 Overview of OH and HO2* measurements during AQABA 2017 campaign. Data shown is only during daytime and was filtered for the ship's own stack emissions. The top panel shows OH mixing ratio, the bottom panel shows HO₂ mixing ratio. Gray data shows 15 sec resolution and colored data shows 20 min averages (blue and red). Vertical lines separate the different regions during AQABA......61

Figure 4.16 Calculated RO₂ mixing ratios during AQABA using NO_x/O₃ PSS (blue) (Tadic et al., 2020) and OH reactivity and HO₂ (red). From the calculated (HO₂ + RO₂) reported in Tadic et al. (2020), measured HO₂ concentrations were subtracted to obtain RO_{2 PSS}. Figure 4.17(a) Fraction of HO₂ from RO₂ in HO₂^{*} calculated using least-square method (blue) and parameterization method (red) during the AQABA 2017 campaign. (b) Correlation of HO₂ corrected (10 min averages, blue dots) with both methods. Linear fit is Figure 4.18 HO₂ data (blue) during AQABA campaign corrected for RO₂ interference. $\mathrm{HO_2}^*$ mixing ratios shown in gray. Vertical lines separate the different regions during Figure 5.1 OH primary production versus time of day around the Arabian Peninsula and Mediterranean Sea during AQABA. Total OH primary production (blue) is comprised of OH production from O₃ photolysis (red) and HONO photolysis (yellow). Contributions from peroxide photolysis were <1 % and thus were neglected in this calculation. No HONO data was measured during the Gulf of Aden and Southern Red Sea, thus OH production Figure 5.7 HO₂ concentrations vs. HO_x production rate. The points show measured data over different regions during the AQABA campaign. The yellow line shows the upper limit for HO₂, if the only loss reaction is the reaction of HO₂ with itself, neglecting other loss Figure 5.2 OH secondary production versus time of day around the Arabian Peninsula and Mediterranean Sea during AQABA. Total OH secondary production (blue) is comprised of OH production from $HO_2 + NO$ (red) and $HO_2 + O_3$ (yellow). Due to missing HO_2 Figure 5.3 OH recycling probability r as a function of ambient NO mixing ratio in ppbv. Shown are measurement campaigns in different environments. OOMPH – marine boundary layer, ship stack plume; TexAQS - metropolitan, anthropogenic VOC; SOS99 metropolitan, biogenic VOC; HOPE and PARADE - biogenic and anthropogenic VOC. Figure 5.4 OH recycling probability during AQABA separated for different regions. The regions of the Red Sea and Gulf of Aden are not shown, since data coverage for r was low or non-existent, due to missing HO₂/HONO data. Data shown from other measurement campaigns are shown for comparison in gray in the background. See Figure 5.3for more Figure 5.5 Missing secondary production rate α vs. NO mixing ratio (top). α represents additional secondary production needed to reach levels of r observed in the Mediterranean Sea for similar NO mixing ratios. The bottom panel shows the fraction of the missing

Figure 5.6 Loss rate on different surfaces L_{PS} vs. NO mixing ratio in ppbv (top panel). The particle surface of particles between 2.5 and 10 µm diameter were used to calculate for loss on Cu doped aerosols and loss through Cu/Fe catalysis. The particle surface of particles below 10 µm diameter were used to calculated loss on water or NaCl surfaces. Fraction of loss on different surfaces of the missing secondary production α vs. NO mixing ratio in ppbv (bottom panel)......76 Figure 5.8 RO_x loss rates for regions during AQABA. Loss rates accounted for RO₂ radicals are shown in red to green and loss rates accounted to HO₂ are shown in different shades of blue. The low RO_x loss rates in the Mediterranean Sea are caused by low data coverage in this region. The obtained RO_x losses are therefore not representative for the whole region Figure 5.9 Radical loss of RO_x as a fraction of total loss during AQABA. Radical loss from radical-radical reaction is shown in blue (RL_{rad}), loss from nitrate formation is shown in red (RL_{NOx}), other radical loss is shown in yellow (RL_{other})......79 Figure 5.10 Non-NO_x radical recycling rate as a fraction of total loss rate of RO_x, separated in major contributing reactions. Recycling from $HO_2 + O_3$ is shown in yellow, radicalradical recycling is shown in red, and other recycling reactions, e.g. unimolecular Figure 5.11 Proposed mechanism for the reaction of acetyl peroxy radical and HO₂. The tetroxide intermediate is formed to produce an acetic acid and ozone (R1b) or acetyl oxy radical oxygen and OH (R1c). Alternatively, a 4 membered ring intermediate can be formed to produce the hydroperoxide and oxygen (R1a). Taken from Hasson, Kuwata, Arroyo, and Figure 6.1 Timeline of NOPR calculated in this work (red) and by Tadic et al. (2020) (blue), shown in pptv s⁻¹. Gray, vertical lines indicate the separation between regions during Figure 6.2 O₃ budget during the AQABA campaign. Production rates are shown as positive bars, while loss rates are shown as negative bars. Gray, vertical lines indicate the separation Figure 6.3 Averaged Po3 plotted versus [NO]. Po3 data were placed into three PHOx bins: high $(0.5 < P_{HOx} < 0.7 \text{ ppt/s}, \text{ circles})$, moderate $(0.2 < P_{HOx} < 0.3 \text{ ppt/s}, \text{ squares})$, and low $(0.03 < P_{HOx} < 0.07 \text{ ppt/s}, \text{ triangles})$, and then averaged as a function of NO. All three P_{HOx} regimes demonstrate the expected generic dependence on NO, Po3 increases linearly with NO for low NO (<600 ppt NO), and then Po3 becomes independent of NO for high NO (>600 ppt NO). The crossover point between NO_x-limited and VOC-limited O₃ production occurs at different levels of NO in the three P_{HOx} regimes. (taken from J. A. Thornton et al. Figure 6.4 NOPR_{calc} over the Arabian Sea as a function of NO mixing ratio. The blue dots show NOPR_{calc} at low P_{HOx}, red squares at moderate P_{HOx}, and yellow triangles at high

P _{HOx} . All three P _{HOx} regimes show similar NOPR, indicating no significant fluctuations of
conditions throughout the day9
Figure 6.5 The left axis shows NOPRcalc for different regions during AQABA vs. NO
mixing ratio in ppbv. The gray dots show non-averaged NOPRcalc, while the blue dots show
averaged NOPRcalc. The right axis shows the fraction of total radical loss vs. NO mixin
ratio. The fractional loss through HHloss is shown in red triangles, and the fractional los
through <i>NHloss</i> is shown in red crosses

1.1 The oxidative capacity of the atmosphere

Earth's Atmosphere is mainly comprised of Nitrogen (~78 %), Oxygen (~21 %) and a variable amount of water (~ 0 - 2 %). Its chemical and physical properties are highly influenced by the remaining less than 1 % of trace gases (e.g. Ozone (O₃), Methane (CH₄), Carbon dioxide (CO₂)).

Gas	Molecular Weight	Average Mixing Ratio (ppm)	Cycle
Ar	39.948	9340)
Ne	20.179	18	No cycle
Kr	83.80	1.1	
Xe	131.30	0.09	1
N_2	28.013	780,840	Biological and
O ₂	32	209,460	microbiological
CH_4	16.043	1.72	Biogenic and chemical
CO_2	44.010	355	Anthropogenic and biogenic
CO	28.010	0.12 (NH)	Anthropogenic and chemical
		0.06 (SH)	
H_2	2.016	0.58	Biogenic and chemical
N_2O	44.012	0.311	Biogenic and chemical
SO_2	64.06	$10^{-5} - 10^{-4}$	Anthropogenic, biogenic, chemical
NH_3	17	$10^{-4} - 10^{-3}$	Biogenic and chemical
NO	30.006	10-6 10-2	And
NO_2	46.006	$10^{-6} - 10^{-2}$	Anthropogenic, biogenic, chemical
O ₃	48	$10^{-2} - 10^{-1}$	Chemical
H ₂ O	18.015	Variable	
He	4.003	5.2	} Physicochemical

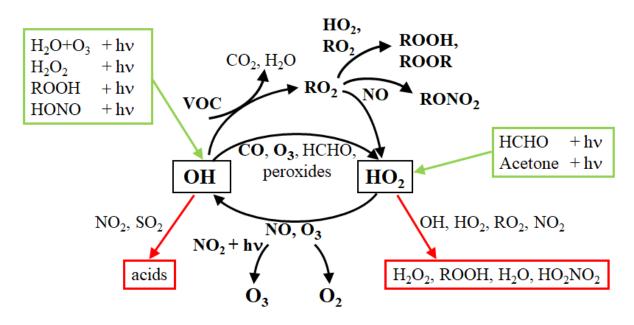
Figure 1.1 Composition of the Atmosphere, taken from Seinfeld (1998)

These trace gases are continuously emitted by or secondary products of biogenic, anthropogenic and geological processes (Seinfeld, 1998). Figure 1.1 gives an overview of atmospheric trace gases. Many trace gases can impact ecological and human health. Pollution is a leading cause of excess human mortality and lower life expectancy (Jos Lelieveld et al., 2020) and with expected increasing emissions on the African continent (Liousse, Assamoi, Criqui, Granier, & Rosset, 2014) and the Indian subcontinent (Ghude et al., 2013; Krotkov et al., 2016; Umezawa et al., 2018), this phenomenon is likely to become more and more prevalent. Without the property of cleaning by oxidative processes, trace gases would increase in atmospheric concentration to levels toxic to life. Through oxidative processes trace gases are successively oxidized to less toxic gases (e.g. CO₂, H₂O)

or polar or water soluble species (e.g. H_2SO_4 , HNO_3), which in turn are removed from the atmosphere via dry or wet deposition. The most important oxidant in the atmosphere during daytime is the hydroxyl radical (OH), with ozone (O₃) and hydrogen peroxide (H_2O_2) having minor contributions to the oxidative capacity. The nitrate radical (NO₃) is due to its photo lability only important during nighttime oxidation. Even though with typical lifetimes of less than a second and average daytime concentrations in the sub pptv area, OH has the highest impact on atmospheric cleansing, due to its high reactivity towards many chemical species. This importance makes OH chemistry essential for understanding and predicting atmospheric chemistry as a whole. Closely related to OH is the hydroperoxyl radical (HO₂), which is a product of many reactions of OH with trace gases. HO₂ can reform OH through reaction with e.g. NO and O₃. This ability together with its much longer lifetime of ~ 100 s, HO₂ can act as reservoir for OH. Due to the fast turnover rate between OH and HO₂, the sum of both is known as HO_x.

A shift in the chemical make-up of the atmosphere due to environmental changes, such as urbanization or deforestation could have a significant impact on the cleansing capacity of the atmosphere. Despite these changes, global OH concentrations remained stable around 10⁶ molecules/cm³ during the past century (J. Lelieveld, Peters, Dentener, & Krol, 2002). This indicates a buffering system capable of stabilizing OH concentrations even though pollutants and therefore OH reactivity is high. Nevertheless, due to climate change, environmental changes might become more severe. Higher temperatures can induce stress in plants, which influences emission strength of monoterpenes and isoprene (Kesselmeier & Staudt, 1999), leading to changing volatile organic compound (VOC) composition as well as higher VOC concentrations. Coupled with reducing NO_x emissions due to more strict governmental emission guidelines, HO_x concentrations could be reduced through lower recycling production and increased loss from reaction with VOC (J. Lelieveld et al., 2002; Prinn, 2003). In addition, increasing temperatures are leading to changes in the water cycle, with generally lower relative humidity (RH) over land (IPCC et al., 2018), leading to a higher dust particle load in the atmosphere, potentially having an impact on HO_x concentrations.

1.2 Marine Boundary Layer


The lower troposphere is in close contact with the planetary surface. To a height of 1-5 km, roughness of the surface and thermal updrafts cause turbulent transport and mixing. This allows a separation of the troposphere in two distinct parts: the planetary boundary layer (PBL) and the free troposphere (FT). Figure 1.2 shows a schematic overview of the troposphere with PBL and FT (Möller, 2003). The PBL height can vary

from a few meters and 5 km, depending on location and time of year or day. The PBL itself can also be categorized in two distinct regions. The continental PBL (CBL) and the marine PBL (MBL). Since approx. 70% of earth's surface is covered in water, the MBL is a major part of the lower troposphere. With the oceans directly influencing the MBL, large amounts of heat and moisture are exchanged between ocean and atmosphere (Fairall, Bradley, Rogers, Edson, & Young, 1996). Additionally, phytoplankton are sources for biogenic VOC and dimethyl sulfide (DMS) (Millet et al., 2008; Moore, Oram, & Penkett, 1994; Shaw, Chisholm, & Prinn, 2003). Oxidation of VOCs or DMS can form secondary organic aerosols (SOA) and sulfate respectively, and in turn can lead to cloud condensation, influencing earth's radiative budget.

A strong interaction between CBL and MBL can be found in coastal areas. Due to temperature differences between land and sea, often times airmasses travel from land to sea. These air masses can introduce an immense amount of emissions in the MBL, originating on land. With approx. 40% of world's population living within 100 km of the coast, it is vital to get a closer understanding of processes in this special environment.

Figure 1.2 Schematic overview of the troposphere, taken from Möller (2003)

1.3 Hydroxyl- and Hydroperoxyl radical chemistry in the troposphere

Figure 1.3 Simplified schematic of HO_x chemistry. Radical production (green), recycling (black) and loss (red) are indicated by arrows.

As the most important oxidant in the atmosphere during daytime, OH is at the center of a large amount of atmospheric reactions. Figure 1.3 shows a simplified schematic of the chemistry of OH and HO₂. In the lower troposphere, HO_x radicals are produced photochemically from precursor species, e.g. $O(^{1}D)$, H₂O₂, HONO. Via the reaction of OH with CO or O₃ and the reaction of HO₂ with NO and O₃, both HO_x species interchange within minutes and are in an equilibrium with each other (Levy, 1971). Additionally, reaction with most VOC lead to formation of organic peroxy radicals (RO₂), which can react with NO to form HO₂ or organic nitrates. While the former contributes to recycling of radicals, the latter leads to loss of radicals. Other loss processes of HO_x include reaction with NO₂ and NO, forming HNO₃ and HONO respectively, as well as recombination reactions with OH, HO₂ or RO₂, forming organic peroxide, H₂O₂ and water. Sources, sinks and recycling of HO_x will be discussed in more detail in the following chapter.

1.3.1 HO_x sources

The main source of OH in the lower, remote troposphere is the photolysis of O₃ (R.1a), producing an excited oxygen atom O(¹D) and O₂. The majority of O(¹D) will lose their excitation by reacting with O₂ and N₂, returning to ground state O(³P) (R.1b) and reforming O₃ (R.1c). The remaining O(¹D) atoms react with water forming OH (R.1d). At 1 % water vapor content and 298 K this fraction is about 14 % (R. Atkinson et al., 2004).

$$0_3 + h\nu \to 0_2 + 0({}^{1}D)$$
 (R.1a)

$$O(^{1}D) + M \rightarrow O(^{3}P) + M \qquad M=N_2, O_2 \qquad (R.1b)$$

$$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$$
 (R.1c)

$$O(^{1}D) + H_{2}O \rightarrow 2OH$$
 (R.1d)

Since this source of OH is highly dependent on water vapor concentration, in regions with low water concentrations other sources of HO_x can be important. The photolysis of hydroperoxide and organic peroxides (R.2 & R.3) can be important especially in the upper troposphere, where water content in the atmosphere is reduced.

$$H_2O_2 + h\nu \to 2OH \tag{R.2}$$

$$ROOH + h\nu \rightarrow OH + RO$$
 (R.3)

The photolysis of HONO often contributes to the production of OH during early morning hours (R.4). After accumulating during the night, HONO will decompose forming OH even before HO_x production via ozone photolysis starts (Hofzumahaus et al., 2009).

$$HONO + h\nu \to OH + NO \tag{R.4}$$

Alkene +
$$0_3 \rightarrow OH$$
 + products (R.5)

A non-photolytic source of OH is the ozonolysis of alkenes (R.5). During the reaction a Criegee Intermediate is formed, which can release OH during decomposition (Criegee, 1975).

$$\text{HCHO} + \text{hv} + 2\text{O}_2 \rightarrow 2\text{HO}_2 + \text{CO}$$
(R.6)

The major primary source of HO_2 in the atmosphere is the photolysis of Formaldehyde (HCHO).

1.3.2 HOx recycling

OH and HO₂ form an equilibrium with each other, through several recycling reactions. The most prevalent HO₂ production is via the reaction of OH with CO and O₂, forming CO₂ and HO₂ (R.7). Other channels, which produce HO₂ by reacting with OH are O₃, HCHO, H₂O₂ and SO₂ (R.8 - 11).

$$OH + CO + O_2 \rightarrow HO_2 + CO_2 \tag{R.7}$$

$$OH + O_3 \rightarrow HO_2 + O_2 \tag{R.8}$$

$$OH + HCHO + O_2 \rightarrow HO_2 + H_2O + CO$$
 (R.9)

$$OH + H_2O_2 \to HO_2 + H_2O$$
 (R.10)

$$OH + SO_2 + O_2 + H_2O \rightarrow HO_2 + H_2SO_4$$
 (R.11)

In turn, HO₂ can recycle to OH by the reaction with NO or O_3 (R.12 & 13).

$$HO_2 + O_3 \to OH + 2O_2$$
 (R.12)

$$HO_2 + NO \rightarrow OH + NO_2 \tag{R.13}$$

Another pathway to form HO₂ from OH is through the oxidation of VOC by OH (R.14). The forming organic peroxy radical (RO₂) can react with NO forming an alkoxy radical (RO) (R.15), which can produce HO₂ and an aldehyde (RCHO) through reaction with O₂ (R.16). RO₂ chemistry is described in further detail in 1.4.

$$\operatorname{RCH}_3 + \operatorname{OH} + \operatorname{O}_2 \to \operatorname{RCH}_2\operatorname{O}_2 + \operatorname{H}_2\operatorname{O}$$
(R.14)

$$\mathrm{RCH}_2\mathrm{O}_2 + \mathrm{NO} \to \mathrm{RCH}_2\mathrm{O} + \mathrm{NO}_2 \tag{R.15}$$

$$RCH_2O + O_2 \rightarrow RCHO + HO_2 \tag{R.16}$$

where R denotes an organic group.

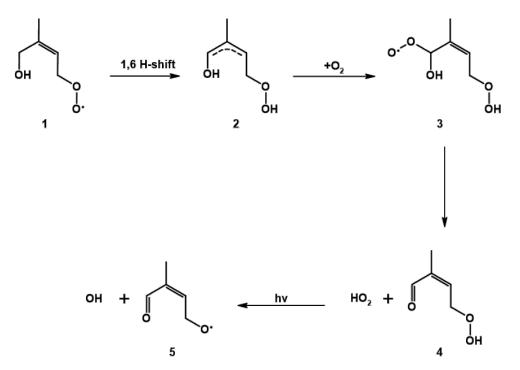


Figure 1.4 Recycling mechanism of RO₂ formed from isoprene under low-NO conditions. Different reaction pathways were omitted for simplicity and can be found in Peeters, Müller, Stavrakou, and Nguyen (2014)

Additionally, Peeters et al. (2014) reported a mechanism for OH recycling for isoprene oxidation (Figure 1.4). A produced Z- δ -hydroxy isoprenyl peroxy radical 1 can undergo a 1,6-H-shift to form an allylic hydroxy hydroperoxide 2. Through addition of O₂, followed by fast unimolecular decomposition, a hydroperoxy aldehyde 4 (HPALD) is formed. Fast photolysis of HPALD reforms OH. This mechanism is relevant under very low-NO conditions.

1.3.3 HO_x sinks

The main sink of HO_x are radical self- or cross-reactions (R.17 - 19) producing peroxides or water and O_2 .

$$HO_2 + HO_2 \to H_2O_2 + O_2$$
 (R.17)

$$HO_2 + RO_2 \rightarrow ROOH + O_2 \tag{R.18}$$

$$OH + HO_2 \rightarrow H_2O + O_2 \tag{R.19}$$

Another potential sink for HO_x are the formation of acids (R.20 - 22).

$$OH + NO + M \rightarrow HONO + M$$
 (R.20)

$$OH + NO_2 + M \to HNO_3 + M \tag{R.21}$$

$$HO_2 + NO_2 + M \rightarrow HNO_4 + M \tag{R.22}$$

As mentioned above, photolysis of peroxides and HONO can lead to production of radicals, however a considerable portion of peroxides and acids is lost from the radical cycle through dry and wet deposition processes.

1.4 Organic peroxy radicals

1.4.1 Production

Organic peroxy radicals play a major role in the HO_x cycle (see 1.3.2). As mentioned above, the reaction of OH with VOC leads to the production of RO₂. The reaction pathway can be separated into two distinct groups. Alkanes and other saturated VOCs react with OH by H abstraction forming alkyl radicals, which react with oxygen to alkyl peroxy radicals (R.23 - 24). Unsaturated VOCs can react quickly by addition of OH with subsequent addition of oxygen to form β -hydroxy peroxy radicals (R.25 - 26) (R. Atkinson & Arey, 2003).

 $\text{RCH}_2\text{R}' + \text{OH} \rightarrow \text{RCHR}' + \text{H}_2\text{O}$ (R.23)

$$\text{RCHR}' + \text{O}_2 \rightarrow \text{RCHO}_2\text{R}' \tag{R.24}$$

$$RCH = CHR' + OH \rightarrow RCH - CHOHR'$$
(R.25)

$$RCH - CHOHR' + O_2 \rightarrow RCHO_2 - CHOHR'$$
 (R.26)

The production of RO₂ through OH oxidation of aromatics differs from the simple reactions of alkanes and alkenes. The oxidation mechanism of benzene is shown in Figure 1.5. Initial addition of OH forming alkyl radical **1**, which can react with O₂ either by H-abstraction forming phenol **2** or by addition forming a peroxy radical. The peroxy radical can produce phenol via an elimination reaction (~53 %) or form a bicyclic alkyl radical **3** through intramolecular (~47 %) (Xu, Møller, Crounse, Kjaergaard, & Wennberg, 2020). A small

amount of **3** (~1 %) can form a bicyclic epoxy alkoxy radical **5** via isomerization, however the reaction with O_2 dominates, forming a bicyclic peroxy radical **4**.

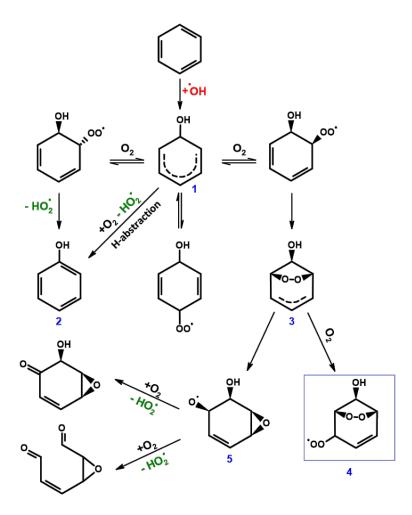


Figure 1.5 Production of RO₂ through oxidation of benzene. Taken and modified from Kunkler (2021).

Additionally, nitrate radicals can react with unsaturated VOC via addition, forming RO_2 (R.27 – 28) (Wayne et al., 1991).

$$RCH = CHR' + NO_3 \rightarrow RCH - CHNO_3R'$$
 (R.27)

$$RCH - CHNO_3R' + O_2 \rightarrow RCHO_2 - CHNO_3R'$$
(R.28)

1.4.2 Loss

As mentioned in 1.3.2, RO₂ can be part of the HO_x cycle via the reaction with NO to reform HO₂ (R.14 - 16) and for RO₂ from isoprene via 1,6-H-shift. Depending on the production pathway reaction with NO can be followed by different reactions. Figure 1.6 shows the reaction scheme of RO₂ produced from saturated (left) and unsaturated VOCs (right) (Fuchs et al., 2011). Reaction of RO₂ from saturated VOC with NO forming alkoxy radicals is followed by H abstraction by oxygen producing HO₂ and a carbonyl compound. The

reaction of RO_2 from unsaturated VOC with NO is followed by unimolecular decomposition of the produced β -hydroxy alkoxy radical, forming a carbonyl compound and a hydroxy alkyl radical, which can rapidly react with oxygen forming another carbonyl compound and HO₂. Under atmospheric conditions, the reaction with NO is the rate-determining step for both types of RO₂.

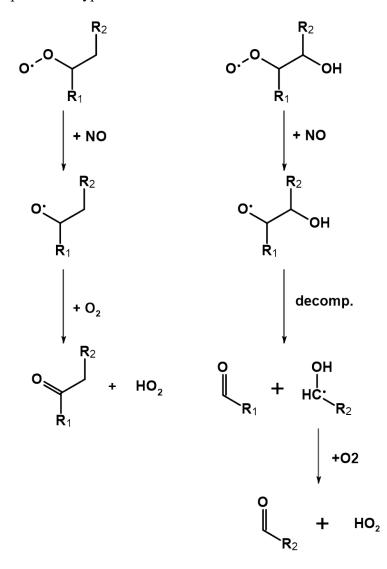


Figure 1.6 Reaction scheme of alkyl peroxy radical (left) and β -hydroxy alkyl peroxy radical (right). (taken and modified from Fuchs et al. (2011))

The reaction of RO_2 with NO has a second competing reaction branch. Instead of abstraction of an oxygen atom, NO can add to RO_2 to form an organic nitrate (R.29), leading to loss of radicals through this channel. The branching ratio of both reactions are dependent on the type of RO_2 , with increasing chance of forming nitrate with higher number of atoms (excluding hydrogen) (Wennberg et al., 2018). Another loss process of RO_2 is the reaction with other radicals (R.18 & 30). These reactions remove two radicals form the HO_x cycle.

$$RO_{2} + NO + M \rightarrow RONO_{2} + M$$
(R.29)

$$RO_{2} + R'O_{2} \rightarrow products$$
(R.30)

1.5 Ozone production

Both OH and HO₂ play an important role in the production of tropospheric ozone. O₃ is mainly formed through the photochemical cycle of NO and NO₂ (R.31 - R.33).

$$NO_2 + h\nu \rightarrow NO + O(^{3}P)$$
(R.31)

$$O(^{3}P) + O_{2} + M \to O_{3} + M$$
 (R.32)

$$0_3 + NO \rightarrow NO_2 + O_2 \tag{R.33}$$

This represents a "null-cycle", where net ozone production (NOP) is zero. However, NO can also be oxidized by HO₂ (R.13) and RO₂ (R.15), thus forming NO₂ without loss of O₃, which in turn leads to a O₃ production. If this production exceeds the loss through photolysis (R.1a), reaction with OH (R.8) and reaction with HO₂ (R.12), O₃ is produced and increases in concentration. At low NO_x mixing ratios, the formation of peroxides (R.17, R.18 & R.30) or recycling through ozone (R.12) dominates. Net ozone production rate (NOPR) in this regime is NO_x-limited. Increasing NO_x mixing ratios favor R.13 and R.15, thus increasing NOPR. With NO_x mixing ratios increasing further, the production of HNO₃ from OH and NO₂ (R.21) and production of organic nitrates (R.29) causes loss of HO_x and thus decreasing NOPR. NOPR in this regime is NO_x-saturated or VOC-limited. Figure 1.7 shows OH concentrations and NOPR as a function of NO_x mixing ratio. High NOPR can cause an accumulation of tropospheric O₃ to higher levels, which in turn are known to induce plant stress and can harm respiratory health in both animals and humans (Nuvolone, Petri, & Voller, 2018).

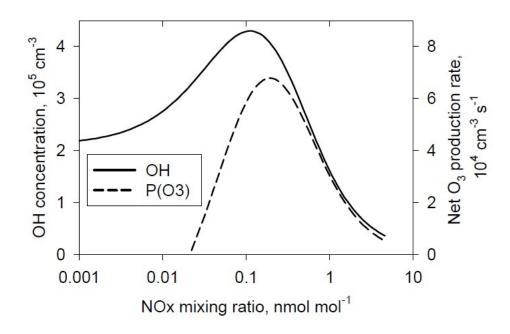


Figure 1.7 OH concentrations (solid line) and net ozone production rate (dashed line) as a function of NO mixing ratio. Taken from Schumann and Huntrieser (2007)

2 HO_x measurement techniques and the HORUS instrument

2.1 OH Measurement techniques

Due to its high reactivity towards many atmospheric trace gases, OH atmospheric lifetimes are typically shorter than one second. This makes measurements of OH rather difficult, since wall losses have to be minimized and a fast detection is required. In addition, low OH concentrations between $10^5 - 10^7$ molec/cm³ cause the need for highly sensitive instrumentation. Three widely used techniques are: differential optical absorption spectroscopy (DOAS) via direct absorption by OH (Perner et al., 1987), chemical ionization mass spectrometry (CIMS) via detection of H₂SO₄ after oxidation of SO₂ by atmospheric OH (Eisele & Tanner, 1991), and by laser-induced fluorescence of OH molecules based on fluorescence assay by gas expansion (LIF-FAGE) via the detection of OH fluorescence after laser excitation (Hard, O'Brien, Chan, & Mehrabzadeh, 1984). DOAS uses wavelength dependent absorption of light following Lambert-Beer law to directly measure OH concentration. Its uncertainty is mostly dependent on the uncertainty of the absorption cross section of OH, and its limit of detection is affected by the pathlength of the light, scattering by aerosols, and absorption due to other trace gases. As an absolute measurement technique, it does not require calibration. CIMS measures OH indirectly after conversion of ³⁴SO₂ into $H_2^{34}SO_4$. H_2SO_4 is ionized by NO_3^- through a charge-transfer reaction and the ratio of HSO₄-/HNO₃ is measured by a mass spectrometer. Since the isotope ³⁴S makes up only about 4 % of the naturally occurring sulfur, atmospheric H₂SO₄ can be distinguished from in the sample air.

2.1.1 LIF FAGE

The first report of OH excited by a tunable laser source and successfully detecting the resulting fluorescence was by C. C. Wang and Davis (1974). OH radicals can be selectively excited by UV light with a wavelength of 282.58 nm which is in resonance with the P₁(2) line within the $A^2\Sigma^+ - X^2\Pi$, v'=1 \leftarrow v"=0 transitions of OH. The relaxation to ground state occurs via rotationally and vibrationally excited states with fluorescence in the wavelength range of 307-315 nm (C. C. Wang & Davis, 1974) with a lifetime of around 700 ns. However, at atmospheric pressure, most of the excited OH molecules lose their energy by collision quenching with other molecules, leading to a collision lifetime of ~1 ns (Heard & Pilling, 2003). Additionally, laser scatter on aerosols, other molecules in the sample air and walls within the instrument cause large background signal, which together with poor fluorescence yield lead to a detection limit of only 5 x10⁶ molec/cm³ (C. C. Wang & Davis, 1974). Further limitations of measurements of OH by LIF as reported by C. C. Wang and Davis (1974) are photodissociation of O₃ caused by laser radiation at 282 nm, yielding O(¹D) atoms. Subsequent reaction of O(¹D) with atmospheric water vapor leads to

formation of OH radicals analog to R.1.1d, causing the laser radiation itself to be a source of OH (Ortgies, Gericke, & Comes, 1980).

The introduction of the fluorescence assay by gas expansion (FAGE) technique led to a significant improvement in the measurements of OH using LIF. By lowering the pressure inside the detection chamber to $\sim 1-5$ mbar, both disadvantages of LIF as described above can be reduced. Lower pressure reduces the number density of H₂O and O₃, thus decreasing the amount of laser-generated OH (Hard et al., 1984). Even though lower pressure also lowers the number density of detectable OH and increases wall losses due to longer mean free path for molecules within the detection chamber, the OH fluorescence yield is strongly increased due to decreasing collision quenching. Figure 2.1 shows an overview of the combined effects on detection sensitivity.

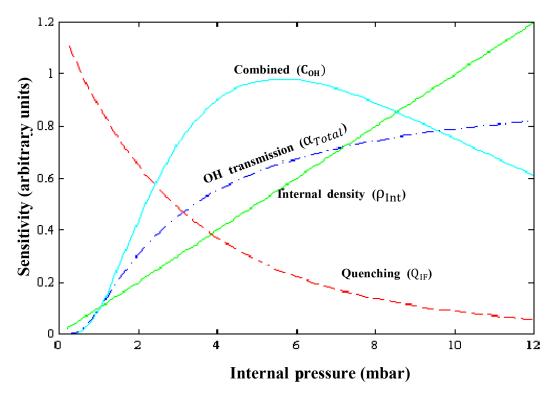


Figure 2.1 Schematic view of the pressure-dependent LIF-FAGE sensitivity as a function of internal pressure (light blue line), OH transmission (dotted-dashed dark blue line), internal density (green line) and quenching (dashed red line). (modified version of Faloona et al. (2004), taken from Marno et al. (2020)).

Further improvements were made to reduce background signals, such as installing baffles and black anodizing the internal walls in order to reduce scatter from internal reflections. To minimize the impact of fluorescence from aerosols and other molecules in the sample air, electronic detector gating times were introduced (Creasey, Halford-Maw, Heard, Spence, & Whitaker, 1998; Hard et al., 1984; Stevens, Mather, & Brune, 1994). During the laser pulse, the detector is switched off. After the initial laser pulse, the detectors are

2 HOx measurement techniques and the HORUS instrument

switched on, and the detected signal is integrated over several hundred nanoseconds (see Figure 2.2).

Even though production of laser-generated OH was reduced due to lower pressure, it was still a significant source of uncertainty (Smith & Crosley, 1990). By changing the laser wavelength to 308 nm to excite the $A^2\Sigma^+ - X^2\Pi$, $v'=0 \leftarrow v''=0$ transition, both O₃ absorption cross section and O(¹D) quantum yield are reduced, leading to a ~30 times lower interference by laser-generated OH. Additionally, the absorption cross section of OH at 308 nm is ~4 times higher than at 282 nm, therefore increasing the OH fluorescence signal (Chan, Hard, Mehrabzadeh, George, & O'Brien, 1990).

More recently, J. Mao et al. (2012) suggested that in some LIF-FAGE designs, an unknown source of OH, produced in the low pressure side, may cause interference in measurements of atmospheric OH. In order to account for such an interference, a scavenger, e.g. propane, is added to chemically remove atmospheric OH under atmospheric pressure (Novelli et al., 2014).

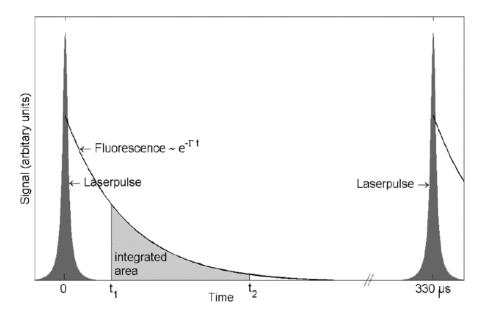


Figure 2.2 Schematic representation of the timing of photon counting process that is used to quantify OH concentrations by LIF-FAGE technique. The detectors are switched off during the laser pulse (dark grey areas) by electronic gating. The detector is switched on at t_1 and the integrated area (light grey) is proportional to OH number concentration. At t_2 the detector is switched off again before the next laser pulse (Taken from Faloona et al. (2004), modified).

2.2 HO₂ Measurement techniques

HO₂ typically reaches concentrations around 100 times higher than those of OH, with lifetimes of a few minutes and is often measured alongside OH. CIMS measures HO₂ and RO₂ indirectly by injection of NO to converting them into OH (Reiner, Hanke, & Arnold, 1997). Produced OH is measured as described above (2.1). By adding N₂ to the sample air, the reaction of RO to HO₂ (R.1.16) is suppressed, causing \sim 70 % produced H₂SO₄ stemming from HO₂ (Heard & Pilling, 2003).

2.2.1 LIF FAGE

Chemical conversion of HO₂ to OH by injection of excess NO (R.1.13), allows the LIF-FAGE technique to indirectly measure HO₂. The produced OH is then measured similarly as described in 2.1.1. Due to the short time between the point of NO injection and detection of produced OH radicals (a few milliseconds), high mixing ratios of NO are needed in order to reach high conversion efficiency. However, wall losses and efficient NO mixing during injection also impact conversion efficiency. Additionally, atmospheric RO₂ can react with NO producing detectable amounts of OH (R.14 – 16), therefore artificially increasing measured HO₂ concentrations. Measured HO₂ and internally produced HO₂ from RO₂ is called HO₂^{*}. Alkene-based RO₂ species can also decompose unimolecular, rapidly forming HO₂ under low pressure conditions (Fuchs et al., 2011). The interferences from RO₂ species can be reduced by shortening the reaction time and reducing NO concentrations at the expense of HO₂ conversion efficiency. The impact of RO₂ on the *HydrOxylR* adical measurement *U*nit based on fluorescence *S*pectroscopy (HORUS) LIF-FAGE instrument and its correction will be discussed in chapter 3.

2.3 HO_x observations using numerical box models

Atmospheric numerical models are a powerful tool to predict and simulate non-linear physical and chemical processes in the atmosphere. This allows the description of the influence of different environmental conditions on chemical composition and climatological effects. The reliability of such calculations depends on the choice and mathematical implementation of the relevant processes and their viability to describe reality. Validation is done through comparison with measured data, where significant discrepancies hint to an inaccurate or incomplete description of processes. To reduce complexity, often chemical and meteorological processes are separated. Due to the short tropospheric lifetime of HO_x , their concentrations are only influenced by local concentration of other trace gases and thus are only indirectly influenced by transport mechanisms. This makes numerical model calculation together with measurements a viable method to analyze atmospheric processes of HO_x and better understand their influence on the oxidation capacity of the atmosphere.

2 HOx measurement techniques and the HORUS instrument

One such numerical model is CAABA/MECCA, which was developed at the Max Planck Institute for Chemistry, Mainz (Sander, Kerkweg, Jöckel, & Lelieveld, 2005). The chemical mechanism MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) is used in the confines of the box model CAABA (Chemistry As A Boxmodel Application). MECCA mechanism contains of about 600 species and 1600 reactions, including basic chemistry such as HO_x, O₃ and NO_x, as well as more complex organic oxidation chemistry in its subsection MOM (Mainz Organic Mechanism) (Cabrera-Perez, 2016; Hens et al., 2014; J. Lelieveld, 2016; Nölscher, 2014; Taraborrelli, 2012). CAABA/MECCA is written in Fortran90, with the KPP (Kinetic PreProcessor) software (Sandu & Sander, 2006) for numeric integration. CAABA/MECCA is described in more detail in Sander et al. (2005), R. Sander et al. (2011) and Sander et al. (2019).

In the scope of this work, CAABA/MECCA-4.0 (Sander et al., 2019) was employed for different uses throughout this work.

2.4 HORUS

The observations of OH and HO₂ discussed in this work were conducted using the groundbased *HydrOxyl Radical Measurement Unit based on fluorescence Spectroscopy* (HORUS) by the Max Planck Institute for Chemistry (Mainz, Germany). HORUS is based on the aforementioned LIF-FAGE technique and is described further in Martinez et al. (2010). An *Inlet Pre-Injector* (IPI) was used to account for any unknown source of OH causing interference in the measurement. The IPI system is described in further detail in Novelli et al. (2014). The instrument is comprised of laser system, low-pressure detection unit, IPI, vacuum system and instrument control and data acquisition unit (described below).

2.4.1 Instrument setup

Laser system

The UV light used for the excitation of OH is provided by a Nd:YAG pumped pulsed, tunable dye laser system (Martinez et al., 2010; Wennberg et al., 1994). A diode-pumped Nd:YAG laser (Type Navigator I, Spectra Physics) provides frequency-doubled light at 532 nm to a custom-made dye laser system. It is operated at a pulse frequency of ~3 kHz with a pulse length of ~25 ns. A tenfold beam expander and a collecting lens are used to focus the beam on the dye cell. Additionally, to counteract potential thermal and mechanical influences on misalignment, the incoupling of the green laser can be controlled by two piezo-actuated mirrors.

2 HOx measurement techniques and the HORUS instrument

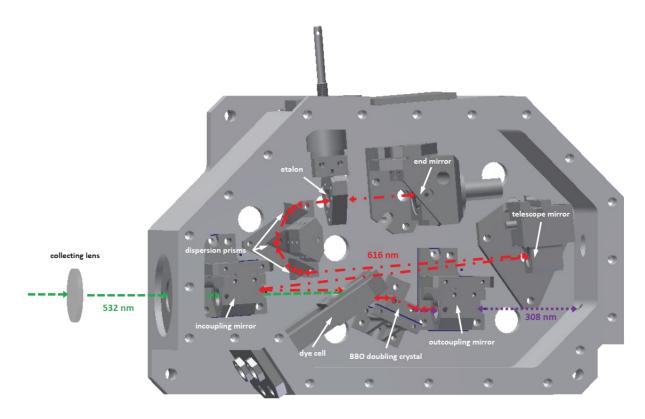


Figure 2.3 Schematic setup of the dye laser system. The incoming 532 nm wavelength laser beam is focused by the collecting lens onto the dye cell. The fluorescence from the pyrromethene-597 laser dye is selectively amplified at 616 nm inside the optical resonator. Using a nonlinear doubling crystal (BBO), UV light at 308 nm is produced. Taken from Hens (2013).

Figure 2.3 shows a schematic setup of the dye laser cavity (taken from Hens (2013)). The incoming expanded beam of the pump laser (532 nm) is focused by the collecting lens on the dye cell, hitting it at the Brewster angle. The laser dye is Pyrromethene-597 (Radiant Dyes Laser, Germany) dissolved in >99.9 % pure isopropanol. It absorbs the green laser light and fluoresces in the red wavelength range. The dye is circulated between a dye cell and a reservoir in order to prevent overheating and degradation of pyrromethene-597 and to prevent oversaturation of excited laser dye within the dye cell. The circulation rate is set to 1.6 - 1.7 liters per minute, which results in a complete exchange of dye within the cell after two laser pulses. The emitted light is then amplified within the cavity between the end mirror and the outcoupling mirror (see Figure 2.3). Since the dye emits a broad band of red light, two steps of wavelength selection are done. The combination of 3 dispersion prisms and a rotatable intracavity etalon achieves the selection of the required light at a wavelength of 616 nm. A β -barium borate (BBO) crystal is used to generate the second harmonic of the 616 nm beam to 308 nm. The UV light is then coupled out of the cavity via the outcoupling mirror and transported to the detection cells using optical fibers.

2 HOx measurement techniques and the HORUS instrument

Low-pressure detection unit

The detection system of HORUS is shown in a schematic in Figure 2.4 (taken from Hens (2013)). Sample air is drawn through the Inlet-Pre-Injector (IPI) at a rate of \sim 50 SLM (p = 1013 hPa, T = 273.15 K). Propane can be added as a scavenging agent to remove atmospheric OH, allowing measurement of residual chemical background OH signal suggested by J. Mao et al. (2012).

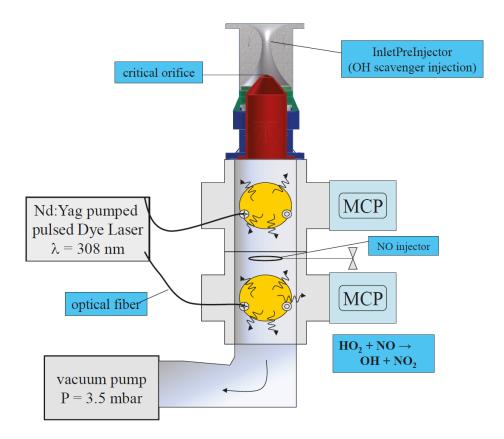


Figure 2.4 Schematic setup of the HORUS detection system. Sample air is drawn through the IPI at a rate of \sim 50 L/min. About 10 L/min is drawn through a critical orifice into the low-pressure detection cell. Laser light with a wavelength of 308 nm is used to excite OH radicals and fluorescence is detected by multi-channel plate detector (MCP). After adding excess amount of NO, HO₂ radicals are converted to OH and can be measured in the same way in the lower detection cell.

A critical orifice is used to guarantee a constant mass flow through the system. The internal pressure is kept between 2.5 - 4 mbar in order to assure high sensitivity. Additionally, this pressure difference results in an internal flow of ~10 SLM, which is necessary to avoid excitation of the same sample air by two consecutive laser pulses, producing laser-generated OH. Inside the detection cell, a White Cell setup (White, 1942) is used to maximize fluorescence signal and therefore instrument sensitivity.

Detection of OH is achieved by collecting fluorescence light on a multi-channel plate detector set up perpendicular to the direction of sample air flow and laser beam in order to minimize interference from scattered light. Atmospheric OH concentrations are measured in the upper detection cell of the HORUS setup (see Figure 2.4) HO₂ measurements are done via chemical conversion adding NO in excess downstream of the OH detection. The sum of remaining atmospheric OH and OH converted from HO₂ are measured in the lower detection cell. HO₂ concentrations can then be calculated by taking the OH measurements of the upper detection cell into account. Additionally, HO₂ measurements are influenced by the residence time inside the HORUS system, which can be calculated using the known mass flow from the critical orifice, the diameter and length of the tube between NO injector and point of measurement. This approach assumes perfect mixing of NO at the point of injection and gives the so-called physical residence time, which overestimates the time NO has to react with HO₂. Utilizing a simple NO calibration using a known amount of NO and HO₂, and the rate constant for the reaction of NO with HO₂, the chemical residence time can be calculated (Eq.1). It represents the actual reaction time of NO and HO₂ taking mixing into account and is shorter than the physical residence time. The chemical residence time inside HORUS is generally 6.5±0.5 ms.

$$[OH] = [HO_2] \cdot \left(1 - \exp\left(-k_{NO+HO_2} \cdot [NO] \cdot t\right)\right)$$
(Eq.1)

The correlation between the measured fluorescence signal and OH radical concentrations is determined by the instrument sensitivity normalized for laser power. The instrument sensitivity is dependent on different factor (e.g. sensitivity of the detector, transmissivity of the White Cell setup, quenching effects of water vapor inside the sample air), some of which are difficult to quantify and can change over time. Calibrations of HORUS are therefore performed regularly and are described in chapter 2.4.2.

Scattering of light or possible fluorescence of other species in the sample air can cause a background signal, which elevates the fluorescence signal, and has to be accounted for. In the HORUS setup, this is done by tuning the laser off resonance for OH molecules and measuring the background signal periodically. After 5 seconds of online measurement, the frequency of the laser beam is alternately shifted to higher and lower frequencies (\sim 37GHz) of the Q₁(2) transition line of OH (Figure 2.5a). Figure 2.5b shows the typical "toggling" pattern of HORUS during measurements.

2 HOx measurement techniques and the HORUS instrument

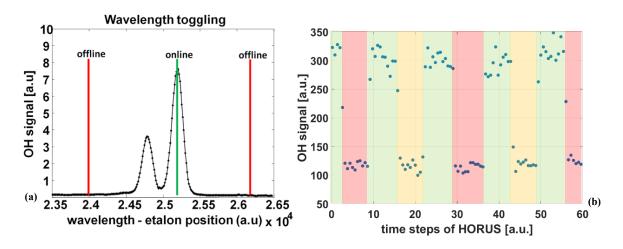


Figure 2.5(a) The laser beam is periodically tuned on (green line) and off OH resonance (red lines) to measured HORUS internal fluorescence background signal. (b) Measured signal of on-off resonance toggling. On (green areas) and off (red and yellow areas) resonance are alternated approx. every 5 sec. Off resonance is also alternated between frequency above (red area) and below (yellow) OH resonance line at 308 nm.

Vacuum system

The Vacuum needed for the HORUS system is created by a combination of a scroll pump (Type XDS-35, Edwards) with a roots blower (Type M90, Eaton). The air is compressed in front of the pump, leading to higher pumping efficiency, achieving the volume flow and low pressures required to operate the HORUS system.

Instrument control and data acquisition

The HORUS instrument is controlled by an embedded PC running a Debian LINUX operating system. Analog and digital sensors as well as stepper motors, mass flow controller and valves are connected to the data acquisition using a modular system of electronic cards, developed at the Max Planck-Institute for Chemistry, Mainz. An ISA bus is used to establish a connection to the PC. The HORUS software is based on a client-server model and programmed in "C". The server controls the communication with hardware and stores recorded data on a hard drive. The graphical user interface (GUI) is programmed in MatLab (Mathworks, Inc.) and is realized as a client, allowing continued data acquisition even during GUI malfunction.

2.4.2 Calibration

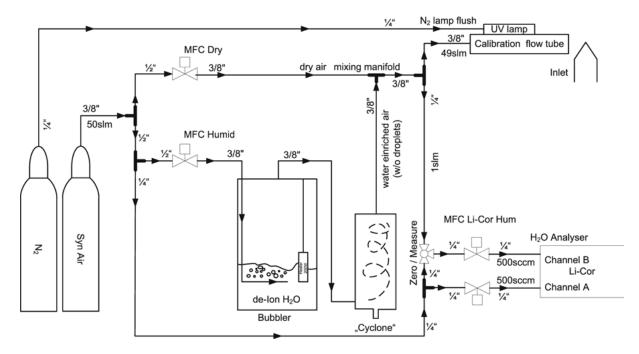
As an indirect measurement method, calculation of OH concentrations from LIF-FAGE data requires knowledge of the instrument sensitivity C_{OH}. To ensure stability over a period of time, regular calibrations are done by producing known concentrations of OH and HO₂ via photolysis of water vapor. Different mixtures of dry and humid air are produced in a range of 0-25 mmol mol⁻¹. The water vapor concentrations are measured by an infrared absorption instrument (LI-7000, LICOR), which is calibrated against a dew point generator

(LI-610, LICOR), which is in turn calibrated against NIST traceable pressure and temperature sensor. A mercury vapor lamp (Pen ray line source, LOT-QuantumDesign, Europe) is used to photolyze the water vapor to form OH and HO₂ (see R.34 - 36). The radical concentration can then be calculated according to equation Eq. 2 (Faloona et al., 2004).

$$H_2 0 + h\nu \xrightarrow{\lambda = 184.9 \text{ nm}} 0H + H^*$$
 (R.34)

$$H^* \xrightarrow{M} H \tag{R.35}$$

$$H + O_2 \xrightarrow{M} HO_2$$
(R.36)


$$[0H] = [HO_2] = \Phi_0 \sigma_{H_2O} [H_2O] t f_{O_2}$$
(Eq.2)

with the actinic flux density of the lamp Φ_0 , the absorption cross section of water at 184.9 nm $\sigma_{\text{H}_2\text{O}}$, the residence time *t* under the lamp. Additionally, a correction factor f_{O_2} is applied to correct for absorption by oxygen and a resulting reduction of actinic flux density.

$$f_{O_2} = \int_0^h \frac{e^{-\sigma_{O_2}[O_2]x} dx}{h}$$
(Eq.3)

Figure 2.6 shows a schematic setup of the calibration unit of the HORUS instrument.

2 HOx measurement techniques and the HORUS instrument

Calibration Unit Principle of operation

Figure 2.6 Schematic gas flow plan of the calibration setup used for the HORUS instrument. (Taken from Kubistin (2009))

The actinic flux density of the lamp is measured using the actinometric method by N_2O photolysis described by Martinez et al. (2010). $O(^1D)$ molecules produced by N_2O photolysis react with N_2O to form NO. The produced NO is measured by a NO_x chemiluminescence analyzer (C42, Thermo Environmental Instruments). The NO analyzer is calibrated using a NIST standard.

Interferences

In order to achieve reliable measurements of OH and HO₂, possible interferences have to be accounted for. In the LIF-FAGE method, interferences can be caused by processes inside the instrument itself, or atmospheric substances interacting with the laser light at the applied wavelength of 308 nm. One such substance is sulfur dioxide (SO₂), as it absorbs light around 308 nm. In the HORUS setup, this is accounted for by the aforementioned "toggling" during measurements. By shifting the wavelength of the laser beam off OH resonance, the spectral can be measured, allowing for subtraction of possible fluorescence caused by SO₂.

Internally generated OH were suspected to cause interference (J. Mao et al., 2012). In the HORUS setup, this is accounted for by using the IPI system (Novelli et al., 2014). By

adding propane to the sample air, atmospheric OH can be scavenged by more than 95 %, allowing measurements of internally produced OH only (Figure 2.7).

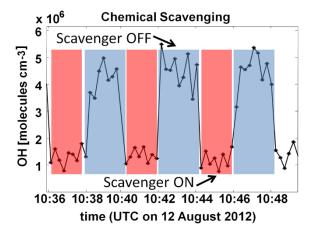


Figure 2.7 By injecting a scavenger into the sample air, background OH can be obtained (red shaded area). Atmospheric OH can be obtained from the difference of total OH (blue shaded area) and background OH. (taken from Novelli et al. (2014))

A known interference in the HO_2 measurements caused by organic peroxides RO_2 will be discussed in detail in chapter 3.

The measurements of HO₂ in HORUS are based on the conversion of HO₂ to OH using an excess amount of NO (see 2.2.1 and R.13). As mentioned in 1.4, RO₂ can undergo similar reactions with NO. After subsequent reaction with oxygen, HO₂ is produced (R.16). Inside the HORUS setup, these reactions can occur after the injection of NO and therefore artificially increase HO₂. While relevant under atmospheric conditions, these reactions were expected to be negligible under the low pressure and short reaction time in the FAGE detection system compared to the reaction of HO2 with NO (Heard & Pilling, 2003). Further studies showed, that the impact of RO₂ highly depends on the organic part of the molecule. For methyl peroxy radicals (CH₃O₂), interferences between 5 - 10 % had been reported (Hens, 2013; Holland, Hofzumahaus, Schäfer, Kraus, & Pätz, 2003). Fuchs et al. (2011) reported an interference of up to 80 % caused by RO2 produced from unsaturated and aromatic VOCs. This is caused by the aforementioned different reaction pathways undergone by RO2 sat and RO2 unsat (see 1.4 and Figure 1.6). For RO2 sat, low-pressure and high-NO conditions inside the HORUS setup cause the reaction of the alkoxy radical RO with O₂ to be the rate-determining step. Other possible reactions of the alkoxy radical are reaction with NO and NO₂. However, both reactions do not produce OH and do not cause an additional OH signal. Therefore, these reactions are not relevant for the correction of RO2 interference inside HORUS. For RO2 unsat, the unimolecular decomposition is favored by the low pressure inside HORUS, therefore the reaction of RO₂ with NO is ratedetermining and highly favored under HORUS internal conditions. Due to these circumstances, it is necessary to correct for possible artificially produced HO₂ by RO₂ (further named RO₂ interference). The following chapter addresses this correction in detail.

3.1 Estimation of ambient RO₂

To quantify the interference caused by RO_2 on the HO_2 measurements, the RO_2 concentration in ambient air has to be estimated. Due to the large variety of RO_2 , their measurements are difficult to conduct and it is necessary to estimate ambient RO_2 concentrations.

3.1.1 RO₂ Estimation using NO_x/O₃ PSS

One possible method to estimate ambient RO_2 concentrations is via the NO_x/O_3 photo stationary state (PSS) (Leighton, 1961). R.37 - 39 form a so-called null cycle for NO_x and O_3 . Under the assumption of steady state and without the influence of VOC, the production and loss rate of NO_2 can be assumed as Eq.4.

$$j(NO_2) \cdot [NO_2] = k_{NO+O_3} \cdot [NO] \cdot [O_3]$$
 (Eq.4)

where $j(NO_2)$ is the photolysis frequency of NO₂, and k_{NO+O_3} is the rate constant of NO + O₃.

$$NO_2 + h\nu \rightarrow NO + O(^{3}P) \tag{R.37}$$

$$O(^{3}P) + O_{2} + M \to O_{3} + M$$
 (R.38)

$$0_3 + NO \rightarrow NO_2 + O_2 \tag{R.39}$$

Additionally, other atmospheric oxidizing agents can produce NO_2 by reaction with NO, namely HO_2 and RO_2 (R.13 & 15), expanding Eq.4 to Eq.5.

$$j(NO_2) \cdot [NO_2] = k_{NO+O_3} \cdot [NO] \cdot [O_3]$$
(Eq.5)
+ $k_{NO+HO_2} \cdot [NO] \cdot [HO_2]$
+ $[NO] \cdot \sum_i k_{NO+R_iO_2} \cdot [R_iO_2]$

where k_{NO+HO_2} is the rate constant of NO+HO₂, R_iO₂ is a particular organic peroxy radical, and $k_{NO+R_iO_2}$ is the rate constant of NO+R_iO₂.

Assuming the rate constant of each peroxy radical equals the rate constant k_{NO+HO_2} (Cantrell et al., 1997; Hauglustaine et al., 1996; J. A. Thornton et al., 2002), all peroxy radicals R_iO_2 can be described as RO_2 and estimated by solving Eq.5 for RO_2 yielding Eq.6.

$$[RO_2] = \frac{j(NO_2) \cdot [NO_2] - k_{NO+O_3} \cdot [NO] \cdot [O_3]}{k_{NO+HO_2} \cdot [NO]} - [HO_2]$$
(Eq.6)

However, this method of estimating ambient RO_2 concentrations using NO_x/O_3 PSS does not account for different VOC compositions present at the time of measurement. As mentioned above, the nature of VOC from which the peroxy radical derives from, determines further reactions. Therefore, inclusion of measured VOC data can give better insight of the RO_2 concentrations causing interferences inside the HORUS setup. This is accounted for in the second method presented here.

3.1.2 RO₂ estimation using HO₂ and OH reactivity

 HO_2 can be used to describe ambient RO_2 concentrations by assuming similar reaction patterns for RO_2 and HO_2 .

During daytime, steady state establishes within minutes for RO_2 and HO_2 . This allows to describe their concentration as being only dependent on production and losses (Eq.7 - 8).

$$\sum [RO_2]_i = \frac{P_{\sum [RO_2]_i}}{L_{\sum [RO_2]_i}}$$
(Eq.7)

$$[HO_2] = \frac{P_{HO_2}}{L_{HO_2}}$$
(Eq.8)

where P_{RO_2} and L_{RO_2} are the production and loss rates of all RO₂, P_{HO_2} and L_{HO_2} are the production and loss rates of HO₂.

Assuming the production of RO_2 and HO_2 during daytime occurs predominantly by the reactions of OH with VOC (R.35-38) and CO, respectively, Eq.7 and Eq.8 can be expanded to Eq.9 and Eq.10.

$$\sum [VOC]_i \cdot [OH] \cdot k_{VOC_i} = \sum [RO_2]_i \cdot L_{RO_2}$$
(Eq.9)

$$[CO] \cdot [OH] \cdot k_{CO} = [HO_2] \cdot L_{HO_2}$$
 (Eq.10)

where k_{VOC_i} and k_{CO} are the rate constant of the reaction of VOC_i with OH and of CO with OH.

Lastly, assuming the major loss of RO₂ and HO₂ occurs by similar reactions (see chapters 1.3.2 - 1.3.3), both the loss of RO₂ (L_{RO_2}) and HO₂ (L_{HO_2}) in Eq.9 and Eq. 10 are considered equal. Under these assumptions, the ratio of the RO₂ and HO₂ concentration is the ratio of their respective production rates (Eq.11). Subsequently, the RO₂ concentration can be expressed as the HO₂ concentration scaled by the ratio of the production rates resulting in Eq.12.

$$\frac{\sum [VOC]_i \cdot [OH] \cdot k_{VOC_i}}{\sum [RO_2]_i} = \frac{[CO] \cdot [OH] \cdot k_{CO}}{[HO_2]}$$
(Eq.11)

$$\sum [RO_2]_i \qquad [HO_2]$$

$$\sum [RO_2]_i = \frac{\sum [VOC]_i \cdot k_{VOC_i}}{[CO] \cdot k_{CO}} \cdot [HO_2] \qquad (Eq.12)$$

Total uncertainty is calculated from the uncertainties of each variable according to Gauss error propagation.

This allows to estimate the RO₂ concentration based on the measured HO₂, CO and VOC concentrations under conditions where the assumptions made are feasible.

3.2 Analytical and numerical calculation of the HORUS-internal RO₂ conversion using NO titration

The calculation of the RO₂ interference in HORUS from ambient RO₂ concentrations is highly dependent on the type of peroxy radical present. As mentioned in 1.4.2, structural differences stemming from the VOC from which RO₂ was produced, possible conversion to HO₂ and interference in HORUS can vary greatly. Additionally, many rate constants of the reactions forming HO₂ from RO₂ are not studied yet and therefore unavailable to be used in calculations. A simplification is thusly needed in order to calculate HORUS-internal RO₂ interferences.

In the following section, two methods of calculating RO₂ interference are presented.

3.2.1 Cost effective estimate of the RO₂ conversion to OH efficiency based on the internal temperature and pressure in HORUS

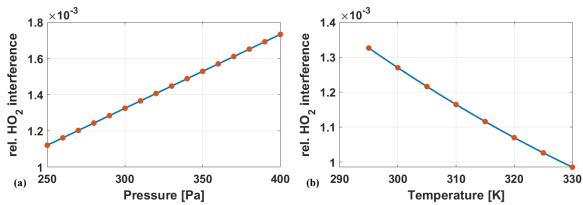


Figure 3.1 Relative HO₂ interference for RO_{2 sat} vs. pressure (a) and temperature (b), respectively. The data obtained from CAABA/MECCA (red) was fitted (blue) with Eq.13 for the pressure dependency and Eq.14 for the temperature dependency, respectively. The range of x was chosen to encompass conditions normally encountered during HORUS measurements. The NO concentration was $5.64 \cdot 10^{14}$ molec cm⁻³.

With ambient RO₂ concentrations estimated, interference caused through internally produced OH can be calculated using the CAABA/MECCA box model. By initializing the box model with internal conditions of HORUS $(2.5 - 4 \text{ mbar}, 295 - 330 \text{ K}, 5.64 \cdot 10^{14} \text{ molec cm}^{-3} \text{ NO})$, chemistry inside the measurement system can be simulated and enables the calculation of internally produced OH, which is then normalized for the initial concentration of RO₂ and corresponds to the HO₂ interference relative to the RO₂ concentration (*I_{rel}*) inside of HORUS. The reaction rate constants used to describe the reactions are temperature and pressure dependent. Therefore, throughout the measurement by HORUS, the internal pressure and temperature are constantly monitored. They follow in general the variations of their ambient counterparts. Additionally, significant changes in pressure can occur, when the critical orifice at the inlet is obstructed, e.g. by crystallizing sea salt. However, the numerical simulation of each of the 2-min measurement interval

typically used during a multi-day measurement campaign is computational expensive. A more cost-effective approach is to parameterize the RO₂ to OH conversion as a function of the internal pressure and temperature.

Figure 3.1 shows the relative HO₂ interference by conversion of RO_{2 sat} versus pressure (a) and temperature (b) calculated by numerical simulations of CAABA/MECCA. A linear fit Eq.13 had been used to describe the pressure dependency ($I_{rel,p}$). The second order polynomial Eq.14 was used to describe the temperature dependency ($I_{rel,T}$). By normalizing $I_{rel,T}$ to the temperature used during calculation of $I_{rel,p}$ allows to combine both factors to Eq.15.

$$I_{rel,p}(p) = m_1 \cdot p + m_2 \tag{Eq.13}$$

$$I_{rel,T}(T) = n_1 \cdot T^2 + n_2 \cdot T + n_3$$
 (Eq.14)

$$I_{rel}(p,T) = I_{rel,p}(p) \cdot \left(\frac{I_{rel,T}(T)}{I_{rel,T}(295)}\right)$$
(Eq.15)

Table 3.1 Parameter for temperature and pressure dependency for relative HO₂ interference from RO_{2 sat} and RO_{2 unsat}. Parameters were calculated for $c(NO) = 5.64 \cdot 10^{14}$ molec cm⁻³

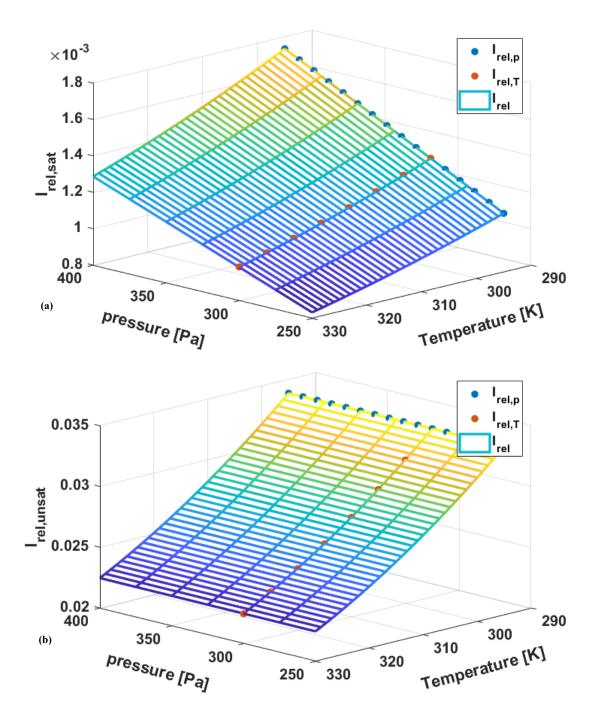

Parameter	RO _{2 sat}	RO _{2 unsat}
m1	4.07.10-6	-7.11.10-8
m_2	1.02.10-4	3.39·10 ⁻²
\mathbf{n}_1	5.16·10 ⁻⁸	2.56.10-6
n ₂	-4.20.10-5	-1.92·10 ⁻³
n3	9.22·10 ⁻³	0.38

Figure 3.2a shows relative HO₂ interference $I_{rel sat}$ for RO_{2 sat} vs. internal pressure and temperature using the parameters from Table 3.1. The surface describes the interference inside HORUS for RO₂ from saturated VOC. Since the NO concentration has a major influence on the conversion of RO₂ to HO₂ and OH, the described surface is only applicable for the NO concentration used for these calculations (c(NO) = $5.64 \cdot 10^{14}$ molec cm⁻³). For these conditions, the relative HO₂ interference $I_{rel sat}$ is between 0.08 – 0.17 %.

Similarly, $I_{rel \ unsat}$ can be calculated for RO_{2 unsat} (Figure 3.2b). Contrary to $I_{rel \ sat}$, $I_{rel \ unsat}$ only shows a negligible pressure dependency. As shown in 1.4.2, for RO_{2 unsat} only the reaction with NO is pressure dependent. Since the mass flow of NO injected into the detection axis, the concentration of NO is constant even with fluctuating pressures. For these conditions, the relative HO₂ interference $I_{rel \ unsat}$ is between 2.24 - 3.38 %.

The discrepancy between $I_{rel sat}$ and $I_{rel unsat}$ is expected, since the conversion of RO_{2 sat} to HO₂ inside HORUS occurs through two bimolecular reactions (R.23 - 24). Contrary, after of RO_{2 unsat} with NO, a fast, unimolecular decomposition precedes the formation of HO₂.

This decomposition rate was determined to be in the order of 10^4 to 10^6 s⁻¹ (R. Atkinson, 1997; Orlando et al., 1998; Vereecken, Peeters, Orlando, Tyndall, & Ferronato, 1999). Total relative HO₂ interference I_{rel} is calculated using Eq. 16.

$$I_{rel} = [RO_2]_{sat} \cdot I_{rel\,sat} + [RO_2]_{unsat} \cdot I_{rel\,unsat}$$
(Eq.16)

Figure 3.2 Combination of the equation describing $I_{rel,p}$ (blue dots) and $I_{rel,T}$ (red dots) spanning a surface, which characterizes I_{rel} for a given temperature and pressure. I_{rel} from RO_{2 sat} ($I_{rel sat}$) (a) shows a dependency of both pressure and temperature, while I_{rel} from RO_{2 unsat} ($I_{rel unsat}$) (b) only shows a temperature dependency and stays constant for different pressures.

As described in 2.4.1, the effective residence time inside HORUS includes the mixing efficiency of NO with the sample air and the transport from the NO-injection and detection of OH. Using the pump flow, tube length and diameter, the effective residence time is estimated to be 6.5 ± 0.5 ms. To estimate the impact of the resulting uncertainty of the residence time in the conversion efficiency, model calculations based on the assumption of a residence time of 6 and 7 ms are performed.

Additionally, uncertainties in the rate constants used in the box model need to be accounted for by varying rate constants randomly using Monte-Carlo-simulations (MC). It is assumed, that all RO_{2 sat} can be described through CH₃O₂, and all RO_{2 unsat} can be described through HOCH₂CH₂O₂. However, since for each category of RO₂, reaction rate constants vary with each RO₂, a large additional uncertainty is introduced. To account for this, the error used in the MC simulations is changed to encompass rate constants of the RO₂ shown in Table 3.2. Table 3.3 shows rate constants and corresponding errors used.

		RO ₂ included / origin VOC (for RO _{2 unsat})
RO _{2 sat}	$RO_2 + NO \rightarrow RO + NO_2$	CH ₃ O ₂ *, C ₂ H ₅ O ₂ *, i-C ₃ H ₇ O ₂ *,
		$n-C_{3}H_{7}O_{2}^{*}$, $n-C_{4}H_{9}O_{2}^{*}$, $t-C_{4}H_{9}O_{2}^{*}$
	$RO + O_2 \rightarrow HO_2 + products$	$CH_{3}O^{*}, C_{2}H_{5}O^{+}, 1-C_{3}H_{7}O^{+}, 2-C_{3}H_{7}O^{+},$
		$1-C_4H_9O^+$
RO _{2 unsat}	$RO_2 + NO \rightarrow RO + NO_2$	Ethen [*] , Propene [#] , 1-Butene [#] , 2-Butene [#] ,
		2-Methylpropene [#] , 1,3-Butadiene [#] ,
		Isoprene [#]

Table 3.2 RO₂ used to estimate reaction rate constant uncertainty

* (Sander et al., 2019), + (R. Atkinson et al., 2006), # (Miller, Yeung, Kiep, & Elrod, 2004)

Table 3.3 Rate constants and errors used for CAABA/MECCA simulation. Errors do not represent literature uncertainty, but were chosen to account for RO_2 from different saturated or unsaturated VOC.

	reaction	Rate constant k *	log(f)
	$RO_2 + NO \rightarrow RO + NO_2$	$\frac{2.3 \cdot 10^{-12} \cdot \exp(360/\text{temp})}{1.3 \cdot 10^{-14} \cdot \exp(-663/\text{temp})}$	1.19
	$RO + O_2 \rightarrow HO_2 + products$	$1.3 \cdot 10^{-14} \cdot \exp(-663/\text{temp})$	3.0
RO _{2 unsat}	$RO_2 + NO \rightarrow RO + NO_2$	$2.54 \cdot 10^{-12} \cdot \exp(360/\text{temp})$	1.10

(R. Atkinson et al., 2006)

Due to the large differences in the rate constant for the reaction $RO+O_2$ for different VOC, the uncertainty for this reaction is chosen very large. Additionally, since this reaction is rate determining, it is a major contributor to the total uncertainty of $I_{rel sat}$. Since the uncertainties of the rate constants are described as a lognormal distribution, total uncertainty cannot be described with 1σ confidence interval. Instead, they are described with an upper and lower

error. Upper and lower total uncertainty for $I_{rel sat}$ and $I_{rel unsat}$ were then calculated using Gauss error propagation.

Table 3.4 Lower and upper error *Irel sat* and *Irel unsat*.

	$\Delta I_{rel sat}$	$\Delta I_{rel unsat}$
Lower uncertainty	64.5 %	14.8 %
Upper uncertainty	181.6 %	17.3 %

The error margin for $I_{rel sat}$ is significantly larger than those of $I_{rel unsat}$. This is mostly caused by large uncertainties suggested for the reactions of RO_{2 sat} (see Table 3.3).

In order to calculate the total uncertainty for I_{rel} , the concentrations for RO_{2 sat} and RO_{2 unsat} have to be known (Eq. 16). To estimate the range and influence, Eq. 16 can be changed to

$$I_{rel} = [RO_2](f_{sat} \cdot I_{rel\,sat} + (1 - f_{sat}) \cdot I_{rel\,unsat})$$
(Eq.17)

$$\frac{I_{rel}}{[RO_2]} = (f_{sat} \cdot I_{rel \, sat} + (1 - f_{sat}) \cdot I_{rel \, unsat})$$
(Eq.18)

$$\Delta\left(\frac{I_{rel}}{[RO_2]}\right) = (f_{sat} \cdot \Delta I_{rel\,sat} + (1 - f_{sat}) \cdot \Delta I_{rel\,unsat}) \tag{Eq.19}$$

Eq. 17, with the fraction of saturated RO₂ f_{sat} of the total RO₂ concentration [RO₂]. By dividing with the total RO₂ concentration, the total interference relative to the total RO₂ concentration can be calculated (Eq. 18). Total uncertainty of I_{rel} /[RO₂] can be calculated using Eq.19.

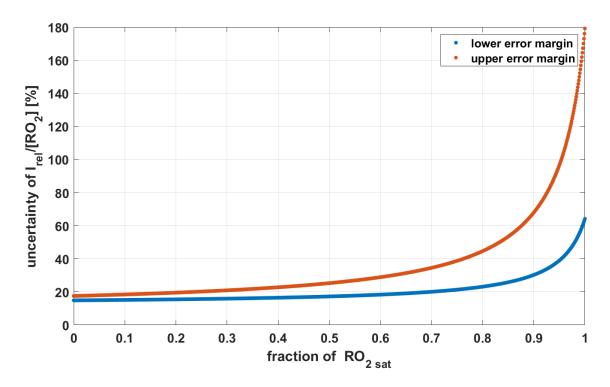


Figure 3.3 Lower (blue) and upper (red) relative error margin of Irel/[RO2] vs. the fraction of RO2 sat.

Figure 3.3 shows the lower and upper relative error margin of $I_{rel}/[\text{RO}_2]$ vs. the fraction of RO_{2 sat}. Due to the low overall interference caused by RO_{2 sat}, the large error shown in Table 3.4 only significantly increases the total uncertainty above $f_{sat} = 0.6$.

3.2.2 Model based estimate of the ambient RO₂ concentration based on titration of RO₂ by NO

Measurement of HO₂ within HORUS is achieved by chemical conversion of HO₂ to OH by adding NO before the second detection axis (see Figure 2.4). In order to determine this chemical conversion efficiency within HORUS, NO titrations are periodically performed throughout the day. Besides HO₂, RO₂ is also converted by NO (see Figure 1.6) leading to artificial generated HO₂ which can further react with NO generating OH which is detected. The resulting data collected from NO titrations is therefore comprised of OH formed by HO₂ and RO₂ and thus contains information about momentary RO₂ interference at the time of measurement. Figure 3.4 exemplifies with the total internal OH (blue) and its fractions by HO₂ (red) and RO₂ (yellow). In order to retrieve the information about ambient HO₂ and RO₂ from these titrations the CAABA/MECCA box model is used.

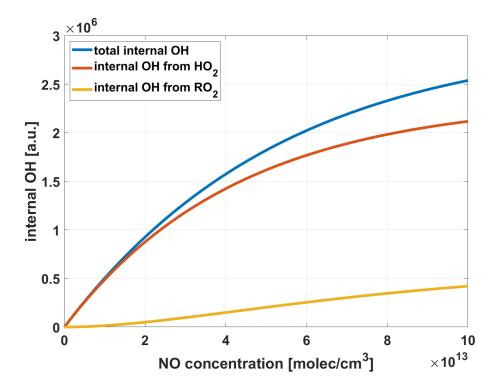


Figure 3.4 Internal OH produced by HO_2 and RO_2 as seen during NO titrations. Total internal OH (blue) consists of OH produced by HO_2 (red) and the sum of OH produced by all RO_2 present during measurement (yellow)

The model is initialized with HORUS internal conditions (see above) and estimated ambient RO₂ concentrations (as described in 3.1) are used as starting parameter in CAABA/MECCA. By varying HORUS-internal HO₂, RO_{2 sat} and RO_{2 unsat} and comparing the modeled titration with the measured one, a cost function is minimized utilizing the least square method. Figure 3.5 shows internal OH from a measured NO titration (blue), internal OH from CM model (red), and the fractions of internal OH from HO₂ (yellow), RO_{2 sat} (purple) and RO_{2 unsat} (green). By calculating the ratio of the OH signal derived from HO₂ of the total OH signal for the NO concentration injected into HORUS during regular measurements (~ $0.7 \cdot 10^{13}$ molec/cm³), interference caused by OH from RO₂ can be corrected (Figure 3.5, grey vertical line).

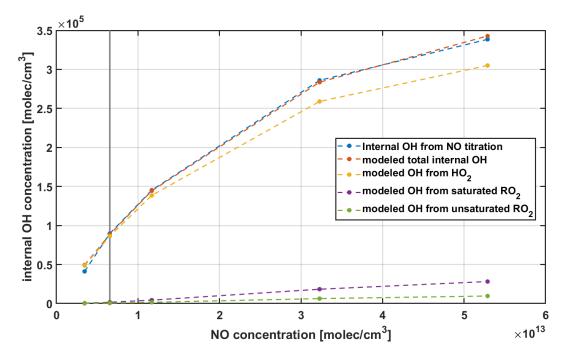


Figure 3.5 Example of NO titration measured with HORUS (blue), with total modeled internal OH (red), and modeled internal OH from HO₂ (yellow), $RO_{2 \text{ sat}}$ (purple) and $RO_{2 \text{ unsat}}$ (green). The vertical line set to the NO concentration injected during normal measurements.

In order to account for statistical variability during the measurement of NO titration, observation weights ($w = 1/\sigma^2$) are used to estimate the quality of the individual measurement of each titration. Additionally, a known problem of approximations using the least square method is the possibility of reaching different local minima of the cost function depending on initially used starting parameter. To account for this possibility, Monte Carlo simulations for each titration are conducted. Using a random number generator, initial parameters for HO₂, RO_{2 sat} and RO_{2 unsat} were varied 1000 times according to a normal distribution. Calculating a mean and standard deviation gives a measure of error for each titration. Total uncertainty is calculated by adding up both sources of error.

3.3 Validation of CAABA/MECCA estimates of HORUS internal conditions

To investigate the contribution of RO_2 to the HO_2 signal inside of HORUS, Kunkler (2021) performed a master thesis under the supervision and in close collaboration with this work. The results are the basis of this chapter.

As shown above, it is possible to estimate RO₂ interference in the HORUS instrument using the CAABA/MECCA box model. Though it has not been shown, that CAABA/MECCA can accurately describe HORUS internal conditions. Additionally, it is unknown, whether the separation of RO₂ into RO_{2 sat} and RO_{2 unsat} is sufficient to describe the large variety of

 RO_2 in the atmosphere. Lab studies were performed in the scope of a master thesis (Kunkler, 2021). Several tests were conducted using different RO_2 in order to show the validity of this assumption. Known concentrations of RO_2 from several saturated (methane, propane and n-butane), unsaturated VOC (ethene, propene, but-1-ene and isoprene), and benzene were produced in situ. NO titrations were performed for each single RO_2 with the HORUS setup and simulated with CM. Figure 3.6, Figure 3.7 and Figure 3.10 show measured and simulated NO titrations for both RO_2 sat and RO_2 unsat, respectively.

Interference from RO_{2 sat}

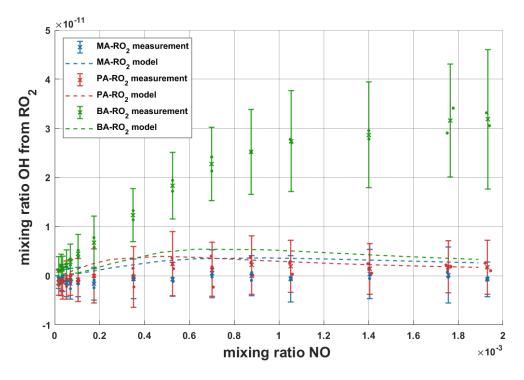


Figure 3.6 Mixing ratio of OH generated from different $RO_{2 \text{ sat}}$. Shown points represent measured NO titrations, while dotted lines represent modeled data. Modeled data of both MA-RO₂ and PA-RO₂ describe the measured NO titrations, while measurements of BA-RO₂ are underestimated by the corresponding model (taken from Kunkler (2021)).

Modeled data for RO₂ from propane (PA-RO₂) and methane (MA-RO₂) show great agreement with measured NO titration. Internal production of OH is very minor for these compounds, which indicates a small influence on RO₂ interference in HORUS. Modeled data for RO₂ from n-butane follows this trend, while measurements show higher production of internal OH. A possible cause for this increased internal OH are side products of the reaction of BA-RO₂ with NO. Jungkamp, Smith, and Seinfeld (1997) reported a significant amount of nitrites and acetaldehyde production. Since nitrites can also be produced from MA-RO₂ and PA-RO₂, and did not cause an interference for these RO₂, it is assumed, that no interference is caused by nitrites formed from BA-RO₂. Furthermore, for acetaldehyde no reactions are known, which can cause an interference inside a LIF-FAGE instrument.

According to Jungkamp et al. (1997), the alkoxy radical formed from BA-RO₂ can undergo a 1,5-H-shift, which can open up different reaction paths. However, it is unknown, if species are produced, which cause an interference in the HORUS system. Further investigations are needed to answer this question.

Interference from RO_{2 unsat}

Modeled data for RO₂ from ethene (EE-RO₂) and isoprene (IE-RO₂) show good agreement with measured data, while modeled data for RO₂ from propene (PE-RO₂) and but-1-ene (BE-RO₂) underestimate measured data. For all RO_{2 unsat}, modeled data underestimates OH mixing ratio for lower NO mixing ratios (between $0.1 - 0.5 \cdot 10^{-3}$). It is possible, that this caused by an offset of NO injected into the setup. Adding an offset of ~0.04 $\cdot 10^{-3}$ leads to improved agreement for lower NO mixing ratios (see Appendix A, Figure A.1, Kunkler (2021)). However, since it is unclear, what the cause of this discrepancy for low NO mixing ratios is, no NO offset correction was applied in further investigations.

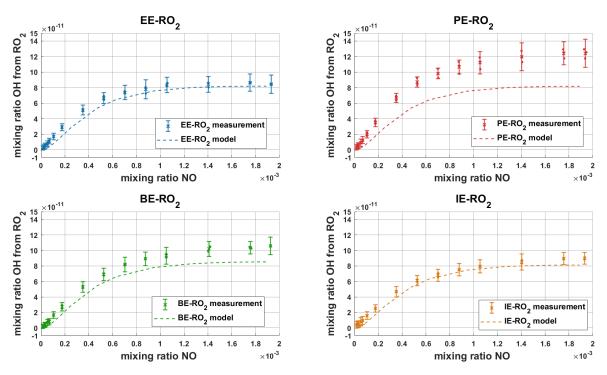


Figure 3.7 Mixing ratio of OH generated from different $RO_{2 \text{ unsat}}$. Shown points represent measured NO titrations, while dotted lines represent modeled data. Modeled data of PE-RO₂ and BE-RO₂ underestimates measured data, while modeled data of EE-RO₂ and IE-RO₂ describe measurements within error estimation (taken from Kunkler (2021)).

The measured NO titrations for PE-RO₂ and BE-RO₂ both show maximum conversion of RO₂ of over 100 % (143 % and 122 %, respectively). This indicates, that aside from expected conversion of RO₂ to OH, other reactions have taken place, which produced additional HO₂ or OH radicals. A possible source of additional radicals could be through laser generation. The photolysis of aldehydes inside the LIF-FAGE system is known to

cause an interference (Roger Atkinson, 2000). Since the photolysis of the aldehyde and the excitation of the resulting OH both need a photon, an interference caused from this reaction shows a squared dependency of the laser power inside the White cell of the HORUS system. Figure 3.8 shows the normalized OH signal vs. laser power inside the White cell. Both PE-RO₂ (red) and BE-RO₂ (blue) show a linear dependency on laser power within the error margins (2σ). Another possibility for additional OH signal is a laser repetition rate, which is chosen too high (3 kHz during HORUS measurements). This can cause more than one excitation-emission-cycle for OH radicals, leading to an increased fluorescence signal. Figure 3.9 shows the normalized OH signal vs. NO mixing ratios for repetition frequencies of 2 kHz, 3 kHz and 4 kHz. For all three frequencies similar OH signals were measured, indicating no increased signal through multiple excitation-emission-cycles.

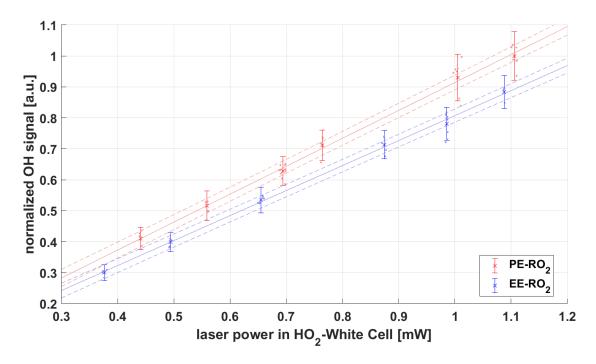


Figure 3.8 Normalized OH signal from PE-RO₂ (red) and BE-RO₂ (blue) vs. laser power inside of the White cell, with a NO mixing ratio of $9 \cdot 10^{-4}$. The lines show the linear fit for both RO₂ (solid line) and the 95 % confidence interval (dashed lines) (taken from Kunkler (2021)).

For EE-RO₂ and IE-RO₂, the model was able to describe the measured data within the margin of error. For BE-RO₂ and PE-RO₂ the model underestimated the measured results, with a yield of >100 % for both species. This indicates additional radical sources through reactions inside of HORUS, which are not considered.

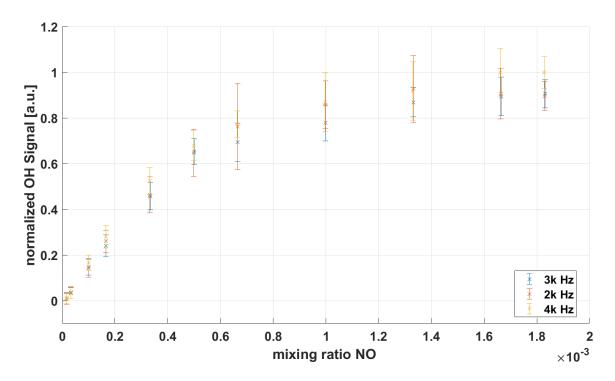


Figure 3.9 Normalized OH signal for PE-RO₂ vs. NO mixing ratio for different laser repetition rates (2000, 3000, 4000 Hz). The OH signal with 4k Hz repetition rate is slightly higher than with lower repetition rate, indicating multiple excitations of OH (taken from Kunkler (2021)).

Interference from RO₂ originating from benzene

Additionally, HO₂ interference from OH-initiated oxidation products of benzene were investigated. As described in 1.4.1, oxidation of benzene by OH can yield peroxy radicals as well as phenol, which produces HO₂ (see Figure 1.5). The produced HO₂ cannot be separated from the sample air. The measured OH is thusly a sum of OH produced from RO₂ and phenol. For the model calculations, it was assumed that only phenol (~53 %) and a bicyclic RO₂ (~47 %) were produced as reported by Xu et al. (2020). Figure 3.10 shows modelled and measured OH mixing ratios vs NO mixing ratio. Measured HO₂-generated OH is shown as blue x with 1 σ error bars. OH, generated from RO₂ is shown as the green line, while OH from phenol production is shown as the yellow line. The sum of both is shown as the red line. According to the model calculation, at high NO mixing ratios the yield of generated OH reaches almost unity. The measured OH mixing ratios were ~28±7 % lower than the model results, indicating radical loss reactions. The reaction of RO₂ with HO₂ can produce bicyclic alcohols, epoxides and peroxides (Birdsall & Elrod, 2011). However, Xu et al. (2020) reported a ~47 % yield of the bicyclic alkoxy radical **6**, due to the almost quantitative conversion of the bicyclic RO₂ **4** to **6**.

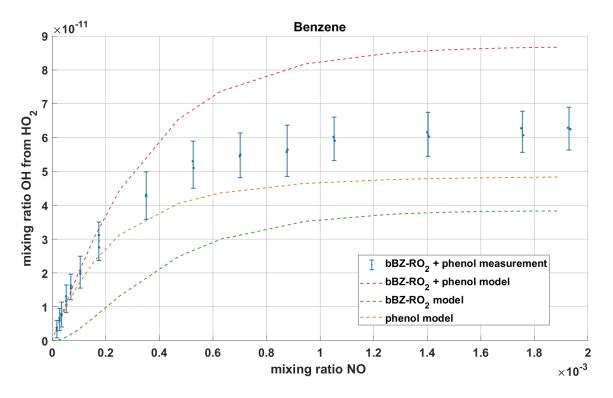


Figure 3.10 Mixing ratio of OH generated from the oxidation of benzene vs. NO mixing ratio. The shown points represent measured NO titrations, with 2σ error margin. The dotted lines show modeled data, with OH from the bicyclic RO₂ bBZ-RO₂ (green), OH from phenol (yellow) and the sum of both (red).

Other loss reactions include RO₂ self and cross reactions. However, a lower radical loss through these reactions is expected, since reaction rates of self and cross reactions of secondary and tertiary RO₂ are generally slower (Jenkin & Hayman, 1995) and the HO₂ mixing ratio during the measurement was higher than those of RO₂. Other loss reactions are the reaction of **4** or **6** with NO, both of which are reported to be insignificant as radical loss reactions. Since the unimolecular decomposition of **6** is pressure independent, while the reaction of **6** is a 3rd order reaction, the reaction rate of the unimolecular decomposition is expected to be 3-5 orders of magnitude faster than reaction of **6** with NO (Birdsall & Elrod, 2011; Jenkin & Hayman, 1995; Xu et al., 2020). Similarly, Xu et al. (2020) reported a radical loss for the reaction of **4** with NO of <0.1 %. Therefore, the known reaction pathways of the OH-initiated oxidation products of benzene cannot sufficiently explain the observed radical loss. It is suspected that long lived oxidation products may occur, which do not have sufficient time to form radical under the conditions inside the HORUS instrument.

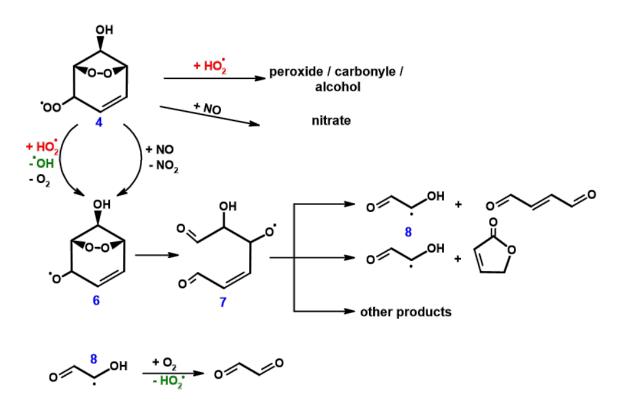


Figure 3.11 Schematic overview of the reaction pathway of bicyclic peroxy radical of benzene 4. Produced HO_2 is shown in green, while HO_2 , which is used up is shown in red (Taken from Kunkler (2021)).

Implications on RO₂ interference correction using CAABA/MECCA

The RO₂ interference of several RO_{2 sat}, and RO_{2 unsat}, as well as the RO₂ from benzene oxidation was investigated inside HORUS and compared to CAABA/MECCA model calculations. The interference caused by RO₂ from methane and propane was described by the model within the error margin. The model did underestimate the interference from BA-RO₂, which could not be explained with known products from the OH-initiated oxidation of butane. It is possible, that a 1,5-H-shift of the alkoxy radical of BA-RO₂ lead to reactions, which can produce OH. Further investigations are needed.

The interference caused by $RO_{2 \text{ unsat}}$ was investigated for the RO_2 of ethene, propene, but-1-ene and isoprene. Model calculations of interference caused by EE-RO₂ and IE-RO₂ were able to describe measured interference within the error margin. The model underestimated the interference caused by BE-RO₂ and PE-RO₂. The measured radical yield of >100 % indicates an additional radical source. Tests, to investigate, whether the additional interference is caused by laser generated OH or multiple excitation-emission-cycles, did not show positive results. This indicates, that during the test additional radical sources occur for these RO_2 within the HORUS system. The interference caused by RO_2 from benzene was caused by HO_2 from the formation of phenol and from the RO_2 branch of the oxidation mechanism (see Figure 1.5 and Figure 3.11). The model calculation overestimated the total amount of OH produced through these reactions by ~28±7 %. The known radical loss reaction within the oxidation mechanism were not sufficient to explain the lower measured radical yield and it is therefore assumed, that some long-lived oxidation products occur. These long-lived products may not have enough time to produce radicals within the time frame of the injection of NO and the point of measurement.

The tests employed in this chapter showed that CAABA/MECCA calculations are able to describe RO_2 interference from certain RO_2 of the saturated and unsaturated groups within the margin of error. Some RO_2 showed discrepancies between the model and measurement, which are not explained by the known oxidation mechanisms. It is likely that the method of RO_2 production used for the tests, caused some of the discrepancies, since it was not possible to separate the produced RO_2 from reactants and possible side products. Due to the extensive OH-initiated oxidation mechanism of benzene, the RO_2 interference caused by benzene RO_2 cannot be sufficiently described and needs further investigation.

Additionally, it is unclear, whether these studies can describe more complex RO_2 , e.g. from terpenes, or higher oxygenated RO_2 using the simple separation into $RO_{2 \text{ sat}}$ and $RO_{2 \text{ unsat}}$. Further studies are needed to investigate these groups of RO_2 .

3.4 Summary

The knowledge of ambient RO₂ concentrations is important for LIF-FAGE measurements, as they cause an artificially increased HO₂ signal inside the instrument. Two methods to estimate RO₂ concentrations were reported. Using the NO/NO₂ photo stationary state assumption (Leighton, 1961), a sum of HO₂ and RO₂ can be calculated. The second method uses ambient HO₂ concentrations and OH reactivity. It is assumed, that the production of HO₂ and RO₂ during daytime is predominantly from the reaction of OH with VOC and CO, respectively. Additionally, by assuming that major loss for HO₂ and RO₂ are similar, the RO₂ concentration can be calculated by the HO₂ concentrations scaled by their respective production rates. This method allows the calculation of the RO₂ concentrations to be based on the measurements of HO₂, CO and VOC.

In order to correct for RO_2 interference, the efficiency of the conversion of RO_2 into OH inside the HORUS instrument was investigated. Two methods were employed. Firstly, a cost-effective estimate based on internal temperature and pressure was used by parameterizing temperature and pressure dependency of the conversion of $RO_{2 \text{ sat}}$ and $RO_{2 \text{ unsat}}$. Secondly, a model-based approach was used to estimate ambient RO_2

concentrations using titration of RO_2 by NO. By minimizing a cost function using the least squared method, it has been shown, that ambient concentrations of HO_2 and RO_2 can be extracted.

In order to validate the assumptions concerning the approach to correct RO_2 interference in HORUS, lab studies were conducted in the master thesis of Kunkler (2021). Several different RO_2 were produced in situ and used to perform NO titrations. CAABA/MECCA model calculations were done and compared with the measured NO titrations. It was shown that certain RO_2 of saturated and unsaturated origin are able to be described by the model with the margin of error. However, the model underestimated the interference caused by the RO_2 of butane, but-1-ene and pent-1-ene. It is unknown from which sources the additional radical originated, since known reaction pathways are not sufficient to explain the discrepancy. Additionally, the interference of the RO_2 of benzene was overestimated by the model. It is suspected that the short reaction time inside the HORUS system leads to long lived products of the oxidation not being able to produce radicals.

Furthermore, it is unclear, whether the separation used here is sufficient to describe more complex or higher oxygenated RO₂. Further studies are needed.

4 AQABA field campaign

Throughout the last century, the region around the Arabian Peninsula has seen strong economic development due to its rich oil and gas reserves. Extraction, industrialization and urbanization caused the Middle East to become a global hot spot for air pollution. Additionally, the region has exceptional environmental and meteorological conditions, with extensive deserts, intense solar radiation and high temperatures. Nonetheless, observational data is sparse and the Arabian Basin receives little attention, e.g. in report of the Intergovernmental Panel on Climate Change (IPCC).

The AQABA (Air Quality and Climate Change in the Arabian Basin) field campaign was a comprehensive ship borne experiment conducted in summer of 2017. A dataset including measurements of the oxidants OH and HO₂; trace gases such as O₃, CO, NO, NO₂, H₂O₂, HCHO, HONO; a range of VOCs and their oxidation products; aerosol size distribution, photolysis frequencies; and meteorological properties. From June to September 2017, the research and survey vessel *Kommandor Iona* (Hays Ships Ltd.) sailed from Toulon (France) to Kuwait and back (Figure 4.1), covering the Mediterranean Sea, Red Sea, Arabian Sea, and Arabian Gulf.

Figure 4.1 Map of the track covered by the AQABA field campaign in 2017. Starting in Toulon, France, measurements were taken through the Mediterranean Sea, Suez Canal, Red Sea, Arabian Sea and Arabian Gulf.

4 AQABA field campaign

The general objective of the AQABA 2017 campaign was to comprehensively characterize the atmospheric physics and chemistry in the regions surrounding the Arabian Peninsula, as well as the Mediterranean Sea.

In order to measure OH and HO₂, the ground-based HydrOxyl Radical Measurement Unit based on fluorescence Spectroscopy (HORUS) by the Max Planck Institute for Chemistry (Mainz, Germany) was deployed during the AQABA campaign.

4.1 Instrumentation

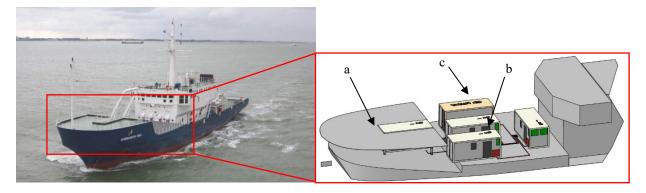


Figure 4.2 Kommandor Iona (Hays Ships Ltd.) (left) and CAD drawing of Main Deck and Forecastle Deck (right). The HO_x inlet was located on the forecastle deck (a). A 6 m high common inlet was used for measurements of NO_x, O₃, HCHO, H₂O₂, ROOH, SO₂, CO, VOC, OVOC and OH reactivity (b). For measurements of aerosol particles, a silica gel aerosol dryer was installed approx. 12 m above sea level (c) (Celik et al., 2020).

During the intensive measurement period of AQABA 2017 campaign, a broad set of instrumentation were installed on the research and survey vessel *Kommandor Iona* (Hays Ships Ltd.). Three positions were chosen to set up the inlets of instruments measuring trace gases, as well as photolysis frequencies. OH, and HO₂ were measured on the Forecastle Deck (a, see Figure 4.2) to reduce the impact of obstructions of the ship. A 6 m high cylindrical stainless-steel common inlet was installed for the measurements of O₃, NO_x, CO, H₂O₂, ROOH, HONO, VOC, OVOC, HCHO, and OH reactivity (b). A silica gel aerosol dryer was installed for sampling aerosol measurements (c). A brief summary of instrumentation, with time resolution, uncertainties and limits of detection are given in Table 4.1.

4.2 Regional characteristics

In order to simplify comparison between the many different environmental conditions sampled during AQABA, eight distinct regions along the ship's track were identified (Figure 4.3); the Mediterranean Sea, Suez Canal and Gulf of Suez, northern Red Sea,

southern Red Sea, Gulf of Aden, Arabian Sea, Gulf of Oman, and Arabian Gulf. The Arabian Gulf is well known for its extensive oil and gas industry as well as intensive ship traffic. High emissions of VOC, NO_x and CO are expected. Additionally, high photochemistry is expected due to intense solar radiation. Similar conditions, but to a lesser extent, are expected for the Gulf of Oman. The Arabian Sea is a comparably pristine environment, with low levels of NO_x , O_3 and VOC. Ship traffic in the Gulf of Aden is denser as it is funneled in and out of the Arabian Sea. Additionally, air masses from east of the horn of Africa are expected to bring aged biogenic and anthropogenic emissions. The Red Sea is separated in the southern and northern section, with extensive oil and gas extraction in both parts. Additionally, northern Red Sea is influenced strongly by the metropolitan areas along the northern Nile river. In both regions, high particle number concentrations are expected due to the surrounding Sahara and Arabian Deserts. The narrow Suez Canal can be characterized by its high density of ship traffic and strong influence from the Cairo metropolitan area. The Mediterranean Sea is mostly influenced by aged air from the European mainland.

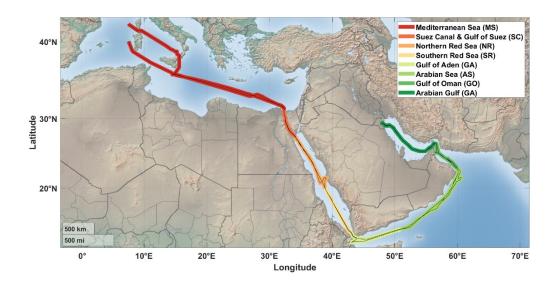


Figure 4.3 Ship track of the *Kommandor Iona* during AQABA (black). The cruise was separated into eight distinct regions.

4.2.1 Back-trajectories during AQABA

Back-trajectories of air parcels encountered along the ship track have been calculated using **Hy**brid **Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT)**. The general origin of air masses of leg 1 and leg 2 of the AQABA field campaign are shown in Figure 4.4 and Figure 4.5, respectively.

4 AQABA field campaign

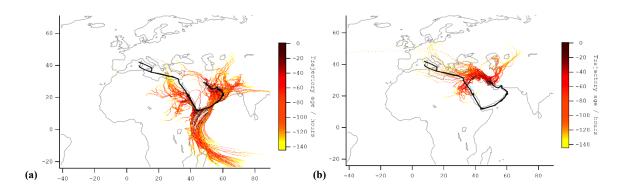


Figure 4.4 HYSPLIT back-trajectories of leg 1 of the Gulf of Aden, the Arabian Sea, and the Gulf of Oman (a), and the Arabian Gulf (b). The black line shows the ship track. The color of the trajectories shows the age of the air mass in hrs (D. Walter, personal communication, 23. Nov.2017).

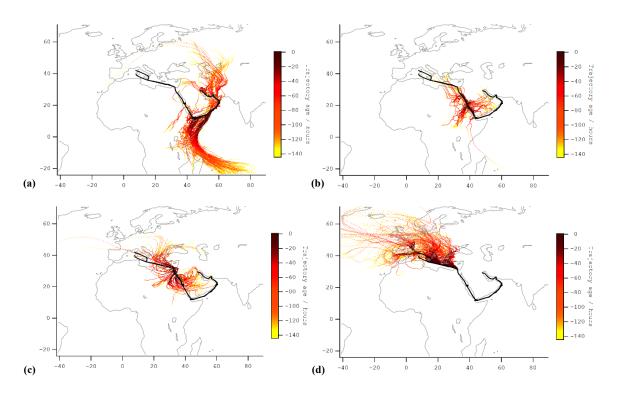


Figure 4.5 HYSPLIT back-trajectories of leg 2 of the AQABA campaign. The Arabian Gulf, the Gulf of Oman, the Arabian Sea, and the Gulf of Aden are shown in panel (a). The Red Sea is shown in panel (b). The Suez Canal is shown in panel (c), and the Mediterranean Sea is shown in panel (d). The black line shows the ship track. The color of the trajectories shows the age of the air mass in hrs (D. Walter, personal communication, 23. Nov.2017).

Species	Time resolution	Accuracy (1σ)	Precision (1σ)	Limit of detection	Technique/ Instrument	Institution
НО	14 sec	17 %	0.065 – 0.26 pptv	0.03 - 0.15 pptv	IPI-LIF-FAGE	MPIC
HO_2	14 sec	20 %	0.95 - 10 pptv	0.22 – 2.01 pptv	IPI-LIF-FAGE	MPIC
NO	5 sec	5.61 % #	4.4 pptv $^{\#}$	10.5 pptv #		MPIC
NO_2	5 sec	7 % #	112.4 pptv $^{\#}$	26.1 pptv #	ULD analyzer	MPIC
O ₃	5 sec	2 % #	2% #	3 ppbv #	Optical absorption	MPIC
НСНО	3 min	13.2 % ##	6.8 % @ 8.59 ppbv ##	0.128 ppbv ##	Hantzsch monitor	MPIC
H_2O_2	3 min	3 % ##	1.2 % @ 4.36 ppbv ##	8 pptv ##		MPIC
ROOH	3 min	3 % ##	1.8 % @ 4.49 ppbv #	6 pptv ##	IIFLO	MPIC
SO_2	10 sec	20 %	4 %	163 pptv	CIMS	MPIC
CH4	1 min	0.3 ppbv *	$0.1 \%^{*}$	N/A	CRDS/PICARRO	LSCE
CO	1 min	8 ppbv *	5 %**	N/A		LSCE
CO	1 sec	20 %	11-19 %	4.2 – 8.5 pptv	QCL spectrometer	MPIC
ONOH	1 min	20 %	ı	3 pptv	LOPAP	MPIC
VOC	50 min	ı	* * I	* * I	GC-MS	MPIC1
OVOC		ı	ı	ı	PTR-TOF-MS	MPIC
OH reactivity	5 min	26 - 35%	$0.05 - 54.54 \ { m s}^{-1}$ +	$5.4 - 12.19 \ s^{-1} + 12.19 \ s^{-1}$	CRM	MPIC
Photolysis frequencies 10 sec	es 10 sec	> 10 %		ı	Spectral radiometry	MPIC
Aerosols	ı	I	ı	ı	CNC, OPC, FMPS, AMS	MPIC
$\frac{1}{2}$ (Tadic et al., 2020), ^{##} (Dienhart et al., 2022), uncertainties and limit of detection have a range	## (Dienhart et al., 2 it of detection have a	2022), * (Paris) a range depend	[#] (Tadic et al., 2020), ^{##} (Dienhart et al., 2022), [*] (Paris et al., 2021), ^{**} see (Bourtsoukidis et al., 2019) ¹ uncertainties and limit of detection have a range depending on VOC species, ⁺ (Pfannerstill et al., 2019)	tsoukidis et al., 20 fannerstill et al., 2	see (Bourtsoukidis et al., 2019) for full list of measured VOC, ecies, ⁺ (Pfannerstill et al., 2019)	sured VOC,
Acronyms: CLD = Chemiluminescence Detector, I CRDS = Cavity Ring-Down Spectroscopy, QCL = PTR-TOF MS = Proton Transfer Reaction Time-o	illuminescence Detector wn Spectroscopy, QCL Transfer Reaction Time	, HPLC = High F = Quantum Casca -of-Flight Mass S	Acronyms: CLD = Chemiluminescence Detector, HPLC = High Performance Liquid Chromatography, CIMS = Chemical Ionization Mass Spectrometry, CRDS = Cavity Ring-Down Spectroscopy, QCL = Quantum Cascade Laser, LOPAP = Long-Path Absorption Photometer, GC = Gas Chromatography, PTR-TOF MS = Proton Transfer Reaction Time-of-Flight Mass Spectrometry, CRM = Comparative reactivity method, CNC = Condensation Nuclei Counter,	graphy, CIMS = Che ath Absorption Photor rative reactivity meth	mical Ionization Mass Spec neter, GC = Gas Chromatog od, CNC = Condensation N	rometry, raphy, uclei Counter,
UPC = Uptical Particle L	ounter, FMFS = Fast N	lobility Particle SI	OPC = Optical Particle Counter, FMPS = Fast Mobility Particle Sizer, AMS = Aerosol Mass Spectrometer	ectrometer		

4.3 Observations

4.3.1 NO_x and O₃

Since NO_x and O₃ are closely related with each other through NO_x/O₃ PSS (see 3.1.1), observations are shown together for both legs (Figure 4.6 a & b). A summary of median and respective quantiles for NO_x and O₃ during the AQABA campaign is shown in Table 4.2. Tadic et al. (2020) reported NO_x mixing ratios during AQABA range from less than 50 pptv in the pristine regions of the Arabian Sea to more than 10 ppbv in regions of high anthropogenic pollution. High NO_x medians were observed in the northern Red Sea (1.76 ppbv), the Gulf of Oman (2.74 ppbv) and the Arabian Gulf (1.26 ppbv). The air masses observed in these regions bring fresh pollution from nearby metropolitan areas. In combination with local point sources (e.g. oil rigs), NO_x levels are increased. The southern Red Sea, Mediterranean Sea and Arabian Sea showed median NO_x mixing ratios of 0.46, 0.25 and 0.19 ppbv, respectively.

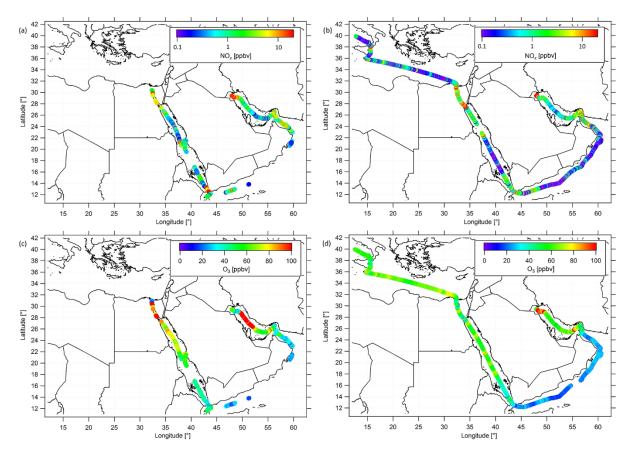


Figure 4.6 Ship cruises with color-scaled NOx mixing ratios (logarithmic scale) during (a) the first and (b) the second leg, and color-scaled O_3 mixing ratios (linear scale) during (c) the first and (d) the second leg. Note that both NO_x and O_3 have been filtered for contamination from the ship's stack. (taken from Tadic et al. (2020))

Figure 4.6 c & d show O₃ mixing ratios for both legs with a range between 20 to 170 ppbv, reported by Tadic et al. (2020). The lowest median O₃ mixing ratios were observed in the Arabian Sea (21.5 ppbv), which is the only region representing the remote MBL. Low median O₃ mixing ratios were also observed in the Gulf of Oman (31.5 ppbv), which in combination with NO_x mixing ratios suggest O₃ destruction by fresh NO emissions. In the Arabian Gulf, O₃ events of up to 170 ppbv were observed with a median of 62.5 ppbv. O₃ mixing ratios in the Mediterranean Sea, southern and northern Red Sea are 61.5, 64.2 and 46.9 ppbv, respectively. The air masses observed over the Mediterranean Sea was characterized as photochemically aged due to the northerly winds, which bring oxidized air masses from Turkey, Greece and the Balkans (Pfannerstill et al., 2019). This led to low variability in the O₃ mixing ratio in this region. Contrary, large amounts of pollution sources in the Arabian Gulf caused high variability in the measurements.

NO _x	Mediterranean	Northern	Southern	Arabian	Gulf of	Arabian
	Sea	Red Sea	Red Sea	Sea	Oman	Gulf
1 st quantile	0.12	0.68	0.18	0.10	1.03	0.52
median	0.25	1.76	0.46	0.19	2.74	1.26
3 rd quantile	0.96	5.68	1.60	0.54	5.92	3.47
O ₃	Mediterranean	Northern	Southern	Arabian	Gulf of	Arabian
O ₃	Mediterranean Sea	Northern Red Sea	Southern Red Sea	Arabian Sea	Gulf of Oman	Arabian Gulf
O ₃ 1 st quantile						
	Sea	Red Sea	Red Sea	Sea	Oman	Gulf

Table 4.2 Overview of measured NO_x (top panel) and O_3 (bottom panel) median mixing ratios in ppbv including 1^{st} and 3^{rd} quantile (taken from Tadic et al. (2020).

4.3.2 HCHO, H₂O₂ and ROOH

Measurements of HCHO, H_2O_2 and ROOH were reported by Dienhart et al. (2022). A summary of median and respective quantiles for HCHO, H_2O_2 and ROOH during the AQABA campaign is shown in Table 4.3. Highest HCHO mixing ratios (Figure 4.7 a & b) were observed in the Arabian Gulf (12.6 ppbv) from air masses originating from Iraq and Kuwait, indicating fresh emissions from local sources. The lowest median mixing ratios were observed in the southern Red Sea (0.37 ppbv) from unpolluted air masses originating in Eritrea. Low mixing ratios were also found the Arabian Sea (0.86 ppbv) and the Mediterranean Sea (0.77 ppbv), indicating aged age masses with only minor fresh emissions from anthropogenic or biogenic sources. The highest median mixing ratios were reported for the Arabian Gulf (3.1 ppbv), the Suez Canal (1.5 ppbv) and the Gulf of

4 AQABA field campaign

Oman (1.2 ppbv), which showed high levels of VOCs (Bourtsoukidis et al., 2019) and OH reactivity (Pfannerstill et al., 2019) while the lowest were observed in the southern Red Sea, Mediterranean Sea and Arabian Sea with 0.37, 0.77 and 0.86 ppbv, respectively.

Figure 4.7 c & d shows H_2O_2 mixing ratios for both leg 1 and 2. Compared to HCHO, lower variability in mixing ratios were observed for H_2O_2 . Lowest median mixing ratio with 0.13 ppbv for the Gulf of Oman, while highest were found in the Mediterranean Sea (0.26 ppbv), the Suez Canal (0.25 ppbv) and southern Red Sea (0.25 ppbv). High H_2O_2 mixing ratios are generally associated with high HO₂ mixing ratios, since the reaction of HO₂ with itself is the major production channel for H_2O_2 .

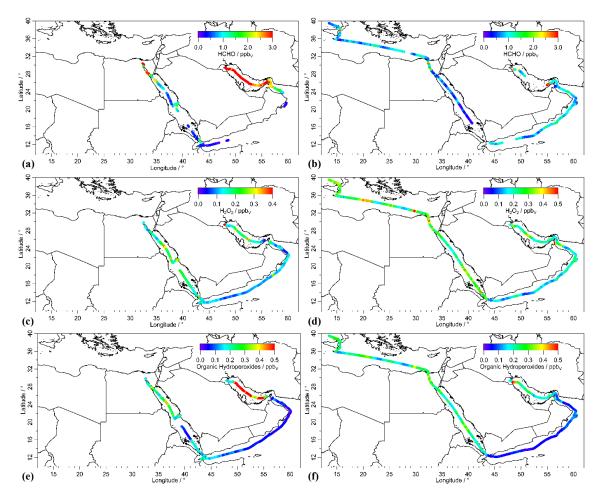


Figure 4.7 Overview and data coverage of HCHO, H_2O_2 and organic hydroperoxide measurements during both legs of the AQABA ship campaign (graphs on the left represent the first leg). Contaminated HCHO data (e.g. by ship exhausts) was removed from the dataset with a stack filter, therefore there is less HCHO data coverage during the first leg in the Arabian Sea. (taken from Dienhart et al. (2022))

Organic peroxides (ROOH) are shown in Figure 4.7 e & f. Overall variability is higher than H_2O_2 variability. The highest mixing ratio was observed during the first leg in the Arabian Gulf (2.26 ppbv). Highest median mixing ratios were observed in the Arabian Gulf

(0.23 ppbv). High VOC concentrations and strong solar radiation are likely to cause high levels of RO₂, which, in turn, result in high ROOH mixing ratios in this region. Lowest median mixing ratios were measured in the Arabian Sea (0.057 ppbv) and the Gulf of Oman (0.07 ppbv). Methyl hydroperoxide (MHP), peracetic acid (PAA) and ethyl hydroperoxide (EHP) were identified as the major contributors to organic peroxides. In the Arabian Gulf, significantly increased levels of EHP were detected.

mixing ratios	in ppbv including 1 ^s	^t and 3 rd q	uantile (taken	from Dienhar	t et al. (2022)).	
НСНО	Mediterranean	Suez	Northern	Southern	Arabian	Gulf	Arabian
	Sea	Canal	Red Sea	Red Sea	Sea	of	Gulf
						Oman	
1 st	0.60	0.9	0.52	0.23	0.63	0.90	2.4

Table 4.3 Overview of measured HCHO (top panel), H_2O_2 (middle panel) and ROOH (bottom panel) median mixing ratios in ppbv including 1st and 3rd quantile (taken from Dienhart et al. (2022)).

1 st	0.60	0.9	0.52	0.23	0.63	0.90	2.4
quantile							
median	0.77	1.5	0.76	0.37	0.86	1.22	3.1
3 rd	0.99	2.9	1.26	0.57	1.05	2.33	4.5
quantile							
H ₂ O ₂	Mediterranean	Suez	Northern	Southern	Arabian	Gulf	Arabian
	Sea	Canal	Red Sea	Red Sea	Sea	of	Gulf
						Oman	
1 st	0.20	0.19	0.14	0.18	0.12	0.08	0.17
quantile							
median	0.26	0.25	0.19	0.25	0.15	0.13	0.21
3 rd	0.33	0.35	0.25	0.32	0.19	0.19	0.33
quantile							
ROOH	Mediterranean	Suez	Northern	Southern	Arabian	Gulf	Arabian
	Sea	Canal	Red Sea	Red Sea	Sea	of	Gulf
						Oman	
1 st	0.16	0.20	0.15	0.12	0.046	0.048	0.18
quantile							
median	0.22	0.26	0.21	0.17	0.057	0.070	0.23
3 rd	0.27	0.33	0.28	0.23	0.084	0.097	0.43
quantile							

4 AQABA field campaign

4.3.3 Methane

Figure 4.8 shows methane mixing ratios from the first (a) and second leg (b), reported by Paris et al. (2021). Highest median mixing ratios were observed in the Arabian Gulf (1926 ppbv, 75% quantile: 1941 ppbv) and during the second leg in the Mediterranean Sea (1926 ppbv, 1937 ppbv). Median mixing ratios in the Mediterranean Sea during the first leg were significantly lower (1881 ppbv, 1884 ppbv). Lowest median methane mixing ratios were reported in the Arabian Sea (1813 ppbv, 1831 ppbv) and Gulf of Oman (1831 ppbv, 1853 ppbv).

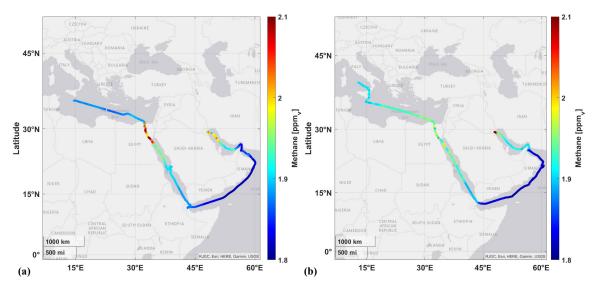


Figure 4.8 Overview of ship cruises with color-scaled mixing ratios of methane during the first (a) and the second leg (b). The data was filtered for contamination of the ship's own exhaust.

4.3.4 HONO

Measurements of HONO were conducted using a Long-Path-Absorption-Photometer. Data coverage and mixing ratios are shown in Figure 4.9. High mixing ratios were found in regions with high density of ship traffic, e.g. Suez Canal and near harbors. Highest median mixing ratios were observed during the first leg in the Suez Canal (0.38 ppbv, 75% quartile: 0.44 ppbv) and the Southern Red Sea (0.41 ppbv, 2.51 ppbv), while lowest mixing ratios were measured during the second leg in the Arabian Sea (0.005 ppbv, 0.019 ppbv) and Gulf of Aden (0.07 ppbv, 0.13 ppbv), which were both influenced by air masses originating in the Indian Ocean south of the Horn of Africa.

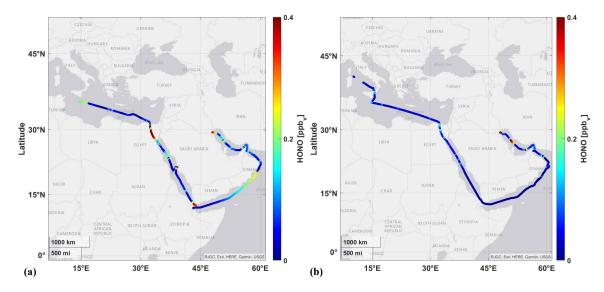


Figure 4.9 Overview of HONO data measured during AQABA. Color-scaling indicates the mixing ratio for the first (a) and second leg (b).

4.3.5 VOC / OVOC

Non-methane hydro carbons (NMHC) were reported by Bourtsoukidis et al. (2019). Figure 4.10 shows box plots of selected NMHC during the AQABA campaign. Overall lowest mixing ratios were found in the Arabian Sea, where the majority of NMHC were close to the limit of detection. Despite these clean conditions, ethene mixing ratios were elevated (0.09 ppbv), with a maximum of 0.24 ppbv. Since ethene is a highly reactive trace gas with relatively low lifetime, high mixing ratios indicate a local source. Similar conditions were observed in the Mediterranean Sea, with average values being slightly higher than in the Arabian Sea. High mixing ratios were found in the Suez Canal, due to intensive ship traffic and proximity to populated areas. The most abundant alkanes were n-butane (3 ppbv), ethane (2.64 ppbv) and i-butane (1.39 ppbv), while ethene (0.81 ppbv) dominated alkenes. The northern and southern part of the Red Sea showed very different NMHC mixing ratios. The northern Red Sea showed a strong influence from air coming from highly populated and industrialized north-eastern part of Africa (Egypt, Libya), causing NMHC mixing ratios to be higher than in the southern Red Sea. Both alkanes and alkenes were dominated by species of shorter chain length. In the southern Red Sea, air masses originating from central Africa led to lower overall mixing ratios, the southern part was mostly influenced by air coming from central Africa. This caused NMHC in the southern part of the Red Sea to be significantly lower than in the northern part. NMHC in the Arabian Gulf were on average higher, due to high ship traffic and petrochemical industries. C₂-C₅ alkanes and alkenes showed high values as well as high variability, which is attributed to the diverse influence of strong local petrochemical sources.

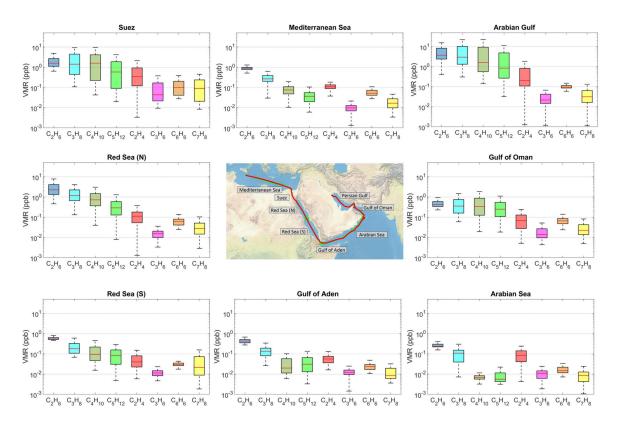


Figure 4.10 Volume mixing ratios of selected NMHC species over the eight regions. For each box, the central red line indicates the median mixing ratio for both campaign legs. The bottom and top edges of the box indicate the 25th (q1) and 75th (q3) percentiles respectively. The boxplot draws points as outliers if they are greater than $q3+w\times(q3-q1)$ or less than $q1-w\times(q3-q1)$. The whiskers correspond to $\pm 2.7 \sigma$ and 99.3 % coverage if the data are normally distributed. The ship track of the first leg is shown in the map with the green line, the second leg with the red line. (Taken from Bourtsoukidis et al. (2019))

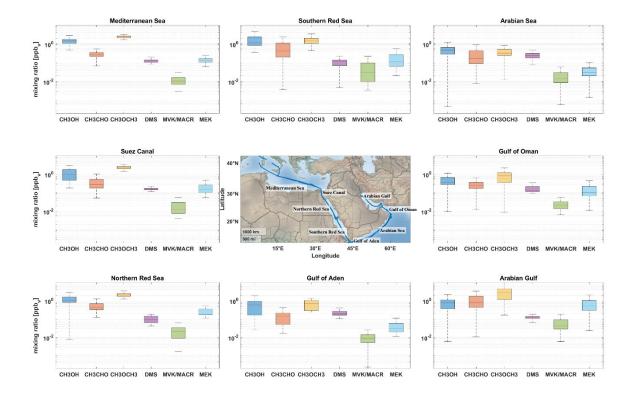


Figure 4.11 Mixing ratios of selected oxygenated VOC (OVOC) over the eight regions during the AQABA campaign. The top and bottom edges of each box indicate the 25th and 75th percentiles, respectively. The red line indicates the median for each box. The whiskers correspond to $\pm 2.7 \sigma$ and 99.3 % coverage if the data is normally distributed. The ships track is shown in the middle panel.

Figure 4.11 shows box plots of selected OVOC for the regions during AQABA. Similar to NMHC, lowest median values of OVOC were observed in the Arabian Sea, with the exception of DMS (0.24 ppbv). This increase to the highest levels during the campaign indicates large amounts of phytoplankton, which can emit large amounts of DMS. In the Gulf of Oman and Gulf of Aden slightly higher mixing ratios for most OVOC were observed. Compared to the Arabian Sea, both gulf regions show higher acetone levels (Gulf of Oman, 0.87 ppbv, Gulf of Aden, 0.69 ppbv). Highest overall OVOC mixing ratios were found in the Arabian Gulf, with very high values for acetone (2.8 ppbv), acetaldehyde (0.81 ppbv) and methanol (0.77 ppbv). N. Wang et al. (2020) reported a good correlation between C₂-C₇ carbonyls during daytime, indicating ozone and carbonyls were coproduced via photochemical oxidation. The northern Red Sea, Suez Canal and Mediterranean Sea showed very similar mixing ratios of OVOC. Methanol and acetone show similar levels throughout the northern Red Sea, Suez Canal and Mediterranean Sea (~1 ppbv and ~2 ppbv, respectively), while decreasing mixing ratios were observed for acetaldehyde, MEK and MVK/MACR. Ketones can be released as a product of fuel combustion and the high concentrations in the Suez Canal are likely caused by the dense ship traffic in the narrow channel (Huang et al., 2018).

4.3.6 OH reactivity

OH reactivity was reported by Pfannerstill et al. (2019) and is shown in Figure 4.12. The range of OH reactivity during the AQABA campaign was from $<5.4 \text{ s}^{-1}$ (below detection limit) over the Arabian Sea up to 303.6 s⁻¹ during fueling in Fujairah (UAE). As expected, regions with strong pollution like the Arabian Gulf and the Suez Canal had high median OH reactivity of 11.2 s⁻¹ (75% quantile: 15.2 s⁻¹, Arabian Gulf) and 10.8 s⁻¹ (18.8 s⁻¹, Suez Canal), respectively. The largest share in OH reactivity over the Arabian Gulf can be attributed to OVOC (35%), followed by alkanes and alkenes (both 9%). In the narrow Suez Canal, a strong influence of ship emissions can be seen by the large share of NO_x (10%) in OH reactivity. OH reactivity in the northern Red Sea (median: 8.5 s⁻¹, 75%) quantile: 15.0 s⁻¹), southern Red Sea (7.9 s⁻¹, 10.9 s⁻¹), Gulf of Aden (8.0 s⁻¹, 10.1 s⁻¹) and Gulf of Oman (8.4 s⁻¹, 10.5 s⁻¹) were in a similar range and are mostly attributed to emissions from ship traffic. Again, OVOC have the largest share of OH reactivity (12 - 21 %) followed by NO_x and alkenes (both 4 - 9 %) and inorganics (mostly SO₂ and CO) (4-6%). Less reactive air was observed over the open seas of the Mediterranean (6.8 s⁻¹, 7.8 s⁻¹) and Arabian Sea (4.9 s⁻¹, 6.5 s⁻¹). Measurements over the Arabian Sea were often below the detection limit of 5.4 s⁻¹. OVOC were the largest contributors to OH reactivity with 11 - 12 %. Over the Mediterranean Sea, shipping emissions had a bigger influence compared to the Arabian Sea, evident from NOx contribution of ~4 % in the Mediterranean and ~1 % in the Arabian Sea. In all regions, large fractions of OH reactivity (between 27±55 % in the Arabian Gulf, and 72±57 % in the Arabian Sea) could not be attributed to any trace gas.

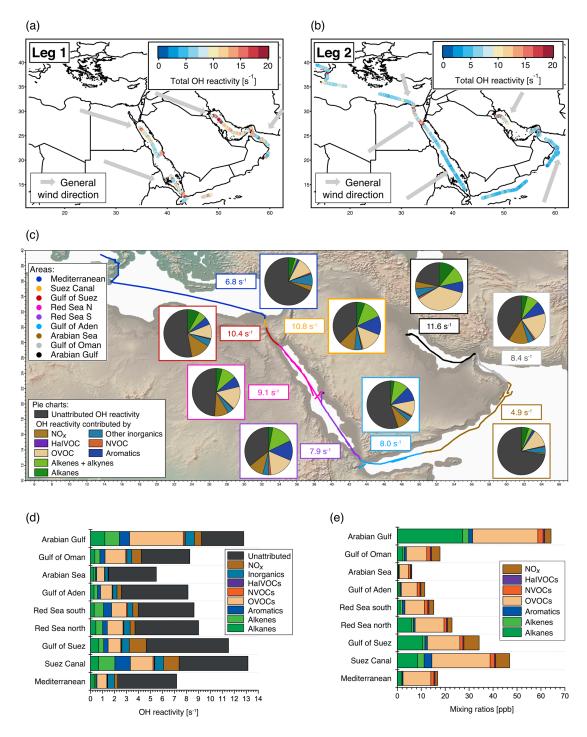


Figure 4.12 Overview of total OH reactivity around the Arabian Peninsula during the AQABA campaign. OH reactivity during (a) leg 1 (5–31 July 2017) and (b) leg 2 (3–31 August 2017). The maximum in the color scales is set to 20 s⁻¹ for better visibility of differences, although there are a few data points above this value. Arrows depict general wind directions for the respective regions. (c) Total OH reactivity medians by region, and pie charts showing the contribution of compound classes for data points where speciated OH reactivity \geq LOD (exception: pie charts of Mediterranean and Arabian seas show the average of all data points, due to the low number of points above LOD). (d) Average OH reactivity and speciation by region for all data points, including those where speciated OH reactivity was below the LOD. Error bars show the total uncertainty of the measurement. (e) Average mixing ratio of VOCs = trace gases in parts per billion by compound class and region (except for the class of inorganic compounds other than NO_x). Port calls and bunkering are excluded from all averages. (Taken from Pfannerstill et al. (2019))

4.4 OH and HO₂*

4.4.1 Calibration

Determination of actinic flux density

In order to calibrate the HORUS system, it is necessary to know the actinic flux of the mercury vapor lamp used in the calibration, to calculate the OH and HO_2 concentration produced by the lamp. For this, the actinic flux measurement for the lamp used during AQABA was done according to 2.4.2.

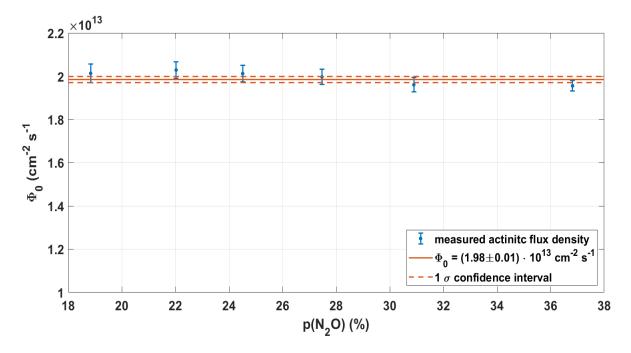


Figure 4.13 Actinic flux density of the pen ray lamp used in the calibration of the HORUS instrument. Error bars indicate the propagated statistical variability of the calculated flux density.

The resulting actinic flux density is shown in Figure 4.13. The measured actinic flux density was calculated to be $\Phi_0 = (1.98\pm0.01) \cdot 10^{13} \text{ cm}^{-2}\text{s}^{-1}$. The systematic error was calculated to be ~16.1 %. All contributing components are summarized in Table 4.4.

Parameter	Uncertainty
NO Monitor (TEI)	7 %
NO standard (NIST)	1 %
Mass Flow Controller	2 %
Absorption cross section $\sigma_{\rm H_{2}O}$	2 %
Quantum yield	1 %
Kinetic rate coefficients	12 %
Dimensions of reaction chamber	3 %
Pressure sensor	2 %
Variability of measured terms	5 %
Overall uncertainty	16.1 %

Table 4.4 Systematic uncertainties during actinometric measurement

Calibration of the HORUS system

As an indirect measurement method, LIF-FAGE requires determination of instrument sensitivity. To ensure possible instability of the MCP detectors over a period of time as well as other factors impacting the sensitivity (e.g. wall losses, alignment of the White cell, etc.) regular calibrations of the HORUS system was done during AQABA, as described in 2.4.2. The sensitivity during AQABA vs. time is shown in Figure 4.14. c_{OH} (blue) is the sensitivity of the OH detector towards OH. c_{HO_2} (red) is the sensitivity of the HO₂ detector towards HO₂, and $c_{OH(HO_2)}$ (yellow) is the sensitivity of the HO₂ detector towards OH. $c_{OH(HO_2)}$ is used to correct the signal of the HO₂ detector for any remaining OH measured in the sample air. Calibrations were done after sun down to ensure maximum data coverage during daytime, as well as to avoid discontinuity of the data, due to an updated sensitivity factor.

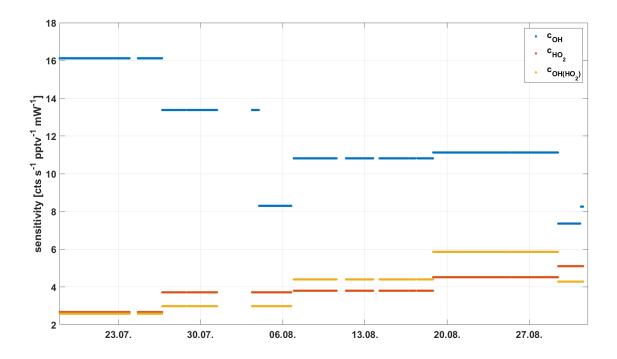
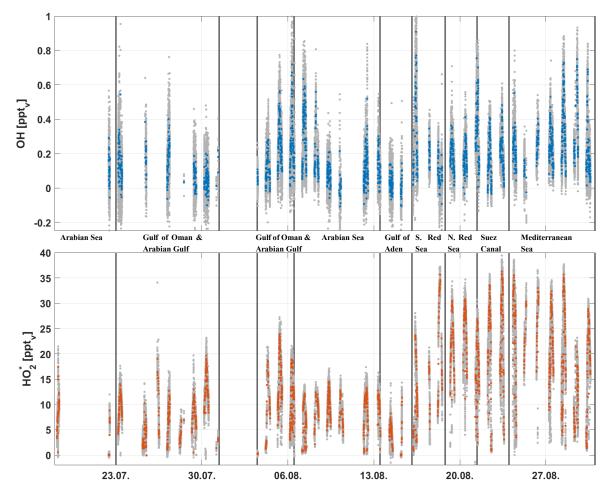
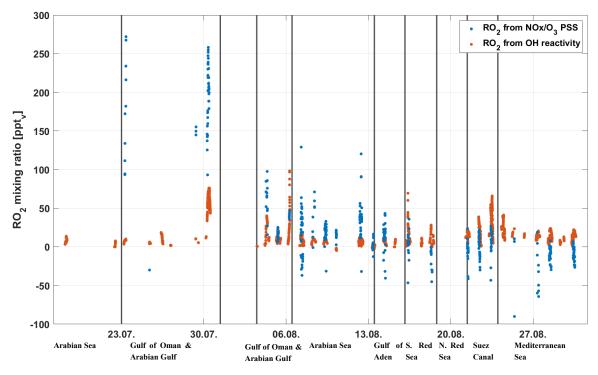



Figure 4.14 Sensitivity over time during AQABA. Two detectors were used during the campaign. c_{OH} (blue) is the sensitivity of the OH detector. c_{HO_2} (red) is the sensitivity of the HO₂ detector towards HO₂, and $c_{OH(HO_2)}$ (yellow) is the sensitivity of the HO₂ detector towards OH. $c_{OH(HO_2)}$ is necessary to correct for remaining atmospheric OH detected by the HO₂ detector.

4.4.2 Measurements of OH and HO2*

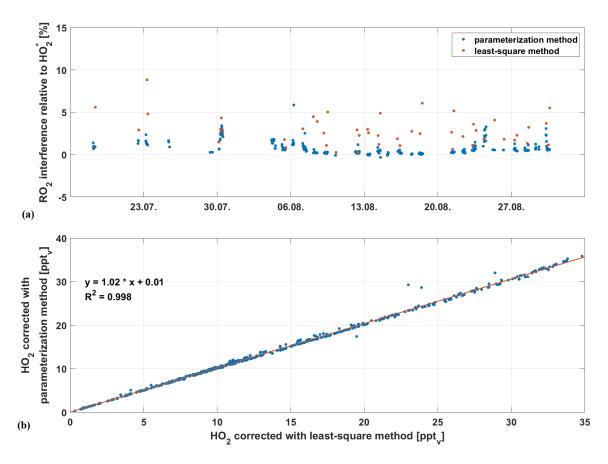

Figure 4.15 Overview of OH and HO₂^{*} measurements during AQABA 2017 campaign. Data shown is only during daytime and was filtered for the ship's own stack emissions. The top panel shows OH mixing ratio, the bottom panel shows HO₂ mixing ratio. Gray data shows 15 sec resolution and colored data shows 20 min averages (blue and red). Vertical lines separate the different regions during AQABA.

OH and HO₂ measurements are shown in Figure 4.15. The data shown is only during daytime $(J(O^1D) > 5 \cdot 10^{-6} \text{ s}^{-1})$ and filtered for the ship's own emissions. The top panel shows OH mixing ratios in 15 s resolution (gray) and 20 min averages (blue). The bottom panel shows HO₂ measurements not corrected for possible interference by RO₂ (further called HO₂^{*}). Similar to OH, HO₂^{*} is shown in 15 s resolution (gray) and 20 min averages (red). The typical diurnal cycle can be found for most days for both OH and HO₂^{*}, with low mixing ratios in the morning followed by a strong increase to a maximum during midday and a decrease in the afternoon to typical low levels in the evening/night. If not further specified, OH and HO₂^{*} mixing ratios discussed here represent the levels during noon.

Both OH and HO_2^* show low levels over the Gulf of Oman and Arabian Gulf during leg 1 (median: 0.08 pptv, 75% quantile: 0.14 pptv & 11.7 pptv, 14.6 pptv, respectively) in comparison to the remaining timeseries. During leg 2, OH increased from similar levels as

during leg 1 up to 0.40 pptv (75% quantile: 0.45 pptv). HO₂^{*} did not follow this trend with levels staying between ~ 20 pptv – 25 pptv. Over the Arabian Sea, mixing ratios of OH and HO₂ decreased, mainly caused by low NO_x and O₃, as well as the overall clean air indicated by low VOC concentration measured by the PTR-MS and GC. While OH gradually decreased from its high over the Gulf of Oman to a low close to the limit of detection (~0.1 pptv), HO₂^{*} stayed between ~ 13 – 15 pptv. OH levels over the Gulf of Aden were close to the limit of detection (~0.1 pptv), while HO_2^* levels were <10 pptv. Entering the southern Red Sea through the Bab al-Mandab strait, dense shipping traffic caused high NO_x and VOC levels, which in turn caused an increase in both OH and HO2* to 0.52 pptv (0.60 pptv) and 22.9 pptv (23.4 pptv), respectively. As the strait opens in to the much wider Red Sea, pollution decreased and OH decreased to close to the limit of detection. HO_2^* increased further to 33.6 pptv (34.0 pptv) and stayed at high levels above 25 pptv throughout the rest of the campaign. The northern Red Sea is influenced by regions with stronger anthropogenic emissions compared to the southern section. This was visible through the increase in OH mixing ratios to 0.29 pptv (0.37 pptv). As the ship approached the Gulf of Suez, a strong increase in NO_x from dense ship traffic traversing through the Gulf caused HO₂^{*} to decrease (25.4 pptv, 26.4 pptv) and OH to increase (0.57 pptv, 0.62 pptv). With decreasing NO_x, HO_x returned back to levels from before the event. Over the Mediterranean Sea, OH stayed at similar levels as over the Suez Canal, but increased in the latter half to 0.61 pptv (0.65 pptv). HO₂^{*} kept its high levels of 30.1 pptv (33.3 pptv).

4.5 RO₂ interference characterization during AQABA

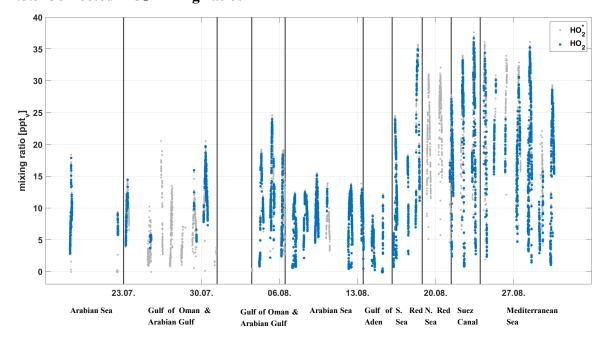


4.5.1 Estimation of RO₂ mixing ratios

Figure 4.16 Calculated RO₂ mixing ratios during AQABA using NO_x/O₃ PSS (blue) (Tadic et al., 2020) and OH reactivity and HO₂ (red). From the calculated (HO₂ + RO₂) reported in Tadic et al. (2020), measured HO₂ concentrations were subtracted to obtain RO_{2 PSS}. Vertical lines separate the different regions during AQABA.

As mentioned above, HO₂ measurements in a LIF-FAGE instrument are prone to interference caused by RO₂. Since there are no measurements of RO₂ during the AQABA campaign, mixing ratios are estimated using the methods described in section 3.1. Figure 4.16 shows RO₂ mixing ratios estimated using NO_x/O₃ photo stationary state (RO_{2 PSS}), and OH reactivity and HO₂ (RO_{2 reac}). In order to derive RO_{2 PSS}, measured HO₂ was subtracted from RO_x (HO₂ + RO₂) reported by Tadic et al. (2020). This subtraction lead to negative mixing ratios in the southern Red Sea, Suez Canal and Mediterranean Sea, due to very low calculated RO_x mixing ratios throughout these regions. It is suspected, that RO_x mixing ratios derived using the NO_x/O₃ PSS are underestimated in these regions, possibly by an overestimation of the NO₂ offset. RO_{2 reac} were calculated using speciated reactivity reported by Pfannerstill et al. (2019). As shown above, up to 72 % of total reactivity could not be attributed to any trace gas. The estimated RO₂ concentrations are therefore only a lower boundary and were likely higher during the AQABA campaign. Additionally, total data coverage of all VOC and OVOC was limited. Therefore, the requirement for model calculations had been the availability of all VOC/OVOC, which contribute >90 % of speciated OH reactivity. This increased data coverage significantly, but exacerbate the underestimation of RO2 with this method. Highest mixing ratios for both methods are found

over the Arabian Gulf on leg 1 with 260 pptv (RO_{2 PSS}) and (98.3±34.6 pptv) (RO_{2 reac}). Lowest estimated mixing ratios for RO_{2 reac} are in the Arabian Sea, while lowest levels for RO_{2 PSS} reach negative values from the southern Red Sea on for the remainder of the campaign. Due to this, RO_{2 reac} was used for further corrections of RO₂ interference. Total uncertainty of RO₂ was calculated from the individual uncertainties to be ~84 % (see Table 4.1, Δk_{CO} =5 %). Total uncertainty for RO_{2 PSS} was estimated to be 6 % (Tadic et al., 2020).



4.5.2 Correction of RO₂ interference in HO₂*

Figure 4.17(a) Fraction of HO₂ from RO₂ in HO₂^{*} calculated using least-square method (blue) and parameterization method (red) during the AQABA 2017 campaign. (b) Correlation of HO₂ corrected (10 min averages, blue dots) with both methods. Linear fit is shown as a red line.

To correct for RO₂ interference during the AQABA campaign, the methods described in sections 3.2.1 and 3.2.2 were applied to the measured HO₂^{*} data. The relative RO₂ interference of HO₂^{*} calculated with both methods is shown in the top frame of Figure 4.17. A correlation of correspondingly corrected HO₂ is shown in the bottom frame. Throughout the AQABA campaign, RO₂ interference was calculated to be <5 %, which is comparable to previous findings with the HORUS instrument (Hens, 2013) as well as the estimates by Fuchs et al. (2011). Estimations using the least-square method (3.2.2) yielded higher RO₂

interference values compared to estimates from the parameterization method (3.2.1). Calculation of HO₂ mixing ratios using both methods show a good correlation, with a slope of 1.02 and an $R^2 = 0.998$. Since the least-square method uses NO titrations, this method has information regarding the RO₂ composition at that time. However, this limits the resolution to a maximum of one every 2 h. Data coverage of the parameterization method is higher, since it is only affected by RO₂ data coverage and additionally, this method accounts for fast changes in internal pressure and temperature. A combination of both methods was used to correct for RO₂ interference during the AQABA campaign using slope and intercept of the correlation in Figure 4.17b. Total uncertainty for RO₂ interference was calculated to be + 156 % / - 102 %.

4.5.3 Corrected HO₂ mixing ratios

Figure 4.18 HO₂ data (blue) during AQABA campaign corrected for RO₂ interference. HO₂^{*} mixing ratios shown in gray. Vertical lines separate the different regions during AQABA.

HO₂ mixing ratios corrected for RO₂ interference are shown in Figure 4.18. The median interference caused by RO₂ is 2.4 % (75% quantile: 2.8%), with the lowest values found in the Arabian Sea, Gulf of Aden and southern Red Sea (\sim 2 %) and the highest in the Arabian Gulf (\sim 5 %).

During daytime, OH has a major influence on atmospheric oxidative capacity. The production of OH can be separated in primary production, e.g. through the reaction of $O(^{1}D)$ with water vapor, and recycling processes (chapter 1.3.2). These recycling processes strongly affect the stability of tropospheric OH. Auto-catalytic conditions could lead to a built-up of HO_x, causing instability in the system, while the absence of recycling processes could cause an accumulation of pollutants and reduced gases (J. Lelieveld et al., 2002). Therefore, the recycling probability can be interpreted as a measure for the stability of tropospheric OH and its oxidative capacity. This chapter gives better insight on OH primary and secondary production rates as well as OH recycling probability during AQABA.

5.1 OH primary production

Using the observations described in chapter 4, OH primary production rates can be calculated considering reactions R.40 - 41.

$$O(^{1}D) + H_{2}O \rightarrow 2OH$$
 (R.40)

$$HONO + h\nu \to OH + NO \tag{R.41}$$

$$OH + NO \rightarrow HONO$$
 (R.42)

Their contributions to OH primary production rates during AQABA are shown in Figure 5.1. HONO was not measured during the Gulf of Aden and Southern Red Sea. The contribution of HONO photolysis to OH primary production was calculated by accounting for the backreaction of OH with NO (R.42), thus resulting in the net OH production rate from HONO photolysis. Calculated OH primary production rates during noon are in the range of $0.8 - 2.3 \cdot 10^7$ molec cm⁻³ s⁻¹. The reaction of O(¹D) with H₂O is the most important source of OH and shows the expected diurnal cycle. The highest contribution was found in the Northern Red Sea with ~99 %. The highest contribution of HONO to the primary production was found in the Arabian Gulf (~10 %), while lowest was found in the Northern Red Sea (~1 %). OH production rate from photolysis of H₂O₂ and MHP (methyl hydroperoxide) were calculated. They contributed <1 % and were thus neglected.

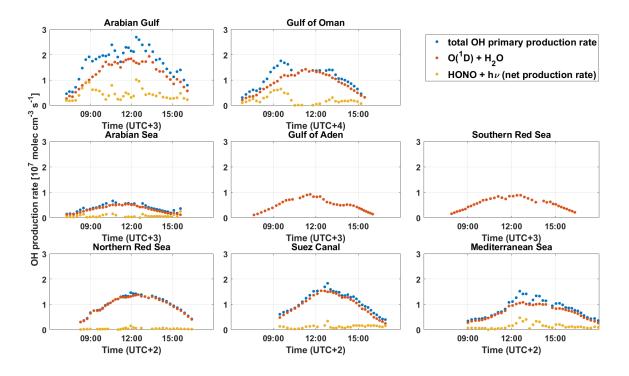


Figure 5.1 OH primary production versus time of day around the Arabian Peninsula and Mediterranean Sea during AQABA. Total OH primary production (blue) is comprised of OH production from O_3 photolysis (red) and HONO photolysis (yellow). Contributions from peroxide photolysis were <1 % and thus were neglected in this calculation. No HONO data was measured during the Gulf of Aden and Southern Red Sea, thus OH production from HONO is missing.

5.1.1 HO_x primary production

As shown above, the Arabian Gulf showed higher primary production of OH compared to the Mediterranean Sea, while simultaneously observed HO_x concentrations were lower by a factor of >1.5 in the Arabian Gulf. Utilizing the primary production of OH and adding primary production of HO₂ gives the total production of HO_x P_{HO_x} . Assuming steady state, P_{HO_x} can be used to determine the maximum HO₂ concentration at a given P_{HO_x} . Eq.25 describes the steady state assumption. Assuming only the reaction of HO₂ with itself is a viable radical loss reaction (R.17) allows to define a maximum HO₂ concentration using Eq.25 at a given production of HO_x P_{HO_x} (Eq.26). Additional loss reactions of HO₂, e.g., the reaction of HO₂ with RO₂, will, thusly, lower the HO₂ concentration at a constant P_{HO_x} . This relationship can give insight into the extent of additional radical loss rate in a specific region. Figure 5.7 shows the HO₂ concentration vs. HO_x production rates. Measured data for different regions during the AQABA campaign are shown as differently colored points. The yellow line defines an enveloping upper limit of the HO₂ concentration if the selfreaction is the only loss reaction (Eq.26). As expected, the measured HO₂ concentrations

are below the enveloping curve, which is caused by other radical loss reactions. At similar P_{HO_x} , the Arabian Gulf shows a much lower HO₂ concentration than the Mediterranean Sea. Even at higher P_{HO_x} , the HO₂ concentration shows values far below suggested by the enveloping curve. These low values indicate a significant additional radical loss in the Arabian Gulf. High VOC concentrations and primary OH production in the Gulf region indicate high concentrations of RO₂, leading to possible high loss rates through the reaction of HO₂ with RO₂. HYSPLIT trajectories (Figure 4.4 & Figure 4.5) showed air masses affecting the Arabian Gulf originating in the surrounding deserts. This could lead to high dust particle concentrations, and thus loss of HO₂ on the surface. These losses are investigated in further detail in chapter 5.3.2.

$$P_{HO_x} = [HO_2] L_{HO_2} + [OH] L_{OH}$$
(Eq.25)

$$[HO_2] = \sqrt{\frac{P_{HO_x}}{k_{HO_2} + HO_2}}$$
(Eq.26)

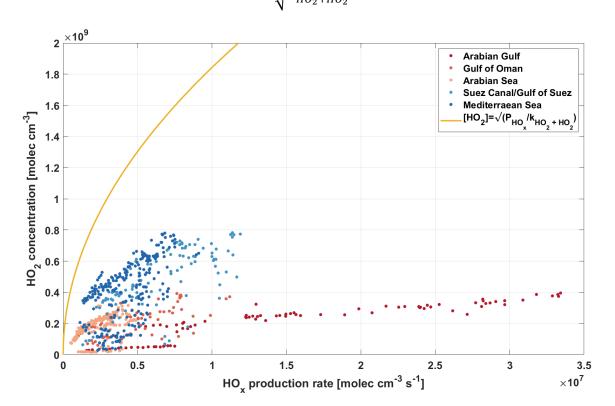


Figure 5.2 HO₂ concentrations vs. HO_x production rate. The points show measured data over different regions during the AQABA campaign. The yellow line shows the upper limit for HO₂, if the only loss reaction is the reaction of HO₂ with itself, neglecting other loss processes.

5.2 OH secondary production

After the initial production of OH, the recycling processes (see chapter 1.3.2) play an important role in maintaining the radical concentration. Oxidation of pollutants leads to the production of peroxy radicals (HO₂ and RO₂), which can be recycled back to OH (R.43 – 44). These reactions are considered secondary production.

$$\mathrm{HO}_2 + \mathrm{NO} \to \mathrm{OH} + \mathrm{NO}_2 \tag{R.43}$$

$$HO_2 + O_3 \to OH + 2 O_2$$
 (R.44)

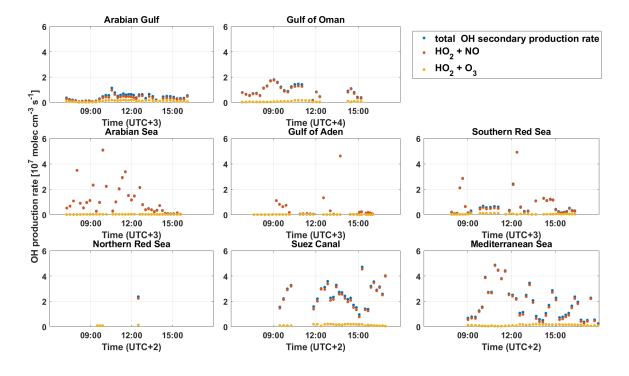


Figure 5.3 OH secondary production versus time of day around the Arabian Peninsula and Mediterranean Sea during AQABA. Total OH secondary production (blue) is comprised of OH production from $HO_2 + NO$ (red) and $HO_2 + O_3$ (yellow). Due to missing HO_2 measurements, data coverage in the Gulf of Aden and Northern Red Sea is low.

Contributions to OH secondary production rates are shown in Figure 5.2. Coverage of secondary production rates in the Gulf of Aden and Northern Red Sea regions are low, due to missing HO_2 data.

Secondary production rates are between $\sim 0.2 - 5 \cdot 10^7$ molec cm⁻³ s⁻¹, with lowest levels in the Arabian Gulf and highest in the Mediterranean Sea. The reaction of HO₂ with NO was the most important source of OH through recycling processes, with contributions between $\sim 65 - 99$ % compared to total secondary production.

5.3 OH recycling probability

The OH recycling probability r is calculated from the ratio of secondary sources S to the total OH production P+S (J. Lelieveld et al., 2002).

$$r = \frac{S}{S+P} \tag{Eq.20}$$

As shown in 5.2, the reaction of HO₂ with NO is the major contributor in *S*. Since NO mixing ratios thusly contribute to both nominator and denominator in Eq.20, *r* can be parameterized as a function of NO. Figure 5.3 shows OH recycling probability as a function of NO mixing ratio for various measurement campaigns, including ground-based and shipbased measurements under rural and metropolitan conditions. Since no primary production through photolysis of O₃ or HONO occurs during nighttime, this data $(J_{O(^1D)} < 5 \cdot 10^{-6} \text{ s}^{-1})$ is omitted for all data sets.

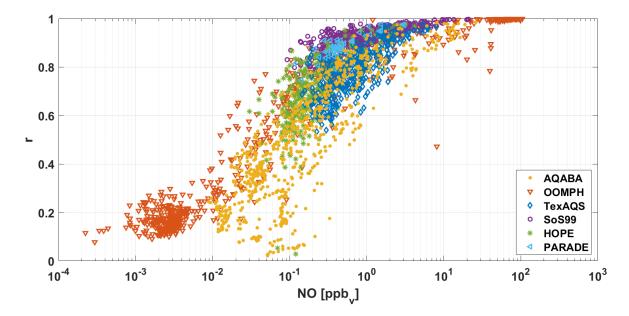


Figure 5.4 OH recycling probability r as a function of ambient NO mixing ratio in ppbv. Shown are measurement campaigns in different environments. OOMPH – marine boundary layer, ship stack plume; TexAQS – metropolitan, anthropogenic VOC; SOS99 – metropolitan, biogenic VOC; HOPE and PARADE – biogenic and anthropogenic VOC.

The dataset measured during OOMPH (**O**rganics over the **O**cean **M**odifying **P**articles in both Hemispheres, red triangles) is dominated by remote marine boundary layer (MBL) in the southern Atlantic, which is characterized by low NO_x and VOC mixing ratios. However, due to wind direction sometimes the stack plume of the ship affected the measurement, which caused high NO_x conditions to be observed. The NO emissions lead to increased recycling of HO_2 to OH and thus increasing *r* values close to 1. Measurements in an environment with high anthropogenic VOC emissions and high NO_x mixing ratios (**Tex**as Air Quality Study, TexAQS, blue diamonds) show a decrease in the recycling probability. Depending on wind direction, the measurements were influenced by emissions from petrochemical industries and the Houston metropolitan area (Jingqiu Mao et al., 2010). Due to increased VOC emissions, at similar NO mixing ratios secondary production S is lower during the TexAQS compared to OOMPH. Measurements during SOS99 (Southern Oxidants Study, purple circles) are influenced by both biogenic emissions from surrounding deciduous forests and pastures, as well as anthropogenic emissions from nearby Nashville, Tennesee (Martinez et al., 2003) with high NO_x values >100 pptv. Observed r values are above TexAQS and OOMPH observations at similar NO mixing ratios. Measurements conducted during HOPE12 (Hohenpeißenberg Photochemistry Experiment, green stars) and PARADE (Particles and Radicals: Diel observations of the impact of urban and biogenic Emissions, light blue triangles) showed a strong influence by biogenic emissions from the surrounding forests as well as anthropogenic emissions from nearby settlements. Recycling probabilities for high NO_x conditions during both campaigns lie between SOS99 and TexAQS. For lower NO levels, r values during HOPE12 are lower than during OOMPH.

With NO mixing ratios <10 pptv, *r* values are typically low at around 0.2. When NO levels increase to around 1 ppbv, *r* can exceed levels of 0.95. If NO levels increase even further, high levels of NO₂ can be produced. This leads to a decrease in *r* due to the increasing relevancy of the reaction of OH + NO₂ (direct OH sink, producing HNO₃) (Cariolle et al., 2008; Crawford et al., 2000; Jaeglé, Jacob, Brune, & Wennberg, 2001).

In the case of the AQABA (yellow dots) dataset, a wide range of recycling probabilities were observed due to the wide range of regional conditions during the measurement, with values from <0.1 up to >0.9 depending on NO mixing ratio. Additionally, for similar NO levels, values of r can range from ~ 0.1 up to 0.7 between different regions during the campaign. For better insight, OH recycling probabilities separated by regions are shown in Figure 5.4. Observations over the Mediterranean Sea are in line with results from OOMPH and HOPE12, with r ranging from 0.2 up to >0.9 depending on NO mixing ratio. When NO mixing ratios are comparable, recycling probabilities in the Suez Canal/Gulf of Suez are slightly lower than in the Mediterranean Sea. The Arabian Sea was dominated by low NO mixing ratios, which in turn caused low recycling probabilities. The Arabian Sea is a remote region with low influence from anthropogenic emissions. Compared to the OOMPH dataset, NO mixing ratios in the Arabian Sea reach higher levels, while r is lower at similar NO. The higher NO is likely due to higher ship traffic in the region with the close by entry to the Red Sea and Gulf of Oman. The lower recycling probability indicate a higher primary production or reduced secondary production through recycling processes. Increased VOC concentrations could lead to lower r by offering an additional loss process through the

formation of organic nitrates (see chapter 1.4). High NO mixing ratios between 2 - 10 ppbv were observed with corresponding higher values of *r*. These observations were taken close to the Gulf of Oman, causing a high influence from increased ship traffic and overall anthropogenic emissions in this region. The recycling probabilities in the Gulf of Oman and the Arabian Gulf are significantly lower compared to the other datasets shown. Especially in the Arabian Gulf, the recycling probability was found to be lower by a factor of ~8 compared to the Mediterranean Sea and a factor of ~9 compared to the other datasets shown. The region showed the highest primary production rate throughout AQABA and low secondary production rate. The low recycling probability is an indicator for a low stability of tropospheric OH in the region and therefore oxidative capacity of the atmosphere (J. Lelieveld et al., 2002). In order to understand the conditions observed in the Arabian Gulf, the cause of the low secondary production is investigated further.

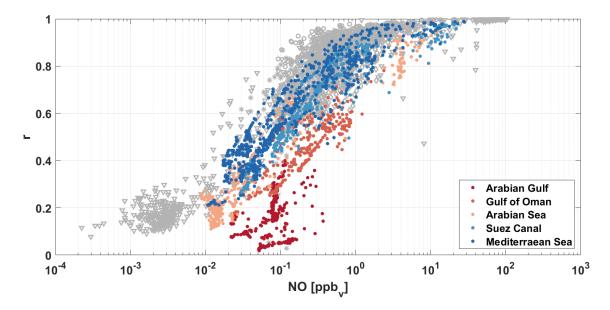


Figure 5.5 OH recycling probability during AQABA separated for different regions. The regions of the Red Sea and Gulf of Aden are not shown, since data coverage for r was low or non-existent, due to missing HO₂/HONO data. Data shown from other measurement campaigns are shown for comparison in gray in the background. See Figure 5.3 for more information.

5.3.1 Missing secondary production rate

With observed high primary and low secondary production in the Arabian Gulf, it is vital to understand the loss processes that lead to the low, observed recycling probability. It is assumed that the low secondary production in the Arabian Gulf is caused by either a missing reaction contributing to secondary production, or increased RO_x loss processes competing with recycling reactions. By taking the Mediterranean Sea as a reference, a 'missing' secondary production rate α can be calculated (Eq.21 & 22). α is the rate of

secondary production needed in the Arabian Gulf to achieve recycling probabilities observed in the Mediterranean Sea. It is assumed, that α can either be recycling reactions, which are not accounted for in the calculation of r, or loss reactions, which are more important in the Arabian Gulf. In order to calculate α , the calculated recycling probabilities are partitioned into different NO mixing ratio bins. The bins were arbitrarily chosen to separate one order of magnitude into 10 bins.

$$r_{Med} = \frac{S_{Arab} + \alpha}{S_{Arab} + \alpha + P_{Arab}}$$
(Eq.21)

$$\Rightarrow \alpha = \frac{P_{Arab} \cdot r_{Med}}{1 - r_{Med}} - S_{Arab}$$
(Eq.22)

with the recycling probability in the Mediterranean Sea r_{Med} , the primary and secondary production rate in the Arabian Sea S_{Arab} and P_{Arab} , and missing secondary production α .

Figure 5.5 shows α vs NO mixing ratio in ppbv (top panel). With increasing NO, α increases from ~0.7 up to $4.0 \cdot 10^7$ molec cm⁻³ s⁻¹, indicating an influence of NO levels on the loss processes leading to a lower recycling probability. However, this can be misleading, as the secondary production rate is also highly influenced by NO. A better indicator is the fraction of α of the total secondary production $S_{Arab} + \alpha$, which decreases with increasing NO mixing ratios from >0.85 to ~0.6 at ~0.5 ppbv (Figure 5.5, bottom panel). This decrease indicates a possible loss process independent on NO concentration. A sudden increase for high NO mixing ratios could indicate, that a NO influenced loss process increased in impact with increasing NO and overtook the non-NO loss process.

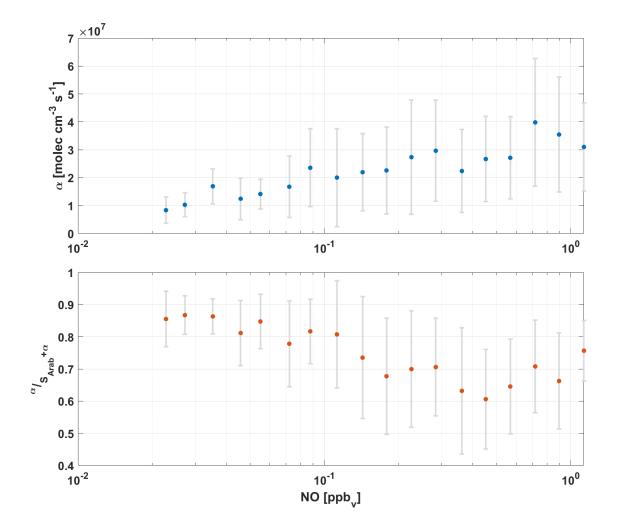


Figure 5.6 Missing secondary production rate α vs. NO mixing ratio (top). α represents additional secondary production needed to reach levels of *r* observed in the Mediterranean Sea for similar NO mixing ratios. The bottom panel shows the fraction of the missing secondary production rate α of the sum of S_{Arab} and α vs. NO mixing ratio.

5.3.2 Investigating RO_x losses

In order to identify possible sinks for RO_x , which caused the low recycling probability in the Arabian Gulf, several loss pathways were investigated using measurements and box model calculations.

Loss of HO₂ through deposition on particle surfaces

Heterogenous uptake on aerosol and dust particles can to be a significant sink for HO₂ (Carslaw et al., 2002; Carslaw et al., 1999; Jacob, 1986, 2000; J. Mao, Fan, Jacob, & Travis, 2013; Sommariva et al., 2004; Joel A. Thornton, Jaeglé, & McNeill, 2008). Its high solubility in water (Henry's law constant 6.8 mol m⁻³ Pa⁻¹ (S. P. Sander et al., 2011)) and rapid dissociation ($pK_a = 4.7$) of HO₂ promote fast loss through uptake in aqueous aerosols and sea spray. During AQABA, it is expected, that mineral dust particles from surrounding

deserts can be a major fraction of the measured particle surface. HO₂ uptake has been observed for Cu-doped aerosols catalyzed by a Cu(I)/Cu(II) redox cycling, converting HO₂ to H₂O₂ (Cooper & Abbatt, 1996; Mozurkewich, McMurry, Gupta, & Calvert, 1987; Taketani, Kanaya, & Akimoto, 2008). A similar catalytic mechanism has been proposed involving Cu(I)/Cu(II) and Fe(II)/Fe(III) (J. Mao et al., 2013). As a measure of efficiency of heterogeneous HO₂ uptake, the reactive uptake coefficient γ_{HO_2} is used. γ_{HO_2} is defined as the fraction of HO₂ collisions with aerosol surface resulting in reaction (J. Mao et al., 2013). An excerpt of reported uptake coefficients for different surfaces is shown in Table 5.1.

Table 5.1 HO₂ uptake coefficients for different surfaces

Surface	Type of Surface	Uptake coefficient γ		
H ₂ O	flowing liquid	>0.01 ^a		
NaCl	solid dry film	0.01 ^b		
(NH ₄) ₂ SO ₄ doped with Cu(II)	salt solution aerosol	0.52 °		
Aerosols doped with Cu/Fe	model simulations	0.4 - 1 ^{d*}		
* uptake coefficient is dependent on pH and Cu/Fe ratio				

^a (Hanson, Burkholder, Howard, & Ravishankara, 1992), ^b (Remorov, Gershenzon, Molina, & Molina, 2002), ^c (Taketani et al., 2008), ^d (J. Mao et al., 2013)

To calculate the loss rate from the reported uptake coefficients, a first-order loss to aerosol surfaces was used, see Eq.23 (Ravishankara, 1997).

$$L_{PS} = \frac{c_g A \gamma}{4} \cdot [\text{HO}_2] \tag{Eq.23}$$

with
$$c_g = \sqrt{\frac{8RT}{\pi M_{HO_2}}}$$
 (Eq.24)

 c_g is the mean molecular speed of gas molecules (see Eq.24), A is the particle surface area per volume unit, γ is the uptake coefficient, R is the universal gas constant, T is the ambient temperature and M_{HO_2} is the molecular weight of HO₂. To calculate L_{PS} for loss on H₂O and NaCl surfaces, surface areas of particles below 10 µm were used. Since dust particles are generally larger, with a diameter in the range of 2.5 – 10 µm (Maring, Savoie, Izaguirre, Custals, & Reid, 2003), the surface area of these particles was used to calculate L_{PS} for Cu and Cu/Fe doped particles. Calculated L_{PS} is shown in the top panel of Figure 5.6, the bottom panel shows L_{PS} divided by missing production α . The highest loss was found on for Cu/Fe doped aerosols with a maximum of 2.7·10⁴ molec cm⁻³ s⁻¹ and a maximum ratio of α of 0.16 %. This indicates, that during the measurements observed here, uptake on

particle surfaces does not reduce HO₂ concentrations significantly, which, in turn, does not reduce secondary OH production in the Arabian Gulf.

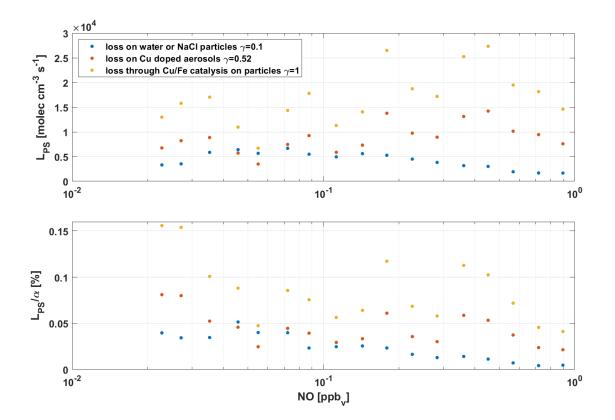


Figure 5.7 Loss rate on different surfaces L_{PS} vs. NO mixing ratio in ppbv (top panel). The particle surface of particles between 2.5 and 10 µm diameter were used to calculate for loss on Cu doped aerosols and loss through Cu/Fe catalysis. The particle surface of particles below 10 µm diameter were used to calculated loss on water or NaCl surfaces. Fraction of loss on different surfaces of the missing secondary production α vs. NO mixing ratio in ppbv (bottom panel).

Budget calculations and investigation of HO₂/RO₂ loss rates

Loss processes of peroxy radicals through chemical reactions with other trace gases can lead to either to recycling or loss of radicals (see chapters 1.3.3 and 1.4.2). In order to investigate these reactions and possible loss pathways in the Arabian Gulf, CAABA/MECCA box model calculations, constrained by measured trace gas concentrations had been performed. The measurements during AQABA were taken as boundary conditions. As mentioned in chapter 3.1.2, total data coverage of all VOC/OVOC was limited. Therefore, the requirement for model calculations had been the availability of all VOC/OVOC, which contribute >90 % of speciated OH reactivity (see Pfannerstill et al. (2019)). Loss rates were calculated for HO₂ and all RO₂. Due to the large number of possible reactions of HO₂ (236 reactions) and RO₂ (608 reactions), reaction groups were defined (Table 5.2). Loss reactions of HO₂ were separated into three groups: HL_{rad}, radical loss through radical-radical reactions, HCC_{NO_x} , recycling reaction of HO_2 with NO_2 , HCC_{other} , non-NO_x radical chain propagation, e.g. reaction of HO_2 with O_3 to form OH and O_2 . Loss reactions of RO_2 were separated into six groups: RL_{NO_x} , radical loss through reaction with NO_x , RL_{rad} , radical loss through radical-radical reactions, RL_{other} , other radical loss, RCC_{NO_x} , radical chain propagation through reaction with NO_x , RCC_{HO_2} , radical chain propagation by reaction with HO_2 , RCC_{other} , other radical chain propagation reactions, e.g. unimolecular reactions of RO_2 .

Loss rates of RO₂ and HO₂ for regions during AQABA are shown in Figure 5.8. The Gulf of Aden and Northern Red Sea are not included due to lack of HO_x measurements. The highest and lowest overall radical loss rates were calculated for the Arabian Gulf with ~ $6.6 \cdot 10^7$ molec cm⁻³ s⁻¹, and the Arabian Sea with ~ $5.3 \cdot 10^6$ molec cm⁻³ s⁻¹, respectively. This is consistent with expectations, due to the high levels of pollution in the Arabian Gulf and the remote conditions observed in the Arabian Sea. In each region, the overall largest contributor to the loss rate are reactions with NO_x. Recycling reactions by reaction with NO_x (RCC_{NO_x} and HCC_{NO_x}) contribute up to 96 % of total loss rate in the Mediterranean Sea. However, due to limited data coverage during the Mediterranean Sea, the data used in the model calculations are during early morning, with very low HO_x concentrations. Thus, budget calculations are not representative for the whole region of the Mediterranean Sea. The Suez Canal showed similar recycling probabilities as the Mediterranean Sea, with NO_x recycling reactions contributing ~81 %. The lowest contribution is shown in the Arabian Sea and Arabian Gulf, with 38 % and 52 %, respectively, due to low NO mixing ratios. Additionally, high radical-radical reaction rates (RL_{rad} and HL_{rad}) lead to a higher radical loss in the Arabian Sea and Arabian Gulf compared to the Suez Canal.

In order to illustrate the impact of radical loss for each region, Figure 5.9 shows radical loss as a fraction of total loss rates.

Table 5.2 Groups of RO_x loss reactions, with number of reactions found in CAABA/MECCA and example for each group

Type of reaction	Abbrev.	reactions	example
		in this	
		group	
Radical loss from reaction with NO _x	RL _{NO_x}	77	$CH_3C(0)O_2 + NO_2 \rightarrow PAN$
Radical loss from radical-radical reaction	RL _{rad}	146	$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$
Other radical loss	RLother	52	$CH_3O_2 \rightarrow 0.5 \text{ HCHO} +$
			$0.5 \text{ CH}_3 \text{OH} + 0.5 \text{ O}_2$
Radical chain propagation by reaction with NO _x	RCC _{NO_x}	124	$CH_3O_2 + NO \rightarrow CH_3O + NO_2$
Radical chain propagation by reaction with HO ₂	RCC _{HO2}	72	$CH_3C(0)O_2 + HO_2 \rightarrow OH + +CH_3 + CO_2$
Other radical chain	RCC _{other}	137	$CH_3O_2 + OH \rightarrow CH_3O + HO_2$
propagation reactions			$C_4H_7O_4 \rightarrow CH_3C(0)CH_2OH +$
			CO + OH
Loss reactions of HO ₂			
Type of reaction	Abbrev.	reactions in this group	example
HO ₂ loss through radical-radical reaction	HL _{rad}	146	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$
Radical chain propagation through reaction with NO _x	HCC _{NO_x}	1	$HO_2 + NO \rightarrow OH + NO_2$
Other radical chain propagation	HCC _{other}	89	$\mathrm{HO}_2 + \mathrm{O}_3 \rightarrow \mathrm{OH} + 2 \mathrm{O}_2$

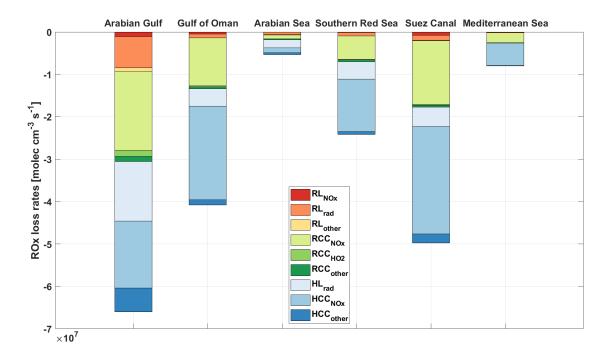


Figure 5.8 RO_x loss rates for regions during AQABA. Loss rates accounted for RO₂ radicals are shown in red to green and loss rates accounted to HO₂ are shown in different shades of blue. The low RO_x loss rates in the Mediterranean Sea are caused by low data coverage in this region. The obtained RO_x losses are therefore not representative for the whole region of the Mediterranean Sea.

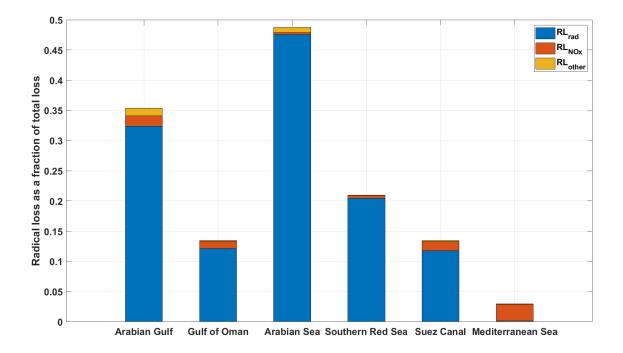


Figure 5.9 Radical loss of RO_x as a fraction of total loss during AQABA. Radical loss from radical-radical reaction is shown in blue (RL_{rad}), loss from nitrate formation is shown in red (RL_{NOx}), other radical loss is shown in yellow (RL_{other}).

Overall radical loss contributes between 3 % and 49 % of total RO_x loss rate. The highest fraction was calculated for the Arabian Sea and Arabian Gulf with 49 % and 35 %, respectively, suggesting a large fraction of radicals being lost instead of recycled in these two regions. RL_{rad} is the most important loss path way, with only minor contribution from RL_{NO_x} and RL_{other} . The Mediterranean Sea showed lowest contribution of radical loss to the total loss rate with 3 %, suggesting good recycling. Additionally, due to high NO_x and low RO_x concentrations in the Mediterranean Sea, the reaction with NO_x was the major radical loss, with radical-radical reactions only contributing insignificantly. However, as already mentioned, the data available for the Mediterranean Sea is only representative for the early morning in the region. Due to low radical concentrations in the early morning, the majority of loss rate is attribute of reaction with NO_x. With 13 % radical loss in the Suez Canal is significantly lower compared to the Arabian Gulf and Arabian Sea, indicating generally higher radical losses in both regions.

In the calculation of secondary production rates, only the reactions of HO₂ with NO and O₃, respectively, are considered as recycling reactions. In order to investigate additional recycling processes, non-NO_x radical recycling as a fraction of total RO_x loss rate for each region during AQABA is shown in Figure 5.10. Due to low NO_x mixing ratios in the Arabian Gulf and Arabian Sea, both regions show a high fraction of non-NO_x recycling. As expected, a large fraction of non-NO_x recycling is due to the reaction of HO₂ with O₃, which is already accounted for in the calculation of the recycling probability (see chapter 5.2). However, in the Arabian Gulf approx. 50 % of non-NO_x recycling is contributed by reactions from the groups RCC_{HO_2} , RCC_{other} and HCC_{other} , indicating a significant portion of recycling not accounted for in the calculation of *r*.

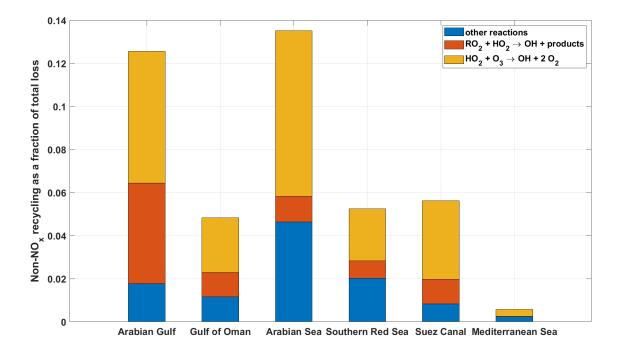


Figure 5.10 Non-NO_x radical recycling rate as a fraction of total loss rate of RO_x , separated in major contributing reactions. Recycling from $HO_2 + O_3$ is shown in yellow, radical-radical recycling is shown in red, and other recycling reactions, e.g. unimolecular decomposition of RO_2 , is shown in blue.

Important reactions influencing non-NOx recycling are unimolecular reactions of RO2 and reaction of RO₂ with HO₂. In the Arabian Gulf, RCC_{HO2} contributes ~37 % of total non- NO_x recycling and ~4.6 % of total RO_x loss rate. Since the reaction of RO_2 with HO_2 can act both as radical loss and radical recycling due to different reaction branches, it is important to investigate the branching ratios for RO₂ from different origin VOC. Hasson et al. (2012) found an increase in branching ratio towards recycling with increasing degree of substitution from primary to tertiary peroxy radicals. Additionally, due to the formation of a tetroxide (see Figure 5.11), RO₂ with a carbonyl in α - or β -position favor the production of the recycling reaction branch (R1c) or production of O₃ and an alcohol (R1b) over the production of a hydroperoxide (R1a). Hui, Fradet, Okumura, and Sander (2019) reported a temperature dependency for the branching ratio of the reaction of HO₂ and acetyl peroxy radical. R1b showed a negative temperature dependency, R1c showed a positive, while R1a showed no temperature dependency. The Arabian Gulf shows increased OVOC concentration and it is therefore likely, that the concentration of oxygenated RO₂ is increased. In combination with high temperatures, the recycling through RO₂ with HO₂ is expected to be relevant.

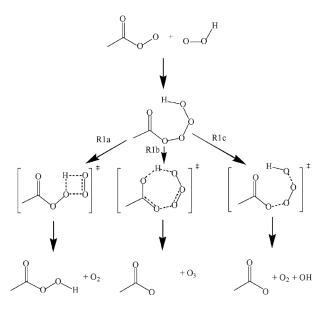


Figure 5.11 Proposed mechanism for the reaction of acetyl peroxy radical and HO₂. The tetroxide intermediate is formed to produce an acetic acid and ozone (R1b) or acetyl oxy radical oxygen and OH (R1c). Alternatively, a 4 membered ring intermediate can be formed to produce the hydroperoxide and oxygen (R1a). Taken from Hasson, Kuwata, Arroyo, and Petersen (2005)

This additional recycling together with the increased loss of radicals does not explain the low recycling probability observed in the Arabian Gulf. However, loss rates calculated with the model are only a lower boundary, since not all VOC were used in the calculation. It is to be expected, that higher loss rates are reached, when accounting for missing VOC. Comprehensive VOC and RO₂ measurements are needed to be able to quantify losses and additional recycling, which cause the low recycling probabilities calculated for the Arabian Gulf region.

5.4 Summary

Noontime values of the OH primary production rates ranged between $0.8 - 2.3 \cdot 10^7$ molec cm⁻³ s⁻¹, with the reaction of O(¹D) with H₂O as most important source of OH. Secondary production rates ranged between $0.2 - 5 \cdot 10^7$ molec cm⁻³ s⁻¹. The most important recycling process is the reaction of HO₂ with NO, followed by the reaction of HO₂ with O₃. The highest levels of OH primary production was found in the Arabian Gulf, however this region also showed exceptionally small secondary production. This indicates a significant loss of radicals throughout the radical cycle (see Figure 1.3).

OH recycling probabilities during AQABA ranged between <0.1 up to >0.9, with distinct differences between regions during the campaign. For similar NO mixing ratios, *r* values between 0.1 to 0.7 were calculated. The Arabian Gulf region showed an especially low recycling probability, indicating higher radical loss and lower radical chain propagation. This suggests a low stability of tropospheric OH concentrations in this region.

A missing secondary production rate α for the Arabian Gulf was calculated using the Mediterranean Sea as a reference. With increasing NO mixing ratios, α increases, indicating a NO dependency of α . The fraction of α of the total secondary production $S_{Arab} + \alpha$ decreases, contradicting the first assessment.

Maximum calculated heterogeneous uptake of HO₂ on particle surfaces in the Arabian Gulf was found to be less than $2.7 \cdot 10^4$ molec cm⁻³ s⁻¹, contributing insignificantly to missing secondary production rate α . In the Arabian Gulf, HO₂ concentrations were lower compared to the Mediterranean Sea, despite high HO_x production rates. Box model calculations show, that low NO_x levels cause recycling reactions with NO to be less important. High RO₂ concentrations cause radical-radical reactions to take up a major role in the HO_x cycle, through radical loss and radical recycling reactions. Both these factors decrease the recycling probability. For regions with low NO_x conditions, it is not possible due to missing measurement of RO₂ and low data coverage of VOC.

6 Net Ozone Production Rate

The formation of NO₂ through the reaction of NO with HO₂ or RO₂ causes a net ozone production in the troposphere (see 1.5). If accumulated, these increased O₃ mixing ratios can cause plant stress and harm to the respiratory system of animals and humans (Nuvolone et al., 2018). As a precursor to O₃, much effort was put into mitigating NO_x (Miyazaki et al., 2017) emissions in Europe and America. However, NO_x emissions increased substantially in Asia, India, and the Middle East (Miyazaki et al., 2017). The following chapter characterizes net ozone production rates (NOPR) and compares the results to those obtained by Tadic et al. (2020). The influence of NO mixing ratios was investigated, and the crossover point between NO_x-limited and VOC-limited regimes was examined.

6.1 Net ozone production rate from measured HO₂ and estimated RO₂

The interconversion reactions between NO and NO₂ rapidly produce and destroy O₃ and thus form a null cycle (see 1.5, R.31 – 33). Any additional O₃ production is due to the reaction of peroxy radicals with NO forming NO₂. During daytime, NO₂ can, in turn, photolyze and the produced O(³P) reacts with O₂ to O₃. The production of O₃ can be described as shown in Eq.27. To calculate *NOPR*, O₃ loss L_{O_3} has to be subtracted from O₃ production P_{O_3} . The major loss channels are the photolysis of O₃, followed by the reaction of O(¹D) with water vapor (R.1a & R.1d), the reaction with OH (R.8) and HO₂ (R.12). Other loss channels are the deposition of O₃ on the surface, reaction with the halogen monoxides BrO and IO and ozonolysis with alkenes. The surface deposition was estimated using surface iodide concentrations and the boundary layer height (Pound, Sherwen, Helmig, Carpenter, & Evans, 2020). The surface iodide concentrations were taken from Sherwen et al. (2019) and boundary layer height was taken from Dienhart et al. (2022). Since no halogen monoxide concentrations were available during AQABA, this O₃ loss pathway was not included. O₃ loss was calculated using Eq.28.

6 Net Ozone Production Rate

$$P_{O_3} = \left(k_{HO_2 + NO}[HO_2] + \sum_i k_{R_iO_2 + NO}[R_iO_2]\right) \cdot [NO]$$
(Eq.27)

$$L_{O_3} = [O_3] \cdot \left(\alpha j_{O^1 D}[O_3] + k_{O_3 + OH}[OH] + k_{HO_2 + O_3}[HO_2] \right)$$
(Eq.28)

$$+\sum_{i} [Alkene_{i}]k_{Alkene_{i}+O_{3}} + \frac{[O_{3}]v_{d}}{h_{BL}} \end{pmatrix}$$

with $\alpha = \frac{k_{O^{1}D+H_{2}O}[H_{2}O]}{k_{O^{1}D+H_{2}O}[H_{2}O] + k_{O^{1}D+N_{2}}[N_{2}] + k_{O^{1}D+O_{2}}[O_{2}]}$ (Eq.29)

$$NOPR = P_{O_3} - L_{O_3}$$
(Eq.30)

R_iO₂ represents a particular RO₂, $jo^{1}D$ is the photolysis frequency for O₃ to O(¹D), α is the fraction of O(¹D), which reacts with H₂O, v_d is the deposition velocity, and h_{BL} is the boundary layer height. *NOPR* was calculated using measurements during AQABA and RO₂ concentrations estimated in chapter 3.1. Thus, R_iO₂ was separated into RO₂ from saturated VOC and RO₂ from unsaturated VOC. The rate constants of CH₃O₂ and HOCH₂CH₂O₂ were used for saturated and unsaturated, respectively. The unsaturated VOC ethene, propene, butene and isoprene were used to calculate O₃ loss from ozonolysis, as these species had the highest mixing ratios among measured unsaturated VOC. However, ozonolysis was only a significant loss in the Arabian Gulf and Gulf of Oman, where fresh emissions of these VOC caused ~11 % of total O₃ loss. The contribution of ozonolysis in other regions was <3 %. Thus, the loss from ozonolysis was only included for the Arabian Gulf and Gulf of Oman. This increased data coverage in the remaining regions significantly. *NOPR* calculated in this work is further named *NOPR_{calc}*.

Tadic et al. (2020) reported *NOPR* calculated from NO/NO₂ photo stationary state (*NOPR*_{PSS}). For the calculation of *NOPR*_{PSS}, the production term P_{O_3} was simplified to Eq.32. Under the photo stationary state assumption of NO/NO₂, the sum of HO₂ and RO₂ can be calculated as shown in Eq.32. Since this assumption gives only a lump sum of HO₂ and RO₂, the rate constant for the reaction of HO₂ with NO is used to calculate P_{O_3} . Additionally, the data used for *NOPR*_{PSS} was restricted to ±2 h around noontime to allow the best approximation of the photo stationary state assumption. The data reported by Tadic et al. (2020) is used as a comparison.

All used rate constants for calculating both NOPR variants are shown in Table 6.1.

$$P_{O_3} = k_{HO_2+NO} [NO] \cdot ([HO_2] + [RO_2])$$
(Eq.31)

with
$$([HO_2] + [RO_2]) = \frac{(j_{NO_2} [NO_2] - k_{NO+O_3} [NO][O_3])}{k_{NO+HO_2} [NO]}$$
 (Eq.32)

	Reaction	Rate constant	
k _{HO2} +NO	$HO_2 + NO \rightarrow OH + NO_2$	$3.3 \cdot 10^{-12} \cdot \exp(270/T)^*$	
k _{CH3O2} +NO	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{NO} \rightarrow \mathrm{CH}_3\mathrm{O} + \mathrm{NO}_2$	$1.8 \cdot 10^{-12} \cdot \exp(300/T)^*$	
$k_{HOCH_2CH_2O_2+NO}$	$HOCH_2CH_2O_2 + NO \rightarrow$	$2.54 \cdot 10^{-12} \cdot \exp(360/T)^+$	
	$HOCH_2CH_2O + NO_2$		
k _{03+0H}	$OH + O_3 \rightarrow HO_2 + O_2$	$1.7 \cdot 10^{-12} \cdot \exp(-940/T)^*$	
<i>k</i> _{03+H02}	$\mathrm{HO}_2 + \mathrm{O}_3 \rightarrow \mathrm{OH} + 2 \mathrm{O}_2$	$1.0 \cdot 10^{-14} \cdot \exp(-490/T)^*$	
$k_{O^1D+H_2O}$	$0^1D + H_2O \rightarrow 2OH$	$1.63 \cdot 10^{-10} \cdot \exp(60/T)^*$	
$k_{O^1D+N_2}$	$O^1D + N_2 \rightarrow O^3P + N_2$	$2.15 \cdot 10^{-11} \cdot \exp(110/T)^*$	
$k_{O^1D+O_2}$	$0^1 \mathrm{D} + 0_2 \rightarrow 0^3 \mathrm{P} + 0_2$	$3.3 \cdot 10^{-11} \cdot \exp(55/T)^*$	
* (J. B. Burkholder et al., 2019), + (Saunders, Jenkin, Derwent, & Pilling, 2003)			

Table 6.1 Rate constants used to calculate NOPR with measured data

The relative uncertainty for $NOPR_{calc}$ was calculated through error propagation of Eq.27-29. The median relative uncertainty of $NOPR_{calc}$ obtained during AQABA is 57 %. The average relative uncertainty is 358 %, with a heavy bias towards single data outliers with very high or low values. Therefore, the relative uncertainty is estimated according to the median at 57 %. Tadic et al. (2020) reported a median relative uncertainty for $NOPR_{PSS}$ of 91 %.

 $NOPR_{calc}$ (red) and $NOPR_{PSS}$ (blue, Tadic et al. (2020)) are shown in Figure 6.1. $NOPR_{calc}$ in the Arabian Sea and the southern Red Sea was generally low, with positive and negative values. Both regions show low concentrations of VOC and NO_x. Thus, leading to low production rates or O₃ destruction. A notable exception is the first day after exiting the Gulf of Oman on 07. Aug., when $NOPR_{calc}$ values peak at ~3.5 pptv s⁻¹. It is suspected that this is strongly influenced by dense ship traffic present within the Gulf of Oman. $NOPR_{PSS}$ and $NOPR_{calc}$ show good agreement for the Arabian Sea and the southern Red Sea regions. Additionally, when crossing the Bab al-Mandab strait between the Gulf of Aden and the southern Red Sea, dense ship traffic caused another peak in $NOPR_{calc}$, shortly increasing to values >5 pptv s⁻¹. Since this peak is not representative for the Gulf of Aden or southern Red Sea region, it was excluded from further investigations done with this dataset.

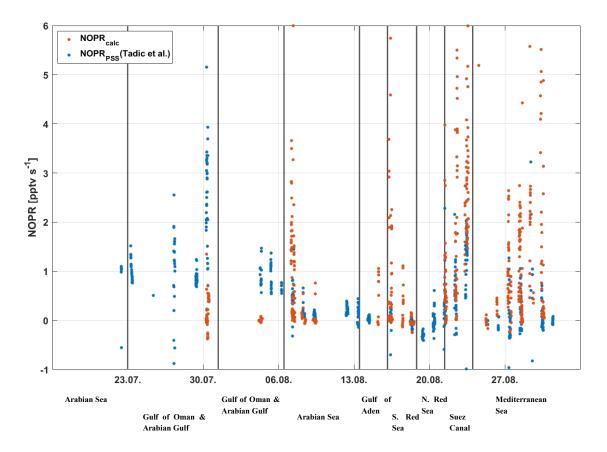


Figure 6.1 Timeline of *NOPR* calculated in this work (red) and by Tadic et al. (2020) (blue), shown in pptv s⁻¹. Gray, vertical lines indicate the separation between regions during AQABA.

In the Arabian Gulf and the Gulf of Oman, NOPR_{calc} shows values around 0 pptv s⁻¹, with a median value of 0.06 pptv s⁻¹ (75 % quantile: 0.42 pptv s⁻¹). Figure 6.2 shows the O₃ budget with production (positive bars) and loss rates (negative bars). In the Arabian Gulf and Gulf of Oman, the budget is balanced between production and loss. Due to high water vapor concentrations (4.0 \pm 0.2 %), the reaction of O(¹D) with water vapor leads to high O₃ loss, while low NO_x concentrations lead to only small production of O_3 by peroxy radicals. The high O₃ mixing ratios of up to 170 ppbv are thus likely produced closer to sources of fresh NO_x, such as the surrounding cities. Due to high RO₂ concentrations in the region, NO_x quickly depletes further away from the sources. This leads to the conditions, in which the O₃ concentrations can only barely be maintained, as observed along the ship track. Figure 6.2 shows the O₃ budget with production (positive bars) and loss rates (negative bars). Contrary to $NOPR_{calc}$, $NOPR_{PSS}$ shows high values up to >5 pptv s⁻¹ in this region. This discrepancy is likely due to an overestimation of NOPR_{PSS} and an underestimation of NOPR_{calc}. NOPR_{PSS} can be overestimated due to another null cycle, which was not accounted for in the calculation. The reaction of halogen oxides with NO can form NO₂ and a halogen radical. The formed NO₂ can photolyze and produce O₃ in the subsequent reactions. Then, the formed halogen radical reacts with O₃, which establishes a null cycle

(R.45 & 46). Sources of reactive halogen in the marine boundary layer during AQABA could be marine biota, which is known to emit organohalogen species. These species are photolabile and produce halogen radicals (Simpson, 2015). Another source is the reaction of the nocturnal NO_x species, N₂O₅ with HCl or NaCl. This reaction produces ClNO₂, which photolyzes to produce Cl radicals (Finlayson-Pitts, 1990; Finlayson-Pitts, 1989; Tolbert). Using the PSS assumption to calculate the sum of HO₂ and RO₂ disregards this null cycle, which results in artificially increased *NOPR*_{PSS} values. The *NOPR*_{calc} described within this work represents a minimum boundary, because the RO₂ estimates used are considered a lower boundary (see 3.1.2). However, it is suspected, that the RO₂ concentrations in the Arabian Gulf are underestimated by ~40 %. This is not enough to compensate for the discrepancy.

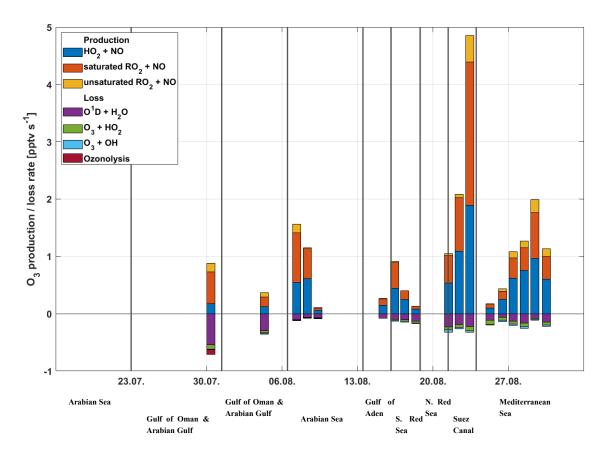
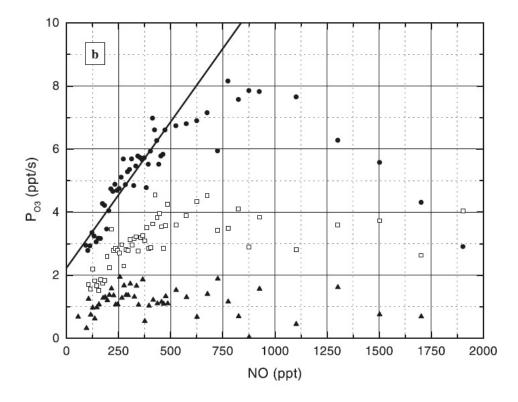



Figure 6.2 O₃ budget during the AQABA campaign. Production rates are shown as positive bars, while loss rates are shown as negative bars. Gray, vertical lines indicate the separation between regions during AQABA.

$$NO + XO \rightarrow NO_2 + X \quad \text{with } X=F, Cl, Br, I \quad (R.45)$$
$$X + O_3 \rightarrow X + O_2 \quad (R.46)$$

Significant O₃ production rates can be found in the Suez Canal and Gulf of Suez region, with values exceeding >5 pptv s⁻¹. The *NOPR*_{calc} shows a latitudinal gradient with the highest values at the northern exit of the Suez Canal. Anthropogenic influence increased from two factors throughout the Suez Canal region. First, the narrowing of the shipping lane from the Northern Red Sea to the Gulf of Suez, followed by the Suez Canal itself, caused higher ship emissions through dense traffic. Additionally, northwestern winds introduced emissions from the Cairo metropolitan area in the northern part of this region. Both factors lead to increasing *NOPR*_{calc}. *NOPR*_{PSS} is in good agreement during the Suez Canal. This indicates that the possible overestimation of NOPR_{PSS} from halogen oxides and underestimation of *NOPR*_{calc}, due to RO₂ estimation, are less significant in this region.

In the Mediterranean Sea, $NOPR_{calc}$ shows values ranging from -0.2-+4.8 pptv s⁻¹, with a median of 0.56 pptv s⁻¹ (1.76 pptv s⁻¹). $NOPR_{PSS}$ shows good agreement for most of the $NOPR_{calc}$ data over the Mediterranean Sea. During the time before noon on 30.08., $NOPR_{calc}$ exceeded values of 4 pptv s⁻¹ as the ship passed through the strait of Messina. Fresh NO_x and VOC emissions from the nearby city of Messina showed a peak in $NOPR_{calc}$ (Figure 6.1). The passage is not included in $NOPR_{calc}$ is not representative of the region of the Mediterranean Sea, it was excluded from the following analysis.

6.2 NOPR dependence on NO and HO_x production

Figure 6.3 Averaged P_{O_3} plotted versus [NO]. P_{O_3} data were placed into three P_{HOx} bins: high $(0.5 < P_{HOx} < 0.7 \text{ ppt/s}, \text{ circles})$, moderate $(0.2 < P_{HOx} < 0.3 \text{ ppt/s}, \text{ squares})$, and low $(0.03 < P_{HOx} < 0.07 \text{ ppt/s}, \text{ triangles})$, and then averaged as a function of NO. All three P_{HOx} regimes demonstrate the expected generic dependence on NO, P_{O_3} increases linearly with NO for low NO (<600 ppt NO), and then P_{O_3} becomes independent of NO for high NO (>600 ppt NO). The crossover point between NO_x-limited and VOC-limited O₃ production occurs at different levels of NO in the three P_{HOx} regimes. (taken from J. A. Thornton et al. (2002)

During measurements in Nashville, Tennessee, in 1999, J. A. Thornton et al. (2002) found significantly different O₃ production rates for different times of the day. These differences were caused by changing emissions from the surrounding environment throughout the day. To mitigate a potential systematic error, P_{O_3} was separated by P_{HOx} (see Figure 6.3). During AQABA, this dependency on P_{HOx} was not observed. Figure 6.4 exemplifies this by separating the calculated $NOPR_{calc}$ values for the Arabian Sea into high (yellow triangles, 0.1-0.25 pptv s⁻¹), moderate (red squares, 0.04-0.1 pptv s⁻¹), and low (blue dots, 0.016-0.04 pptv s⁻¹) P_{HOx} . During AQABA, primary emission sources were ship traffic and petrochemical industries, which did not cause significant diurnal variations. Therefore, all levels of P_{HOx} in Figure 6.3 show similar $NOPR_{calc}$ for similar NO mixing ratios. Accordingly, no separation by P_{HOx} was necessary for the AQABA dataset. Similar plots for other regions can be found in Appendix A.

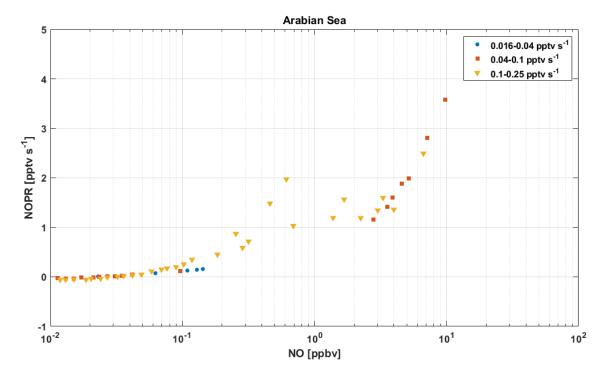


Figure 6.4 NOPR_{calc} over the Arabian Sea as a function of NO mixing ratio. The blue dots show NOPR_{calc} at low P_{HOx} , red squares at moderate P_{HOx} , and yellow triangles at high P_{HOx} . All three P_{HOx} regimes show similar NOPR, indicating no significant fluctuations of conditions throughout the day.

As NO is a reaction partner with RO_x , the dependency of *NOPR* can be sorted into two regimes. Under low NO_x conditions, radical-radical reactions are the dominant chain termination reactions. The most important loss reactions are R.17-19 & R.30. As NO mixing ratios increase, *NOPR* increases until the formation of nitrates exceeds radical-radical reactions. At this point, a further increase of NO yields decreasing *NOPR*. Under these conditions, the reaction of OH with NO₂ (R.21) and nitrate formation of RO₂ (R.29) become dominant chain termination reactions. O₃ production is called NO_x-limited in the low NO regime, and VOC-limited in the high NO regime. The crossover point of NO_x-limited and VOC-limited regimes corresponds to a NO mixing ratio where *NOPR* has a maximum (J. A. Thornton et al., 2002).

 RO_2 concentrations estimated in chapter 3.1.2 were used to calculate the radical loss. Therefore, loss reactions involving RO_2 are calculated using CH_3O_2 and $HOCH_2CH_2O_2$ as a proxy for RO_2 from saturated (RO_2 sat) and unsaturated VOC (RO_2 unsat), respectively.

The total loss of RO_x L_{ROx} is assumed as the sum of chain termination rates (Eq.33), with *HHloss* as RO_x self-reactions and *NHloss* as RO_x-NO_x reactions. The reaction of RO₂ with NO has two reaction pathways. Since only chain termination reactions are used, a yield β of 3 % for R.29 relative to R.15 is assumed (Mellouki et al., 2021). Rate constants used in this calculation are summarized in Table 6.1 and Table 6.2.

$$\begin{split} L_{HO_{x}} &= HHloss + NHloss \qquad (Eq.33) \\ HHloss &= 2 \, k_{HO_{2} + HO_{2}} [HO_{2}]^{2} + 2 \, k_{CH_{3}O_{2} + HO_{2}} [HO_{2}] [CH_{3}O_{2}] \\ &+ 2 \, k_{HOCH_{2}CH_{2}O_{2} + HO_{2}} [HO_{2}] [HOCH_{2}CH_{2}O_{2}] \\ &+ 2 \, k_{OH + HO_{2}} [HO_{2}] [OH] + 2 \, k_{CH_{3}O_{2} + CH_{3}O_{2}} [CH_{3}O_{2}] [CH_{3}O_{2}] \\ &+ 2 \, k_{HOCH_{2}CH_{2}O_{2} + HOCH_{2}CH_{2}O_{2}} [HOCH_{2}CH_{2}O_{2}] [HOCH_{2}CH_{2}O_{2}] \\ &+ 2 \, k_{HOCH_{2}CH_{2}O_{2} + HOCH_{2}CH_{2}O_{2}} [HOCH_{2}CH_{2}O_{2}] [HOCH_{2}CH_{2}O_{2}] \\ &NHloss = \, k_{OH + NO_{2}} [OH] [NO_{2}] + \\ &\beta \, k_{CH_{3}O_{2} + NO} [NO] [CH_{3}O_{2}] + \\ &\beta \, k_{HOCH_{2}CH_{2}O_{2} + NO} [NO] [HOCH_{2}CH_{2}O_{2}] \end{split}$$

Table 6.2 Rate constants used to calculate HHloss and NHloss

	Reaction	Rate constant
k _{HO2} +HO2	$\mathrm{HO}_{2} + \mathrm{HO}_{2} \rightarrow \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}_{2}$	$3.0 \cdot 10^{-13} \cdot \exp(-490/T)^*$
k _{OH+HO2}	$OH + HO_2 \rightarrow H_2O + O_2$	$4.8 \cdot 10^{-11} \cdot \exp(250/T)^*$
k _{CH302} +H02	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{HO}_2 \rightarrow \mathrm{CH}_3\mathrm{OOH} + \mathrm{O}_2$	$3.8 \cdot 10^{-13} \cdot \exp(780/T)^*$
$k_{HOCH_2CH_2O_2+HO_2}$	$\text{HOCH}_2\text{CH}_2\text{O}_2 + \text{HO}_2 \rightarrow$	$1.53 \cdot 10^{-13} \cdot \exp(1300/T)^+$
	$HOCH_2CH_2OOH + O_2$	
<i>k</i> _{CH302} +CH ₃ 0 ₂	$\mathrm{CH}_3\mathrm{O}_2 + \mathrm{CH}_3\mathrm{O}_2 \rightarrow$	$1.03 \cdot 10^{-13} \cdot \exp(365/T)^*$
	$CH_3OH + HCHO + O_2$	
<i>k</i> носн ₂ сн ₂ о ₂	$\text{HOCH}_2\text{CH}_2\text{O}_2 + \text{HOCH}_2\text{CH}_2\text{O}_2 \rightarrow$	$7.8 \cdot 10^{-14} \cdot \exp(1000/T)^*$
$+HOCH_2CH_2O_2$	$HOCH_2CH_2OH + HOCH_2CHO + O_2$	
k _{OH+NO2}	$OH + NO_2 \rightarrow HNO_3$	$1.63 \cdot 10^{-10} \cdot \exp(60/T)^*$
* (J. B. Burkholder et al.,	2019), ⁺ (Saunders et al., 2003)	

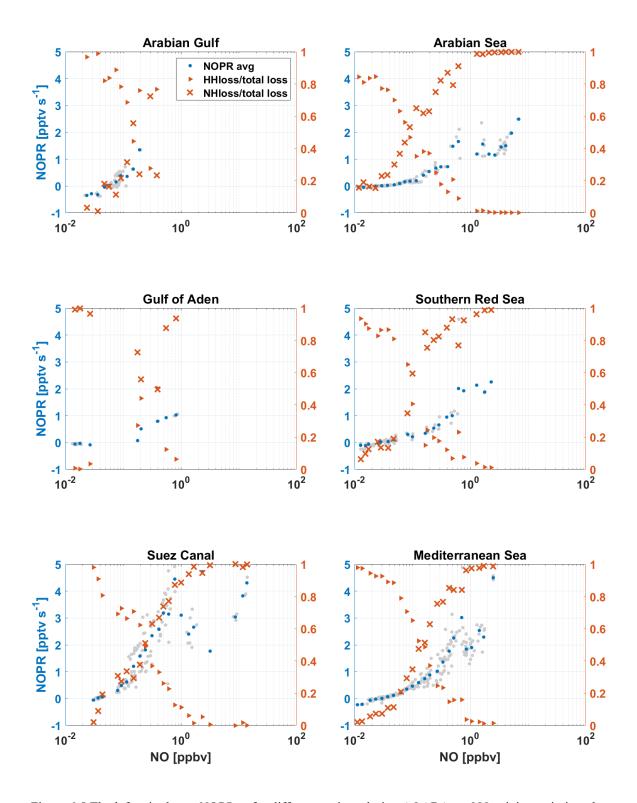


Figure 6.5 The left axis shows $NOPR_{calc}$ for different regions during AQABA vs. NO mixing ratio in ppbv. The gray dots show non-averaged $NOPR_{calc}$, while the blue dots show averaged $NOPR_{calc}$. The right axis shows the fraction of total radical loss vs. NO mixing ratio. The fractional loss through *HHloss* is shown in red triangles, and the fractional loss through *NHloss* is shown in red crosses.

6 Net Ozone Production Rate

 $NOPR_{calc}$ and radical losses *HHloss* and *NHloss* are shown side by side for different regions in Figure 6.5. $NOPR_{calc}$ vs. NO mixing ratio are shown on the left axis. Gray dots represent unaveraged data, while blue dots show averaged data. The right axis shows relative radical loss through radical-radical reactions *HHloss*/total loss (red triangles) and nitrate formation *NHloss*/total loss (red crosses).

 $NOPR_{calc}$ for all regions shows an increase with an increasing NO mixing ratio. However, even at the highest levels of NO, no maximum of $NOPR_{calc}$ can be seen. Since a crossover point between *HHloss* and *NHloss* can be seen in every region, it does not correspond with the maximum of $NOPR_{calc}$. RO₂ estimations are considered a lower boundary. Since RO₂ affects *HHloss* quadratically, an increase in RO₂ would shift the crossover point further to higher NO mixing ratios. To improve the results for *HHloss* and *NHloss*, measurements of RO₂ and their speciation would be needed.

As discussed above, the lowest $NOPR_{calc}$ was found in the Arabian Gulf, with rates around 0 pptv s⁻¹. High variability in the data also suggests close proximity to NO_x and VOC sources. In the Suez Canal region, similarly high variability can be seen, especially for NO mixing ratios >1 ppbv. It is suspected that air masses with different origins and compositions have been observed in this region. The HYSPLIT trajectories (Figure 4.5) show airmasses from southern Egypt in the southern part of the Suez Canal, while the northern part of the Suez Canal was influenced by air masses from northern Egypt and south eastern Europe.

Since no maximum in $NOPR_{calc}$ can be observed for any region during AQABA, it is assumed that $NOPR_{calc}$ is NO_x-limited throughout the campaign. This is consistent with the findings of Tadic et al. (2020) and Pfannerstill et al. (2019). Tadic et al. (2020) used a ratio of HCHO and NO₂ as an indicator and found only tendencies of VOC-limitation in the Suez Canal region (Tadic et al. (2020) label the Suez Canal as the Northern Red Sea). Pfannerstill et al. (2019) based their study on OH reactivity measurements and classified most regions as being in a transition between NO_x- and VOC-limited, with a tendency towards NO_x-limited. An exception was the Suez Canal, which showed a slight tendency towards VOC-limitation.

6.3 Summary

Net ozone production rates were calculated using measured HO₂ and calculated RO₂ mixing ratios. Throughout AQABA, the values ranged from -0.3 to >5 pptv s⁻¹, with significant differences in the regions. A budget analysis of the Arabian Gulf and Gulf of Oman showed a balanced O₃ budget. High water concentrations and fresh emissions of unsaturated VOC caused a high loss of O₃, while low NO_x concentrations lead to only a

low O₃ production from peroxy radicals. The discrepancy between $NOPR_{calc}$ and $NOPR_{PSS}$ is likely due to an overestimation of $NOPR_{PSS}$ from halogen oxide formation, as well as an underestimation of $NOPR_{calc}$ due to calculated RO₂ concentrations being a lower boundary. A peak in $NOPR_{calc}$ in the Mediterranean Sea is caused by higher NO_x mixing ratios from fresh emissions encountered in the Strait of Messina.

No P_{HOx} dependency for $NOPR_{calc}$ was found during AQABA, since the strength of significant emission sources during AQABA did not show diurnal variations. As a consequence, a separation of $NOPR_{calc}$ based on P_{HOx} was not needed.

The finding of the crossover point between NO_x-limited and VOC-limited regimes of O₃ production was attempted, using radical-radical loss and nitrate formation. However, equations Eq.34 & 35 could not describe radical losses adequately. For all regions, an increase in $NOPR_{calc}$ with increasing NO was reached. However, no maximum was found. This indicates that all regions are NO_x-limited, which is largely consistent with findings from Tadic et al. (2020) and Pfannerstill et al. (2019). The exception being the Suez Canal region, where conditions were found to have tendencies towards VOC-limitation.

7 Summary and Conclusions

The region around the Arabian Peninsula is synonymous with intense solar radiation and high ambient temperatures. Combined with strong sources of VOC from oil and gas extraction and processing, these conditions have a major impact on the oxidative capacity of the atmosphere. To investigate the oxidative capacity under the conditions of high photochemistry and anthropogenic pollution, the AQABA ship-based measurement campaign was conducted in the summer of 2017. As part of a large ensemble of instrumentation, the OH and HO₂ radicals were measured using the HORUS system.

Since OH can also be recycled through RO₂, their quantification is important to characterize the oxidative potential. Due to missing RO₂ measurements during AQABA, lower boundaries of ambient RO₂ concentrations were calculated utilizing measurement-constrained CAABA/MECCA box-model calculations and measured OH reactivity. The highest average mixing ratios were found in the Suez Canal (23.8 ± 14.7 pptv) and the Arabian Gulf (23.2 ± 22.4 pptv), followed by the Mediterranean Sea (15.0 ± 7.4 pptv). With 4.9 ± 3.7 pptv and 6.8 ± 4.9 pptv, respectively, the Gulf of Aden and the Arabian Sea showed the lowest mixing ratio.

As a measure of the oxidative potential, an investigation of the OH recycling probability was conducted for the AQABA dataset. The Arabian Gulf $(15\pm10\%(1\sigma)@0.1 \text{ pptv NO})$ showed significantly lower recycling probability compared to the Mediterranean Sea $(57\pm5\% (1\sigma) @ 0.1 \text{ pptv NO})$. Possible radical losses were investigated. HO₂ loss on particle surfaces was negligible over the Arabian Gulf, being less than 0.16 % of missing secondary production. Peroxy radical losses had been studied using the constrained CAABA/MECCA box model. The calculations showed, that due to low NO_x (0.09±0.05 pptv) and high radical mixing ratios in the Arabian Gulf, the importance of the recycling reaction of HO₂/RO₂ and NO is decreased. In contrast, the significance of radicalradical reactions increased, which led to an increase in the destruction of radicals from peroxide formation by a factor of ~2 in the Arabian Gulf (32.4 % of total RO_x loss). At similar VOC load but higher NO_x levels, the Gulf of Oman and Suez Canal showed a lower contribution of 12.1 % and 11.7 %, respectively. The pristine air masses in the Arabian Sea showed that 47.6 % of total RO_x loss can be contributed to radical-radical reactions. Due to very low NO_x and VOC mixing ratios, the reaction of HO₂ with itself is the major contributor to radical loss. The contribution in the Mediterranean Sea was <0.2 %. However, this is only representable for the early morning period, where radical levels were generally low. An increased destruction of radicals through radical-radical reactions leads directly to a decrease of the recycling probability r. Additionally, high radical concentrations cause radical-radical recycling reactions to be more important in the Arabian Gulf. This is particularly the case given that they could not be accounted for in the calculation of the OH recycling probability, thus indirectly lowering r.

As a side product of radical recycling, tropospheric O₃ is directly impacted by the recycling probability. The net ozone production rate $NOPR_{calc}$ was calculated using HO₂ measurements and RO₂ concentrations determined in this work. $NOPR_{calc}$ along the ship track in the Arabian Gulf and Gulf of Oman showed production rates around 0 pptv s⁻¹. High measured water vapor concentrations (4.0±0.2 %) caused a high loss of O₃ through the reaction of O(¹D) with H₂O. Additionally, high radical concentrations depleted NO_x concentrations, leading to low production of O₃. Throughout AQABA, there were no observable condition where $NOPR_{calc}$ peaked at a specific NO concentration. Therefore, the NOPR in this work is categorized as NO_x-limited. These findings are consistent with Tadic et al. (2020) and Pfannerstill et al. (2019).

To conclude, the results show an increased shift in importance towards radical-radical reactions for the recycling probability in low NO_x /high VOC regions. In the Arabian Gulf, this is due to the high RO₂ concentrations. The reaction of RO₂ with HO₂ is the biggest contributor and add to radical destruction and recycling. Both reduce the recycling probability either directly or indirectly. It is, thus, important to include RO₂ observations and speciation in future measurements. Despite high radical concentrations in the Arabian Gulf, *NOPR* was around 0 pptv s⁻¹. High water vapor and low NO_x concentrations caused both high O₃ destruction and low production, respectively. In the Mediterranean Sea, future exploitation of natural gas reservoirs in Turkish and Greek waters could lead to high VOC loads similar to the Arabian Gulf. However, due to lower primary radical production it is expected, that NO_x will remain higher, which in turn will lead to higher *NOPR* compared to the Arabian Gulf.

8 Bibliography

- Atkinson, R. (1997). Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes. *Journal of Physical and Chemical Reference Data*, 26(2), 215-290. doi:10.1063/1.556012
- Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. *Atmospheric Environment*, 34(12), 2063-2101. doi:https://doi.org/10.1016/S1352-2310(99)00460-4
- Atkinson, R., & Arey, J. (2003). Atmospheric Degradation of Volatile Organic Compounds. *Chemical Reviews*, 103(12), 4605-4638. doi:10.1021/cr0206420
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., & Troe, J. (2004). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O_x, HO_x, NO_x and SO_x species. *Atmos. Chem. Phys.*, 4(6), 1461-1738. doi:10.5194/acp-4-1461-2004
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., & Subcommittee, I. (2006). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species. *Atmos. Chem. Phys.*, 6(11), 3625-4055. doi:10.5194/acp-6-3625-2006
- Birdsall, A. W., & Elrod, M. J. (2011). Comprehensive NO-Dependent Study of the Products of the Oxidation of Atmospherically Relevant Aromatic Compounds. *The Journal of Physical Chemistry A*, 115(21), 5397-5407. doi:10.1021/jp2010327
- Bourtsoukidis, E., Ernle, L., Crowley, J. N., Lelieveld, J., Paris, J. D., Pozzer, A., Walter, D., & Williams, J. (2019). Non-methane hydrocarbon (C2–C8) sources and sinks around the Arabian Peninsula. *Atmos. Chem. Phys.*, 19(10), 7209-7232. doi:10.5194/acp-19-7209-2019
- Cabrera-Perez, D. (2016). Global atmospheric budget of simple monocyclic aromatic compounds. *Atmos. Chem. Phys.*, 16(11), 6931-6947. doi:10.5194/acp-16-6931-2016
- Cantrell, C., Shetter, R., Calvert, J., Eisele, F., Williams, E., Baumann, K., Brune, W., Stevens, P., & Mather, J. (1997). Peroxy radicals from photostationary state deviations and steady state calculations during the Tropospheric OH Photochemistry Experiment at Idaho Hill, Colorado, 1993. J. Geophys. Res.-Atmos., 102, 6369-6378. doi:10.1029/96JD01703
- Cariolle, D., Evans, M. J., Chipperfield, M. P., Butkovskaya, N., Kukui, A., & Le Bras, G. (2008). Impact of the new HNO₃-forming channel of the HO₂+NO reaction on tropospheric HNO₃, NO_x, HO_x and ozone. *Atmos. Chem. Phys.*, 8(14), 4061-4068. doi:10.5194/acp-8-4061-2008
- Carslaw, N., Creasey, D. J., Heard, D. E., Jacobs, P. J., Lee, J. D., Lewis, A. C., McQuaid, J. B., Pilling, M. J., Bauguitte, S., Penkett, S. A., Monks, P. S., & Salisbury, G. (2002). Eastern Atlantic Spring Experiment 1997 (EASE97) 2. Comparisons of model concentrations of OH, HO2, and RO2 with measurements. *Journal of Geophysical Research: Atmospheres, 107*(D14), ACH 5-1-ACH 5-16. doi:https://doi.org/10.1029/2001JD001568

- Carslaw, N., Creasey, D. J., Heard, D. E., Lewis, A. C., McQuaid, J. B., Pilling, M. J., Monks, P. S., Bandy, B. J., & Penkett, S. A. (1999). Modeling OH, HO2, and RO2 radicals in the marine boundary layer: 1. Model construction and comparison with field measurements. *Journal of Geophysical Research: Atmospheres*, 104(D23), 30241-30255. doi:https://doi.org/10.1029/1999JD900783
- Celik, S., Drewnick, F., Fachinger, F., Brooks, J., Darbyshire, E., Coe, H., Paris, J. D., Eger, P. G., Schuladen, J., Tadic, I., Friedrich, N., Dienhart, D., Hottmann, B., Fischer, H., Crowley, J. N., Harder, H., & Borrmann, S. (2020). Influence of vessel characteristics and atmospheric processes on the gas and particle phase of ship emission plumes: in situ measurements in the Mediterranean Sea and around the Arabian Peninsula. *Atmos. Chem. Phys.*, 20(8), 4713-4734. doi:10.5194/acp-20-4713-2020
- Chan, C. Y., Hard, T. M., Mehrabzadeh, A. A., George, L. A., & O'Brien, R. J. (1990). Third-generation FAGE instrument for tropospheric hydroxyl radical measurement. *Journal of Geophysical Research: Atmospheres, 95*(D11), 18569-18576. doi:https://doi.org/10.1029/JD095iD11p18569
- Cooper, P. L., & Abbatt, J. P. D. (1996). Heterogeneous Interactions of OH and HO2 Radicals with Surfaces Characteristic of Atmospheric Particulate Matter. *The Journal of Physical Chemistry*, *100*(6), 2249-2254. doi:10.1021/jp952142z
- Crawford, J., Davis, D., Olson, J., Chen, G., Liu, S., Fuelberg, H., Hannan, J., Kondo, Y., Anderson, B., Gregory, G., Sachse, G., Talbot, R., Viggiano, A., Heikes, B., Snow, J., Singh, H., & Blake, D. (2000). Evolution and chemical consequences of lightning-produced NO x observed in the North Atlantic upper troposphere. *Journal* of Geophysical Research: Atmospheres, 105(D15), 19795-19809. doi:https://doi.org/10.1029/2000JD900183
- Creasey, D. J., Halford-Maw, P. A., Heard, D. E., Spence, J. E., & Whitaker, B. J. (1998). Fast photomultiplier tube gating system for photon counting applications. *Review* of Scientific Instruments, 69(12), 4068-4073. doi:Doi 10.1063/1.1149252
- Criegee, R. (1975). Mechanism of Ozonolysis. *Angewandte Chemie International Edition in English*, 14(11), 745-752. doi:https://doi.org/10.1002/anie.197507451
- Dienhart, D., Brendel, B., Crowley, J. N., Eger, P. G., Harder, H., Martinez, M., Pozzer, A., Rohloff, R., Schuladen, J., Tauer, S., Lelieveld, J., & Fischer, H. (2022). Formaldehyde and hydroperoxide distribution around the Arabian Peninsula evaluation of EMAC model results with ship-based measurements. *Atmos. Chem. Phys. Discuss.*, 2022, 1-40. doi:10.5194/acp-2022-580
- Eisele, F. L., & Tanner, D. J. (1991). Ion-assisted tropospheric OH measurements. *Journal* of Geophysical Research: Atmospheres, 96(D5), 9295-9308. doi:https://doi.org/10.1029/91JD00198
- Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., & Young, G. S. (1996). Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. *Journal of Geophysical Research: Oceans, 101*(C2), 3747-3764. doi:https://doi.org/10.1029/95JC03205
- Faloona, I. C., Tan, D., Lesher, R. L., Hazen, N. L., Frame, C. L., Simpas, J. B., Harder, H., Martinez, M., Di Carlo, P., Ren, X. R., & Brune, W. H. (2004). A laser-induced fluorescence instrument for detecting tropospheric OH and HO2: Characteristics and calibration. *Journal of Atmospheric Chemistry*, 47(2), 139-167. doi:DOI 10.1023/B:JOCH.0000021036.53185.0e

- Finlayson-Pitts, B. J. (1990). Ozone destruction and bromine photochemistry at ground level in the Arctic spring. *Nature*, 343(6259), 622-625. doi:10.1038/343622a0
- Finlayson-Pitts, B. J. (1989). Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. 337, 241-244.
- Fuchs, H., Bohn, B., Hofzumahaus, A., Holland, F., Lu, K. D., Nehr, S., Rohrer, F., & Wahner, A. (2011). Detection of HO₂ by laser-induced fluorescence: calibration and interferences from RO₂ radicals. *Atmos. Meas. Tech.*, 4(6), 1209-1225. doi:10.5194/amt-4-1209-2011
- Ghude, S. D., Kulkarni, S. H., Jena, C., Pfister, G. G., Beig, G., Fadnavis, S., & van der A,
 R. J. (2013). Application of satellite observations for identifying regions of dominant sources of nitrogen oxides over the Indian Subcontinent. *Journal of Geophysical Research: Atmospheres, 118*(2), 1075-1089. doi:https://doi.org/10.1029/2012JD017811
- Hanson, D. R., Burkholder, J. B., Howard, C. J., & Ravishankara, A. R. (1992). Measurement of hydroxyl and hydroperoxy radical uptake coefficients on water and sulfuric acid surfaces. *The Journal of Physical Chemistry*, 96(12), 4979-4985. doi:10.1021/j100191a046
- Hard, T. M., O'Brien, R. J., Chan, C. Y., & Mehrabzadeh, A. A. (1984). Tropospheric free radical determination by fluorescence assay with gas expansion. *Environmental Science & Technology*, 18(10), 768-777. doi:10.1021/es00128a009
- Hasson, A. S., Kuwata, K. T., Arroyo, M. C., & Petersen, E. B. (2005). Theoretical studies of the reaction of hydroperoxy radicals (HO2) with ethyl peroxy (CH3CH2O2), acetyl peroxy (CH3C(O)O2), and acetonyl peroxy (CH3C(O)CH2O2) radicals. *Journal of Photochemistry and Photobiology A: Chemistry*, 176(1), 218-230. doi:https://doi.org/10.1016/j.jphotochem.2005.08.012
- Hasson, A. S., Tyndall, G. S., Orlando, J. J., Singh, S., Hernandez, S. Q., Campbell, S., & Ibarra, Y. (2012). Branching Ratios for the Reaction of Selected Carbonyl-Containing Peroxy Radicals with Hydroperoxy Radicals. *The Journal of Physical Chemistry A*, 116(24), 6264-6281. doi:10.1021/jp211799c
- Hauglustaine, D. A., Madronich, S., Ridley, B. A., Walega, J. G., Cantrell, C. A., Shetter, R. E., & Hübler, G. (1996). Observed and model-calculated photostationary state at Mauna Loa Observatory during MLOPEX 2. *Journal of Geophysical Research: Atmospheres, 101*(D9), 14681-14696. doi:https://doi.org/10.1029/95JD03612
- Heard, D. E., & Pilling, M. J. (2003). Measurement of OH and HO2 in the Troposphere. *Chemical Reviews*, 103(12), 5163-5198. doi:10.1021/cr020522s
- Hens, K. (2013). OH and HO2 radical measurements in a boreal forest environment using laser induced fluorescence spectroscopy. *Dissertation*.
- Hens, K., Novelli, A., Martinez, M., Auld, J., Axinte, R., Bohn, B., Fischer, H., Keronen, P., Kubistin, D., Nölscher, A. C., Oswald, R., Paasonen, P., Petäjä, T., Regelin, E., Sander, R., Sinha, V., Sipilä, M., Taraborrelli, D., Tatum Ernest, C., Williams, J., Lelieveld, J., & Harder, H. (2014). Observation and modelling of HO_xradicals in a boreal forest. *Atmos. Chem. Phys.*, 14(16), 8723-8747. doi:10.5194/acp-14-8723-2014
- Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.-C., Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S., Shao, M., Zeng, L., Wahner, A.,

& Zhang, Y. (2009). Amplified Trace Gas Removal in the Troposphere. *Science*, *324*(5935), 1702-1704. doi:10.1126/science.1164566

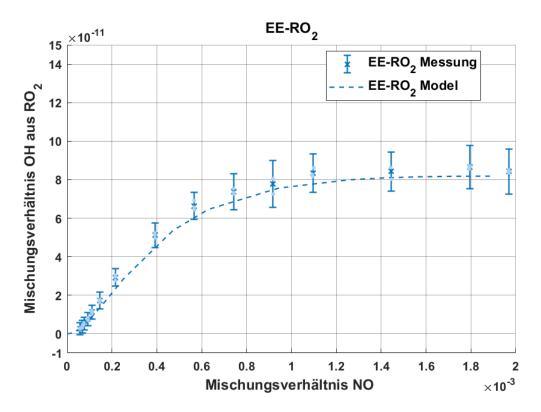
- Holland, F., Hofzumahaus, A., Schäfer, J., Kraus, A., & Pätz, H.-W. (2003). Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ. *Journal of Geophysical Research: Atmospheres, 108*(D4), PHO 2-1-PHO 2-23. doi:https://doi.org/10.1029/2001JD001393
- Huang, C., Hu, Q., Wang, H., Qiao, L., Jing, S. a., Wang, H., Zhou, M., Zhu, S., Ma, Y., Lou, S., Li, L., Tao, S., Li, Y., & Lou, D. (2018). Emission factors of particulate and gaseous compounds from a large cargo vessel operated under real-world conditions. *Environmental Pollution*, 242, 667-674. doi:https://doi.org/10.1016/j.envpol.2018.07.036
- Hui, A. O., Fradet, M., Okumura, M., & Sander, S. P. (2019). Temperature Dependence Study of the Kinetics and Product Yields of the HO2 + CH3C(O)O2 Reaction by Direct Detection of OH and HO2 Radicals Using 2f-IR Wavelength Modulation Spectroscopy. *The Journal of Physical Chemistry A*, 123(17), 3655-3671. doi:10.1021/acs.jpca.9b00442
- IPCC, Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, R., Chen, Y., Zhou, X., Gomis, M., Lonnoy, E., Maycock, T., Tignor, M., & Tabatabaei, M. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.
- J. B. Burkholder, S. P. Sander, J. Abbatt, J. R. B., C. Cappa, J. D. Crounse, T. S. Dibble, R. E. Huie, C. E. Kolb, M. J. Kurylo, V. L. Orkin, C. J. Percival, D. M. Wilmouth, and P. H. Wine Jet Propulsion Laboratory, P., & http://jpldataeval.jpl.nasa.gov. (2019). Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19. JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena.
- Jacob, D. J. (1986). Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. *Journal of Geophysical Research: Atmospheres*, 91(D9), 9807-9826. doi:https://doi.org/10.1029/JD091iD09p09807
- Jacob, D. J. (2000). Heterogeneous chemistry and tropospheric ozone. *Atmospheric Environment*, 34(12), 2131-2159. doi:https://doi.org/10.1016/S1352-2310(99)00462-8
- Jaeglé, L., Jacob, D. J., Brune, W. H., & Wennberg, P. O. (2001). Chemistry of HOx radicals in the upper troposphere. *Atmospheric Environment*, 35(3), 469-489. doi:https://doi.org/10.1016/S1352-2310(00)00376-9
- Jenkin, M. E., & Hayman, G. D. (1995). Kinetics of reactions of primary, secondary and tertiary β-hydroxy peroxyl radicals. *Journal of the Chemical Society, Faraday Transactions*, 91(13), 1911-1922. doi:10.1039/FT9959101911
- Jungkamp, T. P. W., Smith, J. N., & Seinfeld, J. H. (1997). Atmospheric Oxidation Mechanism of n-Butane: The Fate of Alkoxy Radicals. *The Journal of Physical Chemistry A*, 101(24), 4392-4401. doi:10.1021/jp970212r
- Kesselmeier, J., & Staudt, M. (1999). Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology. *Journal of Atmospheric Chemistry*, 33(1), 23-88. doi:10.1023/A:1006127516791

- Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., & Streets, D. G. (2016). Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. *Atmos. Chem. Phys.*, *16*(7), 4605-4629. doi:10.5194/acp-16-4605-2016
- Kubistin, D. (2009). OH-HO2-Radikale über dem tropischen Regenwald.
- Kunkler, F. (2021). Quantifizierung der RO2-Interferenz auf das HORUS-HO2-Messsignal.
- Leighton, P. A. (1961). Photochemistry of air pollution. *Physical chemistry, Academic Press, New York 9*, 300 p. pp.
- Lelieveld, J. (2016). Global tropospheric hydroxyl distribution, budget and reactivity. Atmos. Chem. Phys., 16(19), 12477-12493. doi:10.5194/acp-16-12477-2016
- Lelieveld, J., Peters, W., Dentener, F. J., & Krol, M. C. (2002). Stability of tropospheric hydroxyl chemistry. *Journal of Geophysical Research: Atmospheres*, 107(D23), ACH 17-11-ACH 17-11. doi:10.1029/2002jd002272
- Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Munzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. *Cardiovascular research*, 116. doi:10.1093/cvr/cvaa025
- Levy, H. (1971). Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted. *Science*, 173, 141-143.
- Liousse, C., Assamoi, E., Criqui, P., Granier, C., & Rosset, R. (2014). Explosive growth in African combustion emissions from 2005 to 2030. *Environmental Research Letters*, 9(3), 035003. doi:10.1088/1748-9326/9/3/035003
- Mao, J., Fan, S., Jacob, D. J., & Travis, K. R. (2013). Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols. *Atmos. Chem. Phys.*, 13(2), 509-519. doi:10.5194/acp-13-509-2013
- Mao, J., Ren, X., Chen, S., Brune, W. H., Chen, Z., Martinez, M., Harder, H., Lefer, B., Rappenglück, B., Flynn, J., & Leuchner, M. (2010). Atmospheric oxidation capacity in the summer of Houston 2006: Comparison with summer measurements in other metropolitan studies. *Atmospheric Environment*, 44(33), 4107-4115. doi:https://doi.org/10.1016/j.atmosenv.2009.01.013
- Mao, J., Ren, X., Zhang, L., Van Duin, D. M., Cohen, R. C., Park, J. H., Goldstein, A. H., Paulot, F., Beaver, M. R., Crounse, J. D., Wennberg, P. O., DiGangi, J. P., Henry, S. B., Keutsch, F. N., Park, C., Schade, G. W., Wolfe, G. M., Thornton, J. A., & Brune, W. H. (2012). Insights into hydroxyl measurements and atmospheric oxidation in a California forest. *Atmos. Chem. Phys.*, 12(17), 8009-8020. doi:10.5194/acp-12-8009-2012
- Maring, H., Savoie, D. L., Izaguirre, M. A., Custals, L., & Reid, J. S. (2003). Mineral dust aerosol size distribution change during atmospheric transport. *Journal of Geophysical Research: Atmospheres, 108*(D19). doi:https://doi.org/10.1029/2002JD002536
- Marno, D., Ernest, C., Hens, K., Javed, U., Klimach, T., Martinez, M., Rudolf, M., Lelieveld, J., & Harder, H. (2020). Calibration of an airborne HOx instrument using the All Pressure Altitude-based Calibrator for HOx Experimentation (APACHE). *Atmos. Meas. Tech.*, 13(5), 2711-2731. doi:10.5194/amt-13-2711-2020

- Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Frost, G. J., Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter, R. E., Wert, B., Fried, A., Alicke, B., Stutz, J., Young, V. L., White, A. B., & Zamora, R. J. (2003). OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999. *Journal of Geophysical Research: Atmospheres, 108*(D19). doi:https://doi.org/10.1029/2003JD003551
- Martinez, M., Harder, H., Kubistin, D., Rudolf, M., Bozem, H., Eerdekens, G., Fischer, H., Klüpfel, T., Gurk, C., Königstedt, R., Parchatka, U., Schiller, C. L., Stickler, A., Williams, J., & Lelieveld, J. (2010). Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements. *Atmos. Chem. Phys.*, 10(8), 3759-3773. doi:10.5194/acp-10-3759-2010
- Mellouki, A., Ammann, M., Cox, R. A., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Troe, J., & Wallington, T. J. (2021). Evaluated kinetic and photochemical data for atmospheric chemistry: volume VIII – gas-phase reactions of organic species with four, or more, carbon atoms (≥  C4). Atmos. Chem. Phys., 21(6), 4797-4808. doi:10.5194/acp-21-4797-2021
- Miller, A. M., Yeung, L. Y., Kiep, A. C., & Elrod, M. J. (2004). Overall rate constant measurements of the reactions of alkene-derived hydroxyalkylperoxy radicals with nitric oxide. *Physical Chemistry Chemical Physics*, 6(13), 3402-3407. doi:10.1039/B402110J
- Millet, D. B., Jacob, D. J., Custer, T. G., de Gouw, J. A., Goldstein, A. H., Karl, T., Singh, H. B., Sive, B. C., Talbot, R. W., Warneke, C., & Williams, J. (2008). New constraints on terrestrial and oceanic sources of atmospheric methanol. *Atmos. Chem. Phys.*, 8(23), 6887-6905. doi:10.5194/acp-8-6887-2008
- Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., & Kanaya, Y. (2017). Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. *Atmos. Chem. Phys.*, 17(2), 807-837. doi:10.5194/acp-17-807-2017
- Möller, D. (2003). Luft: Chemie, Physik, Biologie, Reinhaltung, Recht: De Gruyter.
- Moore, R. M., Oram, D. E., & Penkett, S. A. (1994). Production of isoprene by marine phytoplankton cultures. *Geophysical Research Letters*, 21(23), 2507-2510. doi:https://doi.org/10.1029/94GL02363
- Mozurkewich, M., McMurry, P. H., Gupta, A., & Calvert, J. G. (1987). Mass accommodation coefficient for HO2 radicals on aqueous particles. *Journal of Geophysical Research: Atmospheres, 92*(D4), 4163-4170. doi:https://doi.org/10.1029/JD092iD04p04163
- Nölscher, A. C. (2014). Using total OH reactivity to assess isoprene photooxidation via measurement and model. *Atmospheric Environment*, *89*, 453-463. doi:https://doi.org/10.1016/j.atmosenv.2014.02.024
- Novelli, A., Hens, K., Tatum Ernest, C., Kubistin, D., Regelin, E., Elste, T., Plass-Dülmer, C., Martinez, M., Lelieveld, J., & Harder, H. (2014). Characterisation of an inlet pre-injector laser-induced fluorescence instrument for the measurement of atmospheric hydroxyl radicals. *Atmos. Meas. Tech.*, 7(10), 3413-3430. doi:10.5194/amt-7-3413-2014

- Nuvolone, D., Petri, D., & Voller, F. (2018). The effects of ozone on human health. *Environmental Science and Pollution Research*, 25(9), 8074-8088. doi:10.1007/s11356-017-9239-3
- Orlando, J. J., Tyndall, G. S., Bilde, M., Ferronato, C., Wallington, T. J., Vereecken, L., & Peeters, J. (1998). Laboratory and Theoretical Study of the Oxy Radicals in the OHand Cl-Initiated Oxidation of Ethene. *The Journal of Physical Chemistry A*, 102(42), 8116-8123. doi:10.1021/jp981937d
- Ortgies, G., Gericke, K. H., & Comes, F. J. (1980). Is UV laser induced fluorescence a method to monitor tropospheric OH? *Geophysical Research Letters*, 7, 905-908. doi:10.1029/GL007i011p00905
- Paris, J. D., Riandet, A., Bourtsoukidis, E., Delmotte, M., Berchet, A., Williams, J., Ernle, L., Tadic, I., Harder, H., & Lelieveld, J. (2021). Shipborne measurements of methane and carbon dioxide in the Middle East and Mediterranean areas and the contribution from oil and gas emissions. *Atmos. Chem. Phys.*, 21(16), 12443-12462. doi:10.5194/acp-21-12443-2021
- Peeters, J., Müller, J.-F., Stavrakou, T., & Nguyen, V. S. (2014). Hydroxyl Radical Recycling in Isoprene Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism. *The Journal of Physical Chemistry A*, 118(38), 8625-8643. doi:10.1021/jp5033146
- Perner, D., Platt, U., Trainer, M., Hübler, G., Drummond, J., Junkermann, W., Rudolph, J., Schubert, B., Volz, A., Ehhalt, D. H., Rumpel, K. J., & Helas, G. (1987). Measurements of tropospheric OH concentrations: A comparison of field data with model predictions. *Journal of Atmospheric Chemistry*, 5(2), 185-216. doi:10.1007/BF00048859
- Pfannerstill, E. Y., Wang, N. J., Edtbauer, A., Bourtsoukidis, E., Crowley, J. N., Dienhart, D., Eger, P. G., Ernle, L., Fischer, H., Hottmann, B., Paris, J. D., Stonner, C., Tadic, I., Walter, D., & Williams, J. (2019). Shipborne measurements of total OH reactivity around the Arabian Peninsula and its role in ozone chemistry. *Atmospheric Chemistry and Physics*, 19(17), 11501-11523. doi:10.5194/acp-19-11501-2019
- Pound, R. J., Sherwen, T., Helmig, D., Carpenter, L. J., & Evans, M. J. (2020). Influences of oceanic ozone deposition on tropospheric photochemistry. *Atmos. Chem. Phys.*, 20(7), 4227-4239. doi:10.5194/acp-20-4227-2020
- Prinn, R. G. (2003). The Cleansing Capacity of the Atmosphere. Annual Review of
Environment and Resources, 28(1), 29-57.
doi:10.1146/annurev.energy.28.011503.163425
- Ravishankara, A. R. (1997). Heterogeneous and Multiphase Chemistry in the Troposphere. *Science*, 276(5315), 1058-1065. doi:10.1126/science.276.5315.1058
- Reiner, T., Hanke, M., & Arnold, F. (1997). Atmospheric peroxy radical measurements by ion molecule reaction-mass spectrometry: A novel analytical method using amplifying chemical conversion to sulfuric acid. *Journal of Geophysical Research: Atmospheres, 102*(D1), 1311-1326. doi:https://doi.org/10.1029/96JD02963
- Remorov, R. G., Gershenzon, Y. M., Molina, L. T., & Molina, M. J. (2002). Kinetics and Mechanism of HO2 Uptake on Solid NaCl. *The Journal of Physical Chemistry A*, 106(18), 4558-4565. doi:10.1021/jp013179o
- Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gromov, S., Grooß, J. U., Harder, H., Huijnen, V., Jöckel, P., Karydis, V. A., Niemeyer, K. E., Pozzer, A.,

Riede, H., Schultz, M. G., Taraborrelli, D., & Tauer, S. (2019). The community atmospheric chemistry box model CAABA/MECCA-4.0. *Geosci. Model Dev.*, *12*(4), 1365-1385. doi:10.5194/gmd-12-1365-2019


- Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jöckel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, A., Taraborrelli, D., Tost, H., & Xie, Z. Q. (2011). The atmospheric chemistry box model CAABA/MECCA-3.0. *Geosci. Model Dev.*, 4(2), 373-380. doi:10.5194/gmd-4-373-2011
- Sander, R., Kerkweg, A., Jöckel, P., & Lelieveld, J. (2005). Technical note: The new comprehensive atmospheric chemistry module MECCA. *Atmos. Chem. Phys.*, 5(2), 445-450. doi:10.5194/acp-5-445-2005
- Sander, S. P., J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, G., K. Moortgat, and, V. L. O., & Wine, P. H. (2011). Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
- Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena.
- Sandu, A., & Sander, R. (2006). Technical note: Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. *Atmos. Chem. Phys.*, *6*(1), 187-195. doi:10.5194/acp-6-187-2006
- Saunders, S. M., Jenkin, M. E., Derwent, R. G., & Pilling, M. J. (2003). Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. *Atmos. Chem. Phys.*, 3(1), 161-180. doi:10.5194/acp-3-161-2003
- Schumann, U., & Huntrieser, H. (2007). The global lightning-induced nitrogen oxides source. *Atmos. Chem. Phys.*, 7(14), 3823-3907. doi:10.5194/acp-7-3823-2007
- Seinfeld, J. H., Pandis, S. N. (1998). Atmospheric Chemistry and Physics From Air Pollution to Climate Change. *John Wiley & Sons*.
- Shaw, S. L., Chisholm, S. W., & Prinn, R. G. (2003). Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton. *Marine Chemistry*, 80(4), 227-245. doi:https://doi.org/10.1016/S0304-4203(02)00101-9
- Sherwen, T., Chance, R. J., Tinel, L., Ellis, D., Evans, M. J., & Carpenter, L. J. (2019). A machine-learning-based global sea-surface iodide distribution. *Earth Syst. Sci. Data*, 11(3), 1239-1262. doi:10.5194/essd-11-1239-2019
- Simpson, W. R. (2015). Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts. *Chemical Reviews*, 115(10), 4035-4062. doi:10.1021/cr5006638
- Smith, G. P., & Crosley, D. R. (1990). A photochemical model of ozone interference effects in laser detection of tropospheric OH. *Journal of Geophysical Research: Atmospheres*, 95(D10), 16427-16442. doi:https://doi.org/10.1029/JD095iD10p16427
- Sommariva, R., Haggerstone, A. L., Carpenter, L. J., Carslaw, N., Creasey, D. J., Heard, D. E., Lee, J. D., Lewis, A. C., Pilling, M. J., & Zádor, J. (2004). OH and HO₂ chemistry in clean marine air during SOAPEX-2. *Atmos. Chem. Phys.*, 4(3), 839-856. doi:10.5194/acp-4-839-2004
- Stevens, P. S., Mather, J. H., & Brune, W. H. (1994). Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure. *Journal of Geophysical Research: Atmospheres, 99*(D2), 3543-3557. doi:https://doi.org/10.1029/93JD03342
- Tadic, I., Crowley, J. N., Dienhart, D., Eger, P., Harder, H., Hottmann, B., Martinez, M., Parchatka, U., Paris, J. D., Pozzer, A., Rohloff, R., Schuladen, J., Shenolikar, J.,

Tauer, S., Lelieveld, J., & Fischer, H. (2020). Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula. *Atmospheric Chemistry and Physics*, 20(11), 6769-6787. doi:10.5194/acp-20-6769-2020

- Taketani, F., Kanaya, Y., & Akimoto, H. (2008). Kinetics of Heterogeneous Reactions of HO2 Radical at Ambient Concentration Levels with (NH4)2SO4 and NaCl Aerosol Particles. *The Journal of Physical Chemistry A*, 112(11), 2370-2377. doi:10.1021/jp0769936
- Taraborrelli, D. (2012). Hydroxyl radical buffered by isoprene oxidation over tropical forests. *Nature Geoscience*, 5(3), 190-193. doi:10.1038/ngeo1405
- Thornton, J. A., Jaeglé, L., & McNeill, V. F. (2008). Assessing known pathways for HO2 loss in aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants. *Journal of Geophysical Research: Atmospheres, 113*(D5). doi:https://doi.org/10.1029/2007JD009236
- Thornton, J. A., Wooldridge, P. J., Cohen, R. C., Martinez, M., Harder, H., Brune, W. H., Williams, E. J., Roberts, J. M., Fehsenfeld, F. C., Hall, S. R., Shetter, R. E., Wert, B. P., & Fried, A. (2002). Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume. *Journal of Geophysical Research: Atmospheres, 107*(D12), ACH 7-1-ACH 7-17. doi:https://doi.org/10.1029/2001JD000932
- Tolbert, M. (1988). Science1988, 240, 1018-1021.
- Umezawa, T., Matsueda, H., Sawa, Y., Niwa, Y., Machida, T., & Zhou, L. (2018). Seasonal evaluation of tropospheric CO2 over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements. *Atmos. Chem. Phys.*, 18(20), 14851-14866. doi:10.5194/acp-18-14851-2018
- Vereecken, L., Peeters, J., Orlando, J. J., Tyndall, G. S., & Ferronato, C. (1999). Decomposition of β-Hydroxypropoxy Radicals in the OH-Initiated Oxidation of Propene. A Theoretical and Experimental Study. *The Journal of Physical Chemistry A*, 103(24), 4693-4702. doi:10.1021/jp990046i
- Wang, C. C., & Davis, L. I. (1974). Measurement of Hydroxyl Concentrations in Air Using a Tunable uv Laser Beam. *Physical Review Letters*, 32(7), 349-352. doi:10.1103/PhysRevLett.32.349
- Wang, N., Edtbauer, A., Stönner, C., Pozzer, A., Bourtsoukidis, E., Ernle, L., Dienhart, D., Hottmann, B., Fischer, H., Schuladen, J., Crowley, J. N., Paris, J. D., Lelieveld, J., & Williams, J. (2020). Measurements of carbonyl compounds around the Arabian Peninsula: overview and model comparison. *Atmos. Chem. Phys.*, 20(18), 10807-10829. doi:10.5194/acp-20-10807-2020
- Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J., Le Bras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., & Sidebottom, H. (1991). The nitrate radical: physics, chemistry, and the atmosphere. *Atmospheric Environment*, 25(1), 1-203.
- Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., Nguyen, T. B., Praske, E., Schwantes, R. H., Smarte, M. D., St Clair, J. M., Teng, A. P., Zhang, X., & Seinfeld, J. H. (2018). Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. *Chemical Reviews*, 118(7), 3337-3390. doi:10.1021/acs.chemrev.7b00439

8 Bibliography

- Wennberg, P. O., Cohen, R. C., Hazen, N. L., Lapson, L. B., Allen, N. T., Hanisco, T. F., Oliver, J. F., Lanham, N. W., Demusz, J. N., & Anderson, J. G. (1994). Aircraft-Borne, Laser-Induced Fluorescence Instrument for the in-Situ Detection of Hydroxyl and Hydroperoxyl Radicals. *Review of Scientific Instruments*, 65(6), 1858-1876. doi:Doi 10.1063/1.1144835
- White, J. U. (1942). Long Optical Paths of Large Aperture. *Journal of the Optical Society* of America, 32(5), 285-288. doi:10.1364/JOSA.32.000285
- Xu, L., Møller, K. H., Crounse, J. D., Kjaergaard, H. G., & Wennberg, P. O. (2020). New Insights into the Radical Chemistry and Product Distribution in the OH-Initiated Oxidation of Benzene. *Environmental Science & Technology*, 54(21), 13467-13477. doi:10.1021/acs.est.0c04780

A. Supplementary Data

Figure A.1 Measurement of peroxy radicals from ethene under the assumption of a NO offset of $+0.04 \cdot 10^{-3} \text{ s}^{-1}$. Dots represent the measurement and the dotted line represent box model results.

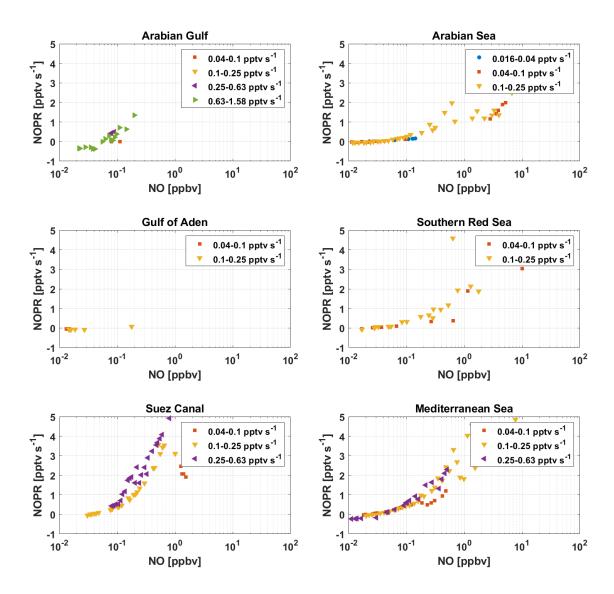


Figure A.2 NOPR_{calc} over the Arabian Sea as a function of NO mixing ratio. The differently colored markers show different levels of P_{HOx} during the AQABA campaign. All regimes of P_{HOx} show similar NOPR, indicating no significant fluctuations of conditions throughout the day.

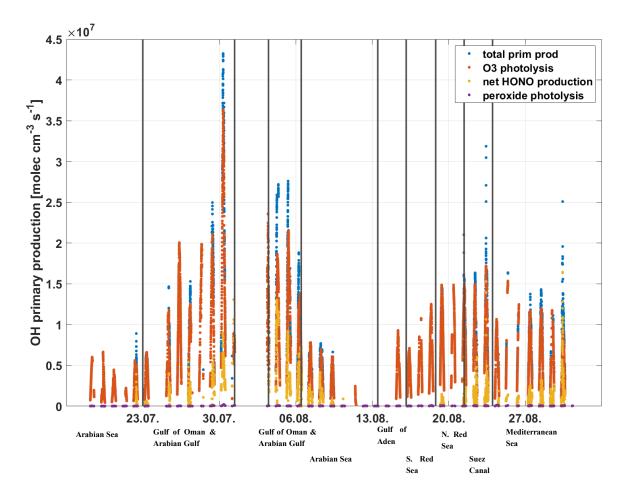


Figure A.3 Timeseries of total OH primary production and the individual contributing reactions. The blue dots show the total primary production, the red dots show the production from the photolysis of ozone, yellow dots show the net production from HONO photolysis and the purple dots show the OH production from H_2O_2 and ROOH.

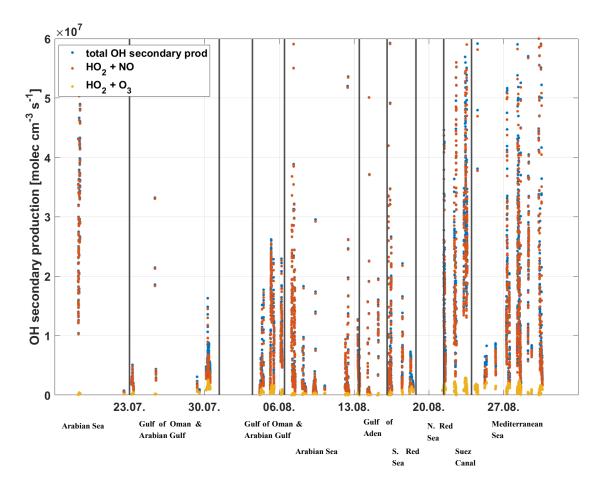


Figure A.4 Timeseries of total OH secondary production and the individual contributing reactions. The blue dots show the total secondary production, the red dots show the production from the reaction of HO_2 with NO, yellow dots show the production from the reaction of HO_2 with O_3 .

B. CAABA/MECCA chemical mechanism

#	labels	reaction	rate coefficient	reference
G1000	UpStTrG	$O_2 + O(^1D) \rightarrow O(^3P) + O_2$	3.3E-11*EXP(55./temp)	Burkholder et al. (2015)
31001	UpStTrG	$O_2 + O(^3P) \rightarrow O_3$	6.0E-34*((temp/300.)**(-2.4))	Burkholder et al. (2015)
			*cair	
G1002a	UpStG	$O_3 + O(^1D) \rightarrow 2 O_2$	1.2E-10	Burkholder et al. (2015)*
31002b	UpG	$O_3 + O(^1D) \rightarrow O_2 + 2 O(^3P)$	1.2E-10	Burkholder et al. (2015)
1003	UpStG	$O_3 + O(^3P) \rightarrow 2 O_2$	8.0E-12*EXP(-2060./temp)	Burkholder et al. (2015)
G1004	UpG	$O_2 + O^+ \rightarrow O_2^+ + O(^3P)$	k_Op_O2(temp,temp_ion)	Fuller-Rowell (1993)
31101	UpG	$O_2^+ + e^- \rightarrow 2 \tilde{O}(^3P)$	2.7E-7*(300./temp_elec)**(.7)	Fuller-Rowell (1993)
32100	UpStTrG	$H + O_2 \rightarrow HO_2$	k_3rd(temp,cair,4.4E-32,1.3,	Burkholder et al. (2015)
			7.5E-11,-0.2,0.6)	
32101	UpStG	$H + O_3 \rightarrow OH + O_2$	1.4E-10*EXP(-470./temp)	Burkholder et al. (2015)
2102	UpStG	$H_2 + O(^1D) \rightarrow H + OH$	1.2E-10	Burkholder et al. (2015)
2103	UpStG	$OH + O(^{3}P) \rightarrow H + O_{2}$	1.8E-11*EXP(180./temp)	Burkholder et al. (2015)
2104	UpStTrG	$OH + O_3 \rightarrow HO_2 + O_2$	1.7E-12*EXP(-940./temp)	Burkholder et al. (2015)
2105	UpStTrG	$OH + H_2 \rightarrow H_2O + H$	2.8E-12*EXP(-1800./temp)	Burkholder et al. (2015)
2106	UpStG	$HO_2 + O(^{3}P) \rightarrow OH + O_2$	3.E-11*EXP(200./temp)	Burkholder et al. (2015)
2107	UpStTrG	$HO_2 + O_3 \rightarrow OH + 2 O_2$	1.E-14*EXP(-490./temp)	Burkholder et al. (2015)
2108a	UpStG	$HO_2 + H \rightarrow 2 OH$	7.2E-11	Burkholder et al. (2015)
2108b	UpStG	$HO_2 + H \rightarrow H_2 + O_2$	6.9E-12	Burkholder et al. (2015)
2108c	UpStG	$HO_2 + H \rightarrow O(^{3}P) + H_2O$	1.6E-12	Burkholder et al. (2015)
2109	UpStTrG	$HO_2 + OH \rightarrow H_2O + O_2$	4.8E-11*EXP(250./temp)	Burkholder et al. (2015)
2110	UpStTrG	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	k_H02_H02	Burkholder et al. (2015) [*]
2111	UpStTrG	$H_2O + O(^1D) \rightarrow 2 OH$	1.63E-10*EXP(60./temp)	Burkholder et al. (2015)
2112	UpStTrG	$H_2O_2 + OH \rightarrow H_2O + HO_2$	1.8E-12	Burkholder et al. (2015)
2113	UpG	$H_2 + O(^{3}P) \rightarrow H + OH$	1.60E-11*EXP(-4570./temp)	Roble (1995)
2114a	UpG	$OH + OH \rightarrow H_2O + O(^3P)$	4.20E-12*EXP(-240./temp)	Sander et al. (2003)
32114b	UpG	$\rm OH + OH \rightarrow H_2O_2$	k_3rd(temp,cair,6.9E-31,1.0, 2.6E-11,0.,0.6)	Burkholder et al. (2015)
2115	UpG	$H + H \rightarrow H_2$	5.7E-32*(300./temp)**(1.6)*cair	Roble (1995)
2116	UpG	$H_2O_2 + O(^{3}P) \rightarrow OH + HO_2$	1.40E-12*EXP(-2000./temp)	Sander et al. (2003)
32117	UpStTrG	$\rm H_2O + \rm H_2O \rightarrow (\rm H_2O)_2$	6.521E-26*temp*EXP(1851.09/temp) *EXP(-5.10485E-3*temp)	Scribano et al. (2006)*
2118	UpStTrG	$(H_2O)_2 \rightarrow H_2O + H_2O$	1.E0	see note [*]
33001	UpGN	$NO^+ + e^- \rightarrow .15 \text{ N} + .85 \text{ N}(^2\text{D}) + O(^3\text{P})$	4.2E-7*(300./temp_elec)**(0.85)	Bailey et al. (2002)

Table 1: Gas phase reactions

2

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3002	UpGN	$N_2^+ + e^- \rightarrow .88 \text{ N} + 1.12 \text{ N}(^2\text{D})$	1.8E-7*(temp_elec/300.)**(-0.39)	Swaminathan et al. (1998)
G3003	UpGN	$N(^{2}D) + e^{-} \rightarrow N + e^{-}$	3.8E-12*(temp_elec)**(.81)	Swaminathan et al. (1998)
G3100	UpStGN	$N + O_2 \rightarrow NO + O(^3P)$	1.5E-11*EXP(-3600./temp)	Burkholder et al. (2015)
G3101	UpStTrGN	$N_2 + O(^1D) \rightarrow O(^3P) + N_2$	2.15E-11*EXP(110./temp)	Burkholder et al. (2015)
G3102a	UpStGN	$N_2O + O(^1D) \rightarrow 2 NO$	7.259E-11*EXP(20./temp)	Burkholder et al. (2015)
G3102b	StGN	$N_2O + O(^1D) \rightarrow N_2 + O_2$	4.641E-11*EXP(20./temp)	Burkholder et al. (2015)
G3103	UpStTrGN	$NO + O_3 \rightarrow NO_2 + O_2$	3.0E-12*EXP(-1500./temp)	Burkholder et al. (2015)
G3104	UpStGN	$NO + N \rightarrow O(^{3}P) + N_{2}$	2.1E-11*EXP(100./temp)	Burkholder et al. (2015)
G3105	UpStGN	$NO_2 + O(^{3}P) \rightarrow NO + O_2$	5.1E-12*EXP(210./temp)	Burkholder et al. (2015)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Burkholder et al. (2015)
G3107	UpStGN	$NO_2 + N \rightarrow N_2O + O(^3P)$	5.8E-12*EXP(220./temp)	Burkholder et al. (2015)
G3108	StTrGN	$NO_3 + NO \rightarrow 2 NO_2$	1.5E-11*EXP(170./temp)	Burkholder et al. (2015)
G3109	UpStTrGN	$NO_3 + NO_2 \rightarrow N_2O_5$	k_N03_N02	Burkholder et al. (2015)*
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_N03_N02/(5.8E-27*EXP(10840./ temp))	Burkholder et al. (2015) [*]
G3111	UpGN	$N(^{2}D) + NO \rightarrow N_{2} + O(^{3}P)$	6.70E-11	Fuller-Rowell (1993)
G3112	UpGN	$N(^{2}D) + O_{2} \rightarrow NO + O(^{3}P)$	6.20E-12*(temp/300.)	Duff et al. (2003)
G3113	UpGN	$N(^{2}D) + O(^{3}P) \rightarrow N + O(^{3}P)$	6.90E-13	Fell et al. (1990)
G3114	UpGN	$N(^{2}D) + O_{3} \rightarrow NO + O_{2}$	0.80E-16	Sander et al. (2003)
G3115	UpGN	$NO + O(^{3}P) \rightarrow NO_{2}$	k_3rd(temp,cair,9.0E-32,1.5, 3.0E-11,0.0,0.6)	Burkholder et al. (2015)
G3116	UpGN	$NO_2 + O(^{3}P) \rightarrow NO_3$	k_3rd(temp,cair,2.5E-31,1.8, 2.2E-11,0.7,0.6)	Burkholder et al. (2015)
G3117	UpGN	$N(^{2}D) \rightarrow N$	10.6	Fuller-Rowell (1993)
G3118	UpGN	$N^+ + O_2 \rightarrow NO + O^+$	3.66E-11	Barth (1992)
G3119	UpGN	$N_2^+ + O(^{3}P) \rightarrow NO^+ + N(^{2}D)$	k_N2_0(temp,temp_ion)	Fuller-Rowell (1993)
G3120a	UpGN	$N^{+} + O_2 \rightarrow NO^{+} + O(^{3}P)$	2.60E-10	Fuller-Rowell (1993)
G3120b	UpGN	$N^+ + O_2 \rightarrow O_2^+ + N$	3.10E-10	Swaminathan et al. (1998)
G3121	UpGN	$N^+ + O(^{3}P) \rightarrow O^+ + N$	1.00E-12	Fuller-Rowell (1993)
G3122	UpGN	$O_2^+ + N \rightarrow NO^+ + O(^3P)$	1.20E-10	Fuller-Rowell (1993)
G3123	UpGN	$O_2^+ + NO \rightarrow NO^+ + O_2$	4.40E-10	Fuller-Rowell (1993)
G3124	UpGN	$O^+ + N_2 \rightarrow NO^+ + N$	k_Op_N2(temp,temp_ion)	Fuller-Rowell (1993)
G3125	UpGN	$N_2^+ + O_2 \rightarrow N_2 + O_2^+$	5.10E-11*(temp/300.)**(-0.8)	Fuller-Rowell (1993)
G3200	TrGN	$\rm NO + OH \rightarrow HONO$	k_3rd(temp,cair,7.0E-31,2.6, 3.6E-11,0.1,0.6)	Burkholder et al. (2015)

Table 1: Gas phase reactions (continued)	Table 1:	Gas phase	reactions (.	continued)
---	----------	-----------	--------------	------------

#	labels	reaction	rate coefficient	reference
G3201	UpStTrGN	$NO + HO_2 \rightarrow NO_2 + OH$	3.3E-12*EXP(270./temp)	Burkholder et al. (2015)
G3202a	UpStTrGN	$NO_2 + OH \rightarrow HNO_3$	(1alpha_HOONO) * k_NO2_OH	Amedro et al. (2020)
G3202b	UpStTrGN	$NO_2 + OH \rightarrow HOONO$	alpha_HOONO * k_NO2_OH	Amedro et al. (2020)
G3203	StTrGN	$NO_2 + HO_2 \rightarrow HNO_4$	k_N02_H02	Burkholder et al. (2015)*
G3204	TrGN	$NO_3 + HO_2 \rightarrow NO_2 + OH + O_2$	3.5E-12	Burkholder et al. (2015)
G3205	TrGN	$HONO + OH \rightarrow NO_2 + H_2O$	1.8E-11*EXP(-390./temp)	Burkholder et al. (2015)
G3206	StTrGN	$HNO_3 + OH \rightarrow H_2O + NO_3$	k_HNO3_OH	Dulitz et al. (2018)*
G3207	StTrGN	$\mathrm{HNO}_4 \rightarrow \mathrm{NO}_2 + \mathrm{HO}_2$	k_NO2_HO2/(2.1E-27*EXP(10900./ temp))	Burkholder et al. $(2015)^*$
G3208	StTrGN	$HNO_4 + OH \rightarrow NO_2 + H_2O$	1.3E-12*EXP(380./temp)	Burkholder et al. (2015)
G3209	TrGN	$NH_3 + OH \rightarrow NH_2 + H_2O$	1.7E-12*EXP(-710./temp)	Kohlmann and Poppe (1999)
G3210	TrGN	$NH_2 + O_3 \rightarrow NH_2O + O_2$	4.3E-12*EXP(-930./temp)	Kohlmann and Poppe (1999)
G3211	TrGN	$\rm NH_2 + HO_2 \rightarrow NH_2O + OH$	4.8E-07*EXP(-628./temp)*(temp) **(-1.32)	Kohlmann and Poppe (1999)
G3212	TrGN	$\rm NH_2 + HO_2 \rightarrow HNO + H_2O$	9.4E-09*EXP(-356./temp)*(temp) **(-1.12)	Kohlmann and Poppe (1999)
G3213	TrGN	$NH_2 + NO \rightarrow HO_2 + OH + N_2$	1.92E-12*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3214	TrGN	$NH_2 + NO \rightarrow N_2 + H_2O$	1.41E-11*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3215	TrGN	$NH_2 + NO_2 \rightarrow N_2O + H_2O$	1.2E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3216	TrGN	$NH_2 + NO_2 \rightarrow NH_2O + NO$	0.8E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3217	TrGN	$NH_2O + O_3 \rightarrow NH_2 + O_2$	1.2E-14	Kohlmann and Poppe (1999)
G3218	TrGN	$NH_2O \rightarrow NHOH$	1.3E3	Kohlmann and Poppe (1999)
G3219	TrGN	$HNO + OH \rightarrow NO + H_2O$	8.0E-11*EXP(-500./temp)	Kohlmann and Poppe (1999)
G3220	TrGN	$HNO + NHOH \rightarrow NH_2OH + NO$	1.66E-12*EXP(-1500./temp)	Kohlmann and Poppe (1999)
G3221	TrGN	$HNO + NO_2 \rightarrow HONO + NO$	1.0E-12*EXP(-1000./temp)	Kohlmann and Poppe (1999)
G3222	TrGN	$NHOH + OH \rightarrow HNO + H_2O$	1.66E-12	Kohlmann and Poppe (1999)
G3223	TrGN	$NH_2OH + OH \rightarrow NHOH + H_2O$	4.13E-11*EXP(-2138./temp)	Kohlmann and Poppe (1999)
G3224	TrGN	$HNO + O_2 \rightarrow HO_2 + NO$	3.65E-14*EXP(-4600./temp)	Kohlmann and Poppe (1999)
G3225	UpGN	$N + OH \rightarrow NO + H$	5.00E-11	Roble (1995)
G3226	UpGN	$NO_2 + H \rightarrow NO + OH$	4.00E-10*EXP(-340./temp)	Sander et al. (2003)
G3227	UpStTrGN	$\rm HOONO \rightarrow NO_2 + OH$	(alpha_HOONO*k_NO2_OH) /(3.5E-27*EXP(10135./temp))	see note [*]
G3228	UpStTrGN	$HOONO + OH \rightarrow H_2O + NO_3$	1.3E-12*EXP(380./temp)	Burkholder et al. (2015)*
G4100	UpStG	$\rm CH_4$ + O(^1D) \rightarrow .75 CH_3 + .75 OH + .25 HCHO + .4 H + .05 H_2	1.75E-10	Burkholder et al. (2015)

Table 1: Gas phase reactions $(\dots \text{ continued})$

#	labels	reaction	rate coefficient	reference
G4101	StTrG	$\rm CH_4 + OH \rightarrow CH_3 + H_2O$	1.85E-20*EXP(2.82*LOG(temp) -987./temp)	Atkinson (2003)
G4102	TrG	$\rm CH_3OH + OH \rightarrow .85~HCHO + .85~HO_2 + .15~CH_3O + H_2O$	6.38E-18*((temp)**2)*EXP(144./ temp)	Atkinson et al. (2006)
G4103a	StTrG	$\rm CH_3O_2 + HO_2 \rightarrow \rm CH_3OOH + O_2$	3.8E-13*EXP(780./temp)/(1.+1./ 498.*EXP(1160./temp))	Atkinson et al. (2006)
G4103b	StTrG	$\rm CH_3O_2 + HO_2 \rightarrow \rm HCHO + H_2O + O_2$	3.8E-13*EXP(780./temp)/(1.+ 498.*EXP(-1160./temp))	Atkinson et al. (2006)
G4104a	StTrGN	$\rm CH_3O_2 + \rm NO \rightarrow \rm CH_3O + \rm NO_2$	2.3E-12*EXP(360./temp)*(1beta_ CH3N03)	Atkinson et al. (2006), Butkovskaya et al. (2012), Flocke et al. (1998)
G4104b	StTrGN	$\rm CH_3O_2$ + NO \rightarrow $\rm CH_3ONO_2$	2.3E-12*EXP(360./temp)*beta_ CH3N03	Atkinson et al. (2006), Butkovskaya et al. (2012), Flocke et al. (1998)*
G4105	TrGN	$CH_3O_2 + NO_3 \rightarrow CH_3O + NO_2 + O_2$	1.2E-12	Atkinson et al. (2006)
G4106a	StTrG	$CH_3O_2 \rightarrow CH_3O + .5 O_2$	7.4E-13*EXP(-520./temp)*R02*2.	Atkinson et al. (2006)
G4106b	StTrG	$\rm CH_3O_2 \rightarrow .5~HCHO + .5~CH_3OH + .5~O_2$	(k_CH302-7.4E-13*EXP(-520./temp)) *R02*2.	Atkinson et al. (2006)
G4107	StTrG	$CH_3OOH + OH \rightarrow .6 CH_3O_2 + .4 HCHO + .4 OH + H_2O$	k_CH300H_OH	Wallington et al. (2018)
G4108	StTrG	$\rm HCHO+OH\rightarrow CO+H_2O+HO_2$	9.52E-18*EXP(2.03*LOG(temp) +636./temp)	Sivakumaran et al. (2003)
G4109	TrGN	$HCHO + NO_3 \rightarrow HNO_3 + CO + HO_2$	3.4E-13*EXP(-1900./temp)	Burkholder et al. (2015)*
G4110	UpStTrG	$CO + OH \rightarrow H + CO_2$	(1.57E-13+cair*3.54E-33)	McCabe et al. (2001)
G4111	TrG	$\rm HCOOH + OH \rightarrow \rm CO_2 + \rm HO_2 + \rm H_2O$	2.94E-14*exp(786./temp) +9.85E-13*EXP(-1036./temp)	Paulot et al. (2011)
G4112	UpStG	$\rm CO + O(^{3}P) \rightarrow \rm CO_{2}$	6.60E-33*EXP(-1103./temp)	Roble (1995)
G4113	UpStG	${\rm CH_4}+{\rm O}(^{\rm 3P})\rightarrow.51~{\rm CH_3}+.51~{\rm OH}+.49~{\rm CH_3O}+.49~{\rm H}$	6.03E-18*(temp)**(2.17) *EXP(-3619./temp)	Roble (1995), Garton et al. (2003), Espinosa-Garcia and Garcia-Bernáldez (2000)
G4114	StTrGN	$CH_3O_2 + NO_2 \rightarrow CH_3O_2NO_2$	k_N02_CH302	Burkholder et al. (2015)
G4115	StTrGN	$\rm CH_3O_2NO_2 \rightarrow \rm CH_3O_2 + \rm NO_2$	k_NO2_CH3O2/(9.5E-29*EXP(11234./ temp))	Burkholder et al. (2015)*
G4116	StTrGN	$CH_3O_2NO_2 + OH \rightarrow HCHO + NO_3 + H_2O$	3.00E-14	see note [*]
G4117	StTrGN	$CH_3ONO_2 + OH \rightarrow H_2O + HCHO + NO_2$	4.0E-13*EXP(-845./temp)	Atkinson et al. (2006)
G4118	StTrG	$CH_3O \rightarrow HO_2 + HCHO$	1.3E-14*exp(-663./temp)*c(ind_02)	Chai et al. (2014)

#	labels	reaction	rate coefficient	reference
G4119a	StTrGN	$\rm CH_3O+NO_2\rightarrow \rm CH_3ONO_2$	k_3rd_iupac(temp,cair,8.1E-29, 4.5,2.1E-11,0.,0.44)	Atkinson et al. (2006)
G4119b	StTrGN	$CH_3O + NO_2 \rightarrow HCHO + HONO$	9.6E-12*EXP(-1150./temp)	Atkinson et al. (2006)
G4120a	StTrGN	$\rm CH_3O + NO \rightarrow \rm CH_3ONO$	k_3rd_iupac(temp,cair,2.6E-29, 2.8,3.3E-11,0.6,REAL(EXP(-temp/ 900.),SP))	Atkinson et al. (2006)
G4120b	StTrGN	$CH_3O + NO \rightarrow HCHO + HNO$	2.3E-12*(temp/300.)**(0.7)	Atkinson et al. (2006)
G4121	StTrG	$CH_3O_2 + O_3 \rightarrow CH_3O + 2 O_2$	2.9E-16*exp(-1000./temp)	Burkholder et al. (2015)
G4122	StTrGN	$CH_3ONO + OH \rightarrow H_2O + HCHO + NO$	1.E-10*exp(-1764./temp)	Nielsen et al. (1991)
G4123	StTrG	$HCHO + HO_2 \rightarrow HOCH_2O_2$	9.7E-15*EXP(625./temp)	Atkinson et al. (2006)
G4124	StTrG	$HOCH_2O_2 \rightarrow HCHO + HO_2$	2.4E12*EXP(-7000./temp)	Atkinson et al. (2006)
G4125	StTrG	$HOCH_2O_2 + HO_2 \rightarrow .5 HOCH_2OOH + .5 HCOOH + .2 OH + .2 HO_2 + .3 H_2O + .8 O_2$	5.6E-15*EXP(2300./temp)	Atkinson et al. (2006)
G4126	StTrGN	$HOCH_2O_2 + NO \rightarrow NO_2 + HO_2 + HCOOH$	0.7275*2.3E-12*EXP(360./temp)	Atkinson et al. (2006)*
G4127	StTrGN	$HOCH_2O_2 + NO_3 \rightarrow NO_2 + HO_2 + HCOOH$	1.2E-12	see note*
G4129a	StTrG	$HOCH_2O_2 \rightarrow HCOOH + HO_2$	(k_CH302*5.5E-12)**(0.5)*R02*2.	Atkinson et al. (2006)
G4129b	StTrG	$\rm HOCH_2O_2 \rightarrow .5~HCOOH$ + .5 $\rm HOCH_2OH$ + .5 $\rm O_2$	(k_CH302*5.7E-14*EXP(750./temp)) **(0.5)*R02*2.	Atkinson et al. (2006)
G4130a	StTrG	$HOCH_2OOH + OH \rightarrow HOCH_2O_2 + H_2O$	k_ROOHRO	Taraborrelli (2010)*
G4130b	StTrG	$HOCH_2OOH + OH \rightarrow HCOOH + H_2O + OH$	k_ROHRO + k_s*f_sOOH*f_sOH	Taraborrelli (2010)*
G4132	StTrG	$HOCH_2OH + OH \rightarrow HO_2 + HCOOH + H_2O$	2.*k_ROHRO + k_s*f_sOH*f_sOH	Taraborrelli (2010)*
G4133	StTrG	$CH_3O_2 + OH \rightarrow CH_3O + HO_2$	1.4E-10	Bossolasco et al. (2014)*
G4134	StTrG	$CH_2OO \rightarrow CO + HO_2 + OH$	1.124E+14*EXP(-10000./temp)	see note*
G4135	StTrG	$CH_2OO + H_2O \rightarrow HOCH_2OOH$	k_CH200_N02*3.6E-6	Ouyang et al. (2013)*
G4136	StTrG	$\rm CH_2OO+(\rm H_2O)_2\rightarrow\rm HOCH_2OOH+\rm H_2O$	5.2E-12	Chao et al. (2015), Lewis et a (2015)*
G4137	StTrGN	$CH_2OO + NO \rightarrow HCHO + NO_2$	6.E-14	Welz et al. (2012)*
G4138	StTrGN	$\rm CH_2OO + NO_2 \rightarrow \rm HCHO + NO_3$	k_CH200_N02	Welz et al. (2012), Stone et a (2014)*
G4140	StTrG	$CH_2OO + CO \rightarrow HCHO + CO_2$	3.6E-14	Vereecken et al. (2012)
G4141	StTrG	$CH_2OO + HCOOH \rightarrow 2 HCOOH$	1.E-10	Welz et al. (2014)*
G4142	StTrG	$CH_2OO + HCHO \rightarrow 2 LCARBON$	1.7E-12	Stone et al. (2014)*
G4143	StTrG	$CH_2OO + CH_3OH \rightarrow 2 LCARBON$	5.E-12	Vereecken et al. (2012)*
G4144	StTrG	$CH_2OO + CH_3O_2 \rightarrow 2 LCARBON$	5.E-12	Vereecken et al. (2012)*
G4145	StTrG	$CH_2OO + HO_2 \rightarrow LCARBON$	5.E-12	Vereecken et al. (2012)

6

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4146	StTrG	$CH_2OO + O_3 \rightarrow HCHO + 2 O_2$	1.E-12	Vereecken et al. (2014)
G4147	StTrG	$CH_2OO + CH_2OO \rightarrow 2 HCHO + O_2$	6.E-11	Buras et al. (2014)
G4148	StTrGN	$HOCH_2O_2 + NO_2 \rightarrow HOCH_2O_2NO_2$	k_N02_CH302	see note*
G4149	StTrGN	$\rm HOCH_2O_2NO_2 \rightarrow \rm HOCH_2O_2 + NO_2$	k_N02_CH302/(9.5E-29*EXP(11234./ temp))	Barnes et al. $(1985)^*$
G4150	StTrGN	$HOCH_2O_2NO_2 + OH \rightarrow HCOOH + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)*f_sOH	see note [*]
G4151	StTrG	$\rm CH_3 + \rm O_2 \rightarrow \rm CH_3\rm O_2$	k_3rd_iupac(temp,cair,7.0E-31, 3.,1.8E-12,-1.1,0.33)	Atkinson et al. (2006)
G4152	StTrG	$\rm CH_3$ + $\rm O_3 \rightarrow .956~\rm HCHO$ + .956 H + .044 $\rm CH_3O$ + $\rm O_2$	5.1E-12*exp(-210./temp)	Albaladejo et al. (2002), Ogryzlo et al. (1981)
G4153	StTrG	$\rm CH_3 + O(^{3}P) \rightarrow .83~HCHO + .83~H + .17~CO + .17~H_2 + .17~H$	1.3E-10	Atkinson et al. (2006)
G4154	StTrG	$CH_3O + O_3 \rightarrow CH_3O_2 + O_2$	2.53E-14	Albaladejo et al. (2002)*
G4155	StTrG	$\rm CH_{3}O + O(^{3}P) \rightarrow .75~CH_{3} + .75~O_{2} + .25~HCHO + .25~OH$	2.5E-11	Baulch et al. (2005)
G4156	StTrG	$CH_3O_2 + O(^3P) \rightarrow CH_3O + O_2$	4.3E-11	Zellner et al. (1988)
G4157	StTrG	HCHO + O(³ P) \rightarrow .7 OH + .7 CO + .3 H + .3 CO ₂ + HO ₂	3.4E-11*EXP(-1600./temp)	Burkholder et al. (2015)
G4158	TrG	$\begin{array}{l} {\rm CH_2OO^*} \rightarrow .37 \ {\rm CH_2OO} + .47 \ {\rm CO} + .47 \ {\rm H_2O} + .16 \ {\rm HO_2} \\ + .16 \ {\rm CO} + .16 \ {\rm OH} \end{array}$	KDEC	Atkinson et al. (2006)
G4159	TrGN	$\rm HCN + OH \rightarrow \rm H_2O + CN$	k_3rd(temp,cair,4.28E-33,1.0, REAL(4.25E-13*EXP(-1150./temp) ,SP),1.0,0.8)	Kleinböhl et al. (2006)
G4160a	TrGN	$\rm HCN + O(^{1}D) \rightarrow O(^{3}P) + \rm HCN$	1.08E-10*EXP(105./temp) *0.15*EXP(200./temp)	Strekowski et al. (2010)
G4160b	TrGN	$HCN + O(^{1}D) \rightarrow H + NCO$	1.08E-10*EXP(105./temp)*0.68/2.	Strekowski et al. (2010)*
G4160c	TrGN	$\rm HCN + O(^1D) \rightarrow OH + CN$	1.08E-10*EXP(105./temp)*(1(0.68/ 2.+0.15*EXP(200./temp)))	Strekowski et al. (2010)*
G4161	TrGN	$HCN + O(^{3}P) \rightarrow H + NCO$	1.0E-11*EXP(-4000./temp)	Burkholder et al. (2015)*
G4162	TrGN	$CN + O_2 \rightarrow NCO + O(^{3}P)$	1.2E-11*EXP(210./temp)*0.75	Baulch et al. (2005)
G4163	TrGN	$CN + O_2 \rightarrow CO + NO$	1.2E-11*EXP(210./temp)*0.25	Baulch et al. (2005)
G4164	TrGN	$NCO + O_2 \rightarrow CO_2 + NO$	7.E-15	Becker et al. (2000)*
G42000	TrGC	$\mathrm{C_2H_6}+\mathrm{OH}\rightarrow\mathrm{C_2H_5O_2}+\mathrm{H_2O}$	1.49E-17*temp*temp*EXP(-499./ temp)	Atkinson et al. (2006)
G42001	TrGC	$C_2H_4 + O_3 \rightarrow HCHO + CH_2OO^*$	9.1E-15*EXP(-2580./temp)	Atkinson et al. (2006)*

Table 1:	Gas phase	reactions (continued)
	- I - I - I - I - I - I - I - I - I - I	(, , , , , , , , , , , , , , , , , , , ,

#	labels	reaction	rate coefficient	reference
G42002	TrGC	$C_2H_4 + OH \rightarrow HOCH_2CH_2O_2$	k_3rd_iupac(temp,cair,8.6E-29,	Atkinson et al. (2006), Rickard
			3.1,9.E-12,0.85,0.48)	and Pascoe (2009)
G42003	TrGC	$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH$	7.5E-13*EXP(700./temp)	Burkholder et al. (2015)
G42004a	TrGCN	$C_2H_5O_2 + NO \rightarrow CH_3CHO + HO_2 + NO_2$	2.55E-12*EXP(380./temp)*(1beta_	Atkinson et al. (2006),
			C2H5NO3)	Butkovskaya et al. (2010)
G42004b	TrGCN	$C_2H_5O_2 + NO \rightarrow C_2H_5ONO_2$	2.55E-12*EXP(380./temp)*beta_	Atkinson et al. (2006),
			C2H5N03	Butkovskaya et al. (2010)
G42005	TrGCN	$C_2H_5O_2 + NO_3 \rightarrow CH_3CHO + HO_2 + NO_2$	2.3E-12	Wallington et al. (2018)
G42006	TrGC	$C_2H_5O_2 \rightarrow .8 \text{ CH}_3\text{CHO} + .6 \text{ HO}_2 + .2 \text{ C}_2H_5\text{OH}$	2.*(7.6E-14*k_CH302)**(.5)*R02	Sander et al. (2019), Atkinson
				et al. (2006)
G42007a	TrGC	$C_2H_5OOH + OH \rightarrow C_2H_5O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G42007b	TrGC	$C_2H_5OOH + OH \rightarrow CH_3CHO + OH$	k_s*f_s00H	Sander et al. (2019)
G42008a	TrGC	$CH_3CHO + OH \rightarrow CH_3C(O) + H_2O$	4.4E-12*EXP(365./temp)*0.95	Atkinson et al. (2006)
G42008b	TrGC	$CH_3CHO + OH \rightarrow HCOCH_2O_2 + H_2O$	4.4E-12*EXP(365./temp)*0.05	Atkinson et al. (2006)
G42009	TrGCN	$CH_3CHO + NO_3 \rightarrow CH_3C(O) + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42010	TrGC	$CH_3COOH + OH \rightarrow CH_3 + CO_2 + H_2O$	k_CH3CO2H_OH	Atkinson et al. (2006)*
G42011a	TrGC	$CH_3C(O)OO + HO_2 \rightarrow OH + CH_3 + CO_2$	5.20E-13*EXP(980./temp)*1.507*0.61	Groß et al. (2014)
G42011b	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3C(O)OOH$	5.20E-13*EXP(980./temp)*1.507*0.23	Groß et al. (2014)
G42011c	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3COOH + O_3$	5.20E-13*EXP(980./temp)*1.507*0.16	Groß et al. (2014)
G42012	TrGCN	$CH_3C(O)OO + NO \rightarrow CH_3 + CO_2 + NO_2$	8.1E-12*EXP(270./temp)	Tyndall et al. (2001a)
G42013	TrGCN	$CH_3C(O)OO + NO_2 \rightarrow PAN$	k_CH3CO3_NO2	Burkholder et al. (2015)*
G42014	TrGCN	$CH_3C(O)OO + NO_3 \rightarrow CH_3 + NO_2 + CO_2$	4.E-12	Canosa-Mas et al. (1996)
G42017a	TrGC	$CH_3C(O)OO \rightarrow CH_3 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G42017b	TrGC	$CH_3C(O)OO \rightarrow CH_3COOH$	k1_R02RC03*0.1	Sander et al. (2019)
G42018	TrGC	$CH_3C(O)OOH + OH \rightarrow CH_3C(O)OO + H_2O$	k_ROOHRO	Rickard and Pascoe (2009)*
G42020	TrGCN	$PAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	3.00E-14	Rickard and Pascoe (2009)
G42021	TrGCN	$PAN \rightarrow CH_3C(O)OO + NO_2$	k_PAN_M	Burkholder et al. (2015)*
G42022a	TrGC	$C_2H_2 + OH \rightarrow GLYOX + OH$	k_3rd(temp,cair,5.5e-30,0.0,	Burkholder et al. (2015)*
			8.3e-13,-2.,0.6)*0.71	
G42022b	TrGC	$C_2H_2 + OH \rightarrow HCOOH + CO + HO_2$	k_3rd(temp,cair,5.5e-30,0.0,	Burkholder et al. (2015)*
			8.3e-13,-2.,0.6)*0.29	
G42023a	TrGC	$HOCH_2CHO + OH \rightarrow HOCH2CO + H_2O$	8.00E-12*0.80	Atkinson et al. (2006)
G42023b	TrGC	$HOCH_2CHO + OH \rightarrow HOCHCHO + H_2O$	8.00E-12*0.20	Atkinson et al. (2006)
G42024a	TrGC	$HOCH2CO + O_2 \rightarrow HOCH_2CO_3$	5.1E-12*(11./(1+1.85E-18*cair))	Atkinson et al. (2006), Beyers-
				dorf et al. (2010)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42024b	TrGC	$\rm HOCH2CO + O_2 \rightarrow OH + HCHO + CO_2$	5.1E-12*1./(1+1.85E-18*cair)	Atkinson et al. (2006), Beyers- dorf et al. (2010)*
G42025	TrGC	$HOCHCHO \rightarrow GLYOX + HO_2$	KDEC	Sander et al. (2019)
G42026	TrGCN	$HOCH_2CHO + NO_3 \rightarrow HOCH_2CO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42027a	TrGC	$HOCH_2CO_3 \rightarrow HCHO + CO_2 + HO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G42027b	TrGC	$HOCH_2CO_3 \rightarrow HOCH_2CO_2H$	k1_R02RC03*0.1	Sander et al. (2019)
G42028a	TrGC	$\mathrm{HOCH}_2\mathrm{CO}_3 + \mathrm{HO}_2 \rightarrow \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{OH} + \mathrm{CO}_2$	KAPH02*r_CO3_OH	Sander et al. (2019), Groß et al. (2014)
G42028b	TrGC	$\rm HOCH_2CO_3 + HO_2 \rightarrow \rm HOCH_2CO_3H$	KAPH02*r_CO3_OOH	Sander et al. (2019), Groß et al. (2014)
G42028c	TrGC	$\rm HOCH_2CO_3 + HO_2 \rightarrow \rm HOCH_2CO_2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019), Groß et al. (2014)
G42029	TrGCN	$HOCH_2CO_3 + NO \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KAPNO	Rickard and Pascoe (2009)
G42030	TrGCN	$HOCH_2CO_3 + NO_2 \rightarrow PHAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G42031	TrGCN	$HOCH_2CO_3 + NO_3 \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G42032	TrGC	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	k_CO2H+k_s*f_sOH*f_CO2H	Sander et al. (2019)
G42033a	TrGC	$HOCH_2CO_3H + OH \rightarrow HOCH_2CO_3 + H_2O$	k_ROOHRO	Sander et al. (2019)
G42033b	TrGC	$HOCH_2CO_3H + OH \rightarrow HCOCO_3H + HO_2$	k_s*f_sOH*f_CO2H	Sander et al. (2019)
G42034	TrGCN	$PHAN \rightarrow HOCH_2CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G42035	TrGCN	$PHAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	k_s*f_sOH*f_cpan+k_ROHRO	Sander et al. (2019)
G42036	TrGC	$\rm GLYOX + OH \rightarrow \rm HCOCO + \rm H_2O$	3.1E-12*EXP(340./temp)	Atkinson et al. (2006), Orlando and Tyndall (2001), Lockhart et al. (2013)
G42037	TrGCN	$GLYOX + NO_3 \rightarrow HCOCO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42038a	TrGC	$\rm HCOCO \rightarrow \rm CO + \rm CO + \rm HO_2$	7.E11*EXP(-3160./temp) +5.E-12*c(ind_02)	Orlando and Tyndall (2001), Lockhart et al. (2013), Rickard and Pascoe (2009)
G42037b	TrGC	$\mathrm{HCOCO} ightarrow \mathrm{HCOCO}_3$	5.E-12*c(ind_02)*3.2*exp(-550./ temp)	Lockhart et al. (2013), Rickard and Pascoe (2009)
G42037c	TrGC	$\rm HCOCO \rightarrow OH + CO + CO_2$	5.E-12*c(ind_02) *(13.2*exp(-550./temp))	Lockhart et al. (2013), Rickard and Pascoe (2009)
G42039a	TrGC	$HCOCO_3 \rightarrow CO + HO_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G42039b	TrGC	$HCOCO_3 \rightarrow HCOCO_2H$	k1_R02RC03*0.1	Sander et al. (2019)

Table 1: G	as phase reactions	(continued)
------------	--------------------	--------------

#	labels	reaction	rate coefficient	reference
G42040	TrGC	$\mathrm{HCOCO}_3 + \mathrm{HO}_2 \rightarrow \mathrm{HO}_2 + \mathrm{CO} + \mathrm{CO}_2 + \mathrm{OH}$	KAPH02	Feierabend et al. (2008), Sander et al. (2019)
G42041	TrGCN	$HCOCO_3 + NO \rightarrow HO_2 + CO + NO_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G42042	TrGCN	$HCOCO_3 + NO_3 \rightarrow HO_2 + CO + NO_2 + CO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G42043	TrGCN	$\mathrm{HCOCO}_3 + \mathrm{NO}_2 \rightarrow \mathrm{HO}_2 + \mathrm{CO} + \mathrm{NO}_3 + \mathrm{CO}_2$	k_CH3CO3_NO2	Orlando and Tyndall (2001), Sander et al. (2019)
G42044	TrGC	$HCOCO_2H + OH \rightarrow CO + HO_2 + CO_2 + H_2O$	k_C02H+k_t*f_0*f_C02H	Sander et al. (2019)
G42045a	TrGC	$HCOCO_3H + OH \rightarrow HCOCO_3 + H_2O$	k_ROOHRO	Sander et al. (2019)
G42045b	TrGC	$HCOCO_3H + OH \rightarrow CO + CO_2 + H_2O + OH$	k_t*f_0*f_C02H	Sander et al. (2019)
G42046	TrGC	$\begin{array}{l} \mathrm{HOCH_{2}CH_{2}O_{2}} \rightarrow .6 \ \mathrm{HOCH_{2}CH_{2}O} + .2 \ \mathrm{HOCH_{2}CHO} + .2 \\ \mathrm{ETHGLY} \end{array}$	2.*(7.8E-14*EXP(1000./temp) *k_CH302)**(.5)*R02	Atkinson et al. (2006), Rickard and Pascoe (2009)
G42047	TrGCN	$\rm HOCH_2CH_2O_2 + NO \rightarrow .25~HO_2 + .5~HCHO + .75~HOCH_2CH_2O + NO_2$	<pre>KR02N0*(1alpha_AN(3,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G42048	TrGCN	$HOCH_2CH_2O_2 + NO \rightarrow ETHOHNO3$	<pre>KR02N0*alpha_AN(3,1,0,0,0,temp, cair)</pre>	Sander et al. (2019)
G42049a	TrGC	$\mathrm{HOCH_2CH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{HYETHO2H}$	1.53E-13*EXP(1300./temp) *(1r_CHOHCH202_OH)	Rickard and Pascoe (2009)
G42049b	TrGC	$\mathrm{HOCH_2CH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{HOCH_2CH_2O} + \mathrm{OH}$	1.53E-13*EXP(1300./temp) *r_CHOHCH202_OH	Rickard and Pascoe (2009)
G42050	TrGCN	ETHOHNO3 + OH \rightarrow .93 NO ₃ CH2CHO + .93 HO ₂ + .07 HOCH ₂ CHO + .07 NO ₂ + H ₂ O	k_s*(f_sOH*f_CH2ONO2+f_ONO2*f_ pCH2OH)+k_ROHRO	Sander et al. (2019)
G42051a	TrGC	$HYETHO2H + OH \rightarrow HOCH_2CH_2O_2 + H_2O$	k_ROOHRO	Rickard and Pascoe (2009) [*]
G42051b	TrGC	$HYETHO2H + OH \rightarrow HOCH_2CHO + OH + H_2O$	k_s*f_sOOH*f_pCH2OH	Sander et al. (2019)
G42051c	TrGC	$HYETHO2H + OH \rightarrow HOOCH2CHO + HO_2 + H_2O$	k_s*f_sOH*f_pCH2OH+k_ROHRO	Sander et al. (2019)
G42052a	TrGC	$\rm HOCH_2CH_2O \rightarrow HO_2 + HOCH_2CHO$	6.00E-14*EXP(-550./temp) *C(ind_02)	Rickard and Pascoe (2009)
G42052b	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HCHO + HCHO$	9.50E13*EXP(-5988./temp)	Rickard and Pascoe (2009)
G42053	TrGC	$ETHGLY + OH \rightarrow HOCH_2CHO + HO_2 + H_2O$	2.*k_s*f_sOH*f_pCH2OH+2.*k_ROHRO	Sander et al. (2019)
G42054	TrGC	$HCOCH_2O_2 \rightarrow .6 HCHO + .6 CO + .6 HO_2 + .2 GLYOX + .2 HOCH_2CHO$	k1_R02p0R02	Sander et al. (2019)
G42055a	TrGC	$HCOCH_2O_2 + HO_2 \rightarrow HOOCH2CHO$	k_R02_H02(temp,2)*r_COCH202_00H	Sander et al. (2019)
G42055b	TrGC	$HCOCH_2O_2 + HO_2 \rightarrow HCHO + CO + HO_2 + OH$	k_R02_H02(temp,2)*r_COCH202_OH	Sander et al. (2019)
G42056a	TrGCN	$\mathrm{HCOCH}_2\mathrm{O}_2 + \mathrm{NO} \rightarrow \mathrm{NO}_2 + \mathrm{HCHO} + \mathrm{CO} + \mathrm{HO}_2$	<pre>KR02N0*(1alpha_AN(3,1,1,0,0, temp,cair))</pre>	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42056b	TrGCN	$\rm HCOCH_2O_2 + NO \rightarrow NO_3CH2CHO$	<pre>KR02N0*alpha_AN(3,1,1,0,0,temp, cair)</pre>	Sander et al. (2019)
G42057	TrGCN	$HCOCH_2O_2 + NO_3 \rightarrow HCHO + CO + HO_2 + NO_2$	KR02N03	Sander et al. (2019)
G42058a	TrGC	$HOOCH2CHO + OH \rightarrow HCOCH_2O_2$	k_ROOHRO	Sander et al. (2019)
G42058b	TrGC	$HOOCH2CHO + OH \rightarrow HCHO + CO + OH$	0.8*8.E-12	Sander et al. (2019)*
G42058c	TrGC	$HOOCH2CHO + OH \rightarrow GLYOX + OH$	k_s*f_sOOH*f_CHO	Sander et al. (2019)
G42059	TrGCN	$HOOCH2CHO + NO_3 \rightarrow OH + HCHO + CO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42060	TrGCN	$HOOCH_2CO_3 + NO \rightarrow NO_2 + OH + HCHO + CO_2$	KAPNO	Sander et al. (2019)
G42061	TrGCN	$HOOCH_2CO_3 + NO_3 \rightarrow NO_2 + OH + HCHO + CO_2$	KR02N03*1.74	Sander et al. (2019)
G42062a	TrGC	$HOOCH_2CO_3 + HO_2 \rightarrow 2 OH + HCHO + CO_2$	KAPH02*r_CO3_OH	Sander et al. (2019)
G42062b	TrGC	$HOOCH_2CO_3 + HO_2 \rightarrow HOOCH_2CO_3H$	KAPH02*r_CO3_OOH	Sander et al. (2019)
G42062c	TrGC	$HOOCH_2CO_3 + HO_2 \rightarrow HOOCH_2CO_2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019)
G42063a	TrGC	$HOOCH_2CO_3 \rightarrow OH + HCHO + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G42063b	TrGC	$HOOCH_2CO_3 \rightarrow HOOCH_2CO_2H$	k1_R02RC03*0.1	Sander et al. (2019)
G42064a	TrGC	$HOOCH2CO3H + OH \rightarrow HOOCH_2CO_3 + H_2O$	2.*k_ROOHRO	Sander et al. (2019)
G42064b	TrGC	$HOOCH2CO3H + OH \rightarrow HCOCO_3H + OH + H_2O$	k_s*f_sOOH*f_CO2H	Sander et al. (2019)
G42065	TrGC	$HOOCH2CO2H + OH \rightarrow HCOCO_2H + OH + H_2O$	k_s*f_sOOH*f_CO2H+k_CO2H	Sander et al. (2019)
G42066	TrGC	CH2CO + OH \rightarrow .6 HCHO + .6 HO ₂ + .6 CO + .4 HOOCH2CO2H	2.8E-12*exp(510./temp)	Baulch et al. (2005), Sander et al. (2019)
G42067a	TrGC	$CH3CHOHOOH + OH \rightarrow CH_3COOH + OH$	(k_t*f_tOOH*f_tOH + k_ROHRO)	Sander et al. (2019)
G42067b	TrGC	$CH3CHOHOOH + OH \rightarrow CH3CHOHO2$	k_ROOHRO	Sander et al. (2019)
G42068	TrGC	$\rm CH3CHOHO2 \rightarrow CH_3CHO + HO_2$	3.46E12*EXP(-12500./(1.98*temp))	Hermans et al. (2005), Sander et al. (2019)
G42069	TrGC	$\rm CH_3CHO+HO_2\rightarrow CH3CHOHO2$	3.46E12*EXP(-12500./(1.98*temp)) /(6.34E26*EXP(-14700./ (1.98*temp)))	Hermans et al. (2005), Sander et al. (2019)
G42070	TrGC	CH3CHOHO2 + HO ₂ \rightarrow .5 CH3CHOHOOH + .3 CH ₃ COOH + .2 CH ₃ + .2 HCOOH + .2 OH	5.6E-15*EXP(2300./temp)	Sander et al. (2019)
G42071	TrGC	$CH3CHOHO2 \rightarrow CH_3 + HCOOH + OH$	k1_R02s0R02	Sander et al. (2019)
G42072	TrGCN	$CH3CHOHO2 + NO \rightarrow CH_3 + HCOOH + OH + NO_2$	KR02N0	Sander et al. (2019)
G42073	TrGCN	$C_2H_5ONO_2 + OH \rightarrow CH_3CHO + H_2O + NO_2$	6.7E-13*EXP(-395./temp)	Atkinson et al. (2006)
G42074a	TrGCN	$\rm NO_3CH2CHO+OH\rightarrow GLYOX+NO_2+H_2O$	k_s*f_CH2ONO2*f_CH0	Paulot et al. (2009a), Sander et al. (2019)*
G42074b	TrGCN	$\rm NO_3CH2CHO+OH\rightarrow NO_3CH2CO_3+H_2O$	k_t*f_0*f_CH20N02*3.	Paulot et al. (2009a), Sander et al. (2019)*

#	labels	reaction	rate coefficient	reference
G42075	TrGCN	$NO_3CH2CO_3 + HO_2 \rightarrow HCHO + NO_2 + CO_2 + OH$	KAPHO2	Rickard and Pascoe (2009)*
G42076	TrGCN	$NO_3CH2CO_3 + NO \rightarrow HCHO + NO_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G42077	TrGCN	$NO_3CH2CO_3 + NO_2 \rightarrow NO_3CH2CHO$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G42078	TrGCN	$NO_3CH2CO_3 \rightarrow HCHO + NO_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G42079	TrGCN	$NO_3CH2CHO \rightarrow NO_3CH2CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G42080	StTrGCN	$\mathrm{C_2H_5O_2} + \mathrm{NO_2} \rightarrow \mathrm{C_2H_5O_2NO_2}$	k_3rd_iupac(temp,cair,1.3E-29, 6.2,8.8E-12,0.0,0.31)	Atkinson et al. (2006)
G42081	StTrGCN	$C_2H_5O_2NO_2 \rightarrow C_2H_5O_2 + NO_2$	<pre>k_3rd_iupac(temp,cair, REAL(4.8E-4*EXP(-9285./temp) ,SP),0.0,REAL(8.8E15*EXP(-10440./ temp),SP),0.0,0.31)</pre>	Atkinson et al. (2006)
G42082	StTrGCN	$C_2H_5O_2NO_2 + OH \rightarrow CH_3CHO + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)	Sander et al. (2019)*
G42083a	TrGC	$CH_3C(O) + O_2 \rightarrow CH_3C(O)OO$	5.1E-12*(1 1./(1.+ 9.4E-18*cair))	Atkinson et al. (2006), Beyers- dorf et al. (2010)*
G42083b	TrGC	$CH_3C(O) + O_2 \rightarrow OH + HCHO + CO$	5.1E-12*1./(1.+9.4E-18*cair)	Atkinson et al. (2006), Beyers- dorf et al. (2010)*
G42084	TrGC	$\rm C_2H_5OH + OH \rightarrow .95~C_2H_5O_2 + .95~HO_2 + .05~HOCH_2CH_2O_2 + H_2O$	3.0E-12*EXP(20./temp)	Sander et al. (2019), Atkinson et al. (2006)
G42085a	TrGCN	$\rm CH_3CN+OH\rightarrow NCCH_2O_2+H_2O$	8.1E-13*EXP(-1080./temp)*0.40	Atkinson et al. (2006), Tyndall et al. (2001b)*
G42085b	TrGCN	$\rm CH_3CN + OH \rightarrow OH + CH_3C(O) + NO$	8.1E-13*EXP(-1080./temp)*(10.40)	Atkinson et al. (2006), Tyndall et al. (2001b) [*]
G42086a	TrGCN	$\rm CH_3CN + O(^1D) \rightarrow O(^3P) + CH_3CN$	2.54E-10*EXP(-24./temp) *0.0269*EXP(137./temp)	Strekowski et al. (2010)
G42086b	TrGCN	$CH_3CN + O(^{1}D) \rightarrow 2 H + CO + HCN$	2.54E-10*EXP(-24./temp)*0.16	Strekowski et al. (2010)*
G42086c	TrGCN	$\rm CH_3CN$ + O(^1D) \rightarrow .5 CH_3 + .5 NCO + .5 NCCH_2O_2 + .5 OH	2.54E-10*EXP(-24./temp)*(1(0.16+ 0.0269*EXP(137./temp)))	Strekowski et al. (2010)*
G42087	TrGCN	$NCCH_2O_2 + NO \rightarrow HCN + CO_2 + HO_2 + NO_2$	KR02N0	see note*
G42088	TrGCN	$NCCH_2O_2 + HO_2 \rightarrow HCN + CO_2 + HO_2$	k_R02_H02(temp,2)	see note [*]
G42089a	TrGC	$CH_2CHOH + OH \rightarrow HCOOH + OH + HCHO$	k_CH2CH0H_0H_HC00H	Sander et al. (2019), So et al. (2014)*
G42089b	TrGC	$\rm CH_2CHOH + OH \rightarrow \rm HOCH_2CHO + \rm HO_2$	k_CH2CH0H_OH_ALD	Sander et al. (2019), So et al. (2014)
G42090	TrGC	$\rm CH_2CHOH + HCOOH \rightarrow CH_3CHO + HCOOH$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010)*

12

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42091	TrGC	$CH_3CHO + HCOOH \rightarrow CH_2CHOH + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010) [*]
G43000a	TrGC	$C_3H_8 + OH \rightarrow iC_3H_7O_2 + H_2O$	k_s	Sander et al. (2019)
G43000b	TrGC	$C_3H_8 + OH \rightarrow C_3H_7O_2 + H_2O$	2.*k_p	Sander et al. (2019)
G43001a	TrGC	$\begin{array}{l} {\rm C_{3}H_{6}+O_{3}\rightarrow \rm HCHO+.16\ CH3CHOHOOH+.50\ OH+}\\ {\rm .50\ HCOCH_{2}O_{2}+.05\ CH2CO+.09\ CH_{3}OH+.09\ CO+}\\ {\rm .2\ CH_{4}+.2\ CO_{2}} \end{array}$	5.5E-15*EXP(-1880./temp)*.57	Atkinson et al. (2006)*
G43001b	TrGC	$C_3H_6 + O_3 \rightarrow CH_3CHO + CH_2OO^*$	5.5E-15*EXP(-1880./temp)*.43	Atkinson et al. (2006)*
G43002	TrGC	$C_3H_6 + OH \rightarrow HYPROPO2$	k_3rd_iupac(temp,cair,8.6E-27, 3.5,3.E-11,1.,0.5)	Atkinson et al. (2006), Rickard and Pascoe (2009)
G43003	TrGCN	$C_3H_6 + NO_3 \rightarrow PRONO3BO2$	4.6E-13*EXP(-1155./temp)	Wallington et al. (2018)
G43004	TrGC	$iC_3H_7O_2 + HO_2 \rightarrow iC_3H_7OOH$	1.9E-13*EXP(1300./temp)	Atkinson (1997)*
G43005a	TrGCN	$\mathrm{iC_3H_7O_2} + \mathrm{NO} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HO_2} + \mathrm{NO_2}$	2.7E-12*EXP(360./temp)*(1alpha_ AN(3,2,0,0,0,temp,cair))	Wallington et al. (2018)
G43005b	TrGCN	$iC_3H_7O_2 + NO \rightarrow iC_3H_7ONO_2$	2.7E-12*EXP(360./temp)*alpha_ AN(3,2,0,0,0,temp,cair)	Wallington et al. (2018)
G43006	TrGC	$\mathrm{iC_3H_7O_2} \rightarrow .8~\mathrm{CH_3COCH_3} + .2~\mathrm{IPROPOL} + .6~\mathrm{HO_2}$	2.*(1.6E-12*EXP(-2200./temp) *k_CH302)**(.5)*R02	Rickard and Pascoe (2009), Atkinson et al. (2006)
G43007a	TrGC	$iC_3H_7OOH + OH \rightarrow iC_3H_7O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G43007b	TrGC	$iC_3H_7OOH + OH \rightarrow CH_3COCH_3 + H_2O + OH$	k_t*f_t00H	Sander et al. (2019)
G43008	TrGC	$C_3H_7O_2 + HO_2 \rightarrow C_3H_7OOH$	1.9E-13*EXP(1300./temp)	Atkinson (1997)*
G43009a	TrGCN	$\rm C_3H_7O_2 + \rm NO \rightarrow C_2H_5CHO + HO_2 + \rm NO_2$	2.7E-12*EXP(360./temp)*(1alpha_ AN(3,1,0,0,0,temp,cair))	Wallington et al. (2018)
G43009b	TrGCN	$\rm C_3H_7O_2 + NO \rightarrow C_3H_7ONO_2$	2.7E-12*EXP(360./temp)*alpha_ AN(3,1,0,0,0,temp,cair)	Wallington et al. (2018)
G43010	TrGC	$\rm C_3H_7O_2 \rightarrow .8~CH_3COCH_3$ + .2 NPROPOL + .6 $\rm HO_2$	2.*(k_CH302*3.E-13)**(.5)*R02	Rickard and Pascoe (2009), Atkinson et al. (2006)
G43011	TrGC	$\rm CH_3 \rm COCH_3 + \rm OH \rightarrow \rm CH_3 \rm COCH_2 \rm O_2 + \rm H_2 \rm O$	(8.8E-12*EXP(-1320./temp) +1.7E-14*EXP(423./temp))	Atkinson et al. (2006)*
G43012a	TrGC	$\rm CH_3COCH_2O_2 + HO_2 \rightarrow CH_3COCH_2O_2H$	8.6E-13*EXP(700./temp)*r_COCH202_ OOH	Tyndall et al. (2001a), Sander et al. (2019)
G43012b	TrGC	$\rm CH_3COCH_2O_2 + HO_2 \rightarrow OH + CH_3C(O) + HCHO$	8.6E-13*EXP(700./temp)*r_COCH202_ OH	Tyndall et al. (2001a), Sander et al. (2019)
G43013a	TrGCN	$\rm CH_3COCH_2O_2 + \rm NO \rightarrow \rm CH_3C(O) + \rm HCHO + \rm NO_2$	2.9E-12*EXP(300./temp)*(1alpha_ AN(4,1,1,0,0,temp,cair))	Burkholder et al. (2015)

#	labels	reaction	rate coefficient	reference
G43013b	TrGCN	$\rm CH_3COCH_2O_2$ + NO \rightarrow NOA	2.9E-12*EXP(300./temp)*alpha_ AN(4,1,1,0,0,temp,cair)	Burkholder et al. (2015)
G43014	TrGC	$CH_3COCH_2O_2 \rightarrow .3 CH_3C(O) + .3 HCHO + .5 MGLYOX + .2 CH_3COCH_2OH$	k1_R02p0R02	Orlando and Tyndall (2012)
G43015a	TrGC	$CH_3COCH_2O_2H + OH \rightarrow CH_3COCH_2O_2 + H_2O$	k_ROOHRO	see note [*]
G43015b	TrGC	$CH_3COCH_2O_2H + OH \rightarrow MGLYOX + OH + H_2O$	k_s*f_s00H*f_C0	Sander et al. (2019)
G43016	TrGC	$CH_3COCH_2OH + OH \rightarrow MGLYOX + HO_2 + H_2O$	1.6E-12*EXP(305./temp)	Atkinson et al. (2006)
G43017	TrGC	$\begin{array}{l} \mathrm{MGLYOX} + \mathrm{OH} \rightarrow .4 \ \mathrm{CH}_3 + .6 \ \mathrm{CH}_3\mathrm{C(O)} + 1.4 \ \mathrm{CO} + \\ \mathrm{H}_2\mathrm{O} \end{array}$	1.9E-12*EXP(575./temp)	Baeza-Romero et al. (2007), Atkinson et al. (2006)
G43020	TrGCN	$iC_3H_7ONO_2 + OH \rightarrow CH_3COCH_3 + NO_2$	6.2E-13*EXP(-230./temp)	Wallington et al. (2018)
G43021	TrGCN	$CH_3COCH_2O_2 + NO_3 \rightarrow CH_3C(O) + HCHO + NO_2$	KR02N03	Rickard and Pascoe (2009)
G43022	TrGC	$HYPROPO2 \rightarrow CH_3CHO + HCHO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)
G43023a	TrGC	$\rm HYPROPO2 + HO_2 \rightarrow \rm HYPROPO2H$	k_R02_H02(temp,3)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G43023b	TrGC	$HYPROPO2 + HO_2 \rightarrow CH_3CHO + HCHO + HO_2 + OH$	k_R02_H02(temp,3)*r_CH0HCH202_OH	Rickard and Pascoe (2009)
G43024a	TrGCN	$\rm HYPROPO2 + \rm NO \rightarrow \rm CH_3\rm CHO + \rm HCHO + \rm HO_2 + \rm NO_2$	<pre>KR02N0*(1alpha_AN(4,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G43024b	TrGCN	$\rm HYPROPO2 + \rm NO \rightarrow \rm PROPOLNO3$	<pre>KR02N0*alpha_AN(4,1,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G43025	TrGCN	$HYPROPO2 + NO_3 \rightarrow CH_3CHO + HCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G43026a	TrGC	$HYPROPO2H + OH \rightarrow HYPROPO2$	k_ROOHRO	Rickard and Pascoe (2009)
G43026b	TrGC	$\rm HYPROPO2H + OH \rightarrow \rm CH_3COCH_2OH + OH$	(k_s*f_sOH*f_pCH2OH+k_t*f_ tOOH*f_pCH2OH)	Sander et al. (2019)
G43027	TrGCN	$PRONO3BO2 + HO_2 \rightarrow PR2O2HNO3$	k_R02_H02(temp,3)	Rickard and Pascoe (2009)
G43028	TrGCN	$PRONO3BO2 + NO \rightarrow NOA + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G43029	TrGCN	$PRONO3BO2 + NO_3 \rightarrow NOA + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G43030a	TrGCN	$PR2O2HNO3 + OH \rightarrow PRONO3BO2$	k_ROOHRO	Rickard and Pascoe (2009)
G43030b	TrGCN	$PR2O2HNO3 + OH \rightarrow NOA + OH$	k_t*f_t00H*f_CH20N02	Sander et al. (2019)
G43031	TrGCN	$MGLYOX + NO_3 \rightarrow CH_3C(O) + CO + HNO_3$	KNO3AL*2.4	Rickard and Pascoe (2009)
G43032	TrGCN	$NOA + OH \rightarrow MGLYOX + NO_2$	(k_s*f_CO*f_ONO2+k_p*f_CO)	Sander et al. (2019)
G43033	TrGC	HOCH2COCHO + OH \rightarrow .8609 HOCH2CO + .8609 CO + .1391 HCOCOCHO + .1391 HO ₂	(1.9E-12*EXP(575./temp)+k_s*f_ sOH*f_CO)	Sander et al. (2019)
G43034	TrGCN	$HOCH2COCHO + NO_3 \rightarrow HOCH2CO + CO + HNO_3$	KNO3AL*2.4	Sander et al. (2019)
G43035	TrGC	$\rm CH_3\rm CO\rm CO_2\rm H + \rm O\rm H \rightarrow \rm CH_3\rm C(\rm O) + \rm H_2\rm O + \rm CO_2$	4.9E-14*EXP(276./temp)	Mellouki and Mu (2003), Sander et al. (2019)

14

Table 1: Gas phase reactions $(\dots \text{ continued})$

#	labels	reaction	rate coefficient	reference
G43036	TrGC	$HCOCOCH_2O_2 \rightarrow .6 HCOCO + .6 HCHO + .2 HCOCOCHO + .2 HOCH2COCHO$	k1_R02p0R02	Sander et al. (2019)
G43037	TrGCN	$HCOCOCH_2O_2 + NO \rightarrow HCOCO + HCHO + NO_2$	KR02N0	Sander et al. (2019)*
G43038a	TrGC	$HCOCOCH_2O_2 + HO_2 \rightarrow HCOCOCH_2OOH$	k_R02_H02(temp,3)*r_COCH202_00H	Sander et al. (2019)
G43038b	TrGC	$HCOCOCH_2O_2 + HO_2 \rightarrow HCOCOCH_2OOH$ $HCOCOCH_2O_2 + HO_2 \rightarrow HCOCO + HCHO + OH$		Sander et al. (2019) Sander et al. (2019)
G43038D G43039	TrGCN	$HCOCOCH_2O_2 + HO_2 \rightarrow HCOCO + HCHO + OH$ $HCOCOCH_2O_2 + NO_3 \rightarrow HCOCO + HCHO + NO_2$	k_R02_H02(temp,3)*r_COCH202_OH KR02N03	Sander et al. (2019) Sander et al. (2019)
G43039 G43040a	TrGC			
		$\text{HCOCOCH}_2\text{OOH} + \text{OH} \rightarrow \text{HOOCH}_2\text{CO}_3 + \text{CO} + \text{H}_2\text{O}$	k_t*f_CO*f_O	Sander et al. (2019)*
G43040b	TrGC	$\text{HCOCOCH}_2\text{OOH} + \text{OH} \rightarrow \text{HCOCOCHO} + \text{H}_2\text{O} + \text{OH}$	k_s*f_sOOH*f_CO	Sander et al. (2019)*
G43040c	TrGC	$HCOCOCH_2OOH + OH \rightarrow HCOCOCH_2O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G43041	TrGCN	$\mathrm{HCOCOCH_{2}OOH} + \mathrm{NO}_{3} \rightarrow \mathrm{HOOCH_{2}CO_{3}} + \mathrm{CO} + \mathrm{HNO}_{3}$	KNO3AL*2.4	Sander et al. (2019)
G43042	TrGC	$HOCH2COCH2O2 \rightarrow HCHO + HOCH2CO$	k1_R02p0R02	Sander et al. (2019)
G43043a	TrGC	$HOCH2COCH2O2 + HO_2 \rightarrow HOCH2COCH2OOH$	k_R02_H02(temp,3)*r_COCH202_00H	Sander et al. (2019)
G43043b	TrGC	$HOCH2COCH2O2 + HO_2 \rightarrow HCHO + HOCH2CO + OH$	k_R02_H02(temp,3)*r_COCH202_OH	Sander et al. (2019)
G43044	TrGCN	$HOCH2COCH2O2 + NO \rightarrow HCHO + HOCH2CO + NO_2$	KR02N0	Sander et al. (2019)*
G43045a	TrGC	$HOCH2COCH2OOH + OH \rightarrow HOCH2COCHO + OH$	k_s*f_sOOH*f_CO	Sander et al. (2019)
G43045b	TrGC	$HOCH2COCH2OOH + OH \rightarrow HOCH2COCH2O2$	k_ROOHRO	Sander et al. (2019)
G43045c	TrGC	$HOCH2COCH2OOH + OH \rightarrow HCOCOCH_2OOH + HO_2$	1.60E-12*EXP(305./temp)	Sander et al. (2019)*
G43046	TrGC	$\begin{array}{l} {\rm CH3CHCO} + {\rm OH} \rightarrow .72 \ {\rm CO} + .72 \ {\rm CH}_3 {\rm CHO} + .72 \ {\rm HO}_2 + \\ {\rm .21 \ CH}_3 {\rm COCO}_2 {\rm H} + .07 \ {\rm CH}_3 {\rm CHO} + .07 \ {\rm HO}_2 + .07 \ {\rm CO}_2 \end{array}$	7.6E-11	Hatakeyama et al. (1985), Sander et al. (2019)
G43047	TrGCN	$\mathrm{PROPOLNO3} + \mathrm{OH} \rightarrow \mathrm{CH}_3\mathrm{COCH}_2\mathrm{OH} + \mathrm{NO}_2$	k_t*f_0N02*f_pCH20H+k_s*f_sOH*f_ CH20N02	Sander et al. (2019)
G43048	TrGCN	$CH_3COCH_2O_2 + NO_2 \rightarrow CH_3COCH_2OONO_2$	2.3E-12*EXP(300./temp)	Tyndall et al. (2001a) [*]
G43049	TrGCN	$CH_3COCH_2OONO_2 \rightarrow CH_3COCH_2O_2 + NO_2$	1.9E16*EXP(-10830./temp)	Schested et al. (1998)*
G43050	TrGCN	$CH_3COCH_2OONO_2 + OH \rightarrow MGLYOX + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)*f_CO	Sander et al. (2019)*
G43051a	TrGC	$C_3H_7OOH + OH \rightarrow C_3H_7O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G43051b	TrGC	$C_3H_7OOH + OH \rightarrow C_9H_5CHO + H_2O + OH$	k_s*f_s00H	Sander et al. (2019)
G43051c	TrGC	$C_3H_7OOH + OH \rightarrow C_2H_5CHO + HO_2 + H_2O$	k_s*f_pCH20H	Sander et al. (2019)*
G43052	TrGC	$C_2H_5CHO + OH \rightarrow C_2H_5CO_3 + H_2O$	4.9E-12*EXP(405./temp)	Atkinson et al. (2006)*
G43053	TrGCN	$C_2H_5CHO + NO_3 \rightarrow C_2H_5CO_3 + HNO_3$	6.3E-15	Atkinson et al. (2006)
G43054a	TrGC	$C_2H_5CO_3 \rightarrow C_2H_5O_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G43054b	TrGC	$C_2H_5CO_3 \rightarrow C_2H_5CO_2H$	k1_R02RC03*0.1	Sander et al. (2019)
G43055a	TrGC	$C_2H_5CO_3 + HO_2 \rightarrow C_2H_5O_2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Sander et al. (2019), Groß et al. (2014)
G43055b	TrGC	$\rm C_2H_5CO_3 + HO_2 \rightarrow C_2H_5CO_3H$	KAPH02*r_CO3_OOH	(2014) Sander et al. (2019), Groß et al. (2014)

#	labels	reaction	rate coefficient	reference
G43055c	TrGC	$\mathrm{C_2H_5CO_3} + \mathrm{HO_2} \rightarrow \mathrm{C_2H_5CO_2H} + \mathrm{O_3}$	KAPH02*r_CO3_O3	Sander et al. (2019), Groß et al (2014)
G43056	TrGCN	$C_2H_5CO_3 + NO \rightarrow NO_2 + C_2H_5O_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G43057	TrGCN	$C_2H_5CO_3 + NO_2 \rightarrow PPN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43058	TrGCN	$PPN \rightarrow C_2H_5CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G43059	TrGC	$C_2H_5CO_2H + OH \rightarrow CH_3CHO + CO_2 + H_2O$	k_CO2H+k_p+k_s*f_CO2H	Sander et al. (2019)*
G43060a	TrGC	$C_2H_5CO_3H + OH \rightarrow C_2H_5CO_3 + H_2O$	k_ROOHRO	Sander et al. (2019)
G43060b	TrGC	$C_2H_5CO_3H + OH \rightarrow CH_3CHO + CO_2 + H_2O$	k_s*f_CO2H+k_p	Sander et al. (2019)*
G43061	TrGCN	$PPN + OH \rightarrow CH_3CHO + CO_2 + NO_2 + H_2O$	k_s*f_cpan+k_p	Sander et al. (2019)*
G43062	TrGC	$CH_3COCO_3H + OH \rightarrow CH_3COCO_3 + H_2O$	k_ROOHRO	Sander et al. (2019)
G43063a	TrGC	$CH_3COCO_3 + HO_2 \rightarrow CH_3C(O) + CO_2 + OH$	KAPHO2*r_CO3_OH	Sander et al. (2019)
G43063b	TrGC	$CH_3COCO_3 + HO_2 \rightarrow CH_3COCO_3H$	KAPH02*(r_CO3_00H+r_CO3_03)	Sander et al. (2019)
G43064	TrGCN	$CH_3COCO_3 + NO \rightarrow CH_3C(O) + CO_2 + NO_2$	KAPNO	Sander et al. (2019)
G43065	TrGCN	$CH_3COCO_3 + NO_2 \rightarrow CH_3C(O) + CO_2 + NO_3$	k_CH3CO3_NO2	Sander et al. (2019)*
G43066	TrGCN	$CH_3COCO_3 + NO_3 \rightarrow CH_3C(O)OO + CO_2 + NO_2$	KR02N03*1.74	Sander et al. (2019)
G43067	TrGC	$CH_3COCO_3 \rightarrow CH_3C(O)OO + CO_2$	k1_R02RC03	Sander et al. (2019)
G43068	TrGC	$HCOCOCHO + OH \rightarrow 3 CO + HO_2$	2.*k_t*f_CO*f_0	Sander et al. (2019)
G43069	TrGC	$IPROPOL + OH \rightarrow CH_3COCH_3 + HO_2 + H_2O$	2.6E-12*EXP(200./temp)	Atkinson et al. (2006)
G43070a	TrGC	$\rm NPROPOL + OH \rightarrow C_2H_5CHO + HO_2 + H_2O$	4.6E-12*EXP(70./temp)*(k_s*f_sOH/ (k_p+k_s*f_pCH2OH+k_s*f_sOH))	Atkinson et al. (2006), Sande et al. (2019)*
G43070b	TrGC	$\mathrm{NPROPOL} + \mathrm{OH} \rightarrow \mathrm{HYPROPO2} + \mathrm{H_2O}$	4.6E-12*EXP(70./temp)*((k_p+k_ s*f_pCH20H)/(k_p+k_s*f_pCH20H+k_ s*f_sOH))	Atkinson et al. (2006), Sande et al. (2019)*
G43071a	TrGC	$\rm CH_2CHCH_2OH + OH \rightarrow \rm HCOOH + OH + CH_3CHO$	k_CH2CH0H_0H_HC00H	Sander et al. (2019), So et al (2014)*
G43072	TrGC	$\rm CH_2\rm CHCH_2\rm OH + \rm HCOOH \rightarrow \rm C_2\rm H_5\rm CHO + \rm HCOOH$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silv (2010)*
G43073	TrGC	$\rm C_2H_5CHO+HCOOH\rightarrow CH_2CHCH_2OH+HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silv (2010)*
G43074	TrGC	$HCOCOCH_2OOH + OH \rightarrow HCOCO + CO + HO_2 + OH$	k_s*f_sOOH*f_CO+k_ROOHRO	Sander et al. (2019)*
G43202	TrGTerC	$HCOCH2CHO + OH \rightarrow HCOCH2CO3$	4.29E-11	Rickard and Pascoe (2009)
G43203	TrGTerCN	$HCOCH2CHO + NO_3 \rightarrow HCOCH2CO3 + HNO_3$	2.*KN03AL*2.4	Rickard and Pascoe (2009)
G43204a	TrGTerC	$HCOCH2CO3 \rightarrow HCOCH_2O_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G43204b	TrGTerC	$HCOCH2CO3 \rightarrow HCOCH2CO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G43205	TrGTerCN	$HCOCH2CO3 + NO \rightarrow HCOCH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)

16

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43206	TrGTerCN	$HCOCH2CO3 + NO_2 \rightarrow C_3PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43207a	TrGTerC	$HCOCH2CO3 + HO_2 \rightarrow HCOCH2CO3H$	KAPH02*r_CO3_OOH	Rickard and Pascoe (2009)
G43207b	TrGTerC	$HCOCH2CO3 + HO_2 \rightarrow HCOCH2CO2H + O_3$	KAPH02*r_CO3_03	Rickard and Pascoe (2009)
G43207c	TrGTerC	$HCOCH2CO3 + HO_2 \rightarrow HCOCH_2O_2 + CO_2 + OH$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)
G43210	TrGTerCN	$C_3PAN2 \rightarrow HCOCH2CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G43211	TrGTerCN	$C_3PAN2 + OH \rightarrow GLYOX + CO + NO_2$	2.10E-11	Rickard and Pascoe (2009)
G43212	TrGTerC	$HCOCH2CO2H + OH \rightarrow HCOCH_2O_2 + CO_2$	2.14E-11	Rickard and Pascoe (2009)
G43213a	TrGTerC	$HOC_2H_4CO_3 \rightarrow HOCH_2CH_2O_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G43213b	TrGTerC	$HOC_2H_4CO_3 \rightarrow HOC2H4CO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G43214	TrGTerCN	$HOC_2H_4CO_3 + NO \rightarrow HOCH_2CH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G43215a	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOC2H4CO3H$	KAPH02*r_CO3_OOH	Rickard and Pascoe (2009)
G43215b	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOCH_2CH_2O_2 + CO_2 + OH$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)
G43215c	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOC2H4CO2H + O_3$	KAPH02*r_CO3_03	Rickard and Pascoe (2009)
343218	TrGTerCN	$HOC_2H_4CO_3 + NO_2 \rightarrow C_3PAN1$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
43219	TrGTerC	$HOC2H4CO2H + OH \rightarrow HOCH_2CH_2O_2 + CO_2$	1.39E-11	Rickard and Pascoe (2009)
43220	TrGTerC	$HOC2H4CO3H + OH \rightarrow HOC_2H_4CO_3$	1.73E-11	Rickard and Pascoe (2009)
G43221	TrGTerCN	$C_3PAN1 \rightarrow HOC_2H_4CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
343222	TrGTerCN	$C_3PAN1 + OH \rightarrow HOCH_2CHO + CO + NO_2$	4.51E-12	Rickard and Pascoe (2009)
G43223	TrGTerC	$HCOCH2CO3H + OH \rightarrow HCOCH_2O_2 + CO_2 + H_2O$	2.49E-11	Rickard and Pascoe (2009)*
G43415	TrGAroC	$C3DIALOOH + OH \rightarrow HCOCOCHO + OH$	1.44E-10	Rickard and Pascoe (2009)
G43418a	TrGAroC	$\rm C3DIALO2 + HO_2 \rightarrow C3DIALOOH$	k_R02_H02(temp,3)*(r_C03_00H+r_ C03_03)	Rickard and Pascoe (2009)
G43418b	TrGAroC	$C3DIALO2 + HO_2 \rightarrow GLYOX + CO + HO_2 + OH$	k_RO2_HO2(temp,3)*r_CO3_OH	Rickard and Pascoe (2009)
343419	TrGAroCN	$C3DIALO2 + NO \rightarrow GLYOX + CO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
343420	TrGAroCN	$C3DIALO2 + NO_3 \rightarrow GLYOX + CO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
343421	TrGAroC	$C3DIALO2 \rightarrow GLYOX + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
343422a	TrGAroC	$HCOCOHCO3 + HO_2 \rightarrow GLYOX + CO_2 + HO_2 + OH$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)
G43422b	TrGAroC	$HCOCOHCO3 + HO_2 \rightarrow HCOCOHCO3H$	KAPH02*(r_CO3_00H+r_CO3_03)	Rickard and Pascoe (2009)
343424	TrGAroCN	$HCOCOHCO3 + NO \rightarrow GLYOX + CO_2 + HO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
343425	TrGAroCN	$HCOCOHCO3 + NO_2 \rightarrow HCOCOHPAN$	k_CH3C03_N02	Rickard and Pascoe (2009)
343426	TrGAroCN	$HCOCOHCO3 + NO_3 \rightarrow GLYOX + CO_2 + HO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G43427	TrGAroC	$HCOCOHCO3 \rightarrow GLYOX + CO_2 + HO_2$	k1_R02RC03	Rickard and Pascoe (2009)
43428	TrGAroC	$METACETHO + OH \rightarrow CH_3C(O) + CO_2$	9.82E-11	Rickard and Pascoe (2009)
G43442	TrGAroCN	$HCOCOHPAN + OH \rightarrow GLYOX + CO + NO_2$	6.97E-11	Rickard and Pascoe (2009)
G43443	TrGAroCN	$HCOCOHPAN \rightarrow HCOCOHCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)

#	labels	reaction	rate coefficient	reference
G43444	TrGAroC	$C32OH13CO + OH \rightarrow HCOCOHCO3$	1.36E-10	Rickard and Pascoe (2009)
G43446	TrGAroC	$HCOCOHCO3H + OH \rightarrow HCOCOHCO3$	7.33E-11	Rickard and Pascoe (2009)
G44000	TrGC	$C_4H_{10} + OH \rightarrow LC_4H_9O_2 + H_2O$	2.03E-17*temp*temp*EXP(78./temp)	Atkinson et al. (2006) [*]
G44001a	TrGC	$\rm LC_4H_9O_2 \rightarrow C_3H_7CHO + HO_2$	(k1_R02pR02*0.1273+k1_ R02sR02*0.8727)*0.1273	Rickard and Pascoe (2009), Sander et al. (2019)
G44001b	TrGC	$LC_4H_9O_2 \rightarrow .636 \text{ MEK} + .636 \text{ HO}_2 + .364 \text{ CH}_3\text{CHO} + .364 C_2H_5O_2$	(k1_R02pR02*0.1273+k1_ R02sR02*0.8727)*0.8727	Rickard and Pascoe (2009), Sander et al. (2019)*
G44002	TrGC	$LC_4H_9O_2 + HO_2 \rightarrow LC_4H_9OOH$	k_R02_H02(temp,4)	Rickard and Pascoe (2009)
G44003a	TrGCN	$\mathrm{LC_4H_9O_2} + \mathrm{NO} \rightarrow \mathrm{NO_2} + \mathrm{C_3H_7CHO} + \mathrm{HO_2}$	KR02N0*(1(0.1273*alpha_AN(4,1, 0,0,0,temp,cair)+0.8727*alpha_ AN(4,2,0,0,0,temp,cair)))*0.1273	Rickard and Pascoe (2009), Sander et al. (2019)
G44003b	TrGCN	$\begin{array}{l} {\rm LC_4H_9O_2+NO\rightarrow NO_2+.636\;MEK+.636\;HO_2+.364}\\ {\rm CH_3CHO+.364\;C_2H_5O_2} \end{array}$	<pre>KR02N0*(1(0.1273*alpha_AN(4,1, 0,0,0,temp,cair)+0.8727*alpha_ AN(4,2,0,0,0,temp,cair)))*0.8727</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G44003c	TrGCN	$LC_4H_9O_2 + NO \rightarrow LC4H9NO3$	<pre>KR02N0*(0.1273*alpha_AN(4,1,0,0, 0,temp,cair)+0.8727*alpha_AN(4, 2,0,0,0,temp,cair))</pre>	Rickard and Pascoe (2009)*
G44004a	TrGCN	$\mathrm{LC_4H_9O_2} + \mathrm{NO_3} \rightarrow \mathrm{NO_2} + \mathrm{C_3H_7CHO} + \mathrm{HO_2}$	KR02N03*0.1273	Rickard and Pascoe (2009), Sander et al. (2019)
G44004b	TrGCN	$LC_4H_9O_2 + NO_3 \rightarrow NO_2 + .636 \text{ MEK} + .636 \text{ HO}_2 + .364 CH_3CHO + .364 C_2H_5O_2$	KR02N03*0.8727	Rickard and Pascoe (2009), Sander et al. (2019)
G44005a	TrGC	$LC_4H_9OOH + OH \rightarrow LC_4H_9O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G44005b	TrGC	$LC_4H_9OOH + OH \rightarrow C_3H_7CHO + H_2O + OH$	k_s*f_t00H*f_alk*(k_p/(k_p+k_s))	Sander et al. (2019)
G44005c	TrGC	$LC_4H_9OOH + OH \rightarrow MEK + H_2O + OH$	k_t*f_t00H*f_alk*(k_s/(k_p+k_s))	Sander et al. (2019)
G44006a	TrGC	$iC_4H_{10}+OH\rightarrow TC_4H_9O_2+H_2O$	1.17E-17*temp*temp*EXP(213./temp) *k_t/(3.*k_p+k_t)	Atkinson (2003)
G44006b	TrGC	$iC_4H_{10} + OH \rightarrow IC_4H_9O_2 + H_2O$	1.17E-17*temp*temp*EXP(213./temp) *3.*k_p/(3.*k_p+k_t)	Atkinson (2003)
G44007	TrGC	$\rm TC_4H_9O_2 \rightarrow \rm CH_3\rm COCH_3 + \rm CH_3$	k1_RO2tRO2	Rickard and Pascoe (2009), Sander et al. (2019)
G44008	TrGC	$TC_4H_9O_2 + HO_2 \rightarrow TC_4H_9OOH$	k_R02_H02(temp,4)	Rickard and Pascoe (2009)
G44009a	TrGCN	$\mathrm{TC_4H_9O_2} + \mathrm{NO} \rightarrow \mathrm{NO_2} + \mathrm{CH_3COCH_3} + \mathrm{CH_3}$	<pre>KR02NO*(1alpha_AN(4,3,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G44009b	TrGCN	$\rm TC_4H_9O_2+NO\rightarrowTC4H9NO3$	<pre>KR02NO*alpha_AN(4,3,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)

18

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44010a	TrGC	$TC_4H_9OOH + OH \rightarrow TC_4H_9O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G44010b	TrGC	$TC_4H_9OOH + OH \rightarrow CH_3COCH_3 + HCHO + OH + H_2O$	3.*k_p*f_tCH20H	Sander et al. (2019)*
G44011	TrGCN	$TC4H9NO3 + OH \rightarrow CH_3COCH_3 + HCHO + NO_2 + H_2O$	3.*k_p*f_CH20N02	Sander et al. (2019)*
G44012	TrGC	$\rm IC_4H_9O_2 \rightarrow \rm IPRCHO$	k1_R02sR02	Rickard and Pascoe (2009), Sander et al. (2019)
G44013	TrGC	$IC_4H_9O_2 + HO_2 \rightarrow IC_4H_9OOH$	k_R02_H02(temp,4)	Rickard and Pascoe (2009)
G44014a	TrGCN	$\rm IC_4H_9O_2 + NO \rightarrow NO_2 + IPRCHO$	<pre>KR02N0*(1alpha_AN(4,2,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G44014b	TrGCN	$\rm IC_4H_9O_2$ + NO \rightarrow IC4H9NO3	<pre>KRO2NO*alpha_AN(4,2,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G44015a	TrGC	$IC_4H_9OOH + OH \rightarrow IC_4H_9O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G44015b	TrGC	$IC_4H_9OOH + OH \rightarrow IPRCHO + OH + H_2O$	k_s*f_s00H+2.*k_s+k_t*f_pCH20H	Sander et al. (2019)*
G44016	TrGCN	$IC4H9NO3 + OH \rightarrow IPRCHO + NO_2 + H_2O$	k_s*f_0N02+2.*k_p+k_t*f_CH20N02	Sander et al. (2019)*
G44017	TrGC	$\begin{array}{l} {\rm MVK}+{\rm O}_3\rightarrow.87{\rm MGLYOX}+.5481{\rm CO}+.1392{\rm HO}_2\\ {\rm +}.1392{\rm OH}+.3219{\rm CH}_2{\rm OO}+.13{\rm HCHO}+.04680{\rm OH}\\ {\rm +}.04680{\rm CO}+.07280{\rm CH}_3{\rm C(O)}+.026{\rm CH}_3{\rm CHO}+.026\\ {\rm CO}_2+.026{\rm HCHO}+.026{\rm HO}_2+.02402{\rm MGLYOX}+\\ .02402{\rm H}_2{\rm O}_2+.00718{\rm CH}_3{\rm COCO}_2{\rm H} \end{array}$	8.5E-16*EXP(-1520./temp)	Sander et al. (2019)
G44018	TrGC	$\rm MVK+OH\rightarrow \rm LHMVKABO2$	2.6E-12*EXP(610./temp)	Sander et al. (2019), Atkinson et al. (2006) [*]
G44019	TrGC	$\rm MEK+OH\rightarrow \rm LMEKO2+H_2O$	1.5E-12*EXP(-90./temp)	Atkinson et al. (2006), Sander et al. (2019)*
G44020	TrGC	$LMEKO2 + HO_2 \rightarrow LMEKOOH$	k_R02_H02(temp,4)	Sander et al. (2019)
G44021a	TrGCN	$\begin{array}{l} {\rm LMEKO2}+{\rm NO}\rightarrow.62{\rm CH}_{3}{\rm CHO}+.62{\rm CH}_{3}{\rm C(O)}+.38\\ {\rm HCHO}+.38{\rm CO}_{2}+.38{\rm HOCH}_{2}{\rm CH}_{2}{\rm O}_{2}+{\rm NO}_{2} \end{array}$	<pre>KR02N0*(1(.62*alpha_AN(4,2,1, 0,0,temp,cair)+.38*alpha_AN(4,1, 0,1,0,temp,cair)))</pre>	Sander et al. (2019)*
G44021b	TrGCN	$\rm LMEKO2 + NO \rightarrow \rm LMEKNO3$	<pre>KR02N0*(.62*alpha_AN(4,2,1,0,0, temp,cair)+.38*alpha_AN(4,1,0,1, 0,temp,cair))</pre>	Sander et al. (2019)
G44022a	TrGC	$LMEKOOH + OH \rightarrow LMEKO2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G44022b	TrGC	$\label{eq:linear} \begin{array}{l} {\rm LMEKOOH} + {\rm OH} \rightarrow .62 \ {\rm BIACET} + .38 \ {\rm HCHO} + .38 \ {\rm CO}_2 \\ + .38 \ {\rm HOCH_2CH_2O_2} + {\rm H_2O} + {\rm OH} \end{array}$	(.62*k_t*f_t00H*f_C0+.38*k_s*f_ s00H)	Sander et al. (2019)
G44023a	TrGCN	$\rm LC4H9NO3 + OH \rightarrow MEK + NO_2 + H_2O$	(k_t*f_ONO2*f_alk+k_p*f_alk+k_ s*f_CH2ONO2+k_p)*(k_s/(k_p+k_s))	Sander et al. (2019)*

Table 1: Gas phase reactions $(\dots$ continued)

#	labels	reaction	rate coefficient	reference
G44023b	TrGCN	$\rm LC4H9NO3 + OH \rightarrow C_3H_7CHO + NO_2 + H_2O$	(k_p+k_s*(1.+f_CH2ONO2+f_ONO2) *f_alk)*(k_p/(k_p+k_s))	Sander et al. (2019)*
G44024	TrGCN	$MPAN + OH \rightarrow CH_3COCH_2OH + CO + NO_2$	3.2E-11	Orlando et al. (2002)
G44025	TrGCN	$MPAN \rightarrow MACO3 + NO_2$	k_PAN_M	see note*
G44026	TrGC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(.62*k1_R02s0R02+.38*k1_R02p0R02)	Rickard and Pascoe (2009)*
G44027	TrGC	$\mathrm{MACR} + \mathrm{OH} \rightarrow .45 \ \mathrm{MACO3} + .55 \ \mathrm{MACRO2}$	8.E-12*EXP(380./temp)	Orlando et al. (1999b), Sander et al. (2019)
G44028	TrGC	$\begin{array}{l} {\rm MACR} + {\rm O}_3 \rightarrow .5481 \ {\rm CO} + .1392 \ {\rm HO}_2 + .1392 \ {\rm OH} + \\ {\rm .3219} \ {\rm CH}_2 {\rm OO} + .87 \ {\rm MGLYOX} + .13 \ {\rm HCHO} + .13 \ {\rm OH} + \\ {\rm .065 \ HCOCOCH}_2 {\rm O}_2 + .065 \ {\rm CO} + .065 \ {\rm CH}_3 {\rm C(O)} \end{array}$	1.36E-15*EXP(-2112./temp)	Sander et al. (2019)
G44029	TrGCN	$MACR + NO_3 \rightarrow MACO3 + HNO_3$	KNO3AL*2.0	Rickard and Pascoe (2009)
G44030a	TrGC	$MACO3 \rightarrow CH_3C(O) + HCHO + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G44030b	TrGC	$MACO3 \rightarrow MACO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G44031a	TrGC	$MACO3 + HO_2 \rightarrow MACO2 + OH$	KAPH02*r_CO3_OH	Sander et al. (2019)
G44031b	TrGC	$MACO3 + HO_2 \rightarrow MACO3H$	KAPH02*r_CO3_OOH	Sander et al. (2019)
G44031c	TrGC	$MACO3 + HO_2 \rightarrow MACO2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019)
G44032	TrGCN	$MACO3 + NO \rightarrow MACO2 + NO_2$	8.70E-12*EXP(290./temp)	Sander et al. (2019)
G44033	TrGCN	$MACO3 + NO_2 \rightarrow MPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44034	TrGCN	$MACO3 + NO_3 \rightarrow MACO2 + NO_2$	KR02N03*1.74	Sander et al. (2019)
G44035	TrGC	$\rm MACRO2 \rightarrow .7~CH_3COCH_2OH$ $+$.7 HCHO $+$.7 HO_2 $+$.3 MACROH	k1_R02t0R02	Rickard and Pascoe (2009)*
G44036a	TrGC	$MACRO2 + HO_2 \rightarrow MACRO + OH$	k_R02_H02(temp,4)*r_COCH202_OH	Sander et al. (2019)
G44036b	TrGC	$MACRO2 + HO_2 \rightarrow MACROOH$	k_R02_H02(temp,4)*r_COCH202_00H	Sander et al. (2019)
G44037a	TrGCN	$\rm MACRO2 + \rm NO \rightarrow \rm MACRO + \rm NO_2$	<pre>KR02N0*(1alpha_AN(6,3,1,0,0, temp,cair))</pre>	Sander et al. (2019)
G44037b	TrGCN	$MACRO2 + NO \rightarrow MACRNO3$	<pre>KR02N0*alpha_AN(6,3,1,0,0,temp, cair)</pre>	Sander et al. (2019)
G44038	TrGCN	$MACRO2 + NO_3 \rightarrow MACRO + NO_2$	KR02N03	Sander et al. (2019)
G44039a	TrGC	$MACROOH + OH \rightarrow MACRO2$	k_ROOHRO	Sander et al. (2019)
G44039b	TrGC	$MACROOH + OH \rightarrow CO + CH_3COCH_2OH + OH$	k_t*f_0*f_tCH20H*f_alk	Sander et al. (2019)
G44039c	TrGC	$MACROOH + OH \rightarrow CO + MGLYOX + HO_2$	(k_s*f_sOH*f_pCH2OH + k_ROHRO)	Sander et al. (2019)
G44040	TrGC	$MACROH + OH \rightarrow CH_3COCH_2OH + CO + HO_2$	k_t*f_0*f_tCH20H*f_alk	Sander et al. (2019)

20

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44041	TrGC	MACRO \rightarrow .885 CH ₃ COCH ₂ OH + .885 CO + .115 MGLYOX + .115 HCHO + HO ₂	KDEC	Sander et al. (2019)
G44042	TrGC	$MACO2H + OH \rightarrow CH_3COCH_2OH + HO_2 + CO_2$	((k_adt+k_adp)*a_C02H+k_C02H)	Sander et al. (2019)
G44043a	TrGC	$MACO3H + OH \rightarrow CH_3COCH_2OH + CO_2 + OH$	(k_adt+k_adp)*a_CO2H	Sander et al. (2019)
G44043b	TrGC	$MACO3H + OH \rightarrow MACO3$	k_ROOHRO	Sander et al. (2019)
G44044	TrGC	$ \begin{array}{l} {\rm LHMVKABO2} \rightarrow .024 \ {\rm CO2H3CHO} + .072 \ {\rm MGLYOX} \\ {\rm +} .072 \ {\rm HO}_2 + .072 \ {\rm HCHO} + .5280 \ {\rm CH}_3{\rm C(O)} + .5280 \\ {\rm HOCH}_2{\rm CHO} + .176 \ {\rm BIACETOH} + .2 \ {\rm HO12CO3C4} \end{array} $	(.12*k1_R02p0R02+.88*k1_R02s0R02)	Sander et al. (2019)
G44045a	TrGC	$LHMVKABO2 + HO_2 \rightarrow OH + HOCH_2CHO + CH_3C(O)$	k_R02_H02(temp,4)*.88*r_COCH202_ OH	Sander et al. (2019)
G44045b	TrGC	$\rm LHMVKABO2 + HO_2 \rightarrow \rm LHMVKABOOH$	k_R02_H02(temp,4)*(.12+.88*r_ COCH202_00H)	Sander et al. (2019)
G44046a	TrGCN	$\label{eq:hoch2} \begin{array}{l} LHMVKABO2+NO\rightarrow.12~MGLYOX+.12~HO_2+.88\\ HOCH_2CHO+.88~CH_3C(O)+.12~HCHO+NO_2 \end{array}$	<pre>KR02N0*(1(.12*alpha_AN(6,1,0, 1,0,temp,cair)+.88*alpha_AN(6,2, 1,0,0,temp,cair)))</pre>	Sander et al. (2019)
G44046b	TrGCN	$\rm LHMVKABO2 + NO \rightarrow MVKNO3$	<pre>KR02N0*(.12*alpha_AN(6,1,0,1,0, temp,cair)+.88*alpha_AN(6,2,1,0, 0,temp,cair))</pre>	Sander et al. (2019)*
G44047	TrGCN	LHMVKABO2 + NO ₃ \rightarrow .12 MGLYOX + .12 HO ₂ + .88 HOCH ₂ CHO + .88 CH ₃ C(O) + .12 HCHO + .12 HO ₂ + NO ₂	KR02N03	Sander et al. (2019)
G44048a	TrGC	LHMVKABOOH + OH \rightarrow LHMVKABO2	k_ROOHRO	Sander et al. (2019)
G44048b	TrGC	LHMVKABOOH + OH \rightarrow .12 CO2H3CHO + .88 BIACETOH + OH	(.12*k_s*f_s00H*f_pCH20H+.88*k_ t*f_t00H*f_pCH20H*f_C0)	Sander et al. (2019)
G44049a	TrGC	$CO2H3CHO + OH \rightarrow CO2H3CO3$	k_t*f_0*f_alk	Sander et al. (2019)
G44049b	TrGC	$CO2H3CHO + OH \rightarrow CH_3COCOCHO + HO_2 + H_2O$	k_t*f_CO*f_tOH*f_CHO	Sander et al. (2019)
G44050	TrGCN	$CO2H3CHO + NO_3 \rightarrow CO2H3CO3 + HNO_3$	KNO3AL*4.0	Rickard and Pascoe (2009)
G44051	TrGC	$CO2H3CO3 \rightarrow MGLYOX + HO_2 + CO_2$	k1_R02RC03	Sander et al. (2019)
G44052a	TrGC	$CO2H3CO3 + HO_2 \rightarrow OH + MGLYOX + HO_2 + CO_2$	KAPH02*r_CO3_OH	Sander et al. (2019)
G44052b	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019)
G44052c	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO3H$	KAPH02*r_CO3_OOH	Sander et al. (2019)
G44053	TrGCN	$CO2H3CO3 + NO \rightarrow MGLYOX + HO_2 + NO_2 + CO_2$	KAPNO	Sander et al. (2019)
G44054	TrGCN	$CO2H3CO3 + NO_3 \rightarrow MGLYOX + HO_2 + NO_2 + CO_2$	KR02N03*1.74	Sander et al. (2019)
G44055a	TrGC	$CO2H3CO3H + OH \rightarrow CO2H3CO3$	k_ROOHRO	Sander et al. (2019)
G44055b	TrGC	$CO2H3CO3H + OH \rightarrow CH_3C(O) + CO + CO_2 + OH$	(k_t*f_CO2H*f_CO*f_tOH)	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44056	TrGC	$CO2H3CO2H + OH \rightarrow CH3COCOCO2H + HO_2$	k_t*f_CO2H*f_CO*f_tOH+k_CO2H	Sander et al. (2019)
G44057a	TrGC	$HO12CO3C4 + OH \rightarrow BIACETOH + HO_2$	k_t*f_tOH*f_alk*f_CO	Sander et al. (2019)
G44057b	TrGC	$HO12CO3C4 + OH \rightarrow CO2H3CHO + HO_2$	k_s*f_sOH*f_alk	Sander et al. (2019)
G44058	TrGC	$\rm MACO2 \rightarrow .65~CH_3 + .65~CO + .65~HCHO + .35~OH + .35~CH_3COCH_2O_2 + CO_2$	KDEC	Sander et al. (2019)
G44059	TrGC	LHMVKABO2 \rightarrow .88 MGLYOX + .88 HCHO + .12 HOOCH2CHO + .12 CH ₃ C(O) + OH	k_hsd	Sander et al. (2019)
G44060	TrGC	$MACRO2 \rightarrow MGLYOX + HCHO + OH$	k_hsb	Sander et al. (2019)
G44061a	TrGCN	$\begin{array}{l} \mathrm{MVKNO3} + \mathrm{OH} \rightarrow \mathrm{MGLYOX} + \mathrm{CO}_2 + \mathrm{HO}_2 + \mathrm{NO}_2 + \\ \mathrm{H}_2\mathrm{O} \end{array}$	k_s*f_sOOH*f_CH2ONO2+k_ROHRO	Sander et al. (2019)*
G44061b	TrGCN	$MVKNO3 + OH \rightarrow BIACETOH + NO_2 + H_2O$	k_t*f_ONO2*f_CO*f_pCH2OH	Sander et al. (2019)*
G44062a	TrGCN	$\begin{array}{l} \mathrm{MACRNO3} + \mathrm{OH} \rightarrow \mathrm{CH_3COCH_2OH} + \mathrm{CO_2} + \mathrm{NO_2} + \\ \mathrm{H_2O} \end{array}$	k_t*f_0*f_CH20N02	Sander et al. (2019)*
G44062b	TrGCN	$MACRNO3 + OH \rightarrow MGLYOX + CO + NO_2 + H_2O$	k_ROHRO+k_s*f_sOOH*f_CH2ONO2	Sander et al. (2019)*
G44063	TrGC	$MACRO2 \rightarrow CH_3COCH_2OH + OH + CO$	k_14hsal	Sander et al. (2019)
G44064	TrGC	EZCH3CO2CHCHO \rightarrow .9 CH ₃ COCHCO + .1 CH ₃ C(O) + .01 GLYOX + .18 CO + .09 HO ₂ + OH	k_15hs24vynal	Sander et al. (2019)
G44065	TrGC	$EZCH3CO2CHCHO + HO_2 \rightarrow CH_3COOHCHCHO$	k_R02_H02(temp,4)	Sander et al. (2019)
G44066	TrGCN	$EZCH3CO2CHCHO + NO \rightarrow CH_3COCHO_2CHO + NO_2$	KR02N0	Sander et al. (2019)*
G44067	TrGCN	$EZCH3CO2CHCHO + NO_3 \rightarrow CH_3COCHO_2CHO + NO_2$	KR02N03	Sander et al. (2019)
G44068	TrGC	$EZCH3CO2CHCHO \rightarrow CH_3COCHO_2CHO$	k1_R02s0R02	Sander et al. (2019)
G44069	TrGC	$EZCHOCCH3CHO2 \rightarrow HCOCCH_3CO + OH$	k_15hs24vynal	Sander et al. (2019)
G44070	TrGCN	$EZCHOCCH3CHO2 + NO \rightarrow HCOCO_2CH_3CHO + NO_2$	KR02N0	Sander et al. (2019)*
G44071	TrGC	$EZCHOCCH3CHO2 + HO_2 \rightarrow HCOCCH_3CHOOH$	k_R02_H02(temp,4)	Sander et al. (2019)
G44072	TrGCN	$EZCHOCCH3CHO2 + NO_3 \rightarrow HCOCO_2CH_3CHO + NO_2$	KR02N03	Sander et al. (2019)
G44073	TrGC	$EZCHOCCH3CHO2 \rightarrow HCOCO_2CH_3CHO$	k1_R02p0R02	Sander et al. (2019)
G44074	TrGC	$CH_3COOHCHCHO \rightarrow CH_3COCHO_2CHO + OH$	k_hydec	Sander et al. (2019)
G44075	TrGC	$HCOCCH_3CHOOH \rightarrow HCOCO_2CH_3CHO + OH$	k_hydec	Sander et al. (2019)
G44076	TrGCN	$CH_3COCHO_2CHO + NO \rightarrow CH_3C(O) + GLYOX + NO_2$	KR02N0	Sander et al. (2019)*
G44077	TrGCN	$CH_3COCHO_2CHO + NO_3 \rightarrow CH_3C(O) + GLYOX + NO_2$	KR02N03	Sander et al. (2019)
G44078	TrGC	$CH_3COCHO_2CHO + HO_2 \rightarrow CH_3C(O) + GLYOX + OH$	k_R02_H02(temp,4)	Sander et al. (2019)*
G44079	TrGC	$CH_3COCHO_2CHO \rightarrow CH_3C(O) + GLYOX$	k1_R02s0R02	Sander et al. (2019)
G44080	TrGC	$HCOCO_2CH_3CHO \rightarrow MGLYOX + CO + HO_2$	k1_R02t0R02	Sander et al. (2019)
G44081	TrGCN	$HCOCO_2CH_3CHO + NO \rightarrow MGLYOX + CO + HO_2 + NO_2$	KR02N0	Sander et al. (2019)*

22

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44082	TrGC	$\begin{array}{l} \mathrm{HCOCO_2CH_3CHO} + \mathrm{HO_2} \rightarrow \mathrm{MGLYOX} + \mathrm{CO} + \mathrm{HO_2} + \\ \mathrm{OH} \end{array}$	k_R02_H02(temp,4)	Sander et al. (2019)*
G44083	TrGCN	$HCOCO_2CH_3CHO + NO_3 \rightarrow MGLYOX + CO + HO_2 + NO_2$	KR02N03	Sander et al. (2019)
G44084	TrGC	$\rm HCOCCH_3CO + OH \rightarrow CO + MGLYOX + HO_2$	1E-10*a_CHO	Hatakeyama et al. (1985), Sander et al. (2019)
G44085	TrGC	$\rm CH_3COCHCO + OH \rightarrow \rm CO + MGLYOX + HO_2$	7.6E-11*a_COCH3	Hatakeyama et al. (1985), Sander et al. (2019)*
G44086	TrGCN	$ \begin{array}{l} {\rm LMEKNO3} + {\rm OH} \rightarrow .62 \ {\rm MGLYOX} + .62 \ {\rm HCHO} + .62 \\ {\rm HO}_2 + .62 \ {\rm NO}_2 + .38 \ {\rm CH}_3 {\rm C} {\rm (O)} + .38 \ {\rm NO}_3 {\rm CH} 2 {\rm CHO} \end{array} $.62*(k_p*(f_CO+f_CH20N02)) +.38*(k_s*f_CH20N02*f_CO)	Sander et al. (2019)*
G44087	TrGC	$MEPROPENE + OH \rightarrow IBUTOLBO2$	9.4E-12*EXP(505./temp)	Atkinson et al. (2006)
G44088a	TrGC	$\mathrm{MEPROPENE} + \mathrm{O}_3 \rightarrow \mathrm{CH}_3\mathrm{COCH}_3 + \mathrm{CH}_2\mathrm{OO}^*$	2.7E-15*EXP(-1630./temp)*0.33	Atkinson et al. (2006), Sander et al. (2019)
G44088b	TrGC	$\mathrm{MEPROPENE} + \mathrm{O}_3 \rightarrow \mathrm{CH}_3\mathrm{COCH}_2\mathrm{O}_2 + \mathrm{OH} + \mathrm{HCHO}$	2.7E-15*EXP(-1630./temp)*0.67	Atkinson et al. (2006), Sander et al. (2019)
G44089	TrGCN	$\mathrm{MEPROPENE} + \mathrm{NO}_3 \rightarrow \mathrm{CH}_3\mathrm{COCH}_3 + \mathrm{HCHO} + \mathrm{NO}_2$	3.4E-13	Atkinson et al. (2006), Sander et al. (2019)*
G44090	TrGC	$IBUTOLBO2 \rightarrow CH_3COCH_3 + HCHO + HO_2$	k1_R02t0R02	Sander et al. (2019)
G44091a	TrGC	$IBUTOLBO2 + HO_2 \rightarrow IBUTOLBOOH$	k_R02_H02(temp,4)*r_COCH202_00H	Sander et al. (2019)
G44091b	TrGC	$\begin{array}{l} \mathrm{IBUTOLBO2} + \mathrm{HO}_2 \rightarrow \mathrm{CH}_3\mathrm{COCH}_3 + \mathrm{HCHO} + \mathrm{HO}_2 + \\ \mathrm{OH} \end{array}$	k_R02_H02(temp,4)*r_COCH202_OH	Sander et al. (2019)
G44092a	TrGCN	IBUTOLBO2 + NO \rightarrow CH ₃ COCH ₃ + HCHO + HO ₂ + NO ₂	<pre>KRO2NO*(1alpha_AN(5,3,0,0,0, temp,cair))</pre>	Sander et al. (2019)
G44092b	TrGCN	$IBUTOLBO2 + NO \rightarrow IBUTOLBNO3$	<pre>KRO2NO*alpha_AN(5,3,0,0,0,temp, cair)</pre>	Sander et al. (2019)
G44093	TrGCN	$\begin{array}{l} \mathrm{IBUTOLBO2} + \mathrm{NO}_3 \rightarrow \mathrm{CH}_3\mathrm{COCH}_3 + \mathrm{HCHO} + \mathrm{HO}_2 + \\ \mathrm{NO}_2 \end{array}$	KR02N03	Sander et al. (2019)
G44094a	TrGC	$IBUTOLBOOH + OH \rightarrow IBUTOLBO2$	k_ROOHRO	Sander et al. (2019)
G44094b	TrGC	$IBUTOLBOOH + OH \rightarrow CH_3COCH_3 + HCHO + HO_2$	k_s*f_s00H*f_pCH20H	Sander et al. (2019)
G44095	TrGCN	$\begin{array}{l} \mathrm{IBUTOLBNO3} + \mathrm{OH} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{NO_2} \end{array}$	3.*k_p	Sander et al. (2019)
G44096	TrGC	$BUT1ENE + OH \rightarrow LBUT1ENO2$	6.6E-12*EXP(465./temp)	Atkinson et al. (2006)*
G44097a	TrGC	BUT1ENE + $O_3 \rightarrow$ HCHO + .5 C_2H_5CHO + .5 H_2O_2 + .5 CH_3CHO + .5 CO + .5 HO_2	3.35E-15*EXP(-1745./temp)*.57	Atkinson et al. (2006), Sander et al. (2019)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44097b	TrGC	$BUT1ENE + O_3 \rightarrow C_2H_5CHO + CH_2OO^*$	3.35E-15*EXP(-1745./temp)*.43	Atkinson et al. (2006), Sander et al. (2019)*
G44098	TrGCN	$\rm BUT1ENE + NO_3 \rightarrow C_2H_5CHO + HCHO + NO_2$	3.2E-13*EXP(-950./temp)	Atkinson et al. (2006), Sander et al. (2019)*
G44099	TrGC	$LBUT1ENO2 \rightarrow C_2H_5CHO + HCHO + HO_2$	k1_R02s0R02	Sander et al. (2019)
G44100a	TrGC	$LBUT1ENO2 + HO_2 \rightarrow LBUT1ENOOH$	k_R02_H02(temp,4)*r_COCH202_00H	Sander et al. (2019)
G44100b	TrGC	$\begin{array}{l} LBUT1ENO2 + HO_2 \rightarrow C_2H_5CHO + HCHO + HO_2 + \\ OH \end{array}$	k_R02_H02(temp,4)*r_COCH202_OH	Sander et al. (2019)
G44101a	TrGCN	$\rm LBUT1ENO2 + NO \rightarrow C_2H_5CHO + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(5,2,0,0,0, temp,cair))</pre>	Sander et al. (2019)
G44101b	TrGCN	$LBUT1ENO2 + NO \rightarrow LBUT1ENNO3$	KRO2NO*alpha_AN(5,2,0,0,0,temp, cair)	Sander et al. (2019)
G44102	TrGCN	LBUT1ENO2 + NO ₃ \rightarrow C ₂ H ₅ CHO + HCHO + HO ₂ + NO ₂	KR02N03	Sander et al. (2019)
G44103a	TrGC	$LBUT1ENOOH + OH \rightarrow LBUT1ENO2$	k_ROOHRO	Sander et al. (2019)
G44103b	TrGC	$LBUT1ENOOH + OH \rightarrow C_2H_5CO_3 + HCHO + HO_2$	k_t*f_t00H*f_pCH20H	Sander et al. (2019)*
G44104	TrGCN	$LBUT1ENNO3 + OH \rightarrow C_2H_5CHO + CO + HO_2 + NO_2$	k_s*f_sOH*f_CH2ONO2	Sander et al. (2019)*
G44105	TrGC	$CBUT2ENE + OH \rightarrow BUT2OLO2$	1.1E-11*EXP(485./temp)	Atkinson et al. (2006)
G44106	TrGC	$\begin{array}{l} {\rm CBUT2ENE}+{\rm O}_3\to{\rm CH}_3{\rm CHO}+.16{\rm CH3CH0H0OH}+\\ {\rm .50OH}+.50{\rm HCOCH}_2{\rm O}_2+.05{\rm CH2CO}+.09{\rm CH}_3{\rm OH}+\\ {\rm .09CO}+.2{\rm CH}_4+.2{\rm CO}_2 \end{array}$	3.2E-15*EXP(-965./temp)	Atkinson et al. (2006), Sander et al. (2019)*
G44107	TrGCN	$CBUT2ENE + NO_3 \rightarrow 2 \ CH_3CHO + NO_2$	3.5E-13	Atkinson et al. (2006), Sander et al. (2019)*
G44108	TrGC	TBUT2ENE + $OH \rightarrow BUT2OLO2$	1.0E-11*EXP(553./temp)	Atkinson et al. (2006)
G44109	TrGC	$\begin{array}{l} {\rm TBUT2ENE}+O_3\to {\rm CH_3CHO}+.16{\rm CH3CHOHOOH}+\\ {\rm .50OH}+.50{\rm HCOCH_2O_2}+.05{\rm CH2CO}+.09{\rm CH_3OH}+\\ {\rm .09CO}+.2{\rm CH_4}+.2{\rm CO_2} \end{array}$	6.6E-15*EXP(-1060./temp)	Atkinson et al. (2006), Sander et al. (2019)
G44110	TrGCN	$\rm TBUT2ENE + NO_3 \rightarrow 2 \ CH_3 CHO + NO_2$	1.78E-12*EXP(-530./temp) +1.28E-14*EXP(570./temp)	Atkinson et al. (2006), Sander et al. (2019)*
G44111	TrGC	$BUT2OLO2 \rightarrow C_2H_5CHO + HCHO + HO_2$	k1_R02s0R02	Sander et al. (2019)
G44112a	TrGC	$BUT2OLO2 + HO_2 \rightarrow BUT2OLOOH$	k_R02_H02(temp,4)*r_COCH202_00H	Sander et al. (2019)
G44112b	TrGC	$BUT2OLO2 + HO_2 \rightarrow 2 CH_3CHO + HO_2 + OH$	k_R02_H02(temp,4)*r_COCH202_OH	Sander et al. (2019)
G44113a	TrGCN	$\rm BUT2OLO2 + NO \rightarrow 2 \ CH_3CHO + HO_2 + NO_2$	<pre>KR02N0*(1alpha_AN(5,2,0,0,0, temp,cair))</pre>	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44113b	TrGCN	$BUT2OLO2 + NO \rightarrow BUT2OLNO3$	<pre>KR02N0*alpha_AN(5,2,0,0,0,temp, cair)</pre>	Sander et al. (2019)
G44114	TrGCN	$BUT2OLO2 + NO_3 \rightarrow 2 CH_3CHO + HO_2 + NO_2$	KR02N03	Sander et al. (2019)
G44115a	TrGC	$BUT2OLOOH + OH \rightarrow BUT2OLO2$	k_ROOHRO	Sander et al. (2019)
G44115b	TrGC	$BUT2OLOOH + OH \rightarrow LMEKOOH + HO_2$	k_t*f_tOH*f_pCH2OH	Sander et al. (2019)
G44115c	TrGC	$BUT2OLOOH + OH \rightarrow BUT2OLO + OH$	k_t*f_tOOH*f_pCH2OH	Sander et al. (2019)
G44116	TrGCN	$BUT2OLNO3 + OH \rightarrow LMEKNO3 + HO_2$	k_t*f_tOH*f_CH2ONO2	Sander et al. (2019)
G44117	TrGC	$BUT2OLO + OH \rightarrow BIACET + HO_2$	k_t*f_tOH*f_CO	Sander et al. (2019)
G44118	TrGC	$IPRCHO + OH \rightarrow IPRCO3 + H_2O$	6.8E-12*EXP(410./temp)	Atkinson et al. (2006)
G44119	TrGCN	$IPRCHO + NO_3 \rightarrow IPRCO3 + HNO_3$	1.67E-12*EXP(-1460./temp)	Atkinson et al. (2006)
G44120	TrGC	$IPRCO3 \rightarrow iC_3H_7O_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G44121a	TrGC	$IPRCO3 + HO_2 \rightarrow PERIBUACID$	KAPH02*r_CO3_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G44121b	TrGC	$\mathrm{IPRCO3} + \mathrm{HO}_2 \rightarrow \mathrm{iC_3H_7O_2} + \mathrm{CO_2} + \mathrm{OH}$	KAPH02*(1r_CO3_OOH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44122	TrGCN	$IPRCO3 + NO_2 \rightarrow PIPN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44123	TrGCN	$IPRCO3 + NO \rightarrow iC_3H_7O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44124a	TrGC	$PERIBUACID + OH \rightarrow IPRCO3 + H_2O$	k_ROOHRO	Rickard and Pascoe (2009)
G44124b	TrGC	$PERIBUACID + OH \rightarrow CH_3COCH_3 + H_2O + CO_2$	k_s*f_CO2H	Sander et al. (2019)*
G44125	TrGCN	$PIPN \rightarrow IPRCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44126	TrGCN	$PIPN + OH \rightarrow CH_3COCH_3 + CO_2 + NO_2$	k_s*f_cpan	Sander et al. (2019)*
G44127	TrGC	$\mathrm{MPROPENOL} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{CH}_3\mathrm{COCH}_3$	k_CH2CH0H_OH_HC00H	Sander et al. (2019), So et al. (2014)*
G44128	TrGC	$\mathrm{MPROPENOL} + \mathrm{HCOOH} \rightarrow \mathrm{IPRCHO} + \mathrm{HCOOH}$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010)*
G44129	TrGC	$\mathrm{IPRCHO} + \mathrm{HCOOH} \rightarrow \mathrm{MPROPENOL} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44130	TrGC	$\rm BUTENOL + OH \rightarrow \rm HCOOH + OH + C_2H_5CHO$	k_CH2CH0H_0H_HC00H	Sander et al. (2019), So et al. (2014)*
G44131	TrGC	$\rm BUTENOL + HCOOH \rightarrow C_3H_7CHO + HCOOH$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010)*
G44132	TrGC	$\rm C_3H_7CHO+HCOOH\rightarrow BUTENOL+HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44133	TrGC	$\mathrm{HVMK} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{MGLYOX}$	8.8E-11	Sander et al. (2019), So et al. (2014), Messaadia et al. (2015)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44134	TrGC	$\rm HVMK + \rm HCOOH \rightarrow \rm CO2C3CHO + \rm HCOOH$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010) [*]
G44135	TrGC	$\rm CO2C3CHO + HCOOH \rightarrow HVMK + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44136	TrGC	$\mathrm{HMAC} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{MGLYOX}$	8.8E-11	Sander et al. (2019), So et al. (2014), Messaadia et al. (2015)*
G44137	TrGC	$\mathrm{HMAC} + \mathrm{HCOOH} \rightarrow \mathrm{IBUTDIAL} + \mathrm{HCOOH}$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010)*
G44138	TrGC	$\mathrm{IBUTDIAL} + \mathrm{HCOOH} \rightarrow \mathrm{HMAC} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44139	TrGC	$CO2C3CHO + OH \rightarrow CH_3COCH_2O_2 + CO_2 + H_2O$	k_t*f_0*f_alk+k_s*f_CH0*f_C0	Sander et al. (2019)*
G44140	TrGCN	$CO2C3CHO + NO_3 \rightarrow CH_3COCH_2O_2 + CO_2 + HNO_3$	KNO3AL*4.0	Sander et al. (2019)*
G44141	TrGC	$\begin{array}{l} \mbox{IBUTDIAL} + \mbox{OH} \rightarrow \mbox{CH}_3\mbox{CHO} + \mbox{CO} + \mbox{HO}_2 + \mbox{CO}_2 + \mbox{H}_2\mbox{O} \\ \mbox{H}_2\mbox{O} \end{array}$	2.*k_t*f_0*f_alk+k_t*f_CH0*f_CH0	Sander et al. (2019)*
G44142	TrGCN	$\begin{array}{l} \mathrm{IBUTDIAL} + \mathrm{NO}_3 \rightarrow \mathrm{CH}_3\mathrm{CHO} + \mathrm{CO} + \mathrm{HO}_2 + \mathrm{CO}_2 + \\ \mathrm{HNO}_3 \end{array}$	2.*KNO3AL*4.0	Sander et al. (2019)*
G44200	TrGTerC	$CH_3COCOCH_2O_2 \rightarrow CH_3C(O) + HCHO + CO$	k1_R02p0R02	Rickard and Pascoe (2009)
G44201	TrGTerC	$CH_3COCOCH_2O_2 + HO_2 \rightarrow CH_3COCOCH_2OOH$	k_R02_H02(temp,4)	Rickard and Pascoe (2009)
G44202	TrGTerCN	$CH_3COCOCH_2O_2 + NO \rightarrow CH_3C(O) + HCHO + CO + NO_2$	KR02N0	Rickard and Pascoe $(2009)^*$
G44203a	TrGTerC	$CH_3COCOCH_2OOH + OH \rightarrow CH_3COCOCHO + OH$	k_s*f_CO*f_sOOH	Rickard and Pascoe (2009) [*]
G44203b	TrGTerC	$CH_3COCOCH_2OOH + OH \rightarrow CH_3COCOCH_2O_2$	k_ROOHRO	Rickard and Pascoe (2009)
G44204	TrGTerC	$C44O2 + HO_2 \rightarrow C44OOH$	k_R02_H02(temp,4)	Rickard and Pascoe (2009)
G44205	TrGTerCN	$C44O2 + NO \rightarrow HCOCH2CHO + CO_2 + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G44206	TrGTerC	$C44O2 \rightarrow HCOCH2CHO + CO_2 + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)
G44207	TrGTerC	$C44OOH + OH \rightarrow C44O2$	7.46E-11	Rickard and Pascoe (2009)
G44208	TrGTerC	$CHOC3COO2 \rightarrow HCOCH2CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G44209	TrGTerC	$CHOC3COO2 + HO_2 \rightarrow C413COOOH$	k_R02_H02(temp,4)	Rickard and Pascoe (2009)
G44210	TrGTerCN	$CHOC3COO2 + NO \rightarrow HCOCH2CO3 + HCHO + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G44211	TrGTerC	$C413COOOH + OH \rightarrow CHOC3COO2$	8.33E-11	Rickard and Pascoe (2009)
G44212	TrGTerC	$C4CODIAL + OH \rightarrow C312COCO3$	3.39E-11	Rickard and Pascoe (2009)
G44213	TrGTerCN	$C4CODIAL + NO_3 \rightarrow C312COCO3 + HNO_3$	2.*KN03AL*4.0	Rickard and Pascoe (2009)
G44214	TrGTerC	$C312COCO3 \rightarrow HCOCOCH_2O_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G44215a	TrGTerC	$C312COCO3 + HO_2 \rightarrow C312COCO3H$	KAPH02*r_CO3_OOH	Rickard and Pascoe (2009)
G44215b	TrGTerC	$C312COCO3 + HO_2 \rightarrow HCOCOCH_2O_2 + CO_2 + OH$	KAPH02*(1r_CO3_00H)	Rickard and Pascoe (2009)

Table 1: Gas phase reactions $(\dots$ continued)

#	labels	reaction	rate coefficient	reference
G44216	TrGTerCN	$C312COCO3 + NO_2 \rightarrow C312COPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44217	TrGTerCN	$C312COCO3 + NO \rightarrow HCOCOCH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44218	TrGTerC	$C312COCO3H + OH \rightarrow C312COCO3$	1.63E-11	Rickard and Pascoe (2009)
G44219	TrGTerCN	$C312COPAN \rightarrow C312COCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44220	TrGTerCN	$C312COPAN + OH \rightarrow HCOCOCHO + CO + NO_2$	1.27E-11	Rickard and Pascoe (2009)
G44221	TrGTerC	$CH_3COCOCHO + OH \rightarrow CH_3C(O) + 2 CO$	8.4E-13*EXP(830./temp)	Sander et al. (2019)*
G44222	TrGTerCN	$CH_3COCOCHO + NO_3 \rightarrow CH_3C(O) + 2 CO + HNO_3$	KNO3AL*4.0	Rickard and Pascoe (2009)
G44223	TrGTerC	$IBUTALOH + OH \rightarrow IPRHOCO3$	1.4E-11	Rickard and Pascoe (2009)
G44224a	TrGTerC	$IPRHOCO3 + HO_2 \rightarrow CH_3COCH_3 + CO_2 + HO_2 + OH$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G44224b	TrGTerC	$IPRHOCO3 + HO_2 \rightarrow IPRHOCO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009), Sander et al. (2019)
G44224c	TrGTerC	$IPRHOCO3 + HO_2 \rightarrow IPRHOCO3H$	KAPH02*r_CO3_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G44225	TrGTerCN	$IPRHOCO3 + NO \rightarrow CH_3COCH_3 + CO_2 + HO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
344226	TrGTerCN	$IPRHOCO3 + NO_2 \rightarrow C4PAN5$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44227	TrGTerCN	$IPRHOCO3 + NO_3 \rightarrow CH_3COCH_3 + CO_2 + HO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G44228a	TrGTerC	$IPRHOCO3 \rightarrow CH_3COCH_3 + CO_2 + HO_2$	k1_R02RC03*0.7	Rickard and Pascoe (2009)
G44228b	TrGTerC	$IPRHOCO3 \rightarrow IPRHOCO2H$	k1_R02RC03*0.3	Rickard and Pascoe (2009)
G44229	TrGTerC	$IPRHOCO2H + OH \rightarrow CH_3COCH_3 + CO_2 + HO_2 + H_2O$	1.72E-12	Rickard and Pascoe (2009)
G44230	TrGTerC	$OH + IPRHOCO3H \rightarrow IPRHOCO3$	4.80E-12	Rickard and Pascoe (2009)
G44231	TrGTerCN	$C4PAN5 \rightarrow IPRHOCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44232	TrGTerCN	$C4PAN5 + OH \rightarrow CH_3COCH_3 + CO + NO_2$	4.75E-13	Rickard and Pascoe (2009)
G44233a	TrGTerC	$\rm MBOOO \rightarrow \rm IPRHOCO2H$	1.60E-17*C(ind_H20)*(0.08+0.15)	Rickard and Pascoe (2009), Sander et al. (2019)
G44233b	TrGTerC	$\rm MBOOO \rightarrow \rm IBUTALOH + H_2O_2$	1.60E-17*C(ind_H20)*0.77	Rickard and Pascoe (2009). Sander et al. (2019)
G44234	TrGTerC	$MBOOO + CO \rightarrow IBUTALOH + CO_2$	1.20E-15	Rickard and Pascoe (2009)
G44235	TrGTerCN	$MBOOO + NO \rightarrow IBUTALOH + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G44236	TrGTerCN	$MBOOO + NO_2 \rightarrow IBUTALOH + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G44400	TrGAroC	MALANHY + $OH \rightarrow MALANHYO2$	1.4E-12	Rickard and Pascoe (2009)
G44401a	TrGAroC	$MALDIALOOH + OH \rightarrow HOCOC4DIAL + OH$	1.22E-10	Rickard and Pascoe (2009)
344401b	TrGAroC	$MALDIALOOH + OH \rightarrow MALDIALO2$	k_ROOHRO	Rickard and Pascoe (2009)
G44402	TrGAroCN	$NC4DCO2H + OH \rightarrow MALANHY + NO_2$	k_ROOHRO	Rickard and Pascoe (2009)*
G44403	TrGAroC	$CO14O3CO2H + OH \rightarrow HCOCH_2O_2 + 2 CO_2$	2.19E-11	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44404	TrGAroC	$BZFUOOH + OH \rightarrow BZFUO2$	3.68E-11	Rickard and Pascoe (2009)
344405	TrGAroC	$HOCOC4DIAL + OH \rightarrow CO2C4DIAL + HO_2$	3.67E-11	Rickard and Pascoe (2009)
G44406a	TrGAroC	$MALDIALCO3 + HO_2 \rightarrow MALDALCO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G44406b	TrGAroC	$MALDIALCO3 + HO_2 \rightarrow MALDALCO3H$	KAPH02*r_CO3_OOH	Rickard and Pascoe (2009)
G44406c	TrGAroC	$\begin{array}{l} \text{MALDIALCO3} + \text{HO}_2 \rightarrow .6 \text{ MALANHY} + \text{HO}_2 + .4 \\ \text{GLYOX} + .4 \text{ CO} + .4 \text{ CO}_2 + \text{OH} \end{array}$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)*
G44407	TrGAroCN	$\begin{array}{llllllllllllllllllllllllllllllllllll$	KAPNO	Rickard and Pascoe $(2009)^*$
G44408	TrGAroCN	MALDIALCO3 + $NO_2 \rightarrow MALDIALPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44409	TrGAroCN	$\begin{array}{l} \text{MALDIALCO3} + \text{NO}_3 \rightarrow .6 \text{ MALANHY} + \text{HO}_2 + .4 \\ \text{GLYOX} + .4 \text{ CO} + .4 \text{ CO}_2 + \text{NO}_2 \end{array}$	KR02N03*1.74	Rickard and Pascoe (2009)*
G44410	TrGAroC	$\begin{array}{l} \mbox{MALDIALCO3} \rightarrow .6\mbox{ MALANHY} + \mbox{HO}_2 + .4\mbox{ GLYOX} + .4\mbox{ CO} + .4\mbox{ CO}_2 \end{array}$	k1_R02RC03	Rickard and Pascoe (2009)*
G44411	TrGAroCN	$BZFUONE + NO_3 \rightarrow NBZFUO2$	3.00E-13	Rickard and Pascoe (2009)
G44412	TrGAroC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.20E-19	see note*
G44413	TrGAroC	$BZFUONE + OH \rightarrow BZFUO2$	4.45E-11	Rickard and Pascoe (2009)
G44414	TrGAroCN	$NBZFUOOH + OH \rightarrow NBZFUO2$	6.18E-12	Rickard and Pascoe (2009)
G44415	TrGAroC	$MALDALCO3H + OH \rightarrow MALDIALCO3$	4.00E-11	Rickard and Pascoe (2009)
G44416	TrGAroC	$EPXDLCO2H + OH \rightarrow C3DIALO2 + CO_2$	2.31E-11	Rickard and Pascoe (2009)
G44417a	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow C3DIALO2 + CO_2 + OH$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)
G44417b	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow EPXDLCO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G44417c	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow EPXDLCO3H$	KAPH02*r_CO3_OOH	Rickard and Pascoe (2009)
G44418	TrGAroCN	$EPXDLCO3 + NO \rightarrow C3DIALO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44419	TrGAroCN	$EPXDLCO3 + NO_2 \rightarrow EPXDLPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44420	TrGAroCN	$EPXDLCO3 + NO_3 \rightarrow C3DIALO2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G44421	TrGAroC	$EPXDLCO3 \rightarrow C3DIALO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G44422	TrGAroC	MALNHYOHCO + OH \rightarrow CO + CO + CO + CO ₂ + HO ₂	5.68E-12	Rickard and Pascoe (2009)
G44423	TrGAroCN	$MALDIAL + NO_3 \rightarrow MALDIALCO3 + HNO_3$	2.*KNO3AL*2.0	Rickard and Pascoe (2009)
G44424	TrGAroC	$\begin{array}{l} {\rm MALDIAL} + {\rm O}_3 \rightarrow 1.0675 \ {\rm GLYOX} + .125 \ {\rm HCHO} + .1125 \\ {\rm HCOCO_2H} + .0675 \ {\rm H_2O_2} + .82 \ {\rm HO_2} + .57 \ {\rm OH} + 1.265 \\ {\rm CO} + .25 \ {\rm CO_2} \end{array}$	2.00E-18	Rickard and Pascoe (2009)*
G44425	TrGAroC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.20E-11	Rickard and Pascoe $(2009)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44426	TrGAroC	$MALANHYOOH + OH \rightarrow MALNHYOHCO + OH$	4.66E-11	Rickard and Pascoe (2009)
G44427	TrGAroCN	$MALDIALPAN + OH \rightarrow GLYOX + CO + CO + NO_2$	3.70E-11	Rickard and Pascoe (2009)
G44428	TrGAroCN	MALDIALPAN \rightarrow MALDIALCO3 + NO ₂	k_PAN_M	Rickard and Pascoe (2009)
G44429a	TrGAroC	$MALANHYO2 + HO_2 \rightarrow MALANHYOOH$	k_R02_H02(temp,4)*(1r_COCH202_ OH-r_CH0HCH202_OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44429b	TrGAroC	$\mathrm{MALANHYO2} + \mathrm{HO}_2 \rightarrow \mathrm{HCOCOHCO3} + \mathrm{CO}_2 + \mathrm{OH}$	k_R02_H02(temp,4)*(r_COCH202_OH+ r_CH0HCH202_OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44430	TrGAroCN	$MALANHYO2 + NO \rightarrow HCOCOHCO3 + CO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G44431	TrGAroCN	$MALANHYO2 + NO_3 \rightarrow HCOCOHCO3 + CO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G44432	TrGAroC	$MALANHYO2 \rightarrow HCOCOHCO3 + CO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44433	TrGAroC	$EPXDLCO3H + OH \rightarrow EPXDLCO3$	2.62E-11	Rickard and Pascoe (2009)
G44434	TrGAroC	$CO2C4DIAL + OH \rightarrow CO + CO + CO + CO + HO_2$	2.45E-11	Rickard and Pascoe (2009)
G44435a	TrGAroCN	$NBZFUO2 + HO_2 \rightarrow NBZFUOOH$	k_R02_H02(temp,4)*(1r_COCH202_ OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44435b	TrGAroCN	NBZFUO2 + HO ₂ \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + OH	k_R02_H02(temp,4)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G44436	TrGAroCN	NBZFUO2 + NO \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + NO ₂	KR02N0	Rickard and Pascoe (2009)*
G44437	TrGAroCN	NBZFUO2 + NO ₃ \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009)*
G44438	TrGAroCN	NBZFUO2 \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂	k1_R02s0R02	Rickard and Pascoe (2009)*
G44439	TrGAroC	$\begin{array}{l} \text{MALDALCO2H} + \text{OH} \rightarrow .6 \text{ MALANHY} + \text{HO}_2 + .4 \\ \text{GLYOX} + .4 \text{ CO} + .4 \text{ CO}_2 \end{array}$	3.70E-11	Rickard and Pascoe (2009)*
G44440	TrGAroCN	$EPXC4DIAL + NO_3 \rightarrow EPXDLCO3 + HNO_3$	2.*KNO3AL*4.0	Rickard and Pascoe (2009)
G44441	TrGAroC	$EPXC4DIAL + OH \rightarrow EPXDLCO3$	4.32E-11	Rickard and Pascoe (2009)
G44442a	TrGAroC	$\rm MECOACETO2 + HO_2 \rightarrow \rm MECOACEOOH$	k_R02_H02(temp,4)*(1r_COCH202_ OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44442b	TrGAroC	$\begin{array}{l} \mathrm{MECOACETO2} + \mathrm{HO}_2 \rightarrow \mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{OO} + \mathrm{HCHO} + \mathrm{CO}_2 \\ + \mathrm{OH} \end{array}$	k_R02_H02(temp,4)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G44443	TrGAroCN	$\begin{array}{l} \mathrm{MECOACETO2} + \mathrm{NO} \rightarrow \mathrm{CH_3C(O)OO} + \mathrm{HCHO} + \mathrm{CO_2} \\ + \mathrm{NO_2} \end{array}$	KR02N0	Rickard and Pascoe (2009)*
G44444	TrGAroCN	$\begin{array}{l} \text{MECOACETO2} + \text{NO}_3 \rightarrow \text{CH}_3\text{C}(\text{O})\text{OO} + \text{HCHO} + \text{CO}_2 \\ + \text{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe $(2009)^\ast$
G44445	TrGAroC	$MECOACETO2 \rightarrow CH_3C(O)OO + HCHO + CO_2$	k1_R02p0R02	Rickard and Pascoe (2009)*

#	labels	reaction	rate coefficient	reference
G44446	TrGAroCN	CO14O3CHO + NO ₃ \rightarrow CO + HCOCH ₂ O ₂ + CO ₂ + HNO ₃	KNO3AL*8.0	Rickard and Pascoe (2009)
G44447	TrGAroC	$CO14O3CHO + OH \rightarrow CO + HCOCH_2O_2 + CO_2$	3.44E-11	Rickard and Pascoe (2009)
G44448	TrGAroCN	$NBZFUONE + OH \rightarrow BZFUCO + NO_2$	1.16E-12	Rickard and Pascoe (2009)
G44449a	TrGAroC	$BZFUO2 + HO_2 \rightarrow BZFUOOH$	k_R02_H02(temp,4)*(1r_COCH202_ OH-r_CHOHCH202_OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44449b	TrGAroC	$\rm BZFUO2 + HO_2 \rightarrow \rm CO14O3CHO + HO_2 + OH$	k_R02_H02(temp,4)*(r_COCH202_OH+ r_CH0HCH202_OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44450	TrGAroCN	$BZFUO2 + NO \rightarrow CO14O3CHO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G44451	TrGAroCN	$BZFUO2 + NO_3 \rightarrow CO14O3CHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G44452	TrGAroC	$BZFUO2 \rightarrow CO14O3CHO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44453	TrGAroC	$BZFUCO + OH \rightarrow CO14O3CHO + HO_2$	1.78E-11	Rickard and Pascoe (2009)
G44456a	TrGAroC	$MALDIALO2 + HO_2 \rightarrow MALDIALOOH$	k_R02_H02(temp,4)*(1r_COCH202_ OH-r_CHOHCH202_OH)	Rickard and Pascoe (2009)
G44456b	TrGAroC	$\mathrm{MALDIALO2} + \mathrm{HO}_2 \rightarrow \mathrm{GLYOX} + \mathrm{GLYOX} + \mathrm{HO}_2 + \mathrm{OH}$	k_R02_H02(temp,4)*(r_COCH202_OH+ r_CH0HCH202_OH)	Rickard and Pascoe (2009)
G44457	TrGAroCN	$MALDIALO2 + NO \rightarrow GLYOX + GLYOX + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G44458	TrGAroCN	$\begin{array}{l} {\rm MALDIALO2} \ + \ {\rm NO}_3 \ \rightarrow \ {\rm GLYOX} \ + \ {\rm GLYOX} \ + \ {\rm HO}_2 \ + \\ {\rm NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G44459	TrGAroC	$MALDIALO2 \rightarrow GLYOX + GLYOX + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44460	TrGAroCN	$EPXDLPAN + OH \rightarrow HCOCOCHO + CO + NO_2$	2.29E-11	Rickard and Pascoe (2009)
G44461	TrGAroCN	$EPXDLPAN \rightarrow EPXDLCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G44462	TrGAroC	$MECOACEOOH + OH \rightarrow MECOACETO2$	3.59E-12	Rickard and Pascoe (2009)
G45000	TrGC	$\begin{array}{l} C_5H_8 + O_3 \rightarrow .3508 \ MACR + .01518 \ MACO2H + .2440 \\ MVK + .7085 \ HCHO + .11 \ CH_2OO + .1275 \ C_3H_6 + .1575 \\ CH_3C(O) + .0510 \ CH_3 + .2625 \ HO_2 + .27 \ OH + .09482 \\ H_2O_2 + .255 \ CO_2 + .522 \ CO + .07182 \ HCHO + .03618 \\ HCOCH_2O_2 + .01782 \ CO + .0.5408 \ LCARBON \end{array}$	1.03E-14*EXP(-1995./temp)	Atkinson et al. (2006), Sander et al. (2019)
G45001	TrGC	$\mathrm{C_5H_8}$ + OH \rightarrow .63 LISOPAB + .30 LISOPCD + .07 LISOPEFO2	2.7E-11*EXP(390./temp)	Atkinson et al. (2006), Sander et al. (2019)
G45002	TrGCN	$C_5H_8 + NO_3 \rightarrow NISOPO2$	3.0E-12*EXP(-450./temp)	Atkinson et al. (2006)
G45003a	TrGC	$LISOPAB + O_2 \rightarrow LISOPACO2$	5.530E-13	Sander et al. (2019)
G45003b	TrGC	$LISOPAB + O_2 \rightarrow ISOPBO2$	3.E-12	Sander et al. (2019)
G45004a	TrGC	$LISOPCD + O_2 \rightarrow LDISOPACO2$	6.780E-13	Sander et al. (2019)
G45004b	TrGC	$LISOPCD + O_2 \rightarrow ISOPDO2$	3.E-12	Sander et al. (2019)

30

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45005	TrGC	$LISOPACO2 \rightarrow LISOPAB + O_2$	3.1E12*exp(-7900./temp)*.6+ 7.8E13*exp(-8600./temp)*.4	Sander et al. (2019)
G45006	TrGC	$\rm ISOPBO2 \rightarrow \rm LISOPAB + O_2$	3.7E14*exp(-9570./temp) +4.2E14*exp(-9970./temp)	Sander et al. (2019)
G45007	TrGC	$\rm LDISOPACO2 \rightarrow \rm LISOPCD + O_2$	5.65E12*exp(-8410./temp) *.42+1.4E14*exp(-9110./temp)*.58	Sander et al. (2019)
G45008	TrGC	$\rm ISOPDO2 \rightarrow \rm LISOPCD + O_2$	5.0E14*exp(-10120./temp) +8.25E14*exp(-10220./temp)	Sander et al. (2019)
G45009a	TrGC	$LISOPACO2 \rightarrow C1ODC2O2C4OOH$	k_16hsz14 * 2./3.*(1f_HPAL)	Sander et al. (2019)
G45009b	TrGC	$LISOPACO2 \rightarrow LZCODC23DBCOOH + HO_2$	k_16hsz14 * (2./3.*f_HPAL + 1./3.)	Sander et al. (2019)
G45010a	TrGC	$LDISOPACO2 \rightarrow C1OOHC3O2C4OD$	k_16hsz41 * 2./3.*(1f_HPAL)	Sander et al. (2019)
G45010b	TrGC	$LDISOPACO2 \rightarrow LZCODC23DBCOOH + HO_2$	k_16hsz41 * (2./3.*f_HPAL + 1./3.)	Sander et al. (2019)
G45011	TrGC	LISOPACO2 \rightarrow .9 LISOPACO + .1 ISOPAOH	k1_R02LISOPAC02	Rickard and Pascoe (2009) Sander et al. (2019)
G45012	TrGC	$LISOPACO2 + HO_2 \rightarrow LISOPACOOH$	k_R02_H02(temp,5)	Rickard and Pascoe (2009)
G45013a	TrGCN	$LISOPACO2 + NO \rightarrow LISOPACO + NO_2$	<pre>KR02NO*(1alpha_AN(6,1,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Paulot et al. (2009a), Sander et al. (2019)
G45013b	TrGCN	$LISOPACO2 + NO \rightarrow LISOPACNO3$	<pre>KR02NO*alpha_AN(6,1,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Paulo et al. (2009a), Sander et al (2019)
G45014	TrGCN	$LISOPACO2 + NO_3 \rightarrow LISOPACO + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45015	TrGC	LDISOPACO2 \rightarrow .9 LISOPACO + .1 ISOPAOH	k1_RO2LISOPACO2	Rickard and Pascoe (2009) Sander et al. (2019)
G45016	TrGC	$LDISOPACO2 + HO_2 \rightarrow LISOPACOOH$	k_R02_H02(temp,5)	Rickard and Pascoe (2009)
G45017a	TrGCN	$\rm LDISOPACO2 + NO \rightarrow \rm LISOPACO + NO_2$	<pre>KR02NO*(1alpha_AN(6,1,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Paulot et al. (2009a), Sander et al (2019)
G45017b	TrGCN	$\mbox{LDISOPACO2} + \mbox{NO} \rightarrow \mbox{LISOPACNO3}$	<pre>KR02NO*alpha_AN(6,1,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Paulo et al. (2009a), Sander et al (2019)
G45018	TrGCN	$LDISOPACO2 + NO_3 \rightarrow LISOPACO + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45019a	TrGC	$LISOPACOOH + OH \rightarrow LISOPACO2$	k_ROOHRO	Sander et al. (2019)
G45019b	TrGC	$LISOPACOOH + OH \rightarrow LZCODC23DBCOOH + HO_2$	k_s*f_allyl*f_sOH	Sander et al. (2019)
G45019c	TrGC	$LISOPACOOH + OH \rightarrow LHC4ACCHO + OH$	(k_s*f_sOOH*f_allyl+ k_ROHRO)	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45019d	TrGC	$LISOPACOOH + OH \rightarrow LIEPOX + OH$	(k_adt+k_ads)*a_CH2OH*a_CH2OOH	Sander et al. (2019)*
G45020	TrGC	$\rm ISOPAOH + OH \rightarrow \rm LHC4ACCHO + HO_2$	(k_adt+k_ads)*a_CH2OH*a_CH2OH+k_ s*f_sOH*f_ally1+k_ROHRO	Sander et al. (2019)
G45021	TrGCN	LISOPACNO3 + OH \rightarrow LISOPACNO3O2	(k_adt+k_ads)*a_CH2ONO2*a_CH2OH	Sander et al. (2019)*
G45022	TrGC	$ISOPBO2 \rightarrow .8 \text{ MVK} + .8 \text{ HCHO} + .8 \text{ HO}_2 + .2 \text{ ISOPBOH}$	k1_R02IS0PB02	Rickard and Pascoe (2009)
G45023a	TrGC	$ISOPBO2 + HO_2 \rightarrow ISOPBOOH$	k_R02_H02(temp,5)*(1r_ CH0HCH202_OH)	Sander et al. (2019)
G45023b	TrGC	$ISOPBO2 + HO_2 \rightarrow MVK + HCHO + HO_2 + OH$	k_R02_H02(temp,5)*r_CH0HCH202_OH	Sander et al. (2019)
G45024a	TrGCN	$\mathrm{ISOPBO2} + \mathrm{NO} \rightarrow \mathrm{MVK} + \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{NO}_2$	<pre>KR02N0*(1alpha_AN(6,3,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Sander et al. (2019)
G45024b	TrGCN	$\rm ISOPBO2 + \rm NO \rightarrow \rm ISOPBNO3$	<pre>KR02N0*alpha_AN(6,3,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Sander et al. (2019)
G45025	TrGCN	$\begin{array}{l} \mathrm{ISOPBO2} + \mathrm{NO}_3 \rightarrow \mathrm{MVK} + .75 \ \mathrm{HCHO} + .75 \ \mathrm{HO}_2 + .25 \\ \mathrm{CH}_3 + \mathrm{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)
G45026a	TrGC	$ISOPBOOH + OH \rightarrow LIEPOX + OH$	(k_ads+k_adp)*a_CH200H	Paulot et al. (2009b), Sander et al. (2019)
G45026b	TrGC	$ISOPBOOH + OH \rightarrow ISOPBO2$	k_ROOHRO	Sander et al. (2019)
G45026c	TrGC	$ISOPBOOH + OH \rightarrow MGLYOX + HOCH_2CHO$	k_ROHRO+k_s*f_alk*f_sOH	Sander et al. (2019)
G45027	TrGC	$\begin{split} \text{ISOPBOOH} + \text{O}_3 &\rightarrow .1368 \text{ MACROOH} + .1368 \text{ H}_2\text{O}_2 + \\ .2280 \text{ HO}_2 + .4332 \text{ CH}_2\text{COCH}_2\text{OH} + .2280 \text{ CO}_2 + .6384 \\ \text{OH} + .2052 \text{ CO} + .57 \text{ HCHO} + .43 \text{ MACROOH} + .06880 \\ \text{HO}_2 + .06880 \text{ OH} + .2709 \text{ CO} + .1591 \text{ CH}_2\text{OO} \end{split}$	1.E-17	Sander et al. (2019)
G45028	TrGC	ISOPBOH + OH \rightarrow MVK + .75 HCHO + .75 HO ₂ + .25 CH ₃	k_s*f_alk*f_sOH+(k_adp+k_ads) *a_CH2OH	Sander et al. (2019)
G45029	TrGCN	ISOPBNO3 + OH \rightarrow ISOPBDNO3O2	(k_adt+k_adp)*f_CH20N02	Sander et al. (2019)
G45030	TrGC	$\begin{array}{l} \text{ISOPDO2} \rightarrow .8 \text{ MACR} + .8 \text{ HCHO} + .8 \text{ HO}_2 + .1 \text{ HCOC5} \\ + .1 \text{ ISOPDOH} \end{array}$	k1_R02ISOPD02	Rickard and Pascoe (2009)
G45031a	TrGC	$ISOPDO2 + HO_2 \rightarrow ISOPDOOH$	k_R02_H02(temp,5)*(1r_ CH0HCH202_OH)	Sander et al. (2019)
G45031b	TrGC	$ISOPDO2 + HO_2 \rightarrow MACR + HCHO + HO_2 + OH$	k_R02_H02(temp,5)*r_CHOHCH202_OH	Sander et al. (2019)
G45032a	TrGCN	$\mathrm{ISOPDO2} + \mathrm{NO} \rightarrow \mathrm{MACR} + \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{NO}_2$	<pre>KR02N0*(1alpha_AN(6,2,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Sander et al. (2019)
G45032b	TrGCN	$\rm ISOPDO2 + \rm NO \rightarrow \rm ISOPDNO3$	<pre>KR02N0*alpha_AN(6,2,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Sander et al. (2019)
G45033	TrGCN	$ISOPDO2 + NO_3 \rightarrow MACR + HCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45034a	TrGC	$\mathrm{ISOPDOOH} + \mathrm{OH} \rightarrow \mathrm{LIEPOX} + \mathrm{OH}$	(k_adt+k_adp)*a_CH200H	Paulot et al. (2009b), Sander et al. (2019)
G45034b	TrGC	$ISOPDOOH + OH \rightarrow ISOPDO2$	k_ROOHRO	Sander et al. (2019)
G45034c	TrGC	$ISOPDOOH + OH \rightarrow HCOC5 + OH$	k_t*f_t00H*f_allyl*f_pCH20H	Sander et al. (2019)
G45034d	TrGC	$ISOPDOOH + OH \rightarrow CH_3COCH_2OH + GLYOX + OH$	k_s*f_pCH20H*f_sOH	Sander et al. (2019)
G45035	TrGC	$\begin{array}{l} {\rm ISOPDOOH} + {\rm O}_3 \rightarrow 1.393 \ {\rm OH} + {\rm BIACETOH} + .67 \\ {\rm HCHO} + .05280 \ {\rm HO}_2 + .2079 \ {\rm CO} + .1221 \ {\rm CH}_2 {\rm OO} \end{array}$	1.E-17	Sander et al. (2019)
G45036	TrGC	$\mathrm{ISOPDOH} + \mathrm{OH} \rightarrow \mathrm{HCOC5} + \mathrm{HO}_2$	2.*k_ROHRO+(k_t*f_tOH*f_allyl+k_ s*f_sOH)*f_pCH2OH+(k_adt+k_adp) *a_CH2OH	Sander et al. (2019)
G45037	TrGCN	ISOPDNO3 + OH \rightarrow ISOPBDNO3O2	(k_adp+k_ads)*a_CH2ONO2	Sander et al. (2019)*
G45038	TrGCN	$NISOPO2 \rightarrow .8 NC4CHO + .6 HO_2 + .2 LISOPACNO3$	k1_RO2LISOPACO2	Rickard and Pascoe (2009)
G45039	TrGCN	$NISOPO2 + HO_2 \rightarrow NISOPOOH$	k_R02_H02(temp,5)	Rickard and Pascoe (2009)
G45040	TrGCN	$NISOPO2 + NO \rightarrow NC4CHO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45041	TrGCN	$NISOPO2 + NO_3 \rightarrow NC4CHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45042	TrGCN	$NISOPOOH + OH \rightarrow NC4CHO + OH$	1.03E-10	Rickard and Pascoe (2009)
G45043	TrGCN	$NC4CHO + OH \rightarrow LNISO3$	(k_adt+k_ads)*a_CHO*a_CH2ONO2	Sander et al. (2019)*
G45044	TrGCN	$\begin{array}{l} {\rm NC4CHO}+{\rm O}_3\rightarrow.27{\rm NOA}+.027{\rm HCOCO}_2{\rm H}+.0162\\ {\rm GLYOX}+.0162{\rm H}_2{\rm O}_2+.1458{\rm HCOCO}+.0405{\rm HCOOH}\\ +.0405{\rm CO}+.8758{\rm OH}+.365{\rm MGLYOX}+.73{\rm NO}_2+.73{\rm GLYOX}\\ 0.7705{\rm HCHO}+.4055{\rm CO}_2+.73{\rm GLYOX} \end{array}$	2.40E-17	Sander et al. (2019)
G45045	TrGCN	$NC4CHO + NO_3 \rightarrow LNISO3 + HNO_3$	KNO3AL*4.25	Rickard and Pascoe (2009)
G45046	TrGCN	$LNISO3 + HO_2 \rightarrow LNISOOH$	0.5*k_R02_H02(temp,5)+0.5*KAPH02	Rickard and Pascoe (2009)
G45047	TrGCN	LNISO3 + NO \rightarrow NOA + .5 HOCHCHO + .5 CO + .5 HO ₂ + NO ₂ + .5 CO ₂	0.5*KAPNO+0.5*KRO2NO	Rickard and Pascoe (2009)*
G45048	TrGCN	LNISO3 + NO ₃ \rightarrow NOA + .5 HOCHCHO + .5 CO + .5 HO ₂ + NO ₂ + .5 CO ₂	KR02N03*1.37	Rickard and Pascoe (2009)
G45049	TrGCN	$LNISOOH + OH \rightarrow LNISO3$	2.65E-11	Rickard and Pascoe (2009)
G45050a	TrGC	$\rm LHC4ACCHO+OH\rightarrowLC578O2$	(k_adtertprim+k_ads)*a_CHO*a_ CH2OH	Sander et al. (2019)
G45050b	TrGC	LHC4ACCHO + OH \rightarrow LHC4ACCO3	k_t*f_0	Sander et al. (2019)
G45050c	TrGC	$LHC4ACCHO + OH \rightarrow C4MDIAL + HO_2$	k_s*f_sOH*f_allyl	Sander et al. (2019)

#	labels	reaction	rate coefficient	reference
G45051	TrGC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.40E-17	Rickard and Pascoe (2009)
G45052	TrGCN	LHC4ACCHO + NO ₃ \rightarrow LHC4ACCO3 + HNO ₃	KN03AL*4.25	Rickard and Pascoe (2009)
G45053	TrGC		k1_R02t0R02	Rickard and Pascoe (2009)
G45054a	TrGC	$LC578O2 + HO_2 \rightarrow MGLYOX + HOCH_2CHO + OH$	k_R02_H02(temp,5)*r_COCH202_OH	Rickard and Pascoe (2009)
G45054b	TrGC	$LC578O2 + HO_2 \rightarrow LC578OOH$	k_R02_H02(temp,5)*r_COCH202_00H	Rickard and Pascoe (2009)
G45055	TrGCN	LC578O2 + NO \rightarrow .25 CH ₃ COCH ₂ OH + .75 MGLYOX + .25 HOCHCHO + .75 HOCH ₂ CHO + .75 HO ₂ + NO ₂	KR02N0	Rickard and Pascoe (2009)*
G45056	TrGCN	$ LC57802 + NO_3 \rightarrow .25 \text{ CH}_3\text{COCH}_2\text{OH} + .75 \text{ MGLYOX} \\ + .25 \text{ HOCHCHO} + .75 \text{ HOCH}_2\text{CHO} + .75 \text{ HO}_2 + \text{NO}_2 $	KR02N03	Rickard and Pascoe (2009)
G45057	TrGC	$ LC57802 \rightarrow .25 \ CH_3COCH_2OH + .75 \ MGLYOX + .25 \\ HOCH_2CHO + .75 \ HOCH_2CHO + HO_2 + OH $	k_hsb	Sander et al. (2019)
G45058a	TrGC	$LC578OOH + OH \rightarrow LC578O2$	k_ROOHRO	Sander et al. (2019)
G45058b	TrGC	$\rm LC578OOH + OH \rightarrow C10DC200HC4OD + HO_2$	k_t*f_0*f_tCH20H*f_alk+k_t*f_ tOH*f_pCH20H*f_pCH20H+k_s*f_ sOH*f_pCH20H	Sander et al. (2019)
G45059a	TrGC	LHC4ACCO3 \rightarrow OH + .5 MACRO2 + .5 LHMVKABO2 + CO ₂	k1_R02RC03*0.9	Sander et al. (2019)
G45059b	TrGC	$LHC4ACCO3 \rightarrow LHC4ACCO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G45060a	TrGC	LHC4ACCO3 + HO ₂ \rightarrow 2 OH + .5 MACRO2 + .5 LHMVKABO2 + CO ₂	KAPHO2*r_CO3_OH	Sander et al. (2019)
G45060b	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO3H$	KAPH02*r_CO3_OOH	Sander et al. (2019)
G45060c	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019)
G45061	TrGCN	LHC4ACCO3 + NO \rightarrow .5 MACRO2 + .5 LHMVKABO2 + NO ₂ + CO ₂	KAPNO	Sander et al. (2019)
G45062	TrGCN	$LHC4ACCO3 + NO_2 \rightarrow LC5PAN1719$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45063	TrGCN	LHC4ACCO3 + NO ₃ \rightarrow .5 MACRO2 + .5 LHMVKABO2 + NO ₂ + CO ₂	KR02N03*1.74	Sander et al. (2019)
G45064a	TrGC	LHC4ACCO2H + OH \rightarrow OH + .5 MACRO2 + .5 LHMVKABO2 + CO ₂	2.52E-11	Sander et al. (2019)
G45064b	TrGC	$LHC4ACCO3H + OH \rightarrow LHC4ACCO3$	2.88E-11	Rickard and Pascoe (2009)

34

Table 1: Gas phase reactions $(\dots \text{ continued})$

#	labels	reaction	rate coefficient	reference
G45065	TrGCN	$LC5PAN1719 \rightarrow LHC4ACCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45066	TrGCN	LC5PAN1719 + OH \rightarrow .5 MACROH + .5 HO12CO3C4 + CO + NO ₂	2.52E-11	Rickard and Pascoe (2009)
G45067	TrGC	$HCOC5 + OH \rightarrow C59O2$	3.81E-11	Rickard and Pascoe (2009)
G45068	TrGC	$HCOC5 + O_3 \rightarrow BIACETOH + .335 H_2O_2 + .67 HCHO + .2079 CO + .1221 CH_2OO + .05280 OH$	7.51E-16*EXP(-1521./temp)	Sander et al. (2019)
G45069	TrGC	$C59O2 \rightarrow CH_3COCH_2OH + HOCH2CO$	k1_R02t0R02	Sander et al. (2019)
G45070a	TrGC	$C59O2 + HO_2 \rightarrow OH + CH_3COCH_2OH + HOCH2CO$	k_R02_H02(temp,5)*r_COCH202_OH	Sander et al. (2019)
G45070b	TrGC	$C59O2 + HO_2 \rightarrow C59OOH$	k_R02_H02(temp,5)*r_COCH202_00H	Sander et al. (2019)
G45071	TrGCN	$C59O2 + NO \rightarrow CH_3COCH_2OH + HOCH2CO + NO_2$	KR02N0	Sander et al. (2019)*
G45072	TrGCN	$C59O2 + NO_3 \rightarrow CH_3COCH_2OH + HOCH2CO + NO_2$	KR02N03	Sander et al. (2019)
G45073	TrGC	$C59OOH + OH \rightarrow C59O2$	9.7E-12	Rickard and Pascoe (2009)
G45074	TrGC	$\rm LIEPOX + OH \rightarrow DB1O2 + H_2O$	5.78E-11*EXP(-400./temp) *(1.52/3.+0.98*2./3.)/1.51	Paulot et al. (2009b), Bates et al. (2014), Sander et al. (2019)*
G45075	TrGC	$ISOPBO2 \rightarrow MVK + HCHO + OH$	k_hsb	Sander et al. (2019)
G45076	TrGC	$ISOPDO2 \rightarrow MACR + HCHO + OH$	k_hsd	Sander et al. (2019)
G45077a	TrGC	LZCODC23DBCOOH + OH \rightarrow .6 C10DC202C4OOH + .4 C100HC202C4OD	k_adt*a_CHO*a_CH2OOH	Sander et al. (2019)
G45077b	TrGC	LZCODC23DBCOOH + OH \rightarrow .6 C10DC302C40OH + .4 C100HC302C40D	k_ads*a_CHO*a_CH2OOH	Sander et al. (2019)
G45077c	TrGC	$LZCODC23DBCOOH + OH \rightarrow LZCO3HC23DBCOD$	k_t*f_0*f_alk+k_ROOHRO	Sander et al. (2019)
G45077d	TrGC	$LZCODC23DBCOOH + OH \rightarrow C4MDIAL + OH$	k_s*f_sOOH*f_allyl	Sander et al. (2019)
G45078	TrGC	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.4E-17	Sander et al. (2019)
G45079	TrGC	$C1OOHC2O2C4OD \rightarrow .78 CH_3COCH_2O_2H + .78 HOCHCHO + .22 CO2H3CHO + .22 HCHO + .22 OH$	k1_R02t0R02	Sander et al. (2019)

#	labels	reaction	rate coefficient	reference
G45080	TrGCN	C100HC202C40D + NO \rightarrow .78 CH ₃ C0CH ₂ O ₂ H + .78 HOCHCHO + .22 CO2H3CHO + .22 HCHO + .22 OH + NO ₂	KR02N0	Sander et al. (2019)*
G45081a	TrGC	$C1OOHC2O2C4OD + HO_2 \rightarrow C1OOHC2OOHC4OD$	k_R02_H02(temp,5)*r_COCH202_00H	Sander et al. (2019)
G45081b	TrGC	C1OOHC2O2C4OD + $HO_2 \rightarrow .78 \text{ CH}_3\text{COCH}_2\text{O}_2\text{H} + .78$ HOCHCHO + .22 CO2H3CHO + .22 HCHO + 1.22 OH	k_R02_H02(temp,5)*r_COCH202_OH	Sander et al. (2019)
G45082	TrGC	$C1OOHC2O2C4OD \rightarrow CH_3COCH_2O_2H + GLYOX + OH$	k_hsb	Sander et al. (2019)
G45083	TrGC	$C1ODC2O2C4OOH \rightarrow OH + C1ODC2OOHC4OD$	k_15hsdhb	Sander et al. (2019)
G45084a	TrGC	C1OOHC2OOHC4OD + OH \rightarrow C1ODC2OOHC4OD + OH	2.*k_s*f_sOOH*f_tCH2OH	Sander et al. (2019)
G45084b	TrGC	$\begin{array}{l} {\rm C100HC200HC40D} + {\rm OH} \rightarrow {\rm CH_3C0CH_2O_2H} + 2 \ {\rm CO} \\ + 2 \ {\rm HO_2} + {\rm OH} \end{array}$	k_t*f_tOH*f_pCH2OH*f_pCH2OH	Sander et al. (2019)
G45084c	TrGC	$C1OOHC2OOHC4OD + OH \rightarrow C1OOHC2O2C4OD$	k_ROOHRO	Sander et al. (2019)
G45085	TrGC	$\begin{array}{l} {\rm C10DC20OHC40D} + {\rm OH} \rightarrow {\rm C02H3CHO} + {\rm CO} + {\rm H_2O} \\ + {\rm OH} \end{array}$	k_t*f_0*f_tCH20H+k_t*f_tOH*f_ tOH*f_CH0	Sander et al. (2019)
G45086	TrGC	C10DC302C40OH \rightarrow MGLYOX + HOOCH2CHO + HO ₂	k1_R02s0R02	Sander et al. (2019)
G45087	TrGCN	C10DC302C4OOH + NO \rightarrow MGLYOX + HOOCH2CHO + HO ₂ + NO ₂	KR02N0	Sander et al. (2019)
G45088	TrGC	C1ODC3O2C4OOH + $HO_2 \rightarrow .5 CH_3C(O) + .5 CO + .5$ MGLYOX + .5 $HO_2 + HOOCH_2CO_3$	k_R02_H02(temp,5)	Sander et al. (2019)
G45089	TrGC	$C1ODC3O2C4OOH \rightarrow MGLYOX + OH + HOOCH2CHO$	k_hsd	Sander et al. (2019)
G45090	TrGC	$\begin{array}{l} {\rm C10OHC302C4OD} \rightarrow .625 \ {\rm MGLYOX} + 2 \ {\rm CO} + 1.625 \\ {\rm HO}_2 + .375 \ {\rm CH}_3{\rm C}({\rm O}) + .375 \ {\rm CO}_2 + {\rm OH} \end{array}$	k_15hsdhb	Sander et al. (2019)
G45091	TrGC	$LHC4ACCO3 \rightarrow LZCO3HC23DBCOD + HO_2$	k_16hs	Sander et al. (2019)
G45092a	TrGC	$C4MDIAL + OH \rightarrow C1ODC2O2C4OD$	(k_adt+k_ads)*a_CHO*a_CHO	Sander et al. (2019)*
G45092b	TrGC	$C4MDIAL + OH \rightarrow LZCO3C23DBCOD$	2.*k_t*f_0*f_alk	Sander et al. (2019)*
G45093	TrGCN	$C4MDIAL + NO_3 \rightarrow LZCO3C23DBCOD + HNO_3$	KNO3AL*4.25*2.	Sander et al. (2019)*
G45094a	TrGC	C1ODC2O2C4OD + HO ₂ \rightarrow OH + MGLYOX + HOCHCHO	k_R02_H02(temp,5)*r_COCH202_OH	Sander et al. (2019)
G45094b	TrGC	$C1ODC2O2C4OD + HO_2 \rightarrow C1ODC2OOHC4OD$	k_R02_H02(temp,5)*r_COCH202_00H	Sander et al. (2019)
G45095	TrGCN	C1ODC2O2C4OD + NO \rightarrow NO ₂ + MGLYOX + HOCHCHO	KR02N0	Sander et al. (2019)*
G45096	TrGC	$C1ODC2O2C4OD \rightarrow MGLYOX + HOCHCHO$	k1_R02t0R02	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45097a	TrGC	$C10DC200HC40D + OH \rightarrow MGLYOX + 2 CO$	(2.*k_t*f_0*f_tCH20H*f_alk+k_ t*f_t0H*f_CH0*f_pCH20H)*.5	Sander et al. (2019)
G45097b	TrGC	$\rm C10DC200HC40D + OH \rightarrow MGLYOX + 2\ CO + OH$	(2.*k_t*f_0*f_tCH20H*f_alk+k_ t*f_t0H*f_CH0*f_pCH20H)*.5	Sander et al. (2019)
G45098	TrGCN	$ \begin{array}{l} LISOPACNO302 + NO \rightarrow .21 \ NOA + .21 \ HOCH_2CHO \\ + .21 \ HO_2 + .49 \ HO12CO3C4 + .49 \ HCHO + .49 \ NO_2 \\ + .045 \ MVKNO3 + .045 \ HCHO + .255 \ CH_3COCH_2OH + .255 \ NO_3CH2CHO + .225 \ H_2O_2 + NO_2 \end{array} $	KR02N0	Sander et al. (2019)*
G45099	TrGCN	$ \begin{array}{l} LISOPACNO302 \rightarrow .21 \ NOA + .21 \ HOCH_2CHO + .21 \\ HO_2 + .49 \ HO12CO3C4 + .49 \ HCHO + .49 \ NO_2 + .045 \\ MVKNO3 + .045 \ HCHO + .255 \ CH_3COCH_2OH + .255 \\ NO_3CH2CHO + .225 \ H_2O_2 \end{array} $		Sander et al. (2019)
G45100	TrGCN	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	KR02N0	Sander et al. (2019)*
G45101	TrGCN	$ \begin{array}{l} {\rm ISOPBDNO302} \rightarrow .6 \ {\rm CH_3COCH_2OH} + .6 \ {\rm HOCH_2CHO} \\ + .26 \ {\rm MACRNO3} + .14 \ {\rm MVKNO3} + .4 \ {\rm HCHO} + .4 \ {\rm HO_2} \\ + .6 \ {\rm NO_2} \end{array} $		Sander et al. (2019)
G45102	TrGCN	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.8E-17	Feierabend et al. (2008), Sand et al. (2019)
G45103	TrGC	$DB1O2 \rightarrow DB1O2$	k1_R02s0R02	Sander et al. (2019)
G45104a	TrGC	$\rm DB1O2 + HO_2 \rightarrow DB1OOH$	k_R02_H02(temp,5)*(1r_ CH0HCH202_OH)	Sander et al. (2019)*
G45104b	TrGC	$DB1O2 + HO_2 \rightarrow DB1O2 + OH$	k_R02_H02(temp,5)*r_CH0HCH202_OH	Sander et al. (2019)
G45105a	TrGCN	$\rm DB1O2 + NO \rightarrow DB1O2 + NO_2$	<pre>KR02N0*(1alpha_AN(7,2,0,0,0, temp,cair))</pre>	Sander et al. (2019)
G45105b	TrGCN	$\rm DB1O2 + NO \rightarrow DB1NO3$	<pre>KR02N0*alpha_AN(7,2,0,0,0,temp, cair)</pre>	Sander et al. (2019)
G45106	TrGCN	$DB1O2 + NO_3 \rightarrow DB1O2 + NO_2$	KR02N03	Sander et al. (2019)
G45107	TrGC	$DB1O2 \rightarrow DB1O2 + OH$	1.E4	Peeters and Nguyen (2012)*
G45108a	TrGC	$DB1O2 \rightarrow DB1O2$	KDEC*0.72	see note*
G45108b	TrGC	$DB1O2 \rightarrow .5 \text{ HVMK} + .5 \text{ HMAC} + \text{HCHO} + \text{HO}_2$	KDEC*0.28	see note [*]

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45109	TrGC	$DB102 \rightarrow .48 CH_3COCH_2OH + .52 HOCH_2CHO + .52$ MGLYOX + .48 GLYOX + HO ₂	k1_R02s0R02	Sander et al. (2019)
G45110a	TrGC	$\rm DB1O2 + HO_2 \rightarrow DB2OOH$	k_RO2_HO2(temp,5)*(1r_ CHOHCH2O2_OH)	Sander et al. (2019)
G45110b	TrGC	$\begin{array}{l} DB102 + HO_2 \rightarrow .48 \ CH_3COCH_2OH + .52 \ HOCH_2CHO \\ + .52 \ MGLYOX + .48 \ GLYOX + HO_2 + OH \end{array}$	k_RO2_HO2(temp,5)*r_CHOHCH2O2_OH	Sander et al. (2019)
G45111	TrGCN	$\begin{array}{l} DB102 + NO \rightarrow .48 \ CH_3COCH_2OH + .52 \ HOCH_2CHO \\ + .52 \ MGLYOX + .48 \ GLYOX + HO_2 + NO_2 \end{array}$	KR02N0	see note*
G45112	TrGCN	$\begin{array}{l} DB102 + NO_3 \rightarrow .48 \ CH_3COCH_2OH + .52 \ HOCH_2CHO \\ + .52 \ MGLYOX + .48 \ GLYOX + HO_2 + NO_2 \end{array}$	KR02N03	Sander et al. (2019)
G45113	TrGC	$\rm DB102 \rightarrow .48~MACROOH + .52~LHMVKABOOH + CO + OH$	k_14hsal	Sander et al. (2019)
G45114a	TrGC	$DB1OOH + OH \rightarrow DB1O2$	k_ROOHRO	Sander et al. (2019)
G45114b	TrGC	$DB1OOH + OH \rightarrow HCOOH + HO_2 + CH_3COCHO_2CHO$	k_adt	Sander et al. (2019)*
G45115	TrGC	$\rm DB100H + HCOOH \rightarrow C10DC200HC40D + HCOOH$	4.67E-26*(temp)**(3.286) *EXP(4509./(1.987*temp))	Sander et al. (2019), da Silva (2010)*
G45116	TrGCN	$DB1NO3 + OH \rightarrow HCOOH + NO_2 + CH_3COCHO_2CHO$	k_adt	Sander et al. (2019)*
345117	TrGC	$DB2OOH + OH \rightarrow DB1O2$	k_ROOHRO	Sander et al. (2019)*
G45118	TrGC	$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.829E-16	Sander et al. (2019)
G45119a	TrGC	$ \begin{array}{l} {\rm LZCO3HC23DBCOD} + {\rm OH} \rightarrow .62 \ {\rm CO2H3CHO} + .62 \ {\rm OH} \\ + .62 \ {\rm CO}_2 \ + .38 \ {\rm MGLYOX} \ + .38 \ {\rm HCOCO_3H} \ + .38 \ {\rm HO}_2 \end{array} $	k_adt*a_CHO*a_CO2H	Sander et al. (2019)
G45119b	TrGC	$ \begin{array}{l} LZCO3HC23DBCOD + OH \rightarrow .62 \ CH_{3}COCO_{3}H + 1.24 \\ CO + 1.24 \ HO_{2} + .38 \ MGLYOX + .38 \ HO_{2} + .38 \ OC + \\ .38 \ HO_{2} + .38 \ OH + .38 \ CO_{2} \end{array} $	k_ads*a_CHO*a_CO2H	Sander et al. (2019)
G45120	TrGC	$LISOPEFO2 \rightarrow LISOPEFO$	k1_R02p0R02	Sander et al. (2019)
G45121a	TrGCN	$LISOPEFO2 + NO \rightarrow LISOPEFO + NO_2$	<pre>KRO2NO*(1alpha_AN(6,1,0,0,0, temp,cair))</pre>	Sander et al. (2019)
G45121b	TrGCN	$LISOPEFO2 + NO \rightarrow ISOPDNO3$	<pre>KRO2NO*alpha_AN(6,1,0,0,0,temp, cair)</pre>	Sander et al. (2019)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45122a	TrGC	LISOPEFO2 + HO ₂ \rightarrow .7143 ISOPDOOH + .2857 ISOPBOOH	k_RO2_HO2(temp,5)*(1r_ CHOHCH2O2_OH)	Sander et al. (2019)
G45122b	TrGC	$LISOPEFO2 + HO_2 \rightarrow LISOPEFO + OH$	k_RO2_HO2(temp,5)*r_CHOHCH2O2_OH	Sander et al. (2019)
G45123	TrGCN	$LISOPEFO2 + NO_3 \rightarrow LISOPEFO + NO_2$	KR02N03	Sander et al. (2019)
G45124	TrGC	LISOPEFO2 \rightarrow .7143 MACR + .2857 MVK + HCHO + OH	0.7143*k_hsd+.2857*k_hsb	Sander et al. (2019)
G45125	TrGC	LISOPEFO \rightarrow .7143 MACR + .2857 MVK + HCHO + HO_2	KDEC	Sander et al. (2019)
G45126a	TrGC	LISOPACO \rightarrow 3METHYLFURAN + HO ₂	KDEC*0.37	Sander et al. (2019), Paulot et al. (2009a), Francisco-Marquez et al. (2003)
G45126b	TrGC	$\label{eq:LISOPACO} \text{LISOPACO} \rightarrow .65 \ \text{LHC4ACCHO} + .65 \ \text{HO}_2 + .35 \ \text{DB1O2}$	KDEC*(10.37)	Sander et al. (2019), Paulot et al. (2009a), Francisco-Marquez et al. (2003)
G45127a	TrGC	$\label{eq:lisopaco} \text{LISOPACO} \rightarrow 3\text{METHYLFURAN} + \text{HO}_2$	KDEC*0.37	Sander et al. (2019), Paulot et al. (2009a), Francisco-Marquez et al. (2003)
G45127b	TrGC	$\label{eq:LISOPACO} \text{LISOPACO} \rightarrow .65 \ \text{LHC4ACCHO} + .65 \ \text{HO}_2 + .35 \ \text{DB1O2}$	KDEC*(10.37)	Sander et al. (2019), Paulot et al. (2009a), Francisco-Marquez et al. (2003)
G45128	TrGC	$3METHYLFURAN + OH \rightarrow L3METHYLFURANO2$	3.2E-11*EXP(310./temp)	Sander et al. (2019)*
G45129	TrGCN	$3METHYLFURAN + NO_3 \rightarrow L3METHYLFURANO2 + NO_2$	1.9E-11	Sander et al. (2019), Atkinson et al. (2006)*
G45130	TrGC	$L3METHYLFURANO2 \rightarrow C4MDIAL + HO_2$	k1_R02s0R02	Sander et al. (2019)
G45131	TrGCN	L3METHYLFURANO2 + NO \rightarrow C4MDIAL + HO ₂ + NO ₂	KRO2NO	Sander et al. $(2019)^*$
G45132	TrGC	$L3METHYLFURANO2 + HO_2 \rightarrow C4MDIAL + HO_2$	k_R02_H02(temp,5)	Sander et al. (2019)*
G45133	TrGC	LZCO3C23DBCOD \rightarrow .62 EZCH3CO2CHCHO + .38 EZCHOCCH3CHO2 + CO ₂	k1_R02RC03	Sander et al. (2019)
G45134a	TrGC	LZCO3C23DBCOD + $HO_2 \rightarrow .62$ EZCH3CO2CHCHO + .38 EZCHOCCH3CHO2 + CO_2 + OH	KAPH02*r_CO3_OH	Sander et al. (2019)
G45134b	TrGC	$LZCO3C23DBCOD + HO_2 \rightarrow LZCO3HC23DBCOD$	KAPH02*(r_CO3_00H+r_CO3_03)	Sander et al. (2019)*
G45135	TrGCN	LZCO3C23DBCOD + NO \rightarrow .62 EZCH3CO2CHCHO + .38 EZCH0CCH3CHO2 + CO ₂ + NO ₂	KAPNO	Sander et al. (2019)
G45136	TrGCN	$LZCO3C23DBCOD + NO_2 \rightarrow LZCPANC23DBCOD$	k_CH3CO3_NO2	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45137	TrGCN	LZCO3C23DBCOD + $NO_3 \rightarrow .62$ EZCH3CO2CHCHO + .38 EZCHOCCH3CHO2 + CO_2 + NO_2	KR02N03*1.74	Sander et al. (2019)
G45138	TrGCN	$LZCPANC23DBCOD \rightarrow LZCO3C23DBCOD + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45139	TrGCN	LZCPANC23DBCOD + OH \rightarrow .62 EZCH3CO2CHCHO + .38 EZCHOCCH3CHO2 + CO ₂ + NO ₂	2.52E-11	Sander et al. (2019)*
G45200	TrGTerC	$C511O2 \rightarrow CH_3C(O) + HCOCH2CHO$	k1_R02s0R02	Rickard and Pascoe (2009)
G45201	TrGTerCN	$C511O2 + NO \rightarrow CH_3C(O) + HCOCH2CHO + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45202a	TrGTerC	$C511O2 + HO_2 \rightarrow C511OOH$	k_R02_H02(temp,5)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G45202b	TrGTerC	$\rm C511O2 + HO_2 \rightarrow CH_3C(O) + HCOCH2CHO + OH$	k_R02_H02(temp,5)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G45203	TrGTerC	$C511OOH + OH \rightarrow C511O2$	7.49E-11	Rickard and Pascoe (2009)
G45204	TrGTerC	$CO23C4CHO + OH \rightarrow CO23C4CO3$	6.65E-11	Rickard and Pascoe (2009)
G45205	TrGTerCN	$CO23C4CHO + NO_3 \rightarrow CO23C4CO3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45206	TrGTerC	$CO23C4CO3 \rightarrow CH_3COCOCH_2O_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45207	TrGTerCN	$CO23C4CO3 + NO \rightarrow CH_3COCOCH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G45208	TrGTerCN	$CO23C4CO3 + NO_2 \rightarrow C5PAN9$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45209a	TrGTerC	$\rm CO23C4CO3 + HO_2 \rightarrow CO23C4CO3H$	KAPH02*(r_CO3_00H+r_CO3_03)	Rickard and Pascoe (2009)
G45209b	TrGTerC	$\rm CO23C4CO3 + HO_2 \rightarrow CH_3COCOCH_2O_2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G45210	TrGTerCN	$C5PAN9 \rightarrow CO23C4CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45211	TrGTerCN	$C5PAN9 + OH \rightarrow CH_3COCOCHO + CO + NO_2$	3.12E-13	Rickard and Pascoe (2009)
G45212	TrGTerC	$C512O2 \rightarrow C513O2$	k1_R02pR02	Rickard and Pascoe (2009)
G45213	TrGTerC	$C512O2 + HO_2 \rightarrow C512OOH$	k_R02_H02(temp,5)	Rickard and Pascoe (2009)
G45214	TrGTerCN	$C512O2 + NO \rightarrow C513O2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45215	TrGTerC	$C512OOH + OH \rightarrow CO13C4CHO + OH$	1.01E-10	Rickard and Pascoe (2009)
G45216	TrGTerC	$C513O2 \rightarrow GLYOX + HOC_2H_4CO_3$	k1_R02s0R02	Rickard and Pascoe (2009)
G45217	TrGTerCN	$C513O2 + NO \rightarrow GLYOX + HOC_2H_4CO_3 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45218a	TrGTerC	$C513O2 + HO_2 \rightarrow C513OOH$	k_R02_H02(temp,5)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G45218b	TrGTerC	$\rm C513O2 + HO_2 \rightarrow GLYOX + HOC_2H_4CO_3 + OH$	k_R02_H02(temp,5)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G45219	TrGTerC	$CO13C4CHO + OH \rightarrow CHOC3COCO3$	1.33E-10	Rickard and Pascoe (2009)
G45220	TrGTerCN	$CO13C4CHO + NO_3 \rightarrow CHOC3COCO3 + HNO_3$	2.*KN03AL*5.5	Rickard and Pascoe (2009)
G45221	TrGTerC	$C513OOH + OH \rightarrow C513CO + OH$	9.23E-11	Rickard and Pascoe (2009)
G45222	TrGTerC	$CHOC3COCO3 \rightarrow CHOC3COO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)

Table 1: Gas phase reactions $(\dots$ continued)

#	labels	reaction	rate coefficient	reference
G45223	TrGTerC	$CHOC3COCO3 + HO_2 \rightarrow CHOC3COOOH$	KAPHO2	Rickard and Pascoe (2009)
G45224	TrGTerCN	$CHOC3COCO3 + NO_2 \rightarrow CHOC3COPAN$	k_CH3C03_N02	Rickard and Pascoe (2009)
G45225	TrGTerCN	$CHOC3COCO3 + NO \rightarrow CHOC3COO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G45226	TrGTerC	$C513CO + OH \rightarrow HOC_2H_4CO_3 + CO + CO$	2.64E-11	Rickard and Pascoe (2009)
G45227	TrGTerC	$C514O2 + HO_2 \rightarrow C514OOH$	k_R02_H02(temp,5)	Rickard and Pascoe (2009)
G45228a	TrGTerCN	$\rm C514O2 + NO \rightarrow \rm CO13C4CHO + HO_2 + NO_2$	<pre>KR02NO*(1alpha_AN(7,2,0,1,0, temp,cair))</pre>	Rickard and Pascoe (2009) Sander et al. (2019)
G45228b	TrGTerCN	$C514O2 + NO \rightarrow C514NO3$	KRO2NO*alpha_AN(7,2,0,1,0,temp, cair)	Rickard and Pascoe (2009) Sander et al. (2019)
G45229	TrGTerCN	$C514O2 + NO_3 \rightarrow CO13C4CHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45230	TrGTerC	$C514O2 \rightarrow CO13C4CHO + HO_2$	k1_R02sR02	Rickard and Pascoe (2009)
G45231	TrGTerC	$C514OOH + OH \rightarrow CO13C4CHO + OH$	1.10E-10	Rickard and Pascoe (2009)
G45232	TrGTerCN	$C514NO3 + OH \rightarrow CO13C4CHO + NO_2$	4.33E-11	Rickard and Pascoe (2009)
G45233	TrGTerC	$CHOC3COOOH + OH \rightarrow CHOC3COCO3$	7.55E-11	Rickard and Pascoe (2009)
G45234	TrGTerCN	$CHOC3COPAN \rightarrow CHOC3COCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45235	TrGTerCN	$CHOC3COPAN + OH \rightarrow C4CODIAL + CO + NO_2$	7.19E-11	Rickard and Pascoe (2009)
G45236	TrGTerC	$\rm MBO + OH \rightarrow \rm LMBOABO2$	8.1E-12*EXP(610./temp)	Rickard and Pascoe (2009) Sander et al. (2019)*
G45237a	TrGTerC	$\begin{array}{l} {\rm MBO} + {\rm O}_3 \rightarrow {\rm HCHO} + .16 \ {\rm CH}_3 {\rm COCH}_3 + .16 \ {\rm HO}_2 + .16 \\ {\rm CO} + .16 \ {\rm OH} + .84 \ {\rm MBOOO} \end{array}$	1.0E-17*0.57	Rickard and Pascoe (2009) Sander et al. (2019)
G45237b	TrGTerC	$\begin{array}{l} \mathrm{MBO}+\mathrm{O}_3\rightarrow\mathrm{IBUTALOH}+.63\mathrm{CO}+.37\mathrm{HOCH_2OOH}\\ +.16\mathrm{OH}+.16\mathrm{HO_2} \end{array}$	1.0E-17*0.43	Rickard and Pascoe (2009) Sander et al. (2019)
G45238	TrGTerCN	$MBO + NO_3 \rightarrow LNMBOABO2$	4.6E-14*EXP(-400./temp)	Rickard and Pascoe (2009) Sander et al. (2019)
G45239	TrGTerC	$\rm LMBOABO2 + HO_2 \rightarrow \rm LMBOABOOH$	k_R02_H02(temp,5)	Rickard and Pascoe (2009) Sander et al. (2019)
G45240a	TrGTerCN	$\rm LMBOABO2 + NO \rightarrow \rm LMBOABNO3$	<pre>KR02N0*(.67*alpha_AN(7,2,0,0,0, temp,cair)+.33*alpha_AN(7,1,0,0, 0,temp,cair))</pre>	Rickard and Pascoe (2009) Sander et al. (2019)
G45240b	TrGTerCN	$\label{eq:limbol} \begin{split} LMBOABO2 + NO \rightarrow HOCH_2CHO + CH_3COCH_3 + HO_2 \\ + NO_2 \end{split}$	<pre>KR02N0*(1(.67*alpha_AN(7,2,0, 0,0,temp,cair)+.33*alpha_AN(7,1, 0,0,0,temp,cair)))*.67</pre>	Rickard and Pascoe (2009) Sander et al. (2019)
G45240c	TrGTerCN	$\label{eq:lmboab} \begin{array}{l} {\rm LMBOABO2} + {\rm NO} \rightarrow {\rm IBUTALOH} + {\rm HCHO} + {\rm HO}_2 + \\ {\rm NO}_2 \end{array}$	<pre>KR02N0*(1(.67*alpha_AN(7,2,0, 0,0,temp,cair)+.33*alpha_AN(7,1, 0,0,0,temp,cair)))*.33</pre>	Rickard and Pascoe (2009) Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45241a	TrGTerC	$\rm LMBOABO2 \rightarrow \rm HOCH_2\rm CHO + \rm CH_3\rm COCH_3 + \rm HO_2$	k1_R02s0R02*.67	Rickard and Pascoe (2009), Sander et al. (2019)
G45241b	TrGTerC	$\rm LMBOABO2 \rightarrow \rm IBUTALOH + \rm HCHO + \rm HO_2$	k1_R02p0R02*.33	Rickard and Pascoe (2009), Sander et al. (2019)
G45242a	TrGTerC	$\rm LMBOABOOH + OH \rightarrow MBOACO$	0.67*2.93E-11+.33*2.05E-12	Rickard and Pascoe (2009), Sander et al. (2019)
G45242b	TrGTerC	$\rm LMBOABOOH + OH \rightarrow \rm LMBOABO2$	k_ROOHRO	Rickard and Pascoe (2009), Sander et al. (2019)
G45243	TrGTerCN	$\rm LMBOABNO3 + OH \rightarrow MBOACO + NO_2$	0.67*1.75E-12+.33*2.69E-12	Rickard and Pascoe (2009), Sander et al. (2019)
G45244	TrGTerC	$MBOACO + OH \rightarrow MBOCOCO + HO_2$	3.79E-12	Rickard and Pascoe (2009)
G45245	TrGTerC	$MBOCOCO + OH \rightarrow CO + IPRHOCO3$	1.38E-11	Rickard and Pascoe (2009)
G45246	TrGTerCN	$\label{eq:linear} \text{LNMBOABO2} + \text{HO}_2 \rightarrow \text{LNMBOABOOH}$	k_R02_H02(temp,5)	Rickard and Pascoe (2009), Sander et al. (2019)
G45247	TrGTerCN	LNMBOABO2 + NO \rightarrow .65 NO ₃ CH2CHO + .65 CH ₃ COCH ₃ + .65 HO ₂ + .35 IBUTALOH + .35 HCHO + .35 NO ₂ + NO ₂	KR02N0	Rickard and Pascoe (2009), Sander et al. (2019)*
G45248	TrGTerCN	LNMBOABO2 + NO ₃ \rightarrow .65 NO ₃ CH2CHO + .65 CH ₃ COCH ₃ + .65 HO ₂ + .35 IBUTALOH + .35 HCHO + .35 NO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009), Sander et al. (2019)
G45249	TrGTerCN	LNMBOABO2 \rightarrow .65 NO ₃ CH2CHO + .65 CH ₃ COCH ₃ + .65 HO ₂ + .35 IBUTALOH + .35 HCHO + .35 NO ₂	k1_R02s0R02	Rickard and Pascoe (2009), Sander et al. (2019)
G45250a	TrGTerCN	LNMBOABOOH + OH \rightarrow .65 C4MCONO3OH + .35 NMBOBCO	0.65*4.89E-12+.35*2.52E-12	Rickard and Pascoe (2009), Sander et al. (2019)
G45250b	TrGTerCN	$\rm LNMBOABOOH + OH \rightarrow \rm LNMBOABO2$	k_ROOHRO	Rickard and Pascoe (2009), Sander et al. (2019)
G45251	TrGTerCN	$NMBOBCO + OH \rightarrow NC4OHCO3$	4.26E-12	Rickard and Pascoe (2009)
G45252a	TrGTerCN	$\rm NC4OHCO3 + HO_2 \rightarrow \rm IBUTALOH + \rm CO_2 + \rm NO_2 + OH$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G45252b	TrGTerCN	$\rm NC4OHCO3 + HO_2 \rightarrow \rm NC4OHCO3H$	KAPH02*(r_CO3_03+r_CO3_00H)	Rickard and Pascoe (2009), Sander et al. (2019)
G45253	TrGTerCN	$NC4OHCO3 + NO \rightarrow IBUTALOH + CO_2 + NO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45254	TrGTerCN	$NC4OHCO3 + NO_2 \rightarrow NC4OHCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45255	TrGTerCN	$NC4OHCO3 + NO_3 \rightarrow IBUTALOH + CO_2 + NO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45256	TrGTerCN	$NC4OHCO3 \rightarrow IBUTALOH + CO_2 + NO_2$	k1_R02RC03	Rickard and Pascoe (2009)

Table 1: Gas phase reactions $(\dots \text{ continued})$

#	labels	reaction	rate coefficient	reference
G45257	TrGTerCN	$NC4OHCO3H + OH \rightarrow NC4OHCO3$	4.50E-12	Rickard and Pascoe (2009)
G45258	TrGTerCN	$NC4OHCPAN + OH \rightarrow IBUTALOH + CO + NO_2 + NO_2$	1.27E-12	Rickard and Pascoe (2009)
G45259	TrGTerCN	$NC4OHCPAN \rightarrow NC4OHCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45260	TrGTerCN	$\begin{array}{l} {\rm C4MCONO3OH} + {\rm OH} \rightarrow {\rm CH_3COCH_3} + {\rm HCHO} + {\rm CO_2} \\ + {\rm NO_2} \end{array}$	1.23E-12	Rickard and Pascoe (2009) Sander et al. (2019)
G45400	TrGAroCN	$NC4MDCO2HN + OH \rightarrow MMALANHY + NO_2$	k_ROOHRO	Rickard and Pascoe (2009)*
G45401	TrGAroCN	$C54CO + NO_3 \rightarrow 3 CO + CH_3C(O)OO + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45402	TrGAroC	$C54CO + OH \rightarrow 3 CO + CH_3C(O)OO$	1.72E-11	Rickard and Pascoe (2009)
G45403a	TrGAroCN	$\rm NTLFUO2 + HO_2 \rightarrow \rm NTLFUOOH$	k_R02_H02(temp,5)*(1r_COCH202_ OH)	Rickard and Pascoe (2009)
G45403b	TrGAroCN	$NTLFUO2 + HO_2 \rightarrow ACCOMECHO + NO_2 + OH$	k_R02_H02(temp,5)*r_COCH202_OH	Rickard and Pascoe (2009)
G45404	TrGAroCN	$NTLFUO2 + NO \rightarrow ACCOMECHO + NO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45405	TrGAroCN	$NTLFUO2 + NO_3 \rightarrow ACCOMECHO + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45406	TrGAroCN	$NTLFUO2 \rightarrow ACCOMECHO + NO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45407	TrGAroC	$C5134CO2OH + OH \rightarrow C54CO + HO_2$	7.48E-11	Rickard and Pascoe (2009)
G45408	TrGAroCN	$C5COO2NO2 + OH \rightarrow MGLYOX + CO + CO + NO_2$	5.43E-11	Rickard and Pascoe (2009)
G45409	TrGAroCN	$C5COO2NO2 \rightarrow C5CO14O2 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G45410	TrGAroC	$C5DIALOOH + OH \rightarrow C5DIALCO + OH$	7.52E-11	Rickard and Pascoe (2009)
G45411a	TrGAroC	$C4CO2DBCO3 + HO_2 \rightarrow C4CO2DCO3H$	KAPH02*(r_C03_00H+r_C03_03)	Rickard and Pascoe (2009)
G45411b	TrGAroC	$C4CO2DBCO3 + HO_2 \rightarrow HO_2 + CO + HCOCOCHO + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009) Sander et al. (2019)
G45412	TrGAroCN	$C4CO2DBCO3 + NO \rightarrow HO_2 + CO + HCOCOCHO + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45413	TrGAroCN	$C4CO2DBCO3 + NO_2 \rightarrow C4CO2DBPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G45414	TrGAroCN	$\begin{array}{l} {\rm C4CO2DBCO3} + {\rm NO}_3 \rightarrow {\rm HO}_2 + {\rm CO} + {\rm HCOCOCHO} + \\ {\rm CO}_2 + {\rm NO}_2 \end{array}$	KR02N03*1.74	Rickard and Pascoe (2009)
G45415	TrGAroC	$C4CO2DBCO3 \rightarrow HO_2 + CO + HCOCOCHO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45416	TrGAroC	$MMALANHY + OH \rightarrow MMALANHYO2$	1.50E-12	Rickard and Pascoe (2009)
G45421a	TrGAroC	$\rm MMALANHYO2 + HO_2 \rightarrow \rm MMALNHYOOH$	k_R02_H02(temp,5)*(1r_C0CH202_ OH-r_CH0HCH202_OH)	Rickard and Pascoe (2009) Sander et al. (2019)
G45421b	TrGAroC	$\rm MMALANHYO2 + HO_2 \rightarrow \rm CO2H3CO3 + \rm CO_2 + OH$	k_R02_H02(temp,5)*(r_C0CH202_0H+ r_CH0HCH202_0H)	Rickard and Pascoe (2009) Sander et al. (2019)
G45422	TrGAroCN	$MMALANHYO2 + NO \rightarrow CO2H3CO3 + CO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45423	TrGAroCN	$MMALANHYO2 + NO_3 \rightarrow CO2H3CO3 + CO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45424	TrGAroC	MMALANHYO2 \rightarrow CO2H3CO3 + CO ₂	k1 R02t0R02	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45428	TrGAroCN	C4CO2DBPAN + OH \rightarrow HCOCOCHO + CO ₂ + CO + NO ₂	2.74E-11	Rickard and Pascoe (2009)
G45429	TrGAroCN	$C4CO2DBPAN \rightarrow C4CO2DBCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
345430a	TrGAroC	$\begin{array}{r} {\rm C5CO14O2+HO_2\rightarrow.83\ MALANHY+.83\ CH_3+.17} \\ {\rm MGLYOX+.17\ HO_2+.17\ CO+.17\ CO_2+OH} \end{array}$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)*
345430b	TrGAroC	$C5CO14O2 + HO_2 \rightarrow C5CO14OH + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G45430c	TrGAroC	$C5CO14O2 + HO_2 \rightarrow C5CO14OOH$	KAPH02*r_CO3_00H	Rickard and Pascoe (2009)
G45431	TrGAroCN	$\begin{array}{l} {\rm C5CO14O2+NO\rightarrow.83\ MALANHY+.83\ CH_3+.17} \\ {\rm MGLYOX+.17\ HO_2+.17\ CO+.17\ CO_2+NO_2} \end{array}$	KAPNO	Rickard and Pascoe (2009)*
G45432	TrGAroCN	$C5CO14O2 + NO_2 \rightarrow C5COO2NO2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G45433	TrGAroCN	C5CO14O2 + NO ₃ → .83 MALANHY + .83 CH ₃ + .17 MGLYOX + .17 HO ₂ + .17 CO + .17 CO ₂ + NO ₂	KR02N03*1.74	Rickard and Pascoe (2009)*
345434	TrGAroC	$\begin{array}{l} {\rm C5CO14O2} \rightarrow .83 \; {\rm MALANHY} + .83 \; {\rm CH}_3 + .17 \; {\rm MGLYOX} \\ + \; .17 \; {\rm HO}_2 + .17 \; {\rm CO} + .17 \; {\rm CO}_2 \end{array}$	k1_R02RC03	Rickard and Pascoe (2009)*
G45436	TrGAroC	$\begin{array}{l} {\rm C5CO14OH}+{\rm OH}\rightarrow.83{\rm MALANHY}+.83{\rm CH}_3+.17\\ {\rm MGLYOX}+.17{\rm HO}_2+.17{\rm CO}+.17{\rm CO}_2 \end{array}$	5.44E-11	Rickard and Pascoe (2009)*
G45441	TrGAroCN	$C5DICARB + NO_3 \rightarrow C5CO14O2 + HNO_3$	KNO3AL*2.75	Rickard and Pascoe (2009)
G45442	TrGAroC	$ \begin{array}{l} {\rm C5DICARB} + {\rm O}_3 \rightarrow .5338 \ {\rm GLYOX} + .063 \ {\rm CH}_3{\rm CHO} + \\ {\rm .348} \ {\rm CH}_3{\rm C}({\rm O}){\rm OO} + .918 \ {\rm CO} + .57 \ {\rm OH} + .473 \ {\rm HO}_2 + \\ {\rm .0563} \ {\rm CH}_3{\rm COCO}_2{\rm H} + .5338 \ {\rm MGLYOX} + .676 \ {\rm H}_2{\rm O}_2 + \\ {\rm .063} \ {\rm HCHO} + .0563 \ {\rm HCOCO}_2{\rm H} + .2465 \ {\rm CO}_2 \end{array} $	2.00E-18	Rickard and Pascoe (2009)
G45443	TrGAroC	$C5DICARB + OH \rightarrow .48 C5CO14O2 + .52 C5DICARBO2$	6.2E-11	Rickard and Pascoe (2009)
G45444	TrGAroC	MC3ODBCO2H + OH \rightarrow .35 GLYOX + .35 CH ₃ + .35 CO + .35 CO ₂ + .65 MMALANHY + .65 HO ₂	4.38E-11	Rickard and Pascoe $(2009)^*$
G45451	TrGAroCN	$TLFUONE + NO_3 \rightarrow NTLFUO2$	1.00E-12	Rickard and Pascoe (2009)
G45452	TrGAroC	$\begin{array}{l} {\rm TLFUONE} + {\rm O}_3 \rightarrow .5~{\rm CO} + .5~{\rm OH} + .5~{\rm MECOACETO2} \\ + .3125~{\rm C24O3CCO2H} + .1875~{\rm ACCOMECHO} + .1875 \\ {\rm H}_2{\rm O}_2 \end{array}$	8.00E-19	see note*
G45453	TrGAroC	$TLFUONE + OH \rightarrow TLFUO2$	6.90E-11	Rickard and Pascoe (2009)
345454a	TrGAroC	$ACCOMECO3 + HO_2 \rightarrow ACCOMECO3H$	KAPH02*(r_C03_00H+r_C03_03)	Rickard and Pascoe (2009)
345454b	TrGAroC	$ACCOMECO3 + HO_2 \rightarrow MECOACETO2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
345455	TrGAroCN	$ACCOMECO3 + NO \rightarrow MECOACETO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45456	TrGAroCN	$ACCOMECO3 + NO_2 \rightarrow ACCOMEPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G45457	TrGAroCN	$ACCOMECO3 + NO_3 \rightarrow MECOACETO2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45458	TrGAroC	$ACCOMECO3 \rightarrow MECOACETO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45459	TrGAroC	$C4CO2DCO3H + OH \rightarrow C4CO2DBCO3$	3.06E-11	Rickard and Pascoe (2009)
G45464	TrGAroCN	$ACCOMECHO + NO_3 \rightarrow ACCOMECO3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45465	TrGAroC	$ACCOMECHO + OH \rightarrow ACCOMECO3$	7.09E-11	Rickard and Pascoe (2009)
G45466	TrGAroC	$MMALNHYOOH + OH \rightarrow MMALANHYO2$	1.69E-11	Rickard and Pascoe (2009)
G45467a	TrGAroC	$C5DICAROOH + OH \rightarrow C5134CO2OH + OH$	1.21E-10	Rickard and Pascoe (2009)
G45467b	TrGAroC	$C5DICAROOH + OH \rightarrow C5DICARBO2$	k_ROOHRO	Rickard and Pascoe (2009)
G45468	TrGAroC	$C24O3CCO2H + OH \rightarrow MECOACETO2 + CO_2$	8.76E-13	Rickard and Pascoe (2009)
G45469	TrGAroCN	$NTLFUOOH + OH \rightarrow NTLFUO2$	4.44E-12	Rickard and Pascoe (2009)
G45470	TrGAroCN	ACCOMEPAN + OH \rightarrow METACETHO + CO + CO + NO ₂	1.00E-14	Rickard and Pascoe (2009)
G45471	TrGAroCN	$ACCOMEPAN \rightarrow ACCOMECO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45476a	TrGAroC	$\text{TLFUO2} + \text{HO}_2 \rightarrow \text{TLFUOOH}$	k_R02_H02(temp,5)*(1r_COCH202_ OH-r_CHOHCH202_OH)	Rickard and Pascoe (2009)
G45476b	TrGAroC	$\rm TLFUO2 + HO_2 \rightarrow ACCOMECHO + HO_2 + OH$	k_R02_H02(temp,5)*(r_COCH202_OH+ r_CH0HCH202_OH)	Rickard and Pascoe (2009)*
G45477	TrGAroCN	$TLFUO2 + NO \rightarrow ACCOMECHO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45478	TrGAroCN	$TLFUO2 + NO_3 \rightarrow ACCOMECHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45479	TrGAroC	$TLFUO2 \rightarrow ACCOMECHO + HO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45480	TrGAroC	$C5CO14OOH + OH \rightarrow C5CO14O2$	3.59E-12	Rickard and Pascoe (2009)
G45483	TrGAroC	$TLFUOOH + OH \rightarrow TLFUO2$	2.53E-11	Rickard and Pascoe (2009)
G45485	TrGAroC	$ACCOMECO3H + OH \rightarrow ACCOMECO3$	3.59E-12	Rickard and Pascoe (2009)
G45486a	TrGAroC	$C5DIALO2 + HO_2 \rightarrow C5DIALOOH$	k_R02_H02(temp,5)*(1r_COCH202_ OH)	Rickard and Pascoe (2009)
G45486b	TrGAroC	$C5DIALO2 + HO_2 \rightarrow MALDIAL + CO + HO_2 + OH$	k_R02_H02(temp,5)*r_COCH202_OH	Rickard and Pascoe (2009)*
G45487	TrGAroCN	$C5DIALO2 + NO \rightarrow MALDIAL + CO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45488	TrGAroCN	$C5DIALO2 + NO_3 \rightarrow MALDIAL + CO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45489	TrGAroC	$C5DIALO2 \rightarrow MALDIAL + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G45490a	TrGAroC	$\rm C5DICARBO2 + HO_2 \rightarrow C5DICAROOH$	k_RO2_HO2(temp,5)*(r_CO3_OOH+r_ CO3_O3)	Rickard and Pascoe (2009)
G45491b	TrGAroC	$\begin{array}{l} \mbox{C5DICARBO2} + \mbox{HO}_2 \rightarrow \mbox{MGLYOX} + \mbox{GLYOX} + \mbox{HO}_2 + \\ \mbox{OH} \end{array}$	k_RO2_HO2(temp,5)*r_CO3_OH	Rickard and Pascoe (2009)*
G45492	TrGAroCN	$C5DICARBO2 + NO \rightarrow MGLYOX + GLYOX + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45493	TrGAroCN	$C5DICARBO2 + NO_3 \rightarrow MGLYOX + GLYOX + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*

Table 1: G	as phase reactions	(continued)
------------	--------------------	--------------

#	labels	reaction	rate coefficient	reference
G45494	TrGAroC	$C5DICARBO2 \rightarrow MGLYOX + GLYOX + HO_2$	k1 R02s0R02	Rickard and Pascoe (2009)*
G46200a	TrGTerC	$CO235C6O2 + HO_2 \rightarrow CO235C6OOH$	k_R02_H02(temp,6)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G46200b	TrGTerC	$\mathrm{CO235C6O2} + \mathrm{HO}_2 \rightarrow \mathrm{CO23C4CO3} + \mathrm{HCHO} + \mathrm{OH}$	k_R02_H02(temp,6)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G46201	TrGTerCN	$CO235C6O2 + NO \rightarrow CO23C4CO3 + HCHO + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G46202	TrGTerC	$CO235C6O2 \rightarrow CO23C4CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G46203	TrGTerC	$CO235C6OOH + OH \rightarrow CO235C6O2$	1.01E-11	Rickard and Pascoe (2009)
G46204	TrGTerC	$C614O2 \rightarrow CO23C4CHO + HCHO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)
G46205a	TrGTerCN	$\rm C614O2 + NO \rightarrow \rm CO23C4CHO + \rm HCHO + \rm HO_2 + \rm NO_2$	<pre>KR02N0*(1alpha_AN(9,2,0,1,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G46205b	TrGTerCN	$C614O2 + NO \rightarrow C614NO3$	<pre>KR02N0*alpha_AN(9,2,0,1,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G46206a	TrGTerC	$C614O2 + HO_2 \rightarrow C614OOH$	k_R02_H02(temp,6)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G46206b	TrGTerC	$\rm C614O2 + HO_2 \rightarrow \rm CO23C4CHO + HCHO + HO_2 + OH$	k_R02_H02(temp,6)*r_CH0HCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G46207	TrGTerCN	$C614NO3 + OH \rightarrow C614CO + NO_2$	7.11E-12	Rickard and Pascoe (2009)
G46208	TrGTerC	$C614OOH + OH \rightarrow C614CO + OH$	8.69E-11	Rickard and Pascoe (2009)
G46209	TrGTerC	$C614CO + OH \rightarrow CO235C5CHO + HO_2$	3.22E-12	Rickard and Pascoe (2009)
G46210	TrGTerC	$CO235C5CHO + OH \rightarrow CO23C4CO3 + CO$	1.33E-11	Rickard and Pascoe (2009)
G46211	TrGTerCN	$CO235C5CHO + NO_3 \rightarrow CO23C4CO3 + CO + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G46400	TrGAroC	$PHENOOH + OH \rightarrow PHENO2$	1.16E-10	Rickard and Pascoe (2009)
G46401	TrGAroC	C6CO4DB + OH \rightarrow CO + CO + HO ₂ + CO + HCOCOCHO	7.70E-11	Rickard and Pascoe (2009)
G46402	TrGAroC	$C5CO2DCO3H + OH \rightarrow C5CO2DBCO3$	3.60E-11	Rickard and Pascoe (2009)
G46403	TrGAroCN	NDNPHENOOH + OH \rightarrow NDNPHENO2	k_ROOHRO	Rickard and Pascoe (2009)
G46404a	TrGAroC	$C615CO2O2 + HO_2 \rightarrow C615CO2OOH$	k_R02_H02(temp,6)*(1r_COCH202_ OH)	Rickard and Pascoe (2009)
G46404b	TrGAroC	$C615CO2O2 + HO_2 \rightarrow C5DICARB + CO + HO_2 + OH$	k_R02_H02(temp,6)*r_COCH202_OH	Rickard and Pascoe (2009)*
G46405	TrGAroCN	$C615CO2O2 + NO \rightarrow C5DICARB + CO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G46406	TrGAroCN	$C615CO2O2 + NO_3 \rightarrow C5DICARB + CO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46407	TrGAroC	$C615CO2O2 \rightarrow C5DICARB + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46408	TrGAroCN	$BZEMUCPAN + OH \rightarrow MALDIAL + CO + CO_2 + NO_2$	4.05E-11	Rickard and Pascoe (2009)
G46409	TrGAroCN	$BZEMUCPAN \rightarrow BZEMUCCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)

#	labels	reaction	rate coefficient	reference
G46410	TrGAroCN	$BZBIPERNO3 + OH \rightarrow BZOBIPEROH + NO_2$	7.30E-11	Rickard and Pascoe (2009)
G46411	TrGAroCN	$HOC6H4NO2 + NO_3 \rightarrow NPHEN1O + HNO_3$	9.00E-14	Rickard and Pascoe (2009)
G46412	TrGAroCN	$HOC6H4NO2 + OH \rightarrow NPHEN1O$	9.00E-13	Rickard and Pascoe (2009)
G46413a	TrGAroCN	$\rm NDNPHENO2 + HO_2 \rightarrow \rm NDNPHENOOH$	k_RO2_HO2(temp,6)*(1r_ CHOHCH2O2_OH)	Rickard and Pascoe (2009)
G46413b	TrGAroCN	NDNPHENO2 + $HO_2 \rightarrow NC4DCO2H + HNO_3 + CO + CO + NO_2 + OH$	k_R02_H02(temp,6)*r_CH0HCH202_OH	Rickard and Pascoe $(2009)^\ast$
G46414	TrGAroCN	NDNPHENO2 + NO \rightarrow NC4DCO2H + HNO ₃ + CO + CO + NO ₂ + NO ₂	KR02N0	Rickard and Pascoe $(2009)^\ast$
G46415	TrGAroCN	NDNPHENO2 + NO ₃ \rightarrow NC4DCO2H + HNO ₃ + CO + CO + NO ₂ + NO ₂	KR02N03	Rickard and Pascoe $(2009)^\ast$
G46416	TrGAroCN	NDNPHENO2 \rightarrow NC4DCO2H + HNO ₃ + CO + CO + NO ₂	k1_R02ISOPD02	Rickard and Pascoe $(2009)^\ast$
346417	TrGAroC	$PBZQCO + OH \rightarrow C5CO2OHCO3$	6.07E-11	Rickard and Pascoe (2009)
46418	TrGAroCN	$CATECHOL + NO_3 \rightarrow CATEC1O + HNO_3$	9.9E-11	Rickard and Pascoe (2009)*
346419	TrGAroC	CATECHOL + $O_3 \rightarrow MALDALCO2H + HCOCO_2H + HO_2 + OH$	9.2E-18	Rickard and Pascoe (2009)
46420	TrGAroC	$CATECHOL + OH \rightarrow CATEC1O$	1.0E-10	Rickard and Pascoe (2009)
346421	TrGAroC	$C5COOHCO3H + OH \rightarrow C5CO2OHCO3$	8.01E-11	Rickard and Pascoe (2009)
346422	TrGAroCN	$NCATECHOL + NO_3 \rightarrow NNCATECO2$	2.60E-12	Rickard and Pascoe (2009)
346423	TrGAroCN	$NCATECHOL + OH \rightarrow NCATECO2$	3.47E-12	Rickard and Pascoe (2009)
346424a	TrGAroC	$C5CO2OHCO3 + HO_2 \rightarrow C5COOHCO3H$	KAPH02*(r_CO3_00H+r_CO3_03)	Rickard and Pascoe (2009)
G46424b	TrGAroC	$C5CO2OHCO3 + HO_2 \rightarrow HOCOC4DIAL + HO_2 + CO + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
346425	TrGAroCN	$C5\overline{C020HC03} + NO \rightarrow HOCOC4DIAL + HO_2 + CO + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
46426	TrGAroCN	$C5CO2OHCO3 + NO_2 \rightarrow C5CO2OHPAN$	k_CH3C03_N02	Rickard and Pascoe (2009)*
346427	TrGAroCN	$C5CO2OHCO3 + NO_3 \rightarrow HOCOC4DIAL + HO_2 + CO + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
346428	TrGAroC	$C5CO2OHCO3 \rightarrow HOCOC4DIAL + HO_2 + CO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
46429	TrGAroCN	$BZEPOXMUC + NO_3 \rightarrow BZEMUCCO3 + HNO_3$	2.*KN03AL*2.75	Rickard and Pascoe (2009)
G46430	TrGAroC	$\begin{array}{l} {\rm BZEPOXMUC}+{\rm O}_3\rightarrow{\rm EPXC4DIAL}+.125{\rm HCHO}+.1125{\rm HCCO}_2{\rm H}+.0675{\rm GLYOX}+.0675{\rm H}_2{\rm O}_2+.82\\ {\rm HO}_2+.57{\rm OH}+1.265{\rm CO}+.25{\rm CO}_2 \end{array}$	2.00E-18	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions $(\dots \text{ continued})$

#	labels	reaction	rate coefficient	reference
G46431	TrGAroC	BZEPOXMUC + OH \rightarrow .31 BZEMUCCO3 + .69 BZEMUCO2	6.08E-11	Rickard and Pascoe (2009)
G46432a	TrGAroCN	$NCATECO2 + HO_2 \rightarrow NCATECOOH$	k_R02_H02(temp,6)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G46432b	TrGAroCN	$\label{eq:constraint} \begin{split} & \mathrm{NCATECO2} + \mathrm{HO}_2 \rightarrow \mathrm{NC4DCO2H} + \mathrm{HCOCO}_2\mathrm{H} + \mathrm{HO}_2 \\ & + \mathrm{OH} \end{split}$	k_R02_H02(temp,6)*r_CH0HCH202_OH	Rickard and Pascoe $(2009)^*$
G46433	TrGAroCN	$\label{eq:constraint} \begin{split} \mathrm{NCATECO2} + \mathrm{NO} & \rightarrow \mathrm{NC4DCO2H} + \mathrm{HCOCO_2H} + \mathrm{HO}_2 \\ + \mathrm{NO}_2 \end{split}$	KR02N0	Rickard and Pascoe (2009)*
G46434	TrGAroCN	$\label{eq:constraint} \begin{split} & \mathrm{NCATECO2} + \mathrm{NO}_3 \rightarrow \mathrm{NC4DCO2H} + \mathrm{HCOCO}_2\mathrm{H} + \mathrm{HO}_2 \\ & + \mathrm{NO}_2 \end{split}$	KR02N03	Rickard and Pascoe $(2009)^*$
G46435	TrGAroCN	$NCATECO2 \rightarrow NC4DCO2H + HCOCO_2H + HO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G46436	TrGAroCN	NPHEN1OOH + OH \rightarrow NPHEN1O2	9.00E-13	Rickard and Pascoe (2009)
G46437a	TrGAroCN	$NPHENO2 + HO_2 \rightarrow NPHENOOH$	k_R02_H02(temp,6)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G46437b	TrGAroCN	$\begin{array}{l} {\rm NPHENO2} + {\rm HO}_2 \rightarrow {\rm MALDALCO2H} + {\rm GLYOX} + {\rm NO}_2 \\ + {\rm OH} \end{array}$	k_R02_H02(temp,6)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*
G46438	TrGAroCN	$\begin{array}{l} \text{NPHENO2} + \text{NO} \rightarrow \text{MALDALCO2H} + \text{GLYOX} + \text{NO}_2 \\ + \text{NO}_2 \end{array}$	KR02N0	Rickard and Pascoe (2009)*
G46439	TrGAroCN	$NPHENO2 + NO_3 \rightarrow MALDALCO2H + GLYOX + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46440	TrGAroCN	$NPHENO2 \rightarrow MALDALCO2H + GLYOX + NO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009) [*]
G46441	TrGAroC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.3E-12*EXP(-190./temp)	Rickard and Pascoe (2009)*
G46442	TrGAroCN	C5CO2OHPAN + OH \rightarrow HOCOC4DIAL + CO + CO + NO ₂	7.66E-11	Rickard and Pascoe (2009)
G46443	TrGAroCN	$C5CO2OHPAN \rightarrow C5CO2OHCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G46444	TrGAroCN	$CATEC1O + NO_2 \rightarrow NCATECHOL$	k_C6H50_N02	Rickard and Pascoe (2009), Platz et al. (1998)
G46445	TrGAroC	$CATEC1O + O_3 \rightarrow CATEC1O2$	k_C6H50_03	Rickard and Pascoe (2009), Tao and Li (1999)
G46446	TrGAroC	$BZEMUCCO + OH \rightarrow EPXDLCO3 + GLYOX$	9.20E-11	Rickard and Pascoe (2009)
G46447a	TrGAroCN	$NNCATECO2 + HO_2 \rightarrow NNCATECOOH$	k_R02_H02(temp,6)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G46447b	TrGAroCN	NNCATECO2 + HO ₂ \rightarrow NC4DCO2H + HCOCO ₂ H + NO ₂ + OH	k_R02_H02(temp,6)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46448	TrGAroCN	$NNCATECO2 + NO \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + NO_2$	KR02N0	Rickard and Pascoe $(2009)^*$
G46449	TrGAroCN	$NNCATECO2 + NO_3 \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46450	TrGAroCN	$NNCATECO2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G46451	TrGAroC	$BZEMUCCO2H + OH \rightarrow C5DIALO2 + CO_2$	4.06E-11	Rickard and Pascoe (2009)
G46452	TrGAroCN	NNCATECOOH + OH \rightarrow NNCATECO2	k_ROOHRO	Rickard and Pascoe (2009)
G46453	TrGAroCN	$NPHEN1O + NO_2 \rightarrow DNPHEN$	k_C6H50_N02	Rickard and Pascoe (2009), Platz et al. (1998)
G46454	TrGAroCN	$\rm NPHEN1O+O_3\rightarrow NPHEN1O2$	k_C6H50_03	Rickard and Pascoe (2009), Tao and Li (1999)
G46455	TrGAroCN	$DNPHEN + NO_3 \rightarrow NDNPHENO2$	2.25E-15	Rickard and Pascoe (2009)
G46456	TrGAroCN	$DNPHEN + OH \rightarrow DNPHENO2$	3.00E-14	Rickard and Pascoe (2009)
G46457	TrGAroCN	PHENOL + NO ₃ \rightarrow .742 C6H5O + .742 HNO ₃ + .258 NPHENO2	3.8E-12	Rickard and Pascoe (2009)*
G46458	TrGAroC	$\begin{array}{l} \label{eq:PHENOL} {\rm PHENOL} + {\rm OH} \rightarrow .06 \; {\rm C6H5O} + .8 \; {\rm CATECHOL} + .8 \; {\rm HO}_2 \\ {\rm + .14 \; PHENO2} \end{array}$	4.7E-13*EXP(1220./temp)	Rickard and Pascoe (2009)*
G46459	TrGAroCN	$PBZQONE + NO_3 \rightarrow NBZQO2$	3.00E-13	Rickard and Pascoe (2009)
G46460	TrGAroC	$PBZQONE + OH \rightarrow PBZQO2$	4.6E-12	Rickard and Pascoe (2009)
G46461a	TrGAroC	$PHENO2 + HO_2 \rightarrow PHENOOH$	k_R02_H02(temp,6)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G46461b	TrGAroC	$\begin{array}{l} {\rm PHENO2 + HO_2 \rightarrow .71 \ MALDALCO2H + .71 \ GLYOX + } \\ {\rm .29 \ PBZQONE + HO_2 + OH} \end{array}$	k_R02_H02(temp,6)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*
G46462	TrGAroCN	PHENO2 + NO \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + NO ₂	KR02N0	Rickard and Pascoe (2009)*
G46463	TrGAroCN	PHENO2 + NO ₃ \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009)*
G46464	TrGAroC	PHENO2 \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G46465	TrGAroC	$C615CO2OOH + OH \rightarrow C6125CO + OH$	9.42E-11	Rickard and Pascoe (2009)
G46466a	TrGAroC	$C5CO2DBCO3 + HO_2 \rightarrow C5CO2DCO3H$	KAPH02*(r_CO3_00H+r_CO3_03)	Rickard and Pascoe (2009)
G46466b	TrGAroC	C5CO2DBCO3 + HO ₂ \rightarrow CH ₃ C(O) + HCOCOCHO + CO ₂ + OH		Rickard and Pascoe (2009)
G46467	TrGAroCN	$C5CO2DBCO3 + NO \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)

Table 1: Gas phase reactions $(\dots \text{ continued})$

#	labels	reaction	rate coefficient	reference
# G46468	TrGAroCN	$C5CO2DBCO3 + NO_2 \rightarrow C5CO2DBPAN$	k_CH3C03_N02	Rickard and Pascoe (2009)*
G46469	TrGAroCN	$C5CO2DBCO3 + NO_2 \rightarrow C3CO2DBFAN$ $C5CO2DBCO3 + NO_3 \rightarrow CH_3C(O) + HCOCOCHO +$		Rickard and Pascoe (2009)
640409		$CO_2 + NO_2$ $CO_2 + NO_3 \rightarrow CO_3 + NO_3 + $	KRU2NU3*1.74	Rickard and Fascoe (2009)
G46470	TrGAroC	$C5CO2DBCO3 \rightarrow CH_3C(O) + HCOCOCHO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G46471	TrGAroCN	$NPHEN1O2 + HO_2 \rightarrow NPHEN1OOH$	k_R02_H02(temp,6)	Rickard and Pascoe (2009)
G46472a	TrGAroCN	$NPHEN1O2 + NO \rightarrow NPHEN1O + NO_2$	KR02N0	Rickard and Pascoe (2009)
G46472b	TrGAroCN	$NPHEN1O2 + NO_2 \rightarrow NPHEN1O + NO_3$	k_C6H502_N02	Jagiella and Zabel (2007)*
G46473	TrGAroCN	$NPHEN1O2 + NO_3 \rightarrow NPHEN1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G46474	TrGAroCN	NPHEN1O2 \rightarrow NPHEN1O	k1_R02sR02	Rickard and Pascoe (2009)
G46475	TrGAroCN	$NPHENOOH + OH \rightarrow NPHENO2$	1.07E-10	Rickard and Pascoe (2009)
G46476	TrGAroCN	$C6H5O + NO_2 \rightarrow HOC6H4NO2$	k_C6H50_N02	Rickard and Pascoe (2009), Platz et al. (1998)*
G46477	TrGAroC	$\rm C6H5O+O_3\rightarrow C6H5O2$	k_C6H50_03	Rickard and Pascoe (2009), Tao and Li (1999)
G46478	TrGAroCN	$NCATECOOH + OH \rightarrow NCATECO2$	k_ROOHRO	Rickard and Pascoe (2009)
G46479	TrGAroC	$PBZQOOH + OH \rightarrow PBZQCO + OH$	1.23E-10	Rickard and Pascoe (2009)
G46480a	TrGAroC	$\mathrm{PBZQO2} + \mathrm{HO}_2 \rightarrow \mathrm{PBZQOOH}$	k_R02_H02(temp,6)*(1r_ CH0HCH202_OH-r_COCH202_OH)	Rickard and Pascoe (2009)
G46480b	TrGAroC	$\mathrm{PBZQO2} + \mathrm{HO}_2 \rightarrow \mathrm{C5CO2OHCO3} + \mathrm{OH}$	k_R02_H02(temp,6)*(r_CH0HCH202_ OH+r_C0CH202_OH)	Rickard and Pascoe (2009)*
G46481	TrGAroCN	$PBZQO2 + NO \rightarrow C5CO2OHCO3 + NO_2$	KR02N0	Rickard and Pascoe (2009) [*]
G46482	TrGAroCN	$PBZQO2 + NO_3 \rightarrow C5CO2OHCO3 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46483	TrGAroC	$PBZQO2 \rightarrow C5CO2OHCO3$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46484	TrGAroC	$BZOBIPEROH + OH \rightarrow MALDIALCO3 + GLYOX$	8.16E-11	Rickard and Pascoe (2009)
G46485a	TrGAroCN	$\text{DNPHENO2} + \text{HO}_2 \rightarrow \text{DNPHENOOH}$	k_R02_H02(temp,6)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G46485b	TrGAroCN	$\begin{array}{l} {\rm DNPHENO2 + HO_2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2} \\ {\rm + OH} \end{array}$	k_R02_H02(temp,6)*r_CH0HCH202_OH	Rickard and Pascoe $(2009)^\ast$
G46486	TrGAroCN	$DNPHENO2 + NO \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + NO_2$	KR02N0	Rickard and Pascoe $(2009)^\ast$
G46487	TrGAroCN	$DNPHENO2 + NO_3 \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46488	TrGAroCN	$DNPHENO2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	k1_R02IS0PD02	Rickard and Pascoe (2009)*
G46489	TrGAroC	$BZBIPEROOH + OH \rightarrow BZOBIPEROH + OH$	9.77E-11	Rickard and Pascoe (2009)
G46490a	TrGAroC	$BZEMUCO2 + HO_2 \rightarrow BZEMUCOOH$	k_R02_H02(temp,6)	Rickard and Pascoe (2009)

50

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46490b	TrGAroC	BZEMUCO2 + $HO_2 \rightarrow .5$ EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO + OH	k_R02_H02(temp,6)	Rickard and Pascoe (2009)*
46491a	TrGAroCN	$BZEMUCO2 + NO \rightarrow BZEMUCNO3$	<pre>KR02N0*alpha_AN(10,2,0,1,0, temp,cair)</pre>	Rickard and Pascoe (2009)
46491b	TrGAroCN	$\begin{array}{l} \text{BZEMUCO2} + \text{NO} \rightarrow .5 \text{ EPXC4DIAL} + .5 \text{ GLYOX} + .5 \\ \text{HO}_2 + .5 \text{ C3DIALO2} + .5 \text{ C32OH13CO} + \text{NO}_2 \end{array}$	<pre>KR02N0*(1alpha_AN(10,2,0,1,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
46492	TrGAroCN	$\begin{array}{l} \mathrm{BZEMUCO2} + \mathrm{NO}_3 \rightarrow .5 \ \mathrm{EPXC4DIAL} + .5 \ \mathrm{GLYOX} + .5 \\ \mathrm{HO}_2 + .5 \ \mathrm{C3DIALO2} + .5 \ \mathrm{C32OH13CO} + \mathrm{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe $(2009)^*$
46493	TrGAroC	$\begin{array}{l} \mathrm{BZEMUCO2} \rightarrow .5 \ \mathrm{EPXC4DIAL} + .5 \ \mathrm{GLYOX} + .5 \ \mathrm{HO}_2 + \\ .5 \ \mathrm{C3DIALO2} + .5 \ \mathrm{C32OH13CO} \end{array}$	k1_R02s0R02	Rickard and Pascoe (2009)*
46494	TrGAroCN	$\label{eq:C5C02DBPAN} \begin{split} \mathrm{C5C02DBPAN} + \mathrm{OH} \rightarrow \mathrm{HCOCOCHO} + \mathrm{CH}_3\mathrm{CHO} + \mathrm{CO}_2 \\ + \mathrm{NO}_2 \end{split}$	3.28E-11	Rickard and Pascoe (2009)
46495	TrGAroCN	$C5CO2DBPAN \rightarrow C5CO2DBCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
46496	TrGAroCN	$NBZQOOH + OH \rightarrow NBZQO2$	6.68E-11	Rickard and Pascoe (2009)
46497	TrGAroC	$CATEC1OOH + OH \rightarrow CATEC1O2$	k_ROOHRO	Rickard and Pascoe (2009)
46498	TrGAroC	$C6125CO + OH \rightarrow C5CO14O2 + CO$	6.45E-11	Rickard and Pascoe (2009)
46499a	TrGAroCN	$\rm NBZQO2 + HO_2 \rightarrow \rm NBZQOOH$	k_R02_H02(temp,6)*(1r_COCH202_ OH)	Rickard and Pascoe (2009)
46499b	TrGAroCN	$NBZQO2 + HO_2 \rightarrow C6CO4DB + NO_2 + OH$	k_R02_H02(temp,6)*r_COCH202_OH	Rickard and Pascoe (2009)*
46500	TrGAroCN	$NBZQO2 + NO \rightarrow C6CO4DB + NO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
46501	TrGAroCN	$NBZQO2 + NO_3 \rightarrow C6CO4DB + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
46502	TrGAroCN	$NBZQO2 \rightarrow C6CO4DB + NO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
46503	TrGAroCN	$DNPHENOOH + OH \rightarrow DNPHENO2$	k_ROOHRO	Rickard and Pascoe (2009)
46504	TrGAroC	$CATEC1O2 + HO_2 \rightarrow CATEC1OOH$	k_R02_H02(temp,6)	Rickard and Pascoe (2009)
46505a	TrGAroCN	$CATEC1O2 + NO \rightarrow CATEC1O + NO_2$	KR02N0	Rickard and Pascoe (2009)
46505b	TrGAroCN	$CATEC1O2 + NO_2 \rightarrow CATEC1O + NO_3$	k_C6H502_N02	Jagiella and Zabel (2007)*
46506	TrGAroCN	$CATEC1O2 + NO_3 \rightarrow CATEC1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
46507	TrGAroC	$CATEC1O2 \rightarrow CATEC1O$	k1_R02s0R02	Rickard and Pascoe (2009)
46508	TrGAroC	$BZEMUCCO3H + OH \rightarrow BZEMUCCO3$	4.37E-11	Rickard and Pascoe (2009)
46509	TrGAroC	$C6H5OOH + OH \rightarrow C6H5O2$	3.60E-12	Rickard and Pascoe (2009)
46510	TrGAroC	$BZEMUCOOH + OH \rightarrow BZEMUCCO + OH$	1.31E-10	Rickard and Pascoe (2009)
46511a	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow BZEMUCCO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
46511b	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow BZEMUCCO3H$	KAPH02*r_CO3_OOH	Rickard and Pascoe (2009)
G46511c	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow C5DIALO2 + CO_2 + OH$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)
G46512	TrGAroCN	$BZEMUCCO3 + NO \rightarrow C5DIALO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)

#	labels	reaction	rate coefficient	reference
G46513	TrGAroCN	$BZEMUCCO3 + NO_2 \rightarrow BZEMUCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G46514	TrGAroCN	$BZEMUCCO3 + NO_3 \rightarrow C5DIALO2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G46515	TrGAroC	$BZEMUCCO3 \rightarrow C5DIALO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G46516	TrGAroC	$C6H5O2 + HO_2 \rightarrow C6H5OOH$	k_R02_H02(temp,6)	Rickard and Pascoe (2009)
G46517	TrGAroCN	$C6H5O2 + NO \rightarrow C6H5O + NO_2$	KR02N0	Rickard and Pascoe (2009)
G46518	TrGAroCN	$C6H5O2 + NO_3 \rightarrow C6H5O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G46519	TrGAroC	$C6H5O2 \rightarrow C6H5O$	k1_R02sR02	Rickard and Pascoe (2009)
G46520	TrGAroCN	$C6H5O2 + NO_2 \rightarrow C6H5O + NO_3$	k_C6H502_N02	Jagiella and Zabel (2007)
G46521	TrGAroCN	$BZEMUCNO3 + OH \rightarrow BZEMUCCO + NO_2$	4.38E-11	Rickard and Pascoe (2009)
G46522a	TrGAroC	$\mathrm{BZBIPERO2} + \mathrm{HO}_2 \rightarrow \mathrm{BZBIPEROOH}$	k_RO2_HO2(temp,6)*(1r_BIPERO2_ OH)	Rickard and Pascoe (2009)
G46522b	TrGAroC	BZBIPERO2 + $HO_2 \rightarrow OH + GLYOX + HO_2 + .5$ BZFUONE + .5 BZFUONE	k_RO2_HO2(temp,6)*r_BIPERO2_OH	Rickard and Pascoe (2009), Bird- sall et al. (2010)*
G46523a	TrGAroCN	$BZBIPERO2 + NO \rightarrow BZBIPERNO3$	<pre>KR02N0*alpha_AN(9,2,0,0,1,temp, cair)</pre>	Rickard and Pascoe (2009)
G46523b	TrGAroCN	BZBIPERO2 + NO \rightarrow NO ₂ + GLYOX + HO ₂ + .5 BZFUONE + .5 BZFUONE	<pre>KR02N0*(1alpha_AN(9,2,0,0,1, temp,cair))</pre>	Rickard and Pascoe (2009)*
G46524	TrGAroCN	BZBIPERO2 + NO ₃ \rightarrow NO ₂ + GLYOX + HO ₂ + .5 BZFUONE + .5 BZFUONE	KR02N03	Rickard and Pascoe (2009)*
G46525	TrGAroC	$BZBIPERO2 \rightarrow GLYOX + HO_2 + BZFUONE$	k1_R02s0R02	Rickard and Pascoe (2009) [*]
G47200	TrGTerCN	$CO235C6CHO + NO_3 \rightarrow CO235C6CO3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G47201	TrGTerC	$CO235C6CHO + OH \rightarrow CO235C6CO3$	6.70E-11	Rickard and Pascoe (2009)
G47202a	TrGTerC	$CO235C6CO3 + HO_2 \rightarrow C235C6CO3H$	KAPH02*(r_C03_00H+r_C03_03)	Rickard and Pascoe (2009)
G47202b	TrGTerC	$CO235C6CO3 + HO_2 \rightarrow CO235C6O2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G47203	TrGTerCN	$CO235C6CO3 + NO \rightarrow CO235C6O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47204	TrGTerCN	$CO235C6CO3 + NO_2 \rightarrow C7PAN3$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G47205	TrGTerC	$CO235C6CO3 \rightarrow CO235C6O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G47206	TrGTerC	$C235C6CO3H + OH \rightarrow CO235C6CO3$	4.75E-12	Rickard and Pascoe (2009)
G47207	TrGTerCN	$C7PAN3 + OH \rightarrow CO235C5CHO + CO + NO_2$	8.83E-13	Rickard and Pascoe (2009)
G47208	TrGTerCN	$C7PAN3 \rightarrow CO235C6CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G47209a	TrGTerC	$C716O2 + HO_2 \rightarrow C716OOH$	k_R02_H02(temp,7)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G47209b	TrGTerC	$\rm C716O2 + HO_2 \rightarrow \rm CO13C4CHO + \rm CH_3C(O) + \rm OH$	k_R02_H02(temp,7)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G47210	TrGTerCN	$C716O2 + NO \rightarrow CO13C4CHO + CH_3C(O) + NO_2$	KR02N0	Rickard and Pascoe (2009)*

52

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47211	TrGTerC	$C716O2 \rightarrow CO13C4CHO + CH_3C(O)$	k1_R02s0R02	Rickard and Pascoe (2009)
G47212	TrGTerC	$C716OOH + OH \rightarrow CO235C6CHO + OH$	1.20E-10	Rickard and Pascoe (2009)
G47213	TrGTerC	$C721O2 + HO_2 \rightarrow C721OOH$	k_R02_H02(temp,7)	Rickard and Pascoe (2009)
G47214	TrGTerCN	$C721O2 + NO \rightarrow C722O2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G47215	TrGTerC	$C721O2 \rightarrow C722O2$	k1_R02pR02	Rickard and Pascoe (2009)
G47216	TrGTerC	$C721OOH + OH \rightarrow C721O2$	1.27E-11	Rickard and Pascoe (2009)
G47217	TrGTerC	$C722O2 + HO_2 \rightarrow C722OOH$	k_R02_H02(temp,7)	Rickard and Pascoe (2009)
G47218	TrGTerCN	$C722O2 + NO \rightarrow CH_3COCH_3 + C44O2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G47219	TrGTerC	$C722O2 \rightarrow CH_3COCH_3 + C44O2$	k1_R02tR02	Rickard and Pascoe (2009)
G47220	TrGTerC	$C722OOH + OH \rightarrow C722O2$	3.31E-11	Rickard and Pascoe (2009)
G47221	TrGTerC	$ROO6R3O2 \rightarrow ROO6R5O2$	5.68E10*EXP(-8745./temp)	Vereecken and Peeters (2012)
G47222	TrGTerCN	$ROO6R3O2 + NO \rightarrow ROO6R3O + NO_2$	KR02N0	Vereecken and Peeters (2012)*
G47223	TrGTerC	$ROO6R3O2 + HO_2 \rightarrow 7 LCARBON$	k_R02_H02(temp,7)	Vereecken and Peeters (2012)*
G47224	TrGTerC	$ROO6R3O2 \rightarrow ROO6R3O$	k1_R02sR02	Vereecken and Peeters (2012)
G47225	TrGTerC	$ROO6R3O \rightarrow 7 LCARBON + HO_2$	5.7E10*EXP(-2949./temp)	Vereecken and Peeters (2012)*
G47226	TrGTerC	$ROO6R5O2 \rightarrow 7 LCARBON + OH$	9.17E10*EXP(-8706./temp)	Vereecken and Peeters (2012)*
G47400	TrGAroC	TOLUENE + OH \rightarrow .07 C6H5CH2O2 + .18 CRESOL + .18 HO ₂ + .65 TLBIPERO2 + .10 TLEPOXMUC + .10 HO ₂	1.8E-12*EXP(340./temp)	Rickard and Pascoe (2009)*
G47401	TrGAroC	$C6H5CH2O2 + HO_2 \rightarrow C6H5CH2OOH$	1.5E-13*EXP(1310./temp)	Rickard and Pascoe (2009)
G47402a	TrGAroCN	$\rm C6H5CH2O2+NO\rightarrowC6H5CH2NO3$	<pre>KR02N0*alpha_AN(7,1,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)*
G47402b	TrGAroCN	$\rm C6H5CH2O2 + NO \rightarrow BENZAL + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(7,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G47403	TrGAroCN	$C6H5CH2O2 + NO_3 \rightarrow BENZAL + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47404	TrGAroC	$C6H5CH2O2 \rightarrow BENZAL + HO_2$	2.*(k_CH302*2.4E-14*EXP(1620./ temp))**(0.5)*R02	Rickard and Pascoe (2009)*
G47405	TrGAroCN	CRESOL + NO ₃ \rightarrow .103 CRESO2 + .103 HNO ₃ + .506 NCRESO2 + .391 TOL1O + .391 HNO ₃	1.4E-11	Rickard and Pascoe $(2009)^\ast$
G47406	TrGAroC	CRESOL + OH \rightarrow .2 CRESO2 + .727 MCATECHOL + .727 HO ₂ + .073 TOL1O	4.65E-11	Rickard and Pascoe $(2009)^*$
G47407a	TrGAroC	$\text{TLBIPERO2} + \text{HO}_2 \rightarrow \text{TLBIPEROOH}$	k_R02_H02(temp,7)*(1r_BIPER02_ OH)	Rickard and Pascoe (2009)

#	labels	reaction	rate coefficient	reference
G47407b	TrGAroC	TLBIPERO2 + $HO_2 \rightarrow OH$ + .6 GLYOX + .4 MGLYOX + HO_2 + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	k_R02_H02(temp,7)*r_BIPER02_OH	Rickard and Pascoe (2009), Bird- sall et al. (2010)*
G47408a	TrGAroCN	TLBIPERO2 + NO \rightarrow NO ₂ + .6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	<pre>KR02N0*(1alpha_AN(11,2,0,0,1, temp,cair))</pre>	Rickard and Pascoe $(2009)^*$
G47408b	TrGAroCN	$\text{TLBIPERO2} + \text{NO} \rightarrow \text{TLBIPERNO3}$	<pre>KRO2NO*alpha_AN(11,2,0,0,1, temp,cair)</pre>	Rickard and Pascoe $(2009)^\ast$
G47409	TrGAroCN	$ \begin{array}{l} {\rm TLBIPERO2+NO_3 \rightarrow NO_2+.6~GLYOX+.4~MGLYOX} \\ {\rm +~HO_2+.2~C4MDIAL+.2~C5DICARB+.2~TLFUONE} \\ {\rm +~.2~BZFUONE+.2~MALDIAL} \end{array} $	KRO2NO3	Rickard and Pascoe $(2009)^*$
G47410	TrGAroC	TLBIPERO2 \rightarrow .6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	k1_R02s0R02	Rickard and Pascoe $(2009)^*$
347411	TrGAroCN	$TLEPOXMUC + NO_3 \rightarrow TLEMUCCO3 + HNO_3$	KNO3AL*2.75	Rickard and Pascoe (2009)
G47412	TrGAroC	$\begin{array}{l} {\rm TLEPOXMUC} + {\rm O}_3 \rightarrow {\rm EPXC4DIAL} + .125 \ {\rm CH}_3{\rm CHO} + \\ .695 \ {\rm CH}_3{\rm C}({\rm O}) + .57 \ {\rm CO} + .57 \ {\rm OH} + .125 \ {\rm HO}_2 + .1125 \\ {\rm CH}_3{\rm COCO}_2{\rm H} + .0675 \ {\rm MGLYOX} + .0675 \ {\rm H}_2{\rm O}_2 + .25 \ {\rm CO}_2 \end{array}$	5.00E-18	Rickard and Pascoe (2009)*
G47413	TrGAroC	TLEPOXMUC + OH \rightarrow .31 TLEMUCCO3 + .69 TLEMUCO2	7.99E-11	Rickard and Pascoe (2009)*
347414	TrGAroC	$C6H5CH2OOH + OH \rightarrow BENZAL + OH$	2.05E-11	Rickard and Pascoe (2009)
347415	TrGAroCN	$C6H5CH2NO3 + OH \rightarrow BENZAL + NO_2$	6.03E-12	Rickard and Pascoe (2009)
347416	TrGAroCN	$BENZAL + NO_3 \rightarrow C6H5CO3 + HNO_3$	2.40E-15	Rickard and Pascoe (2009)
347417	TrGAroC	$BENZAL + OH \rightarrow C6H5CO3$	5.9E-12*EXP(225./temp)	Rickard and Pascoe (2009)
G47418a	TrGAroC	$CRESO2 + HO_2 \rightarrow CRESOOH$	k_R02_H02(temp,7)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G47418b	TrGAroC	$\begin{array}{l} {\rm CRESO2 + HO_2 \rightarrow .68\ C5CO14OH + .68\ GLYOX + HO_2 \\ {\rm + .32\ PTLQONE + OH} \end{array}$	k_RO2_HO2(temp,7)*r_CHOHCH2O2_OH	Rickard and Pascoe (2009)*
G47419	TrGAroCN	CRESO2 + NO \rightarrow .68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + NO ₂	KR02N0	Rickard and Pascoe (2009)*
G47420	TrGAroCN	$\begin{array}{l} {\rm CRESO2+NO_3} \rightarrow .68 \ {\rm C5CO14OH} + .68 \ {\rm GLYOX} + {\rm HO_2} \\ {\rm + .32 \ PTLQONE} + {\rm NO_2} \end{array}$	KR02N03	Rickard and Pascoe $(2009)^\ast$
G47421	TrGAroC	CRESO2 \rightarrow .68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE	k1_R02ISOPD02	Rickard and Pascoe (2009)*

54

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47422a	TrGAroCN	$NCRESO2 + HO_2 \rightarrow NCRESOOH$	k_R02_H02(temp,7)*(1r_ CH0HCH202_0H)	Rickard and Pascoe (2009)
G47422b	TrGAroCN	$\rm NCRESO2 + HO_2 \rightarrow C5CO14OH + GLYOX + NO_2 + OH$	k_R02_H02(temp,7)*r_CH0HCH202_OH	Rickard and Pascoe $(2009)^\ast$
G47423	TrGAroCN	$NCRESO2 + NO \rightarrow C5CO14OH + GLYOX + NO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G47424	TrGAroCN	$NCRESO2 + NO_3 \rightarrow C5CO14OH + GLYOX + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47425	TrGAroCN	$NCRESO2 \rightarrow C5CO14OH + GLYOX + NO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G47426	TrGAroCN	$\text{TOL1O} + \text{NO}_2 \rightarrow \text{TOL1OHNO2}$	k_C6H50_N02	Rickard and Pascoe (2009), Platz et al. (1998)*
G47427	TrGAroC	$TOL1O + O_3 \rightarrow OXYL1O2$	k_C6H50_03	Rickard and Pascoe (2009), Tao and Li (1999)
G47428	TrGAroCN	$MCATECHOL + NO_3 \rightarrow MCATEC1O + HNO_3$	1.7E-10*1.0	Rickard and Pascoe (2009)
G47429	TrGAroC	$\begin{array}{l} \mathrm{MCATECHOL} + \mathrm{O}_3 \rightarrow \mathrm{MC3ODBCO2H} + \mathrm{HCOCO_2H} + \\ \mathrm{HO}_2 + \mathrm{OH} \end{array}$	2.8E-17	Rickard and Pascoe (2009)*
G47430	TrGAroC	$MCATECHOL + OH \rightarrow MCATEC1O$	2.0E-10*1.0	Rickard and Pascoe (2009)
G47431	TrGAroC	$TLBIPEROOH + OH \rightarrow TLOBIPEROH + OH$	9.64E-11	Rickard and Pascoe (2009)
G47432	TrGAroCN	$TLBIPERNO3 + OH \rightarrow TLOBIPEROH + NO_2$	7.16E-11	Rickard and Pascoe (2009)
G47433	TrGAroC	TLOBIPEROH + OH \rightarrow C5CO14O2 + GLYOX	7.99E-11	Rickard and Pascoe (2009)
G47434a	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow C615CO2O2 + CO_2 + OH$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)
G47434b	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow TLEMUCCO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G47434c	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow TLEMUCCO3H$	KAPH02*r_CO3_OOH	Rickard and Pascoe (2009)
G47435	TrGAroCN	$TLEMUCCO3 + NO \rightarrow C615CO2O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47436	TrGAroCN	$TLEMUCCO3 + NO_2 \rightarrow TLEMUCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G47437	TrGAroCN	$TLEMUCCO3 + NO_3 \rightarrow C615CO2O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G47438	TrGAroC	$TLEMUCCO3 \rightarrow C615CO2O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G47439a	TrGAroC	$\rm TLEMUCO2 + HO_2 \rightarrow TLEMUCOOH$	k_R02_H02(temp,7)*(1r_ CH0HCH202_OH-r_COCH202_OH)	Rickard and Pascoe (2009)
G47439b	TrGAroC	TLEMUCO2 + $HO_2 \rightarrow .5$ C3DIALO2 + .5 CO2H3CHO + .5 EPXC4DIAL + .5 MGLYOX + .5 HO_2 + OH	k_R02_H02(temp,7)*(r_CH0HCH202_ OH+r_C0CH202_OH)	Rickard and Pascoe (2009)*
G47440a	TrGAroCN	$\rm TLEMUCO2 + NO \rightarrow TLEMUCNO3$	<pre>KR02N0*alpha_AN(11,2,1,0,0, temp,cair)</pre>	Rickard and Pascoe (2009)
G47440b	TrGAroCN	TLEMUCO2 + NO \rightarrow .5 C3DIALO2 + .5 CO2H3CHO + .5 EPXC4DIAL + .5 MGLYOX + .5 HO ₂ + NO ₂	<pre>KR02N0*(1alpha_AN(11,2,1,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47441	TrGAroCN	TLEMUCO2 + NO ₃ \rightarrow .5 C3DIALO2 + .5 CO2H3CHO +	KR02N03	Rickard and Pascoe (2009) [*]
		.5 EPXC4DIAL + .5 MGLYOX + .5 HO ₂ + NO ₂		
G47442	TrGAroC	TLEMUCO2 \rightarrow .5 C3DIALO2 + .5 CO2H3CHO + .5	k1_R02s0R02	Rickard and Pascoe (2009) [*]
		$EPXC4DIAL + .5 MGLYOX + .5 HO_2$		
G47443a	TrGAroC	$C6H5CO3 + HO_2 \rightarrow C6H5CO3H$	1.1E-11*EXP(364./temp)*0.65	Roth et al. (2010)
G47443b	TrGAroC	$C6H5CO3 + HO_2 \rightarrow C6H5O2 + CO_2 + OH$	1.1E-11*EXP(364./temp)*0.20	Roth et al. (2010)
G47443c	TrGAroC	$C6H5CO3 + HO_2 \rightarrow PHCOOH + O_3$	1.1E-11*EXP(364./temp)*0.15	Roth et al. (2010)
G47444	TrGAroCN	$C6H5CO3 + NO \rightarrow C6H5O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
347445	TrGAroCN	$C6H5CO3 + NO_2 \rightarrow PBZN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
347446	TrGAroCN	$C6H5CO3 + NO_3 \rightarrow C6H5O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
347447	TrGAroC	$C6H5CO3 \rightarrow C6H5O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
347448	TrGAroC	$CRESOOH + OH \rightarrow CRESO2$	1.15E-10	Rickard and Pascoe (2009)
G47449	TrGAroCN	$NCRESOOH + OH \rightarrow NCRESO2$	1.07E-10	Rickard and Pascoe (2009)
G47450	TrGAroCN	$TOL1OHNO2 + NO_3 \rightarrow NCRES1O + HNO_3$	3.13E-13*1.0	Rickard and Pascoe (2009)
347451	TrGAroCN	$TOL1OHNO2 + OH \rightarrow NCRES1O$	2.8E-12	Rickard and Pascoe (2009)
G47452	TrGAroC	$OXYL1O2 + HO_2 \rightarrow OXYL1OOH$	k_R02_H02(temp,7)	Rickard and Pascoe (2009)
347453	TrGAroCN	$OXYL1O2 + NO \rightarrow TOL1O + NO_2$	KR02N0	Rickard and Pascoe (2009)
G47454	TrGAroCN	$OXYL1O2 + NO_2 \rightarrow TOL1O + NO_3$	k_C6H502_N02	Jagiella and Zabel (2007)*
G47455	TrGAroCN	$OXYL1O2 + NO_3 \rightarrow TOL1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47456	TrGAroC	$OXYL1O2 \rightarrow TOL1O$	k1_R02sR02	Rickard and Pascoe (2009)
G47457	TrGAroCN	$MCATEC1O + NO_2 \rightarrow MNCATECH$	k_C6H50_N02	Rickard and Pascoe (2009), Plat
				et al. (1998)
G47458	TrGAroC	$MCATEC1O + O_3 \rightarrow MCATEC1O2$	k_C6H50_03	Rickard and Pascoe (2009), Ta
				and Li (1999)
347459	TrGAroC	$TLEMUCCO2H + OH \rightarrow C615CO2O2 + CO_2$	5.98E-11	Rickard and Pascoe (2009)
347460	TrGAroC	$TLEMUCCO3H + OH \rightarrow TLEMUCCO3$	6.29E-11	Rickard and Pascoe (2009)
G47461	TrGAroCN	TLEMUCPAN + $OH \rightarrow C5DICARB + CO + CO_2 + NO_2$	5.96E-11	Rickard and Pascoe (2009)
347462	TrGAroCN	TLEMUCPAN \rightarrow TLEMUCCO3 + NO ₂	k_PAN_M	Rickard and Pascoe (2009)
347463	TrGAroC	$TLEMUCOOH + OH \rightarrow TLEMUCCO + OH$	7.04E-11	Rickard and Pascoe (2009)
347464	TrGAroCN	$TLEMUCNO3 + OH \rightarrow TLEMUCCO + NO_2$	3.06E-11	Rickard and Pascoe (2009)
347465	TrGAroC	$TLEMUCCO + OH \rightarrow CH_3C(O) + EPXC4DIAL + CO$	4.06E-11	Rickard and Pascoe (2009)
347466	TrGAroC	$C6H5CO3H + OH \rightarrow C6H5CO3$	4.66E-12	Rickard and Pascoe (2009)
347467	TrGAroC	$PHCOOH + OH \rightarrow C6H5O2 + CO_2$	1.10E-12	Rickard and Pascoe (2009)
G47468	TrGAroCN	$PBZN + OH \rightarrow C6H5OOH + CO + NO_2$	1.06E-12	Rickard and Pascoe (2009)
G47469	TrGAroCN	$PBZN \rightarrow C6H5CO3 + NO_2$	k PAN M*0.67	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
π G47470	TrGAroCN	$PTLQONE + NO_3 \rightarrow NPTLQO2$	1.00E-12	Rickard and Pascoe (2009)
G47471	TrGAroC	$PTLQONE + OH \rightarrow PTLQO2$	2.3E-11	Rickard and Pascoe (2009)
G47472	TrGAroCN	$NCRESIO + NO_2 \rightarrow DNCRES$	k_C6H50_N02	Rickard and Pascoe (2009), Platz et al. (1998)
G47473	TrGAroCN	$NCRES1O + O_3 \rightarrow NCRES1O2$	k_C6H50_03	Rickard and Pascoe (2009), Tao and Li (1999)
G47474	TrGAroC	$OXYL1OOH + OH \rightarrow OXYL1O2$	4.65E-11	Rickard and Pascoe (2009)
G47475	TrGAroCN	$MNCATECH + NO_3 \rightarrow MNNCATECO2$	5.03E-12	Rickard and Pascoe (2009)
G47476	TrGAroCN	$MNCATECH + OH \rightarrow MNCATECO2$	6.83E-12	Rickard and Pascoe (2009)
G47477	TrGAroC	$MCATEC1O2 + HO_2 \rightarrow MCATEC1OOH$	k_R02_H02(temp,7)	Rickard and Pascoe (2009)
G47478	TrGAroCN	$MCATEC1O2 + NO \rightarrow MCATEC1O + NO_2$	KR02N0	Rickard and Pascoe (2009)
G47479	TrGAroCN	$MCATEC1O2 + NO_2 \rightarrow MCATEC1O + NO_3$	k_C6H502_N02	Jagiella and Zabel (2007)*
G47480	TrGAroCN	$MCATEC1O2 + NO_3 \rightarrow MCATEC1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47481	TrGAroC	$MCATEC1O2 \rightarrow MCATEC1O$	k1_R02s0R02	Rickard and Pascoe (2009)
G47482a	TrGAroCN	$\rm NPTLQO2 + HO_2 \rightarrow \rm NPTLQOOH$	k_R02_H02(temp,7)*(1r_COCH202_ OH)	Rickard and Pascoe (2009)
G47482b	TrGAroCN	$NPTLQO2 + HO_2 \rightarrow C7CO4DB + NO_2 + OH$	k_R02_H02(temp,7)*r_COCH202_OH	Rickard and Pascoe (2009)*
G47483	TrGAroCN	$NPTLQO2 + NO \rightarrow C7CO4DB + NO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G47484	TrGAroCN	$NPTLQO2 + NO_3 \rightarrow C7CO4DB + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47485	TrGAroCN	$NPTLQO2 \rightarrow C7CO4DB + NO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G47486a	TrGAroC	$PTLQO2 + HO_2 \rightarrow PTLQOOH$	k_R02_H02(temp,7)*(1r_ CH0HCH202_0H-r_C0CH202_0H)	Rickard and Pascoe (2009)
G47486b	TrGAroC	$\rm PTLQO2 + HO_2 \rightarrow C6CO2OHCO3 + OH$	k_R02_H02(temp,7)*(r_CH0HCH202_ OH+r_COCH202_OH)	Rickard and Pascoe $(2009)^*$
G47487	TrGAroCN	$PTLQO2 + NO \rightarrow C6CO2OHCO3 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G47488	TrGAroCN	$PTLQO2 + NO_3 \rightarrow C6CO2OHCO3 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47489	TrGAroC	$PTLQO2 \rightarrow C6CO2OHCO3$	k1_R02s0R02	Rickard and Pascoe (2009)*
G47490	TrGAroCN	$DNCRES + NO_3 \rightarrow NDNCRESO2$	7.83E-15	Rickard and Pascoe (2009)
G47491	TrGAroCN	$DNCRES + OH \rightarrow DNCRESO2$	5.10E-14	Rickard and Pascoe (2009)
G47492	TrGAroCN	$NCRES1O2 + HO_2 \rightarrow NCRES1OOH$	k_R02_H02(temp,7)	Rickard and Pascoe (2009)
G47493	TrGAroCN	$NCRES1O2 + NO \rightarrow NCRES1O + NO_2$	KR02N0	Rickard and Pascoe (2009)
G47494	TrGAroCN	$NCRES1O2 + NO_2 \rightarrow NCRES1O + NO_3$	k_C6H502_N02	Jagiella and Zabel (2007)*
G47495	TrGAroCN	$NCRES1O2 + NO_3 \rightarrow NCRES1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47496	TrGAroCN	$NCRES1O2 \rightarrow NCRES1O$	k1_R02sR02	Rickard and Pascoe (2009)

#	labels	reaction	rate coefficient	reference
G47497a	TrGAroCN	$\mathrm{MNNCATECO2} + \mathrm{HO}_2 \rightarrow \mathrm{MNNCATCOOH}$	k_R02_H02(temp,7)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G47497b	TrGAroCN	$\begin{array}{l} \mbox{MNNCATECO2} + \mbox{HO}_2 \rightarrow \mbox{NC4MDCO2HN} + \mbox{HCOCO}_2\mbox{H} \\ + \mbox{NO}_2 + \mbox{OH} \end{array}$	k_R02_H02(temp,7)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*
G47498	TrGAroCN	$\begin{array}{l} \text{MNNCATECO2} + \text{NO} \rightarrow \text{NC4MDCO2HN} + \text{HCOCO}_{2}\text{H} \\ + \text{NO}_{2} + \text{NO}_{2} \end{array}$	KR02N0	Rickard and Pascoe $(2009)^*$
G47499	TrGAroCN	$\label{eq:MNNCATECO2} \begin{split} \text{MNNCATECO2} + \text{NO}_3 \rightarrow \text{NC4MDCO2HN} + \text{HCOCO}_2\text{H} \\ + \text{NO}_2 + \text{NO}_2 \end{split}$	KR02N03	Rickard and Pascoe (2009)*
G47500	TrGAroCN	$MNNCATECO2 \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009)
G47501a	TrGAroCN	$MNCATECO2 + HO_2 \rightarrow MNCATECOOH$	k_R02_H02(temp,7)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G47501b	TrGAroCN	$\begin{array}{l} {\rm MNCATECO2} \ + \ {\rm HO}_2 \ \rightarrow \ {\rm NC4MDCO2HN} \ + \ {\rm HCOCO_2H} \\ {\rm + \ HO}_2 \ + \ {\rm OH} \end{array}$	k_R02_H02(temp,7)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*
G47502	TrGAroCN	$\begin{array}{l} {\rm MNCATECO2} + {\rm NO} \rightarrow {\rm NC4MDCO2HN} + {\rm HCOCO_2H} + \\ {\rm HO_2} + {\rm NO_2} \end{array}$	KR02N0	Rickard and Pascoe $(2009)^*$
G47503	TrGAroCN	$\begin{array}{l} \text{MNCATECO2} + \text{NO}_3 \rightarrow \text{NC4MDCO2HN} + \text{HCOCO}_2\text{H} \\ + \text{HO}_2 + \text{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G47504	TrGAroCN	$MNCATECO2 \rightarrow NC4MDCO2HN + HCOCO_2H + HO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G47505	TrGAroC	$MCATEC1OOH + OH \rightarrow MCATEC1O2$	2.05E-10	Rickard and Pascoe (2009)
G47506	TrGAroCN	$NPTLQOOH + OH \rightarrow NPTLQO2$	8.56E-11	Rickard and Pascoe (2009)
G47507	TrGAroC	$PTLQOOH + OH \rightarrow PTLQCO + OH$	1.42E-10	Rickard and Pascoe (2009)
G47508	TrGAroC	$PTLQCO + OH \rightarrow C6CO2OHCO3$	7.95E-11	Rickard and Pascoe (2009)
G47509a	TrGAroCN	$\rm NDNCRESO2 + HO_2 \rightarrow \rm NDNCRESOOH$	k_R02_H02(temp,7)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G47509b	TrGAroCN	$\begin{array}{l} \text{NDNCRESO2} + \text{HO}_2 \rightarrow \text{NC4MDCO2HN} + \text{HNO}_3 + 2 \\ \text{CO} + \text{NO}_2 + \text{OH} \end{array}$	k_R02_H02(temp,7)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*
G47510	TrGAroCN	$\label{eq:NDNCRESO2} \begin{split} &\text{NDNCRESO2} + \text{NO} \rightarrow \text{NC4MDCO2HN} + \text{HNO}_3 + 2 \text{ CO} \\ &+ \text{NO}_2 + \text{NO}_2 \end{split}$	KR02N0	Rickard and Pascoe $(2009)^*$
G47511	TrGAroCN	NDNCRESO2 + NO ₃ \rightarrow NC4MDCO2HN + HNO ₃ + 2 CO + NO ₂ + NO ₂	KR02N03	Rickard and Pascoe $(2009)^\ast$
G47512	TrGAroCN	$NDNCRESO2 \rightarrow NC4MDCO2HN + HNO_3 + 2 CO + NO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G47513a	TrGAroCN	$DNCRESO2 + HO_2 \rightarrow DNCRESOOH$	k_R02_H02(temp,7)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G47513b	TrGAroCN	$\rm DNCRESO2 + HO_2 \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2 + OH$	k_R02_H02(temp,7)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*

58

Table 1: Gas phase reactions $(\dots$ continued)

#	labels	reaction	rate coefficient	reference
G47514	TrGAroCN	$DNCRESO2 + NO \rightarrow NC4MDCO2HN + HCOCO_2H +$	KR02N0	Rickard and Pascoe (2009) [*]
		$NO_2 + NO_2$		
G47515	TrGAroCN	$DNCRESO2 + NO_3 \rightarrow NC4MDCO2HN + HCOCO_2H +$	KR02N03	Rickard and Pascoe (2009) [*]
		$NO_2 + NO_2$		
G47516	TrGAroCN	$DNCRESO2 \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G47517	TrGAroCN	$NCRES1OOH + OH \rightarrow NCRES1O2$	1.53E-12	Rickard and Pascoe (2009)
G47518	TrGAroCN	$MNNCATCOOH + OH \rightarrow MNNCATECO2$	k_ROOHRO	Rickard and Pascoe (2009)
G47519	TrGAroCN	$MNCATECOOH + OH \rightarrow MNCATECO2$	k_ROOHRO	Rickard and Pascoe (2009)
G47520	TrGAroC	$C7CO4DB + OH \rightarrow CO + CO + CH_3C(O) +$	9.58E-11	Rickard and Pascoe (2009)
		HCOCOCHO		
G47521a	TrGAroC	$C6CO2OHCO3 + HO_2 \rightarrow C5134CO2OH + HO_2 + CO +$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)
		$CO_2 + OH$		
G47521b	TrGAroC	$C6CO2OHCO3 + HO_2 \rightarrow C6COOHCO3H$	KAPH02*(r_CO3_00H+r_CO3_03)	Rickard and Pascoe (2009)
G47522	TrGAroCN	$C6CO2OHCO3 + NO \rightarrow C5134CO2OH + HO_2 + CO +$	KAPNO	Rickard and Pascoe (2009)
		$CO_2 + NO_2$		
G47523	TrGAroCN	$C6CO2OHCO3 + NO_2 \rightarrow C6CO2OHPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G47524	TrGAroCN	$C6CO2OHCO3 + NO_3 \rightarrow C5134CO2OH + HO_2 + CO +$	KR02N03*1.74	Rickard and Pascoe (2009)
		$CO_2 + NO_2$		
G47525	TrGAroC	$C6CO2OHCO3 \rightarrow C5134CO2OH + HO_2 + CO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G47526	TrGAroCN	$NDNCRESOOH + OH \rightarrow NDNCRESO2$	k_ROOHRO	Rickard and Pascoe (2009)
G47527	TrGAroCN	$DNCRESOOH + OH \rightarrow DNCRESO2$	k_ROOHRO	Rickard and Pascoe (2009)
G47528	TrGAroC	$C6COOHCO3H + OH \rightarrow C6CO2OHCO3$	9.29E-11	Rickard and Pascoe (2009)
G47529	TrGAroCN	$C6CO2OHPAN + OH \rightarrow C5134CO2OH + CO + CO +$	8.96E-11	Rickard and Pascoe (2009)
		NO ₂		
G47530	TrGAroCN	$C6CO2OHPAN \rightarrow C6CO2OHCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G48200	TrGTerC	$C85O2 \rightarrow C86O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48201	TrGTerC	$C85O2 + HO_2 \rightarrow C85OOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48202	TrGTerCN	$C85O2 + NO \rightarrow C86O2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G48203	TrGTerC	$C85OOH + OH \rightarrow C85O2$	1.29E-11	Rickard and Pascoe (2009)
G48204	TrGTerC	$C86O2 \rightarrow C511O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
G48205	TrGTerCN	$C86O2 + NO \rightarrow C511O2 + CH_3COCH_3 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G48206	TrGTerC	$C86O2 + HO_2 \rightarrow C86OOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48207	TrGTerC	$C86OOH + OH \rightarrow C86O2$	3.45E-11	Rickard and Pascoe (2009)
G48208	TrGTerC	$C811O2 \rightarrow C812O2$	k1_R02pR02	Rickard and Pascoe (2009)
G48209	TrGTerC	$C811O2 + HO_2 \rightarrow 8 LCARBON$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)

Table 1:	Gas phase reacti	ions (continued)	
	one phase react	(in continued)	

#	labels	reaction	rate coefficient	reference
G48210	TrGTerCN	$C811O2 + NO \rightarrow C812O2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G48211	TrGTerC	$C812O2 \rightarrow C813O2$	k1_R02t0R02	Rickard and Pascoe (2009)
G48212	TrGTerCN	$C812O2 + NO \rightarrow C813O2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G48213	TrGTerC	$C812O2 + HO_2 \rightarrow C812OOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48214	TrGTerC	$C812OOH + OH \rightarrow C812O2$	1.09E-11	Rickard and Pascoe (2009)
G48215	TrGTerC	$C813O2 \rightarrow CH_3COCH_3 + C512O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48216	TrGTerCN	$C813O2 + NO \rightarrow CH_3COCH_3 + C512O2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G48217	TrGTerC	$C813O2 + HO_2 \rightarrow C813OOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48218	TrGTerC	$C813OOH + OH \rightarrow C813O2$	1.86E-11	Rickard and Pascoe (2009)
G48219	TrGTerCN	$C721CHO + NO_3 \rightarrow C721CO3 + HNO_3$	KNO3AL*8.5	Rickard and Pascoe (2009)
G48220	TrGTerC	$C721CHO + OH \rightarrow C721CO3$	2.63E-11	Rickard and Pascoe (2009)
G48221a	TrGTerC	$C721CO3 + HO_2 \rightarrow C721CO3H$	KAPH02*r_CO3_00H	Rickard and Pascoe (2009)
G48221b	TrGTerC	$C721CO3 + HO_2 \rightarrow C721O2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G48221c	TrGTerC	$C721CO3 + HO_2 \rightarrow NORPINIC + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G48222	TrGTerCN	$C721CO3 + NO \rightarrow C721O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G48223	TrGTerCN	$C721CO3 + NO_2 \rightarrow C721PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G48224	TrGTerCN	$C721CO3 + NO_3 \rightarrow C721O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G48225	TrGTerC	$C721CO3 \rightarrow C721O2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G48226	TrGTerC	$C721CO3 \rightarrow NORPINIC$	k1_R02RC03*0.1	Sander et al. (2019)
G48227	TrGTerC	$C721CO3H + OH \rightarrow C721CO3$	9.65E-12	Rickard and Pascoe (2009)
G48228	TrGTerC	$NORPINIC + OH \rightarrow C721O2 + CO_2$	6.57E-12	Rickard and Pascoe (2009)
G48229	TrGTerCN	$C721PAN + OH \rightarrow C721OOH + CO + NO_2$	2.96E-12	Rickard and Pascoe (2009)
G48230	TrGTerCN	$C721PAN \rightarrow C721CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G48231	TrGTerC	$C8BC + OH \rightarrow C8BCO2$	3.04E-12	Rickard and Pascoe (2009)
G48232	TrGTerC	$C8BCO2 + HO_2 \rightarrow C8BCOOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48233a	TrGTerCN	$\rm C8BCO2 + NO \rightarrow C89O2 + NO_2$	<pre>KR02N0*(1alpha_AN(8,2,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G48233b	TrGTerCN	$C8BCO2 + NO \rightarrow C8BCNO3$	<pre>KR02N0*alpha_AN(8,2,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G48234	TrGTerC	$C8BCO2 \rightarrow C89O2$	k1_R02sR02	Rickard and Pascoe (2009)
G48235	TrGTerC	$C8BCOOH + OH \rightarrow C8BCCO + OH$	1.62E-11	Rickard and Pascoe (2009)
G48236	TrGTerCN	$C8BCNO3 + OH \rightarrow C8BCCO + NO_2$	1.84E-12	Rickard and Pascoe (2009)
G48237	TrGTerC	$C8BCCO + OH \rightarrow C89O2$	3.94E-12	Rickard and Pascoe (2009)
G48238	TrGTerC	$C89O2 + HO_2 \rightarrow C89OOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G48239a	TrGTerCN	$C89O2 + NO \rightarrow C810O2 + NO_2$	<pre>KR02N0*(1alpha_AN(7,2,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G48239b	TrGTerCN	$C89O2 + NO \rightarrow C89NO3$	<pre>KR02N0*alpha_AN(7,2,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G48240	TrGTerCN	$C89O2 + NO_3 \rightarrow C810O2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G48241	TrGTerC	$C89O2 \rightarrow C810O2$	k1_RO2tRO2	Rickard and Pascoe (2009)
G48242	TrGTerC	$C89OOH + OH \rightarrow C89O2$	3.61E-11	Rickard and Pascoe (2009)
G48243	TrGTerCN	$C89NO3 + OH \rightarrow CH_3COCH_3 + CO13C4CHO + NO_2$	2.56E-11	Rickard and Pascoe (2009)
G48244	TrGTerC	$C810O2 + HO_2 \rightarrow C810OOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48245a	TrGTerCN	$\rm C810O2 + \rm NO \rightarrow \rm CH_3\rm COCH_3 + \rm C514O2 + \rm NO_2$	<pre>KR02N0*(1alpha_AN(10,3,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G48245b	TrGTerCN	$\rm C810O2+NO\rightarrow C810NO3$	<pre>KR02N0*alpha_AN(10,3,0,0,0, temp,cair)</pre>	Rickard and Pascoe (2009)
G48246	TrGTerCN	$C810O2 + NO_3 \rightarrow CH_3COCH_3 + C514O2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G48247	TrGTerC	$C810O2 \rightarrow CH_3COCH_3 + C514O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48248	TrGTerC	$C810OOH + OH \rightarrow C810O2$	8.35E-11	Rickard and Pascoe (2009)
G48249	TrGTerCN	$C810NO3 + OH \rightarrow CH_3COCH_3 + CO13C4CHO + NO_2$	4.96E-11	Rickard and Pascoe (2009)
G48400a	TrGAroC	$LXYL + OH \rightarrow TLEPOXMUC + HO_2 + LCARBON$	0.401E-11	Rickard and Pascoe (2009)*
G48400b	TrGAroC	$LXYL + OH \rightarrow C6H5CH2O2 + LCARBON$	0.101E-11	Rickard and Pascoe (2009)*
G48400c	TrGAroC	$LXYL + OH \rightarrow CRESOL + LCARBON$	0.261E-11	Rickard and Pascoe (2009)*
G48400d	TrGAroC	$LXYL + OH \rightarrow TLBIPERO2 + HO_2 + LCARBON$	0.932E-11	Rickard and Pascoe (2009)*
G48401	TrGAroCN	$LXYL + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + LCARBON$	3.9E-16	Rickard and Pascoe (2009)*
G48402	TrGAroC	EBENZ + OH \rightarrow .10 TLEPOXMUC + .07 C6H5CH2O2 + .18 CRESOL + .65 TLBIPERO2 + .28 HO ₂ + LCARBON	7.00E-12	Rickard and Pascoe (2009)*
G48403	TrGAroCN	$EBENZ + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + LCARBON$	1.20E-16	Rickard and Pascoe (2009)*
G48404	TrGAroCN	$STYRENE + NO_3 \rightarrow NSTYRENO2$	1.50E-12	Rickard and Pascoe (2009)
G48405	TrGAroC	STYRENE + $O_3 \rightarrow .545$ HCHO + .1 BENZENE + .28 C6H5O2 + .56 CO + .36 OH + .28 HO ₂ + .075 PHCOOH + .545 BENZAL + .09 H ₂ O ₂ + .075 HCOOH + .2 CO ₂	1.70E-17	Rickard and Pascoe (2009)*
G48406	TrGAroC	$STYRENE + OH \rightarrow STYRENO2$	5.80E-11	Rickard and Pascoe (2009)
G48407	TrGAroCN	$NSTYRENO2 + HO_2 \rightarrow NSTYRENOOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48408	TrGAroCN	$NSTYRENO2 + NO \rightarrow NO_2 + NO_2 + HCHO + BENZAL$	KR02N0	Rickard and Pascoe (2009)*
G48409	TrGAroCN	NSTYRENO2 + NO ₃ \rightarrow NO ₂ + NO ₂ + HCHO + BENZAL	KR02N03	Rickard and Pascoe (2009)*
G48410	TrGAroCN	$NSTYRENO2 \rightarrow NO_2 + HCHO + BENZAL$	k1_R02sR02	Rickard and Pascoe (2009)*

Table 1	1: G	las phase	reactions ((continued)	
---------	------	-----------	-------------	---	------------	--

#	labels	reaction	rate coefficient	reference
G48411	TrGAroCN	$NSTYRENOOH + OH \rightarrow NSTYRENO2$	6.16E-11	Rickard and Pascoe (2009)
G48412a	TrGAroC	$\rm STYRENO2 + HO_2 \rightarrow STYRENOOH$	k_R02_H02(temp,8)*(1r_ CH0HCH202_OH)	Rickard and Pascoe (2009)
G48412b	TrGAroC	$STYRENO2 + HO_2 \rightarrow HO_2 + OH + HCHO + BENZAL$	k_RO2_HO2(temp,8)*r_CHOHCH2O2_OH	Rickard and Pascoe (2009)*
G48413	TrGAroCN	$STYRENO2 + NO \rightarrow NO_2 + HO_2 + HCHO + BENZAL$	KR02N0	Rickard and Pascoe (2009)*
G48414	TrGAroCN	$STYRENO2 + NO_3 \rightarrow NO_2 + HO_2 + HCHO + BENZAL$	KR02N03	Rickard and Pascoe (2009)*
G48415	TrGAroC	$STYRENO2 \rightarrow HO_2 + HCHO + BENZAL$	k1_R02sR02	Rickard and Pascoe (2009)*
G48416	TrGAroC	$STYRENOOH + OH \rightarrow STYRENO2$	6.16E-11	Rickard and Pascoe (2009)
G49200	TrGTerC	$C96O2 \rightarrow C97O2$	k1_R02pR02	Rickard and Pascoe (2009)
349201	TrGTerC	$C96O2 + HO_2 \rightarrow C96OOH$	k_R02_H02(temp,9)	Rickard and Pascoe (2009)
G49202a	TrGTerCN	$\rm C96O2 + \rm NO \rightarrow \rm C97O2 + \rm NO_2$	<pre>KR02NO*(1alpha_AN(10,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G49202b	TrGTerCN	$C96O2 + NO \rightarrow C96NO3$	KRO2NO*alpha_AN(10,1,0,0,0, temp,cair)	Rickard and Pascoe (2009)
349203	TrGTerCN	$C96NO3 + OH \rightarrow NORPINAL + NO_2$	2.88E-12	Rickard and Pascoe (2009)
349204a	TrGTerC	$C96OOH + OH \rightarrow C96O2$	k_ROOHRO	Rickard and Pascoe (2009)
G49205b	TrGTerC	$C96OOH + OH \rightarrow NORPINAL + OH$	1.30E-11	Rickard and Pascoe (2009)
G49206	TrGTerC	$C97O2 \rightarrow C98O2$	k1_R02tR02	Rickard and Pascoe (2009)
G49207	TrGTerCN	$C97O2 + NO \rightarrow C98O2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G49208a	TrGTerC	$C97O2 + HO_2 \rightarrow C97OOH$	k_R02_H02(temp,9)*r_COCH202_00H	Rickard and Pascoe (2009) Sander et al. (2019)
G49208b	TrGTerC	$\rm C97O2 + HO_2 \rightarrow C98O2 + OH$	k_R02_H02(temp,9)*r_COCH202_OH	Rickard and Pascoe (2009) Sander et al. (2019)
G49209	TrGTerC	$C97OOH + OH \rightarrow C97O2$	1.05E-11	Rickard and Pascoe (2009)
349210	TrGTerC	$C98O2 \rightarrow C614O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
G49211a	TrGTerCN	$\rm C98O2 + NO \rightarrow C614O2 + CH_3COCH_3 + NO_2$	<pre>KRO2NO*(1alpha_AN(12,3,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G49211b	TrGTerCN	C98O2 + NO \rightarrow 9 LCARBON + LNITROGEN	<pre>KRO2NO*alpha_AN(12,3,0,0,0, temp,cair)</pre>	Rickard and Pascoe (2009)
349212	TrGTerC	$C98O2 + HO_2 \rightarrow C98OOH$	k_R02_H02(temp,9)	Rickard and Pascoe (2009)
49213	TrGTerC	$C98OOH + OH \rightarrow C98O2$	2.05E-11	Rickard and Pascoe (2009)
349214	TrGTerC	$NORPINAL + OH \rightarrow C85CO3$	2.64E-11	Rickard and Pascoe (2009)
349215	TrGTerCN	$NORPINAL + NO_3 \rightarrow C85CO3 + HNO_3$	KNO3AL*8.5	Rickard and Pascoe (2009)
G49216	TrGTerC	$C85CO3 \rightarrow C85O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G49217	TrGTerCN	$C85CO3 + NO \rightarrow C85O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)

#	labels	reaction	rate coefficient	reference
G49218	TrGTerCN	$C85CO3 + NO_2 \rightarrow C9PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49219a	TrGTerC	$C85CO3 + HO_2 \rightarrow C85CO3H$	KAPH02*(r_CO3_00H+r_CO3_03)	Rickard and Pascoe (2009)
G49219b	TrGTerC	$C85CO3 + HO_2 \rightarrow C85O2 + CO_2 + OH$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)
G49220	TrGTerCN	$C9PAN2 \rightarrow C85CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49221	TrGTerCN	$C9PAN2 + OH \rightarrow C85OOH + CO + NO_2$	6.60E-12	Rickard and Pascoe (2009)
49222	TrGTerC	$C85CO3H + OH \rightarrow C85CO3$	1.02E-11	Rickard and Pascoe (2009)
349223a	TrGTerC	$C89CO3 \rightarrow .8 \ C811CO3 + .2 \ C89O2 + .2 \ CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
49223b	TrGTerC	$C89CO3 \rightarrow C89CO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G49224a	TrGTerC	$C89CO3 + HO_2 \rightarrow C89CO3H$	KAPH02*r_CO3_OOH	Rickard and Pascoe (2009)
349224b	TrGTerC	$C89CO3 + HO_2 \rightarrow C89CO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G49224c	TrGTerC	$\rm C89CO3 + HO_2 \rightarrow .80\ C811CO3 + .20\ C89O2 + .2\ CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
349225	TrGTerCN	$C89CO3 + NO_2 \rightarrow C89PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49226	TrGTerCN	C89CO3 + NO \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO ₂ + NO ₂	KAPNO	Rickard and Pascoe (2009)
G49227	TrGTerC	$C89CO2H + OH \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2$	2.69E-11	Rickard and Pascoe (2009)
349228	TrGTerC	$C89CO3H + OH \rightarrow C89CO3$	3.00E-11	Rickard and Pascoe (2009)
G49229	TrGTerCN	$C89PAN \rightarrow C89CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49230	TrGTerCN	$\label{eq:cspPAN} \begin{array}{l} {\rm C89PAN} + {\rm OH} \rightarrow {\rm CH_3COCH_3} + {\rm C013C4CHO} + {\rm CO} + \\ {\rm NO_2} \end{array}$	2.52E-11	Rickard and Pascoe (2009)
G49231a	TrGTerC	$C811CO3 \rightarrow C811O2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G49231b	TrGTerC	$C811CO3 \rightarrow PINIC$	k1_R02RC03*0.1	Sander et al. (2019)
G49232a	TrGTerC	$C811CO3 + HO_2 \rightarrow C811CO3H$	KAPH02*r_CO3_OOH	Rickard and Pascoe (2009)
G49232b	TrGTerC	$C811CO3 + HO_2 \rightarrow PINIC + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G49232c	TrGTerC	$C811CO3 + HO_2 \rightarrow C811O2 + CO_2 + OH$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)
G49233	TrGTerCN	$C811CO3 + NO \rightarrow C811O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G49234	TrGTerCN	$C811CO3 + NO_2 \rightarrow C811PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49235	TrGTerC	$PINIC + OH \rightarrow C811O2 + CO_2$	7.29E-12	Rickard and Pascoe (2009)
349236	TrGTerC	NOPINONE + OH \rightarrow NOPINDO2	1.55E-11	Capouet et al. (2008), Rickard and Pascoe (2009)
349237a	TrGTerC	$NOPINDO2 + HO_2 \rightarrow NOPINDOOH$	k_R02_H02(temp,9)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
349237b	TrGTerC	$\mathrm{NOPINDO2} + \mathrm{HO}_2 \rightarrow \mathrm{C89CO3} + \mathrm{OH}$	k_R02_H02(temp,9)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G49238	TrGTerCN	$NOPINDO2 + NO \rightarrow C89CO3 + NO_2$	KR02N0	Rickard and Pascoe (2009)*

#	labels	reaction	rate coefficient	reference
G49239	TrGTerC	$NOPINDO2 \rightarrow C89CO3$	k1_R02p0R02	Rickard and Pascoe (2009)
G49240	TrGTerC	$NOPINDOOH \rightarrow NOPINDCO$	2.63E-11	Rickard and Pascoe (2009)
G49241	TrGTerC	$NOPINDCO + OH \rightarrow C89CO3$	3.07E-12	Rickard and Pascoe (2009)
G49242	TrGTerC	$NOPINOO \rightarrow NOPINONE + H_2O_2$	6.00E-18*c(ind_H20)	Rickard and Pascoe (2009)
G49243	TrGTerC	$NOPINOO + CO \rightarrow NOPINONE + CO_2$	1.2E-15	Rickard and Pascoe (2009)
G49244	TrGTerCN	$NOPINOO + NO \rightarrow NOPINONE + NO_2$	1.E-14	Rickard and Pascoe (2009)
G49245	TrGTerCN	$NOPINOO + NO_2 \rightarrow NOPINONE + NO_3$	1.E-15	Rickard and Pascoe (2009)
G49246	TrGTerC	$\mathrm{NORPINENOL} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{C86O2}$	k_CH2CH0H_0H_HC00H	Sander et al. (2019), So et al. (2014)*
G49247	TrGTerC	$\mathrm{NORPINENOL} + \mathrm{HCOOH} \rightarrow \mathrm{NORPINAL} + \mathrm{HCOOH}$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010)*
G49248	TrGTerC	$\mathrm{NORPINAL} + \mathrm{HCOOH} \rightarrow \mathrm{NORPINENOL} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G49249	TrGTerC	$C811CO3H + OH \rightarrow C811CO3$	1.04E-11	Rickard and Pascoe (2009)
G49250	TrGTerCN	$C811PAN \rightarrow C811CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49251	TrGTerCN	$C811PAN + OH \rightarrow C721CHO + CO + NO_2$	6.77E-12	Rickard and Pascoe (2009)
G49400a	TrGAroC	$LTMB + OH \rightarrow TLEPOXMUC + HO_2 + 2 LCARBON$	0.827E-11	Rickard and Pascoe (2009)*
G49400b	TrGAroC	$LTMB + OH \rightarrow C6H5CH2O2 + 2 LCARBON$	0.189E-11	Rickard and Pascoe (2009)*
G49400c	TrGAroC	$LTMB + OH \rightarrow CRESOL + 2 LCARBON$	0.141E-11	Rickard and Pascoe (2009)*
G49400d	TrGAroC	$LTMB + OH \rightarrow TLBIPERO2 + HO_2 + 2 LCARBON$	2.917E-11	Rickard and Pascoe (2009)*
G49401	TrGAroCN	$LTMB + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + 2 LCARBON$	1.52E-15	Rickard and Pascoe (2009)*
G40200	TrGTerC	APINENE + OH \rightarrow .75 LAPINABO2 + .15 MENTHEN6ONE + .15 HO ₂ + .10 ROO6R1O2	1.2E-11*EXP(440./temp)	Atkinson et al. (2006) [*]
G40201a	TrGTerCN	$LAPINABO2 + NO \rightarrow PINAL + HO_2 + NO_2$	<pre>KR02N0*(1(.65*alpha_AN(11,3,0, 0,0,temp,cair)+.35*alpha_AN(11, 2,0,0,0,temp,cair)))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G40201b	TrGTerCN	$\rm LAPINABO2 + NO \rightarrow \rm LAPINABNO3$	<pre>KR02N0*(.65*alpha_AN(11,3,0,0,0, temp,cair)+.35*alpha_AN(11,2,0, 0,0,temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G40202a	TrGTerC	$\rm LAPINABO2 + HO_2 \rightarrow \rm LAPINABOOH$	k_R02_H02(temp,10)*(1r_ CH0HCH202_0H)	Rickard and Pascoe (2009), Sander et al. (2019)
G40202b	TrGTerC	$\rm LAPINABO2 + HO_2 \rightarrow PINAL + HO_2 + OH$	k_RO2_HO2(temp,10)*r_CHOHCH2O2_ OH	Rickard and Pascoe (2009), Sander et al. (2019)
G40203	TrGTerC	$LAPINABO2 \rightarrow PINAL + HO_2$	RO2*(0.65*k1_RO2tORO2+.35*k1_ RO2sORO2)	Rickard and Pascoe (2009)*

#	labels	reaction	rate coefficient	reference
G40204	TrGTerC	LAPINABOOH + OH \rightarrow .35 LAPINABO2 + .65 C96CO3	2.77E-11	Rickard and Pascoe (2009)*
G40205	TrGTerCN	LAPINABNO3 + OH \rightarrow .35 PINAL + .65 C96CO3 + NO ₂	4.29E-12	Rickard and Pascoe (2009)*
G40206	TrGTerC	MENTHEN6ONE + OH \rightarrow OHMENTHEN6ONEO2	6.46E-11	Vereecken et al. (2007) [*]
G40207	TrGTerCN	OHMENTHEN6ONEO2 + NO \rightarrow 20HMENTHEN6ONE	KR02N0	Vereecken et al. (2007)*
		$+ HO_2 + NO_2$		
G40208	TrGTerC	OHMENTHEN6ONEO2 + $HO_2 \rightarrow 2OHMENTHEN6ONE$	k_R02_H02(temp,10)	Vereecken et al. (2007)
G40209	TrGTerC	$OHMENTHEN6ONEO2 \rightarrow 2OHMENTHEN6ONE + HO_2$	k1_R02tOR02	Vereecken et al. (2007)
G40210	TrGTerC	$2OHMENTHEN6ONE + OH \rightarrow 10 LCARBON$	1E-11	Vereecken et al. (2007)
G40211	TrGTerC	$PINAL + OH \rightarrow .772 C96CO3 + .228 PINALO2$	5.2E-12*EXP(600./temp)	Wallington et al. (2018)*
G40212	TrGTerCN	$PINAL + NO_3 \rightarrow C96CO3 + HNO_3$	2.0E-14	Wallington et al. (2018)*
G40213a	TrGTerC	$C96CO3 \rightarrow C96O2 + CO_2$	k1_R02RC03*0.9	Rickard and Pascoe (2009)
G40213b	TrGTerC	$C96CO3 \rightarrow PINONIC$	k1_R02RC03*0.1	Rickard and Pascoe (2009)
G40214a	TrGTerC	$C96CO3 + HO_2 \rightarrow PERPINONIC$	KAPH02*r_CO3_OOH	Rickard and Pascoe (2009)
G40214b	TrGTerC	$C96CO3 + HO_2 \rightarrow PINONIC + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G40214c	TrGTerC	$C96CO3 + HO_2 \rightarrow C96O2 + OH + CO_2$	KAPH02*r_CO3_OH	Rickard and Pascoe (2009)
G40215	TrGTerCN	$C96CO3 + NO_2 \rightarrow C10PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G40216	TrGTerCN	$C96CO3 + NO \rightarrow C96O2 + NO_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G40217	TrGTerCN	$C96CO3 + NO_3 \rightarrow C96O2 + NO_2 + CO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G40218	TrGTerCN	$C10PAN2 \rightarrow C96CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G40219	TrGTerCN	$C10PAN2 + OH \rightarrow NORPINAL + CO + NO_2$	3.66E-12	Rickard and Pascoe (2009)
G40220	TrGTerC	$PINONIC + OH \rightarrow C96O2 + CO_2$	6.65E-12	Rickard and Pascoe (2009)
G40221	TrGTerC	$PERPINONIC + OH \rightarrow C96CO3$	9.73E-12	Rickard and Pascoe (2009)
G40222	TrGTerC	$PINALO2 + HO_2 \rightarrow PINALOOH$	k_R02_H02(temp,10)	Rickard and Pascoe (2009)
G40223a	TrGTerCN	$PINALO2 + NO \rightarrow C106O2 + NO_2$	KRO2NO*(1alpha_AN(12,3,0,1,0,	Rickard and Pascoe (2009),
			temp,cair))	Sander et al. (2019)
G40223b	TrGTerCN	$PINALO2 + NO \rightarrow PINALNO3$	KRO2NO*alpha_AN(12,3,0,1,0,	Rickard and Pascoe (2009),
			temp,cair)	Sander et al. (2019)
G40224	TrGTerC	$PINALO2 \rightarrow C106O2$	k1_R02tR02	Rickard and Pascoe (2009)
G40225	TrGTerC	$PINALOOH + OH \rightarrow PINALO2$	2.75E-11	Rickard and Pascoe (2009)
G40226	TrGTerCN	$PINALNO3 + OH \rightarrow CO235C6CHO + CH_3COCH_3 +$	2.25E-11	Rickard and Pascoe (2009)
		NO ₂		
G40227	TrGTerC	$C106O2 + HO_2 \rightarrow C106OOH$	k_R02_H02(temp,10)	Rickard and Pascoe (2009)
G40228a	TrGTerCN	$C106O2 + NO \rightarrow C716O2 + CH_3COCH_3 + NO_2$	KR02N0*0.875*(1alpha_AN(13,3,0,	Rickard and Pascoe (2009),
			0,0,temp,cair))	Sander et al. (2019)

#	labels	reaction	rate coefficient	reference
G40228b	TrGTerCN	$C106O2 + NO \rightarrow C106NO3$	KRO2NO*0.875*alpha_AN(13,3,0,0,	Rickard and Pascoe (2009),
			0,temp,cair)	Sander et al. (2019)
40229	TrGTerC	$C106O2 \rightarrow C716O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
340230	TrGTerC	$C106OOH + OH \rightarrow C106O2$	8.01E-11	Rickard and Pascoe (2009)
G40231	TrGTerCN	$C106NO3 + OH \rightarrow CO235C6CHO + CH_3COCH_3 + NO_2$	7.03E-11	Rickard and Pascoe (2009)
G40232	TrGTerC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8.05E-16*EXP(-640./temp)	Wallington et al. (2018)*
G40233	TrGTerC	$APINAOO \rightarrow PINAL + H_2O_2$	1.00E-17*c(ind_H20)	Rickard and Pascoe (2009)
G40234	TrGTerC	$APINAOO + CO \rightarrow PINAL + CO_2$	1.20E-15	Rickard and Pascoe (2009)
G40235	TrGTerCN	$APINAOO + NO \rightarrow PINAL + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G40236	TrGTerCN	$APINAOO + NO_2 \rightarrow PINAL + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G40237a	TrGTerC	$APINBOO \rightarrow PINONIC$	1.00E-17*c(ind_H20)*(0.08+0.15)	Rickard and Pascoe (2009)
G40237b	TrGTerC	$APINBOO \rightarrow PINAL + H_2O_2$	1.00E-17*c(ind_H20)*0.77	Rickard and Pascoe (2009)
G40238	TrGTerC	$APINBOO + CO \rightarrow PINAL + CO_2$	1.20E-15	Rickard and Pascoe (2009)
G40239	TrGTerCN	$APINBOO + NO \rightarrow PINAL + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G40240	TrGTerCN	$APINBOO + NO_2 \rightarrow PINAL + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G40241	TrGTerC	$C109O2 \rightarrow C89CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G40242	TrGTerCN	$C109O2 + NO \rightarrow C89CO3 + HCHO + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G40243a	TrGTerC	$C109O2 + HO_2 \rightarrow C109OOH$	k_RO2_HO2(temp,10)*r_COCH2O2_OOH	Rickard and Pascoe (2009), Sander et al. (2019)
G40243b	TrGTerC	$\rm C109O2 + HO_2 \rightarrow C89CO3 + HCHO + OH$	k_RO2_HO2(temp,10)*r_COCH2O2_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G40244	TrGTerC	$C109OOH + OH \rightarrow C109CO + OH$	5.47E-11	Rickard and Pascoe (2009)
G40245	TrGTerC	$C109CO + OH \rightarrow C89CO3 + CO$	5.47E-11	Rickard and Pascoe (2009)
G40246	TrGTerCN	$APINENE + NO_3 \rightarrow LNAPINABO2$	1.2E-12*EXP(490./temp)	Wallington et al. (2018)*
G40247	TrGTerCN	$LNAPINABO2 \rightarrow PINAL + NO_2$	(0.65*k1_RO2tRO2 + 0.35*k1_ RO2sRO2)	Rickard and Pascoe (2009)
G40248	TrGTerCN	$LNAPINABO2 + NO \rightarrow PINAL + NO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G40249	TrGTerCN	$LNAPINABO2 + HO_2 \rightarrow LNAPINABOOH$	k_R02_H02(temp,10)	Rickard and Pascoe (2009)
G40250	TrGTerCN	$LNAPINABO2 + NO_3 \rightarrow PINAL + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G40251	TrGTerCN	$LNAPINABOOH + OH \rightarrow LNAPINABO2$	(.65*6.87E-12+.35*1.23E-11)	Rickard and Pascoe (2009)
G40252a	TrGTerC	$\rm BPINENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467./temp) *(0.8326*0.3+0.068)/(0.8326+0.068)	Gill and Hites (2002)*

66

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference	
G40252b	TrGTerC	$BPINENE + OH \rightarrow ROO6R102$	1.47E-11*EXP(467./temp) Gill and Hites (2002)* *0.8326*0.7/(0.8326+0.068)		
G40253a	TrGTerC	$\rm BPINAO2 + HO_2 \rightarrow \rm BPINAOOH$	k_R02_H02(temp,10)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)	
G40253b	TrGTerC	$\mathrm{BPINAO2} + \mathrm{HO}_2 \rightarrow \mathrm{NOPINONE} + \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{OH}$	k_RO2_HO2(temp,10)*r_COCH2O2_OH	Rickard and Pascoe (2009), Sander et al. (2019)	
G40254a	TrGTerCN	$BPINAO2 + NO \rightarrow NOPINONE + HCHO + HO_2 + NO_2$	<pre>KR02N0*(1alpha_AN(11,3,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)	
G40254b	TrGTerCN	$BPINAO2 + NO \rightarrow BPINANO3$	<pre>KR02N0*alpha_AN(11,3,0,0,0, temp,cair)</pre>	Rickard and Pascoe (2009), Sander et al. (2019)	
G40255	TrGTerC	$BPINAO2 \rightarrow NOPINONE + HCHO + HO_2$	k1_RO2tORO2	Rickard and Pascoe (2009)	
G40256	TrGTerC	$BPINAOOH + OH \rightarrow BPINAO2$	1.33E-11	Rickard and Pascoe (2009)	
G40257	TrGTerCN	$BPINANO3 + OH \rightarrow NOPINONE + HCHO + NO_2$	4.70E-12	Rickard and Pascoe (2009)	
G40258a	TrGTerCN	$\rm ROO6R1O2 + NO \rightarrow \rm ROO6R3O2 + CH_3COCH_3 + NO_2$	<pre>KR02N0*(1alpha_AN(13,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)	
G40258b	TrGTerCN	$ROO6R1O2 + NO \rightarrow ROO6R1NO3$	<pre>KR02N0*alpha_AN(13,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)	
G40259	TrGTerC	$ROO6R1O2 + HO_2 \rightarrow 10 LCARBON$	k_R02_H02(temp,10)	Vereecken and Peeters (2012)*	
G40260	TrGTerC	$ROO6R1O2 \rightarrow ROO6R3O2 + CH_3COCH_3$	k1_R02t0R02	Vereecken and Peeters (2012)	
G40261a	TrGTerCN	$RO6R1O2 + NO \rightarrow RO6R3O2 + NO_2$	<pre>KR02N0*(1alpha_AN(12,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters $\left(2012\right)$	
G40261b	TrGTerCN	$RO6R1O2 + NO \rightarrow RO6R1NO3$	<pre>KRO2NO*alpha_AN(12,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)	
G40262	TrGTerC	$RO6R1O2 + HO_2 \rightarrow 10 LCARBON$	k_R02_H02(temp,10)	Vereecken and Peeters (2012)*	
G40263	TrGTerC	$RO6R1O2 \rightarrow RO6R3O2$	k1_R02s0R02	Vereecken and Peeters (2012)	
G40264a	TrGTerCN	$\rm RO6R3O2 + NO \rightarrow 9 \ LCARBON + HCHO + HO_2 + NO_2$	<pre>KR02N0*(1alpha_AN(12,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)	
G40264b	TrGTerCN	$RO6R3O2 + NO \rightarrow 10 LCARBON + LNITROGEN$	<pre>KRO2NO*alpha_AN(12,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)	
G40265	TrGTerC	$RO6R3O2 + HO_2 \rightarrow 10 LCARBON$	k_R02_H02(temp,10)	Vereecken and Peeters (2012)	
G40266	TrGTerC	$RO6R3O2 \rightarrow 9 LCARBON + HCHO + HO_2$	k1_R02sR02	Vereecken and Peeters (2012)*	
G40267a	TrGTerC	$\begin{array}{l} {\rm BPINENE} + {\rm O}_3 \rightarrow {\rm NOPINONE} + .63 \ {\rm CO} + .37 \ {\rm CH}_2 {\rm OO} \\ + .16 \ {\rm OH} + .16 \ {\rm HO}_2 \end{array}$	1.35E-15*EXP(-1270./temp) *.051/(1027)	Wallington et al. (2018)*	
G40267b	TrGTerC	$BPINENE + O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./temp) *.368/(1027)	Nguyen et al. (2009), Wallington et al. (2018)	

#	labels	reaction	rate coefficient	reference
G40267c	TrGTerC	$BPINENE + O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*.283/(1027)	et al. (2018)
G40267d	TrGTerC	$BPINENE + O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*(.104+.167)/(1027)	et al. (2018)
G40268	TrGTerCN	$BPINENE + NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. (2018)*
G40269	TrGTerCN	$LNBPINABO2 + HO_2 \rightarrow LNBPINABOOH$	k_R02_H02(temp,10)	Rickard and Pascoe (2009)
G40270	TrGTerCN	LNBPINABO2 + NO \rightarrow NOPINONE + HCHO + NO ₂ + NO ₂	KR02N0	Rickard and Pascoe $(2009)^*$
G40271	TrGTerCN	LNBPINABO2 + NO ₃ \rightarrow NOPINONE + HCHO + NO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009)
40272a	TrGTerCN	$LNBPINABO2 \rightarrow NOPINONE + HCHO + NO_2$	k1_R02tR02*0.7	Rickard and Pascoe (2009)
40272b	TrGTerCN	$LNBPINABO2 \rightarrow BPINANO3$	k1_R02tR02*0.3	Rickard and Pascoe (2009)
40273	TrGTerCN	$LNBPINABOOH + OH \rightarrow LNBPINABO2$	9.58E-12	Rickard and Pascoe (2009)
40274	TrGTerCN	$\mathrm{ROO6R1NO3} + \mathrm{OH} \rightarrow \mathrm{ROO6R3O2} + \mathrm{CH_3COCH_3} + \mathrm{NO_2}$	9.16E-13	Vereecken and Peeters (2012), Gill and Hites (2002)*
40275	TrGTerCN	$\begin{array}{l} {\rm RO6R1NO3}+{\rm OH}\rightarrow9{\rm LCARBON}+{\rm HCHO}+{\rm HO}_2+\\ {\rm NO}_2 \end{array}$	9.16E-13	Vereecken and Peeters (2012), Gill and Hites (2002)
40276	TrGTerC	$PINEOL + OH \rightarrow HCOOH + OH + NORPINAL$	k_CH2CH0H_0H_HC00H	Sander et al. (2019), So et al. (2014)*
40277	TrGTerC	$\mathrm{PINEOL} + \mathrm{HCOOH} \rightarrow \mathrm{PINAL} + \mathrm{HCOOH}$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010)*
40278	TrGTerC	$\mathrm{PINAL} + \mathrm{HCOOH} \rightarrow \mathrm{PINEOL} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
40279a	TrGC	$CARENE + OH \rightarrow LAPINABO2$	8.8E-11*(.50+.25)	Atkinson and Arey (2003)
40279b	TrGC	$CARENE + OH \rightarrow MENTHEN6ONE + HO_2$	8.8E-11*.25*.60	Atkinson and Arey (2003)
40279c	TrGC	$CARENE + OH \rightarrow ROO6R1O2$	8.8E-11*.25*.40	Atkinson and Arey (2003)
40280a	TrGC	$CARENE + O_3 \rightarrow APINBOO$	3.7E-17*.50*.18	Atkinson and Arey (2003)
40280b	TrGC	$CARENE + O_3 \rightarrow PINONIC$	3.7E-17*.50*.16	Atkinson and Arey (2003)
40280c	TrGC	$CARENE + O_3 \rightarrow OH + NORPINAL + CO + HO_2$	3.7E-17*.50*.66	Atkinson and Arey (2003)
40280d	TrGC	$CARENE + O_3 \rightarrow APINAOO$	3.7E-17*.50*.12	Atkinson and Arey (2003)
40280e	TrGC	$CARENE + O_3 \rightarrow OH + C109O2$	3.7E-17*.50*(.22+.66)	Atkinson and Arey (2003)
40281	TrGCN	$CARENE + NO_3 \rightarrow LNAPINABO2$	9.1E-12	Atkinson and Arey (2003)
G40282a	TrGTerC	SABINENE + OH \rightarrow BPINAO2	1.47E-11*EXP(467./temp) *(0.8326*0.3+0.068)/(0.8326+0.068)	Gill and Hites (2002)*

Table 1: Gas phase reactions $(\dots$ continued)

#	labels	reaction	rate coefficient	reference
G40282b	TrGTerC	$SABINENE + OH \rightarrow ROO6R1O2$	1.47E-11*EXP(467./temp)	Vereecken and Peeters (2012),
			*0.8326*0.7/(0.8326+0.068)	Gill and Hites (2002) [*]
G40283a	TrGTerC	SABINENE + $O_3 \rightarrow NOPINONE + .63 CO + .37$		Wallington et al. (2018) [*]
		$HOCH_2OOH + .16 OH + .16 HO_2$	*.051/(1027)	
G40283b	TrGTerC	$SABINENE + O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*.368/(1027)	et al. (2018)
G40283c	TrGTerC	$SABINENE + O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*.283/(1027)	et al. (2018)
G40283d	TrGTerC	$SABINENE + O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*(.104+.167)/(1027)	et al. (2018)
G40284	TrGTerCN	$SABINENE + NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. (2018) [*]
G40285a	TrGTerC	$CAMPHENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467./temp)	Gill and Hites (2002) [*]
			*(0.8326*0.3+0.068)/(0.8326+0.068)	
G40285b	TrGTerC	$CAMPHENE + OH \rightarrow ROO6R1O2$	1.47E-11*EXP(467./temp)	Vereecken and Peeters (2012),
			*0.8326*0.7/(0.8326+0.068)	Gill and Hites (2002) [*]
G40286a	TrGTerC	CAMPHENE + $O_3 \rightarrow$ NOPINONE + .63 CO + .37		Wallington et al. (2018) [*]
		$HOCH_2OOH + .16 OH + .16 HO_2$	*.051/(1027)	
G40286b	TrGTerC	$CAMPHENE + O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*.368/(1027)	et al. (2018)
G40286c	TrGTerC	$CAMPHENE + O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*.283/(1027)	et al. (2018)
G40286d	TrGTerC	$CAMPHENE + O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*(.104+.167)/(1027)	et al. (2018)
G40287	TrGTerCN	$CAMPHENE + NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. (2018)*
G40400	TrGAroC	$\rm LHAROM + OH \rightarrow .14\ TLEPOXMUC + .03\ C6H5CH2O2$	5.67E-11	Rickard and Pascoe (2009)*
		+ .04 CRESOL $+$.79 TLBIPERO2 $+$.18 HO ₂ $+$ 4		
		LCARBON		
G40401	TrGAroCN	$LHAROM + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + 4$	2.60E-15	Rickard and Pascoe (2009)*
		LCARBON		
G6100	UpStTrGCl	$Cl + O_3 \rightarrow ClO + O_2$	2.8E-11*EXP(-250./temp)	Atkinson et al. (2007)
G6101	UpStGCl	$ClO + O(^{3}P) \rightarrow Cl + O_{2}$	2.5E-11*EXP(110./temp)	Atkinson et al. (2007)
G6102a	StTrGCl	$ClO + ClO \rightarrow Cl_2 + O_2$	1.0E-12*EXP(-1590./temp)	Atkinson et al. (2007)
G6102b	StTrGCl	$ClO + ClO \rightarrow 2 Cl + O_2$	3.0E-11*EXP(-2450./temp)	Atkinson et al. (2007)
G6102c	StTrGCl	$ClO + ClO \rightarrow Cl + OClO$	3.5E-13*EXP(-1370./temp)	Atkinson et al. (2007)
G6102d	StTrGCl	$ClO + ClO \rightarrow Cl_2O_2$	k_C10_C10	Burkholder et al. (2015)

#	labels	reaction	rate coefficient	reference
G6103	StTrGCl	$Cl_2O_2 \rightarrow ClO + ClO$	k_C10_C10/(2.16E-27*EXP(8537./ temp))	Burkholder et al. $(2015)^*$
G6200	StGCl	$Cl + H_2 \rightarrow HCl + H$	3.9E-11*EXP(-2310./temp)	Atkinson et al. (2007)
G6201a	StGCl	$Cl + HO_2 \rightarrow HCl + O_2$	4.4E-11-7.5E-11*EXP(-620./temp)	Atkinson et al. (2007)
G6201b	StGCl	$Cl + HO_2 \rightarrow ClO + OH$	7.5E-11*EXP(-620./temp)	Atkinson et al. (2007)
G6202	StTrGCl	$Cl + H_2O_2 \rightarrow HCl + HO_2$	1.1E-11*EXP(-980./temp)	Atkinson et al. (2007)
G6203	StGCl	$ClO + OH \rightarrow .94 Cl + .94 HO_2 + .06 HCl + .06 O_2$	7.3E-12*EXP(300./temp)	Atkinson et al. (2007)
G6204	StTrGCl	$ClO + HO_2 \rightarrow HOCl + O_2$	2.2E-12*EXP(340./temp)	Atkinson et al. (2007)*
G6205	StTrGCl	$HCl + OH \rightarrow Cl + H_2O$	1.7E-12*EXP(-230./temp)	Atkinson et al. (2007)
G6206	StGCl	$HOCI + OH \rightarrow CIO + H_2O$	3.0E-12*EXP(-500./temp)	Burkholder et al. (2015)
G6300	UpStTrGCIN	$ClO + NO \rightarrow NO_2 + Cl$	6.2E-12*EXP(295./temp)	Atkinson et al. (2007)
G6301	StTrGCIN	$ClO + NO_2 \rightarrow ClNO_3$	k_3rd_iupac(temp,cair,1.6E-31, 3.4,7.E-11,0.,0.4)	Atkinson et al. (2007)
G6302	TrGCIN	$CINO_3 \rightarrow CIO + NO_2$	6.918E-7*EXP(-10909./temp)*cair	Anderson and Fahey (1990)
G6303	StGCIN	$CINO_3 + O(^{3}P) \rightarrow CIO + NO_3$	4.5E-12*EXP(-900./temp)	Atkinson et al. (2007)
G6304	StTrGCIN	$CINO_3 + CI \rightarrow Cl_2 + NO_3$	6.2E-12*EXP(145./temp)	Atkinson et al. (2007)
G6400	StTrGCl	$Cl + CH_4 \rightarrow HCl + CH_3$	6.6E-12*EXP(-1240./temp)	Atkinson et al. (2006)
G6401	StTrGCl	$Cl + HCHO \rightarrow HCl + CO + HO_2$	8.1E-11*EXP(-34./temp)	Atkinson et al. (2006)
G6402	StTrGCl	$Cl + CH_3OOH \rightarrow HCHO + HCl + OH$	5.9E-11	Atkinson et al. (2006)*
G6403	StTrGCl	$ClO + CH_3O_2 \rightarrow HO_2 + Cl + HCHO$	1.8E-12*EXP(-600./temp)	Burkholder et al. (2015)
G6404	StGCl	$CCl_4 + O(^1D) \rightarrow LCARBON + ClO + 3 Cl$	3.3E-10	Burkholder et al. (2015)
G6405	StGCl	$CH_3Cl + O(^{1}D) \rightarrow 0.1 CH_3Cl + 0.1 O(^{3}P) + 0.46 ClO + 0.35 Cl + 0.09 H + 0.9 LCARBON + 0.09 LCHLORINE$	1.65E-10	Burkholder et al. (2015)
36406	StGCl	$CH_3Cl + OH \rightarrow LCARBON + H_2O + Cl$	1.96E-12*EXP(-1200./temp)	Burkholder et al. (2015)
36407	StGCCl	$CH_3CCl_3 + O(^1D) \rightarrow 2 \text{ LCARBON} + OH + 3 \text{ Cl}$	3.25E-10	Burkholder et al. (2015)
36408	StTrGCCl	$CH_3CCl_3 + OH \rightarrow 2 LCARBON + H_2O + 3 Cl$	1.64E-12*EXP(-1520./temp)	Burkholder et al. (2015)
36409	TrGCCl	$\mathrm{Cl} + \mathrm{C}_2\mathrm{H}_4 \rightarrow \mathrm{HOCH}_2\mathrm{CH}_2\mathrm{O}_2 + \mathrm{HCl}$	k_3rd_iupac(temp,cair,1.85E-29, 3.3,6.0E-10,0.0,0.4)	Atkinson et al. (2006)*
36410	TrGCCl	$Cl + CH_3CHO \rightarrow HCl + CH_3C(O)$	8.0e-11	Atkinson et al. (2006)
6411	TrGCCl	$\mathrm{C_{2}H_{2}+Cl} \rightarrow \mathrm{LCARBON+CH_{3}+HCl}$	k_3rd_iupac(temp,cair,6.1e-30, 3.0,2.0e-10,0.,0.6)	Atkinson et al. (2006)
36412	TrGCCl	$C_2H_6 + Cl \rightarrow C_2H_5O_2 + HCl$	8.3E-11*EXP(-100./temp)	Atkinson et al. (2006)
36413	StTrGCIN	$Cl + CH_3ONO_2 \rightarrow HCl + HCHO + NO_2$	1.3E-11*EXP(-1200./temp)	Burkholder et al. (2015)
G6414	StTrGCIN	$Cl + CH_3ONO \rightarrow HCl + HCHO + NO$	2.1E-12	Sokolov et al. (1999)
G6415	StTrGCl	$Cl + CH_3O_2 \rightarrow .5 ClO + .5 CH_3O + .5 HCl + .5 CH_2OO$	1.6E-10	Burkholder et al. (2015)

70 Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G6416	TrGCCIN	$Cl + CH_3CN \rightarrow NCCH_2O_2 + HCl$	1.6E-11*EXP(-2104./temp)	Tyndall et al. (1996), Tyndall et al. (2001b), Sander et al. (2019)
G6500	StGClF	$CF_2Cl_2 + O(^1D) \rightarrow LCARBON + 2 LFLUORINE + ClO + Cl$	1.4E-10	Burkholder et al. (2015)
G6501	StGClF	$CFCl_3 + O(^1D) \rightarrow LCARBON + LFLUORINE + ClO + 2 Cl$	2.3E-10	Burkholder et al. (2015)
G7100	StTrGBr	$Br + O_3 \rightarrow BrO + O_2$	1.7E-11*EXP(-800./temp)	Atkinson et al. (2007)
G7101	StGBr	$BrO + O(^{3}P) \rightarrow Br + O_{2}$	1.9E-11*EXP(230./temp)	Atkinson et al. (2007)
G7102a	StTrGBr	$BrO + BrO \rightarrow 2 Br + O_2$	2.7E-12	Atkinson et al. (2007)
G7102b	StTrGBr	$BrO + BrO \rightarrow Br_2 + O_2$	2.9E-14*EXP(840./temp)	Atkinson et al. (2007)
G7200	StTrGBr	$Br + HO_2 \rightarrow HBr + O_2$	7.7E-12*EXP(-450./temp)	Atkinson et al. (2007)
G7201	StTrGBr	$BrO + HO_2 \rightarrow HOBr + O_2$	4.5E-12*EXP(500./temp)	Atkinson et al. (2007)
G7202	StTrGBr	$HBr + OH \rightarrow Br + H_2O$	6.7E-12*EXP(155./temp)	Atkinson et al. (2007)
G7203	StGBr	$HOBr + O(^{3}P) \rightarrow OH + BrO$	1.2E-10*EXP(-430./temp)	Atkinson et al. (2007)
G7204	StTrGBr	$Br_2 + OH \rightarrow HOBr + Br$	2.0E-11*EXP(240./temp)	Atkinson et al. (2007)
G7300	TrGBrN	$Br + BrNO_3 \rightarrow Br_2 + NO_3$	4.9E-11	Orlando and Tyndall (1996)
G7301	StTrGBrN	$BrO + NO \rightarrow Br + NO_2$	8.7E-12*EXP(260./temp)	Atkinson et al. (2007)
G7302	StTrGBrN	$BrO + NO_2 \rightarrow BrNO_3$	k_Br0_N02	Atkinson et al. (2007)*
G7303	TrGBrN	$BrNO_3 \rightarrow BrO + NO_2$	k_Br0_N02/(5.44E-9*EXP(14192./ temp)*1.E6*R_gas*temp/(atm2Pa*N_ A))	Orlando and Tyndall (1996), Atkinson et al. (2007)*
G7400	StTrGBr	$Br + HCHO \rightarrow HBr + CO + HO_2$	7.7E-12*EXP(-580./temp)	Atkinson et al. (2006)
G7401	TrGBr	$Br + CH_3OOH \rightarrow CH_3O_2 + HBr$	2.6E-12*EXP(-1600./temp)	Kondo and Benson (1984)
G7402	TrGBr	$BrO + CH_3O_2 \rightarrow HOBr + CH_2OO$	2.42E-14*EXP(1617./temp)	Shallcross et al. (2015)
G7403	StTrGBr	$CH_3Br + OH \rightarrow LCARBON + H_2O + Br$	1.42E-12*EXP(-1150./temp)	Burkholder et al. (2015)
G7404	TrGBrC	$\rm Br + C_2H_4 \rightarrow \rm HOCH_2CH_2O_2 + \rm HBr$	2.8E-13*EXP(224./temp)/(1.+ 1.13E24*EXP(-3200./temp) /C(ind_02))	Atkinson et al. (2006)*
G7405	TrGBrC	$Br + CH_3CHO \rightarrow HBr + CH_3C(O)$	1.8e-11*EXP(-460./temp)	Atkinson et al. (2006)
G7406	TrGBrC	$Br + C_2H_2 \rightarrow LCARBON + CH_3O_2 + HBr$	6.35e-15*EXP(440./temp)	Atkinson et al. (2006)
G7407	TrGBr	$CHBr_3 + OH \rightarrow LCARBON + H_2O + 3 Br$	9.0E-13*EXP(-360./temp)	Burkholder et al. (2015)*
G7408	TrGBr	$CH_2Br_2 + OH \rightarrow LCARBON + H_2O + 2 Br$	2.0E-12*EXP(-840./temp)	Burkholder et al. (2015)*
G7600	TrGBrCl	$Br + BrCl \rightarrow Br_2 + Cl$	3.32E-15	Manion et al. (2015)
G7601	TrGBrCl	$Br + Cl_2 \rightarrow BrCl + Cl$	1.10E-15	Dolson and Leone (1987)

m. 1. 1.	Constraint		<i>(</i>	
Table 1.	Gas phase	reactions	(continued)

#	labels	reaction	rate coefficient	reference
G7602	TrGBrCl	$Br_2 + Cl \rightarrow BrCl + Br$	2.3E-10*EXP(135./temp)	Bedjanian et al. (1998)
G7603a	StTrGBrCl	$BrO + ClO \rightarrow Br + OClO$	1.6E-12*EXP(430./temp)	Atkinson et al. (2007)
G7603b	StTrGBrCl	$BrO + ClO \rightarrow Br + Cl + O_2$	2.9E-12*EXP(220./temp)	Atkinson et al. (2007)
G7603c	StTrGBrCl	$BrO + ClO \rightarrow BrCl + O_2$	5.8E-13*EXP(170./temp)	Atkinson et al. (2007)
G7604	TrGBrCl	$BrCl + Cl \rightarrow Br + Cl_2$	1.45E-11	Clyne and Cruse (1972)
G7605	TrGBrCl	$CHCl_2Br + OH \rightarrow LCARBON + 2 Cl + H_2O + Br$	2.0E-12*EXP(-840./temp)	see note*
G7606	TrGBrCl	$CHClBr_2 + OH \rightarrow LCARBON + Cl + H_2O + 2 Br$	2.0E-12*EXP(-840./temp)	see note [*]
G7607	TrGBrCl	$CH_2ClBr + OH \rightarrow LCARBON + Cl + H_2O + Br$	2.1E-12*EXP(-880./temp)	Burkholder et al. (2015)*
G8100	TrGI	$I + O_3 \rightarrow IO + O_2$	2.1E-11*EXP(-830./temp)	Atkinson et al. (2007)
G8102	TrGI	$OIO + OIO \rightarrow I(part)$	5.E-11	von Glasow et al. (2002)*
G8103	TrGI	$IO + IO \rightarrow .38 \text{ OIO} + 1.62 \text{ I} + .62 \text{ O}_2$	5.4E-11*EXP(180./temp)	Atkinson et al. (2007) [*]
G8200	TrGI	$I + HO_2 \rightarrow HI + O_2$	1.5E-11*EXP(-1090./temp)	Atkinson et al. (2007)
G8201	TrGI	$IO + HO_2 \rightarrow HOI + O_2$	1.4E-11*EXP(540./temp)	Atkinson et al. (2007)
G8202	TrGI	$HI + OH \rightarrow I + H_2O$	1.6E-11*EXP(440./temp)	Atkinson et al. (2007)
G8203	TrGI	$OIO + OH \rightarrow HIO_3$	2.2E-10*EXP(243./temp)	Plane et al. (2006)
G8204	TrGI	$I_2 + OH \rightarrow HOI + I$	2.1E-10	Atkinson et al. (2007)
G8205	TrGI	$HOI + OH \rightarrow IO + H_2O$	5.0E-12	Riffault et al. (2005)
G8300	TrGIN	$I + NO_2 \rightarrow INO_2$	k_I_NO2	Atkinson et al. (2007)*
G8301	TrGIN	$I + NO_3 \rightarrow IO + NO_2$	1.E-10	Dillon et al. (2008)
G8302	TrGIN	$IO + NO \rightarrow I + NO_2$	7.15E-12*EXP(300./temp)	Atkinson et al. (2007)
G8303	TrGIN	$\rm IO + NO_2 \rightarrow INO_3$	k_3rd_iupac(temp,cair,7.7E-31, 5.,1.6E-11,0.,0.4)	Atkinson et al. (2007)
G8304	TrGIN	$OIO + NO \rightarrow NO_2 + IO$	1.1E-12*EXP(542./temp)	Atkinson et al. (2007)
G8305	TrGIN	$INO_2 \rightarrow I + NO_2$	k_I_NO2/(3.7E-7*EXP(9568./temp) *1.E6*R_gas*temp/(atm2Pa*N_A))	van den Bergh and Troe (1976), Atkinson et al. (2007)*
G8306	TrGIN	$INO_3 \rightarrow IO + NO_2$	2.1e15*EXP(-13670./temp)	Kaltsoyannis and Plane (2008)
G8307	TrGIN	$I_2 + NO_3 \rightarrow I + INO_3$	1.5E-12	Atkinson et al. (2007)
G8308	TrGIN	$IO + NO_3 \rightarrow OIO + NO_2$	9.E-12	Dillon et al. (2008)
G8309	TrGIN	$I + INO_3 \rightarrow I_2 + NO_3$	9.1E-11*EXP(-146./temp)	Kaltsoyannis and Plane (2008)
G8400	TrGCI	$CH_3CHICH_3 + OH \rightarrow 2 LCARBON + CH_3O_2 + I$	1.22E-12	Carl and Crowley (2001)
G8401	TrGI	$\rm CH_3O_2 + IO \rightarrow .4~I + .6~OIO + HCHO + HO_2$	2.E-12	Dillon et al. (2006b), Bale et al. (2005)*
G8402	TrGIN	$CH_3I + NO_3 \rightarrow HNO_3 + HCHO + IO$	3.4E-17	Wayne et al. (1991)*
G8600	TrGCII	$IO + CIO \rightarrow .2 ICI + .25 CI + .55 OCIO + .8 I + .45 O_2$	4.7E-12*EXP(280./temp)	Atkinson et al. (2007)
G8700	TrGBrI	$I + BrO \rightarrow IO + Br$	1.2E-11	Burkholder et al. (2015)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G8701	TrGBrI	$IO + BrO \rightarrow Br + .8 OIO + .2 I + .2 O_2$	1.5E-11*EXP(510./temp)	Atkinson et al. (2007) [*]
G8702	TrGBrI	$\mathrm{IBr} + \mathrm{OH} \rightarrow .84 \mathrm{HOI} + .84 \mathrm{Br} + .16 \mathrm{HOBr} + .16 \mathrm{I}$	1.4E-10	Riffault et al. (2005)
G8703	TrGBrI	$IO + Br \rightarrow I + BrO$	2.3E-11	Bedjanian et al. (1997)
G8704	TrGBrI	$I_2 + Br \rightarrow IBr + I$	1.2E-10	Bedjanian et al. (1997)
G9200	StTrGS	$SO_2 + OH \rightarrow H_2SO_4 + HO_2$	k_3rd(temp,cair,3.3E-31,4.3, 1.6E-12,0.,0.6)	Burkholder et al. (2015)
G9400a	TrGCS	$DMS + OH \rightarrow CH_3SO_2 + HCHO$	1.13E-11*EXP(-253./temp)	Atkinson et al. (2004)*
G9400b	TrGCS	$DMS + OH \rightarrow DMSO + HO_2$	k_DMS_OH	Atkinson et al. (2004)*
G9401	TrGCNS	$DMS + NO_3 \rightarrow CH_3SO_2 + HNO_3 + HCHO$	1.9E-13*EXP(520./temp)	Atkinson et al. (2004)
G9402	TrGCS	DMSO + OH \rightarrow .6 SO ₂ + HCHO + .6 CH ₃ + .4 HO ₂ + .4 CH ₃ SO ₃ H	1.E-10	Hynes and Wine (1996)*
G9403	TrGS	$CH_3SO_2 \rightarrow SO_2 + CH_3$	1.8E13*EXP(-8661./temp)	Barone et al. (1995)
G9404	TrGS	$CH_3SO_2 + O_3 \rightarrow CH_3SO_3$	3.E-13	Barone et al. (1995)
G9405	TrGS	$CH_3SO_3 + HO_2 \rightarrow CH_3SO_3H$	5.E-11	Barone et al. (1995)
G9408	StTrGS	$\rm CH_2OO + SO_2 \rightarrow H_2SO_4 + HCHO$	k_CH200_S02	Welz et al. (2012), Stone et a (2014)*
G9409	TrGTerCS	$NOPINOO + SO_2 \rightarrow NOPINONE + H_2SO_4$	7.E-14	Rickard and Pascoe (2009)
G9410	TrGTerCS	$APINAOO + SO_2 \rightarrow PINAL + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G9411	TrGTerCS	$APINBOO + SO_2 \rightarrow PINAL + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G9412	TrGTerCS	$MBOOO + SO_2 \rightarrow IBUTALOH + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G9600	TrGCCIS	$DMS + Cl \rightarrow CH_3SO_2 + HCl + HCHO$	3.3E-10	Atkinson et al. (2004)
G9700	TrGBrCS	$DMS + Br \rightarrow CH_3SO_2 + HBr + HCHO$	9.E-11*EXP(-2386./temp)	Jefferson et al. (1994)
G9701	TrGBrCS	$DMS + BrO \rightarrow DMSO + Br$	4.4E-13	Ingham et al. (1999)
G9800	TrGCIS	$DMS + IO \rightarrow DMSO + I$	3.2E-13*EXP(-925./temp)	Dillon et al. (2006a)
G10100	TrGHg	$Hg + O_3 \rightarrow HgO + O_2$	3.0E-20	Hall (1995)
G10200	TrGHg	$Hg + OH \rightarrow HgO + H$	3.55E-14*EXP(294./temp)	Pal and Ariya (2004)
G10201	TrGHg	$Hg + H_2O_2 \rightarrow HgO + H_2O$	8.5E-19	Tokos et al. (1998)*
G10600	TrGClHg	$Hg + Cl \rightarrow HgCl$	1.0E-11	Ariya et al. (2002)
G10601	TrGClHg	$Hg + Cl_2 \rightarrow HgCl_2$	2.6E-18	Ariya et al. (2002)
G10700	TrGBrHg	$Hg + Br \rightarrow HgBr$	3.0E-13	Donohoue et al. (2006)
G10701	TrGBrHg	$HgBr + Br \rightarrow HgBr_2$	2.5E-10*(temp/298.)**(-0.57)	Goodsite et al. (2004)
G10702	TrGBrHg	$Hg + Br_2 \rightarrow HgBr_2$	9.0E-17	Ariya et al. (2002)
G10703	TrGBrHg	$Hg + BrO \rightarrow HgO + Br$	1.0E-15	Raofie and Ariya (2003)
G10704	TrGBrHg	$HgBr + BrO \rightarrow BrHgOBr$	3.0E-12	Calvert and Lindberg (2003)
G10705	TrGBrClHg	$HgCl + BrO \rightarrow ClHgOBr$	3.0E-12	Calvert and Lindberg (2003)

#	labels	reaction	rate coefficient	reference
G10706	TrGBrClHg	$HgBr + Cl \rightarrow ClHgBr$	3.0E-12	Calvert and Lindberg (2003)
G10707	TrGBrClHg	$HgCl + Br \rightarrow ClHgBr$	3.0E-12	Calvert and Lindberg (2003)

74

General notes

Structure-Activity Relationships (SAR)

Three-body reactions

Rate coefficients for three-body reactions are defined via the function $\texttt{k_3rd}(T, M, k_0^{300}, n, k_{inf}^{300}, m, f_c)$. In the code, the temperature T is called temp and the con-centration of "air molecules" M is called cair. Using the auxiliary variables $k_0(T)$, $k_{inf}(T)$, and $k_{ratio}, \texttt{k_3rd}$ is defined as:

$k_0(T)$	=	$k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n$	(1)
$k_{inf}(T)$	=	$k_{inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$	(2)
$k_{ m ratio}$	=	$\frac{k_0(T)M}{k_{\inf}(T)}$	(3)
k_3rd	=	$\frac{k_0(T)M}{1+k_{\rm ratio}} \times f_{\rm c}^{\left(\frac{1}{1+(\log_{10}(k_{\rm ratio}))^2}\right)}$	(4)

A similar function, called k_3rd_iupac here, is used by Wallington et al. (2018) for three-body reactions. It has the same function parameters as k_3rd and it is defined as:

$$\begin{array}{rcl} k_0(T) &=& k_0^{300} \times \left(\frac{300 \mathrm{K}}{T}\right)^n & (5) \\ k_{\mathrm{inf}}(T) &=& k_{\mathrm{inf}}^{300} \times \left(\frac{300 \mathrm{K}}{T}\right)^m & (6) \\ k_{\mathrm{ratio}} &=& \frac{k_0(T) M}{k_{\mathrm{inf}}(T)} & (7) \\ N &=& 0.75 - 1.27 \times \log_{10}(f_c) & (8) \\ \mathtt{d_iupac} &=& \frac{k_0(T) M}{1 + k_{\mathrm{ratio}}} \times f_c^{\left(\frac{1}{1 + (\log_{10}(k_{\mathrm{ratio}})/N)^2}\right) \\ \end{array}$$

k_3rd_iupac = $\frac{n_{\rm U} \sqrt{k_{\rm ratio}}}{1 + k_{\rm ratio}} \times f_{\rm c}^{\gamma \gamma}$

Some unmeasured rate coefficients are estimated with

k for	H-abstraction by OH in $\rm cm^{-3}s^{-1}$
k_p	$4.49 \times 10^{-18} \times (T/K)^2 \exp(-320 \text{K/T})$
k_s	$4.50 \times 10^{-18} \times (T/K)^2 \exp(253 K/T)$
k_t	$2.12 \times 10^{-18} \times (T/K)^2 \exp(696 \text{K}/T)$
k_ROHRO	$2.1 \times 10^{-18} \times (T/K)^2 \exp(-85 \text{K}/T)$
k_CO2H	$0.7 \times k_{\rm CH_3CO_2H+OH}$
k_ROOHRO	$0.6 \times k_{\rm CH_3OOH+OH}$
f_alk	1.23
f_sOH	3.44
f_tOH	2.68
f_sOOH	8.
f_tOOH	8.
f_0N02	0.04
f_CH20N02	0.20
f_cpan	0.25
f_allyl	3.6
f_CHO	0.55
f_CO2H	1.67
f_CO	0.73
f_0	8.15
f_pCH2OH	1.29
f_tCH20H	0.53

k for OH-ad	k for OH-addition to double bonds in $\rm cm^{-3} s^{-1}$			
k_adp	$4.5\times 10^{-12}\times (T/300{\rm K})^{-0.85}$			
k_ads	$1/4 \times (1.1 \times 10^{-11} \times \exp(485{\rm K}/T) +$			
	$1.0 \times 10^{-11} \times \exp(553 \mathrm{K}/T))$			
k_adt	$1.922 \times 10^{-11} \times \exp(450{\rm K}/T) - k_{\rm ads}$			
k_adsecprim	3.0×10^{-11}			
k_adtertprim	$5.7 imes 10^{-11}$			
a_PAN	0.56			
a_CHO	0.31			
a_COCH3	0.76			
a_CH2OH	1.7			
a_CH200H	1.7			
a_COH	2.2			
a_COOH	2.2			
a_CO2H	0.25			
a_CH2ONO2	0.64			

RO_2 self and cross reactions

The self and cross reactions of organic peroxy radicals are treated according to the permutation reaction formalism as implemented in the MCM (Rickard and Pascoe, 2009), as decribed by Jenkin et al. (1997). Every organic peroxy radical reacts in a pseudo-first-order reaction with a rate constant that is expressed as $k^{1st} = 2 \times \sqrt{k_{self}} \times k.CH302 \times [RO_2]$ where $k_{self} = second-order$ rate coefficient of the self reaction of the coefficient of the self reaction of CH₃O₂, and $[RO_2] =$ sum of the concentrations of all organic peroxy radicals.

Specific notes

G1002a: The path leading to $2 O({}^{3}P) + O_{2}$ results in a null cycle regarding odd oxygen and is neglected. G2110: The rate coefficient is: $k_{\pm}NO_{2} + O_{2} = (3.0E-13*EXP(460,/temp)+2.1E-33*EXP(920./temp)*c(ind_H20)).$ $*cair)*(1+1.4E-21*EXP(2200./temp)*C(ind_H20)).$ G2117: Converted to Kc [molec-1 cm3]= Kp*R*T/NA, where R is 82.05736 [cm3atmK1moll]. G2118: Assuming fast equilibrium.

G3109: The rate coefficient is: $k_NO3_NO2 = k_$

3rd(temp,cair,2.4E-30,3.0,1.6E-12,-0.1,0.6). G3110: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G3203: The rate coefficient is: k_NO2_HO2 = k_ 3rd(temp,cair,1.9E-31,3.4,4.0E-12,0.3,0.6). G3206: The rate coefficient is: k_HNO3_OH =

1.32E-14 * EXP(527/temp) + 1 / (1 / (7.39E-32 * EXP(453/temp)*cair) + 1 /

(9.73E-17 * EXP(1910/temp)))

 ${\tt G3207:}$ The rate coefficient is defined as backward reaction divided by equilibrium constant.

G3227: Backward reaction divided by equilibrium constant from Burkholder et al. (2015).
 G3228: Same as for OH + HNO₄.

G4104b: Methyl nitrate yield according to Banic et al.

(2003) but reduced by a factor of 10 according to the upper limit derived from measurements by Munger et al. (1999).

 $\tt G4109:$ Same temperature dependence as for $\rm CH_3CHO+NO_3$ assumed.

G4115: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4116: Same value as for PAN + OH.

G4126: Same as for G4104 but scaled to match the recommeded value at 298K.

G4127: Same as for CH3O2 + NO3 in G4105.

G4130a: SAR for H-abstraction by OH.

G4130b: SAR for H-abstraction by OH.

G4132: SAR for H-abstraction by OH.

G4133: Lower limit of the rate constant. Products uncertain but CH₃OH can be excluded because of a

likely high energy barrier (L. Vereecken, pers. comm.). CH₂OO production cannot be excluded.

G4134: Estimate based on the decomposition lifetime of 3 s (Olzmann et al., 1997) and a 20 kcal/mol energy barrier (Vereecken and Francisco, 2012).

G4135: Rate constant for $CH_2OO + NO_2$ (G4138) multiplied by the factor from Ouyang et al. (2013).

G4136: Average of two measurements.

G4137: Upper limit.

G4138: Average of 7.E-12 and 1.5E-12.

G4141: HOOCH₂OCHO forms and then decomposes to formic anhydride (Gruzdev et al., 1993) which hydrolyses in the humid atmosphere (Conn et al., 1942).

G4142: High-pressure limit.

 $\tt G4143:$ Generic estimate for reaction with alcohols.

G4144: Generic estimate for reaction with RO₂.

G4148: Same value as for NO₂+CH₃O₂.

G4149: Barnes et al. (1985) estimated a decomposition rate equal to that of CH₃O₂NO₂.

G4150: Value for $CH_3O_2NO_2 + OH$, H-abstraction enhanced by the HO-group by f_sOH.

G4154: Products assumed to be $CH_3O_2 + O_2$ (could also be $HCHO + O_2 + OH$).

76

G4160b: Half of the H-yield is attributed to fast secondary chemistry.

<code>G4160c:</code> The NH + CO channel is also significant but neglected here.

G4161: No studies below 450 K and only the major channel is considered.

G4164: Upper limit. Dominant pathway under atmospheric conditions.

G42001: The product distribution is from Rickard and Pascoe (2009), after substitution of the energized Criegee intermediate, CH_2OO , by its decomposition products and reaction of the stabilized CI with the water dimer.

G42010: Only major channel considered as the end products are essentially the same.

G42013: The rate coefficient is: k_CH3CO3_NO2 = k_ 3rd(temp,cair,9.7E-29,5.6,9.3E-12,1.5,0.6).

G42018: The rate coefficient is the same as for the CH₃ channel in G4107 (CH₃OOH+OH).

G42021: The rate coefficient is k_PAN_M = k_CH3CO3_ N02/9.0E-29+EXP(-14000./temp), i.e. the rate coefficient is defined as backward reaction divided by equilibrium constant.

G42022a: Quantum yields and products are from Glowacki et al. (2012).

642022b: Quantum yields and products are from Glowacki et al. (2012).

G42024a: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

 $\tt G42024b:$ Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42047: Orlando et al. (1998) estimated that about 25% of the $\rm HOCH_2CH_2O$ in this reaction is produced with sufficient excess energy that it decomposes

promptly. The decomposition products are 2 HCHO + $\rm HO_2.$ G42051a: Same as for the CH₃O₂ channel in G4107:

CH₃OOH+OH.

G42058b: The aldehydic H is assumed to be like the analogous H of HOCH_2CHO.

G42074a: Factor of 3 to match the estimate of k = 1.E-11 molec/cm3/s by Paulot et al. (2009a). G42074b: Factor of 3 to match the estimate of k = 1.E-

11 molec/cm3/s by Paulot et al. (2009a).

 $\tt G42075:$ $\rm NO_3CH_2CO_2H$ and $\rm NO_3CH_2CO_3H$ neglected. $\tt G42078:$ $\rm NO_3CH_2CO_2H$ neglected.

G42082: Same rate constant as for PAN + OH.

G42083a: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42083b: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42085a: Uncertainties on the kinetics at pressures < 0.1 bar,

G42085b: Channel proposed by Hynes and Wine 1991, OH + HCHO + HOCN, could not be confirmed by Tyndall et al. (2001b). There is no alternative mechanism at the moment. Products assumed to be OH + CH3CO3 + NO

G42086b: Assuming HCN is from channel 2h, HCO + H + HCN. HCO is replaced by H + CO.

G42086c: Assuming exothermic channels 2b and 2d are equally important.

G42087: HCOCN is produced but replaced here by its likely oxidation products (HCN + CO₂) as studied by Tyndall et al. (2001b). The rate constant for a typical RO_2 + NO reaction is used. <code>G42088: NCCH_2OOH</code> is produced but replaced here by its likely oxidation products (HCN + CO₂) as studied by Tyndall et al. (2001b). The rate constant for a typical RO₂ + HO₂ reaction is used.

G42089a: The minor channel with k=5.2E-12 is combined with the major one producing HCOOH.

G42090: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G42091: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G43001a: Branching ratios according to Rickard et al. (1999).

G43001b: Branching ratios according to Rickard et al. (1999).

G43004: The value for the generic $RO_2 + HO_2$ reaction from Atkinson (1997) is used here.

 $\tt G43008:$ The value for the generic $\rm RO_2 + HO_2$ reaction from Atkinson (1997) is used here.

G43011: Strong positive deviation of k below 240 K compared to the expression recommended by JPL (Burkholder et al., 2015).

G43015a: The same value as for G4107 (CH₃OOH + OH) is used, multiplied by the branching ratio of the CH₃O₂ channel.

G43028: Alkyl nitrate formation neglected. (also not considered in MCM).

G43037: Alkyl nitrate formation neglected. (also not considered in MCM).

G43040a: Rate coefficient estimated with SAR (Taraborrelli, 2010).

G43040b: Rate coefficient estimated with SAR

(Taraborrelli, 2010).

 $\tt G43044:$ Alkyl nitrate formation neglected.

G43045c: Rate coefficient assumed to equal to the one of hydroxyacetone (ACETOL) for this channel. G43048: Using the high-pressure limit.

G43049: The pressure fall-off between 1000 and 100 mbar is only 3% (Kirchner et al., 1999).

G43050: Value for $\rm CH_3O_2NO_2$ + OH, H-abstraction enhanced by the CH_3CO-group by f_CO.

<code>G43051c:</code> Products approximated with $\rm C_2H_5CHO$ + $\rm HO_2.$

 $\tt G43052:$ Only major H-abstraction channel considered. $\tt G43059:$ Products approximated with the major end-product $\rm CH_3CHO.$

G43060b: Products approximated with the major endproduct CH_3CHO .

 $\tt G43061:$ Products approximated with the likely end-product $\rm CH_3CHO.$

G43065: As for $HCOCO_3$.

 $\tt G43070a:$ Branching ratios estimated with SAR for H-abstraction rate constants by OH.

 $\tt G43070b:$ Branching ratios estimated with SAR for H-abstraction rate constants by OH.

G43071a: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

G43072: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G43073: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G43074: HCOCOCHO would be produced but undergoes fast photolysis (faster than MGLYOX) and is substituted with its products.

G43223: Products simplified

G43419: KDEC C3DIALO \rightarrow GLYOX + CO + HO2

77

G43420: KDEC C3DIALO \rightarrow GLYOX + CO + HO2 G43421: Permutation reaction (minor channels removed)

duction rates at 298K: k_p/(k_p+k_s) = 0.1273 and $k_s/(k_p+k_s) = 0.8727.$

G44001b: sC₄H₉O₂ products are substituted with 0.636 MEK + HO₂ and 0.364 CH₃CHO + $C_2H_5O_2$ at 1 bar and 298 K.

G44003c: The alkyl nitrate yield is the weighted aver age yield for the two isomers forming from nC₄H₉O₂ and sC₄H₉O₂

 $\tt G44010b:$ H-abstraction from primary C and substitution of the resulting peroxy radical with its products from the reaction with NO.

G44011: H-abstraction from primary C and substitution of the resulting peroxy radical with its products from the reaction with NO.

G44015b: Products assumed to be only from Habstraction from a secondary C bearing the -OOH group.

G44016: Products assumed to be only from Habstraction from a secondary C bearing the -ONO₂ group.

G44018: LHMVKABO2 is 0.12 HMVKAO2 + 0.88 HMVKBO2.

G44019: LMEKO2 represents 0.62 MEKBO2 + 0.38 MEKAO2.

<code>G44021a: The products of MEKAO are substituted with HCHO + CO_2 + HOCH_2CH_2O_2.</code>

G44023a: Products from H-abstraction from the tertiary carbon bearing the ONO₂ group.

G44134: Theoretical keto-enol tautomerization cat-

G44135: Theoretical keto-enol tautomerization cat-

G44136: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

G44137: Theoretical keto-enol tautomerization cat-

G44138: Theoretical keto-enol tautomerization cat-

G44203a: Rate coefficient estimated with SAR

G44221: Same k as for MGLYOX + OH (Tyndall et al.,

G44406c: KDEC MALDIALCO2 $\rightarrow 0.6$ MALANHY +

G44407: KDEC MALDIALCO2 $\rightarrow 0.6$ MALANHY +

G44409: KDEC MALDIALCO2 $\rightarrow 0.6$ MALANHY +

G44410: KDEC MALDIALCO2 $\rightarrow 0.6$ MALANHY +

G44412: KDEC BZFUONOOA $\rightarrow 0.5$ BZFUONOO

G44402: KDEC NC4DCO2→ MALANHY + NO2

alyzed by formic acid (Grenfell et al., 2006).

alyzed by formic acid (Grenfell et al., 2006).

alvzed by formic acid (Grenfell et al., 2006).

alyzed by formic acid (Grenfell et al., 2006).

G44202: Alkvl nitrate formation neglected.

G44205: Alkvl nitrate formation neglected.

G44210: Alkyl nitrate formation neglected.

HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44139: Simplified oxidation.

G44140: Simplified oxidation.

G44141: Simplified oxidation.

G44142: Simplified oxidation.

(Taraborrelli, 2010).

1995).

 $\tt G44023b:$ Products from H-abstraction from the secondary carbon bearing the ONO₂ group. G44025: Same value as for PAN.

 $\begin{array}{l} \texttt{G44000: The LC}_4\texttt{H}_9\texttt{O}_2 \text{ composition} (\texttt{nC}_4\texttt{H}_9\texttt{O}_2;\texttt{sC}_4\texttt{H}_9\texttt{O}_2 \\ \texttt{G440026: Products as in G4415. Only the main chan-$ ratio) is assumed to be equal to the ratio of the pro-nels for each isomer are considered. Weighted averagenels for each isomer are considered. Weighted average for the isomers.

> G44035: Rate constant replaced with the one of beta hydroxy RO₂.

> G44046b: Using value for secondary nitrate (88% of total)

G44061a: Using value for secondary nitrate (88% of total).

G44061b: Using value for secondary nitrate (88% of total).

G44062a: Simplified products.

G44062b: Simplified products.

G44066: Alkyl nitrate formation neglected.

G44070: Alkyl nitrate formation neglected.

G44076: Alkvl nitrate formation neglected.

G44078: Other channel neglected.

G44081: Alkyl nitrate formation neglected.

G44082: Other channel neglected.

G44085: k for CH₃CHCO from Hatakeyama et al. (1985) adjusted.

G44086: Simplified product distribution.

G44089: The nitrated RO_2 is replaced by its products upon reaction with NO.

G44096: Both LBUT1ENO2 isomers mostly C_2H_5CHO . G44097a: Branching ratios according to Rickard et al. (1999). CH₃CHO₂CHO is replaced with its major products CH₃CHO + CO + HO₂.

and BZFUONOO $\rightarrow 0.625$ CO14O3CO2H + 0.375 G44459; KDEC MALDIALO \rightarrow GLYOX + GLYOX + CO14O3CHO + 0.375 H2O2G44421: Only major channel. G44424: KDEC: GLYOOA \rightarrow 0.125 HCHO + 0.18 G45019d: Delta-1 and delta-2 LIEPOX are not consid-GLYOO + 0.82 HO2 + 0.57 OH + 1.265 CO + ered and replaced by beta-LIEPOX formed by ISOP-0.25 CO2 and H2O substitution GLYOO \rightarrow 0.625 BOOH and ISOPDOOH. $\mathrm{HCOCO2H} + 0.375 \ \mathrm{GLYOX} + 0.375 \ \mathrm{H2O2}$ G44425: Merged equations. G44430: KDEC MALANHYO \rightarrow HCOCOHCO3 G44431: KDEC MALANHYO \rightarrow HCOCOHCO3 G44432: Only major channel. KDEC MALANHYO \rightarrow HCOCOHCO3 G44436: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5 NO2 + 0.5 NBZFUONE + 0.5 HO2G44437: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5 NO2 + 0.5 NBZFUONE + 0.5 HO2G44438: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5 G45071: Alkyl nitrate formation neglected. NO2 + 0.5 NBZFUONE + 0.5 HO2 and RO2 Only major channel. G44439: KDEC MALDIALCO2 $\rightarrow 0.6$ MALANHY HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2G44443: KDEC MECOACETO \rightarrow CH3CO3 + HCHO G44444: KDEC MECOACETO \rightarrow CH3CO3 + HCHO G44445: KDEC MECOACETO \rightarrow CH3CO3 + HCHO G44450: KDEC BZEUO \rightarrow CO14O3CHO + HO2

Only major channel.

G44457: KDEC MALDIALO \rightarrow GLYOX + GLYOX + HO₂

+ 0.5 CO + 0.5 CO 2 + 0.5 HCOCH2O2 + 0.5 OH HO2

G44451: KDEC BZFUO \rightarrow CO14O3CHO + HO2

G44452: KDEC BZFUO \rightarrow CO14O3CHO + HO2.

G44458: KDEC MALDIALO \rightarrow GLYOX + GLYOX +

 $\tt G44097b:$ Branching ratios according to Rickard et al. (1999)

G44098: The nitrated RO_2 is replaced by its products upon reaction with NO.

G44103b: MEKCOH replaced by its major oxidation products.

G44104: Carbonyl nitrate replaced by its major oxidation products.

G44106: CH3CHOOA products as from $C_3H_6 + O_3$ reaction.

G44107: The nitrated RO_2 is replaced by its products upon reaction with NO.

 ${\tt G44110}:$ The nitrated ${\rm RO}_2$ is replaced by its products upon reaction with NO.

G44124b: Skipping intermediate steps mostly leading to

G44126: Skipping intermediate steps mostly leading to acetone

G44127: Only this channel considered as the intermedi-

ate radical is likely more stable than CHCH(OH)₂.

G44128: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44129: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44130: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

G44131: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44132: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44133: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

HO2. Only major channel.

G44461: KBPAN \rightarrow k_PAN_M

G45021: SAR estimate within uncertainty range of the experimentally determined rate constant by Solberg et al. (1997), 1.1E-11.

G45037: SAR estimate within uncertainty range of the experimentally determined rate constant by Solberg et al. (1997), 4.2E-11.

G45040: Alkyl nitrate formation neglected. G45043: Old MCM rate constant 4.16E-11.

G45047: Alkyl nitrate formation neglected.

G45055: Alkyl nitrate formation neglected.

G45074: Formic acid production consistent with results

of Bates et al. (2014). Here, the high yields of formic acid and hydroxycarbonyls at low NO from oxidation of cis-beta-LIEPOX (the most abundant isomer) are approximated with the production of DB1O which undergo both the Dibble double H-transfer to DB2O2 and HOCH2 elimination yielding HVMK and HMAC (ketovinyl alcohol potentially arising from decomposition of the alkoxy radical resulting from the ring opening after H-abstraction). The rate constant is from Paulot et al. (2009b) and adjusted based on Bates et al. (2014) that determined the single rate constants for the cis- and trans- beta isomer.

G45080: Alkyl nitrate formation neglected.

G45092a: C4MDIAL = CM4DIAL in MCM only from aromatics

G45092b: Only one acyl peroxy radical considered.

only one isomer product considered. G45095: Alkyl nitrate formation neglected. G45098: Alkyl nitrate formation neglected. G45100: Alkyl nitrate formation neglected. G45104a: DB100H is a hydroperoxide bearing a vinyl alcohol moiety that upon reaction with OH yields HCOOH (Davis et al., 1998). G45107: OH production here is to take into account the hydroperoxidic function formed by the shift of the enolic hydrogen and not present in DB2O2. This approximation leads to spurious HO₂ production. G45108a: Consistent with the results of Bates et al. (2014).G45108b: Consistent with the results of Bates et al. LC5PAN1719 (2014). Assuming that the enol alkoxy radical partly decomposes yielding a substitute vinyl alcohol. G45111: Alkyl nitrate formation neglected. G45114b: Here, formic acid is mechanistically produced by the OH-addition to the vinyl alcohol which, upon RO_2 -to-RO conversion (skipped here), yields the HOCHOH fragment which in turn reacts with O_2 forming HCOOH + HO₂. Along CH₃COCHOOHCHO should be produced but not in the mechanism. Only G45236: MBOBO2 CH₃COCHO₂CHO. The rate constant is consistent with predictions by Ganzeveld et al. (2006) for ENOL. OH-addition to the OH-bearing carbon is considered the dominant channel as it is already for the ENOL (Ganzeveld et al., 2006). G45115: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006). The prod-uct should be C10DC300HC40D but it is neglected in the mechanism G45116: As for DB1OOH + OH. G45487: KDEC C5DIALO →MALDIAL G46432b $NCATECO \rightarrow NC4DCO2H + HCOCO2H + HO2$ G45488: KDEC C5DIALO →MALDIAL G46433: KDEC NCATECO \rightarrow NC4DCO2H G45489: KDEC C5DIALO \rightarrow MALDIAL HCOCO2H + HO2G45491b: Reactions with KRO2HO2. G46434: KDEC NCATECO \rightarrow NC4DCO2H + G45492: MGLYOX + GLYOX + HO2 from KDEC sub-HCOCO2H + HO2stitution G46435: KDEC NCATECO \rightarrow NC4DCO2H + G45493: MGLYOX + GLYOX + HO2 from KDEC sub-HCOCO2H + HO2stitution G46437b: Reactions with KRO2HO2 and KDEC NPHENO \rightarrow MALDALCO2H + GLYOX + NO2 G45494: Permutation reaction (minor channels removed). G46438: KDEC NPHENO \rightarrow MALDALCO2H + G46201: Alkyl nitrate formation neglected. GLYOX + NO2G46404b: Reactions with KRO2HO2 and KDEC G46439: KDEC NPHENO → MALDALCO2H + $C615CO2O \rightarrow C5DICARB + CO + HO2.$ GLYOX + NO2G46405: KDEC C615CO2O \rightarrow C5DICARB + CO + G46440: KDEC NPHENO \rightarrow MALDALCO2H + HO2 GLYOX + NO2G46406: KDEC C615CO2O \rightarrow C5DICARB + CO + G46441: Merged equations. HO2 <code>G46447b: reactions with KRO2HO2 and KDEC NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2</code> G46407: Only major channel. G46413b: Reactions with KRO2HO2 and KDEC ND-G46448: KDEC NNCATECO \rightarrow NC4DCO2H + NPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + HCOCO2H + NO2NO2. G46449: KDEC NNCATECO \rightarrow NC4DCO2H G46414: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 HCOCO2H + NO2+ CO + CO + NO2G46450: KDEC NNCATECO \rightarrow NC4DCO2H + G46415: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 HCOCO2H + NO2+ CO + CO + NO2G46416: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 G46457: Merged equations.

+ CO + CO + NO2G46418: KDEC CATECOOA \rightarrow MALDALCO2H + HCOCO2H + HO2 + OH

G46426: KFPAN \rightarrow k_CH3CO3_NO2

<code>G46461b: Reactions with KRO2HO2 and KDEC PHENO \rightarrow 0.71 MALDALCO2H + 0.71 GLYOX +</code> $0.29~\mathrm{PBZQONE} + \mathrm{HO2}$ G46430: KDEC GLYOOA \rightarrow .125 HCHO + .18 GLYOO + .82 HO2 + .57 OH + 1.265 CO G46462: KDEC PHENO $\rightarrow 0.71$ MALDALCO2H + $0.71~{\rm GLYOX} + 0.29~{\rm PBZQONE} + {\rm HO2}$

G45093: Two aldehydic sites reacting with NO₃ but G45117: Additional sinks for DB2OOH are neglected. G45121b: Nitrate assumed to be major isomer that is mostly similar to products of ISOPDO2-chemistry. G45128: Rate constant by Liliegren and Stevens (2013). A lumped RO₂ that upon conversion to RO yields 100% 2-methyl-butenedial (C4MDIAL) although Aschmann et al. (2014) quantified a 38% yield of the Z/E mixture. G45129: As for 3METHYLFURAN + OH but with additional NO₂ production for mass conservation. G45131: Alkyl nitrate formation neglected. G45132: Hydroperoxide formation neglected G45134b: ZCO2HC23DBCOD formation is neglected. However, it is produced in MCM and in aromatic related reactions under the name of MC3ODBCO2H. G45139: LZCPANC23DBCOD is assumed to react like G45201: Alkyl nitrate formation neglected. G45207: Alkyl nitrate formation neglected. G45214: Alkyl nitrate formation neglected. G45217: Alkyl nitrate formation neglected. G45225: Alkyl nitrate formation neglected. LMBOABO2 = 0.67 MBOAO2 + 0.33G45247: Alkyl nitrate formation neglected. G45400: KDEC NC4MDCO2 \rightarrow MMALANHY + NO2 G45404: KDEC NTLFUO \rightarrow ACCOMECHO + NO2 G45405: KDEC NTLFUO \rightarrow ACCOMECHO + NO2 G45406: KDEC NTLFUO \rightarrow ACCOMECHO G45409: KBPAN \rightarrow k_PAN_M(renaming) G45413: KFPAN \rightarrow k_CH3CO3_NO2 (renaming) G45422: KDEC MMALANHYO→CO2H3CO3

80

G45423: KDEC MMALANHYO→CO2H3CO3 G45424: KDEC MMALANHYO \rightarrow CO2H3CO3 and Only major channel. G45429: KBPAN \rightarrow k_PAN_M (renamed)

G45430a: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO 0.17 CO2

G45431: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO0.17 CO2

G45432: KFPAN \rightarrow k_CH3CO3_NO2 (renaming) G45433: KDEC C5CO14CO2 $\rightarrow 0.83$ MALANHY

0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO2

G45434: KDEC C5CO14CO2 $\rightarrow 0.83$ MALANHY 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO 2 and only major channel.

G45436: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO2

0.35 CH3 + 0.35 CO + 0.35 CO2 + 0.65 MMALANHY + 0.65 HO2

G45452: KDEC TLFUONOOA $\rightarrow 0.5 \text{ CO} + 0.5 \text{ OH}$ + 0.5 MECOACETO2 + 0.5 TLFUONOO and H2O subs TLFUONOO \rightarrow 0.625 C24O3CCO2H + 0.375 AC-COMECHO + 0.375 H2O2

G45456: KFPAN →k_CH3CO3_NO2 (renaming) G45476b: KDEC NTLFUO \rightarrow ACCOMECHO + NO2 and reactions with KRO2HO2.

G45477: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45478: KDEC NTLFUO \rightarrow ACCOMECHO + NO2 G45479: KDEC NTLFUO \rightarrow ACCOMECHO + NO2 G45486b: KDEC C5DIALO \rightarrow MALDIAL + CO + HO2 and reactions with KRO2HO2.

Reactions with KRO2HO2 and KDEC G46463; KDEC PHENO $\rightarrow 0.71$ MALDALCO2H + $0.71~{\rm GLYOX} + 0.29~{\rm PBZQONE} + {\rm HO2}$ G46464: KDEC PHENO \rightarrow 0.71 MALDALCO2H +

0.71 GLYOX + 0.29 PBZQONE + HO2 and Only major channel.

G46468: KFPAN \rightarrow k_CH3CO3_NO2

G46472b: new channel

G46476: HOC6H4NO2 is a nitro-phenol

G46480b: Reactions with KRO2HO2 and KDEC PBZQO →C5CO2OHCO3

G46481: KDEC PBZQO \rightarrow C5CO2OHCO3

G46482: KDEC PBZQO \rightarrow C5CO2OHCO3

G46483: KDEC PBZQO \rightarrow C5CO2OHCO3 and Only major channel.

G46485b: Reactions with KRO2HO2 and KDEC $DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2$

G46486: KDEC DNPHENO \rightarrow NC4DCO2H HCOCO2H + NO2

G46487: KDEC DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46488: KDEC DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2

 $\tt G46490b:$ Reactions with KRO2HO2 and KDEC BZE- $\begin{array}{l} \text{G404900. Reactions with RR02H02 and RDEC BZE-} \\ \text{MUCO} \rightarrow 0.5 \ \text{EPXC4DIAL} + 0.5 \ \text{GLYOX} + 0.5 \ \text{HO2} \\ + 0.5 \ \text{C3DIALO2} + 0.5 \ \text{C32OH13CO}. \end{array}$

G46491b: KDEC BZEMUCO $\rightarrow 0.5$ EPXC4DIAL 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO.

G46492: KDEC BZEMUCO \rightarrow 0.5 EPXC4DIAL 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO

G46493: KDEC BZEMUCO $\rightarrow 0.5$ EPXC4DIAL G40493. RDEC BZEMUCO \rightarrow 0.5 EFAC4DIAL + 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5 C32OH13CO and Only major channel.

81

G46458: Merged equations.

G46499b: Reactions with KRO2HO2 and KDEC G47405: Merged. $NBZQO \rightarrow C6CO4DB + NO2.$ G46500: KDEC NBZQO \rightarrow C6CO4DB + NO2 G46501: KDEC NBZQO \rightarrow C6CO4DB + NO2 G46502: KDEC NBZQO \rightarrow C6CO4DB + NO2 G46505b: New channel. G46515: Only major channel. G46522b: In analogy to TLBIPERO2 from toluene (Birdsall et al., 2010). G46523b: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE G46524: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE G46525: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE and Only major channel. G47210: Alkyl nitrate formation neglected. G47214: Alkyl nitrate formation neglected. G47218: Alkyl nitrate formation neglected. G47222: Alkyl nitrate formation neglected. G47223: ROO6R3OOH produced but no sink for it. G47225: ROO6R4P produced but no sink for it. G47226: ROO6R5P produced but no sink for it G47400: Merged. G47402a: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2. G47402b: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2.G47403: KROPRIM*O2 fast reaction C6H5CH2O BENZAL + HO2. G47404: KROPRIM*O2 fast reaction C6H5CH2O =

BENZAL + HO2. C6H5CH2OH replaced by its oxidation product BENZAL. G47406: Merged. G47407b: According to Birdsall et al. (2010), the branching ratio rbipero2_oh is set to 0.4 in order to take into account the OH-recycling and summed yield of butendial and methylbutendial. G47408a: KDEC TLBIPERO \rightarrow 0.6 GLYOX + 0.4 MGLYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL G47408b: KDEC TLBIPERO \rightarrow 0.6 GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2 C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2 DIFFUONE + 0.2 BZFUONE + 0.2 DIFFUONE + 0.2 D MALDIAL G47409: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 $\begin{array}{l} \mathrm{MGLYOX}\ +\ \mathrm{HO2}\ +\ 0.2\ \mathrm{ZCODC23DB}\ \mathrm{COD}\ +\ 0.2\\ \mathrm{C5DICARB}\ +\ 0.2\ \mathrm{TLFUONE}\ +\ 0.2\ \mathrm{BZFUONE}\ +\ 0.2 \end{array}$ MALDIAL G47410: Only major channel and KDEC TLBIPERO \rightarrow 0.6 GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2 C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL G47412: KDEC MGLOOB $\rightarrow 0.125$ CH3CHO + 0.695 $\begin{array}{l} {\rm CH3CO}\ +\ 0.57\ {\rm CO}\ +\ 0.57\ {\rm OH}\ +\ 0.125\ {\rm HO2}\ +\ 0.18\\ {\rm MGLOO}\ +\ 0.25\ {\rm CO2} \end{array}$ G47413: Merged. G47418b: Reactions with KRO2HO2 and KDEC CRESO \rightarrow 0.68 C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE. G47419: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68

GLYOX + HO2 + 0.32 PTLQONE G47420: KDEC CRESO \rightarrow 0.68 C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

G47421: KDEC CRESO \rightarrow 0.68 C5C0140H + 0.68 GLYOX + HO2 + 0.32 PTLQONE and Only major channel.

82

 $DNCRESO \rightarrow NC4MDCO2H + HCOCO2H + NO2$

Reactions with KRO2HO2 and KDEC

G47513b:

+ NO2 G47424: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2

G47425: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2 and Only major channel.

G47426: TOL1OHNO2 is a nitro-phenol

647429: KDEC MCATECOOA \rightarrow MC3ODBCO2H + HCOCO2H + HO2 + OH

G47436: KFPAN \rightarrow k_CH3CO3_NO2

G47438: Only major channel.

<code>G47439b:</code> Reactions with KRO2HO2 and KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 C02H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5 HO2

<code>G47440b: KDEC TLEMUCO</code> $\rightarrow 0.5$ C3DIALO2 + 0.5 C02H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5 HO2

G47441: KDEC TLEMUCO \rightarrow 0.5 C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5 HO2

G47442: KDEC TLEMUCO \rightarrow 0.5 C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5 HO2 and Only major channel.

G47445: KFPAN \rightarrow k_CH3CO3_NO2

G47447: Only major channel.

G47454: New channel.

G47479: New channel.

G47482b: Reactions with KRO2HO2 and KDEC NPTLQO \rightarrow C7CO4DB + NO2

G47483: KDEC NPTLQO \rightarrow C7CO4DB + NO2

- $\begin{array}{l} \texttt{G47484: KDEC NPTLQO} \rightarrow \texttt{C7CO4DB} + \texttt{NO2} \\ \texttt{G47485: KDEC NPTLQO} \rightarrow \texttt{C7CO4DB} + \texttt{NO2} \\ \texttt{G47486b: Reactions with KRO2HO2 and KDEC} \\ \texttt{PTLQO} \rightarrow \texttt{C6CO2OHCO3} \\ \texttt{G47487: KDEC PTLQO} \rightarrow \texttt{C6CO2OHCO3} \\ \end{array}$
- G47488: KDEC PTLQO \rightarrow C6CO2OHCO3
- G47489: Only major channel. KDEC PTLQO \rightarrow C6CO2OHCO3.
- G47494: New channel

 $\label{eq:hcoco2H} \begin{array}{l} \mathrm{HCOCO2H} + \mathrm{NO2} \\ \\ \texttt{G47499:} \quad \mathrm{KDEC} \ \mathrm{MNNCATECO} \rightarrow \mathrm{NC4MDCO2H} \ + \end{array}$

 $\label{eq:hcoco2} \begin{array}{l} \text{HCOCO2H} + \text{NO2} \\ \text{G47501b: Reactions with KRO2HO2 and KDEC MN-CATECO} \rightarrow \text{NC4MDCO2H} + \text{HCOCO2H} + \text{HO2} \\ \end{array}$

G47504: KDEC MNCATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2

<code>G47509b:</code> Reactions with KRO2HO2 and KDEC NDNCRESO \rightarrow NC4MDCO2H + HNO3 + CO + CO + NO2

G47510: KDEC NDNCRESO \rightarrow NC4MDCO2H + HNO3 + CO + CO + NO2

G47511: KDEC NDNCRESO \rightarrow NC4MDCO2H HNO3 + CO + CO + NO2

G47512: KDEC NDNCRESO \rightarrow NC4MDCO2H - HNO3 + CO + CO + NO2

G47514: KDEC DNCRESO \rightarrow NC4MDCO2H + HCOCO2H + NO2G47515: KDEC DNCRESO \rightarrow NC4MDCO2H HCOCO2H + NO2G47516: KDEC DNCRESO \rightarrow NC4MDCO2H + HCOCO2H + NO2G48202: Alkvl nitrate formation neglected. G48210: Alkyl nitrate formation neglected G48212: Alkyl nitrate formation neglected. G48216: Alkyl nitrate formation neglected. G48222: Alkyl nitrate formation neglected. G48400a: Same products as for toluene. ing a 1:1:1 proportion in xylenes emissions the anal- $11^{*}0.155)/3$, where k and coefficients are for the single isomers ortho, meta and para from MCM. G48400b: Same products as for toluene. a 1:1:1 proportion in xylenes emissions the analogous

a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to $(1.36E-11^*0.05 + 2.31E-11^*0.004 + 1.43E-11^*0.10)/3$, where k and coefficients are for the single isomers or tho, meta and para from MCM.

G48400c: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.16 + 2.31E-11*0.17 + 1.43E-11*0.12)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM. G48400d: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to $(1.36E-11^{+0.5}0+1.43E 11^{+0.625})/3$, where k and coefficients are for the single isomers ortho, meta and para from MCM. G48401: Same products as for toluene. The rate constant is the average of m, p, o k=(4.10E-16+2.60E-16+5.00E-161/3 = 3.9E-16.

G48402: merged under same rate constant

G48403: Same products as for toluene

G48405: KDEC CH2OOB \rightarrow 0.24 CH2OO + 0.40 CO + 0.36 HO2 + 0.36 CO + 0.36 OH and H2O + PH-CHOO \rightarrow 0.625 PHCOOH + 0.375 BENZAL + 0.375 H2O2 + 0.2 CO2

G48408: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48409: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48410: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48412b: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL and reactions with KRO2HO2.

G48413: KDEC STYRENO \rightarrow HO2 + HCHO + BENZAL

G48414: KDEC STYRENO \rightarrow HO2 + HCHO + BENZAL

G48415: KDEC STYRENO \rightarrow HO2 + HCHO + BENZAL

G49207: Alkyl nitrate formation neglected.

G49238: Alkyl nitrate formation neglected.

G49246: Only this channel considered as the intermediate radical is likely more stable than

alyzed by formic acid (Grenfell et al., 2006).

649248: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (3.27E-11*0.21 + 3.25E-11*0.30 + 5.67E-11*0.14)/3, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49400b: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (3.27E-11*0.06 + 3.25E-11*0.06 + 5.67E-11*0.03)/3. where k and coefficients are for the single isomers 1,2,3-, 1.3.4- and 1.3.5- from MCM.

G49400c: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous to the the second seco re k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

 $\tt G49400d:$ Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (3.27E-11*0.70 + 3.25E-11*0.61 + 5.67E-11*0.79)/3, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49401: Same products as for toluene. The rate constant is the average of m, p, o k=(1.90+1.80+0.88)E-15/3=1.52E-15.

G40200: Products from Vereecken et al. (2007). LAP-INABO2 = 0.65 APINAO2 + 0.35 APINBO2

k = 0.35*1.83E-11+0.65*3.28E-11.

G40205: Weighted average for isomers A and B, G40283a: Products from Nguyen et al. (2009). k = 0.35*5.50E-12+0.65*3.64E-12.

G49400a: Same products as for toluene. Assuming G40206: SAR-estimated rate constant, (kads+ kadt)*acoch3 = 6.46E-11 where kads = 3.0E-11, kadt = 5.5E-11, acoch3 = 0.76

G40207: Alkyl nitrate formation neglected.

G40211: Products from Rickard and Pascoe (2009). G40212: Products from Rickard and Pascoe (2009).

G40232: Products from Capouet et al. (2008).

G40242: Alkyl nitrate formation neglected.

G40246: Products from Rickard and Pascoe (2009). G40248: Alkyl nitrate formation neglected.

G40252a: Products from Vereecken and Peeters (2012).

G40252b: Products from Vereecken and Peeters (2012). G40259: ROO6R10OH is produced but no sink for it. G40262: RO6R10OH is produced but no sink for it. G40266: Rate constant modified according to MCM protocol

G40267a: Products from Nguyen et al. (2009).

G40268: Products from Rickard and Pascoe (2009). G40270: Alkyl nitrate neglected.

G40274: As for RO6R1NO3 in G4085.

G40276: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂. G40277: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G49247: Theoretical keto-enol tautomerization cat- G40204: Weighted average for isomers A and B, G40282a: Products from Vereecken and Peeters (2012). G40282b: Products from Vereecken and Peeters (2012).

G40284: Products from Rickard and Pascoe (2009). G40285a: Products from Vereecken and Peeters (2012).

G40285b: Products from Vereecken and Peeters (2012). G40286a: Products from Nguyen et al. (2009). G40287: Products from Rickard and Pascoe (2009).

G40400: DIET35TOL(from MCM) as representative of higher aromatics

G40401: Same products as for toluene.

G6103: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G6204: At low temperatures, there may be a minor reaction channel leading to O_3 +HCl. See Finkbeiner et al. (1995) for details. It is neglected here.

G6402: The initial products are probably HCl and CH₂OOH (Atkinson et al., 2006). It is assumed that CH₂OOH dissociates into HCHO and OH.

G6409: It is assumed that the reaction liberates all Cl atoms in the form of HCl.

G7302: The rate coefficient is: $k_Br0_N02 = k_$ 3rd(temp, cair, 5.2E-31, 3.2, 6.9E-12, 2.9, 0.6).

G7303: The rate coefficient is defined as backward reaction (Atkinson et al., 2007) divided by equilibrium constant (Orlando and Tyndall, 1996).

G7404: It is assumed that the reaction liberates all Br atoms in the form of HBr.

G7407: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

atoms. The fate of the carbon atom is currently not considered.

G7605: Same value as for G7408: CH₂Br₂+OH a sumed. It is assumed that the reaction liberates all Br and Cl atoms. The fate of the carbon atom is currently not considered.

G7606: Same value as for G7408: CH₂Br₂+OH assumed. It is assumed that the reaction liberates all Br and Cl atoms. The fate of the carbon atom is currently not considered.

 ${\tt G7607}{:}$ It is assumed that the reaction liberates all Br and Cl atoms. The fate of the carbon atom is currently not considered.

G8102: Consistent with O'Dowd and Hoffmann (2005). it is assumed that the reaction produces new particles G8103: The yield of 38 % OIO is from Atkinson et al. (2007). It is assumed here that the remaining 62 % produce $2I + O_2$.

G8300: The rate coefficient is: $k_I_N02 = k_3rd_$ iupac(temp,cair,3.E-31,1.,6.6E-11,0.,0.63).

action (Atkinson et al., 2007) divided by equilibrium reaction is constant (van den Bergh and Troe, 1976).

84

G8401: The rate coefficient is from Dillon et al. (2006b), the yield of I atoms is a lower limit given on page 2170 of Bale et al. (2005).

G8402: The products are from Nakano et al. (2005). G8701: 80% Br + OIO production is from Atkinson et al. (2007). The remaining channels are assumed to produce $Br + I + O_2$.

G9400a: For the abstraction path, the assumed reaction sequence (omitting H_2O and O_2 as products) according to Yin et al. (1990) is:

DMS + OH	\rightarrow	CH_3SCH_2
$\rm CH_3SCH_2 + O_2$	\rightarrow	CH_3SCH_2OO
$\rm CH_3SCH_2OO + NO$	\rightarrow	$\rm CH_3SCH_2O + NO_2$
CH_3SCH_2O	\rightarrow	$\rm CH_3S + HCHO$
$\mathrm{CH}_3\mathrm{S}+\mathrm{O}_3$	\rightarrow	CH_3SO
$CH_{2}SO + O_{2}$	\rightarrow	CH ₂ SO ₂

 $\overline{\text{DMS} + \text{OH} + \text{NO} + 2\text{O}_3} \rightarrow \overline{\text{CH}_3\text{SO}_2 + \text{HCHO} + \text{NO}_2}$

G7408: It is assumed that the reaction liberates all Br G8305: The rate coefficient is defined as backward re- Neglecting the effect on O₃ and NO_x, the remaining

 $DMS + OH + O_3 \rightarrow CH_3SO_2 + HCHO$

G9400b: For the addition path, the rate coefficient is: k_DMS_OH = 1.0E-39*EXP(5820./temp)*C(ind_02) / (1.+5.0E-30*EXP(6280./temp)*C(ind_02))

G9402: Products and yields are not from Hynes and Wine (1996).

G9408: Average of 3.9E-11 and 3.42E-11. G10201: Upper limit.

Table 2: Photolysis reactions

#	labels	reaction	rate coefficient	reference
J (gas)				
J0001	UpGJ	$O(^{3}P) \rightarrow O^{+} + e^{-}$	jx(ip_Op_em) +jx(ip_se_Op_em)	Fuller-Rowell (1993)
J0002a	UpGJ	$O_2 \rightarrow O_2^+ + e^-$	jx(ip_02p_em) +jx(ip_se_02_b1)	Fuller-Rowell (1993)
J0002b	UpGJ	$O_2 \rightarrow O^+ + O(^3P) + e^-$	jx(ip_Op_O_em) +jx(ip_se_O2_b2)	Fuller-Rowell (1993)
J0003a	UpGJN	$N_2 \rightarrow N_2^+ + e^-$	jx(ip_N2p_em) +jx(ip_se_N2_b1)	Fuller-Rowell (1993)
J0003b	UpGJN	$N_2 \rightarrow N^+ + N + e^-$	jx(ip_Np_N_em) +jx(ip_se_N2_b2)	Fuller-Rowell (1993)
J0003c	UpGJN	$N_2 \rightarrow N^+ + N(^2D) + e^-$	jx(ip_Np_N2D_em)+jx(ip_se_N2_b3)	Fuller-Rowell (1993)
J0003d	UpGJN	$N_2 \rightarrow N + N(^2D)$	jx(ip_N_N2D_em) +jx(ip_se_N2_b4)	Fuller-Rowell (1993)
J1000a	UpStTrGJ	$O_2 + h\nu \rightarrow O(^3P) + O(^3P)$	jx(ip_02)	Sander et al. (2014)
J1000b	UpGJ	$O_2 + h\nu \rightarrow O(^3P) + O(^1D)$	jx(ip_03P01D)	Sander et al. (2014)
J1000c	UpGJ	$O_2 + h\nu \rightarrow O_2^+ + e^-$	jx(ip_02_b1)	Sander et al. (2014)
J1000d	UpGJ	$O_2 + h\nu \rightarrow O^+ + O(^3P) + e^-$	jx(ip_02_b2)	Sander et al. (2014)
J1001a	UpStTrGJ	$O_3 + h\nu \rightarrow O(^1D) + O_2$	jx(ip_O1D)	Sander et al. (2014)
J1001b	UpStTrGJ	$O_3 + h\nu \rightarrow O(^3P) + O_2$	jx(ip_O3P)	Sander et al. (2014)
J1002	UpGJ	$O(^{3}P) + h\nu \rightarrow O^{+} + e^{-}$	jx(ip_O3Pp)	Sander et al. (2014)
J2100a	UpStGJ	$H_2O + h\nu \rightarrow H + OH$	jx(ip_H2O)	Sander et al. (2014)
J2100b	UpGJ	$H_2O + h\nu \rightarrow H_2 + O(^1D)$	jx(ip_H2O1D)	Sander et al. (2014)
J2101	UpStTrGJ	$H_2O_2 + h\nu \rightarrow 2 \text{ OH}$	jx(ip_H202)	Sander et al. (2014)
J3000a	UpGJN	$N_2 + h\nu \rightarrow N_2^+ + e^-$	jx(ip_N2_b1)	Sander et al. (2014)
J3000b	UpGJN	$N_2 + h\nu \rightarrow N^+ + N + e^-$	jx(ip_N2_b2)	Sander et al. (2014)
J3000c	UpGJN	$N_2 + h\nu \rightarrow N^+ + N(^2D) + e^-$	jx(ip_N2_b3)	Sander et al. (2014)
J3000d	UpGJN	$N_2 + h\nu \rightarrow N + N(^2D)$	jx(ip_NN2D)	Sander et al. (2014)
J3100	UpStGJN	$N_2O + h\nu \rightarrow O(^1D) + N_2$	jx(ip_N2O)	Sander et al. (2014)
J3101	UpStTrGJN	$NO_2 + h\nu \rightarrow NO + O(^{3}P)$	jx(ip_NO2)	Sander et al. (2014)
J3102a	UpStGJN	$NO + h\nu \rightarrow N + O(^{3}P)$	jx(ip_NO)	Sander et al. (2014)
J3102b	UpGJN	$NO + h\nu \rightarrow NO^+ + e^-$	jx(ip_NOp)	Sander et al. (2014)
J3103a	UpStTrGJN	$NO_3 + h\nu \rightarrow NO_2 + O(^{3}P)$	jx(ip_N020)	Sander et al. (2014)
J3103b	UpStTrGJN	$NO_3 + h\nu \rightarrow NO + O_2$	jx(ip_NOO2)	Sander et al. (2014)
J3104	StTrGJN	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	jx(ip_N2O5)	Sander et al. (2014)
J3200	TrGJN	$HONO + h\nu \rightarrow NO + OH$	jx(ip_HONO)	Sander et al. (2014)
J3201	StTrGJN	$HNO_3 + h\nu \rightarrow NO_2 + OH$	jx(ip_HNO3)	Sander et al. (2014)
J3202	StTrGJN	$HNO_4 + h\nu \rightarrow .667 \text{ NO}_2 + .667 \text{ HO}_2 + .333 \text{ NO}_3 + .333 \text{ OH}$	jx(ip_HNO4)	Sander et al. (2014)
J41000	StTrGJ	$CH_3OOH + h\nu \rightarrow CH_3O + OH$	jx(ip_CH300H)	Sander et al. (2014)
J41001a	StTrGJ	$HCHO + h\nu \rightarrow H_2 + CO$	jx(ip_COH2)	Sander et al. (2014)

86

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J41001b	StTrGJ	$HCHO + h\nu \rightarrow H + CO + HO_2$	jx(ip_CHOH)	Sander et al. (2014)
J41002	StGJ	$CO_2 + h\nu \rightarrow CO + O(^{3}P)$	jx(ip_CO2)	Sander et al. (2014)
J41003	StGJ	$\begin{array}{l} {\rm CH}_4 + h\nu \rightarrow .42 \; {\rm CH}_3 + .42 \; {\rm H} + .6912 \; {\rm H}_2 + .0864 \; {\rm HCHO} + .0864 \\ {\rm O}(^3{\rm P}) + .1584 \; {\rm OH} + .1584 \; {\rm HO}_2 + .2112 \; {\rm CO}_2 + .1824 \; {\rm CO} + .024 \\ {\rm H}_2{\rm O} + .10 \; {\rm LCARBON} \end{array}$	jx(ip_CH4)	Sander et al. (2014)*
J41004	StTrGJN	$CH_3ONO + h\nu \rightarrow CH_3O + NO$	jx(ip_CH3ONO)	Sander et al. (2014)
J41005	StTrGJN	$CH_3ONO_2 + h\nu \rightarrow CH_3O + NO_2$	jx(ip_CH3NO3)	Sander et al. (2014)
J41006	StTrGJN	$\rm CH_3O_2NO_2 + h\nu \rightarrow .667~NO_2 + .667~CH_3O_2 + .333~NO_3 + .333~CH_3O$	jx(ip_CH302N02)	Sander et al. (2014)*
J41007	StTrGJ	$HOCH_2OOH + h\nu \rightarrow HCOOH + OH + HO_2$	jx(ip_CH300H)	Sander et al. (2014)
J41008	StTrGJ	$CH_3O_2 + h\nu \rightarrow HCHO + OH$	jx(ip_CH302)	Sander et al. (2014)
J41009	StTrGJ	$HCOOH + h\nu \rightarrow CO + HO_2 + OH$	jx(ip_HCOOH)	Sander et al. (2014)
J41010	StTrGJN	HOCH ₂ O ₂ NO ₂ + $h\nu$ → .667 NO ₂ + .667 HOCH ₂ O ₂ + .333 NO ₃ + .333 HCOOH + .333 HO ₂	jx(ip_CH302N02)	Sander et al. (2014)
J42000	TrGJC	$C_2H_5OOH + h\nu \rightarrow CH_3CHO + HO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J42001a	TrGJC	$CH_3CHO + h\nu \rightarrow CH_3 + HO_2 + CO$	jx(ip_CH3CH0)	Sander et al. (2014)
J42001b	TrGJC	$CH_3CHO + h\nu \rightarrow CH_2CHOH$	jx(ip_CH3CH02VINY)	Clubb et al. (2012)
J42002	TrGJC	$CH_3C(O)OOH + h\nu \rightarrow CH_3 + OH + CO_2$	jx(ip_CH3CO3H)	Sander et al. (2014)
J42004	TrGJCN	PAN + h $\!$	jx(ip_PAN)	Sander et al. $(2014)^*$
J42005a	TrGJC	$HOCH_2CHO + h\nu \rightarrow HCHO + 2 HO_2 + CO$	jx(ip_HOCH2CHO)*0.83	Sander et al. (2014)*
J42005b	TrGJC	$HOCH_2CHO + h\nu \rightarrow OH + HCOCH_2O_2$	jx(ip_HOCH2CH0)*0.07	Sander et al. (2014)*
J42005c	TrGJC	$HOCH_2CHO + h\nu \rightarrow CH_3OH + CO$	jx(ip_HOCH2CHO)*0.10	Sander et al. (2014)*
J42006	TrGJC	$HOCH_2CO_3H + h\nu \rightarrow HCHO + HO_2 + OH + CO_2$	jx(ip_CH300H)	Rickard and Pascoe (2009
J42007	TrGJCN	PHAN + $h\nu \rightarrow .7$ HOCH2CO + .7 NO ₂ + .3 HCHO + .3 HO ₂ + .3 CO ₂ + .3 NO ₃	jx(ip_PAN)	see note*
J42008	TrGJC	$GLYOX + h\nu \rightarrow 2 CO + 2 HO_2$	jx(ip_GLYOX)	Sander et al. (2014)
J42009	TrGJC	$HCOCO_2H + h\nu \rightarrow 2 HO_2 + CO + CO_2$	jx(ip_MGLYOX)	Rickard and Pascoe (2009
J42010	TrGJC	$HCOCO_3H + h\nu \rightarrow HO_2 + CO + OH + CO_2$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009
J42011	TrGJC	$HYETHO2H + h\nu \rightarrow HOCH_2CH_2O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009
J42012	TrGJCN	$ETHOHNO3 + h\nu \rightarrow HO_2 + 2 HCHO + NO_2$	j_IC3H7NO3	Rickard and Pascoe (2009
J42013	TrGJC	$HOOCH2CO3H + h\nu \rightarrow OH + HCHO + CO_2 + OH$	2.*jx(ip_CH300H)	Sander et al. (2019)
J42014	TrGC	$HOOCH2CO2H + h\nu \rightarrow OH + HCHO + HO_2 + CO_2$	jx(ip_CH300H)	Sander et al. (2019)
J42015	TrGC	CH2CO + $h\nu \rightarrow .4$ CO ₂ + .8 H + .34 CO + .34 OH + .34 HO ₂ + .16 HCHO + .16 O(³ P) + .1 HCOOH + CO	j_ketene*0.36	Sander et al. (2019)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J42016	TrGC	$CH3CHOHOOH + h\nu \rightarrow CH_3 + HCOOH + OH$	jx(ip_CH300H)	Sander et al. (2019)
J42017	TrGJCN	$\rm NO_3CH2CHO+h\nu\rightarrow HO_2+CO+HCHO+NO_2$	(jx(ip_C2H5N03)+jx(ip_CH3CH0)) *(jx(ip_N0A)+1E-10)/(0.59*j_ IC3H7N03+jx(ip_CH3C0CH3)+1E-10)	Sander et al. (2019)*
J42018	TrGJC	$HOOCH2CHO + h\nu \rightarrow OH + HCHO + CO + HO_2$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Sander et al. (2019)
J42019	TrGJCN	$C_2H_5ONO_2 + h\nu \rightarrow CH_3CHO + HO_2 + NO_2$	jx(ip_C2H5NO3)	Sander et al. (2019)
J42020	TrGJCN	$\rm NO_3CH2CHO + h\nu \rightarrow .7~NO_3CH2CO_3 + .7~NO_2 + .3~HCHO + .3~NO_2 + .3~CO_2 + .3~NO_3$	jx(ip_PAN)	Sander et al. (2019)*
J42021	StTrGJCN	$\rm C_2H_5O_2NO_2 + h\nu \rightarrow .667~NO_2 + .667~C_2H_5O_2 + .333~NO_3 + .333~CH_3CHO + .333~HO_2$	jx(ip_CH302N02)	Sander et al. $(2019)^*$
J43000	TrGJC	$iC_3H_7OOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + OH$	jx(ip_CH3OOH)	von Kuhlmann (2001)
J43001	TrGJC	$CH_3COCH_3 + h\nu \rightarrow CH_3C(O) + CH_3$	jx(ip_CH3COCH3)	Sander et al. (2014)
J43002	TrGJC	CH ₃ COCH ₂ OH + $h\nu \rightarrow .5$ CH ₃ C(O) + .5 HCHO + .5 HO ₂ + .5 HOCH ₂ CO + .5 CH ₃	j_ACETOL	Sander et al. (2014)*
J43003	TrGJC	$MGLYOX + h\nu \rightarrow CH_3C(O) + CO + HO_2$	jx(ip_MGLYOX)	Sander et al. (2014)
J43004	TrGJC	$CH_3COCH_2O_2H + h\nu \rightarrow CH_3C(O) + HCHO + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J43005	TrGJC	$HOCH2COCH2OOH + h\nu \rightarrow HOCH2CO + HCHO + OH$	jx(ip_CH300H)+j_ACETOL	Sander et al. (2019)
J43006	TrGJCN	$\mathrm{iC_3H_7ONO_2} + \mathrm{h}\nu \rightarrow \mathrm{CH_3COCH_3} + \mathrm{NO_2} + \mathrm{HO_2}$	j_IC3H7NO3	von Kuhlmann et al. (2003)*
J43007	TrGJCN	$NOA + h\nu \rightarrow CH_3C(O) + HCHO + NO_2$	jx(ip_NOA)	Barnes et al. (1993)
J43009	TrGJC	$HYPROPO2H + h\nu \rightarrow CH_3CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43010	TrGJCN	$PR2O2HNO3 + h\nu \rightarrow NOA + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43011	TrGJC	$HOCH2COCHO + h\nu \rightarrow HOCH2CO + CO + HO_2$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J43012	TrGJC	$HCOCOCH_2OOH + h\nu \rightarrow HCOCO + HCHO + OH$	jx(ip_CH300H)+j_ACETOL	Sander et al. (2019)
J43013	TrGJC	$HCOCOCH_2OOH + h\nu \rightarrow HOOCH_2CO_3 + CO + HO_2$	jx(ip_MGLYOX)	Sander et al. (2019)
J43014	TrGJTerC	$HCOCH2CHO + h\nu \rightarrow HCOCH_2O_2 + HO_2 + CO$	jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009)
J43015	TrGJTerC	$HCOCH2CO2H + h\nu \rightarrow HCOCH_2O_2 + CO_2 + HO_2$	jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J43016	TrGJTerC	$HOC2H4CO3H + h\nu \rightarrow HOCH_2CH_2O_2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43017	TrGJC	$HCOCOCHO + h\nu \rightarrow HCOCO + HO_2 + CO$	2.*jx(ip_MGLYOX)	Sander et al. (2019)
J43018	TrGJC	$\begin{array}{l} {\rm CH_3COCO_2H} + h\nu \rightarrow .32 \ {\rm CH_3CHO} + .16 \ {\rm CH_2CHOH} + .54 \ {\rm CO_2} \\ + .38 \ {\rm CH_3C(O)} + .38 \ {\rm HO_2} + .38 \ {\rm CO_2} + .07 \ {\rm CH_3COOH} + .07 \\ {\rm CO} + .05 \ {\rm CH_3C(O)} + .05 \ {\rm CO} + .05 \ {\rm OH} \end{array}$	jx(ip_CH3COCO2H)	Sander et al. (2019)*
J43019	TrGC	$CH_3COCO_3H + h\nu \rightarrow CH_3C(O) + OH + CO_2$	jx(ip_MGLYOX)+jx(ip_CH300H)	Sander et al. (2019)
J43020	TrGC	$CH3CHCO + h\nu \rightarrow C_2H_4 + CO$	j_ketene*0.36*2.	Sander et al. (2019)
J43021	TrGCN	$PROPOLNO3 + h\nu \rightarrow HOCH_2CHO + HCHO + HO_2 + NO_2$	1_IC3H7N03	Sander et al. (2019)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J43022	TrGCN	$CH_3COCH_2OONO_2 + h\nu \rightarrow CH_3C(O) + HCHO + NO_3$	jx(ip_CH302N02)+jx(ip_CH3C0CH3)	Sander et al. (2019)
J43023	TrGJC	$C_3H_7OOH + h\nu \rightarrow C_2H_5CHO + HO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43024	TrGJCN	$C_3H_7ONO_2 + h\nu \rightarrow C_2H_5CHO + NO_2 + HO_2$	0.59*j_IC3H7N03	see note*
J43025a	TrGJC	$C_2H_5CHO + h\nu \rightarrow C_2H_5O_2 + HO_2 + CO$	jx(ip_C2H5CH02HC0)	see note [*]
J43025b	TrGJC	$\rm C_2H_5CHO+h\nu\rightarrowCH_2CHCH_2OH$	jx(ip_C2H5CH02EN0L)	Andrews et al. (2012 Sander et al. (2019)*
J43026	TrGJCN	PPN + h $\nu \rightarrow$.7 C ₂ H ₅ CO ₃ + .7 NO ₂ + .3 C ₂ H ₅ O ₂ + .3 CO ₂ + .3 NO ₃	jx(ip_PAN)	Sander et al. (2014)
J43027	TrGJC	$C_2H_5CO_3H + h\nu \rightarrow C_2H_5O_2 + CO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43028a	TrGJC	$HCOCOCH_2OOH + h\nu \rightarrow HOOCH_2CO_3 + CO + HO_2$	jx(ip_MGLYOX)	Sander et al. (2019)
J43028b	TrGJC	$HCOCOCH_2OOH + h\nu \rightarrow HCOCO + HCHO + OH$	jx(ip_HOCH2CHO)+jx(ip_CH3OOH)	Sander et al. (2019)
J43200	TrGJTerC	$HCOCH2CO3H + h\nu \rightarrow HCOCH_2O_2 + CO_2 + OH$	jx(ip_HOCH2CHO)+jx(ip_CH3OOH)	Rickard and Pascoe (200
J43400	TrGJAroC	$C3DIALOOH + h\nu \rightarrow GLYOX + CO + HO_2 + OH$	jx(ip_HOCH2CH0)*2.+jx(ip_CH3OOH)	Rickard and Pasc (2009)*
J43401	TrGJAroC	$C32OH13CO + h\nu \rightarrow GLYOX + HO_2 + HO_2 + CO$	jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (200
J43402	TrGJAroC	$HCOCOHCO3H + h\nu \rightarrow GLYOX + HO_2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (200
J44000a	TrGJC	${\rm LC_4H_9OOH} + {\rm h}\nu \rightarrow {\rm OH} + {\rm C_3H_7CHO} + {\rm HO_2}$	jx(ip_CH300H)*(k_p/(k_p+k_s))	Rickard and Pasc (2009), Sander et a (2019)
J44000b	TrGJC	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	jx(ip_CH300H)*(k_s/(k_p+k_s))	Rickard and Pase (2009), Sander et (2019)
J44001	TrGJC	$\rm MVK$ + $\rm h\nu \rightarrow .5~C_{3}H_{6}$ + .5 $\rm CH_{3}C(O)$ + .5 HCHO + CO + .5 HO_{2}	jx(ip_MVK)	Sander et al. (2014)
J44002	TrGJC	$MEK + h\nu \rightarrow CH_3C(O) + C_2H_5O_2$	0.42*jx(ip_CHOH)	von Kuhlmann et (2003)
J44003	TrGJC	LMEKOOH + $h\nu \rightarrow .62 \text{ CH}_3\text{C}(\text{O}) + .62 \text{ CH}_3\text{CHO} + .38 \text{ HCHO}$ + .38 CO ₂ + .38 HOCH ₂ CH ₂ O ₂ + OH	jx(ip_CH3OOH)+0.42*jx(ip_CHOH)	Sander et al. (2019)
J44004	TrGJC	$BIACET + h\nu \rightarrow 2 CH_3C(O)$	<pre>2.15*jx(ip_MGLYOX)</pre>	see note [*]
J44005a	TrGJCN	$LC4H9NO3 + h\nu \rightarrow NO_2 + C_3H_7CHO + HO_2$	j_IC3H7NO3*(k_p/(k_p+k_s))	see note [*]
J44005b	TrGJCN	$LC4H9NO3 + h\nu \rightarrow NO_2 + MEK + HO_2$	j_IC3H7NO3*(k_s/(k_p+k_s))	see note [*]
J44006	TrGJCN	$MPAN + h\nu \rightarrow .7 MACO3 + .7 NO_2 + .3 MACO2 + .3 NO_3$	jx(ip_PAN)	see note [*]
J44007a	TrGJC	$CO2H3CO3H + h\nu \rightarrow MGLYOX + HO_2 + OH + CO_2$	jx(ip_CH300H)	Rickard and Pascoe (200
Ј44007Ъ	TrGJC	$CO2H3CO3H + h\nu \rightarrow CH_3C(O) + HO_2 + HCOCO_3H$	j_ACETOL	Rickard and Pascoe (200

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44008	TrGJC	MACR + $h\nu \rightarrow .5$ MACO3 + .5 CH ₃ C(O) + .5 HCHO + .5 CO + HO ₂	jx(ip_MACR)	Sander et al. (2014)
J44009	TrGJC	$MACROOH + h\nu \rightarrow MACRO + OH$	jx(ip_CH300H)+2.77*jx(ip_ HOCH2CH0)	Sander et al. $(2019)^*$
J44010	TrGJC	$MACROH + h\nu \rightarrow CH_3COCH_2OH + CO + HO_2 + HO_2$	2.77*jx(ip_HOCH2CH0)	see note [*]
J44011	TrGJC	$MACO3H + h\nu \rightarrow MACO2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44012	TrGJC	LHMVKABOOH + $h\nu \rightarrow .12$ MGLYOX + .12 HO ₂ + .88 CH ₃ C(O) + .88 HOCH ₂ CHO + .12 HCHO + OH	jx(ip_CH300H)+j_ACETOL	Sander et al. (2019)
J44013	TrGJC	$CO2H3CHO + h\nu \rightarrow MGLYOX + CO + HO_2 + HO_2$	jx(ip_HOCH2CHO)+j_ACETOL	Sander et al. (2019)
J44014	TrGJC	$HO12CO3C4 + h\nu \rightarrow CH_3C(O) + HOCH_2CHO + HO_2$	j_ACETOL	Rickard and Pascoe (2009
J44015	TrGJC	$BIACETOH + h\nu \rightarrow CH_3C(O) + HOCH2CO$	2.15*jx(ip_MGLYOX)	see note*
J44016	TrGC	HCOCCH ₃ CO + h $\nu \rightarrow .5$ OH + .5 CH ₃ CHO + CO + .5 CH ₃ CHCO + .5 CO	j_ketene	Sander et al. (2019)
J44017a	TrGC	$\begin{array}{l} {\rm CH_3COCHCO} + {\rm h}\nu \to .0192 \ {\rm CH_3COCO_2H} + .1848 \ {\rm H_2O_2} + .2208 \\ {\rm MGLYOX} + .36 \ {\rm OH} + .36 \ {\rm CO} + .56 \ {\rm CH_3C(O)} + .2 \ {\rm CH_3CHO} + \\ .2 \ {\rm CO_2} + .2 \ {\rm HCHO} + .2 \ {\rm HO_2} + {\rm CO} \end{array}$	j_ketene*0.5	Sander et a (2019),Rickard an Pascoe (2009)*
J44017b	TrGC	$CH_3COCHCO + h\nu \rightarrow CH3CHCO + CO$	j_ketene*0.5	Sander et al. (2019)
J44018a	TrGJC	$CH_3COCOCHO + h\nu \rightarrow CH_3C(O) + 2 CO + HO_2$	jx(ip_MGLYOX)	Sander et al. (2019)
J44018b	TrGJC	$CH_3COCOCHO + h\nu \rightarrow HCOCO + CH_3C(O)$	2.15*jx(ip_MGLYOX)	Sander et al. (2019)
J44019	TrGJC	$CH3COCOCO2H + h\nu \rightarrow CH_3C(O) + CO + CO_2 + HO_2$	<pre>3.15*jx(ip_MGLYOX)</pre>	Sander et al. (2019)
J44020a	TrGJTerC	$CH_3COCOCH_2OOH + h\nu \rightarrow CH_3C(O) + OH + HCHO + CO$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009
J44020b	TrGJTerC	$CH_3COCOCH_2OOH + h\nu \rightarrow CH_3C(O) + HCOCO$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009
J44021	TrGJTerC	$C44OOH + h\nu \rightarrow HCOCH2CHO + CO_2 + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009
J44022	TrGJTerC	C413COOOH + $h\nu \rightarrow$ HCOCH2CO3 + HCHO + OH	jx(ip_CH300H)+jx(ip_HOCH2CH0) +j_ACETOL	Rickard and Pascoe (2009
J44023a	TrGJTerC	$C4CODIAL + h\nu \rightarrow HCOCOCH_2O_2 + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009
J44023b	TrGJTerC	$C4CODIAL + h\nu \rightarrow HCOCH2CO3 + HO_2 + CO$	jx(ip_MGLYOX)	Rickard and Pascoe (2009
J44024	TrGJTerC	$C312COCO3H + h\nu \rightarrow HCOCOCH_2O_2 + CO_2 + OH$	jx(ip_CH3OOH)+jx(ip_MGLYOX)	Rickard and Pascoe (2009
J44025	TrGJCN	LMEKNO3 + $h\nu \rightarrow .62 \text{ CH}_3\text{C}(\text{O}) + .62 \text{ CH}_3\text{CHO} + .38 \text{ HCHO}$ + .38 CO ₂ + .38 HOCH ₂ CH ₂ O ₂ + NO ₂	jx(ip_MEKNO3)	Barnes et al. (1993 Sander et al. (2019)*
J44026	TrGJCN	$\rm MVKNO3 + h\nu \rightarrow \rm CH_3C(O) + \rm HOCH_2CHO + \rm NO_2$	jx(ip_MEKNO3)	Barnes et al. (1993 Sander et al. (2019)*
J44027	TrGJCN	$\mathrm{MACRNO3} + \mathrm{h}\nu \rightarrow \mathrm{CH_3COCH_2OH} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{NO_2}$	(2.84*j_IC3H7N03+jx(ip_CH3CH0)) *(jx(ip_MEKN03)+1E-10)/(j_ IC3H7N03+0.42*jx(ip_CH0H)+1E-10)	Müller et al. (2014 Sander et al. (2019)*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44028	TrGJCN	$TC4H9NO3 + h\nu \rightarrow CH_3COCH_3 + CH_3 + NO_2$	2.84*j_IC3H7N03	Sander et al. (2019)
J44029	TrGJC	$TC_4H_9OOH + h\nu \rightarrow CH_3COCH_3 + CH_3 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44030	TrGJCN	$IBUTOLBNO3 + h\nu \rightarrow CH_3COCH_3 + HCHO + HO_2 + NO_2$	2.84*j_IC3H7N03	Sander et al. (2019)
J44031	TrGJC	$IBUTOLBOOH + h\nu \rightarrow CH_3COCH_3 + HCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44032	TrGJC	$LBUT1ENOOH + h\nu \rightarrow C_2H_5CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44033	TrGJCN	$LBUT1ENNO3 + h\nu \rightarrow C_2H_5CHO + HCHO + HO_2 + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J44034	TrGJC	$BUT2OLOOH + h\nu \rightarrow 2 CH_3CHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44035	TrGJCN	$BUT2OLNO3 + h\nu \rightarrow 2 CH_3CHO + HO_2 + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J44036	TrGJC	$BUT2OLO + h\nu \rightarrow CH_3C(O) + HOCH2CO$	j_ACETOL	Sander et al. (2019)
J44037a	TrGJC	$C_3H_7CHO + h\nu \rightarrow C_3H_7O_2 + CO + HO_2$	jx(ip_C3H7CH02HCO)	Sander et al. (2019)
J44037b	TrGJC	$C_3H_7CHO + h\nu \rightarrow C_2H_4 + CH_2CHOH$	jx(ip_C3H7CH02VINY)	Sander et al. (2019)*
J44038	TrGJC	$IPRCHO + h\nu \rightarrow iC_3H_7O_2 + CO + HO_2$	jx(ip_IPRCH02HCO)	Sander et al. (2019)
J44039	TrGJCN	$IC4H9NO3 + h\nu \rightarrow IPRCHO + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J44040	TrGJC	$IC_4H_9OOH + h\nu \rightarrow IPRCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44041	TrGJC	$PERIBUACID + h\nu \rightarrow iC_3H_7O_2 + CO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44042	TrGJCN	$\rm PIPN$ + $\rm h\nu \rightarrow$.7 $\rm IPRCO3$ + .7 $\rm NO_2$ + .3 $\rm iC_3H_7O_2$ + .3 $\rm CO_2$ + .3 $\rm NO_3$	jx(ip_PAN)	Sander et al. (2019) Sander et al. (2014)
J44043	TrGJC	$\mathrm{HVM}\ddot{\mathrm{K}} + \mathrm{h}\nu \rightarrow \mathrm{MGLYOX} + \mathrm{CO} + 2 \ \mathrm{OH}$	jx(ip_PeDIONE24)	Sander et al. (2019) Nakanishi et al. (1977) Messaadia et al. (2015) Yoon et al. (1999)*
J44044	TrGJC	${\rm HMAC} + {\rm h}\nu \rightarrow {\rm HCOCCH_3CO} + 2 ~{\rm OH}$	jx(ip_PeDIONE24)	Sander et al. (2019) Nakanishi et al. (1977) Messaadia et al. (2015) Yoon et al. (1999)*
J44045a	TrGJC	$CO2C3CHO + h\nu \rightarrow CH_3COCH_2O_2 + HO_2 + CO$	jx(ip_C2H5CH02HCO)	Rickard and Pascoe (2009
J44045b	TrGJC	$CO2C3CHO + h\nu \rightarrow HVMK$	jx(ip_C2H5CH02ENOL)	Andrews et al. (2012) Sander et al. (2019)
J44046a	TrGJC	$IBUTDIAL + h\nu \rightarrow CH_3CHO + CO + HO_2 + CO_2 + H_2O$	jx(ip_C2H5CH02HC0)*2.	see note*
J44046b	TrGJC	$\rm IBUTDIAL + h\nu \rightarrow \rm HMAC$	jx(ip_C2H5CH02ENOL)*2.	Andrews et al. (2012 Sander et al. (2019)
J44200	TrGJTerC	$IBUTALOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + HO_2 + CO$	j_ACETOL	Rickard and Pascoe (2009
J44201	TrGJTerC	$IPRHOCO3H + h\nu \rightarrow CH_3COCH_3 + HO_2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009
J44400a	TrGJAroC	MALDIALOOH + $h\nu \rightarrow C32OH13CO + CO + OH + HO_2$	jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference		
J44400b	TrGJAroC	$\label{eq:MALDIALOOH} \mathrm{MALDIALOOH} + \mathrm{h}\nu \rightarrow \mathrm{GLYOX} + \mathrm{GLYOX} + \mathrm{HO}_2 + \mathrm{OH}$	jx(ip_CH300H)	Rickard (2009)*	and	Pascoe
J44401	TrGJAroC	$BZFUOOH + h\nu \rightarrow CO14O3CHO + HO_2 + OH$	jx(ip_CH300H)	Rickard (2009)*	and	Pascoe
J44402	TrGJAroC	$HOCOC4DIAL + h\nu \rightarrow HCOCOHCO3 + HO_2 + CO$	jx(ip_MGLYOX)+jx(ip_HOCH2CHO)	Rickard an	id Pascoe	(2009)
J44403	TrGJAroCN	NBZFUOOH + h $\nu \rightarrow .5$ CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + OH	jx(ip_CH300H)	Rickard (2009)*	and	Pascoe
J44404a	TrGJAroC	$MALDALCO3H + h\nu \rightarrow HCOCO_3H + HO_2 + CO + HO_2 + CO$	jx(ip_MACR)	Rickard an	d Pascoe	(2009)
J44404b	TrGJAroC	MALDALCO3H + h $\nu \rightarrow .6$ MALANHY + HO_2 + .4 GLYOX + .4 CO + .4 CO_2 + OH	jx(ip_CH300H)	Rickard (2009)*	and	Pascoe
J44405	TrGJAroC	$EPXDLCO2H + h\nu \rightarrow C3DIALO2 + CO_2 + HO_2$	2.77*jx(ip_HOCH2CH0)	Rickard an	d Pascoe	(2009)
J44406	TrGJAroC	MALDIAL + $h\nu \rightarrow .4$ BZFUONE + .6 MALDIALCO3 + .6 HO ₂	jx(ip_NO2)*0.14	Rickard an	d Pascoe	(2009)
J44407	TrGJAroC	$MALANHYOOH + h\nu \rightarrow HCOCOHCO3 + CO_2 + OH$	jx(ip_CH300H)	Rickard (2009)*	and	Pascoe
J44408	TrGJAroC	$\mathrm{EPXDLCO3H} + \mathrm{h}\nu \rightarrow \mathrm{C3DIALO2} + \mathrm{OH} + \mathrm{CO}_2$	jx(ip_CH300H)+2.77*jx(ip_ HOCH2CH0)	Rickard an	d Pascoe	(2009)
J44409	TrGJAroC	$CO2C4DIAL + h\nu \rightarrow CO + CO + HO_2 + HO_2 + CO + CO$	jx(ip_MGLYOX)*2.	Rickard an	d Pascoe	(2009)
J44410	TrGJAroC	$MALDALCO2H + h\nu \rightarrow HCOCO_2H + HO_2 + CO + HO_2 + CO$	jx(ip_MACR)	Rickard an	d Pascoe	(2009)
J44411	TrGJAroC	$EPXC4DIAL + h\nu \rightarrow C3DIALO2 + CO + HO_2$	2.77*jx(ip_HOCH2CH0)*2.	Rickard an	id Pascoe	(2009)
J44412	TrGJAroC	$CO14O3CHO + h\nu \rightarrow HO_2 + CO + HCOCH_2O_2 + CO_2$	jx(ip_MGLYOX)	Rickard an	d Pascoe	(2009)
J44414	TrGJAroC	$\rm MECOACEOOH + h\nu \rightarrow CH_3C(O) + HCHO + CO_2 + OH$	jx(ip_CH300H)	Rickard (2009)*	and	Pascoe
J45002	TrGJC	$LISOPACOOH + h\nu \rightarrow LISOPACO + OH$	jx(ip_CH300H)	Rickard an	d Pascoe	(2009)
J45003	TrGJCN	$LISOPACNO3 + h\nu \rightarrow LISOPACO + NO_2$	0.59*j_IC3H7NO3	see note [*]		
J45004	TrGJC	$ISOPBOOH + h\nu \rightarrow MVK + HCHO + HO_2 + OH$	jx(ip_CH3OOH)	Rickard an	id Pascoe	e(2009)
J45005	TrGJCN	$ISOPBNO3 + h\nu \rightarrow MVK + HCHO + HO_2 + NO_2$	2.84*j_IC3H7N03	see note [*]		
J45006	TrGJC	$ISOPDOOH + h\nu \rightarrow MACR + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard an	d Pascoe	(2009)
J45007	TrGJCN	$ISOPDNO3 + h\nu \rightarrow MACR + HCHO + HO_2 + NO_2$	j_IC3H7NO3	see note [*]		
J45008	TrGJCN	$NISOPOOH + h\nu \rightarrow NC4CHO + HO_2 + OH$	jx(ip_CH300H)	Rickard an	id Pascoe	(2009)
J45009	TrGJCN	$\rm NC4CHO + h\nu \rightarrow \rm LHC4ACCO3 + \rm NO_2$	(.59*j_IC3H7N03+jx(ip_MACR)) *(jx(ip_MEKN03)+1E-10)/(j_ IC3H7N03+0.42*jx(ip_CHOH)+1E-10)	Müller e Sander et		
J45010	TrGJCN	LNISOOH + h $\nu \rightarrow$ NOA + OH + .5 HOCHCHO + .5 CO + .5 HO_2 + .5 CO_2	jx(ip_CH300H)	Taraborrel Sander et		

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J45011	TrGJC	LHC4ACCHO + $h\nu \rightarrow .5$ LHC4ACCO3 + $.5$ HO ₂ + $.5$ CO + $.5$ OH + $.25$ MACRO2 + $.25$ LHMVKABO2	jx(ip_MACR)	Sander et al. (2019)
J45012	TrGJC	$ \begin{array}{l} \text{On} + .25 \text{ MACRO2} + .25 \text{ LmWKABO2} \\ \text{LC578OOH} + h\nu \rightarrow .25 \text{ CH}_3 \text{COCH}_2 \text{OH} + .75 \text{ MGLYOX} + .25 \\ \text{HOCHCHO} + .75 \text{ HOCH}_2 \text{CHO} + .75 \text{ HO}_2 + \text{OH} \\ \end{array} $	jx(ip_CH300H)+ 2.77*jx(ip_ HOCH2CH0)	Sander et al. (2019)
J45013	TrGJC	LHC4ACCO3H + $h\nu \rightarrow$ OH + .5 MACRO2 + .5 LHMVKABO2 + OH + CO ₂	j_HPALD	Sander et al. (2019)
J45014	TrGJCN	$ \begin{array}{l} {\rm LC5PAN1719} + h\nu \rightarrow .7 \ {\rm LHC4ACCO3} + .7 \ {\rm NO}_2 + .15 \ {\rm MACRO2} \\ + .15 \ {\rm LHMVKABO2} + .3 \ {\rm CO}_2 + .3 \ {\rm NO}_3 \end{array} $	jx(ip_PAN)	Sander et al. (2019)
J45015	TrGJC	$\begin{array}{l} {\rm HCOC5} + {\rm h}\nu \rightarrow .65 \ {\rm CH}_3 + .65 \ {\rm CO} + .65 \ {\rm HCHO} + .35 \ {\rm OH} + \\ {\rm .35 \ CH}_3 {\rm COCH}_2 {\rm O}_2 + {\rm HOCH2CO} \end{array}$	0.5*jx(ip_MVK)	Sander et al. $(2019)^*$
J45016	TrGJC	$C59OOH + h\nu \rightarrow CH_3COCH_2OH + HOCH2CO + OH$	j_ACETOL+jx(ip_CH300H)	Sander et al. (2019)
J45017	TrGJTerC	$C511OOH + h\nu \rightarrow CH_3C(O) + HCOCH2CHO + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009
45018a	TrGJTerC	$CO23C4CHO + h\nu \rightarrow CH_3COCOCH_2O_2 + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009
45018b	TrGJTerC	$CO23C4CHO + h\nu \rightarrow CH_3C(O) + HCOCH2CO3$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009
45019	TrGJTerC	$CO23C4CO3H + h\nu \rightarrow CH_3COCOCH_2O_2 + CO_2 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009
45020	TrGJTerC	$C512OOH + h\nu \rightarrow C513O2 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009
45021	TrGJTerC	$CO13C4CHO + h\nu \rightarrow CHOC3COO2 + CO + HO_2$	jx(ip_HOCH2CHO)*2.	Rickard and Pascoe (2009
J45022	TrGJTerC	$C513OOH + h\nu \rightarrow GLYOX + HOC_2H_4CO_3 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009
J45023	TrGJTerC	$C513CO + h\nu \rightarrow HOC_2H_4CO_3 + HO_2 + CO + CO$	jx(ip_MGLYOX)+2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009
J45024	TrGJTerC	$C514OOH + h\nu \rightarrow CO13C4CHO + HO_2 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009
45025	TrGJTerCN	$C514NO3 + h\nu \rightarrow CO13C4CHO + HO_2 + NO_2$	j_IC3H7N03+jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (200
J45026a	TrGJC	LZCODC23DBCOOH + h $\nu \rightarrow \rm{OH}$ + CO + HVMK + OH	j_HPALD*0.6*0.5	Sander et al. (2019 Jenkin et al. (2015 Peeters et al. (2014)
J45026b	TrGJC	LZCODC23DBCOOH + h $\nu \rightarrow$ OH + CO + CH_3C(O) + HOCH_2CHO	j_HPALD*0.6*0.5	Sander et al. (2019 Jenkin et al. (2015 Peeters et al. (2014)
J45026c	TrGJC	LZCODC23DBCOOH + h $\nu \rightarrow \rm OH$ + CO + HMAC + OH	j_HPALD*0.4*0.5	Sander et al. (2019 Jenkin et al. (2015 Peeters et al. (2014)
145026d	TrGJC	LZCODC23DBCOOH + h $\nu \rightarrow$ OH + CO + CO + CH_3COCH_2OH + HO_2	j_HPALD*0.4*0.5	Sander et al. (2019 Jenkin et al. (2015 Peeters et al. (2014)
J45027	TrGJC	LZCO3HC23DBCOD + $h\nu \rightarrow .62$ EZCH3CO2CHCHO + .38 EZCHOCCH3CHO2 + OH + CO ₂	j_HPALD	Sander et al. (2019)

Table 2:	Photolysis	reactions	(continued)
----------	------------	-----------	---	-----------	---

#	labels	reaction	rate coefficient	reference
J45028a	TrGJC	C1OOHC2OOHC4OD + $h\nu \rightarrow CH_3COCH_2O_2H + OH + 2 CO + HO_2$	2.77*jx(ip_HOCH2CH0)	Sander et al. (2019)
J45028b	TrGJC	C1OOHC2OOHC4OD + $h\nu \rightarrow .5$ CH ₃ COCH ₂ O ₂ H + .5 HOCHCHO + .5 CO2H3CHO + .5 HCHO + 1.5 OH	2.*jx(ip_CH300H)	Sander et al. (2019)
J45029	TrGC	$DB1OOH + h\nu \rightarrow DB1O2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
45030	TrGC	DB2OOH + $h\nu \rightarrow .48$ CH ₃ COCH ₂ OH + .52 HOCH ₂ CHO + .52 MGLYOX + .48 GLYOX + HO ₂ + OH	jx(ip_CH300H)	Sander et al. (2019)
45031a	TrGJC	$C1ODC2OOHC4OD + h\nu \rightarrow MGLYOX + HOCHCHO + OH$	jx(ip_CH300H)	Sander et al. (2019)
45031b	TrGJC	$C1ODC2OOHC4OD + h\nu \rightarrow CO2H3CHO + CO + HO_2 + OH$	2.*2.77*jx(ip_HOCH2CH0)	Sander et al. (2019)
45032	TrGJC	C4MDIAL + $h\nu \rightarrow .5$ CH ₃ COCHCO + .5 HCOCCH ₃ CO + CO + HO ₂ + OH	jx(ip_NO2)*0.1*0.5	Sander et al. (2019)*
45033	TrGCN	$DB1NO3 + h\nu \rightarrow DB1O2 + NO_2$	j_IC3H7NO3	Sander et al. (2019)
45034	TrGJTerC	$\rm CHOC3COOOH + h\nu \rightarrow \rm CHOC3COO2 + \rm CO_2 + \rm OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0) +j_ACETOL	Rickard and Pascoe (2009)
45200a	TrGJTerC	$\label{eq:LMBOABOOH} \begin{array}{l} {\rm LMBOABOOH} + {\rm h}\nu \rightarrow {\rm HOCH_2CHO} + {\rm CH_3COCH_3} + {\rm HO_2} + {\rm OH} \end{array}$	jx(ip_CH300H)*.67	Rickard and Pascoe (2009), Sander et al (2019)
45200b	TrGJTerC	$\label{eq:lmboab} \text{LMBOABOOH} + \text{h}\nu \rightarrow \text{IBUTALOH} + \text{HCHO} + \text{HO}_2 + \text{OH}$	jx(ip_CH300H)*.33	Rickard and Pascoe (2009), Sander et al (2019)
45201	TrGJTerC	$MBOACO + h\nu \rightarrow HCHO + HO_2 + IPRHOCO3$	j_ACETOL	Rickard and Pascoe (2009)
45202	TrGJTerC	$MBOCOCO + h\nu \rightarrow CO + HO_2 + IPRHOCO3$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
45203a	TrGJTerCN	$\label{eq:lnnbound} \begin{array}{l} {\rm LNMBOABOOH} + {\rm h}\nu \rightarrow {\rm NO}_{3}{\rm CH2CHO} + {\rm CH}_{3}{\rm COCH}_{3} + {\rm HO}_{2} \\ + {\rm OH} \end{array}$	jx(ip_CH3OOH)*.65	Rickard and Pascoe (2009), Sander et al (2019)
45203b	TrGJTerCN	$\label{eq:loss} LNMBOABOOH + h\nu \rightarrow IBUTALOH + HCHO + NO_2 + OH$	jx(ip_CH300H)*.35	Rickard and Pascoe (2009), Sander et al (2019)
45204	TrGJTerCN	$NC4OHCO3H + h\nu \rightarrow IBUTALOH + CO_2 + NO_2 + OH$	jx(ip_CH3OOH)	Rickard and Pascoe (2009)
45400	TrGJAroC	$C54CO + h\nu \rightarrow HO_2 + CO + CO + CO + CH_3C(O)$	<pre>jx(ip_MGLYOX)+2.15*jx(ip_MGLYOX) *2.</pre>	Rickard and Pascoe (2009)
45401	TrGJAroC	$\rm C5134CO2OH + h\nu \rightarrow CH_3COCOCHO + HO_2 + CO + HO_2$	jx(ip_HOCH2CH0)+2.15*jx(ip_ MGLYOX)	Rickard and Pascoe (2009)
45402	TrGJAroC	C5DIALOOH + $\mathrm{h}\nu \rightarrow \mathrm{MALDIAL}$ + CO + HO_2 + OH	jx(ip_CH300H)+jx(ip_MACR)	Rickard and Pascoe (2009)*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference	
J45406	TrGJAroC	$C5CO14OH + h\nu \rightarrow CH_3C(O) + HCOCO_2H + HO_2 + CO$	jx(ip_MVK)	Rickard and Pas	coe (2009)
J45407	TrGJAroC	C5DICARB + h $\nu \rightarrow .6$ C5CO14O2 + .6 HO ₂ + .4 TLFUONE	jx(ip_NO2)*0.2	Rickard and (2009)*	Pascoe
J45408	TrGJAroC	$\label{eq:constraint} \begin{array}{l} MC3ODBCO2H + h\nu \rightarrow CH_3COCO_2H + HO_2 + CO + HO_2 + CO \end{array}$	jx(ip_MACR)	Rickard and Pas	coe (2009)
J45409	TrGJAroC	ACCOMECHO + $h\nu \rightarrow MECOACETO2 + HO_2 + CO$	jx(ip_HOCH2CH0)	Rickard and Pas	coe (2009)
J45410	TrGJAroC	MMALNHYOOH + $h\nu \rightarrow CO2H3CO3 + CO_2 + OH$	jx(ip_CH300H)	Rickard and (2009)*	Pascoe
J45411	TrGJAroC	C5DICAROOH + h $\nu \rightarrow \rm MGLYOX$ + GLYOX + HO_2 + OH	jx(ip_CH3OOH)+jx(ip_HOCH2CHO) +j_ACETOL	Rickard and (2009)*	Pascoe
J45412	TrGJAroCN	$\rm NTLFUOOH + h\nu \rightarrow ACCOMECHO + NO_2 + OH$	jx(ip_CH300H)	Rickard and (2009)*	Pascoe
J45414	TrGJAroC	C5CO14OOH + $h\nu \rightarrow .83$ MALANHY + .83 CH ₃ + .17 MGLYOX + .17 HO ₂ + .17 CO + .17 CO ₂ + OH	jx(ip_CH300H)	Rickard and (2009)*	Pascoe
J45415	TrGJAroC	TLFUOOH + $h\nu \rightarrow ACCOMECHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and (2009)*	Pascoe
J45417	TrGJAroC	$ACCOMECO3H + h\nu \rightarrow MECOACETO2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pas	coe (2009)
J45418	TrGJAroC	$C5DIALCO + h\nu \rightarrow MALDIALCO3 + CO + HO_2$	jx(ip_MGLYOX)+jx(ip_MACR)	Rickard and Pas	coe (2009)
J46200	TrGJTerCN	$C614NO3 + h\nu \rightarrow CO23C4CHO + HCHO + HO_2 + NO_2$	<pre>2.15*jx(ip_MGLYOX)</pre>	Rickard and Pas	coe (2009)
J46201	TrGJTerC	$C614OOH + h\nu \rightarrow CO23C4CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Rickard and Pas	coe (2009)
J46202	TrGJTerC	$CO235C5CHO + h\nu \rightarrow CO23C4CO3 + CO + HO_2$	jx(ip_MGLYOX)	Rickard and Pas	coe (2009)
J46203	TrGJTerC	$CO235C6OOH + h\nu \rightarrow CO23C4CO3 + HCHO + OH$	jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Rickard and Pas	coe (2009)
J46400	TrGJAroC	PHENOOH + $h\nu \rightarrow .71$ MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + OH	jx(ip_CH300H)	Rickard and (2009)*	Pascoe
J46401	TrGJAroC	$C6CO4DB + h\nu \rightarrow C4CO2DBCO3 + HO_2 + CO$	jx(ip_MGLYOX)*2.	Rickard and Pas	coe (2009)
J46402	TrGJAroC	$C5CO2DCO3H + h\nu \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + OH$	jx(ip_CH300H)+jx(ip_MGLYOX)	Rickard and Pas	coe (2009)
J46403	TrGJAroCN	NDNPHENOOH + $h\nu \rightarrow NC4DCO2H + HNO_3 + CO + CO + NO_2 + OH$	jx(ip_CH300H)	Rickard and (2009)*	Pascoe
J46404	TrGJAroCN	BZBIPERNO3 + $h\nu \rightarrow$ GLYOX + HO ₂ + .5 BZFUONE + .5 BZFUONE + NO ₂	j_IC3H7N03	Rickard and (2009)*	Pascoe
J46405	TrGJAroCN	$HOC6H4NO2 + h\nu \rightarrow HONO + CPDKETENE$	jx(ip_HOC6H4NO2)	Chen et al. (201	1)*
J46406	TrGJAroC	$CPDKETENE + h\nu \rightarrow CO_2 + CO + 2 HO_2 + MALDIAL$	j_ketene	see note*	
J46407	TrGJAroC	C5COOHCO3H + $h\nu \rightarrow$ HOCOC4DIAL + HO ₂ + CO + CO ₂ + OH	jx(ip_CH300H)	Rickard and Pas	coe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J46408	TrGJAroC	BZEPOXMUC + h $\nu \rightarrow .5$ C5DIALO2 + 1.5 HO2 + 1.5 CO + .5 MALDIAL	4.E3*jx(ip_MVK)*0.1	Rickard and Pascoe (2009)
J46409	TrGJAroCN	NPHEN1OOH + $h\nu \rightarrow$ NPHEN1O + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46410	TrGJAroC	$BZEMUCCO + h\nu \rightarrow HCOCOHCO3 + C3DIALO2$	jx(ip_HOCH2CH0)*2.+j_ACETOL	Rickard and Pascoe (2009)
J46411	TrGJAroC	$BZEMUCCO2H + h\nu \rightarrow C5DIALO2 + CO_2 + HO_2$	jx(ip_MACR)	Rickard and Pascoe (2009)
J46412	TrGJAroCN	NNCATECOOH + h $\nu \rightarrow$ NC4DCO2H + HCOCO2H + NO2 + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46413	TrGJAroC	$C615CO2OOH + h\nu \rightarrow C5DICARB + CO + HO_2 + OH$	<pre>ix(ip_MVK)+ix(ip_CH300H)</pre>	Rickard and Pascoe (2009)
J46414	TrGJAroCN	NPHENOOH + $h\nu \rightarrow MALDALCO2H + GLYOX + OH + NO_2$	j_IC3H7NO3 + jx(ip_CH3OOH)	Rickard and Pascoe (2009)
J46415	TrGJAroCN	$\label{eq:NCATECOOH} \mathrm{NCATECOOH} + \mathrm{h}\nu \rightarrow \mathrm{NC4DCO2H} + \mathrm{HCOCO_2H} + \mathrm{HO_2} + \mathrm{OH}$	jx(ip_CH3OOH)	Rickard and Pascoe (2009)*
J46416	TrGJAroC	$PBZQOOH + h\nu \rightarrow C5CO2OHCO3 + OH$	jx(ip_CH300H)	Rickard and Pasco (2009)*
J46417	TrGJAroC	$BZOBIPEROH + h\nu \rightarrow MALDIALCO3 + GLYOX + HO_2$	j_ACETOL	Rickard and Pascoe (2009
146418	TrGJAroC	BZBIPEROOH + $h\nu \rightarrow$ GLYOX + HO ₂ + .5 BZFUONE + .5 BZFUONE + OH	jx(ip_CH300H)	Rickard and Pasco (2009)*
J46419	TrGJAroCN	$\rm NBZQOOH + h\nu \rightarrow C6CO4DB + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pasco (2009)*
J46420	TrGJAroC	$CATEC1OOH + h\nu \rightarrow CATEC1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009
J46421	TrGJAroC	$C6125CO + h\nu \rightarrow C5CO14O2 + CO + HO_2$	jx(ip_MGLYOX)+jx(ip_MVK)	Rickard and Pascoe (2009
J46422	TrGJAroCN	$\label{eq:DNPHENOOH} DNPHENOOH + h\nu \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pasco (2009)*
J46423	TrGJAroC	$BZEMUCCO3H + h\nu \rightarrow C5DIALO2 + CO_2 + OH$	jx(ip_CH300H)+jx(ip_MACR)	Rickard and Pascoe (2009
146424	TrGJAroC	$C6H5OOH + h\nu \rightarrow C6H5O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009
J46425	TrGJAroC	BZEMUCOOH + $h\nu \rightarrow .5$ EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO + OH	jx(ip_CH300H)+jx(ip_HOCH2CH0)*2.	Rickard and Pasco (2009)*
J46427	TrGJAroCN	$BZEMUCNO3 + h\nu \rightarrow EPXC4DIAL + NO_2 + GLYOX + HO_2$	2.77*jx(ip_HOCH2CH0)	Rickard and Pascoe (2009
J46428	TrGJAroCN	DNPHEN + $h\nu \rightarrow HONO + NCPDKETENE$	jx(ip_HOC6H4NO2)	Sander et al. (2019)
J46429	TrGJAroCN	NCPDKETENE + $h\nu \rightarrow CO_2 + CO + 2 HO_2 + NC4DCO2H$	j_ketene	see note*
147200	TrGJTerC	$CO235C6CHO + h\nu \rightarrow CHOC3COCO3 + CH_3C(O)$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009
J47201	TrGJTerC	$C235C6CO3H + h\nu \rightarrow CO235C6O2 + CO_2 + OH$	jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009
J47202	TrGJTerC	$C716OOH + h\nu \rightarrow CO13C4CHO + CH_3C(O) + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009
J47203	TrGJTerC	$C721OOH + h\nu \rightarrow C722O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009
J47204	TrGJTerC	$C722OOH + h\nu \rightarrow CH_3COCH_3 + C44O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J47400	TrGJAroC	TLEPOXMUC + $h\nu \rightarrow .5$ C615CO2O2 + HO ₂ + CO + .5 EPXC4DIAL + .5 CH ₃ C(O)	4.E3*jx(ip_MVK)*0.1	Rickard and Pascoe (2009)
J47401	TrGJAroC	$C6H5CH2OOH + h\nu \rightarrow BENZAL + HO_2 + OH$	jx(ip_CH3OOH)	Rickard and Pascoe (2009)*
J47402	TrGJAroCN	$C6H5CH2NO3 + h\nu \rightarrow BENZAL + HO_2 + NO_2$	0.59*j_IC3H7ND3	Rickard and Pascoe (2009)*
J47403	TrGJAroC	$BENZAL + h\nu \rightarrow HO_2 + CO + C6H5O2$	jx(ip_BENZAL)	Wallington et al. (2018)
J47404	TrGJAroC	TLBIPEROOH + $h\nu \rightarrow$.6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47405	TrGJAroCN	TLBIPERNO3 + h ν \rightarrow .6 GLYOX + .4 MGLYOX + HO 2 + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL + NO 2	j_IC3H7NO3	Rickard and Pascoe (2009)*
J47406	TrGJAroC	TLOBIPEROH + $h\nu \rightarrow C5CO14O2 + GLYOX + HO_2$	j_ACETOL	Rickard and Pascoe (2009)
J47407	TrGJAroC	CRESOOH + $h\nu \rightarrow .68$ C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47408a	TrGJAroCN	NCRESOOH + $h\nu \rightarrow .68$ C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + OH + NO ₂	j_IC3H7NO3	Rickard and Pascoe (2009)*
J47408b	TrGJAroCN	$\rm NCRESOOH + h\nu \rightarrow C5CO14OH + GLYOX + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47409	TrGJAroCN	$TOL1OHNO2 + h\nu \rightarrow HONO + MCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note*
J47410	TrGJAroC	$TLEMUCCO2H + h\nu \rightarrow C615CO2O2 + CO_2 + HO_2$	jx(ip_MACR)	Rickard and Pascoe (2009)
J47411	TrGJAroC	$TLEMUCCO3H + h\nu \rightarrow C615CO2O2 + CO_2 + OH$	jx(ip_CH300H)+jx(ip_MACR)	Rickard and Pascoe (2009)
J47412	TrGJAroC	TLEMUCOOH + $h\nu \rightarrow .5$ C3DIALO2 + .5 CO2H3CHO + .5 EPXC4DIAL + .5 MGLYOX + .5 HO ₂ + OH	jx(ip_CH300H)+2.77*jx(ip_ HOCH2CH0)+j_ACETOL	Rickard and Pascoe (2009)*
J47413	TrGJAroCN	TLEMUCNO3 + $h\nu \rightarrow EPXC4DIAL + NO_2 + CH_3C(O) + CO + HO_2$	2.77*jx(ip_HOCH2CH0)+j_ACETOL	Rickard and Pascoe (2009)
J47414	TrGJAroC	$TLEMUCCO + h\nu \rightarrow CH_{3}C(O) + EPXC4DIAL + CO + HO_{2}$	2.77*jx(ip_HOCH2CH0)+2.15*jx(ip_ MGLYOX)	Rickard and Pascoe (2009)
J47415	TrGJAroC	$C6H5CO3H + h\nu \rightarrow C6H5O2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47416	TrGJAroC	$OXYL1OOH + h\nu \rightarrow TOL1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47417	TrGJAroCN	$MNCATECH + h\nu \rightarrow HONO + MCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note*
J47418	TrGJAroC	$MCPDKETENE + h\nu \rightarrow CO_2 + CO + 2 HO_2 + C4MDIAL$	j_ketene	see note [*]
J47419	TrGJAroCN	$DNCRES + h\nu \rightarrow HONO + MNCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note [*]

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J47420	TrGJAroCN	MNCPDKETENE + $h\nu \rightarrow CO_2 + CO + 2 HO_2 + NC4MDCO2HN$	j_ketene	see note [*]
J47421	TrGJAroC	$MCATEC1OOH + h\nu \rightarrow MCATEC1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47422	TrGJAroCN	NPTLQOOH + $h\nu \rightarrow C7CO4DB + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47423	TrGJAroC	$PTLQOOH + h\nu \rightarrow C6CO2OHCO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47424	TrGJAroCN	$NCRES1OOH + h\nu \rightarrow NCRES1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47425	TrGJAroCN	$\begin{array}{l} {\rm MNNCATCOOH} + {\rm h}\nu \rightarrow {\rm NC4MDCO2HN} + {\rm HCOCO_2H} + {\rm NO_2} \\ + {\rm OH} \end{array}$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47426	TrGJAroCN	$\begin{array}{l} {\rm MNCATECOOH} + {\rm h}\nu \rightarrow {\rm NC4MDCO2HN} + {\rm HCOCO_2H} + {\rm HO_2} \\ + {\rm OH} \end{array}$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47427	TrGJAroC	$C7CO4DB + h\nu \rightarrow C5CO2DBCO3 + HO_2 + CO$	jx(ip_MGLYOX)*2.	Rickard and Pascoe (2009)
J47428	TrGJAroCN	NDNCRESOOH + $h\nu \rightarrow NC4MDCO2HN + HNO_3 + CO + CO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47429	TrGJAroCN	DNCRESOOH + $h\nu \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47430	TrGJAroC	C6COOHCO3H + h $\nu \rightarrow$ C5134CO2OH + HO2 + CO + CO2 + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48200	TrGJTerC	$C86OOH + h\nu \rightarrow C511O2 + CH_3COCH_3 + OH$	jx(ip_CH300H)+ jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J48201	TrGJTerC	$C812OOH + h\nu \rightarrow C813O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48202	TrGJTerC	$C813OOH + h\nu \rightarrow CH_3COCH_3 + C512O2 + OH$	jx(ip_CH300H)+jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J48203	TrGJTerC	$C721CHO + h\nu \rightarrow C721O2 + CO + HO_2$	jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J48204	TrGJTerC	$C721CO3H + h\nu \rightarrow C721O2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48205	TrGJTerC	$C8BCOOH + h\nu \rightarrow C89O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48206	TrGJTerC	$C89OOH + h\nu \rightarrow C810O2 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J48207	TrGJTerCN	$C89NO3 + h\nu \rightarrow C810O2 + NO_2$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J48208	TrGJTerC	$C810OOH + h\nu \rightarrow CH_3COCH_3 + C514O2 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J48209	TrGJTerCN	$C810NO3 + h\nu \rightarrow CH_3COCH_3 + C514O2 + NO_2$	2.84*j_IC3H7N03+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J48210	TrGJTerCN	$C8BCNO3 + h\nu \rightarrow C89O2 + NO_2$	j_IC3H7NO3	Rickard and Pascoe (2009)
J48211	TrGJTerC	$C85OOH + h\nu \rightarrow C86O2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J48400	TrGJAroC	$\mathrm{STYRENOOH} + \mathrm{h}\nu \rightarrow \mathrm{HO}_2 + \mathrm{HCHO} + \mathrm{BENZAL} + \mathrm{OH}$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J49200	TrGJTerC	$C96OOH + h\nu \rightarrow C97O2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J49201	TrGJTerC	$C97OOH + h\nu \rightarrow C98O2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)

98 Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference	
J49202	TrGJTerC	$C98OOH + h\nu \rightarrow C614O2 + CH_3COCH_3 + OH$	(jx(ip_CH300H)+2.15*jx(ip_ MGLYOX))	Rickard and Pascoe (2009)	
J49203a	TrGJTerC	$\mathrm{NORPINAL} + \mathrm{h}\nu \rightarrow \mathrm{C85O2} + \mathrm{CO} + \mathrm{HO}_2$	jx(ip_PINAL2HCO)	Rickard and Pascoe (2009), Sander et al. (2019)	
J49203b	TrGJTerC	NORPINAL + $h\nu \rightarrow NORPINENOL$	jx(ip_PINAL2ENOL)	Sander et al. (2019), An- drews et al. (2012)	
J49204	TrGJTerC	$C85CO3H + h\nu \rightarrow C85O2 + CO_2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)	
J49205	TrGJTerC	$C89CO2H + h\nu \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2 + HO_2$	jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)	
J49206	TrGJTerC	$C89CO3H + h\nu \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)	
J49207	TrGJTerC	$C811CO3H + h\nu \rightarrow C811O2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)	
J49208	TrGJTerC	$NOPINDOOH + h\nu \rightarrow C89CO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)	
J40200	TrGJTerC	$LAPINABOOH + h\nu \rightarrow PINAL + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)	
J40201	TrGJTerC	MENTHEN6ONE + $h\nu \rightarrow RO6R1O2 + OH$	jx(ip_CH300H)	Vereecken et al. (2007)	
J40202	TrGJTerC	20HMENTHEN6ONE + $h\nu \rightarrow 10$ LCARBON + OH	jx(ip_CH300H)	Vereecken et al. (2007)	
J40203a	TrGJTerC	$PINAL + h\nu \rightarrow C96O2 + CO + HO_2$	jx(ip_PINAL2HCO)	Rickard and Pascoe (2009)	
J40203b	TrGJTerC	$PINAL + h\nu \rightarrow PINEOL$	jx(ip_PINAL2ENOL)	Sander et al. (2019), An- drews et al. (2012)*	
J40204	TrGJTerC	$PERPINONIC + h\nu \rightarrow C96O2 + CO_2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)	
J40205	TrGJTerC	$PINALOOH + h\nu \rightarrow C106O2 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)	
J40206	TrGJTerCN	$PINALNO3 + h\nu \rightarrow C106O2 + NO_2$	j_IC3H7NO3+jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)	
J40207	TrGJTerC	$C106OOH + h\nu \rightarrow C716O2 + CH_3COCH_3 + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)	
J40208	TrGJTerCN	$C106NO3 + h\nu \rightarrow C716O2 + CH_3COCH_3 + NO_2$	j_IC3H7NO3+ jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)	
J40209	TrGJTerC	$C109OOH + h\nu \rightarrow C89CO3 + HCHO + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)	
J40210	TrGJTerC	$C109CO + h\nu \rightarrow C89CO3 + CO + HO_2$	jx(ip_MGLYOX)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)	
J40211	TrGJTerCN	$LNAPINABOOH + h\nu \rightarrow PINAL + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)	
J40212	TrGJTerC	$BPINAOOH + h\nu \rightarrow NOPINONE + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)	
J40213	TrGJTerCN	$LNBPINABOOH + h\nu \rightarrow NOPINONE + HCHO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)	
J40214	TrGJTerCN	$ROO6R1NO3 + h\nu \rightarrow ROO6R3O2 + CH_3COCH_3 + NO_2$	2.84*j_IC3H7N03+jx(ip_CH300H)	Sander et al. (2019)	
J40215	TrGJTerCN	$RO6R1NO3 + h\nu \rightarrow 9 LCARBON + HCHO + HO_2 + NO_2$	2.84*j_IC3H7N03	Sander et al. (2019)	
J6000	StTrGJCl	$Cl_2 + h\nu \rightarrow Cl + Cl$	jx(ip_C12)	Sander et al. (2014)	
J6100	StTrGJCl	$Cl_2O_2 + h\nu \rightarrow 2 Cl$	jx(ip_C1202)	Sander et al. (2014)	
J6101	StTrGJCl	$OClO + h\nu \rightarrow ClO + O(^{3}P)$	jx(ip_OC10)	Sander et al. (2014)	
J6200	StGJCl	$HCl + h\nu \rightarrow Cl + H$	jx(ip_HCl)	Sander et al. (2014)	
J6201	StTrGJCl	$HOCl + h\nu \rightarrow OH + Cl$	jx(ip_HOC1)	Sander et al. (2014)	

99

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J6300	TrGJCIN	$ClNO_2 + h\nu \rightarrow Cl + NO_2$	jx(ip_C1NO2)	Sander et al. (2014)
J6301a	StTrGJClN	$CINO_3 + h\nu \rightarrow Cl + NO_3$	jx(ip_C1NO3)	Sander et al. (2014)
J6301b	StTrGJCIN	$CINO_3 + h\nu \rightarrow CIO + NO_2$	jx(ip_ClONO2)	Sander et al. (2014)
J6400	StGJCl	$CH_3Cl + h\nu \rightarrow Cl + CH_3$	jx(ip_CH3C1)	Sander et al. (2014)
J6401	StGJCl	$CCl_4 + h\nu \rightarrow LCARBON + 4 Cl$	jx(ip_CC14)	Sander et al. (2014)
J6402	StGJCCl	$CH_3CCl_3 + h\nu \rightarrow 2 LCARBON + 3 Cl$	jx(ip_CH3CC13)	Sander et al. (2014)
J6500	StGJClF	$CFCl_3 + h\nu \rightarrow LCARBON + LFLUORINE + 3 Cl$	jx(ip_CFC13)	Sander et al. (2014)*
J6501	StGJClF	$CF_2Cl_2 + h\nu \rightarrow LCARBON + 2 LFLUORINE + 2 Cl$	jx(ip_CF2C12)	Sander et al. (2014)*
J7000	StTrGJBr	$Br_2 + h\nu \rightarrow Br + Br$	jx(ip_Br2)	Sander et al. (2014)
J7100	StTrGJBr	$BrO + h\nu \rightarrow Br + O(^{3}P)$	jx(ip_BrO)	Sander et al. (2014)
J7200	StTrGJBr	$HOBr + h\nu \rightarrow Br + OH$	jx(ip_HOBr)	Sander et al. (2014)
J7300	TrGJBrN	$BrNO_2 + h\nu \rightarrow Br + NO_2$	jx(ip_BrNO2)	Sander et al. (2014)
7301	StTrGJBrN	$BrNO_3 + h\nu \rightarrow .85 Br + .85 NO_3 + .15 BrO + .15 NO_2$	jx(ip_BrN03)	Sander et al. (2014)*
J7400	StGJBr	$CH_3Br + h\nu \rightarrow Br + CH_3$	jx(ip_CH3Br)	Sander et al. (2014)
17401	TrGJBr	$CH_2Br_2 + h\nu \rightarrow LCARBON + 2 Br$	jx(ip_CH2Br2)	Sander et al. (2014)
J7402	TrGJBr	$CHBr_3 + h\nu \rightarrow LCARBON + 3 Br$	jx(ip_CHBr3)	Sander et al. (2014)
17500	StGJBrF	$CF_3Br + h\nu \rightarrow LCARBON + 3 LFLUORINE + Br$	jx(ip_CF3Br)	Sander et al. (2014)
J7600	StTrGJBrCl	$BrCl + h\nu \rightarrow Br + Cl$	jx(ip_BrCl)	Sander et al. (2014)
J7601	StGJBrClF	$CF_2ClBr + h\nu \rightarrow LCARBON + 2 LFLUORINE + Br + Cl$	jx(ip_CF2C1Br)	Sander et al. (2014)
J7602	TrGJBrCl	$CH_2ClBr + h\nu \rightarrow LCARBON + Br + Cl$	jx(ip_CH2C1Br)	Sander et al. (2014)
J7603	TrGJBrCl	$CHCl_2Br + h\nu \rightarrow LCARBON + Br + 2 Cl$	jx(ip_CHC12Br)	Sander et al. (2014)
J7604	TrGJBrCl	$CHClBr_2 + h\nu \rightarrow LCARBON + 2 Br + Cl$	jx(ip_CHC1Br2)	Sander et al. (2014)
18000	TrGJI	$I_2 + h\nu \rightarrow I + I$	jx(ip_I2)	Sander et al. (2014)
J8100	TrGJI	$IO + h\nu \rightarrow I + O(^{3}P)$	jx(ip_IO)	Sander et al. (2014)
18200	TrGJI	$HOI + h\nu \rightarrow I + OH$	jx(ip_HOI)	Sander et al. (2014)
18300	TrGJIN	$INO_2 + h\nu \rightarrow I + NO_2$	jx(ip_INO2)	Sander et al. (2014)
J8301	TrGJIN	$INO_3 + h\nu \rightarrow I + NO_3$	jx(ip_INO3)	Sander et al. (2014)
J8400	TrGJI	$CH_2I_2 + h\nu \rightarrow 2I + 2HO_2 + CO$	jx(ip_CH2I2)	Sander et al. (2014)
J8401	TrGJI	$CH_3I + h\nu \rightarrow I + CH_3$	jx(ip_CH3I)	Sander et al. (2014)
8402	TrGJCI	$CH_3CHICH_3 + h\nu \rightarrow 2 LCARBON + I + CH_3$	jx(ip_C3H7I)	Sander et al. (2014)
8403	TrGJCII	$CH_2CII + h\nu \rightarrow I + CI + 2 HO_2 + CO$	jx(ip_CH2C1I)	Sander et al. (2014)
18600	TrGJCII	$ICl + h\nu \rightarrow I + Cl$	jx(ip_ICl)	Sander et al. (2014)
	TrGJBrI	$IBr + h\nu \rightarrow I + Br$	jx(ip_IBr)	Sander et al. (2014)

 $\label{eq:phi200_a01} \mbox{TrAa01JN} \qquad \mbox{NO}_3^-(aq) + h\nu \rightarrow \mbox{NO}_2(aq) + \mbox{OH}(aq) + \mbox{OH}^-(aq) \qquad \mbox{xaer(01)*jx(ip_NO2) * 1.4E-4} \qquad \mbox{see note*} \qquad \mbox{see note*} = \mbox{NO}_3^-(aq) + \mbox{NO}_3^-(aq) + \mbox{NO}_3^-(aq) + \mbox{OH}(aq) + \mbox{OH}^-(aq) \qquad \mbox{xaer(01)*jx(ip_NO2) * 1.4E-4} \qquad \mbox{see note*} = \mbox{NO}_3^-(aq) + \mbox{NO}_3^-(aq) + \mbox{OH}(aq) + \mbox{OH}(aq$

100

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
PH10200_a01	TrAa01JHg	$Hg(OH)_2(aq) + h\nu \rightarrow Hg(aq)$	xaer(01)*6E-5*jx(ip_NO2)	see note [*]
PH11000_a01	TrAa01JFe	$FeOH^{2+}(aq) + h\nu \rightarrow Fe^{2+}(aq) + OH(aq)$	xaer(01)*4.51E-3*0.312	Herrmann et al. (2000)
PH11001_a01	TrAa01JFe	$Fe(OH)_2^+(aq) + h\nu \rightarrow Fe^{2+}(aq) + OH(aq) + OH^-(aq)$	xaer(01)*5.77E-3*0.255	Herrmann et al. (2000)
PH11003_a01	TrAa01JFeS	$\text{FeSO}_4^+(aq) + h\nu \rightarrow \text{Fe}^{2+}(aq) + \text{SO}_4^-(aq)$	xaer(01)*6.43E-3*7.9E-3	Herrmann et al. (2000)

J42005b: Quantum yields from Burkholder et al.

J42005c: Quantum yields from Burkholder et al.

J42017: Enhancement of j according to Müller et al.

J42020: It is assumed that $j(NO_3CH2CHO)$ is the same

J42021: In analogy to what is assumed for $CH_3O_2NO_2$

J43002: Following von Kuhlmann et al. (2003), we use

photolysis as in (Sander et al., 2014).

 $J(iC_3H_7ONO_2) = 3.7*jx(ip_PAN).$

(2015).

(2015).

(2015).

J(PAN).

(2014).

as j(PAN).

General notes

j-values are calculated with an external module (e.g., JVAL) and then supplied to the MECCA chemistry. Values that originate from the Master Chemical Mechanism (MCM) by Rickard and Pascoe (2009) are translated according in the following way:

 $j(11) \rightarrow jx(ip_COH2)$ $j(12) \rightarrow jx(ip_CHOH)$ $j(15) \rightarrow jx(1p_HOCH2CHO)$ $j(18) \rightarrow jx(1p_MACR)$ $\begin{array}{l} j(16) \rightarrow j X(1p_nRGA) \\ j(22) \rightarrow j X(1p_nRGTL) \\ j(23)+j(24) \rightarrow j X(1p_NVK) \\ j(31)+j(32)+j(33) \rightarrow j X(1p_MVK) \\ j(34) \rightarrow j X(1p_MGLYOX) \\ j(41) \rightarrow j X(1p_GLYOM) \\ j(53) \rightarrow j (isoprop) I nitrate) \\ j(54) \rightarrow j (isoprop) I nitrate) \end{array}$

 $\begin{array}{l} j(54) \rightarrow j(\mathrm{isopropyl\ nitrate}) \\ j(55) \rightarrow j(\mathrm{isopropyl\ nitrate}) \end{array}$ $j(56)+j(57) \rightarrow jx(ip_NOA)$

Specific notes

J41003: CH₂- and CH₂-channels are considered only and with their branching ratios being 0.42 and 0.48, respectively (Gans et al., 2011). CH-production is neglected. CH₂ is assumed to react only with O2 yielding 1.44 H₂ + 0.18 HCHO + 0.18 O(³P) + 0.33 OH + 0.33

in the WACCM model by J. Orlando (Doug Kinnison, pers. comm. with D. Taraborrelli). sidered to be CH2CHOH according to Hjorth (2002) EUPHORE Report. J43024: Assuming $J(\rm C_3H_7ONO_2)=0.59\times J(\rm iC_3H_7ONO_2),$ consistent with the photolysis rate $\mathsf{J41006:}\xspace$ product distribution as for HNO4 J42004: Quantum yields from Burkholder et al. (2015). coefficients used in the MCM (Rickard and Pascoe, J42005a: Quantum yields from Burkholder et al. 2009).

 $HO_2 + 0.44 CO_2 + 0.38 CO + 0.05 H_2O$ as assumed J43018: One third of the acetaldehyde channel is con-

J43025a: Photolysis frequencies very similar to the ones of CH₃CHO.

 $\tt J43025b$: Photolysis frequencies very similar to the ones of CH₃CHO.

J43400: KDEC C3DIALO \rightarrow GLYOX + CO + HO2 J42007: It is assumed that J(PHAN) is the same as

J44004: It is assumed that J(BIACET) is 2.15 times larger than J(MGLYOX), consistent with the photol-ysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44005a: It is assumed that J(LC4H9NO3) is the same as $J(iC_3H_7ONO_2)$.

J44005b: It is assumed that $\mathrm{J}(\mathrm{LC4H9NO3})$ is the same as J(iC₃H₇ONO₂).

J44006: It is assumed that J(MPAN) is the same as J45002: Following von Kummann et al. (2003), we use $j(CH_3COCH_2OH) = 0.11*jx(1p_CHOH)$. As an addi-tional factor, the quantum yield of 0.65 is taken from Orlando et al. (1999a). J(PAN).

J44009: It is assumed that J(MACROOH) is 2.77 times larger than J(HOCH_2CHO), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

101

J43006: Following von Kuhlmann et al. (2003), we use

J44010: It is assumed that J(MACROH) is 2.77 times larger than J(HOCH₂CHO), consistent with the pho-tolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44015: It is assumed that J(BIACETOH) is 2.15 times larger than J(MGLYOX), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44017a; CO-channel vielding CH₂COCH which upon reaction with O_2 produces an excited Criegee Interme-diate assumed to be similar to MGLOOA in MCM. MGLOOA is produced also in other reactions and is substituted by its decomposition products. Furthermore, the stabilized Criegge Intermediate is assumed to solely react with water.

.144025: J values only for the secondary nitrate.

J44026: Like for LMEKNO3 photolysis

J44027: 2.84*J_IC3H7NO3 like for other tertiary alkyl nitrates (see J4505). Enhancement of J according to Müller et al. (2014).

J44037b: Channel which produces just vinyl alcohol and not a larger enol via keto-enol phototautomerization.

J44043: The resulting vinyl peroxy radical is assumed to mostly form with ${\rm HO}_2$ a labile hydroperoxide (see ketene formation). The products are further simplified. J44044: 1,5-H-shift for the resulting vinyl peroxy radical assumed to be dominant.

J44046a: Simplified oxidation.

J44400b: KDEC MALDIALO \rightarrow GLYOX + GLYOX - J45412: KDEC NTLFUO \rightarrow ACCOMECHO + NO2 + HO2

J44401: KDEC BZFUO \rightarrow CO14O3CHO + HO2 J44403: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5 NO2 + 0.5 NBZFUONE + 0.5 HO2

GLYOX + HO2 + 0.32 PTLQONE

J47408b: KDEC NCRESO \rightarrow C5CO14OH + GLYOX HCOCO2H + NO2 + NO2

J47409: Using J for 3-methyl-2-nitrophenol.

J47412: KDEC TLEMUCO \rightarrow 0.5 C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5HO2

J47417: Using J for 3-methyl-2-nitrophenol.

J47418: new channel

J47419: Using J for 3-methyl-2-nitrophenol. J47420: new channel

J47422: KDEC NPTLQO \rightarrow C7CO4DB + NO2

J44404b: KDEC MALDIALCO2 $\rightarrow 0.6$ MALANHY + $\mathrm{HO2} + 0.4 \; \mathrm{GLYOX} + 0.4 \; \mathrm{CO}$

J44407: KDEC MALANHYO \rightarrow HCOCOHCO3

J44414: KDEC MECOACETO \rightarrow CH3CO3 + HCHO .145003: It is assumed that $J(LISOPACNO3) = 0.59 \times$ J(iC₃H₇ONO₂), consistent with the photolysis rate co-efficients used in the MCM (Rickard and Pascoe, 2009). J45005: It is assumed that $J(ISOPBNO3) = 2.84 \times$ J(iC₃H₇ONO₂), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009). J45007: It is assumed that J(ISOPDNO3) is the same as J(iC₂H₇ONO₂).

J45009: 0.59*J_IC3H7NO3 like for other primary alkyl nitrates (see J4503). Enhancement of J according to Müller et al. (2014).

J45015: Consistent with the MCM (Rickard and Pascoe, 2009), we assume that J(HCOC5) is half as large as J(MVK). With exeption of HOCH2CO the products of MACO2 decomposition without CO₂.

J45032: approximation with 4-oxo-pentenal photolysis combining results of Thner et al(2004) and Xiang et al(2007)

J45402: KDEC C5DIALO \rightarrow MALDIAL + CO + HO2 J45407: KDEC TLFUONE $\rightarrow 0.6$ C5CO14O2 + 0.6

HO2 + 0.4 TLFUONE J45410: KDEC MMALANHYO \rightarrow CO2H3CO3

J45411: KDEC C5DICARBO \rightarrow MGLYOX + GLYOX + HO2

J45414: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + .17 MGLYOX + .17 HO2 + .17 CO + .17 CO₂

J45415: KDEC TLFUO \rightarrow ACCOMECHO + HO2

102

J47408a: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 J47423: KDEC PTLOO \rightarrow C6CO2OHCO3 J47425: KDEC MNNCATECO → NC4MDCO2H +

J47426: KDEC MNCATECO \rightarrow NC4MDCO2H +

HCOCO2H + HO2

J47428: KDEC NDNCRESO \rightarrow NC4MDCO2H + HNO3 + CO + CO + NO2

KDEC DNCRESO \rightarrow NC4MDCO2H + 147429: HCOCO2H + NO2

J48400: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

J40203b: Substituted vinyl alcohol in analogy to CH₂CHO photolysis.

J46400: KDEC PHENO \rightarrow 0.71 MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

J46403: KDEC NDNPHENO → NC4DCO2H + HNO3 CO + CO + NO2

BZFUONE + 0.5 BZFUONE

sition

J46406: new channel created for nitrophenol decomposition

KDEC NNCATECO \rightarrow NC4DCO2H + J46412: HCOCO2H + NO2

KDEC NCATECO \rightarrow NC4DCO2H + J46415: HCOCO2H + HO2

J46416: KDEC PBZQO \rightarrow C5CO2OHCO3

J46418: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

J46419: KDEC NBZQO \rightarrow C6CO4DB + NO2

J46422: KDEC DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2

J46425: KDEC BZEMUCO $\rightarrow 0.5$ EPXC4DIAL - $\mathrm{GLYOX} + .5 \ \mathrm{HO2} + .5 \ \mathrm{C3DIALO2} + .5 \ \mathrm{C32OH13CO}$ J46429: new channel

J47401: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2

J47402: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2

J47404: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MG- $\label{eq:lyox} \begin{array}{l} \mathrm{LYOX} + \mathrm{HO2} + 0.2 \ \mathrm{C4MDIAL} + 0.2 \ \mathrm{C5DICARB} + \\ 0.2 \ \mathrm{TLFUONE} + 0.2 \ \mathrm{BZFUONE} + 0.2 \ \mathrm{MALDIAL} \end{array}$

J47405: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MG-

LYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL

J47407: KDEC CRESO \rightarrow 0.68 C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLOONE

J6500: Even though the elementary reaction produces only 1 Cl atom (Felder and Demuth, 1993), it is as sumed here that eventually all Cl atoms are released in secondary reactions.

J6501: Even though the elementary reaction probably produces only 1 Cl atom (as for CFCl₃), it is assumed here that eventually all Cl atoms are released in secondary reactions.

J7301: The quantum yields are recommended by Burkholder et al. (2015) for $\lambda > 300$ nm and used here for the entire spectrum.

PH3200_a01: Scaled to $J(NO_2)$ so that its lifetime is about 10.5 days, as suggested by Zellner et al. (1990).

PH10200_a01: Scaled to $J(NO_2)$ so that it produces about 3.0×10^{-7} .

103

J46404: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 J46405: new channel created for nitrophenol decompo-

#	labels	reaction	rate coefficient	reference
# H1000f_a01	TrAa01Sc	$O_2 \rightarrow O_2(aq)$		
-			k_exf(01,ind_02)	see general notes*
H1000b_a01	TrAa01Sc	$O_2(aq) \rightarrow O_2$	k_exb(01,ind_02)	see general notes*
H1001f_a01	TrAa01MblScScm	$O_3 \rightarrow O_3(aq)$	k_exf(01,ind_03)	see general notes*
H1001b_a01	TrAa01MblScScm	$O_3(aq) \rightarrow O_3$	k_exb(01,ind_03)	see general notes [*]
H2100f_a01	TrAa01Sc	$OH \rightarrow OH(aq)$	k_exf(01,ind_OH)	see general notes [*]
H2100b_a01	TrAa01Sc	$OH(aq) \rightarrow OH$	k_exb(01,ind_OH)	see general notes [*]
H2101f_a01	TrAa01Sc	$HO_2 \rightarrow HO_2(aq)$	k_exf(01,ind_H02)	see general notes [*]
H2101b_a01	TrAa01Sc	$HO_2(aq) \rightarrow HO_2$	k_exb(01,ind_H02)	see general notes [*]
H2102f_a01	TrAa01MblScScm	$H_2O_2 \rightarrow H_2O_2(aq)$	k_exf(01,ind_H2O2)	see general notes [*]
H2102b_a01	TrAa01MblScScm	$H_2O_2(aq) \rightarrow H_2O_2$	k_exb(01,ind_H2O2)	see general notes [*]
H3101f_a01	TrAa01ScN	$NO_2 \rightarrow NO_2(aq)$	k_exf(01,ind_NO2)	see general notes [*]
H3101b_a01	TrAa01ScN	$NO_2(aq) \rightarrow NO_2$	k_exb(01,ind_NO2)	see general notes [*]
H3102f_a01	TrAa01ScN	$NO_3 \rightarrow NO_3(aq)$	k_exf(01,ind_NO3)	see general notes [*]
H3102b_a01	TrAa01ScN	$NO_3(aq) \rightarrow NO_3$	k_exb(01,ind_NO3)	see general notes [*]
H3200f_a01	TrAa01MblScScmN	$NH_3 \rightarrow NH_3(aq)$	k_exf(01,ind_NH3)	see general notes [*]
H3200b_a01	TrAa01MblScScmN	$NH_3(aq) \rightarrow NH_3$	k_exb(01,ind_NH3)	see general notes [*]
H3201_a01	TrAa01MblScScmN	$\rm N_2O_5 \rightarrow \rm HNO_3(aq) + \rm HNO_3(aq)$	k_exf_N2O5(01)*C(ind_H2O_a01)	Behnke et al. (1994), Behnke et al. (1997)
H3202f_a01	TrAa01ScN	$HONO \rightarrow HONO(aq)$	k_exf(01,ind_HONO)	see general notes [*]
H3202b_a01	TrAa01ScN	$HONO(aq) \rightarrow HONO$	k_exb(01,ind_HONO)	see general notes [*]
H3203f_a01	TrAa01MblScScmN	$HNO_3 \rightarrow HNO_3(aq)$	k_exf(01,ind_HNO3)	see general notes [*]
H3203b_a01	TrAa01MblScScmN	$HNO_3(aq) \rightarrow HNO_3$	k_exb(01,ind_HNO3)	see general notes [*]
H3204f_a01	TrAa01ScN	$HNO_4 \rightarrow HNO_4(aq)$	k_exf(01,ind_HNO4)	see general notes [*]
H3204b_a01	TrAa01ScN	$HNO_4(aq) \rightarrow HNO_4$	k_exb(01,ind_HNO4)	see general notes [*]
H4100f_a01	TrAa01MblScScm	$CO_2 \rightarrow CO_2(aq)$	k_exf(01,ind_C02)	see general notes [*]
H4100b_a01	TrAa01MblScScm	$\rm CO_2(aq) \rightarrow \rm CO_2$	k_exb(01,ind_C02)	see general notes [*]
H4101f_a01	TrAa01ScScm	$HCHO \rightarrow HCHO(aq)$	k_exf(01,ind_HCHO)	see general notes [*]
H4101b_a01	TrAa01ScScm	$HCHO(aq) \rightarrow HCHO$	k_exb(01,ind_HCHO)	see general notes [*]
H4102f_a01	TrAa01Sc	$CH_3O_2 \rightarrow CH_3OO(aq)$	k_exf(01,ind_CH302)	see general notes [*]
H4102b_a01	TrAa01Sc	$CH_3OO(aq) \rightarrow CH_3O_2$	k_exb(01,ind_CH302)	see general notes [*]
H4103f_a01	TrAa01ScScm	$HCOOH \rightarrow HCOOH(aq)$	k_exf(01, ind_HCOOH)	see general notes [*]
H4103b_a01	TrAa01ScScm	$HCOOH(aq) \rightarrow HCOOH$	k_exb(01,ind_HCOOH)	see general notes [*]
H4104f_a01	TrAa01ScScm	$CH_3OOH \rightarrow CH_3OOH(aq)$	k_exf(01,ind_CH300H)	see general notes [*]
H4104b_a01	TrAa01ScScm	$CH_3OOH(aq) \rightarrow CH_3OOH$	k_exb(01,ind_CH300H)	see general notes [*]
_				0

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H6000f_a01	TrAa01MblScCl	$Cl_2 \rightarrow Cl_2(aq)$	k_exf(01,ind_C12)	see general notes [*]
H6000b_a01	TrAa01MblScCl	$Cl_2(aq) \rightarrow Cl_2$	k_exb(01,ind_C12)	see general notes [*]
H6200f_a01	TrAa01MblScScmCl	$HCl \rightarrow HCl(aq)$	k_exf(01,ind_HCl)	see general notes [*]
H6200b_a01	TrAa01MblScScmCl	$HCl(aq) \rightarrow HCl$	k_exb(01,ind_HCl)	see general notes [*]
H6201f_a01	TrAa01MblScCl	$HOCl \rightarrow HOCl(aq)$	k_exf(01,ind_HOC1)	see general notes [*]
H6201b_a01	TrAa01MblScCl	$HOCl(aq) \rightarrow HOCl$	k_exb(01,ind_HOC1)	see general notes [*]
H6300_a01	TrAa01MblClN	$\mathrm{N_2O_5} + \mathrm{Cl^-}(\mathrm{aq}) \rightarrow \mathrm{ClNO_2} + \mathrm{NO_3^-}(\mathrm{aq})$	k_exf_N205(01) * 5.E2	Behnke et al. (1994), Behnke et al. (1997)
H6301_a01	TrAa01MblClN	$CINO_3 \rightarrow HOCl(aq) + HNO_3(aq)$	k_exf_ClNO3(01) * C(ind_H20_a01)	see general notes [*]
H6302_a01	TrAa01MblClN	$CINO_3 + Cl^-(aq) \rightarrow Cl_2(aq) + NO_3^-(aq)$	k_exf_ClNO3(01) * 5.E2	see general notes [*]
H7000f_a01	TrAa01MblScBr	$Br_2 \rightarrow Br_2(aq)$	k_exf(01,ind_Br2)	see general notes [*]
H7000b_a01	TrAa01MblScBr	$Br_2(aq) \rightarrow Br_2$	k_exb(01,ind_Br2)	see general notes [*]
H7200f_a01	TrAa01MblScScmBr	$HBr \rightarrow HBr(aq)$	k_exf(01,ind_HBr)	see general notes [*]
H7200b_a01	TrAa01MblScScmBr	$HBr(aq) \rightarrow HBr$	k_exb(01,ind_HBr)	see general notes [*]
H7201f_a01	TrAa01MblScBr	$HOBr \rightarrow HOBr(aq)$	k_exf(01,ind_HOBr)	see general notes [*]
H7201b_a01	TrAa01MblScBr	$HOBr(aq) \rightarrow HOBr$	k_exb(01,ind_HOBr)	see general notes [*]
H7300_a01	TrAa01MblBrN	$\mathrm{N_2O_5} + \mathrm{Br^-(aq)} \rightarrow \mathrm{BrNO_2} + \mathrm{NO_3^-(aq)}$	k_exf_N205(01) * 3.E5	Behnke et al. (1994), Behnke et al. (1997)
H7301_a01	TrAa01MblBrN	$BrNO_3 \rightarrow HOBr(aq) + HNO_3(aq)$	k_exf_BrN03(01) * C(ind_H20_a01)	see general notes [*]
H7302_a01	TrAa01MblBrN	$BrNO_3 + Br^-(aq) \rightarrow Br_2(aq) + NO_3^-(aq)$	k_exf_BrN03(01) * 3.E5	see general notes [*]
H7600f_a01	TrAa01MblScBrCl	$BrCl \rightarrow BrCl(aq)$	k_exf(01,ind_BrCl)	see general notes [*]
H7600b_a01	TrAa01MblScBrCl	$BrCl(aq) \rightarrow BrCl$	k_exb(01,ind_BrCl)	see general notes [*]
H7601_a01	TrAa01MblBrClN	$CINO_3 + Br^-(aq) \rightarrow BrCl(aq) + NO_3^-(aq)$	k_exf_C1NO3(01) * 3.E5	see general notes [*]
H7602_a01	TrAa01MblBrClN	$BrNO_3 + Cl^-(aq) \rightarrow BrCl(aq) + NO_3^-(aq)$	k_exf_BrN03(01) * 5.E2	see general notes [*]
H8000f_a01	TrAa01ScI	$I_2 \rightarrow I_2(aq)$	k_exf(01,ind_I2)	see general notes [*]
H8000b_a01	TrAa01ScI	$I_2(aq) \rightarrow I_2$	k_exb(01,ind_I2)	see general notes [*]
H8100f_a01	TrAa01MblScI	$IO \rightarrow IO(aq)$	k_exf(01,ind_IO)	see general notes [*]
H8100b_a01	TrAa01MblScI	$IO(aq) \rightarrow IO$	k_exb(01,ind_IO)	see general notes [*]
H8101_a01	TrAa01I	$OIO \rightarrow HOI(aq) + HO_2(aq)$	k_exf(01,ind_OIO)	see general notes [*]
H8102_a01	TrAa01I	$I_2O_2 \rightarrow HOI(aq) + H^+(aq) + IO_2^-(aq)$	k_exf(01,ind_I202)	see general notes [*]
H8200f_a01	TrAa01MblScI	$HOI \rightarrow HOI(aq)$	k_exf(01,ind_HOI)	see general notes [*]
H8200b_a01	TrAa01MblScI	$HOI(aq) \rightarrow HOI$	k_exb(01,ind_HOI)	see general notes [*]
H8201_a01	TrAa01MblScI	$HI \rightarrow H^+(aq) + I^-(aq)$	$k_{\rm mt}({\rm HI}) \cdot lwc$	see general notes [*]
H8202_a01	TrAa01ScI	$HIO_3 \rightarrow IO_3^-(aq) + H^+(aq)$	$k_{\rm mt}({\rm HIO}_3) \cdot lwc$	see general notes [*]
H8300_a01	TrAa01IN	$INO_2 \rightarrow HOI(aq) + HONO(aq)$	k_exf(01,ind_INO2)	see general notes [*]

Table 3: Reversible	(Henry's law)	equilibria and	irreversible	("heterogenous")	uptake
---------------------	---------------	----------------	--------------	------------------	--------

#	labels	reaction	rate coefficient	reference
H8301_a01	TrAa01MbIIN	$INO_3 \rightarrow HOI(aq) + HNO_3(aq)$	k_exf(01,ind_INO3)	see general notes [*]
H8600f_a01	TrAa01MblScClI	$ICl \rightarrow ICl(aq)$	k_exf(01, ind_IC1)	see general notes [*]
H8600b_a01	TrAa01MblScClI	$ICl(aq) \rightarrow ICl$	k_exb(01,ind_ICl)	see general notes [*]
H8700f_a01	TrAa01MblScBrI	$IBr \rightarrow IBr(aq)$	k_exf(01,ind_IBr)	see general notes [*]
H8700b_a01	TrAa01MblScBrI	$IBr(aq) \rightarrow IBr$	k_exb(01,ind_IBr)	see general notes [*]
H9100f_a01	TrAa01MblScScmS	$SO_2 \rightarrow SO_2(aq)$	k_exf(01,ind_S02)	see general notes [*]
H9100b_a01	TrAa01MblScScmS	$SO_2(aq) \rightarrow SO_2$	k_exb(01,ind_S02)	see general notes [*]
H9200_a01	TrAa01MblScScmS	$H_2SO_4 \rightarrow H_2SO_4(aq)$	xnom7sulf*k_exf(01,ind_H2SO4)	see general notes [*]
H9400f_a01	TrAa01CS	$DMSO \rightarrow DMSO(aq)$	k_exf(01,ind_DMSO)	see general notes [*]
H9400b_a01	TrAa01CS	$DMSO(aq) \rightarrow DMSO$	k_exb(01,ind_DMSO)	see general notes [*]
H9401_a01	TrAa01MblS	$CH_3SO_3H \rightarrow CH_3SO_3^-(aq) + H^+(aq)$	k_exf(01,ind_CH3SO3H)	see general notes [*]
H9402f_a01	TrAa01CS	$DMS \rightarrow DMS(aq)$	k_exf(01,ind_DMS)	see general notes [*]
H9402b_a01	TrAa01CS	$DMS(aq) \rightarrow DMS$	k_exb(01,ind_DMS)	see general notes [*]
H10000f_a01	TrAa01Hg	$Hg \rightarrow Hg(aq)$	k_exf(01,ind_Hg)	see general notes [*]
H10000b_a01	TrAa01Hg	$Hg(aq) \rightarrow Hg$	k_exb(01,ind_Hg)	see general notes [*]
H10100f_a01	TrAa01Hg	$HgO \rightarrow HgO(aq)$	k_exf(01,ind_Hg0)	see general notes [*]
H10100b_a01	TrAa01Hg	$HgO(aq) \rightarrow HgO$	k_exb(01,ind_HgO)	see general notes [*]
H10600f_a01	TrAa01ClHg	$HgCl_2 \rightarrow HgCl_2(aq)$	k_exf(01,ind_HgCl2)	see general notes [*]
H10600b_a01	TrAa01ClHg	$HgCl_2(aq) \rightarrow HgCl_2$	k_exb(01,ind_HgCl2)	see general notes [*]
H10700f_a01	TrAa01BrHg	$HgBr_2 \rightarrow HgBr_2(aq)$	k_exf(01,ind_HgBr2)	see general notes [*]
H10700b_a01	TrAa01BrHg	$HgBr_2(aq) \rightarrow HgBr_2$	k_exb(01,ind_HgBr2)	see general notes [*]
H10701f_a01	TrAa01BrClHg	$ClHgBr \rightarrow ClHgBr(aq)$	k_exf(01,ind_ClHgBr)	see general notes [*]
H10701b_a01	TrAa01BrClHg	$ClHgBr(aq) \rightarrow ClHgBr$	k_exb(01,ind_ClHgBr)	see general notes [*]
H10702f_a01	TrAa01BrHg	$BrHgOBr \rightarrow BrHgOBr(aq)$	k_exf(01,ind_BrHgOBr)	see general notes [*]
H10702b_a01	TrAa01BrHg	$BrHgOBr(aq) \rightarrow BrHgOBr$	k_exb(01,ind_BrHgOBr)	see general notes [*]
H10703f_a01	TrAa01BrClHg	$ClHgOBr \rightarrow ClHgOBr(aq)$	k_exf(01,ind_C1HgOBr)	see general notes [*]
H10703b_a01	TrAa01BrClHg	$ClHgOBr(aq) \rightarrow ClHgOBr$	k_exb(01,ind_ClHgOBr)	see general notes [*]

General notes

ficients and Henry's law constants from chemprop (see ~ and H7602, we define: chemprop.pdf).

 $k_{\rm mt}({\rm X}) imes {
m LWC}$ $k_{\text{exf}}(\mathbf{X}) = \frac{k_{\text{mt}}(\mathbf{A}) \times \mathbf{Lwc}}{[\mathbf{H}_2\mathbf{O}] + 5 \times 10^2 [\text{Cl}^-] + 3 \times 10^5 [\text{Br}^-]}$

The forward (k_exf) and backward (k_exb) $\begin{array}{c} \kappa_{\text{exf}}(\Lambda) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Br}^-] \\ \hline \text{Res}(\pi) = [H_2O] + 5 \times 10^2 [\text{CI}^-] + 3 \times 10^5 [\text{Re}(\pi) = 10^5 [\text{Re}(\pi)$

106

the branching between hydrolysis and the halide reactions. The factor 5×10^2 was chosen such that the ethlorization dominates over hydrolysis at about [Cl⁻] $\times 10^2$ (3×10⁵) was chosen such that the reactions with for ClNO₃ and BrNO₃. Here, they are also used 5×10^2 (3×10⁵) was chosen such that the reactions with for ClNO₃ and BrNO₃. Here, they are also used $\times 10^2$ (3×10⁵) was chosen such that the reactions with for ClNO₃ and BrNO₃.

Table 4: Heterogeneous reactions

#	labels	reaction	rate coefficient	reference
HET200	StHetN	$N_2O_5 + H_2O \rightarrow 2 HNO_3$	khet_St(ihs_N2O5_H2O)	see general notes [*]
HET201	TrHetN	$N_2O_5 \rightarrow 2 NO_3^-(cs) + 2 H^+(cs)$	khet_Tr(iht_N205)	see general notes [*]
HET410	StHetCl	$HOCl + HCl \rightarrow Cl_2 + H_2O$	khet_St(ihs_HOC1_HC1)	see general notes [*]
HET420	StHetClN	$CINO_3 + HCI \rightarrow Cl_2 + HNO_3$	khet_St(ihs_C1N03_HC1)	see general notes [*]
HET421	StHetClN	$ClNO_3 + H_2O \rightarrow HOCl + HNO_3$	khet_St(ihs_C1N03_H20)	see general notes [*]
HET422	StHetClN	$N_2O_5 + HCl \rightarrow ClNO_2 + HNO_3$	khet_St(ihs_N2O5_HC1)	see general notes [*]
HET510	StHetBr	$HOBr + HBr \rightarrow Br_2 + H_2O$	khet_St(ihs_HOBr_HBr)	see general notes [*]
HET520	StHetBrN	$BrNO_3 + H_2O \rightarrow HOBr + HNO_3$	khet_St(ihs_BrN03_H20)	see general notes [*]
HET540	StHetBrClN	$CINO_3 + HBr \rightarrow BrCl + HNO_3$	khet_St(ihs_C1N03_HBr)	see general notes [*]
HET541	StHetBrClN	$BrNO_3 + HCl \rightarrow BrCl + HNO_3$	khet_St(ihs_BrN03_HC1)	see general notes [*]
HET542	StHetBrCl	$HOCl + HBr \rightarrow BrCl + H_2O$	khet_St(ihs_HOC1_HBr)	see general notes [*]
HET543	StHetBrCl	$HOBr + HCl \rightarrow BrCl + H_2O$	khet_St(ihs_HOBr_HC1)	see general notes [*]
HET1001	StTrHetHg	$Hg \rightarrow Hg(cs)$	<pre>khet_Tr(iht_Hg) + khet_St(ihs_Hg)</pre>	see general notes [*]
HET1002	StTrHetHg	$HgO \rightarrow Hg(cs)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes [*]
HET1003	StTrHetClHg	$HgCl \rightarrow Hg(cs) + LCHLORINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes [*]
HET1004	StTrHetClHg	$HgCl_2 \rightarrow Hg(cs) + 2 LCHLORINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes [*]
HET1005	StTrHetBrHg	$HgBr \rightarrow Hg(cs) + LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes [*]
HET1006	StTrHetBrHg	$HgBr_2 \rightarrow Hg(cs) + 2 LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes [*]
HET1007	StTrHetBrClHg	$ClHgBr \rightarrow Hg(cs) + LCHLORINE + LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes [*]
HET1008	StTrHetBrHg	$BrHgOBr \rightarrow Hg(cs) + 2 LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes [*]
HET1009	StTrHetBrClHg	$ClHgOBr \rightarrow Hg(cs) + LCHLORINE + LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes [*]

General notes

Heterogeneous reaction rates are calculated with an external module (e.g., MECCA_KHET) and then supplied to the MECCA chemistry (see www.messy-interface.org for details)

Table 5: Acid-base and other equilibria

#	labels	reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference
EQ20_a01	TrAa01Sc	$HO_2 \rightleftharpoons O_2^- + H^+$	1.6E-5		Weinstein-Lloyd and Schwartz (1991)
EQ21_a01	TrAa01MblScScm	$H_2O \rightleftharpoons H^+ + OH^-$	1.0E-16	-6716	Chameides (1984)
EQ30_a01	TrAa01MblScScmN	$NH_4^+ \rightleftharpoons H^+ + NH_3$	5.88E-10	-2391	Chameides (1984)
EQ31_a01	TrAa01ScN	$HONO \rightleftharpoons H^+ + NO_2^-$	5.1E-4	-1260	Schwartz and White (1981)
EQ32_a01	TrAa01MblScScmN	$HNO_3 \rightleftharpoons H^+ + NO_3^-$	15	8700	Davis and de Bruin (1964)
EQ33_a01	TrAa01ScN	$HNO_4 \rightleftharpoons NO_4^- + H^+$	1.E-5		Warneck (1999)
EQ40_a01	TrAa01MblScScm	$CO_2 \rightleftharpoons H^+ + HCO_3^-$	4.3E-7	-913	Chameides (1984)*
EQ41_a01	TrAa01ScScm	$HCOOH \rightleftharpoons H^+ + HCOO^-$	1.8E-4		Weast (1980)
EQ60_a01	TrAa01Cl	$Cl_2^- \rightleftharpoons Cl + Cl^-$	7.3E-6		Yu (2004)
EQ61_a01	TrAa01MblScScmCl	$HCl \rightleftharpoons H^+ + Cl^-$	1.7E6	6896	Marsh and McElroy (1985)
EQ62_a01	TrAa01ScCl	$HOCl \rightleftharpoons H^+ + ClO^-$	3.2E-8		Lax (1969)
EQ70_a01	TrAa01Br	$Br_2^- \rightleftharpoons Br + Br^-$	2.54E-6	-2256	Liu et al. (2002)
EQ71_a01	TrAa01MblScScmBr	$HBr \rightleftharpoons H^+ + Br^-$	1.0E9		Lax (1969)
EQ72_a01	TrAa01ScBr	$HOBr \rightleftharpoons H^+ + BrO^-$	2.3E-9	-3091	Kelley and Tartar (1956)*
EQ73_a01	TrAa01MblBrCl	$BrCl + Cl^- \rightleftharpoons BrCl_2^-$	3.8	1191	Wang et al. (1994)
EQ74_a01	TrAa01MblBrCl	$BrCl + Br^- \rightleftharpoons Br_2Cl^-$	1.8E4	7457	Wang et al. (1994)
EQ75_a01	TrAa01MblBrCl	$Br_2 + Cl^- \rightleftharpoons Br_2Cl^-$	1.3	0	Wang et al. (1994)
EQ76_a01	TrAa01MblBrCl	$Br^- + Cl_2 \rightleftharpoons BrCl_2^-$	4.2E6	14072	Wang et al. (1994)
EQ80_a01	TrAa01MblScClI	$ICl + Cl^- \rightleftharpoons ICl_2^-$	7.7E1		Wang et al. (1989)
EQ81_a01	TrAa01MblScBrI	$IBr + Br^- \rightleftharpoons IBr_2^-$	2.9E2		Troy and Margerum (1991)
EQ82_a01	TrAa01MblScBrClI	$ICl + Br^- \rightleftharpoons IBr + Cl^-$	3.3E2		see note*
EQ90_a01	TrAa01MblScScmS	$SO_2 \rightleftharpoons H^+ + HSO_3^-$	1.7E-2	2090	Chameides (1984)
EQ91_a01	TrAa01MblScScmS	$HSO_3^- \rightleftharpoons H^+ + SO_3^{2-}$	6.0E-8	1120	Chameides (1984)
EQ92_a01	TrAa01MblScScmS	$HSO_4^- \rightleftharpoons H^+ + SO_4^{2-}$	1.2E-2	2720	Seinfeld and Pandis (1998)
EQ93_a01	TrAa01MblScScmS	$H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$	1.0E3		Seinfeld and Pandis (1998)
EQ100_a01	TrAa01Hg	$Hg^{2+} + OH^- \rightleftharpoons HgOH^+$	4.0E10		Ammann and Pöschl (2007)
EQ101_a01	TrAa01Hg	$HgOH^+ + OH^- \rightleftharpoons Hg(OH)_2$	1.58E11		Ammann and Pöschl (2007)
EQ102_a01	TrAa01ClHg	$Hg^{2+} + Cl^- \rightleftharpoons HgCl^+$	5.8E6		Ammann and Pöschl (2007)
EQ103_a01	TrAa01ClHg	$HgCl^+ + Cl^- \rightleftharpoons HgCl_2$	2.5E6		Ammann and Pöschl (2007)
EQ104_a01	TrAa01ClHg	$HgOH^+ + Cl^- \rightleftharpoons Hg(OH)Cl$	2.69E7		Ammann and Pöschl (2007)
EQ105_a01	TrAa01BrHg	$Hg^{2+} + Br^{-} \rightleftharpoons HgBr^{+}$	1.1E9		Raofie and Ariya (2004)
EQ106_a01	TrAa01BrHg	$HgBr^+ + Br^- \rightleftharpoons HgBr_2$	2.5E8		Raofie and Ariya (2004)
EQ107_a01	TrAa01HgS	$Hg^{2+} + SO_3^{2-} \rightleftharpoons HgSO_3$	2.E13		van Loon et al. (2001)
EQ108_a01	TrAa01HgS	$HgSO_3 + SO_3^{2-} \rightleftharpoons Hg(SO_3)_2^{2-}$	1.E10		van Loon et al. (2001)

Table 5: Acid-base and other equilibria

#	labels	reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference
EQ110_a01	TrAa01Fe	$Fe^{3+} \rightleftharpoons FeOH^{2+} + H^+$	2.34E-3		de Laat and Le (2006)*
EQ111_a01	TrAa01Fe	$FeOH^{2+} \rightleftharpoons Fe(OH)^+_2 + H^+$	2E-4		de Laat and Le (2006)*
EQ112_a01	TrAa01Fe	$Fe^{3+} + H_2O_2 \rightleftharpoons FeHO_2^{2+} + H^+$	3.1E-3		de Laat and Le (2006)
EQ113_a01	TrAa01Fe	$FeOH^{2+} + H_2O_2 \rightleftharpoons Fe(OH)(HO_2)^+ + H^+$	2E-4		de Laat and Le (2006)
EQ114_a01	TrAa01ClFe	$Fe^{3+} + Cl^- \rightleftharpoons FeCl^{2+}$	6.61		de Laat and Le (2006)*
EQ115_a01	TrAa01ClFe	$FeCl^{2+} + Cl^{-} \rightleftharpoons FeCl_{2}^{+}$	1.6		de Laat and Le (2006)*
EQ116_a01	TrAa01FeS	$Fe^{3+} + SO_4^{2-} \rightleftharpoons FeSO_4^+$	120		Brand and van Eldik (1995)*
EQ117_a01	TrAa01FeS	$FeOH^{2+} + HSO_3^- \rightleftharpoons FeSO_3^+$	8.25E2		Warneck (2018)*
EQ118_a01	TrAa01FeS	$Fe^{2+} + SO_3^- \rightleftharpoons FeSO_3^+$	1.6E7		Warneck (2018)

Specific notes

EQ40_a01: For $pK_a(CO_2)$, see also Dickson and Millero (1987).

$$\frac{\Delta G}{[\rm kJ/mol]} = -4.2 - 131.228 - (-17.1 - 103.96) = -14.368$$

$$K = \frac{[\text{IBr}] \times [\text{Cl}^-]}{[\text{ICl}] \times [\text{Br}^-]} = \exp\left(\frac{-\Delta G}{RT}\right) = \exp\left(\frac{14368}{8.314 \times 298}\right) = 330$$

This means we have equal amounts of IBr and ICl when the $[Cl^-]/[Br^-]$ ratio equals 330.

EQ110_a01: See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

EquivaluitFor $pK_a(HOBr)$, see also Keller-Rudek et al. (1992).EquivaluitEquivaluitEe also K values listed in Tab. 2.5 of Brand and van Eldik (1995).EQ82_a01: Thermodynamic calculations on the IBr/ICl equilibrium according to
data tables from Wagman et al. (1982):EQ111_a01: Equilibrium calculated from K_1 and K_2 in Tab. 1 of de Laat and Le
(2006). Rate constant for back reaction assumed. See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).ICl + Br^ \Rightarrow IBr + Cl^
-17.1For K_2 -131.228EQ114_a01: See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

Eq115_a01: Equilibrium calculated from K_{29} and K_{30} in Tab. 2 of de Laat and Le (2006). Rate constant for forward reaction assumed. See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

EQ116_a01: Equilibrium at I = 1 M. Rate constant for back reaction assumed. EQ117_a01: Rate of equilibration assumed.

-1	1	0	
		~	

Table 6: Aqueous phase reactions

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A1000_a01	TrAa01Sc	$O_3 + O_2^- \rightarrow OH + OH^-$	1.5E9		Sehested et al. (1983)
A2100_a01	TrAa01Sc	$OH + O_2^- \rightarrow OH^-$	1.0E10		Sehested et al. (1968)
A2101_a01	TrAa01Sc	$OH + OH \rightarrow H_2O_2$	5.5E9		Buxton et al. (1988)
A2102_a01	TrAa01Sc	$HO_2 + O_2^- \rightarrow H_2O_2 + OH^-$	1.0E8	-900	Christensen and Sehested (1988)
A2103_a01	TrAa01Sc	$HO_2 + OH \rightarrow H_2O$	7.1E9		Sehested et al. (1968)
A2104_a01	TrAa01Sc	$HO_2 + HO_2 \rightarrow H_2O_2$	9.7E5	-2500	Christensen and Sehested (1988)
A2105_a01	TrAa01Sc	$H_2O_2 + OH \rightarrow HO_2$	2.7E7	-1684	Christensen et al. (1982)
A3100_a01	TrAa01ScN	$NO_2^- + O_3 \rightarrow NO_3^-$	5.0E5	-6950	Damschen and Martin (1983)
A3101_a01	TrAa01ScN	$NO_2 + NO_2 \rightarrow HNO_3 + HONO$	1.0E8		Lee and Schwartz (1981)
A3102_a01	TrAa01ScN	$NO_4^- \rightarrow NO_2^-$	8.0E1		Warneck (1999)
A3200_a01	TrAa01ScN	$NO_2 + HO_2 \rightarrow HNO_4$	1.8E9		Warneck (1999)
A3201_a01	TrAa01ScN	$NO_2^- + OH \rightarrow NO_2 + OH^-$	1.0E10		Wingenter et al. (1999)
A3202_a01	TrAa01ScN	$NO_3^- + OH^- \rightarrow NO_3^- + OH$	8.2E7	-2700	Exner et al. (1992)
A3203_a01	TrAa01ScN	$HONO + OH \rightarrow NO_2$	1.0E10		Barker et al. (1970)
A3204_a01	TrAa01ScN	$HONO + H_2O_2 + H^+ \rightarrow HNO_3 + H^+$	4.6E3	-6800	Damschen and Martin (1983)
A4100_a01	TrAa01Sc	$CO_3^- + O_2^- \rightarrow HCO_3^- + OH^-$	6.5E8		Ross et al. (1992)
A4101_a01	TrAa01Sc	$CO_3^- + H_2O_2 \rightarrow HCO_3^- + HO_2$	4.3E5		Ross et al. (1992)
A4102_a01	TrAa01Sc	$HCOO^- + CO_3^- \rightarrow 2 HCO_3^- + HO_2$	1.5E5		Ross et al. (1992)
A4103_a01	TrAa01Sc	$HCOO^- + OH \rightarrow OH^- + HO_2 + CO_2$	3.1E9	-1240	Chin and Wine (1994)
A4104_a01	TrAa01Sc	$HCO_3^- + OH \rightarrow CO_3^-$	8.5E6		Ross et al. (1992)
A4105_a01	TrAa01Sc	$HCHO + OH \rightarrow HCOOH + HO_2$	7.7E8	-1020	Chin and Wine (1994)
A4106_a01	TrAa01Sc	$HCOOH + OH \rightarrow HO_2 + CO_2$	1.1E8	-991	Chin and Wine (1994)
A4107_a01	TrAa01Sc	$CH_3OO + O_2^- \rightarrow CH_3OOH + OH^-$	5.0E7		Jacob (1986)
A4108_a01	TrAa01Sc	$CH_3OO + HO_2 \rightarrow CH_3OOH$	4.3E5		Jacob (1986)
A4109_a01	TrAa01Sc	$CH_3OH + OH \rightarrow HCHO + HO_2$	9.7E8		Buxton et al. (1988)
A4110a_a01	TrAa01Sc	$CH_3OOH + OH \rightarrow CH_3OO$	2.7E7	-1715	Jacob (1986)
A4110b_a01	TrAa01Sc	$CH_3OOH + OH \rightarrow HCHO + OH$	1.1E7	-1715	Jacob (1986)
A6000_a01	TrAa01Cl	$Cl + Cl \rightarrow Cl_2$	8.8E7		Wu et al. (1980)
A6001_a01	TrAa01Cl	$\operatorname{Cl}_2^- + \operatorname{Cl}_2^- \rightarrow \operatorname{Cl}_2 + 2 \operatorname{Cl}^-$	3.5E9		Yu (2004)
A6100_a01	TrAa01Cl	$Cl^- + O_3 \rightarrow ClO^-$	3.0E-3		Hoigné et al. (1985)
A6101_a01	TrAa01Cl	$Cl_2 + O_2^- \rightarrow Cl_2^-$	1.0E9		Bjergbakke et al. (1981)
A6102_a01	TrAa01Cl	$Cl_2^- + O_2^- \rightarrow 2 Cl^-$	1.0E9		Jacobi (1996)*
A6200_a01	TrAa01Cl	$Cl \rightarrow H^+ + ClOH^-$	1.8E5		Yu (2004)
A6201_a01	TrAa01Cl	$Cl + H_2O_2 \rightarrow HO_2 + Cl^- + H^+$	2.7E7	-1684	Christensen et al. (1982)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A6202_a01	TrAa01Cl	$Cl^- + OH \rightarrow ClOH^-$	4.2E9		Yu (2004)
A6203_a01	TrAa01Cl	$Cl_2 + HO_2 \rightarrow Cl_2^- + H^+$	1.0E9		Bjergbakke et al. (1981)
A6204_a01	TrAa01MblCl	$Cl_2 \rightarrow Cl^- + HOCl + H^+$	21.8	-8012	Wang and Margerum (1994)
A6205_a01	TrAa01Cl	$Cl_2^- + HO_2 \rightarrow 2 Cl^- + H^+$	1.3E10		Jacobi (1996)
A6206_a01	TrAa01Cl	$HOCl + O_2^- \rightarrow Cl + OH^-$	7.5E6		Long and Bielski (1980)
A6207_a01	TrAa01Cl	$HOCl + HO_2 \rightarrow Cl$	7.5E6		Long and Bielski (1980)
A6208_a01	TrAa01MblCl	$HOCl + Cl^- + H^+ \rightarrow Cl_2$	2.2E4	-3508	Wang and Margerum (1994)
A6209_a01	TrAa01Cl	$ClOH^- \rightarrow Cl^- + OH$	6.0E9		Yu (2004)
A6210_a01	TrAa01Cl	$ClOH^- + H^+ \rightarrow Cl$	2.4E10		Yu (2004)
A6300_a01	TrAa01ClN	$Cl + NO_3^- \rightarrow NO_3 + Cl^-$	1.0E8		Buxton et al. (1999b)
A6301_a01	TrAa01ClN	$Cl^- + NO_3 \rightarrow NO_3^- + Cl$	3.4E8		Buxton et al. (1999b)*
A6302_a01	TrAa01ClN	$Cl_2^- + NO_2^- \rightarrow 2 Cl^- + NO_2$	6.0E7		Jacobi et al. (1996)
A6400_a01	TrAa01Cl	$Cl_2^- + CH_3OOH \rightarrow 2 Cl^- + H^+ + CH_3OO$	5.0E4		Jacobi et al. (1996)
A7000_a01	TrAa01Br	$Br_2^- + Br_2^- \rightarrow 2 Br^- + Br_2$	1.9E9		Ross et al. (1992)
A7100_a01	TrAa01Br	$Br^- + O_3 \rightarrow BrO^-$	2.1E2	-4450	Haag and Hoigné (1983)
A7101_a01	TrAa01Br	$Br_2 + O_2^- \rightarrow Br_2^-$	5.6E9		Sutton and Downes (1972)
A7102_a01	TrAa01Br	$Br_2^- + O_2^- \rightarrow 2 Br^-$	1.7E8		Wagner and Strehlow (1987)
A7200_a01	TrAa01Br	$Br^{-} + OH \rightarrow BrOH^{-}$	1.1E10		Zehavi and Rabani (1972)
A7201_a01	TrAa01Br	$Br_2 + HO_2 \rightarrow Br_2^- + H^+$	1.1E8		Sutton and Downes (1972)
A7202_a01	TrAa01MblBr	$Br_2 \rightarrow Br^- + HOBr + H^+$	9.7E1	-7457	Beckwith et al. (1996)
A7203_a01	TrAa01Br	$Br_2^- + HO_2 \rightarrow Br_2 + H_2O_2 + OH^-$	4.4E9		Matthew et al. (2003)
A7204_a01	TrAa01Br	$Br_2^- + H_2O_2 \rightarrow 2 Br^- + H^+ + HO_2$	1.0E5		Jacobi (1996)
A7205_a01	TrAa01Br	$HOBr + O_2^- \rightarrow Br + OH^-$	3.5E9		Schwarz and Bielski (1986)
A7206_a01	TrAa01Br	$HOBr + HO_2 \rightarrow Br$	1.0E9		Herrmann et al. (1999)
A7207_a01	TrAa01Br	$HOBr + H_2O_2 \rightarrow Br^- + H^+$	1.2E6		Bichsel and von Gunten (1999
A7208_a01	TrAa01MblBr	$HOBr + Br^- + H^+ \rightarrow Br_2$	1.6E10		Beckwith et al. (1996)
A7209a_a01	TrAa01Br	$BrOH^- \rightarrow Br^- + OH$	3.3E7		Zehavi and Rabani (1972)
A7209b_a01	TrAa01Br	$BrOH^- \rightarrow Br + OH^-$	4.2E6		Zehavi and Rabani (1972)
A7210_a01	TrAa01Br	$BrOH^- + H^+ \rightarrow Br$	4.4E10		Zehavi and Rabani (1972)
A7300_a01	TrAa01BrN	$Br^- + NO_3 \rightarrow Br + NO_3^-$	4.0E9		Neta and Huie (1986)
A7301_a01	TrAa01BrN	$Br_2^- + NO_2^- \rightarrow 2 Br^- + NO_2$	1.7E7	-1720	Shoute et al. (1991)
A7400_a01	TrAa01Br	$Br_2^- + CH_3OOH \rightarrow 2 Br^- + H^+ + CH_3OO$	1.0E5		Jacobi (1996)*
A7601_a01	TrAa01BrCl	$Br^{-} + ClO^{-} + H^{+} \rightarrow BrCl + OH^{-}$	3.7E10		Kumar and Margerum (1987)
A7602_a01	TrAa01MblBrCl	$Br^- + HOCl + H^+ \rightarrow BrCl$	1.32E6		Kumar and Margerum (1987)

112

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference		
A7603_a01	TrAa01MblBrCl	$HOBr + Cl^- + H^+ \rightarrow BrCl$	2.3E10	-/ (/	Liu and Margerum (2001) [*]		
A7604_a01	TrAa01MblBrCl	$BrCl \rightarrow Cl^- + HOBr + H^+$	3.0E6		Liu and Margerum (2001)		
A8100_a01	TrAa01MblI	$I^- + O_3 \rightarrow HOI + OH^-$	4.2E9	-9311	Magi et al. (1997)		
A8101_a01	TrAa01MblI	$IO + IO \rightarrow HOI + IO_2^- + H^+$	1.5E9		Buxton et al. (1986)		
A8200_a01	TrAa01MblI	$IO_2^- + H_2O_2 \rightarrow IO_3^-$	6.0E1		Furrow (1987)		
A8201_a01	TrAa01I	$HOI + IO_2^- \rightarrow IO_3^- + I^- + H^+$	6.0E2		Chinake and Simoyi (1996)		
A8202_a01	TrAa01MblI	$HOI + I^- + H^+ \rightarrow I_2$	4.4E12				
A8203_a01	TrAa01MblI	$IO_2^- + I^- + H^+ \rightarrow 2 \text{ HOI} + \text{OH}^-$	2.0E10		Edblom et al. (1987)		
A8600_a01	TrAa01MblClI	$ICI \rightarrow HOI + CI^- + H^+$	2.4E6		Wang et al. (1989)		
A8601_a01	TrAa01MblClI	$I^- + HOCl + H^+ \rightarrow ICl$	3.5E11		Nagy et al. (1988)		
A8602_a01	TrAa01ClI	$IO_2^- + HOCl \rightarrow IO_3^- + Cl^- + H^+$	1.5E3		Lengyel et al. (1996)		
A8603_a01	TrAa01MblClI	$HOI + Cl^- + H^+ \rightarrow ICl$	2.9E10	Wang et al. (1989)			
A8604_a01	TrAa01ClI	$HOI + Cl_2 \rightarrow IO_2^- + 2 Cl^- + 3H^+$	1.0E6		Lengyel et al. (1996)		
A8605_a01	TrAa01ClI	$HOI + HOCI \rightarrow IO_2^- + CI^- + 2 H^+$	5.0E5		Citri and Epstein (1988)		
A8606_a01	TrAa01ClI	$ICl + I^- \rightarrow I_2 + Cl^-$	1.1E9		Margerum et al. (1986)		
A8700_a01	TrAa01MblBrI	$IBr \rightarrow HOI + H^+ + Br^-$	8.0E5		Troy et al. (1991)		
A8701_a01	TrAa01MblBrI	$I^- + HOBr \rightarrow IBr + OH^-$	5.0E9		Troy and Margerum (1991)		
A8702_a01	TrAa01BrI	$IO_2^- + HOBr \rightarrow IO_3^- + Br^- + H^+$	1.0E6		Chinake and Simoyi (1996)		
A8703_a01	TrAa01MblBrI	$HOI + Br^- + H^+ \rightarrow IBr$	3.3E12		Troy et al. (1991)		
A8704_a01	TrAa01BrI	$HOI + HOBr \rightarrow IO_2^- + Br^- + 2 H^+$	1.0E6		Chinake and Simoyi (1996)		
A8705_a01	TrAa01BrI	$IBr + I^- \rightarrow I_2 + Br^-$	2.0E9		Faria et al. (1993)		
A9100_a01	TrAa01ScS	$SO_3^- + O_2 \rightarrow SO_5^-$	1.5E9		Huie and Neta (1987)		
A9101_a01	TrAa01MblScScmS	$SO_3^{3-} + O_3 \rightarrow SO_4^{2-}$	1.5E9	-5300	Hoffmann (1986)		
A9102_a01	TrAa01ScS	$SO_4^- + O_2^- \rightarrow SO_4^{2-}$	3.5E9		Jiang et al. (1992)		
A9103_a01	TrAa01ScS	$SO_4^- + SO_3^{2-} \rightarrow SO_3^- + SO_4^{2-}$	4.6E8		Huie and Neta (1987)		
A9104_a01	TrAa01ScS	$SO_5^- + O_2^- \rightarrow HSO_5^- + OH^-$	2.3E8		Buxton et al. (1996)		
A9105_a01	TrAa01S	$SO_5^- + SO_3^{} \rightarrow .72^{\circ}SO_4^- + .72^{\circ}SO_4^{} + .28^{\circ}SO_3^- + .28^{\circ}HSO_5^- + .28^{\circ}OH^-$	1.3E7		Huie and Neta (1987), Deister and Warneck (1990)*		
A9106_a01	TrAa01S	$SO_5^- + SO_5^- \rightarrow O_2 + SO_4^{2-} + LSULFUR$	1.0E8		Ross et al. (1992)*		
9200_a01	TrAa01ScS	$SO_3^{2-} + OH \rightarrow SO_3^{-} + OH^{-}$	5.5E9		Buxton et al. (1988)		
A9201_a01	TrAa01ScS	$SO_4^- + OH \rightarrow HSO_5^-$	1.0E9		Jiang et al. (1992)		
A9202_a01	TrAa01ScS	$SO_4^- + HO_2 \rightarrow SO_4^{2-} + H^+$	3.5E9		Jiang et al. (1992)		
A9203_a01	TrAa01ScS	$SO_4^- + H_2O \rightarrow SO_4^{2-} + H^+ + OH$	1.1E1	-1110	Herrmann et al. (1995)		
A9204_a01	TrAa01ScS	$SO_4^+ + H_2O_2 \rightarrow SO_4^{2-} + H^+ + HO_2$	1.2E7		Wine et al. (1989)		

Table 6: Aqueous phase reactions (continued)
--

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A9205_a01	TrAa01ScS	$HSO_3^- + O_2^- \rightarrow SO_4^{2-} + OH$	3.0E3		see note [*]
A9206_a01	TrAa01MblScScmS	$HSO_3^- + O_3 \rightarrow SO_4^{2-} + H^+$	3.7E5	-5500	Hoffmann (1986)
A9207_a01	TrAa01ScS	$HSO_3^- + OH \rightarrow SO_3^-$	4.5E9		Buxton et al. (1988)
A9208_a01	TrAa01ScS	$HSO_3^- + HO_2 \rightarrow SO_4^{2-} + OH + H^+$	3.0E3		see note [*]
A9209_a01	TrAa01MblScScmS	$HSO_3^- + H_2O_2 \rightarrow SO_4^{2-} + H^+$	5.2E6	-3650	Martin and Damschen (1981)
A9210_a01	TrAa01ScS	$HSO_3^- + SO_4^- \rightarrow SO_3^- + SO_4^{2-} + H^+$	8.0E8		Huie and Neta (1987)
A9211_a01	TrAa01S	$ \begin{array}{l} {\rm HSO}_3^- + {\rm SO}_5^- \rightarrow .75 \; {\rm SO}_4^- + .75 \; {\rm SO}_4^{} + .75 \; {\rm H}^+ + \\ .25 \; {\rm SO}_3^- + .25 \; {\rm HSO}_5^- \end{array} $	1.0E5		Huie and Neta (1987)
A9212_a01	TrAa01ScS	$HSO_3^- + HSO_5^- + H^+ \rightarrow 2 HSO_4^- + H^+$	7.1E6		Betterton and Hoffmann (1988)
A9301_a01	TrAa01ScNS	$SO_4^- + NO_3^- \rightarrow SO_4^{2-} + NO_3$	5.0E4		Exner et al. (1992)
A9302_a01	TrAa01ScNS	$SO_4^{2-} + NO_3 \rightarrow NO_3^- + SO_4^-$	1.0E5		Løgager et al. (1993)
A9304_a01	TrAa01ScNS	$HSO_3^- + NO_3 \rightarrow SO_3^- + NO_3^- + H^+$	1.4E9	-2000	Exner et al. (1992)
A9305_a01	TrAa01ScNS	$HSO_3^- + HNO_4 \rightarrow HSO_4^- + NO_3^- + H^+$	3.1E5		Warneck (1999)
A9400_a01	TrAa01ScS	SO_3^{2-} + HCHO \rightarrow CH ₂ OHSO ₃ ⁻ + OH ⁻	1.4E4		Boyce and Hoffmann (1984)*
A9401_a01	TrAa01ScS	$SO_3^{2-} + CH_3OOH + H^+ \rightarrow SO_4^{2-} + H^+ + CH_3OH$	1.6E7	-3800	Lind et al. (1987)
A9402_a01	TrAa01ScS	$HSO_3^- + HCHO \rightarrow CH_2OHSO_3^-$	4.3E-1		Boyce and Hoffmann (1984)*
A9403_a01	TrAa01ScS	$HSO_3^- + CH_3OOH + H^+ \rightarrow HSO_4^- + H^+ + CH_3OH$	1.6E7	-3800	Lind et al. (1987)
A9404_a01	TrAa01ScS	$CH_2OHSO_3^- + OH^- \rightarrow SO_3^{2-} + HCHO$	3.6E3		Seinfeld and Pandis (1998)
A9600_a01	TrAa01ClS	$SO_3^{2-} + Cl_2^- \rightarrow SO_3^- + 2 Cl^-$	6.2E7		Jacobi et al. (1996)
A9601_a01	TrAa01MblClS	$SO_3^{2-} + HOCl \rightarrow Cl^- + HSO_4^-$	7.6E8		Fogelman et al. (1989)
A9602_a01	TrAa01ClS	$SO_4^- + Cl^- \rightarrow SO_4^{2-} + Cl$	2.5E8		Buxton et al. (1999a)
A9603_a01	TrAa01ClS	$SO_4^{2-} + Cl \rightarrow SO_4^{-} + Cl^{-}$	2.1E8		Buxton et al. (1999a)
A9604_a01	TrAa01ClS	$HSO_3^- + Cl_2^- \rightarrow SO_3^- + 2 Cl^- + H^+$	4.7E8	-1082	Shoute et al. (1991)
A9605_a01	TrAa01MblClS	$HSO_3^- + HOCI \rightarrow CI^- + HSO_4^- + H^+$	7.6E8		see note [*]
A9606_a01	TrAa01ClS	$HSO_5^- + Cl^- \rightarrow HOCl + SO_4^{2-}$	1.8E-3	-7352	Fortnum et al. (1960)
A9700_a01	TrAa01BrS	$\mathrm{SO}_3^{2-} + \mathrm{Br}_2^- \rightarrow 2 \mathrm{Br}^- + \mathrm{SO}_3^-$	2.2E8	-649	Shoute et al. (1991)
A9701_a01	TrAa01BrS	$SO_3^{2-} + BrO^- \rightarrow Br^- + SO_4^{2-}$	1.0E8		Troy and Margerum (1991)
A9702_a01	TrAa01MblBrS	$SO_3^{2-} + HOBr \rightarrow Br^- + HSO_4^-$	5.0E9		Troy and Margerum (1991)
A9703_a01	TrAa01BrS	$SO_4^- + Br^- \rightarrow Br + SO_4^{2-}$	2.1E9		Jacobi (1996)
A9704_a01	TrAa01BrS	$HSO_3^- + Br_2^- \rightarrow 2 Br^- + H^+ + SO_3^-$	6.3E7	-782	Shoute et al. (1991)
A9705_a01	TrAa01MblBrS	$HSO_3^- + HOBr \rightarrow Br^- + HSO_4^- + H^+$	5.0E9		see note*
A9706_a01	TrAa01BrS	$HSO_5^- + Br^- \rightarrow HOBr + SO_4^{2-}$	1.0E0	-5338	Fogelman et al. (1989)
A9800_a01	TrAa01IS	$HSO_3^- + I_2 \rightarrow 2 I^- + HSO_4^- + 2 H^+$	1.7E9		Yiin and Margerum (1990)
A10100_a01	TrAa01Hg	$Hg + O_3 \rightarrow HgO + O_2$	4.7E7		Munthe (1992)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A10200_a01	TrAa01Hg	$HgO + H^+ \rightarrow Hg^{2+} + OH^-$	1.0E10		Pleijel and Munthe (1995)
A10201_a01	TrAa01Hg	$Hg + OH \rightarrow Hg^+ + OH^-$	2.0E9		Lin and Pehkonen (1997)
A10202_a01	TrAa01Hg	$Hg^+ + OH \rightarrow Hg^{2+} + OH^-$	1.0E10		Lin and Pehkonen (1997)
A10203_a01	TrAa01Hg	$Hg^{2+} + HO_2 \rightarrow Hg^+ + O_2 + H^+$	1.7E4		Enami et al. (2007)
A10204_a01	TrAa01Hg	$Hg^+ + HO_2 \rightarrow Hg + O_2 + H^+$	1.0E10		Lin and Pehkonen (1997)
A10600_a01	TrAa01ClHg	$Hg + HOCl \rightarrow Hg^{2+} + Cl^- + OH^-$	2.09E6		Lin and Pehkonen (1998)
A10601_a01	TrAa01ClHg	$Hg + ClO^- \rightarrow Hg^{2+} + Cl^- + 2 OH^-$	1.99E6		Lin and Pehkonen (1998)
A10700_a01	TrAa01BrHg	$Hg + HOBr \rightarrow Hg^{2+} + Br^- + OH^-$	0.279		Wang and Pehkonen (2004)
A10701_a01	TrAa01BrHg	$Hg + BrO^- \rightarrow Hg^{2+} + Br^- + 2 OH^-$	0.273		Wang and Pehkonen (2004)
A10702_a01	TrAa01BrHg	$Hg + Br_2 \rightarrow Hg^{2+} + 2 Br^-$	0.196		Wang and Pehkonen (2004)
A10900_a01	TrAa01HgS	$HgSO_3 \rightarrow Hg + HSO_4^- + H^+$	0.0106		van Loon et al. (2000)
A11101_a01	TrAa01Fe	$Fe^{2+} + O_2^- \rightarrow Fe^{3+} + HO2^- + OH^-$	1E7		de Laat and Le (2006)
A11102_a01	TrAa01Fe	$Fe^{3+} + O_2^- \rightarrow O_2 + Fe^{2+}$	5E7		de Laat and Le (2006)
A11103_a01	TrAa01Fe	$Fe^{2+} + O_3 \rightarrow FeO^{2+} + O_2$	8.2E5		Løgager et al. (1992)
A11201a_a01	TrAa01Fe	$Fe^{2+} + OH \rightarrow Fe^{3+} + OH^-$	2.7E8		de Laat and Le (2006)
A11201b_a01	TrAa01Fe	$FeOH^+ + OH \rightarrow Fe^{3+} + 2 OH^-$	2.7E8		de Laat and Le (2006)
A11202a_a01	TrAa01Fe	$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH + OH^-$	5.5E1		de Laat and Le (2006)
A11202b_a01	TrAa01Fe	$FeOH^+ + H_2O_2 \rightarrow Fe^{3+} + OH + 2 OH^-$	5.9E6		de Laat and Le (2006)
A11203_a01	TrAa01Fe	$\text{FeHO}_2^{2+} \rightarrow \text{Fe}^{2+} + \text{HO}_2$	2.3E-3		de Laat and Le (2006)
A11204_a01	TrAa01Fe	$Fe(OH)(HO_2)^+ \rightarrow Fe^{2+} + HO_2 + OH^-$	2.3E-3		de Laat and Le (2006)
A11206_a01	TrAa01Fe	$Fe^{2+} + HO_2 \rightarrow Fe^{3+} + HO2^-$	1.2E6		de Laat and Le (2006)
A11208a_a01	TrAa01Fe	$FeOH^{2+} + O_2^- \rightarrow Fe^{2+} + O_2 + OH^-$	1.5E8		Rush and Bielski (1985)
A11208b_a01	TrAa01Fe	$Fe(OH)_2^+ + O_2^- \rightarrow Fe^{2+} + O_2 + 2 OH^-$	1.5E8		Rush and Bielski (1985)
A11209_a01	TrAa01Fe	$Fe^{2+} + O_2^- \rightarrow Fe^{3+} + H_2O_2 + 2 \text{ OH}^-$	1.0E7		Rush and Bielski (1985)
A11210_a01	TrAa01Fe	$Fe^{2+} + OH \rightarrow FeOH^{2+}$	4.3E8		Christensen and Sehested (1981)
A11211_a01	TrAa01Fe	$FeO^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO_2 + OH^-$	9.5E3		Løgager et al. (1992)
A11212_a01	TrAa01Fe	$FeO^{2+} \rightarrow Fe^{3+} + OH + OH^-$	1.3E-2		Løgager et al. (1992)
A11213_a01	TrAa01Fe	$FeO^{2+} + HO_2 \rightarrow Fe^{3+} + O_2 + OH^-$	2.0E6		Løgager et al. (1992)
A11214_a01	TrAa01Fe	$FeO^{2+} + OH \rightarrow Fe^{3+} + HO2^{-}$	1.0E7		Løgager et al. (1992)
A11215_a01	TrAa01Fe	$FeO^{2+} + Fe^{2+} \rightarrow 2 Fe^{3+} + 2 OH^{-}$	1.4E5		Løgager et al. (1992)
A11216_a01	TrAa01Fe	$FeO^{2+} + Fe^{2+} \rightarrow Fe(OH)_2Fe^{4+}$	1.8E4		Jacobsen et al. (1997)
A11217_a01	TrAa01Fe	$Fe(OH)_2Fe^{4+} + H^+ \rightarrow 2 Fe^{3+} + OH^-$	2.0		Jacobsen et al. (1997)
A11218_a01	TrAa01Fe	$Fe(OH)_2Fe^{4+} \rightarrow 2 Fe^{3+} + 2 OH^-$	0.49		Jacobsen et al. (1997)
A11301_a01	TrAa01FeN	$FeO^{2+} + HONO \rightarrow Fe^{3+} + NO_2 + OH^-$	1.1E4		Jacobsen et al. (1998)
A11302_a01	TrAa01FeN	$Fe^{2+} + NO_3 \rightarrow Fe^{3+} + NO_3^-$	8.0E6		Herrmann et al. (2000)*

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}] -E_a/R[K]$	reference
A11601_a01	TrAa01ClFe	$Fe^{2+} + Cl \rightarrow Fe^{3+} + Cl^-$	5.9E9	Jayson et al. (1973)
A11602a_a01	TrAa01ClFe	$Fe^{2+} + Cl_2^- \rightarrow Fe^{3+} + 2 Cl^-$	1E7	Thornton and Laurence (1973)
A11602b_a01	TrAa01ClFe	$Fe^{2+} + Cl_2^- \rightarrow FeCl^{2+} + Cl^-$	4E6	Thornton and Laurence (1973)
A11603a_a01	TrAa01ClFe	$FeCl^+ + HO_2 \rightarrow Fe^{3+} + Cl^- + HO2^-$	1.2E6	de Laat and Le (2006)
A11603b_a01	TrAa01ClFe	$FeCl^+ + O_2^- \rightarrow Fe^{3+} + Cl^- + HO2^- + OH^-$	1E7	de Laat and Le (2006)
A11604a_a01	TrAa01ClFe	$FeCl^{2+} + HO_2 \rightarrow Fe^{2+} + Cl^- + O_2 + H^+$	2E4	de Laat and Le (2006)
A11604b_a01	TrAa01ClFe	$\operatorname{FeCl}_{2}^{+} + \operatorname{HO}_{2} \rightarrow \operatorname{Fe}^{2+} + 2 \operatorname{Cl}^{-} + \operatorname{O}_{2} + \operatorname{H}^{+}$	2E4	de Laat and Le (2006)
A11604c_a01	TrAa01ClFe	$\text{FeCl}^{\overline{2}+} + \text{O}_2^- \rightarrow \text{Fe}^{2+} + \text{Cl}^- + \text{O}_2$	5E7	de Laat and Le (2006)
A11604d_a01	TrAa01ClFe	$\text{FeCl}_2^+ + \text{O}_2^- \rightarrow \text{Fe}^{2+} + 2 \text{ Cl}^- + \text{O}_2$	5E7	de Laat and Le (2006)
A11605_a01	TrAa01ClFe	$FeO^{2+} + Cl^- \rightarrow Fe^{3+} + Cl + 2 \text{ OH}^-$	1E2	Jacobsen et al. (1998)*
A11701_a01	TrAa01BrFe	$Fe^{2+} + Br_2^- \rightarrow Fe^{3+} + 2 Br^-$	3.6E6	Thornton and Laurence (1973)
A11901_a01	TrAa01FeS	$FeO^{2+} + SO_2 \rightarrow Fe^{3+} + SO_3^-$	4.5E5	Jacobsen et al. (1998) [*]
A11902_a01	TrAa01FeS	$FeO^{2+} + HSO_3^- \rightarrow Fe^{3+} + SO_3^- + OH^-$	2.5E5	Jacobsen et al. (1998)*
A11903_a01	TrAa01FeS	$FeOH^{2+} + HSO_3^- \rightarrow Fe^{2+} + SO_3^- + H_2O$	30	Ziajka et al. (1994)
A11904_a01	TrAa01FeS	$Fe^{2+} + SO_5^- \rightarrow FeOH^{2+} + HSO_5^-$	8E5	Ziajka et al. (1994)*
A11905_a01	TrAa01FeS	$Fe^{2+} + HSO_5^- \rightarrow FeOH^{2+} + SO_4^-$	3.0E4	Gilbert and Stell (1990)
A11906_a01	TrAa01FeS	$Fe^{2+} + SO_4^- \rightarrow FeSO_4^+$	3.6E7	McElroy and Waygood (1990)*
A11907_a01	TrAa01FeS	$\text{FeOH}^{2+} + \text{SO}_3^- \rightarrow \text{Fe}^{2+} + \text{HSO}_4^-$	3E7	Warneck (2018)
A11908_a01	TrAa01FeS	$FeSO_3^+ + SO_3^- \rightarrow Fe^{2+} + SO_4^{2-} + SO_2$	2.16E6	Warneck (2018)*

Specific notes

A6102_a01: Jacobi (1996) found an upper limit of 6E9 and cite an upper limit from another study of $2 {\tt E9}.$ Here, we set the rate coefficient to $1 {\tt E9}.$

A6301_a01: There is also an earlier study by Exner et al. (1992) which found a smaller rate coefficient but did not consider the back reaction.

A7400_a01: Assumed to be the same as for Br_2^- + H_2O_2 .

 $\tt A7603_a01:$ The rate coefficient is defined as backward reaction divided by equilibrium constant.

A9105_a01: The rate coefficient for the sum of the paths A9400_a01: Product $2.48 \times 10^7 \times 5.5 \times 10^{-4}$ considering (leading to either HSO₂ or SO₄²) is from Huie and Neta (1987), the ratio 0.28/0.72 is from Deister and Warneck 49402 and 1 product 700 × 5 (1990).

A9106_a01: See also: (Huie and Neta, 1987; Warneck, Ag106_a01: See also: (Hule and Neta, 1987; Warneck, 1991). If this reaction produces a lot of SO₄⁻, it will have an effect. However, we currently assume only the stable $S_2O_8^{2^-}$ as product. Since $S_2O_8^{2^-}$ is not treated explic-itly in the mechanism, $SO_4^{2^-}$ is used as a proxy and the second sulfur atom is put into the lumped LSULFUR.

A9205_a01: D. Sedlak, pers. comm. (1993).

A9208_a01: D. Sedlak, pers. comm. (1993).

116

<code>A9402_a01:</code> Product $790 \times 5.5 \times 10^{-4}$ considering the

hydrated form of HCHO.

A9605_a01: Assumed to be the same as for SO_3^{2-} + HOCI.

A9705_a01: Assumed to be the same as for SO_3^{2-} + HOBr.

 $\texttt{A11302_a01:}$ value from Pikaev et al. (1974)

A11605_a01: products assumed

 $\tt A11901_a01: \ products \ assumed$ A11902_a01: products assumed

<code>A11908_a01:</code> Assuming that the intermediate $\rm S_2O_6^{2-}$ dissociates quickly.

References

- Albaladejo, J., Jiménez, E., Notario, A., Cabañas, B., and Martínez, E.: CH₃O yield in the CH₃ + O₃ reaction using the LP/LIF technique at room temperature, J. Phys. Chem. A, 106, 2512–2519, doi: 10.1021/jp012249o, 2002.
- Amedro, D., Berasategui, M., Bunkan, A. J. C., Pozzer, A., Lelieveld, J., and Crowley, J. N.: Kinetics of the OH + NO₂ reaction: effect of water vapour and new parameterization for global modelling, Atmos. Chem. Phys., 20, 3091–3105, doi:10.5194/acp-20-3091-2020, 2020.
- Ammann, M. and Pöschl, U.: Kinetic model framework for aerosol and cloud surface chemistry and gasparticle interactions – Part 2: exemplary practical applications and numerical simulations, Atmos. Chem. Phys. 7, 6025–6045, doi:10.5194/ACP-7-6025-2007, 2007.
- Anderson, L. C. and Fahey, D. W.: Studies with ClONO₂: Thermal dissociation rate and catalytic conversion to NO using an NO/O₃ chemiluminescence detector, J. Phys. Chem., 94, 644–652, doi: 10.1021/J100365A027, 1990.
- Andrews, D. U., Heazlewood, B. R., Maccarone, A. T., Conroy, T., Payne, R. J., Jordan, M. J. T., and Kable, S. H.: Photo-tautomerization of acetaldehyde to vinyl alcohol: a potential route to tropospheric acids, Science, 337, 1203–1206, doi:10.1126/science. 1220712, 2012.
- Ariya, P. A., Khalizov, A., and Gidas, A.: Reactions of gaseous mercury with atomic and molecular halogens: Kinetics, product studies, and atmospheric implications, J. Phys. Chem. A, 106, 7310–7320, doi: 10.1021/JP0207190, 2002.
- Barnes, I., Becker, K. H., and Zhu, T.: Near UV absorption-spectra and photolysis products of difunctional organic nitrates – possible importance as NO_x reservoirs, J. Atmos. Chem., 17, 353–373, doi: 10.1007/BF00696854, 1993.
- Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R.: Role of adducts in the atmospheric oxidation of dimethyl sulfide, Faraday Discuss., 100, 39–54, doi: 10.1039/FD9950000039, 1995.
- Barth, C. A.: Nitric oxide in the lower thermosphere, Planet. Space Sci., 40, 315–336, doi:10.1016/ 0032-0633(92)90067-X, 1992.
- Bates, K. H., Crounse, J. D., St. Clair, J. M., Bennett, N. B., Nguyen, T. B., Seinfeld, J. H., Stoltz, B. M., and Wennberg, P. O.: Gas phase production and loss of isoprene epoxydiols, J. Phys. Chem. A, 118, 1237– 1246, doi:10.1021/jp4107958, 2014.
- Baulch, D. L., Bowman, C. T., Cobos, C. J., Cox, R. A., Just, T., Kerr, J. A., Pilling, M. J., Stocker, D., Troe, J., Tsang, W., Walker, R. W., and Warnatz, J.: Evaluated kinetic data for combustion modeling: Supplement II, J. Phys. Chem. Ref. Data, 34, 757–1397, doi:10.1063/1.1748824, 2005.
- Becker, K. H., Kurtenbach, R., Schmidt, F., and Wiesen, P.: Kinetics of the NCO radical reacting with atoms and selected molecules, Combust. Flame, 120, 570–577, doi:10.1016/S0010-2180(99)00108-X, 2000.
- Beckwith, R. C., Wang, T. X., and Margerum, D. W.: Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 35, 995–1000, doi:10.1021/IC950909W, 1996.
- Bedjanian, Y., Le Bras, G., and Poulet, G.: Kinetic study of the Br + IO, I + BrO and Br +

- Aschmann, S. M., Nishino, N., Arey, J., and Atkinson, R.: Products of the OH radical-initiated reactions of furan, 2- and 3-methylfuran, and 2,3- and 2,5dimethylfuran in the presence of NO, J. Phys. Chem. A, 118, 457–466, doi:10.1021/jp410345k, 2014.
- Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data, 26, 215–290, doi:10.1063/ 1.556012, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, doi:10.5194/ACP-3-2233-2003, 2003.
- Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605– 4638, doi:10.1021/cr0206420, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of O_x, HO_x, NO_x and SO_x species, Atmos. Chem. Phys., 4, 1461–1738, doi: 10.5194/ACP-4-1461-2004. 2004.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, doi:10.5194/ACP-6-3625-2006, 2006.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and

118

 ${\rm I}_2$ reactions. Heat of formation of the BrO radical, Chem. Phys. Lett., 266, 233–238, doi:10.1016/S0009-2614(97)01530-3, 1997.

Bedjanian, Y., Laverdet, G., and Le Bras, G.: Lowpressure study of the reaction of Cl atoms with isoprene, J. Phys. Chem. A, 102, 953–959, doi:10.1021/ JP973336C, 1998.

Behnke, W., Scheer, V., and Zetzsch, C.: Production of BrNO₂, Br₂ and ClNO₂ from the reaction between sea spray aerosol and N₂O₅, J. Aerosol Sci., 25, S277– S278, doi:10.1016/0021-8502(94)90369-7, 1994.

Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102D, 3795–3804, doi: 10.1029/96JD03057, 1997.

Betterton, E. A. and Hoffmann, M. R.: Oxidation of aqueous SO₂ by peroxymonosulfate, J. Phys. Chem., 92, 5962–5965, doi:10.1021/J100332A025, 1988.

Beyersdorf, A. J., Blake, D. R., Swanson, A., Meinardi, S., Rowland, F. S., and Davis, D.: Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations, Atmos. Environ., 44, 4565–4574, doi:10.1016/ j.atmosenv.2010.08.025, 2010.

Bichsel, Y. and von Gunten, U.: Oxidation of iodide and hypoiodous acid in the disinfection of natural waters, Environ. Sci. Technol., 33, 4040–4045, doi: 10.1021/ES990336C, 1999.

Birdsall, A. W., Andreoni, J. F., and Elrod, M. J.: Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene, J. Phys. Chem. A, 114, 10655–10663, doi:10.1021/jp105467e, 2010. photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, doi:10.5194/ ACP-7-981-2007, 2007.

- Baeza-Romero, M. T., Glowacki, D. R., Blitz, M. A., Heard, D., Pilling, M. J., Rickard, A. R., and Seakins, P. W.: A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration, Phys. Chem. Chem. Phys., 9, 4114–4128, doi:10.1039/b702916k, 2007.
- Bailey, S. M., Barth, C. A., and Solomon, S. C.: A model of nitric oxide in the lower thermosphere, J. Geophys. Res., 107, doi:10.1029/2001JA000258, 2002.
- Bale, C. S. E., Canosa-Mas, C. E., Shallcross, D. E., and Wayne, R. P.: A discharge-flow study of the kinetics of the reactions of IO with CH₃O₂ and CF₃O₂, Phys. Chem. Chem. Phys., 7, 2164–2172, doi: 10.1039/B501903F, 2005.
- Banic, C. M., Beauchamp, S. T., Tordon, R. J., Schroeder, W. H., Steffen, A., Anlauf, K. A., and Wong, H. K. T.: Vertical distribution of gaseous elemental mercury in Canada, J. Geophys. Res., 108D, 4264, doi:10.1029/2002JD002116, 2003.
- Barker, G. C., Fowles, P., and Stringer, B.: Pulse radiolytic induced transient electrical conductance in liquid solutions, Trans. Faraday Soc., 66, 1509–1519, doi:10.1039/TF9706601509, 1970.
- Barnes, I., Becker, K. H., Fink, E. H., Reimer, A., Zabel, F., and Niki, H.: FTIR spectroscopic study of the gas-phase reaction of HO₂ with H₂CO, Chem. Phys. Lett., 115, 1–8, doi:10.1016/0009-2614(85) 80091-9, 1985.
- Bjergbakke, E., Navartnam, S., Parsons, B. J., and Swallow, A. J.: Reaction between HO₂· and chlorine in aqueous solution, J. Am. Chem. Soc., 103, 5926– 5928, doi:10.1021/JA00409A059, 1981.
- Bossolasco, A., Faragó, E. P., Schoemaecker, C., and Fittschen, C.: Rate constant of the reaction between CH₃O₂ and OH radicals, Chem. Phys. Lett., 593, 7– 13, doi:10.1016/j.eplett.2013.12.052, 2014.
- Boyce, S. D. and Hoffmann, M. R.: Kinetics and mechanism of the formation of hydroxymethanesulfonic acid at low pH, J. Phys. Chem., 88, 4740–4746, doi: 10.1021/j150664a059, 1984.
- Brand, C. and van Eldik, R.: Transition metalcatalyzed oxidation of sulfur(IV)oxides. Atmospheric relevant processes and mechanisms, Chem. Rev., 95, 119–190, doi:10.1021/cr00003a006, 1995.
- Buras, Z. J., Elsamra, R. M. I., and Green, W. H.: Direct determination of the simplest Criegee intermediate (CH₂OO) self reaction rate, J. Phys. Chem. Lett., 5, 2224–2228, doi:10.1021/jz5008406, 2014.
- Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadna, http://jpldataeval.jpl.nasa.gov, 2015.
- Butkovskaya, N., Kukui, A., and Le Bras, G.: Pressure and temperature dependence of ethyl nitrate formation in the C₂H₃O₂ + NO reaction, J. Phys. Chem. A, 114, 956–964, doi:10.1021/p910003a, 2010.
- Butkovskaya, N., Kukui, A., and Le Bras, G.: Pressure and temperature dependence of methyl nitrate forma-

- Buxton, G. V., Kilner, C., and Sellers, R. M.: Pulse radiolysis of HOI and IO[−] in aqueous solution. Formation and characterization of I(II), Proc. Tihany Symp. Radiat. Chem., 6, 155–159, 1986.
- Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O⁻) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513–886, doi: 10.1063/1.555805, 1988.
- Buxton, G. V., McGowan, S., Salmon, G. A., Williams, J. E., and Wood, N. D.: A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(IV): A pulse and γradiolysis study, Atmos. Environ., 30, 2483–2493, doi: 10.1016/1352-2310(95)00473-4, 1996.
- Buxton, G. V., Bydder, M., and Salmon, G. A.: The reactivity of chlorine atoms in aqueous solution: Part II. The equilibrium $SO_4^- + Cl^- \rightleftharpoons Cl^+ + SO_4^{2^-}$, Phys. Chem. Chem. Phys., 1, 269–273, doi:10.1039/ A807808D, 1999a.
- Buxton, G. V., Salmon, G. A., and Wang, J. Q.: The equilibrium $NO_3 + Cl^- \rightleftharpoons NO_3^- + Cl^-$: A laser flash photolysis and pulse radiolysis study of the reactivity of NO_3 with chloride ion in aqueous solution, Phys. Chem. Chem. Phys., 1, 3589–3593, doi: 10.1039/A903286J, 1999b.
- Calvert, J. G. and Lindberg, S. E.: A modeling study of the mechanism of the halogen-ozone-mercury homogeneous reactions in the troposphere during the polar spring, Atmos. Environ., 37, 4467–4481, doi: 10.1016/J.ATMOSENV.2003.07.001, 2003.

rapid bimolecular reactions. Part 2. Reactions Cl + BrCl, Cl + Br₂, Cl + ICl, Br + IBr, Br + ICl, J. Chem. Soc. Faraday Trans. 2, 68, 1377–1387, doi: 10.1039/F29726801377.1972.

- Conn, J. B., Kistiakowsky, G. B., Roberts, R. M., and Smith, E. A.: Heats of organic reactions. XIII. Heats of hydrolysis of some acid anhydrides, Journal of the American Chemical Society, 64, 1747–1752, doi: 10.1021/ja01260a001, 1942.
- da Silva, G.: Carboxylic acid catalyzed keto-enol tautomerizations in the gas phase, Angew. Chem., 122, 7685–7687, doi:10.1002/ange.201003530, 2010.
- Damschen, D. E. and Martin, L. R.: Aqueous aerosol oxidation of nitrous acid by O₂, O₃ and H₂O₂, Atmos. Environ., 17, 2005–2011, doi:10.1016/0004-6981(83) 90357-8, 1983.
- Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F., Lenschow, D., Neff, W., and Berresheim, H.: DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and field observations of DMS, DMSO, DMSO₂, H₂SO₄(g), MSA(g), and MSA(p), J. Geophys. Res., 103D, 1657–1678, doi:10.1029/97JD03452, 1998.
- Davis, Jr., W. and de Bruin, H. J.: New activity coefficients of 0-100 per cent aqueous nitric acid, J. Inorg. Nucl. Chem., 26, 1069–1083, doi:10.1016/ 0022-1902(64)80268-2, 1964.
- de Laat, J. and Le, T. G.: Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process, Appl. Catal. B: Environ., 66, 137–146, doi: 10.1016/j.apcatb.2006.03.008, 2006.

- Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele, V.: Is the reaction between CH₃(O)O₂ and NO₃ important in the night-time troposphere?, J. Chem. Soc. Faraday Trans., 92, 2211–2222, doi: 10.1039/FT9966202211, 1996.
- Capouet, M., Müller, J.-F., Ceulemans, K., Compernolle, S., Vereecken, L., and Peeters, J.: Modeling aerosol formation in alpha-pinene photo-oxidation experiments, J. Geophys. Res., 113D, doi:10.1029/ 2007JD008995, 2008.
- Carl, S. A. and Crowley, J. N.: 298 K rate coefficients for the reaction of OH with i-C₃H₇I, n-C₃H₇I and C₃H₈, Atmos. Chem. Phys., 1, 1–7, doi:10.5194/ acp-1-1-2001, 2001.
- Chai, J., Hu, H., Dibble, T. S., Tyndall, G. S., and Orlando, J. J.: Rate constants and kinetic isotope effects for methoxy radical reacting with NO₂ and O₂, J. Phys. Chem. A, 118, 3552–3563, doi:10.1021/ jp5012054, 2014.
- Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89D, 4739– 4755, doi:10.1029/JD089ID03P04739, 1984.
- Chao, W., Hsieh, J.-T., Chang, C.-H., and Lin, J. J.-M.: Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor, Science, 347, 751–754, doi:10.1126/science.1261549, 2015.
- Chen, J., Wenger, J. C., and Venables, D. S.: Nearultraviolet absorption cross sections of nitrophenols and their potential influence on tropospheric oxidation capacity, J. Phys. Chem. A, 115, 12 235–12 242, doi:10.1021/jp206929r, 2011.

120

- Deister, U. and Warneck, P.: Photooxidation of SO₃²⁻ in aqueous solution, J. Phys. Chem., 94, 2191–2198, doi:10.1021/J100368A084, 1990.
- Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res. A, 34, 1733– 1743, 1987.
- Dillon, T. J., Karunanandan, R., and Crowley, J. N.: The reaction of IO with CH₃SCH₃: Products and temperature dependent rate coefficients by laser induced fluorescence, Phys. Chem. Chem. Phys., 8, 847–855, doi:10.1039/B514718B, 2006a.
- Dillon, T. J., Tucceri, M. E., and Crowley, J. N.: Laser induced fluorescence studies of iodine oxide chemistry. Part II. The reactions of IO with CH₃O₂, CF₃O₂ and O₂, Phys. Chem. Chem. Phys., 8, 5185– 5198, doi:10.1039/B611116E, 2006b.
- Dillon, T. J., Tuceeri, M. E., Sander, R., and Crowley, J. N.: LIF studies of iodine oxide chemistry, part 3. Reactions $10 + NO_3 \rightarrow OIO + NO_2$, $1 + NO_3 \rightarrow IO + NO_2$, and $CH_2I + O_2 \rightarrow (products)$: Implications for the chemistry of the marine atmosphere at night., Phys. Chem. Chem. Phys., 10, 1540–1554, doi:10.1039/B717386E, 2008.
- Dolson, D. A. and Leone, S. R.: A reinvestigation of the laser-initiated chlorine/hydrogen bromide chain reaction: absolute rate constants and the v = 2/v = 1ratio from chlorine atom + hydrogen bromide \rightarrow hydrogen chloride(v) + bromine atom, J. Phys. Chem., 91, 3543–3550, doi:10.1021/J100297A016, 1987.
- Donohoue, D. L., Bauer, D., Cossairt, B., and Hynes, A. J.: Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: a pulsed laser photolysis-pulsed

- Chin, M. and Wine, P. H.: A temperature-dependent competitive kinetics study of the aqueous-phase reactions of OH radicals with formate, formic acid, acetate, acetic acid, and hydrated formaldehyde, in: Aquatic and Surface Photochemistry, edited by Helz, G. R., Zepp, R. G., and Crosby, D. G., pp. 85–96, A. F. Lewis, NY, 1994.
- Chinake, C. R. and Simoyi, R. H.: Kinetics and mechanism of the complex bromate-iodine reaction, J. Phys. Chem., 100, 1643–1656, doi:10.1021/ JP951956C, 1996.
- Christensen, H. and Sehested, K.: Pulse radiolysis at high temperatures and high pressures, Radiat. Phys. Chem., 18, 723–231, doi:10.1016/ 0146-5724(81)90195-3, 1981.
- Christensen, H. and Sehested, K.: HO₂ and O₂⁻ radicals at elevated temperatures, J. Phys. Chem., 92, 3007–3011, doi:10.1021/J100321A060, 1988.
- Christensen, H., Sehested, K., and Corfitzen, H.: Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, J. Phys. Chem., 86, 1588–1590, doi:10.1021/J100206A023, 1982.
- Citri, O. and Epstein, I. R.: Mechanistic study of a coupled chemical oscillator: the bromate-chloriteiodide reaction, J. Phys. Chem., 92, 1865–1871, doi: 10.1021/J100318A034, 1988.
- Clubb, A. E., Jordan, M. J. T., Kable, S. H., and Osborn, D. L.: Phototautomerization of acetaldehyde to vinyl alcohol: a primary process in UV-irradiated acetaldehyde from 295 to 335 nm, J. Phys. Chem. Lett., 3, 3522–3526, doi:10.1021/jz301701x, 2012.
- Clyne, M. A. A. and Cruse, H. W.: Atomic resonance fluorescence spectrometry for the rate constants of

laser induced fluorescence study, J. Phys. Chem. A, 110, 6623–6632, doi:10.1021/JP054688J, 2006.

- Duff, J. W., Dothe, H., and Sharma, R. D.: On the rate coefficient of the $N(^2D)+O_2 \rightarrow NO+O$ reaction in the terrestrial thermosphere, Geophys. Res. Lett., 30, 1259–1263, 2003.
- Dulitz, K., Amedro, D., Dillon, T. J., Pozzer, A., and Crowley, J. N.: Temperature (208–318 K) and pressure (18–696 Torr) dependent rate coefficients for the reaction between OH and HNO₃, Atmos. Chem. Phys., 18, 2381–2394, doi:10.5194/acp-18-2381-2018, 2018.
- Edblom, E. C., Györgyi, L., Orbán, M., and Epstein, I. R.: A mechanism for dynamical behavior in the Landolt reaction with ferrocyanide, J. Am. Chem. Soc., 109, 4876–4880, doi:10.1021/JA00250A020, 1987
- Eigen, M. and Kustin, K.: The kinetics of halogen hydrolysis, J. Am. Chem. Soc., 84, 1355–1361, doi: 10.1021/JA00867A005, 1962.
- Enami, S., Hoshino, Y., and Kawasaki, M.: A kinetic study of the gas-phase reactions of Olo with NO, NO₂, and Cl₂, Int. J. Chem. Kinet., 39, 688–693, doi:10.1002/KIN.20283, 2007.
- Espinosa-Garcia, J. and Garcia-Bernáldez, J. C.: Analytical potential energy surface for the CH₄ + O(³P) \rightarrow CH₃ + OH reaction. Thermal rate constants and kinetic isotope effects, Phys. Chem. Chem. Phys., 2, 2345–2351, doi:10.1039/b001038n, 2000.
- Exner, M., Herrmann, H., and Zellner, R.: Laser-based studies of reactions of the nitrate radical in aqueous solution, Ber. Bunsenges. Phys. Chem., 96, 470–477, doi:10.1002/BBPC.19920960347, 1992.

- Faria, R. B., Lengyel, I., Epstein, I. R., and Kustin, K.: Combined mechanism explaining nonlinear dynamics in bromine(III) and bromine(V) oxidations of iodide ion, J. Phys. Chem., 97, 1164–1171, doi: 10.1021/J100108A011, 1993.
- Feierabend, K. J., Zhu, L., Talukdar, R. K., and Burkholder, J. B.: Rate coefficients for the OH + HC(O)C(O)H (glyoxal) raction between 210 and 390 K, J. Phys. Chem. A, 112, 73–82, doi:10.1021/ JP0768571, 2008.
- Felder, P. and Demuth, C.: Photodissociation of CFCl₃ at 193 nm investigated by photofragment translational spectroscopy, Chem. Phys. Lett., 208, 21–26, doi:10.1016/0009-2614(93)80070-6, 1993.
- Fell, C., Steinfeld, J. I., and Miller, S.: Quenching of N(²D) by O(³P), J. Chem. Phys., 92, 4768–4777, doi: 10.1063/1.457694, 1990.
- Finkbeiner, M., Crowley, J. N., Horie, O., Müller, R., Moortgat, G. K., and Crutzen, P. J.: Reaction between HO₂ and ClO: Product formation between 210 and 300 K, J. Phys. Chem., 99, 16264–16275, doi: 10.1021/J100044A011, 1995.
- Flocke, F., Atlas, E., Madronich, S., Schauffler, S. M., Aikin, K., Margitan, J. J., and Bui, T. P.: Observations of methyl nitrate in the lower stratosphere during STRAT: implications for its gas phase production mechanisms, Geophys. Res. Lett., 25, 1891–1894, doi: 10.1029/98GL01417, 1998.
- Fogelman, K. D., Walker, D. M., and Margerum, D. W.: Non-metal redox kinetics: Hypochlorite and hypochlorous acid reactions with sulfite, Inorg. Chem., 28, 986–993, doi:10.1021/IC00305A002, 1989.
- Fortnum, D. H., Battaglia, C. J., Cohen, S. R., and Edwards, J. O.: The kinetics of the oxidation of halide
- Haag, W. R. and Hoigné, J.: Ozonation of bromidecontaining waters: Kinetics of formation of hypobromous acid and bromate, Environ. Sci. Technol., 17, 261–267, doi:10.1021/ES00111A004, 1983.
- Hall, B.: The gas phase oxidation of elemental mercury by ozone, Water Air Soil Pollut., 80, 301–315, doi:10.1007/BF01189680, 1995.
- Hatakeyama, S., Honda, S., and Akimoto, H.: Rate constants and mechanism for reactions of ketenes with OH radicals in air at 299±2 K, Bull. Chem. Soc. Jpn., 58, 2157–2162, doi:10.1246/BCSJ.58.2157, 1985.
- Hermans, I., Müller, J.-F., Nguyen, T. L., Jacobs, P. A., and Peeters, J.: Kinetics of α-hydroxy-alkylperoxyl radicals in oxidation processes. HO₂-initiated oxidation of ketones/aldehydes near the tropopause, J. Phys. Chem. A, 109, 4303–4311, doi:10.1021/ jp044080v, 2005.
- Herrmann, H., Reese, A., and Zellner, R.: Time resolved UV/VIS diode array absorption spectroscopy of SO_x^- (x=3, 4, 5) radical anions in aqueous solution, J. Mol. Struct., 348, 183–186, doi:10.1016/ 0022-2860(95)08619-7, 1995.
- Herrmann, H., Ervens, B., Nowacki, P., Wolke, R., and Zellner, R.: A chemical aqueous phase radical mechanism for tropospheric chemistry, Chemosphere, 38, 1223–1232, doi:10.1016/S0045-6535(98)00520-7, 1999.
- Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner, R.: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem., 36, 231–284, doi:10.1023/A:1006318622743, 2000.
- Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos.

ions by monosubstituted peroxides, J. Am. Chem. Soc., 82, 778–782, doi:10.1021/JA01489A004, 1960.

- Francisco-Marquez, M., Alvarez-Idaboy, J. R., Galano, A., and Vivier-Bunge, A.: Theoretical study of the initial reaction between OH and isoprene in tropospheric conditions, Phys. Chem. Chem. Phys., 5, 1392–1399, doi:10.1039/B211185C, 2003.
- Fuller-Rowell, T. J.: Modeling the solar cycle change in nitric oxide in the thermosphere and upper mesosphere, J. Geophys. Res., 98A, 1559–1570, doi:10. 1029/92JA02201, 1993.
- Furrow, S.: Reactions of iodine intermediates in iodatehydrogen peroxide oscillators, J. Phys. Chem., 91, 2129–2135, doi:10.1021/J100292A031, 1987.
- Gans, B., Boyé-Peronne, S., Broquier, M., Delsaut, M., Douin, S., Fellows, C. E., Halvick, P., Loison, J.-C., Lucchese, R. R., and Gauyacq, D.: Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry, Phys. Chem. Chem. Phys., 13, 8140–8152, doi:10.1039/c0cp02627a, 2011.

Ganzeveld, L., Klemm, O., Rappenglück, B., and Valverde-Canossa, J.: Evaluation of meteorological parameters over a coniferous forest in a single-column chemistry-climate model, Atmos. Environ., 40, S21– S27, doi:10.1016/J.ATMOSENV.2006.01.061, 2006.

Garton, D. J., Minton, T. K., Troya, D., Pascual, R., and Schatz, G. C.: Hyperthermal reactions of O(³P) with alkanes: Observations of novel reaction pathways in crossed-beams and theoretical studies, J. Phys. Chem. A, 107, 4583–4587, doi:10.1021/ jp0226026, 2003.

122

Environ., 20, 1145–1154, doi:10.1016/0004-6981(86) 90147-2, 1986.

- Hoigné, J., Bader, H., Haag, W. R., and Staehelin, J.: Rate constants of reactions of ozone with organic and inorganic compounds in water – III Inorganic compounds and radicals, Wat. Res., 19, 993–1004, doi: 10.1016/0043-1354(85)90368-9, 1985.
- Huie, R. E. and Neta, P.: Rate constants for some oxidations of S(IV) by radicals in aqueous solutions, Atmos. Environ., 21, 1743–1747, doi:10.1016/ 0004-6981(87)90113-2, 1987.
- Hynes, A. J. and Wine, P. H.: The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH + DMSO reaction, J. Atmos. Chem., 24, 23–37, doi:10.1007/BF00053821, 1996.
- Ingham, T., Bauer, D., Sander, R., Crutzen, P. J., and Crowley, J. N.: Kinetics and products of the reactions BrO + DMS and Br + DMS at 298 K, J. Phys. Chem. A, 103, 7199–7209, doi:10.1021/JP9905979, 1999.
- Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91D, 9807–9826, doi: 10.1029/JD091ID09P09807, 1986.
- Jacobi, H.-W.: Kinetische Untersuchungen und Modellrechnungen zur troposphärischen Chemie von Radikalanionen und Ozon in wäßriger Phase, Ph.D. thesis, Universität GH Essen, Germany, 1996.
- Jacobi, H.-W., Herrmann, H., and Zellner, R.: Kinetic investigation of the Cl₂ radical in the aqueous phase, in: Air Pollution Research Report 57: Homogeneous and heterogeneous chemical Processes in the Troposphere, edited by Mirabel, P., pp. 172–176, Office for official Publications of the European Communities, Luxembourg, 1996.

- Gilbert, B. C. and Stell, J. K.: Mechanisms of peroxide decomposition. An ESR study of the reactions of the peroxomonosulphate anion (HOOSO3⁻¹) with TiIII, FeII, and α-oxygen-substituted radicals, J. Chem. Soc. Perkin Trans. 2, pp. 1281–1288, doi: 10.1039/P29900001281, 1990.
- Gill, K. J. and Hites, R. A.: Rate constants for the gas-phase reactions of the hydroxyl radical with isoprene, α- and β-pinene, and limonene as a function of temperature, J. Phys. Chem. A, 106, 2538–2544, doi:10.1021/jp013532q, 2002.
- Glowacki, D. R., Lockhart, J., Blitz, M. A., Klippenstein, S. J., Pilling, M. J., Robertson, S. H., and Seakins, P. W.: Interception of excited vibrational quantum states by O₂ in atmospheric association reactions, Science, 337, 1066–1069, doi:10.1126/science. 1224106, 2012.
- Goodsite, M., Plane, J. M. C., and Skov, H.: A theoretical study of the oxidation of Hg⁰ to HgBr₂ in the troposphere, Environ. Sci. Technol., 38, 1772–1776, doi:10.1021/ES0346808, 2004.
- Grenfell, J. L., Lehmann, R., Mieth, P., Langematz, U., and Steil, B.: Chemical reaction pathways affecting stratospheric and mesospheric ozone, J. Geophys. Res., 111D, doi:10.1029/2004JD005713, 2006.
- Groß, C. B. M., Dillon, T. J., Schuster, G., Lelieveld, J., and Crowley, J. N.: Direct kinetic study of OH and O₃ formation in the reaction of CH₃C(O)O₂ with HO₂, J. Phys. Chem. A, 1, 974–985, doi:10.1021/ jp412380z, 2014.
- Gruzdev, A. N., Elokhov, A. S., Makarov, O. V., and Mokhov, I. I.: Some recent results of Russian measurements of surface ozone in Antarctica. A meteorological interpretation, Tellus, 45B, 99–105, doi: 10.3402/TELLUSB.V45I2.15584, 1993.
- Jacobsen, F., Holcman, J., and Sehested, K.: Activation parameters of ferryl ion reactions in aqueous acid solutions, Int. J. Chem. Kinet., 29, 17–24, doi:10.1002/(SICI)1097-4601(1997)29:1(17:: AID-KIN3)3.0.CO;2-O, 1997.
- Jacobsen, F., Holcman, J., and Sehested, K.: Reactions of the ferryl ion with some compounds found in cloud water, Int. J. Chem. Kinet., 30, 215–221, doi:10.1002/(SICI)1097-4601(1998)30: 3(215::AID-KIN7)3.0.CO;2-V, 1998.
- Jagiella, S. and Zabel, F.: Reaction of phenylperoxy radicals with NO₂ at 298 K, Phys. Chem. Chem. Phys., 9, 5036–5051, doi:10.1039/B705193J, 2007.
- Jayson, G. G., Parsons, B. J., and Swallow, A. J.: Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution, J. Chem. Soc. Faraday Trans. 1, 69, 1597–1607, doi:10.1039/F19736901597, 1973.
- Jefferson, A., Nicovich, J. M., and Wine, P. H.: Temperature-dependent kinetics studies of the reactions Br(⁷P_{3/2}) + CH₃SCH₄ ↔ CH₃SCH₂ + HBr. Heat of formation of the CH₃SCH₂ radical, J. Phys. Chem., 98, 7128–7135, doi:10.1021/J100080A006, 1994.
- Jenkin, M., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Environ., 31, 81–104, doi:10.1016/ S1352-2310(96)00105-7, 1997.
- Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11 433–11 459, doi:10.5194/ acp-15-11433-2015, 2015.

- Jiang, P.-Y., Katsumura, Y., Nagaishi, R., Domae, M., Ishikawa, K., Ishigure, K., and Yoshida, Y.: Pulse ra-diolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate Chem. Soc. Faraday Trans., 88, 1653-1658, doi:10.1039/FT9928801653, 1992.
- Kaltsoyannis, N. and Plane, J. M. C.: Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO₃, (IO)₂, I₂O₃, I₂O₄ and I₂O₅) of importance in the atmosphere, Phys. Chem. Chem. Phys., 10, 1723–1733, doi:10.1039/B715687C, 2008.
- Keller-Rudek, H., Koschel, D., Merlet, P., Ohms-Bredemann, U., Wagner, J., and Wietelmann, A.: Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th Edition, Br, Bromine, Supplement Volume B2, Compounds with Oxygen and Nitrogen, Springer Verlag, Berlin, 1992.
- Kelley, C. M. and Tartar, H. V.: On the system: bromine-water, J. Am. Chem. Soc., 78, 5752–5756, doi:10.1021/JA01603A010, 1956.
- Kirchner, F., Mayer-Figge, A., Zabel, F., and Becker, K. H.: Thermal stability of perox-ynitrates, Int. J. Chem. Kinet., 31, 127–144, doi:10.1002/(SICI)1097-4601(1999)31:2(127:: AID-KIN6)3.0.CO;2-L, 1999.
- Kleinböhl, A., Toon, G. C., Sen, B., Blavier, J.-F. L., Weisenstein, D. K., Strekowski, R. S., Nicovich, J. M., Wine, P. H., and Wennberg, P. O.: On the stratospheric chemistry of hydrogen cyanide Geophys. Res. Lett., 33, doi:10.1029/2006GL026015, 2006.
- Kohlmann, J.-P. and Poppe, D.: The tropospheric gasphase degradation of NH₃ and its impact on the formation of N₂O and NO_x, J. Atmos. Chem., 32, 397-415, doi:10.1023/A:1006162910279, 1999.
- Løgager, T., Sehested, K., and Holcman, J.: Rate con-Spectra 1, Stants of the equilibrium reactions $SO_4 + HNO_3$ $\Rightarrow HSO_4^- + NO_3$ and $SO_4 + NO_3 \Rightarrow SO_4^{2-} + NO_3$, Radiat. Phys. Chem., 41, 539–543, doi:10.1016/ 0969-806X(93)90017-O, 1993
- Long, C. A. and Bielski, B. H. J.: Rate of reaction of superoxide radical with chloride-containing species, J. Phys. Chem., 84, 555–557, doi:10.1021/J100442A023, 1980.
- Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George, C.: Investigation of the uptake rate of ozone and methyl hydroperoxide by surfaces, J. Phys. Chem. A, 101, 4943–4949, doi:10.1021/JP970646M, 1997.
- Manion, J. A., Huie, B. E., Levin, B. D., Burgess, Jr. Iamon, J. A., Hute, R. E., Levin, R. D., Burgess, Jr., D. R., Orkin, V. L., Tsang, W., McGivern, W. S., Hudgens, J. W., Knyazev, V. D., Atkinson, D. B., Chai, E., Tereza, A. M., Lin, C.-Y., Allison, T. C., Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., and Frizzell, D. H.: NIST Chemical Kinet-ics Database, NIST Standard Reference Database 17 (Web Vereine), http://thansics.com/015 (Web Version), http://kinetics.nist.gov, 2015.
- Margerum, D. W., Dickson, P. N., Nagy, J. C., Kumar, K., Bowers, C. P., and Fogelman, K. D.: Kinetics of the iodine monochloride reaction with iodide mea-sured by the pulsed-accelerated-flow method, Inorg. Chem., 25, 4900-4904, doi:10.1021/IC00247A025,
- Marsh, A. R. W. and McElroy, W. J.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 19, 1075–1080, doi:10.1016/0004-6981(85)90192-1, 1985.
- Martin, L. R. and Damschen, D. E.: Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low

- the system $Br + CH_3OOH \Rightarrow HBr + CH_3OO$. An upper limit for the heat of formation of the methylperoxy radical, J. Phys. Chem., 88, 6675–6680, doi: 10.1021/J150670A034, 1984.
- Kumar, K. and Margerum, D. W.: Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid, Inorg. Chem., 26, 2706-2711, doi:10.1021/IC00263A030, 1987.
- Lax, E.: Taschenbuch für Chemiker und Physiker, Springer Verlag, Berlin, 1969.
- Lee, Y.-N. and Schwartz, S. E.: Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem., 85, 840-848, doi: 10.1021/J150607A022, 1981.
- Lengyel, I., Li, J., Kustin, K., and Epstein, I. R.: Rate constants for reactions between iodine- and chlorine-containing species: A detailed mechanism of the chlorine dioxine/chlorite reaction. J. Am. Chem. Soc. 118, 3708–3719, doi:10.1021/JA953938E, 1996.
- Lewis, T. R., Blitz, M. A., Heard, D. E., and Seakins, P. W.: Direct evidence for a substantive reaction between the Criegee intermediate, CH₂OO, and the water vapour dimer. Phys. Chem. Chem. Phys., 17, 4859-4863, doi:10.1039/C4CP04750H, 2015.
- Liljegren, J. A. and Stevens, P. S.: Measurements of the kinetics of the reaction of OH radicals with 3methylfuran at low pressure, Int. J. Chem. Kinet., 45, 787-794, doi:10.1002/KIN.20814, 2013.
- Lin, C.-J. and Pehkonen, S. O.: Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol, Atmos. Environ., 31, 4125–4137, doi:10.1016/S1352-2310(97)00269-0, 1997

pH, Atmos. Environ., 15, 1615-1621, doi:10.1016/ 0004-6981(81)90146-3, 1981.

- Matthew, B. M., George, I., and Anastasio, C.: Hvdroperoxyl radical (HO2-) oxidizes dibromide radical anion $(\cdot Br_{2}^{-})$ to bromine (Br_{2}) in aqueous solution: Implications for the formation of Br₂ in marine boundary layer, Geophys. Res. Lett., 30, doi: 10.1029/2003GL018572, 2003.
- McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Kinetics of the reaction OH + CO under atmospheric conditions, Geophys. Res. Lett., 28, 3135–3138, doi:10.1029/2000GL012719, 2001.
- McElroy, W. J. and Waygood, S. J.: Kinetics of the reactions of the SO_4^- radical with SO_4^- , $S_2O_8^{2-}$, H_2O and Fe²⁺, J. Chem. Soc. Faraday Trans., 86, 2557–2564, doi:10.1039/FT9908602557, 1990.
- Mellouki, A. and Mu, Y.: On the atmospheric degradation of pyruvic acid in the gas phase, J. Pho-tochem. Photobiol. A: Chem., 157, doi:10.1016/ S1010-6030(03)00070-4, 2003.
- Messaadia, L., Dib, G. E., Ferhati, A., and Chakir, A.: UV-visible spectra and gas-phase rate coeffi-cients for the reaction of 2,3-pentanedione and 2,4pentanedione with OH radicals, Chem. Phys. Lett., 626, 73-79, doi:10.1016/j.cplett.2015.02.032, 2015.
- Müller, J.-F., Peeters, J., and Stavrakou, T.: Fast photolysis of carbonyl nitrates from isoprene Atmos. Chem. Phys., 14, 2497–2508, doi:10.5194/ acp-14-2497-2014, 2014.
- Munger, J. W., Jacob, D. J., Fan, S.-M., Colman, A. S., and Dibb, J. E.: Concentrations and snow-atmosphere fluxes of reactive nitrogen at Summit, Greenland, J. Geophys. Res., 104D, 13721-13734 doi:10.1029/1999JD900192, 1999.

Kondo, O. and Benson, S. W.: Kinetics and equilibria in Lin, C.-J. and Pehkonen, S. O.: Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl⁻): Implica-tions for tropospheric mercury chemistry, J. Geophys. Res., 103D, 28093-28102, doi:10.1029/98JD02304,

> Lind, J. A., Lazrus, A. L., and Kok, G. L.: Aqueous phase oxidation of sulfur(IV) by hydrogen per-oxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res., 92D, 4171–4177, doi:10.1029/ JD092ID04P04171, 1987.

Liu, Q. and Margerum, D. W.: Equilibrium and kinet-ics of bromine chloride hydrolysis, Environ. Sci. Technol., 35, 1127-1133, doi:10.1021/ES001380R, 2001.

Liu, Y., Pimentel, A. S., Antoku, Y., Giles, B. J., and Barker, J. R.: Temperature-dependent rate and equilibrium constants for Br (aq) + Br⁻(aq) \rightleftharpoons Br⁻₂ (aq), J. Phys. Chem. A, 106, 11075–11082, doi: 10.1021/JP0255536, 2002.

Lockhart, J., Blitz, M., Heard, D., Seakins, P., and Shannon, R.: Kinetic study of the OH + glyoxal re-action: experimental evidence and quantification of direct OH recycling, J. Phys. Chem. A, 117, 11027-11037, doi:10.1021/jp4076806, 2013.

Lockwood, A. L., Shepson, P. B., Fiddler, M. N., and Alaghmand, M.: Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry, Atmos. Chem. Phys., 10, 6169–6178, doi: 10.5194/acp-10-6169-2010, 2010.

Løgager, T., Holcman, J., Sehested, K., and Pedersen, T.: Oxidation of ferrous ions by ozone in acidic solutions, Inorg. Chem., 31, 3523–3529, doi: 10.1021/ic00043a009, 1992.

- Munthe, J.: The aqueous oxidation of elemental mercury by ozone, Atmos. Environ., 26A, 1461–1468, doi: 10.1016/0960-1686(92)90131-4, 1992.
- Nagy, J. C., Kumar, K., and Margerum, D. W.: Non-metal redox kinetics: Oxidation of iodide by hypochlorous acid and by nitrogen trichloride mea sured by the pulsed-accelerated-flow method, Inorg. Chem., 27, 2773-2780, doi:10.1021/IC00289A007, 1988.
- Nakanishi, H., Morita, H., and Nagakura, S.: Electronic structures and spectra of the keto and enol forms of acetylacetone, Bull. Chem. Soc. Jpn., 50, 2255–2261, doi:10.1246/bcsj.50.2255, 1977.
- Nakano, Y., Ishiwata, T., and Kawasaki, M.: Rate constants of the reaction of NO₃ with CH₃I measured with use of cavity ring-down spectroscopy, J. Phys. Chem. A, 109, 6527-6531, doi:10.1021/JP051817N, 2005.
- Neta, P. and Huie, R. E.: Rate constants for reactions of NO₃ radicals in aqueous solutions, J. Phys. Chem., 90, 4644-4648, doi:10.1021/J100410A035, 1986.

Nguyen, T. L., Peeters, J., and Vereecken, L.: Theoretical study of the gas-phase ozonolysis of β -pinene (C₁₀H₁₆), Phys. Chem. Chem. Phys., 11, 5643–5656, doi:10.1039/b822984h, 2009.

- Nielsen, O. J., Sidebottom, H. W., Donlon, M., and Treacy, J.: Rate constants for the gas-phase reactions of OH radicals and Cl atoms with n-alkyl nitrites at atmospheric pressure and 298 K, Int. J. Chem. Kinet., 23, 1095–1109, doi:10.1002/kin.550231204, 1991
- O'Dowd, C. D. and Hoffmann, T.: Coastal new particle formation: a review of the current state-of-the-art, Environ. Chem., 2, 245-255, doi:10.1071/EN05077,

- Ogryzlo, E. A., Paltenghi, R., and Bayes, K. D.: Orlando, J. J., Tyndall, G. S., and Paulson, The rate of reaction of methyl radicals with oz Int. J. Chem. Kinet., 13, 667-675, doi:10.1002/kin. 550130707, 1981.
- Olzmann, M., Kraka, E., Cremer, D., Gutbrod, R., and Andersson, S.: Energetics, kinetics, and product dis-tributions of the reactions of ozone with ethene and 2,3-dimethyl-2-butene, J. Phys. Chem. A, 101, 9421-9429, doi:10.1021/JP971663E, 1997.
- Orlando, J. J. and Tyndall, G. S.: Rate coefficients for the thermal decomposition of $BrONO_2$ and the heat of formation of BrONO₂, J. Phys. Chem., 100, 19 398–19 405, doi:10.1021/JP9620274, 1996.
- Orlando, J. J. and Tyndall, G. S.: The atmospheric chemistry of the HC(O)CO radical, Int. J. Chem. Kinet., 33, 149–156, doi:10.1002/1097-4601(200103) 33:3(149::AID-KIN1008)3.0.CO;2-1, 2001.
- Orlando, J. J. and Tyndall, G. S.: Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance, Chem. Soc. Rev., 41, 6294–6317, doi:10.1039/ C2CS35166H, 2012.
- Orlando, J. J., Tyndall, G. S., Bilde, M., Ferronato, C., Wallington, T. J., Vereecken, L., and Peeters, J.: Laboratory and theoretical study of the oxy radicals in the OH- and Cl-initiated oxidation of ethene, J. Phys. Chem. A, 102, 8116–8123, doi: 10.1021/JP981937D, 1998.
- Orlando, J. J., Tvndall, G. S., Fracheboud, J. M., Estupinan, E. G., Haberkorn, S., and Zimmer, A.: The rate and mechanism of the gas-phase oxidation of hydroxyacetone, Atmos. Environ., 33, 1621–1629, doi: 10.1016/S1352-2310(98)00386-0, 1999a.
- Raofie, F. and Ariya, P. A.: Product study of the gasphase BrO-initiated oxidation of Hg⁰: Evidence for stable Hg¹⁺ compounds, Environ. Sci. Technol., 38, 4319-4326, doi:10.1021/ES035339A, 2004.
- Rickard, A. and Pascoe, S.: The Master Chemical Mechanism (MCM), http://mcm.leeds.ac.uk,
- Rickard, A. R., Johnson, D., McGill, C. D., and Marston, G.: OH yields in the gas-phase reactions of ozone with alkenes, J. Phys. Chem. A, 103, 7656– 7664, doi:10.1021/JP9916992, 1999.
- Riffault, V., Bedjanian, Y., and Poulet, G.: Kinetic and mechanistic study of the reactions of OH with IBr and HOI, J. Photochem. Photobiol. A: Chem., 176, 155-161, doi:10.1016/j.jphotochem.2005.09.002,
- Roble, R. G.: Energetics of the mesosphere and thermosphere, in: The upper Mesosphere and Lower Ther-mosphere: in: The upper Mesosphere and Lower Ther-mosphere: A Review of Experiment and Theory, Geo-physical Monograph 87, edited by Johnson, R. M. and Killeen, T. L., pp. 1–23, American Geophysical Union, Washington, DC, USA, 1995.
- Ross, A. B., Mallard, W. G., Helman, W. P., Bielski, B. H. J., Buxton, G. V., Cabelli, D. E., Greenstock, C. L., Huie, R. E., and Neta, P.: NDRL-NIST Solu-tion Kinetics Database: Ver. 1, National Institute of Automatics Database Ver. 1, National Institute Ver. 1, Nati Standards and Technology, Gaithersburg, MD, 1992.
- Roth, E., Chakir, A., and Ferhati, A.: Study of a benzoylperoxy radical in the gas phase: ultraviolet spectrum and $C_6H_5C(O)O_2 + HO_2$ reaction between 295 and 357 K, J. Phys. Chem. A, 114, 10367–10379, doi:10.1021/jp1021467, 2010.
- Rush, J. D. and Bielski, B. H. J.: Pulse radiolytic studies of the reaction of HO₂/O₂⁻ with Fe(II)/Fe(III)

- S. E.: Mechanism of the OH-initiated oxidation of methacrolein, Geophys. Res. Lett., 26, 2191-2194, doi:10.1029/1999GL900453, 1999b.
- Orlando, J. J., Tyndall, G. S., Bertman, S. B., Chen, Milling, G. M., Thurn, G. O., Derhauf, G. D., Schult, W., and Burkholder, J. B.: Rate coefficient for the reaction of OH with CH₂=C(CH₃)C(O)OONO₂ (MPAN), Atmos. Environ., 36, 1895–1900, doi:10. 1016/S1352-2310(02)00090-0, 2002.
- Ouyang, B., McLeod, M. W., Jones, R. L., and Bloss, W. J.: NO₃ radical production from the reaction between the Criegee intermediate CH₂OO and NO₂, Phys. Chem. Chem. Phys., 15, 17070–17075, doi: 10.1039/c3cp53024h, 2013.
- Pal, B. and Ariya, P. A.: Gas-phase HO-initiated reac-tions of elemental mercury: Kinetics, product stud-ies, and atmospheric implications, Environ. Sci. Tech-nol., 38, 5555–5566, doi:10.1021/ES0494353, 2004.
- Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.: Isoprene photooxidation: new insights into the production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479-1501, doi:10.5194/ACP-9-1479-2009, 2009a.
- Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., St. Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected epoxide formation in the gasphase photooxidation of isoprene, Science, 325, 730-733, doi:10.1126/science.1172910, 2009b.
- Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Mil-Habi, T., Winch, D., Cloines, D., Toon, S. C., Mi-let, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Dument Demonstration of the statement Bernath, P., Jimenez, J. L., and Wennberg, P. O.:

The reactivity of HO_2/O_2^- with ferric ions and its implication on the occurrence of the Haber-Weiss reaction, J. Phys. Chem., 89, 5062–5066, doi: 10.1021/i100269a035, 1985.

Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landander, R., JOCAR, F., KIMEL, O., KUMEL, M. A., MART, M. A., MART, M. A., and POZZET, A.: The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP), Geosci, Model Dev., Martin M. 2012, 2012 (JVP), Geosci, Model Dev., Martine Martine, Mart 7, 2653-2662, doi:10.5194/GMD-7-2653-2014, 2014.

- Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gromov, S., Grooß, J.-U., Harder, H., Huijnen, V., Jöckel, P., Karydis, V. A., Niemeyer, K. E., Pozzer, A., Riede, H., Schultz, M. G., Tarabor-relli, D., and Tauer, S.: The community atmo-spheric chemistry box model CAABA/MECCA-4.0, Geosci. Model Dev., 12, 1365–1385, doi:10.5194/ gmd-12-1365-2019, 2019.
- Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L., and Ravishankara, A. R.: Chemical Kinetics and Description of the Processing Science of the Science of Photochemical Data for Use in Atmospheric Studies, Evaluation Number 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.
- Schwartz, S. E. and White, W. H.: Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, in: Advances in Environmental Science and Engineering, edited by Pfafflin, J. R. and Ziegler, E. N., vol. 4, pp. 1–45, Gordon and Breach Science Publishers, NY, 1981.
- Schwarz, H. A. and Bielski, B. H. J.: Reactions of HO₂ and O_2^- with iodine and bromine and the I_2^- and Iatom reduction potentials, J. Phys. Chem., 90, 1445– 1448, doi:10.1021/J100398A045, 1986.

127

Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013, doi:10.5194/acp-11-1989-2011, 2011

- eters, J. and Nguyen, T. L.: Unusually fast 1,6-H shifts of enolic hydrogens in peroxy radicals: formation of the first-generation C_2 and C_3 carbonyls in the oxidation of isoprene, J. Phys. Chem. A, 116, 6134– 6141, doi:10.1021/jp211447q, 2012.
- eeters, J., Müller, J.-F., Stavrakou, T., and Nguyen, V. S.: Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded LIM1 mechanism, J. Phys. Chem. A, 118, 8625-8643, doi:10.1021/jp5033146,
- Plane, J. M. C., Joseph, D. M., Allan, B. J., Ashworth, S. H., and Francisco, J. S.: An experimen-tal and theoretical study of the reactions OIO + NOand OIO + OH, J. Phys. Chem. A, 110, 93-100, doi: 10.1021/JP055364Y, 2006.
- Platz, J., Nielsen, O. J., Wallington, T. J., Ball, J. C., Hurley, M. D., Straccia, A. M., Schneider, W. F., and Sehested, J.: Atmospheric chemistry of the phenoxy radical, $C_6H_5O(\cdot)$: UV spectrum and kinetics of its reaction with NO, NO₂, and O₂, J. Phys. Chem. A, 102, 7964-7974, doi:10.1021/jp9822211, 1998.
- Pleijel, K. and Munthe, J.: Modelling the atmospheric mercury cycle – Chemistry in fog droplets, Atmos. Environ., 29, 1441–1457, doi:10.1016/1352-2310(94) 00323-D, 1995
- Raofie, F. and Ariya, P. A.: Kinetics and products study of the reaction of BrO radicals with gaseous mercury, J. Phys. IV France, 107, 1119–1121, doi: 10.1051/JP4:20030497, 2003.
- Scribano, Y., Goldman, N., Saykally, R. J., and Lefor-Homo, T., Gomman, A., Sayam, R. U., and Leor-estier, C.: Water dimers in the atmosphere III: Equi-librium constant from a flexible potential, J. Phys. Chem. A, 110, 5411–5419, doi:10.1021/jp056759k, 2006.
- Sehested, J., Christensen, L. K., Nielsen, O. J., Inested, J., Christensen, L. K., Nieisen, O. J., Bilde, M., Wallington, T. J., Schneider, W. F., Orlando, J. J., and Tyndall, G. S.: Atmo-spheric chemistry of acetone: Kinetic study of the CH₃C(O)CH₂O₂ + NO/NO₂ reactions and decompo-sition of CH₃C(O)CH₂O₂NO₂, Int. J. Chem. Kinet., 30, 475–489, doi:10.1002/(SIC1)1097-4601(1998)30: 7/475–4180, KINM33 0. CO-2-2- 1098 7(475::AID-KIN4)3.0.CO;2-P, 1998.
- Sehested, K., Rasmussen, O. L., and Fricke, H.: Rate constants of OH with HO₂, O_2^- , and $H_2O_2^+$ from hydrogen peroxide formation in pulse-irradiated oxygenated water, J. Phys. Chem., 72, 626–631, doi: 10.1021/J100848A040, 1968.
- Sehested, K., Holcman, J., and Hart, E. J.: Rate constants and products of the reactions of e_{aq}^- , O_2^- and H with ozone in aqueous solutions, J. Phys. Chem. 87, 1951–1954, doi:10.1021/J100234A024, 1983.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons, Inc., 1998.
- Shallcross, D. E., Leather, K. E., Bacak, A., Xiao, P., Lee, E. P. F., Ng, M., Mok, D. K. W., Dyke, J. M., Hossaini, R., Chipperfield, M. P., Khan, M. A. H., and Percival, C. J.: Reaction between CH₃O₂ and BrO radicals: a new source of upper troposphere lower stratosphere hydroxyl radicals, J. Phys. Chem. A, 119, 4618–4632, doi:10.1021/JP5108203, 2015.
- Shoute, L. C. T., Alfassi, Z. B., Neta, P., and Huie. R. E.: Temperature dependence of the rate constants

for reaction of dihalide and azide radicals with inorganic reductants, J. Phys. Chem., 95, 3238–3242, doi:10.1021/J100161A050, 1991.

- Sivakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821-4827, doi:10.1039/B306859E, 2003.
- So, S., Wille, U., and da Silva, G.: Atmospheric chemistry of enols: a theoretical study of the vinyl alcohol + OH + O₂ reaction mechanism, Environ. Sci. Technol., 48, 6694-6701, doi:10.1021/es500319q, 2014.
- Sokolov, O., Hurley, M. D., Ball, J. C., Walling-ton, T. J., Nelsen, W., Barnes, I., and Becker, K. H.: Kinetics of the reactions of chlorine atoms vith CH₃ONO and CH₃ONO₂, Int. J. Chem. Kinet., 31, 357-359, doi:10.1002/(SICI)1097-4601(1999)31; 5(357::AID-KIN5)3.0.CO;2-6, 1999.
- Solberg, S., Stordal, F., and Hov, Ø.: Tropospheric ozone at high latitudes in clean and polluted air masses, a climatological study, J. Atmos. Chem., 28, 111-123, doi:10.1023/A:1005766612853, 1997.
- Stone, D., Blitz, M., Daubney, L., Howes, N. U. M., and Seakins, P.: Kinetics of CH₂OO reactions with SO₂, NO₂, NO, H₂O and CH₃CHO as a function of pressure, Phys. Chem. Chem. Phys., 16, 1139–1149, doi:10.1039/c3cp54391a, 2014.
- Strekowski, R. S., Nicovich, J. M., and Wine, P. H.: Kinetic and mechanistic study of the Reactions of $O(^{1}D_{2})$ with HCN and CH₃CN, Chem. Phys. Chem., 11, 3942-3955, doi:10.1002/cphc.201000550, 2010.
- Sutton, H. C. and Downes, M. T.: Reactions of the HO₂ radical in aqueous solution with bromine and

dynamic properties of INO and INO_2 intermediate

complexes in iodine recombination, J. Chem. Phys.,

van Loon, L., Mader, E., and Scott, S. L.: Reduction of

the aqueous mercuric ion by sulfite: UV spectrum of ${\rm HgSO}_3$ and its intramolecular redox reaction, J. Phys.

Chem. A, 104, 1621-1626, doi:10.1021/JP994268S,

van Loon, L. L., Mader, E. A., and Scott, S. L.: Sulfite

stabilization and reduction of the aqueous mercuric ion: Kinetic determination of sequential formation constants, J. Phys. Chem. A, 105, 3190–3195, doi: 10.1014/Unrecorectl.

Vereecken, L. and Francisco, J. S.: Theoretical stud-

ies of atmospheric reaction mechanisms in the troposphere, Chem. Soc. Rev., $41,\,6259{-}6293,\,doi{:}10.1039/$

Vereecken, L. and Peeters, J.: A theoretical study of the OH-initiated gas-phase oxidation mechanism of

β-pinene (C₁₀H₁₆): first generation products, Phys. Chem. Chem. Phys., 14, 3802–3815, doi:10.1039/

Vereecken, L., Müller, J.-F., and Peeters, J.: Low-volatility poly-oxygenates in the OH-initiated at-

mospheric oxidation of α -pinene: impact of non-traditional peroxyl radical chemistry, Phys. Chem.

Chem. Phys., 9, 5241-5248, doi:10.1039/b708023a,

Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee intermediates with NO, RO₂, and SO₂, and their fate in the atmosphere, Phys. Chem. Chem.

Phys., 14, 14682-14695, doi:10.1039/c2cp42300f.

64, 736-742, doi:10.1063/1.432220, 1976.

10.1021/JP003803H, 2001.

c2cs35070j, 2012.

Chem.

c2cp23711c, 2012.

2007

2012

2000

related compounds, J. Chem. Soc. Faraday Trans. 1, 68, 1498-1507, doi:10.1039/F19726801498, 1972.

- Swaminathan, P. K., Strobel, D. F., Kupperman D. G., Acton, L., DeMajistre, R., Yee, J.-H., Paxton, L., Anderson, D. E., Strickland, D. J., and Duff, J. W.: Nitric oxide abundance in the mesosphere/lower thermosphere region: Roles of solar soft X rays, suprathermal $\rm N(^4S)$ atoms, and vertical transport, J. Geophys. Res., 103A, 11579-11594, doi:10.1029/97JA03249, 1998.
- Tao. Z. and Li. Z.: A kinetics study on reactions of C_6H_5O with C_6H_5O and O_3 298 K, Int. J. Chem. Kinet., 31, 65-31. 65-72. doi:10.1002/(SICI)1097-4601(1999)31:1(65:: AID-KIN8)3.0.CO;2-J, 1999.
- Taraborrelli, D.: Isoprene oxidation and its impacts on the atmospheric composition, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, http:// d-nb.info/1003538770/34, 2010.
- Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling, Atmos. Chem. Phys., 9, 2751-2777, doi:10.5194/ ACP-9-2751-2009, 2009.
- Thornton, A. T. and Laurence, G. S.: Kinetics of oxidation of transition-metal ions by halogen radical anions. Part I. The oxidation of iron(II) by dibromide and dichloride ions generated by flash photol-ysis, J. Chem. Soc. Dalton Trans., pp. 804–813, doi: 10.1039/DT9730000804, 1973.
- Tokos, J. J. S., Hall, B., Calhoun, J. A., and Prestbo E. M.: Homogeneous gas-phase reaction of Hg^0 with

128

- van den Bergh, H. and Troe, J.: Kinetic and thermo-Vereecken, L., Harder, H., and Novelli, A.: The reactions of Criegee intermediates with alkenes, ozone, and carbonyl oxides, Phys. Chem. Chem. Phys., 16, 4039–4049, doi:10.1039/c3cp54514h, 2014.
 - von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen chemistry in the marine boundary layer, 1. Cloud-free MBL, J. Geophys. Res., 107D, 4341, doi:10.1029/2001JD000942, 2002.
 - von Kuhlmann, R.: Tropospheric photochemistry of ozone, its precursors and the hydroxyl radical: A 3Dmodeling study considering non-methane hydrocar-bons, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001.
 - von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., and Rasch, P. J.: A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results, J. Geophys. Res., 108D, 4294, doi:10.1029/2002JD002893, 2003.
 - Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L.: The NBS tables of chemical thermodynamic properties; Selected values for inorganic and C₁ and C₂ organic substances in SI units, J. Phys. Chem. Ref. Data, 11, suppl. 2, 1982.
 - Wagner, I. and Strehlow, H.: On the flash photolysis of bromide ions in aqueous solution, Ber. Bunsen ges. Phys. Chem., 91, 1317–1321, doi:10.1002/BBPC. 19870911203, 1987.
 - Wallington, T. J., Ammann, M., Cox, R. A., Crow-ley, J. N., Herrmann, H., Jenkin, M. E., McNeil, V., Mellouki, A., Rossi, M. J., and Troe, J.: IUPAC Task group on atmospheric chemical kinetic data evaluation: Evaluated kinetic data, http://iupac. pole-ether.fr, 2018.

H₂O₂, O₃, CH₃I, and (CH₃)₂S: Implications for at-mospheric Hg cycling, Atmos. Environ., 32, 823–827, doi:10.1016/S1352-2310(97)00171-4, 1998.

Troy, R. C. and Margerum, D. W.: Non-metal redox kinetics: Hypobromite and hypobromous acid read tions with iodide and with sulfite and the hydrolysis of bromosulfate, Inorg. Chem., 30, 3538–3543, doi: 10.1021/IC00018A028, 1991.

- Troy, R. C., Kelley, M. D., Nagy, J. C., and Margerum, D. W.: Non-metal redox kinetics: Iodine monobromide reaction with iodide ion and the hydrolysis of IBr, Inorg. Chem., $30,\;4838{-}4845,\;doi:10.1021/$ IC00025A030, 1991.
- Tyndall, G. S., Staffelbach, T. A., Orlando, J. J., and Calvert, J. G.: Rate coefficients for the reactions of OH radicals with methylglyoxal and ac-etaldehyde, Int. J. Chem. Kinet., 27, 1009–1020, doi: 10.1002/KIN.550271006, 1995.
- Tyndall, G. S., Orlando, J. J., Wallington, T. J., Sehested, J., and Nielsen, O. J.: Kinetics of the reactions of acetonitrile with chlorine and fluorine J. Phys. Chem., 100, 660–668, doi:10.1021/ jp9521417, 1996.
- Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: The atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106D, 12157–12182, doi:10.1029/ 2000JD900746, 2001a.
- Tyndall, G. S., Orlando, J. J., Wallington, T. J., and Hurley, M. D.: Products of the chlorine-atom-and hydroxyl-radical-initiated oxidation of CH₃CN, J. Phys. Chem. A, 105, 5380-5384, doi:10.1021/ jp004318p, 2001b.
- Wang, T. X. and Margerum, D. W.: Kinetics of reversible chlorine hydrolysis: Temperature dependence and general-acid/base-assisted mecha-Chem., 33, 1050–1055, doi:10.1021/ Inorg. IC00084A014, 1994.
- Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum, D. W.: Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species, Inorg. Chem., 33, 5872–5878, doi:10.1021/IC00103A040, 1994.
- Wang, Y. L., Nagy, J. C., and Margerum, D. W.: Kinetics of hydrolysis of iodine monochloride measured by the pulsed-accelerated-flow method, J. Am. Chem. Soc 111, 7838-7844, doi:10.1021/JA00202A026, 1989.
- Wang, Z. and Pehkonen, S. O.: Oxidation of elemental mercury by aqueous bromine: atmospheric implications, Atmos. Environ., 38, 3675–3688, doi: 10.1016/J.ATMOSENV.2004.02.059, 2004.
- Warneck, P.: Chemical reactions in clouds, Frese-nius J. Anal. Chem., 340, 585–590, doi:10.1007/ BF00322434, 1991.
- Warneck, P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys., 1, 5471–5483, doi:10. 1039/A906558J, 1999.
- Warneck, P.: The oxidation of sulfur(IV) by reaction with iron(III): a critical review and data a ysis, Phys. Chem. Chem. Phys., 20, 4020–4037, doi: 10.1039/c7cp07584g, 2018.
- Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J., Le Bras, G., Moort-gat, G. K., Perner, D., Poulet, G., Restelli, G., and

Sidebottom, H.: The nitrate radical: Physics, chemistry, and the atmosphere, Atmos. Environ., 25A, 1-203, doi:10.1016/0960-1686(91)90192-A, 1991.

- Weast, R. C., ed.: CRC Handbook of Chemistry and Physics, 61st Edition, CRC Press, Inc., Boca Raton, FL, 1980.
- Weinstein-Lloyd, J. and Schwartz, S. E.: Low-intensity radiolysis study of free-radical reactions in cloudwater: H₂O₂ production and destruction, Environ. Sci. Technol., 25, 791–800, doi:10.1021/ES00016A027, 1991.
- Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J., Shallcross, D. E., and Taatjes, C. A.: Direct kinetic measurements of Criegee intermediate (CH₂OO) formed by reaction of CH₂I with O₂, Science, 335, 204–207, doi:10.1126/science.1213229, 2012.
- Welz, O., Eskola, A. J., Sheps, L., Rotavera, B., Savee, J. D., Scheer, A. M., Osborn, D. L., Lowe, D., Booth, A. M., Xiao, P., Khan, M. A. H., Percival, C. J., Shallcross, D. E., and Taatjes, C. A.: Rate coefficients of C1 and C2 Criegee intermediate reactions with formic and acetic acid near the collision limit: Direct kinetics measurements and atmospheric implications, Angew. Chem., 126, 4635–4638, doi:10.1002/ange.201400964, 2014.

Wine, P. H., Tang, Y., Thorn, R. P., Wells, J. R., and Davis, D. D.: Kinetics of aqueous phase reactions of the SO₄⁻ radical with potential importance in cloud chemistry, J. Geophys. Res., 94D, 1085–1094, doi: 10.1029/JD094ID01P01085, 1989.

Wingenter, O. W., Sive, B. C., Blake, N. J., and Rowland, F. S.: Atomic chlorine concentrations determined from ethane and hydroxyl measurements made over the Central Pacific Ocean, Eos, Trans. AGU (Abstract Supplement), 80, F149–F150, 1999.

- Wu, D., Wong, D., and Di Bartolo, B.: Evolution of Cl_2^- in aqueous NaCl solutions, J. Photochem., 14, 303–310, doi:10.1016/0047-2670(80)85102-1, 1980.
- Yiin, B. S. and Margerum, D. W.: Nonmetal redox kinetics: reactions of iodine and triiodide with sulfite and hydrogen sulfite and the hydrolysis of iodosulfate, Inorg. Chem., 29, 1559–1564, doi:10.1021/ IC00333A023, 1990.
- Yin, F., Grosjean, D., and Seinfeld, J. H.: Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development, J. Atmos. Chem., 11, 309– 364, doi:10.1007/BF00053780, 1990.
- Yoon, M.-C., Choi, Y. S., and Kim, S. K.: The OH production from the $\pi \pi^*$ transition of acetylace-

tone, Chem. Phys. Lett., 300, 207–212, doi:10.1016/S0009-2614(98)01373-6, 1999.

- Yu, X.-Y.: Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions, J. Phys. Chem. Ref. Data, 33, 747–763, doi: 10.1063/1.1695414, 2004.
- Zehavi, D. and Rabani, J.: The oxidation of aqueous bromide by hydroxyl radicals. A pulse radiolytic investigation, J. Phys. Chem., 76, 312–319, doi: 10.1021/J100647A006, 1972.
- Zellner, R., Hartmann, D., Karthäuser, J., Rhäsa, D., and Weibring, G.: A laser photolysis/LIF study of the reactions of O(³P) atoms with CH₃ and CH₃O₂ radicals, J. Chem. Soc. Faraday Trans. 2, 84, 549– 568, doi:10.1039/f29888400549, 1988.
- Zellner, R., Exner, M., and Herrmann, H.: Absolute OH quantum yield in the laser photolysis of nitrate, nitrite and dissolved H₂O₂ at 308 and 351 nm in the temperature range 278-353 K, J. Atmos. Chem., 10, 411–425, doi:10.1007/BF00115783, 1990.
- Ziajka, J., Beer, F., and Warneck, P.: Iron-catalysed oxidation of bisulphit aqueous solution: evidence for free radical chain mechanism, Atmos. Environ., 28, 2549–2552, doi:10.1016/1352-2310(94)90405-7, 1994.

C. Datasheets

Waveleng		droxyl ontent	Core Diameter	CONTRACTOR OF CONTRACTOR	Cladding Coat Diameter Diam				Buffer Diameter		Core/ Cladding		Coatin	g ^a	Buffer	Proof Test
250 - 1200	nm ^b H	ligh OH	070 . 40	200 . 0.	- 200	220 + 10 um 400 +		m 400 + 20 mm		Pure Silica /		TECS Hard		>100 lm =1		
400 - 2200	nm L	ow OH	273 ± 10 µm	300 ± 6 µm		330 ± 10 µm		30 µm	Fluorine-Doped Silica		Fluoropolymer		Terzei	≥100 kpsi		
	Max Powe	er Capabili			Max			Bend F	Radius							
NA	Pulsed ^c	CWd	Attenuat			Core-	TECS	Short Term	Long Term	Operating Temperature	Strip Tool	Co	re Index	Cladding Index		
	1.07 184	0.0714	10 10 10 10		4	7.		10	22	CO.4- 405.9C	TARCADE	Se	ee Table	Description		
0.22 ± 0.02	1.87 MVV	0.37 KV	10 dB/k	m	4 µm	m /µm		10 mm	32 mm	.1m -60 to 125 °C	114518°	in Overview Tat		Proprietary		
	Range 250 - 1200 400 - 2200 NA 22 ± 0.02	Range C 250 - 1200 nm ^b H 400 - 2200 nm L Max Powe NA Pulsed ^c 22 ± 0.02 1.87 MW	Range Content 250 - 1200 nm ^b High OH 400 - 2200 nm Low OH Max Power Capabilit NA Pulsed ^c 22 ± 0.02 1.87 MW 0.37 kW	Range Content Diameter 250 - 1200 nm ^b High OH 273 ± 10 µm 400 - 2200 nm Low OH 273 ± 10 µm Max Power Capability Max @ 808 m NA Pulsed ^c CW ^d 22 ± 0.02 1.87 MW 0.37 kW 10 dB/k	Range Content Diameter Diameter 250 - 1200 nmb High OH 273 ± 10 µm 300 ± 6 µ 400 - 2200 nm Low OH 273 ± 10 µm 300 ± 6 µ Max Power Capability Max Attenuation @ 808 nm Max Attenuation CM 22 ± 0.02 1.87 MW 0.37 kW 10 dB/km CM	Range Content Diameter Diameter <th< td=""><td>Range Content Diameter Diameter Diameter Diameter 250-1200 nmb High OH 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm 400-2200 nm Low OH 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm Max Power Capability Max Attenuation Max Core- Cladding Offset Max Offset Offset</td><td>Range Content Diameter <thdiameter< th=""> <thdiameter< th=""> <thdi< td=""><td>Range Content Diameter <thdiameter< th=""> <thdiameter< th=""> <thdi< td=""><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cla 250 - 1200 nm^b High OH 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm 400 ± 30 µm Pure Fluorine- Max Power Capability Max Max Core- Offset Max Bend Radius NA Pulsed^c CW^d 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm</td><td>Range Content Diameter Diameter<</td><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cladding Coatin 250 - 1200 nm^b High OH 273 ± 10 µm 300 ± 6 µm 330 ± 0 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS H Fluorine-Doped Silica Max Max Max Max Core- Cladding Bend Ratius Operating Strip Temperature NA Pulsed^c CW^d 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm -60 to 125 °C T14S18^e</td><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cadding Coating^a 250 - 1200 nm^b High OH 400 - 2200 nm 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS Hard Fluoropolymer Max Max Max Core- Cladding Bend Radius Description NA Pulsed^c CW^d 808 nm Offset Offset Short Long Offset Operating Temperature Strip Core 22 + 0.02 187 MW 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm 60 to 125 °C T44518^e Strip</td><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cladding Coating^a Buffer 250 - 1200 mb High OH 273 ± 10 µm 330 ± 6 µm 330 ± 0 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS Hard Fluoropolymer Tefzel Max Max Max Core- Cladding Max Max Diameter Diameter<!--</td--></td></thdi<></thdiameter<></thdiameter<></td></thdi<></thdiameter<></thdiameter<></td></th<>	Range Content Diameter Diameter Diameter Diameter 250-1200 nmb High OH 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm 400-2200 nm Low OH 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm Max Power Capability Max Attenuation Max Core- Cladding Offset Max Offset Offset	Range Content Diameter Diameter <thdiameter< th=""> <thdiameter< th=""> <thdi< td=""><td>Range Content Diameter <thdiameter< th=""> <thdiameter< th=""> <thdi< td=""><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cla 250 - 1200 nm^b High OH 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm 400 ± 30 µm Pure Fluorine- Max Power Capability Max Max Core- Offset Max Bend Radius NA Pulsed^c CW^d 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm</td><td>Range Content Diameter Diameter<</td><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cladding Coatin 250 - 1200 nm^b High OH 273 ± 10 µm 300 ± 6 µm 330 ± 0 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS H Fluorine-Doped Silica Max Max Max Max Core- Cladding Bend Ratius Operating Strip Temperature NA Pulsed^c CW^d 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm -60 to 125 °C T14S18^e</td><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cadding Coating^a 250 - 1200 nm^b High OH 400 - 2200 nm 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS Hard Fluoropolymer Max Max Max Core- Cladding Bend Radius Description NA Pulsed^c CW^d 808 nm Offset Offset Short Long Offset Operating Temperature Strip Core 22 + 0.02 187 MW 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm 60 to 125 °C T44518^e Strip</td><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cladding Coating^a Buffer 250 - 1200 mb High OH 273 ± 10 µm 330 ± 6 µm 330 ± 0 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS Hard Fluoropolymer Tefzel Max Max Max Core- Cladding Max Max Diameter Diameter<!--</td--></td></thdi<></thdiameter<></thdiameter<></td></thdi<></thdiameter<></thdiameter<>	Range Content Diameter Diameter <thdiameter< th=""> <thdiameter< th=""> <thdi< td=""><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cla 250 - 1200 nm^b High OH 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm 400 ± 30 µm Pure Fluorine- Max Power Capability Max Max Core- Offset Max Bend Radius NA Pulsed^c CW^d 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm</td><td>Range Content Diameter Diameter<</td><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cladding Coatin 250 - 1200 nm^b High OH 273 ± 10 µm 300 ± 6 µm 330 ± 0 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS H Fluorine-Doped Silica Max Max Max Max Core- Cladding Bend Ratius Operating Strip Temperature NA Pulsed^c CW^d 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm -60 to 125 °C T14S18^e</td><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cadding Coating^a 250 - 1200 nm^b High OH 400 - 2200 nm 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS Hard Fluoropolymer Max Max Max Core- Cladding Bend Radius Description NA Pulsed^c CW^d 808 nm Offset Offset Short Long Offset Operating Temperature Strip Core 22 + 0.02 187 MW 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm 60 to 125 °C T44518^e Strip</td><td>Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cladding Coating^a Buffer 250 - 1200 mb High OH 273 ± 10 µm 330 ± 6 µm 330 ± 0 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS Hard Fluoropolymer Tefzel Max Max Max Core- Cladding Max Max Diameter Diameter<!--</td--></td></thdi<></thdiameter<></thdiameter<>	Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cla 250 - 1200 nm ^b High OH 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm 400 ± 30 µm Pure Fluorine- Max Power Capability Max Max Core- Offset Max Bend Radius NA Pulsed ^c CW ^d 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm	Range Content Diameter Diameter<	Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cladding Coatin 250 - 1200 nm ^b High OH 273 ± 10 µm 300 ± 6 µm 330 ± 0 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS H Fluorine-Doped Silica Max Max Max Max Core- Cladding Bend Ratius Operating Strip Temperature NA Pulsed ^c CW ^d 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm -60 to 125 °C T14S18 ^e	Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cadding Coating ^a 250 - 1200 nm ^b High OH 400 - 2200 nm 273 ± 10 µm 300 ± 6 µm 330 ± 10 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS Hard Fluoropolymer Max Max Max Core- Cladding Bend Radius Description NA Pulsed ^c CW ^d 808 nm Offset Offset Short Long Offset Operating Temperature Strip Core 22 + 0.02 187 MW 0.37 kW 10 dB/km 4 µm 7 µm 16 mm 32 mm 60 to 125 °C T44518 ^e Strip	Range Content Diameter Diameter Diameter Diameter Diameter Diameter Cladding Coating ^a Buffer 250 - 1200 mb High OH 273 ± 10 µm 330 ± 6 µm 330 ± 0 µm 400 ± 30 µm Pure Silica / Fluorine-Doped Silica TECS Hard Fluoropolymer Tefzel Max Max Max Core- Cladding Max Max Diameter Diameter </td		

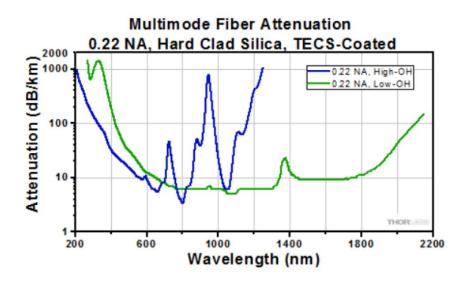


Figure C.1 Specifications of coated silica fiber used for transittance of 308 nm light through the HORUS instrument. (Information taken from specification listings, Thorlabs GmbH, Europe, Germany, www.thorlabs.de)

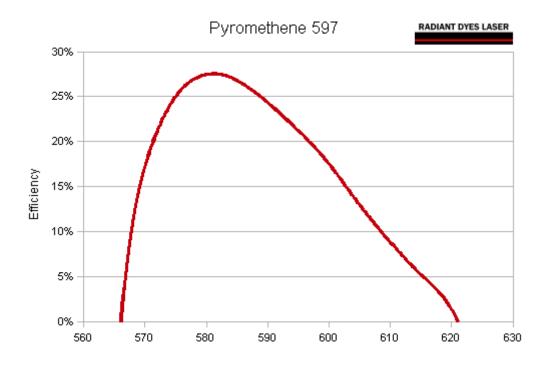
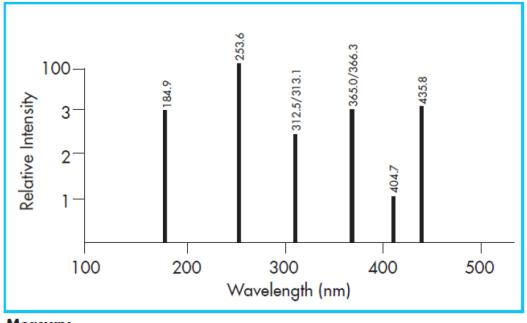



Figure C.2 Laser Dye, Pyrromethane-597 used in tunable dye laser powered by a diode-pumped Nd:YAG laser emitting 532 nm light. (Information taken from www.radiant-dyes.com)

Mercury

Figure C.3 Spectrum of the Pen-Ray line source used for the calibration of the HORUS instrument (Taken from manual, LOT-QuantumDesign, Europe, www.lot-qd.com)