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Abstract

Statistical mechanics played a key role in the development of modern physics.

Going beyond equilibrium systems, the statistical description of non-equilibrium

systems has gained significant attention. In particular, active matter has emerged as

a paradigm to study the broader class of systems driven out of equilibrium. Motile

active matter is composed of autonomous active “particles” which, unlike their

passive counterparts, have a tendency to move persistently along the direction of

preceding displacements. Ranging from nanomachines carrying cargo within our

cells to human beings, such matter is ubiquitous in the natural world. Facilitated by

advancement in fabrication techniques and computational capability, the past two

decades have witnessed an enormous interest in understanding, engineering and

controlling active matter.

This thesis explores the role of collective forces and torques in active matter with a

focus on the effect of geometric anisotropy. In bulk, these forces and torques that

result from a combination of propulsion and inter-particle interactions determine

the collective behavior of active particles. Moreover, these can also be relayed to

boundaries or objects suspended in active matter. The suspended object undergoes

linear or angular propulsion depending on its shape. Microscopic engines that

rotate in bacterial baths, for example, have been realized based on this principle.

In this thesis, first, we study how the manifestation of collective forces and torques

shapes the emergent phase behavior of ellipsoidal active particles. The resulting

macroscopic structure is determined by how anisotropic the constituent particles

are. Secondly, we probe into how an active fluid conveys forces onto passive objects

immersed in it. We show that in a periodic system, the force on the object can be

related to the vorticity of the polarization of the surrounding active fluid. Finally, we

relate the origin of the force on an optically trapped probe in a confined active fluid

to the microstructure of its neighborhood.
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Zusammenfassung

Eine Schlüsselrolle bei der Entwicklung der modernen Physik spielte die statis-

tische Mechanik, wobei in jüngerer Zeit die statistische Beschreibung von Nicht-

Gleichgewichtssystemen große Bedeutung erlangt hat. Insbesondere aktive Materie

hat sich hierbei als ein Paradigma für die Untersuchung der breiteren Klasse von

Systemen erwiesen, die aus dem thermischen Gleichgewicht getrieben sind. Ak-

tive Materie besteht aus autonomen Teilchen, die im Gegensatz zu ihren passiven

Gegenstücken die Tendenz haben, sich in die Richtung der vorangegangenen Ver-

schiebungen zu bewegen. Von Nanomaschinen, welche für Transportprozesse in

unseren Zellen verantwortlich sind, bis hin zu Menschen sind solche Systeme in der

natürlichen Welt allgegenwärtig. In den letzten zwei Jahrzehnten hat sich das Inter-

esse am Verständnis, an der Entwicklung und an der Kontrolle aktiver Materie dank

der Fortschritte bei der Herstellung und den Rechenkapazitäten enorm verstärkt.

In dieser Arbeit wird die Rolle von kollektiven Kräften und Drehmomenten in

aktiver Materie untersucht, wobei der Schwerpunkt auf den Auswirkungen der

geometrischen Anisotropie der Teilchen liegt. Diese Kräfte und Momente, die aus

einer Kombination von Antrieb und Wechselwirkungen zwischen den Teilchen re-

sultieren, bestimmen das kollektive Verhalten aktiver Teilchen. Darüber hinaus

können sie auch auf Wände und Objekte, welche von aktiver Materie umschlossen

sind, übertragen werden. Das Objekt erfährt je nach seiner Form eine gerichtete

lineare oder Rotationsbewegung. Auf der Grundlage dieses Prinzips wurden z.B.

mikroskopische Motoren realisiert, welche durch eine bakterielle Suspension in Rota-

tion versetzt werden. In dieser Arbeit wird zunächst untersucht, wie kollektive Kräfte

und Drehmomente das emergente Phasenverhalten ellipsoidischer aktiver Teilchen

prägen. Die resultierende makroskopische Struktur wird dabei durch die Anisotropie

der Teilchen bestimmt. Zweitens untersuchen wir, wie eine aktive Flüssigkeit Kräfte

auf passive Objekte überträgt. Wir zeigen, dass in einem periodischen System die

auf das Objekt wirkende Kraft mit der Wirbelstärke der Polarisation der umgeben-

den aktiven Flüssigkeit in Verbindung gebracht werden kann. Schließlich setzen

wir den Ursprung der Kraft auf eine optisch gefangene Sonde in der Nähe einer

begrenzenden Wand mit der Mikrostruktur der aktiven Flüssigkeit in Beziehung.
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Introduction 1
When it is a matter of life and death, being out of equilibrium enables the former.

Living things achieve this by constantly exchanging energy by eating food or ab-

sorbing sunlight, among other processes. A fundamental accomplishment of this

exchange is the evasion of a lethal condition called detailed balance (or “reversibility

of states”) which stipulates that the flow of probability between any two states of

the system is locally balanced. Because of the absence of a net probability flux

between any two states [cf. fig. 1.1], a consequence of detailed balance is that any

movie played forward could as well be played backward. This property is called

time-reversal symmetry. Since banyan trees don’t shrink to become seeds from which

they developed, living organisms break time-reversal symmetry [1].

Physicists aim to develop a quantitative framework to describe the world. Equi-

librium statistical mechanics, pioneered by Ludwig Boltzmann, lays down a link

between the motion of several particles (atoms or molecules) and macroscopic

thermodynamic properties like temperature. It dictates that the likelihood of any

given state of a system that is coupled to a comparatively enormous heat bath is

determined by its energy. More precisely, the probability distribution of states is

governed by the Boltzmann distribution. Systems driven out of equilibrium, in

general, neither heed to the Boltzmann distribution nor obey detailed balance.

Figure 1.1.: (a) Transitions between states (A, B and C) are balanced in thermal equilibrium,
prohibiting net fluxes (represented by length of arrows). (b) Since non-equilibrium systems
violate detailed balance, they can manifest flux loops.
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Figure 1.2.: Active matter in nature. (a) Cartoon of a motor protein transporting cargo by
walking along a microtubule. Shown is a screenshot captured from a video titled ‘The Inner
Life of the Cell’ created by XVIVO. The video is available at https://xvivo.com/examples/the-
inner-life-of-the-cell/. (b) Living crystal composed of Thiovulum majus, a bacterium that can
swim as fast as 60 body lengths per second. Reproduced from Ref. [5]. (c) A picturesque
murmuration of starlings. Photo courtesy: FP6-NEST 12682 STARFLAG project, INFM-CNR.
(d) A floating raft formed by a colony of fire ants. Reproduced from Ref. [6].

An early take on understanding life (or ‘foci of activity’ as Isaac Newton called it [2])

from a physicist’s perspective was put forth by Erwin Schrödinger. In the monograph

titled What is life [3], he underscores the importance of addressing this question

from the standpoint of statistical physics and points out the failure of conventional

equilibrium approaches. Often motivated by biology, since the latter half of the 20th

century, huge efforts have been directed toward building a conceptual framework

that describes systems out of equilibrium (see Ref. [4] for a review).

Capabilities like adaptation, self-replication, evolution and motility differentiate

living organisms from inanimate matter. By deliberately ignoring every other aspect

of an organism apart from the fact that it self-propels, one can contrive it as an agent

which transforms free energy1 to perform work on the environment in addition to

1In living organisms, energy is typically made available by hydrolyzing a nucleoside tri-phosphate
into its corresponding di-phosphate. Most commonly, this nucleoside is adenosine.
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producing heat as a by-product. Any material composed of these active agents is

termed active matter2. What distinguishes active matter from other driven systems

like a fluid under shear is that the source of energy is localized to the agent as

opposed to energy provision at boundaries or through externally applied fields. By

using energy from the local reservoir, these agents move in a directed manner despite

being in a stochastic environment. This ability is important for nutrition search [7,

8], escape from predators and migration to better-suited environments [9].

Why does active matter matter? Apart from its evident prevalence in nature from

load-carrying proteins in our cells to shoals of fish [cf. fig. 1.2], active systems serve

as ‘lab rats’ whose understanding could unravel general features of non-equilibrium

systems. For one, the fluctuations in particle number are giant3 and its statistics

deviates strongly from what one would expect from the law of large numbers [10,

11]. For another, they exhibit exotic phases like flocking that are inaccessible in

thermal equilibrium [12, 13, 14]. Controllable and biocompatible active matter can

be used for targeted delivery of drugs [15]. The use of active particles in decontami-

nation of water and soil is being investigated with fervor [16]. Hence, active matter,

over and above providing an avenue to explore non-equilibrium physics, can aid in

progressing toward a healthier and more environmentally sustainable society.

Trying to reason the behavior of active matter has motivated the development of

experimental and theoretical model systems, some of which are shown in fig. 1.3.

Biomimetic active particles like artificial flagella driven by an oscillatory external

magnetic field [20] and platinum-loaded stomatocytes powered by the catalysis

of hydrogen peroxide [21] have been experimentally realized. At the microscale,

active particles with fundamentally novel designs have also been conceived. An

early invention is that of a Janus particle with gold and platinum segments [17].

When immersed in a solution of hydrogen peroxide, the platinum side catalyses

the redox decomposition of peroxide into water and oxygen [cf. fig. 1.3 (a)]. The

gold side is inert. This leads to the propulsion of the immersed particle through self-

diffusiophoresis. The concept of using two-faced Janus particles with materials of

different properties has been extended to drive particles through other mechanisms

like thermophoresis [22] and electrophoresis [23]. Following a different route,

colloidal particles can also be rendered active through Quincke rotation [24].

2Strictly speaking, active matter need not always be motile. However, in this thesis, we will restrict
ourselves to the subclass of self-propelled active matter.

3As opposed to the expectation of
√

(N − 〈N〉)2 ∝
√
〈N〉 from central limit theorem, the root-mean-

square fluctuations of particle number N in active fluids
√

(N − 〈N〉)2 �
√
〈N〉.
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Figure 1.3.: Artificial models of active matter. (a) Sketch of a self-propelled Janus particle
fuelled by the decomposition of hydrogen peroxide. Reproduced from Ref. [17]. (b)
A three-legged kilobot capable of rotation and translation enabled by the action of two
vibration motors powered by a lithium-ion battery. Reproduced from Ref. [18]. (c) An
active metamaterial composed of motorized, fast spinning gyroscopes. Reproduced from
Ref. [19]. (d) Depiction of the Vicsek model. The tagged particle (in orange) aligns to the
mean orientation of all particles within an interaction radius (marked here with a dashed
circle). It is unaffected by those outside.
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On the computational front, broadly, there are two flavors of modelling active mat-

ter, viz., dry models which disregard hydrodynamic interactions and wet models

which explicitly resolve particle-fluid coupling. Since active particles are typically

immersed in a fluid at a non-zero temperature, in addition to self-propulsion, they

are subjected to rotational and translational diffusion. Dry models are employed

to describe systems like dense bacterial suspensions in which steric interactions

and stochastic effects overpower hydrodynamic interactions. A popular dry model

is that of active Brownian particles [25, 26] that propel along their orientation

vectors. Due to rotational noise, the direction of propulsion continuously reorients.

Another way of modelling active particles is by treating them as run-and-tumble par-

ticles [27] which “run” in straight lines before reorienting during a “tumble”. Active

Ornstein-Uhlenbeck particles [28] that are subject to stochastic propulsion forces

with temporally decaying correlations are yet another way to mimic active particles.

More recently, kinetic Monte Carlo algorithms have also been put forth [29]. In

contrast to the aforementioned dry models, wet models conserve momentum. The

latter commonly treat active particles as force dipoles [30] or squirmers [31, 32]

with an inhomogeneous surface slip velocity. The fluid can be considered using meso-

scopic simulation techniques like the lattice-Boltzmann method [33] or multiparticle

collision dynamics [34].

Alongside simulations and experiments, active matter has also been studied from a

theoretical standpoint. A quintessential example is the bottom-up, mean-field theo-

retical description of motility-induced phase-separation (MIPS) in which a collection

of interacting active particles separate into coexisting dense and dilute phases [35].

Another approach is to employ phenomenological field theories that describe the

evolution of order parameter fields based on underlying symmetries [36]. Terms that

break time-reversal symmetry and allow for steady-state currents are deliberately

introduced. Such theories also explain characteristic features of scalar active matter

like MIPS, albeit from a top-down perspective. Identifying the microscopic origins of

parameters that enter field theories is a problem of contemporary interest.

In this thesis, we explore collective forces and torques in active matter using active

Brownian particles as the model of our choice. We address different problems

through numerical simulations and mean-field theory. The fundamentals of these

techniques are provided in chapter 2. Bridging between scalar and polar active mat-

ter, in chapter 3, we study the effect of the aspect ratio of particles on the collective

behavior of self-propelled ellipses through numerical simulations. Moreover, we
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use mean-field theory to rationalize the emergence of these qualitatively different

phases. Inspired by the ability of active particles to act as a working fluid that drives

microscopic engines [37], in chapter 4, we develop a theory (backed by simulations

of active Brownian particles) to understand how active particles transmit forces onto

immersed passive objects. In the process, we cultivate the concept of an active stress

which we then apply in chapter 5 to an experimental system of an optically trapped

probe immersed in a confined active fluid.

12 Chapter 1 Introduction



Background 2
In this chapter, we lay conceptual foundations upon which the following chapters rely.

We begin by discussing the concept of Brownian motion. We then introduce active

Brownian particles and discuss how their hallmark property of motility-induced

phase separation can be obtained in numerical simulations and understood using

mean-field theory.

2.1 A particle in a fluid

Let us consider a ‘large’ colloidal particle immersed in a fluid maintained at a non-

zero temperature T . The fluid is composed of particles (atoms) that are orders of

magnitude smaller than the colloid. When viewed under a microscope, one sees that

the colloid moves haphazardly. This apparently random movement of the colloid

is an example of Brownian motion1. In this section, we formulate a theoretical

description of such motion.

2.1.1 Langevin equation

The position vector of the colloid r evolves according to Newton’s second law of

motion

mr̈ = Fnet (2.1)

where m is the mass of the colloid and Fnet is the net force it experiences due to

interactions with its surrounding fluid.

In principle, if we know the force that every particle in the fluid exerts at all times,

the motion of the colloid can be exactly calculated using eq. (2.1). Since obtaining

1named after Robert Brown who observed the jittery motion of crushed pollen grains suspended in
water under the microscope. He attributed this motion to an active force embedded in pollen. [38].
Albert Einstein’s work [39] later corrected this view.
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the exact value of Fnet is often impractical and not very enlightening, we forgo this

laborious pursuit of retaining all the degrees of freedom. The dynamics of the colloid

can be alternatively modelled using a phenomenological stochastic differential

equation called the Langevin equation

mr̈ = −γṙ + F(t). (2.2)

Here we take a bird’s eye view and split the influence of the surrounding fluid in

two parts:

(i) A systematic frictional force −γṙ with friction coefficient γ.

(ii) A random force F(t) at time t that arises due to multiple collisions between

miniscule fluid particles (water molecule’s size is ∼ 1 Å) and the larger colloid

(∼ 1µm). Since the time between successive collisions between the fluid and

the colloid is much smaller than the Brownian time scale, it is reasonable

to assume that the temporal correlation of this force is infinitely small and

its different Cartesian components are uncorrelated2. In other words, the

dynamics is Markovian and has no memory. Force correlations are thus given

by 〈
Fi(t′)Fj(t′′)

〉
= gδijδ(t′′ − t′), (2.3)

where 〈. . .〉 denotes an ensemble average, δij is the Kronecker delta, δ(t′′ − t′)
is the Dirac delta function and g is a measure of the strength of the fluctuating

force. Since the Fourier transform of eq. (2.3) is independent of frequency,

we refer to such a fluctuation as white noise. Moreover, since a large number

of these collisions take place even in a very small time interval and there is

no net drift of the colloid, thanks to the central limit theorem, it is justifiable

to consider that the distribution of this force is a Gaussian centered at zero

(〈F(t)〉 = 0) for all t [40].

Given an initial velocity v(0) at time t = 0, the velocity decays exponentially with

time t

〈v(t)〉 = v(0)e−t/τv (2.4)

2If the colloid is not much larger than the particles it interacts with, the frictional force should take
retardation effects into account and can be written as −

∫ t
0 dt′ γ(t− t′)u(t′). In this case, we must

additionally do away with the model of a delta-correlated force since time-scale separation cannot
be presumed [40].
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with viscous relaxation time τv = m/γ. The velocity autocorrelation for t1,2 � τv

is [41]

〈vi(t1)vj(t2)〉 ≈ g

2γmδije−|t1−t2|/τv . (2.5)

This shows that the velocity autocorrelation also decays exponentially with time

scale τv. For a d-dimensional system, in the limit |t1 − t2| → ∞, the system must

relax to equilibrium. As dictated by the equipartition theorem, the mean-square

velocity in equilibrium 〈
v2
〉

eq
= dkBT

m
. (2.6)

with Boltzmann’s constant kB. Comparing with eq. (2.5), we get

g = 2γkBT, (2.7)

a popular fluctuation-dissipation theorem called the Einstein relation which relates

the strength of fluctuations that arise because the fluid is at a finite temperature to

the drag experienced by the colloid by virtue of being surrounded by the thermalized

fluid.

Using eq. (2.5), the mean-square displacement computed after the particle has

reached equilibrium is given by [42]

〈
[r(t)− r(0)]2

〉
=
∫ t

0
dt1

∫ t

0
dt2 〈vi(t1)vj(t2)〉 (2.8)

= 2dkBTm

γ2

(
γ

m
t− 1 + e−

γ
m
t
)

(2.9)

=


〈
v2〉

eq t
2 for t� τv,

2dkBT
γ t for t� τv.

(2.10)

This indicates that the colloid moves ballistically (∝ t2) at short times because the

‘kick’ it received is effective and yet to be erased by subsequent random collisions. At

long times, the colloid moves diffusively (∝ t). In this limit, we can define a passive

diffusion coefficient D0 through

〈
[r(t)− r(0)]2

〉
= 2dkBT

γ
t ≡ 2dD0t (2.11)

with D0 = kBT/γ [39].

In addition to random forces, the fluid also imparts fluctuating torques and rotational

friction on the colloid. Since we work in two dimensions throughout the thesis, there

2.1 A particle in a fluid 15



is only one angular degree of freedom and rotation is confined to the xy plane, say.

Let ϕ(t) be the angle subscribed by the orientation of the colloid with the positive x

axis at time t. The corresponding Langevin equation is

Iϕ̈ = −γrϕ̇+ T (t) (2.12)

where I is the moment of inertia, γr is the rotational friction coefficient and T (t) is a

random torque at time t. Following a similar line of reasoning used for obtaining the

passive translational diffusion coefficient, the passive rotational diffusion coefficient

Dr can be read off the mean-square angular displacement in the long-time limit

〈
[ϕ(t)− ϕ(0)]2

〉
= 2Drt for t� I/γr (2.13)

with Dr = kBT/γr.

In the case of a spherical colloid of diameter a, we know from Stokes’ law that

γ = 3πηa and γr = πηa3. Therefore, the translational and rotational diffusion

coefficients are related through

Dr = 3
a2D0. (2.14)

2.1.2 Brownian dynamics: the overdamped limit

From eq. (2.10), we know that any massive particle undergoes ballistic motion at

short time scales. In the case of colloids in a liquid or rarefied gas, high-precision

experiments show that such a ballistic motion lasts for ∼ 0.1− 100µs [43, 44]. Since

we are interested in the behavior of such systems at much larger time scales, for

all practical purposes, we can assume that momentum relaxes instantaneously (see

fig. 2.1) and work in the limit of τv → 0.

Dividing eq. (2.2) by γ and setting τv = 0, we get the overdamped Langevin equation

for the position

ṙ =
√

2D0ξ(t) (2.15)

with ξ(t) = F(t)/(
√

2D0γ). Analogously, for time t � I/γr, the orientation is

governed by

ϕ̇ =
√

2Drξr(t) (2.16)
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Figure 2.1: Relaxation of a particle
governed by Langevin dynamics and
overdamped Langevin dynamics. In
the former case, an initial velocity
v(0) relaxes exponentially as time pro-
gresses [see eq. (2.4)] and in the lat-
ter case, the velocity decays instanta-
neously.

where ξr(t) = T (t)/(
√

2Drγr). The mean-square displacement and the mean-square

angular displacement are

〈
[r(t)− r(0)]2

〉
= 2dD0t,

〈
[ϕ(t)− ϕ(0)]2

〉
= 2Drt. (2.17)

Since we neglected the inertial term in the Langevin equation, the initial ballistic

regime is absent and the dynamics is purely diffusive for all times in the overdamped

limit.

2.2 Active Brownian particles

Active (or self-propelled) particles are fundamentally different from their passive

counterparts (discussed in section 2.1) due to the fact that they consume energy

from a (replenishable) source and use this to propel directionally. As we will

discuss in section 2.3, by and large, active particles realized in experiments move

through a solvent phoretically. When any of these particles move, they disturb the

surrounding solvent which in turn affects the motion of other particles. These many-

body, long-ranged hydrodynamic interactions mediated by the flow of the solvent

alters the particles’ dynamics [45, 46]. A thorough description of the system would

thus need to account for hydrodynamic, phoretic, steric and, in general, Coloumb

interactions. Though desirable, such a description is often overwhelmingly complex

and computationally expensive. However, depending on the question we ask, certain

simplifications can be made. For example, phoretic interactions [47, 48, 49] are

shown to play important roles in the description of Au-Pt Janus particles fuelled by

2.2 Active Brownian particles 17



hydrogen peroxide. Hydrodynamic interactions, for instance, are key to describe

motion of microorganisms through body deformations [46]. On the other hand,

steric interactions alone are sufficient to describe features like dynamical clustering

of carbon-coated Janus particles that propel via local demixing of the solvent [50].

In this section, we introduce the active Brownian particle (ABP) model, a widely

used description of an active particle. It is obtained by extending the equations

of motion employed for describing passive Brownian particles. After studying the

dynamics of an isolated ABP, we move on to review the behavior of multiple ABPs

that interact sterically with each other. This computationally economical model

considers the following salient features: (1) self-propulsion, (2) excluded-volume

interactions and (3) coupling to a heat bath maintained at a fixed temperature. With

an aim to capture qualitative features seen in experiments with a model that is as

simple as possible, we neglect all other interactions.

2.2.1 Dynamics of a single active Brownian particle

To include directed motion we modify eq. (2.15) as

ṙ = v0e +
√

2D0ξ(t) (2.18)

where v0 is the propulsion speed and e ≡ (cosϕ, sinϕ)T . The first term is the

self-propulsion term which is responsible for the persistent motion of the ABP along

its orientation e. As before, ξ(t) is Gaussian white noise with 〈ξi(t)〉 = 0 and

〈ξi(t)ξj(t′)〉 = δijδ(t− t′). Figure 2.2 (a) shows representative trajectories of ABPs

for different propulsion speeds.

In general, we could additionally impart a persistent rotation3 by adding an angular

speed ω0. This would lead to the particle spinning if v0 = 0 and if not, to the circular

motion of the particle [53]. However, we will restrict ourselves to purely diffusive

rotation given by eq. (2.16).

The dimensionless Peclét number given by [54]

Pe ≡ 3v0
aDr

= 3`p
a

(2.19)

3Such persistence in rotation and translation could, for example, arise due to anisotropic propulsion
of the particle [51] or anisotropy in shape [52].
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quantifies the relative weight of propulsive and diffusive motion. The limits Pe=0

and Pe=∞ respectively correspond to the purely Brownian and purely ballistic

motion of the particle. Here we have introduced the persistence length `p ≡ v0/Dr.

For passive particles (v0 = 0), as expected, `p = 0.

The average distance travelled in time t is

〈|r(t)− r(0)|〉 = `p
(
1− e−Drt

)
. (2.20)

The mean-square displacement is given by [25]

〈
[r(t)− r(0)]2

〉
= 4D0t+ 2 v

2
0

D2
r

(
Drt− 1 + e−Drt

)
. (2.21)

Integrating eqs. (2.18, 2.16) numerically4, we find that the mean-square displace-

ment perfectly agrees with the theoretical result (see fig. 2.2). Taking the short and

long-time limits, we get

〈
[r(t)− r(0)]2

〉
=

4D0t+ v2
0t

2 for Drt� 1,

4
(
D0 + v2

0
2Dr

)
t for Drt� 1.

(2.22)

On comparing with eq. (2.15), we realize that in the long-time limit, the dynamics

of an active particle is similar to that of a passive particle with an enhanced diffusion

given by coefficient D0 + v2
0/(2Dr). This is why active matter is sometimes referred

to as ‘hot’ matter.

Since the orientation ϕ performs free diffusion, the mean angular displacement is

zero and the mean-square angular displacement is given by eq. (2.17).

2.2.2 System of interacting active Brownian particles

Let us now consider a system of N active Brownian particles that interact with each

other such that they mutually exclude volume (i.e., no overlaps). We will consider

this interaction to be short-ranged and repulsive. Extending eq. (2.18), we can write

the equations of motion that govern the position ri and orientation ϕi of the ith

particle as

ṙi = v0ei − µ0∇iU +
√

2D0ξi, ϕ̇i =
√

2Drξi. (2.23)

4See section 2.2.3 on numerical methods for details on how these simulations are performed.
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Figure 2.2.: (a) Trajectories of active Brownian particles in two dimensions for different
propulsion speeds v0. In all cases, the equations of motion [eqs. (2.18, 2.16)] have been
integrated for the same total time. The trajectory in grey (inset) corresponds to the passive
case. As v0 increases, since the persistence length `p correspondingly increases, the particle
covers a larger distance. (b) Mean-square displacement (MSD) for different v0. At small
times, the particle exhibits ballistic motion (MSD ∝ t2) whereas at large times, the dynamics
is diffusive (MSD ∝ t). The markers represent data from simulations and the solid lines
correspond to eq. (2.21).

Here µ0 = D0/(kBT ) is the (passive) translational mobility, ∇ is the Del operator in

two dimensions5 and U is the total potential energy due to interactions.

Smoluchowski equation

As an alternative to describing the evolution of the degrees of freedom of individual

particles, we can represent the dynamics of the system in terms of the evolution of a

probability density. We now outline how a switch to the latter description can be

done.

In general, the Langevin equation corresponding to an N -component process C =
(C1, . . . , CN )T is a stochastic differential equation of the form [41]

dCi
dt = hi(C, t) + gik(C, t)ξk(t) (2.24)

5In Cartesian coordinates, ∇ ≡
(
∂
∂x
, ∂
∂y

)
.
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where hi and gikξk are the drift and diffusion terms respectively, and ξk is Gaussian

white noise. We have used the Einstein convention of summing over repeated indices.

On rewriting eq. (2.24) as an integral equation, we get

C(t+ ∆t) = C +
∫ t+∆t

t
dt′ hi(C(t′), t′) +

∫ t+∆t

t
dt′ gik(C(t′), t′)ξk(t′) (2.25)

where C ≡ C(t). On Taylor expanding hi(C(t′), t′), we get

hi(C(t′), t′) = hi(C, t′) + Jij [C(t′)− C]j + . . . . (2.26)

where Jij = ∂hi/∂Cj is the Jacobian matrix evaluated at C. We analogously expand

gik. Plugging the expansions and C(t+ ∆t)− C obtained by rearranging eq. (2.25)

into eq. (2.25), we obtain

C(t+ ∆t) = C +
∫ t+∆t

t
dt′ hi(C, t′) +

∫ t+∆t

t
dt′ Jij

∫ t′

t
dt′′ hj(C, t′′)

+
∫ t+∆t

t
dt′ Jij

∫ t′

t
dt′′ gjk(C, t′′)ξk(t′′) +

∫ t+∆t

t
dt′ gik(C, t′)ξk(t′)

+
∫ t+∆t

t
dt′ J̃ijkξk(t′)

∫ t′

t
dt′′ hj(C, t′′)+

∫ t+∆t

t
dt′ J̃ijkξk(t′)

∫ t′

t
dt′′ gjl(C, t′′)ξl(t′′).

(2.27)

Here J̃ijk = ∂gik/∂Cj evaluated at C. On taking the mean, we get

〈C(t+ ∆t)− C〉 =
∫ t+∆t

t
dt′ hi(C, t′) +

∫ t+∆t

t
dt′ Jij

∫ t′

t
dt′′ hj(C, t′′)

+ 2D
∫ t+∆t

t
dt′ J̃ijk

∫ t′

t
dt′′ gjk(C, t′′)δ(t′′ − t′) (2.28)

where we have used the properties: 〈ξk(t)〉 = 0 and 〈ξk(t)ξl(t′)〉 = δklδ(t− t′). The

second term evaluates to zero. Using the identity
∫ b
a dx δ(x− a)f(x) = 1

2f(a), we

get

c1 ≡ lim
∆t→0

〈C(t+ ∆t)− C〉
∆t = hi(C, t) + 1

2 J̃ijkgjk(C, t). (2.29)

Along similar lines, we get

c2 ≡ lim
∆t→0

〈
[C(t+ ∆t)− C]2

〉
∆t (2.30)

= lim
∆t→0

1
∆t

∫ t+∆t

t
dt′ gik(C, t′)

∫ t′

t
dt′′ gjk(C, t′′)δ(t′ − t′′) (2.31)

= gik(C, t)gjk(C, t). (2.32)
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The quantities c1 and c2 are the Kramers-Moyal coefficients that enter the (multi-

variate) Fokker-Planck equation

∂tψ = − ∂

∂Ci

{[
hi(C, t) + gjk(C, t)

∂gik(C, t)
∂Cj

]
ψ

}
+ 1

2
∂2

∂Ci∂Cj
[gik(C, t)gjk(C, t)]ψ

(2.33)

where ψ is the probability density. For active Brownian particles described by

eqs. (2.23), C is a 3N -dimensional vector comprising of the positions and orienta-

tions of all N particles. The second term in the curly brackets vanishes. The drift

coefficients are

hi =


v0 cosϕi − µ0∇iU, ∀i ∈ {xi}

v0 sinϕi − µ0∇iU, ∀i ∈ {yi}

0, ∀i ∈ {ϕi}

(2.34)

and the diffusion coefficients are

gikgjk =

D0, ∀i ∈ {{xi}, {yi}}

Dr, ∀i ∈ {ϕi}
(2.35)

On plugging eqs. [(2.34),(2.35)] in eq. (2.33), we find that the Smoluchowski

equation6 that describes the evolution of the N-particle probability distribution

ψN = ψN ({ri}, {ϕi}; t) is

∂tψN =
N∑
i=1

{
−∇i · [(v0ei − µ0∇iU)ψN ] +D0∇2

iψN +Dr∂
2
ϕiψN

}
. (2.36)

One-body Smoluchowski equation

In general, the n-particle joint probablity distribution ψn({r1, . . . , rn}, {ϕ1, . . . , ϕn}; t)
that describes finding n particles at positions {r1, . . . , rn}with orientations {ϕ1, . . . , ϕn}
at time t is given by

ψn = N !
(N − n)!

∫
drn+1 . . . drN

∫
dϕn+1 . . . dϕN ψN . (2.37)

Here, the spatial integrals are performed between the limits −∞ and ∞, and the

angular integrals are performed between the limits 0 and 2π. The combinatorial

factor N !/(N−n)! is included to account for the number of ways in which n particles

6The Fokker-Planck equation in the overdamped limit is called Smoluchowski equation.
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can be chosen from N indistinguishable particles. Setting n = 1, we get the one-

body probability density ψ1 = N
∫

dr2 . . . drN
∫

dϕ2 . . . dϕN ψN . Henceforth we will

drop the subscript and, for convenience, rename ψ1 → ψ, r1 → r and ϕ1 → ϕ.

On performing the integral to obtain an evolution equation for ψ, the drift term

becomes

−N
N∑
i=1

{∫
dr2 . . . drN

∫
dϕ2 . . . dϕN [∇i · (v0eiψN )− µ0(∇iU)ψN ]

}

= −∇ · (v0eψ)− µ0∇ ·
∫

dr2 . . . drN
∫

dϕ2 . . . dϕN N
N∑
i=2

[−∇U ]ψN

−
N∑
i=2

∫
dr2 . . . dri−1dri+1 . . . drN

∫
dϕ2 . . . dϕNN

∫
dni · (eiψN )︸ ︷︷ ︸

=0

+ µ0

N∑
i=2

∫
dr2 . . . dri−1dri+1 . . . drN

∫
dϕ2 . . . dϕN N

∫
dni · (eiψN )︸ ︷︷ ︸

=0

. (2.38)

We have used the divergence theorem (with normal vector ni) in the second step.

Also, we demand that ψN as |ri| → ±∞ is zero. By using the fact that the particles are

identical, the sum becomes a sum over identical terms. The expression subsequently

simplifies to

−∇ · (v0eψ)− µ0N(N − 1)∇ ·
∫

dr2dr3 . . . drN
∫

dϕ2dϕ3 . . . dϕN [−∇U ]ψN

= −∇ · (v0eψ)− µ0∇ ·
∫

dr′
∫

dϕ′ [−∇U ]ψ2(r, r′, ϕ, ϕ′; t) (2.39)

Here we have plugged in the definition given in eq. (2.37) for the case n = 2. We

have also renamed the variables r2 → r′ and ϕ2 → ϕ′. The diffusion term is given

by

N

∫
dr2 . . . drN

∫
dϕ2 . . . dϕN

{
D0

N∑
i=1
∇2
iψN +Dr

N∑
i=1

∂2
ϕiψN

}

= D0∇2ψ +Dr∂
2
ϕψ

+D0

N∑
i=2

∫
dr2 . . . dri−1dri+1 . . . drN

∫
dϕ2 . . . dϕN N

∫
dni · (∇iψN )︸ ︷︷ ︸

=0

+Dr

N∑
i=2

∫
dr2 . . . drN

∫
dϕ2 . . . dϕi−1dϕi+1 . . . dϕN N [∂ϕiψN ]ϕi=2π

ϕi=0︸ ︷︷ ︸
=0

(2.40)
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where we have used the divergence theorem is the second step and set ∇iψN = 0 as

|ri| → ±∞. Moreover, since ψN and its angular derivatives are 2π-periodic, the last

term vanishes.

Gathering all terms, we get

∂tψ = −∇ · [v0eψ + µ0f −D0∇ψ] +Dr∂
2
ϕψ (2.41)

with mean force density f defined as

f ≡ −
∫

dr′
∫

dϕ′[∇U ]ψ2(r, r′, ϕ, ϕ′; t) = −
∫

dr′[∇U ]ψ̄2(r, r′, ϕ; t). (2.42)

where ψ̄2 =
∫

dϕ′ψ2. Note that we have assumed the potential U to be independent

of the particles’ orientations in the last step. As we will discuss in chapter 3, this

does not hold true for elongated particles.

Orientational moments

To gain further insight into eq. (2.41), it is useful to expand ψ (a 2π-symmetric

function) into its angular Fourier modes as [55]

ψ(r, ϕ; t) = 1
2π

∞∑
k=−∞

ψ̂k(r, t)e−ikϕ, ψ̂k(r, t) =
∫ π

−π
dϕ ψ(r, ϕ; t)eikϕ (2.43)

where ψ̂k are Fourier coefficients. We identify the following order parameter fields:

ρ(r, t) ≡ f̂0 =
∫ π

−π
dϕ ψ (2.44)

p(r, t) ≡

 Ref̂1

Imf̂1

 =
∫ π

−π
dϕ eψ (2.45)

Q(r, t) ≡ 1
2

 Ref̂2 Imf̂2

Imf̂2 −Ref̂2

 =
∫ π

−π
dϕ

(
eeT − 1

21
)
ψ (2.46)

where 1 is the 2× 2 identity matrix, ρ is the density, p is the polarization density and

Q is the symmetric and traceless nematic tensor. We can readily obtain the equations

governing the dynamics of these quantities by using eq. (2.41) and performing the

corresponding integrals.
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Closure and mean-field theory

Since the force density [see eq. (2.42)] involves ψ2, the evolution of which depends

on ψ3 and so on, we obtain a system of coupled equations akin to the Bogoliubov-

Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [56]. To progress further, we must

truncate this hierarchy. A way to perform this truncation was proposed by Bialké et

al [35]. We will now outline the procedure used therein.

First, we rewrite the expression for ψ̄2 as a function of the one-body density

through

ψ̄2 = ψ1(r, ϕ; t)ρg(r, r′, ϕ; t) (2.47)

where g(r, r′, ϕ; t) is the pair correlation function7.

We now change the reference frame such that it is centered at r, the position of

an (arbitrary) tagged particle. An other (arbitrary) particle is located at r′ and in

the frame of the tagged particle, at r′ − r. The angle enclosed by r′ − r and e is θ.

Assuming that the pair correlation is time-independent and translationally invariant,

the force can be approximated as

F(r, ϕ; t) ≈ ρ(r, t)
∫ ∞

0
dr

∫ 2π

0
dθ r[−∇u(r)]g(r, θ). (2.48)

Decomposing the force as a projection onto the orientation e and a remainder δF,

we get

F = (e · F)e + δF ≈ (e · F)e = −ρζψ (2.49)

with force-imbalance coefficient [35]

ζ ≡
∫ ∞

0
dr [−∇u(r)]

∫ 2π

0
dθ cos θg(r, θ). (2.50)

The effect of including of δF can be captured by introducing a modified diffusion

coefficient [57]. Due to the anisotropy of g(r, θ) for active particles [35], ζ > 0. For

passive particles, g(r, θ) = g(r) is isotropic and ζ = 0. Substituting eq. (2.49) in

eq. (2.41), we get a closed equation given by

∂tψ = −∇ · [v(ρ)eψ −D0∇ψ] +Dr∂
2
ϕψ (2.51)

7Here we assume that the density is homogeneous on length-scales at which the potential is non-
zero [57].
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with density-dependent speed

v(ρ) = v0 − µ0ρζ. (2.52)

For repulsive interactions described by the WCA potential, v(ρ) decreases linearly

with density ρ [35]. For softer potentials however, this relation does not necessarily

hold [58].

2.2.3 Numerical methods

To understand the dynamical behavior of several interacting particles, one often has

to resort to performing computer simulations as an analytical solution is elusive.

Moreover, simulations serve as a wind tunnel for analytically tractable systems. As a

first step toward performing simulations, we discretize and propagate the governing

equations of motion [eq. (2.23)] through the Euler-Maruyama scheme [59] given

by

ri(t+ ∆t) = ri(t) + [v0ei(t)− µ0∇iU(t)]∆t+
√

2D0∆tΞi(t),

ϕi(t+ ∆t) = ϕi(t) +
√

2Dr∆tΞr,i(t) (2.53)

where ∆t is the time step and t ≥ 0. The components of Ξi and Ξr,i are drawn from

a unit normal distribution at every time step. Alternatively, a uniform distribution

centered at zero with unit variance may also be used [60] to improve efficiency.

Note that the initial conditions {ri(t = 0)} and {ϕi(t = 0)} must be provided.

The total potential energy U is determined by the interactions we choose to consider

in the model. We consider repulsive, short-ranged excluded volume interactions mod-

elled using the purely repulsive Weeks-Chandler-Andersen (WCA) pair potential [61],

a truncated and shifted variant of the Lennard-Jones (LJ) pair potential [62], given

by

uij(rij) = 4ε

( σ

rij

)12

−
(
σ

rij

)6

+ 1
4

Θ
(
21/6σ − rij

)
, (2.54)

where rij = |rij | is the distance between the ith and jth particles, σ is the length

scale of the potential (typically taken to be the diameter of the particle), ε is the

depth of the energy well and Θ( · ) is the Heaviside step function.

26 Chapter 2 Background



The LJ potential only depends on the distance rij between the two interacting

particles. It is thus be used to emulate spherical (discoidal in two dimensions)

particles. To model aspherical particles, several LJ sites may be used [63, 64]. Here,

we employ the Gay-Berne pair (GB) potential [65], a modified version of the LJ

potential that takes anisotropy into consideration, given by

uGB(rij , ei, ej) = 4εε̂
(
ι−12 − ι−6

)
(2.55)

where ι ≡ rij/σ− σ̂+ 1. The orientation-dependent well-depth and contact distance

are ε̂(r̂ij , ei, ej) and σ̂(r̂ij , ei, ej) respectively. Furthermore, to make the potential

purely repulsive, we cut it off at its minimum rcut = σ[21/6 − 1 + σ̂] and shift it by

εmin = εε̂(rcutr̂ij , ei, ej) so that it smoothly approaches zero at the cut-off, i.e.,

uRGB(rij , ei, ej) = (uGB + εmin)Θ(rcut − rij). (2.56)

For isotropic particles, the GB potential reduces to the WCA potential thereby

allowing the systematic study of the effect of particle shape from disks to elongated

ellipses. For further details about the GB potential, see appendix A.1.

Figure 2.3.: The dashed lines represent the full Gay-Berne potential [eq. (2.55)] and
the solid lines represent the repulsive Gay-Berne potential [eq. (2.56)]. In the inset, the
Lennard-Jones potential (dashed line) and the Weeks-Chandler-Andersen potential (solid
line) used for modelling spherical particles are plotted. The particle configurations that
correspond to these potentials are shown on the right with the same color.

Given the pair potential u, the total potential energy U =
∑
i<j u can be obtained by

summing over all pairs of particles. Neighbor lists are often used to accelerate this

calculation [62].
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Computer simulations are necessarily performed in a finite domain. However the

behavior of infinite systems is often of interest. In such cases, we use periodic bound-

ary conditions to retain properties of the bulk and eliminate surface effects [66].

This is done by replicating the simulation domain (spanning between −Lx,y/2 and

Lx,y/2 along the x, y-axis) along both coordinate axes [cf. fig. 2.4 (a)]. A particle

with position ri,k leaving this domain is wrapped into it using

ri,k =

ri,k + Lk if ri,k < −Lk/2,

ri,k − Lk if ri,k > Lk/2
(2.57)

where k = {1, 2} represents the x and y directions and Lk is the length of the

simulation domain along the kth direction. Any particle property Qi associated

with the ith particle is thus periodic with periodicity Lk along the kth direction,

i.e., Qi = Qi + Lk. Quantities like pair potentials and forces that depend on the

distance between two particles are calculated by employing the minimum image

convention according to which a given particle interacts with the closest image of

another particle.

Figure 2.4.: (a) Periodic boundary conditions. The particle leaving the simulation domain
(filled circle) re-enters from a replica (empty circle). Other images of the particle are
depicted as dashed circles. (b) Interaction with a planar wall. The point on the wall closest
to the particle (indicated by a grey dot) interacts repulsively with the particle (filled circle).

Presence of confinements can be handled by introducing an appropriate potential at

the site of the confinement. For example, a planar, repulsive wall can be modelled

through a WCA potential between a particle and the point on the wall nearest to the

particle as depicted in fig. 2.4 (b).
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2.2.4 Phase separation of active Brownian particles

Phases are states of matter which can be associated with characteristic (macroscopic)

physical properties. Upon varying the control parameter, a system transitions from

one phase to an other. Such changes are parametrized using one or more order

parameter(s). A prototypical example of a phase transition is ice melting to water

and water vaporizing to steam upon increasing temperature. In this case, liquid and

gaseous phases form as a result of a tug-of-war between entropy and energy whose

relative importance is determined by the temperature. At low temperatures, entropy

is outweighed by cohesive interactions between molecules, thereby favouring a

liquid state. On increasing temperature, entropy begins to dominate, thus prompting

the formation of a gaseous state.

Figure 2.5.: (a) Pair distribution function g(r, θ) calculated in the reference frame of a tagged
particle located at the origin and oriented along the y axis. The distribution shows that it is
highly probable to find another particle at the front of the tagged particle. Reproduced from
Ref. [35]. (b) Coexisting densities obtained from simulations of active particles interacting
through the Lennard-Jones potential. The phase diagram shows a re-entrant behavior on
increasing the propulsion speed v0. Reproduced in adapted form from Ref. [67].

Let us now systematically increase the propulsion speed starting from the passive

limit (v0 = 0). As anticipated, for small v0, the system is close to equilibrium

and exhibits time-honoured liquid-gas phase separation. Beyond a threshold, the

system becomes homogeneous. On increasing v0 further, the system undergoes

phase separation akin to that seen in equilibrium (v0 = 0). The corresponding

binodals are shown in fig. 2.5 (b). Interestingly, such a motility-induced phase

separation (MIPS) occurs even in the absence of attractive inter-particle interactions

at densities much smaller than closed packing. Since phase separation in passive
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systems necessarily requires attractive interactions, MIPS is an inherently out-of-

equilibrium phenomenon triggered by a positive-feedback mechanism: When two

(or more) particles interact, they block each other and slow down, leading to the

formation of small aggregates. If more particles join the cluster during the time

it takes for particles at the boundary to reorient due to rotational diffusion and

dissociate, the cluster grows in size making it further difficult for particles away

from the boundary to leave. This dynamical instability leads to a steady state with

coexisting dense and dilute regions.

In the mean-field description discussed in section 2.2.2, the effect of particles

slowing down due to crowding is captured by the density-dependent speed v(ρ)
and the region of instability is determined by the force-imbalance coefficient ζ.

Figure 2.5 shows the pair distribution function g(r, θ) that enters the definition of ζ

[see eq. (2.50)]. The manifestly higher density in the direction of propulsion leads

to slow down of the (arbitrarily chosen) tagged particle. MIPS occurs when ζ is

large enough.

2.3 Active particles in experiments

Despite the vast number of studies performed with bacteria like Bacillus subtilis and

Escherichia coli [68], animals like sheep [69, 70], fish [71] and birds [72], the ability

to exercise control over the motion of living active matter is largely limited. This

shortcoming has motivated the development of synthetic active particles. A common

strategy is to use Janus particles which have surfaces made of two different materials

with distinct physical properties. Usually, gradients in temperature (thermophoresis),

electric potential (electrophoresis) or solute concentration (diffusiophoresis) results

in the directed motion of these particles. An archetypal example is that of a Janus

particle with gold and platinum parts immersed in a hydrogen peroxide solvent. The

platinum side catalyses the decomposition of peroxide upon shining light whereas

the gold side is chemically inert. The propulsion of the particle results from a

combination of diffusiophoresis and electrophoresis [73, 48].

Self-propulsion of carbon-coated silica particles immersed in a binary mixture of

water and propylene glycol n-propyl ether (PnP) has been achieved by exploiting

a phase transition [74], as depicted in fig. 2.6. The solvent, formulated at the

critical mass fraction of PnP φc, is maintained at a temperature slightly below the
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Figure 2.6.: (a) Phase diagram of water-PnP mixture. The critical point (marked with a
star) is at (φc, Tc) = (0.4, 31.9 ◦C). (b) Schematic depiction of a self-propelled carbon-silica
Janus particle. Upon shining green light, the carbon cap heats up to a temperature above
the critical value [red dot in (a)], whereas the temperature on the silicon segment remains
below this value [blue dot in (a)]. Local demixing of the solvent on the carbon side results
in the self-propulsion of the particle by diffusiophoresis.

critical demixing temperature Tc. The system is uniformly illuminated with green

light. Compared to silica, carbon absorbs light better. This leads to a non-isotropic

increase in surface temperature. On the carbon side, the temperature increases

above Tc and the solvent demixes into water-rich and PnP-rich phases. The mixture

remains homogeneous on the silica side. The ensuing chemical gradient leads to

diffusiophoretic propulsion of the colloidal Janus particle.

Besides exploiting compositional diversity, self-propulsion can also be achieved by

taking advantage of, inter alia, Quincke rotation [24] or Marangoni stresses [75].
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Collective behavior of

elongated self-propelled

particles

3

In contrast to isotropic (radially symmetric) particles, interactions between anisotropic

particles induce aligning torques. This leads to fascinating collective phenomena

like dynamical clustering of Bacillus subtilis [76] and Myxococcus xanthus, formation

of ripples (counter-propagating density waves) [77] and mesoscale turbulence [78].

In this chapter, we study the collective behaviors that emerge due to anisotropy by

systematically increasing the aspect ratio of constituent particles. Futhermore, we

interpret observations from simulations using mean-field theory.

3.1 Brownian dynamics simulations

We perform two-dimensional simulations of N = 1976 elongated particles with

aspect ratio κ. For a circular particle, κ = 1. A more anisotropic particle has a larger

κ. Each particle propels along its long axis. We neglect translational and rotational

noise; therefore the Péclet number is infinity. The dynamics of the ith particle with

orientation ϕ̃i at position r̃i is governed by the following overdamped equations of

motion
˙̃ri = v0ei − µ0∇iŨ , ˙̃ϕi = −µr

∂Ũ

∂ϕ̃i
(3.1)

where v0 is the propulsion speed, Ũ =
∑
i<j uRGB(rij , ei, ej) [see eq. (2.56)] is the

total potential energy of the system and ei ≡ (cosϕi, sinϕi)T is the orientation of

the ith particle. The translational and rotational mobilities of each particle are µ0

and µr respectively. By employing the length of the particles’ shorter axis σ0 as the
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unit of length, the strength of the repulsive potential ε as the unit of energy and

σ0/v0 as the unit of time, we get the non-dimensional equations of motion

ṙi = ei −∇iU, ϕ̇i = −3 ∂U
∂ϕi

. (3.2)

Here we have used µr = 3µ0/σ
2
0 and set µ0 to unity. We employ periodic boundary

conditions and integrate the equations of motion with a time step ∆t ≤ 2× 10−5.

The simulation box is rectangular with Lx = 3Ly. An elongated box urges the

formation of a slab whose interface aligns with the shorter edge of the simulation

box (here, along the y axis) [79]. We vary κ and accordingly change the dimensions

of the simulation box so that the global packing fraction φ̄ = Nπκ/(4LxLy) ' 0.55
is fixed. These parameters yield a dense domain surrounded by a dilute active gas in

simulations of isotropic, athermal active Brownian particles [80].

3.1.1 Local packing fraction and polarization

After the system reaches steady state, we divide it along the x axis into bins of width

∆x to measure the local packing fraction

φ(xi) = Niπκ

4∆xLy
, (3.3)

mean polarization along the x axis (perpendicular to the interface)

Px(xi) = 1
Ni

∑
k∈i

cosϕk (3.4)

and the mean absolute polarization along the y axis (parallel to the interface)

Py(xi) =

∣∣∣∣∣∣ 1
Ni

∑
k∈i

sinϕk

∣∣∣∣∣∣ . (3.5)

The summation is performed over all particles in the ith bin. We shift the coordinates

of the particles such that the center-of-mass of the system is at the origin and perform

an ensemble average over 20 runs for improved statistics. The polarization along

the y direction is spontaneously determined. The ensemble average is thus expected

to be zero even if, in each run, the system is polarized along ±y direction. To

circumvent this, we take the absolute value of the polarization to define Py.
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Figure 3.1.: Snapshots of the system for three different aspect ratios: (a) κ = 1.0 [discs], (b)
κ = 2.25 and (c) κ = 4.25. Particles are colored according to their orientation [see the cyclic
color map shown in panel (a)]. The profiles of the local packing fraction and polarization
corresponding to these aspect ratios shown in panels (a–c) are respectively plotted in panels
(d–f).

In fig. 3.1, we show representative snapshots of the steady state for different aspect

ratios. Moreover, we plot the profiles of the local packing fraction and the compo-

nents of the polarization corresponding to these aspect ratios. For κ = 1 (discs),

the system forms a high-density slab surrounded by a rarefied gas of particles. The

density within in the dense and dilute phases are constant. Additionally, fig. 3.1 (d)

shows that Px is antisymmetric with Px(x) = −Px(−x). Barring the two peaks at

the interface (due to “coasting” particles), the parallel polarization Py is constant

and small.

On increasing the aspect ratio to κ = 2.25, we notice that several small polarized

pockets appear. These transient polar domains explore the entire simulation box

leading to an approximately homogeneous density profile. Both Px and Py are small

and constant. Global polar order is hence absent.
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On increasing the aspect ratio further to κ = 4.25, we observe the emergence of

polar bands characterized by global polar order. The system again separates into a

dense domain that coexists with a dilute gas. In contrast to discs, as implied by the

profile of Py, the dense domain is highly polarized along the y direction. Similar

to discs, the polarization perpendicular to the interface Px is antisymmetric with

particles at the interface pointing toward the dense region, thereby stabilizing the

inhomogeneous polar band.

To put in a nutshell, simulations indicate two transitions: from MIPS at small

aspect ratios to transient polar domains at intermediate aspect ratios and from polar

domains to an inhomogeneous state with global polar order at large aspect ratios.

3.1.2 Phase diagram from simulations

To summarize these observations, we construct a phase diagram using relevant order

parameters (packing fraction and polarization). To this end, we extract the value

of the order parameter P in the dense region P+ and dilute region P− using the

functional form

P(x) = P
+ + P−

2 + P
+ − P−

2 tanh
(
x− x0

2w

)
(3.6)

where x0 is the position of the interface and w is a measure of the width of the

interface. As shown in fig. 3.2, the density is well-fitted by eq. (3.6). For κ ≥ 2.9,

the parallel polarization Py can also be fitted with the same functional form. Before

fitting, we split the profile into two halves that lie on either side of the origin and

average over them.

For 1 ≤ κ < 1.15, the density of the dense and dilute regions are largely different. On

increasing κ, in the polar domains phase (1.15 ≤ κ < 2.9), this difference narrows

down and eventually in the polar bands phase (κ ≥ 2.9), the difference widens

again. In the polar bands phase, the dense region is highly polarized and the dilute

region has a lower, albeit non-zero, polarization. On introducing rotational diffusion,

we expect the polarization of the dilute region to be zero.
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Figure 3.2.: Phase behavior of active ellipsoids. (a) Density profile ρ(x) (blue circles) and
the corresponding fit using eq. (3.6) (maroon line). (b) Parallel polarization Py(x) (blue
circles) and the corresponding fit. (c) Packing fraction φ± and (d) polarization P±y of the
coexisting phases for different κ. Error bars represent the standard error. The colors in the
background indicate the three distinct phases: MIPS, polar domains and polar bands (from
bottom to top). Panels (c) and (d) are reproduced in adapted form from Ref. [81].

3.2 Mean-field theory

In this section, we will extend the mean-field theory outlined in section 2.2.2 to

describe the collective behavior of anisotropic particles.

3.2.1 Evolution equation for the one-body density

The evolution equation for the joint probability distribution ψN ({ri, ϕi}; t), which

now includes a torque term, is given by

∂tψN = −
N∑
i=1

{
∇i · [ei −∇iU ]ψN + 3

N∑
i=1

∂

∂ϕi

(
∂U

∂ϕi
ψN

)}
. (3.7)
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Figure 3.3: Tagged parti-
cle’s frame of reference. The
positions and orientations of
other particles (for e.g., the
particle shown in grey here)
are measured in this refer-
ence frame. Without loss of
generality, we align the ori-
entation of the tagged parti-
cle e to the x axis. With this,
θ + ϕ′ + θ′ = π.

On integrating both sides over
∫

dr2 . . . drN
∫

dϕ2 . . . ϕN , we get the following

evolution equation for the one-body density ψ(r, ϕ; t)

∂tψ = −∇ · [eψ − f ]− 3∂(τψ)
∂ϕ

+Dr∂
2
ϕψ (3.8)

with force density

f(r, ϕ; t) =
∫

dr′
∫

dϕ′ [−∇u(r′ − r, ϕ′)]ψ2(r, ϕ, r′, ϕ′; t) (3.9)

where ψ2(r, ϕ, r′, ϕ′; t) is the two-body density and u is the repulsive Gay-Berne pair

potential1 defined in eq. (2.56). Here we have introduced an effective rotational dif-

fusion (with diffusion constant Dr) that arises from coarse-graining. We decompose

ψ2 as

ψ2(r, ϕ, r′, ϕ′; t) = ψc(r′, ϕ′|r, ϕ; t)ψ(r, t) (3.10)

where ψc is the conditional probability density of finding a particle with orientation

ϕ′ at r′ given a particle with orientation ϕ at r. For short-ranged potentials like

those employed here, we can perform a Taylor expansion of the density about r
to obtain the density at position r′ and retain only the lowest order term2 to get

ρ(r′, t) ≈ ρ(r, t). Assuming that the pair correlation function g(r, r′, ϕ, ϕ′; t) is time-

independent and translationally invariant, we can further factorize ψc eventually

yielding

ψ2 = ρ(r, t)g(r− r′, ϕ, ϕ′)ψ(r, t). (3.11)

Note that in contrast to isotropic particles [see eq. (2.47)], the ϕ′-dependence of the

pair distribution function is retained here. We now shift to the frame of reference

of an arbitrary tagged particle at r. In this frame, as shown in fig. 3.3, the other

1As long as the potential is short-ranged, its exact form is irrelevant to the theory.
2ρ(r′, t) = ρ(r, t) + ∇ρ|(r,t) · (r′ − r) + · · · ≈ ρ(r, t)
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particle is at a distance of |r − r′|. The angle enclosed by the orientation of the

tagged particle e with r− r′ is θ. The orientation of the other particle e′ subtends

an angle θ′ with r − r′. In this coordinate system, the force density in eq. (3.9)

becomes

f(r, ϕ; t) = ρ(r, t)
∫ 2π

0
dϕ′

∫ 2π

0
dθ

∫ ∞
0

dr r[−∇u(r− r′, ϕ, ϕ′)]g(r, θ, ϕ′). (3.12)

On projecting the force density f on the orientation e, we get

e · f =: −ζρψ

= ∂u

∂r
cos θ + 1

r

∂u

∂θ
sin θ. (3.13)

The force-imbalance coefficient ζ, defined as

ζ ≡
∫ 2π

0
dϕ′

∫ 2π

0
dθ

∫ ∞
0

dr r
[
−∂u
∂r

]
cos θg(r, θ, ϕ′), (3.14)

is a measure of anisotropy in the distribution of particles around the tagged parti-

cle [35]. Due to symmetry, the sine term in eq. (3.13) does not contribute to the

integral. Similarly, the torque can be written as

τ(r, ϕ; t) = ρ(r, t)
∫ 2π

0
dϕ′

∫ 2π

0
dθ

∫ ∞
0

dr r[−∂ϕu(r− r′, ϕ, ϕ′)]g(r, θ, ϕ′)

=: n · R · e (3.15)

with

ni(r, t) = ρ(r, t)
∫ 2π

0
dϕ′

∫ 2π

0
dθ

∫ ∞
0

dr r
[
− ∂u
∂ei

]
g(r, θ, ϕ′) (3.16)

and rotation matrix

R =

 0 −1
1 0

 . (3.17)

In terms of the quantities we have introduced, the evolution equation for the one-

body density [eq. (3.8)] becomes

∂tψ = −∇ · [v(ρ)eψ]− 3 ∂

∂ϕ
[n · R · eψ] +Dr∂

2
ϕψ (3.18)

with density-dependent speed v(ρ) = 1− ζρ that captures the effect of inter-particle

forces. To gain insight into the implications of eq. (3.18), we now derive evolution
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equations for the orientational moments of ψ introduced in section 2.2.2. At this

stage, a closure for the field n also remains to be obtained.

3.2.2 Hydrodynamic equations

Integrating both sides of eq. (3.18) over ϕ, we find that the density ρ(r, t) is governed

by

∂tρ = −∇ ·
[
v(ρ)

∫ 2π

0
dϕ eψ

]
− 3

∫ 2π

0
dϕ ∂

∂ϕ
[n · R · eψ] +Dr

∫ 2π

0
dϕ ∂2

ϕψ

= −∇ · [v(ρ)p] (3.19)

where p is the polarization density. The contributions from torques and rotational

diffusion vanish due to 2π-periodicity of ψ and its derivatives. This is expected

because neither directly affect the position of particles. Due to the absence of

translational diffusion, the evolution of ρ is solely determined by the active current

v(ρ)p. On multiplying both sides of eq. (3.18) by e and integrating over ϕ, we get

∂tp = −∇ ·
[
v(ρ)

∫ 2π

0
dϕ e⊗ e

]
− 3

∫ 2π

0
dϕ e ∂

∂ϕ
[n · R · eψ] +Dr

∫ 2π

0
dϕ e∂

2ψ

∂ϕ2 .

(3.20)

Using the definition of Q, the first term can be simplified as

−∇ ·
{
v(ρ)

[
Q + 1

2

∫ 2π

0
dϕ ψ

]}
= −∇ ·

{
v(ρ)

[
Q + 1

2ρ
]}

. (3.21)

On performing partial integration, the contribution from torques becomes

− 3

e(n · R · e)ψ|2π0︸ ︷︷ ︸
=0

−
∫ 2π

0
dϕ (R · e)(n · R · e)ψ

 . (3.22)

For convenience, we rewrite the expression in Einstein notation and approximate n
to be ϕ-independent to get

3RilnkRkj
∫ 2π

0
dϕ elejψ = 3

(
RilQljRkjnk + 1

2RijRkjnkρ
)
. (3.23)

Using R · Q · RT = −Q and R · RT = −1, the above expression simplifies to

3
(
−Q · n + 1

2ρn
)
. (3.24)
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The contribution of rotational diffusion can be readily obtained by performing partial

integration twice as

Dr

e∂ψ
∂ϕ

∣∣∣∣2π
0︸ ︷︷ ︸

=0

−


∂e
∂ϕ

∣∣∣∣2π
0︸ ︷︷ ︸

=0

−
∫ 2π

0
dϕ ∂2e

∂ϕ2ψ


 = −Dr

∫ 2π

0
dϕ eψ = −Drp. (3.25)

Here we have used ∂2e
∂ϕ2 = −e. Putting all terms together we obtain the evolution

equation for p to be

∂tp = −∇ ·
[
v(ρ)

(1
2ρ1 + Q

)]
−Drp− 3

(
Q · n− 1

2ρn
)
. (3.26)

To obtain the equation governing the second moment Q, we multiply both sides of

eq. (3.18) by (e⊗ e− 1
2 ) and integrate over ϕ. The integral involving v(ρ) evaluates

to

−∇ ·
[
v(ρ)

∫ 2π

0
dϕ

(
e⊗ e− 1

2

)
⊗ eψ

]
= −∇ ·

[
v(ρ)

(
W− 1

21⊗ p
)]

(3.27)

where Wijk =
∫ 2π

0 dϕ eiejekψ. The second term involving torques becomes

− 3


(
eiej −

1
2δij

)
nkRklelψ

∣∣∣∣2π
0︸ ︷︷ ︸

=0

−
∫ 2π

0
dϕ ∂

∂ϕ

(
eiej −

1
2δij

)
nkRklel


= 3nkRkl (RjnWlni +RimWlmj) (3.28)

where we have used ∂
∂ϕ(eiej) = eiRjnen + ejRimem. On evaluating the contribution

from rotational diffusion by performing partial integration, the only term that

remains is

Dr

∫ 2π

0
dϕ ∂2

∂ϕ2 (eiej)ψ = 2Dr

∫ 2π

0
dϕ ∂2

∂ϕ2 (ei)ej + ∂ei
∂ϕ

∂ej
∂ϕ

= −4DrQij . (3.29)

We have plugged in (∂ϕei)(∂ϕej) = δij − eiej in the last step. On gathering terms,

we obtain the evolution equation for Q to be

∂tQij = −∂k
[
v(ρ)

(
Wijk −

1
2δijpk

)]
+ 3nkRkl (RjnWlni +RimWlmj)− 4DrQij .

(3.30)
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The field n(r, t)

To make eq. (3.18) an equation with only one-body contributions, we should approx-

imate n. To gain insight into the form of the closure, we turn to simulations. To this

end, we divide the system along the x axis and extract the mean field experienced

by particles

Nx(xi) =
〈

1
Ni

∑
k∈i
− ∂u

∂exk

〉

Ny(xi) =
〈∣∣∣∣∣∣ 1
Ni

∑
k∈i
− ∂u

∂eyk

∣∣∣∣∣∣
〉

(3.31)

in bin i. The measured field for different aspect ratios is shown in fig. 3.4. We find

that Nx fluctuates about zero for all aspect ratios, albeit visibly stronger for larger

aspect ratios. On the other hand, Ny is negligibly small for small aspect ratios but

becomes qualitatively similar3 to Py for κ = 4.25. Thus, for polar bands (seen at

large κ), Ny ∼ Py. We thus propose that the field is proportional to the polarization,

i.e., n = χp. The strength with which n is coupled to p is quantified by the coupling

constant χ. A larger χ is indicative of stronger alignment. In Ref. [82], the authors

perform the closure by considering the field to be proportional to ∇ρ. On inspecting

the density in fig. 3.1, this should mean Nx displays two hummocks at the interface

between the dilute and dense regions. Since this is not what we observe, we infer

that the field is determined by the polarization rather than the density gradient.
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Figure 3.4.: Profiles of (a) Nx and (b) Ny [defined in eq. (3.31)] for different aspect ratios
κ. Consistent with fig. 3.2, the colors are representative of the phases into which the system
emerges. The aspect ratios chosen here correspond to those shown in fig. 3.1. Reproduced
from Ref. [81].

3Since most particles point in the same direction, it is arduous to obtain improved statistics.
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Closure

To proceed further, we must close the hierarchy of moments. We do so by setting the

third moment to zero, i.e.,
∫ 2π
0 dϕ

(
eiejek − 3

4δijek
)
ψ = 0. Through this, we can

relate the components of W to p as follows

W111 = 3
4p1,

W222 = 3
4p2,

W122 = W212 = W221 = 1
4p1,

W112 = W121 = W211 = 1
4p2. (3.32)

On applying the closure to the first term in eq. (3.30), it reduces to

− 1
4
[
∇(vp) + (∇(vp))T − (∇ · vp)1

]
. (3.33)

Substituting n = χp in the second term in eq. (3.30) and applying the closure

[eq. (3.32)], we get

3 (nkRklRimWlmj + nkRklRjnWlni) = 3
4

 n1p1 − n2p2 3n1p2 − n2p1

3n2p1 − n1p2 n2p2 − n1p1


︸ ︷︷ ︸

=A

+AT

(3.34)

= 3χ
(

p⊗ p− 1
2p

21
)
. (3.35)

Note that the matrix is symmetric and traceless. Furthermore, by assuming ∂tQ = 0,

we find that the nematic tensor and polarization are related through

Q = Q∇ + γ

4

(
p⊗ p− 1

2p
21
)

(3.36)

with

Q∇ = − 1
16Dr

[
∇(vp) + (∇(vp))T − (∇ · vp)1

]
. (3.37)
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With this relation, eq. (3.26) can be written as

∂tp + Λ−(p ·∇)p = −1
2∇ (vρ)−Q ·∇v + γp2

16 ∇v

+ v

16∇
2(vp)− Λ+

[
(∇ · p)p− 1

2∇p
2
]
−
(

1− γρ

2 + γ2p2

8

)
p (3.38)

where Λ±(ρ) = 4±1
16 γv(ρ). Here we have non-dimensionalized the equation by

choosing l0 as the length scale and τ0 = D−1
r as the time scale. This equation is

identical to that obtained by Farrell et al. [83] apart from terms originating from

Q ·∇v.

Homogeneous steady state

When the system is homogeneous and in steady state, all temporal and spatial

derivatives in the evolution equations vanish. While referring to variables in this

state, we use an overbar. With n = χp, we have Q̄ · n̄ = (p̄2/8)p̄. From eq. (3.26),

we get (
1− γρ̄

2 + γ2p̄2

8

)
p̄ = 0. (3.39)

The polarization has two solutions:

p̄ = 0, 2
γ

√
γρ̄− 2. (3.40)

Since p̄ has to be real, the second solution only exists if γρ̄ ≥ 2. The direction of p̄ is

spontaneously determined and not stipulated.

3.2.3 Linear stability analysis

To examine the dynamics of the system near the steady state, we perform a linear

stability analysis. We are interested in determining if this state is stable or unstable

based on whether small perturbations to it decays or grows. By definition, the steady

state Ψ0 satisfies ∂tΨ0 = LΨΨ0 = 0 where LΨ is the time-evolution operator. On

perturbing Ψ0 by εΨ′ to get to state Ψ = Ψ0 + εΨ′ and neglecting terms of order

O(ε2) and higher, we obtain a linearized differential equation given by

∂tΨ′ = LΨ′ (3.41)
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where L is the linearized version of LΨ. The (linear) stability of the system is

governed by the sign of the real part of L’s eigenvalues with positive eigenvalues

indicating instability of the steady state.

On considering perturbations of density and polarization about their values in steady

state, we get

ρ = ρ̄+ δρ, p = p̄ + δp. (3.42)

Without loss of generality, we set the direction of the polarization of the homoge-

neous state to be along the y axis, i.e., p̄ = p̄ey. Linearizing eqs. (3.19) by ignoring

terms containing perturbations of order larger than unity, we get the evolution

equation for δρ to be

∂tδρ = −v̄∇ · δp + ζp̄ey ·∇δρ (3.43)

where v̄ = v(ρ̄) = 1 − ζρ̄. Following similar procedure, the perturbation to the

polarization evolves according to

∂tδp = −1
2

(
v̄ − ζρ̄+ ζ

2γ ε
)
∇δρ+ ζQ̄ ·∇δρ+D∇2δp

− v̄
√
ε

8 [5(∇ · δp)ey − 3(∂xδpy − ∂yδpx)ex − 2∇(ey · δp)]

+
√
εeyδρ−

v̄ρ̄ζ
√
ε

8(2 + ε)ey∇2δρ− ε

2δp− γQ̄ · δp (3.44)

where D = v̄2/16, γρ̄ = 2 + ε and γp̄ = 2
√
ε. The steady-state nematic tensor Q̄ is

Q̄ = ε

2γ

 −1 0
0 1

 . (3.45)

We now gather the perturbations in a vector X ≡ (δρ, δpx, δpy)T . The Fourier

counterpart of X is

X̃(q, t) =
∫

d2r X(r, t)e−iq.r. (3.46)

The evolution of X̃ can be written, in general, as

∂tX̃(q, t) = −M(q) · X̃(q, t). (3.47)
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The entries of M are obtained from the evolution equations of the components of X
(or, equivalently X̃). The solution of the eigenvalue equation is

X̃(q, t) =
3∑
i=1

ci(q)wi(q)e−λi(q)t (3.48)

where λi are the eigenvalues corresponding to the eigenvectors wi. Negativity of λi
indicates instability. At this stage, we will handle the apolar and polar homogeneous

steady states separately.

Case 1: Homogeneous apolar state (p̄ = 0)

In this case, p̄ = 0 and p = δp. Equations (3.43) and (3.44) respectively reduce

to

∂tδρ = −v̄∇ · δp (3.49)

and

∂tδp = −1
2 (v̄ − ζρ̄)∇δρ+D∇2δp− ε

2δp. (3.50)

The matrix M is given by

M =


0 iv̄qx iv̄qy

1
2(v̄ − ζρ̄)iqx ε

2 +Dq2 0
1
2(v̄ − ζρ̄)iqy 0 ε

2 +Dq2

 . (3.51)

Here ε
2 = 1− 1

2γρ̄ is the rate at which the polarization relaxes: larger the γ, slower

the relaxation. The eigenvalues of M are

λ0 = ε

2 +Dq2,

λ± = 1
2

(
ε

2 +Dq2
)
± 1

2

√(
ε

2 +Dq2
)2
− 2v̄(v̄ − ζρ̄)q2. (3.52)

Since ε is positive, λ0 > 0. We expand λ± about q = 0. To lowest order, we find λ+

is positive and

λ− = v̄(v̄ − ζρ̄)
ε

q2. (3.53)

For (1 − ζρ̄)(1 − 2ζρ̄) < 0, this eigenvalue becomes negative. The homogeneous

apolar state is therefore unstable if 1
2 ≤ ζρ̄ ≤ 1. This criterion is independent of γ.
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Case 2: Homogeneous polar state (p̄ 6= 0)

On considering plane-wave perturbations (∼ eiqx) perpendicular to p̄, the matrix M
becomes

M =


0 iv̄q 0

ibq Dq2 −5iaq

−(1 + v̄ζρ̄
8(2+ε)q

2)
√
ε 5iaq ε+Dq2

 (3.54)

with coefficients a ≡ (v̄/8)
√
ε and

b ≡ 1
2

(
v̄ − ζρ̄+ 3ζ

2γ ε
)

= 1
2 −

8 + ε

8 + 4εζρ̄. (3.55)

The characteristic polynomial of M(q) given by P (λ) = a0 + a1λ+ a2λ
2 + λ3 with

(λ→ −λ) has coefficients

a0(q) = (v̄b− 10D) εq2 + v̄

(
b− 5ε

8 + 4εζρ̄
)
Dq4,

a1(q) =
(
v̄b− 21

4 εD
)
q2 +D2q4,

a2(q) = ε+ 2Dq2. (3.56)

The Routh-Hurwitz stability criteria [84] is a test to conclude whether or not the

roots of a polynomial have negative real parts. For our purpose, this test is useful in

determining stability.4 The criteria for a third degree polynomial are:

a0 > 0, a1a2 > a0, a2 > 0. (3.57)

For a0 > 0, we require

ε >
6ζρ̄+ 2
3ζρ̄− 1 , ζρ̄ >

1
3 . (3.58)

Since ε = γρ̄− 2 > 0 for a polar homogeneous state, a2 > 0. The second condition

a1a2 > a0 reduces to(
10− 21

4 ε
)
Dεq2 +

[
v̄

(1
2 −

8− 4ε
8 + 4εζρ̄

)
− 19

2 εD
]
Dq4 + 2D3q6 > 0. (3.59)

Considering the limit of small q and examining the q2 term, we find that the inequality

is satisfied if ε < 40
21 . This condition cannot be satisfied alongside the inequality

4Note that we have changed λ→ −λ while writing down P (λ). This is done to be consistent with
the form of the Routh-Hurwitz criteria we employ.
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Figure 3.5: Phase diagram ob-
tained from linear stability analy-
sis of polar and apolar homoge-
neous steady-states. The bound-
ary between MIPS and polar do-
mains corresponds to a spinodal
and the solid line at γρ̄ is critical
line. Non-negativity of v(ρ) renders
the grey region physically inacces-
sible. The colors corresponding to
the qualitatively different phases fol-
low the scheme shown in fig. 3.2.
Reproduced in adapted form from
Ref. [81].

in (3.58). Therefore, the homogeneous polar state is unconditionally unstable and

emerges into polar bands with global polar order.

We summarize the results of the stability analysis in fig. 3.5. For γρ̄ < 2, the

spinodal is located at ζρ̄ = 1
2 . If ζρ̄ < 1

2 , the homogeneous, apolar state is stable

and dynamical polar domains are observed; if not, density perturbations grow

exponentially and give rise to macroscopic phase separation induced by motility.

On the other hand, at γρ̄ = 2, the rate at which the polarization decays (given by

1− γρ̄
2 ) vanishes, indicating a critical transition to polar bands which exhibits global

polar order.
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Figure 3.6.: (a) Density-dependent speed v as a function of local packing fraction φ.
The markers correspond to simulation data and the solid lines are fits to the function
f(φ) = 1 − ζφ. (b) Coupling strength χ and force-imbalance coefficient ζ extracted from
simulations. The background colors denote the three phases observed on increasing κ
(indicated by the arrow): MIPS→ Polar domains→ Polar bands. Reproduced in adapted
form from Ref. [81].
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We now proceed to verify the result of linear stability analysis by extracting the

coefficients χ and ζ from simulations. From the profiles of ρ(x), Py(x) and Ny(x),
we fit for a proportionality constant χ = Ny/(ρPy) for varying aspect ratios. To

determine ζ, we bin the system along the x axis, calculate the mean projection of

the velocity on the orientation vector v(xi) = 〈
∑
k∈i ṙk · ek〉 and plot it as a function

of local packing fraction φ(xi). The sum runs over all particles within bin i. We fit

the linear decay of v with φ [cf. fig. 3.6] to extract the slope ζ.

Figure 3.6 shows that as κ increases, the speed of particles is less affected by local

crowding. Alignment provides an escape from slow down of particles’ dynamics. This

is reflected in the decrease in ζ. Concurrently, the coupling strength χ is practically

unchanged. Below ζρ̄ ≈ 1
2 , MIPS breaks down into several mobile clusters. On

increasing κ further, the orientational coupling χ increases significantly while ζ is

small (but non-zero) and independent of κ. This leads to the transition into a highly

polarized and dense band that travels parallel to the y axis.
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Forces and torques on

objects immersed in active

fluids

4

Liberated from the shackles of detailed balance due to persistent directed motion,

active matter can produce non-vanishing currents in steady state. This also allows

for exertion of non-zero forces or torques on objects immersed in a bath of active

particles, a phenomenon that is impossible in a passive bath [85]. Facilitated by

the rectification of active matter [86, 87], fabricated microscopic gears placed in

bacterial baths rotate along the direction dictated by the orientation of the teeth [88,

37, 89]. It is thus possible to harvest useful mechanical work by conceiving engines

fuelled by active particles [90]. Moreover, long-range currents sustained by the

interplay of directed motion and interactions can be exploited to aid self-assembly

of multiple passive objects immersed in an active bath [91].

To enable the rational design of immersed bodies that is optimized for a specific

goal, it is imperative to formulate a theoretical framework that describes how active

particles transmit forces to passive inclusions. In this chapter, we develop a theory

that relates the net force/torque on an object to the particle current and the vorticity

of the polarization. We verify its predictions with simulations of active Brownian

particles.

4.1 Force on inclusions

Let us consider a dry, non-interacting active fluid with global number density ρ̄.

Its components are propelled with speed v0. The evolution equation of the joint

probability ψ(r, ϕ; t) is given by

∂tψ = −∇ · [v0e + µ0F−D0∇]ψ +Dr
∂2ψ

∂ϕ2 (4.1)
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where e ≡ (cosϕ, sinϕ)T is the orientation vector which diffuses on the timescale

given by D−1
r . The bare mobility is related to the translational diffusion constant D0

through µ0 = D0/(kBT ) where T is the temperature and kB is Boltzmann’s constant.

Since particles do not interact, the force F is completely determined by interactions

with immersed objects.

Integrating eq. (4.1) over orientation ϕ, we get

∂tρ = −∇ · [v0p + µ0Fρ−D0∇ρ] ≡ −∇ · j (4.2)

with density ρ =
∫ 2π

0 dϕ ψ, polarization density p =
∫ 2π

0 dϕ eψ and current j.
Multiplying eq. (4.1) by e and integrating over ϕ, we get the evolution equation for

the polarization density p to be

∂tp = −∇ ·
[
v0

(
Q + 1

2ρ1
)

+ µ0Fρ−D0∇p
]
−Drp (4.3)

with nematic tensor Q =
∫ 2π

0 dϕ
(
e⊗ e− 1

21
)
. The evolution of Q, obtained by

multiplying eq. (4.1) by
(
e⊗ e− 1

21
)

and integrating over ϕ, is governed by

∂tQ = −v0∇ ·
(

W− 1
21⊗ p

)
− µ0∇ · (F⊗Q) +D0∇2Q− 4DrQ (4.4)

with Wijk ≡
∫ 2π

0 dϕ eiejekψ. To close the hierarchy of orientational moments, we

drop the derivatives of Q and neglect the third moment
∫ 2π

0 dϕ
(
eiejek − 3

4δijek
)
ψ =

0. Up to these approximations, the nematic tensor is

Q ≈ − v0
16Dr

(∇p)ST (4.5)

where the symmetric and traceless gradient of the polarization (∇p)STij = ∂ipj +
∂jpi − ∂kpkδij . Plugging this expression in eq. (4.3) and considering steady state,

we get

p = µ0
Dr
∇ ·

[
v0

2µ0
ρ1 + v0

µ0
Q + F⊗ p− kBT (∇p)ST

]
≡ µ0
v0
∇ ·σA (4.6)

with active stress

σA = − v0
Dr

[
v0

2µ0
ρ1 + v0

µ0
Q + F⊗ p− kBT (∇p)ST

]
. (4.7)
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n
Figure 4.1: Sketch of a passive body sur-
rounded by an ideal active fluid. Particles
within the grey dashed boundary (filled
circles) exert forces on the immersed ob-
ject (blue wedge). The region outside the
grey dashed boundary in which particles
(unfilled circle) behave as isolated ABPs
corresponds to the force-free region. To ap-
ply the divergence theorem, we consider
a circular contour ∂A in the force-free re-
gion bounding an area A. The outward-
pointing normal vector to ∂A is denoted
by n.

On rewriting eq. (4.2) in terms of the active stress, we obtain

∇ ·σ + Fρ = j/µ0 (4.8)

where the total stress σ = σA − kBTρ1 has contributions from the active stress and

translational diffusion.

To compute the force F1 on the immersed object, we invoke Newton’s third law

according to which

F1 = −
∫

d2r Fρ. (4.9)

The presence of an inclusion separates the system into two regions: one where active

particles experience non-zero forces and another in which forces due to interactions

vanish. As shown in fig. 4.1, we now consider a circular contour ∂A in the force-free

region and apply the divergence theorem to eq. (4.9) after plugging in eq. (4.8).

The force F1 can be rewritten as

F1 =
∮
∂A

dl
[
n ·σ − 1

µ0
(n · j)r

]
. (4.10)

Here we have used ∇ · j = 0, to write the current as ji = ∂k(jkxi). The force F1 it

thus determined by the stress tensor σ and the particle current j. As long as the

contour ∂A envelopes the object completely and is in the force-free region, it is

arbitrary. To make analytical progress, we now place the boundary far away from

the object.
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Force-free, far-field regime

Let us now focus on the force-free region. Plugging v0p = D0∇ρ+ j [eq. (4.2)] in

eq. (4.6), we get

−D0
(
∇2 − ξ−2

)
∇ρ =

(
∇2 − `−2

)
j (4.11)

where

` =
√
D0
Dr

(
1 +

`2pDr

16D0

)1/2

(4.12)

and

ξ = `

(
1 +

`2pDr

2D0

)−1/2

. (4.13)

Here `p ≡ v0/Dr is the persistence length associated with the directed motion of

particles.

For an object that does not generate currents, eq. (4.11) suggests that

(
∇2 − ξ−2

)
∇ρ = 0. (4.14)

The excess density decays exponentially, i.e., ρ − ρ∞ ∼ e−r/ξ. On taking the

divergence on both sides of eq. (4.11), we get

(
∇2 − ξ−2

)
∇2ρ = 0. (4.15)

More generally, in the far-field, for r � ξ, we get

∇2ρff = 0, jff = −Deff∇ρff (4.16)

with effective diffusion constant Deff ≡ D0(`/ξ)2. All quantities in the far-field

are indicated by the superscript ‘ff’. Assuming that the second derivative of the

polarization can be neglected in the far-field, eq. (4.6) and subsequently eq. (4.7)

simplify to give

pff = − v0
2Dr
∇ρff. (4.17)

In terms of these two length scales, the stress tensor can be written as

µ0σ = −Deffρ1 + v0`
2(∇p)ST , µ0σ

ff = −Deffρ
ff1− v2

0`
2

2Dr
(∇∇ρff)ST . (4.18)
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The structure of eqs. (4.16) is identical to those seen in magnetostatics. To make

the connection, note that the particle current jff is analogous to the field and the

number density ρff is analogous to the scalar potential. Using the two-dimensional

cross product, the equivalent of Biot-Savart law becomes

j = 1
2π

∫
d2r′ Ω(r′)ez × (r− r′)

|r− r′|2 (4.19)

where the curl of the current

Ω ≡ ∇× j = ∇× (v0p + µ0Fρ−D0∇ρ) (4.20)

= v0ω + µ0∇× (Fρ). (4.21)

Here, we have introduced the curl of the polarization ω ≡ ∇ × p. In Cartesian

coordinates, the current can be written as

ji = − 1
2πεij

∫
d2r′

xj − x′j
|r− r′|2 Ω(r′) (4.22)

where εij is the two-dimensional Levi-Civita symbol. For small r′, the Taylor expan-

sion about r is

xj − x′j
|r− r′|2 ≈

xj
r2 +

(
∂

∂xk

xj − x′j
|r− r′|2

)
r′=0

x′k

= xj
r2 −

(
∂

∂xk

xj
r2

)
x′k. (4.23)

Substituting the expansion in eq. (4.22), we get

jff
i = − 1

2πεij
(
xj
r2

)
Q̃+ 1

2πεij
(
∂

∂xk

xj
r2

)
P̃k = 1

2πεij
∂

∂xj

xkP̃k
r2 (4.24)

where Q̃ =
∫

d2r Ω and P̃ =
∫

d2r rΩ are the first two moments of Ω. The absence

of angular currents sets Q̃ = 0. Since the term in the brackets is symmetric, we

have exchanged indices in the last step. Introducing the current dipole moment

m ≡ ε · P̃, we have

mi = v0εijPj + µ0εij

∫
d2r xjεkl

∂

∂xk
(Flρ) (4.25)
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where P =
∫

d2r rω is the vorticity dipole moment. Performing partial integration

and using the divergence theorem keeping the boundary of the integral in the free

region, we get

mi = v0εijPj − µ0εijεjl

∫
d2r Flρ. (4.26)

Identifying the integral in the second term as −F1 and using εijεjl = −δil, we

have

m = v0ε · P− µ0F1. (4.27)

We find that the force on the object F1 has two contributions: the current dipole

moment m and the vorticity dipole moment P. In terms of m, the density in the

far-field is

ρff = ρ∞ + 1
Deff

m · r
2πr2 . (4.28)

Unbound system

We now consider an unbound system. Consider a circular contour ∂A of radius r

bounding a region of area A. The vorticity dipole moment is given by

Pk =
∫

d2r xkεij∂ipj = εij

∫
d2r [∂i(xkpj)− pj∂ixk]. (4.29)

Substituting eq. (4.6) and thereafter applying the divergence theorem, we get

P(A) =
∮
∂A

dl
[
(n× p)r− µ0

v0
ε · (n ·σA)

]
(4.30)

where n is the vector normal to the contour. Placing the boundary far away from

the body and inserting the far-field expressions for the polarization and stress tensor

[see eq. (4.17)], we get

Pk(A) = − v0
2Dr

∮
∂A

dl [xk(n×∇ρff)− εkjnjρff]. (4.31)

With n = er, the cross product evaluates to

n×∇ρff = er ×
[
∂ρff

∂r
er + 1

r

∂ρff

∂θ
eθ

]
= 1
r

∂ρff

∂θ
. (4.32)
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Here we have written the gradient in polar coordinates. Plugging this in eq. (4.31)

and using ε · er = −eθ, we get the vorticity dipole moment in an unbound system to

be

Punb = − v0
2Dr

∮
∂A

dl
[
∂ρff

∂θ
er + ρffeθ

]
= 0. (4.33)

We thus find that the vorticity dipole moment vanishes in an unbound system. To

calculate the force on the object, we need the divergence of the stress in the far-field

[eq. (4.17)]. This involves

er · (∇∇ρff)ST =
(

2∂
2ρff

∂r2 −∇
2ρff

)
er + 2

r

(
∂2ρff

∂r∂θ
− 1
r

∂ρff

∂θ

)
eθ. (4.34)

Plugging eq. (4.28) in eq. (4.34), we get

er · (∇∇ρff)ST = m

Deff

2
πr3 (cos θer + sin θeθ) (4.35)

with m = mex. The integral of this term along a circular contour vanishes and the

only non-zero contribution from the stress is from the far-field density. The integral

over stress ∮
∂A

dl n ·σ = −Deff

µ0

∮
∂A

dl δρffer = − m
2µ0

. (4.36)

To calculate the contribution of the current to F1, we insert eq. (4.16) and eq. (4.28)

in − 1
µ0

∮
∂A dl (n · j)r to get

Deff

µ0

∮
∂A

dl (r ·∇ρff)er = − 1
2πµ0

∮
∂A

dl rk∂k
(
miri
r2

)
er = − m

2µ0
. (4.37)

Summing up the contributions from the stress [eq. (4.36)] and current [eq. (4.37)],

we find that the net force on the object F1 [eq. (4.10)] in an unbound system is

F1 = −m/µ0, (4.38)

in agreement with Ref. [91]. In an unbound system, the force is thus completely

determined by the current dipole moment.

4.1.1 Boomerang in an ideal active fluid

To put our theory to test, we turn to Brownian dynamics simulations. We consider

an L×L system of N = ρ̄L2 non-interacting ABPs and set the global number density
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Figure 4.2: Typical snapshot of a sys-
tem comprising of a boomerang (grey)
surrounded by active Brownian particles
which interact with it. ABPs are colored
according to the sine of the angle their ori-
entation vectors make with the positive x
axis. Evidently, particles that accumulate
on the inner surface are strongly polarized
along the positive y axis while those in the
bulk are polarized along the opposite di-
rection.

ρ̄ = 1.2 unless explicitly mentioned otherwise. We include a boomerang-shaped

object constructed from fixed, equidistant points on a semicircle of radius R = 5.

Figure 4.2 shows a representative snapshot of the system.

The ABPs interact with each of these points through the repulsive WCA potential

defined in eq. (2.54). We measure lengths in units of the potential’s length scale

σ, energy in units of kBT and time in units of σ2/D0. In reduced units, we set the

energy scale of the potential ε0 = 100 and Dr = 3. The evolution of the position

ri and orientation ϕi of the ith particle is governed by eqs. (2.23). We integrate

the equations of motion with a time step δt = 10−5. All results are obtained by

averaging over five independent simulation runs.

In fig. 4.3 (a), we plot a two-dimensional histogram of the density and polarization

of particles around the boomerang. We see that particles accumulate at the surface of

the obstacle, akin to several previous reports of aggregation of ABPs on surfaces [92,

93, 94]. Moreover, as can also be seen in fig. 4.2, particles away from the boomerang

are polarized downward. Larger residence time of particles below the boomerang

compared to those above prompts the downward orientation of particles despite the

absence of explicit aligning interactions. The manifestly antisymmetric vorticity field

shown in fig. 4.3(b) indicates a non-zero vorticity dipole moment P that points along

ex. This is in contradiction to eq. (4.33) that suggests a vanishing vorticity dipole

moment Punb = 0 in an unbound system. The result that the force is determined by

the current dipole moment [eq. (4.38)] can thus not be validated. Since we perform
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Figure 4.3.: (a) Zoomed-in plot of the normalized density ρ/ρ̄ and polarization p of ABPs
with ρ̄ = 1.2 and v0 = 80. The length of the arrows denoting the magnitude of polarization
is plotted on a logarithmic scale. The line of symmetry is denoted by the dashed grey line.
(b) Heatmap of vorticity ω around the boomerang. The grey arrow indicates the direction of
vorticity dipole moment P. (c) Density map of the whole system for the parameters shown
in (a).

simulations with periodic boundary conditions [see section 2.2.3 for details], we

now reformulate the theory for this case.

Force in a periodic system

To incorporate periodic boundaries, let us assume a two-dimensional lattice of

dipoles. In appendix A.2, we show that this candid assumption does not modify the

density, which is still given by eq. (4.28). Figure 4.3 (c) shows a stark deviation

from a dipolar field with visible “streaks” in the density field that connect through

the periodic boundaries.
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Figure 4.4: Sketch of the system with pe-
riodic boundaries. The boomerang is sym-
metric about the dotted black line running
through the center. We focus on a specific
square domain of area A bounded by the
counter ∂A. The polarization of particles
p is outlined by blue arrows and the vec-
tors normal to ∂A are indicated by red
arrows.

We now revisit eq. (4.10) and compute the stress tensor and current for a periodic

system. We place the boomerang at the origin. Its line symmetric shape [cf. fig. 4.4]

imposes the following symmetries on the density and polarization:

ρ(−x, y) = ρ(x, y),

px(−x, y) = −px(x, y),

py(−x, y) = py(x, y). (4.39)

To compute the contribution of the stress tensor given in eq. (4.18), we need1

µ0n ·σ = −Deffρn + v0`
2 [∇(n · p)− ε ·∇(n× p)] . (4.40)

We integrate piecewise along the contour ∂A pictured in fig. 4.4

µ0

∮
∂A

dl n ·σ = µ0

∫ L
2

−L2
dy ex ·σ︸ ︷︷ ︸
right

+µ0

∫ L
2

−L2
dy (−ex) ·σ︸ ︷︷ ︸

left

+ µ0

∫ L
2

−L2
dx ey ·σ︸ ︷︷ ︸
top

+µ0

∫ L
2

−L2
dx (−ey) ·σ︸ ︷︷ ︸

bottom

. (4.41)

The term involving the density integrates to zero since the top-bottom and left-right

chunks of the integral cancel each other out. The contribution of the polarization

[second term in eq. (4.40)] along the top boundary reads

Stop = v0`
2
∫ L

2

−L2
dx [∇py + ε ·∇px] = ∂y

∫ L
2

−L2
dx v0`

2p = Gey. (4.42)

1[n · (∇p)ST ]j = ni∂ipj + ni∂jpi − ni∂kpkδij = δjpini + εjiεklnk∂ipl
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The line symmetry of the boomerang sets the x component to zero. Using v0py =
D0∂yρ+ jy, we define

G ≡ D0

∫ L
2

−L2
dx ∂2

yρ
∣∣∣
y=L

2
+ ∂y

∫ L
2

−L2
dx jy(x, y). (4.43)

To estimate the second term, we call upon the vanishing divergence of the current.

Symmetry stipulates jx
(
±L

2 , y
)

= 0 and measurements from simulations shown in

fig. 4.5 (a) fluctuates about zero attesting to the vanishing x component. Additionally,

with ∇ · j = 0, we have

∫ L
2

−L2
dx ∇ · j =

∫ L
2

−L2
dx (∂xjx + ∂yjy) = ∂yJL = 0 (4.44)

where the integrated current

JL ≡
∫ L

2

−L2
dx jy(x, y). (4.45)

This implies that jy is independent of y and is in agreement with simulations

[cf. fig. 4.5 (b)]. The expression in eq. (4.43) thus reduces to

G = D0

∫ L
2

−L2
dx ∂2

yρ
∣∣∣
y=L

2
. (4.46)

The contribution from the lower boundary with normal vector n = −ey yields −Stop.

Examining the integral over the right boundary with normal vector n = ex, with

px =
(
±L

2 , y
)

= 0 and ∂xpy = 0, we have

v0`
2
∫ L

2

−L2
dy [∇px − ε ·∇py] = ∂x

∫ L
2

−L2
dy v0`

2p = 0. (4.47)

On gathering all terms we find that the integral over the stress
∮
∂A

dl n ·σ vanishes

therewith implying that, in contrast to an unbound system, the stress tensor does not

contribute to the force F1 on the immersed object in a periodic system. The force in

a periodic system is thus sustained by the current JL through the boundary.

The contribution of the current j to the force is given by

∮
∂A

dl (n · j)r =
∫ L

2

−L2
dx

[
jy

(
x,−L2

)
L

2 + jy

(
x,
L

2

)
L

2

]
ey = LJLey. (4.48)
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Figure 4.5.: Current through the cross-section at x = ±L/2. The (a) x component and (b)
y component of the current is plotted for different box lengths L.

The contributions from the right and left boundaries with normal vectors ex and

−ex again drop out. Moreover, since jy(−x) = jy(x), the x component of the force

vanishes. Combining eqs. (4.48) and (4.10), we find that the net force on the object

F1 in a periodic system is given by

F1 = FLey = − 1
µ0
LJLey. (4.49)

Employing the divergence theorem, the vorticity dipole moment can be written as

P =
∫

d2r (∇× p)r =
∮
∂A

dl (n× p)r. (4.50)

In the last step we have used the fact that the total polarization in the system is

zero2. Plugging in v0p = D0∇ρ+ j, we get

v0P =
∮
∂A

dl (n× [D0∇ρ+ j])r. (4.51)

Since the curl of a gradient is zero, the density does not contribute and the calculation

of P reduces to

v0PL =
∫ L

2

−L2
dy

[
jy

(
−L2 , y

)
L

2 + jy

(
L

2 , y
)
L

2

]
ex = L2j0ex ≡ PLex. (4.52)

Here we have defined the constant current through the left/right boundaries

jy
(
±L

2 , y
)

= j0. This is related to the integrated current through Lj0 = JL. Theory

2
∫

d2r p = 0.
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Figure 4.6: Numerically obtained inte-
grated current −JLL/v0, force FL/v0 and
vorticity dipole moment −PL for varying
system sizes L. In agreement with theory
[eq. (4.53)], all three quantities conform
and scale as L2 for system sizes up to L∗. Be-
yond L∗ ' 50R, they plateau. The dashed
line corresponds to j0

v0
L2. The propulsion

speed set to v0 = 160.

thus suggests that, in a periodic system, the force F1, vorticity dipole moment P and

the boundary current are dependent on system size L. Comparing eqs. (4.52) and

(4.49), we find that these three quantities are related through

− PL = FL
v0

= −JLL
v0

. (4.53)

To verify this equivalence, we perform simulations for different box lengths L

keeping all other parameters fixed. We compute a two-dimensional histogram

of the polarization and density. The gradient of the density is calculated using

the scheme of central differences3 and the integrated current JL is subsequently

obtained using the relation v0p = D0∇ρ+ j at x = ±L
2 corresponding to the right

and left boundaries.

In fig. 4.6, we show that eq. (4.53) indeed holds. We also observe that for small

system sizes the force scales as L2 and beyond a threshold L∗, it saturates to a

constant value. The integrated current JL = j0L for L < L∗ and decreases as ∼ 1/L
for larger systems. To qualitatively understand this scaling, we recognize that the

current is generated by the difference in densities of ABPs above and below the

boomerang evident in fig. 4.3. With dimensionless gradient αL > 0, eq. (4.16)

advocates

JL = −DeffαLρ̄. (4.54)

The streamlines that connect through the periodic boundaries [see fig. 4.3] become

more numerous as L increases leading to a larger integrated current JL ∝ α ∝ L/`.

3With mesh spacing h, the derivative of a function is given by f ′(x) = 1
2h [f(x+ h)− f(x− h)].
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For L > L∗, we anticipate the dimensionless gradient αL ∝ R/L to be self-similar

lowering the current along the boundary. The integrated current can be written as

JL = −ρ̄Deff
L

`
f(L/

√
`R) ∼ ρ̄Deff

L/` (L� L∗)

R/L (L� L∗)
(4.55)

assuming that αL only enters through the non-dimensional factor L/
√
`R. The

scaling function f(x) is constant for small x and drops as f(x) ∼ 1/x2 for large x.

The collapse of numerical data shown in fig. 4.7 validates this form for the scaling of

the current. The crossover at L∗ implies the presence of an optimal spacing between

inclusions that maximizes forces and currents. Moreover, since the current dipole

moment m = v0ε · P−µ0F1 = −(v0PL +µ0FL)ey = 0 vanishes, in periodic systems,

the idea of treating immersed objects as current dipoles is unfounded.

4.2 Torque on inclusions

In addition to forces, contingent on its shape, an object immersed in an active

fluid may also experience a net torque. Using eq. (4.10), the net torque τ1 on an

immersed object is given by

τ1 = −
∫
A

d2r r× Fρ (4.56)

=
∫
A

d2r r×
[
∇ ·σ − 1

µ0
j
]
. (4.57)
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The first term simplifies to

r× (∇ ·σ) = εijxi∂kσkj = εij [∂k(xiσkj)− σij ] = εij∂k(xiσkj). (4.58)

Since σij is symmetric [see eq. (4.18)], εijσij = 0. Employing the divergence theo-

rem and inserting eq. (4.18) after substituting v0(∇p)ST = (∇j)ST −D0(∇∇ρ)ST ,

the integral over the stress reduces to

∮
∂A

dl εijxinkσkj =
∫ 2π

0
dθ rer × (er ·σ)

= −Deff

∫ 2π

0
dθ rer × (ρer) + kBT`

2
∫ 2π

0
dθ rer × er · (∇∇ρ)ST

+ `

µ2
0

∫ 2π

0
dθ rr× n · [∇j + (∇j)T − (∇ · j)1]. (4.59)

Here we have used a circular boundary ∂A of radius r with normal vector n = er.
The first term vanishes because er × er = 0. On plugging in eq. (4.34), we find that

the second term involving the integral

∫ 2π

0
dθ r

(
∂2ρ

∂r∂θ
− 1
r

∂ρ

∂θ

)
= 0 (4.60)

also vanishes since density is periodic in θ. Using εijxink∂kjj = nk∂k(εijxijj) −
εijnijj , the torque defined in eq. (4.57) becomes

τ1 = `2

µ0

∫ 2π

0
dθ r[n ·∇(r× j) + (r×∇)n · j− n× j]− 1

µ0

∫
A

d2r r× j. (4.61)

Performing a multipole expansion of the current j up to the dipole contribution, in

the force-free region,

j(r) = v0
2π

[
Q

r
eθ + −R · P + 2(er · P)eθ

r2

]
(4.62)

where the vorticity monopole Q =
∫

d2r ω and the vorticity dipole moment P =∫
d2r rω. Taking the cross product, we get

r× j = v0
2π

[
Q+ er · P

r

]
(4.63)

Inserting the cross product in eq. (4.61), the only remaining integrals are of the

form ∫ 2π

0
dθ r× j =

∫ 2π

0
dθ rjθ = v0Q. (4.64)
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Hence, τ1 ∝ v0Q. Since Q = 0, the torque on the object τ1 vanishes in an unbound

system.

4.2.1 Duck in an ideal active fluid

We now perform simulations of a ‘duck’, a two-fold rotationally symmetric object,

immersed in an ideal active fluid. It is constructed by cutting a circle along an

arbitrary diameter and displacing the resulting semicircles along the same diameter.

We employ periodic boundary conditions.

Figure 4.8 shows the density and vorticity heatmaps. Due to their finite persistence,

there is an increased density of ABPs on the surface of the duck similar to what is also

seen on the boomerang [cf. fig. 4.3]. The vorticity heatmap shows the emergence of

two vorticity dipoles close to the surface. Due to symmetry, these two dipoles are of

the same magnitude but point along opposite directions. The vorticity field, like the

shape of the duck, exhibits two-fold rotational symmetry and decays rapidly away

from the duck.

As expected, we measure a vanishing vorticity monopole Q in simulations. Despite

this, we find that the torque on the duck is non-zero. Because the polarization has

to be periodic in the system size, the vorticity monopole Q =
∮
∂A dl · p = 0 vanishes

even in periodic systems. At first glance, there appears to be a contradiction between

theory and what is observed in simulations. An assembly of n vorticity dipoles at

{r1, . . . , rn}, however, also produces a torque given by4

τ1 =
∑
n

rn × Fn = v0
µ0

∑
n

rn × (ε · Pn) = − v0
µ0

∑
n

rn · Pn. (4.65)

In the last step, we have used εijεjk = −δik. Since Pn ∼ L2 [cf. fig. 4.6], the torque

in finite systems with periodic boundaries τ1 ∼ v0L
2. We perform simulations for

different propulsion speeds and system sizes, and plot the torque we measure in

fig. 4.8. The torque indeed increases linearly with v0. For L < L∗, we find the

expected quadratic scaling of the torque with system size.

4In an unbound system, the force is generated by current dipoles; thereby, the torque in a periodic
system τ1 is expected to arise from n current dipoles. However, along the lines of what we show in
appendix A.2, this naive perspective is inaccurate.

64 Chapter 4 Forces and torques on objects immersed in active fluids



10 5 0 5 1010

5

0

5

10(a)

10 5 0 5 1010

5

0

5

10(b)

0 50 100
v0

0

1

2

3

1

×105
(c)

v0

0 50 100
L

1

3

5

7

9

1/v
0

×103
(d)

L2

0

1

2

3

4
/

-2

-1

0

1

2

Figure 4.8.: Zoomed-in profiles of (a) normalized density ρ/ρ̄ and (b) vorticity ω around
the duck. Local dipoles pointing along the directions shown with grey arrows emerge. (c)
Scaling of torque as a function of propulsion speed v0. The dashed line shows a linear fit.
(d) Scaling of torque (normalized by speed) as a function of system size L. The dashed line
is a quadratic fit to the data.
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4.3 Effect of shape on vorticity

To gain a qualitative understanding of how the design of the inclusion affects the

resulting vorticity field, we consider three different shapes: (1) ‘lune’: a moon-

shaped object constructed by chopping off a small disc of radius Rs = 2.5 from a

complete circle, (2) ‘bud’: constructed by adding a small disc of radius Rs = 2.5 to a

complete circle and (3) duck (introduced earlier).

(a) (b) (c)

100

50

0

50

100

Figure 4.9.: Vorticity around the (a) duck, (b) lune and (c) bud. The grey arrows indicate
the direction of emergent vorticity dipoles.

In fig. 4.9 we plot the vorticity along the surface of each shape slightly away from

the interaction zone. The vorticity ω is visibly larger close to regions where there is

a stark change in curvature. Outside these regions, the vorticity is approximately

zero.
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Force generation in confined

active fluids
5

In the early 1950s, amongst many other experimental reports in traditionally unre-

lated fields, following are three observations that warranted a phenomenological

understanding [95]:

• Red blood cells agglomerate in the presence of different types of macro-

molecules [96, 97]. This did not appear to specifically rely on the adsorption

of macromolecules.

• When added to a soil suspension, polysaccharides promote the formation of

water-stable soil ‘crumbs’ [98].

• Latex particles coagulate in the presence of polymers [99].

Asakura and Oosawa, in their seminal article1, developed a theory of what is

now commonly called depletion interactions [100]. Within this paradigm, they

solved the contemporary puzzle of several ‘species’ flocculating by identifying a

non-uniform osmotic pressure around them in the presence of (non-)adsorbing

macromolecules [101]. Ever since, the mutually attractive force between large

solvated particles in a solution with much smaller cosolutes (“depletants”) has been

extensively studied both theoretically [102, 103, 104] and experimentally [105,

106]. As outlined in fig. 5.1, steric hinderance prevents depletants from occupying

the space between the larger colloids making it entropically favorable for these

colloids to be closer to each other. This effect also renders itself as an attractive

interaction between a colloid and a wall. The concentration of polymers determine

the strength of attraction while the range depends on their radius of gyration.

Depletion interactions have been exploited for applications like thickening of dairy

products [107, 108], the principle reason for which is suggested to be the self-

assembly of casein micelles induced by dispersed polysaccharides.

1The paper is a one-pager!
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Figure 5.1.: Sketch demonstrating the origin of depletion forces between two large colloids
(black circles) and between a colloid and a planar wall (solid black line). Smaller cosolutes
(purple circles) of diameter 2a exclude the volume of a spherical shell of width a (indicated
by the light grey region) around the larger colloids and the volume of a slab of width a
above the wall. If the overlap volume (shaded and dashed dark grey regions) has a non-zero
width w, no small particle can fit in between the two colloids or between the colloid and the
wall.

More recently, there has been significant interest in the characterization of depletion

forces in non-equilibrium systems [109, 110, 111, 112, 113]. In general, out of

equilibrium, these forces exhibit qualitatively different behavior compared to their

equilibrium counterpart. For example, depletion forces on two colloids in a bath

of flowing Brownian particles are unequal and can be attractive or repulsive [110,

114]. Within the context of active matter, the tendency of particles to aggregate

in layers at surfaces [94] leads to long-ranged oscillatory repulsive forces between

immersed passive objects [115, 116, 117].

In this chapter, we will employ the idea of the active stress introduced in chapter 4

to study the force on a probe immersed in a bath of active particles under circular

confinement. Furthermore, we will compare our results with experiments of an

optically trapped probe surrounded by Janus particles confined in a ring. The

experiments were carried out in the group of Prof. Clemens Bechinger at Fachbereich

Physik, Universität Konstanz.
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5.1 Experimental realization

In experiments, the probe, shown in fig. 5.2, is composed of a disc of thickness 3.5µm
and radius rp = 7.5µm onto which a hemisphere of diameter 11µm is fabricated.

The translational diffusion constant of the probe D = 0.003µm2/s. It is held in an

optical trap using an infrared laser of wavelength 1064 nm. To estimate trap stiffness

k, the probe is placed at the center of the confinement and the bath is rendered

passive by turning off illumination. By measuring the displacement of the probe

∆x = xp − xtr with respect to the trap center, using the equipartition theorem, k

is estimated to be k = kBT/∆x2 = 0.50± 0.02 pN/µm where the temperature of

the system T = 291 K. The narrow beam width (2µm) ensures that the trapping

laser does not undesirably heat up the surrounding medium. Active particles are

spheres of radius ra ≈ 1µm made of silica semi-coated with a 20 nm carbon film.

The entire setup is suspended in a sample cell of height 15µm containing a mixture

of water and propylene glycol n-propyl ether (PnP). When uniformly illuminated

with a laser of wavelength 532 nm and intensity 7µW/µm2, because of the higher

absorption of light by the carbon cap compared to silica, the temperature at the

active particles’ surface becomes anisotropic. If the temperature of the carbon side

exceeds the critical temperature, local demixing of the binary fluid ensues which in

turn triggers self-propulsion of particles [118]. A circular confinement of diameter

100µm is fabricated on the glass slide using photolithography.

The rotational diffusion constant Dr ≈ 0.04 s−1 and the propulsion speed v0 =
0.40± 0.08µm/s were obtained by fitting the mean-squared displacement 〈∆r2(∆t)〉
of active particles in a dilute suspension with [120]

〈∆r2(∆t)〉 = 4D0∆t+ v2
0

2D2
r

[
2Dr∆t+ e−2Dr∆t − 1

]
. (5.1)

The persistence length of directed motion is thus `p ≡ v0/Dr ≈ 9.5µm. The

experiments were performed at a fixed packing fraction of 0.31± 0.02. After turning

the illuminating laser off, the translational diffusion constant was independently

estimated from the long-time limit of the mean-square displacement of passive

particles to be D0 ≈ 0.053µm2/s.
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Figure 5.2.: Experimental system. (a) Scanning electron microscope image of the probe
and (b) a sketch of the geometry of the probe of radius rp. The four legs at the bottom
helps reduce friction with the underlying substrate. The scale bars correspond to 3µm. (c)
Schematic diagram of the setup. The surface-to-surface distance between the confinement
(grey solid line) and the probe at xp is d. The minimum of the trapping potential is at xtr and
the displacement of the probe with respect to the trap center is ∆x = xp − xtr. Along the y
axis, the probe is symmetrically placed in the circular confinement. The bicolored spheres
correspond to active particles whose surface is composed of two different materials (silica
and carbon). Reproduced from [119].
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5.2 Simulation setup

We perform Brownian dynamics simulations of N = 780 particles to complement

experiments. The dynamics of the position ri and orientation of the ith particle is

governed by eq. (2.23). We derive the parameters of our model from experimentally

obtained values. For these set of parameters, an equivalent system of active particles

without the probe and confinement does not undergo phase separation. The transla-

tional mobility of the active particles µ0 = D0/(kBT ). The position of the probe rp

evolves in accordance with

ṙp = −µ∇U − µk(rp − rtr) +
√

2Dξ, (5.2)

where µ = D/(kBT ) is the translational mobility of the probe and rtr is the position

of the trap center. The components of ξ are drawn from a uniform distribution

over
[
−
√

3,
√

3
]
. The total potential energy due to excluded-volume interactions

between various components of the system U =
∑
k<l uaa(|rk − rl|) +

∑
k uap(|rk −

rp|) +
∑
k uac(rcon − |rk|) + upc(rcon − |rp|) where rcon is the radius of the circular

confinement. All interactions are modelled using the WCA potential [eq. (2.54)]

with the following parameters:

Component pair WCA potential Length scale of potential

active particle-active particle uaa σaa = 25/6ra

active particle-probe uap σap = 2−1/6(ra + rp)
active particle-confinement uac σac = 2−1/6ra

probe-confinement upc σpc = 2−1/6rp

The energy scale of the potential ε = 100kBT . The equations of motion are evolved

with an integration time step δt ≤ 1 ms.

5.3 Force on the probe

Effect of confinement

We study the variation of force on the probe F = (Fx, Fy)T = k(∆x,∆y)T as a

function of normalized surface-to-surface distance d′ = d/(2ra) between the probe
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and the confinement. The force Fx varies non-monotonically with d′ as plotted in

fig. 5.3 (e,f). Representative snapshots in fig. 5.3 (b-d) show layering of APs in the

space between the confinement and the probe. On increasing d′ more layers can fit

in the gap. These layers form a dynamical bridge between the two surfaces. When

the probe is sufficiently far from the confinement, the decay of particle density away

from the boundary (probe) is unperturbed by the presence of the probe (boundary)

thereby precluding the formation of the bridge [cf. fig. 5.3 (a)].

To gain further insight into the effect of confinement on the motion of the probe, we

plot the probability distribution of the probe’s displacement about the trap center

in fig. 5.4 for different surface-to-surface distances d′. The distribution of displace-

ments along the y axis (along which the system is symmetric) follows a Gaussian

distribution with zero mean. For d′ = 0.77, the distribution of displacements along

the x axis, P (∆x), is asymmetric and peaks at ∆x ≈ 0.5 indicating that the probe

is being displaced away from the confinement due to forces exerted by APs. On

increasing d′, the probe needs to be displaced by a shorter distance to make space

for APs. This reflects in the decrease in Fx. At d′ ≈ 1, there is enough room for APs

to form a monolayer at the confinement without displacing the probe. Therefore, the

force on the probe is miniscule but non-zero. A combination of (isotropic) thermal

fluctuations and steric interactions with the monolayer favours the motion of the

probe away from the monolayer. The influence of translational noise is, however,

small. Correspondingly, P (∆x) is slightly asymmetric with a peaked probability

toward small and positive ∆x. Upon increasing d′ further, APs force the probe away

from the monolayer leading to an increase in Fx. The distribution at d′ = 1.6 is

asymmetric with a peak at ∆x ≈ 0.3. A second minimum in Fx seen at d′ ≈ 2 is

implied by the formation of a bilayer at the confinement. For large d′, since parti-

cles interact isotropically with the probe, P (∆x) becomes a Gaussian distribution

centered at zero as a result of which Fx ≈ 0.

Effect of propulsion speed

On increasing propulsion speed v0, due to a corresponding increase the persistence

length (`p ∝ v0), the tendency of APs to aggregate at surfaces [94] increases. The

surface pressure exerted by them is thereby larger [121]. APs with larger v0 are thus

capable of squeezing through a narrower gap. As plotted in fig. 5.5 (c), this results

in a considerably larger force even at small distances. As apparent in representative
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Figure 5.3.: (a) Snapshot of the full system with the trapped probe near the center of the
confinement. (b-d) Zoomed snapshots with the probe at d′ = {0.76, 1.03, 1.60}. The active
particles are plotted as blue circles. The confinement is the solid black line. The dashed lines
are separated by 2ra. The filled, grey circle represents the probe and the dashed circle is
where the probe would be if its center coincided with the trap center. Components of the
force as a function of d′ as measured in (e) simulations and (f) experiments.
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Figure 5.4.: Probability distribution of the probe’s displacement along the x axis ∆x =
xp − xtr in (a) simulations and (b) experiments for different surface-to-surface distances
d′. The solid lines are fits to a Gaussian distribution. The inset in (a) corresponds to the
probability distribution of the probe’s displacement along the y axis.

snapshots shown in fig. 5.5 (a,b), large v0 also promotes formation of layers leading

to a slower decay of the density away from the confinement and an enlarged span

of the dynamical bridge of APs between the probe and the confinement. As a result,

Fx decays to zero further away from the confinement.

To understand the effect of v0 on the dynamics of the probe in bulk, we now place

the probe near the center of the confinement. The probability distribution P (∆x)
for different speeds in plotted in fig. 5.5 (d,e). The symmetry of P (∆x) about zero

implies that the net force on the probe is zero. For passive particles (v0 = 0), the

distribution is Gaussian. As v0 increases, the width of the distribution increases

and non-Gaussian tails develop due to correlations induced by finite persistence of

APs. Such non-equilibrium signatures in the distribution have also been observed in

bacterial baths [122].

In order to obtain a quantitative relationship between the distribution of APs and

the force on the probe, we now use the framework of the active stress introduced in

chapter 4.
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Figure 5.5.: Zoomed-in snapshots of the system with (a) v0 = 0.3µm/s and (b) v0 = 1µm/s.
The probe is represented as a grey circle and the dashed circle is where the probe would
be if its center coincided with the trap center. The solid line represents the confinement.
The dashed lines are separated by 2ra. The blue circles correspond to APs. (c) Force on the
probe Fx as a function of surface-to-surface distance d′ for different propulsion speeds v0.
(d) Probability density of displacements P (∆x) with the probe placed near the center of the
confinement. Markers are data points from simulations and solid lines correspond to fits to
a Gaussian distribution. (e) P (∆x) measured in experiments (markers) and Gaussian fits
(solid lines). The legend in (c) is carried forward to panels (d) and (e).
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5.3.1 Active stress

Neglecting the nematic tensor, the total stress tensor [eq. (4.7)] in the force-free

region away from the probe and the wall reduces to [123]

σ = −ρkBT1− v0
Dr

[
v̂

2µ0
ρ1− kBT (∇p)ST

]
, (5.3)

where v̂(r) = v̂(ρ(r)) is the density-dependent effective speed that considers

excluded-volume interactions between particles. In the absence of currents, the

force on the probe F given by eq. (4.10) simplifies to

F =
∮
∂A

dl n ·σ (5.4)

where ∂A is the contour over which we perform the integral. We choose a circular

contour of radius rb > (ra + rp) whose center coincides with the probe’s position.

The boundary is thus outside the range of the pair potential between the probe

and active particles. Using n = er, the integral over the second term in eq. (5.3)

involves ∫ 2π

0
dϕ v̂(r, ϕ)erρ(r, ϕ) = veff

∫ 2π

0
dϕ erρ(r, ϕ) (5.5)

where veff is an effective propulsion speed which we assume to be independent of ϕ.

To calculate the contribution of the polarization, we need

er · (∇p)ST = 2∂pr
∂r

er + ∂pϕ
∂r

eϕ + 1
r

(
∂pr
∂ϕ
− pϕ

)
eϕ

−
(
∂pr
∂r

+ pr
r

+ 1
r

∂pϕ
∂ϕ

)
er. (5.6)

On integrating this dot product over ϕ, using ∂ϕer = eϕ and ∂ϕeϕ = −er, many

terms vanish because
∫ 2π

0 dϕ sinϕ =
∫ 2π

0 dϕ cosϕ = 0 and we are left with

∫ 2π

0
dϕ er · (∇p)ST = ∂

∂r

∫ 2π

0
dϕ p(r, ϕ). (5.7)

On gathering terms, eq. (5.4) becomes

F = −kBT

(
1 + v0veff

2D0Dr

)∫ 2π

0
dϕ rberρ(rb, ϕ)

+ kBTv0rb
Dr

[
∂

∂r

∫ 2π

0
dϕ p(r, ϕ)

]
r=rb

. (5.8)

76 Chapter 5 Force generation in confined active fluids



0 10 20 30
r [ m]

0.8

1.0

1.2

1.4

1.6

(r)
/

0

(a)

0 20 40
r [ m]

1.0

1.5

2.0
(b)

Figure 5.6.: Decay of density (normalized by global number density ρ0 ≈ 0.099) away
from the probe in (a) simulations and (b) experiments. Error bars denote the standard
deviations obtained from five independent measurements. The black markers correspond to
measurements and the grey line is a fit to the function ρ(r)/ρ0 = a+ be−r/ξ.

Writing the polarization in terms of the density using2 j = v̂p − D0∇ρ = 0 and

approximating v̂ = veff, the integral over the polarization becomes

∫ 2π

0
dϕ p(r, ϕ) = D0

veff

∫ 2π

0
dϕ

(
∂ρ

∂r
er + 1

r

∂ρ

∂ϕ
eϕ
)

= −D0
veff

(
c′(r) + c(r)

r

)
(5.9)

with

c(r) = −
∫ 2π

0
dϕ erρ(r, ϕ). (5.10)

To evaluate the integral, we need information on how the density decays. For

an object that does not generate currents, we know from chapter 4 that the

density satisfies eq. (4.14). As also confirmed by simulations and experiments

[cf. fig. 5.6], the density decays exponentially with decay length ξ. Substituting

ρ(r, ϕ) ≈ ρ(rb, ϕ)e−(r−rb)/ξ in eq. (5.9), the contribution of polarization to the force

becomes

kBTv0rb
Dr

[
∂

∂r

∫ 2π

0
dϕ p(r, ϕ)

]
r=rb

= kBT
D0
ξ2Dr

v0
veff

[
ξ2

r2
b

+ ξ

rb
− 1

]
rbc(rb). (5.11)

Gathering terms, we get the total force on the object

F = −kBTeffC; C = rbc(rb). (5.12)

2A symmetric probe does not generate currents.
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Figure 5.7.: (a) Decay length ξ as a function of propulsion speed v0 obtained from simula-
tions. (b) Effective temperature Teff (normalized by bath temperature T ). Simulation data
(closed symbols) is plotted along with the prediction from eq. (5.13) (open symbols). The
red square corresponds to the experimental value.

The factor

kBTeff = kBT

[
1 + v0veff

2D0Dr
+ D0
ξ2Dr

v0
veff

(
ξ2

r2
b

+ ξ

rb
− 1

)]
(5.13)

can be interpreted as an effective temperature that enables an activity-induced

increase in the effective diffusion constant. In the equilibrium limit (v0 = 0), as

expected, Teff is identical to the bath temperature T . The distribution of particles

around the probe also contributes to Teff through the decay length ξ. We obtain

the decay length ξ by fitting the density profile ρ(r) =
∫ 2π

0 dϕ ρ(r, ϕ) to an expo-

nential function and plot it in fig. 5.7 for several propulsion speeds v0. We find

that the corresponding (normalized) effective temperature Teff/T agrees well with

eq. (5.13).

To calculate the x component of the contour integral Cx which determines the force

Fx, we need the angle-resolved density ρ(rb, ϕ) evaluated at a distance rb from the

center of the probe. Due to symmetry, the y component of the integral Cy = 0. We

fix rb = rp + 2.2ra, though, as discussed in appendix A.3, the contour integral is

independent of this specific choice. In fig. 5.8, we plot the time-averaged density

ρ(rb, ϕ) for several normalized surface-to-surface distances d′. The non-monotonicity

in the resulting force is reflected in changes in the density profile for different d′. At

d′ ≈ 1.3, in both experiments and simulations, ρ(rb, ϕ) develops two off-center peaks

indicating that APs accumulate at corners in wedges between the confinement and
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Figure 5.8.: Angle-resolved density profile ρ(rb, ϕ)/ρ0 for different surface-to-surface dis-
tances d′ measured in (a) simulations and (b) experiments. We choose the radius of the
boundary rb = rp + 2.2ra. The inset in (a) depicts a sketch of the contour along which
we calculate the density. Also shown is the force on the probe Fx and the prediction from
eq. (5.12) evaluated in (c) simulations and (d) experiments. The colored markers in (c) and
(d) correspond to distances for which the density has been plotted in (a) and (b).

probe. Increasing d′ allows APs to jostle through the gap between the confinement

and probe. At d′ ≈ 1.6, this results in a peak at ϕ ≈ 0. For large d′ where the

enhanced density at the confinement due to accumulation of APs has sufficiently

decayed, the angle-resolved density profile is flat and fluctuates about the global

number density ρ0. This implies that ρ(rb, ϕ) = ρ(rb) is independent of ϕ.

From the angle-resolved density, we obtain C using eq. (5.12) through numerical

integration. Fitting for the effective temperature Teff, we find that the experimental

value of Teff ≈ 17T and the value of Teff ' 16.25T obtained from simulations closely

agree. Note that Teff is independent of d′. The force Fx is plotted along with kBTeffCx

in fig. 5.8.
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5.3.2 Effect of attractive interactions

As evident from fig. 5.3, though simulations capture the non-monotonic behavior of

the experimentally measured force qualitatively, there is a quantitative discrepancy.

To apprehend the cause of this disagreement, we plot the distribution of contact times

of APs with the probe and confinement in fig. 5.9. The experiments performed to

determine τc have been performed in a smaller confinement of radius rcon = 15µm.

From fig. 5.9 (a), we infer that the distribution of contact times of APs with the

confinement for purely repulsive particles [εatt = 0kBT in the figure] employed in

the simulations hitherto is significantly narrower and decays much more rapidly

than that measured in experiments. APs therefore spend a longer time near the

wall in experiments. From previous works we know that the decrease in rotational

diffusion as APs approach the confinement is marginal [124, 50]. The distribution

of contact times with the probe measured from simulations and experiments, in

contrast, agree reasonably well.
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Figure 5.9.: Probability distribution P (τc) of contact times τc of APs with (a) the confinement
and (b) the probe. Experimental results are represented as bars. Simulation results for
different attraction strengths εatt is plotted as lines.

To study the consequence of larger contact times, we now introduce an attractive

part to the interaction potential. We construct this potential u by gluing the WCA

potential with the attractive part of the potential introduced by Wang et al. [125] at

their minima

u(r) =


uWCA − εatt if r ≤ rmin

uatt if rmin < r ≤ rcut

0 otherwise.

(5.14)
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The attractive potential is given by

uatt(r) = γεatt

[(
σ

r

)2
− 1

] [(
rcut

r

)2
− 1

]2

(5.15)

with

γ = 2
(
rcut

σ

)2
(

3
2
(
r2

cut/σ
2 − 1

))3

(5.16)

where εatt is the strength of attraction. The minimum of uatt is at a distance

rmin = rcut

( 3
1 + 2r2

cut/σ
2

) 1
2
. (5.17)

The glued potential u(r) reduces to the WCA potential for εatt = 0. In our extended

model with attraction, we set rmin = ra and rcut = 1.05ra to calculate uatt between

the probe and confinement. To calculate the potential between APs and the probe,

we set rmin = ra + rp and rcut = 1.05× (ra + rp). No attraction is introduced between

APs; so εatt = 0.
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Figure 5.10.: (a) Glued pair potential u [eq. (5.14)] for different attraction strengths εatt.
(b) Force on the probe Fx as a function of surface-to-surface distance d′ for different εatt.
Error bars are standard deviations calculated from five independent simulations.

On introducing attraction, as shown in fig. 5.9, APs spend more time near the con-

finement resulting in a broader distribution of contact times which approaches the

experimental distribution. A plausible cause for an effective attraction at the con-

finement in experiments could be surface roughness or hydrodynamic interactions,

both of which we have neglected throughout in simulations. Figure 5.10 shows that

the force systematically increases on increasing εatt for all distances d′. An attractive
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strength of εatt ' 5− 6kBT yields good agreement with experiments. A third peak

that is consistently observed in simulations due to the formation of a bilayer at the

confinement is unseen in experiments.

5.3.3 Effect of confinement shape

To investigate the possible effect of the shape of confinement on the force exerted

on the probe, we consider a lunar confinement depicted in fig. 5.11 (a). We fix

the diameter of the larger arc at 100µm. From fig. 5.11 (b), we conclude that

the force on the probe is independent of the diameter of the smaller arc ds for all

distances. Therefore, the magnitude and sign of the confinement’s curvature does

not measurably affect the force. Whether making ds comparable to the diameter of

the probe 2rp has an effect on the force remains to be tested.
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Figure 5.11.: (a) Sketch of the system under lunar confinement. A circle of diameter ds is cut
out. We set dcut = 60µm. The surface of the trapped probe (circle) is at a distance of dµm
from the confinement. (b) Force on the probe Fx as a function of surface-to-surface distance
d′ for diameters of the cut-out circle ds. Error bars are standard deviations calculated from
five independent simulations.
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Summary and outlook 6
Collective forces and torques that emerge from interactions at the active particle

scale govern a multitude of macroscopic phenomena unreachable in equilibrium.

For example, they generate non-vanishing currents capable of driving microscopic

engines and prompt phase separation into dense and dilute regions in the absence

of attractive interactions. In this thesis, we investigated different ways in which such

collective forces and torques manifest themselves in active matter. First, we studied

how they control the emerging phase behavior of elongated self-propelled particles.

Secondly, we determined how active particles transmit forces onto immersed passive

objects. On a related note, thirdly, we rationalized the experimentally measured

force on an optically trapped probe in a confined active fluid.

Connecting scalar and polar active matter, in chapter 3, we modelled anisotropic

interactions between active particles through the repulsive variant of the Gay-Berne

potential [65]. By varying a single parameter of the potential, the aspect ratio, we

smoothly interpolated between isotropic, discoidal particles and elongated polar

ellipses. In order to restrict our focus to inter-particle interactions, we set the

Peclét number to infinity. This means that an isolated particle will move along

a straight line. At the packing fraction we considered, discoids exhibit motility-

induced phase separation (MIPS). On increasing the aspect ratio, MIPS breaks down

and particles dynamically group into mobile polar domains. Eventually, for large

aspect ratios, the system again phase separates into dense and dilute regions. In

contrast to MIPS, in this case, the dense phase is highly polarized. We explained

the formation of these qualitatively different phases observed in simulations by

extracting two effective parameters, viz., the coupling to the local polarization and

the force-imbalance coefficient, that enter the mean-field narrative. More generally,

in addition to these phases, noise-driven transitions can be observed on reducing the

Peclét number [126]. Conspicuously, we did not observe vortices or visual signatures

of active turbulence in our system. These have been reported in larger simulations

of self-propelled rods interacting through the Yukawa potential [78]. To obtain

chaotic behavior in the mean-field equations, in Ref. [127], an explicit coupling
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to the flow of the surrounding fluid had to be considered. Moreover, in general,

anisotropy in shape leads to an anisotropic mobility tensor [128]. The effect of

non-degenerate parallel and perpendicular mobilities will be addressed in future

work. The collective behavior of anisotropic, chiral active matter in which there is

an interplay of alignment and persistent rotation is another area that has received

great attention in recent times [129].

In chapter 4, we studied how active particles interact with fixed passive objects.

When immersed in an active bath, passive inclusions have the conditional ability to

generate currents depending on their shape. The currents they generate act back on

them in the form of a net force or torque. By employing the divergence theorem,

we expressed the force on the object in terms of the total stress tensor and the

particle current. Though the force is completely determined by the current dipole

moment in an unbound system, the idea of viewing inclusions as current dipoles is

not universally applicable. Particularly, in a finite system with periodic boundary

conditions, the contribution from the current dipole vanishes and the force on the

inclusion is sustained by the vorticity (curl of polarization) of particles in its vicinity.

The force can also be independently expressed in terms of the integrated boundary

current. Interestingly, the system size L has an enormous influence on the magnitude

of force which grows as L2 before plateauing to a constant value. This indicates

the presence of a minimal separation between inclusions that maximizes the force.

By choosing inclusions shaped like a boomerang and a duck, we corroborated our

theoretical results with numerical simulations of active Brownian particles. These

results have practical implications in the design of objects that are optimized for a

specific behavior.

To test the concept of the active stress, in chapter 5, we applied it to an experimental

system of an optically trapped, disc-shaped probe in a circularly confined suspension

of light-activated self-diffusiophoretic particles. We modelled the system using

active Brownian particles that interact repulsively with a larger particle (probe)

in a harmonic potential. On increasing the separation between the probe and the

confinement, the force on the probe varies non-monotonically before decaying to

zero for large distances. We rationalized this qualitatively using the fact that active

particles accumulate in layers at the confinement due to their persistent motion.

Since we measured a lower contact time between the active particles and the probe,

we introduced attractive interactions between them. Doing so yielded a better

quantitative agreement of the forces measured in simulations and experiments. We
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showed that the density field of active particles around the probe determines the

force, therewith establishing a direct relationship between force generated by the

active fluid and their microstructure. The indifference of our approach toward

system-specific interactions renders it readily applicable to the broader class of

synthetic and living active matter.

Our current knowledge of collective forces and torques, to which this thesis aimed to

contribute, provides a bottom-up understanding of several well-established features

of active matter including clustering, aggregation at surfaces and persistent steady-

state currents. In nature, active matter often finds itself in spatially heterogeneous

environments like a habitat with randomly placed obstacles (trees in a jungle, for

example) or porous media. Such surroundings significantly alter their collective

behavior [130, 131, 132]. A comprehensive theoretical study of the interplay of

geometry and aggregation of (generically) anisotropic active matter could prove

useful in improving budding technologies that exploit microbial metabolism for,

inter alia, healing fissures in concrete [133] and oil recovery [134, 135]. The other

aspect of active matter producing non-vanishing currents has already been used to

conceive bacteria-driven micromotors [37]. The question of how to optimize the

shape of such a motor remains to be investigated. Akin to the passive assembly of

lock-and-key colloids that fit together like a ball and socket [136], activity-mediated

self-assembly of differently-shaped passive objects is another fascinating avenue for

further research.
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Appendix A
A.1 Gay-Berne potential

The Gay-Berne pair potential, an extension of the 6-12 Lennard-Jones potential, is

used to emulate anisotropic particles. It is extensively used in the study of liquid

crystals and shows an isotropic-nematic equilibrium phase transition [137, 138].

The potential reads

uGB(rij , ei, ej) = 4εε̂
(
ι−12 − ι−6

)
(A.1)

where ι ≡ rij/σ − σ̂ + 1. With r̂ = r/r, the orientation-dependent well depth is

ε̂(r̂, ei, ej) = εν1(ei, ej)εµ2 (r̂, ei, ej) (A.2)

with

ε1 = [1− (αei · ej)2]−1/2 (A.3)

ε2 = 1− α′

2

{
(r̂ · ei + r̂ · ej)2

1 + α′ei · ej
+ (r̂ · ej − r̂ · ei)2

1− α′ei · ej

}
. (A.4)

The anisotropy in shape is measured through

α = κ2 + 1
κ2 − 1 (A.5)

where κ is the aspect ratio of the particle. The anisotropy in energy is quantified

by

α′ = κ′1/µ − 1
κ′1/µ + 1

(A.6)

where κ′ is the ratio of the energy depth of side-by-side and end-to-end configurations

of the particle pair. Throughout, we fix κ′ = 5, µ = 2 and ν = 1.
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A.2 Density due to a lattice of current dipoles

Let us consider a square lattice of n identical objects generating current, each with

dipole moment m. The density at r is

δρff
L(r) =

∑
n

δρff(r−Rn) = 1
Deff

∑
n

m · (r−Rn)
2π|r−Rn|2

(A.7)

where L is the lattice constant and Rn is vector pointing to object n from object

n = 0 with origin at R0 = 0. Taylor expanding for small |r| � |Rn|, we get

xi −Xi

|r−Rn|2
≈ −Xi

R2
n

+
(

∂

∂Xn,j

Xn,i

R2
n

)
xj . (A.8)

Plugging this in eq. (A.7), we get

δρff
L(r) = δρff(r) + 1

2πDeff

∑
n6=0

[m · (r−Rn)
R2
n

−m ·
2RnRn

R4
n

· r
]
. (A.9)

To compute the term in brackets we need

∑
n 6=0

1
R2
n

= 4
L2

∞∑
k=1

1
k2 = 2π2

3L2 , (A.10)

∑
n 6=0

Rn

R2
n

= 0, (A.11)

∑
n6=0

RnRn

R4
n

= 2
L2 1

∞∑
k=1

1
k2 = π2

3L2 1 (A.12)

where the length of the lattice vector |Rn| = kL. Inserting the above expressions

in eq. (A.9), we deduce that the correction to the far-field density vanishes. Hence,

considering a lattice of current dipoles leaves the far-field density unchanged and

does not resolve the contradictory picture painted by simulations performed in

periodic boundaries.

A.2 Density due to a lattice of current dipoles 87



A.3 Contour integral of density

As derived in Chapter 5, the force on the probe F = kBTeffC where

C ≡ (Cx, Cy)T = rb

∫ 2π

0
dϕ ρ(rb, ϕ)(cosϕ, sinϕ)T . (A.13)

The line integral is measured along a circular contour of radius rb centered at the

probe. The radius rb should be large enough to be outside the range of the pair

potential between active particles and probe but small enough to avoid the influence

of the confinement. This prohibits the estimation of the integral at small distances.

In fig. A.1, we plot Cx as a function of distance d′ for different radii rb. The integral

is robust to changes in rb.
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Figure A.1.: Contour integral Cx =
∫ 2π

0 dϕ ρ(rb, ϕ) cosϕ as a function of (normalized)
surface-to-surface distance between the probe and the confinement d′ for different radii
of contour rb measured in (a) simulations and (b) experiments. The inset in (a) shows
Cy =

∫ 2π
0 dϕ ρ(rb, ϕ) sinϕ as a funciton of d′ evaluated at rb = 9.7µm.

Moreover, the y component of the contour integral vanishes due to symmetry. In

simulations, as shown in the inset of fig. A.1 (a), we find that Cy is indeed small and

fluctuates about zero.
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