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The generation and interpretation of results from transcriptome pro�ling exper-
iments via RNA sequencing (RNA-seq) can be a complex task. While raw data
quality control, alignment, and quanti�cation can be streamlined via ef�cient
algorithms that can deliver the preprocessed expression matrix, a common bot-
tleneck in the analysis of such large datasets is the subsequent in-depth, iterative
processes of data exploration, statistical testing, visualization, and interpreta-
tion. Speci�c tools for these work�ow steps are available but require a level of
technical expertise which might be prohibitive for life and clinical scientists,
who are left with essential pieces of information distributed among different
tabular and list formats.

Our protocols are centered on the joint use of our Bioconductor packages
(pcaExplorer, ideal, GeneTonic) for interactive and reproducible
work�ows. All our packages provide an interactive and accessible experience
via Shiny web applications, while still documenting the steps performed with
RMarkdown as a framework to guarantee the reproducibility of the analyses,
reducing the overall time to generate insights from the data at hand.

These protocols guide readers through the essential steps of Exploratory Data
Analysis, statistical testing, and functional enrichment analyses, followed by
integration and contextualization of results. In our packages, the core elements
are linked together in interactive widgets that make drill-down tasks ef�cient
by viewing the data at a level of increased detail. Thanks to their interoper-
ability with essential classes and gold-standard pipelines implemented in the
open-source Bioconductor project and community, these protocols will permit
complex tasks in RNA-seq data analysis, combining interactivity and repro-
ducibility for following modern best scienti�c practices and helping to stream-
line the discovery process for transcriptome data. © 2022 The Authors. Current
Protocols published by Wiley Periodicals LLC.

Basic Protocol 1: Exploratory Data Analysis with pcaExplorer
Basic Protocol 2: Differential Expression Analysis with ideal
Basic Protocol 3: Interpretation of RNA-seq results with GeneTonic
Support Protocol: Downloading and installing pcaExplorer, ideal, and
GeneTonic
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INTRODUCTION

Gene expression is a fundamental biological process, resulting from various genetic and
regulatory programs that de�ne the state of cells and tissues, and can be measured with a
variety of experimental techniques. RNA sequencing (RNA-seq) is a widely used molec-
ular assay, offering a quantitative and robust system for pro�ling transcriptional outcomes
(Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008; Wang, Gerstein, & Snyder,
2009). Over the years, RNA-seq has replaced microarrays as a technology of choice, and
has been adopted in a large number of studies from basic sciences, but has also proven
fundamental in clinical settings to better understand development and disease (Salit &
Woodcock, 2021; Van den Berge et al., 2019; Zhang et al., 2015).

Currently, RNA-seq enables the study of a multitude of applications, comprising gene
expression regulation, isoform and transcript discovery, alternative splicing, gene fusion,
genetic variation among expressed genes, RNA editing, post-transcriptional modi�ca-
tions, and epitranscriptomics (Conesa et al., 2016), with many of these applications being
increasingly addressed also at the single-cell and at the spatial resolution (Li & Wang,
2021). While powerful tools exist to perform quality control, alignment, and expression
quanti�cation, a common bottleneck is constituted by the data exploration, modeling,
and interpretation, to be performed once a table of counts (as proxy for the gene expres-
sion values) and the full information on the experimental covariates are available (Anders
et al., 2013; Soneson, Love, & Robinson, 2015).

Knowledge extraction from transcriptomics datasets, increasingly available in larger and
more complex experimental scenarios, can be a time-consuming task, whereas the com-
plementary expertise of data analysts and bench scientists are often required for ef�-
cient, comprehensive, and impactful analyses (Akhmedov, Martinelli, Geiger, & Kwee,
2020). This is especially true for differential expression analysis, for which a number
of established methods (and their implementation, mostly provided as R packages) ex-
ist, but might not be immediate to use for broader audiences, despite valuable efforts
in accurately documenting software (Amezquita et al., 2020; Love, Huber, & Anders,
2014; McCarthy, Chen, & Smyth, 2012; Ritchie et al., 2015). In this context, the appro-
priate setup of the statistical modeling according to the circumstances of their experi-
ment is often best selected with the guidance of a biostatistician/bioinformatician, who
usually generates a summary report, to be shared with collaborators afterwards (Sone-
son, Marini, Geier, Love, & Stadler, 2020). In particular, after the discovery of differen-
tially expressed genes and the identi�cation of the processes that might be underlying
these transcriptional changes, the detailed exploration of the complete set of results is an
iterative process where the integration of all components might be a prohibitive task for
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life and clinical scientists (Geistlinger et al., 2020; Marini, Ludt, Linke, & Strauch, 2021;
McDermaid, Monier, Zhao, Liu, & Ma, 2018).

The framework we offer provides accessible and user-friendly interfaces, while making
sure to document and record the steps performed via companion RMarkdown reports,
as a foundation for reproducible research (Marini & Binder, 2016). Overall, our solu-
tion serves as a bridge among many researchers, enabling them to adopt state-of-the-art
methods from the open-source Bioconductor ecosystem of packages (Amezquita et al.,
2020; Huber et al., 2015), with dashboards that can seamlessly be used on desktop/laptop
computers, shared, and deployed in collaborative contexts. The core elements of the ap-
plications are linked together within the Shiny reactive programming engine, ef�ciently
implementing tasks such as repeated drill-down into the datasets for providing views
of increased detail. This, in turn, translates into a reduced time and effort to generate
hypotheses and insight from the data at hand, increasing its value and impact by stream-
lining the discovery process for transcriptomics gene regulation studies (Marini et al.,
2021).

In this article, we will demonstrate how to use a series of packages we developed (pca-
Explorer, ideal, and GeneTonic, all available through the Bioconductor project
(Marini & Binder, 2019; Marini et al., 2021; Marini, Linke, & Binder, 2020), to in-
teractively explore, visualize, and integrate RNA-seq datasets and results. All proto-
cols described in this manuscript can be combined in a single analytic work�ow, which
can be widely applied to bulk RNA-seq scenarios (including, e.g., patient data in clini-
cal/diagnostic settings), and can be adopted by a broad spectrum of researchers, empow-
ering also users with limited technical/biostatistical expertise.

Basic Protocol 1 describes the essential steps of exploratory data analysis as it is per-
formed using the pcaExplorer package, starting from the essential count matrix gen-
erated after expression quanti�cation.

Basic Protocol 2 explains how to perform statistical modeling and testing for differential
expression with the ideal package (leveraging the framework of DESeq2), followed
by functional enrichment analysis.

Basic Protocol 3 illustrates how to use the GeneTonic package to combine expression
data, results from the differential expression analysis, and functional enrichment tabular
information to ef�ciently interpret and contextualize RNA-seq data.

The Support Protocol shows the detailed instructions to download and install all the re-
quired software, including the exemplary datasets used throughout this manuscript.

Alternate Protocol describes the usage of functions from pcaExplorer, ideal, and
GeneTonic, as they can be seamlessly used in tailored analyses, either as R scripts or
as RMarkdown documents.

Notably, each of the Basic Protocols can be executed in a stand-alone manner if other
established upstream procedures are already in place.

STRATEGIC PLANNING

Before starting with the Basic Protocols, users should complete the installation of the
required software as detailed in the Support Protocol. By following these instructions, all
necessary packages and datasets will be made available so that they can be executed from
any directory on the local computer. We refer to the software descriptions and vignettes
of the individual packages for additional information.

The protocols described in this article represent the main steps through a comprehen-
sive analytic work�ow for bulk RNA-seq datasets, and are structured in a modular way Ludt et al.
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Figure 1 Workflow schematic for the presented protocols (A). The different data formats to pro-
vide to each of the protocols are represented as tabular or list-like elements, named by the scheme
followed in the procedures illustrated in this work. Dashed arrows indicate that the provided infor-
mation can be used to generate or annotate another object. Solid arrows (gray) denote that an
object has been derived/computed from the other where the connector originated from. The small
boxes close to each element explain in which protocol each object is used as primary (black)
or secondary (gray) input. On the right side, the two main approaches delivered by our software
(interactivity via web applications and reproducibility via reporting) are represented. A summary
of the tasks each protocol accomplishes is detailed in (B)—linked together from the setup and
installation, all the way down to the data interpretation.

that can enable readers to carry them out with the possibility of alternate entry points
(e.g., performing differential expression analysis with another software package from the
R environment or from the command line). Figure 1 illustrates the different �les required
to carry out such operations (Fig. 1A), together with an overview of the tasks covered
by the software packages we present in this work (Fig. 1B). As shown in the �owchart,
it is possible to navigate back to previous steps in different iterations of the analyses.
This is intrinsically bound to the explorative nature for such high-dimensional datasets,
where cycles of hypothesis generation and testing can follow, ultimately leading to the
validation and integration with the additional observations speci�c to each experimental
setting.

In the following protocols, R functions in the text will appear formatted as
my_function()/my_parameter, and the same monospace formatting will be used
for typed R input commands in the console, and the corresponding output. Occasional
comments will be reported in the code chunk, prefaced by the # symbol. Package
names will also be reported in monospace font as package_name. The panel com-
ponents of the web applications will be reported in capitals, as they are speci�ed in theirLudt et al.
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implementation, while buttons and other widgets will be enclosed in single quotes as
‘Button name’.

BASIC
PROTOCOL 1

EXPLORATORY DATA ANALYSIS WITH pcaExplorer

pcaExplorer is a Bioconductor package (Marini & Binder, 2019) which can be used
as a general-purpose interactive companion tool for RNA-seq analyses, developed in the
Shiny framework (Chang et al., 2021). pcaExplorer is designed to guide the user in
exploring the Principal Components (PC) latent space (Jolliffe, 2002) of the data under
inspection. Besides the Principal Component Analysis (PCA), pcaExplorer also pro-
vides tools to detect outlier samples and inspect their impact, identify genes that show
particular patterns of interest, and additionally provide a functional interpretation of the
principal components for further quality assessment and hypothesis generation on the
input data.

In this protocol, we describe how to launch an instance of pcaExplorerworking with
the data of the macrophage dataset (Alasoo et al., 2018), which is also distributed as
a Bioconductor package (Huber et al., 2015).

Necessary Resources

Hardware

See detailed description in the Support Protocol

Software

See detailed description in the Support Protocol

Files

See detailed description in the Support Protocol. Speci�cally, this Basic Protocol
will make use of:

The count matrix �le, containing the expression values for the macrophage
dataset (countmatrix_macrophage.txt)

The �le containing the information on the experimental covariates
(metadata_macrophage.txt)

The annotation �le (annotation_macrophage.txt), for handling the
conversion between ENSEMBL identi�ers and gene symbols.

The alternative entry points speci�ed in this Basic Protocol also use some processed form
of the text �les listed above to generate the dds and dst objects (see step 2 below),
ensuring that this procedure is fully reproducible (see Fig. 1A for a visual summary).

NOTE: Before we start with the exploration of the data, the necessary packages and de-
pendencies need to be installed and loaded. The Support Protocol describes how to install
and load the packages.

Exploring the data with pcaExplorer
1. Prepare the input data for pcaExplorer.

The main pcaExplorer() function requires the count matrix, the metadata, and an-
notation (Fig. 1A, black small boxes labeled BP1) to be loaded into the environment
before the main call, or alternatively offers the possibility to load these objects during
runtime (which can be common for a �rst execution). If loading the input �les at runtime,
the application can be launched with the simple command, leaving all other parameters
unspeci�ed.

library("pcaExplorer")

pcaExplorer() Ludt et al.
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Figure 2 Overview of the Data Upload panel in pcaExplorer.Upon providing the count matrix and themetadata
as specified in step 1, it is possible to generate the internally required objects (A); different transformations can
be applied to the expression matrix (B), and all provided objects can be previewed clicking on the buttons
below (C). Inset (D): some examples of the accepted formats to upload for the count matrix, the experimental
metadata, and the annotation file.

To launch the application, enter the command into the console of RStudio and press the
Enter key. This will open a new window with the pcaExplorer application. In this
application you should see the Data Upload panel as shown in Figure 2, with examples
on the �le formats expected to be working correctly in the app (see inset in Fig. 2D).

In this case, upload one by one the count matrix �le, the sample metadata �le, and
the annotation �le as provided in the ‘Input_�le’ folder of the protocols repository (see
Support Protocol) – Figure 2 re�ects the content displayed if launching the application
as speci�ed above.

If the necessary objects are already loaded in R (e.g., with any function that reads tabular
text input), you can launch the Shiny application with the command:

library("pcaExplorer")

pcaExplorer(countmatrix = countmatrix,

coldata = metadata,

annotation = annotation)

In this call, countmatrix, metadata, and annotation have to be substituted by
the names of the respective objects.

2. Generate the necessary objects for using pcaExplorer.

Click the ‘Generate the dds and dst object’button (Fig. 2A). The dds object represents a
DESeqDataSet dataset object, while the dst is a DESeqTransform object (Love
et al., 2014).

Both objects are needed for the exploration of the data, and can be readily derived from
the provided �les/objects – alternatively, you can pass the dds and the dst objects (Fig.
1A, gray small boxes labeled BP1) directly, in case they are already loaded in the R
environment (e.g., while running an analysis from the command line). This is possible
with the lines of code reported here:

library("pcaExplorer")

pcaExplorer(dds = my_dds,

dst = my_dst)

After the generation of the two objects, the ‘Select one of the following transformations
for your data:’ option with three blue colored buttons underneath should appear in the

Ludt et al.
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Figure 3 Overview of the Counts Table panel in pcaExplorer. The navigation to this panel occurs by clicking
on the respective name on the top of the tabs (A). The selection of the displayed expression table is done with
the dropdown element (B), and the content of the table can be downloaded by clicking on the download button
(C). The correlations between samples can be explored in the section below (D), where additional content can
be generated [e.g., a scatter plot matrix and a heatmap, to appear at (E)].

panel. Click the ‘Compute variance stabilized transformed data from the dds object’
button on the left (Fig. 2B).

pcaExplorer provides three different options for data transformation. The �rst op-
tion is to compute a variance-stabilized transformed version of the data. The second is
a regularized logarithm transformation of the data. A log2 data transformation is also
offered. Users are advised to choose the data transformation according to their input
data and evaluate the effects of the different transformations on their data.

3. Preview the provided input data.

Scroll to the bottom of the Data Upload panel, where a preview of the input data is pro-
vided. You can access each of the data components by clicking on the green colored
buttons (see Fig. 2C) – each of these opens up a separate modal window.

4. Explore in detail the provided counts table.

Navigate to the Counts Table panel by clicking on the panel name in the tabs list at
the top of the main body of the application (Fig. 3A). In this panel, the information of
the count matrix is shown in a table. A dropdown menu at the beginning of the panel
(Fig. 3B) provides the possibility to change the displayed expression table (including
raw counts, normalized counts, regularized logarithm transformed counts, etc.). You can
download these different versions of the original counts table through clicking on the
green download button below (Fig. 3C).

5. Explore the correlations between samples.

Scroll down until you see the ‘Sample to sample scatter plots’heading (Fig. 3D). Choose
‘pearson’ as correlation method from the ‘Correlation method palette’. If you want to
reduce the computation and rendering time, check that both options ‘Use log2 val-
ues for plot axes and values’ and ‘Use a subset of max 1000 genes (quicker to plot)’
are selected. Click on the ‘Run’ button to generate the scatter plots (appearing below
Fig. 3E) – this includes a scatter plot matrix and a heatmap describing the correlation
between all pairwise sample combinations.

Creating an overview and computing summaries on the provided data
6. Explore the relationships between the samples. Ludt et al.
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Figure 4 Screenshot of the Data Overview panel in pcaExplorer. The metadata information is presented in
the table (A), and a heatmap can be computed based on the selected distance method (B) and displayed. This
visual overview can be downloaded by clicking on the button below it (C). The “Group/color by” selector controls
the graphical aspect of the output, related to the experimental covariates of interest (D).

Navigate to the Data Overview panel (Fig. 4). The panel shows the input metadata as
a table in the upper section of the user interface, with some interactive features to edit
its appearance or to search its content (Fig. 4A). Below the metadata table, a Sample to
Sample distance heatmap can be found, representing the distances between the individual
samples. The ‘Select the distance method to use’ option (Fig. 4B) enables you to change
the underlying distance method used for the computation. Furthermore, you have the
option to download the heatmap via the ‘Download Plot’button in the lower right corner
below the heatmap. In the �eld ‘Save as…’you can specify the name of the �le to save the
heatmap to (Fig. 4C) – this functionality is provided for any graphical output presented
in pcaExplorer.

7. Decorate the plots by encoding information on the experimental covariates.

Below the heatmap, this panel provides some further information about the input data
(Fig. 5A). Next, color the samples by their originating cell line. To color the samples by
this covariate, click on the ‘Group/color by’�eld (Fig. 4D) in the gray side bar at the far
left of the screen. Scroll down in the dropdown menu, which opens upon clicking until
you �nd the ‘line’ option – or leverage the autocompletion functionality and start typing
the initials. Once any option is selected, scroll down to the ‘Number of million of reads
per sample’ plot. This plot should have changed from an all gray plot to a colored plot
(Fig. 5A).

In the provided sample data, the ‘line’ parameter indicates the cell line of the respective
sample. The Number of million reads per sample plot shown in Figure 5A can be used to
evaluate the uniformity of reads in each sample. Samples with a surprisingly high or low
number of reads could later be detected as outliers, because of several different factors
associated with the number of reads in a sample. An inspection of the distribution of the
overall number of reads in the individual sample can point users to the �rst source of
differences in the samples found in subsequent analyses of the data (e.g., as described in
Basic Protocol 2 and 3).

8. Change the selected experimental covariates of interest.

Scroll up again until you see the ‘Group/color by’ option (Fig. 4D), which constitutes
an ef�cient way to explore different experimental covariates of the data and provides
context to individual plots and results. Delete the selected option by clicking on the white
rectangle and hitting the delete key on your keyboard until the �eld is empty again. From

Ludt et al.
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Figure 5 Further content of the Data Overview panel in pcaExplorer. Some general information is shown in
the barplot about the assigned number of reads (A), while filtering options for defining genes as expressed are
displayed in the lower section (B).

the dropdown menu of options, select ‘condition’ as next parameter to color by. Instead
of selecting ‘condition’ from the dropdown menu directly, you can also select the option
by typing it into the white rectangle. This widget controls the appearance of many plots in
pcaExplorer, and is used to encode the grouping information (or their combinations).

9. Compute some summary statistics on the provided data.

Scroll down to the ‘Basic summary for the counts’ heading. Here you will see the total
number of uniquely assigned reads per sample, accompanied by some information about
the expressed genes in the data, speci�ed via simple thresholds. The �rst option is pro-
vided through setting the ‘Threshold on the row sums of counts’option. To test this option,
enter 10 in the dedicated �eld and compare the results to the ones shown in Figure 5B.
The second option to analyze the genes in the data is the ‘Threshold on the row means
of the normalized counts’ option (generally stricter than the former de�nition). Enter 10
for this option and compare the results with the ones shown in Figure 5B.

Exploring the Principal Components from the samples point of view
10. Create a Principal Component plot.

Navigate to the Samples View panel (Fig. 6). In this panel you will see the PCA of the
individual samples of the input data on the left side, with the corresponding scree plot
shown on the right side. If any value is selected in the ‘Group/color by‘ �eld (Fig. 6A), you
can explore the impact of each covariate by means of the color encoding applied to the
graphics. Use the ‘Group/color by‘ option to color the samples by condition – the PCA
plot should now display the samples in four colors (Fig. 6C). You can also download the
PCA plot via the ‘Download plot’ button in the lower right corner; as seen before, you
can specify the name of the �le to which you want to save the plot. This is also possible
for the scree plot on the right side of the panel.

The PCA plot of the sample data indicates that the most variance in the data seems to
arise from the condition of the individual samples in this speci�c data set. When analyzing
data, it is important for users to know which experimental variables of their samples have
the most in�uence (i.e., are responsible for the most of the variance). Hence, you should
select different options from the ‘Group/color by’ option to discover the covariate with
the most in�uence. This is also important for any downstream analyses, including the
differential expression analysis described in Basic Protocol 2. The scree plot right next

Ludt et al.
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Figure 6 Overview of the Samples View panel in pcaExplorer. Upon selection of the experimental covariate
of interest (A) and the number of most variable genes to use in the computation (B), the aspect of the PCA plot
(C) is expected to change, together with the scree plot on its side (D). Users can zoom in this plot by brushing
areas, and this displays a magnified version below (E). For the selected principal components, genes with the
highest absolute loadings are also displayed in a barplot (F).

to the PCA (Fig. 6D) can also help you to evaluate how many principal components
should be used to analyze the variance in the data. In the example shown in this protocol,
it can be easily observed that the �rst two components explain nearly 80% of the variance
in the data. 80% can be seen as a good cut-off value to select the number of principal
components.

11. Change the parameters to display different versions of the PCA.

Navigate to the options panel on the far left and search for the ‘Nr. of (most variant)
genes’ option (Fig. 6B), set as default to 300 genes. Change this number to 500 – either
using the increase and decrease buttons in the option �eld (indicated by small arrows)
or by typing the value in the box. Inspect the PCA plot and compare it with the plot in
Figure 6. The values of the percent of variance explained for the �rst and second principal
component should have changed, and, according to the values, you might observe slight
differences in the placement and clustering of the samples (according to how the inclusion
of a speci�c set of genes in�uences the overall variability).

The PCA plot visualizes the variance in the data and the differences between the indi-
vidual samples. The number of genes selected for the PCA plot can in�uence the overall
structure of the plot. In order to analyze which covariate is responsible for the variance
in the data, you should also consider changing the number of genes used for the PCA.
This enables you to analyze the robustness of the identi�ed factor.

You can also change the principal components that are displayed on either axis: by de-
fault, PC1 and PC2 are shown, but this can be changed by the select widgets in the left
sidebar. This can be extremely relevant when analyzing large datasets, where it is hard
to identify a clean structure – in this Basic Protocol, the dimensions of variability are
relatively straightforward to de�ne and associated with experimental covariates.

12. Zoom in the PCA plot.Ludt et al.
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Figure 7 Further content of the Samples View panel in pcaExplorer. Outlier identification can be
assisted by selecting the samples to be removed from the computation (A). A third dimension can
be added for exploration in the 3D interactive PCA plot (B).

The Sample View panel provides the possibility to zoom in on the PCA, using the Shiny
brushing mechanism: hover your mouse over the PCA plot until your mouse cursor
changes to a little plus sign. Click and hold the left mouse button to draw a little gray
rectangle in the main plot (Fig. 6E). Move the mouse to the upper left corner of the PCA
plot and select all samples belonging to the naive condition (colored in blue in Fig. 6C)
as explained before. Below the main plot, you can �nd a zoomed version of the PCA
plot, containing the selected samples. This should somewhat look like the plot shown in
Figure 6E. The zoom functionality is especially helpful in cluttered PCA plots with many
samples or particular cluttered regions of the plot.

13. Identify genes with high loadings on the selected principal components.

As a result of the computation of the principal components, the genes have a speci�c value
for the loadings, re�ecting the ‘weight’ that each of them has on a particular principal
component – this can be thought of as the correlation between the PC and the original
variable. For the two selected principal components (by default, PC1 and PC2), the genes
with highest loadings (in either direction along the axis of a PC) are displayed as bar
chart (Fig. 6F), and can later be followed up, e.g., in the Gene Finder tab panel.

14. Inspect the impact of marking samples as outliers.

Scroll down in the Sample View panel until you see the ‘Outlier identi�cation’ option
(Fig. 7A). The ‘Select which sample(s) to remove - suspected outliers’ option provides

Ludt et al.
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Figure 8 Overview of the Genes View panel in pcaExplorer. A PCA focused on the gene is shown (A), and
upon interaction (brushed area, B) it is magnified in the zoomed section (C). A profile explorer (D) is shown
for the selected genes across the samples, and if a gene is clicked upon in the zoomed area, its expression
values are plotted (E).Static (F) and interactive (G) heatmaps on the selected subsets are reported in the bottom
section.

the possibility to select and remove individual samples from the PCA. For demonstration
purposes, select all samples of the ‘naïve’ condition and remove them from the PCA (the
sample ids end in ‘102’, ‘111’, ‘182’, ‘262’, ‘284’, and ‘368’). The options included in
the dropdown are the samples still used for the calculation. Select the above-mentioned
sample ids until the PCA plot looks like Figure 7A.

The sample outlier detection option can help users at identifying individual samples
which are highly different from the remaining samples and hence could be possible out-
liers. Especially for data sets with small sample numbers, the outlier identi�cation option
is useful to evaluate the in�uence of individual samples on the overall PCA of the data.

At the bottom of the Sample View panel, you also have the option to select a third principal
component to visualize besides the �rst two (Fig. 7B). This is especially helpful in data
sets where the expression patterns present a more complex variance structure that might
be better captured by an increased number of principal components.

Exploring the Principal Components from the genes point of view
15. Create the genes biplot.

Navigate to the Genes View panel (Fig. 8), where you will see the results of a PCA on
the individual genes as a dual view to samples PCA from the previous steps (Fig. 8A).
Again, you can select a section of the plot to zoom which will be shown on the right side
in the ‘Zoomed window’(Fig. 8B, 8C). Upon selecting a subset of genes in the main plot,
these will also be displayed in the pro�le explorer as scaled expression values - a value
needs to be selected in the ‘Group/color by’ selection, and you can continue using the
‘condition’as in the previous steps (Fig. 8D). Each line in the pro�le explorer represents

Ludt et al.
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Figure 9 Overview of the Gene Finder panel in pcaExplorer. The search field (A) toggles the selection of
individual genes, displayed graphically (B) and in tabular format (C).

a gene, and the connection between the data points help to follow the relationship across
samples.

16. Inspect single selected genes.

In the ‘Zoomed window’, select a gene by clicking on one of the black dots. This will
generate a boxplot under the ‘Boxplot of selected gene’ heading (Fig. 8E), showing the
normalized counts for the selected gene, with the conditions de�ned by the value in the
‘Group/color by’ selector. You can also change the style of the plot to a violin plot. To
change the plot, search for the ‘Plot style for gene counts’option in the option bar on the
left.

17. Inspect subsets of selected genes.

Below the ‘Pro�le explorer’and ‘Boxplot of selected gene’plot you will �nd two versions
of the heatmap for the selected genes (displayed in the zoomed window) in all the indi-
vidual samples (Fig. 8D) - one static (Fig. 8F) and one interactive, based on the Plotly
framework (Fig. 8G). On the bottom, the collapsible element ‘Table export options’ con-
tains the tabular information for the same subset, and offers the possibility to export their
content.

18. Inspect genes of interest in the Gene Finder.

Navigate to the Gene Finder panel (Fig. 9). Enter ‘TSPAN6’ in the ‘Type in the name of
the gene to search’ option �eld (Fig. 9A). Make sure that ‘condition’ is still selected in
the ‘Group/color by’option; otherwise, select it from the available option. The panel will
create a boxplot of the normalized counts of the selected gene (Fig. 9B) as well as a table
with the normalized counts of the gene for each sample (Fig. 9C). The individual sample
names are annotated on the plotted points, and the underlying data is also reported as a
compact table.

TheGene Finder panel can be helpful in identifying the counts of a speci�c gene of interest
in the individual samples. If the gene of interest is not included in the data, the panel will
inform you by displaying the error message ‘Could not �nd the gene you typed’. The
panel will also try detecting if the gene name is misspelled and will suggest a gene name
close to the typed one. The search functionality is case sensitive and has no autocomplete
option, so it is important to type the gene name correctly.

19. Generate a functional interpretation for the principal components.

Navigate to the PCA2GO panel (Fig. 10). Click on the ‘Select species for your sample’
option (Fig. 10A), and from the dropdown menu select ‘Human’ (Fig. 10B). The ‘Select
the input type of your identi�ers’ option can remain unaltered, as we are already using
ENSEMBL identi�ers; if this is not the case in your own data, make sure to check what

Ludt et al.
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Figure 10 Overview of the PCA2GO panel in pcaExplorer. The species (A) and identifier types (B) can be
selected at runtime, to generate the set of tabular results displayed below (C), decorating the respective axes
of variation on the PCA plot (D).

identi�ers are in use, and select them accordingly. Click the blue ‘Compute the PCA2GO
object’ button (Fig. 10C), the application will compute for each PC and for each direc-
tion a set of enrichment results - it might take a while to compute the object. Each en-
richment table will be displayed on either side of the PCA plot in the middle of the panel
(Fig. 10D), and can be used to pinpoint biological processes and functions that can ex-
plain the observed variability on the latent space representation.

Optionally, to save time and obtain more �ne-grained functional categories, you can com-
pute such an object beforehand with methods implemented in the topGO package (Alexa,
Rahnenführer, & Lengauer, 2006), which are conveniently wrapped by the pca2go()
function. We refer to the package vignette where its speci�c usage is fully documented.

Wrapping up the analysis with pcaExplorer
20. Generate, preview, and export an analysis report.

Navigate to the Report Editor panel (Fig. 11). Open the ‘Markdown options’ dropdown
menu (Fig. 11A), and enter as a title for the report ‘Current Protocols pcaExplorer
report’ and your name in the ‘Author’ �eld; you can leave all other options unaltered
(Fig. 11B). Click the ‘Update report’button, and scroll down in the panel to see a preview
of the HTML report in the web application itself. Click on the ‘Generate & Save’ button
next to the ‘Update report’ button (Fig. 11C) to download the report. Save the report
specifying a �le name and location on your computer – this operation might take a while,
as most content is generated from a fresh session, based on the current values for the
reactive elements in the app.

21. Export the analyses components for further downstream exploration.

You can open the Tasks menu from the small cogs icon in the top right of the header (Fig.
12A). From there, it is possible to export the state of the app’s reactive elements into a
binary .RData workspace, or also store their values directly into an environment - this
will close the app as a result; the workspace can also be retrieved in the R session by
calling pcaExplorer_env, containing a list of values for the input widgets and the
reactive elements.

22. Find additional information on pcaExplorer.Ludt et al.
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Figure 11 Overview of the Report Editor panel in pcaExplorer. Options for markdown (A) and the editor (B)
are shown in the top section. Below, the report is previewed in the page, with the possibility to swap to view and
update its source code (C).

Figure 12 Overview of the Instructions and About panels in pcaExplorer.As from any other panel, it is possible
to open the task menu from the small cogs icon (A). In the Instructions panel, the vignettes can be consulted
while running the app (B). The About page (C) contains information on the development team and how to cite
the package.

Navigate to the Instructions panel, where two buttons can be clicked to open and inspect
the pcaExplorer vignettes (available when installing the package) (Fig. 12B). These
vignettes describe comprehensively the pcaExplorer package, and constitute an ex-
cellent complement to this Basic Protocol when searching for additional, up-to-date doc-
umentation. A quickstart guide is also displayed if clicking on the ‘Up and running with
pcaExplorer’ collapsible element. If you are interested in additional information about
the package, the About panel (Fig. 12C) lists also the developers contact information and
a citation entry. For the sake of computational reproducibility, consider adding the out-
put of the ‘Session Information’ section into your electronic notebook documentation, to
simplify the compilation of the ‘Materials and Methods’ section for a manuscript where
you used pcaExplorer.

Ludt et al.
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BASIC
PROTOCOL 2

DIFFERENTIAL EXPRESSION ANALYSIS WITH ideal

ideal (Marini et al., 2020) is a Bioconductor package for the interactive analysis of
RNA-seq data in the context of differential expression (DE) (Love, Anders, Kim, & Hu-
ber, 2015). ideal guides the user through the different steps of a DE analysis, starting
from the data upload, through the DESeq2 (Love et al., 2014) work�ow including nor-
malization, �ltering, exploration of differentially expressed genes, to functional analysis
and gene signature exploration.

In this protocol we describe how to launch theidealweb application (also implemented
in the Shiny framework (Chang et al., 2021)), running on the macrophage dataset
(Alasoo et al., 2018), which is also distributed as a Bioconductor package (Huber et al.,
2015).

Necessary Resources

Hardware

See detailed description in Support Protocol.

Software

See detailed description in Support Protocol.

Files

See detailed description in Support Protocol. Speci�cally, this Basic Protocol
will make use of:

The count matrix �le, containing the expression values for the macrophage
dataset (countmatrix_macrophage.txt)

The �le containing the information on the experimental covariates
(metadata_macrophage.txt)

The annotation �le (annotation_macrophage.txt), for handling the
conversion between ENSEMBL identi�ers and gene symbols

The gene signatures �le (h.all.v7.4.symbols.gmt), as it is distributed
via the MSigDB collections.

The alternative entry points de�ned in this Basic Protocol also use some processed form
of the text �les listed above to generate the dds_obj and res_obj (described in detail
in step 1 below), ensuring that this procedure is fully reproducible (see Fig. 1A for a
visual summary).

NOTE: Before proceeding with the modeling of the RNA-seq data, the necessary pack-
ages and dependencies need to be installed and loaded. The Support Protocol describes
how to install and load the packages.

Starting up with the ideal package
1. Load the ideal package and start the ideal web application.

The input data can be provided in different ways to the ideal application. Simi-
lar to pcaExplorer, it is possible to load the input �les at runtime (reading from
tab/comma/semicolon-separated text �les, to be provided once the app is running) and
launch the application with a simple command, leaving all other parameters unspeci�ed:

library("ideal")

ideal()

An alternative option is to provide the data as R objects (already loaded in the global
environment) to the function ideal(), as in the following chunk:

library("ideal")

ideal(countmatrix = countmatrix,Ludt et al.
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Figure 13 Overview of the Data Setup panel in ideal. The sidebar (A) contains parameters affecting the
behavior of many components, and the value boxes (B) summarize the current status of the analysis. Tours
and collapsible elements (C) are available in each tab. The initial upload of the data is taken care in the Step 1
(D), while the statistical model is specified in Step 2 (E).

expdesign = metadata,

annotation_obj = annotation,

gene_signatures = genesignatures)

where countmatrix, metadata, and annotation have to be data.frame ob-
jects, andgenesignatures has to be a list object (as shown in Fig. 1A in the Strategic
Planning section, focusing on the black small boxes labeled BP2).

A third option is to provide the data as a DESeqDataSet object (optionally with
a corresponding DESeqResults object, if already computed – Fig. 1A, gray small
boxes labeled BP2). These classes are the core containers used in the framework of the
DESeq2 package (Love et al., 2014).

library("ideal")

ideal(dds_obj = dds,

res_obj = res_de)

All of these options should open a browser window with the ideal application, which
will display the Welcome panel by default.

2. Explore the user interface of ideal.

When launching the dashboard, the landing page of ideal is the Welcome panel, pro-
viding the user information about the application and how to use it. We invite you to
read up the material in the ‘Quick start for effective usage’ section, and to familiarize
yourself with two of the help mechanisms provided in the app, namely the collapsible el-
ements (containing text-based introductions) and the buttons to start guided tours of the
interface (Fig. 13C). A sidebar is located on the left side of the user interface (Fig. 13A),
and contains several input controls which affect different tab panels. By changing one or
more of the input parameters, you can de�ne what is computed by the app, and how these
output elements are displayed. Moreover, the sidebar contains a ‘Quick viewer’, showing
an overview of the underlying objects, required to perform all of the analyses offered by
ideal - a green check icon appears close to each item, when the respective component
is either provided or calculated. A compact summary of the main objects is also provided
in the value boxes, in the top section of the body of the app (Fig. 13B).

3. Setup the data for the analysis in ideal. Ludt et al.

17 of 55

Current Protocols

 26911299, 2022, 4, D
ow

nloaded from
 https://currentprotocols.onlinelibrary.w

iley.com
/doi/10.1002/cpz1.411 by U

niversitätsbibliothek M
ainz, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 14 Further content of the Data Setup panel in ideal. An annotation table can be generated (A), and
samples can be excluded if deemed as outliers (B)—proper exploration of the data is recommended, as detailed
in Basic Protocol 1. After running the DESeq2 main wrapper (C), users can explore diagnostic plots, contained
in a collapsible element (D).

Navigate to the Data Setup panel. Inspect or upload interactively the required count
matrix, and the experimental design data in the ‘Step 1’ box, marked by the red color
(Fig. 13D). If uploading from text �les, click on the respective buttons and select the
�les where this information is stored – make sure the encoding format is respecting the
expected requirements for working in the ideal application.

4. Specify the experimental design for the analysis.

In the ‘Step 2’box, marked in yellow, you can select the experimental design (Fig. 13E);
specify ‘line’and ‘condition’for the macrophage dataset, and click on the green action
button (‘Generate the dds object’). This speci�cation will enable you to estimate the effect
size of the ‘condition’variable, while controlling for the cell line of origin, leveraging the
�exible generalized linear model framework (Anders et al., 2013). If you desire to under-
stand more about more complex model speci�cations, which might be possible depending
on the structure of your data, we recommend to use tools such as ExploreModelMa-
trix (Soneson et al., 2020) for this purpose. Upon generation of the DESeqDataSet
object, the respective value box on top turns green, and also the sidebar �eld for it will
get a green check mark.

5. Add a gene annotation and exclude samples from the analysis if required (optional).

The two light blue boxes that have appeared provide the optional steps for adding the
appropriate annotation and discarding unwanted samples (e.g., if your initial data ex-
ploration in Basic Protocol 1 revealed the presence of an outlier, Fig. 14A, 14B). If
you did not pass an annotation at application start, select ‘Human’ as species for the
macrophage dataset, ‘ENSEMBL’ as the id type (Howe et al., 2021), and con�rm the
selection with the blue button ‘Retrieve the gene symbol annotation for the uploaded
data’. Once this is terminated, the value box for the annotation object is displayed in
green (Fig. 13B).

6. Run the differential expression analysis.

Finally, run the main function of the DESeq2 framework in step 3 (green box) by clicking
on the button ‘Run DESeq’ (Fig. 14C). If multiple cores are available, you can use the
slider input to select the number of CPUs to use for speeding up the computation. Once
this is completed, you can inspect the mean-dispersion plot as a diagnostic check by
expanding the collapsible element below (Fig. 14D).

Ludt et al.
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Figure 15 Content of the Counts Overview panel in ideal. The expression table is shown interactively (A),
with the possibility to define thresholds for expression (B) and accordingly filter the data before testing (C). A
scatterplot matrix can be displayed in the bottom section (D), with functionality shared with pcaExplorer.

Exploring the count matrix and the differential expression result table
7. Inspect (and �lter) the expression count matrix.

Navigate to the Counts Overview panel, which provides an interactive table, which can
display raw, normalized, and log-normalized values for all the genes and samples in
the data (Fig. 15A). A summary for the expressed features is reported below - you can
set a threshold for either criterion to �lter out the lowly expressed genes (Fig. 15B).
This can also reduce the computation time without impacting the quality of the results.
Filter the macrophage data with a threshold of zero on the row sums of the counts
by clicking on the ‘Filter the DDS object’ button (Fig. 15C). Generate and inspect the
sample-to-sample scatterplot matrix below (Fig. 15D) which shows the similarity across
all individual samples while regarding the information on the single features - this can be
quite useful for detecting unexpected patterns for subsets of genes (Rutter, Moran Lauter,
Graham, & Cook, 2019).

8. Compute the differential expression results.

Navigate to the Extract Results panel to compute and explore the results for the differen-
tial expression analysis (Fig. 16). Set the alpha level for signi�cance to control the False
Discovery Rate in the sidebar; for the macrophage data we can leave the value set to
the default (0.05). Then, proceed to de�ne the contrast of interest - this Basic Protocol
focuses on the comparison between the interferon-gamma treated cell line (IFNg) versus
the untreated one (naive). Therefore, �rst select ‘condition’as the experimental factor to
build the contrast upon (Fig. 16A). Then select ‘IFNg’as the numerator level, and ‘naive’
as the denominator level for the fold change (Fig. 16B). Further options are provided to
re�ne the results, whereas independent �ltering (Bourgon, Gentleman, & Huber, 2010)
or the Independent Hypothesis Weighting (IHW) can be applied (Ignatiadis, Klaus, Za-
ugg, & Huber, 2016). After clicking on ‘Extract the results’ (Fig. 16C) you can see that
in the macrophage dataset more than 6000 genes have been detected as differentially
expressed for the IFNg treatment vs naive contrast (Fig. 16D).

Additionally, the value box for the DE genes is updated and displayed in green.
IRF1, IL18BP, and GBP2 are listed in the table below as the top regulated

Ludt et al.
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Figure 16 Overview of the Extract Results panel in ideal. The contrast can be specified by combining the
covariate of interest (A) and the levels to compare (B). Results can be extracted once the respective button is
visible (C), and are displayed both as summary and in full tabular format (D). Diagnostic plots on the DE results
are included in the bottom section of the page.

genes, sorted by their adjusted p-values. The interactive table directly links the
gene symbols and the ENSEMBL identi�ers to external databases for that fea-
ture, either Ensembl (https://www.ensembl.org/) or the NCBI Gene Database
(https://www.ncbi.nlm.nih.gov/gene) (Fig. 16D).

9. Inspect the diagnostic plots for the extracted DE results.

The top left and right plots show raw p-value histograms, useful for checking the assump-
tion of uniform distribution under the null hypothesis, also strati�ed by mean expression
value (relevant if one is using the Independent Hypothesis Weighting for adjusting the
p-value). The bottom left Schweder-Spjøtvoll plot (Schweder & Spjøtvoll, 1982), shows
the ranked p-values: this is a graphical method to illustrate the Benjamini-Hochberg mul-
tiple testing adjustment procedure (Benjamini & Hochberg, 1995), with the intersection
point de�ning the subset of genes for which the False Discovery Rate (FDR) is controlled
at the chosen level. The bottom right plot is a histogram of the log2 fold change values,
to show its distribution and identify anomalies such as highly skewed tails.

Exploring overviews of the results and single genes of interest
10. Generate overview visual representations of the DE results.

Navigate to the Summary Plots panel to generate a set of visual summaries of the results
(Fig. 17). This includes an MA plot, which can be regarded as an application of a Bland-
Altman plot for the representation of genomic data –Mbeing the log ratio, and A themean
average. Select in the MA plot (log2FoldChange vs. mean expression values) some of the
upregulated genes by brushing on the area that includes them (Fig. 17A). A zoomed-in
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Figure 17 Overview of the Summary Plots panel in ideal. The MA plot (A) displays the expression changes
against the mean expression values, marking single genes according to the significance level. Labels are added
in the zoomed panel (B). Boxplots for individual genes are also provided (C), with extra information from the
Entrez database (D). A volcano plot is also presented (E), depicting the direct relationship between expression
changes and significance of the genes.

version of theMA plot focused on the selected areawill appear on the right side, providing
labeling by gene symbols if these are de�ned in the annotation object (Fig. 17B).

11. Inspect single genes upon interacting with the MA plot panel.

Click on a gene in the zoomed selection plot. If the ‘Group/color by’ widget in the side-
bar has a selection active (defaulting to the experimental factor of interest speci�ed in
the contrast), this action will display a boxplot for the expression values in all condi-
tions (Fig. 17C), and additional info retrieved from the Entrez database (Fig. 17D). In
the middle section, you can view the results as a volcano plot (Fig. 17E), where the sig-
ni�cance is directly plotted against the effect size (and direction). In addition, the subset
of genes included in the rectangular selection is also displayed as heatmaps (both static
and dynamic). Tabular information on the selected genes can be further exported from
the collapsible element at the bottom of the tab panel.

12. Inspect single genes upon manual selection.

Navigate to the Gene Finder panel and explore a subset of genes of interest (Fig. 18). In
this protocol we will de�ne the genes CCL5, IFNGR1, and CXCL11 as genes of interest in
the sidebar (Fig. 18A). The tab panel displays up to four gene expression boxplots for the
selected genes (Fig. 18B), and also displays an MA plot where the shortlisted genes are
annotated. The table containing all relevant values for the genes included in the selector
widget can be explored in the collapsible element, and downloaded as text �le. To avoid
manually selecting many genes (from the selectize widget in the sidebar), you can also
upload a list as a plain text �le, specifying one feature per row; these will be annotated in
an alternative version of the MA plot, and the corresponding table is provided below it.
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Figure 18 Overview of the Gene Finder panel in ideal. The selection of features is done from the sidebar
(A), and the shortlisted genes are displayed in the main panel content (B).

Performing functional enrichment analyses on the data and exploring gene
signatures
13. Calculate overrepresented biological processes in the set of differentially expressed

genes.

Navigate to the Functional Analysis panel to perform a gene set enrichment analysis on
the differentially expressed genes, with the aim of gaining insight on the affected biologi-
cal pathways (Fig. 19). In the ‘Select the GO category(ies) of interest’make sure that ‘GO
Biological Process’ is included (Fig. 19A); alternative ontologies comprise ‘GO Molec-
ular Function’ and ‘GO Cellular Component’. The functional enrichment analyses can
be performed on different sets of genes: only the upregulated ones (tab panel ‘UPregu’);
only the downregulated ones (tab panel ‘DOWNregu’); including both up- and downregu-
lated genes (tab panel ‘UPDOWN’); or any custom list of genes (in the two panels ‘List1’
and ‘List2’). Navigate to the ‘UPDOWN’ tab panel to perform the gene set enrichment
analysis on the up- and downregulated features (Fig. 19B).

Three methods of overrepresentation analysis (ORA) are implemented in ideal: (1) The
standard ORA based on the limma package (Ritchie et al., 2015), (2) the goseq ORA,
which accounts for the speci�c length bias intrinsic in RNA-seq assays (longer genes
have higher chances of being called DE) (Young, Wake�eld, Smyth, & Oshlack, 2010),
and (3) the topGO ORA, which decorrelates the Gene Ontology graph structure and is
particularly valuable for pruning terms that are topologically less meaningful than their
speci�c nodes (Alexa et al., 2006). Perform the analysis with topGO, by clicking on the
button called ‘Perform gene set enrichment analysis in the up- and downregulated genes
– topGO’ (Fig. 19C).

14. Explore the results of the enrichment analysis.

As a result of the previous step, an interactive downloadable table appears (Fig. 19D),
listing the relevant GO terms and the enrichment-relevant features, including, e.g., the list
of the differentially expressed genes annotated to each of the reported GO terms. Click
on the blue button of the GO term GO:0002181 (‘cytoplasmic translation’) to get fur-
ther information from the AmiGO database (http://amigo.geneontology.org/). If clicking
anywhere in the row of the enriched GO term, a heatmap is displayed showing the nor-
malized and transformed expression values for the subset of DE genes assigned to each
term, making it easy to inspect the overall regulation of a selected signature (Fig. 19E).
In the bottom section of this page, the subsets of genes that could have been used for
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Figure 19 Overview of the Functional Analysis panel in ideal. The categories can be selected from the
dedicated input widget (A), and different subsets of genes, based on the direction of the change in expression,
can be used to compute the functional analysis (B). The enrichment algorithms can be started via the buttons
below (C). Once the results are available, they are displayed in a table (D); upon interaction with single rows in
the results from topGO, heatmaps for the specific signature are displayed, summarizing the expression values
for the associated gene set members (E).

Figure 20 Overview of the Signature Explorer panel in ideal. After uploading the signatures (A) and perform-
ing matching to the data at hand (B), users can specify which experimental covariates to use for the decoration
of the signature heatmaps (C), with extra option to customize their appearance (D).

computing enrichment results (see step 13) can be provided as input for a simple over-
lap analysis by means of a Venn diagram and of an upset plot (particularly useful when
including large numbers of sets).

15. Explore the expression pro�les of gene signatures.

Navigate to the Signature Explorer panel (Fig. 20) and upload the
h.all.v7.4.symbols.gmt �le (originally retrieved from the MSigDB database;
we refer to the Support Protocol for further detail on obtaining the �le). The green
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Figure 21 Overview of the Report Editor panel in ideal. Options for Markdown (A) and the report editor (B)
are included, and can be changed before rendering the document. Functionality for exporting the entire state
of the app (C), or as a SummarizedExperiment object (D), is also provided, simplifying the interoperability with
other existing software.

info box in the middle of the panel will report the number of signatures contained
– in this case, the 50 hallmark signatures are present in the uploaded GMT �le
(Fig. 20A). Compute the variance-stabilized transformed data by clicking the corre-
sponding button. To match the identi�er types of your data with the signatures (Fig.
20B), select ‘ENSEMBL’ as the ID type in your dds data, ‘SYMBOL’ as the ID type
of your signatures, and org.Hs.eg.db as the organism package for performing
the match, by means of the ‘Apply id conversion between data and signatures’ button.
In the lower section of the panel, select the gene signature of interest, e.g., HALL-
MARK_INTERFERON_GAMMA_RESPONSE, and condition in the selection widget
called ‘Select the colData to decorate’ (Fig. 20C). Optionally, use the check box below
to include only the DE genes of the signature, �ltering out the ones detected as non-
signi�cant. A heatmap appears at the bottom of the panel, and can be further customized
with the available checkboxes (Fig. 20D); mean centering (or even row standardization)
is useful to simplify comparison across samples, while clustering options enable the
detection of interesting groups of features.

Wrapping up the analysis with ideal
16. Generate, preview, and export an analysis report.

Navigate to the Report Editor panel to generate and download a report of the analy-
sis containing the current state of the parameters and generated images (Fig. 21). This
functionality is shared with the pcaExplorer package, and is based on a comprehen-
sive template report provided with the ideal package. After selecting ‘HTML’as output
format (and some general Markdown options), you can preview the report in the lower
section of the panel (Fig. 21A, 21B). Experienced users can edit the RMarkdown source
of the report in the ‘Edit report’tab panel. Once the report is �nalized, click on ‘Generate
& Save’ to compile the document and store it on your system.

17. Export the analyses components for further downstream exploration.

Open the Tasks menu from the small cogs icon at the top right of the header (Fig. 21C).
From there, it is possible to export the state of the app’s reactive elements into a binary
.RData workspace, or also store their values directly into an environment; this environ-
ment can be retrieved in the R session by calling ideal_env, after the app is closed.
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Clicking on the ‘Export as serialized SummarizedExperiment’button (in the Report Edi-
tor panel, Fig. 21D) will create a serialized rds object, where the essential content com-
puted in the dashboard is coerced into a SummarizedExperiment object for further
use, e.g., with iSEE (Rue-Albrecht, Marini, Soneson, & Lun, 2018) for bespoke visu-
alizations. If enrichment results have been derived with topGO, it is also possible to
export the whole set of current data and results as a GeneTonicList, making this
object perfectly suitable to explore as described in Basic Protocol 3.

BASIC
PROTOCOL 3

INTERPRETATION OF RNA-seq RESULTS WITH GeneTonic

GeneTonic (Marini et al., 2021) is a Bioconductor package for streamlining the in-
terpretation of results from differential expression analysis together with functional en-
richment analysis, integrating these components with the original expression data and
annotation tables for easy identi�er conversion (Love et al., 2015). Blending together the
existing pieces of transcriptome datasets in a Shiny web application (Chang et al., 2021),
users can interactively generate insightful observations and hypotheses while still prof-
iting from code reproducibility, guaranteed by the creation of an HTML report and code
snippets meta-generated along the outputs.

In this protocol, we will describe its usage to analyze in depth the macrophage dataset
(Alasoo et al., 2018) made available as a Bioconductor package itself (Huber et al., 2015).
Samples from the macrophage dataset are available from six different donors, in four
different conditions – naive, treated with interferon-gamma upon SL1344 (Salmonella
enterica) infection, or with a combination of interferon-gamma and SL1344. We will
focus our attention on the comparison between interferon-gamma treated samples versus
naive samples – these results have been previously generated through the other Basic
Protocols.

Necessary Resources

Hardware

See detailed description in the Support Protocol

Software

See detailed description in the Support Protocol

Files

See detailed description in the Support Protocol. Speci�cally, this Basic Protocol
will make use of the dataset delivered in the macrophage software package,
from which it is possible to derive all necessary components, once the required
dependencies are installed (as described in the Support Protocol).

Alternatively, we provide a precomputed GeneTonicList object in the
manuscript_CPBioinfo_2021 repository (see step 7 below) – the initial
steps in this protocol specify the procedure to generate the components of this
structured object (dds, res_de, res_enrich, and annotation_obj)
(see Fig. 1A for a visual overview). Alternatively, it is also possible to generate
the GeneTonicList object with ideal, as described in the �nal steps of
Basic Protocol 2.

NOTE: Before using GeneTonic for exploring the full set of results from the differen-
tial expression analysis work�ow, the necessary packages and dependencies need to be
installed and loaded. The Support Protocol describes how to install and load the packages.

NOTE: The input data to be provided to GeneTonic can be computed via different
work�ows, but for simplicity it is easiest when using the framework of DESeq2 – we re-
fer users to the package vignette for alternative methods upstream like limma or edgeR.
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If starting from this Basic Protocol, please use the following commands to generate the
entire set of required �les.

Generating the required input for running GeneTonic
1. Generate the DESeqDataSet object.

We load themacrophage dataset, specify the design of interest (testing on the condition,
while accounting for the cell line of origin), change the identi�ers to ENSEMBL (instead
of the provided GENCODE ids, that would not match with the annotation packages).
Optionally, you can apply some �ltering on a minimal detection threshold – in this case,
we require to have at least 10 counts, in at least six samples (six being the size of the
smallest experimental group).

# Loading the data

library("macrophage")

library("DESeq2")

library("GeneTonic")

data("gse", package = "macrophage")

dds_macrophage <- DESeqDataSet(gse, design = ∼line + condition)

# Changing the ids, removing the GENCODE-specific suffix

rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)

# Filtering low expressed features

keep <- rowSums(counts(dds_macrophage) >= 10) >= 6

dds_macrophage <- dds_macrophage[keep, ]

dds_macrophage

## class: DESeqDataSet

## dim: 17806 24

## metadata(7): tximetaInfo quantInfo … txdbInfo version

## assays(3): counts abundance avgTxLength

## rownames(17806): ENSG00000000003 ENSG00000000419 … ENSG00000285982 ENSG00000285994

## rowData names(2): gene_id SYMBOL

## colnames(24): SAMEA103885102 SAMEA103885347 … SAMEA103885308 SAMEA103884949

## colData names(15): names sample_id … condition line

2. Generate the differential expression result object.

Run the DESeq2 pipeline on the provided dataset, specifying the contrast of interest
(interferon-gamma treatment vs. naive cells), and an absolute log2 fold change thresh-
old of at least 1 to test against. This is different from the commonly performed post-hoc
�ltering of subsetting for genes whose absolute expression change is reported as at least
1 – this approach does not guarantee the control of the False Discovery Rate. We add the
gene symbol identi�er to ease the readability of the table.

# running DESeq2 and extracting the results

dds_macrophage <- DESeq(dds_macrophage)

res_macrophage_IFNg_vs_naive <- results(dds_macrophage,

contrast = c("condition", "IFNg", "naive"),

lfcThreshold = 1,

alpha = 0.05)

res_macrophage_IFNg_vs_naive$SYMBOL <- rowData(dds_macrophage)$SYMBOL

# Alternatively, the result is provided as precomputed object in the GeneTonic package

data("res_de_macrophage", package = "GeneTonic")

3. Run the functional enrichment analysis.
Ludt et al.
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This step is performed here via the pcaExplorer wrapper topGOtable(), using
the topGOmethod (with the ‘elim’algorithm). A sensible background is selected, choos-
ing the set of all detected genes in the assay. We identify the overrepresented Biological
Processes from the Gene Ontology database, and convert the resulting table into the for-
mat expected by GeneTonic. Alternatively, a variety of methods and applications can
be used to compute a similar enrichment table; we refer the reader to the GeneTonic
vignette, detailing the supported software.

# Sort the results by FDR

library("AnnotationDbi")

# Define the DE subset and the background set

de_symbols_IFNg_vs_naive <- deseqresult2df(res_macrophage_IFNg_vs_naive, FDR = 0.05)$SYMBOL

background_symbols <- rowData(dds_macrophage)$SYMBOL[rowSums(counts(dds_macrophage)) > 0]

# Compute the enrichment results

library("topGO")

topgoDE_macrophage_IFNg_vs_naive <-

pcaExplorer::topGOtable(DEgenes = de_symbols_IFNg_vs_naive,

BGgenes = background_symbols,

ontology = "BP",

mapping = "org.Hs.eg.db",

geneID = "symbol",

topTablerows = 500)

# Convert for usage in GeneTonic

res_enrich_macrophage <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)

# Alternatively, the enrichment result is also available as a precomputed object

data("res_enrich_macrophage", package = "GeneTonic")

4. Construct the annotation object.

Construct a table with at least two mandatory columns, gene_id and gene_name,
to handle the conversion between an unambiguous identi�er (ENSEMBL, GENCODE,
Entrez) into a human-readable format (typically, HGNC gene symbols).

library("org.Hs.eg.db")

anno_df <- data.frame(

gene_id = rownames(dds_macrophage),

gene_name = mapIds(org.Hs.eg.db,

keys = rownames(dds_macrophage),

column = "SYMBOL",

keytype = "ENSEMBL"),

stringsAsFactors = FALSE,

row.names = rownames(dds_macrophage)

)

Alternatively, if following Basic Protocol 2 you obtained these objects via ideal, you
can use this code chunk – you should replace the right-hand side of the assignment with
the name of the objects in the environment in use.

dds_object <- dds_from_ideal

res_de_object <- res_from_ideal

res_enrich_object <- shake_topGOtableResult(res_enrich_from_ideal)

annotation_object <- annotation_from_ideal

5. Compute aggregated scores on the enrichment results (optional).

The function get_aggrscores() can be called on the ensemble of objects we
just generated, to compute two additional columns for the input res_enrich ob-
ject. The z_score and aggr_score values try to summarize geneset-wise the effect
(log2FoldChange) of the differentially expressed genes that are listed as its members, Ludt et al.
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either by simply counting them or applying a function (in the example below, the mean
is used, but other functions could be applied such as the median). These are estimates of
the “direction” of expression change re�ected on higher-level features such as pathways
or genesets. We refer to the original publication of GeneTonic for more details on how
these scores are computed (Marini et al., 2021).

res_enrich_macrophage <- get_aggrscores(

res_enrich = res_enrich_macrophage,

res_de = res_macrophage_IFNg_vs_naive,

annotation_obj = anno_df,

aggrfun = mean

)

Preparing to run the GeneTonic application
6. Assemble the GeneTonicList object.

Once the four components (Fig. 1A, black small boxes labeled BP3) have been com-
puted and are loaded in the R environment, load the GeneTonic package and create
an instance of a GeneTonicList object. A summary of the elements in the list will be
printed out to the console upon creation.

gtl_macrophage <- GeneTonic_list(

dds = dds_macrophage,

res_de = res_macrophage_IFNg_vs_naive,

res_enrich = res_enrich_macrophage,

annotation_obj = anno_df

)

7. Start the GeneTonic application.

Once the GeneTonicList is generated, GeneTonic can simply be called with one
line of code.

GeneTonic(gtl = gtl_macrophage)

Interestingly, this can be a common entry point for wet-lab scientists, who might
bene�t of the expertise of a bioinformatician to perform the steps upstream and re-
ceive a single serialized �le to be loaded into the R environment. If encoded as a
GeneTonicList (Fig. 1A, gray small box labeled BP3), this object would con-
tain all the information regarding the experiment and setting of interest, as exempli-
�ed in the chunk below – you can also load a precomputed object, provided in the
manuscript_CPBioinfo_2021 repository.

gtl_provided <- readRDS("path_to/gtl_object.RDS")

GeneTonic(gtl = gtl_provided)

# using the version provided in the repository:

gtl_reimported <- readRDS("gtl_macrophage_exported.RDS")

describe_gtl(gtl_reimported)

GeneTonic(gtl = gtl_reimported)

First steps using GeneTonic
8. Explore the user interface of GeneTonic.

GeneTonic’s layout (Fig. 22) is built on the Bootstrap 4 components, provided via the
bs4Dash package. This includes:

• A header bar, where dropdown menus link to further documentation, and where the ‘Book-
mark’ button is located, which is useful for recording features of interest during an inter-
active session (Fig. 22A)

• A sidebar on the left, as the main way to access the different functionalities provided in the
app (Fig. 22B)

Ludt et al.

28 of 55

Current Protocols

 26911299, 2022, 4, D
ow

nloaded from
 https://currentprotocols.onlinelibrary.w

iley.com
/doi/10.1002/cpz1.411 by U

niversitätsbibliothek M
ainz, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 22 Overview of the Welcome panel in GeneTonic. The header bar (A) contains links to further docu-
mentation, while the sidebar (B) allows the navigation between panels. The control bar (C) contains widgets
to customize the aspect and content of the main body of the application (D). Collapsible elements can be
expanded by clicking on the plus sign (E), and value boxes (F) provide an overview on the input data.

• A control bar on the right, where one can �nd most widgets to customize the appearance
of the output (plots, tables, graphs, Fig. 22C). This can be opened and closed by clicking
on the cogs icon in the top right corner.

• The main body of the application, where different tabs are activated by clicking on the
respective icons or text in the sidebar (Fig. 22D). In each of the panels, a context-speci�c
interactive tour can be started by clicking on its respective button in the top right corner.
This highlights in series the elements of the app, accompanying this with textual help that
invites users to perform basic operations; this learning-by-doing approach is powered by
the rintrojs library (Ganz, 2016).

9. Explore an overview on the provided input.

After starting the application, you will be in the Welcome panel, marked by the home
icon in the sidebar. Open the collapsible elements, ‘Expression Matrix’, ‘DE results’,
‘Functional analysis results’, and ‘Annotation info’, by clicking on the plus sign (Fig.
22E). Each of them presents a tabular view of the elements of the provided GeneToni-
cList. The value boxes below give a rapid overview on the dimensions of these objects
(Fig. 22F). If desired, you can take the introductory tour for this panel, as a way to gain
additional familiarity with the user interface.

Constructing an interactive gene-geneset network for functionally enriched
biological processes
10. Create and explore the Gene-Geneset network.

Navigate to the Gene-Geneset panel (Fig. 23). Use the left sidebar for this purpose –
upon selection, a spinning loader will be displayed while the object is computed and ren-
dered in the main body of the app. By default, 15 genesets are displayed; this behavior
can be changed by setting a different value in the control bar (right side of the app, Fig.
23A). The bipartite graph underlying the Gene-Geneset network contains two sets of en-
tities, and their connections re�ect the membership of differentially expressed genes in
the subset of genesets selected (Fig. 23B). This network can be explored in an interactive
manner, avoiding the static “hairball” effect that would arise if a large number of gene-
sets is selected, or if many nodes are present (irrespective of their type). It is possible
to zoom in the network by scrolling, pan by clicking and holding the left mouse button,
or select by hovering or clicking on a node of interest. Additionally, the ‘Select by id’
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Figure 23 Overview of the Gene-Geneset panel in GeneTonic. Upon specifying the number of included gene-
sets (A), the gene-geneset graph is shown in the main body of the panel (B). The selection of individual nodes
can be done by hovering or by using a dropdown menu (C). The aspect of in-depth info boxes can be adjusted
by defining covariates of interest (D), and the graph can be saved as static image (E). The content of the Gene-
set Box (F) and of the Gene Box (G, shown as inset) serves as means to quickly explore specific nodes. Code
to reproduce the current content is displayed by clicking on the dedicated button (H), and nodes of interest can
be bookmarked for later (re-)inspection (I).

dropdown selector allows you to search for speci�c nodes (here, both genes and gene-
sets) while presenting them as an alphanumerically sorted list (Fig. 23C). Every time a
node is hovered over with the mouse, some information is directly displayed as a tooltip
in the main network frame.

11. Edit the Gene-Geneset network.

Change the number of displayed genesets to 25 by entering this value in the control bar
�eld ‘Number of genesets’ (Fig. 23A). The graph object is automatically recomputed and
displayed. In the ‘Group/color by’ widget (Fig. 23D), select ‘condition’, since this will
be used as the main grouping of interest, as it was de�ned in the DE contrast – this will
be relevant especially when performing drill-down operations in the following steps. You
can move around the nodes by dragging and dropping them, and eventually save a static
snapshot of this as a png image (by clicking on the dedicated ‘Save ggs graph’ button,
Fig. 23E).

12. Explore in depth the nodes of the network.

Genesets are encoded as rectangular yellow boxes. Click on any geneset in the network
(Fig. 23B); upon doing this, the Geneset Box on the right side will display a signature
heatmap for the pathway of interest, and a volcano plot where the individual genes are an-
notated (Fig. 23F). Extra information, as retrieved from the GO.db annotation package,
is displayed below, with a link to reach the corresponding entry in the AmiGO database.
On the other hand, genes are marked as oval-shaped nodes, with a color scale mirror-
ing the expression change in the differential expression comparison (Fig. 23B). When
clicking on a gene, the normalized expression values are displayed, grouped by the ex-
perimental covariates selected (see inset in Fig. 23G). According to the number of data
points in each group, a sensible visual encoding is chosen (points, boxplot, violin, or a
sina plot) – individual sample labels are also displayed if not cluttering the graphical
output. If users intend to reproduce the output of the network in a later session, detached
from the execution as a web application, the button with a user-edit icon opens up a
modal dialog window, where the code to recreate the content is automatically generated
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Figure 24 Further content of the Gene-Geneset panel in GeneTonic. In addition to the main content, the
backbone of the bipartite graph can be rendered (A), and some connectivity information for the main network
are presented in the table (B).

and provided (Fig. 23H); this also serves as a bridge to learn how to assemble all the
individual analysis components into a full scripted report.

13. Bookmark a subset of genes and genesets.

While exploring the network, if a node is selected, it is possible to bookmark it by either
clicking on the ‘Bookmark’ button in the header (Fig. 23I), or by using the left Ctrl key
as a shortcut. Repeat this operation until a number of nodes have been selected, making
sure to select entities from both categories. The bookmarks are stored for the duration
of the session, and can be previewed in the Bookmarks panel (described in the following
steps).

14. Calculate and explore the backbone of the Gene-Geneset network.

Below themain network, you can �nd the functionality to explore a backbone of this bipar-
tite graph. The backbone, as de�ned in the work of Domagalski, Neal, & Sagan (2021),
can be seen as an unweighted subgraph containing only the most signi�cant edges – de
facto being a summary of the full network. You can extract the backbone for both entity
types; click �rst on the ‘Gene-geneset graph summaries’ collapsible element and see the
backbone network being seamlessly generated (Fig. 24A). Click on the ‘features’ option
on the respective button to construct the dual graph, focused on the genes. As a com-
plement to this, the table on the right side ranks the genes according to their degree of
connectivity (Fig. 24B); this can be important to identify hub-like genes that might be
involved in a multitude of biological processes. Similar to the Gene info box, links to ex-
ternal databases are automatically provided to simplify the further steps of exploration
when trying to generate new hypotheses by cross-referencing the own project with pub-
lished literature.

Building an interactive enrichment map for the functional enrichment results
15. Create an interactive enrichment map.

Navigate to the Enrichment Map panel (Fig. 25); again, use the left sidebar for this pur-
pose. The setting you used in the previous steps is kept, so make sure to adjust it to a
meaningful value – in this case, select 75 genesets to be simultaneously displayed. After
changing the status of the input widgets, the output network is ef�ciently recomputed,
leveraging the reactivity framework of Shiny.
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Figure 25 Overview of the Enrichment Map panel in GeneTonic. After specifying the number of genesets to
include, the enrichment map is generated and can be colored according to the associated geneset information
(A). Individual nodes can be selected (B), triggering the generation of content in the info box on the right (C).
Additional mining can be done on this graph object (D), applying Markov clustering to detect communities of
overarching biological themes (clicking on the “Distill emap” button, E).

16. Explore the relationships between genesets.

Neighboring nodes in an enrichment map re�ect a high degree of similarity between
genesets; this can be useful to summarize the overarching biological “themes”, which
are sometimes not so clear if the enrichment results include many redundant terms and
are presented only in tabular format. By default, the enrichment map colors the node by
the geneset p-value resulting from the enrichment test, but this can be changed by se-
lecting another entry from the dropdown menu in the top left corner of the main content
(Fig. 25A). For example, coloring by z score is useful to obtain an overall sense of how the
pathway activities are changing (see how the immune response cluster is mostly being ac-
tivated, while the DNA replication is negatively regulated). Similar to the Gene-Geneset
network, you can select genesets in the network, triggering the generation of signa-
ture heatmaps, whose functionality behaves consistently throughout the different panels
(Fig. 25B). For example, select, from the ids listed in the dropdown, the geneset ‘response
to interferon-gamma’ (GO:0034341); the sample groups are very well separated in all
the four subgroups included in the expression dataset (Fig. 25C). Bookmarking of gene-
sets is encouraged to keep track of the features of interest that will need to be considered
in the �nal report.

17. Detect clusters of genesets to identify biological themes.

The ‘Geneset distillery’, activated in the collapsible element in the lower half of the page
(Fig. 25D), enables the detection of clusters by applying the Markov clustering algorithm
(selected by default) on the graph object returned as enrichment map (clicking on the
button in Fig. 25E). This represents a more quantitative way to de�ne meta-genesets,
also called biological themes, instead of the subjective approach to de�ne such clusters
by simple visual inspection. The tabular output reports for each cluster a summary of
its components, listing as representative term the pathway with the highest signi�cance

Ludt et al.

32 of 55

Current Protocols

 26911299, 2022, 4, D
ow

nloaded from
 https://currentprotocols.onlinelibrary.w

iley.com
/doi/10.1002/cpz1.411 by U

niversitätsbibliothek M
ainz, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 26 Selected content of the Overview panel in GeneTonic. In this screenshot, a geneset volcano plot is
included (A), with the significance plotted against the z score of a geneset, to estimate the direction of change.
Additional content can be generated by navigating the individual tabs for this panel (B).

(Fig. 25D). This is complemented by the meta-geneset heatmap, which can provide a
more granular view on the union set of genes assigned to at least any of these genesets.

Exploring a set of summary visualizations for the enrichment results
18. Generate multiple visual representations of the tabular enrichment results.

While a table contains the most detailed information on the enrichment results, it can
hamper the summarization of these results – this is where visualization methods ex-
cel by providing overviews where information is encoded in primary channels such as
cartesian coordinates position, color, size, and shape. Navigate to the Overview panel
in the GeneTonic app (Fig. 26). The geneset volcano plot displays the signi�cance of
each pathway against the z score (as an indicator of the direction of expression change
(Fig. 26A)).

Alternative visual overviews can be generated by simply navigating the individual tabs
included in this panel (Fig. 26B). This includes an enhanced table-like plot, displaying
the expression change of the members of each geneset; the same summary is provided
as an interactive widget based on the Plotly framework, showing additional details as
tooltip, so that it becomes easy to iterate further, e.g., on the Gene-Geneset network to
highlight and bookmark speci�c features of interest for the �nal report.

19. Create additional summary representations of the enrichment results.

A diverse spectrum of visualization techniques has been adopted for describing at a
higher level the functional enrichment results. Navigate to the GSViz panel in the Gene-
Tonic app (Fig. 27). This includes, e.g., a scores heatmap, where the geneset activity
is summarized at the sample level, and presented in a heatmap (Fig. 27A) – the other
plots detailed in the lines below can be shown by navigating through the different tabs
(Fig. 27B).

Alluvial plots and a summary heatmap give a quick impression of the many-to-many rela-
tionships existing between genes and genesets. A geneset Multi-Dimensional Scaling plot
is an alternative to the enrichment maps, whereas the geneset distance (e.g., computed
as an overlap coef�cient, or as Jaccard Index) is depicted in a 2-dimensional map.

Similarly, the distance can be shown as a dendrogram, with nodes encoding signi�cance
and z-value. The SummaryOverview andGeneset Radar are two simple visual summaries
to show the overall enrichment pro�le; this can be particularly useful when comparing
different enrichment results, and can be performed of�ine (the app runtime is centered
on a single enrichment result). As in the other panels, the output of each panel can be
customized by changing the number of included/annotated genesets, located in the control
bar on the right side of the web application. Each of these plots can be reproducedwith the
code displayed by pressing on the button below the graphics (Fig. 27C) – some examples
are displayed in the inset shown in Fig. 27D.
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Figure 27 Sample output of the GSViz panel in GeneTonic. A heatmap for the geneset activity (A), summa-
rized for each sample, provides an alternative view to the more common geneset signature heatmap. As in the
Overview panel, additional content can be generated by navigating to the other tabs shown in this panel (B).
Similar to the other generated content, the code to reproduce these outputs can be easily displayed by clicking
on the edit button (C).

Figure 28 Overview of the Bookmarks panel in GeneTonic. The main content are the tabular representations
of shortlisted genes (A) and genesets (B), with the possibility to generate a SummarizedExperiment object,
compatible for exploration with iSEE (C), or a full analysis report focused on the bookmarked elements (D).

Exploring the bookmarked features and generating a summary report
20. Retrieve the bookmarked features.

Navigate to the Bookmarks panel (Fig. 28). The two tables in themain body are displaying
the respective list of genes (Fig. 28A) and of genesets (Fig. 28B) that you have been
selecting in the interactive session, irrespective of from which panel they were shortlisted.

21. Export the data as SummarizedExperiment for further visualizations with
iSEE.

The majority of the content of a GeneTonicList can be also coerced to a Summa-
rizedExperiment object, whereby the object’s slots store the information at the fea-
ture level (e.g., the differential expression results as rowData elements). Clicking on the
dedicated button (Fig. 28C) writes a serialized rds �le that can later be imported in an R
session and provided as input to the iSEEmain function (Rue-Albrecht et al., 2018). This
framework provides a very �exible interface to generate customizable visualizations, with
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the possibility to link together different views – for additional information on how to do
this, we refer to the online workshop material for the iSEE package (https:// isee.github.
io/ iSEEWorkshop2020/ and https:// isee.github.io/ iSEEWorkshopEuroBioc2020/).

22. Generate a full analysis report centered around the bookmarked features.

Click the ‘Start the happy hour’ button (Fig. 28D) to initiate the compilation and gen-
eration of a RMarkdown report, which is able to pick the current status of the reactive
elements of the app. A comprehensive default template Rmd report is provided within
the GeneTonic package, and expert users can additionally extend and edit that at
will. Once the report has been created, choose a path to store it as HTML document on
your machine; this is an ideal means to record the status quo of a typical analysis with
GeneTonic. You can open this HTML document with any modern browser application.
Notably, the reporting functionality is available also in batch mode, to bene�t from the
streamlined aspects of a scripted analysis (as it is shown also in Alternate Protocol).

SUPPORT
PROTOCOL

DOWNLOADING AND INSTALLING pcaExplorer, ideal, and GeneTonic

The software presented in the Basic Protocols of this article is open source and freely
available as R packages from the Bioconductor project (https://bioconductor.org). The
package landing page of each software tool includes self-contained instructions that can
be followed to install the latest stable version (Bioconductor release 3.14 at the time
of writing). pcaExplorer, ideal, and GeneTonic share a common set of depen-
dencies, automatically resolved and installed if the procedure illustrated in this Support
Protocol is followed.

Necessary Resources

Hardware

A desktop/laptop computer, with standard modern con�guration, and an
up-to-date operating system. The software packages presented in this article
are distributed as R packages within the Bioconductor project, and support all
platforms that can run R, including Windows (32-bit, 64-bit), MacOS (32-bit,
64-bit), or Unix/Linux systems.

Recommended: 8-16 GB RAM

Software

R version 4.1.0 or higher—latest stable releases are always available at
https://cran.r-project.org/

RStudio (optional) as Integrated Development Environment (IDE),
downloadable from https://www.rstudio.com/products/ rstudio/download/

A list of R packages:
BiocManager (https://cran.r-project.org/package=BiocManager, on CRAN)
pcaExplorer (https://bioconductor.org/packages/pcaExplorer, development

version at https://github.com/ federicomarini/pcaExplorer)
ideal (https://bioconductor.org/packages/ ideal, development version at
https://github.com/ federicomarini/ ideal)

GeneTonic (https://bioconductor.org/packages/GeneTonic, development
version at https://github.com/ federicomarini/GeneTonic)

A modern browser supporting JavaScript (Mozilla Firefox, Google Chrome, Opera,
Safari, Microsoft Edge) to run the web applications, which otherwise can be
launched from inside RStudio

Files

Each of the Basic Protocols will operate on the data of the macrophage
package available at https://bioconductor.org/packages/macrophage. This
package contains data from a bulk RNA-seq analysis of Alasoo et al. (2018) – Ludt et al.
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readers interested in exploring single-cell RNA-seq datasets are encouraged
to use the iSEE and i2dash packages for this purpose (Rue-Albrecht et al.,
2018; Ustjanzew, Preussner, Bentsen, Kuenne, & Looso, 2021), as also
included in the Suggestions for Further Analysis section. For an easier
reproducibility of the results presented in Basic Protocols 1 to 3, we prepared
the data to be directly used in the protocols. All the prepared input for each
protocol is available in the Input_data subfolder of the
manuscript_CPBioinfo_2021 repository. This contains the following
�les:

• A count matrix (countmatrix_macrophage.txt). The count matrix
stores the number of times (i.e., counts) a certain feature (e.g., gene) is found
in each sample, as a proxy of its expression. In the count matrix, the samples
are stored in the columns, while the rows store the individual features. The
individual entries can either be tab-, comma-, or semicolon-separated. The
count matrix can be used as direct input to pcaExplorer and ideal, and
can be used to obtain the DESeq object needed for GeneTonic (please refer
to Basic Protocol 3 on how to obtain this from the count matrix).

• A metadata �le (metadata_macrophage.txt). The metadata �le
contains for each sample information about the relevant experimental variables.
The individual samples represent the rows of the �le, while the columns save
the different experimental variables. The �le can be tab-, comma-, or
semicolon-separated, and can be used as direct input to pcaExplorer and
ideal (refer to the inset of Fig. 2D for the expected formats).

• An annotation �le (annotation_macrophage.txt). The annotation �le
is optional for each of the presented applications; however, we highly
recommend providing an annotation �le to ease the interpretation of the
results. The annotation �le contains the feature identi�ers of the count matrix
in the gene_id column (or in the row names) and at least one column called
gene_name which contains a more human readable form of the feature ids
[e.g., HGNC gene names if the features are gene ids (Tweedie et al., 2020)].
The annotation �le can directly be used as input in all three protocols.

• A list of gene sets (h.all.v7.4.symbols.gmt). The gene set list
contains a gene set name in the �rst column, a description in the second
column, and several genes in the remaining columns (one gene per column).
The described format is also called Gene Matrix Transposed (GMT) format,
which is commonly used by online repositories such as the MSigDB database
or the WikiPathways database. The GMT �le format is a tab-delimited �le
format of gene sets, where each row represents a gene set. This �le can be used
as direct input to ideal.

For an overview on how the information of these �les is combined together to
obtain all the relevant objects discussed in this manuscript, we refer to the
work�ow illustrated in Figure 1 (Strategic Planning).

1. Download and install R.

The R language and environment for statistical computing is required to install and run
pcaExplorer, ideal, and GeneTonic, as well as all their dependencies.

You need to download and install the latest stable release of R from https://cran.r-project.
org/ , making sure to select the appropriate version for the operating system in use. At the
moment of writing, R version 4.1.1 (‘Kick Things’) is available, released on 2021-08-10.

2. Download and install RStudio (optional).

The RStudio integrated development environment (IDE) is a set of integrated tools, includ-
ing a console, a syntax-highlighting editor that supports direct code execution, and a set of
tools for plotting, viewing history, debugging, and managing the workspace. While RStudio
itself is not strictly necessary to run R and its packages, RStudio requires an installation
of R in order to properly function.Ludt et al.
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The latest stable version of RStudio IDE can be downloaded from https://www.rstudio.
com/products/ rstudio/download/ , selecting the version corresponding to the operating
system. For the installation itself, follow the instructions appearing when opening the
.exe/.dmg/.rpm �le.

3. Set up Bioconductor.

To download and install Bioconductor packages, BiocManager is a small utility pack-
age available on CRAN, able to correctly resolve package dependencies in both the CRAN
and Bioconductor repositories, making sure that the correct release version is used.

Open R and type this command to install BiocManager (this is required only once per
R installation):

install.packages("BiocManager")

BiocManager::install()

4. Install the pcaExplorer, ideal, and GeneTonic packages.

Use BiocManager to install the latest release versions of the packages, matching the
installed version of R. To do so, run the following command:

BiocManager::install(c("pcaExplorer", "ideal", "GeneTonic"), dependencies = TRUE)

Setting dependencies to TRUE will also download the packages used when running
the vignettes and the examples, and is therefore recommended when getting to know the
functionality. This operation is to be completed once per R installation. Installed packages
can be updated to their current version with:

BiocManager::install()

Answer ‘yes’ when prompted in the console to download and install a potentially large
set of packages.

5. Verify the installation.

Con�rm that the updated Bioconductor is valid for your version of R, and make sure that
all packages are available in their current release.

BiocManager::valid()

While R and Bioconductor maintain both a stable and a development version at all times,
regular users should use the (stable) release version (unless a particular need arises for
a functionality in the development branch).

To verify the correct installation of the pcaExplorer, ideal, and GeneTonic pack-
ages, run this command:

library("pcaExplorer")

library("ideal")

library("GeneTonic")

If the R console returns no errors (i.e., if messages about dependencies being loaded,
or information on the package versions are not problematic), the installation process is
successfully completed.

6. Download the example data from the dedicated repository (optional).

Navigate to the GitHub repository https://github.com/AnnekathrinSilvia/manuscript_
CPBioinfo_2021/ , which contains reproducible RMarkdown �les to replicate the Basic
Protocols, together with the macrophage dataset and some derived objects that are ex-
pected to be used in the protocol steps. This can be done in two ways:

Cloning the repository from the command line (click on the Code button, and copy the
address to checkout)

Ludt et al.
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# via https

git clone https://github.com/AnnekathrinSilvia/manuscript_CPBioinfo_2021.git

# via ssh

git clone git@github.com:AnnekathrinSilvia/manuscript_CPBioinfo_2021.git

Downloading a zip archive of the repository by clicking on the Code button, and subse-
quently on the ‘Download ZIP’ link.

While this step is optional, it is recommended to work in a self-contained project folder,
ensuring that the relative paths are working correctly across systems. This is straightfor-
ward by double-clicking on the manuscript_CPBioinfo_2021.Rproj �le, which
opens up an instance of RStudio pointing at the correct working directory.

7. Download and use a Docker image with all required packages (optional).

In addition to the common installation procedure, we provide a Docker image containing
all the R packages and the necessary dependencies, served in an RStudio environment.
This enables the user to spin up a fully operational instance and explore the functionality
of all three applications along the protocols. Docker is an open platform for developing,
shipping, and orchestrating micro services, e.g., software applications. If required, install
Docker (https://docs.docker.com/get-docker/ ), selecting the version suitable for your op-
erating system.

The de�nition of the Dockerfile is speci�ed in the content of the
manuscript_CPBioinfo_2021 repository, and is built on top of the bio-
conductor_docker:RELEASE_3_14 image. Retrieve the image for fed-
ericomarini/pigt_currprotbioinfo:3_14 from the DockerHub (https:
//hub.docker.com/repository/docker/ federicomarini/pigt_currprotbioinfo) with:

docker pull federicomarini/pigt_currprotbioinfo:RELEASE_3_14

To run a container with all packages pre-installed and an instance of RStudio Server, run
the command

docker run -e PASSWORD=bioc -p 8787:8787

federicomarini/pigt_currprotbioinfo:RELEASE_3_14

Open your browser at the address localhost:8787, and enter ‘rstudio’ as a username
and ‘bioc’ as a password (as speci�ed in the command above), with port 8787 being
mapped between the Docker container and your host machine. This will conveniently
open RStudio Server in a sandbox-like environment, which also contains the reproducible
work�ows mentioned in step 6.

ALTERNATE
PROTOCOL

USING FUNCTIONS FROM pcaExplorer, ideal, AND GeneTonic IN
CUSTOM ANALYSES

Most of the functionality provided by the three packages described in the Basic Protocols
can effectively be used throughout the steps that build up the entire RNA-seq analysis
work�ow (Love et al., 2015). This means that the exported functions can easily be called
inside simple R scripts, or inserted into dedicated chunks of RMarkdown documents;
their usage is documented in the package vignette and manual pages.

In this protocol, we will assemble a compact end-to-end analysis for the macrophage
dataset, starting from the quanti�cations provided in the homonymous Bioconductor
package (Alasoo et al., 2018). As in Basic Protocol 3, we will focus on the comparison
between interferon-gamma treated samples versus naive samples, including all samples
in the Exploratory Data Analysis preliminary to the modeling and statistical testing.

Necessary Resources

Hardware

See detailed description in the Support Protocol.Ludt et al.
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https://docs.docker.com/get-docker/


Software

See detailed description in the Support Protocol.

Files

See detailed description in the Support Protocol. Speci�cally, this Alternate
Protocol will make use of the data starting from the objects provided by the
macrophage package, included in the dependencies for the software we are
presenting in this work. Since this Alternate Protocol is extensively using the
R terminal for executing the different steps, it is oriented toward an audience
with some familiarity with command-line interfaces, but we provide enough
details for welcoming a broad spectrum of readers.

NOTE: In the following steps, many functions from the presented packages will be
showcased and brie�y described. We refer users to the package documentation (ac-
cessible from the R terminal with simple calls such as ?get_annotation_orgdb)
for additional details and further usage examples. A fully rendered version (including
all the �gures and other output) of this Alternate Protocol is also available as a pre-
compiled document in the manuscript_CPBioinfo_2021 repository, associated
to this manuscript and also used in the Support Protocol.

1. Load the expression data as DESeqDataSet object and create the associated an-
notation table.

Similar to Basic Protocol 3, �rst load the required packages and create the fundamental
DESeqDataSet object to be used for the analysis (using ENSEMBL identi�ers); op-
tionally, one can �lter the set of lowly expressed genes as speci�ed in the chunk below.
Generate the corresponding annotation table for dds_macrophage and store that as
anno_df.

# Loading the packages

library("pcaExplorer")

library("ideal")

library("GeneTonic")

# Loading the data

library("macrophage")

library("DESeq2")

data("gse", package = "macrophage")

dds_macrophage <- DESeqDataSet(gse, design = ∼line + condition)

# Changing the ids, removing the GENCODE-specific suffix

rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)

dds_macrophage

# Filtering low expressed features

keep <- rowSums(counts(dds_macrophage) >= 10) >= 6

dds_macrophage <- dds_macrophage[keep, ]

dds_macrophage

# Construct the annotation data frame

library("org.Hs.eg.db")

anno_df <- get_annotation_orgdb(dds = dds_macrophage,

orgdb_species = "org.Hs.eg.db",

idtype = "ENSEMBL")

2. Generate a data transformation and perform PCA on the expression data.

Apply the variance stabilizing transformation to dds_macrophage and run PCA on
the resulting object. Highlight the sample points by condition �rst, and then showing the
line of origin. Ludt et al.
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vst_macrophage <- vst(dds_macrophage)

# Alternatively, it is possible to use also the regularized log transformation

rld_macrophage <- rlog(dds_macrophage)

pcaplot(x = vst_macrophage,

intgroup = "condition",

ntop = 15000,

ellipse = FALSE)

pcaplot(x = vst_macrophage,

intgroup = "line_id",

ntop = 15000,

ellipse = FALSE)

3. Identify the genes with the highest loadings and plot their expression values.

First compute the PCA object, and provide this to the hi_loadings() function. Once
some individual genes are visible, plot the normalized expression values for them, choos-
ing different experimental covariates to group them.

pca_results <- prcomp(t(assay(vst_macrophage)))

hi_loadings(pca_results, topN = 20, whichpc = 1, annotation = anno_df)

gene_plot(dds_macrophage,

gene = "ENSG00000110944",

intgroup = "condition",

annotation_obj = anno_df)

hi_loadings(pca_results, topN = 20, whichpc = 2, annotation = anno_df)

gene_plot(dds_macrophage,

gene = "ENSG00000084636",

intgroup = "line_id",

annotation_obj = anno_df)

4. Compute the enrichment on the top PCA loadings.

Provide the variance-stabilized transformed values as input to pca2go() – this might
take a while to run. Once this is completed, you can explore the tabular components of the
list-like object returned. This can be very useful to assign a functional key of interpretation
to otherwise unclear principal axes of variation.

bg_ids <- rownames(dds_macrophage)

library("topGO")

pcs_enrichment <- pca2go(

se = vst_macrophage,

annotation = anno_df,

organism = "Hs",

ensToGeneSymbol = TRUE,

background_genes = bg_ids

)

# save(pcs_enrichment, file="pcs_enrichment.RData")

# display the results in interactive tables

DT::datatable(pcs_enrichment$PC1$posLoad)

DT::datatable(pcs_enrichment$PC1$negLoad)

DT::datatable(pcs_enrichment$PC2$posLoad)

DT::datatable(pcs_enrichment$PC2$negLoad)

5. Run the DE modeling and extract the results.

After specifying the contrast (interferon-gamma treatment vs. naive cells), and an ab-
solute log2 fold change threshold of at least 1, run the DESeq pipeline on the providedLudt et al.
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dataset. Afterwards, apply the apeglm shrinkage estimator for obtaining moderated log
fold changes.

# running DESeq2 and extracting the results

dds_macrophage <- DESeq(dds_macrophage)

res_macrophage_IFNg_vs_naive_MLE <- results(

dds_macrophage,

name = "condition_IFNg_vs_naive",

lfcThreshold = 1,

alpha = 0.05)

res_macrophage_IFNg_vs_naive <- lfcShrink(

dds = dds_macrophage,

res = res_macrophage_IFNg_vs_naive_MLE,

coef = "condition_IFNg_vs_naive",

type = "apeglm")

res_macrophage_IFNg_vs_naive$SYMBOL <- rowData(dds_macrophage)$SYMBOL

6. Generate summary overviews of the DE results.

This includes a textual summary, an interactive table (sorted by adjusted p-values), and
two plots – an MA plot and a volcano plot – where some genes of interest are labelled on
top.

summary(res_macrophage_IFNg_vs_naive)

de_table_ifng_vs_naive <- deseqresult2df(res_macrophage_IFNg_vs_naive)

etbl_de <- de_table_ifng_vs_naive

etbl_de$id <- ideal:::createLinkENS(etbl_de$id, species = "Homo_sapiens")

etbl_de$SYMBOL <- ideal:::createLinkGeneSymbol(etbl_de$SYMBOL)

DT::datatable(etbl_de, escape = FALSE, rownames = FALSE)

genes_of_interest <- c(

"ENSG00000125347", # IRF1

"ENSG00000110944", # IL23A

"ENSG00000084636", # COL16A1

"ENSG00000172399" # MYOZ2

)

plot_ma(res_obj = res_macrophage_IFNg_vs_naive,

intgenes = genes_of_interest)

plot_volcano(res_obj = res_macrophage_IFNg_vs_naive,

ylim_up = 40,

intgenes = genes_of_interest)

7. Run the functional enrichment analysis.

This is now done with the wrappers topGOtable() and goseqTable(), to identify
the overrepresented Biological Processes from the Gene Ontology database. First, prop-
erly de�ne the set of DE and background genes to obtain reliable results; after running the
routines, convert the resulting output from topGO into the format expected by Gene-
Tonic, and display that as interactive table. To conclude this, compute geneset-level
aggregated scores on the enrichment results, and create a GeneTonicList object,
which will be fed to all relevant functions of GeneTonic.

library("AnnotationDbi")

# Define the DE subset and the background set

de_symbols_IFNg_vs_naive <- deseqresult2df(res_macrophage_IFNg_vs_naive, FDR = 0.05)$SYMBOL

background_symbols <- rowData(dds_macrophage)$SYMBOL[rowSums(counts(dds_macrophage)) > 0]

res_enrich_topGO <- pcaExplorer::topGOtable( Ludt et al.
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DEgenes = de_symbols_IFNg_vs_naive,

BGgenes = background_symbols,

ontology = "BP",

mapping = "org.Hs.eg.db",

geneID = "symbol",

topTablerows = 500

)

de_ids_IFNg_vs_naive <- deseqresult2df(res_macrophage_IFNg_vs_naive, FDR = 0.05)$id

background_ids <- rownames(dds_macrophage)[rowSums(counts(dds_macrophage)) > 0]

res_enrich_goseq <- ideal::goseqTable(

de.genes = de_ids_IFNg_vs_naive,

assayed.genes = background_ids,

genome = "hg38",

id = "ensGene",

testCats = "GO:BP",

addGeneToTerms = TRUE

)

# Convert for usage in GeneTonic

res_enrich_macrophage <- shake_topGOtableResult(res_enrich_topGO)

etbl_enrich <- res_enrich_macrophage

etbl_enrich$gs_id <- ideal:::createLinkGO(etbl_enrich$gs_id)

DT::datatable(etbl_enrich, escape = FALSE, rownames = FALSE)

res_enrich_macrophage <- get_aggrscores(

res_enrich = res_enrich_macrophage,

res_de = res_macrophage_IFNg_vs_naive,

annotation_obj = anno_df,

aggrfun = mean

)

gtl_macrophage <- GeneTonic_list(

dds = dds_macrophage,

res_de = res_macrophage_IFNg_vs_naive,

res_enrich = res_enrich_macrophage,

annotation_obj = anno_df

)

8. Generate a diverse set of representations for the enrichment results.

Taking as main input the gtl_macrophage object, which holds all relevant informa-
tion stored in a standardized manner, it is easy to create a variety of visual and tabular
summaries and in-depth views to facilitate insight extraction. Run the chunk below to
create a signature heatmap and a volcano plot on the geneset members of GO:0034341
(response to interferon-gamma).

gs_heatmap(se = vst_macrophage,

gtl = gtl_macrophage,

geneset_id = "GO:0034341",

cluster_columns = TRUE,

cluster_rows = TRUE,

anno_col_info = "condition"

)

signature_volcano(gtl = gtl_macrophage,

geneset_id = "GO:0034341",

FDR = 0.05

)
Ludt et al.
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The following chunk proposes alternatives to the classical tabular enrichment results,
e.g., decomposing the contribution of the individual genes to a signature, or their overlap
across signatures.

enhance_table(gtl = gtl_macrophage,

n_gs = 20,

chars_limit = 60)

gs_summary_overview(gtl = gtl_macrophage,

n_gs = 20,

p_value_column = "gs_pvalue",

color_by = "z_score")

gs_summary_heat(gtl = gtl_macrophage,

n_gs = 10)

gs_volcano(gtl = gtl_macrophage,

p_threshold = 0.05,

color_by = "aggr_score",

volcano_labels = 10,

gs_ids = NULL,

plot_title = "Gene set volcano")

The following chunk contains visual summaries highlighting the relationship between
genesets, computed e.g., on the basis of their overlap.

gs_scoresheat(

mat = gs_scores(

se = vst_macrophage,

gtl = gtl_macrophage),

n_gs = 30

)

gs_dendro(gtl = gtl_macrophage,

n_gs = 30,

gs_dist_type = "kappa",

clust_method = "ward.D2",

color_leaves_by = "z_score",

size_leaves_by = "gs_pvalue",

color_branches_by = "clusters",

create_plot = TRUE)

gs_mds(gtl = gtl_macrophage,

n_gs = 200,

gs_ids = NULL,

similarity_measure = "kappa_matrix",

mds_k = 2,

mds_labels = 5,

mds_colorby = "z_score",

gs_labels = NULL,

plot_title = NULL)

Running the commands in the next chunk will create a gene-geneset graph and an en-
richment map, as fully interactive HTML widgets that simplify the further exploration
of complex network objects.

ggs_macrophage <- ggs_graph(

gtl = gtl_macrophage,

n_gs = 20)

ggs_macrophage

Ludt et al.
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# could be viewed interactively with

library("visNetwork")

library("magrittr")

ggs_macrophage %>%

visIgraph() %>%

visOptions(highlightNearest = list(enabled = TRUE,

degree = 1,

hover = TRUE),

nodesIdSelection = TRUE)

em_macrophage <- enrichment_map(gtl = gtl_macrophage,

n_gs = 30,

color_by = "z_score")

library("igraph")

library("visNetwork")

library("magrittr")

em_macrophage %>%

visIgraph() %>%

visOptions(highlightNearest = list(enabled = TRUE,

degree = 1,

hover = TRUE),

nodesIdSelection = TRUE)

9. Conclude the session by generating a report.

In this step, you will specify genes and genesets of interest in an of�ine manner, but this
will generate a comprehensive report just like if these features had been selected during
an interactive session. This makes it easier, e.g., to focus on the same set of signatures
across different datasets, thanks to its streamlined programmatic approach.

happy_hour(gtl = gtl_macrophage,

project_id = "HappyHour_BatchRun",

mygenesets = gtl_macrophage$res_enrich$gs_id[c(1:5,11,31)],

mygenes = c("ENSG00000125347",

"ENSG00000172399",

"ENSG00000137496"),

open_after_creating = TRUE

)

10. Create a full RMarkdown report with all the previous steps (optional).

If desired, navigate to the content of the manuscript_CPBioinfo_2021 repos-
itory (see Support Protocol). Open the CPBioinfo_protocol_alternate_
01_fromthecommandline.Rmd �le in an RStudio instance, and render the doc-
ument by clicking on the ‘Knit’ button – this can be reused as a customizable foundation
for the analysis of many RNA-seq datasets, leveraging mainly the functions exported by
the hereby presented software packages.

GUIDELINES FOR UNDERSTANDING RESULTS

Upon successful execution of the steps described in the protocols above, a set of out-
put objects can be obtained, often speci�c to the different work�ow components, i.e.,
exploratory data analysis, differential expression analysis, and functional interpretation.
The main results produced by the web applications are represented by the tabular and vi-
sual (static and interactive) summaries that can be created during runtime. Additionally,
each of the apps presented in the protocols has a reporting functionality, which can be
exploited to conclude a session, and can deliver an HTML �le that embeds not only this
output, but also descriptive prose and the code to reproduce the analyses. The generationLudt et al.
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of such dynamic documents is essential to provide a simple means to share and store
complete computational analyses.

Basic Protocol 1 covers the often under-appreciated step of exploratory data analysis. In
this phase, it is essential to start from the raw expression matrix (also called the count
matrix, due to the discrete nature of its entries) and proceed with normalized and trans-
formed versions of it, according to the procedures to be applied afterwards. For exam-
ple, variance-stabilizing and regularized logarithm transformations are well suited for the
clustering of samples or other machine-learning applications. However, they do not work
well for differential testing, which in turn operates on raw counts.

Once all the necessary data components have been generated, pcaExplorer presents
a variety of useful summaries, starting from simple statistics on detected genes and gen-
eral relationships among samples. The typical output of Principal Components Analysis
can be explored with ease to better understand the reduced dimensional embedding of
the data under inspection, both from the samples and from the genes point of view, as a
preliminary yet fundamental operation of any downstream application – offering differ-
ent manners in which to explore in-depth single features or subsets of features which are
thereby accessible, empowering many users to perform more comprehensive and robust
evaluations on the quality of the datasets and their implications. The PCA2GO function-
ality enables some direct biological interpretation of Principal Components, by which the
enrichment of annotated functions and processes among the genes with top and bottom
loadings for each axis is presented. This can often be valuable to explain some forms of
unexpected variability, e.g., via contamination of samples, or due to failures in the experi-
mental operations (e.g., degraded material from clinical specimen), or alternatively could
be re�ecting exposures and heritable expression patterns (as sources of “real” biological
variation).

Thanks to the ef�cient combination of interactivity and reproducibility, pcaExplorer
sets the stage for the following operations, which can be carried out as well in distinct
iterations. For example, by clicking on the pcaExplorer task menu, users can save the
state of all reactive elements to a binary RData object, or directly into an environment.
This allows users to directly retrieve and reuse the DESeqDataSet object for the fol-
lowing protocols, or follow up with further scripted analyses, if alternative or additional
work�ows are expected to be applied. Promoting the use of standardized data structures
streamlines the interoperability and implementation of the multitude of published meth-
ods and respective software.

Basic Protocol 2 guides the readers through a comprehensive work�ow centered around
differential expression analysis, one of the main applications when generating expression
data with RNA-seq, aiming to identify the features which are associated with the phe-
notypic comparison of interest. Starting from a matrix of raw counts, the experimental
covariates, and the speci�cation of a design, the statistical testing is performed within
the DESeq2 framework, with generalized linear models ensuring �exibility in the mod-
eling strategy, combined with shrunken estimates of the effect sizes to account for the
large dispersions observed at low expression levels. Some analysis approaches suggest
removing lowly expressed genes (e.g., detected below a threshold in a de�ned number of
samples) prior to perform the statistical testing itself. ideal also allows users to choose
the IHW (Ignatiadis et al., 2016), a multiple testing adjustment procedure that can ac-
count for informative experimental covariates, thus allowing different prioritization of
the individual hypotheses.

Most of the functionality in ideal is accessible once the necessary components have
been generated: after creating a results table, a series of diagnostic and summary plots
can be generated, including classical representations such as MA plots, volcano plots, or Ludt et al.
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heatmaps for subsets of differentially expressed genes. Single genes can be inspected
in detail, whereas additional information is automatically retrieved from the Entrez
database; if more genes are selected, it is possible to seamlessly annotate the MA plot,
to construct, e.g., the signature behavior of a gene set of interest (a shortlisted set from
the literature, a candidate affected pathway, …).

Functional enrichment analysis on the split subsets of upregulated and downregulated
genes can be performed with three different methods, and if desired can be applied to the
entire set of differentially expressed genes. For example, in the macrophage dataset
such functions can be readily visualized with heatmaps, which can give an immediate
sense of the direction of regulation (an information which might be missing when con-
sidering simple sets of genes instead of pathways). Additional signatures can be explored
by providing the corresponding GMT �les, a format universally adopted to encode such
information (Fabregat et al., 2018; Liberzon et al., 2015).

Throughout the entire application, the presence of tours is intended to guide prospective
users across an exemplary hands-on use case, with components of the graphical inter-
face highlighted as one proceeds to reinforce the learning experience. Again, an embed-
ded reporting functionality builds the foundation to guarantee a reproducible analysis,
and can be used as a bridge to subsequent downstream steps. The provided template in-
cludes in one single compiled document most of the usually employed summaries for
such datasets. Alternatively, exporting the data under exploration as a generic container
(a SummarizedExperiment) makes it amenable to further processing with many
existing interoperable software in the Bioconductor ecosystem, including iSEE (Rue-
Albrecht et al., 2018) for �exible bespoke graphical representations, or i2dash (Ust-
janzew et al., 2021) for easy deployment of dedicated dashboards.

Basic Protocol 3 demonstrates how to use the GeneTonic package to combine and in-
tegrate all the different components that normally are available when analyzing an RNA-
seq dataset end-to-end, with the objective to identify differentially expressed genes and to
draw inferences about the regulated biological processes and pathways in the scenario(s)
under investigation. Streamlining this time-consuming operation, where often the exper-
tise of the wet lab scientist and clinician is an essential complement to the skills of a data
analyst, can lead to a shorter turnaround time in generating sets of hypotheses, and in
turn reduce the effort to transform data into actionable knowledge and insight.

Combining all the input objects into a validated instance of a GeneTonicList con-
tainer class makes it straightforward for the set of functions provided to correctly access
the information available in the respective slots. The creation of a variety of visual sum-
maries, often more appealing than the commonly used tabular format, provides means to
better interpret the expression dataset as a whole. Moreover, the interaction with HTML-
based widgets and other elements of the user interface simpli�es the many rounds of
in-depth drilldown operations that focus on shortlisted genes and genesets, as a conse-
quence of their biological relevance.

COMMENTARY

Background Information
Over the last two decades, advancements

in sequencing technologies, accompanied by
the reduction of costs to generate data, have
signi�cantly contributed to a widespread dif-
fusion of RNA-seq as the standard method
to perform quantitative and robust gene ex-
pression pro�ling. This could be observed in
a variety of applications, covering basic re-

search scenarios, but also clinical routine, e.g.,
providing valuable molecular readout to be
exploited in tumor boards for personalized
medicine.

This situation led to a massive increase in
the data volume, and was supported by an
extensive activity in developing methods, al-
gorithms, and software tools that satisfy the
needs of scientists for the many availableLudt et al.
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work�ows. While analysis methods are nowa-
days established for most of the mainstream
applications of bulk RNA-seq (including ex-
pression quanti�cation and differential expres-
sion analysis at the gene level), there is a
pressing need for streamlining the process of
extracting knowledge from these large, com-
plex expression datasets. Experimental biolo-
gists and clinicians might encounter nontriv-
ial dif�culties in installing and adopting the
tools of the trade, often available mainly for
command-line usage. As a consequence, this
constitutes a signi�cant barrier in the work-
�ow of a researcher, potentially affecting the
timeline and budgeting of their projects—
despite a considerable and commendable ef-
fort done by the developers in documenting
their packages.
pcaExplorer, ideal, and Gene-

Tonic are R/Bioconductor software pack-
ages that provide practical and easy-to-use,
yet comprehensive and extendable user inter-
faces. These packages were designed aiming
for an optimal combination of interactivity
and reproducibility, implementing not only
web applications in the R/Shiny framework,
but also all the underlying R functions to be
used also in standalone mode; as a principle,
all these packages carefully document the un-
dertaken choices with a seamless mechanism
of reporting, based on the RMarkdown frame-
work. A careful design and implementation of
the user interfaces, supported by collapsible
elements and tooltips and also coupled to
the learning-by-doing approach provided via
interactive tours, make sure that users can
navigate ef�ciently through the large amount
of widgets that control the execution of every
work�ow.

Other existing tools also aim to cover a
number of the steps of the differential ex-
pression analysis procedure, and most were
developed to operate on tabular-like summa-
rized expression data, or on formats which
might derive from their results, to be provided
as text or spreadsheet �les – often used to
exchange information among collaboration
partners. Many of these tools are not able to
operate on the standardized formats output
by the commonly used pipelines, making it
dif�cult to provide comfortable entry points
for experienced users that intend to exploit
only a subset of their functionality. Our tools
are fully integrated with the widely used
containers proposed as standard in the scope
of the Bioconductor ecosystem, and accom-
modate the output of a multitude of tools,

especially for functional enrichment analyses,
harmonizing their content so that all relevant
results are directly usable and interoperable.
Moreover, they provide a series of in-depth
vignettes as additional documentation, which
can be consulted any time as complete walk-
throughs for the respective software packages.
The modular design we envision for our
applications makes it easy to incorporate
them in existing work�ows, encouraging the
interoperability with other software packages.

Some of the alternative solutions are
provided as web tools only, requiring the
availability of an internet connection, or in-
volve submitting local data to an external
provider, an aspect that might be crucial when
working with sensitive patient data. All our
packages can be used locally, with simple in-
stallation instructions that automatically man-
age all software dependencies, ensuring a
higher level of portability. Nonetheless, our
packages offer the possibility for deployment
as server-like applications, for internal usage
(e.g., among members of an institution or a
laboratory)—as showcased by the demo in-
stances where occasional visitors can get fa-
miliar with the interfaces (see Internet Re-
sources for detailed links and descriptions).

Even if our proposal cannot entirely guar-
antee the �exibility of the underlying tools
when used from the command line, and is
mostly tailored to scenarios dealing with bulk
RNA-seq datasets (still widely used, espe-
cially in clinical and diagnostic settings), we
cover the most commonly adopted experimen-
tal designs, and aim to simplify collabora-
tion between users with different expertise.
Such an approach can empower a large spec-
trum of users, making sure that their time is
optimally invested, and liberating resources
for more complex investigative and integra-
tive tasks. As a side effect of exposing the
users to the code (via RMarkdown reports,
or via meta-generated code to reproduce �g-
ures and interactive widgets), our tools also
have a didactic effect, encouraging the adop-
tion of best practices for computational data
analyses.

The discovery process for RNA-seq data
is simpli�ed and streamlined, with tools
targeting both experienced analysts and sci-
entists with an experimental background.
Indeed, the reinforcement of the contact
points between these groups can promote a
transparent communication and exchange,
and as a consequence signi�cantly reduce the
time to generate actionable insight, both in
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basic and clinical science settings. To pursue
this objective further, we are continuously
adding features to the software packages that
we proposed in this set of protocols, including
functionality to reduce the effort of adopting
these tools, and to easily resume previous
analysis sessions (e.g., by directly uploading
at runtime GeneTonicList objects, and
improving the bookmarking of interesting fea-
tures/gene sets, available in the development
branch of Bioconductor at the time of writing).

We envision the combined adoption of
packages like pcaExplorer, ideal, and
GeneTonic not only to help single users, but
also to assist RNA-seq service providers/core
facilities in progressing rapidly through the re-
search projects they are involved in, thanks to
the common ground offered by the graphical
interfaces and the support for analyses that are
reproducible and easily extendable in subse-
quent of�ine usage.

Critical Parameters
The default values for the parameters to

be found in pcaExplorer, ideal, and
GeneTonic have been de�ned to re�ect the
current best practices for appropriate explo-
ration, modeling, and interpretation. In prin-
ciple, this allows most users to start obtaining
reasonable and robust output without the need
of extensive tuning. Nevertheless, a variety of
key parameters are customizable in all three
applications to obtain a �ne control on the �-
nal aspect of results and visualizations.
• Data transformations: Transformations of

the raw counts are required to visually explore
relationships between samples, and this nor-
mally includes a normalization step prior to
the transformation itself. pcaExplorer of-
fers the possibility to use variance stabiliz-
ing transformed (vst) values, regularized loga-
rithm (rlog) transformed values, or, also, a sim-
ple logarithm operation after applying a small
pseudocount offset. Among these methods, vst
and rlog work well in a wide set of scenarios,
and are therefore recommended. With small
number of samples, the computing time is neg-
ligible.

• Number of most variable genes for run-
ning PCA: A subsetting operation is gener-
ally performed on the transformed values be-
fore computing the Principal Components, by
selecting the number of top genes, ranked by
their highest row-wise variance. This allows
users to perform the calculations on the set of
genes that carry signal, and at the same time re-
duces the computation time—this is especially
noticeable when large numbers of samples are

included. This value defaults to 300, but can be
easily adjusted from the sidebar (also including
potentially all genes if a large enough value is
selected).

• Number of Principal Components to re-
tain and explore: Every Principal Component
explains an additional fraction of variabil-
ity for the provided expression matrix. With
increasing number of samples, and increas-
ing complexity of the experimental covariate
structure, it might be worth inspecting the re-
lationships between samples in higher order
PCs. The scree plot, also provided near the
PCA plot in pcaExplorer, can be used as
diagnostic guidance to select the number of
PCs to focus on, using quantitative heuristic
methods that de�ne when the increment of ex-
plained variability is marginal (e.g., the elbow
method). In most cases, the exploration of the
�rst top 2-3 PCs can be suf�cient to accurately
capture the patterns in the data, especially if
these are nicelymatching themain reported ex-
perimental covariates.

• De�nition of outlier samples: The PCA
plot can be a valuable tool to determine
whether a sample is to be considered an outlier
(and potentially to be excluded from the sub-
sequent steps). While it is tempting to “clean”
the dataset in this manner, sometimes we do
encounter inevitable experimental variability,
and removing samples can have a detrimen-
tal effect on the detection power for differen-
tially expressed genes. We advocate for ad-
ditional checks, e.g., at the single-gene level
if the hypothesis of a sample contamination
might have occurred, driven by the prioritiza-
tion made possible by ranking the genes ac-
cording to their loadings on speci�c Principal
Components.

• Expression level �ltering of features: The
de�nition of thresholds for detecting the ex-
pression of a gene can be easily done in the
overview tabs of pcaExplorer and ideal.
While useful to determine the number of ex-
pressed genes, this can be also bene�cial for
the modeling step, as the number of performed
tests in�uences the multiple testing adjust-
ment. By removing the low count genes from
the pool of tested features, we can indeed �nd
more genes to be signi�cant among those that
we keep, thus improving the power of our pro-
cedure. ideal implements the independent
�ltering approach (Bourgon et al., 2010), to-
gether with the option to use advanced proce-
dures such as Independent Hypothesis Weight-
ing (IHW, Ignatiadis et al., 2016), which is
able to account for informative covariates and
achieve higher power.
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• Selection of an appropriate signi�cance
threshold: ideal makes use of the DESeq2
framework for modeling and testing, where the
Benjamini-Hochberg (BH) adjustment (Ben-
jamini & Hochberg, 1995) is adopted by de-
fault. The corresponding False Discovery Rate
(FDR) value re�ects the fraction of false posi-
tives one would expect to �nd, among all genes
with an adjusted p-value less than or equal
to the chosen value. This procedure is com-
monly adopted for the analysis of many high-
throughput experimental assays, where the
focus is on identifying and reporting a set of
candidate genes, and we are aiming to have
an upper bound value for the percent of false
positives in this set. A commonly chosen value
for this threshold is 0.05; a more liberal choice
could be the value of 0.1, while a more strin-
gent control can be induced by setting it to
0.01. This choice should ideally be performed
in advance, when outlining the analysis plan.
More re�ned testing approaches, e.g., against
an effect size of values greater than 0 [which
achieves a better control of the FDR, compared
to the post-hoc �ltering based on the log2 fold
change of signi�cant genes (Harrison, Patti-
son, Powell, & Beilharz, 2019; McCarthy &
Smyth, 2009)], can also be performed outside
the ideal application, and later provided as a
DESeqResults object. This might be partic-
ularly relevant if the number of genes identi�ed
as DE is very large, and a prioritization might
be needed to derive better (more speci�c) en-
richment results.

• Speci�cation of the design formula: An
essential parameter that determines the iden-
ti�cation of differentially expressed genes is
represented by the design formula, to be de-
�ned in the ideal application. The design
formula tells which experimental covariates
from themetadata table specify the experimen-
tal design, and how these factors should in turn
be used for the analysis. Simple design formu-
las with a single factor (e.g., ∼ condition) are
able to handle the information regarding which
of two (or more) groups each sample belongs
to. For the macrophage dataset, we specify
∼ line + condition, meaning that we
want to test for the effect of condition (e.g.,
IFN gamma vs. naive), while controlling for
the effect of the different cell line of origin
(stemming from the different donors). ideal
supports any �xed-effects experimental design
– if users desire to add interaction effects, this
can be probably best speci�ed during the gen-
eration of the dds object itself, before call-
ing the main ideal() function. Additional
insight on which contrasts can be addressed,

depending on the selected design, can be re-
trieved with tools such as ExploreModel-
Matrix (Soneson et al., 2020). Consulting a
biostatistician/bioinformatician is also recom-
mended in case of more complex experimental
designs, to make sure that this aspect is appro-
priately accounted for. An excellent resource
with practical examples of code and graphical
representations on how to select the appropri-
ate design and contrasts is included in the work
of Law et al. (2020).

• Performing enrichment analysis against
proper background: As pointed out by a recent
survey (Wijesooriya, Jadaan, Perera, & Kaur,
2021), the selection of an inappropriate back-
ground set to perform the enrichment analysis
is a widespread issue. This might have serious
consequences on the data interpretation steps,
whereas the usage of a whole genome back-
ground results in arti�cially increased numbers
of differentially regulated gene sets, poten-
tially invalidating the entire analysis. The use
of a background list consisting of all detected
genes is essential to obtain solid enrichment re-
sults, and this approach is followed by the test-
ing procedures implemented in ideal, which
can later be fed to GeneTonic to stream-
line the contextualization of the results. Users
should be wary of adopting tools that do not
accept the speci�cation of a background list,
if performing enrichment analysis outside the
work�ows proposed in this series of protocols.

• Choosing gene set libraries to perform
functional enrichment analyses: A large num-
ber and variety of collections for gene sets and
pathways are currently available, and this can
include Gene Ontology, MSigDB, and Reac-
tome, just to name a few. Some tools are able
to integrate different such databases, while oth-
ers are speci�c to particular ontologies, and
might be available only for speci�c species.
pcaExplorer and ideal offer wrappers to
the topGO (Alexa et al., 2006) and goseq
methods (Young et al., 2010), which lever-
age the Bioconductor annotation packages and
thus work in a wide range of scenarios. If pos-
sible, we recommend adopting open-source
tools that use up-to-date libraries, and doc-
umenting which versions are used to ensure
computational reproducibility. Our packages
report the output of the session information
command to simplify this task.

• Number of genesets displayed or included
in computations: The choice of the subset
of genesets and pathways included not only
affects the computing time for some func-
tions and derived objects, but also of course
determines the appearance of the generated
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Table 1 Troubleshooting Guide for pcaExplorer, ideal, and GeneTonic

Problem Possible cause Solution

Errors occur when loading
the software packages

Version mismatch Make sure to install a recent version of R and the matching
version of Bioconductor; if needed, reinstall the packages
as detailed in the Support Protocol.

Input �les are not correctly
read by the software
packages

Unexpected �le format
provided, or incorrect
input type

Check the software documentation to determine if the
provided �les match the expected format (also described in
the apps). Their content should also match the
requirements—in most cases, raw counts are needed for
statistical modeling (non-normalized).
Sample names should also match the experimental
covariates information.
Make sure to use appropriate (unique, stable) identi�ers,
and let the conversion be handled by annotation tables. If
planning to use the packages consecutively, we advise to
provide the full set of required and recommended objects,
and use the dedicated exporting functions to proceed to the
subsequent steps.

Very low number of reads
in the input count matrix

Errors in the mapping
and/or quanti�cation steps

Check the logs generated by the mapping and quanti�cation
tools, to verify these steps have been performed correctly
(selecting a matching annotation, specifying quanti�cation
parameters).
If needed, check size of raw fastq �les to exclude an error
upstream of this.

The user interface does not
match the expected
content from the protocol
steps/No content displayed

Missing components from
the other steps

The user interface is responsive to the provided and
currently computed internal components. Users might need
to revisit some previous steps to make sure all elements are
available – some upstream operations might still need to be
completed.

Annotation step failures Missing annotation
packages

Install the annotation packages with the instructions
provided in the app, and subsequently restart the session.

Error messages are
displayed in the app/The
app is crashing

Exception case handling,
unexpected combination
of inputs, incompatible
versions

Inspect the error messages from the applications and the
console logs; these might already report a suggestion on
how to overcome the error.
Gentle fail mechanisms are already in place to cover most
such cases; if the app keeps crashing, please consider �ling
an issue, accompanied by description of the usage that
triggered this behavior as a reproducible example for the
developers.

No results/labels are
displayed

Non-matching identi�ers Check the correct speci�cation of the annotation tables, and
the selection of the species in use.

No genes detected as DE Wrong speci�cation of the
design; unexpected
experimental
errors/variability

Consider revisiting the speci�ed design, and complement
this with additional exploratory data analysis.
While this can be rare, it can be that the transcriptional
differences are very small—in this case, please consider
inspecting single genes, especially if available as validation
candidates.

No progress displayed
after triggering operations

Long-running operations,
large sample sizes in the
provided input �les

Longer running operations (e.g., enrichment analyses with
topGO) are normally accompanied by progress indicators
and noti�cations that assist the users during the wait.
Monitor such indicators and check the console for
informative messages.

(Continued)
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Table 1 Troubleshooting Guide for pcaExplorer, ideal, and GeneTonic, continued

Problem Possible cause Solution

Failure in report
generation

Incomplete
installation/permissions

Running the reporting functionality on server versions of
the app (as the demo instances) requires full installation and
permissions for the literate programming framework. Please
consider using a local version, or contact your system
administrator.

Too generic enrichment
results reported

Too large number of DE
genes, or inappropriate
method speci�ed

Users can resort to different algorithms to compute
enrichment results. For example, the topGO ‘elim’ method
(suggested in ideal) is effective at pruning generic terms,
prioritizing more speci�c and informative entries.

Species not supported for
annotation and enrichment
operations

No annotation packages
available

While requiring some effort, it is still possible to provide
manually constructed annotation tables, as long as they
respect the requirements to correctly interoperate with the
packages. Some enrichment-related functionality might not
be available, if annotation packages are not provided.

Interactive widgets do not
generate any output

Too large number of
genesets selected,
insuf�cient resources

Functions returning interactive widgets with graphs and
networks can require additional resources for the rendering.
Please select a small number of genesets to focus on
initially, and avoid repeated interactions with the
widgets—all operations are executed in sequence in a
reactive environment.

Incompatible software
versions used

Outdated installation of
software

To correctly report the version in use for each software, use
the About section in each application to retrieve the output
of the session information as a basis to document your
Material and Methods section.

Web applications not
usable

Unfamiliarity with
work�ow step

Consult the package documentation, vignettes, read the
in-app collapsible help elements, or execute the interactive
tours to follow a learning-by-doing approach.

Unexpected failures when
providing precomputed
objects

Wrong object classes If using the output of other similar work�ows (edgeR,
limma), please apply some conversion functions upstream
(e.g., from the Bioconductor DEformats package).

Enrichment results are not
compatible with the
GeneTonic
application/functions

Format not recognized/not
matching

Make sure the shaker functions are correctly applied to
the output of the many available alternatives supported by
GeneTonic. If the software used is not yet supported,
consider �ling an issue or contributing a conversion
function.
Moreover, it can be possible that these tools change the
format of the returned output, and the shaker functions
would need to be updated.

Plots are not displayed
correctly

Incorrect set of options
selected

For many of the visual output generated by the applications,
options to control the �nal appearance are provided either in
the sidebar, in the control bar, or directly close to the
generated plot element. Make sure these options are
correctly selected, especially if they are inadvertently reset
during runtime.

summaries. The default value in the Gene-
Tonic application for this parameter is set to
15 (which is a reasonable amount when creat-
ing bipartite gene-geneset graphs), and this can
be gradually increased to iteratively expand the
scope of the exploration, in order to include the
whole set of identi�ed candidate pathways and

obtain a comprehensive snapshot of the effects
for the transcriptional regulation.

Troubleshooting
Table 1 provides troubleshooting infor-

mation, covering some computational issues
that may arise when running pcaExplorer,

Ludt et al.

51 of 55

Current Protocols

 26911299, 2022, 4, D
ow

nloaded from
 https://currentprotocols.onlinelibrary.w

iley.com
/doi/10.1002/cpz1.411 by U

niversitätsbibliothek M
ainz, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ideal, and GeneTonic. This complements
the documentation bundled in each software
package, provided as detailed vignettes, in
which some frequently asked questions are an-
swered in detail.

Additionally, we invite users having dif�-
culties with our packages to ask questions and
report issues on the Bioconductor Support Site
(https:// support.bioconductor.org/ ), as these
are integrated into the large community-driven
ecosystem of Bioconductor. If desired, we also
invite readers to �le a new issue on the re-
spective GitHub repositories (see Internet Re-
sources section), where the developer team
can provide additional guidance.

Suggestions for Further Analysis
To easily recreate and extend the analyses

performed in this article, we provide �les to
execute these protocols in a reproducible man-
ner and several data �les at the GitHub repos-
itory https://github.com/AnnekathrinSilvia/
manuscript_CPBioinfo_2021.

Additional operations include the gener-
ation of bespoke customized plots, which
is possible in the iSEE framework (Rue-
Albrecht et al., 2018), or the comparison and
integration of multiple DE results from re-
lated experimental scenarios (covariates with
more than two factor levels, inclusion of
additional variables in the statistical model,
quantitative assessment of expression changes
from different datasets), which is the focus
of the DeeDee package (currently under de-
velopment at https://github.com/ lea-rothoerl/
DeeDee).

The iterative nature of the analysis of such
high-dimensional data can be assisted by other
web applications, whose role might be com-
plementary to the one proposed by pcaEx-
plorer, ideal, and GeneTonic. As an
example, the i2dash R package (Ustjanzew
et al., 2021) is an excellent option to program-
matically create and deploy such dashboards,
as these can be coupled as data products to the
existing R-based analysis pipelines. This us-
age makes i2dash suitable to be adopted in
biostatistics/bioinformatics research facilities,
reducing the effort to develop and deploy ded-
icated data products.

Overall, the adoption of classes that are
well established in the Bioconductor ecosys-
tem makes the usage of our software packages
easy to integrate with additional work�ow
steps, ef�ciently de�ning alternative entry
points without extensive need for intercon-
versions and reducing the risk of information
loss.
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of this repository has been deposited at
the moment of submission on Zenodo
(https://doi.org/10.5281/zenodo.5810731).
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common steps related to the statistical model-
ing and testing in differential expression anal-
ysis work�ows of bulk RNA-seq data. Tabular
and visual outputs are provided, providing users
with a web application to guide them through
the different aspects—from simple overviews to
functional analysis of identi�ed candidate tran-
scriptional regulators. Here, the full report bun-
dled with the package provides again the means
to share and store a reproducible track of the
performed analysis, which can also be extended
by advanced users.

Marini et al., 2021. See above.
This work describes the GeneTonic package, de-

signed to assist users in the interpretation of re-
sults from transcriptome pro�ling experiments
via RNA-seq. This complex task often involves
the integration of different tabular outputs, and
GeneTonic streamlines these time-consuming
operations that often require the expertise of life
or medical scientists. Interoperability with the
main analysis work�ows and tools for enrich-
ment analysis make this package a candidate for
wide adoption among scientists, also providing
automated reporting on bookmarked features to
better understand transcriptional regulation at
the gene and the pathway level.

Rue-Albrecht et al., 2018. See above.
This work presents iSEE, a general purpose vi-

sualization tool for analyzing any type of two-
dimensional high throughput assay, notably in-
cluding single cell RNA-seq, that can be stored
as a SummarizedExperiment object. Fo-
cusing on the customizability of the generated
outputs, which can simultaneously represent all
aspects of the provided input data, and with dy-
namic linking between panels, iSEE is comple-
mented by meta-generated code tracking for en-
suring computational reproducibility.

Ustjanzew et al., 2021. See above.
i2dash is an R package designed to assist in

the programmatic creation of customized dash-
boards from the scratch, dynamically gener-
ating a web application that can ideally be
coupled to any R-based analysis pipeline. This
usage makes i2dash suitable to be adopted in
biostatistics/bioinformatics research facilities,
reducing the effort to develop and deploy ded-
icated data products.

Internet Resources
https://bioconductor.org/packages/pcaExplorer

https://bioconductor.org/packages/ideal

https://bioconductor.org/packages/GeneTonic
Of�cial Bioconductor homepages for the presented

packages. The best place to retrieve the lat-
est released versions of the packages and their
documentation.

https://support.bioconductor.org/
Bioconductor support site. Ideally, the best place to

ask questions and obtain help from a large com-
munity of Bioconductor users and developers.

https://github.com/federicomarini/pcaExplorer

https://github.com/federicomarini/ideal

https://github.com/federicomarini/GeneTonic
Development branches on GitHub. This is the lo-

cation to �nd the latest development versions
of each package, which might include some ex-
perimental features. The rendered project pages
serve as an additional location to directly con-
sult the documentation for the development
versions.

https://github.com/AnnekathrinSilvia/
manuscript_CPBioinfo_2021

Source code and data to reproduce the presented
protocols. Thought of as a complement to
the classical manuscript, it includes executable
documents that simplify the learning process.
This repository also contains the instructions to
generate a Docker image where all tools and
dependencies are automatically provided, run-
ning the RStudio Server IDE to provide a
full environment to try the functionality of the
packages.

http://shiny.imbei.uni-mainz.de:3838/pcaExplorer

http://shiny.imbei.uni-mainz.de:3838/ideal

http://shiny.imbei.uni-mainz.de:3838/GeneTonic
Demo instances of the presented web applications.

For each of these, a demonstration dataset has
been included and can be used to showcase the
functionality of the packages.

https://www.youtube.com/watch?v=lxpm3i4
PNEE

Workshop video on the GeneTonic package, pre-
sented at the BioC2021 conference.
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