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Abstract

The year is 2022DC. Observations in high energy physics, astrophysics and cosmology
are entirely explained by the standard model (SM) of particle physics together with the
theory of gravity and the ΛCDM model. Well not entirely... There is still a “small”
number of unexplained phenomena and tensions on top of dissonances of theoretical nature
within the respective theories. Particle accelerators acted as the driving force behind the
development of the SM. However, they are seemingly reaching the limits of available
technology. Therefore, the search for new messengers of high energy physics is as timely
as ever.
Guided by some of these dissonances, namely the strong CP problem and the hierarchy
problem, we first take a look at their respective dynamical solutions, the QCD axion and
the relaxion. Of particular interest is the phenomenon of axion fragmentation, which is
build into the relaxion mechanism but also arises in general axion scenarios. The dynamics
of this process feature an instability that leads to the initially homogeneous axion field
developing large inhomogenities that eventually come to dominate the axions energy, in
particular the initial kinetic energy. Using a lattice simulation allows us to take the
inhomogenities fully into account and we are able to show that this energy transfer is
even more efficient than previously estimated. We furthermore explore the subsequent
cosmology of the axion, in particular the possibility that multiple vacua are populated by
the axion.
We then turn our attention to one possible new messenger, gravitational waves (GWs),
and present in detail the dynamics of an axion scenario that leads to an observable signal.
In this scenario the axion is coupled to a new U(1) gauge boson, the so-called dark photon.
The dark photon develops an instability, similar to the one discussed above, due to the
coupling to the axion, which results in the exponential production of dark photon quanta.
This process is associated with a large anisotropic stress, which sources the GWs. We
again study the non-linear dynamics of this process with a lattice simulation to confirm
and refine our previous results concerning the viability of this scenario as well as the
amplitude of the signal. While the minimal model can indeed lead to a signal detectable
by pulsar timing arrays (PTAs), extensions are needed in order to be detectable by planned
interferometers. We study two such extensions in detail, one where the axion has a non-
vanishing initial velocity and one where the axion is identified with the relaxion that by
construction features a time dependent potential.
In the last part of the thesis we focus purely on the phenomenology of new physics with
sizeable fluctuations in energy density. Apart from the examples discussed above, phe-
nomena like networks of scaling seeds or first order phase transitions come to mind. We
discuss the ability of these new physics scenarios to explain the recent hint of GWs from
PTAs such as NANOGrav. The temperature of the SM plasma when these signals are
induced is ≈ 1 GeV and below. Since couplings to the SM are highly constrained at such
low energies, we primarily focus on purely gravitationally coupled sectors. While we find
that currently limits stemming from CMB observations and BBN significantly constrain
scenarios with a signal this strong, the prospect of being able to probe such sectors with
the constantly culminating PTA data in the near future is exciting. Finally we study
the ability of such a dark sector to cause distortions of the CMB spectrum by inducing
acoustic waves in the baryon photon fluid. We find that future experiments could detect
new physics over large regions of parameter space, some of them also accessible by PTAs,
which might mark the dawn of multi-messenger cosmology.
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Chapter I

Introduction

Modern high energy physics stands on two pillars: The first is the standard model (SM)
of particle physics. Its development started in the 1960s [8–11] guided by the wealth of
data stemming from collider experiments. The SM at its core is a quantum field theory
that furthermore specifies the field content such that it contains all known particles and
their interactions. The last missing piece of the puzzle, the Higgs boson, a massive neutral
scalar particle which generates all other particles masses when it undergoes spontaneous
symmetry breaking, was finally discovered at the ATLAS and CMS experiments at the
LHC in 2012 [12,13]. Furthermore the SM predictions for particle interactions have been
successfully tested in a wide variety of experiments.

The second pillar is gravity and the ΛCDM model of cosmology. It postulates the
existence of two forms of energy that the SM particle content does not account for:
cold dark matter and dark energy. The resulting expansion history of the universe
is able to explain a plethora of phenomena such as big bang nucleosynthesis (BBN),
the cosmic microwave background (CMB) and structure formation. Dark matter is
furthermore necessary for the understanding of galactic dynamics, with the first hints
for dark matter coming from the large velocity dispersion in galaxy clusters [14], over
rotation curves [15, 16], to the collision of the bullet cluster, where a displacement of the
majority of total mass from the barionic matter in the form of dust after the collision was
demonstrated [17].

That said, there are still many open questions in both theories and their interplay. Some
stem from observations that can not be explained by the respective theory. For exam-
ple: Non-vanishing neutrino masses to explain neutrino oscillations [18], evidence for the
existence of new physics in the dacays of b-quarks [19], the discrepancy in the CMB and
the local measurement of the Hubble constant [20] or the depth of the 21cm absorption
line caused by Hydrogen right before re-ionization [21]. Other questions are related to
the consistency of both theories and their parameters. An example would be so called
tuning problems. In a quantum field theory like the SM one follows the approach of writ-
ing down the field content as well as the symmetries of the fields. One then expects all
operators allowed by these symmetries to be present with comparable strength. This is
especially true if the operator is not protected by a symmetry and therefore generated
through quantum corrections. In the SM model there are two such tuning problems: The
first is the strong CP problem, which relates to the absence of a CP violating operator
of the strong interaction (QCD). The strength of this operator is given by an angle θ, so
naturally expected to be of O(1) but is constrained to be |θ| < 10−10 by the absence of a
neutron electric dipole moment [22]. The second one is known as the hierarchy problem
and deals with the fact that the SM is unanimously viewed as the low energy effective
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CHAPTER I. INTRODUCTION

theory of a (more) complete UV theory e.g. a theory unifying the strong and electro-
weak interactions. The non-observation of BSM physics pushes the allowed energy scale
of such a theory to higher and higher values. The Higgs mass however is predicted from
the parameters of the high energy theory and the cancellation of different contributions
at the high scale needed to find a much lower value requires a tuning. In cosmology there
exists the similar question of why the scale of the cosmological constant, parameterizing
the amount of dark energy, is so much smaller than all other known energy scales. Finally
there are questions arising at the intersection of both theories, for example: What is the
particle / field nature of dark matter and dark energy? How is the observed discrepancy
between matter and anti-matter, the so called baryon asymmetry, generated in the early
universe?

There exist many ideas to solve one or multiple of these problems. In the first part of
this thesis we investigate a particular solution to the hierarchy problem, the so called
self-stopping relaxion. In this kind of model the unnatural small Higgs mass is promoted
to a new scalar field, such that the coupling becomes a dynamical degree of freedom. The
problem is then solved by setting the field dynamics up in such a way that the field settles
at the observed value of the coupling constant. In the dynamics we consider, the field, the
so called relaxion, is homogeneous but time dependent in the early universe and therefore
scans the Higgs mass. As the Higgs mass approaches the observed value an instability
develops in the relaxion, that turns the kinetic energy into relaxion inhomgenities/waves.
Subsequently the field stops and the mass is stabilised at its present value. This mechanism
was originally considered in [], but there remained questions about the viability of this
stopping mechanism. These questions concern the non-perturbative nature of the process
once the waves come to dominate the relaxions energy. The methods used in this thesis are
able to take these effects fully into account. Furthermore new constraints on this scenario
stemming from the embedding into cosmology are presented.

The absence of any clear signal of physics beyond the SM at the LHC, has lead many
high energy physicists to turn their attention to cosmology and astronomy and consider
these extreme environments as laboratories for new physics. The recent, direct detection
of gravitational waves (GWs) by the LIGO collaboration has opened a new avenue in this
direction. While the universe becomes opaque to our usual messenger, light, at temper-
atures above T ≈ 1 eV, it stays see-through for GWs up to the highest temperatures
the post-inflationary universe can possibly reach without being in tension with CMB ob-
servations. The catch is that there is no guaranteed source of GWs with large enough
amplitudes to ever be observable. One therefore has to wonder which new physics models
lead to an observable signal. This motivates us to study a particular coupling between
an axion like particle (ALP) and a photon that causes an instability in the dark photon,
similar to the one in the relaxion previously discussed. As we will show this mechanism
is indeed able to produce a detectable GW signal. We study the relation of this setup
to multiple of the previously mentioned questions, such as the nature of dark matter, the
baryon asymmetry and again the relaxion mechanism.

While this thesis was conceived, multiple pulsar timing arrays (PTAs), the first of them
NANOGrav, published hints for a possible signal of GWs. These arrays monitor the
pulses arriving on earth from millisecond pulsars over decades, which enables them to
detect GWs as they lead to residuals in the arrival times. While the quadrupolar nature
of the GWs is yet to be confirmed by the imprint it leaves when correlating the signal
from different pulsars, all operating PTAs see strong hints for such a signal. With the first
picture of a super massive black hole at the center of our galaxy and M87 being taken
recently [23,24], the most likely explanation for this signal are inspirals of two such black
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holes. It must be said though that this explanation struggles to produce a signal of this
strength when compared to today’s astrophysics models. This motivates us to take a close
look at a variety of new physics models and their ability to produce a primordial GW
background that can explain the signal in the final part of this thesis. Further inspiration
was provided by [25] that highlighted the possibility to detect GWs with frequencies out
of reach of direct GW searches through spectral distortions of the CMB, deviations from
a black body spectrum. This motivates a study of spectral distortions caused by the
damping of acoustic waves in the baryon-photon fluid that are induced by the previously
mentioned new physics models. The size of the spectral distortions generated through this
new mechanism is possibly much larger than the ones caused by GWs. We find that the
observation of GWs together with observations of spectral distortions provides a powerful
tool to constraint or possibly detect purely gravitationally coupled sectors.
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Chapter II

Theoretical background

II.1 Axions

In a theory where a global symmetry is broken spontaneously at a scale f , there exists
a massless Nambu-Goldstone boson. This particle has the same quantum numbers as
the corresponding symmetry transformation. For example, if the current associated with
the symmetry is a axial vector, the boson is parity odd. If the symmetry is only an
approximate symmetry to begin with, the resulting boson acquires a mass m. The size of
the mass is controlled by the parameter explicitly breaking the symmetry and is therefore
protected against UV corrections, such that it is technically natural for the mass to be
much smaller than the spontaneous breaking scale f � m. Such a parity odd boson is
our notion of a axion or axion-like particle (ALP) in the rest of the thesis.

These particles are a generic prediction of theories aiming to unify the interactions of the
SM or even more ambitiously gravity at energy scales far beyond the reach of colliders.
For example they are found in string theory as the Kaluza-Klein zero-modes of higher
dimensional anti-symmetric tensors required for anomaly cancellation [26–29]. One ex-
pects these ALPs to have their corresponding symmetries spontaneously broken at scales
f ranging from the grand-unification scale MGUT ∼ 1016 GeV to the reduced Planck scale
mPl = 2.44×1018 GeV. In these theories the explicit breaking leading to the mass, can e.g.
be realized by instantons, non-perturbative solutions of the theory related to its vaccum
structure. These effects can be exponentially small, leading to a large range of possible
ALP masses [28]. Interestingly, a generic string compactification is expected to result in a
large number (& 10) of ALPs. This abundance of ALPs motivates searches for more exotic
signatures, since some of them might exhibit extraordinary couplings. The exotic signature
we will be after in Part II are primordial gravity waves that are sourced due to a strong
coupling to a gauge field, which can be easily conceived in this setup [30, 31]. Another
possibility to achieve this signature are special axion potentials as discussed in [32,33].

A particularly intriguing aspect of axions is that they can easily reproduce the observed
DM abundance via the misalignment mechanism [34]. If the symmetry corresponding to
the axion is spontaneously broken before or during inflation, the axion field takes on a
constant value in all of the observable universe φ(x, ti) = φ(ti) = θf initially, where θ ≈ 1
denotes the misalignment angle. The axions motion is overdamped and stays at its initial
value as long as the Hubble parameter is larger than the mass H > m. Once H ∼ m the
axion starts oscillating around the minimum of the potential. Due to Hubble friction the
amplitude of the oscillation gets damped leading to the energy in the axion red-shifting
as ∝ a−3, where a denotes the scale factor, making the axion a dark matter candidate.

While most of our discussion of the primordial dynamics concerns the generic ALP, we
will often come back to examples that are particularly well motivated, since they solve the
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naturalness problems of the SM. Naturalness problems concern the question, why certain
parameters of a theory take a very specific value. We will in the following concentrate
on two of these problems: The QCD θ-angle, which is constrained by measurements to
be close to zero, and the Higgs mass that is not protected against UV corrections. The
possible solution ALPs provide to these problems is introducing a coupling to the sector
in question that promotes the curiously small parameter to a dynamic variable, the field
value of the axion. The problem is then solved by setting the dynamics of the field up in
such away that today the effective parameter is small. In these setups one exploits the fact
that a specific parameter is special in terms of its dynamics. This is opposed to other new
physics models, in which a vanishing of the parameter in question enhances as symmetry.
This also protects the parameter against quantum corrections and renders the small value
technically natural [35]. To put our results in context we briefly review these two tuning
problems and their ALP solutions below.

The QCD axion

The original and best known axion is the QCD axion. In QCD, taking into account non-
perturbative effects and a general quark mass matrix, a P and CP violating term is present
in the Lagrangian:

L ⊂ Θ
g2

32π2
GµνG̃µν , (II.1)

where g denotes the strong coupling constant, Gµν the SU(3) field strength and G̃µν =
Gαβεµναβ/2 its dual. The CP violating effects this term induces, in particular the electric
dipole moment of the neutron, are constrained by measurements, leading to an upper
bound for Θ of Θ . 10−10 [22].1 Such a small value is unnatural, since Θ is a dimensionless
parameter and one expects Θ = O(1). This problem is known as the strong CP problem.
It was soon realized that the problem can be solved if the theory features a U(1) symmetry
that is anomalous with respect to the strong interactions. For example if one of the quark
masses were to vanish e.g. the one of the up quark mu = 0, one recovers symmetry
under the axial rotation u→ exp(iαγ5)u, thus solving the problem. Now the SM doesn’t
feature a massless quark, but Peccei and Quinn realized that the introduction of any
new symmetry anomalous under QCD can still solve the problem [36]. When the new
symmetry is broken spontaneously at a scale f , the resulting Nambu-Goldstone boson φ
couples to the gluon field strength like

L ⊂ −φ
f

g2

32π2
GµνG̃µν , (II.2)

resulting in a new effective vacuum angle Θ− φ/f [37]. Once QCD confines, GµνG̃µν ac-
quires a non-zero expectation value due to instanton effects, generating an axion potential.
The minima of the potential correspond to Θ− φ/f = 2π n with n ∈ Z. The dynamics of
the misalignment mechanism discussed above lead to φ settling in a minimum and there-
fore solve the strong CP problem. The curvature of the potential in the minimum gives
the mass of the axion. One finds m = O(Λ2

QCD/f), where ΛQCD is the QCD confinement
scale [38]. Throughout the thesis we will use the common approximation of the axion (φ)
potential by a cosine

V = m2f2

[
1− cos

(
φ

f

)]
. (II.3)

1The measurement constraints Θeff = Θ + arg|mq|, where mq is the quark mass matrix. For simplicity
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II.1. AXIONS

Let us look at one implementation of the axion, the KSVZ axion [39, 40], to make this
idea a bit more explicit. We introduce a new scalar Φ and a quark q. The Lagrangian is
of the form:

L = q̄iγµDµq − y (Φ q̄LqR + Φ∗ q̄RqL) + (∂µΦ∗)(∂µΦ) +M2Φ∗Φ− λ(Φ∗Φ)2 . (II.4)

The Φ field acquires a vacuum expectation value | 〈0|Φ|0〉 | ≡ f = M/
√

2λ. All newly
introduced degrees of freedom therefore acquire a mass of O(f) and become unobservable
if f is huge, except for the axion φ that is massless in the classical approximation. The
axion φ is related to the original Φ via:

Φ(x) = f exp(iφ(x)/f) . (II.5)

If we integrate out the heavy degrees of freedom and only keep φ, the anomalous heavy
quark loop leads to the coupling of φ that we have seen in Eq. (II.2). If the heavy quark
is additionally charged under a new dark U(1) gauge symmetry with field strength Xµν ,
the coupling

L ⊂ −φ
f

g2
X

32π2
XµνX̃µν , (II.6)

is introduced as well, where gX is the coupling constant of the dark photon. We can con-
sider this toy model as a possible UV completion of the effective theory we are discussing
in Part II. In the same way as well as through mixing of the axion with pions, the couplings
of the axion to the SM gauge bosons are generated.

The Relaxion

The relaxion solves the hierarchy problem also by dynamically selecting a small electro-
weak scale, but in this case multiple minima as well as an involved selection mechanism
are needed. Let us start by sketching the hierarchy problem. By this point it has become
pretty clear that the SM has to be viewed as a low energy effective theory, originating from
a (more) complete theory at a higher energy scale Λ. This theory then hopefully answers
one or several of the open questions mentioned in the introduction. The energy scale Λ is
called the cut-off since above this scale the new degrees of freedom will lead to the break
down of the effective theory. It can no longer be used to make accurate predictions of the
observables. Given the high energy theory, on the other hand, it is possible to integrate
out the heavy degrees of freedom to arrive back at the low energy effective theory. This
procedure allows one to identify the field content necessary to describe the low energy
phenomena as well as to predict the parameters. Crucially it allows the prediction of the
only dimensionful parameter of the SM, the Higgs mass. Famously all other dimensionful
observables like the masses of the fermions and weak gauge bosons are generated when
the Higgs acquires its vacuum expectation value during the spontaneous breaking of the
electro-weak symmetry and are therefore linked to the Higgs mass. The question the
hierarchy problem asks in this context is, how this dimensionful parameter ends up being
so much smaller than the UV scale Λ. When integrating out the heavy degrees of freedom
it is generally expected that the Higgs mass squared picks up several contributions, all of
O(Λ2). This leaves one with the conclusion that to achieve this cancellation a tuning of
the high energy theory’s parameters to within O(m2

H/Λ
2)� 1 is necessary, where mH is

the Higgs mass, in order for all the contributions to cancel to this degree. The tuning that
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is needed becomes more and more severe as the UV scale Λ is pushed to higher scales to
account for the non-observation of new physics at colliders. For a more detailed argument
regarding the hierarchy problem we refer to [41] and references therein.

The relaxion now solves the problem by contributing to the Higgs effective mass through
an adequate coupling and with its own dynamics set up to cancel the contributions of
O (Λ). This idea was first realized in [42] and the interaction potential between the Higgs
H and the relaxion φ is given by

V (H,φ) = Vroll(φ) + µ2
H(φ)|H|2 + λ|H|4 + Vbr(H,φ) , (II.7)

where λ is the Higgs’ quartic coupling and

Vroll(φ) = −gΛ3φ , (II.8a)

µ2
H(φ) = Λ2 − g′Λφ , (II.8b)

Vbr(H,φ) = −Λ4
br

v2
H

|H|2 cos
φ

f
, (II.8c)

where, g′ ≈ g are dimensionless parameters with g′/(4π) < g, Λbr is the back-reaction
scale, vH = 〈|H|〉 = 246 GeV is the Higgs’ vacuum expectation value, and f is the decay
constant of the relaxion.

µ2
H(φ) gives the relaxion dependent effective mass of the Higgs. It is now natural to assume

that the relaxion starts with a random value, such that the Higgs mass is µ2
H(φ) = O

(
Λ2
)
.

We furthermore assume that the mass is positive to begin with, so φ ≈ 0. The slope of
Vroll will now lead to the relaxion field rolling towards larger values. Therefore, the Higgs
mass becomes 0 and eventually negative. When the Higgs mass becomes negative the
minimum of the potential with regards to the Higgs field is no longer at H = 0 but at
some finite value |H| > 0. This leads to the last term turning on Vbr(H,φ). The wiggles
that appear on top of the slope finally trap the relaxion and keep it from rolling further.
The idea is that this happens at the point when the Higgs expectation value matches the
observed one |H| = vH . A second crucial ingredient to trapping the relaxion is some form
of friction, since the relaxion picks up a lot of speed whilst rolling down the slope and
would otherwise simply overshoot the minima.

In the original idea proposed in [42] this was accomplished by this whole process taking
place during inflation. In this period Hubble friction leads to the relaxion field slow rolling
with a velocity φ̇ ≈ gΛ3/HI . If the Hubble constant of inflation HI is large the relaxion
field will go slow enough to stop in the first minimum it encounters. If Λ4

br ≈ gfΛ3 the
first minimum provided by the wiggles coincides with the Higgs having its observed value.
In this way the mass can be brought down from a cutoff scale of up to O (1000) TeV as
was demonstrated in [42].

It was pointed out in [43,44] that this exact same setup features a second source of friction.
Namely the relaxion field, initially taken to be homogeneous, experiences an instability
as it rolls over the forming wiggles. This instability leads to the vacuum fluctuations of
the relaxion growing. The energy in these fluctuations is taken from the motion of the
homogeneous component of the field, that therefore eventually stops. Taking this process
into account relaxation can now also take place after inflation and if it happens during
inflation nevertheless the scanning can proceed much faster. This is great news, since in
the original model inflation had to last for more than O

(
104
)

e-folds, which possibly leads
to eternal inflation [45]. The dynamics of this new friction mechanism are however rather

we assume throughout our discussion that arg|mq| = 0.
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complex, since at some point the approximation of the relaxion field as a homogeneous
field with small perturbations breaks down. This aspect of the stopping mechanism is
studied in Part I.
In Chapter VI we assume that relaxation takes place as originally proposed and take a
closer look at the post-inflationary dynamics of the relaxion. If the universe reheats above
the electro-weak scale after inflation, the Higgs mass will get a thermal contribution that
leads to its expectation value vanishing again. As a consequence the relaxion starts rolling
again. We study the conditions that have to be met in order not to ruin the solution to the
hierarchy problem and highlight the friction provided by the production of gauge bosons
could play in this scenario. We find that apart from this friction potentially saving the
mechanism the gravity waves produced in this process can be detectable.

II.2 Gravitational Waves

One of the corner stones to the description of our universe is the cosmological principle.
It states that on large scales the universe is homogeneous and isotropic. This principle
restricts the metric to a Friedman-Robertson-Walker universe given by

ds2 = a(τ)2
(
dτ2 − dx2

)
= dt2 − a(t)2dx2 , (II.9)

where a denotes the scale factor and t and τ physical and conformal time respectively.2

The evolution of the scale factor is determined by the Hubble equation, which is derived
from the Einstein equations of general relativity and relates the expansion with the total
energy ρtot of the universe

H2 =

(
ȧ

a

)2

=
ρtot

3m2
Pl

. (II.10)

Here mPl denotes the reduced Planck mass. Now our universe is clearly not homogeneous,
which necessitates the introduction of perturbations to this idealized solution. The per-
turbations one considers are however still statistically homogeneous. Furthermore as long
as these perturbations are small one can treat them perturbatively. They can be studied
by making an ansatz for the metric including perturbations and plugging it into the Ein-
stein equations. At zeroth order in the perturbations we then recover the Hubble equation
given above and to first order we find the evolution equations for the perturbations. One
particular benefit from this treatment is that these equations are now linear in the pertur-
bations, which leads to the decoupling of the dynamics of mode functions once we Fourier
transform in the spacial coordinates. Furthermore one can classify the perturbations of
one single mode k by how they transform when applying rotations around k. This is done
by introducing m ∈ N0 reminiscent of the magnetic quantum number.
The cases relevant for cosmology are m = 0, so called scalar fluctuations, and m = 2,
the transverse-traceless fluctuations, which are exactly the gravitational waves (GWs).
The scalar part describes the dynamics of density fluctuations and their interaction via
the gravitational potentials. We will come back to them in Chapter VIII. Here we give
an overview on how to calculate the primordial GW background emitted from turbulent
phenomena that will be used throughout most of this thesis.
To get started one replaces the metric found above using conformal time a2ηµν with
a2(ηµν + hµν), where hµν � O(1) is a general perturbation, which is small compared to
the Minkowski metric ηµν . This general perturbation contains scalar, vector and tensor

2In principle the spacial part could be curved, but this curvature is highly constrained [46].
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CHAPTER II. THEORETICAL BACKGROUND

components. To single out the transverse-traceless tensor desribing the GW, we only
consider the spatial components to be non-zero hij 6= 0. Furthermore, this tensor is taken
to be traceless hii = 0 and divergence free ∂ihij = 0. In this case the linearized Einstein
equations state

h′′ij + 2
a′

a
h′ij −∇2hij =

2

m2
pl

Πij , (II.11)

where Πij is the transverse traceless part (satisfies same conditions as hij , see above) of
the perturbations in energy-momentum δTµν .

Transverse-Traceless Projector

In Fourier space the conditions for a tensor to be transverse-traceless read hii(τ,k) = 0
and kihij(τ,k) = 0. Since hij is also part of a metric and therefore symmetric, it follows
that we can decompose hij(τ,k) as

hij(τ,k) =
∑
λ=±

ελi (k)ελj (k) hλ(τ,k) , (II.12)

where the polarization vectors ελi (k) are given by kiε
λ
i (k) = 0, ελ

′∗
i (k)ελi (k) = δλ′,λ and

εijkkjε
λ
j (k) = iλελi (k)3. Notice that ελi (k)ελj (k) picks up a phase exp(i2λφ) under a

rotation by an angle φ around k, because each ελ(k) picks up a phase exp(iλφ). We can
see that a gravitational wave carries spin m = 2 and that hλ(τ,k) is the mode function
with helicity λ.
The polarization of gravitational waves provides an interesting way to experimentally
distinguish between different signals. The currently running or planned detectors all rely
on the measurement of changes in distance between freely falling masses. In principle,
such detectors are able to differentiate between polarizations as Fig. II.1 shows.

Due to ε∗λ · ελ′ = δλλ′ , we find for the coefficients hλ(τ,k) = ελ∗i (k)ελ∗j (k) hij(τ,k). In
this way we can project out the symmetric transverse traceless part of any tensor with
given helicity λ. Starting from perturbations in the energy-momentum tensor δTij , we can
therefore get the anisotropic stress Πij as

Πij(τ,k) =
∑
λ±

ελi (k)ελj (k) Πλ(τ,k) , (II.13)

with Πλ(τ,k) = ε∗i (k)ε∗j (k) δTij(τ,k). At first order in hij the different helicities el-
volve independently, as we can see by Fourier transforming Eq. (II.11) and multiplying by
ελ∗i (k)ελ∗j (k):

h′′λ + 2
a′

a
h′λ + k2hλ =

2

m2
pl

Πλ (II.14)

Energy Density

The quantity commonly used to compare gravitational wave signals is the energy
spectrum. But how can we make sense of the energy-momentum in a gravitational

3The symmetric tensors that satisfy hii(τ,k) = 0 and kihij(τ,k) = 0 form a 2 dimensional vector space.
ε+i (k)ε+j (k) and ε−i (k)ε−j (k) are part of it and linear independent and therefore form a basis.
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_+

Figure II.1: Polarized gravitational wave hitting a circle of freely falling particles. The
circle lies in the blue plane orthogonal to the propagation direction. The solid line with blue
dots shows the perturbed circle while the dotted line with white dots is the unperturbed
circle before the arrival of the wave. The circle is shown at different times. P = 2π/k is
the period of the gravitational wave. Illustration borrowed from [47].

wave, a distortion of space-time? Lets examine a localized gravitational wave packet
with wavelength λ and width δ � λ. The energy-momentum is the source in Einsteins
field equations. At first order in hµν we got the linearized Einstein equations, that
determine the propagation of the wave packet. Moving onto second order, we find
that we can distinguish two types of contributions: The ones that vary on a typical
scale λ and describe interactions between gravitational waves e.g. scattering, and the
ones that only vary on scales comparable to δ. The second kind behaves exactly like
the energy-momentum of e.g. a electromagnetic wave packet, a photon. It vanishes
outside the packet and with in it is approximately constant, only varying on scales
of the whole package δ rather than single wavelengths λ. Therefore, we identify the
second term with the energy-momentum of the gravitational wave. In this case we have [48]

TGW
µν =

m2
pl

4
〈∇µh∗ij∇νhij〉, (II.15)

where ∇µ denotes the covariant derivative with respect to the background metric a2ηµν
and the average has to be taken over several wavelengths, in order to only end up with
the slowly varying contributions.
The energy density measured by a co-moving observer is extracted by contracting the
energy-momentum-tensor with the 4-velocity of that observer (uµ = (1/a, 0, 0, 0) working
in conformal time τ).

ρ = TGW
µν uµuν

=
m2

pl

4a2
〈∇0h

∗
αβ∇0h

αβ〉

≈
m2

pl

4a2
〈h∗′ijh′ij〉 (II.16)

where in the last step we have used that ∂0 and ∇0 agree for sub-horizon wavelengths since
Γ ∝ a′/a. Next, we can Fourier expand h and use that 〈e−ik·x+ik′·x〉 = (2π)3δ(3)(k − k′).
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We find

ρ =
m2

pl

4a2

∫
d3k

(2π)3
〈h∗′ij(τ,k)h′ij(τ,k)〉, (II.17)

were the remaining brackets denote an average over time. For the spectral density we find

dρ

d log k
(τ, k) = k · dρ

dk
(τ, k) =

m2
plk

3

8π2a2
〈h∗′ij(τ, k)h′ij(τ, k)〉 . (II.18)

Now that we are in Fourier space again, we can plug in the definition from Eq. (II.12)
in order to express the spectral energy density in terms of the mode functions hλ(τ, k).
hλ(τ, k) is the mode function with helicity λ, allowing us to define the polarized spectra
as

dρλ

d log k
(τ, k) =

m2
plk

3

8π2a2
〈h∗′λ (k, τ)h′λ(k, τ)〉 . (II.19)

The total spectrum is then simply given by summing over the polarizations λ. The deter-
mination of this energy density will be the central part of any calculation in the following
that tries to asses the detectability of GWs. Throughout this thesis we will use two
strategies to do so that we briefly outline here.

Integration in Fourier Space

If the dynamics of the source are already described in Fourier space, the source term
Πλ(k, τ) will also be given in Fourier space. In this case it is easiest to start from Eq. (II.14)
and multiply with a, such that we end up with

(a hλ)′′ + (k2 − a′′

a
) a hλ =

2

m2
pl

aΠλ (II.20)

For sub-horizon wavelengths we have k2 � a2H2 ≈ a′′/a and can therefore neglect a′′/a.
In the radiation dominated universe that we will be dealing with throughout this thesis,
we have a(τ) = 1 +H(τ=0)τ and therefore a′′ even vanishes exact. Formally the equation
above is solved by

hλ(τ,k) =
2

m2
Pl a(τ)

∫ τ

τi

dτ ′
a(τ ′)

k
sin
(
k(τ − τ ′)

)
Πλ(τ ′,k) , (II.21)

where τi denotes a time before the source turned on. The energy spectrum can then be
found by plugging this solution into Eq. (II.19), where due to the average in Eq. (II.19)
the fast oscillating terms are dropped, in total one finds [3, 49]

dρλ

d log k
(τ, k) =

k3

4π2m2
pla

4(τ)

∫ τ

τi

dτ ′dτ ′′a(τ ′)a(τ ′′) cos
(
k(τ ′ − τ ′′)

)
Π∗λ(τ ′, k)Πλ(τ ′′, k) .

(II.22)

Notice that the energy density in gravitational waves scales as a−4 and is therefore a form
of radiation. Since the sources we consider in the thesis are only efficiently sourcing GWs
for a finite amount of time, we can cutoff the integral at some time τf when the energy
density has converged. From this point onwards we use the equations given in Appendix A
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to determine the present day abundance by red-shifting. The quantity commonly used to
do so is the energy density normalized by the total energy density, since it is dimensionless
and constant during radiation domination up to changes in the relativistic degrees of
freedom

Ωλ
GW(τ, k) =

1

3m2
PlH

2(τ)

dρλ

d log k
(τ, k) . (II.23)

Integration in Position Space

The instabilities that we consider below become at some point non-perturbative. When
we use the strategy presented above we will always have to make simplifying assumptions
about the dynamics of the source to make the description in Fourier space feasible. In
some cases we will however solve the full dynamics by integrating the equations of motion
in position space. To do so we will have to quantize the space coordinates. We will refer
to this as the lattice method. In this case it is best to also solve the dynamics of the GWs
on the lattice given by Eq. (II.11). Since the transverse-traceless projector can not readily
be applied in position space, we instead use a pseudo stress Π̃ that contains all terms of
the energy momentum tensor that contribute to the transverese-traceless stress. We can
then solve Eq. (II.11) using Π̃ instead of Π, Fourier transform the final result and apply
the projector. This is mathematically equivalent, since Eq. (II.11) and the projection are
linear [50]. Given the solution we again calculate the energy density using Eq. (II.19).
The details of the implementation of this method are given in Appendix B.

GW detection

Once one has predicted the GW spectrum, one can evaluate its detectability in current and
future experiments. A stochastic GW background can be detected in a given experiment if
its signal-to-noise ratio (SNR) % exceeds a threshold value %thr. The SNR is given by [51]

%2 = Tobs

fmax∫
fmin

df

[
ΩGW(f)

Ωn(f)

]2

, (II.24)

where Tobs is the period of observation, (fmin, fmax) is the frequency range of the detector
and Ωn(f) is the detector’s noise spectrum converted to fractional energy density. For a
cross-correlated measurement in a network of detectors, as for instance a pulsar timing
array (PTA), the noise spectrum has to be replaced by the effective noise Ωeff of the network
(see [51] for further details), and the SNR is given by Eq. (II.24) with an additional factor
of 2.

We will see that the sources considered below don’t source a signal strong enough to be
detected by the current generation of ground-based interferometers, the LIGO, VIRGO
and KAGRA network [52]. But their planned predecessor the Einstein telescope (ET) can
test part of the parameter ranges [53]. In the micro-Hertz to Hertz range we furthermore
present the projected sensitivities of the planned space-based observatories LISA [54,55],
µAres [56], BBO and DECIGO [57]. Pulsar timing arrays like the planned Square-
Kilometre Array (SKA) [58] can detect GWs at even lower frequencies.4 In addition,
we evaluate current limits from the NANOGrav 11-year dataset [60].

4We here assume that the prospective foreground from supermassive black hole binaries can be sub-
tracted. Further details on the sensitivities can be found in [59].
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Recently, NANOGrav and other operating pulsar timing arrays have further reported
strong evidence for a common-spectrum stochastic process across the pulsars in their
data [61–64], which might be due to a GW background. However, a GW detection has
not yet been established, due to the lack of conclusive evidence regarding the inter-pulsar
correlations of this process. We take a closer look at this possible discovery in Chapter VII,
where we present a fitting procedure that allows for a quick parameter estimation given
the gravitational wave spectrum of a specific model.

In [25] the possibility of detecting GWs via the CMB spectral distortions they cause was
highlighted. In Chapter VIII we consider the possibility of sourcing spectral distortions via
gravitationally induced acoustic waves in the baryon-photon fluid. Both these effects are
present for the sources of GWs we consider in this thesis and we compare their respective
strength.

II.3 Harmonic Oscillator with Time-Dependent Frequency

The dynamics of the models below can be analyzed in the early stages by separating the
evolution of homogeneous mean fields and fluctuations that must be quantized. When we
perform a Fourier transformation with respect to the spatial coordinates, we find that each
mode of these fluctuations obeys the equation of motion of a harmonic oscillator and can
be quantized as such. The evolution of the homogeneous mean fields will introduce a time-
dependence of the frequencies, leading to a set of harmonic oscillators with time-dependent
frequencies. In this case, however, the state of lowest energy changes over time such that
it is not obvious how to define the vacuum. In order to solve this problem, we start by
quantizing the harmonic oscillator and pay special attention to the time-dependence.

Quantization

The action of a harmonic oscillator with time-dependent frequency reads

S =
1

2

∫
dt
(

Φ̇2 − ω2(t)Φ2
)
, (II.25)

where ω(t) denotes the frequency. The equation of motion is

Φ̈ + ω2(t)Φ = 0. (II.26)

The system is quantized by promoting Φ and Π = Φ̇ to operators Φ̂ and Π̂ and demanding
[Φ̂, Π̂] = i. We introduce creation and annihilation operators â and â†, that satisfy [â, â†] =
1. This allows us to express the time dependence of Φ̂ (Heisenberg picture) with a mode
function v(t):

Φ̂(t) = v(t)â+ v∗(t)â†. (II.27)

Φ̂ solving the equation of motion Eq. (II.26) is then equivalent to v(t) solving it. From
[Φ̂, Π̂] = i, we get:

i = v(t)v̇∗(t)− v∗(t)v̇(t) = 2i Im (v(t)v̇∗(t)) . (II.28)

However, these equations do not uniquely determine v(t). We can derive further restric-
tions by specifying the vacuum |0〉, defined by â |0〉 = 0. In the time-independent case,
we can demand that the vacuum is the eigenstate of the Hamiltonian with the smallest
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eigenvalue. This is, in general, impossible since the state of lowest energy is also chang-
ing with time. Assuming that for very early times ω2(t) approaches a constant value
(limt→−∞ ω

2(t) = ω2
0), we can nevertheless define the Bunch Davies Vacuum as the state

that minimizes the energy for very early times or, in other words, for early times we de-
scribe the system as a harmonic oscillator with constant frequency ω0. Its vacuum can
then be defined as usual:

Ĥ |0〉 =
1

2

[
Π̂2 + ω2

0Φ̂2
]
|0〉 (II.29)

=
1

2

[
(v̇∗(t))2 + ω2

0(v∗(t))2
]
â†â† |0〉+

1

2

[
|v̇(t)|2 + ω2

0|v(t)|2
]
|0〉

Demanding that |0〉 is an eigenstate of Ĥ, we obtain:

0 = v̇2(t) + ω2
0v

2(t)

= (v̇ + iω0v)(v̇ − iω0v) (II.30)

Only one of the factors above can be set to zero and satisfy Eq. (II.28) which leads to:

v̇(t) = −iω0v(t); (II.31)

v(t) =
1√
2ω0

e−iω0t (II.32)

for early times t. Due to the time-dependence, these relations may not hold at later times.
Since these equations describe the lowest energy state for early times, as just shown, the
system might be in an excited state at later times.

Classical Description after Growth of Mode Functions

Further on in this thesis, the case will be important where the time-dependence of ω2

leads to an enormous growth of the mode function amplitude. This growth will eventually
lead to the break down of the linearized treatment that allowed us to describe the system
in terms of its Fourier modes behaving as decoupled harmonic oscillators. The large field
amplitudes, however, lead to effects from quantum interference becoming negligible, when
calculating total widths to get e.g. a power spectrum. We will be exploiting this fact in
the before mentioned lattice method by switching to a classical, stochastic description.
This is achieved by turning Φ into a Gaussian random variable

Φ(t) = Re(v(t))e+ Im(v(t))e′, (II.33)

where e, e′ are independent normalized Gaussian variables 〈ee〉 = 〈e′e′〉 = 1, 〈ee′〉 = 0.
Note that during the growth stage when the perturbative treatment still holds, all the
physics is in v(t). Therefore, it makes mathematically no difference at what point we
switch to the classical description, as long as it is during the perturbative stage. A special
choice is using the classical description from the beginning of the simulation, which is what
we refer to when we speak about the Bunch-Davies vacuum as an initial condition for the
classical lattice method.
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Main part I:
(Rel-)Axion Fragmentation
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Chapter III

(Rel-)Axion Fragmentation

III.1 Introduction

The original relaxion mechanism discussed in Section II.1 relied on Hubble friction during
inflation for the relaxion to stop in one of the minima. Without this friction the relaxion
does not stop in the first minima it encounters, but rather rolls over many minima and
maxima. This, however, gives rise to a new form of friction itself: As the relaxion traverses
over the minima, the effective mass given by the curvature of the potential is highly
oscillatory. This results in a parametric resonance that leads to exponential growth of
fluctuations in the relaxion field for a particular range of momenta [43]. The energy
required for this growth is extracted from the motion of the homogeneous mode such
that this so-called fragmentation process acts as a source of friction to the rolling of the
relaxion. This effect leads to a natural and novel stopping mechanism for the relaxion,
the so-called self-stopping relaxion, as first pointed out in [43, 44]. Similar self-resonance
effects have been considered in the context of axion monodromy inflation [65] and axion
monodromy dark matter [33,66] and can also result in GW production [67].

The necessary ingredients for successful relaxation of the EW scale in the context of the
self-stopping relaxion were studied in [44], while Ref. [43] examined the conditions under
which ALP fragmentation can efficiently stop the field evolution for generic ALPs. In
particular, the time required to stop the field as well as the corresponding field displace-
ment were computed in a linearized analysis, where the equation of motion for the ALP
fluctuations can be Fourier transformed into momentum space, with each mode evolving
independently. It was shown in [43] that the linear approximation holds for most of the
fragmentation process, thus the linearized results for e.g., the stopping time were expected
to hold up to O(1) corrections from non-linearities.

A fully satisfactory description of the system in the non-linear regime requires a detailed
lattice study, which we perform in this work. While our motivation is rooted in the relaxion
mechanism, our lattice study here is broadly applicable to general ALPs with/without a
monodromy-like potential. In particular, another interesting example for the application
of the axion fragmentation would be the kinetic misalignment scenario [68–70], which is a
novel ALP dark matter production mechanism. In this scenario, the ALP zero mode has
initial velocity which is large enough to overcome the potential barrier, and this initial
velocity determines the amount of the relic abundance today. A possible mechanism
to achieve these initial conditions is discussed in detail in Chapter V. We will briefly
discuss the physical consequences of ALP fragmentation in this new production mechanism
towards the end of this chapter, in particular commenting on the possibility of emitting
detectable GWs. Similar studies have recently appeared in [71], where especially the
potential of this mechanism was highlighted to achieve the observed DM abundance in
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parameter space with existing or planned direct detection experiments.

We solve the ALP equations of motion in position space on a discretized spacetime lattice
using a staggered grid algorithm [72, 73], which reproduces the continuum version of the
equations up to an error that is quadratic in the lattice spacing. We generically find that
ALP fragmentation is more efficient in the presence of non-linearities, mainly due to the
importance of 2→ 1 processes that allow for the growth of modes outside the parametric
resonance band. The more efficient fragmentation typically leads to an order of magnitude
reduction in the stopping time and field displacement as compared to the results from
the linear analysis. As expected, the final ALP spectrum is broadened compared to the
linearized analysis, and the final field configuration is highly inhomogeneous as most of the
energy in the system is contained in fluctuations corresponding to axion particles. The rest
of the features of the linear analysis are qualitatively confirmed, and we comment briefly on
the possible formation of domain walls due to the ALP field stopping in different minima
on scales separated by more than the inverse stopping time.

Finally we investigate the potential stochastic GW background emitted by fragmentation,
if an ALP subject to the kinetic misalignment mechanism constitutes all of DM. A simple
argument based on a naive dimensional estimate of the GWs energy density, leads us to
the conclusion that no detectable GW background can be sourced without overclosing the
universe in the minimal scenario. Further mechanisms to suppress the axions abundance
would be needed.

III.2 Summary of the linear analysis

In this section we briefly recall the results of Ref. [43]. We consider a potential of the form

V (φ) = −µ3φ+ Λ4
b cos

φ

f
. (III.1)

This ansatz approximates the relaxion potential of Eq. (II.7) once the Higgs vev has
become non-zero. We can then identify µ3 ' −gΛ3 and Λ4

b ' Λ4
br |H|2/v2

H , neglecting
the dependence of |H|2 on φ. This approximation is valid, since in this stopping scenario
the relaxion overcomes many minima and maxima, such that the relative change in the
barrier size towards the end of its evolution is small. This also means that we are working
in the limit Λ4

b/f � µ3 and we define the axion mass m2 = Λ4
b/f

2. Notice that, for
Λ4
b/f ∼ µ3, the physical value of the axion mass is smaller than this value. This does not

affect our discussion. In the rest of this chapter we will use m or Λb interchangeably. We
assume that the axion has an initial kinetic energy large enough to overcome the barriers
of the potential, φ̇2/2 � Λ4

b . In the relaxion case this velocity is generated through the
monodromy Vroll ≈ −µ3φ while the barriers are still absent.

In the kinetic misalignment scenario that we briefly eluded to in the introduction there
is no monodromy µ = 0. In this case the initial velocity could be generated via the
mechanism discussed in Chapter V or via the alternative presented in [74].

In the linear analysis we decompose the axion field into a homogeneous mode plus small
fluctuations:

φ(x, t) = φ(t) + δφ(x, t) = φ(t) +

(∫
d3k

(2π)3
akuk(t)e

ikx + h.c.

)
(III.2)

where ak are the usual annihilation operators with [ak, a
†
k′ ] = (2π)3δ3(k − k′). As initial

condition, we assume the modes are initially in the Bunch-Davies vacuum, where uk(t) ≈
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e−ikτ/(a
√

2k) with τ being the conformal time.1 The equations of motion for the zero
mode φ(t) and for the mode functions uk are given by

φ̈+ 3Hφ̇+ V ′(φ) +
1

2
V ′′′(φ)

∫
d3k

(2π)3
|uk|2 = 0, (III.3)

ük + 3Hu̇k +

[
k2

a2
+ V ′′(φ)

]
uk = 0. (III.4)

Equation (III.3) is such that a growth of the mode functions uk slows down the evolution
of the zero mode φ. Neglecting cosmic expansion, and in the limit of constant velocity,
Eq. (III.4) can be read as a Mathieu equation. This is a special case of the harmonic
oscillator with time-dependent frequency as discussed in Section II.3, which features ex-
ponentially growing solutions depending on its parameters, namely when k falls in specific
bands around nφ̇/(2f), for integer n ≥ 1. Modes falling in the n = 1 modes grow faster,
and the width of the band is larger than for n ≥ 2, thus we expect these modes to be the
principal source of friction to the axion.

For φ̇2/2� Λ4
b , the n = 1 instability band can be written as |k − kcr| < δkcr, with

kcr =
φ̇

2f
, δkcr =

Λ4
b

2fφ̇
. (III.5)

The asymptotic behaviour of uk at large t is

uk ∼ (2kcr)
−1/2 exp

(√
(δkcr)2 − (k − kcr)

2t

)
sin
(
kcrt+

π

4

)
. (III.6)

Due to this exponential growth, the energy density of the fluctuations within the instability
band increases. Energy conservation implies that the kinetic energy of the zero mode
decreases by the same amount, thus reducing φ̇ and correspondingly shifting the instability
band towards smaller k’s. At the linear level, the growth of the modes around kcr stops
when they exit the instability band, i.e., when the critical mode has decreased by an
amount δkcr. As we will discuss in the following in Sec. III.4, at next to leading order
the scattering of two modes of the instability band can enhance modes which are still
outside the latter. As a result, these modes enter into the instability band with a larger
initial amplitude. Hence, the time needed for their enhancement to level which induces a
significant backreaction is shortened, increasing the overall efficiency of the process.

The equation of motion of the fluctuations Eq. (III.4) can be solved, assuming φ̈ does not
vary during the amplification time of a single mode, by means of a WKB approximation
in three separate time intervals: first, before the mode kcr enters the instability band;
second, when the mode is deep inside the instability band; third, after it has left it. In the
two transition regions, when the mode enters and exits the instability band, the solution
can be expressed in terms of Airy functions. Continuity of the solution is then used to
match the five intervals. The asymptotic solution for uk, after it has left the instability
band, is found to be

ukcr(t) '
1

a

√
2

kcr
exp

(
πΛ8

b

4fφ̇2 |φ̈+Hφ̇|

)
sin

(
1

a
kcrt+ δ

)
, (III.7)

1Note that Eq. (2.6) in Ref. [43] contains an error in the phase of the Bunch-Davies mode functions,
which does not affect the derivation of the subsequent results. In addition, the effects of cosmic expansion
are not important since fragmentation is much faster than one Hubble time.
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and the time needed for this amplification is

δtamp ≈
1

2δkcr
log

φ̇2

k4
cr

=
fφ̇

Λ4
b

log
16f4

φ̇2
. (III.8)

By using energy conservation and Eq. (III.7), the equation of motion for the zero mode
can be derived:

φ̇φ̈ = −3Hφ̇2 + µ3φ̇− 1

32π2f4
φ̇3|φ̈+Hφ̇| exp

(
πΛ8

b

2fφ̇2|φ̈+Hφ̇|

)
. (III.9)

Equation (III.9) can be integrated exactly for H = 0, µ = 0. In particular, one finds that
the evolution of the zero mode is stopped by the backreaction after a time

∆tfrag '
2fφ̇3

0

3πΛ8
b

log
32π2f4

φ̇2
0

, (III.10)

and the corresponding field excursion is

∆φfrag '
fφ̇4

0

2πΛ8
b

log
32π2f4

φ̇2
0

. (III.11)

The effect of Hubble friction and of the slope µ is negligible as long as the following
equation is satisfied:

µ3 < 2Hφ̇0 +
πΛ8

b

2fφ̇2
0

(
W0

(
32π2f4

eφ̇2
0

))−1

. (III.12)

Here W0(z) is the 0-th branch of the product logarithm function. If the slope µ is too
large, the field is accelerated and the fragmentation is not efficient enough to stop it, unless
Hubble friction balances it. In Sec. III.3 we will check the validity of Eqs. (III.10)–(III.12)
with a lattice analysis. Due to the increased efficiency at next-to-leading order (NLO),
the time scale and the field excursion of Eqs. (III.10), (III.11) are reduced typically by a
factor of a few. Instead, Eq. (III.12) is satisfied with order percent accuracy.

III.3 Lattice analysis

The linear analysis presented above is very useful as it provides simple analytic expressions
for the quantities related to the axion evolution. One may wonder, though, whether these
results are robust once non-linear effects are taken into account. Even though a strong
backreaction is intrinsically related to a breakdown of perturbativity, it is expected that, at
NLO, the efficiency of fragmentation is not suppressed in a potential as in Eq. (III.1) [43].
In this section, we discuss the validity of this statement by means of a lattice simulation.
The simulation is carried out using a staggered grid quantization of space and time, guar-
anteeing second order accuracy in the lattice spacing O(dx2

µ). The time integration of the
resulting field equations is carried out using a leapfrog algorithm (the algorithm discussed
in Sec. B but without the vector field). We vary the side length of the simulated box
L as well as the number of lattice sites N to ensure that our results are independent of
them, which is the case as long as the critical modes from the start of the simulation
when 〈φ̇〉 = φ̇0 up to the end where 〈φ̇〉 < 2mf are all covered. This corresponds to
dx = L/ 3

√
N � 2f/φ̇0 and L� 1/m.
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We start neglecting the slope and cosmic expansion, such that µ = H = 0. The most
relevant quantities that we want to compute on the lattice are the duration of and the
field excursion during the fragmentation process. From the linear analysis, we know that
the modes that are inside of the first instability band at the time when the barriers appear,
will grow for a time δtamp|φ̇=φ̇0

as in Eq. (III.8), where φ̇0 is the initial velocity. After that
time, the instability band moves towards lower k modes due to the backreaction onto the
zero mode. We are interested in the time needed to stop the evolution of the zero mode
and the corresponding field excursion, which were computed in the linear approximation
in Eqs. (III.10) and (III.11) to be

∆tfrag '
2fφ̇3

0

3πΛ8
b

log
32π2f4

φ̇2
0

, ∆φfrag '
fφ̇4

0

2πΛ8
b

log
32π2f4

φ̇2
0

, (III.13)

where, for the typical relaxion parameters, we find 2/(3π) log(. . .) ∼ O(10). Let us also
define the quantities

tnl =
fφ̇3

0

Λ8
b

, φnl =
fφ̇4

0

Λ8
b

, (III.14)

which control the time and the corresponding distance in field space it takes for the field
to come to a complete stop after fluctuations become non-linear. At the non-linear level,
we generalize the relations in Eq. (III.13) via the following parameterization

∆tnl
frag = δtamp + tnl · zt , (III.15)

and
∆φnl

frag = φ̇0δtamp + φnl · zφ . (III.16)

We show in Fig. III.1 the evolution of φ̇(t) (top) and φ(t) (bottom) for different choices
of the initial velocity and of the potential parameters. It can be seen that after the short
time δtamp in which the axion evolves with an almost constant velocity, the field slows
down and stops in a time given in Eq. (III.15) with

zt ≈ 2.3 , (III.17)

for 10m ≤ f ≤ 1010m and 5mf ≤ φ̇0 ≤ 20mf . Analogously, in the bottom panel we see
that

zφ ≈ 1.5 . (III.18)

These values are shorter by a factor of O(10) than the ones obtained in the linear analysis.
The reason for this enhanced efficiency found in the lattice analysis is mainly due to the
NLO correction that will be discussed in detail in Sec. III.4. This difference has a minor
impact on the analysis of the relaxion parameter space of Ref. [44] (in which an order of
magnitude uncertainty is always assumed), as we will discuss more in Sec. III.6.3.
In Fig. III.2 we show the evolution of the axion field for different choices of the lattice
parameters, which demonstrates the stability of our results.

If the fragmentation process takes place after inflation, one may expect the fluctuations to
be enhanced during inflation compared to the Bunch-Davies spectrum and be frozen until
they re-enter the horizon, with a nearly scale-invariant power spectrum. In Fig. III.3 we
show the axion evolution in a run with an initially flat power spectrum, compared to one
with the Bunch-Davies spectrum. We fix the normalization of the flat power spectrum
in such a way that in the initial resonance band the power spectrum is enhanced with
respect to the Bunch-Davies case by (dρ/d log k)kcr,0 ≈ x × (dρBD/d log k)kcr,0 , and we
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Figure III.1: Field evolution with slope µ = 0 and no expansion for different initial
velocities and decay constants f . All simulations were run with N = 1283 lattice sides
and length L = 20/m along each side. Top: We clearly see how the stopping process
consists of two parts i) a phase where the modes that are initially enhanced by parametric
resonance grow from vacuum to an energy density ρ ≈ m2f2 in a time δtamp and ii) a
nonlinear part that lasts a time of 2.3 tnl (marked by the red dotted line). Bottom: We
see that in the non-linear regime the fields roll a distance ≈ φnl · 1.5 (blue dashed line), in
the limit of large f and φ̇0.
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Figure III.2: Average axion velocity for f = 103 m, µ = 0, and no expansion as obtained
from linear analysis (Eq. (III.9)) and from different realizations of the lattice.

take x = 108 in Fig. III.3. As it can be seen from the figure, the only difference in this
case is in the duration of the amplification time δtamp, which now lasts

δtamp → δtmod
amp ≡

fφ̇

Λ4
b

log

(
x× 16f4

φ̇2

)
, (III.19)

as one would expect. The duration of the non-linear phase tnlzt is instead independent
of the initial power spectrum. We expect this behavior to not depend on the choice of
the power spectrum, but only on the normalization of the initial instability band. This
is due to the dominance of induced secondary fluctuations, as will be discussed below in
Sec. III.4.

The last quantity that we want to compute on the lattice is the maximal slope of the
potential µmax, which is defined from Eq. (III.12) with H = 0:

µ3 < µ3
max ≡

πΛ8
b

2fφ̇2
0

(
W0

(
32π2f4

eφ̇2
0

))−1

. (III.20)

For µ > µmax, fragmentation is not efficient enough to contrast the acceleration induced
by the potential slope. Fig. III.4 shows the evolution of the zero mode for µ around µmax,
for different values of f and of the initial velocity. It can be seen that the maximal value
of µ for which the field stops respects Eq. (III.20) with a percent accuracy.

In the closing of this section, let us briefly comment on the effect of the Hubble friction.
Contrary to the slope term, the Hubble friction acts to slow down the rolling of φ. When
the Hubble friction is the dominant source of the friction, the fluctuation in φ remains
small enough to use the linear analysis shown in [43]. In this regime, the two sources of
the friction can be written as(

dρ

dt

)
frag

= − φ̇
3|φ̈+Hφ̇|
32π2f4

exp

(
πΛ8

b

2fφ̇2|φ̈+Hφ̇|

)
, (III.21)(

dρ

dt

)
Hubble

= −3Hφ̇2. (III.22)
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Figure III.3: Evolution of the axion field with µ = 0, f = 1010m, φ̇0 = 10mf ,
and no expansion for different initial energy spectra. The dark colors correspond to a
flat initial energy spectrum (as expected if fluctuations are enhanced during inflation)
where the energy in the initial resonance band is enhanced by a factor dρ/d log k(kcr,0) ≈
108 dρBD/d log k(kcr,0) as compared to the Bunch-Davies vacuum (light colors). The gray
and black dashed lines mark δtamp and δtmod

amp, respectively (see Eq. (III.19)), while the thin

and thick red dashed lines correspond to δtamp + zttnl and δtmod
amp + zttnl. Both simulations

were run with N = 2563 lattice sides and length L = 80/m along each side.
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Figure III.4: Average axion velocity varying the slope in the range 0.70 < µ/µmax < 1.10,
for f/m = 103 (top) and 1010 (bottom), and φ̇0 = 5mf (left) and 10mf (right). The red
dotted line is at (t− δtamp)/tnl = 2.3.
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For the derivation of Eq. (III.21), see Ref. [43]. As long as |(dρ/dt)frag| � |(dρ/dt)Hubble|,
the fragmentation effect is not important and the time evolution of the zero mode is
described by the equation of motion φ̈+3Hφ̇−µ3−(Λ4

b/f) sin(φ/f) = 0. The fragmentation
effect becomes important when |(dρ/dt)frag| & |(dρ/dt)Hubble|, which occurs for

H . O(1)× πΛ8
b

fφ̇3
log

32π2f4

φ̇2
. (III.23)

Here, we assumed µ3 . O(1)×Hφ̇ otherwise Eq. (III.12) is not satisfied and φ keeps rolling.
Once this condition is satisfied, (dρ/dt)frag quickly dominates over (dρ/dt)Hubble because
of the exponential factor. Thus, we conclude that Hubble friction is not important once
the fragmentation starts, but it controls when this happens. For an ALP rolling down its
potential, fragmentation starts after H drops below the RHS of Eq. (III.23). In the case of
the relaxion, fragmentation starts as soon as the barriers appear, if Eq. (III.23) is satisfied.
This justifies our choice of not including cosmic expansion in our lattice simulations.

III.4 Secondary fluctuations

Secondary fluctuations will be sourced as higher order terms in the potential become
important once the initial fluctuations in the resonance band have grown. While our
lattice analysis takes these effects into account to all orders, we here first outline the
approach of calculating them to second order analytically and afterwards compare to the
lattice.

To capture the secondary fluctuations, we extend the linear ansatz from Eq. (III.2) by a
second order term

φ(x, t) = φ(t) + δφ(x, t) + δ(2)φ(x, t). (III.24)

The second order fluctuations δ(2)φ are of O(δφ2) and initially zero. Plugging this ansatz
into the full equation of motion, going to Fourier space, and separating the O(δφ0) and
O(δφ1) pieces we find Eq. (III.4) and also an equation for the O(δφ2) terms in the limit
of vanishing expansion

¨δ(2)φk + (k2 + V ′′(φ)) δ(2)φk = −1

2
V ′′′(φ)

∫
d3p

(2π)3
δφpδφk−p =: Sk , (III.25)

which is just the equation of a sourced harmonic oscillator. The particle physics interpre-
tation of this result is, that higher order terms in the potential cause scattering of two
axions in the excited modes p and k − p into an axion with momentum k.
In order to find an approximate solution to the equation above, we start by noting that
the V ′′ term on the left averages to zero and is therefore only relevant for the modes in
the resonance band as long as the axion is rolling. These modes are dominated by the first
order perturbations anyhow and we therefore drop the V ′′ from now on. The equation can
then be formally solved to give

δ(2)φk(t) =

∫ t

ti

dt′
sin(k(t− t′))

k
Sk(t

′) , (III.26)

with ti → −∞. The energy density in these modes is given as

〈ρ(x, t)〉 =

〈
1

2
( ˙δ(2)φ)2 + (∇δ(2)φ)2

〉
(III.27)
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=
1

2

∫
d3k

(2π)3

d3k′

(2π)3
e−i(k+k′)x〈δ(2)φ̇kδ

(2)φ̇k′ + k · k′ δ(2)φkδ
(2)φk′〉 (III.28)

where 〈. . . 〉 = 〈0| . . . |0〉. By plugging Eq. (III.26) into (III.27) one obtains

dρ

d log k
=

k3

4π2

∫ t

ti

dt′dt′′ cos
(
k(t′ − t′′)

)
S2(k, t′, t′′) , (III.29)

where we defined the unequal time correlator (UTC) S2(k, t′, t′′) as

〈0|Sk(t′)S∗−k′(t
′′)|0〉 = (2π)3δ(3)(k + k′)S2(k, t′, t′′) . (III.30)

When the axion rolls with a constant velocity φ̇0 = 2fkcr the source reads

Sk(t) = −Λ4
b

f3
sin(2kcrt)

∫
d3p

(2π)3
δφpδφk−p. (III.31)

In the following we are going to consider the case in which the fluctuations in the res-
onance band are initially in Bunch-Davies vacuum δφk(t) = akuk(t) + a−ku

†
−k with the

mode functions uk(t) given by Eq. (III.6) for concreteness. When calculating the vacuum
expectation value it turns out that only the following combination contributes for finite
momenta k = k′ 6= 0

〈0| apak−pa†p′a
†
k′−p′ |0〉 = (2π)6[δ(3)(k − p− p′) + δ(3)(p− p′)]δ(3)(k − k′) (III.32)

and we find for the UTC

S2(k, t′, t′′) =
Λ8
b

f6
sin
(
2kcrt

′) sin
(
2kcrt

′′) ∫ d3p

(2π)3
2 up(t

′)uk−p(t
′)u∗p(t

′′)u∗k−p(t
′′). (III.33)

Since the mode functions only depend on the absolute momentum, we evaluate the mo-
mentum integral choosing |p| and |k − p| as our integration variables, together with a
trivial angular integration, since the problem is invariant under rotations around k∫

d3p

(2π)3
=

1

(2π)2

∫ ∞
0

dp

∫ k+p

|k−p|
dq

pq

k
. (III.34)

The mode functions given in Eq. (III.6) are sharply peaked around k = kcr and can be
approximated as Gaussian in the peak region

uk(t) ≈
1√
2kcr

exp

(
δkcrt−

(k − kcr)2

2δkcr
t

)
sin

(
kcrt+

π

4

)
. (III.35)

For k >
√
δkcr/(t′ + t′′) the Gaussian peak lies fully within the momentum integration

then and we find

S2(k, t′, t′′) =
1

4π

Λ8
b

f6

δkcr
k(t′ + t′′)

·[
exp

(
2δkcrt

′
)(

1

4
+

1

2
sin
(
2kcrt

′)− 1

4
cos
(
4kcrt

′))] · [t′ → t′′
]
.

(III.36)

When we plug this expression back into the equation for the energy density (Eq. (III.29)),
all we are left with are the two time integrals. Due to the time-dependent exponential, the
integral is dominated by the region t′, t′′ ≈ t. We therefore replace t′+ t′′ in the numerator
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above by 2t and expand cos(k(t′ − t′′)), which allows us to factorize the two integrals. The
integration can be then done explicitly. After dropping all oscillating terms, which have
frequencies 2nkcr, with n = 1, . . . , 4, we arrive at

dρ(2)

d log k
≈ k2δkcr

29π3

Λ8
b

f6

1

t
exp

(
4δkcrt

)
θ(2kcr − k)

[
1

k2 + 4δk2
cr

+
1

(k − 2kcr)2 + 4δk2
cr

+
1

(k + 2kcr)2 + 4δk2
cr

+
1

4

1

(k − 4kcr)2 + 4δk2
cr

+
1

4

1

(k + 4kcr)2 + 4δk2
cr

]
. (III.37)

In the case of a narrow resonance defined by δkcr/kcr � 1, the first and second term
in the square brackets of Eq. (III.37) correspond to secondary resonances at k = 0 and
k = 2kcr. Notice that Eq. (III.37) does not predict any resonance at k = 4kcr, due to the
finite k range encoded in the θ function. The non-resonant terms are sizeable away from
the resonance though, and we included them for completeness.

The first two dominating contributions predict a flat spectrum at low momenta 2δkcr .
k . 2kcr, and a secondary peak at k = 2kcr corresponding to collinear scattering processes.
This expectation is indeed confirmed in Fig. III.5, where we show the axion spectrum as
obtained on the lattice for different times. Initially, the axion is taken to be in the Bunch-
Davies vacuum shown in black at the bottom of the plot. On the right side of the plot
we show a close up of the resonance band around kcr. The exponential growth of the
modes in the resonance band with time up to t ≈ tamp is clearly visible as expected from
the analytical result Eq. (III.6) (shown in red for comparison). Around t = 0.7 tamp, the
energy in the modes with k < 2kcr starts growing at approximately twice the rate of the
modes in the resonance band. These are the secondary fluctuations that arise as axions
in the resonance band scatter in 2 → 1 processes. The analytic estimate of this effect in
Eq. (III.37), shown in orange, predicts the order of magnitude as well as the main features
of the spectrum accurately. As t approaches tamp, the energy in higher momentum modes
is amplified as well. The secondary peak at k = 2kcr predicted by Eq. (III.37) is clearly
visible, as well as the primary one at k = kcr. We believe that the additional peaks at
higher momenta are due to higher order effects that eventually lead to the breakdown of
perturbation theory.

Perturbation theory fully breaks down at tamp when the axion zero mode slows down
and the resonance band moves to smaller momenta. The new starting point for the
amplification of the modes in the resonance band is not the initial spectrum anymore, but
the sum of the initial spectrum and the secondary fluctuations. The time it takes for the
energy in the modes to grow sufficiently to slow down the axion zero mode is therefore
reduced and the axion stops faster, as we observed in Sec. III.3. This also explains why
the stopping process becomes independent of the initial spectrum after tamp: if the initial
perturbations are smaller than the induced secondary ones, they are simply negligible after
this point.

In Fig. III.6 we show the further evolution of the spectrum. Again it is useful to come
up with an expectation in the linear picture to be able to compare to the lattice and
understand the effect of higher order processes. In the linear analysis, we can derive a
simple analytic formula for the energy spectrum dρ/d log k. As the axion loses its kinetic
energy, the resonance band sweeps from its initial position kcr = φ̇0/2f to kcr = m, when
the axion gets trapped in the wiggles. Assuming the axion deposits its energy only into

the resonance band, energy conservation tells us that
∫ φ̇0/2f

φ̇/2f
dk dρ/dk = φ̇2

0/2 − φ̇2/2.

Then, we obtain [43]
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Figure III.5: Early evolution of the axion energy spectrum for f/m = 1010, φ̇0 = 10mf .
The blue shaded lines show the spectrum as obtained from a lattice with N = 5123 sites
and side length L = 40/m. The bottom black line is the analytic expression for the
initial Bunch Davies vacuum ∝ k4 and the orange lines give the analytic NLO estimate
Eq. (III.37) for t = 0.7 − 1.0 · tamp. On the right we magnified the region around the
peak kcr = 5m and show for comparison the analytic LO estimate Eq. (III.6) for t =
0.1− 1.0 · tamp in red.

dρ

d log k
= 4f2k2 for m < k <

φ̇0

2f
. (III.38)

This estimation from the linear analysis is shown as the solid black line in Fig. III.6. We
see that as the axion slows down, the spectrum is well matched by this estimate for modes
with momenta bigger than the current critical momentum. We notice that the simulated
spectrum is an O(1) factor smaller than the estimate. This can be easily understood,
since higher order processes keep shuffling the energy into high momentum modes. The
spectrum resulting from these processes is clearly visible for modes with k > φ̇0/(2f).
Once the axion has stopped at ∆tnl

frag, there is no further energy injected into the axion
inhomogeneities. The scattering processes however remain active and result in the peak of
the spectrum moving to higher momenta. Such an energy cascade into modes with higher
momenta can be understood as the early state of the thermalization [75–77].

III.5 Formation of bubbles

A very important point that needs to be discussed is the possibility that the axion field
populates multiple minima in spatially separated regions. If the fragmentation process
takes place during inflation, these multiple minima would not be observable as the cor-
responding regions are stretched by the exponential expansion, and thus in the currently
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Figure III.6: Evolution of the axion energy spectrum past δtamp for f/m = 1010, φ̇0 =
10mf . The blue shaded lines show the spectrum as obtained from the same lattice as in
Fig. III.5. The black line shows the spectrum from the linear analysis given in Eq. (III.38).

visible Universe the vacuum would be unique (unless fragmentation takes place during
the last O(60) e-folds of inflation, in which case the discussion below applies). On the
other hand, if fragmentation takes place after inflation, multiple minima can be populated
within one Hubble patch. This scenario has multiple consequences, which we list here:

• First of all, if multiple minima are populated, we expect a bubble wall structure to
develop. Even if the dynamics is such that the field quickly relaxes to one single
minimum within a Hubble volume, the selected minimum need not be the same
in different Hubble patches. Hence, as the horizon grows and previously separated
patches enter into causal contact, we expect at least one domain wall with an area
∼ H−2 to be present at any given time in the visible Universe. Depending on its
energy, this may be problematic as it could lead to overclosure. This is indeed the
case for the self-stopping relaxion, see Sec. III.6.1.

• Secondarily, due to the overall slope of the potential −µ3, different vacua have dif-
ferent vacuum energies. If the energy difference is small, this could lead to an
inhomogeneous cosmological constant (CC). If instead the energy difference is large,
this would worsen the CC problem in that a fine tuning would be required for the
different vacua to average at the correct value.

• Finally, in the case of the relaxion, large spatial inhomogeneities of the field φ would
lead to a inhomogeneous value of the Higgs VEV. We mention this here for complete-
ness, but we do not expect it to be problematic as the differences in the electroweak
VEV would be tiny by construction.

Even though the above possibilities are interesting by themselves, and may be viable
depending on the parameters of the model, we will here assume that they do not occur,
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and compute the necessary conditions to avoid them. In particular, inhomogeneities may
be created on three different length scales, which need to be analyzed separately.

III.5.1 Fluctuations on super-Hubble scales

If the axion is light compared to the Hubble scale during inflation, then it will be excited
with a nearly scale invariant spectrum. Due to these fluctuations, we expect patches of the
universe with different initial values of the axion field, meaning the axion velocity will also
differ at the point when the wiggles in the axion potential appear and fragmentation stops
the field shortly after. As we can see from Eq. (III.16), different initial velocities result
in the fragmentation process stopping the field at different positions. If these differences
are larger than the fundamental period 2πf , this leads to the field stopping in different
minima and therefore the existence of superhorizon bubbles. Even if dynamics eventually
smooth the field value across the Hubble volume, as the horizon grows more regions in
which the field has settled in different minima will enter into causal contact. Therefore,
we expect to have multiple minima populated at any time within the visible Universe.
We expect inflation at a scale HI to result in approximately scale-invariant fluctuations
with amplitude δφ ∼ HI/(2π) in the field before the scanning process begins. If the
height of the barriers does not depend on φ (as e.g. for generic ALPs), HI . 2πf should
be imposed to avoid domain wall formation. On the other hand, if the height of the
barriers does depend on φ (as in the original Graham-Kaplan-Rajendran (GKR) relaxion
model Section II.1), the constraint on HI is relaxed because the fragmentation starts only
when φ reaches the critical point where the Higgs VEV becomes non-zero and the barriers
appear, leading to a reduction in the fluctuations in φ.
To get to this result, one has to discuss the evolution of perturbations in the relaxion field
prior to the fragmentation. We start with the case in which the relaxation takes place
after inflation and only comprises a subdominant fraction of the total energy density. For
simplicity we assume that the universe is filled with a fluid with constant equation of state
parameter w > −1. In this case one can choose the time coordinate such that the Hubble
is given as

H(t) =

(
3

2
(1 + w)t

)−1

. (III.39)

The relaxion’s zero-mode equation of motion in an expanding universe is

φ̈+ 3Hφ̇+ V ′(φ) = 0. (III.40)

While the relaxion scans the Higgs mass we have V ′ = −µ3. We are going to assume
that around φ = 0 the correct Higgs mass is reached, wiggles in the potential appear and
the relaxion stops shortly after. The solution to the relaxion’s equation of motion is then
given as

φ(t) = −∆φscan +
µ3

2

1 + w

3 + w
t2 = −∆φscan +

µ3

H2(t)

2

9(1 + w)(3 + w)
(III.41)

φ̇(t) = µ3 1 + w

3 + w
t =

µ3

H(t)

2

3(3 + w)
(III.42)

where ∆φscan is the distance the relaxion has to traverse in order to scan the Higgs mass.
The Hubble when fragmentation takes place and the initial velocity are then given by

H0 =

√
2

9(1 + w)(3 + w)

µ3

∆φscan
(III.43)
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φ̇0 =

√
2(1 + w)

(3 + w)
µ3∆φscan. (III.44)

One can easily check that for ∆φscan . mPl the relaxion’s contribution to the total energy
density is indeed subdominant.
To see the effect of isocurvature fluctuations, let us now take the separate universe ap-
proach [78] and consider a patch, where the distance the field has to roll is modified by a
fluctuation ∆φscan → ∆φscan +δφ. In this patch the scanning process takes longer because
the field has to traverse a bigger distance, which will lead to a smaller Hubble when φ = 0
as well as a bigger velocity.

δH0 = −H0
δφ

2∆φscan
(III.45)

δφ̇0 = φ̇0
δφ

2∆φscan
(III.46)

Once fragmentation starts, Hubble friction is negligible and the relaxion stops in a fraction
of a Hubble time. The effect of the perturbation to the Hubble while fragmentation is
active is therefore negligible. The difference in the initial velocity, however, leads to the
field rolling further ∆φfrag → ∆φfrag + δφfrag, as can be estimated using Eq. (III.16).

δφfrag ' 4∆φfrag
δφ̇0

φ̇0

= 2∆φfrag
δφ

∆φscan
, (III.47)

where we assumed that the field excursion during the initial amplification is negligible as
is the case for the parameter space discussed in [44]. Using that the fluctuations on super-
Horizon scales caused by inflation are given by δφ = HI/(2π) and that the fluctuations
after stopping should not exceed πf in order to avoid super-Horizon bubbles, we arrive at

HI .
π2

zφ

Λ8
b

φ̇4
0

∆φscan , (III.48)

in order to avoid superhorizon bubbles in this case. The bound in Eq. (III.48) is mild,
especially when compared to the original GKR mechanism. As shown in Fig. III.11, HI can
be as large as 1016 GeV. In the original GKR relaxion mechanism instead, it can never
exceed O(102) GeV and it is typically sub-GeV, or even as low as the meV range [44].
In the case where the axion dominates the total energy and drives inflation or at least
a period thereof (∆φscan & mPl), this bound disappears since fluctuations in the axion
become equivalent to adiabatic fluctuations rather than isocurvature ones.

III.5.2 Critical bubbles

It is useful at this point to take a closer look at the different infrared scales involved in our
setup. Regarding the bubbles, we follow Ref. [79] to estimate the width of the bubble wall
at rest by minimizing the surface tension, i.e., the energy per unit wall area. While the
surface tension arising from the field being displaced from the minimum of the potential
grows for larger bubble widths, the tension due to the gradient of the field is reduced.
With these considerations, one finds the following estimates for the wall width w and the
surface tension σ

w ≈ 5m−1 , σ ≈ 10mf2 . (III.49)
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Notably, the scales where most of the energy is deposited are smaller than m−1 and
therefore smaller than the width of a bubble wall. The dynamics of these fluctuations
therefore do not resemble the ones of bubbles and we discuss their impact in the next
section. Furthermore, one can calculate the critical radius Rcrit a bubble needs to reach
such that the pressure from the non-degeneracy of the vacua driving the expansion of the
bubble overcomes the surface tension.

Rcrit ≈
mf

µ3
. (III.50)

The question we would like to answer in this section is whether bubbles with radii bigger
than Rcrit are formed in the stopping process. Those bubbles would keep expanding
and it is uncertain whether such a system would finally settle in one common minimum.
Unfortunately, it is impossible to answer this question with lattice simulations alone for
the following reason: When we choose φ̇0 = O(10)mf , such that the field is able to
overcome the barriers initially, we need a lattice spacing ∆x ≈ O(10−2 − 10−1)m−1 in
order to resolve the UV dynamics properly. Since current computing power only allow for
simulations with O(103) lattice sites along each spatial direction, it is impossible to also
include Rcrit, which in general is much larger than m−1 even when choosing µ ≈ µmax

in Eq. (III.20). We therefore highlight below two observations that we can make on the
lattice and extrapolate to argue why there are no expanding bubbles.
Our first observation is that when counting the number of bubbles exceeding a certain
volume V0 once the field has stopped rolling, we find that the number density of such
bubbles is exponentially suppressed as one raises V0. This is shown in Fig. III.7. It
becomes clear, however, that the details of this suppression are very complicated since they
show a dependence on time as well as the parameters φ̇0 and f . Additionally, especially
for simulations with large initial velocities φ̇0, the simulated box cannot be too large
without compromising the resolution of the UV physics of fragmentation, resulting in
poor statistics for very large bubbles. This being said, we note that the critical volume
R3

crit is much larger than the volumes testable on the lattice and in the case of the relaxion
where φ̇0 � mf , we also have R3

crit � m−3 such that we can expect the probability of an
expanding bubble forming in the visible universe to be suppressed by a huge exponential
factor.

The second argument, which holds for bubbles of slightly larger size, is based on the fact
that in parts of space that are separated by more than the time of the first exponential
amplification tamp or even the full time it takes the axion to stop tfrag, the stopping pro-
cesses are (partially) independent. They can be viewed as different instances of the same
experiment, in which the observable is the rate of energy transfer to the field fluctuations
or, equivalently, the minimum in which the field ends up.
If the field ends up in different minima in parts of space where the process takes place
independently, we are left with bubbles at the end, as in the super-Hubble case. Such
a situation can be avoided if the field average after fragmentation is the same at each
instance of the quantum experiment. To check if this is the case, we ran 10 simulations
with the same physical parameters m, f, φ̇0 in boxes with increasing volume V = L3. As
Fig. III.8 shows, the spread of minima the field stops in σφ,frag reduces as the size of the
box is increased. To check whether large, possibly expanding bubbles might exist after
the field has stopped we need to extrapolate this result to infrared scales. To do so, we
estimate the variance of the total field excursion ∆φfrag. We assume that this is entirely
due to the variance of tamp and the corresponding field excursion φ̇0tamp.
The time interval tamp lasts until the instability band, whose position depends on the
zero-mode velocity, moves to the IR by an amount equal to its initial width. This can be

35



CHAPTER III. (REL-)AXION FRAGMENTATION

0 500 1000 1500 2000
V0 m3

10 8

10 7

10 6

10 5

10 4

10 3

n B
ub

bl
es

/m
3  w

ith
 V

>
V 0

t3
amp = 5.0 × 104 m 3

0 = 2.5mf, f = 103m

time t
tnl
frag

tnl
frag + tnl

tnl
frag + 2tnl

0 500 1000 1500 2000
V0 m3

10 8

10 7

10 6

10 5

10 4

10 3

n B
ub

bl
es

/m
3  w

ith
 V

>
V 0

t3
amp = 3.0 × 105 m 3

0 = 5.0mf, f = 103m

0 500 1000 1500 2000
V0 m3

10 8

10 7

10 6

10 5

10 4

10 3

n B
ub

bl
es

/m
3  w

ith
 V

>
V 0

t3
amp = 1.7 × 106 m 3

0 = 10.0mf, f = 103m

0 500 1000 1500 2000
V0 m3

10 8

10 7

10 6

10 5

10 4

10 3

n B
ub

bl
es

/m
3  w

ith
 V

>
V 0

t3
amp = 1.6 × 106 m 3

0 = 2.5mf, f = 1010m

0 500 1000 1500 2000
V0 m3

10 8

10 7

10 6

10 5

10 4

10 3

n B
ub

bl
es

/m
3  w

ith
 V

>
V 0

t3
amp = 1.2 × 107 m 3

0 = 5.0mf, f = 1010m

0 500 1000 1500 2000
V0 m3

10 8

10 7

10 6

10 5

10 4

10 3

n B
ub

bl
es

/m
3  w

ith
 V

>
V 0

t3
amp = 8.6 × 107 m 3

0 = 10.0mf, f = 1010m

Figure III.7: Dependence of the number density of bubbles with a volume bigger than
V0 for different f and φ̇0 at three different times. The dashed lines show the fit of an
exponential decay n(V0) ∝ exp(−ΓV0) to the last few data points for each time.
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determined by using energy conservation, and depends on the initial energy of the modes
within the instability band (see discussion around Eq. (III.19)). The latter quantity,
which we denote by E0, is a quantum observable, the variance of which will determine
the variance of tamp. We find it reasonable to assume that the variance of ∆tfrag, and
correspondingly ∆φfrag, can be entirely ascribed to the variance of tamp, since after this
point the process proceeds classically and its duration is fixed by the spectrum within the
instability band at tamp.
The time tamp is determined as follows. The energy in the instability band increases as

δE = E0 exp(2δkcrtamp)− E0 ≈ E0 exp(2δkcrtamp) (III.51)

In this time interval, the instability band moves by −2δkcr, thus the variation of the kinetic
energy K is

δK = − dK
dkcr

2δkcr = 2φ̇2
0

δkcr

kcr
= 2Λ4

b . (III.52)

Energy conservation implies

tamp =
1

2δkcr
log

(
2Λ4

b

E0

)
. (III.53)

Within this interval, the field evolves by an amount tampφ̇0. Computing the variance, in
the probabilistic sense, of tamp is complicate task. Here, we will limit ourselves to compute
its variation assuming E0 changes by one standard deviation σE0 :

σtamp ≈
∣∣∣∣dtamp

dE0

∣∣∣∣σE0 =
1

2δkcr

σE0

E0
. (III.54)

Now we need to compute E0 and σE0 . E0 is the expectation value of the initial energy
density, obtained recalling that in the Bunch-Davies vacuum E[|uk|2] = 1/(2k)

E0 =

∫
d3k

(2π)3
k2 E[|uk|2] =

4πk4
cr(2δkcr)

(2π)3
E[|uk|2] =

k3
crδkcr

2π2
=

1

32π2

φ̇2
0Λ4

b

f4
(III.55)

To compute σE0 , we need to know the variance of uk. uk is gaussianly distributed,
P(uk) ∝ exp

(
−2k|uk|2

)
. The modulus follows a Rayleigh distribution, P(|uk|) =

4k|uk| exp
(
−2k|uk|2

)
, thus

E[|uk|2] = 1/(2k) (III.56)

Var[|uk|2] = 1/(2k)2 (III.57)

The process we are considering takes place in a finite time tamp. In this time, points is
space separated by more than c · tamp can not interfere with each other, hence we can
think of enclosing our problem in a box of size L = c · tamp. Momenta are thus discrete
and given by

k =
2π

L
i , (III.58)

with i = (i1, i2, i3), and ik ∈ Z. The number of modes inside the instability band kcr −
δkcr < k < kcr + δkcr is

N ≈ 4πk2
cr(2δkcr)

(2π/L)3
. (III.59)

Now we can compute the variance, assuming that all modes have the same momentum
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and the same variance, which is valid for 2π/L� δkcr � kcr:

Var[E0] = Var

{
1

(2π)3

(
2π

L

)3∑
k2|uk|2

}

=

[
1

L3
k2

cr

]2

Var
[∑

|ukcr|2
]

=

[
1

L3
k2

cr

]2

N Var
[
|ukcr||2

]
=

1

4π2L3
k4

crδkcr . (III.60)

The standard deviation σE0 is simply (Var[E0])1/2. Combining Eq. (III.60) with (III.54),
we obtain

σφ,frag

2πf
=
φ̇0σtamp

2πf
=

φ̇0

4fL3/2kcrδk
3/2
cr

. (III.61)

Finally, we can plug in L = tamp:

σφ,frag

2πf
=

φ̇0

4fkcrδk
3/2
cr

(2δkcr)
3/2 log

(
2Λ4

b

E0

)−3/2

=
1

2
log

(
8πf2

φ̇0

)−3/2

(III.62)

In the parameter space of the self-stopping relaxion, this quantity ranges between 0.01
and 0.001 for φ̇0 = Λ2 = (105)2 GeV2 and f up to 1010 GeV.

Checking Eq. (III.62) on the lattice is not easy, because the lattice size is typically smaller
than c · tamp. We can instead compare Eq. (III.61) for a smaller box, of size L, with
an estimate of the same quantity obtained by running multiple lattice simulations and
computing the standard deviation of ∆φfrag. The result of such a comparison is shown
in Fig. III.9. We can see that, for relatively small box sizes, the estimate of Eq. (III.61)
underestimate the result by a factor of roughly 10, while the dependence on L is compatible
with the one obtained from the lattice.

When taking the factor of 10 into account the spread of final field values relative to 2πf still
only takes values between 0.1 and 0.01. This means that for a volume (c tamp)3, different
minima occur only at the 10− 100σ level. This number cannot be simply translated into
a probability, because we do not know the probability distribution to such an accuracy.
If it were Gaussian, the probability would be between 10−22 and 10−2200. One of course
would have to impose that this very rare occurrence does not happen in any of the small
volumes that constitute our Universe. Not knowing the actual probability distribution,
performing such a calculation is not illuminating, thus we content ourselves with imposing
σφ,frag/(2πf)� 10 in Eq. (III.62).

III.5.3 Small scale fluctuations

While the majority of the energy is dumped into fluctuations on scales ≤ m−1, these
fluctuations are on scales too small to be thought of as bubbles, since they are smaller
than the typical width of a bubble wall of O(m−1). They do however interfere with the
previously discussed fluctuations on larger scales, in that they cause a spread of the field.
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Figure III.9: Dependence of the spread in the final position of the zero-mode of the
field σφ,frag on the length of the sides of the simulated box L. The different color crosses
represent simulations with different numbers of lattice sites, all with f = 1010m and
φ̇0 = 10mf . The solid line corresponds to the analytic estimate of Eq. (III.61), which
seems to underestimate the spread by O(10) but captures the decrease of the spread with
increasing length L correctly.

If this spread is comparable or larger than one period of the axion potential 2πf , the
dynamics on large scales and of the mean field become less sensitive to the potential. We
will argue below, however, that the spread in the axion field is always smaller than 2πf
(although not by much) such that the expected corrections have only a minor influence
on the discussion above.
We can estimate the spread of the field by using the analytic final energy spectrum in
Eq. (III.38), which for relativistic modes k > m results in the following power spectrum

Pφ(k) =
1

k2

dρ

d log k
= 4f2 for m < k <

φ̇0

2f
. (III.63)

Integrating this spectrum, we find that the root-mean-square (RMS) of the axion field is
given by

δφrms =
√
〈δφ2〉 = 2f

(
log

φ̇0

2mf

)1/2

, (III.64)

so the spread of the field is indeed comparable to the period of the potential, but very
high initial velocities would be required for it to be bigger due to the square root and
logarithmic dependence. In the specific case of the relaxion, we find the square root to be
in the range 0.2− 2, implying that the fluctuations on this scale are indeed smaller than
2πf .
In Fig. III.10, we show the evolution of δφrms as the field stops as computed by integration
over the modes with k > m in the axion power spectrum obtained from the lattice.
We see that δφrms starts growing significantly around the time when the production of
axion fluctuations starts to slow down the axion zero mode (around 0 with the chosen
normalization of the x-axis) and reaches its maximum around the time when the axion
stops and no more energy is transferred into axion fluctuations (red vertical line). We note
that the maximal δφrms is smaller than the analytic estimate in Eq. (III.64) (given by the
dotted horizontal lines), and that it further decreases after the axion has stopped rolling.
Both of these effects can be attributed to the higher order effects discussed in Sec. III.4,
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Figure III.10: Evolution of the axion RMS field value caused by modes with k > m as
computed by integration of the axion power spectrum obtained from a lattice computation
with N = 2563 lattice sites, L = 40/m, and f = 1010m (solid lines). The dotted horizontal
lines show the analytic estimate from Eq. (III.64). The horizontal, dotted, red line marks
the time around which the axion stops as estimated in Sec. III.3.

since the scattering of axions redistributes the energy into higher momentum modes in the
non-linear regime. In the relativistic case, the energy density and the power spectrum are
related by a factor k2, so this leads to a reduction in the integral over the power spectrum
(which gives the mean square of the field), while the integral over the energy spectrum is
conserved as it must be. In an expanding universe, one additionally has a depletion of the
energy, so this effect would be pronounced even more.

Note that the amount by which the analytic result overestimates the peak of the numerical
result grows with the initial velocity φ̇0, signaling that the actual dependence of δφrms on
the initial velocity is even weaker than predicted by the analytic estimate. We therefore
conclude that the spread of the axion field is smaller than 2πf for a wide range of initial
velocities, such that our previous considerations are not significantly affected by the small
scale fluctuations.

III.6 Relaxion considerations

In this section, we discuss implications from our lattice results to the relaxion mechanism.

III.6.1 Relaxion bubbles

One of the most interesting features of fragmentation as a stopping mechanism is that
the relaxion mechanism does not need strong Hubble friction and therefore the relaxation
phase does not need to take place during inflation [44]. The main advantage of a post-
inflationary relaxation phase is that some of the issues which are typically associated with
the embedding of the relaxion into inflation disappear. In particular, the number of e-folds
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does not need to be exceedingly large, but can as well be O(10 − 100), and the Hubble
rate during inflation can be much larger, being only constrained by Eq. (III.48).

However, when relaxation takes place after inflation, there is the possibility of forming
relaxion bubbles, i.e., spatially separated patches in which the relaxion field ends up in
different minima as discussed in Sec. III.5. The existence of such bubbles would have the
following consequences: First, since the Higgs VEV depends on the relaxion field, the EW
scale would have slightly different values in each of these regions. This does not seem
problematic since a variation in φ of size ∆φ ∼ 2πf corresponds to a tiny difference in vH
by construction of the relaxion mechanism. There is however an apparent problem tied to
the fact that the difference in potential energy from one minimum of the relaxion potential
to the next, namely 2πfgΛ3, is much larger than the measured value of the cosmological
constant O(10−47) GeV4. Therefore, even if one assumes that the average value of the CC
matches the observed one, the CC would be unacceptably inhomogeneous. We therefore
assume that such bubbles do not form, under the criteria derived in Sec. III.5. In addition,
the scenario discussed in Sec. III.5 would result in the presence of at least one domain
wall of area H−2 at any time. The energy density of such an object (given the relaxion
parameters) would overclose the universe, which is another reason to impose Eq. (III.48).

III.6.2 Higgs fluctuations

The full potential in the case where φ is identified as the relaxion field necessarily includes
couplings to the Higgs in order to scan the Higgs mass as well as trigger barriers when the
Higgs acquires a non-zero VEV. The required potential can be written as

V (φ, h) = Λ4 − gΛ3φ+
1

2
(Λ2 − g′Λφ)h2 +

λ

4
h4 + Λ4

b

h2

v2
EW

cos
φ

f
. (III.65)

As the relaxion rolls over many fundamental periods, the effective Higgs mass

∂2V

∂h2
= Λ2 − g′Λφ+ 3λ〈h2〉+ 2

(
Λ2
b

vEW

)2

cos
φ

f
, (III.66)

is a rapidly oscillating function, leading to an instability that amplifies fluctuations of the
Higgs field. Following the analysis of Sec. III.2, there is an instability band for

φ̇2

4f2
− Λ4

b

v2
EW

< k2 +m2
eff <

φ̇2

4f2
+

Λ4
b

v2
EW

, (III.67)

with m2
eff = Λ2−g′Λφ+3λ〈h2〉 ≡ m2

h(φ)+3λ〈h2〉. Initially, the Higgs mass m2
h(φ) ∼ Λ2 is

large and positive so there is no instability and we have 〈h2〉 = 0. However, as the relaxion
field scans the potential, the effective Higgs mass decreases and modes will begin to enter
the resonance band and grow exponentially. In turn, the quartic induced, effective mass
∝ 〈h2〉 grows until the mode again exits the instability band. This interplay between the
decrease in effective mass due to the evolution of the relaxion field and the increase due
to the quartic induced mass leads to a so-called edge solution where the mode stays fixed
at the upper edge of the instability band [80]. Once the edge solution is established, the
zero mode obeys the condition

m2
h(φ) + 3λ〈h2〉 =

φ̇2

4f2
+

Λ4
b

v2
EW

, (III.68)
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meaning that the typical energy in the Higgs field is

ρh ∼ λ〈h2〉2 =
1

9λ

(
φ̇2

4f2
+

Λ4
b

v2
EW

−m2
h(φ)

)2

. (III.69)

In order to see the effect of the Higgs fluctuations, let us estimate the energy of the Higgs
field during the last stage of relaxation where we have 0 . m2

h(φ) . v2
EW. First, we note

that Λb .
√

4πvEW is typically expected in simple UV completions, see e.g., App. A of
Ref. [44]. Therefore, if φ̇/f � vEW is satisfied when the edge solution is established, then
ρh is at most of the order v4

EW, meaning that the Higgs field cannot absorb a large fraction
of the total relaxion kinetic energy and the oscillation of the Higgs zero mode is negligible
compared to the Higgs VEV. This condition is indeed satisfied in the most of the viable
self-stopping relaxion parameter space previously identified in Ref. [44], meaning that the
effect of Higgs fluctuations is small compared to the friction from relaxion fragmentation.
Moreover, the regulated growth of the Higgs field due to the quartic leads to an edge
solution which is strictly less efficient than the unregulated exponential growth of relaxion
fluctuations during the scanning phase. We thus conclude that while growth of Higgs
field can occur, it does not significantly alter the success of the self-stopping relaxion
mechanism, nor its parameter space.
On the other hand, if φ̇/f & vEW, the amplitude of Higgs zero mode can be larger than
vEW before relaxation completes. In this case, the analysis of the relaxation process
should involve both the relaxion and the Higgs field, and the stopping condition should
be modified. This scenario is interesting, but beyond the scope of this paper. Here, we
will simply assume that the condition φ̇/f � vEW is satisfied and show its impact on the
viable self-stopping relaxion parameter space in Sec. III.6.3.

III.6.3 Parameter space

In this section, we want to briefly discuss how the parameter space of the relaxion is
modified once the new conditions discussed in this paper are taken into account. For
a thorough discussion of all the conditions that the model has to satisfy, we refer the
reader to Ref. [44]. There are two modifications with respect to this discussion. First,
the lattice simulation of Sec. III.3 and the second order calculation of Sec. III.4 show
that fragmentation is more efficient than the purely linear expectation. Second, in order
to avoid the growth of Higgs fluctuations, we have to add the condition φ̇/f � vEW as
discussed in Sec. III.6.2.
Concerning the first point, we proceed as in Ref. [44]. There, the parameter space was
derived by using Eqs. (III.10) and (III.11), and replacing log(. . .)→ 50. Analogously, the
product log in Eq. (III.12) was replaced by W0(. . .) → 50. Here we proceed analogously
by keeping Eqs. (III.10), (III.11), (III.12) but now we replace log(. . .)→ 2 to account for
the shorter stopping time found in the lattice analysis. However, we keep W0(. . .) → 50
as in [44], because Eq. (III.12) concerns the onset of fragmentation, which occurs when
the fluctuations are still in the linear regime and hence the linear analysis is still valid.
In Fig. III.11, we show a comparison of the parameter space of Ref. [44] (in gray, dashed
lines) with that of this work (in red), for three reference scenarios. In the top row, we
consider the case of relaxation during inflation. In the center and bottom rows, relaxation
takes place after inflation. For this latter case, we superimpose the contours of the maximal
allowed value of HI , according to Eq. (III.48). We fix g/g′ as in Ref. [44], while all other
parameters are left free to vary. We see that the new results of this paper lead to a slight
reduction in the viable parameter space of the self-stopping relaxion model.
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After inflation, g/g′ = 1/(4π)2 (Sec. 3.2 of [44])
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Figure III.11: Parameter space of the relaxion model including the results of this paper
(in red), compared to the results of Ref. [44] (in gray, dashed lines). Top: Relaxation
during inflation. Center: Relaxation after inflation, with g/g′ = 1. Bottom: Relaxation
after inflation, with g/g′ = 1/(4π)2. In the center and bottom rows, we superimpose the
contours of log10H

max
I , defined according to Eq. (III.48).
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III.7 Gravitational Waves from Axion Fragmentation?

Finally we want to investigate whether the fragmentation process discussed above emits
a detectable GW signal. When the energy is transferred from the homogeneous axion
motion to its fluctuations, the energy density also transitions from being homogeneous
to inhomogeneous. This transformation is associated with sizeable energy currents and
it is easily conceivable that also anisotropic stress of similar size is present. Therefore,
it is clear that GWs will be emitted in this process. We here try to answer the question
whether a detectable amount can be sourced without being in conflict with cosmological
bounds, namely, the axions relic density overclosing the universe.

While the previous discussion was mainly focused on the relaxion case in which the ex-
pansion of the universe could be neglected, for the emission of GWs the relation between
the critical scale kcr and the Hubble scale is crucial. From now on k will denote strictly
comoving momenta that have to be converted to physical momenta using the scale factor
a, while in the relaxion case the distinction was rather loose, since the fragmentation pro-
cess took place within a fraction of a Hubble time and therefore a = aamp ≈ afrag = 1 was
used implicitly for the conversion.

We will here restrict ourselfs to a simple analytic argument, why fragmentation processes
are not able to produce GWs observable with pulsar timing or laser interferometry without
the ALPs relic density overclosing the universe. More detailed discussions can be found
in [1, 71]. We use an estimate obtained by naive dimensional analysis for the amount of
produced GWs (e.g. [3])

ΩGW(kpeak ≈ kcr) = ceff Ω2
φ,frag

(
afragHfrag

kcr

)2

, (III.70)

where ceff = O(1) denotes an efficiency factor for the production of GWs that we set to
1 in the following. We have evaluated all quantities at tfrag, since at this point an O(1)
fraction of the axions energy is transferred to inhomogenities.

The first factor is the amount of energy acting as a source of GWs, in our case the axion’s
energy. We have φ̇ & mf such that the axion actually rolls over the potential barriers
and, therefore, kcr/(afragm) & 1 which implies that the energy density in the excited
axion modes redshifts like radiation for some time after GW emission before starting to
behave like matter and contributing to DM. Maximizing the amount of energy in the axion
without overclosing the Universe therefore amounts to

Ωφ,frag ≈
1

2

afrag

aeq

kcr

afragm
=

kcr

2aeqm
, (III.71)

where aeq denotes the scale factor at matter radiation equality. The second factor of
Eq. (III.70) includes the characteristic scale of the GW source that also sets the frequency
of the waves. In the fragmentation case, it is given by kcr and directly fixed by today’s
frequency ffrag,0 = kcr/(2πa0). In the following we are interested in the maximum GW
amplitude we can produce at a frequency given by an experiment under consideration.
We therefore consider ffrag,0 to be fixed. Putting it all together we find

ΩGW ≈
(
afragHfrag

aeqm

)2

. (III.72)

In this simplified treatment we are only left with two variables: m and afrag, where the
latter one fixes Hfrag given the standard cosmological history. From the formula above it
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is clear that we want to minimize m, while maximizing afragHfrag. This ratio is however
limited by a strict hierarchy of scales that is at the heart of the fragmentation process:
As previously discussed, we have kcr/afrag & m. Furthermore, one can easily show that
kcrδkcr = a2

fragm
2, and efficient production of excited axions requires the growth rate

δkcr/afrag to be bigger than the Hubble rate such that we have in total

Hfrag .
δkcr

afrag
. m .

kcr

afrag
. (III.73)

It is therefore easy to convince oneself that the GW amplitude is maximized when this
hierarchy is as small as possible, which corresponds to all of the scales above being of
the same order of magnitude and the axion barely managing to roll over the barriers,
φ̇2 ≈ m2f2. From kcr ≈ afragHfrag we can determine afrag and express the maximum GW
amplitude as a function of solely the GW frequency today. Assuming that the axions
energy is subdominant at all times and using that this process takes place before matter
radiation equality, we find

ΩGW,0 ≈ Ωrad,0

(
aeq

a0

)2( Heq

ffrag,0

)2

= 5× 10−21

(
10−8 Hz

ffrag,0

)2

, (III.74)

where Ωrad,0 is fractional energy in radiation today (see Appendix A for details on red-
shifting). This very rough estimate agrees to within one order of magnitude with the
one found in [67], although in their setup the above mentioned hierarchy was small by
construction and our result can be seen as a generalization. Let us note that in the
relaxion case this hierarchy is large [44] and the resulting GWs would be even smaller.
From this estimate, it becomes clear that detection in future pulsar timing arrays like SKA
with sensitivities down to ΩGW,0 ≈ 10−15, let alone laser interferometers with similar
sensitivity but at higher frequencies, is not possible in a general fragmentation setup
without additional suppression of the axion abundance. Finally, let us note that there
is in principle a more stringent bound for efficient growth than Hfrag < δkcr/afrag since
the critical momentum and, therefore, the amplified modes are red-shifting, as well as the
growth time considerations that allowed us to determine tfrag in Section III.2.

III.8 Conclusion

In this chapter, we have analyzed axion fragmentation using a classical lattice simula-
tion. We have confirmed that the kinetic energy of the axion zero mode dissipates into
fluctuations in a manner similar to the expectations of Ref. [43], with some important
modifications coming from non-linearities that can only be captured by the lattice simu-
lation. As shown in Fig. III.2, one such modification is that the dissipation of the zero
mode kinetic energy is even more efficient compared to the linear approximation used
in Ref. [43] because modes outside of the instability band are populated due to 2 → 1
processes. These secondary fluctuations dominate over the initial fluctuations and thus
enhance the dissipation effect in the non-perturbative regime. This is an NLO effect and
therefore not included in the analysis of Ref. [43], but is captured to all orders in our lattice
simulation. Moreover, since the amplitude of the secondary fluctuations is determined by
2 → 1 processes, the fragmentation process in the non-perturbative regime is insensitive
to the particular choice of the initial spectrum of fluctuations as shown in Fig. III.3.

In Sec. III.5, we have discussed the fluctuations after the completion of fragmentation as
well as bubble/domain wall formation. Since the typical size of the fluctuation 〈δφ2〉 is of
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the order of f2, one might worry about problematic domain wall formation. We therefore
determined the conditions such that the dynamics of axion fragmentation do not result
in domain walls of cosmological size, and we showed that they mainly concern the initial
condition of the axion evolution, which are set during inflation, and hence the inflationary
Hubble scale HI .
In Sec. III.6, we examined the consequences of bubble formation as well as the possible
excitation of Higgs fluctuations in the relaxion specific case. Bubble formation in the case
of the relaxion leads to unacceptable cosmology and thus must be avoided by imposing
an upper bound on the scale of inflation. Regarding Higgs fluctuations, we argue that
in a large fraction of the viable parameter space for the self-stopping relaxion, the Higgs
field cannot absorb a large fraction of the relaxion’s kinetic energy and thus the growth
of Higgs fluctuations has only a minor impact on the viable parameter space. The new
constraints on the parameter space, including the enhanced dissipation of the relaxion’s
kinetic energy due to NLO effects, are discussed in Sec. III.6.3.
In summary, we have shown directly via lattice simulation that fragmentation is a very
efficient mechanism of depleting kinetic energy from an axion field rolling over many
oscillations of a periodic potential. In the special case where the axion is identified as the
self-stopping relaxion, we have quantified the parameter space where fragmentation as a
stopping mechanism leads to successful relaxation of the electroweak scale.
Finally, we investigated whether a detectable GW background can be sourced through
fragmentation. We found that the amount of energy in the axion needed to produce GWs
with a large enough amplitude, would inevitably lead to the overclosure of the universe,
once the axion starts acting as DM.
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Chapter IV

Lattice Study of the Minimal Model

IV.1 Motivation

In the previous chapter we investigated the instability that arises in an ALP field with non-
standard initial conditions, namely if it rolls over many periods of the potential. We here
go back to the standard misalignment scenario but introduce an enhanced coupling of the
axion to a hidden U(1) gauge boson. As was shown in Ref. [3], such models can produce
a large, stochastic gravitational wave (GW) signal in the early universe. Interestingly this
new signal is proportional to the ALPs decay constant f and therefore largest for f close to
the Planck scale f ∼ mPl. Such large decay constants are motivated by quantum gravity
theories [26–29]. On the other hand all direct couplings to the SM are antiproportional
to f and therefore the chances of ever directly detecting such axions are rather slim. As
we will show, GWs sourced by a mechanism like this might therefore be the only hope of
detecting such axions over a wide range of parameter space.

The coupling of the axion to the dark U(1) induces a tachyonic instability when the ALP
begins to oscillate for a specific range of “dark photon” momenta controlled by the ALP
mass m. Dark photon modes in this range have their underlying vacuum fluctutations
(ρvac ∼ m4) exponentially amplified until their energy density becomes of order that of
the ALP (ρALP ∼ m2f2). To do so the modes grow by a factor of O(f2/m2). This
growth results in a highly anisotropic dark photon energy distribution that sources GWs.
Furthermore, the amplification of vacuum fluctuations occurs in a parity-asymmetric way
due the non-vanishing expectation value of the parity-violating ALP-dark photon operator.
As a result, the produced GW spectrum is typically highly chiral in the peak region and
is expected to be a smoking gun for such models.

While the majority of the chapter is devoted to a detailed understanding of the dynamics
in the minimal setup only containing the axion and a massless dark photon, we also
comment on the implications of a dark photon mass, kinetic mixing between the dark and
SM photon as well as possible implications, if the axion is indeed the QCD one. We find
that the mass can be neglected during the production of dark photons as long as it is small
enough to not interfere with the tachyonic instability. As for the mixing with or coupling
to the SM fields, we find that all possible effects are suppressed by thermal masses that
the SM particles pick up. This justifies our negligence of all these effects when we study
the dynamics in the following.

As dark photon production occurs at the expense of energy in the ALP field, some pa-
rameter space where the ALP relic abundance would normally overclose the universe can
be opened up. However, care here is required as these dynamics also backreact on the
ALP field due to inverse decay and scattering processes involving ALPs and dark photons.
These processes introduce a limit to how much energy can be transferred from the ALP to
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dark photons, and introduce anisotropies in the initially homogeneous ALP field. Thus,
linear analyses of the system such as that of Ref. [3] break down and one must perform a
detailed lattice study to correctly capture the dynamics. This fact was previously pointed
out in Refs. [81–83], where it was found that the ALP relic abundance can be suppressed
at most by a factor of O(10−2).
In this work, we perform our own lattice study in order to further understand the non-
perturbative dynamics of the system and its impact on the GW spectrum. We solve the
equations of motion for the full axion, dark photon, and GW system in position space on a
discretized spacetime lattice. In particular, our implementation is based on the staggered
grid algorithm of Refs. [72, 73] which ensures that the discretized theory respects all the
same symmetries of the continuous one, importantly including gauge invariance and the
shift symmetry of the ALP. Additionally, our entire lattice implementation reproduces the
continuum version of the theory up to an error which is quadratic in the lattice spacing.
We are able to confirm previous work suggesting that the ALP relic abundance can be
suppressed by roughly 2 orders of magnitude, in addition to robustly establishing the
existence of the GW spectrum predicted in Ref. [3]. We find that the main changes to the
GW spectrum when compared to the results of the linear analysis are: i) an enhancement
of power at higher momenta due to 2 → 1 processes not present in the linear analysis
and ii) a dependence of the polarization of the GW spectrum on the ALP-dark photon
coupling α. The second point is expected since the two dark photon helicities are coupled
through the ALP, so depending on the value of α the polarization tends to be washed out
or “frozen-in” at some value depending on when backscattering processes decouple. We
discuss extensions to the original model which allow for additional suppression of the ALP
relic abundance and show the viable parameter space in the f vs. m plane.

IV.2 Introduction to the Model

Let us start with a overview of the Audible Axion model introduced in Ref. [3]. The
simplest version of the model consisted of an axion field φ and a massless dark photon Xµ

of an unbroken U(1)X Abelian gauge group

S =

∫
d4x
√−g

[
1

2
∂µφ∂

µφ− V (φ)− 1

4
XµνX

µν − α

4f
φXµνX̃

µν

]
, (IV.1)

where the parameter f is the scale at which the global PQ symmetry corresponding to the
Nambu-Goldstone field φ is spontaneously broken. The dark photon field strength is Xµν

with X̃µν = εµναβXαβ/2 its dual 1. The strength of the axion-dark photon coupling is
parameterized by α, which in general can be larger than the fundamental U(1)X coupling.
We also assume the PQ symmetry is explicitly broken at the scale Λ ∼ √mf , generating
the potential V (φ), a mass m for the axion, and breaking the continuous shift symmetry
of the ALP down to a discrete one, φ→ φ+ 2πn. The potential should be invariant under
this discrete shift symmetry, thus for simplicity we choose

V (φ) = m2f2

(
1− cos

φ

f

)
, (IV.2)

unless otherwise specified.
Let us for now limit the analysis to the case of a massless dark photon, which allows us
to work in temporal gauge X0 = 0. In an expanding background ds2 = a2(τ)(dτ2 − dx2),

1Our convention is ε0123 = 1/
√
−g
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the equations of motion governing the system are

φ′′ + 2aHφ′ −∇2φ+ a2V ′(φ)− α

fa2
X ′ ·

(
∇×X

)
= 0 , (IV.3)

X ′′ + ∇× (∇×X) +
α

f

[
φ′(∇×X)−∇φ ·X ′

]
= 0 , (IV.4)

where primes denote derivatives with respect to conformal time τ and H = a′/a2 is the
Hubble rate. Additionally, one has the Gauss constraint

∇ ·
[
X ′ +

α

f
φ (∇×X)

]
= 0 . (IV.5)

We assume the PQ symmetry is broken before the end of inflation f > HI , leading to
an axion field that is spatially homogeneous over the visible universe. As in the standard
misalignment scenario (see Section II.1 and [34]), the initial field value of the axion is
drawn from a uniform random distribution θ = φ0/f ∈ [−π, π], where θ ∼ O(1) is the
initial misalignment angle. While H > m is satisfied, Hubble friction is important and
the axion field is overdamped, thus the initial velocity tracks the slow-roll attractor. As
is well known, massless vector modes are not excited during inflation so we take the dark
photon to be in the Bunch-Davies vacuum initially. We further assume that the universe
is radiation-dominated by the SM plasma with the axion contributing sub-dominantly to
the total energy density.
With these initial conditions, one can study the axion-dark photon system by initially
neglecting any spatial dependence of the axion φ(τ,x)→ φ(τ). In this limit, the equation
of motion for the dark photon in momentum space becomes

X ′′±(τ,k) + ω2
±(k, τ)X±(τ,k) = 0 ; ω2

±(k, τ) = k2 ± kα
f
φ′(τ) , (IV.6)

where X± are the mode functions of the two circular polarizations of the dark photon.
The modification of the dispersion relation caused by the interaction leads to the modes
with momenta 0 < k < α|φ′|/(2f) of the polarization −sgn(φ′) experiencing a tachyonic
instability once the axion starts to freely oscillate. We define the start of oscillations
a = aosc by the condition H = m. Due to this instability, the energy in the dark photon
quickly grows from the vacuum value k4 ∼ m4 to an O(1) fraction of the axion energy
∝ m2f2.
Tachyonic production is efficient if the mode functions grow more than an O(1) factor
during one oscillation of the axion. Since the axions velocity at the beginning of oscillations
is given as |φ′| ≈ θmfaosc and that the period of the axion oscillation is ∆τ ≈ 1/m one
can show that θα > 1 is required in order to have efficient particle production. Since θ ≈ 1
this leads to α > 1, which can be obtained in several UV completions, see e.g. [30,31,84].
The analytic understanding of the dynamics in the regime where the homogeneous axion
still dominates the energy density has been improved in Ref. [85] and we summarise the
relevant results in Section IV.4.2. Most importantly they allow for a precise estimation of
the time when the dark photon starts to dominate in energy at a∗.
At this point, one expects a backreaction of the dark photon onto the axion dynamics
and for the axion field to develop anisotropies. Thus, one must study the system on the
lattice in order to correctly capture the dynamics. In our previous work we simplified
the backreaction onto the axion by assuming that it stays homogeneous while only the
amplitude of the oscillations is reduced to enforce conservation of energy (see also Refs. [2,
3,86]). When studying the dynamics in detail in Sec. IV.3, we will refer to this treatment
as linear analysis and compare our results with it. When the dark photon comes to
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dominate the energy density of the system, the distribution of the energy also becomes
inhomogeneous. The energy-momentum currents that are associated with this transition
cause an unisotropic stress that can cause a detectable gravity wave (GW) signal if the
energy in the axion - dark photon system makes up a sizeable fraction of the total energy
in the universe at the time. Calculating this signal and estimating its detectability is one
of the key goals of the simulations carried out here.

Before we do so we will discuss some possible extensions of the minimal model that might
arise in a given UV completion.

IV.2.1 Finite dark photon mass

First, we consider the possibility of a non-zero mass for the dark photon which could arise
through a dark Higgs or Stueckelberg mechanism. This is of special phenomenological
interest since it allows the dark photon to be a viable dark matter candidate. The main
effect of mX is to further modify the dark photon dispersion relation

ω2
±(k, τ) = k2 ± kα

f
φ′(τ) + a2(τ)m2

X , (IV.7)

which can reduce the efficiency of or prevent tachyonic growth. To further quantify this
statement, we go back to the previously mentioned argument that the tachyonic growth of
the mode functions becomes inefficient if they grow less than O(1) during one oscillation
of the axion field. This happens when −ω2

± < (am)2 is satisfied for all modes k. From this
we can deduce that one must require mX . θαm/2 in order to have tachyonic production.
Below when studying the viability of dark photon dark matter we focus on dark photon
masses well below this bound which will not affect the success of our mechanism.

IV.2.2 Kinetic Mixing

Next, we examine whether the relevant photon-dark photon kinetic mixing operator

∆L = − ε
2
FµνX

µν , (IV.8)

affects our mechanism. Indeed, this operator will inevitably be generated by renormal-
ization group flow if there exist states which carry both electromagnetic and U(1)X
charge [87]. If kinetic mixing leads to an effective coupling of the dark photon to the
SM radiation bath, one might worry that it induces a large thermal mass for the dark
photon that prevents tachyonic growth.

In the case of an exactly massless dark photon mX = 0, the kinetic mixing term is
unphysical as it can be removed via the field redefinition X ′ = X+εA and A′ = A/

√
1− ε2

that leaves the coupling of the SM photon to the electromagnetic current unchanged. Thus,
it is clear that only the field combination that couples to the SM plasma A′ develops a
thermal mass.

However, for mX 6= 0, the mixing is physical. Diagonalizing the kinetic terms by per-
forming the same field redefinition now leads to a non-diagonal mass matrix which, in
addition to the thermal mass Π induced by the SM plasma for A′, must be included in
the dispersion relation[

ω2 + k2 +

(
ε′2m2

X + Π −ε′m2
X

−ε′m2
X m2

X

)](
A′µ

X ′µ

)
= 0 , (IV.9)
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with ε′ = ε/
√

1− ε2. The photon thermal mass is of order Π ≈ e2T 2, which at the
time when the axion begins to oscillate evaluates to Π ≈ e2mMP . As discussed in Sec-
tion IV.2.1, the existence of the tachyonic instability requires mX . θαm/2. Futhermore,
the momenta that experience tachyonic growth are those with k . θαm, so we are deeply
in the regime where m2

X , k
2 � Π. In this limit, the effective mass matrix in Eq. (IV.9)

always has a small eigenvalue m2
X(1 + O(ε2)) which is independent of T 2, despite the

kinetic mixing [88] 2. Thus, we conclude that the field combination associated with the
dark photon X ′ does not acquire a thermal mass via kinetic mixing, so we are subject
only to the usual constraints on ε, see e.g. Refs. [89–102].

IV.2.3 QCD Axion

Finally, we examine the case where the ALP φ is taken to be the QCD axion itself, which
is the focus of Ref. [86]. In this limit, m and f are not independent parameters but are
instead related by m2f2 = χQCD, where χQCD = (75.5 MeV)4 is the QCD topological
susceptibility. In particular, the QCD axion has the following couplings to SM gauge
bosons

∆L =
αs

8πf
φGaµνG̃

aµν +
gφγγ

4
φFµνF̃µν , (IV.10)

where Gaµν and Fµν are the gluon and photon field strengths, respectively, and gφγγ is a
model dependent coupling, e.g. gφγγ = −1.92αEM/(2πf) in the KSVZ model [103, 104].
These couplings are of the same form as the one of the axion to the dark photon and
one might therefore expect that these fields also experience tachyonic instabilies. Those
are however regulated by plasma effects. The photon acquires a Debye mass of order
Π ∼ e2T 2 via hard thermal loops, preventing tachyonic growth [105, 106]. Similarly, the
gluon self-coupling induces a magnetic mass m(T ) ∼ g2T [107–109]. The fact that the
tachyonic growth is prevented once the gauge field in question couples to plasma lead us to
consider a dark photon in the first place. This allows one to formulate further constraints
on the dark sector, in order for the dynamics of the dark photon to not alter from the
once in the minimal model that we discuss below: The dark sector can not be populated
by a plasma of particles that are charged under the dark U(1) nor can it have charged
degrees of freedom lighter than m2 . eXEX ≈ eXmf , where EX is the dark, electrical
field strength, since otherwise this light degree of freedom is produced via the Schwinger
effect. This scenario has been studied for a case were the axion also drives inflation in
Ref. [110].

As a final consideration, model dependent couplings of φ to SM fermions also exist. How-
ever, the production of fermions is not exponential due to Pauli-blocking. Thus, the
exponential production of dark photons dominates over SM channels.

IV.3 Lattice Formulation and Validation

We solve the full equations of motion of the coupled axion and dark photon system by
discretizing space and time. To ensure that we recover the correct theory in the continuum
limit, the discretized theory must have the same symmetry structure as the continuum
one. Ideally, the discretization should reproduce the continuum theory up to an error
which is high order in the lattice spacing to ensure fast convergence. Our implementation
meets the following requirements:

2This result, while perhaps surprising at first, becomes clear when we consider the limit mX → 0, where
the dark photon must decouple.
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Figure IV.1: Comoving axion (solid) and dark photon (dotted) number densities for dif-
ferent choices of the lattice parameters with α = 60 and θ = 1 held fixed. In the left
panel, L and N are varied while the number of iterations in the implicit scheme is held
fixed at 2. Similarly, the right panel fixes N = 256, L = π/(2m) and varies the number
of iterations in the implicit scheme. The different choices agree to within ∼ 10% except
in the case of the smallest length L = π/(4m).

• The continuum versions of the equations are reproduced up to O(dx2
µ), where dxµ

denotes the spatial and temporal distance between lattice sites.

• The discretization admits gauge invariance.

• The shift symmetry φ → φ + ε of the continuum theory is respected on the lattice.
This is equivalent to the discretized version of XµνX̃

µν = ∂µ(2Xν∂αXβε
µναβ) being

a total (lattice) derivative.

We implement these features using an implicit, staggered grid algorithm closely following
Refs. [72, 73]. The equations of motion for the transverse-traceless metric fluctuations
are solved to obtain the GW spectrum following Refs. [111, 112], where an algorithm is
implemented that also reproduces the continuum up to O(dx2

µ).

We simulate a comoving volume L3 with side length L = π/m and N = 512 lattice sites
along each direction with periodic boundary conditions such that we cover comoving mo-
menta 2 ≤ k/(maosc) ≤ 512. This comfortably covers the range of momenta experiencing
tachyonic growth, k ∼ θαmaosc/2 for θ = O(1) and α ∼ 40 − 100 3. The lattice parame-
ters are thus L, N , and the number of iterations in the implicit scheme. We varied these
parameters to ensure that none of our results depend on them, see Fig. IV.1 where we
show the evolution of the axion and dark photon number densities for different lattice pa-
rameters. To keep the computational cost down, we only go to second order (2 iterations)
in the implicit scheme used to solve the equations of motion as justified in the right panel
of Fig. IV.1. For a detailed description of the lattice numerics, see Appendix B.

IV.4 Dynamics from the Lattice

The lattice simulation was performed with m = 10−2 eV and f = 1017 GeV held fixed for
all runs. We then use the scaling relations described in Section IV.4.3 to adapt the results

3For benchmark points with θ = 3, a smaller box L = π/(3m) was used in order to resolve the UV
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Figure IV.2: Early evolution of the dark photon (left) and axion (right) spectra. The
model parameters are α = 60 and θ = 1. The “+” polarization is the first to experience
tachyonic instability.

to other values of the model parameters. In the left panel of Fig. IV.2, we show the early
evolution of the comoving dark photon number density for α = 60 and θ = 1, where the
linear analysis holds. We define the start of oscillations a = aosc by the condition H = m,
with the dark photon initially in the Bunch-Davies vacuum such that dn/d ln k ∝ k3.

At the second time step a/aosc = 4, the dark photon spectra perfectly agrees with
the expectation from the linear analysis: during the first period of oscillation we have
φ′ ≈ θmfaosc and therefore according to Eq. IV.6 the modes in the range k ∈ [0, α|φ′|/f ] ≈
[0, αθmaosc] experience a tachyonic instability. These are indeed the modes that are en-
hanced at a/aosc = 4 compared to the Bunch-Davies vacuum. In the first half period of
oscillation, the axion velocity does not change sign and therefore only one helicity experi-
ences tachyonic growth. Without loss of generality, we label the first helicity to experience
tachyonic growth as “+” throughout this work. In the second half period, the “−” po-
larization is excited. However, the damping of the axion velocity due to Hubble friction
results in a smaller range of tachyonic modes. Since the growth rate depends exponentially
on the axion velocity, the amplitude of the “−” polarization is exponentially suppressed
compared to the “+” polarization.

In the next time step at a/aosc = 7, we see the position of the peak move towards lower
momenta. This is expected since the axion velocity is further decreased by Hubble friction.
Additionally, we see a second contribution to the dark photon spectrum appearing that is
plateau shaped and falls off at an O(1) multiple of the original peak momentum. Looking
over to the right side of Fig. IV.2, we note that the appearance of this plateau happens
at the same time as inhomogeneities in the axion field arise with a similar spectrum.
From a particle point of view the origin of this feature is clear, as the axion-dark photon
coupling allows for the (back-)scattering of two photons into an axion. The kinematics of
this process dictate that the resulting spectrum should fall off at twice the dark photon
peak momentum, which is what we observe. The plateau in the dark photon spectrum
arises from further back-scattering of dark photons into finite momentum axions and is
expected to be unpolarized. These effects are similar to the once we discussed for axion
fragmentation above in Chapter III, where we were able to derive an analytic expression
for the second order fluctuations and therefore were able to back up the particle physics

dynamics properly. When attempting to capture the late time behavior of the axion abundance in Fig. IV.4,
we used N = 128 and L = π/(2 ·m) as the simulation must be run longer.
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Figure IV.3: Evolution of the spectra in the non-linear regime. The model parameters are
α = 60 and θ = 1. The “+” polarization is the first to experience tachyonic instability.
The dark photon and axion panels correspond to those in Fig. IV.2 but within a much
smaller range of energy densities.

picture. Such a perturbative treatment would be much harder here since there exist no
closed analytic expression for the first order perturbations.

The next time of interest is a∗ when the energy in the dark photon and axion become
comparable in size ρX ∼ ρφ and therefore any perturbative scheme breaks down. This
roughly corresponds to a/aosc = 9 where we see the peak from tachyonic growth and
the plateau from back-scattering becoming comparable in size. The UV cutoff of the
plateau also moves toward higher momenta and becomes less steep, which in the particle
picture results from multiple scattering processes becoming more important as the number
densities grow.

The last time step at a/aosc = 11 is some time after the two energy densities become
comparable in size. Before we take a closer look at the evolution during this period,
let us make two technical comments. We chose a vanishing initial spectrum for the axion
which stays zero during the first two time steps to within working precision. In general, the
initial axion spectrum would depend on the inflation history. However, the axion spectrum
resulting from backscattering processes is uncorrelated with and can be simply added to
any initial spectrum that might exist from inflation. The second point concerns the UV
behavior of the spectra at a/aosc = 7, 9. This behavior corresponds to rounding errors
due to the fact that we are dealing with field amplitudes differing by ≈ log10(f/m) = 29
orders of magnitude while using double precision floats with a precision of only 16 orders of
magnitude. One expects the errors to take a random value in position space, uncorrelated
from site to site. We have checked that this results in the UV part of the spectrum
behaving as ∝ k3 in momentum space.

Fig. IV.3 shows a close up of the last two time steps from Fig. IV.2 as well as the final
spectra taken at a/aosc = 200. Also shown is the evolution of the spectrum of gravitational
waves. The close up reveals that at a/aosc = 9 when ρX = ρφ/2, the dark photon spectrum
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is still dominated by the sharp, polarized peak resulting from the tachyonic instability.
This initial peak and its polarization are however quickly washed out through scattering
effects, resulting in a flat, unpolarized plateau. The UV cutoff of the plateau behavior is
extended to slightly higher momenta after the two energy densities become comparable due
to multiple scattering processes. Interestingly, another peak at lower momenta appears in
the final spectrum that is dominated by the “−” polarization. We believe this peak, also
present in the study of Ref. [83], is due to the tachyonic enhancement that occurs as the
axion zero mode settles down to the minimum with roughly constant velocity. The axion
velocity at this point is already significantly reduced by the production of dark photons
and the resulting peak is therefore at smaller momenta.

IV.4.1 Relic Abundance Suppression

Shortly after the dark photon energy density becomes comparable to that of the axion,
the axion velocity becomes too small to allow for efficient production of dark photons
through the tachyonic instability. In the linear analysis, dark photon production continued
nonetheless due to a narrow parametric resonance resulting from the coherent oscillation
of the homogeneous axion field. This effect could lead to a suppression of the axion relic
abundance by more than 10 orders of magnitude relative to the case without any particle
production.

On the lattice however, we see the axion spectrum right after the energy densities become
comparable at a/aosc = 11 has a broad peak as shown in Fig. IV.3. At late times, this
peak moves to slightly higher momenta (similar to the dark photon), while IR power is
suppressed. Low momentum axions correspond to nearly homogeneous field configura-
tions in position space and it therefore seems plausible that the suppression of the axion
abundance at low momenta is due to a parametric resonance. However, it is clear that
the axion abundance at high momenta is not suppressed and that high momentum axions
are still being produced at late times. This severely limits the amount by which the total
axion abundance can be suppressed.

In particular, we find that the relic abundance suppression relative to the case without
particle production is typically limited to 10−2, in good agreement with Ref. [81]. This can
be seen clearly in Fig. IV.4, we show the evolution of the comoving axion energy density as
calculated on the lattice compared the result from the linear analysis. They start to differ
shortly after the initial backreaction, when the linear analysis predicts a much stronger
depletion of the axion abundance due to the parametric resonance driven by the zero-
momentum condensate. On the lattice, the axion abundance is dominated by relativistic
axions, so the axion energy density scales as radiation until their momenta drops below
the axion mass, locking in a suppression of about 10−2 compared to the scenario without
particle production.

As shown in Fig. IV.5, we find that the amount of suppression has only weak dependence
on θ and α in the regime where dark photon production is efficient (θα & 30) and friction
from particle production does not cause the axion to slow-roll (θα . 200). In Ref. [81],
a similar study was performed in the QCD axion case (where the axion mass posses a
time dependence) that comes to roughly the same conclusion. The lattice computation
results in a more predictable relic abundance compared to the linear analysis, where the
final abundance depended chaotically on the initial conditions [86]. Since an axion over-
abundance limits the parameter space with detectable gravitational waves, we discuss two
potential paths to further suppress the axion abundance in Sec. IV.5.

57



CHAPTER IV. LATTICE STUDY OF THE MINIMAL MODEL

100 101 102 103

a/aosc

10 3

10 2

10 1

100
a3 /(

a3 os
cf

2 m
2 ) no particle production

lattice analysis
linear analysis
m0 = m/2
m0 = m/4
m0 = m/8
vanishing potential

Figure IV.4: Evolution of the comoving axion energy density for θ = 1. Around a = aosc,
the axion starts oscillating and scaling like matter ρφ ≈ a−3m2f2. Without particle pro-
duction, this scaling would persist (blue dot-dashed line) yielding the standard abundance
from misalignment. For α = 60, the backreaction of dark photon production becomes
strong around a/aosc ∼ 9. The thin gray line shows the result from the linear analysis,
while the solid orange line gives the lattice result. The lattice result shows a suppression
of the final axion abundance by ≈ 10−2 compared to the case with no particle production,
in stark contrast to the linear analysis which suggests a much stronger suppresion. The
dotted lines show possible further suppression in case where the final mass is adiabati-
cally reduced, while the brown dashed line corresponds to a time dependent potential that
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Figure IV.5: Suppression of the axion relic abundance for different values of α and fixed
θ = 1 compared to the standard misalignment case where α = 0 and there is no dark
photon production. We see that θα & 30 is required for efficient dark photon production.
For values of θα & 200, friction from particle production causes the axion to slow-roll and
behave as vacuum energy, thus it will quickly come to dominate the energy density of the
universe. As we ignore the effect of the axion-dark photon system on the gravitational
background, this regime is beyond the scope of our simulation, and we simply sketch the
expected sharp loss of suppression in this region with the dashed line.

IV.4.2 Scaling Relations

Before moving on let us briefly discuss the dependence of the axion and dark photon
abundance on the parameters of the model. In the regime of small misalignment angles
θ . π/2, where the quadratic approximation for the potential holds we find that the axion
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number density is well approximated as

nφ = θ2mf2
(aosc
a

)3
, (IV.11)

after the onset of oscillation. Our analysis shows that the final abundance is suppressed by
a factor typically of order 10−2 through the dark photon production as discussed above.
The abundance of dark photons is set during the initial backreaction at time t∗, when the
majority of energy is transferred from the axion to the dark photon. Afterwards, it scales
as

ρX = ρφ
∣∣
t=t∗

(a∗
a

)4
= θ2m2f2 a∗

aosc

(aosc
a

)4
. (IV.12)

The linear analysis describes the dynamics with great precision leading up to the back-
reaction and can be used to find an analytic estimate for a∗/aosc. To do so, we as-
sume that the energy in the dark photon is dominated by the fastest growing mode
k∗ = α|φ′|/(2f) ≈ αθ/2 (aosc/a∗)

3/2a∗m and the energy in the dark photon is therefore
given as ρ∗X ≈ (k∗/a∗)

4|v∗/vBD|2, where v∗ is the dark photon mode function correspond-
ing to k∗ at t∗ and vBD the Bunch-Davies mode function. Using the analytic estimate
for the mode function v∗ found in Ref. [85], we can rewrite ρ∗X ≈ ρ∗φ in the form of a
transcendental equation for a∗/aosc

log

(
f

θα2m

(
a∗
aosc

)3/2
)

=
αθ√

2

(
aosc
a∗

)1/4

×
[
0.6− 0.82

√
aosc
2a∗
− 0.49

√
a∗

2aosc
+ 0.45

a∗
aosc
− 0.05

√
a3
∗

2a3
osc

]
.

(IV.13)

We compared these two equations to our results on the lattice and found that they track
the scaling to within a factor 2 for 40 ≤ θα ≤ 100. For θα & 100 the backreaction occurs
within the first period of oscillation and keeps the axion from efficiently rolling towards
φ = 0. This leads to a prolonged emission of dark photons that is not taken into account
by these relations.

IV.4.3 Gravitational Wave Spectrum

Since the gravitational wave spectrum is dominantly produced in the short period after
the energy densities of the axion and dark photon become comparable, the main features
of the GW spectrum computed in the linear analysis of Ref. [3] survive on the lattice. In
particular, the linear analysis leads to the expectation that the GW signal resulting from
a polarized vector carries the same polarization as its source. Looking at the bottom panel
of Fig. IV.3, we see that the GW spectrum is indeed strongly polarized at a/aosc = 9, since
up to this point the anisotropic stress is dominated by the highly polarized dark photon.
On the lattice, we are now consistently including the axion scalar perturbations as a GW
source. This can lead to a washout of polarization in the final spectrum, although as we
will see some parts of the GW spectrum can remain strongly polarized.
In Ref. [3], we presented some basic scaling relations which allow for the estimation of the
peak amplitude and frequency of the GW spectrum via naive dimensional analysis (NDA)

kpeak ∼ 2k∗ ≈ θαm
√
aosc
a∗

aosc
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Figure IV.6: Gravitational wave spectra computed on the lattice for different values of α
with θ = 1 held fixed. The light dashed lines show the two polarizations (red, blue) when
ρX = ρφ/2 (roughly the end of the perturbative regime). The solid lines are the final
spectra taken at a/aosc = 40 when the GW spectrum has fully converged. The solid black
line gives the sum of the two polarizations in the final spectrum and green crosses mark
the NDA scaling relation from Eq. IV.14 with ceff = 1. The source material includes the
final spectra in tabulated form.

ΩGW(kpeak) = ceff (Ω∗φ)2

(
a∗H∗
k∗

)2

=
ceff

9

(
f

mPl

)4( θ
α

)2 a∗
aosc

, (IV.14)

where ceff is a factor quantifying the efficiency of GW emission and stars denote the
corresponding quantity at the time of the initial backreaction t∗ where the GW spectrum
is dominantly produced.

In Figs. IV.6 and IV.7, we show the GW spectrum computed on the lattice for several
values of θ and α, where the NDA prediction from the scaling relation Eq. (IV.14) with
ceff = 1 is indicated by a green cross. We report a final GW spectrum at a/aosc = 40 at
which point the GW signal has fully converged for all choices of the model parameters.
Also shown is the spectrum at the end of the perturbative phase t = t∗ when ρX = ρφ/2
for the first time. We see that the NDA scaling relation predicts the peak of the spectrum
at t = t∗ to within a factor of 2, but in general fails to predict the peak of the final
spectrum 4. We suspect that 2→ 1 scattering processes in the phase t > t∗ are prolonged
for large values of θ and α, leading to larger signal amplitudes and peak momenta. These
processes also tend to smooth out and broaden the dark photon and axion spectra, which
in turn leads to the appearance of a softened UV cutoff in the GW spectrum, as compared
to the rapid exponential falloff we found in the linear analysis. The IR behavior for modes
k/(maosc) . 1 with wavelengths larger than the lattice size L is expected to approach k3

scaling from causality.

Another important difference between the linear and lattice studies is that while the peak
of the GW spectrum at the end of the perturbative phase t∗ is highly polarized, the
polarization of the peak of the final spectrum on the lattice shows a strong dependence

4For large θ ∼ 3, the scaling relation also differs from the early spectrum because the approximation of
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Figure IV.7: Same as Fig. IV.6 except α = 40 is held fixed while θ is varied. In the case
of θ = 3 we chose a smaller sized box L = π/(3maosc) to better resolve the UV part of the
spectrum.

on θ and α. In particular, we see the polarization of the final spectrum is diminished for
θα & 60. For θα . 60 the GW amplitude grows by a factor of . 10 in the late stages
t > t∗, while for θα & 60 the final spectrum can surpass the spectrum at t∗ by up to 3
orders of magnitude. The fact that the peak is largely unpolarized in cases where it is
predominantly sourced after t∗ fits well with our earlier observation that the polarization in
the dark photon spectrum is washed out after t∗ due to backscattering processes coupling
the two dark photon helicities. The unpolarized dark photon and axion spectra thus lead
to unpolarized gravitational waves. A similar suppression of polarization for large coupling
constants α has been observed in models of natural steep inflation [113], while a study that
appeared during the completion of this work found that the final polarization is limited
to 10% roughly independent of θ and α [83]. That study considered 40 ≤ θα ≤ 60, which
is the region where, in contrast, we find up to 90% polarization in the peak region. In
addition, while the peak amplitude and momentum agree with our findings within roughly
a factor of two, the overall shape of the spectra show significant differences.

As a final point, for θα & 100, the backreaction becomes sizeable within the first period of
oscillation and the regimes of tachyonic growth and non-perturbative interaction of fluctu-
ations are not well separated. This leads to the initially subdominant helicity surpassing
the dominant one already by t = t∗ in the case of θ = 1, α = 100 and some strongly
polarized features in the IR tail of the final spectra.

IV.5 Model Extensions

As previously discussed, the axion relic density can be suppressed by only two orders of
magnitude via production of dark photons once inhomogeneities in the axion field are
taken into account. Overproduction of DM thus renders a sizeable part of the parameter
space leading to detectable gravitational waves inconsistent with cosmology. Solutions
which simply reduce the initial axion abundance such as tuning the initial misalignment
angle are inappropriate in our case, as they also suppress the GW source. Instead, a
mechanism is needed that reduces the axion abundance once the tachyonic phase of dark
photon production (responsible for the majority of the GW signal) has ended. This could
be achieved if the axion potential is in some way time-dependent or flattens out around
the minimum. In both cases, the axion mass can be suppressed at late times. Let us first

the cosine potential as quadratic fails, invalidating the analytic solution found in Ref. [85].
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explore the latter scenario in the context of a monodromy-inspired potential [114–119]

V (φ) =
1

2
m2f2

(
φ

f

)2

−m2
wf

2
w

[
1− cos

(
φ

fw

)]
, (IV.15)

where the first term corresponds to Eq. (IV.2) expanded to quadratic order in φ/f , and
we take fw < f . Expanding for small φ, the ALP mass at late times is given by

m2
0 = m2 −m2

w , (IV.16)

which can be small if mw ∼ m. Defining m2
w = m2(1 − ε2) with ε � 1 and ϕ = φ/f , we

can write
V (ϕ)

m2f2
=

1

2
ϕ2 − f2

w

f2
(1− ε2)

[
1− cos

(
f
ϕ

fw

)]
. (IV.17)

In this form, we can easily see that when ϕ ∼ θ ∼ O(1), the argument of the cosine term
is large and its overall contribution to V is suppressed by f2

w/f
2. Thus, ALP dynamics

in this regime are controlled by the ϕ2 term and the axion mass is approximately m.
However, once the ALP amplitude becomes of order ϕ . fw/f , we can expand the cosine
and see that the ALP mass changes from m to the final mass m0. Our simulations confirm
that during this process the axion number density is conserved to a good approximation,
leading to a suppression of the axion relic abundance which is linear in the ratio m0/m as
shown in Fig. IV.4.

A similar setup was considered in [66, 67], which relied on the anharmonic part of the
potential for self-resonant axion (and GW) production. In that case, taking ε small nec-
essarily leads to a weak resonance unless the initial axion field value is very large. As we
rely on the axion-dark photon coupling for particle production (which simply requires a
non-vanishing φ′), this incompatibility does not hold here. Indeed, the model given by
Eq. (IV.15) combined with a strong axion-dark photon coupling leads to sizeable GW pro-
duction even for φ0/f ∼ 1. We estimated in Ref. [3] that tachyonic production stops once
the scale factor has grown by a/aosc = (αθ/2)2/3. Since the axion amplitude damps at least
as fast as a−3/2 (it falls off even faster when including friction from particle production),
one finds

1

fw
&

α

2f
, (IV.18)

is required in order to have tachyonic particle production complete before the cosine sub-
structure is resolved. Interestingly, this suggests a possible embedding of the model into
a monodromy construction where the axion couples to the dark photon as f−1

w , with dif-
ferent UV origins for the quadratic and cosine terms in Eq. (IV.15), as in Refs. [120,121].
Large α in such a construction could be understood in terms of the separation of scales
f/fw.

Another way to reduce the axion relic abundance is via a time-dependent potential. One
possibility is that the axion mass at early times comes dominantly from a potential induced
via U(1)X monopoles through the Witten effect [122,123]. In this case, the axion potential
is proportional to the monopole number density and thus decays as a−3.

Finally, one could entertain the possibility that the axion is exactly massless at late
times [124]. This would occur if the axion potential arises from some QCD-like dynamics,
where the dark quarks temporarily acquire mass from the VEV of a dark Higgs field that
later vanishes [125]. In such a case, the late time axion potential vanishes in exactly the
same way as in QCD with one massless quark, and the axion relic abundance is subject
only to Neff constraints.
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Figure IV.8: Axion and ALP parameter space in the mass vs. inverse decay constant
plane. Regions below the colored curves are in reach of future ground-based (ET) and
satellite-based (LISA, BBO, DECIGO) GW detectors, or future pulsar timing arrays
(SKA). Shaded regions are excluded by existing constraints, while unshaded regions show
the sensitivity of various other planned experiments. Black hole superradiance excludes
the grey shaded region, and future black hole observations could extend this region to the
grey line. The location of the QCD axion band is indicated by the black dashed line.

A detailed discussion of two more involved scenarios is subject of the following chapters
. One of them revolves around the previously discussed relaxion (Chapter VI), while the
other one acquires the energy for production of dark photons not from the axions potential.
Instead a mechanism is introduced that leads to an initial velocity of the axion, commonly
referred to as kinetic missalignment (Chapter V).

IV.6 Probing Audible Axion Models

With the results of the previous section, we can now identify the regions of parameter
space that may be probed by future GW experiments. Detectability requires an SNR
above a certain experiment dependent threshold. Here, we use the values and method
of Ref. [59]. We include the regions that result in detectable GW signals as well as
cosmological bounds on the model for fixed α = 100 and θ = 1. The GW detectability
curves were computed using the GW spectrum obtained from the lattice, with the IR
scaling for k . maosc taken to be ∝ k3 as expected from causality. Our results are
shown in Fig. IV.8, where the detectable regions lie below the curves labeled as SKA,
LISA, BBO, DECIGO and ET, respectively 5. Interestingly, GW experiments are most
sensitive for large values of the decay constant f corresponding to very weakly coupled
axions. These probes are therefore highly complementary to other existing limits (orange
shaded) or planned searches (orange lines), which are typically more sensitive for larger
couplings. An exception is the constraint coming from black hole superradiance (gray

5For experiments which probe the axion-photon coupling gφγγ , we assume the KSVZ relation gφγγ =
−1.92αEM/(2πf) to convert between gφγγ and 1/f .
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Figure IV.9: ALP parameter space in the mass vs. inverse decay constant plane with
α = 100 and θ = 1 held fixed. The parameter space below the bright colored curves could
be probed by future GW experiments, such as pulsar timing arrays (SKA) as well as space-
(LISA, DECIGO, BBO, µAres) and Earth-based (ET) interferometers. In addition, we
also show the region where LISA (dashed red) or ET (dashed blue) can potentially detect
the chirality of the GW signal. The purple region is where the model could account for the
recently reported NANOGrav signal. The gray region is excluded in case of a relativistic
dark photon by bounds on Neff , while in the green region a massive dark photon can be
a viable DM candidate. The solid diagonal lines refer to axion dark matter scenarios in
which, from left to right, there is no particle production (standard misalignment), only
the suppression from particle production ≈ 10−2 (PP only), or further suppression η from
model extensions (PP + η). In the blue shaded area, the axion is cool enough to be DM,
assuming sufficient suppression of the relic abundance.

shaded), which is also most reliable for large decay constant f and also indirectly relies
on GW observations [126, 127]. It should also be emphasized that the GW signal regions
do not depend on the axion relic abundance today, and therefore do not require the axion
to account for all of DM. The non-decoupling behavior of the GW signal is due to the
fact that larger f corresponds to more energy in the axion field Ωosc

φ ∝ m2θ2f2 which is
available to be converted into gravitational radiation. This holds as long as the initial
misalignment angle θ takes on natural values of O(1) 6.

In Fig. IV.9, we show a close up of the parameter space that leads to detectable signals,
as well as bounds arising from cosmology. To do so, we use the improved scaling relations
from Section IV.4.2 to calculate the axion and dark photon relic abundance and apply the
bounds from Appendix A.

The blue shaded region in Fig. IV.9 corresponds to the parameter space where the axion
possibly comprises all of DM. The left diagonal bound of the region matches the dark

6Additionally, we are always assuming mX . m/2 and α ∼ 10− 100 such that the particle production
process is efficient, see e.g. Refs. [3, 86].
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matter abundance assuming a suppression of two orders of magnitude from particle pro-
duction. The region near this line, where no further suppression is need, can be probed
by SKA for m ∼ 10−16 − 10−14 eV and f ∼ 5 × 1016 GeV. As discussed in Section IV.4,
the axion transitions from the condensate into non-zero momentum states in the process
of dark photon production. Axion dark matter can therefore be warm in this scenario.
Requiring axion dark matter to be cool enough to form structures gives the lower bound
on the blue shaded region. Observable GW signals in the space (ground)-based interfer-
ometers require an additional suppression of the axion abundance by 4 to 7 (10) orders of
magnitude in order to avoid overclosure. As discussed in Section IV.5 this can be achieved
in simple extensions of our model.

In the case where the dark photon has a sufficiently small mass such that it is relativistic
at late times, it contributes to the number of effective relativistic degrees of freedom
Neff . Requiring the Neff bounds to be satisfied leads to the gray shaded exclusion region
in Fig. IV.9. We find that the bounds from Neff are in tension with the NANOGrav
signal originating from this model, and similarly for any spectral distortions that might
be probed by the future Voyage2050 mission. Although there has been recent interest in
similar models with ultralight scalars and their GW signals in the context of the Hubble
tension [128] as well as Quintessence [129], none of these studies incorporate the scalar
perturbations in a consistent manner. Their inclusion might considerably strengthen the
bounds from CMB fluctuations and therefore lead to a non-trivial probe of the model via
CMB spectral distortions. If the dark photon mass is larger but still less than the axion
mass in order to not interfere with the tachyonic production, the dark photon can be a
viable vector dark matter (VDM) candidate [82, 130–132] in the green shaded region of
Fig. IV.9. The origin of the lower bound is again where the dark photon DM would be
too warm to be compatible with structure formation.

A smoking gun for Audible Axion models is the chiral nature of the GW spectrum as
discussed above. This can provide powerful background rejection, since SGWBs from
astrophysical sources are not expected to carry a net polarization. It has been pointed
out that the dipolar anisotropy induced by the Doppler shift due to the relative motion
of our solar system with respect to the cosmic reference frame can be exploited to allow
planar detectors to detect net circular polarization [133–137]. In particular, LISA and ET
would be able to detect net circular polarization with an SNR of O(1) for a SGWB with
amplitude h2ΩGW ∼ 10−11 [138]. In Fig. IV.9, we indicate using dashed lines the region
in parameter space where the signal is strong enough such that LISA and ET can pick
up on the polarization following the analysis of Ref. [138] assuming full polarization. Of
course, if a network of non-coplanar detectors is available in a particular frequency range,
GW polarization can be detected without paying the O(10−3) suppression factor due to
our peculiar velocity [133,139]. As previously discussed the simplifying assumption of full
polarization is only justified for small values of α and θ near the peak. The resulting lines
should therefore only be considered as an indication, for which parts of parameter space
the partially polarized spectrum of this model from other unpolarized signals, especially
for parameter points where θα . 60, where the signal is more than 90% polarized.

In Fig. IV.9 we have further included the 2σ-region were the Audible Axion can account
for the recently reported hint of a GW signal by NANOGrav. Unfortunately this region
is in conflict with the Neff bound. In Part III we discuss how to derive this region and
furthermore comment on further tests of the model for axion masses below 10−16 eV using
CMB fluctuations, polarization and spectral distortions.
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IV.7 Discussion and Conclusions

The nature of dark matter and how it is produced in the early universe remains a mystery.
Axions or ALPs are viable candidates, and coupled to a dark photon they can induce
a tachyonic instability, efficiently transferring energy from the axion to the dark photon
and thereby widening the viable parameter space for ALP dark matter [86]. In Ref. [3]
we showed that this process can be accompanied by the production of a stochastic GW
background, which as we showed here renders the model testable for large decay constants.
We furthermore argued that effects like a dark photon mass, kinetic mixing with the SM
photon as well as couplings to other SM fields that one expects to arise from realistic UV
completions do not interfere with the production of the dark photon.
Backscattering of dark photons into axions is essential to understand the final ALP relic
abundance, however, capturing this non-linear effect requires simulating the system on a
lattice. In this work, we present results of a lattice simulation of the axion-dark photon
system on a 5123 lattice and obtain the resulting gravitational wave spectrum. Our for-
mulation manifestly preserves the shift symmetry and gauge invariance of the continuum
theory. We confirm the findings of Refs. [81–83] that the ALP relic abundance cannot be
suppressed by more than about two orders of magnitude relative to the ordinary misalign-
ment mechanism with no particle production.
For the GW signal, we find that the inclusion of backscatterings and GWs sourced from
axion anisotropies broadens the spectrum towards the UV, while the peak frequency and
amplitude are roughly consistent with the results from the linear analysis [3]. Further-
more, we find that the polarization of the GW spectrum now depends non-trivially on the
coupling strength α and initial misalignment angle θ. While the signal remains strongly
polarized for smaller couplings, for θα & 60 the polarization is washed out due to backscat-
terings which couple the dark photon helicities. At even larger couplings, the polarization
can flip from the initially dominant one and exhibit a non-trivial frequency dependence. If
these features could be observed experimentally, they would provide additional information
on the model parameters and potentially even the initial conditions after inflation.
As discussed in detail above, a large fraction of the parameter space of interest for ex-
perimental GW detection is inconsistent with the observed DM relic abundance. In Sec-
tion IV.5, we sketch two simple extensions of the model that could potentially resolve this
tension, which essentially come down to decreasing the axion mass after GW production,
such that the experimental signatures remain unchanged. In the more radical approach,
where the axion is rendered massless at late times, the dark photon can be given a small
mass and play the role of dark matter. While much of the parameter space requires
extending the model, a window remains for pulsar timing arrays to probe the original,
minimal model.
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Chapter V

Boosted by an Initial Kick

V.1 Motivation

As discussed above the audible axion scenario only produces an observable GW signal for
very large axion decay constants, fφ & 1017 GeV, since otherwise the energy in the axion
is not sufficient to source enough GWs. For large regions of the parameter space the large
energy density of the axion however limits the viability of the mechanism, since the axion
DM abundance tends to overclose the universe.

This leads us to consider the case where the axion is initially equipped with a large amount
of kinetic energy, as we already did in the context of fragmentation in Chapter III, now in
combination with the coupling to the dark photon. In that case, both the axion mass and
decay constant become relatively unconstrained. As we will see it is furthermore possible
to achieve the tachyonic instability with small values of the coupling α � 1 that one
naively expects from perturbation theory.

This work is based on the kinetic misalignment scenario [68,69,140], but should easily also
apply to other models such as trapped misalignment [70,74]. Kinetically misaligned axions
are attractive for model building and phenomenology [141,142], since they can explain the
baryon asymmetry [140,143–146] and modify the spectrum of long lasting primordial GW
sources [147–149]. Furthermore, in combination with dark photons, GWs are produced
along with vector dark matter. This was already noted in Ref. [150], where a rough
estimate of the corresponding GW spectrum was presented. Here, we provide a more
elaborate assessment of the GW background from kinetically misaligned audible axions.
We compute the GW spectrum numerically in the linear analysis and identify the regions
of parameter space that may be probed by future GW experiments. We furthermore
evaluate the cosmological constraints on the model and identify the regions where either
the axion or the dark photon are viable DM candidates. Our main results are the GW
spectrum shown in Fig. V.2, as well as Fig. V.4 which highlights the large range of viable
axion DM parameter space that can be probed using GWs.

V.2 Model Description

Let us be oblivious for a second to where the axion’s velocity is coming from and consider
the dynamics as described by the action in Eq. (IV.1). In this case we can go back to the
dispersion relation for the dark photon coupled to the axion Eq. (IV.6) and find that if we
choose the initial velocity large enough, a tachyonic instability can be achieved no matter
what value of coupling α or decay constant f .

There is however one subtlety concerning this scenario: If the axion’s kinetic energy dom-
inates over the potential, the energy redshifts as ρφ = 1

2a2φ
′2 ∝ a−6. The typical dark
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photon growth rate therefore scales as ω ∝ α
f φ
′ ∝ a−2. To see whether tachyonic pro-

duction is efficient, this rate needs to be compared to the comoving Hubble rate1, which
redshifts during radiation domination as aH ∝ a−1. Since the Hubble rate decreases more
slowly, tachyonic production is either efficient right away or never, allowing for no sensible
τ → 0 limit. This goes to show that the dynamics of dark photon production cannot be
studied independently of the process causing the initial velocity. We therefore study a
concrete implementation in the following.

V.2.1 Generation of finite ALP Velocity

Kinetic misalignment was proposed in [68, 140] as a mechanism to generate a finite ALP
velocity. This scenario is inspired by Affleck-Dine baryogenesis [151,152], where rotations
of scalar particles are induced via higher-dimensional operators. To begin with, we identify
the axion φ = θS as the angular component of a complex scalar field

P =
1√
2
S exp(iθ) . (V.1)

The radial component S is called saxion2 in the following and determines the effective
decay constant feff = S, which is identical to the ALP decay constant fφ when S takes
its vacuum expectation value (VEV) at 〈S〉 = fφ. As a concrete realization, we choose a
quartic potential

V (P ) = λ2

(
|P |2 −

f2
φ

2

)2

+ V��PQ (V.2)

for the field P , where the coupling constant is defined as λ = mS,0/
(√

2fφ
)
, with mS,0

being the vacuum mass of the saxion. We assume that the U(1)PQ symmetry is explicitly
broken in the UV by the higher-dimensional operator

V��PQ =
APn

nmn−3
Pl

+ h.c. . (V.3)

Here, A denotes the dimensionful coupling and n gives the mass dimension. These terms
may be motivated by quantum gravitational effects at high energies for instance, or if the
U(1)PQ symmetry is generated as an accidental symmetry via other exact symmetries.
The crucial point is that V��PQ generates an angular gradient in the potential at large field
values, which may induce a rotation of P that is related to a PQ charge density

nPQ = iṖ ∗P − iṖP ∗ = S2θ̇ . (V.4)

Hence, the angular motion corresponds to a non-zero ALP kinetic energy. As the impact
of the higher-dimensional term vanishes rapidly due to cosmic expansion, the U(1)PQ

symmetry is effectively restored as the Universe cools down. Due to charge conservation,
the ALP continues to rotate around its potential.

V.2.2 Initial Conditions

We assume that the radial component S is driven to large field values during inflation.
This is a valid assumption if the quartic potential is sufficiently flat or mS,0 � HI , with

1In the previous chapter we compared the growth rate to the mass of the axion, which was always larger
than the Hubble rate, once the axion started rolling. This bound was therefore satisfied trivially.

2Despite following the common nomenclature, we do not assume supersymmetry in this work.
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HI ≤ 6× 1013 GeV being the maximum Hubble scale during inflation [153]. Since this is
given in the entire parameter space we consider, we take the saxion to be initially displaced
from its minimum at a value Si, which we treat as a free parameter in the following. In
a radiation dominated universe, P starts to roll when the Hubble parameter decreases to
the order of the effective saxion mass at Si, which reads

mSi =

√
∂2V

∂S2

∣∣∣∣∣
S=Si

=
√

3λSi . (V.5)

We denote with the subscript Si the quantities when the saxion becomes free to oscillate
once 3HSi = mSi . The key quantity to compute is the angular velocity that arises via
the angular gradient induced by V��PQ. In order to do so, we follow the approach from
Refs. [68, 140] and introduce the quantity

ε ≡ nPQ

nS
, (V.6)

that parameterizes the ratio of the charge density in the rotation and the saxion number
density, which is given as nSi = V0(Si)/mSi . Hence, ε gives a measure of the shape of the
path that P follows, with ε = 1 corresponding to a purely circular trajectory. Thus the
axion velocity right after the kick by V��PQ may be expressed as

φ̇Si =
ε

4
√

3
λS2

i . (V.7)

It can be shown that ε is related to the dimensionful coupling A and the mass dimension n
of V��PQ as well as the initial angle θi, assuming that P starts at rest. However, in this work
we set ε = 1 for simplicity. As before we consider the dark photon to be in Bunch-Davies
vacuum initially.

V.2.3 Dynamics

Before investigating the process of dark photon and gravitational wave production, it is
worth to study the scaling behaviour of the system during the different stages of the
evolution. As long as S � fφ, P rotates in a quartic potential, hence mimicking the
scaling behaviour of radiation, and it follows that

φ̇ ∝ a−2, ρφ ∝ a−4, S ∝ a−1. (V.8)

During this phase of the evolution, Ωφ = const. up to changes in the relativistic degrees
of freedom, unless photon production becomes effective. As the value of the saxion field
decreases while the Universe expands, the radius of the circular trajectory approaches the
ALP decay constant. When S = fφ, P enters the minimum of the potential. We then
obtain a kination-like scaling behaviour

φ̇ ∝ a−3, ρφ ∝ a−6, S = const. (V.9)

From this moment, the radial degree of freedom takes a constant value. We thus regard
the ALP independently. The usual, cosine-like ALP potential as given by Eq. (II.3) then
corresponds to a tilt of the total potential from Eq. (V.2). When the kinetic energy of the
ALP becomes comparable to the height of the potential barriers Vmax = 2m2

φf
2
φ, the system

enters a phase of matter-like scaling. Hence, the respective scale factor dependencies read

φ̇ ∝ a−3/2, ρφ ∝ a−3 , (V.10)

when the axion is trapped and behaves like DM as oscillations around the minimum start.
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V.2.4 Model Constraints

As before we consider the case that the energy in the dark sector is subdominant at all
times. For this condition to be met initially we require

Si . mPl . (V.11)

Additionally, we may define the parameter range where kinetic misalignment is active.
That is the case if the kinetic energy of the rotation dominates over the height of the
potential barriers of the usual axion potential (Eq. (IV.2)) when the axion enters the
bottom of the Mexican hat at aS=fφ = aSi · Si/fφ. With the use of Eq. (V.7), this
constraint may be translated to εmS,0 & 20mφ under the assumption that the tachyonic
window has not opened yet, since dark photon production would act as friction decreasing
the ALP velocity.

Before including the dark vector dynamics in the next section, let us comment on the
validity of the axion-dark photon coupling within the present framework. An effective
operator as given in Eq. (IV.1) may be generated by integrating out a heavy fermion ψ
charged both under U(1)X and U(1)PQ,

L ⊃ yψPψ̄ψ + h.c. . (V.12)

Requiring that the fermion is heavy enough to not be produced thermally sets a lower
bound on yψ. Through loop corrections a large value of yψ also leads to a large value of λ
and therefore to a possible conflict with our initial conditions if the initial saxion mass mSi

is larger than the Hubble rate during inflation. Combining these constraints we obtain(
30

16π4gρ,Si

)1/4(mPl

Si

)1/2

< 1 , (V.13)

which gives a lower bound on the initial saxion field value, with a weak dependence on
the saxion mass through the energetic degrees of freedom at the time the saxion starts to
roll.

V.3 Dark Photon Production

In this section, we introduce the dark photons under the assumption of a finite ALP
velocity. In particular, we study the conditions for successful tachyonic growth and give
an analytic estimate of their growth time. In addition, we provide the results of the
numerical simulation.

V.3.1 Tachyonic Instability

Now that we know the dynamics of the saxion and axion respectively, we can estimate
the conditions for efficient dark photon production. To do so, we generalise the dispersion
relation Eq. (IV.6) by taking into account that the radial component of the complex field
P is no longer fixed at fφ

ω2
±(k, τ) = k2 ± kα

S
φ′ . (V.14)

Just like in the standard audible axion case discussed above, the fastest growing mode
and the corresponding comoving growth rate are given by kpeak(τ) = α

2S(τ) |φ′(τ)|. For

tachyonic production to be efficient, the physical rate kpeak/a needs to be larger than the
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Hubble rate H. While the saxion rolls down the quartic part of the potential, we have
S ∝ a−1 and φ̇ ∝ a−2 such that the growth rate scales as

kpeak/a =
α

2S(τ)
|φ̇(τ)| = α

2Si
|φ̇Si |

aSi
a
∝ a−1, (V.15)

which is slower than the Hubble rate during radiation domination, H ∝ a−2. On the other
hand, once the saxion has settled in its minimum with S = fφ, the kination scaling sets
in and the growth rate is diminishing faster than the Hubble rate

kpeak/a =
α

2fφ
|φ̇(τ)| = α

2fφ
|φ̇S=fφ |

(aS=fφ

a

)3

∝ a−3. (V.16)

Using the scaling of the Hubble rate H, that additionally takes into account changes in
degrees of freedom, we can calculate the scale factor a∗ at which the tachyonic window
opens up

a∗
aSi

=
8

αε

(
gρ,∗
gρ,Si

)1/2(gs,Si
gs,∗

)2/3

, (V.17)

where gρ and gs denote the effective degrees of freedom with respect to energy and entropy
at the corresponding times. Since ε ≤ 1 and the fine structure constant is also expected
to be small, we find that, initially, there is no tachyonic photon production. We can then
distinguish three cases:

1. a∗ < aS=fφ : Dark photon production becomes efficient before the saxion takes on
its VEV. In this case we expect efficient production at least until S ≈ fφ, when the
growth rate starts diluting faster than the Hubble rate.

2. a∗ ∼ aS=fφ : In this case we only expect a very short period of tachyonic particle
production, since, right after the window opens, it closes again due to the onset of the
kination regime. Whether an O(1) fraction of the axion energy can be transmitted to
the dark photon, which is required for GW emission, strongly depends on the exact
time it takes the photon modes to grow, which we will study in the next section.

3. a∗ > aS=fφ : In this case the phase in which the growth rate increases relative
to the Hubble rate is too short, such that kination sets in before the tachyonic
window opens. Therefore, the production of photons is never efficient and only
axion fragmentation might take place as discussed in Chapter III.

It is therefore clear that there exist a threshold αmin above which the tachyonic window
opens. This threshold can be found from a∗ = aS=fφ to be

αmin =
8

ε

(
gρ,∗
gρ,Si

)1/2(gs,Si
gs,∗

)2/3 fφ
Si
. (V.18)

Since fφ � Si and with ε = O(0.1 − 1) there is a large parameter space in the kinetic
misalignment scenario, where tachyonic production is possible without requiring α > 1
as in the original audible axion scenario. Although large values of α can be achieved as
shown in Refs. [86, 154], the small value of α allows for simpler UV completions.
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V.3.2 Growth Time

So far we have only discussed when tachyonic production of dark photons starts. For
efficient GW production it is however necessary that the majority of the axion energy
is transferred to the photon. Since we assume there is initially no photon population
except for vacuum fluctuations, there elapses some time between the onset of tachyonic
production at τ∗ and the emission of GWs at τGW.
While the dark photon is in the Bunch-Davies vacuum the energy in the resonance band
is

ρX,∗ =
1

a4
∗

k4
peak,∗
16π2

(V.19)

This energy needs to grow up to ρφ,∗ = 1
2 φ̇

2
∗ before GWs are emitted. The resulting time

delay can be estimated as

δτ

τ∗
=

a∗H∗
2kpeak,∗

log

(
ρφ,∗
ρX,∗

)
=

1

2
log

(
ρφ,∗
ρX,∗

)
. (V.20)

If the Universe is dominated by a radiation bath, this can be re-expressed as the redshift
aGW/a∗ = 1 + δτ

τ∗
.

In Fig. V.1 we show the results of a simulation that was started at a∗, right as the dark
photon production becomes efficient. We can see the growth rate kpeak/a starting to
dominate over the Hubble rate. Around aGW, as calculated with the formula above and
marked by the black dotted line, the growth rate deviates from the analytic estimate, as
a result of the axion slowing down due to the friction from dark photon production. This
effect also becomes apparent in the bottom panel, where we can see the dark photons
energy dominating over the axion soon after aGW. After this point, the growth rate
oscillates. Its mean, however, takes on a constant ratio with respect to the Hubble rate.
This can be understood as the growth rate regulating itself: A large growth rate results in
more efficient dark photon production, more friction on the axion and therefore a decrease
in the growth rate.
Eventually, the saxion settles down at its VEV fφ at aS=fφ marked by the black, dash-
dotted line. From here on out, the dark photon growth rate starts to decrease compared to
the Hubble, due to the stronger effect of Hubble friction during kination scaling, and dark
photon production becomes ineffective. As a consequence, we can see the energy densities
taking on the expected scaling behaviors before we eventually stop the simulation, once
the growth rate becomes smaller than the Hubble.
Before we conclude this section, let us briefly comment on the dark photon abundance and
the resulting Neff bound. Even if one makes the assumption that all of the axions energy
is converted to dark photons, one finds that the contribution to Neff is small compared to
the current bounds as long as one stays within the bounds of ε < 1 and Si < mPl.

V.3.3 Simulation

For our numerical analysis we adopt the linear analysis developed in Ref. [3]. We solve
the coupled system of 105 dark photon modes with linearly spaced momenta in the range
0 < k ≤ αφ′∗/S∗, which corresponds to the tachyonic window at the start of the simulation
at a = a∗, and the homogeneous axion field φ. For the saxion field we assume however,
that it follows the analytic scaling. That is

S(τ) =

{
a∗
a(τ)S∗ a(τ) < aS=fφ

fφ a(τ) ≥ aS=fφ

. (V.21)
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Figure V.1: Comparison of rates and energy densities between a numerical simulation and
analytic scaling relations for Si = 2× 1018 GeV, mS,0 = 1 GeV, fφ = 5× 1013 GeV, α =
0.02 and ε = 1. We start the simulation when the Hubble rate coincides with the dark
photon growth rate kpeak/a at a = a∗. In the top panel we show the growth rate in dark
blue dominating over the Hubble rate. At aGW/a∗ ≈ 43 marked by the black dotted
line, the growth rate deviates from the analytic scaling behavior shown as the purple,
dash-dotted line. The reason for this discrepancy can be found in the bottom panel,
where we can see the dark photon energy becoming comparable to the one of the axion
around this time. Friction from dark photon production becomes efficient and the growth
rate, which is proportional to the axions velocity, decreases faster as by the scaling only
considering Hubble friction. The dash-dotted black line marks the saxion field settling at
its VEV fφ at aS=fφ . Afterwards the photon production quickly becomes inefficient and
all quantities take on their respective scaling behaviors, although with the growth rate
and axion energy reduced due to friction from the photons. The relic ALP abundance
after dark photon production is well matched by the red dash-dotted line, which denotes
a kination-like scaling starting at aGW. Since we observe this behavior throughout all our
simulations, we will use this as an analytic estimate of the minimum relic ALP abundance
in Section V.5.1. Simulation and figure created by D. Schmitt.
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The axion EOM then takes the form

φ′′ + n(τ)aHφ′ + a2∂V

∂φ
= − α

S(τ)
a2〈0|E ·B|0〉, (V.22)

where we take

n(τ) =

{
1 if a(τ) < aS=fφ

2 if a(τ) ≥ aS=fφ

, (V.23)

in order to account for the effect of the radial saxion mode on the circular motion before
the saxion settles. Note further that, for the back-reaction of the photon modes on the
axion, we have to take the expectation value, since we are only considering the motion
of the homogeneous axion field, E · B → 〈0|E · B|0〉. As shown in Refs. [3, 86], this
expectation value can be expressed as an integral including the mode functions, which in
our simulation is approximated by summing over the simulated mode functions.

Let us briefly comment on the two main assumptions that we made in our analysis. The
first is that the motion of the saxion field S can be treated independently. Imagine for
simplicity a scenario where the full field P = S/

√
2 exp(iφ/S) is on a circular track

with the radius S slowly changing due to Hubble friction, initially. Even in this idealized
scenario the field would leave this circular track once friction from photon production
diminishes the rotational momentum. However the main characteristics of the photon and
GW spectrum would be set before these effects become sizeable. Furthermore, once the
saxion S starts varying rapidly, the effective field theory (EFT) in which the degrees of
freedom leading to the coupling between the axion and photons, presumably fermions,
have been integrated out is not valid anymore. At this point, also our semi-classical
treatment of the system breaks down and, to our knowledge, there is no method to treat
such a system so far. We therefore stick to the pragmatic approach here of calculating
what we can, knowing that the main observables, the features of the GW spectrum, will
be estimated correctly.

The second assumption is that the axion stays homogeneous throughout the evolution.
Since the dark electric and magnetic fields are inhomogeneous, as becomes clear from their
non-vanishing momenta in Fourier space, the backreaction onto the axion will introduce
inhomogeneities. The effects of this deviation from our assumption have been studied in
detail in the previous section as well as Refs. [4, 81–83, 113]. As we saw before including
the inhomogeneities has some minor influence on the GW spectrum but more crucially
allows one to accurately calculate the axion abundance. In Section V.5.1 we therefore
only give a lower and upper bound. Perhaps one might think that the second point can
be fixed by running a lattice simulation as in the previous chapter. However, related to
the first point, it is not clear how to integrate the radial motion in such an analysis. If
one simply neglects it or makes simplifying assumptions like we did in the linear analysis,
one has to wonder whether one really gained any precision, which is why we decided to
leave it at the linear analysis.

V.4 Gravitational Wave Spectra

As we have seen in the previous chapter, the exponential growth of the dark photons
mode functions is associated with a sizeable anisotropic stress that leads to the emission
of GWs. Below we first give an analytic estimate of the signal amplitude and compare to
the results of the simulation.
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V.4.1 Analytic Estimates

As discussed in Section V.3.2, GW emission occurs at the time τGW, which is delayed
from the time τ∗, at which the tachyonic production starts, by the growth time of the dark
photon modes. Assuming that the SGWB is generated instantaneously at τGW, a simple
estimate of the peak position of the resulting GW spectrum can be obtained as follows.

Following again the discussion in Ref. [3] the GW peak is approximately given by twice
the dark photon peak momentum at the time of GW production, so that we obtain the
GW peak momentum k̃GW,

k̃GW ≈ 2 kpeak =
α2ε2

32
√

6

mS,0Si
fφ

(
gρ,Si
gρ,GW

) 1
2
(
gs,GW

gs,Si

) 2
3 τ∗
τGW

aGW , (V.24)

where we assumed that GW emission occurs before the saxion reaches its minimum, i.e.
S > fφ, so that kpeak/a∗ is given by Eq. (V.15). Note that Si ∼ mPl is required to obtain a
sufficiently large angular velocity to generate an observable GW signal, whereas occurrence
of tachyonic production constrains α/fφ. Hence, the peak momentum is predominantly
set by the saxion mass parameter mS,0.

As before we estimate the GW amplitude at the peak of the spectrum as [3, 155,156]

ΩGW = ceff Ω2
φ,GW

(
HGW

k̃phys.
GW

)2

= ceff

(
εSi
mPl

)4( a∗
aGW

)2 g2
ρ,Si

gρ,GW gρ,∗

(
gs,GW gs,∗
g2
s,Si

) 4
3

,

(V.25)
where the factor ceff accounts for the efficiency of converting the energy initially stored in
the axion into GWs. The second part of the equation is obtained using that efficient dark
photon production starts when the tachyonic window opens at a∗H∗ = kpeak, as well as
that the axion energy density ρφ = 1

2 φ̇
2 redshifts as radiation for S > fφ. The present day

values for the frequency of the GW as well as their amplitude are obtained by redshifting
using the formulas in Appendix A. Note that, fixing ε = 1 at its maximal value, the energy
budget, and, correspondingly, the peak amplitude, are predominantly determined by the
initial saxion field value Si, with only a weak dependence on other model parameters
through the effective degrees of freedom and the growth time delay τGW/τ∗.

Similar to the audible axion scenario discussed above, we expect the spectrum to drop
sharply above the peak, as the generation of GWs with momenta |k| > k̃GW requires that
also the contributing dark photon modes have momenta |q|, |k− q| > kpeak. Furthermore,
as only one dark photon polarization is produced, the GW spectrum will also be chiral.
In the low frequency tail, on the other hand, for frequencies corresponding to momenta on
super-horizon scales at production, the spectrum should behave as k3 based on causality
arguments [48,157] (cf. also Ref. [150]).

V.4.2 Numerical Calculation

To corroborate the analytic estimates from Section V.4.1, and to further obtain the spectral
shape of the generated SGWB, the GW spectrum is also calculated numerically from the
simulation discussed in Section V.3.3, using a subset of 200 of the 105 simulated modes.
The computation follows the procedure in Ref. [3].

The left panel of Fig. V.2 shows the resulting GW spectrum at the time of emission. The
solid line depicts the total spectrum, whereas the dot-dashed lines indicate the respective
contributions from the positive and negative GW helicity. As expected, the resulting
spectrum is dominated by the positive helicity contribution, corresponding to the sign of
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Figure V.2: GW spectrum as a function of the physical momentum k/aGW normalized to
the Hubble rate at emission calculated from the same simulation as Fig. V.1. The black
dots indicates the estimate in Eq. (V.25). Left: GW spectrum at the time of emission.
The solid blue curve depicts the total spectrum, whereas the dot-dashed orange and cyan
curves correspond to positive and negative GW helicities, respectively. Right: Total GW
spectrum at different times. Figure created by D. Schmitt.

the initial axion velocity. The GW helicity picks up contributions from the photon helicity
as well as orbital angular momentum, which is why the spectrum is only partially polarized
as described in Ref. [3]. Although as we saw in the previous chapter no conclusion can be
made about the size of the polarization without accounting for the inhomogeneities in the
axion field. The analytic estimate Eq. (V.25) provides a good approximation of the peak
position, assuming an efficiency factor of ceff = 1. The right panel of the figure illustrates
the time dependence of the GW spectrum, showing the spectrum at different stages during
the simulation. As can be seen from the figure, efficient GW emission occurs early on,
with comparably little additional GWs emitted at later times. The GW peak is already
pronounced at a/a∗ = 48.2, which agrees well with the estimate of the GW emission time
aGW/a∗ ∼ 43 obtained in Section V.3.2.
To allow for an efficient evaluation of the detectability over the parameter space without
the necessity to run the numerical simulation for every single parameter point, we use the
analytic estimates in Eq. (V.24) and Eq. (V.25) to infer the spectrum from the one shown
in Fig. V.2.3

V.5 Relic Abundances

In the following, we compute the relic ALP abundance. Here, we distinguish the cases
where the pseudoscalar represents an ALP or the QCD axion itself, respectively. In ad-
dition, we consider the possibility for the dark vectors to constitute dark matter and the
conditions for successful axiogenesis.

V.5.1 ALP Dark Matter

As discussed in Section V.2.3, assuming a slight tilt in the potential of the complex scalar
P , the potential effectively behaves as a cosine potential for the axion, cf. Eq. (IV.2),

3We here don’t use the spectrum from the simulation directly as in Section IV.6, but instead use a fit
to the peak consisting of a powerlaw in the IR and an exponential decay in the UV. The details can be
found in the original publication [5].
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once its kinetic energy has been diluted and becomes comparable to the height of the
potential barriers, φ̇/2 = 2m2

φf
2
φ. The circular motion of the ALP then ends, and it starts

to oscillate around the minimum of the cosine potential. Its energy density subsequently
scales like matter, rendering the kinetically misaligned axion a candidate for DM, similar
to the standard misalignment case.

As discussed before the axion abundance can only be reliably estimated using a lattice
simulation. Here, we limit ourselves to the estimation of a maximum and suppressed
abundance scenario.

Maximum abundance:

In this case, we ignore the energy transfer from the ALP to the dark photon. The relic
abundance is then exclusively determined by the dynamics described in Section V.2.3. The
ALP kinetic energy scales kination-like between the time the saxion settles at its minimum
to the start of the oscillations when φ̇2

osc/2 = 2m2
φf

2
φ, hence,(

aS=fφ

aosc

)3

=
2mφfφ

φ̇Si

(
aS=fφ

aSi

)2

. (V.26)

The maximal fractional energy density of the ALP at MR equality thus becomes

Ωφ,eq,max =
ρφ,Si
ρrad,eq

(
aSi
aS=fφ

)4(
aS=fφ

aosc

)6(aosc

aeq

)3

=
mφfφφ̇Si
ρrad,eq

aS=fφ

aSi

(
aSi
aeq

)3

' 0.23 g
−1/4
ρ,Si

gs,eq

gρ,eq
ε

(
Si
mPl

)3/2( fφ
mS,0

)1/2 mφ

Teq
,

(V.27)

where we make the approximation gρ,Si = gs,Si , which is a valid assumption in all of the
considered parameter space.

Suppressed abundance:

In reality, a fraction of the ALP energy density is transferred to the dark gauge field such
that the final relic abundance is suppressed. As observed in our simulations (cf. Fig. V.1),
the relic ALP abundance after the tachyonic phase may be well approximated by an earlier
onset of the kination-like scaling behavior at aGW instead of aS=fφ , and correspondingly
an earlier start of the axion oscillations. Our estimate for the suppressed abundance is
hence obtained replacing aS=fφ in Eq. (V.26) and the first line of Eq. (V.27) by aGW.
Therefore,

Ωφ,eq,min = Ωφ,eq,max
aGW

aS=fφ

= Ωφ,eq,max
fφ
Si

a∗
aSi

aGW

a∗
, (V.28)

where the last two terms are given in Eq. (V.17) and Section V.3.2.

V.5.2 QCD Axion and Axiogenesis

If we take the ALP to be the QCD axion, we have to keep in mind that the zero temperature
mass mφ,0 and decay constant fφ are no longer independent parameters, but related by
the QCD topological susceptibility [158] via

mφ,0 =
(78 MeV)2

fφ
. (V.29)
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In addition, the interaction with the thermal bath induces a suppression of the axion po-
tential, potentially delaying the onset of oscillations. If the temperature at which axion
oscillations start is smaller than the QCD scale, Tosc < TQCD ≈ 200 MeV, the discussion
from the previous section applies. However, if Tosc > TQCD, the QCD axion undergoes
an extended phase of kination-like scaling compared to the ALP from Section V.5.1, since
oscillations are then delayed until TQCD. As the kinetic energy then is negligible compa-
rable to the height of the potential barriers, the energy density in the ALP field at TQCD

is determined by the potential energy. Hence, in this scenario the relic axion abundance
is the same as obtained from the conventional misalignment mechanism [159].
As previously pointed out [140], the rotating QCD axion provides the possibility of suc-
cessful electroweak baryogenesis. The PQ asymmetry stored in the rotation is transferred
to the quark sector via QCD sphalerons. Subsequently, the chiral asymmetry is translated
into the B+L asymmetry by electroweak sphaleron transitions that become strongly sup-
pressed at the electroweak phase transition (EWPT). Hence, the rotating axion constantly
sources the baryon asymmetry which freezes in once the electroweak symmetry sponta-
neously breaks. Following the result from Ref. [140], the normalized baryon asymmetry
induced by the rotation is given by

YB =
nB
s

=
45 cB

2 gs,ws π2

θ̇

T

∣∣∣
T=Tws

, (V.30)

where cB ' 0.1 − 0.15 cW , with cW being the weak anomaly coefficient. The observed
baryon asymmetry reads Y obs

B = 8.7× 10−11 [46], which may immediately be converted to
the required angular velocity

θ̇ws =
φ̇ws

S
=

2gs,wsπ
2

45cB
Y obs
B Tws = 5.1× 10−6 × 0.1

cB
GeV , (V.31)

at Tws ∼ 130 GeV, which denotes the temperature where weak sphaleron transitions be-
come ineffective. Since Tws > TQCD, the axion potential is flat when the baryon asymmetry
freezes in, hence the pseudoscalar exhibits either a radiation- or kination-like scaling.
Therefore there are four cases that one has to distinguish when calculating θ̇ws. In the
first scenario the EWPT takes place before the saxion reaches its vev and one only has
to consider the radiation like scaling of the velocity θ̇ ∝ a2 between TSi and Tws. If the it
takes place after one additionally has to account for the phase of kination between TS=fφ

and Tws. From these two one obtains the other ones by taking into account whether dark
photon production becomes efficient before Tws. Similar to the axion relic abundance our
simulations can’t be trusted when it comes to predicting the axion velocity in this case.
We again consider two limiting cases. The first one labeled max neglects the backreaction
altogether and coincides with the estimates given above. In the second case labeled min
we consider the axion velocity scaling to be kination like between TGW and Tws, just like
in our estimates of the axion relic abundance.
We may now explore the parameter space that reproduces the observed baryon asymme-
try. Since the GW amplitude mainly depends on the initial value of the radial degree
of freedom, we fix Si = 2× 1018 GeV in the following to ensure the resulting signal lays
within the reach of future observatories. Figure V.3 depicts the compatible region in the
fφ−mS,0 plane which are then the decisive parameters regarding the GW peak frequency.
In terms of the gauge coupling, we fix α = 10−7, since a large coupling leads to an earlier
onset of dark photon production, hence a larger decrease of the axion velocity such that
the generated baryon asymmetry is not sufficient. As a consequence of this small cou-
pling, the axion decay constant is constrained to fφ . 4× 108 GeV to have successful GW
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Figure V.3: Parameter space of the QCD axion for for fixed benchmark parameters
Si = 2 × 1018 GeV and α = 10−7. On the blue lines the correct baryon symmetry is
induced by weak sphaleron (WS) processes at the time of the electroweak phase transi-
tion. For large saxion masses this happens during or after the production of dark photons,
where the predictability of our perturbative method is limited, which is why we show
two limiting scenarios (straight and dash-dotted). In the future, the relevant parameter
space may be probed by both direct axion searches such as the IAXO experiment (yellow
shaded region), as well as the GW observatory LISA (green-shaded region) and potential
follow-up experiments like µARES. Note that for the chosen parameters, the relic axion
abundance corresponds to the one obtained from conventional misalignment and therefore
only constitutes part of DM in the shown parameter region. Figure created by D. Schmitt.
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emission. The straight blue lines in Fig. V.3 denote where the axion rotation may source
the baryon asymmetry under the assumption of maximum velocity, hence no dark photon
production.

For mS,0 & 5× 10−5 GeV, the EWPT takes place during the kination-like phase, since
TS=fφ > Tws. Therefore the scaling behaviour changes between small and large saxion
masses, considering the maximum velocity case. Regarding the minimum velocity sce-
nario depicted by the dash-dotted line, we find that for successful axiogenesis, the baryon
asymmetry needs to freeze in during GW production, hence TS=fφ < Tws in this case.
Regarding the prospect of observation, we find that most of the parameter space where
axiogenesis is viable may be probed by LISA, as the green shaded region suggests. In
addition, also the future projects BBO, B-DECIGO, and DECIGO are sensitive to the
large −mS,0 region. The small −mS,0 part of the shown parameter space, however, may
be targeted by the projected observatory µARES. In all of the shown parameter range
the QCD potential appears so late, that the axion abundance is purely given through the
normal misalignment mechanism. Assuming a misalignment angle θi = O(1), the axion
produces the correct DM abundance for fφ ∼ 3×1011 GeV. We therefore expect the axion
to only contribute a small fraction of the total DM density in the given scenario.

In order to check whether this parameter space can be tested by direct searches we relate
fφ to the coupling to the SM photon γ through the relation gaγγ = −1.92/(2π)αemf

−1
φ

in the case of the KSVZ axion, with αem = 1/137. We then find that Primakoff axion
losses in horizontal branch (HB) stars limit fφ & 3.4× 107 GeV [160].4 Interestingly, the
entire parameter region may be probed by the planned axion helioscope IAXO [161] for
the chosen benchmark. Our model is therefore able to generate GWs over the entire range
of decay constants, and we provide a multi-messenger approach for axion searches in the
future, opening up parameter space that is simultaneously testable by both GWs as well
as direct detection experiments.

V.5.3 Vector Dark Matter

If the dark photon is massive, it may in principle also constitute DM. This scenario is
again subject to the previously discussed constraints, that the dark photon mass has to be
small enough to not interfere with the tachyonic instability (Section IV.2.1) and the dark
photons velocity stemming from the non-zero momentum has to be small enough to allow
for structure formation (see Appendix A). The dark photon abundance is set around τGW

by the axion transmitting the majority of its energy. This again allows one to estimate the
relic abundance using that the dark photons number density is conserved past this point.

By combining our findings for the dark photon relic abundance with the bound that its
velocity must be small enough, we find

εSi . 0.05 mPl

(
gε,eq

gε,Si

)1/2(gs,Si
gs,eq

)2/3

(V.32)

as the condition on the initial saxion value in the scenario where it amounts to all of DM.

V.6 Main Results and Summary

Given the GW spectrum from Section V.4 and the relic abundances computed in Sec-
tion V.5, we now evaluate the prospect of the presented model to both produce detectable

4Note that we do not include the potentially stronger bounds on the ALP coupling to nucleons from
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Figure V.4: The parameter regions in the Si −mS,0 plane that are testable in the future,
for the benchmark parameters fφ = 1012 GeV and α = 0.02. Since the GW amplitude is
independent of fφ, the presented model provides detectable signals for any value of fφ.
Hence, also the parameter region that is subject to direct axion searches may be probed
via GWs in the future. In the entire parameter space, the ALP can constitute DM, since
the GW production is independent of mφ. The blue shaded region marks where the dark
photons, if they were massive, are sufficiently cold to be DM, but also do not overclose
the Universe at Teq. Figure created by D. Schmitt.

signals as well as provide viable DM candidates.

In Fig. V.4, we present the regions in the Si −mS,0 plane that may be probed by next-
generation GW observatories. Here, we fix fφ = 1012 GeV and α = 0.02. As shown
in Section IV.4.3, the amplitude of the GWs mainly depends on the initial value of the
radial component Si which sets the energy budget available to be converted into gravita-
tional radiation. We find that Si & 1017 GeV is required for the GWs to be within the
reach of future detectors. For smaller values of Si, it is also not ensured that the EFT is
valid, since fermions with mass yψSi are produced thermally then. The fact that Si has to
be close to the Planck scale can be understood from the fact that the energy sourcing the
GWs now stems from the potential of the full complex field, rather than just its phase, the
ALP. This lifts the constraint from the original audible axion model (Chapter IV) that
fφ has to be large and we now find a probeable parameter region for any fφ as long as α
is large enough to allow for efficient dark photon production. Smaller values of fφ open
up the possibility for multi-messenger ALP searches, as the ALP can be found in direct
searches while sourcing detectable GWs (see discussion around Fig. V.3).

The frequency of the resulting GW spectrum is controlled by the gauge coupling α, the
ALP decay constant fφ and the saxion vacuum mass mS,0. For the chosen parameters in
Fig. V.4, detectable GWs are produced between 10−23 GeV < mS,0 < 102 GeV, where the
low masses may be probed by PTAs and the larger masses lie within the reach of future
interferometers. In Section V.5, we have computed upper and lower limits for a potentially
massive dark photon to constitute DM. This bound evaluates to Si . 2× 1017 GeV, as

SN1987A, since they are less robust [160].
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denoted by the blue shaded region in Fig. V.4. In that regime, the dark photons neither
overclose the Universe at matter-radiation equality, nor violate the bounds from structure
formation.
The ALP is however a viable dark matter candidate in all of the shown parameter space,
simply because the ALP mass mφ neither influences the GW frequency nor amplitude.
Therefore there always exist a mass mφ, such that the ALP abundance matches the ob-
served DM density. Due to the uncertainties in calculating the ALP abundance discussed
in Section V.5.1, we can however only determine a range for this value of mφ. Notice that
this is in stark contrast to the minimal audible axion model from Chapter IV, where the
ALP mass controlled the frequency of the GWs as well as the relic abundance. This lead
to the ALP over-closing the universe in the majority of parameter space with detectable
GWs.
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Chapter VI

Rolling down a Slope: The Audible
Relaxion

VI.1 Introduction

In this final section dealing with an ALP coupled to a dark photon, we will study in more
detail the scenario, where a temperature and therefore time dependent ALP potential ele-
vates the tension between observable GWs and an overproduction of ALP DM. We already
eluded briefly to this idea in Section IV.5. While the idea must have seemed somewhat
ad hoc in this context, exactly this situation arises in the original proposal [42] of the
relaxion scenario out-lined in Section II.1: The Higgs mass is scanned during inflation. If
the reheating temperature is higher than the electroweak scale, the Higgs vacuum expec-
tation value (vev) vanishes after reheating, due to thermal corrections to the potential of
the Higgs field, and as a consequence the barriers in the relaxion potential vanish as well.

As a consequence the relaxion starts rolling down the slope again. Since the Hubble friction
that kept the field from rolling fast during inflation is much reduced now after reheating,
it is crucial that the barriers reappear quickly enough to keep the relaxion from going
to the next minimum, in which case there would be nothing to keep the relaxion from
rolling indefinitely and ruining the solution to the hierarchy problem. Not only does this
scenario provide a time dependent potential, from a model building point of view it also
motivates the introduction of a coupling between the relaxion and a dark photon as by
means of generating additional friction. This additional friction can prevent the relaxion
from crossing to the next minimum and therefore opens up new viable parameter space.

In the following we discuss in detail the post-inflationary evolution of the relaxion assuming
that the electroweak scale has been scanned during inflation and high-light the roll of
a potential coupling to a dark photon. We evaluate the resulting GW signal and its
detectability in the relaxion parameter space.

VI.2 Setup

In this section, we consider the relaxion φ coupled to a dark photon field Xµ introduced
in Section II.1 and Chapter IV respectively. For convenience let us remind the reader of
the main ingredients,

− L ⊃ V (H,φ) +
α

4

φ

fφ
XµνX̃

µν , (VI.1)

with the potential of the relaxion field φ and Higgs doublet H given by

V (H,φ) = Vroll(φ) + µ2
H(φ)|H|2 + λ|H|4 + Vbr(H,φ) , (VI.2)
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where λ is the Higgs’ quartic coupling and

Vroll(φ) = −gΛ3φ , (VI.3a)

µ2
H(φ) = Λ2 − g′Λφ , (VI.3b)

Vbr(H,φ) = −Λ4
br

v2
H

|H|2 cos
φ

fφ
, (VI.3c)

where, g ≈ g′ are dimensionless parameters, Λ is the Higgs mass cut-off scale, Λbr is the
back-reaction scale, vH = 〈|H|〉 = 246 GeV is the Higgs’ vacuum expectation value, and
fφ is the decay constant of the relaxion.
We assume that during inflation the relaxion rolled down the linear slope of its potential
Vroll and scanned the Higgs mass parameter µ2(φ). Once µ2 crossed zero, the Higgs
acquired a non-vanishing vacuum expectation value (vev), triggering the breaking of the
EW gauge symmetry. The Higgs’ vev then creates wiggles in the relaxion potential via
Vbr. Once the Higgs back-reaction balances the rolling potential, the relaxion is trapped
in the first minimum it encounters. Choosing gΛ3fφ ∼ Λ4

br, we end up with a weak-scale
expectation value for the Higgs boson, solving the hierarchy problem. The relaxion mass
and the relaxion-Higgs mixing angle are then given as [162,163]

m2
φ '

Λ6
br

f2
φΛvH

, sin θhφ '
√

2

(
m4
φfφΛ2

vH m6
h

) 1
3

, (VI.4)

in terms of the fundamental parameters. Here, mh = 125 GeV is the Higgs mass.

VI.2.1 Relaxion and dark photon evolution

After reheating, the EW symmetry will be restored due to thermal corrections to the
potential, provided that the reheating temperature is above the EW phase transition
temperature. Reheating temperatures above the EW scale are well motivated by a large
class of Inflation models (see e.g. [164] and Refs. therein) and also needed in most models
that explain the observed baryon abundance (see e.g. [165] and Refs. therein). As a
consequence, the relaxion will start rolling again, leading to exponential production of
dark photon modes. The evolution of the relaxion field is given by the differential equation

θ′′ + 2aHθ′ +
a2

f2
φ

∂Vroll

∂θ
= −a

2

f2
φ

α

4 a4

〈
XµνX̃

µν
〉
, (VI.5)

where θ = φ/fφ, and primes denote derivatives with respect to conformal time τ with
a dτ = dt. In the following we will assume that all dynamics take place during radiation
domination, in which case the relationship τ = 1/(aH) holds. Furthermore we will work in
the linear analysis, assuming that the relaxion field stays homogeneous, which necessitates
taking the expectation value above (see Section V.3.3 for details).
Let us for now only consider the minimal scenario, in which the dark photon is not present.
In this case the above equation can be solved to give the relaxions velocity

θ′(τ) =
Λ4

br

5f2
φ

(
arh

τrh

)2

τ3

[
1−

(τrh

τ

)5
]
, (VI.6)

after reheating at τrh, when the relaxion was at rest (θ′(τrh) = 0). Once the universe has
cooled sufficiently, the EW phase transition occurs and the wiggles of the back-reaction
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potential reappear. We can now calculate the total displacement of the relaxion due to
rolling up to the time when the barriers reappear at τra

∆θ =

τra∫
τrh

dτ θ′ ≈ Λ4
br

20f2
φ

a2
rhτ

4
ra

τ2
rh

=
m2
φΛvH

20H2
raΛ2

br

. (VI.7)

In order for the relaxion to remain trapped in this minimum, we need to require that
the displacement is less than the distance between the minimum and the next maximum,
∆θ . 2δ, where δ = Λ2

br/(ΛvH) [162,166]. This sets an upper bound on the relaxion mass
mφ .

√
40Hraδ.

Now let us see how the inclusion of the dark photon changes the evolution. As discussed
in the previous chapters the relaxions velocity will modify the dispersion relation of the
dark photon, which for the positive and negative helicity modes X±(k, τ) becomes (see
Eq. (IV.6))

ω2
±(k, τ) = k2 ± kαθ′ . (VI.8)

As evident from Eq. (VI.8), dark photon modes with 0 < k < αθ′ are tachyonic for one
polarization and will experience exponential growth compared to the vacuum fluctuations.
The resulting dark photon spectrum then features anisotropies in its energy-momentum
tensor which will act as a source for GW production, leading to a stochastic GW back-
ground as we already saw in Chapters IV and V. Since only modes of the helicity with
the same sign as the relaxion velocity can become tachyonic, the rolling relaxion will pro-
duce a circular polarized dark photon background. In our case, as we choose θ′ > 0, only
the positive-helicity modes are exponentially produced. The solution to the equations of
motion for these modes is given in the WKB approximation by

X+(k, τ) =
eg(k,τ)√
2 Ω(k, τ)

, (VI.9)

where Ω2(k, τ) = k α|θ′(τ)|−k2 > 0 is the corresponding tachyonic frequency, and g(k, τ) =∫ τ
dτ ′Ω(k, τ ′). The approximation holds for |Ω′/Ω2| � 1.

Subsequently, due to the exponential production, the dark photons energy becomes com-
parable to the kinetic energy in the relaxion, at which point the friction provided by the
dark photon becomes significant and the evolution of θ starts to differ from Eq. (VI.6).
Similar to the argument provided in Section V.3.2, the time-scale τpp at which the friction
from particle production kicks in can be determined by equating the friction term with
the slope of the potential

〈XµνX̃
µν〉(τpp)

4a4(τpp)
≈ k̃4e2g(k̃,τ̃)

4π2a4
∼ Λ4

br

α
, (VI.10)

where k̃ is the mode that dominates the 〈XX̃〉 term given by ∂g(k, τ)/∂k|k̃ = 0. After
τpp the slope of the potential and the back-reaction from the dark photon balance each
other and the relaxion field velocity becomes proportional to the Hubble rate evolving
as [166,167]

θ′(τ) ≈ ξ

α
a(τ)H(τ)

(
1 + ε log

τ

τpp

)
≈ ξ

ατ
, (VI.11)

with a small logarithmic correction (ε� 1). Here we defined the parameter ξ = α|θ′|
aH at

τpp. From Eq. (VI.10) one obtains ξ ∼ O(10− 100) with a mere logarithmic dependence

85



CHAPTER VI. ROLLING DOWN A SLOPE: THE AUDIBLE RELAXION

on the relaxion parameters [167]. The dominating k-mode at each epoch is then given as
k̃ ∼ αθ′(t) ∼ ξaH.
The rolling of the relaxion between reheating and Tra still leads to a displacement from
the minimum in which it originally settled during inflation. The displacement can be
approximated as

∆θ =

τra∫
τrh

dτ θ′ ≈ ξ

4α

[
1 + log

H2
pp

H2
ra

]
. (VI.12)

Again we need to require that this displacement is small enough for the relaxion to stay
trapped in the original minimum , ∆θ . 2δ. For too small of a coupling, the dark photon
friction is insufficient to prevent the relaxion from rolling into one of the neighbouring
minima. However, instead of limiting the viable relaxion mass, we get a lower limit on the
coupling to the dark photons in this case. This inevitably opens up new parameter space
in which the Higgs scale can be relaxed successfully.
If the relaxion would pass this first maximum, it then would need to traverse ∆θ ∼ O(n)
to end up in the n-th minimum, where n = 1 denotes the minimum in which it stopped
during inflation. This possibility is not strictly ruled out, extending the parameter space
of the theory. However, going beyond the first minimum requires a careful adjustment of
the initial conditions to let the relaxion stop exactly at the bottom of the n-th minimum
at reappearance. Otherwise, the time required for the relaxion to reach the bottom would
exceed the age of the Universe. We thus simply assume that α takes on the minimal
value α = ξ/(2δ) in the following, such that the relaxion is still re-trapped in the original
minimum.1

VI.2.2 Dark photon spectrum

In order to be able to calculate the GW signal we need the evolution of the dark photons
mode function that experienced tachyonic growth: X+(k, τ) with k < kpp = αθ′|τpp the
largest k to become tachyonic. At any time, the peak of the dark photon spectrum is given
by the mode that experiences maximal growth with k = km(τ) = |αθ′|/2. We therefore
take the ansatz

X+(k, τ) =

{
Ak cos (kτ − ξ) for km < k < kpp,

0 otherwise,
(VI.13)

where we neglect the negative-helicity modes as well as all modes that did not experience
maximal growth yet, since these are exponentially suppressed.
The dark photon energy density due to the tachyionic instability is estimated as

ρX =

kpp∫
km

dk k2

4π2a4

(
|X ′|2 + k2|X|2

)
=

kpp∫
km

dk

k

|Ak|2k5

4π2a4
. (VI.14)

On the other hand, we can determine the energy density of the dark photons from the
energy that gets transmitted as the relaxion rolls down the slope as

ρX = −
τ∫

τpp

dη
a4(η)

a4(τ)

∂V

∂θ

∂θ

∂η
≈

kpp∫
km

dk

k

k4
m

k4

ξΛ4
br

α
, (VI.15)

1Just like the minimal scenario discussed in Chapter IV, large couplings α are required in this con-

struction. As δ =
Λ2
br

ΛvH
< vH

Λ
, this implies α & 102

(
Λ

1 TeV

) (
ξ
10

)
. Such large couplings can be obtained in a
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Figure VI.1: Simulated (coloured lines) and expected (dashed black line) amplitude of
the dark photon modes at different times. The deep (light) coloured lines correspond to
the positive (negative) helicity. At each time, the expected peak momentum is indicated
by the vertical dashed line in the corresponding colour, whereas the black-dashed vertical
line indicates the upper bound k < kpp on the tachyonic dark photon momentum. Figure
created by E. Madge.

where we assumed that at each time energy is dominantly transferred into the maximally
growing mode, which goes like km ∝ 1/τ . Hence, we can rewrite Ak = AXk−9/2 with

AX =
π

2
Λ2

br

√
ξ

α
a2

rak
2
ra , (VI.16)

where kra is the mode that exits the tachyonic band at reappearance, kra = ξ/τra, com-
pleting our estimate of the dark photon spectrum in Eq. (VI.14).

To corroborate our estimation, we have simulated the dark photon and relaxion evo-
lution after reheating, solving the equations of motion (VI.5) and (VI.8) numerically,
using 5000 logarithmically-spaced, discretized momenta (see Section V.3.3 and [3] for
details). In Fig. VI.1 we present the result of the numeric simulation for the dark pho-
ton modes as a function of the momentum k. The simulation assumes mφ = 1 meV,
fφ = 2.35× 1013 GeV, Λ = 100 TeV and ξ = 77. The value of α has been determined
numerically from Eq. (VI.10) [166]. We show the spectrum at a/app = 4 (red), 20 (green),
100 (orange) and 500 (blue), where the full and light coloured lines correspond to the pos-
itive and negative helicity, respectively. As expected, the positive helicity modes dominate
over the negative helicity by far. Furthermore, the amplitude for positive helicities indeed
follows a k−9/2 law (cf. Eq. (VI.14), i.e.

√
2k|X+| goes as k−4) between the momentum

kpp that exits the tachyonic band at particle production and the peak momentum km(τ)
that experiences the largest growth rate at the respective time. The peak momenta and
kpp are indicated by the coloured and black, dashed vertical lines respectively.

technically natural way for example via the clockwork mechanism [168–171].
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VI.3 Relics

VI.3.1 Gravitational Waves

Let us now consider the stochastic GW background generated from anisotropies in the
energy-momentum tensor of the dark photon produced during the post-Inflationary evo-
lution of the relaxion. In particular, we here focus on the GWs sourced during the rolling
of the relaxion between reheating and the EW phase transition. Since we now have an
estimate of the dark photon spectrum we can come up with an analytical estimate of the
energy density in GW using the method as in [3].
This method corresponds to the integration of the GWs equation of motion in Fourier
space as we already lined out in Section II.2. The equation of motion is given by

(∂2
τ + k2) a(τ)hij(k, τ) =

2 a(τ)

m2
Pl

Πij(k, τ) , (VI.17)

where k = |k| is the comoving wave number. The anisotropic stress tensor Πij sourcing
the GWs is related to the energy-momentum tensor Tij , via Πij(k, τ) = Λabij (k)Tab(k, τ),

where Λabij = P a
i P

b
j − 1

2PijP
ab with Pij = δij − kikj/k2 is the projector that extracts the

transverse and traceless part [48]. The equations of motion are then solved by (neglecting
the a′′ term which vanishes in a radiation dominated universe i.e. for a ∝ τ)

hij(k, τ) =
2

m2
Pl

∫ τ

dτ ′
a(τ ′)

a(τ)
Πij(k, τ)G(k, τ, τ ′) , (VI.18)

where G(k, τ, τ ′) = sin[k(τ − τ ′)]/k is the causal Green’s function. Since the anisotropic
stress Π we are going to consider here stems from the dark photon field, which is initially
in the Bunch-Davies vacuum and therefore a quantum field, the anisotropic stress and any
other derived quantity is an operator, which we denote by the hat (e.g. Π̂).
Given the evolution of the GWs their energy density spectrum can be calculated as [48]

dρGW

d log k
(k, τ) =

m2
Plk

3

8π2a2

∑
ij

〈|h′ij(k, τ)|2〉 (VI.19)

=
k3

4π2m2
Pla

4(τ)

τ∫
τi

dτ ′
τ∫

τi

dτ ′a(τ ′) a(τ ′′) cos[k(τ ′ − τ ′′)] Π2(k, τ ′, τ ′′) , (VI.20)

where τi is the time at which the GW source starts operating and Π2(k, τ ′, τ ′′) is the
unequal time correlator of the anisotropic stress, defined as

〈0|Π̂ab(k, τ)Π̂∗ab(k
′, τ ′)|0〉 = (2π)3δ(k− k′)Π2(k, τ, τ ′) .

In our case, the GWs are generated between reheating and reappearance, hence τi = τrh

and τ ≤ τra. As the GWs produced before the relaxion reaches its terminal velocity will
however be subdominant, we can take τi = τpp, so that to first approximation the GW
signature becomes independent of the temperature to which the Universe was reheated.
The dark photon anisotropic stress sourcing the GWs can be written in terms of the dark
electric and magnetic fields as

Π̂ab(k, τ) = −Λijab(k)

a2(τ)

∫
d3q

(2π)3

[
Êi(q, τ)Êj(k − q, τ) + B̂i(q, τ)B̂j(k − q, τ)

]
. (VI.21)
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As discussed in the previous section the dark photon is dominated by one polarization
that we take as the + one. In this case the dark electric and magnetic field operator can
be rewritten as

Ê(k, τ) = X ′+(k, τ) ε+(k) â+(k) + h.c., (VI.22a)

B̂(k, τ) = kX+(k, τ) ε+(k) â+(k) + h.c., (VI.22b)

where X+(k, τ) are the mode functions we estimated in the previous section, ε+(k) is the
+ helicity polarization vector and â+(k) is the annihilation operator of the mode.
From here Eq. (VI.22) has to be plugged into Eq. (VI.21) and Eq. (VI.20) to obtain the
spectrum

dρGW

d log k
=

k3

2π2m2
Pla

4
ra

∫
d3q

(2π)3
|Σab(k,q)|2

(
|Ic(k,q)|2 + |Is(k,q)|2

)
. (VI.23)

The algebra in terms of the creation and annihilation operators here is the same as in
Section III.4. In Section III.4 we furthermore saw that if the Green’s function is a sine,
one can factorize the two time-integrals. The same was done here with Ic/s denoting

Ic/s(k,q) = −
τra∫

τpp

dτ

a(τ)

{
cos(kτ)

sin(kτ)

}
χ(q, l, τ) (VI.24)

where χ(k,q, τ) = X ′+(q, τ)X ′+(l, τ) + qX+(q, τ) lX+(l, τ) and l = |k− q|.Using the dark
photon spectrum Eq. (VI.14) we obtain

χ(q, l, τ) =
A2
X cos[(q − l)τ ]

(ql)
7
2

(VI.25)

for min(q, l) > km(τ).
A new aspect of this calculation is the algebra involving the polarization vectors and
transverse-traceless projector. As it turns out, this part can be factored out as well and
is captured by |Σab(k,q)|2 = εa+∗εb+∗(k− q)Λijab(k)ε+

i (q)ε+
j (k− q).

It is beneficial to express the momenta in terms of kra and rewrite the energy density as

dρGW

d log k
=

Λ8
brξ

2

α2H2
ram

2
Pl

x3

∞∫
1
2

dr

1∫
−1

d cos θ
|Σab(x, r, cos θ)|2

512 r5s7

(
|Ĩc(x, r, s, ξ)|2 + |Ĩs(x, r, s, ξ)|2

)2
Θ (s− 1/2) ,

(VI.26)

where the remaining integrals only depend on x = k/kra and ξ. We here defined r = q/kra

and s = l/kra. The polarization part can now be evaluated to give (see e.g. [3])

|Σab|2 =
∑
λ=±

[
1 + λ cos θ

2

]2
[

1 + λx−r cos θ
s

2

]2

, (VI.27)

where λ now denotes the GW helicity, and the time integrals are given as

Ĩc/s=

Ci[(x+ r − s)ξ]− Ci
[

(x+r−s)ξ
2 min(r,s)

]
+ (r ↔ s)

Si[(x+ r − s)ξ]− Si
[

(x+r−s)ξ
2 min(r,s)

]
+ (r ↔ s)

(VI.28)
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where Ci and Si are the cosine and sine integral function,

Ci(z) =

∞∫
z

dt
cos t

t
, Si(z) =

z∫
0

dt
sin t

t
. (VI.29)

To get closer to a full analytic approximation, we evaluate the expression in Eq. (VI.26)
close to the peak at kpeak as well as determining the IR and UV behavior:

Since the GW momentum is given by the sum of two dark photon momenta, k = q + l,
and since the time-integrals are dominated by the late-time behaviour, the peak of the
GW spectrum will roughly be given by twice the peak momentum of the dark photon
spectrum at reapperance, i.e. we take kpeak = kra. As the arguments of the cosine and
sine integrals in Eq. (VI.28) are proportional to ξ ∼ O (10− 100), we can expand for large
ξ. Assuming that the cosine and sine terms remaining in the expansion oscillate quickly
and therefore average to zero, the corresponding amplitude for x = 1 then evaluates to

dρpeak
GW

d log k
=

[
1

4 ξ2
+O

(
ξ−4
)] ξ2

α2

Λ8
br

H2
ram

2
Pl

. (VI.30)

For k � kra or equivalently x � 1, we have x + r − s = r(1 + cos θ) + O
(
x−1

)
and

x− r + s = 2x +O (1). The (r ↔ s) part of Eq. (VI.28) is hence suppressed by 1/x and
only the first two terms contribute. The r or equivalently q integration is dominated by
r ≈ 1. This can be interpreted as the UV tail of the spectrum being dominantly sourced
by the interference of a mode close to the peak of the photon spectrum q ≈ kra and a UV
mode l ≈ k. Again expanding for large ξ, we obtain that the spectrum behaves as

dρUV
GW

d log k
=

[
5

192 ξ2
+O

(
ξ−4
)] ξ2

α2

Λ8
br

H2
ram

2
Pl

k4
ra

k4
. (VI.31)

The IR tail k � kra, on the other hand, is sourced by two modes close to the peak of
the photon spectrum and their momenta canceling each other, to give a small k. The
arguments of the cosine and sine integrals become proportional to x ± r ∓ s = x(1 ±
cos θ) + O

(
x2
)
, so that we can expand the integrals for low arguments, yielding the IR

behaviour

dρIR
GW

d log k
=

64

19 965

ξ2

α2

Λ8
br

H2
ram

2
Pl

k3

k3
ra

. (VI.32)

As can be seen from Eq. (VI.27), at low momentum, x � 1, where we have s ∼ r, both
GW helicities contribute equally, whereas at high momentum, where x � 1 and hence
s ∼ x, the negative helicity is suppressed by a factor of 1/k2 compared to the positive one.
So similar to cases discussed in Chapter IV and Chapter V, we obtain a GW spectrum
with an unpolarized low-frequency tail and a chiral spectrum above the peak in the linear
analysis. As we saw in Chapter IV this behavior might be modified though when taking
into account the full back-reaction onto the relaxion.

Our approximation to the full spectrum is now obtained by combining these results. Ne-
glecting GW production after reappearance, the energy density will subsequently simply
redshift as ρGW ∼ a−4 (see Section V.5 for details), so that the spectrum today as a
function of the present day frequency f can be written as

ΩGW(f) = Ωpeak
GW Sξ (f/fpeak) (VI.33)
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with the peak frequency, obtained by redshifting kpeak

fpeak =
kra

2π a0
=
α|θ′ra|
2π a0

=
ara

a0

ξ Hra

2π
, (VI.34)

and the peak amplitude given as

Ωpeak
GW =

1

ρ0
c

a4
ra

a4
0

1

m2
PlH

2
ra

Λ8
br

4α2
=

3

4

ρra
c

ρ0
c

a4
ra

a4
0

·
(

Λ4
brθ
′
raτra

ρra
c

)2

· 1

ξ2
=

1

ρ0
c

a4
ra

a4
0

m4
φf

4
φ

m2
Plξ

2H2
ra

. (VI.35)

We here used Eq. (VI.11) as well as ξ ' 2δα and Λ4
br = m2

φf
2
φ/δ in the last steps of

our simplifications. In the second to last step we have written Ωpeak
GW in a suggestive

way that allows us to reconcile our result with the naive dimensional analysis introduced
in the audible axion context in Eq. (IV.14). While the first factor only contains the
redshift as well as an O(1) factor, the second factor can be interpreted as the energy
sourcing the GWs squared Ω2

source, since the relaxion rolls down the potential with slope
Λ4

br and traverses a distance ≈ θ′raτra in the Hubble time before the wiggles reappear
such that Ωsource = ΩX ≈ Λ4

brθ
′
raτra. The third factor captures the suppression from the

characteristic scale kra lying inside the horizon at production ξ = kra/(araHra).
By evaluating the above expressions we find the following useful esitmates

fpeak ∼
ara

a0
ξHra ∼ 1 µHz

(
ξ

25

)(
Tra

1 GeV

)
, (VI.36)

Ωpeak
GW ∼ 10−10

(
25

ξ

)2( mφ

0.1 eV

fφ

1010 GeV

)4(1 GeV

Tra

)8

(VI.37)

∼ 10−12

(
25

ξ

)2(0.1 eV

mφ

sin θφh

10−13

)12(TeV

Λ

GeV

Tra

)8

.

The spectral shape Sξ in Eq. (VI.33) is obtained by combining the results that we found in
the different limits inversely, in such a way that the peak lies at x = 1. These considerations
lead us to

Sξ(x) =
1

1 + 48
5 (x− 1)4 + 19 965

256 ξ2 (x−3 + 3x− 4)
. (VI.38)

In Fig. VI.2 we show the GW spectrum from our numeric simulation (cf. Fig. VI.1),
assuming a reappearance temperature of Tra = 150 GeV (blue) and 750 GeV (orange),
corresponding to a/ara = 500 and a/ara = 100, respectively. Eq. (VI.33) (light lines)
overestimates the simulated spectra by an O (1− 10) factor, but captures the main fea-
tures of the spectrum well. In the following we use the analytic estimate to evaluate the
detectability of the signal by present and future GW searches.

VI.3.2 Relaxion dark matter

After the reappearance of the Higgs back-reaction potential, the displaced relaxion begins
to oscillate around the minimum of its potential, providing a candidate for ultra-light dark
matter (DM) as discussed in [166]. Assuming the maximal displacement of ∆θ = 2δ, the
relaxion relic abundance is given by

Ωφ =
2m2

φf
2
φδ

2

3m2
PlH

2
0

g∗s(T0)T 3
0

g∗s(Tosc)T 3
osc

, (VI.39)
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Figure VI.2: Simulation (full colours) and analytic approximation (light colours) of the
GW spectrum for a reappearance temperature of Tra = 150 GeV (blue) and 750 GeV (or-
ange). The vertical dashed lines indicate the expected peak frequency, whereas the dash-
dotted and dotted curves correspond to the positive and negative helicity contributions to
the simulated spectrum. Figure created by E. Madge.

where, Tosc ∼ min[Tra,
√
mφmPl] is the temperature when the relaxion starts to oscillate.

Requiring that the relaxion provides all of DM, i.e. Ωφh
2 = 0.12 [172], the relaxion decay

constant can be expressed as

fφ ∼ 5× 109 GeV

(
Λ

1 TeV

)2
5
(

Tosc

1 GeV

) 9
10
(

0.1 eV

mφ

)
. (VI.40)

The possible decay channels of the relaxion are into two photons and two dark photons,
Γφ = Γγγ + ΓXX . The decay rate into a dark photon pair is given by

ΓXX =
α2

64π

m3
φ

f2
φ

, (VI.41)

while the decay width of φ → γγ is subdominant compared to that of φ → XX as it
is suppressed by the square of the relaxion-Higgs mixing angle [166], which in turn is
bounded from above by sin θhφ . vH/fφ [163]. The relaxion lifetime hence becomes

τφ ∼ 20 Gyr

(
25

ξ

)2( Tosc

1 GeV

)3(0.1 eV

mφ

)5

, (VI.42)

where we have chosen α = ξ/(2δ). Since the decay of DM into relativistic particles affects
the spectrum of the cosmic microwave background (CMB) at low-` multipoles, the lifetime
is constrained as τφ > 160 Gyr [173].

As shown in Chapter IV, for α(∆θ)sep ∼ O(102), the oscillating axion may introduce a
second phase of tachyonic dark photon production, that could suppress the DM abundance
by up to two orders of magnitude. This condition is satisfied in parts of the parameter
space where the field displacement is maximal, since there α ∼ O(ξ/δ) and ξ ∼ O(10−102),
and introduces some uncertainty in our estimate of the DM abundance in those regions.

92



VI.3. RELICS

VI.3.3 Constraints

A successful cosmological relaxation of the Higgs mass requires the Inflation sector to
dominate the total energy density, 3H2

I m
2
Pl & Λ4, as well as that the classical motion of

the relaxion dominates over quantum fluctuation during Inflation, (∆φ)cl & HI/2π. Here,
HI is the Hubble scale during Inflation. Combining these two constraints we get an upper
bound on the cut-off scale Λ,

Λ .

(
2π
√

3m3
PlΛ

4
br

f

)1/6

. (VI.43)

As we are considering a Higgs dependent back-reaction potential, we also require Λbr .
vH [42, 163]. The allowed range of the effective cut-off Λ of the theory is

mPl & fφ & Λ & 4πvH ∼ 1 TeV . (VI.44)

Also, for a generic back-reaction potential which does not change the late time cosmology,
the range of reappearance temperatures is

vH & Tra & TBBN ∼ 10 MeV . (VI.45)

For masses below the eV scale, the relaxion can further mediate long-range forces.
Experiments looking for such interactions (fifth force experiments, inverse-square-law
and equivalence-principle tests) constrain the coupling of the relaxion to ordinary mat-
ter [174–180], which is induced by the relaxion-Higgs mixing angle given in Eq. (VI.4). In
a similar manner, for masses up to the keV range, the mixing is constrained from stellar
cooling [181–184], as it induces relaxion-mediated contributions to the energy loss in stars.
Slightly weaker limits on the mixing angle can furthermore be obtained from bounds on the
solar relaxion flux as constrained by XENON1T and other dark-matter direct detection
experiments [185].
Additional constraints arise when coupling the relaxion to a dark photon field, with the
coupling here chosen to saturate the trapping condition, i.e. α = ξ/(2δ). In order for the
dark photon induced friction to trap the relaxion, reappearance has to occur sufficiently
late for the dark photon to be produced, i.e. Hpp > Hra. This sets a lower bound on the
relaxion mass, mφ &

√
10 δHra, for which the dark photon scenario can be applied.

If this condition is satisfied, throughout its evolution from reheating to reappearance, the
relaxion continuously produces dark photons, depositing energy density into the latter. At
the time of trapping, tra, the dark photon energy-density can be estimated as in Eq. (VI.15)

ρX(tra) =
1

2
m2
φf

2
φ . (VI.46)

After Tra, dark photon production stops and their energy density redshifts as that of
radiation.
The dark photons contribute to Neff and are therefore constraint by CMB measurements
as discussed in Section V.5. This leads to a lower limit on the reappearance temperature
as a function of the relaxion mass and decay constant

Tra & 2.5 g−1/3
s,ra

√
mφfφ , (VI.47)

where gs,ra is the number of entropic degrees of freedom at reappearance.
If we assume that the relaxion accounts for the full DM abundance, then plugging
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ra, which sets the amplitude of the GW

spectrum, cf. Eq. (VI.37). Figure created by A. Banerjee.

Eq. (VI.40) into Eq. (VI.47), we get,

Tra & 450 MeV

(
67

g∗s,ra

) 1
3
(

Λ

10 TeV

) 4
11

. (VI.48)

Here, we also assume that the relaxion starts to oscillate at Tra, which is only true for
a sufficiently heavy relaxion. As we require Λ & 4πvH ∼ 1 TeV, this sets a lower bound
of Tra & 240 MeV on the reappearance temperature for the relaxion DM scenario to be
realized.2 Upon the same assumptions, Λbr . vH further sets an upper bound on the
reappearance temperature,

Tra . min

[
vH , 80 GeV

(
106 GeV

Λ

)(
96

g∗s,ra

)1
3

]
. (VI.49)

In Fig. VI.3 we show the minimal and maximal allowed reappearence temperature for
relaxion DM as a function of the cut-off Λ of the theory. Combining Λbr < vH (blue) and
the Neff constraint (green), we see that the highest Λ for which the relaxion can be realized
as coherently oscillating DM is Λ . 107 GeV, which is in accordance with the constraints
for Tra ' 6 GeV. Due to the rapid change in the radiative degrees of freedom around
the time of the QCD phase transition, the ∆Neff limit on the reappearance temperature
saturates at Tra ∼ TQCD for Λ . 2 TeV. We also depict the weaker bound ρX < ρrad that
the energy in the dark sector may not dominate over the SM plasma in orange.

In Fig. VI.4, we depict the constraints on the relaxion parameters as a function of the
relaxion massmφ and the mixing angle sin θhφ, where we determined Λ and fφ from the DM

2Note that, for this value of the reappearance temperature, the relaxion starts to oscillate directly after
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Figure VI.4: Available parameter space (black framed region) for relaxion DM in the
relaxion mass mφ vs. mixing angle sin θhφ plane. The red and orange shaded regions are
excluded by the indicated constraints of combinations thereof. The colored regions inside
the viable DM space can be probed via GWs in µAres (green) or SKA (blue/turquoise).
The light shading and solid lines indicate points that can be probed for a subrange of
reappearance temperatures, whereas the darker shaded parts enclosed by dotted lines are
accessible for all valid Tra. An animated version of the plot scanning the reappearance
temperature is enclosed in the ancillary material of [6]. Figure created by A. Banerjee.

abundance using Eqs. (VI.4) and (VI.40). Scanning over all allowed values of Tra, the full
range of masses and mixing angles for which we can obtain coherently oscillating relaxion
DM is indicated by the black-framed regions in Fig. VI.4. We obtain two separated islands
of viable parameter space, one at low masses, 10−11 eV . mφ . 10−6 eV, with mixing
angles around 10−23 . sin θhφ . 10−18, and another island at high masses, 10−2 eV .
mφ . 1 eV with a narrow range of mixing angles around 10−14 . sin θhφ . 10−11. Note
that, in the high-mass island, the coupling to dark photons is required to trap the relaxion,
whereas in most of the low-mass island, relaxion DM can be realized without dark photon
friction [166]. It shall moreover be emphasized that the low-mass DM regions in the
minimal and dark photon scenario are mostly separated in the reappearance temperature,
since relaxion stopping via Hubble friction requires mφ .

√
40 δHra, whereas dark photon

production only occurs for mφ &
√

10 δHra.

VI.4 Discussion

At low frequencies the GW spectrum we found behaves as ∼ f3, in accordance with the ex-
pectations based on causality arguments using that the anisotropic stress of a causal source
cannot be correlated at scales above the horizon size at the time of production [48, 157].
At high frequencies, the spectrum falls like ∼ f−4, allowing a simple distinction from the
much steeper falling GW background generated from oscillating (Chapter IV) or rotating
(Chapter V) axion-like fields. It should further be noted that, when the peak position is
fixed, changing ξ barely affects the UV tail, while the IR tail goes as ξ2, potentially allow-
ing to disentangle the reappearance temperature and ξ in the peak frequency Eq. (VI.34),
and thereby facilitating the determination of the relaxion parameters from a hypothetical
observed signal. Larger values of ξ further result in a flatter peak, although this may be

reapperance as long as mφ & 5× 10−10 eV.
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Figure VI.5: Values of the peak frequency and amplitude of the GW spectrum which
can be obtained in the relaxion DM scenario. The edges of the polygon correspond to
the minimal and maximal amplitudes which can be obtained for ξ = 100 (solid lines) and
ξ = 10 (dashed lines), limiting to the case when the relaxion starts to oscillate immediately
after barrier reappearance. Figure created by E. Madge.

an artefact of our analytic approximation, cf. Eq. (VI.38).
The range of peak frequencies and amplitudes that can be attained for coherently oscil-
lating relaxion DM is displayed in Fig. VI.5, limiting to the case when the relaxion starts
oscillating at the time the wiggles reappear. The polygons are obtained from the allowed
range for the cut-off Λ, for Tra between ∼ 240 MeV and vH , cf. Fig. VI.3. The solid and
dashed lines assume ξ = 100 and ξ = 10, respectively. Peak positions inside the polygons
can be realized. The sensitivities of µAres, LISA and PTAs are indicated as shaded re-
gions. Note that the solid lines correspond to the sensitivity of the respective GW search
for ξ = 100. For ξ = 10, the detection reach is degraded to the correspondingly-coloured
dashed lines, due to the difference in the shape of the spectrum.
For a large part of the peak frequencies and amplitudes that can be realized with relaxion
DM, an observable signal is obtained, although mostly requiring futuristic space-based
interferometers such as µAres for observation. For low values of ξ ∼ 10, a detection with
SKA is possible. The present-day sensitivity of NANOGrav or expected reach of LISA
are however insufficient for a detection. While NANOGrav is able to exclude parts of the
parameter space if the DM assumption is relaxed (see below), the sensitivity of LISA will
remain insufficient even in this more general case.
We also show the GW sensitivity for relaxion DM as coloured regions in Fig. VI.4, using
the same colouring scheme as above. The (light) coloured regions enclosed by the solid
green and blue lines here indicate the relaxion masses and mixing angles for which, at least
in a sub-range of the reappearance temperatures in accordance with the constraints, an
observable signal in µAres and SKA can be obtained. While µAres covers the full low-mass
island as well as the range mφ . 0.1 eV in the high-mass island, the sensitivity of SKA is
limited to slightly lower DM masses. Note that, as the GW spectrum strongly depends
on the reappearance temperature, a non-observation in these experiments would in most
cases not rule out the coloured parameter space, as a detection can be evaded by adjusting
the reappearance temperature to shift the signal outside the experiment’s reach. In the
dark-green coloured region bounded by the dotted lines, however, the generated stochastic
GW background is observable in µAres for the full range of allowed reappearance temper-
atures, guaranteeing a detectable signal in this region. The temperature dependence of
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the relaxion constraints and GW limits can be seen explicitly in the animated version of
the figure that can be found in the ancillary material of [6].

Last but not least, let us now dismiss the assumption that the relaxion constitutes all
of DM, which leads to Fig. VI.6, where we again indicate the parameter regions in
which the GW background can be observed in µAres (green), NANOGrav (purple) or
SKA (blue/turquoise) by the respective colouring. The coloured regions respect the
fφ < mPl constraint. If we allow for super-Planckian decay constant, the regions extend
to the dotted lines.

Regarding the GW sensitivity, the reader needs to be aware that the figure shows the
projection of a four-dimensional plot, as Tra and fφ (or Λ) are not fixed. While red and
orange shading mark the values of mφ and sin θhφ for which it is not possible to evade the
respective constraints by adjusting the remaining parameters (i.e. these coloured regions
are definitely excluded), the GW contours (blue, turquoise, purple and green) correspond
to the maximal reach of the respective experiments. They are obtained by taking the
maximal SNR that can be achieved in each experiment for the given values of mφ and
sin θhφ. Given the experimental sensitivities we assume here, a detection via GWs can be
evaded in all of the viable parameter space. In particular, the purple colouring and lines do
not indicate that the corresponding parameter points are excluded by NANOGrav data,
but that NANOGrav constrains the reapperance temperature (and the decay constant)
in this region. The same also applies to the projections for SKA and µAres. Further-
more, although the sensitivities overlap in the plot, µAres and PTAs operate in different
frequency regimes and are therefore typically sensitive to different ranges of Tra. Nonethe-
less, we can conclude that current and future GW experiments can potentially detect the
stochastic GWs from relaxion-stopping via dark photon emission, and thereby constrain
the parameter space.

In addition to the current and prospective exclusion range, we also work out the parameter
range in which our model can account for the potential GW signal recently observed in
NANOGrav [186] that has by now been detected by several PTAs [62–64]. Fitting our
spectrum to the data using the same procedure as discussed in Chapter VII, where we
keep ξ fixed and only fit the peak frequency and amplitude, we obtain the best-fit points
and the corresponding 1σ and 2σ contours shown in Fig. VI.7. We further indicate the
minimal peak frequency dictated by the lower bound on the reappearance temperature,
Tra & TBBN, as well as the maximal peak amplitude consistent with the constraint on ∆Neff

by dotted lines. While these bounds exclude an explanation of the observed stochastic
process in terms of our model for large values of ξ ∼ 100 (green), we can reach into the 1σ
and 2σ regions for intermediate ξ ∼ 25 (orange), and for ξ ∼ 10 (blue) we can account for
the NANOGrav best-fit point. We also carried out the same fit for the scenarios discussed
in the previous two chapters and found that there it is not possible to explain the signal
without being in tension with the ∆Neff bound. Due to the prolonged emission of GWs
in the setup considered here, it is however possible to have the characteristic scale of
the source closer to the horizon at emission ξ = O (10), while in the previous cases this
was limited at O (100) (e.g. θα ≈ 100 in Chapter IV). The efficiency of GW emission is
therefore enhanced in the case at hand as can be seen from the naive dimensional analysis
Eq. (IV.14).

In the ξ = 10 (lower) panel of Fig. VI.6, we indicate the values of mφ and sin θhφ for

which we can attain the best-fit point (fpeak = 3.3 nHz, h2Ωpeak
GW = 1.2× 10−9) by the

grey shaded region. Note that, as we fix ξ and fpeak, this also fixes the reappearance
temperature to Tra ∼ 20 MeV, while the peak amplitude then fixes fφ as a function of mφ.
Hence, in the grey shaded region, Λ can be adjusted within the constraints to obtain the
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Figure VI.6: Available parameter space for ξ = 100 (top), and for ξ = 10 ( bottom). The
red and orange shaded regions are excluded by the indicated constraints or combinations
thereof. Above the red solid line, the relaxion decay constant becomes super-Planckian.
The grey dashed line encloses the parameter space in which re-trapping can be realized
without dark photon friction such that the dark photon is not necessary for a viable
relaxation scenario. The prospective GW sensitivity of µAres (green) as well as SKA
after an observation period of 5 years (turquoise) and 20 years (blue) is indicated by
the respective coloured regions. In the purple coloured region, a sub-range of the viable
reappearance temperatures can be excluded using current NANOGrav data from the 11-
year data set. The regions bounded by the coloured dotted lines need super-Planckian
decay constants to be probed by the respective experiment. In the lower panel, the grey
shaded region can reproduce our best-fit spectrum (at Tra ∼ 20 MeV) to the potential
stochastic GW background seen in the recent NANOGrav data. Figure created by A.
Banerjee.
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respective value of the mixing angle.

VI.5 Conclusion

In this chapter, we have considered the possibility of probing the relaxion, which was
proposed to ameliorate the Higgs hierarchy problem, via gravitational waves. A coupling
to dark photons tames the relaxion excursion after reheating, and thus in turn opens up a
large fraction of the parameter space which was excluded in the minimal scenario without
dark photons. Furthermore, dark photon production after reheating can act as a source for
the generation of a stochastic gravitational wave background. The gravitational waves are
sourced by the anisotropies that are induced by the tachyonic production of dark photons
between the electroweak phase transition and BBN. Hence, instead of the inflationary
dynamics responsible for solving the hierarchy problem, we are here probing the late-time
dynamics of the relaxion.

We have shown that this stochastic gravitational wave background can be probed by
various current (NANOGrav) and future (SKA, µAres) gravitational wave detectors. In
addition, we also highlight the parameter range in which our gravitational wave signal
can account for the common-spectrum process observed in the most recent NANOGrav
data [186]. Alongside the existing theoretical constraints, we have presented the relaxion
parameter space which can be detected or excluded by the gravitational wave observatories
in Fig. VI.6.

We find that the spectral shape of the gravitational wave signal in our model falls as the
fourth power of the frequency above the peak, unlike the steeper falling gravitational wave
signals generated by the other axion-like field dynamics considered in the previous chap-
ters, whereas it behaves like f3 in the infra-red, as expected based on causality arguments.
An observation of the spectrum in the range around the peak should allow for a deter-
mination of the reappearance temperature, while the amplitude can be used to determine
the product of the relaxion mass and decay constant.

Furthermore, we have shown that the relaxion can constitute dark matter in the present
Universe in the mass range of 10−11 eV . mφ . 10−6 eV and 10−2 eV . mφ . 1 eV.
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While this scenario cannot be constrained with current NANOGrav data, most of the dark
matter parameter space will be accessible by SKA and/or µAres in the future. Hence,
with the advent of gravitational wave astronomy, we are now facing promising prospects
for probing the relaxation of the electroweak scale via the stochastic gravitation wave
background generated when stopping the relaxion, independently of whether the relaxion
constitutes dark matter or not.
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Chapter VII

NANOGrav detection

VII.1 Introduction

GWs waves travel freely through the early universe and are therefore a possible messenger
of new physics as we discussed in Section II.2. Pulsar Timing Arrays (PTAs) such as
EPTA [187], PPTA [188] and NANOGrav [60] are sensitive to GWs with frequencies
of 10−8 Hz and below. A stochastic background of such low frequency GWs could be
produced in the early universe by a variety of processes, such as inflation, cosmic strings,
phase transitions, or scalar field dynamics [48]. The recent data release of the NANOGrav
collaboration [186] for the first time shows evidence for such a stochastic GW background,
which is well described by a f−2/3 power law spectrum with a GW strain amplitude
of 2 × 10−15, or equivalently a GW energy density ΩGWh

2 of order 10−10. By now all
other operating PTAs have released data in line with the NANOGrav observation [62–64].
While the inspirals of super massive black hole binaries (SMBHBs) are expected to source
GWs at those frequencies, most astro-physical models predict smaller amplitudes than the
observed one [189].

However, the signal is indeed consistent with the GW density one expects from a variety
of cosmological sources, as was discussed for the case of cosmic strings [190–192], phase
transitions [193,194], or primordial black hole formation [195,196].

So far these studies have focused on demonstrating that a sufficiently large GW density can
be achieved in these models in the required frequency range. Here we perform a fit to the
frequency binned NANOGrav data. Since most cosmological sources of GWs have specific
spectral features, it is important to verify that indeed they agree well with the data. In
doing this, we are able to obtain best fit parameter regions for two classes of models that
produce primordial GWs, namely phase transitions in the early universe [197–201] and
audible axions as discussed in Part II. We also show that the NANOGrav data already
puts constraints on the parameter space of these models, which are comparable to the ones
coming from other astrophysical observations such as big bang nucleosynthesis (BBN) or
the constraint on the number of relativistic degrees of freedom, Neff .

With more precise data it will become possible to distinguish between different cosmolog-
ical sources and from the expected background due to supermassive black hole binaries.
Our work presents a first step in this direction. It is organised as follows: In the next
section, we give a brief introduction into the operation of a PTA and the current sta-
tus of abservations. This is followed up with a description of our effort at recasting the
NANOGrav data, and re-derive the best fit regions for single power law fits. In the next
two sections we investigate the possibility that the signal stems from one of the audible
axion models discussed in Part II or a cosmological phase transition (PT), respectively,
and we present the best fit regions for the model parameters, before we conclude.
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VII.2 The Observation

Pulsars emit electromagnetic radiation along a rotating axis, effectively acting as a light
house. The rotation frequency of the axis is linked to the rotation of the pulsar, which due
to conservation of angular momentum is very stable. If the beam axis swipes earth, the
light pulses arriving in regular intervals can therefore be used as a clock. Naturally the
pulsars with the highest rotation frequency act as the best clocks. So called millisecond
pulsars rotate close to a thousand times per second, which together with the immense
stability of their rotation leads to their timing precision coming close to atomic clocks [202].
This gives rise to a unique opportunity of GW observations, since GWs distort the path
of light traveling from the pulsar to earth. When comparing the arrival time of pulses
on earth with an atomic clock, this leads to timing residuals. As a gravity wave passes
between earth and the pulsar the “pulsar clock” will switch between running ahead and
behind the atomic clock with the gravity waves frequency. Since the effect the gravity wave
has is the same for all pulsars at the same position on the sky, large sensitivity can be
achieved when cross-correlating the timing residuals of different pulsars, as this leads to the
intrinsic timing noise of each single pulsar dropping out [203]. A PTA therefore measures
the timing residuals of a number of millisecond pulsars to extract information about GWs.
Since these pulsars are hundreds of light years away, PTAs are not limited by the size of
the detector like interferometers, when it comes to observing low frequency GWs. It is
rather the observation time that limits the frequencies to O(1/10 yr) = O(10−8 Hz).
All running PTAs have reported hints for a common signal among their observed pul-
sars [60,62–64] and we discuss the strength of the observed signal based on the NANOGrav
data below. The only missing piece that keeps any of the PTAs from claiming the detec-
tion of GWs is insufficient evidence for the quadrupolar signature of the signal. A gravity
wave effects the path between pulsars at distinct locations on the sky differently over
time. This effect is illustrated in the bottom panel of Section VII.2, where the effect of a
+-polarized gravity wave propagating orthogonal to a plane with two pulsars (blue stars)
on a circle of freely falling test bodies is shown. As one can see the circle is stretched in
one direction while being compressed in the opposite one. If both pulsars lie in the same
or opposite direction, the effect of the wave on the apparent distance to earth is therefore
the same and one expects a correlated signal in their timing residuals. On the other hand,
if the pulsars are separated by an angle of ≈ 90 degree, the signal is anti-correlated. For
a stochastic GW background all propagation directions and polarization have to be taken
into account, which leads to the Hellings-Downs curve for the angular cross-correlation
between pulsars [203]. This curve is shown in blue in the upper panel of Section VII.2.
A clock error on the otherhand would introduce a monopolar signal, shown in orange,
while an ephemeris error results in a dipolar one. Evidence of the Hellings-Downs curve
is therefore crucial to rule out possible errors. The gray violins in Section VII.2 give the
probability for a particular correlation for seven bins of angular separation on the sky,
as inferred from the NANOGrav 12.5yr dataset [186]. A definite distinction between the
different scenarios is not possible at this point, but we will in the following assume that
the signal is indeed caused by GWs.
The magnitude of a stochastic GW background is typically described by the dimensionless,
frequency dependent characteristic strain amplitude hc(f). For a single power law it can
be written as

hc(f) = AGW

(
f

fy

)α
, (VII.1)

where AGW is the amplitude, α is the slope and fy = 1/year is the pivot frequency at which
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Figure VII.1: Top panel: The gray violins give the Bayesian reconstruction of interpulsar
spatial correlations for seven bins of angular separation on the sky. The orange and blue
line give the expected result in case of a monopolar and quadrupolar nature of the signal.
Bottom panel: Illustration of difference in cross-correlation for pulsar pairs (blue) caused
by different angles between the positions of the pulsars on the sky as a gravity wave with +
polarization passes through. Figure borrowed from [186] with modifications by the author.

the amplitude is fixed. Throughout this thesis we have been using the related quantity
ΩGW(f)h2, which is the energy density in GWs as a fraction of the critical energy density,
which is given by [60]

ΩGW(f)h2 =
2π2

3H2
100

f2h2
c(f) , (VII.2)

where H100 = 100 km/s/Mpc and H0 = hH100 is the Hubble rate today with h ≈ 0.7.
In Fig. 1 of Ref. [186] the NANOGrav collaboration provides the results of different fits
to the data, namely a free spectrum fit of the individual frequency bins, a fit of a single
power law to the lowest 5 frequency bins or to all 30 bins, and a broken power law with
different slopes for the low and high frequency part of the data. The high frequency bins
are expected to be dominated by white noise with slope α = 3/2, which is corroborated
by the broken power law fit. Instead the 5 lowest frequency bins contribute 99.98% of the
significance of the potential GW signal.
In the following, we will therefore fit our signal models to the 5 lowest frequency bins,
assuming that the remaining data points are explained by white noise. The results of the
free spectrum fit are given in terms of the timing residual cross-power spectral density,
which is related to the characteristic strain via

S(f) =
h2
c(f)

12π2

(
f

fy

)−3

f−3
y . (VII.3)

Using the formulas above we will convert the data and carry out all of the following analysis
in terms of ΩGW(f)h2. In the next section we outline our hierarchical Baysian approach
of fitting signals based on the free spectrum result by the NANOGrav collaboration. We
compare our result of a power law fit to the one obtained by starting from the residuals
themselves. We then move on to fitting the free spectrum with signal templates motivated
by concrete new physics scenarios.
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VII.3 Refitting the NANOGrav data

Let us start with a brief description of the Baysian approach to fitting the timing residuals.
The observed data has to be explained by considering various sources of noise as well as
the GW background. Every model m therefore has a set of parameters characterizing the
noise n as well as a set of parameters characterizing the signal s. In total the model is
given as the sum of the two m = (n, s). Using a timing software it is then possible to
calculate the likelihood p(D|m) that we get the observed data D given that the model m
is realized by nature. If we furthermore have a prior believe p(m) on whether m is the
correct model, we can update this believe with Bayes theorem to get the posterior

p(m|D) ∝ p(D|m)p(m) . (VII.4)

In the following we will assume that the prior factorizes p(m) = p(n)p(s), as is the case
for all PTA analysis. Since the parameter space has a lot of dimensions, a Monte Carlo
Markov Chain (MCMC) has to be used to update our believe. The parameter points in the
resulting chain will follow the posterior distribution, which is identical with the likelihood
up to a normalization, if the priors are taken to be flat as the NANOGrav collaboration
does. For parameters where the order of magnitude is not known the distribution of the
log is chosen to be flat (e.g. the amplitude AGW in the simple power law).
This approach allows one to marginalize over parameters/ parts of the model one is not
interested in. As we are not interested in the noise n but only in the signal s, we can
boil down the information in the chain by ignoring the information about the noise n.
Mathematically this corresponds to integrating them out

p(s|D) ∝
∫
n
dn p(m|D) =

∫
n
dn p(n, s|D) . (VII.5)

We are then left with a chain of parameter points s that are distributed according to
p(s|D).

The Free Spectrum as a General Model

Given the time of observation Tobs in a PTA the free spectral model allows for an inde-
pendent GW amplitude Ωi = ΩGW(fi)h

2 for each frequency fi = i/Tobs, i ∈ N such that
the set of parameters is sfree = (Ω1,Ω2, ...).
Now lets assume we have a model motivated by physics. For concreteness we will consider
the simple power law given above. Such a model only has a few parameters, in our case
the slope α and the amplitude AGW: sPL = (α,AGW). Furthermore the model will specify
a function to calculate the timing residuals in terms of the parameters, in our case

Ωi(α,AGW) =
2π2

3H2
100

f2
i A

2
GW

(
fi
fy

)2α

, (VII.6)

where fyr = 1/year. In short we can write sfree(sPL). The likelihoods of the free and
specific model are therefore related by

p(D|n, sPL) = p(D|n, sfree(sPL)). (VII.7)

We then find for the marginalized posterior of the specific model

p(sPL|D) ∝
∫
dn p(D|sPL)p(sPL)p(n) (VII.8)
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=

∫
dn p(D|n, sfree(sPL))p(sPL)p(n) (VII.9)

=
p(sPL)

p(sfree(sPL))

∫
dn p(D|n, sfree(sPL))p(sfree(sPL))p(n) (VII.10)

=
p(sfree(sPL)|D)

p(sfree(sPL))
p(sPL). (VII.11)

So the posterior of sPL is given as the ratio of the marginalized posterior and prior for the
free spectrum sfree(sPL). With a flat prior p(sfree) = const. we find the simpler version

p(sPL|D) ∝ p(sfree(sPL)|D)p(sPL). (VII.12)

We exploit this relation here to fit the power law and physical models below. To do so we
have to reconstruct p(sfree(sPL)|D) from the Markov chain provided by the NANOGrav
collaboration. Given that we are considering the first 5 frequency bins, this is a distribution
over a 5-dimensional space. Therefore, a chain containing a huge number of points would
be required to accurately recover all the features of this distribution. We therefore make
the simplifying assumption that the distribution factorizes

p(sfree|D) = p(Ω1|D) · p(Ω2|D) · ... , (VII.13)

neglecting any possible cross-correlation between the frequency bins. The separate poste-
riors p(Ωi|D) are then reconstructed by taking a histogram of the points in the chain.1 In
Fig. VII.3, we show the posterior distribution extracted in this way for the first 5 frequency
bins as gray violins. In Fig. VII.2 we show a comparison of the 68% and 95% confidence
regions (in the following also referred to as the 1σ and 2σ regions) from our hierarchical
method and the original, direct approach for the simple power law. We find that both
regions are stretched out along the same diagonal line, which corresponds to both of them
agreeing well on the amplitude of the GWs at f ≈ fy/10, as one can easily show. The
region of the original fit extends to larger α, however. Crucially the expected value of
α = −2/3 from super massive black hole inspirals marked by the dotted line lies inside
the 1σ region of the original fit and only the 2σ region inferred by our method. This
discrepancy might be caused by neglecting the cross-correlation between the frequency
bins. On the other hand there is still a large overlap of the inferred regions compared to
their size. Our simple method only takes a fraction of the time needed for the full analysis
and therefore has its place as a quick estimate that still goes beyond only matching the
amplitude.

VII.4 Audible Axions and NANOGrav

We studied the prospect of sourcing a stochastic GW background after inflation from an
axion coupled to a dark photon in great detail in Part II. For some of the scenarios we
already briefly commented on the possibility that these might explain the NANOGrav
signal.

The GWs in these models are sourced when the energy is transferred from the axion to
the dark photon modes. After this process the majority of the energy remains in the dark
photon and red-shifts like radiation.2 It therefore contributes to the number of relativistic

1For the original publication [7] we obtained the distributions by digitizing the violin plot Fig. 1 of
Ref. [186]. This induced a sizeable error, which resulted in wider confidence regions for all subsequent fits.

2The remaining energy in the axion is initially suppressed, but comes to dominate eventually due to
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Figure VII.2: Comparison of 1σ and 2σ contours for a single power law fit to the 5
lowest frequency bins. Our results using the hierarchical method are shown in blue and
the original result in orange. The black dotted line sits at α = −2/3, the expected slope
for the signal of SMBHBs.

degrees of freedom Neff . As one can see from Fig. IV.9 the 2σ region (purple) for the
minimal model with the misalignment angle of θ = 1 and a coupling α = 100 falls just
into the region excluded by the Planck 2018 dataset at 95% confidence level. We find that
the same holds true for the kinetically misaligned axion discussed in Chapter V. In this
case the initial value of the saxion field Si even has to be chosen super-Planckian in order
to provide with enough energy to source a strong enough signal.

Only the relaxion model discussed in Chapter VI can match the signal without being in
conflict with the Neff bound. Due to the continues emission of GWs in this scenario the
ratio ξ = kra/(araHra) between the typical scale of the fluctuations kra and the horizon
at time of emission araHra can be reduced to O (10), while in the other scenarios it is
typically O (100). From the estimate of the GW amplitude based on naive dimensional
analysis that we used throughout this thesis (e.g. Eq. (IV.14)) it becomes clear that a
reduction of this ratio leads to an enhancement in GW emission. In Fig. VI.7 we show
the resulting 1 and 2σ regions of the fit using ξ = 10, 25 and 100 in terms of the resulting
peak amplitude and peak frequency. As expected the region for ξ = 100 is excluded by
the Neff bound as well as the barriers of the relaxion reappearing before BBN. The regions
for ξ = 10 are, however, not restricted by these bound with ξ = 25 being a middling case.
It should however be said that small values of ξ require exponentially large values of the
coupling α. In Fig. VII.3 we show the GW spectrum of the best fit parameters for ξ = 10
in green.

Another interesting aspect is that parameter points resulting in stronger signals than the
ones in the best fit regions, can be excluded by the NANOGrav data. While at present
all of these points are already excluded by the Neff bound, these bounds can be expected
to become relevant soon, as more PTA data becomes available.

VII.5 Phase transitions and NANOGrav

It has been known for many years that a cosmological phase transition (PT), such as from
the spontaneous breaking of a global or gauge symmetry through a scalar field that acquires

only red-shifting like matter.
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Figure VII.3: Signal of the best fits of a runaway and a non-runaway phase transition
discussed in this chapter as well as the audible relaxion from Chapter VI with ξ = 10
compared to the first frequency bins of NANOGrav in the frequency-ΩGWh

2 plane.

a vacuum expectation value, produces a stochastic GW background if the transition is
strongly first order [197–199]. While a large variety of models exists that predict such
a transition at different scales, the GW signal of a strong first order PT is universally
described by only four parameters, the ratio between the vacuum and total energy density
α = ρvac/ρtot, the time scale of the transition β/H, where H is the Hubble scale at the
time of the transition, the temperature T∗ at which the transition takes place and the
bubble wall velocity vw [200,204].
We use the signal templates in terms of these parameters as given in [59]. The peak
frequencies and amplitudes of the two most important contributions to the signal scale as

fp ≈ 2× 10−7Hz

(
β

H

)(
T∗

GeV

)
, (VII.14)

ΩGWh
2 ≈ 10−6vw

(
β

H

)−n( α

1 + α

)2

, (VII.15)

where n = 1 for the sound wave contribution and n = 2 for the scalar field contribution, and
we neglect order one numbers which are not relevant for the qualitative discussion. Very
strong transitions are characterised by α > 0.1 and a wall speed approaching the speed of
light, vw → 1. The NANOGrav signal corresponds to an energy density ΩGWh

2 > 10−10

at a frequency around 10−8 Hz, so that only a strong transition will be able to explain the
data. Furthermore we immediately see that T∗ should be of order 10−3 − 10−2 GeV, i.e.
the PT should happen at a very low scale. The implications of this for concrete models
will be discussed in more detail below.
We consider two scenarios. If the PT takes place at a temperature significantly below
the critical temperature, the Universe will be dominated by vacuum energy, i.e. the α
dependence drops out of Eq. (VII.15). In such a supercooled PT, no friction acts on the
bubble wall, so that vw = 1. Furthermore in the absence of a plasma, the only source of
GWs is the scalar field itself, i.e. n = 2 in Eq. (VII.15). In that case, a good fit to the
data requires relatively small values of β/H . 100, and transition temperatures around or
below the MeV scale, as shown in Fig. VII.4. Above the peak frequency, the GW strain
amplitude of the PT signal falls as f−3/2. Therefore if the peak frequency lies below the
lowest frequency probed by NANOGrav, the signal will look like a single power law to the
detector. This explains the flat direction in the fit towards lower temperatures and lower
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Figure VII.4: Left: Regions favoured by the NANOGrav signal for a vacuum PT, with
vw = 1, shown as a function of the transition temperature T∗ and the PT timescale β/H.
Right: Same for a strong first order PT in a plasma, with vw = 1 and fixed values of β/H,
as function of T∗ and the energy budget α. The vertical line at one MeV indicates the
onset of BBN, below which strong constraints apply to any models that alter the expansion
rate of the Universe.

values of β/H. However lower values of β/H are increasingly difficult to obtain in realistic
models, therefore this region should be considered less favoured.
If the PT is very strong but not supercooled, the bubble walls will still reach a relativistic
terminal velocity, so for simplicity we again set vw = 1. In this case sound waves in the
plasma induced by the PT are the dominant source of GWs, and the amplitude is only
suppressed by one power of β/H. As expected, in Fig. VII.4 we see that a good fit to the
data in the T∗−α plane is found both for β/H = 10 and β/H = 100, where in the second
case the suppression of the signal is compensated by a larger energy budget α. Again we
also find a flat direction, where the peak of the PT signal is shifted below the NANOGrav
frequency range, and data is fit by the high frequency tail. The strain amplitude in the
UV tail falls of considerably faster though as f−3 than in the supercooled case, which is
why the points along this flat direction are disfavoured.
In both scenarios, we find that the PT should happen at a temperature around 1 MeV.
Since extensions of the SM at such low scales are almost impossible to hide from laboratory
experiments, it is clear that the PT should take place in a dark sector, with only very
weak interactions with the SM [59,205–211].
Nevertheless it was shown in [59] that also PTs in a dark sector are subject to strong
constraints, in particular if they happen close to the scale of BBN. The reason is that
BBN is a sensitive probe of the Hubble scale at temperatures below the MeV scale, which
in turn depends on the total energy density in the Universe, since gravity is universal.
Either the energy density in the hidden sector should be transferred to the SM before the
onset of BBN at T ∼ 1 MeV, which essentially prohibits PTs below that scale [212], or the
energy should be converted into dark radiation, in which case the dark sector temperature
is constrained by Neff .
Viable models should therefore have few degrees of freedom, and still feature a very
strong first order PT. The simplest scenario is probably a single scalar field with a non-
renormalizable potential, such as a very light radion or dilaton. Indeed for these models
it is known that a strongly supercooled first order PT can occur and produce a large
GW background [213–217]. For renormalizable scenarios, the most minimal models that
were found in [59] consist of either two real singlet scalars or a U(1) gauge boson with a
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complex scalar charged under the gauge symmetry. While the majority of the parameter
space of these models features a weaker PT, there are benchmark points with α > 0.5 and
β/H . 100, while still being consistent with constraints from BBN or Neff .
Finally also here it should be noted that PTs with T∗ ∼ 1 MeV which produce a GW
signal stronger than the observed one are now excluded by the NANOGrav data. We are
therefore finding the first non-trivial constraints on the dynamics of potential dark sectors
around these scales. Of course, to obtain robust limits on concrete models, a reduction of
the large theoretical uncertainties in the prediction of the GW signals would be desirable.
For some recent progress in this heroic task, see e.g [218–221].

VII.6 Discussion and Outlook

The first hint of a GWB observed by NANOGrav is very intriguing. While the data can
be well explained with a single power law, consistent with the expected background from
supermassive black hole binaries (SMBHBs), we show here that also broken power law
spectra, which are predicted in various extensions of the SM, can well describe the signal.
In both new physics scenarios we considered, the peak of the GW signal is strongly corre-
lated with the relevant mass scale of the new physics, either the reappearance temperature
of the relaxion barriers or the mass scale of the new sector that undergoes a phase transi-
tion. The PTA data therefore already allows us to narrowly constrain the potential mass
range.
Since the data suggests very light new physics, it is already clear that these new particles
have to be part of a dark sector that is only very weakly coupled to the SM, otherwise
laboratory experiments would have uncovered them already. Yet astrophysical data on
BBN and Neff constrain the parameter space of such dark sectors.
For the audible realxion scenario, we find parameter regions consistent with Neff if the
ratio between the typical scale of the fluctuations and the horizon at reappearance can be
brought down to ξ = O (10).
A first order PT can explain the data if the transition is very strong and happens at
temperatures between 1-10 MeV, or slightly below, if BBN and Neff constraints can be
evaded. We have briefly illustrated some dark sector models that are known to satisfy all
requirements. Here it will of course be interesting to ask whether concrete realizations
can also explain the observed dark matter abundance, and whether they leave observable
imprints elsewhere. One such imprint might be spectral distortions of the CMB, as we
discuss in great detail in the next chapter.
Already this first hint of a stochastic GW background in the PTA range provides us with
a deep insight into possible new physics explanations of the signal. With more precise
frequency binned data it will be possible to distinguish between different models and
astrophysical backgrounds such as the one from SMBHBs. It would also be interesting to
directly fit a broader range of GW templates to the pulsar timing data, possibly including
polarized signals such as the one expected from audible relaxions.
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Chapter VIII

Spectral Distortions

VIII.1 Introduction

In the previous chapters we studied the dynamics of purely gravitationally coupled dark
sectors that emit a primordial gravitational wave (GW) signal. These GWs can then
be detected, if the amplitude is large enough and the red-shifted frequency falls into the
range of one of the detectors. As possible detectors we discussed so far earth and space
based interferometers that in the future will cover the frequency range ≈ 10−7−103 Hz
and pulsar timing arrays (PTAs). PTAs cover frequencies ≈ 10−9−10−7 Hz. At the lower
end they are limited by the observation time, which is given by ≈ 10 yr. After this time
a radio telescope is typically taken down either by a tropical storm or a Bond villain. At
much lower frequencies ≈ 10−18−10−16 Hz gravity waves become detectable again by the
imprint they leave on the CMB polarization, so called B-modes.

While this thesis was conceived, Ref. [25] pointed out that this gap in detectable frequencies
could be closed by using CMB spectral distortions. The GW travels through space filled
with the SM plasma. This plasma is a non-perfect fluid and therefore friction converts
some of the GW energy into heat. This heat leads to a deviation of the CMB spectrum
from a black body spectrum, if there are no processes to reach thermal equilibrium again.

If the GW was generated during inflation and therefore “always” has been around that is
surely the end of the story. But in the mechanisms of production discussed in this thesis
the GW is only sourced in the post inflationary universe. In particular the dark sector with
its energy fluctuations is still present when the spectral distortions are caused. A natural
question to ask is, therefore, whether this is the dominant way a purely gravitationally
sector causes spectral distortions or, if the effects mediated by the gravitational potential
dominate.

In this chapter we indeed identify such a second way. It relies on the fact that the gravi-
tational potential couples the dark sector to the baryon-photon fluid. The energy fluctua-
tions in the dark sector therefore cause fluctuations in the the baryon-photon fluid, which
propagate as acoustic waves. Due to photon diffusion these acoustic waves are eventually
damped, at which point their energy is turned into heat. This heat also contributes to the
distortion.

Before going into the details of this mechanism let us briefly recall, what a spectral dis-
tortion is and under which circumstances it gets sourced. It is well known that the CMB
spectrum is to good approximation a black body spectrum. Any deviation of the spec-
trum from this shape, so called spectral distortions, therefore, encode valuable information
about physics in the early universe. In principal any injection or removal of energy from
the photons causes such a distortion. Whether a distortion is observable depends, aside
from the size of the distortion, on whether efficient processes to thermalize the spectrum
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again are present.

At high red-shift and correspondingly large temperatures processes changing the photons
momentum, like Compton scattering, as well as photon number changing processes, like
double Compton scattering, are present. This changes for redshifts z . 2 × 106 when
the photon number changing processes become ineffective. From this point onwards the
photon number is a conserved quantity and one has to introduce a chemical potential µ
to capture the equilibrium distribution. µ becomes non-zero if energy is injected into the
plasma at this point. Below red-shifts of z . 5 × 104 Compton scattering also becomes
inefficient at redistributing the momentum beneath the photons, such that any distortion
sourced now is directly imprinted onto the CMB spectrum.

The source of energy injection we are interested in this chapter is the damping of sound
waves in the baryon-photon fluid. Any sound wave in the plasma is rapidly damped once
its wavelength falls below the diffusion scale, which is the distance a photon covers by
random walking between scattering events. For modes in the range 8× 103 Mpc−1 . k .
2 × 103 Mpc−1 this happens while 5 × 104 . z . 2 × 106 leading to a µ-distortion (see
Fig. VIII.1). For longer-wave length modes where the damping occurs for z . 5 × 104

the photon momenta are not redistributed, such that one observes the superposition of
multiple black body spectra with slightly different temperatures δT/T = 4δρ/ρ, where ρ
and δρ denote the mean density and density fluctuations in the fluid respectively. The
resulting distortion is called a y-distortion and differs in its frequency dependents from a
µ-distortion. y-distortions are however also produced during the re-ionization era by the
Sunyaev-Zeldovich effect [222, 223], which limits there use for studies of new primordial
physics. We therefore only concentrate on µ-distortions hereafter.

In the inflationary paradigm the primordial fluctuations, measured at the largest scales
as CMB fluctuations and in structure formation, are predicted to be approximately flat
and therefore extend to the small scales sourcing µ-distortions. Here we however inves-
tigate dark sectors with turbulent dynamics which, through their gravitational coupling
to the photon fluid, lead to additional fluctuations at smaller scales. Consequently the
µ-distortions get enhanced, while leaving the scales relevant for CMB fluctuations and
structure formation untouched. For some specific dark sector models these considerations
have been made before [224,225]. We present a general and easy-to-use framework for esti-
mating and calculating these effects as well as comparing the contribution to the distortion
from GWs and acoustic waves.

In Section VIII.2 we show that induction of sound waves in the photon fluid through the
dark sector can be decoupled from the subsequent damping and production of distortions
as well as presenting the relevant details to calculate the µ-distortion. In Section VIII.3
the induction of sound waves is discussed analytically and compared in Section VIII.4 to
the numerical results of a particular dark sector. We recommend the impatient reader to
jump to Section VIII.5, where we apply our techniques to various dark sectors that are
well known GW sources.

VIII.2 Source of µ-distortions through gravitational inter-
action

The generic setup we have in mind is a dark sector that only comprises a subdominant
amount of the total energy Ωd � 1 but develops large anisotropies at some point δρd/ρd =
δd ≈ 1. Since Ωd � 1 metric and density fluctuations in other sectors present in the
universe are still small, which allows us to treat them perturbatively, linearizing their
dynamics. It is then beneficial to work in Fourier space. We use the following definitions
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Figure VIII.1: The evolution of the horizon scale (blue), the scale a photon free streams
between consecutive scattering events and diffusion scale that is approximately the dis-
tance traveled by a photon in a random walk as a result of all the scattering events in one
Hubble time. Once a mode passes the diffusion scale the energy stored in the acoustic
oscillation is damped. If this happens during the red-shifts marked in red on the x-axis a
µ-distortion is sourced, singling out the modes marked in red on the y-axis as the dominant
messengers of new physics. These modes enter the Horizon as early as a ≈ 10−9 allowing
us to probe new physics back to when the photon temperature was ≈ 1 MeV.
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for the Fourier transform and the dimensionless power spectrum P

δ(k) =

∫
d3x δ(x) exp(−ikx); 〈δ(k)δ∗(k′)〉 =

2π2

k3
Pδ(k)(2π)3δ(3)(k− k′). (VIII.1)

We furthermore use the conformal Newtonian gauge for the scalar metric perturbations

ds2 = a2(τ)
[
(1 + 2Ψ(x, τ))dτ2 − (1 + 2Φ(x, τ))dx2

]
, (VIII.2)

where the equations of motion for the potentials Φ,Ψ are given by

3aH
(

Φ̇− aHΨ
)

+ k2Φ =
3a2H2

2
(Ωγδγ + Ωnδn + Ωdδd) (VIII.3)

Φ + Ψ = −24a2H2

k2

(
Ωγσγ + Ωnσn +

3

4
(1 + wd)Ωdσd

)
. (VIII.4)

Here overdots denote derivatives with respect to conformal time τ , and δ and σ denote
the energy fluctuation and shear in the respective sectors. For times well before matter-
radiation equality, a � aeq, the three relevant sectors are the baryon-photon fluid γ, the
neutrinos n and the dark sector d. The shear is defined as the longitudinal traceless part
of the energy momentum tensor σ = −(k̂ik̂j − 1

3δij)T
i
j/(ρ+ p). Finally wd is the equation

of state parameter of the dark sector.

It is clearly visible that the scalar metric perturbations induced by δd are suppressed by Ωd,
thus justifying the linearised treatment. Furthermore since all other sectors only couple to
the dark sector via gravity, also their perturbations induced by δd are suppressed by Ωd.
This also allows one to neglect the back-reaction effects of gravity onto the dark sector
since Ωdδd � δd and one can therefore study its dynamics independently. In the following
we will assume that all fluctuations in the baryon-photon fluid and the neutrinos as well
as the potentials are initially zero. The effects of other, uncorrelated fluctuations like e.g.
inflationary ones can be studied independently, as usual in linear perturbation theory.

For modes deep inside the horizon, k � aH, one can solve for the gravitational potentials
directly by neglecting the first term on the right side of Eq. (VIII.3). One finds that the
gravitational potentials decay as Φ,Ψ ∝ a2H2/k2 if the fluctuations don’t keep growing
after their generation, which is a reasonable assumption during radiation domination.
The gravitational coupling between the sectors therefore quickly becomes negligible after
horizon entry. For our specific case, it suggests that the amplitude of fluctuations in
the baryon-photon fluid is set within about one Hubble time after horizon entry or after
the fluctuations in the dark sector have been created, whichever happens later for a given
mode. We can also anticipate the strength of the gravitational interaction being suppressed
for modes that are deep inside the horizon when the dark sector develops its fluctuations.
The details of this suppression are discussed in the next section.

For the times well before recombination, the baryon-photon fluid is well described by the
tight-coupling approximation (TCA, e.g. [226,227]) and the energy density in baryons can
be neglected, leading to

δ̇γ +
4

3
kvγ = −4Φ̇ (VIII.5)

v̇γ − k
(

1

4
δγ − σγ

)
= kΨ (VIII.6)

σγ =
16

45

k

τ̇C
vγ , (VIII.7)
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where vγ = ik̂iT
j
γ,0/(ργ + pγ) is the longitudinal part of the fluids velocity relative to the

cosmological rest frame. The TCA takes advantage of the fact that all moments of the
photon distribution past the velocity are suppressed by the high Compton scattering rate
τ̇C = aneσC � k, where σC is the Compton cross-section and ne the free electron density,
which can be approximated as τ̇C = a−2 4.5 × 10−7 Mpc−1 well before recombination.
When solving these equations numerically we also take into account the free streaming
neutrinos, see Section VIII.4.2.

To make progress with the analytic treatment one combines the equations for the baryon-
photon fluid to get a damped harmonic oscillator. We will first do so in the limit that the
mode is already deep inside the horizon and neglect the gravitational potentials

δ̈γ + k2

(
16

45

1

τ̇C
δ̇γ +

1

3
δγ

)
= 0. (VIII.8)

In the given limit that aH � k � τ̇C the general solution to this problem is approximated
as

δγ =

[
A sin

(
kτ√

3

)
+B cos

(
kτ√

3

)]
exp

(
− k2

k2
D(τ)

)
. (VIII.9)

This solution is interpreted as damped acoustic waves traveling in the baryon photon
fluid with the relativistic speed of sound of cs = 1/

√
3. The diffusion scale kD appearing

here is determined by the equation d
dτ k
−2
D = 8

45
1
τ̇C

and during radiation domination given

as kD =
√

135
8 τ̇C aH as long as the free electron density is constant up to dilution by

expansion. This effect is also known as Silk damping [228] and is attributed to photons
performing a random walk with typical step length ∆x ≈ 1/τ̇C while doing N ≈ τ̇C

aH steps
per Hubble time. The diffusion scale is then the distance typically traversed by a photon
1/kD ≈ ∆x

√
N in a Hubble time. Due to the direct energy exchange, the fluctuations

quickly get erased.

From the discussion so far two important scales have emerged: the Horizon scale at which
the gravitational coupling is strongest and we, therefore, expect the dark sector to effi-
ciently source acoustic waves, and the diffusion scale. As can be seen in Fig. VIII.1, the
modes of interest, marked in red on the y-axis, pass these two scales at scale factors a
that are always separated by about two orders of magnitude or more. This allows one
to separately discuss the two effects with the amplitude of the sound waves A,B being
approximately constant in between. The important physical quantity that is constant
during those times is the energy in acoustic waves. Relative to the total energy in the
relativistic baryon-photon fluid it is given as

εac =
ρac
ργ

=
1

V

∫
V
d3x

[
1

8
δ2
γ(x) +

2

3
v2
γ(x)

]
=

∫
d log k εac(k), (VIII.10)

where we defined the spectral acoustic energy in the last step which is given as

εac(k) =
1

8
Pδγ (k) +

2

3
Pvγ (k) =

1

8
[PA(k) + PB(k)] (VIII.11)

in terms of the power spectra for δγ , vγ and A,B respectively.

When the acoustic waves get damped by diffusion, this energy becomes part of the photon
bulk energy. If this happens between adc = 5 × 10−7, when photon number changing
processes such as Double Compton scattering becomes inefficient, and aµ,y = 2 × 10−5,
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when Compton scattering stops redistributing the momentum between the photons, a µ-
distortion gets sourced besides an increase in the bulk temperature. The approximation
commonly used to determine the µ-parameter is

µ ≈ 1.4

∫
d log k

∫ ∞
aµ,y

d log a
dεac(k)

d log a
exp

(
−
(adc
a

)5/2
)
, (VIII.12)

where dεac(k)
d log a is the acoustic “power” transmitted to the bulk energy. It is given as [226]

dεac(k)

d log a
=

15

4

τ̇C
aH
Pσγ =

64

135

k2

τ̇CaH
Pvγ =

8

3
Pvγ

d

d log a

(
k2

k2
D

)
≈ 2εac(k, a)

d

d log a

(
k2

k2
D

)
,

(VIII.13)

where we used in the last step that due to virialization εac ≈ 4
3Pvγ . In the limit that the

acoustic energy takes on a constant value εlimac (k) before diffusion damping becomes active,
we have εac(k, a) = εlimac (k) exp

(
−2k2/k2

D(a)
)

during the period of damping, such that we
can write the µ-parameter as

µ =

∫
d log k εlimac (k)W(k), (VIII.14)

where we have introduced the window function [229]

W(k) ≈ 1.4

∫ ∞
aµ,y

d log a exp

(
−
(adc
a

)5/2
)

d

d log a
exp

(
−2

k2

k2
D(a)

)
(VIII.15)

≈ 1.4

exp

−( k

1360 Mpc−1

)2
(

1 +

(
k

260 Mpc−1

)0.3

+
k

340 Mpc−1

)−1


(VIII.16)

− exp

[
−
(

k

32 Mpc−1

)2
] .

This remarkable easy expression allows one to calculate the µ-distortion a dark sector
causes, given the spectral acoustic energy before damping.1 This value can then be com-
pared to current bounds and the detection threshold of future experiments.
In Fig. VIII.2 we show the numerical results of a toy model that neatly summarize this
section. The dark sector is assumed to be radiation like such that Ωd = const. while the
sound waves are sourced, and the fluctuations are modeled as being zero until a∗ = 10−7

and as δd = sin(kτ) afterwards2. The shear in the dark sector is set to zero. We show the
evolution for one mode that is still outside the horizon at a = a∗ on the left and one that
is already inside on the right.

1In the literature the window function is commonly defined with respect to a primordial spectrum rather
than the acoustic energy spectrum and therefore represents a convolution of the dynamics of horizon entry
and damping (e.g. [229]). Our definition is universally applicable, although one would have to discuss
horizon entry separately.

2As we will argue in Section VIII.4.3, δ̇d(kτ) only changes on time scales 1/k for subhorizon modes
making this an unphysical choice with δ̇d(kτ) being discontinuous at a∗. We only use this ansatz here for
demonstration as well as for rough estimates in the following section.
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Figure VIII.2: Sourcing of acoustic waves through a gravitationally coupled dark sec-
tor and consequent damping by diffusion. The toy dark sector here is radiation like
(Ωd = const.� 1) and its density fluctuations are zero until a∗ = 10−7 before evolving as
δd = sin(kτ) (top row). The resulting gravitational potential (second row) causes acous-
tic oscillations in the baryon-photon fluid (third row). Since the gravitational potential
rapidly decays after a mode has entered the horizon (vertical blue line) the amplitude of
the acoustic oscillations quickly levels off resulting in an approximately constant acous-
tic energy εlimac (k) (bottom row, dashed line). The same effect also leads to the acoustic
oscillations being suppressed for the high k mode (right side) that is already inside the
horizon when the fluctuations in the dark sector develop. Subsequently the acoustic os-
cillations are damped for both modes once they cross the diffusion scale (green line). At
this point the acoustic energy is injected into the bulk photon energy, leading to a sizeable
µ-distortion for modes where this happens between 5× 10−7 . a . 2× 10−5.
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VIII.3 Analytic Estimation of the Induced Acoustic Energy

We now obtain an analytic estimate for the acoustic energy εlimac caused by fluctuations in
a dark sector. We assume that the fluctuations are generated at a fixed time a = a∗. For
modes that enter the horizon around or after a∗ (k . a∗H∗), we find that the contribution
of the photons and neutrinos to the gravitational potentials is of the same order as the
one from the dark sector (Ωdδd ≈ Ωγδγ ≈ Ωnδn). The coupled system of equations can
therefore only be solved numerically. As previously mentioned, for the modes already
inside the horizon k > a∗H∗ the amplitudes of δγ and δn remain further suppressed by
some power of a∗H∗/k. They can therefore be neglected when solving for the gravitational
potentials. We therefore restrict our analytic treatment to k > a∗H∗.
To make further progress we again combine Eq. (VIII.5) and Eq. (VIII.6) but this time
keeping the potentials and dropping the diffusion damping, since we now want to solve for
times well before the mode crosses the damping scale, to find

δ̈γ +
1

3
k2δγ = −4Φ̈− 4

3
k2Ψ. (VIII.17)

To get rid of the second time derivative of Φ, we define δ̃γ = δγ+4Φ. Since the gravitational
potential decays, at late times we have δ̃γ ≈ δγ . Since we consider a sub-horizon mode, we
can continue with only the last term on the left-hand side of Eq. (VIII.3), which allows us
to solve for the potentials, the driving force of the harmonic oscillator S(τ), in terms of
δd and σd directly

¨̃
δγ +

1

3
k2δ̃γ = 4a2H2 Ωd [δd + 6(1 + wd)σd] ≡ S(τ). (VIII.18)

The Greens function for this differential equation is G(τ) =
√

3/k sin
(
kτ/
√

3
)
, such that

we can formally solve the above equation (adapted from e.g. []) and find

εlimac (k) =
1

8
Pδγ (k, τlim) +

2

3
Pvγ (k, τlim) (VIII.19)

=
3

8

1

k2

∫ τlim

τ∗

dτ ′
∫ τlim−τ ′

τ∗−τ ′
dτ ′′ cos

(
kτ ′′√

3

)
PS(k, τ ′, τ ′ + τ ′′) , (VIII.20)

where τlim is chosen large enough, such that εlimac has approached a quasi constant value and
δ̃γ ≈ δγ holds. We have furthermore introduced the unequal time correlation spectrum of
the source PS(k, τ, τ ′), defined as

〈S(k, τ)S∗(k′, τ ′)〉 =
2π2

k3
PS(k, τ, τ ′) (2π)3δ(3)(k− k′). (VIII.21)

Assuming that the equation of state of the dark sector wd is known then so is the time
dependence of Ωd ∝ a1−3wd . We will hereafter assume that the dark sector behaves
radiation-like such that Ωd = Ωd,∗ = const.. The time dependence of δd(τ) and σd(τ) is,
however, more intricate and closely related to the spatial structure of the dark source. We
discuss these features for a general dark sector below.

VIII.3.1 Spatial Structure

It is reasonable to assume that the mechanism that causes the fluctuations in the dark
sector has an intrinsic length scale or at least a finite range of scales over which sizeable
fluctuations get produced. We assume here that there is only one characteristic scale k∗
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that due to causality has to lie within the horizon when the fluctuations get produced,
a∗H∗ < k∗. Generalisation of our results is however straight forward as long as one may
consider the different length scales independently. Since there is only one characteristic
scale, the fluctuations that become separated by distances greater than 1/k∗ are uncorre-
lated.

〈δd(x)δd(y)〉 ≈ 0; |x− y| > 1/k∗. (VIII.22)

Distributions where there is no correlation past a certain scale are commonly referred to
as “white”. For concreteness we will use

〈δd(x)δd(y)〉 = Aδd exp

(
−|x− y|2k2

∗
2

)
; Pδd(k) = Aδd

√
2

π

k3

k3
∗

exp

(
− k2

2k2
∗

)
,

(VIII.23)

where Aδd parameterises the size of the fluctuations. The common feature of white dis-
tributions in three dimensions is that their power spectrum falls off as k3 in the infrared,
while the UV behavior depends on the exact shape. Had we chosen a distribution with
compact support in position space, the power spectrum would fall off as a power-law in
the UV instead of exponentially. The power spectrum gives the value of the unequal time
correlation spectrum when one chooses both times to be the same Pδd(k, τ) = Pδd(k, τ, τ)
and therefore gives the amplitude of the fluctuations at a given time. Since, the power
spectrum falls for k > k∗ and the gravitational interaction for modes deeper inside the
horizon is weaker, we can already anticipate that the acoustic energy becomes dominated
for modes with k . k∗. For this reason, we only consider these modes in the following i.e.
we only deal with length scales that are large enough such that there are no correlations
past them.

VIII.3.2 Time Evolution

For this discussion we will make the Ansatz that the energy fluctuations and the shear of
the dark sector can be described as a stationary statistical process past τ∗. This means
that the unequal time correlation spectra can be factorized into a time autocorrelation
function and a power spectrum. The power spectrum becomes constant past τ∗ and the
autocorrelation function A only depends on the difference in time

P(k, τ, τ ′) = P(k)A(k, τ − τ ′) θ(τ − τ∗)θ(τ ′ − τ∗). (VIII.24)

Let us start by considering a dark sector with relativistic dynamics. In this case, one
naively expects that the only relevant time scales are 1/k∗ and 1/k. There is an important
distinction to be emphazised between the energy fluctuations and the shear: Energy is a
conserved quantity. A change of δk corresponds to a displacement of energy over a distance
of ≈ 1/k. This is why the only time scale for the energy fluctuations to change is given
by ≈ cd/k, where cd ≤ 1 is the typical velocity of energy transport in the dark sector.
Since the energy fluctuations have this universal behavior, we are going to limit the dis-
cussion in the following to them and drop the shear σd from the source S. In general we
expect the shear to be of the same size as the density fluctuations δd and this approxima-
tion therefore introduces an O(1) uncertainty.
Below we calculate the acoustic energy for two examples. In the first the energy
fluctuations exhibit a stochastic behavior and the auto-correlation therefore decays as
Aδd(k,∆τ)→ 0, |∆τ | → ∞. For the other, we take a periodic, deterministic behavior as
one expects if the dark sector comprises a fluid with waves itself.
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Stochastic Source: Free Scalar Field

For a relativistic scalar field with Gaussian fluctuations, the auto-correlation function of
the energy fluctuations for k � k∗ is given by

Aδφ(k,∆τ) = sinc(kτ) , (VIII.25)

as we show explicitly in Appendix C. Since the auto-correlation decays much faster than
a Hubble time if k � a∗H∗ we approximate εlimac as

εlimac (k) = Ω2
d,∗Pδd(k)

6

k2

∫ ∞
τ∗

dτ ′a4(τ ′)H4(τ ′)

∫ ∞
−∞

dτ ′′ cos

(
kτ ′′√

3

)
sinc(kτ) (VIII.26)

= Ω2
d,∗Pδd(k) 2π

(
a∗H∗
k

)3

, (VIII.27)

where we used a = τ H∗a
2
∗ during radiation domination to solve the first integral. This

estimate holds only for modes that are inside the horizon at a∗. The numerical results
we present below suggest that for super horizon modes the efficiency of inducing acoustic
waves is directly proportional to the amplitude Pδd(k). This justifies using

εlimac (k) ≈ Ω2
d,∗Pδd(k)

π

2π + (k/a∗H∗)
2

1

1 + k/(2a∗H∗)
, (VIII.28)

to estimate the acoustic energy also for superhorizon modes with O(1) accuracy.

Deterministic Source: Fluid

If the dark sector is comprised of a fluid itself with speed of sound cd the auto-correlation
is

Aδφ(k,∆τ) = cos(cdk∆τ). (VIII.29)

In this case there is no sensible approximation that allows one to factorize the double
integral in Eq. (VIII.20). Therefore we directly use the results from solving the full equa-
tions of motion numerically, including backreaction from photons and neutrinos, to discuss
the behaviour. To do so we model the fluctuations in the dark sector as 0 up to τ∗ and
as δd = sin(cdk(τ − τ∗)) afterwards. This corresponds to Pδd(k) = 〈sin2〉 = 1/2. In
Fig. VIII.3 we show the results for εlimac normalized by Ω2

d,∗Pδd for various dark speeds
of sound. As one can see the efficiency of inducing acoustic waves takes on a constant
O(1) value in all cases for modes outside the horizon at a∗. For modes inside the hori-
zon the efficiency falls of as (a∗H∗/k)2 and as (a∗H∗/k)4 once the potential offset in
frequency between the driving force cdk and k/

√
3 of the driven oscillator δγ becomes

relevant (
√

3− cd)k/(a∗H∗) & 1. We therefore suggest using

εlimac (k) ≈ Ω2
d,∗Pδd(k)

π

2π + (k/a∗H∗)
2

1

1 + (1/3− c2
d) (k/a∗H∗)

2 , (VIII.30)

which matches the numerical result up to a factor of . 2 for the cases shown in Fig. VIII.3.
One can interpret the results Eq. (VIII.28) and Eq. (VIII.30) as follows: Naively one
expects a suppression by (a∗H∗/k)4 for modes inside the horizon k > a∗H∗ that stems
from the potentials decaying as Φ,Ψ ∝ (a∗H∗/k)2. The strength of the potentials is
however approximately constant and keeps driving the acoustic oscillation in the baryon-
photon fluid for the whole Hubble time after a∗ corresponding to many oscillations Nosc ∝
k/a∗H∗ � 1 of the mode. The energy of a harmonic oscillator driven by a stochastic
source or in resonance grows as ∝ Nosc or ∝ N2

osc which leads to a milder suppression by
(a∗H∗/k)3 and (a∗H∗/k)2 respectively.
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Figure VIII.3: Suppression of the induced acoustic energy for modes that are inside the
horizon k & a∗H∗ when the fluctuations develop at a∗. The fluctuations here are taken to
evolve deterministically as ∝ sin(cdk(τ − τ∗)) past a∗. The straight lines show the result
from a numerical simulation including the contributions of the neutrinos and baryon-
photon fluid to the gravitational potentials, while the dotted lines show the estimate
Eq. (VIII.30). For k � a∗H∗ the suppression falls as ∝ (a∗H∗/k)2 in the resonant case
cd = cγ = 1/

√
3 (green) and as ∝ (a∗H∗/k)4 in the off-resonant cases, once the discrepancy

in frequency becomes relevant.

VIII.4 Detailed analysis of a simple model: λφ4-Theory

To confirm the validity of our analytic estimates, we now consider a toy model for which a
full numerical treatment is feasible. We have chosen a model consisting of two real scalar
fields φ, ψ with the potential

V (φ, ψ) =
1

4
λφ4 +

1

2
g2φ2ψ2 . (VIII.31)

This model has been studied in great detail in the context of preheating e.g. [49,230–234].
We consider 〈φ〉 = φi � mPl and 〈ψ〉 = 〈φ̇〉 = 〈ψ̇〉 = 0 as the initial conditions. In this
case, the energy density of the fields is always subdominant Ωd � 0 in contrast to the
preheating scenario where the field φ with φi > mPl initially drives inflation.
In addition to deriving all the parameters needed to estimate the acoustic energy analyti-
cally as described above, we solve the dynamics of the model from first principles using a
lattice simulation, which allows us to extract δd(k, τ) and σd(k, τ). Using these we solve
for δγ(k, τ) and arrive at the acoustic energy. We recommend the reader only interested
in the application of the estimate to skip forward to the next section.
We follow [49, 234] in our analysis and define the angular frequency ω∗ =

√
λφi giving

the typical curvature of the potential as well as the resonance parameter q = g2/λ. For
simplicity, we fix the latter at q = 1 in this work. Furthermore, we assume that both
φ and ψ possess Gaussian fluctuations originating from inflation that are frozen before a
mode enters the horizon

Pφ,ψ =

(
HI

2π

)2

; Pφ̇,ψ̇ ≈ 0 , (VIII.32)

where HI � ω∗ denotes the Hubble parameter during inflation. We assume that after
inflation the universe reheats and undergoes the same evolution as in the standard ΛCDM
case, with our dark sector acting as a purely gravitationally coupled spectator. At the
times relevant for spectral distortions the universe is still radiation dominated.
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VIII.4.1 Analytic Estimate

The field φ starts to oscillate once the Hubble rate drops to Hosc = ω∗. The energy in
the field φ is initially ω2

∗φ
2
i /4 and dominates the dark sector such that one can estimate

Ωd,osc ∝ (φi/mPl)
2. Past aosc the dark sector behaves like radiation such that Ωd ≈ const.

To go beyond an order of magnitude estimate, one has to solve the equation of motion for
the homogeneous component of φ and finds

Ωd,osc ' 0.2

(
φi
mPl

)2

. (VIII.33)

The oscillations of φ lead to a time-dependent effective mass of the field ψ, which causes its
fluctuations to grow exponentially. This instability is very similar to the one discussed in
Chapter III. As shown in e.g. [230] the equation of motion for the Fourier modes of the field
ψ can be recast into the Lamé equation. From the corresponding instability chart, one can
read off that the modes with k . ω∗aosc experience exponential growth. The mode growing
the fastest is k∗ ≈ ω∗aosc/

√
2 with its energy density growing as ∝ exp(0.3ω∗aoscτ). The

energy in the fluctuations is initially ≈ ω2
∗H

2
I /(2π)2 while the energy in the homogeneous

φ field is ≈ ω2
∗φ

2
i /4. Due to the exponential growth this difference is overcome around

a∗ ≈ aosc
2

0.3
log

(
πφi
HI

)
. (VIII.34)

At this point, the energy in the fluctuations starts to dominate, causing the energy density
to become fully inhomogeneous in line with the definition of a∗ in the previous chapters.
This allows us to calculate a∗H∗ = aoscω∗ · aosc/a∗. For the simulations presented in the
following we fixed HI/φi = 10−4, which gives a∗ ≈ 70 aosc and a∗H∗ ≈ aoscω∗/70.
Once the fluctuations dominate, the energy gets split between the two fields and their
respective kinetic and gradient contributions. If the system virializes quickly, the energy
will be distributed evenly between the four, and there will be no correlations between
them. If each separate contribution has O(1) fluctuations we find 〈δ2

d〉 = Aδd = 1/4. We
now have all necessary ingredients to estimate Pδd(k) using Eq. (VIII.23).
As a final step, we need to make an assumption about the temporal behavior of δd(k, τ).
Similar to the case of the free scalar field, the energy fluctuations are due to the random in-
terference of the field modes. If anything, one expects the potentially turbulent interaction
of the field modes at a∗ to lead to a faster decrease in the autocorrelation function. We,
therefore, use Eq. (VIII.28) with the parameters derived above to analytically estimate
the induced acoustic energy.

VIII.4.2 Numerical Treatment

Application of the Lattice Method

Using CosmoLattice [235, 236] we solve the full equations of motion of the interacting
φ and ψ-field on a discretized space-time using a second-order velocity Verlet algorithm
(equivalent to using a leapfrog algorithm). The evolution of the background metric is
set to behave like a radiation dominated universe, independently of the dark sector. We
simulate a box with N = 1024 sites along each spatial direction with a comoving length
of L = 2πaosc/(0.015 ω∗) and periodic boundary conditions. The fields in this box are
evolved by time steps of dτ = 0.05 aosc/ω∗. While this choice compromises between
covering the dynamics close to the horizon at a∗ and resolving the UV dynamics, once the
system becomes fully non-perturbative, we ran simulations with higher spatial resolution
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and smaller time steps to ensure that non of our results are affected by the pour UV
resolution of the run presented here.
We start the simulation at ai = aosc/10 and use the initial conditions given above. We
cut the inflationary spectrum of for k > 1.3 aoscω∗ to cover the full instability band in ψ,
while at the same time only including modes with k � aH|a=ai = 10 aoscω∗ such that
Pφ̇,ψ̇ ≈ 0 holds. After fixing q = 1 and HI/φi = 10−4, the only remaining free parameters
are φi and λ, or equivalently φi and ω∗. The dependence on these two is however fully
covered by the scaling relations discussed above, with φi controlling Ωd and ω∗ the typical
momentum scale k∗. We keep these relations explicit when showing our results below.
We modified CosmoLattice to calculate and save δd(k, τ) and σ̃d(k, τ) in time-intervals of
∆τ = 0.5 aosc/ω∗, where we defined

σ̃d(k, τ) = (1 + w)σd(k, τ) . (VIII.35)

This is more convenient for numerics, since it does not require knowledge of pd. The
details of how we calculated these quantities can be found in Appendix B. To get power
spectra from these quantities, we group them in radial bins of width kIR = 0.015 ω∗ and
average over them. To keep the computational cost and required storage down, we limit
us however to 70 bins that are spaced out linearly at low k and logarithmically at high
k and only use up to 1000 modes per bin3. By interpolating between the saved values of
δd(k, τ) and σ̃d(k, τ) as well as Ωd(τ) one can solve for the perturbations in the visible
sector for each single mode like we describe below. With this approach one doesn’t have
to make any assumptions about the time evolution like we did in Section VIII.3.2. To
obtain the induced acoustic energy εlimac or µ-distortion we then take the power spectra of
Pδγ (k, τ) and Pvγ (k, τ) by averaging over the modes in one bin again and use Eqs. (VIII.11)
and (VIII.13).

Acoustic Waves from Gravitational Coupling

To find the µ-distortion and/or acoustic energy εlimac we solve the Eqs. [VIII.3-VIII.6]
numerically, supplemented with the free streaming neutrinos. To describe the neutrinos
we have to go past the first three moments of the phase-space distribution δ, v and σ.
We adopt the conventions used in [238] and write density fluctuations as deviations in
temperature Θ(x, p̂, τ) = δT

T̄
(x, p̂, τ). After Fourier transforming x → k the momenta of

the distribution are defined as

θl = il
∫ 1

−1

dη

2
Pl(η)θ(η) , (VIII.36)

where Pl is the lth Legendre polynomial and η = k̂ · p̂. The first three moments can be
related via δ = 4θ0, v = 3θ1 and θ2 = 2σ to the definitions used in the main text. For free
streaming neutrinos the dynamics of Θn(x, p̂, τ) are described by the Boltzmann equation
without a scattering term, which in the expansion introduced above becomes [227,238]

θ̇n,0 + kθn,1 = −φ̇ (VIII.37)

θ̇n,1 − k
(

1

3
θn,0 −

2

3
θn,2

)
=
k

3
ψ (VIII.38)

3Our method is equivalent to the type II, version 1 powerspectrum from the CosmoLattice technical note
[237], except for limiting the number of modes per bin. CosmoLattice includes modes up to

√
3/2 NkIR,

while we limited ourselfs to 1/2 NkIR, which explains why the spectra calculated by CosmoLattice directly
extend to slightly higher momenta than the once calculated by our methods in Fig. VIII.5.

125



CHAPTER VIII. SPECTRAL DISTORTIONS

100 101 102 103

a/aosc

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100
d

m
2 Pl
/

2 0

total
 kin.+grad.
 kin.+grad.

4/4
g2 2 2/2

Figure VIII.4: Evolution of energy components in the dark sector. Around aosc the φ-
field starts oscillating and the energy initially stored in the quartic potential (red) starts
going back and forth between the potential and kinetic energy (orange). The dark sector
transitions from vacuum to radiation like scaling and its total energy (blue) asymptotes
to the value given in Eq. (VIII.33) (dotted, black). The instabilities induced by the
coupling (purple) in ψ lead to its energy (green) growing exponentially past aosc. The
mode functions of ψ can be approximated by solutions to the Lamé equation, leading
to the estimate given by the dashed black line. The horizontal black line marks a∗, the
time when the energy in the homogeneous φ field equals the energy in inhomogenities of
ψ as estimated in Eq. (VIII.34). At this point the perturbative treatment breaks down,
making the lattice analysis necessary. Past this point the majority of energy is stored in
fluctuations of φ and ψ.

θ̇n,l − k
(

l

2l + 1
θn,l−1 −

l + 1

2l + 1
θn,l+1

)
= 0 ; l ≥ 2 . (VIII.39)

We truncate this hierarchy by neglecting moments l > lmax = 4 and follow [227] to close
the system of equations using

θn,lmax+1 =
2lmax + 1

kτ
θn,lmax − θn,lmax−1 . (VIII.40)

As initial conditions we consider the gravitational potentials as well as all the fluctuations
in the visible sector to be zero and supply the fluctuations of the dark sector either as an
analytic Ansatz or as an interpolation of the values we get from the lattice simulation. To
calculate εlimac we set τ̇−1

C = 0 to decouple the generation of the acoustic energy completely
from the damping. When calculating the µ-distortion directly without the approximation
derived in Section VIII.2, one needs to include τ̇C when solving the differential equations
and calculate the time integral in Eq. (VIII.12) numerically using the solutions.

VIII.4.3 Numerical Results

In Fig. VIII.4 we show the evolution of various energy components in the dark sector. Up
to aosc the energy is almost exclusively stored in the quartic potential while the dynamics
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of φ remains overdamped by Hubble friction. Around aosc, φ starts to oscillate and the
energy in the dark sector red-shifts like radiation, resulting in Ωd taking on the value
given in Eq. (VIII.33). The fluctuations stored in ψ are subdominant around aosc but
start growing exponentially due to the instability caused by the coupling to the oscillating
φ-field. The black, dashed line shows the analytic estimate obtained by looking up the
growth coefficient in the instability chart of the Lamé equation

Ωψ(τ) ≈ 1

3

(
HI

2πmPl

)2

exp(0.3ω∗aosc(τ − τosc)) . (VIII.41)

Once the energy in fluctuations of ψ catches up to the energy in the φ-field, there is a
back-reaction that decreases the amplitude of oscillations of the homogeneous part of φ
while at the same time introducing sizeable inhomogeneities in φ. Shortly after a∗ the
energy becomes dominated by fluctuations of φ and ψ.

The evolution of the fluctuations in the fields can be seen directly from the top row of
Fig. VIII.5. While the fluctuations in the φ field only oscillate as they enter the horizon,
leading to the fringe pattern, the fluctuations in the ψ field grow exponentially in the
instability band k . aoscω∗ with the modes around k∗, marked by the vertical dashed line,
growing the fastest. At a/aosc = 60, as the system approaches a∗, we can see first signs of
a back-reaction in the form of additional induced fluctuations in φ. Past a∗/aosc = 70 both
spectra feature a primary peak that keeps moving to higher k as time progresses. This
can be understood as the onset of thermalization as φ and ψ particles/waves scatter of
one another [75–77]. Somewhat surprisingly there forms a secondary peak in the spectrum
of ψ around k ≈ 0.1 aoscω∗. We can only speculate that this might be the result of the
homogeneous part of φ being damped and the instability band therefore moving to lower
k.

In the second row of Fig. VIII.5 we show the evolution of power spectra of the density
fluctuations in the dark sector as well as the shear. Initially the spectrum of density
fluctuations is due to the interference of fluctuations of φ with its homogeneous part,
dominating the energy. The spectrum is therefore also initially flat, as expected, and
shows a similar oscillatory pattern as the modes enter the horizon. As fluctuations of
ψ and φ come to dominate the energy around a∗, the fluctuations in the energy density
are well described by the analytic estimate Eq. (VIII.23) with the parameters derived in
Section VIII.4.1 (straight, black line). Our estimate describes the energy fluctuations well
for the Hubble time following a∗, which is when we expect most of the acoustic energy
in the baryon-photon fluid to be sourced. At later times the peak moves to higher k as
a result of the scattering processes discussed above. The evolution of the shear is similar
although it develops a much more pronounced secondary peak than the energy fluctuations
at late times.

In Fig. VIII.6 we show the evolution of the energy fluctuation δd(k, τ) and the shear
σ̃d(k, τ) for two modes in the infrared tail of the spectrum. We furthermore show the
average amplitude of modes in the respective bin. As there is no clear pattern visible
between the two different realisations for the same k, a stochastic description seems to
be in place. We want to furthermore stress the difference in the evolution of δd(k, τ) and
σ̃d(k, τ) around a∗. The shear shows O(1) variations on time scales ∆a/aosc ≈ 1 ≈ k∗∆τ
that can be related to the characteristic scale ∆τ ≈ k∗. The energy fluctuations on the
otherhand only grow as∝ [k(τ−τ∗)]2 and take on their late time amplitude after ∆τ ≈ 1/k.
This can also be seen from Fig. VIII.5 where the infrared tail of the power spectrum of the
energy fluctuations is given as ∝ k3 ·[k(τ−τ∗)]4 ∝ k7 at the times a/aosc = 80−100 shortly
after a∗ before asymptoting to the final ∝ k3. This behavior can be understood as the
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Figure VIII.5: Evolution of power spectra of the φ and ψ-field (top row) as well as energy
fluctuations δd and shear σ̃d in the dark sector (second row). In the third row we show
the induced acoustic energy in the baryon-photon fluid through gravitational coupling.
See Section VIII.4.3 for discussion. In the bottom row we furthermore show the resulting
spectrum of gravitational waves as discussed in Section VIII.5.1. The vertical, black,
dotted line marks the horizon scale at a∗, k ≈ aoscω∗/70, and the dashed line gives our
estimate for the fastest growing mode in ψ, k∗ ≈ aoscω∗/

√
2. The thick, black, straight

and dashed lines give analytic estimates discussed in the text.
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Figure VIII.6: Evolution of the energy fluctuation δd(k, τ) and the shear σ̃d(k, τ) for two
modes (orange and green) in the infrared tail of the spectrum (k = 0.05 aoscω∗). The
straight and dotted line give the real and imaginary part respectively. The gray envelope
indicates the evolution of the power spectrum ∝

√
P(k, τ) as calculated by averaging the

amplitude of all mode-functions in the respective bin. In the close-up on the Hubble time
past a∗ ≈ 70 aosc in the bottom panel, we have indicated the amplitude of the energy
fluctuations growing ∝ [k(τ − τ∗)]2 by the black dotted lines.
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Figure VIII.7: Autocorrelation of the energy fluctuation δd(k, τ) and the shear σ̃d(k, τ)
for same momentum as in Fig. VIII.6 (k = 0.05 aoscω∗). For the energy fluctuation we
show for comparison the sinc that we find analytically in Appendix C for a free scalar field
(black).

energy density is conserved on subhorizon scales and we therefore have ρ̇(k, τ) = ikjρ(k, τ),
which leads to ρ(k, τ) ∝ k(τ − τ∗) assuming that the corresponding current jρ(k, τ) jumps
to its final amplitude around a∗. Since the current jρ(k, τ) is however the momentum
density and itself conserved, one finds ρ(k, τ) ∝ [k(τ − τ∗)]2.4

In Fig. VIII.7 we show the autocorrelation function of δd(k, τ) and σ̃d(k, τ) for the
same k calculated by averaging over the modes in the respective bin and times between
a/aosc = 200 − 1000. For comparison we also show the sinc we find in the case of a free
scalar field (Appendix C) for the energy fluctuations. As one can see there is good qual-
itative agreement in that they both have a central peak of width ≈ 1/k. As argued in
Section VIII.3.2 this is also expected from energy conservation. Finding these two fea-
tures makes us confident that our lattice version of the energy density indeed resembles
the continuum one 5. We also find qualitative agreement for the autocorrelation of the
shear from the lattice simulation and the free scalar field. Both have features on small
time scales related to the peak momentum k∗ and on time scales related to k. It should
however be mentioned that the autocorrelation function of the shear varies much more
when varying the momentum k.

Given the evolution of fluctuations in the dark sector as shown in Fig. VIII.6, we can
numerically solve the equations for fluctuations in the baryon-photon fluid on a mode per
mode basis. This allows us to calculate the acoustic energy and the result is shown in the
third row of Fig. VIII.5. As expected the majority of acoustic energy is induced in the
Hubble time after a∗ (a/aosc ≈ 70− 150) and the energy becomes constant shortly after.
Our analytic extimate in Eq. (VIII.28) with the parameters derived in Section VIII.4.1,
shown in black, accurately estimates the main features of this final spectrum: A steep fall of

4Note that since the radiation dominated FRW universe possesses no time-like Killing vector field, there
is no global energy conservation. On super-horizon scales modifications of energy conservation by pressure
fluctuations become relevant as e.g. observed in models of cosmic seeds [239,240].

5We first tried to do this analysis for an axion coupled to a vector, using the same code as for Chapter IV.
This model and its lattice implementation is more complicated since it involves vectors. We were not
able to construct an energy density on the lattice that showed these characteristics of energy conservation
without decreasing the time step of the simulation by a lot, making the simulation unfeasible. We leave a
systematic investigation of this issue for future work and recommend checking these features when running
similar simulations.
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Figure VIII.8: Close-up of the acoustic energy spectrum at the final time of the simulation.
The blue line represents the physical result, while the orange line stems from a simulation
in which the shear of the dark sector was neglected. The straight black line gives the
analytical estimate, with the black dashed line indicating a k−4 power law that seems more
appropriate to describe the UV tail than the exponential decay of the analytic estimate.
The vertical, black dotted and dashed line give the horizon at a∗ and the estimate of the
fastest growing mode in the ψ-field, k∗.

for modes larger than the peak momentum k∗, a flat plateau for momenta between k∗ and
the horizon at a∗ (vertical, dotted, black line) and a k3 infrared tail for momenta outside
the horizon at a∗. Unfortunately our simulation does not properly cover superhorizon
scales, but from what we can see the spectrum becomes steeper at the horizon in good
agreement with our estimate.

In Fig. VIII.8 we show a close-up of the acoustic energy spectrum at the final time of the
simulation. We furthermore show the result of a calculation in which we neglected the
shear of the dark sector, when solving for the perturbations in the baryon-photon fluid.
We find that both calculations as well as the analytic estimate agree to within ≈ 20% in
the plateau region. Neglecting the shear, however, results in underestimating the acoustic
energy by a factor of ≈ 2 − 3 in the IR and UV tail of the spectrum. Furthermore we
find that in the UV the spectrum falls of as k−4 rather than the exponential suppression
suggested by the analytic estimate.

VIII.5 Application to sources of GWs

Our mechanism of sourcing µ-distortions is only efficient if the dark sector features a size-
able amount of energy Ωd . 1 that has O(1) perturbations on scales close to the horizon.
If the dynamics of the dark sector are furthermore relativistic, they efficiently produce
gravitational waves as we have already seen throughout this thesis. In the following, we
want to compare the reach of searches for GWs and spectral distortions for some of these
models.

Before doing so, let us clarify that the opposite statement, all sources of primordial GWs
take the aforementioned shape, is not necessarily true. An example would be strings
originating from breaking of a local U(1) gauge symmetry. In this case the majority of
GWs are produced from the tiniest string loops, only populating a small fraction of the
Hubble volume at a given time. In that sense the source is point-like, whereas for the dark
sectors we are considering, GWs get sourced over the whole Hubble volume.
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For these sectors the resulting GW spectrum is peaked around the characteristic scale k∗.
The peak amplitude can be estimated by naive dimensional analysis as we have seen in
Section III.7 and throughout Part II. We here consider an extended version of this estimate
that also takes the size of the fluctuations into account [155,156,241]

ΩGW,peak ∝ Ω2
d ·
(
a∗H∗
k∗

)α
· P2

δd
(k∗) . (VIII.42)

Just like the induced acoustic energy, the energy in GWs is suppressed by Ω2
d. The suppres-

sion originating from the characteristic scale being inside the horizon potentially differs
though from Equations VIII.28 and VIII.30, with the model dependent power α taking
the values 1 and 2. If the new physics comprising the dark sector does not feature spin-2
degrees of freedom, gravitational waves can only get sourced in second-order processes
resulting in the suppression by P2

δd
. 1. Further suppression of the GW signal occurs if

the dynamics are non-relativistic, but we are not considering this case below.

Experiments and Cosmological Bounds

At the lowest frequencies and correspondingly largest scales, the amount of GWs becomes
limited by the non-detection of B-modes in the CMB polarization by Planck + BICEP2 +
Keck [242], and we show the resulting limit in cyan in the following plots. Furthermore, the
gravitationally induced scalar fluctuations would alternate the resulting CMB perturbation
pattern. In our age of precision cosmology, deriving such bounds is done by refitting
the angular perturbations from scratch. However, such an analysis is beyond this work.
Instead, we take inspiration from searches of symmetry-breaking relics carried out in
e.g [243–245]. They find that the fraction in the angular power spectrum stemming from
the new physics is limited to a couple of percent over a wide range of angular scales l. To
visualize the remaining uncertainty, we show an aggressive bound, limiting the amount
of induced fluctuations to 2% of the inflationary ones up to the CMB pivot scale Pδγ <
0.02P inf

δγ
for k < 0.05 Mpc−1, as well as a more conservative bound corresponding to 10%

out to scales of k < 0.005 Mpc−1. P inf
δγ
≈ Pξ ·16 ≈ 2×10−9 ·16 is the amount of inflationary

fluctuations inferred form the Planck 2018 dataset [46]. We calculate Pδγ ≈ 4εac using the
formulas given in Section VIII.3. The resulting bound is shown in red.

At smaller scales, we use the results from Section VIII.2 and Section VIII.3 to calculate
the µ-distortions resulting from induced acoustic waves and show the results in green. We
furthermore calculate the µ-distortions stemming from the interaction of the GWs emitted
by the dark sector with the baryon-photon fluid [25,246,247]. We show the resulting bound
in pink. The actual observable distortion would perhaps be the sum of these two effects,
but we show them separately as to highlight their respective strength. As thresholds
for the detection of a µ-distortion we consider the existing bound from COBE/FIRAS
µ < 9× 10−5 at 95% confidence level [248] as well as the sensitivity of the future missions
PIXIE µ . 3× 10−8 [249] and Voyage2050 µ . 1.9× 10−9 [250].

At even tinier scales, we fit the GW spectrum to the to-be-confirmed detection by pulsar
timing arrays [61–64] using the first 5 frequency bins from the NANOGrav 12.5yr dataset
[61] and the method proposed in Chapter VII. We show the resulting 2σ region of the fit
as an orange area. We furthermore show the reach of the planned square kilometer array
(SKA) after taking data for 20 years [58,59,251] as an orange line.

Since we consider dark sectors with relativistic dynamics, they will inadvertently act as a
form of radiation not interacting with the baryon-photon fluid and therefore contribute to
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the effective number of neutrinos Neff. At recombination its contribution is given as

∆Neff =
8

7

(
11

4

) 4
3 ρd
ργ

∣∣∣∣
T=Trec

. (VIII.43)

The Planck 2018 dataset constrains ∆Neff < 0.3 at 95% confidence level [46] and the next
generation of ground-based telescopes (CMB Stage-4) is expect to achieve a sensitivity of
∆Neff < 0.03 [252], which we show as a gray surface and line respectively. The details of
how to redshift the abundances and length/frequency scales in order to compare to the
sensitivity of the respective experiments can be found in Appendix A.

VIII.5.1 λφ4-Theory

Let’s start with the model we already considered in great detail in Section VIII.4. In
Fig. VIII.5 we show in the bottom row the evolution of the energy density spectrum
of gravitational waves. As one can see, similar to the acoustic energy the energy in
gravity waves is sourced in the Hubble time following the back-reaction of the ψ-field
on φ, a/aosc ≈ 70 − 150. One might therefore try to estimate the peak amplitude with
Eq. (VIII.42) and α = 2, which has been observed to give a decent estimate for similar
models. Very roughly one can set Pδd(k∗) ≈ 1. It has also been observed that the peak
of the GW spectrum lies typically about a factor 2 higher than the characteristic scale of
the source kpeak ≈ 2k∗ (see e.g. [3]). We show the resulting estimate as a black cross in
Fig. VIII.5. Somewhat surprisingly the actual peak of the GW spectrum lies a factor ≈ 4
below the characteristic scale k∗ and the estimate only corresponds to a secondary peak at
higher k. The peak amplitude is however estimated to within a factor of 2. In Fig. VIII.5
we have further more indicated the k3 powerlaw that one expects ΩGW(k) to asymptote
to for scales outside the horizon at a∗ from causality [48,157] (dotted, balck line).

To derive the bounds and reach of future experiments we use the spectra found in our
lattice simulation and extrapolate them as ∝ k3 in the infrared and conservatively as 0 in
the UV. The relic abundance, the energy in GWs and wave vectors k are redshifted taking
into account the changing number of relativistic degrees of freedom in the SM plasma in
order to compare them to the future and present bounds mentioned above. The results are
shown in Fig. VIII.9. We find that the at low effective masses ω∗ . 10−22 eV the model
is constraint by the non-observation of B-modes in the CMB (cyan). At intermediate
values 10−23 eV . ω∗ . 10−13 eV the spectral distortions induced by acoustic waves will
be detectable by future missions. We find that for this model as for all other ones that
we discuss the contribution from the GWs to the distortion is negligible. At even larger
masses the model can be tested by SKA, but in the parameter space still allowed by the
Neff constraints the signal is too weak to explain the recent findings of today’s PTAs.

The main reason, why all bounds relying on scalar fluctuations are rather week compared
to the following examples, is that the characteristic scale lies deep inside the horizon when
the perturbations arise (k∗/(a∗H∗) = O(100)). This factor enters with a power of -3 in
the estimate Eq. (VIII.28). In the case of an axion coupled to a dark photon discussed in
Part II this ratio is typically of the same order (possibly with the exception of the relaxion
case in Chapter VI) and we expect comparable results. The situation is different for the
related scenario of axion fragmentation discussed in Part I, where this ratio can be of
O(1− 10) and we expect that the spectral distortions could be much larger than recently
estimated in [71], where only the GWs were considered.
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Figure VIII.9: Constraints and future probes of the λφ4-model introduced in Sec-
tion VIII.4. ω∗ determines the temperature T∗ at which the fluctuations come to dominate
the energy in the dark sector and the initial amplitude φi gives the energy in the dark
sector Ωd scaling the signal strength. The gray area and line give the current and future
bound resulting from Ωd increasing the effective number of neutrinos at recombination.
For T∗ below O(102 eV) the scenario is constraint by fits to CMB fluctuations (red) as
well as the non-observation of B-polarization modes (cyan). For the wide range of anni-
hilation temperatures of 102 − 107 eV spectral distortions are able to probe the scenario
with the future missions PIXIE (straight) and Voyage2050 (dotted). We show the bound
including only the contribution from scalar acoustic waves in green and the one from only
considering GWs in pink. At temperatures above 105 eV the model becomes testable by
the future pulsar timing array SKA (orange line) and in the range T∗ ≈ 106 − 107 eV can
possibly explain the NANOGrav signal with the 2σ region of the fit given by the orange
area. Since this model is particularly efficient at emitting GWs, the corresponding probes
dominate in all of the shown parameter space.
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VIII.5.2 Remnants of post-inflationary Symmetry Breaking

Symmetry breaking in the early universe is one of the most anticipated predictions for
BSM physics, emerging in many extensions of the standard model e.g. [253,254]. Here we
will assume that the symmetry breaking takes place after inflation resulting in a universe
filled with topological defects or a network of scaling seeds. We restrict ourselves to the
study of domain walls from the breaking of a discrete symmetry as well as cosmic strings
resulting from the breaking of a global U(1), like they can be found in axion-like particle
(ALP) scenarios with post-inflationary Peccei-Quinn breaking.

VIII.5.2.1 Domain Walls

Domain walls (DWs) [255–257] are topological defects with sheet-like structure that emerge
from the breaking of a discrete symmetry. The parameter controlling the DWs dynamics
after formation is the surface tension σ. By considering that every Hubble patch with
volume 1/H3 contains a sheet of DW with area 1/H2 one can show that

ΩDW ' 0.5
σ

m2
PlH

, (VIII.44)

where the O(1) prefactor is inferred from simulations during radiation domination [258].
This picture furthermore suggests that the system has O(1) density fluctuations at the
horizon scale. As one can see the relative amount of energy in DWs grows as the universe
cools down, leading to strict bounds on σ in order to not over-close the universe. Observ-
ability therefore motivates a scenario in which the degeneracy of the vacua related by the
symmetry is broken by an additional term in the potential Vbias. The introduction of Vbias

causes the walls to experience volume pressure, that leads to the annihilation of the net-
work once the energy in the volume becomes comparable to the energy in the surface area
of the DWs. In a radiation dominated universe the time of DW annihilation corresponds
to the following temperature [258]

Tann ≈ 10 MeV
( σ

TeV3

)− 1
2

(
Vbias

MeV4

) 1
2

. (VIII.45)

The GWs from annihilating DWs were first studied analytically [259, 260] and later on
quantitatively using lattice simulations [258, 261–264]. On the lattice one finds that the
GW spectrum is peaked at kpeak = 2πaannHann and the peak amplitude at emission is
given as [261]

ΩGW,peak,ann ' 0.02 Ω2
DW,ann . (VIII.46)

This is exactly what one expects from Eq. (VIII.42) for a source with dynamics on the
horizon scale and O(1) density fluctuations. The shape of the spectrum is ∝ k3 for
k < kpeak and ∝ k−1 for k > kpeak.
To estimate the acoustic energy induced by the DWs we use the spectrum given in
Eq. (VIII.23) and set the normalisation to Aδd = 1. Since the spectrum peaks at ≈ 2k∗
we set k∗ = kpeak/2. We have no reason to expect that the energy fluctuations δd(k, τ)
show a deterministic behavior and therefore use Eq. (VIII.28). The DWs are expect to
source acoustic energy for the whole time that the network exist with the biggest contri-
bution stemming from the time of annihilation when the relative energy in the network
is largest. As a conservative estimate we only take this contribution into account and set
a∗H∗ = aannHann and Ωd,∗ = ΩDW,ann in Eq. (VIII.28).
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For the relic abundance of the DW network we assume that the oscillations of the system
around the true minimum are quickly damped by the emission of dark, massless or light
particles that consequently contribute to Neff. We take into account the appropriate
redshift to arrive at the results shown in Fig. VIII.10. We again find that the spectral
distortions are dominantly produced through the damping of acoustic waves. The amount
of acoustic energy and gravity waves is approximately the same εac ∼ ΩGW ∝ Ω2

d, but
only a small fraction of the energy in gravity waves is injected into the photons, while all
of the acoustic energy is dumped when the modes cross the diffusion scale.
On the right side of Fig. VIII.10 we sketch the GW spectrum for two benchmark points A
and B along side the power law integrated noise of SKA.6 Since PTAs are only sensitive to
the UV tail of the spectrum, if the annihilation temperature is below Tann . 107 eV, SKA is
not able to distinguish between the two benchmarks. On the bottom we show the acoustic
energy density spectra in relation to µthr,PIXIE/W(k), where µthr,PIXIE = 3 × 10−8 is the
threshold for detection by PIXIE andW(k) is the window function given in Eq. (VIII.15).
Broadly speaking the overlap of the acoustic spectra with µthr,PIXIE/W(k) gives how large
the signal is compared to the threshold in accordance with Eq. (VIII.14). It becomes
clear that the benchmarks, although indistinguishable by the SKA measurement, lead to
drastically different µ-distortions. This goes to demonstrate the role spectral distortions
might play in the upcoming age of multi-messenger cosmology.

6While for our parameter scan we use the exponential suppression in the UV from Eq. (VIII.23), for
this sketch we show a power law that we think is more realistic. The majority of the signal is due to the
peak such that this introduces only a small uncertainty only.
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Figure VIII.10: Left: Constraints and future probes of domain walls in terms of the
annihilation temperature of the network Tann and the surface tension σ. Assuming that
the domain walls relic density behaves as dark radiation after the annihilation leads to
a contribution to Neff with the present and future bound shown as the gray area and
line respectively. At annihilation temperatures below O(102 eV) the scenario is constraint
by fits to CMB fluctuations (red) as well as the non-observation of B-polarization modes
(cyan). For the wide range of annihilation temperatures of 102−107 eV spectral distortions
as a result of the damping of acoustic waves (green) are able to probe the scenario, with
current bounds from the COBE/FIRAS mission already in the same realm as the current
Neff bound in the range Tann = 103 − 105 eV and future missions PIXIE and Voyage2050
going far beyond all other probes in this range. We also show the parameter space testable
by the Voyage2050 mission taking into account only the contribution to the µ-distortion
from gravity waves (pink dotted). This contribution is negligible in the parameter space
still allowed by measurements of Neff though. We have picked two benchmarks A and B.
Right: On the top we show the GW signal for the benchmarks in relation to the power law
integrated noise of SKA. While SKA can not distinguish the two scenarios, the induced
spectral distortion is drastically different as can be seen from the bottom panel.
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VIII.5.2.2 Global Strings (Axion-Like Particle)

Cosmic Strings (CSs) [256, 257], 1-D topological defects, are remnants of a spontaneous
U(1) symmetry breaking. The essential parameter controlling the dynamics of the strings
is the symmetry breaking scale fφ that determines the string tension µ. Since we are
considering the breaking of a global U(1) symmetry, the string tension and other relevant
parameters might get enhanced by a time-dependent logarithmic factor log ≡ log(fφ/H) =
O(100) in comparison to strings generated from the breaking of a local symmetry. The
existence and extent of this logarithmic dependence still remains debated for observables
like the emitted GWs [50,245,265,266]. We will base our analysis in the following on the
findings of [265] being aware of the uncertainties associated with this choice. [265] finds
that the energy density in the string network is given as

Ωs ' 1.0 · log 2

(
fφ
mPl

)2

, (VIII.47)

during radiation domination once the system has entered the scaling regime. The energy
of emitted GWs is given as

ΩGW (k) ' 0.2 · Ω2
s|k=aH . (VIII.48)

Similar to the example of domain walls, we will again consider the possibility that an
explicit breaking of the U(1) symmetry enforces the annihilation of the network. This
breaking is parameterized by the mass mφ of the pseudo Nambu-Goldstone boson. Once
Hubble drops to H∗ = mφ, the field settles in its true minimum resulting in the formation
of domain walls that collapse the network. [265] finds that the GW spectrum features a
peak at kpeak = 2πa∗H∗ with the amplitude at the peak and higher frequencies given by
the formula above and falls off as k3 for lower frequencies.

To determine the Neff bound we use that the energy in relativistic Nambu-Goldstone
bosons at emission is [265]

Ωφ ≈ 0.3 · log 3|a=a∗

(
fφ
mPl

)2

. (VIII.49)

Part of these bosons will become non-relativistic and contribute to the DM density. We
refer the reader to [265] for the derivation of the DM abundance as well as other bounds
arising from structure formation (see also [267,268]).

To estimate the acoustic energy induced by strings, we employ largely the same arguments
and procedures as shown for the DWs: As a conservative estimate, we limit ourselves to
the contribution of the strings leaving aside the bosons. We therefore plug k∗ = kpeak/2,
Aδd = 1 and Eq. (VIII.47) into Eq. (VIII.28) to get the estimate. To account for the
continuous induction of acoustic energy during the scaling regime, we replace the expo-
nential suppression for k > kpeak by only a logarithmic dependence ∝ log4(k/kpeak), in
which we assumed that this is only due to the time dependence of Ωs. The results are
shown in Fig. VIII.11. We are additionally showing the reach of the future space-based
interferometer LISA adopted from [265]. In the parameter space, in which the pseudo
Nambu-Goldstone bosons contribution to DM is not overclosing the universe, SKA and
LISA are capable of only probing the UV tail of the GW spectrum, which renders them
insensitive to the decay of the network and therefore mφ. Since for mφ & 10−22eV, the
period in which acoustic waves remain sourced is cut short, spectral distortions offer an
opportunity to estimate or at least constraint mφ in most of the parameter space with
detectable GWs.
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Figure VIII.11: Present and future constraints on string networks resulting from the
breaking of a global U(1) at the scale fφ and annihilating at a temperature Tann due to
an explicit breaking of the symmetry parameterized by the mass of the resulting pseudo
Nambu-Goldstone boson mφ. The grey region and line correspond to the current and
future bound of Neff stemming from the emitted, relativistic axions. At a temperature
of Tann = 1− 10 eV the scenario is constraint by fits to CMB fluctuations (red) as well as
the non-observation of B-polarization modes (cyan). For fa ≥ 1014 GeV a strong enough
GW signal is emitted to be detectable by SKA, while for fa ≥ 4 × 1014 GeV LISA is
also sensitive to the signal. PIXIE and Voyage2050 (green, straight and dotted) allow
probing all of the parameter points testable by LISA and the majority accessible via
SKA. Again the great complementarity between GWs and spectral distortion experiments
shall be emphasized with the later being able to measure/constraint the mass. Further
constraints on this parameter region arise due to the emitted axions making up a fraction of
DM and featuring large isocurvature perturbations in conflict with Lyman-α observations
(purple). For annihilation temperatures Tann ≥ 105eV the most severe constraint comes
from overproducing axion DM.

Before moving on, let us compare our results to the ones obtained in [224, 225] for non-
decaying networks of scaling seeds. Both papers consider the spectral distortions due to
gravitationally induced acoustic waves in the baryon-photon fluid, just as we do in this
paper. [224] concerns the case of cosmic strings and found that only µ ≈ 10−13 can be
achieved without being in tension with CMB observations, while our analysis suggests that
µ ≈ 10−9 in the realm of detectability by Voyage2050 is possible. In [225] the breaking
of an O(N) symmetry with N ≥ 4 was studied that features no topological artefacts but
a network of scaling seeds with quasi constant Ω and dynamics of horizon size. They
find that present CMB bounds allow for µ ≈ 10−9 for non-decaying networks in good
agreement with our result.
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VIII.5.3 Phase transitions

In theories for BSM physics, the prediction that first-order phase transitions could be
present in the post-inflationary universe is very vast (see [152, 269–271]). Nevertheless,
first-order phase transitions (FOPT) proceed through bubble nucleation that resolves in
bubble collisions at relativistic speeds, [270, 272] therefore, this is a great source of GWs
as large anisotropies in the momentum tensor are sourced by the presence of the bubbles.
We consider the case in which the FOPT takes place in a purely gravitationally coupled
sector as in [59,211] and only consider the sound wave contribution to the GW spectrum.

The parameters describing such a system are the energy density in the dark sector Ωd that
can readily be exchanged for the contribution to Neff using Eq. (VIII.43), the amount of
energy freed in the phase transition relative to the one in the dark fluid αd

7 , the time of
the transition which we will give as the temperature T∗ of the SM plasma at the time8, as
well as the inverse time scale of the transition β. To keep our discussion simple we further
set the wall velocity vw ' 1 and restrict us to a speed of sound cd = 1/

√
3 in the dark

sector 9 which allows us to estimate its acoustic energy relative to its total energy as

εac,d =
ρac,d

ρd
=
κ(αd)αd
1 + αd

; κ(αd) =
αd

0.73 + 0.083
√
αd + αd

, (VIII.50)

where κ gives the efficiency factor of turning the freed energy into sound waves as found
in [273].

The energy density of GWs coming from the sound waves which are emitted from
a dark sector with nucleated bubbles of sub-horizon size is [241]

ΩGW (k) ' 0.16

(
k

kpeak

)3( 7

4 + 3(k/kpeak)

)7/2

· Ω2
d∗ ·

H∗
β
·
(
κ(αd)αd
1 + αd

)2

. (VIII.51)

The first term is again an O(1) prefactor for k = kpeak = 2a∗β/
√

3 and determines the
shape of the spectrum, while we can identify the other terms with the factors in the rough
estimate of Eq. (VIII.42).

The density fluctuations in the relativistic dark sector, just as in the baryon-photon fluid,
are related to the acoustic energy via Aδd = 〈δ2

d〉 = 4εac,d in the virial limit. Again we
set k∗ = kpeak/2, but in this case we use Eq. (VIII.30) to determine the gravitationally
induced acoustic waves. This is justified, since one expects that δd only shows a stochastic
behavior for a time ≈ 1/β while the walls are present and proceeds with the deterministic
propagation of sound waves for the remaining Hubble time following the transition 1/H∗ �
1/β.

β/H∗ determines if the PT completes mainly driven by the expansion of a few nucleated
bubbles or by the nucleation of new bubbles everywhere in space. Large values of β/H∗

7The situation commonly discussed only concerns the case where the universe is filled with one fluid.
When dealing with multiple fluids the introduction of αd and Ωd is necessary as opposed to only using
α = Ωdαd/(1 + αd). Since the bubble walls only couple to the fluid in the dark sector, the matching
conditions are only imposed on the dark sector and as a result the efficiency of generating sound waves
depends on αd as opposed to α [211].

8The dark sector, if it is thermal, must not have the same temperature as the SM plasma. If it posses
one relativistic degree of freedom its temperature is necessarily smaller. See [59,211] for further details.

9In figure VIII.3 we show the effect of varying the sound velocity and find that the suppression in the
amount of acoustic energy is small as long as the changes don’t exceed ≈ k∗/(a∗H∗) ≈ β/H∗. It has
recently been found though that even small changes can have an significant impact on the efficiency factor
κ, entering both the GW and acoustic energy estimate. [273]
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Figure VIII.12: Current and future constraints on a phase transition in a dark sector, in
terms of the SM plasma temperature at the time of the transition, released energy relative
to the energy in the dark fluid αd, the ∆Neff caused by the dark sector, and the inverse

duration of the phase transition β
H . We only take into account the effects of the sound

waves in the dark fluid caused by the transition. At temperatures T∗ = 1 − 10 eV the
scenario is constrained by CMB fluctuations in (red) and the non-observation of B-mode
polarization in the CMB in (cyan). In the temperature range of T∗ = 10− 106 eV spectral
distortions from acoustic waves (green) can probe the scenario. Strong phase transitions in
a dark sector saturating the Neff bound can already be constraint by the COBE/FIRAS
results (αd = O(1), ∆Neff = 0.3, β

H = 10). At temperatures T∗ = 105 − 107 eV the
scenario can in the future be detected by SKA, while the present Neff bound (top row) rules
out the NANOGrav signal being generated this way. For convenience we have converted
αd to α = Ωdαd/(1 + αd) on the left y-axis.
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Figure VIII.13: Current and future constraints on a first order phase transition at tem-
perature T∗ releasing a relative energy α into the SM-plasma. For temperatures below
≈ 2 MeV the released energy α leads to tensions in BBN and CMB measurements of the
baryon to photon ratio (blue). The sound waves caused by the phase transition source
GWs that can explain the NANOGrav hint (orange, filled, same as right of Fig. VII.4)
and in the future can be detected over a wide range of parameter space (orange line). The
green area and lines show the current and future sensitivity to spectral distortions caused
by the sound waves. At temperatures above ≈ 1 MeV the sound waves and therefore
spectral distortions are expected to be reduced due to damping by neutrino diffusion.

mean faster nucleation rates which means that more bubbles will nucleate inside the
Hubble horizon until the PT has completed, and hence their bubble radii get smaller. One
expects an inverse relation between β/H∗ and the amplitude of the GW spectrum in which
β/H∗ determines the peak frequency/momenta. For very strong FOPTs one might have
to reformulate the definition of β/H∗ as it may become inappropriate as was emphasized
in [274,275].

In Fig VIII.12 we show our results. Similar to the previous examples we find that spectral
distortions bridge the gap between phase transitions detectable by CMB fluctuations (T∗ =
1 − 10 eV) and by PTAs such as SKA (T∗ = 105 − 107 eV). The probes relying on scalar
mediation are however particularly strong for αd � 1. In this case the fluctuations in the
dark sector are small Pδd � 1, which impacts the GWs heavier than the sourced acoustic
waves, as one can see by comparing Eq. (VIII.42) with Eqs. (VIII.28) and (VIII.30).

VIII.5.4 Comment on Directly Coupled Sectors

Clearly, one can obtain stronger bounds from spectral distortions if there are further
interactions between the new physics sector and SM plasma apart from the gravitational
one. In this sense, the bounds presented above can be interpreted as lower limits, since
gravity is always present as a coupling force. Furthermore, any study going beyond this
has to make specific assumptions about the nature of the coupling and can therefore not
be carried out in a model-independent way as we did in Section VIII.2 and Section VIII.3.

Such studies have been carried out for cosmic strings [276, 277]. In light of the recent
findings by PTAs discussed in Chapter VII, we here want to briefly comment on the case in
which a phase transition directly causes sound waves in the SM plasma, and subsequently,
GWs are emitted. As we already saw in the previous section, the GW signal emitted
if the phase transition takes place in a completely decoupled sector can not explain the
NANOGrav data without being in tension with the Neff bound. If the signal stems from
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sound waves caused by a phase transition, the only option is therefore that these are sound
waves in the SM plasma.

To estimate the signal strength, we use the fromulas from the previous section, setting
Ωd → 1 and replacing αd → α as there is now only one fluid present.10 Since the walls
now directly cause the acoustic energy in the baryon-photon fluid, we no longer rely on
the gravitational coupling and therefore simply have

εac(k) =
κ(α)α

1 + α

√
2

π

k3

k3
∗

exp

(
− k2

2k2
∗

)
, (VIII.52)

with k∗ = a∗β/
√

3.

The results are shown in Fig. VIII.13. An energy injection around or after BBN at
T ≈ 1 MeV leads to a possible tension between the baryon to photon ratio obtained from
BBN and CMB measurements. The resulting current bound on α and its temperature
dependence has been investigated in [212], and we show it in blue. As can be seen, this
bound already excludes a decent chunk of the 2σ-region to the NANOGrav fit (orange,
filled). However we find that the remaining region can be probed by future distortion
experiments, given that our estimate above holds. Furthermore we obtain a significant
overlap of the parameter space testable by SKA and spectral distortions.

The previously mentioned conclusions come, however, with the following caveat: At the
beginning of BBN around T ≈ 1 MeV, the neutrinos decoupled from the rest of the SM
plasma. Similar to the decoupling of photons, one has to expect that all perturbations on
subhorizon scales might be significantly damped due to the diffusion of neutrinos. We an-
ticipate that this effect would reduce the reach of distortion searches past temperatures of
1 MeV. The previously mentioned effect covers a significant region of the viable parameter
space shown by the red line in Fig. VIII.13. For transition temperatures close to 1 MeV,
in that region, it can further lead to a reduction in the GW amplitude as their emission
and the damping by ν-diffusion are taking place simultaneously. We leave a detailed study
of these effects to future work.

VIII.6 Conclusion

In this chapter we showed that spectral distortions caused by gravitationally induced
acoustic waves in the baryon-photon fluid provide a powerful probe of new physics. We
derived the already known fact that the damping of the acoustic waves due to diffusion
of photons and generation of spectral distortions is independent of their origin. The µ-
distortion can therefore be calculated solely from the amplitude or equivalently the energy
of the waves (Eq. (VIII.12)).

We here for the first time presented an analytic estimate of this acoustic energy caused
by a purely gravitationally coupled sector (Eqs. (VIII.28) and (VIII.30)). This estimate
only relies on a few parameters describing the dynamics of the dark sector. The most
important amongst them are the amount of energy constituted by the dark sector, the
amplitude of its energy fluctuations as well as the ratio between the typical length scale
of the fluctuations and the horizon when the fluctuations are generated.

We continued by studying a particularly easy model consisting only out of two scalars
in great detail. Solving for the dynamics in the dark sector using a lattice method and
afterwards solving for the acoustic waves numerically, allowed us to calculate the acoustic

10For transition temperatures below ≈ 1 MeV the neutrinos are decoupled and there are technically two
sectors. Since the energy in the baryon-photon fluid is still Ωγ ≈ 1, we make this simplifying assumption.
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energy from first principles. We compared the result obtained in this way to our analytic
estimate and found agreement to within O(1) factors, in the peak region even to within
20%.
Finally we compared the reach of present and future spectral distortion experiments to
other probes relying only on gravitational coupling for a number of possible dark sectors.
For the sectors we considered the spectral distortions sourced by damping of acoustic waves
always dominated the contribution from GWs. We were able to demonstrate that dark
sectors where the energy fluctuations are present at temperatures between ≈ 10−106 eV
are either already constrained by the non-observation of spectral distortions or can be
probed in the future. A particular interesting opportunity lies in the possible interplay with
GW observations by PTAs. Here spectral distortions might be key in lifting observational
degeneracies on the parameter space of various models.
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Chapter IX

Summary and Conclusion

In this thesis we studied models motivated by dissonances in the SM, so called tuning
problems. Some of them are further able to provide light scalar and vector DM or generate
the observed cosmological baryon asymmetry. Of special interest is the ability of new
physics to source a detectable gravitational wave (GW) signal. We further showed that a
wide class of GW sources also leads to a detectable µ-distortion of the CMB spectrum.

In the first part of this thesis we studied the process of axion fragmentation. This phe-
nomenon occurs when an axion rolls over many periods of its potential. The effective mass,
the curvature of the potential, thus varies, which leads to the exponential amplification of
fluctuations in the field. While this process was studied before, we carried out a lattice
simulation to investigate the role of non-linearities. We found that those enhance the
efficiency of the energy transfer from the homogeneous part to the fluctuations. The effect
is however to small to significantly alter the conclusions about the self-stopping relaxion.

We further investigated the possibility that the universe finds itself in different minima
after the stopping process. Patches of the universe in different minima would lead to the
formation of bubbles with walls separating them. We found that the size of the fluctu-
ations caused by the stopping mechanism itself are too small to cause this phenomenon.
Inflationary fluctuations are however large enough, if inflation proceeds at high enough en-
ergies. In the relaxion case these bubbles are not cosmological viable and we were therefore
able to put a bound on the scale of inflation in this case.

While the energy density of the system is initially homogeneous, it develops large inho-
mogeneities when fluctuations start to dominate. It is easy to see that this process is
associated with energy currents and therefore also anisotropic stress, which itself leads to
the emission of GWs. We gave a simple argument based on naive dimensional analysis, why
this signal can not be detectable without the axion dark matter overclosing the universe.
In part two of the thesis we then continued to study a system of an axion coupled to a dark
photon, that features a similar instability. In this case it is the dark photon modes that
grow exponentially. This process suppresses the axion DM abundance by itself, since the
energy is transferred to the dark photon, which is why it can emit a detectable GW signal
without being in tension with cosmological bounds. The dark photon could furthermore
constituted vector DM itself. The lattice analysis that we carried out largely confirms
the results of our previous linear approach. One of the main differences we found is that
the maximal achievable suppression only reduces the axion abundance by two orders of
magnitude compared to the regular misalignment mechanism. This limits the GW signal
strength in the minimal scenario to only be detectable by future pulsar timing arrays like
SKA.

We therefore studied more involved scenarios, namely the kinetically misaligned axion and
the post inflationary evolution of the relaxion. In the first scenario the axion has an initial
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velocity. The resulting phenomenology has recently gained a lot of attention. It can lead
to the axion being a viable DM candidate over a wide range of parameter space accessible
by direct detection experiments. It also features a viable scenario for baryogenesis as well
as an enhancement of existing GW backgrounds if the axion leads to a period dominated
by kinetic energy. We showed that even, if the axions energy is sub-dominant at all times,
it can source a detectable GW signal by itself, if it couples to a dark photon. This signal
can be strong enough to be detected by pulsar timing arrays (PTAs) and interferometers
without being in tension with cosmological constraints. For the post-inflationary evolution
of the relaxion we found that the coupling to a dark photon not only leads to a detectable
GW signal, but also that the friction provided by the production of photons keeps the
relaxion from overshooting its original minimum. This is a necessary condition not to ruin
the relaxion solution to the hierarchy problem and therefore opens new viable parameter
space.
Finally we studied dark sectors with sizeable energy fluctuations more broadly. We asked
the question whether such new physics can source a strong enough GW signal to explain the
recent hint by today’s PTAs, such as NANOGrav. To answer this question we developed a
quick fitting method that allows for the estimation of the model parameters. We found that
especially the existing Neff bound from CMB and BBN measurements limits the ability to
explain the hint by a purely gravitationally coupled sector severely. For example in the
case of an ALP coupled to dark photons, only extreme parameter points in the specific case
were the ALP is the relaxion are able to produce a strong enough signal. It is intriguing
however that the sensitivity of PTAs is already in the same realm as other cosmological
measurements. Our studies highlighted the important role that these observations will
take in the future as PTAs are constantly taking more data.
Further we showed that distortions in the CMB spectrum present a new possibility to
search for purely gravitationally coupled sectors. Energy fluctuations in the dark sector
lead to scalar metric fluctuations that themselves cause acoustic waves in the baryon-
photon fluid. These acoustic waves are eventually damped due to diffusion of photons at
which point the energy of the wave is converted to heat. If this damping takes place when
the photon number is conserved but otherwise thermalization is achieved, this leads to a
µ-distortion. We showed that a wide variety of new physics processes such as the above
mentioned instabilities, but also first order phase transitions and scaling seed networks,
can lead to detectable distortions. It is especially intriguing that some of the models that
are able to explain the recent PTA data might also lead to a detectable spectral distortion.
In the future a combination of spectral distortions and PTA measurements might not only
detect such a sector but due to the complementary nature of the signals also be able to
fully determine its parameters.
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Chapter A

Redshifting Abundances and Scales

Sectors that only interact gravitationally are nowadays constraint by precise cosmological
and astrophysical observations. We here give the relations to find the present day abun-
dances once the energy of the sector has taken on the scaling a−3 and a−4 for dark matter
and dark radiation respectively. One of the strongest hints for dark matter is its aiding
role in structure formation which requires it to be ’cold’. This means that its momentum
has to be small compared to its mass. We derive the corresponding bound below. We
furthermore give the formulas that relate the length and frequency scales of fluctuations
or GWs at the time of their production to the present day value.

A.1 Dark Matter

Relic Abundance

Given that the dark matter abundance is set at a∗ and from thereon only redshift ∝ a−3

has to be taken into account, the relic abundance can be calculated as

Ω0
φ = Ω∗φ

gρ,∗
gs,∗

gs,eq

gρ,γ

Tosc

T0
Ω0
γ , (A.1)

with gs,eq = 2 + 2Neff(7/8)(4/11) = 3.938, gρ,γ = 2, T0 = 2.73 K. gρ and gs denote the
effective relativistic degrees of freedom in the SM plasma in terms of energy density and
entropy. For temperatures above 10 MeV when all species are in equilibrium these two
coincide.
If the dark matter is produced with a momentum k∗ larger than its mass k∗/a∗ > m, it
redshifts like radiation before the momentum becomes negligible at amat ' k∗/m leading
to a suppression of k∗/(a∗m) compared to the equation above.

Cold enough

Secondly a non-zero momentum leads to a finite velocity of the dark matter at matter
radiation equality

β =
k∗
aeqm

=
k∗
a∗m

Teq

T∗

(
gs,eq

gs,∗

)1/3

. (A.2)

If this velocity is sizeable, structure formation will be suppressed leading to tensions with
observations of the Lyman-α forest. We infer the bound on the velocity from studies
of sterile neutrino dark matter produced through freeze out, where the average neutrino
momentum is given by the temperature. From Refs. [278,279] we find

β . 1.1× 10−4 . (A.3)
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A.2 Dark Radiation

Relic Abundance

Any effectively massless degree of freedom changes the number of effective relativistic
degrees of freedom (Neff). At the epoch of recombination, the dark radiation contribution
to Neff is given by

∆Neff =
8

7

(
11

4

) 4
3 ρd
ργ

∣∣∣∣
T=Trec

, (A.4)

where the energy densities of SM photons and dark radiation are ργ and ρd, respectively.
Since both species scale as radiation, the fraction ρd/ργ only changes when SM fields
become non-relativistic and transmit their entropy to the photon bath. As stated above
the dark radiation abundance is set at a∗ resulting in the following contribution to ∆Neff

∆Neff =
8

7

(
11

4

) 4
3
(
gs,eq

gs,∗

) 4
3
(
gρ,∗
gρ,γ

)
Ω∗d. (A.5)

The Planck 2018 TT,TE,EE,lowE+lensing+BAO dataset constrains ∆Neff < 0.3 at 95%
confidence level [172]. Future CMB observations are expected to improve this bound by
an order of magnitude.

A.3 Gravitational Waves

Relic Abundance

Gravitational waves constitute also a form of dark radiation and therefore in principal also
contribute to Neff. As discussed in the main text, however, the energy density in GWs
is negligible compared to the one in the sector sourcing them for all mechanisms of GW
production discussed in this work.
In the thesis we stress however that GWs can be used to search for new exotic dark sectors.
To determine the detectability of a signal in a pulsar timing array or laser interferometer
its present day energy density needs to be known. Assuming that the GW production
takes place at a∗ it is calculated as

Ω0
GW = Ω∗GW

(
gs,eq

gs,∗

) 4
3
(
gρ,∗
gρ,γ

)
Ω0
γ . (A.6)

A.4 Redshifting Scales

The mechanism that we considered in this work for the production of GWs or fluctuations
can be associated with a typical wavelength/length scale at the time of production. When
comparing the signal to the sensitivity of an experiment, the present day length scale needs
to be known. Given a scale at production k/a∗ the redshifted value is determined via

k

a0
=

(
gs,eq

gs,∗

)1/3 T0

T∗

k

a∗
. (A.7)
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Chapter B

Lattice Implementation

The main focus of this chapter is the implementation of the axion-dark photon coupling
on the lattice that was used to produce the results of Chapter IV. The much simpler
algorithm that one obtains when getting rid of the dark-photon and its coupling, leaving
only scalars, is however what was used in Chapters III and VIII. For the axion and dark
photon dynamics we closely followed Refs. [72, 73] while for the gravitational waves we
adhere to Refs. [111, 112]. While for Chapters III and IV we used a code written from
scratch, for Chapter VIII we used the implementation given by the package CosmoLattice
and only implemented the energy density and the shear of scalar fields ourselves. These
expressions are given at the end of the chapter.

B.1 Lattice Action

We use a staggered grid algorithm to solve the dynamics of the axion coupled to the dark
photon. At the heart of these algorithms lies the notion of some fields lying between
lattice sites. For example, the axion field, as it is parity odd, is displaced half a time step
forward. We will denote this by φ(x + dx0/2) = φ|x+dx0/2, where x = (x0, x1, x2, x3) is a
point on the lattice. Furthermore, we use a non-compact formulation of the U(1) gauge
dynamics, meaning that we use the field strength as our variable instead of Wilson lines.
Since the gauge field Xµ is associated with the Wilson line linking neighboring lattice sites,
it naturally is displaced by +dxµ/2 (Xµ|x+dxµ/2). We define the forward and backward
derivative of a quantity f(x) as

∆±µ f(x± dxµ/2) =
±f(x± dxµ)∓ f(x)

dxµ
. (B.1)

This reproduces the continuum derivative up to O(dx2
µ), but only if one expands around

the natural lattice site x± dxµ/2 as one can easily check

∆±µ f(x± dxµ/2) = ∂µf(x± dxµ/2) +O(dx2
µ). (B.2)

The last rule needed for building the discretized version of the action in Eq. (IV.1) is that
the product of two operators that reproduce their continuum version up to second order
is only of second order if the operators lie on the same lattice site.
We work in conformal time and assume that the contribution of the axion and dark
photon to the total energy density is negligible, i.e. that the evolution of the scale factor
is independent of the dynamics. We assume the scale factor is a given function a(τ) that
can be evaluated to get a|τ and a|τ+dτ/2. The action we want to discretize reads:

S =

∫
d4x

[
a2

2
∂µφ ∂νφ η

µν − a4V (φ)− 1

4
XµνXαβη

µαηνβ +
α

8f
φXµνXαβε

µναβ

]
, (B.3)
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where ∂µ = (∂τ , ∂xi) denotes the derivative with respect to comoving coordinates, ηµν =
diag(1,−1,−1,−1) is the inverse Minkowski metric, Xµν = ∂µXν − ∂νXµ is the dark
photon field strength and εµναβ is the totally antisymmetric tensor with sign convention
ε0123 = 1. The discretized version of the axion part of the action is

S ⊃ dτdx3
∑
x

[
(a|τ )2

2
∆−0 φ∆−0 φ

∣∣∣∣
x

−
(a|τ+dτ/2)2

2

∑
i

∆+
i φ∆+

i φ

∣∣∣∣
x+dτ/2+dxi/2

+ (a|τ+dτ/2)4 V (φ)

∣∣∣∣
x+dτ/2

]
,

(B.4)

where we have indicated the exact lattice site of the displaced operators. The lattice
version of the dark photon field strength is

Xµν |x+dxµ/2+dxν/2 = ∆+
µXν −∆+

ν Xµ, (B.5)

which is invariant under the gauge transformation

Xµ → Xµ + ∆+
µα, (B.6)

where α(x) is an arbitrary function of the lattice site. It is convenient to introduce the
electric and magnetic fields as

Ei = X0i|x+dτ/2+dxi/2 (B.7)

Bi =
1

2
εijkXjk|x+dxj/2+dxk/2, (B.8)

as this allows us to write the gauge kinetic term on the lattice as

S ⊃ dτdx3
∑
x,i

1

2

[
EiEi

∣∣∣∣
x+dτ/2+dxi/2

−BiBi
∣∣∣∣
x+dxj/2+dxk/2

]
. (B.9)

Finding a lattice version of the interaction piece is more challenging, since the electric and
magnetic field strengths are associated with different sites on the lattice and therefore the
first guess

S ⊃ dτdx3
∑
x

α

f
φ
∑
i

EiBi, (B.10)

does not reproduce the continuum action up to second order. The solution to this prob-
lem is to introduce averages of operators between lattice sites, since these reproduce the
operator to second order on the site in between. In principle there are several averaging
schemes, but one also needs to check that the shift symmetry φ → φ + ε is respected
and that the resulting equations of motion allow for an iterative solution. These issues
are discussed in detail in Ref. [72], and we use the scheme found there, employing the
following averages:

E
(2)
i |x+dτ/2 =

1

2

(
Ei|x+dτ/2+dxi/2 + Ei|x+dτ/2−dxi/2

)
(B.11)

B
(4)
i |x =

1

4

(
Bi|x+dxj/2+dxk/2 +Bi|x+dxj/2−dxk/2

+Bi|x−dxj/2+dxk/2 +Bi|x−dxj/2−dxk/2
)
. (B.12)

With these definitions, the interaction piece becomes

S ⊃ dτdx3
∑
x

α

f
φ

1

2

∑
i

E
(2)
i

(
B

(4)
i +B

(4)
i |+dτ

)∣∣∣∣
x+dτ/2

. (B.13)
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B.2 Equations of Motion and Integration Scheme

We work in temporal gauge where X0 = 0. The dynamical degrees of freedom are Πφ =
∆−0 φ and Xi given at time τ as well as φ and Ei = ∆+

0 Xi at time τ + dτ/2. We use the
defining equation of Ei to find Xi at τ + dτ

Xi

∣∣∣∣
x+dτ

= Xi

∣∣∣∣
x

+ dτ Ei

∣∣∣∣
x+dτ/2

. (B.14)

By varying the action with respect to φ one finds the equation of motion

∆+
0 (a2Πφ) = a2

∑
i

∆−i ∆+
i φ− a4V ′(φ)

+
α

2f

∑
i

E
(2)
i

(
B

(4)
i +B

(4)
i |x+dτ

)
,

(B.15)

that is used to evolve Πφ

a2(τ + dτ)Πφ|x+dτ = a2(τ)Πφ + dτ

[
a2|τ+dτ/2

∑
i

∆−i ∆+
i φ

− a4|τ+dτ/2 V
′(φ) +

α

2f

∑
i

E
(2)
i

(
B

(4)
i +B

(4)
i |x+dτ

)]
.

(B.16)

Note that since Xi is known at τ and τ + dτ , the calculation of Bi and B
(4)
i at these

times is straightforward and the interaction term can be calculated explicitly. Now that
Πφ(τ + dτ) is known, φ can be evolved

φ|x+dτ ·3/2 = φ|x+dτ/2 + dτ Πφ|x+dτ . (B.17)

Finally, we have the equation of motion of Xi to evolve Ei

∆−0 Ei =−
∑
j,k

εijk∆
−
j Bk −

α

2f

(
ΠφB

(4)
i + Πφ|x+dxiB

(4)
i |x+dxi

)
+

α

8f
(2− dτ∆−0 )

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ E
(2)
k |x±dxj

)
.

(B.18)

Notice however, that the evolved Ei appears not only on the left-hand side of the equation
but also on the right-hand side in the interaction piece. Furthermore, the interaction piece
features Ei not only at different times but also at different spatial positions due to the
averages, making an explicit solution impossible. We therefore use the following implicit
method. First, we approximate the Ei|x+dτ ·3/2 by the already known Ei|x+dτ/2 in the
interaction piece to get

Ei|x+dτ ·3/2,1 = Ei|x+dτ/2 + dτ

[
−
∑
j,k

εijk∆
−
j Bk

− α

2f

(
ΠφB

(4)
i + Πφ|x+dxiB

(4)
i |x+dxi

)
+

α

4f

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ|x+dτ/2 E
(2)
k |x±dxj+dτ/2

)]
.

(B.19)
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This first approximation only satisfies the equation of motion up to O(dτ) and we therefore
have to at least do one more iteration, where we use the Ei|x+dτ ·3/2,1 we just found to
approximate Ei|x+dτ ·3/2.

Ei|x+dτ ·3/2,2 = Ei|x+dτ ·3/2,1

+ dτ

[
α

8f

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ|x+dτ ·3/2 E
(2)
k |x±dxj+dτ ·3/2,1

)
− α

8f

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ|x+dτ/2 E
(2)
k |x±dxj+dτ/2

)]]
.

(B.20)

While this approximation is now correct up to O(dτ2), it still poses a violation to the shift
symmetry φ → φ + ε. This violation can be suppressed via higher order approximations
such as

Ei|x+dτ ·3/2,n+1 = Ei|x+dτ ·3/2,n

+ dτ

[
α

8f

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ|x+dτ ·3/2 E
(2)
k |x±dxj+dτ ·3/2,n

)
− α

8f

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ|x+dτ ·3/2 E
(2)
k |x±dxj+dτ ·3/2,n−1

)]]
.

(B.21)

This concludes one time step in the evolution of the fields. To integrate the equations of
motion, one repeats these steps. One can obtain one more equation of motion, the Gauss
constraint, by varying the action with respect to X0∑

i

∆−i Ei = − α

4f

∑
i

∑
±

∆±i φ (2 + dτ∆+
0 )B

(4)
i |x±dxi . (B.22)

Given the fields at the same times as in the begining of the step, checking this equation is
straightforward, since Bi|x+dτ can be calculated using Eq. (B.14). One has to choose the
initial field configuration such that the Gauss constraint is fulfilled. Evolving the fields
using the exact equations of motion then ensures that it stays fufilled at all times. It can
therefore be used to check the accuracy of the implicit method solving for Ei|x+dτ ·3/2.

B.3 Fourier Transformation and Polarization

We define the Fourier transformation of fields not spatially displaced from a lattice site
(e.g. φ and Πφ) as

φ(τ,k) =
L3/2

N3

∑
x

φ(τ,x) exp (−ik · x) . (B.23)

For fields that are spatially displaced, we take the displacement into account in the ex-
ponential. For example for the Fourier transform of Xi which is displaced by +dxi/2 we
have

Xi(τ,k) =
L3/2

N3

∑
x

Xi(τ,x + dxi/2) exp (−ik · (x + dxi/2)) . (B.24)

Note that this also means that a field and its derivatives transform differently since the
derivative is displaced. The benefit of this convention is that the relation between a field
and its derivative in Fourier space is simply

F
(
∆±i φ

)
(τ,k) = i pi(ki)φ(τ,k) , pi(ki) ≡

2

dx
sin

(
dx

2
ki

)
. (B.25)
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Note that pi(ki) is real, making the discussion of polarization easier as shown in Ref. [112].
It allows us to define the polarization with respect to the behavior under rotations around
p(k), as in the continuum case∑

j,k

εijk pj(kj)X
±
k (k) = ∓i |p(k)|X±i (k). (B.26)

B.4 Initial Conditions

We investigate the process of particle production during a period of radiation domination,
where the scale factor takes the form a(τ) = mτ . We start the simulation at τ0 = 0.1/m
when H0 = 100m, such that the axion is pinned by Hubble friction and Πφ,0 = 0, and
assume the axion is displaced by φ0 = θf from the minimum of the potential. The
dark photon field is in the Bunch-Davies vacuum at the start of the simulation. This
corresponds to Xi(τ0,k) and Ei(τ0,k) being drawn from a Gaussian distribution with
widths 1/

√
2|p(k)| and

√
|p(k)|/2, respectively. Afterwards, the projector

Pij = δij −
pi(ki)pj(kj)

|p(k)|2 , (B.27)

is applied to ensure that the Gauss constraint Eq. (B.22) is initially fulfilled. We then
take the inverse Fourier transform to arrive at Xi(τ0,x) and Ei(τ0,x).

B.5 Lattice Dimensions and Number of Iterations

We choose the time step of our simulations as

dτ =
1

4
min{dx, 1/(ma(τ))} , (B.28)

in order to avoid instabilities as a result of the discretization. We varied the side lengths
of the simulated volume L and the number of lattice sites along each direction N as well
as the number of iterations used when implicitly solving for Ei. In Fig. IV.1, we show the
evolution of the comoving number density of the axion and dark photon for a variety of
choices for the above mentioned parameters. Except for the two runs where the length
was chosen particularly small L = π/(4 ·m), the results agree up to ≈ 10% fluctuations.
Aside from the physical quantities we also monitored violations in the Gauss constraint
(B.22). We introduce the quantity〈∣∣∣∑i ∆−i Ei + α

4f

∑
i

∑
±∆±i φ (2 + dτ∆+

0 )B
(4)
i |x±dxi

∣∣∣〉
〈∑i |Ei| /dx〉

, (B.29)

where 〈...〉 denote averages over all lattice sites, to measure the relative error in the Gauss
constraint. In Fig. B.1 we show the evolution of this quantity. We note that the relative
error starts out around 10−15 at a = aosc independently of the lattice parameters, close
to the precision of a double precision float of 2−53 ≈ 10−16. This goes to show that our
procedure to initialize the dark photon indeed respects the Gauss constraint as expected.
During the linear regime, when the dark photon energy is negligible compared to the
axion, the relative error stays around 10−15 and only jumps up once the system enters the
non linear regime, when the energy in the axion and dark photon becomes comparable
and the axion field is fully inhomogeneous. As we can see from Fig. B.1, the size of the
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Figure B.1: Evolution of the relative error in the Gauss constraint Eq. (B.29) for different
choices of the number of lattice sites along each direction N and the side length of the
simulated box L with fixed α = 60, θ = 1. The number of iterations used in the implicit
scheme is fixed at 2 for the left panel while it is varied in the right panel with N = 256, L =
π/(2 ·m) held fixed. In all cases, the error stays close to machine precision ≈ 10−16 up
to a/aosc ≈ 8, when the dark photon production backreacts on the axion. Thereafter, the
error is minimized for small lattice spacings dx = L/N and a high number of iterations.

violation of the Gauss error depends on the lattice spacing dx = L/N and (as expected)
on the number of iterations. It should be noted that already for n = 8 iterations the error
in the Gauss constraint does not exceed 10−14 significantly and we expect it to stay at
machine precision with only a few more iterations.
Since none of the physical quantities showed significant dependence on the number of
iterations n for n ≥ 2, which is necessary to ensure convergence at O(dx2), we set n = 2
for all the simulations discussed in the main text to minimize the computational effort.
The choices for N and L listed in Section IV.3 were thus motivated by getting reliable
results for the physical quantities, covering the relevant range of momenta and keeping
computational costs down.

B.6 Gravitational Waves

Following Ref. [111], we calculate the gravitational wave spectrum by solving for the
transverse traceless (TT) fluctuations of the metric

1

a2
∂τ (a2∂τhij)−∇2hij =

2

M2
P

Πij . (B.30)

We note that this equation as well as the TT projection is linear, and for practical purposes
we therefore solve

1

a2
∂τ (a2∂τ h̃ij)−∇2h̃ij =

2

M2
P

Sij , (B.31)

where Sij is the TT part of the energy-momentum tensor

Sij = ∂iφ∂jφ−
1

a2
(EiEj +BiBj) . (B.32)

The metric fluctuation hij can then be obtained by applying the TT projection Π

Π(h̃ij) = hij . (B.33)
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B.6. GRAVITATIONAL WAVES

From the source term we can immediately see that the corresponding fields on the lattice
are not located on the same lattice site and an averaging scheme has to be employed. An
important criterion when choosing this scheme, aside from practicality, is that it should
allow for coherent interpretation of the TT conditions

∂ihij = 0, hii = 0. (B.34)

There exist many such schemes as discussed in Ref. [112]. Therein the authors find that
the choice of scheme has only marginal influence on the results. In the scheme we employ,
hij sits at x + dτ/2. Since the position of hij is independent of i and j, the trace can
be calculated at each site x + dτ/2. To find a local interpretation of the condition for
transversality, we introduce the symmetric lattice derivative

∆sym
µ φ =

φ(x+ dxµ)− φ(x− dxµ)

2dxµ
. (B.35)

The symmetric derivative reproduces the continuum derivative with O(dx2
µ) accuracy and

is located at the same site as the field φ in contrast to the one-sided derivatives ∆±. With
this, the transverse condition also takes a local form

∑
i

∆sym
i hij

∣∣∣∣
x+dτ/2

= 0,
∑
i

hii

∣∣∣∣
x+dτ/2

= 0 . (B.36)

The equation of motion on the lattice reads

1

a2
∆−τ (a2∆+

τ h̃ij)−∆−k ∆+
k h̃ij =

2

M2
P

Sij . (B.37)

Since the left side of the equation is located at the lattice site x+dτ/2, we have to employ
an averaging scheme such that Sij is located on the same site. To do so, we introduce

B
(8)
i |x+dτ/2 =

1

2

(
B

(4)
i |x +B

(4)
i |x+dτ

)
, (B.38)

and define on the lattice

Sij = ∆sym
i φ ∆sym

j φ− 1

a2

(
E

(2)
i E

(2)
j +B

(8)
i B

(8)
j

)
. (B.39)

With this explicit expression for the source term Sij , Eq. (B.37) can be solved in a leap
frog scheme to find h̃ij . The associated momentum of the symmetric derivative is

F
(
∆sym
i φ

)
(τ,k) = i psym

i (ki)φ(τ,k); psym
i (ki) ≡

1

dx
sin (dx ki) . (B.40)

By replacing k in the continuum with p sym(k), the discussion of polarization and the TT
projection is analogous to the continuum. Therefore, the two polarizations are defined by∑

k,l

psym
k (kk)

[
εikl h

±
lj(k) + εjkl h

±
il (k)

]
= ∓2i |p sym(k)| h±ij(k). (B.41)
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B.7 Energy Density and Shear

For Chapter VIII we furthermore need the energy density and the shear of the simulated
system. Since there we only consider scalars two scalars φ and ψ, we will restrict our
discussion to them from now on. Again we will need to employ an averaging scheme.
Otherwise the kinetic energy will be displaced from the potential and gradient ones. In the
scheme we employ the velocities are brought half a time step forward, which is equivalent

to using Π
(2)
φ |x+dτ/2 = (Πφ|x + Πφ|x+dτ )/2. From these one can calculate the total energy

as discussed in e.g. [235]

ρtot =

〈
1

2

∑
Φ∈{φ,ψ}

[
Π

(2)
Φ Π

(2)
Φ +

1

2

3∑
i=1

(∆+
i Φ∆+

i Φ + ∆−i Φ∆−i Φ)

]
+ V (φ, ψ)

〉
. (B.42)

In principle a generalization to an energy density is straight forward. The only term one
has to treat carefully is the gradient energy. These reproduce ∇iφ(x) only up to O(dx)
but ∇iφ(x± dx/2 êi) to O(dx2). We therefore employ the following averaging scheme to
get an energy density that is correct up to O(dx2)

ρtot(x) =
1

2

∑
Φ∈{φ,ψ}

[
Π

(2)
Φ Π

(2)
Φ +

1

2

3∑
i=1

(∆+
i Φ∆+

i Φ + ∆−i Φ∆−i Φ)

]
+ V (φ, ψ) . (B.43)

This scheme has the added benefit of reproducing the energy that is used in CosmoLattice

when consistently evolving the scale factor or checking energy conservation

Etot =
N3

L3

∑
x

ρtot(x) . (B.44)

This is opposed to a scheme where one uses the symmetric spacial derivative

∆sym
i φ(x) =

1

2

φ(x + dx êi)− φ(x− dx êi)

dx
. (B.45)

The expressions given here and below only hold in a flat space-time but can easily be
generalized to expanding backgrounds using the α-time concept of CosmoLattice [235,
236].
The shear is the longitudinal-traceless component of the anisotropic stress. We again use
the pseudo-stress given in Eq. (B.39), but only keep the scalars. To obtain the longitudinal
part we apply the following projector

(ρ+ p)σ(k) =

3∑
i,j=0

(
p̂sym
i (k)p̂sym

j (k)− 1

3
δij

)
Tij(k) . (B.46)
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Chapter C

Free Scalar Field

Below we calculate the energy fluctuations and their autocorrelation functions for a single
relativistic scalar field φ with Gaussian fluctuations

Pφ(k) = Aφ

√
2

π

k3

k̃3
∗

exp

(
− k2

2k̃2
∗

)
, (C.1)

where 1/k̃∗ is the characteristic length scale of fluctuations in the field as opposed to the
energy density. We assume that the modes of the field are virialized such that Pφ̇(k) =

ω2
kPφ(k), where ω2

k = k2+m2 is the frequency of the respective mode. For a free scalar field
the mode functions follow the equation of motion of an unperturbed harmonic oscillator,
which is why the autocorrelation of both φ and φ̇ is given as cos(ωkt), while the cross-
correlation is given as

〈φ(k, t)φ̇∗(k′, t′)〉 =
2π2

k3
Pφ(k)ωk sin

(
ωk(t− t′)

)
(2π)3δ(3)(k− k′). (C.2)

Energy Fluctuations

The energy density of the field is

ρφ =
1

2

(
φ̇2 +∇φ2 +m2φ2

)
(C.3)

and its Fourier coefficients are given as

ρφ(k) =
1

2

∫
d3p

(2π)3
φ̇(p)φ̇(k− p) +

[
m2 − p · (k− p)

]
φ(p)φ(k− p). (C.4)

The mean energy density can be calculated as

ρφ =
1

V
〈ρφ(k = 0)〉 =

{
3Aφk̃

2
∗ ωk ≈ k

Aφm
2 ωk ≈ m

(C.5)

for the relativistic and non-relativistic case respectively and V denotes the volume one is
averaging over. When calculating the correlation of energy fluctuations 〈ρφ(k)ρ∗φ(k′)〉 we
will face the following kind of correlators between Gaussian variables

= 〈φ(p)φ(k− p)φ∗(p′)φ∗(k′ − p′)〉 (C.6)

= 〈φ(p)φ∗(p′)〉〈φ(k− p)φ∗(k′ − p′)〉+ 〈φ(p)φ∗(k′ − p′)〉〈φ(k− p)φ∗(p′)〉 (C.7)
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= (2π)3δ3(k− k′)
[
(2π)3δ3(p− p′) + (2π)3δ3(p− (k′ − p′))

] 2π2

p3
Pφ(p)

2π2

|k− p|3Pφ(k− p) ,

(C.8)

where we assumed k 6= 0 and therefore 〈φ(p)φ(k − p)〉 = 0. Putting it all together we
arrive at

Pρφ(k, t, t+ ∆t) =
k3

2π2

1

2

∫
d3p

(2π)3

2π2

p3
Pφ(p)

2π2

|k− p|3Pφ(k − p)· (C.9)[ (
ω2
pω

2
k−p + (m2 − p · (k− p))2

)
cos(ωp∆t) cos(ωk−p∆t)+

2ωpωk−p(m
2 − p · (k− p)) sin(ωp∆t) sin(ωk−p∆t)

]
.

We can further evaluate this expression for k � k̃∗. In this case approximate p = p − k
except sine and cosine, since we want to keep track of the time evolution. The p-integral
is dominated by modes with p ≈ k̃∗ and we therefore approximate

∆ω = ωp − ωk−p ≈
{
k · p/|p| ωk̃∗ ≈ k̃∗
k · p/m ωk̃∗ ≈ m.

(C.10)

We then find by using trigonometric identities

Pρφ(k, t, t+ ∆t) ≈ k3

2π2

∫ ∞
0

d log p
2π2

p3
P2
φ(p)ω4

p

∫
S2

dΩp

4π
cos(∆ω∆t) . (C.11)

The last integral in this expression is the autocorrelation function of the energy fluctua-
tions. In the relativistic case it does not depend on |p|, while in the non-relativistic we
can approximate |p| ≈ k̃∗ and introduce the typical velocity of energy transport in the
dark sector as cd = k̃∗/m to find

Aδφ(k,∆t) =

{
sinc(kt) ωk̃∗ ≈ k̃∗
sinc(cdkt) ωk̃∗ ≈ m.

(C.12)

We argued in the main text that the only relevant time scale for the autocorrelation of the
energy density is cd/k, with cd the typical velocity of energy transport. Here we showed
this explicitly.

Shear

The space-space part of the energy momentum tensor of a scalar field is given by

Tij ≈ ∇iφ∇jφ , (C.13)

where we neglected contributions proportional to gij that exclusively contribute to the
trace. We find the shear by going to Fourier space and projecting out the longitudinal
traceless component

σφ(k) =
1

ρφ + pφ

[
1

k2
kiTij(k)kj −

1

3
Tii(k)

]
. (C.14)
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From there the steps are the same as for the energy density and we arrive at

Pσφ(k, t, t+ ∆t) =
1

(ρφ + pφ)2

k3

2π2
2

∫
d3p

(2π)3

2π2

p3
Pφ(p)

2π2

|k− p|3Pφ(k − p)· (C.15)[(
k̂p
)(

k̂(p− k)
)
− 1

3
p(p− k)

]2

cos(ωp∆t) cos(ωk−p∆t) .

When we expand the cosines again for k � k̃∗, we find

cos(ωp∆t) cos(ωk−p∆t) =
1

2

(
cos
(

2ωk̃∗t
)

+ cos(∆ωt)
)
. (C.16)

To arrive at the autocorrelation function one would need to carry out the integration. But
we are content here with only showing that for a non-conserved quantity like the shear
indeed both time scales 1/k̃∗ and 1/k enter. This can already be seen from the above

expression with the cos
(

2ωk̃∗t
)

term not canceling.
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horizon when the fluctuations in the dark sector develop. Subsequently the
acoustic oscillations are damped for both modes once they cross the diffu-
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VIII.4 Evolution of energy components in the dark sector. Around aosc the φ-field
starts oscillating and the energy initially stored in the quartic potential (red)
starts going back and forth between the potential and kinetic energy (or-
ange). The dark sector transitions from vacuum to radiation like scaling and
its total energy (blue) asymptotes to the value given in Eq. (VIII.33) (dot-
ted, black). The instabilities induced by the coupling (purple) in ψ lead to
its energy (green) growing exponentially past aosc. The mode functions of
ψ can be approximated by solutions to the Lamé equation, leading to the
estimate given by the dashed black line. The horizontal black line marks a∗,
the time when the energy in the homogeneous φ field equals the energy in
inhomogenities of ψ as estimated in Eq. (VIII.34). At this point the pertur-
bative treatment breaks down, making the lattice analysis necessary. Past
this point the majority of energy is stored in fluctuations of φ and ψ. . . . . . 126

VIII.5 Evolution of power spectra of the φ and ψ-field (top row) as well as energy
fluctuations δd and shear σ̃d in the dark sector (second row). In the third
row we show the induced acoustic energy in the baryon-photon fluid through
gravitational coupling. See Section VIII.4.3 for discussion. In the bottom
row we furthermore show the resulting spectrum of gravitational waves as
discussed in Section VIII.5.1. The vertical, black, dotted line marks the
horizon scale at a∗, k ≈ aoscω∗/70, and the dashed line gives our estimate for
the fastest growing mode in ψ, k∗ ≈ aoscω∗/

√
2. The thick, black, straight

and dashed lines give analytic estimates discussed in the text. . . . . . . . . . 128

VIII.6 Evolution of the energy fluctuation δd(k, τ) and the shear σ̃d(k, τ) for
two modes (orange and green) in the infrared tail of the spectrum (k =
0.05 aoscω∗). The straight and dotted line give the real and imaginary part
respectively. The gray envelope indicates the evolution of the power spectrum
∝
√
P(k, τ) as calculated by averaging the amplitude of all mode-functions

in the respective bin. In the close-up on the Hubble time past a∗ ≈ 70 aosc in
the bottom panel, we have indicated the amplitude of the energy fluctuations
growing ∝ [k(τ − τ∗)]2 by the black dotted lines. . . . . . . . . . . . . . . . . 129

VIII.7 Autocorrelation of the energy fluctuation δd(k, τ) and the shear σ̃d(k, τ) for
same momentum as in Fig. VIII.6 (k = 0.05 aoscω∗). For the energy fluctua-
tion we show for comparison the sinc that we find analytically in Appendix C
for a free scalar field (black). . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

VIII.8 Close-up of the acoustic energy spectrum at the final time of the simulation.
The blue line represents the physical result, while the orange line stems from
a simulation in which the shear of the dark sector was neglected. The straight
black line gives the analytical estimate, with the black dashed line indicating
a k−4 power law that seems more appropriate to describe the UV tail than
the exponential decay of the analytic estimate. The vertical, black dotted
and dashed line give the horizon at a∗ and the estimate of the fastest growing
mode in the ψ-field, k∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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VIII.9 Constraints and future probes of the λφ4-model introduced in Section VIII.4.
ω∗ determines the temperature T∗ at which the fluctuations come to dominate
the energy in the dark sector and the initial amplitude φi gives the energy
in the dark sector Ωd scaling the signal strength. The gray area and line
give the current and future bound resulting from Ωd increasing the effective
number of neutrinos at recombination. For T∗ below O(102 eV) the scenario is
constraint by fits to CMB fluctuations (red) as well as the non-observation of
B-polarization modes (cyan). For the wide range of annihilation temperatures
of 102 − 107 eV spectral distortions are able to probe the scenario with the
future missions PIXIE (straight) and Voyage2050 (dotted). We show the
bound including only the contribution from scalar acoustic waves in green
and the one from only considering GWs in pink. At temperatures above
105 eV the model becomes testable by the future pulsar timing array SKA
(orange line) and in the range T∗ ≈ 106 − 107 eV can possibly explain the
NANOGrav signal with the 2σ region of the fit given by the orange area.
Since this model is particularly efficient at emitting GWs, the corresponding
probes dominate in all of the shown parameter space. . . . . . . . . . . . . . 134

VIII.10Left: Constraints and future probes of domain walls in terms of the annihi-
lation temperature of the network Tann and the surface tension σ. Assuming
that the domain walls relic density behaves as dark radiation after the annihi-
lation leads to a contribution to Neff with the present and future bound shown
as the gray area and line respectively. At annihilation temperatures below
O(102 eV) the scenario is constraint by fits to CMB fluctuations (red) as well
as the non-observation of B-polarization modes (cyan). For the wide range
of annihilation temperatures of 102 − 107 eV spectral distortions as a result
of the damping of acoustic waves (green) are able to probe the scenario, with
current bounds from the COBE/FIRAS mission already in the same realm as
the current Neff bound in the range Tann = 103 − 105 eV and future missions
PIXIE and Voyage2050 going far beyond all other probes in this range. We
also show the parameter space testable by the Voyage2050 mission taking into
account only the contribution to the µ-distortion from gravity waves (pink
dotted). This contribution is negligible in the parameter space still allowed
by measurements of Neff though. We have picked two benchmarks A and B.
Right: On the top we show the GW signal for the benchmarks in relation to
the power law integrated noise of SKA. While SKA can not distinguish the
two scenarios, the induced spectral distortion is drastically different as can
be seen from the bottom panel. . . . . . . . . . . . . . . . . . . . . . . . . . . 137
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VIII.11Present and future constraints on string networks resulting from the break-
ing of a global U(1) at the scale fφ and annihilating at a temperature Tann
due to an explicit breaking of the symmetry parameterized by the mass of
the resulting pseudo Nambu-Goldstone boson mφ. The grey region and line
correspond to the current and future bound of Neff stemming from the emit-
ted, relativistic axions. At a temperature of Tann = 1− 10 eV the scenario is
constraint by fits to CMB fluctuations (red) as well as the non-observation
of B-polarization modes (cyan). For fa ≥ 1014 GeV a strong enough GW
signal is emitted to be detectable by SKA, while for fa ≥ 4× 1014 GeV LISA
is also sensitive to the signal. PIXIE and Voyage2050 (green, straight and
dotted) allow probing all of the parameter points testable by LISA and the
majority accessible via SKA. Again the great complementarity between GWs
and spectral distortion experiments shall be emphasized with the later being
able to measure/constraint the mass. Further constraints on this parame-
ter region arise due to the emitted axions making up a fraction of DM and
featuring large isocurvature perturbations in conflict with Lyman-α observa-
tions (purple). For annihilation temperatures Tann ≥ 105eV the most severe
constraint comes from overproducing axion DM. . . . . . . . . . . . . . . . . 139

VIII.12Current and future constraints on a phase transition in a dark sector, in terms
of the SM plasma temperature at the time of the transition, released energy
relative to the energy in the dark fluid αd, the ∆Neff caused by the dark

sector, and the inverse duration of the phase transition β
H . We only take

into account the effects of the sound waves in the dark fluid caused by the
transition. At temperatures T∗ = 1 − 10 eV the scenario is constrained by
CMB fluctuations in (red) and the non-observation of B-mode polarization
in the CMB in (cyan). In the temperature range of T∗ = 10 − 106 eV spec-
tral distortions from acoustic waves (green) can probe the scenario. Strong
phase transitions in a dark sector saturating the Neff bound can already be
constraint by the COBE/FIRAS results (αd = O(1), ∆Neff = 0.3, β

H = 10).
At temperatures T∗ = 105−107 eV the scenario can in the future be detected
by SKA, while the present Neff bound (top row) rules out the NANOGrav
signal being generated this way. For convenience we have converted αd to
α = Ωdαd/(1 + αd) on the left y-axis. . . . . . . . . . . . . . . . . . . . . . . . 141

VIII.13Current and future constraints on a first order phase transition at tempera-
ture T∗ releasing a relative energy α into the SM-plasma. For temperatures
below ≈ 2 MeV the released energy α leads to tensions in BBN and CMB
measurements of the baryon to photon ratio (blue). The sound waves caused
by the phase transition source GWs that can explain the NANOGrav hint
(orange, filled, same as right of Fig. VII.4) and in the future can be detected
over a wide range of parameter space (orange line). The green area and lines
show the current and future sensitivity to spectral distortions caused by the
sound waves. At temperatures above ≈ 1 MeV the sound waves and therefore
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B.1 Evolution of the relative error in the Gauss constraint Eq. (B.29) for different
choices of the number of lattice sites along each direction N and the side
length of the simulated box L with fixed α = 60, θ = 1. The number of
iterations used in the implicit scheme is fixed at 2 for the left panel while it
is varied in the right panel with N = 256, L = π/(2 ·m) held fixed. In all
cases, the error stays close to machine precision ≈ 10−16 up to a/aosc ≈ 8,
when the dark photon production backreacts on the axion. Thereafter, the
error is minimized for small lattice spacings dx = L/N and a high number of
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BSM - beyond the Standard Model
CDM - cold dark matter
CMB - cosmic microwave background
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EW - electroweak
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QCD - quantum chromodynamics
QED - quantum electrodynamics
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SMBH - super massive black hole
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