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Abstract

Low energy precision experiments have become an important tool in the search for new
physics beyond the Standar Model (SM). These experiments can exclude new physics at mass
scales extending well into the TeV range and are complementary to searches at the Large
Hadron Collider (LHC).

With polarized elastic electron proton scattering, one can determine the weak charge of
the proton, which is related to the weak mixing angle in the SM. This can be achieved by
measuring the asymmetry between leptons with positive and negative helicities. Deviations
from the SM prediction for the weak mixing angle can provide important tests of models
beyond the SM.

A future experiment that plans to measure the weak charge of the proton at low energies
and with high precision is the P2 experiment that will take place at the new MESA facility
in Mainz. The present work is mostly motivated by this experiment and shows results that
are relevant for this particular measurement. In addition, a �p scattering experiment, called
MUSE, has been also proposed at the PSI with the aim to study the proton radius puzzle.

In order to match the experimental precision of such experiments it is necessary not only
to have an exhaustive treatment of �rst order radiative corrections, but also to go beyond
�rst order and include a treatment of second order radiative corrections. In this work we aim
to provide such a calculation for polarized and unpolarized lepton nucleon scattering, that
includes both virtual and real corrections to the lepton lines.

We re-derive �rst order corrections, including also hadronic corrections, relying as little
as possible on approximations. The main focus is however on second order corrections, in-
cluding a new calculation of two photon bremsstrahlung. Photon radiation leads to a shift in
the measured Q2, that translates in a 5% correction to the parity violating asymmetry. For this
reason we present the e�ects of �rst and second order photon radiation on the asymmetry.
Finally we present a �rst order calculation of lepton carbon scattering which is also relevant
for the MESA experiments.

All the calculations that were done in this work were included in a Monte Carlo event
generator called POLARES, that can be used to simulate both unpolarized and polarized lepton
nucleon scattering events for the aforementioned experiments and possibly other future low
energy precision experiments.
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Zusammenfassung

Niederenergie-Präzisionsexperimente sind zu einem wichtigen Instrument bei der Suche nach
neuer Physik jenseits des Standardmodells (SM) geworden. Diese Experimente können neue
Physik auf Massenskalen bis weit in den TeV-Bereich hinein ausschließen und ergänzen die
Suche am Large Hadron Collider (LHC).

Mit der polarisierten elastischen Elektron-Proton-Streuung kann man die schwache Ladung
des Protons bestimmen, die mit dem schwachen Mischungswinkel im SM zusammenhängt.
Dies kann durch die Messung der Asymmetrie zwischen Leptonen mit positiven und nega-
tiven Helizitäten erreicht werden. Abweichungen von der SM-Vorhersage für den schwachen
Mischungswinkel können wichtige Tests für Modelle jenseits des SM liefern.

Ein zukünftiges Experiment, mit dem auch die schwache Ladung des Protons bei niedrigen
Energien und mit hoher Präzision gemessen werden soll, ist das P2-Experiment, das an der
neuen MESA-Anlage in Mainz durchgeführt werden soll. Die vorliegende Arbeit ist haupt-
sächlich durch dieses Experiment motiviert und zeigt Ergebnisse, die für diese spezielle Mess-
ung relevant sind. Zusätzlich, wurde am PSI auch ein �p-Streuexperiment namens MUSE
vorgeschlagen, um das Rätsel um den Protonenradius zu untersuchen.

Um die experimentelle Präzision solcher Experimente zu erreichen, ist nicht nur eine um-
fassende Behandlung der Strahlungskorrekturen erster Ordnung erforderlich, sondern auch
eine Behandlung der Strahlungskorrekturen zweiter Ordnung. Ziel dieser Arbeit ist es, eine
Berechnung zweiter Ordnung für polarisierte und unpolarisierte Lepton-Nukleon-Streuung
bereitzustellen, die sowohl virtuelle als auch reelle Korrekturen an den Leptonenlinien bein-
haltet.

Wir leiten die Korrekturen erster Ordnung, einschließlich der hadronischen Korrekturen,
neu ab und stützen uns dabei so wenig wie möglich auf Näherungen. Das Hauptaugenmerk
liegt jedoch auf den Korrekturen zweiter Ordnung, einschließlich einer neuen Berechnung
der Zwei-Photonen-Bremsstrahlung. Die Photonenstrahlung führt zu einer Verschiebung des
gemessenen Q

2, was sich in einer 5%-Korrektur der parität verletzende Asymmetrie nieder-
schlägt. Aus diesem Grund stellen wir die Auswirkungen von Photonenstrahlung erster und
zweiter Ordnung auf die Asymmetrie dar. Schließlich stellen wir auch eine Berechnung er-
ster Ordnung für die Lepton-Kohlensto�-Streuung vor, die auch für die MESA-Experimente
relevant ist.

Alle in dieser Arbeit durchgeführten Berechnungen wurden in einen Monte Carlo Ereignis-
generator namens POLARES aufgenommen. Dieser Monte Carlo Ereignisgenerator kann zur
Simulation von unpolarisierten und polarisierten Lepton-Nukleon-Streuereignissen für die
oben genannten Experimente und möglicherweise für künftige Präzisionsexperimente ver-
wendet werden.
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Chapter 1

Introduction

1.1 Historical background

Early on our human species had an innate curiosity to understand the nature of the world
in which it was living, a curiosity that was re�ected in various ancient cosmogonic myths
that survived to our day. For the �rst time (at least for what we have knowledge of from the
texts that survived to our day), at the beginning of the 6th century BCE, some Greek philoso-
phers, which we refer today collectively as Presocratic philosophers, started to engage in an
inquiry about the laws ("causes and principles") of the natural world and natural phenomena.
Among these, the �rst presocratic philosopher that we know of was Thales of Miletus (a city
in Ionia, on the west coast of what is now Turkey), who, according to Aristotle (Metaphysics
983b24–25), claimed that there was only one fundamental principle, ἀρχή, as the origin of
all things, which he identi�ed with water. His disciple, Anaximandros, went even further
and identi�ed an abstract principle ἄπειρον (inde�nite, unlimited) as the origin of the natural
world (Simplicius, Commentary on Aristotle’s Physics 24). With their reasoning they have
started a fruitful tradition of questioning and understanding the laws of nature.

This type of inquiry was later revived during the Enlightenment period. An essential
addition, that gave birth to the scienti�c method as we know it today, was the requirement
that these laws make predictions that can be tested (or falsi�ed) by performing an experiment.
This type of method proved to be very successful and e�cient in determining the nature of
reality and helped us to push the limits of our understanding of the universe.

Lately, in the last 80 years or so, great advances have been made in the �eld of fundamental
particle physics with the development of a new generation of accelerators and detectors, that
increased the quantity and the quality of the collected data on various interaction processes.
This data helped us discover the fundamental interactions that we know of today, among
which are the strong, electromagnetic and weak interactions and to develop a quantum �eld
theory that describes them.

The �rst quantum �eld theory, called quantum electrodynamics (QED), was developed
for electromagnetic interactions and proved to be the most accurately veri�ed theory in the
history of physics. One of the most remarkable achievements was the prediction of the anoma-
lous magnetic moment of the electron which agrees (according to the latest measurements)
with the theoretical calculation to about one part in a trillion (see Ref. [2]). A key feature of
this theory is that it is a gauge theory and more precisely a gauge theory having the Abelian
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U(1) symmetry. This means that the electron �eld,  (x) with charge e, has a local symmetry
and is invariant under the transformation

 (x) →  (x)e
ie�(x)

, (1.1)

provided that a corresponding transformation is applied to the electromagnetic potential

A�(x) → A�(x) − )��(x). (1.2)

The reason why this is important is that it makes the theory renormalizable. This is an es-
sential aspect of a �eld theory because it shows that the divergent parts that appear in the
calculation, which have puzzled theorists like Feynman and Dirac, can be absorbed by redef-
inition into a few measurable quantities by using only a �nite set of parameters.

The success of QED brought again into attention the dream of the presocratic philosophers
of an ἀρχή, an uni�ed theory, that is the origin of everything we see in nature. A step in this
direction was the uni�cation of the weak and electromagnetic interaction which was �rst
suggested by Schwinger in 1957 who proposed that the weak gauge bosons W + and W − and
the photon 
 can be uni�ed into a single theory (see Ref. [3] and Ref. [4] for more details
of the history of electroweak uni�cation). Two years later, Sheldon Glashow, the student
of Schwinger, further extended his supervisor’s work, but at this stage the theory was not
renormalizable (see Ref. [5]). The complete uni�cation in a renormalizable theory was later
achieved in 1967 independently by Weinberg (see Refs. [6–8]) and Salam by extending the
model into a larger SU(2) ×U(1) symmetry group that predicted also a fourth gauge boson Z 0,
which was discovered in 1983 at the Super Proton Synchroton at the European Organization
for Nuclear Research (CERN). Moreover, a mechanism is required in order to break the SU(2)×
U(1) symmetry by spontaneous symmetry breaking (SSB), giving mass to theW and Z bosons
in the process. This mechanism, now called the Higgs mechanism, was initially proposed in
1964 by three groups of physicists (see Refs. [9–11]). The Higgs mechanism predicted the
existence of the Higgs boson, which was also discovered at CERN by the ATLAS collaboration
in 2012 (see Ref. [12]).

The electroweak symmetry group SU(2) × U(1) together with the non-Abelian SU(3) sym-
metry group that describes the strong interactions among quarks builds what we know today
as the standard model (SM) of particle physics shown in Fig. 1.1. This model proved to be
amazingly successful and its predictions have been veri�ed with increasingly impressive ac-
curacy. Albeit very successful, there are many reasons to believe there should exist an even
more fundamental theory. It contains, for example, twenty arbitrary parameters such as mass
ratios that we cannot predict and it is not truly a uni�ed model, because the symmetry group
has three factors, each with its own coupling strength. Moreover, there are a few things that
the standard model does not explain. It cannot account for example for dark matter, which
we know it exists from the rotation curves of galaxies, or the dark energy responsible for the
accelerating expansion of the universe. It cannot also explain why the elementary particles
come in three families with very similar structure but very di�erent masses, or why the neu-
trinos have non-zero, though tiny, masses. And �nally, of course, the standard model cannot
explain gravity. There is hope that one day we will �nally �nd a truly uni�ed theory, an ἀρχή
or "theory of eveything". For these reasons there are many experiments running today trying
to search for physics "beyond the standard model" or "New Physics" that could give us a hint
of what such a theory would look like.
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Standard Model of Elementary Particles

Figure 1.1: The Standard Model of particle physics consists of three generations of matter
particles called fermions, grouped into quarks and leptons, and of force carriers called bosons.
The are also two types of bosons, given by vector and a scalar bosons, called the Higgs boson
(this �gure was taken from the Wikipedia page of the Standard Model, see Ref. [13]).

1.2 The weak mixing angle

The weak mixing sin2 �W , also called the Weinberg angle, has a central role in the SM (see
Ref. [8]), since it determines the angle by which the SSB rotates the 0 components of the
vector bosons before SSB of the SU(2)L × U(1)Y producing as a result the Z 0 and the photon.
Here the subscript Y stands for the weak hypercharge quantum number and it is used to
di�erentiate from the symmetry of the electromagnetic interaction, which is also U(1). The
subscript L reminds us that only the left components of the fermion �elds transform under
the SU(2) group, which leads to parity violation in the weak interaction. Parity violation of
the weak interaction was, in fact, proposed as early as 1956 by Lee and Yang (see Ref. [14])
and observed shortly after in the Wu experiment (see Ref. [15]). In the following we describe
in more detail the SU(2)L ×U(1)Y uni�cation, also called the Glashow-Weinberg-Salam (GWS)
model and the role the weak mixing angle plays in this model (see Refs. [16] and [17]).

In the GWS model the fermion �elds are massless, so they can be separated into right- and
left-handed helicity doublets as

 R, L =

1

2

(1 ± 
5) , (1.3)

where the positive (negative) sign corresponds to the right-handed (left-handed) helicity state
and where we de�ne 
5 ≡ i

4!
�����


�


�


�


� 1.  L is a left-handed doublet that transforms under

1Here and the rest of the work we assume Einstein summation convention, such that i=1,2,3 and � = 0, 1, 2, 3.
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SU(2)L × U(1)Y as

SU(2)L ∶  L →  
′

L
= e

−i�
i
(x)T

i

 L, (1.4)
U(1)Y ∶  L →  

′

L
= e

−iYL�(x)
 L (1.5)

and  R is right-handed singlet that transforms under SU(2)L × U(1)Y as

SU(2)L ∶  R →  
′

R
=  R , (1.6)

U(1)Y ∶  R →  
′

R
= e

−iYR�(x)
 R . (1.7)

Here �i and � are group parameters for weak isospin and weak hypercharge operators, re-
spectively. T i

≡ �
i
/2, with � i the Pauli matrices, are generators that satisfy the Lie algebra

[T
i
, T

j
] = i�ijkT

k
. (1.8)

Finally, YL and YR are the hypercharge eigenvalues for left- and right-handed particles respec-
tively. For leptons we have YL = −1/2 and YR = −1.

The Lagrangian for this model is composed of 4 parts as

 = fermion + gauge + scalar + Yukawa. (1.9)

The fermionic part of the Lagrangian is given by

fermion =
̄
 Li


�� L +
̄
 Ri


�� R . (1.10)

The covariant derivative has the following general form

� = ()� − igT
i
A
i

�
− iYg

′
B�) , (1.11)

whereAi

�
and B� are gauge boson �elds associated with SU(2)L andU(1)Y , respectively. Setting

Y = YL for  L and Y = YR for  R we get the following covariant derivatives for left and right
lepton �elds, respectively:

� L =
(
)� − igT

i
A
i

�
+ i

g
′

2

B�
)
 L, (1.12)

� R = ()�A
i

�
+ ig

′
B�)  R . (1.13)

Since  R is a singlet under SU(2)L it doesn’t couple to Ai

�
.

The kinetic term of the gauge �elds is given by

gauge = −
1

4

A
i

��
A
i��
−

1

4

B��B
��
, (1.14)

where Ai�� and B�� are the �eld strength tensors of the gauge �elds Ai

�
and B� , respectively.

There is one scalar �eld in this model, a complex doublet under SU(2) transformations with
hypercharge 1/2, that is needed to realize the symmetry breaking SU(2)L × U(1)Y → U(1)Q ,
where Q stands for the electromagnetic charge. The Lagrangian for this scalar �eld is given
by

scalar = (��)
†
(�

�) + �
2
�
†
� − �(�

†
�)

2
, (1.15)
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where the covariant derivative is given by

�
� =

(
)� − igT

i
A
i

�
− i

g
′

2

B�
)
� (1.16)

The last two terms in the scalar Lagrangian form the Higgs potential V (�) = −�2�†�+�(�†�)2,
where �2 and � have to be real constant parameters. Finally, the Yukawa interaction terms
provide the fermion masses after SSB and the Lagrangian that describes this in GWS model
is given by

Yukawa = −GY (
̄
 L� R +

̄
 R�

†
 L) + ℎ.c. , (1.17)

where ℎ.c. stands for hermitian conjugate and GY is Yukawa coupling constant that cannot be
determined in the model itself. In fact, the Yukawa couplings are the most arbitrary aspect of
the SM since they introduce the most of the free parameters.

Strictly speaking, we have to add an additional contribution to the Lagrangian coming
from gauge �xing and a term that cancels the remaining gauge dependence called ghost, that
are needed when higher order corrections are included (for more on this see Ref. [18] or [19]).
These terms were included when was necessary.

The SSB occurs when the scalar doublet � develops a vacuum expectation value (VEV)
given by

⟨0|�|0⟩ =
(

0

v/

√

2)
. (1.18)

After the SSB there remains a symmetry U(1)Q associated with the charge operator Q given
by

Q = T
3
+ Y . (1.19)

In order to expand the scalar �eld around the minimum we use what is called the Kibble
parametrization given by

� = e
i�
i
�i/2v

(

0

(v + H)/

√

2)
, (1.20)

where �i are the so-called Goldstone bosons that are absorbed into the longitudinal compo-
nents of the W ± and Z 0 bosons and H is the Higgs boson, such that the VEV of these �elds
becomes 0, i.e. ⟨0|�i |0⟩ = ⟨0|H |0⟩ = 0.

By applying the unitary SU(2) transformation

U (� ) = e
−i�

i
�i/2v (1.21)

we arrive at the �elds after SSB, which we de�ne with a prime to distinguish them from the
ones before SSB. The Lagrangian for the scalar �eld after SSB then becomes

scalar = (��)
′†
(�

�)
′
− V (�

′†
�
′
), (1.22)

with
(�

�)
′
=
(
)� − igT

i
A
′i

�
− i

g
′

2

B
′

�
)

1

√

2

(v + H)� , (1.23)
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where � =
(

0

1)
. The mass of the weak gauge bosons originate from the �rst term of Eq. 1.22,

which after some rearrangements is given by the Lagrangian

mass =
v
2

8
[g

2
A
′1

�
A
′1�
+ g

2
A
′2

�
A
′2�
+ (gA

′3

�
− g

′
B
′

�
)
2

] . (1.24)

By de�ning the charged boson �elds W ± as

W
±

�
=

A
′1

�
∓ iA

′2

�

√

2

(1.25)

we can rewrite the mass Lagrangian as

mass =
1

4

g
2
v
2
W

+

�
W

−�
+

v
2

8

(g
2
+ g

′2
)Z�Z

�
, (1.26)

where in order to arrive at the last term we have applied an orthogonal transformation given
by

(

Z�

A�
)
=
(

cos �W − sin �W

sin �W cos �W )(

A
′3

�

B
′

�
)
, (1.27)

where �W is called the weak mixing angle or the Weinberg angle. The diagonalization leads
to a de�nition of �W in terms of the coupling constants g and g′ as

sin
2
�W =

g
′2

g
2
+ g

′2
. (1.28)

From Eq. 1.26 we see that the charged bosons W ± are massive with mass given by

MW =

1

2

gv (1.29)

and the neutral boson Z 0 becomes massive with the mass given by

MZ =

1

2

v

√

g
2
+ g

′2
, (1.30)

while the other neutral boson A� is massless and can be identi�ed with the photon. Moreover,
at leading order, the mass of the Z 0 boson is related with the mass of the W ± boson by

MZ =

MW

cos �W

, (1.31)

from which we can express the weak mixing angle as

sin
2
�W = 1 −

M
2

W

M
2

Z

. (1.32)

At tree level this de�nition is identical with the de�nition from Eq. 1.28. However, when
radiative corrections are included these two de�nitions di�er.
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Both de�nitions have their advantages and disadvantages and can be useful in di�erent
contexts. For example, by de�ning the weak mixing angle as the ratio of weak boson pole
masses, also called the on-shell de�nition, we get a clear de�nition that is directly related to a
physical observable, but has the disadvantage of large radiative corrections, enhanced by the
mass of the top quark, (∝ m

2

t
/m

2

W
). By using Eq. 1.28 and working in the MS renormalization

scheme (for which reason is called the MS de�nition), we get a de�nition in terms of coupling
constants that is scale dependent and is running with the energy. This provides us with a
well-de�ned subtraction of singular terms arising in dimensional regularization, giving rise
to expressions with a logarithmic � dependence governed by a renormalization group equation
(RGE). To make the energy dependence explicit we write the weak mixing angle as

sin
2 ̂
�W (�) = �̂(�) sin

2 ̂
�W (MZ ), (1.33)

where the radiative corrections that are responsible for the running are included in the � form
factor. Such a de�nition has the disadvantage however that is not directly related to a physical
observable.

There are a handful of calculations of the running of the weak mixing angle in the literature
(see for example the calculation of Czarnecki and Marciano Refs. [21–23]). A more recent
calculation, that includes also hadronic corrections was done by Jegerlehner and implemented
in his code called alphaQED (see Ref. [20]). The expression for the � form factor that is used
in this work was extracted from the code alphaQED by A. Weber for his master thesis. With
this expression and by setting sin2 ̂�W (MZ ) = 0.23156 and � = Q, as was done in Ref. [20] we
obtain the result of Fig. 1.2.

Another recent evaluation of the running of the weak mixing angle was done in Ref. [24]
by using an RGE analysis. This calculation was used also for the most recent PDG review on
electroweak physics (see Ref. [2]) which includes the result from Fig. 1.3. In this �gure we can
see also past measurements of the weak mixing angle marked with red and future proposed
measurements marked with green. One recent measurement at low energies was done by
the Qweak collaboration (see Ref. [26]). In order to obtain the weak mixing angle the Qweak

10−3 10−2 10−1 100 101 102 103
0.23

0.232

0.234

0.236

0.238

0.24

Q [GeV]

si
n
2
θ W

(Q
)

Figure 1.2: The running of the weak mixing angle as was calculated in Ref. [20]. The expres-
sions that have been used to get this result were extracted for a master thesis from the code
alphaQED by A. Weber.
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Figure 1.3: The running of the weak mixing angle as obtained in Ref. [24] from a RGE analysis
in the MS renormalization scheme.

collaboration extracted the weak charge of the proton, de�ned as

Q
p

W
= 1 − 4 sin

2
�W , (1.34)

from the parity violating asymmetry APV that was measured in an electron-proton scattering
experiment. As can be seen from Fig. 1.3 this latest measurement is in very good agreement
with the SM prediction. Another future experiment that plans to measure the weak charge
of the proton at even lower energies and with increased precision is the P2 experiment that
will take place at the new MESA facility in Mainz (see Ref. [27]). The present work is mostly
motivated by this experiment and shows results that are relevant for this measurement.

1.3 Overview of this work and motivation 2

Low energy precision experiments have become an important tool in the search for new
physics beyond the SM. These experiments can exclude new physics at mass scales extend-
ing well into the TeV range and are complementary to searches at the Large Hadron Collider
(LHC). In particular, lepton nucleon scattering at low energies is an important example. With
polarized elastic electron proton scattering, one can determine the weak charge of the proton,
which is related to the weak mixing angle in the SM, as was explained in the previous section.
Deviations from the SM prediction for the weak mixing angle can provide important tests of
models beyond the SM. In addition to the P2 experiment, a �p scattering experiment, called
MUSE (see Ref. [1]), has been proposed at the PSI with the aim to study the proton radius
puzzle. By extracting the weak charge of heavier nuclei can give us also valuable informa-
tion about the neutron densities (also called the "neutron skin"), since the weak charge of the
neutron is much larger than the weak charge of the proton (see for example Ref. [29]).

Moreover, there has been a continued interest in the determination of the proton’s form
factors, notably the electric and magnetic ones, GE and GM , contributing to the unpolarized

2In this introduction some of the text is taken from Ref. [28]
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scattering cross section (see for example Ref. [30]). Their precise knowledge is an important
ingredient in the determination of the proton radius from electron proton scattering. With
polarized scattering also axial and strangeness form factors contribute. Accurate data for them
are needed for a better understanding of how matter is formed from quarks and gluons.

In order to match the precision of recent and future lepton nucleon scattering experiments
it is important to include the full set of radiative corrections at �rst and second order in pertur-
bation theory. Higher-order corrections, in particular QED radiative e�ects, can not be taken
from the classical work of Mo and Tsai [31] (see also Ref. [32]) without carefully revisiting the
underlying assumptions and improving approximations which had been acceptable in previ-
ous experiments. Since then, quite a number of articles have been published that put focus on
more precise determinations (see for example Refs. [33–37]). Also higher-order e�ects, like
those due to multi-photon radiation in the soft-photon approximation, or re-summed lead-
ing logarithms can be found in the literature (see Ref. [38, 39]). In addition, corrections due
to hard photon radiation depend strongly on details of the detector setup and on how kine-
matic variables, like energies and scattering angles are measured and can lead to a shift in
the measured Q

2. Their calculation therefore requires a full Monte Carlo event simulation.
Such Monte Carlo event generators already exist for elastic electron proton scattering (see
for example Ref. [40]), but to this day there are none that include a complete and consistent
treatment of radiative corrections at second order in perturbation theory. Radiative correc-
tions for electron scattering can be separated into contributions due to real and virtual photon
radiation from the lepton, from the nucleon, and its interference. Real radiation from the nu-
cleon is suppressed due to the higher nucleon mass. One of the goals of the present work is to
provide a Monte Carlo simulation that includes a complete (apart from few exceptions) and
consistent set of second order corrections to the lepton line, that includes both virtual and
real corrections.

At �rst order, photon emission from the proton, although it doesn’t a�ect the shift in Q
2,

can also have an important e�ect in some kinematic regions, especially through the inter-
ference with leptonic radiation. Apart from its role as part of radiative corrections, photon
emission from the proton is interesting by itself. For large momentum transfer it is known as
(deeply) virtual Compton scattering (DVCS). It is used to study properties of the nucleon, e.g.
as encoded in generalized parton distributions (GPDs), see for example Refs. [41–43]. Radia-
tive corrections for DVCS involve Feynman diagrams which are also part of the second-order
radiative corrections studied in the present work. The interference of radiation from the lep-
ton and from the nucleon is linked to two-photon exchange (TPE) graphs (or box graphs). Both
contributions taken separately are infrared divergent, but the infrared divergent terms cancel
when interference e�ects and box graphs are combined. In recent years there have been an
increased interest in TPE corrections, see for example the review in Ref. [44], since they are
expected to be important when data is analyzed with the aim to separate the electric and mag-
netic form factors of the proton. The observed discrepancy between di�erent techniques, the
Rosenbluth separation on the one hand and a technique based on polarization measurements
on the other hand, is sensitive to the treatment of two-photon exchange corrections. Calcu-
lations of radiative e�ects connected to the nucleon are model-dependent and often depend
on additional assumptions and approximations (see for example Refs. [45–47]). Soft radiation
and virtual e�ects are, however, not observable and appear as a part of the observed, e�ective
form factors. The separation of such corrections requires a well-de�ned theoretical de�nition
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of bare form factors. Higher-order QED e�ects at the nucleon should be taken into account
only if these corresponding corrections had been subtracted during data analysis to extract
the form factors.

In a realistic experiment one has to impose a set of conditions which �x the observable
part of the �nal-state phase space. For example, the scattering angle will be restricted by the
acceptance of the detector, or the energy of �nal-state particles is limited. If the goal is to
measure elastic form factors, one will try to reduce the impact of non-elastic processes, for
example by imposing a cut-o� on the missing energy. This would remove e.g. pion produc-
tion, but also restrict the emission of hard photons. In experiments with very high luminosity
like P2, it is impossible to realize cuts on individual scattering events and the feasibility to
impose kinematic conditions may be restricted. Finally, the e�ciency for the detection of a
scattering event may depend on energies and scattering angles and vary considerably over the
observed phase space. It is therefore obvious that a Monte Carlo simulation program of the
process, ideally interfaced to the simulation code of the detector response, is indispensable.
This approach has become the standard for deep-inelastic lepton scattering like at HERA (see
Refs. [48–51]), but has also been discussed for elastic ep scattering (see Refs. [40, 52]). In ad-
dition, with nowadays computer resources, computer algebra systems and high-performance
computing on multi-core systems, there is no need anymore to search for simpli�ed, i.e. ap-
proximate expressions which are fast to evaluate.

In the �rst chapter of this work we re-derive the �rst-order radiative corrections for elastic
unpolarized lepton nucleon scattering, including hadronic corrections (Secs. 2.2 and 2.3). The
emphasis of this chapter is, however, on the description of second-order corrections, i.e. two-
loop and two-photon bremsstrahlung for unpolarized lepton proton elastic scattering. As
explained above, we restrict ourselves to purely leptonic corrections at second order, i.e. not
including for example 3-photon exchange or second order hadronic radiation. The corrections
are implemented in a new Monte Carlo simulation program for numerical calculations. In
Sec. 2.4 we describe our new calculation of second-order corrections, including non-radiative
parts and corrections due to the radiation of one or two photons. Then, in Sec. 2.5 we describe
some tests of the numerical evaluations, while, in Sec. 2.6 we present some numerical results,
�rst of all for applications at the forthcoming P2 experiment in Mainz.

The second chapter is about polarized lepton nucleon scattering and the determination
of the parity violating asymmetry between cross sections for incident leptons with positive
and negative helicities, respectively. The structure of this chapter is similar with the previous
one. In Sec. 3.2 we re-derive �rst order corrections for polarized leptons, while in Sec. 3.3 we
describe our calculation of second-order corrections. Here we include only photonic correc-
tions to the lepton line, i.e. only corrections that involve photon loops. The calculations for
the polarized leptons are therefore similar with the ones for unpolarized leptons. Finally, in
Sec. 3.4 we show some tests and results of the numerical evaluation of �rst and second order
corrections and their e�ects in the shift of Q2 and the asymmetry.

In chapter three we brie�y present the e�ects of �rst order corrections for both unpolar-
ized and polarized lepton carbon scattering, while chapter four describes the event generator
POLARES that includes all corrections which are described in this work.



Chapter 2

Unpolarized Lepton-Proton Scattering 1

2.1 De�nitions and general remarks
We choose a coordinate frame where the target nucleon is at rest and the z axis is directed
along the momentum of the incident lepton. We denote the 4-momenta of the incoming and
scattered lepton (nucleon) by l� and l′ � (p� and p′ �). The notations for energies and angles of
the particles that are involved in this scattering process can be found in Fig. 2.1.

l

l′E′, θℓ, φℓ

E

k

k′

Eγ, θγ, φγ

E′
γ, θ

′
γ, φ

′
γ

p

Ep, θp, φpp′

Figure 2.1: A schematic de�nition of kinematic variables for lepton nucleon scattering. Angles
are de�ned with respect to the direction of the incoming lepton with 4-momentum l

� . In the
reference frame considered here the proton is at rest, i.e. with 4-momentum p

�
= (M, 0, 0, 0).

At lowest order, lepton nucleon scattering is described by the exchange of a virtual photon.
The electromagnetic current for a spin-1/2 nucleon is given by

�
= eū(p

′
, s)Γ

�
u(p, s), (2.1)

where u is a Dirac spinor and ū its hermitian conjugate. Here s denotes the spin of the particle
2. The spin-averaged matrix element of the electromagnetic current can be decomposed into
two form factors, F1 and F2, called the Pauli and the Dirac form factors. They are normalized

1This chapter follows the structure of Ref. [28]. Some parts are directly taken from this reference and are
indicated by “see Ref. [28]“.

2In the rest of the work we omit writing the spin s explictly.
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by F p
1
(0) = 1 and F p

1
(0) = �p − 1 with �p = 2.7928 the proton’s magnetic moment in units of the

nuclear magneton. We also de�ne the negative of the momentum transfer squared as

Q
2
= −q

2
. (2.2)

The proton vertex is determined by

Γ
�
= 


�
(F

p

1
(Q

2
) + F

p

2
(Q

2
)) −

(p + p
′
)
�

2M

F
p

2
(Q

2
), (2.3)

where M is the nucleon mass. Using this vertex rule we can obtain the tree-level cross section
for the scattering of unpolarized leptons with massm� o� unpolarized nucleons. In the lowest
order, without the emission of a photon, it is given by

d�
(0)

dQ
2
=

|Born|2

16� [(s − m
2

�
− M

2
)
2
− 4m

2

�
M

2
]

. (2.4)

This cross section is also called Born cross section (see Ref. [53]). The Born matrix element
Born is given by

Born =
1

q
2
��

= −

e
2

q
2
ū(l

′
)
�u(l)ū(p

′
)Γ

�

p
u(p), (2.5)

where � = −eū(l
′
)
�u(l) is the lepton current, while the proton current � was given in

Eq. (2.1). The bar in Eq. (2.4) indicates that we need to average over initial state polarizations
and sum over the �nal ones, after squaring of the matrix element. For the unpolarized cross
section, this is achieved by

||
2

=

1

4

∑

spins
||

2

, (2.6)

where the sum over �nal state polarizations leads to the calculation of a trace. For the calcula-
tion of the trace the conventions from Ref. [19] are used. This leads to the following formula
for the Born cross section:

d�
(0)

dQ
2

=

��
2

Q
4
((s − m

2

�
− M

2
)
2
− 4m

2

�
M

2
)

(2.7)

[
2 (F

p

1 )

2
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2

�
− M

2
)
2
+ (s − Q

2
)
2
− 2s(m

2

�
+ M

2
) + (M

2
+ m

2

�
)
2

)

+4F
p

1
F
p

2
Q
2

(Q
2
− 2m

2

�)

+ (F
p

2 )

2 Q
2

M
2
((s − m

2

�
− M

2
)(s − Q

2
) − (s − Q

2
)M

2
− sm

2

�
+ (M

2
− m

2

�
)
2

)]
.

Here, s is the square of the energy in the center-of-mass reference frame, s = (l + p)
2 and

� the �ne structure constant. An alternative compact expression for the Born cross section
including all mass terms is given in App. A.

For the applications that we are considering here (P2 and Qweak experiments), the en-
ergies of the incoming and scattered electrons, E and E

′, are large in comparison with the
electron’s mass, E, E′ ≫ m� . For lepton scattering angles that are not too small, i.e. �� ' 5

◦,
one can also assume thatm2

�
≪ Q

2. Using the Sachs electric and magnetic form factors de�ned
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as GE = F
p

1
− �F

p

2
and GM = F

p

1
+ F

p

2
with � = Q

2
/(4M

2
), the cross section can be written in a

more compact form, neglecting terms proportional to the lepton mass, as

d�
(0)

dΩ�

=

d�Mott

dΩ�

1

�(1 + �)
[�G

2

E
(Q

2
) + �G

2

M
(Q

2
)] (2.8)

with
d�Mott

dΩ�

=

�
2

4E
2

cos
2
(�� /2)

sin
4
(�� /2)

E
′

E

(2.9)

and
� = [1 + 2(1 + �) tan

2
(�� /2)]

−1

. (2.10)
The program that was developed for the numerical evaluation of the cross sections (see chap-
ter 5) includes however all lepton mass terms (except for the two-loop correction terms, see
the discussion below in Sec. 2.4.1) and is applicable also for the case of muon scattering.

The proton form factors are considered as external input and are given by the data ex-
tracted from measurements. We have implemented into our numerical program three dif-
ferent types of parametrizations existing in the literature (see App. C), including the simple
dipole parametrization. All our results given in this work are obtained with a simple dipole
form factor parametrization, GE = (1 + Q

2
/Λ

2

)

−2 and GM = �pGE with Λ2 = 0.71 GeV2.
At leading order, the momentum transfer to the nucleon can be determined from the en-

ergy and scattering angle of the outgoing lepton. However, emission of a photon can lead to
a shift of Q2 (see Sec. 3.4 for more details) and we have to distinguish the value determined
from the scattered lepton from its true value transferred to the nucleon. For this reason, we
use an additional notation Q2

�
, de�ned by

Q
2

�
= −(l − l

′
)
2
. (2.11)

As explained in chapter 1, it is important to include higher-order corrections in order
to match the precision that recent and planned low energy experiments can achieve. These
higher-order corrections are due to additional photon emission and absorption, either virtual,
described by loop diagrams, or real, described by bremsstrahlung diagrams (see Ref. [28]).
Both parts are infra-red (IR) divergent taken separately, but give an IR �nite result when
combined at the level of the cross-section. In our approach we use the phase-space slicing
method to separate soft-photon radiation from hard-photon contributions. This method was
used also by Mo and Tsai in their classical paper [31] and has the advantage that it is suitable
for an event generator, which can be used for the analysis of the experiments. This separation
is implemented by using a cut-o� Δ on the energy of the radiated photon. Δ is chosen small,
below the detection threshold for the observation of a photon in the detector, but not too small,
so that it doesn’t a�ect the numerical evaluation (see Sec. 2.2.2). The photons that are emitted
with energies above the cut-o� Δ are called hard-photons and the corrections that take this
e�ect into account are called hard-photon corrections, while photons with energies below
the cut-o� Δ are called soft-photons. The soft-photon e�ects combined with loop diagrams
are called non-radiative. The cross section with �rst order corrections, which includes (�)
radiative corrections, is given by

�
(1)
= �

(1)

non-rad + �
(1)

1ℎ

, (2.12)
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where the non-radiative part is split between one loop and one soft-photon corrections as

�
(1)

non-rad = �
(1)

1−loop + �
(1)

1s

. (2.13)

At second relative order(�2), we have to include contributions with both one or two radiated
photons and we have to distinguish the cases where only one or both photons are either soft
or hard. The second-order contribution to the cross section, � (2) is therefore split into three
parts:

�
(2)
= �

(2)

non-rad + �
(2)

1ℎ

+ �

(2)

2ℎ

, (2.14)

where the �rst part � (2)non-rad is the non-radiative cross section that includes two-loop, one-loop
combined with one soft-photon and two soft-photons corrections given by

�
(2)

non-rad = �
(2)

2−loop + �
(2)

1−loop+1s
 + �
(2)

2s

. (2.15)

The second part is the cross section with one hard-photon in the �nal state combined with
one-loop and one soft-photon which is given by

�
(2)

1ℎ

= �

(2)

1−loop+1ℎ
 + �
(2)

1s
+1ℎ

. (2.16)

Both � (2)non-rad and � (2)
1ℎ


contain loop and soft photon corrections which are IR divergent. How-
ever the IR parts cancel when combined at the level of the cross-section and leaves us with
an IR �nite result. The third part here is the cross-section with two hard-photons in the �nal
state which is IR �nite.

In addition we will use correction factors de�ned relative to the di�erential Born-level
cross section de�ned as d� (0),

�
(1)

non-rad = ∫
d�

(0)

[
�
(1)

1−loop + �
(1)

1s

(Δ)

]
, (2.17)

�
(2)

non-rad = ∫
d�

(0)

[
�
(2)

2−loop + �
(2)

1−loop+1s
 (Δ) + �
(2)

2s

(Δ)

]
, (2.18)

where each � is labeled with indices which correspond with the ones de�ned above for the
cross sections. Additionally we show explicitly the dependence of the soft-photon parts on
the IR cut-o� Δ. The soft-photon part can be calculated analytically, integrating up to the
cut-o� Δ, by using a soft-photon approximation as described in Sec. 2.4.1

Contributions with a hard photon, i.e. with energy above the cut-o� Δ, as already men-
tioned, are infrared �nite and the phase space integration can be performed numerically. For
one hard-photon at tree level we de�ne the cross section with a hard-photon in the �nal state
as

�
(1)

1ℎ

=
∫
E
>Δ

d
4
�
(1)

1

, (2.19)

while at second order we de�ne relative correction factors for the one-loop and soft photon
contributions as

�
(2)

1ℎ

=
∫
E
>Δ

d
4
�
(1)

1
 [
�
(1)

1−loop+1ℎ
 + �
(1)

1s
+1ℎ

(Δ)

]
, (2.20)
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where d4� (1)
1


is the di�erential cross section for one radiated hard photon at tree-level. The
calculation of � (2)

1ℎ

is treated in Sec. 2.4.2. Finally, the cross section for two hard photons is

given by

�
(2)

2ℎ

=
∫
E
 , E

′



>Δ

d
7
�
(2)

2

. (2.21)

This cross-section is IR �nite and can be calculated numerically as described in Sec. 2.4.4.
We emphasize here that the cut-o� parameter Δ is introduced only for a technical reason: it
allows us to separate the IR singularities (see Ref. [28]). Only separate parts contributing to
the cross section carry a Δ-dependence as shown in the a formulas given above. The sum
of non-radiative and hard-photon contributions has to be independent of Δ. However, when
we use the soft-photon approximation to calculate the non-radiative contributions, and due
to numerical uncertainties we don’t expect the result to be exactly Δ-independent. We will
study this at more detail below. Our choice to use the phase-space slicing technique is dic-
tated by our goal to develop a full Monte Carlo event simulation program where individual
non-radiative and one- or two-photon radiative events can be generated. For the calcula-
tion of inclusive cross sections, a subtraction method is an alternative approach which may
be preferable if numerical stability is otherwise di�cult to achieve. At �rst-order such an
approach was described in Ref. [54] and tested in Refs. [55, 56].

Explicit simple expressions for Feynman diagrams with loops can be found in the literature
(see for example Ref. [42]). Where necessary, we used the Mathematica package Feyncalc (see
Ref. [57]) to perform the calculations, including a reduction to the conventional scalar one-
loop Passarino-Veltman integrals B0, C0 and D0. The �nal result is obtained in terms of scalar
integrals and kinematic invariants. The scalar integrals have simple explicit expressions that
are given in App. D.

2.2 First order corrections

2.2.1 Non-radiative cross section

One-loop corrections

This section deals with one-loop corrections to the lepton line for the unpolarized cross sec-
tion. These corrections consist of self energy diagrams and the vertex graph. The matrix
element squared for one-loop corrections at order (�) is given by

2ℜ(†

Bornse1+se2) + 2ℜ(†

Bornvert) (2.22)

where the meaning of the labels corresponds to the diagrams shown in Fig. 2.2.
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Figure 2.2: Feynman diagrams for the one-loop corrections at the lepton line.

Self-energy corrections

The free electron propagator for an electron with four-momentum l, which is given by

S
(0)
(l) =

/l + m�

l
2
− m

2

�
+ i�

, (2.23)

is modi�ed by the self-energy Σ(l) as

S(l) = S
(0)
(l) + S

(0)
(l)Σ(l)S(l). (2.24)

The self-energy diagram is UV and IR divergent. To regularize the UV divergence we use
dimensional regularization, while to regularize the IR divergence we introduce a small �cti-
tious mass � for the virtual photon that goes in the loop (see App. B). In the lowest order the
self-energy diagram in D dimensions is given by
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2
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D−4
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� (/l + /k l + m� )

�

(k
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l
− �

2
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2
− m

2

�
]

, (2.25)

where kl is the loop momentum and (1) indicates that it is of order � . Performing the loop
integral using the method described in App. D we obtain the following structure for the self-
energy

Σ(l)
(1)
= m�A(l

2
) + B(l

2
)/l, (2.26)

where
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The bare quantities, as the mass, charge and wave-function, that enter the Lagrangian are UV
divergent and they are renormalized by adding a counter-term Lagrangian given in App. B.
In the on-shell renormalization scheme the self-energy is renormalized by

Σ
R
(l) = Σ(l) − (/l − m� )�Z2 − �m� , (2.27)

where the counter-terms �Z2 and �m� contain the ultra-violet (UV) divergences and enter
the counter-term Lagrangian as is described in App. B. Inserting the renormalized self-energy
given in Eq. (2.27) and in Eq. (2.24) and inverting the total lepton propagator we get

S
−1
= /l − m� − Σ

R
(l) (2.28)
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Expanding the inverse lepton propagator around /l − m� = 0 and truncating the series at
 [(/l − m� )

2

] to get one-loop accuracy we obtain the following expression

S
−1
= (/l − m� )

(
1 −

)Σ

)/l

|
|
|
|/l=m�

+ �Z2
)
+ [�m� − Σ(/l = m� )] +  [(/l − m� )

2

] . (2.29)

Requiring that the propagator S has a pole at /l = m� with residue 1, allows us to determine
the renormalization constants. In dimensional regularization and in the on-shell scheme they
are given by

�Z2 = −

�

4�
[B0(0, 0, m

2

�
) − 4m

2

�
B
′

0
(m

2

�
, �

2
, m

2

�
) − 1] , (2.30)

�m� =

�

4�

m� [B0(0, 0, m
2

�
) + 2B0(m

2

�
, 0, m

2

�
) − 1] . (2.31)

Using the expressions of the scalar integrals given in App. D, the renormalization constants
can be expressed also as

�Z2 = −

�

4� (
Δ� − ln

m
2

�

�
2
+ 2 ln

�
2

m
2

�

+ 4
)
, (2.32)

�m� =

�

4�

m�

(
3Δ� − 3 ln

m
2

�

�
2
+ 4

)
. (2.33)

Δ� =
2

�
−
E+ln 4� contains the 1/�-poles of the UV divergences, � is the mass scale parameter of

dimensional regularization and � is a �nite photon-mass used to regularize the IR divergence.
Inserting Eq. (2.32) into Eq. (2.27) we get

Σ
(1),R

(l) = −

�

2�

(/l − m� ) [−B0(0, 0, m
2

�
) + B0(m

2

�
, 0, m

2

�
) + 2m

2

�
B
′

0
(m

2

�
, �

2
, m

2

�
)] , (2.34)

As it can be seen from Eq. (2.34), the self-energy diagrams vanish after renormalization and
after contraction of a Dirac spinor of the external lepton, if the external leptons are on-shell.
For this reason we only need to include the vertex diagram.

Vertex correction

Since the self-energy correction vanishes for on-shell leptons, the relative one-loop correction
is given therefore only by the vertex correction

�
(1)

1−loop =
2ℜ(†

Bornvert)

|Born|
2

, (2.35)

where the matrix element for the (�) vertex corrections is given by

vert = −
e
2

q
2
ū(l

′
)Γ

�

vertu(l)ū(p
′
)Γ

p

�
u(p), (2.36)

with
Γ
�

vert = (−ie
2
)�
4−D

∫

d
D
kl

(2�)
D



�
( /l
′
− /kl + m� )


�
(/l − /kl + m� )
�

(k
2

l
− �

2
) [(l

′
− kl)

2
− m

2

�
] [(l − kl)

2
− m

2

�
]

, (2.37)
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where a small �ctitious mass � for the virtual photon was introduced in order to regularize
the IR divergence. For on-shell leptons, the vertex correction can be separated into two form
factors, in a similar way as was done for the nucleon vertex in 1. The vertex correction can
be taken therefore into account by replacing the tree-level on-shell vertex by



�
→ Γ

�

vert ≡ F
�

1
(Q

2

�
)


�
+

i

2m�

�
��
q�F

�

2
(Q

2

�
) . (2.38)

F
�

2
from this expression is UV and IR �nite. The other form factor, F �

1
, is both UV and IR

divergent. The UV divergence is regularized using dimensional regularization and removed
by renormalization by adding a counterterm Lagrangian (see App. B). In the on-shell renor-
malization scheme the normalization constant that removes the UV divergence is found by
requiring that in the limit Q2

→ 0 the vertex reproduces the tree level vertex. Therefore at
�rst order the renormalized form factor F �

1

(1,R)

(Q
2

�
) is given by

F
�

1

(1,R)

(Q
2

�
) = F

�

1

(1)

(Q
2

�
) − F

�

1

(1)

(0) = F
�

1

(1)

(Q
2

�
) + �Z1 , (2.39)

where we introduced additional upper indices to display the loop-order and distinguish renor-
malized (with index R) from unrenormalized quantities. Performing the loop integral from
Eq. (2.37) by using the methods described in App. D we get the following expression for the
renormalized F �

1

(1,R) form factor
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1
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2
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) =

�
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�
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]
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(2.40)

The counter-term �Z1, that removes the UV divergence, is given in the on-shell prescription
by

�Z1 = −

�

4�
[4m

2

�
C0(m

2

�
, m

2

�
, 0, m

2

�
, �

2
, m
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�
) − 2B0(0, m
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�
) + 3B0(m
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�
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2

�
) − 2] . (2.41)

Inserting the expressions of the scalar integrals found in App. D we get

�Z1 = −

�

4� (
Δ� − ln

m
2

�

�
2
+ 2 ln

�
2

m
2

�

+ 4
)
. (2.42)

�Z1 is identical with �Z2, Eq. (2.32), as a consequence of the Ward identity (see for example
Refs. [19] or [58]). For Q2

≫ m
2

�
, ignoring terms suppressed by the lepton mass, the renormal-

ized F �
1

(1) form factor is given by

F
�

1

(1,R)

(Q
2

�
) =

�

4� [
−L

2
+ 3L − 4 +

�
2

3

+ 4 ln

�

m�

(L − 1)
]
, (2.43)

where L = ln(Q2
/m

2

�). The relative vertex correction is therefore given by,

�
(1)

1−loop = 2F
�

1

(1,R)

. (2.44)
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The result of the loop integration can be found in the literature, including the exact lepton
mass dependence (see for example Ref. [42]) and is given by

�
(1)

1−loop =
�

� [

v
2
+ 1

4v

ln
(

v + 1

v − 1
)
ln

(

v
2
− 1

4v
2 )

+

2v
2
+ 1

2v
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(

v + 1

v − 1
)
− 2

+

v
2
+ 1

2v
(

Li2 (
v + 1

2v
)
− Li2 (

v − 1

2v
))

]

+ �
(1)

IR ,

(2.45)

where v =
√

1 + 4m
2

�
/Q

2

�
and � (1)IR is the term that contains the IR divergence, given by

�
(1)

IR =

�

�

ln

�
2

m
2

�
[

v
2
+ 1

2v

ln
(

v + 1

v − 1
)
− 1

]
. (2.46)

This term will cancel at the level of the cross section when one-photon radiation is included,
as will be seen below. The exact expression for the second form factor can also be found in
Ref. [42] and is given, at �rst order, by

F
�

2

(1)

=

�

4�

v
2
− 1

v

ln
(

v + 1

v − 1
)
. (2.47)

It can be seen that this form factor is suppressed by m
2

�
/Q

2 and can be ignored for P2 and
Qweak kinematics. However we include it in our calculation, since it might become important
in some regions of the phase space or for the case of � scattering.

One radiated photon in the soft-photon approximation

l l′

p p′

q′γ +

p′p

γ q′

l′l

k k

(γi) (γf)

Figure 2.3: Feynman diagrams for �rst-order leptonic bremsstrahlung corrections.

The diagrams that contribute to the leptonic radiative process �p → �p
 can be found in
Fig. 2.3. As can be seen from this �gure, we indicate by labels i and f when the photon is
emitted from the initial or the �nal lepton, respectively. The 4-momentum of the �nal state
photon is denoted by k

� and its energy by E
 . The matrix element that corresponds for the
diagrams of radiative scattering is given by

�

1

=�

1
 i +�

1
 f , (2.48)
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where the matrix element for initial state radiation is given by

�

1
 i = i
e
3

q
′2
ū(l

′
)
�

/l − /k + m�

−2lk
/�
∗
u(l)ū(p

′
)Γ

�

p
u(p), (2.49)

while the matrix element for �nal state radiation by

�

1
 f = i
e
3

q
′2
ū(l

′
)/�
∗
/l
′
+ /k + m�

2l
′
k


�u(l)ū(p
′
)Γ

�

p
u(p), (2.50)

where �� is the photon polarization vector. Note that the momentum transfer is shifted by the
emission of a photon, q� → q

′�
= l

�
− l

′�
− k

� , and the matrix element is proportional to 1/Q2,
not 1/Q2

�
(see Sec. 3.4 for more details). In the soft-photon approximation it is assumed that

the photon 4-momentum /k is neglected in the numerator. The o�-shell electron propagators
in Eq. (2.49) and Eq. (2.50) are therefore replaced by

/l − /k + m�

−2lk

→

/l + m�

−2lk

and
/l
′
+ /k + m�

2l
′
k

→

/l
′
+ m�

2l
′
k

. (2.51)

Making use of the relation /l /�
∗
= −/�

∗
/l + 2l�

∗ and of the Dirac equation to get rid of the −/�∗/l
term, we obtain the following result, known as the eikonal factor,

�

1

→ �

1s

= −e0


(

l�
∗

lk

−

l
′
�
∗

l
′
k )

. (2.52)

Integration over the photon 4-momentum up to a cut-o� Δ in the soft-photon approximation
leads to

∫
E
<Δ

d
4
�
(1)

1s

= d�

(0)

(
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2)∫
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. (2.53)

The sum over photon polarizations amounts to the replacement

∑

polarizations
�
∗

�
�� → −g�� . (2.54)

Performing the integral of Eq. (2.53) we obtain the following
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(Bll − Bll′ + Bl′l′) − �
(1)

IR , (2.55)

where the result has been written as a contribution from initial state radiation, Bll , �nal state
radiation, Bl′l′ and the interference between the two, Bll′ . The IR divergence is contained in
�
(1)

IR and cancels exactly against the IR divergent part of Eq. (2.45). The calculation of Bll and
Bl′l′ is straightforward and leads to

Bll = ln
(

2Δ

m�
)
+

E

|
⃗
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, (2.56)
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⃗
l
′
|
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E
′
+ |
⃗
l
′
|)

. (2.57)
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The calculation of the interference term Bll′ is more involved and can be done following
Refs. [59] and [34]. The �nal result is given by 3

Bll′ = ln
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m
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)
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� )

− Li2
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�(E
′
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⃗
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′
|)

� ) ]

,

where ll′ = m
2

�
+ Q

2

�
/2 is the product of the 4-momenta of the incident and scattered lepton.

The following abbreviations have been used:

� =
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′
+

√

(ll
′
)
2
− m

4

�

m
2

�

,

� =

�ll
′
− m

2

�

�E − E
′
.

For Q2
≫ m

2

�
, ignoring terms suppressed by the lepton mass, we get the following result for

the �rst order soft photon correction

�
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This expression agrees for example with the one given in Ref. [42]. In our calculations, how-
ever, we use the exact expression given in Eq. (2.55). The non-radiative relative correction at
�rst order for the cross section with no observed photon is IR �nite and is given by

�
(1)

non-rad(Δ) = �
(1)

1−loop + �
(1)

1s

(Δ) . (2.60)

In can be seen here that by combining the virtual correction with the real one in the soft
photon approximation, not only the IR term �

(1)

IR cancels, but also the L2 term. It is a well known
result in perturbation theory, called the Kinoshita-Lee-Nauenberg theorem (see Refs. [60],
[61] and Ref. [62] for a more recent review), that large logarithms can be considered as mass
singularities, since they diverge in the limit m� → 0, and they cancel at the level of the
cross section in the same way as the IR singularities, when virtual and real corrections are
combined. Because of this property the order of logarithms is never higher than the order of
the coupling constant, such that the relative cross section has the following structure

�
(n)
≡ d�

(n)
/d�

(0)
=

n

∑

k=0

k

∑

�=0

ck�
k
L
k−� |

|
|n≥1

=

n

∑

k=0

[
ck�

k
L
k
+ (�kLk−1)||

|n≥1]
, (2.61)

where Lk are called leading logs.
3We have corrected here a typo that appears in our publication (see Ref. [28]).
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2.2.2 One hard photon cross section
The diagrams for the radiative process were given in Fig. 2.3. The cross-section for this process
with one hard photon in the �nal state is given by

d
4
�
(1)

1ℎ

=

d
4
Γ1


4M|
⃗
l |

|�

1

|
2
, (2.62)

where the �ux factor is given for the �xed-target frame and the bar indicates that one has
to average and sum over the polarization degrees of freedom in the initial and �nal state,
respectively (see Ref. [28]). The di�erential phase-space is given by

d
4
Γ1
 = ∫

1

(2�)
5
d
4
l
′
d
4
k d

4
p
′
�(l

′ 2
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2

�
)�(k

2
)�(p

′ 2
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2
)�

4

(l + p − l
′
− p

′
− k) . (2.63)

We choose a phase space parametrization in terms of energies and polar angles of the lepton
and emitted photon as described in detail in App. E.1. The advantage of such a parametriza-
tion is that it allows the implementation of a direct cut on the energy of the scattered lepton,
which is required for the applications we are considering here (P2 and Qweak experiments).
An alternative choice is to replace the photon energy in favor of its azimuthal angle, see
e.g. Ref. [40]. We have implemented also this option in our program for numerical evalua-
tions. We found excellent agreement between the di�erent phase space parametrizations, but
one or the other may be preferable for the implementation of kinematic cuts depending on
the experimental situation. Using the notation de�ned there, the cross-section for one hard
radiated photon becomes

�
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where sin �
 =
√

1 − A
2
/B

2. Explicit expressions for A = A(E
′
, �� , E
 , �
 ), B = B(E

′
, �� , E
 , �
 )

and the integration limits are given in App. E.1, (see Eqs. (E.3) and (E.6)). The matrix element
for this process is given by the sum of the matrix elements for initial state and �nal state radi-
ation as it can be seen from Eq. (2.48). Averaging over initial polarization states and summing
over �nal ones, the matrix element squared reads
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2
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(2.65)

The sum over �nal state electron spins leads to a calculation of a trace, which is calculated
with the help of FeynCalc package and the �nal result is expressed in terms invariant
products of 4-momenta. A compact expression is given in App. A. The numerical integration
is performed with the help of Cuba package [63].
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2.2.3 Vacuum polarization
In general, in an arbitrary � gauge, the photon propagator can be separated into a longitudinal
and a transversal component as

G�� = G
T

��
+ G

L

��
. (2.66)

The transversal part satis�es the relation

G
T

��
= T

��
G
T

��
, (2.67)

where T

��
is a projection operator given by

T

��
= g�� −

k�k�

k
2
. (2.68)

In the Feynman gauge (the gauge used in this work) � = 0 and the longitudinal part drops out.
The vacuum polarization, re-summed to all orders, leads to the replacement of the photon
propagator, in the Feynman gauge, by (see Ref. [28])

G�� =

−ig��

q
2
[1 − Π(q

2
)]

, (2.69)

whereΠ(q2) is the vacuum polarization function, given below. The correction can be absorbed
in the �ne-structure constant as

�e�(q
2
) =

�

1 − Π(q
2
)

. (2.70)

The vacuum polarization tensor Π�� at �rst order, for lepton and anti-lepton loops is given
by integrating over the loop momentum, kl , the Feynman diagram given in Fig. 2.5 as

Π�� = (−ie
2
)�
4−D

∫

d
D
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(2�)
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Tr [
�( /kl + m� )
� ( /kl + /q)]
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l
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) [(kl + q)
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2

�
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. (2.71)
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Figure 2.4: Leptonic and hadronic contributions to the vacuum polarization in the Q2 range
relevant for the P2 experiment.
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f

f̄

Figure 2.5: Feynman diagram for one-loop vacuum polarization correction.

As a consequence of the Ward-Takahashi identities (see Ref. [19] for example), it can be shown
that the vacuum polarization tensorΠ�� is transversal to all orders of perturbation theory, i. e.

Π�� = −q
2T

��
Π(q

2
), (2.72)

where Π(q2) is the vacuum polarization function. Performing the loop integral of Eq. (2.71)
using the methods of App. D we obtain for the vacuum polarization function the following
expression
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]
. (2.73)

The expression for the vacuum polarization function was regularized by using dimensional
regularization and it is UV divergent for D → 4. The renormalized vacuum polarization is
obtained by adding a counterterm Lagrangian as is described in App. B. In the on-shell renor-
malization scheme the counterterm is found by normalizing the photon �eld, such that the
experimental value of the electric charge is found in the limit q → 0 of Coulomb scattering,
i. e.

lim
k→0

q
2
G
(R)T

��
= −iT

��
, (2.74)

where the upper index (R) stands for renormalized. To satisfy the above condition we need to
replace the vacuum polarization function from Eq. (2.69) by

Π(q
2
) → Π

R
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2
) = Π(q

2
) − Π(0) = Π(q

2
) + �Z3. (2.75)

In the limit q2 → 0 the vacuum polarization function becomes
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Since B′
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(0, m

2
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) = 1/6m

2

�
(see App. D) we �nd
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The renormalized vacuum polarization is given therefore by

Π
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�
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]
. (2.78)
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The contribution from lepton loops is given at �rst order by

�
leptons
vac-pol = 2Πe+�+� (q

2
) = �

e

vac-pol + �
�

vac-pol + �
�

vac-pol (2.79)

and can be written, for space-like momentum transfer −q2 = Q
2
> 0, in a compact form by

replacing the expressions for the scalar integrals in Eq. (2.78) with the expressions found in
App D as

�
�

vac-pol =
2�

3� [(
v
2
−

8

3
)
+ v

(3 − v
2
)

2

ln
(

v + 1

v − 1
)]

, (2.80)

where v =

√

1 + 4m
2

�
/Q

2 with m� the mass of the lepton in the loop. At large Q2, relative to
the lepton mass, one may use [64] 4:
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24)
+ O(�

3
) , (2.81)

which includes the two-loop contribution.
The hadronic part of Π(q2) can be extracted from experimental data for the cross section

of e+e− annihilation into hadrons. We use three di�erent parametrisations for the hadronic
contributions. The �rst one is a table provided by F. Ignatov [65] (see also Ref. [66]). A sec-
ond one is taken from the work of Jegerlehner (see Ref. [20]). The last one is used by the
KNT18 collaboration (see Ref. [67]). In Fig. 2.6 we show a comparison between the di�er-
ent parametrisations. As one can see, for P2 kinematics, the di�erence between Ignatov and
Jegerlehner is negligible. The di�erence between the Ignatov and the KNT18 parametriza-
tions is larger, but still small, about 0.3%. In Fig. 2.4 we show numerical results for �vac-pol. We
conclude that one has to include the vacuum polarization e�ect in a high-precision calculation
of the cross section and contributions from other than electron loops should not be neglected
for Q2 values above a few times 10−2 GeV2.

10−3 10−2 10−1 100

0

0.1

0.2

0.3

Q2 [GeV2]

100× δhadrvac, Ignatov−δhadrvac, KNT18

δhadrvac, Ignatov

100× δhadrvac, Ignatov−δhadrvac, Jegerlehner

δhadrvac, Ignatov

Figure 2.6: Comparison of di�erent parametrizations for the hadronic contributions to the
vacuum polarization correction.

2.3 Hadronic corrections
This section deals with (�) corrections to the proton line (hadronic corrections) of the unpo-
larized electron-proton scattering process. These corrections are either purely hadronic, like

4For energies at the P2 experiment this expression is valid only for electron and muon loops
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self-energies and the vertex correction, or mixed, like the two-photon exchange correction.
Hadronic radiation is composed also of a purely hadronic part, coming from the square of the
diagrams shown in Fig. 2.14, and the interference between hadronic and leptonic radiation.
Hadrons and implicitly protons are composite systems and their constituents are strongly
interacting particles, called quarks and gluons, which are described by Quantum Chromody-
namics (QCD). This theory can be treated perturbatively for large values of Q2, in the region
where the coupling constant �s is small, a property called asymptotic freedom. However, �s
becomes increasingly strong for lower values of Q2. (see Ref. [68] for a review on this topic).
In particular, the strong coupling constant �s(Q2

) is expected to diverge if Q2 approaches the
Landau pole, at Λ2QCD ≈(250 MeV)2. Therefore, at low Q

2, QCD breaks down and one has to use
an alternative approach in order to calculate these hadronic corrections and e�ects. One such
approach is a theory based on e�ective Lagrangians, called chiral perturbation theory (ChPT),
�rst developed by Weinberg [69]. However, an e�ective �eld theory is not renormalizable and
the in�nities that appear in the calculations have to be removed order by order. This proce-
dure gives rise to a growing number of low energy constants that have to be �tted to data
(see Refs. [70] and [71] for some reviews on this topic). Another approach, which made con-
siderable progress in recent years, is lattice gauge theory or lattice QCD. This theory works
by discretizing QCD on a four-dimensional space-time lattice and approaches the physical
world in the continuum limit of vanishing lattice constants. A disadvantage of this method
is the requirement of considerable computing power. Recently, important progress have been
made by improved algorithms and increased computing power (for the recent developments
see the most recent PDG review [72]). Both ChPT and lattice QCD cannot make yet precise
predictions and therefore we will use a third approach which makes use of experimental data
to calculate these corrections. In fact, is possible to make use of experimental data to calculate
these e�ects. One such approach, which was already discussed in the calculation of hadronic
contributions to the vacuum polarization in the previous section, is to make use of the optical
theorem to relate the experimental data to the imaginary part of the amplitude and dispersion
relations to obtain the real part from the imaginary part. Finally, by using a speci�c model for
the internal structure of the nucleon we can rely on the available experimental to determine
the nucleon form factors, which in turn can be used in higher order calculations. Following
Refs. [42] and [34] this is done in our work by using the on-shell proton vertex function given
in Eq. (2.3). This is explained in more detail in the section that deals with hadronic radiation
(see Sec. 2.3.3).
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2.3.1 Two-photon exchange correction

+
γ kl q + kl

box xbox

Figure 2.7: Feynman diagrams for �rst-order two-photon exchange corrections.

The two-photon exchange (TPE) correction has an importance by itself even at low energies,
since it becomes important for the extraction of proton form factors (see Ref. [30]) and thus
can have indirectly a signi�cant contribution to the electromagnetic radii. For this reason
several improved calculations, which take into account di�erent intermediate states, were
performed (see for example Refs. [73–76]). Additionally, the TPE correction is important in
view of 4-7 standard deviations discrepancy between measurements of the proton charge ra-
dius performed using muonic hydrogen spectroscopy and electron scattering experiments
(see Ref. [44] and Ref. [77] for some reviews on this topic). The most recent experiment us-
ing spectroscopy experiment that was performed on electronic hydrogen (see Ref. [78]) is in
good agreement with the recommended CODATA-2014 value, which doesn’t include the spec-
troscopy measurements done with muonic hydrogen. Recently, a new elastic electron-proton
scattering experiment has been performed (see Ref. [79]) that agrees with the muonic hydro-
gen spectroscopy experiment. Thus, this measurement seems to tip the scales in favour of a
smaller proton radius, in agreement with the highly accurate results from muonic-hydrogen
experiments. Moreover, the MUSE collaboration (see Ref. [1]) plans to make a high precision
measurement of the proton radius using both ep and �p elastic scattering. Also the imaginary
part of two-photon exchange can be directly accessed through the analysis of single-spin
asymmetry in lepton-nucleon scattering (see Ref. [80] for a recent measurement of this ob-
servable by the Qweak collaboration using electron proton scattering and Ref. [81] for a recent
theoretical calculation), which in turn can be related to the real part via dispersion relations.

+

box xbox

γ γkl q + kl

Figure 2.8: Feynman diagrams for �rst-order two-photon exchange corrections, that describes
only the elastic contribution.
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At (�) the TPE correction is given by the interference between the Born matrix element
and box and crossed box matrix elements as

2ℜ(†

Bornbox) + 2ℜ(†

Bornxbox) . (2.82)

The relative TPE corrections is given then by

�
(1)

TPE =
2ℜ(†

Bornbox) + 2ℜ(†

Bornxbox)

|Born|
2

, (2.83)

where the box and crossed box matrix elements correspond to the diagrams from Fig. 2.7 and
are given by

box (xbox) = (−ie
4
)
∫

d
4
kl

(2�)
4

box (xbox)
��

��

(k
2

l
− �

2
) [(kl + q)

2
− �

2
]

, (2.84)

where a small photon mass � has been introduced to regularize the IR divergence as in the
case of the vertex and soft-photon corrections. The leptonic tensor corresponding to box and
cross-box diagrams are given by

box
��

= ū� (l
′
)
�

(/l + /kl + m� )

(l + k� )
2
− m

2

�


�u� (l) , xbox
��

= ū� (l
′
)
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(/l
′

− /kl + m� )

(l
′
− k� )

2
− m

2

�


�u� (l) , (2.85)

while the proton tensor is given by (see Refs. [44] and [77])

��
= ūp(p

′
)Γ

R→
N

��
(p + kl , q + kl)S

��
(p − k� , MR)Γ


N→R

��
(p + kl , kl)up(p) , (2.86)

where S��(p − k� , MR) is the hadronic state propagator and the hadronic transition current
operator is written in the general form Γ

R→
N

��
, such that it allows for a possible dependence

of the incoming momentum q of the virtual photon and the outgoing momentum pR of the
hadron. This de�nition allows the inclusion of intermediate states and inelastic contributions.
Neglecting inelastic intermediate states and assuming only the elastic contribution to the TPE
correction (see Fig. 2.8), the proton tensor is given by

��
= ūp(p

′
)Γ

�

p
(q + kl)

( /p − /kl + m� )

(p − k� )
2
− M

2
Γ
�

p
(kl)up(p) . (2.87)

Furthermore, we assume that the proton vertex function Γ
�

p has the on-shell form given in
Eq. (2.3). The TPE diagrams are UV �nite, but IR divergent. The IR-divergent part can be
obtained by analyzing the structure of the photon propagators in the integrand. The two
poles occur when the four momentum of either of the virtual photons becomes 0. This can
happen when kl = 0 or when q = −kl . Applying the soft photon approximation (SPA), which
implies the evaluation of the numerator in the integral at either value we get for the box
diagram (see Ref. [44])

box = −
zZ�

2�

(s − M
2
)Q

2BornD0(s; �
2
, �

2
, m

2

�
, M

2
) , (2.88)

where Z is the proton charge and z = −1 for negatively charged leptons. In the case of
positively charged leptons, the Dirac spinor u(l) in Eq. (2.85) gets replaced by v(l) and this
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leads in this expression to z = 1. Furthermore, s the Mandelstam variable, given by s = M2
+

2ME in the laboratory frame, while D0(s; �2, �2, m2

�
, M

2
) is the four-point Passarino-Veltman

function, for which the real part is given in the limit s − M2
≫ m

2

�
, m�M by (see Ref. [82])
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2
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. (2.89)

To obtain the expression for the crossed-box diagram we can make use of crossing symmetry
to get

xbox(u, t) =box(s, t)|s→u , (2.90)
where t = −Q2 and u = M2

+ 2ME
′ are the other two Mandelstam variables in the laboratory

frame. Combining the two expressions we get the same result for the IR contribution that was
obtained by Maximon and Tjon in Ref. [34]

�
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IR = −2zZ
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�
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E

E
′
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2

�
2
. (2.91)

In contrast, in the earlier treatment of Mo and Tsai (see Ref. [31]), the SPA is also applied to
the denominator. In this case the result for the box diagram is

box = zZ
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�
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2
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where the C0 is the three-point Passarino-Veltman function and the extra factor of two ac-
counts for the contribution from both poles. Therefore the total contribution from box and
crossed-box diagrams in this approximation, as obtained by Mo and Tsai, is given by

�IR(MoT) = −2zZ �
�
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2
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�
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)] . (2.93)

To calculate this expression, Mo and Tsai make an additional approximation for the C0 func-
tion by replacing p → −p in the box contribution, or equivalently s → M

2
− 2ME. This

approximation eliminates the complex term that appears in the calculation of the C0 function.
We this approximation they arrive at

�IR(MoT) = −2zZ �
� [
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2
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�
4 ]

. (2.94)

This expression di�ers from the one obtained in Eq. (2.91), obtained by Maximon and Tjon.
Neither of these two expressions is an exact calculation of the two-photon exchange contri-
bution, but Maximon and Tjon Eq. (2.91) uses a less drastic approximation than Mo and Tsai
(see Ref. [83] for the exact expressions of the C0 functions). The IR pole, however, is the same
in both cases and the di�erence �di�

IR = �
int
IR − �IR(MoT) is �nite and given by

�
di�
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� [
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E
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EE
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+ 2Li2

(
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2E)
− 2Li2

(
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M

2E
′)]

. (2.95)

For electron-proton scattering at P2 kinematics, as can be seen from Fig. 2.9, the di�erence �di�
IR

between the two approaches is smaller than 10−3. The IR term, � int
IR , cancels exactly at the level
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of the cross section by including the interference between leptonic and hadronic radiation in
the soft-photon limit.

0.009 0.01 0.011 0.012 0.013

0.26

0.28

0.3 E = 155 MeV

Q2 [GeV2]

1
0
3
δd

iff
IR

Figure 2.9: The di�erence between the calculations of Maximon and Tjon and Mo and Tsai for
P2 kinematics. Since both have the same IR structure, the di�erence between them is �nite.

A recent calculation at forward angles and at low Q
2, that includes both the elastic and

inelastic contributions was performed by Tomalak and Vanderhaeghen (see Ref. [74]). In this
work, the TPE contribution is expressed as an integral over the double Compton amplitudes.
The double virtual Compton scattering tensor is approximated by two unpolarized virtual
Compton scattering amplitudes in the forward limit (see Fig. 2.10), which are obtained as a
dispersion integral over the unpolarized proton structure functions. The results of this calcu-
lation are available in POLARES (see Sec. 5.1) only for P2 kinematics, i.e. for a beam energy of
E = 155 MeV and scattering angle 25◦ < �� < 45◦. For this reason we provide also alternatives
for this calculation that can be used also for di�erent kinematics.

ν µ

γ∗ γ∗

p p′

Figure 2.10: Diagram that describes the double virtual Compton scattering.

One of the earlier treatments of this correction was done in the Dirac theory by McKinley
and Feshbach in Ref. [84] and is valid at forward limit for Q2

→ 0 and � → 1, where � is the
virtual photon polarization parameter and was given in Eq.(2.10). This correction, called the
Feshbach term �F , can be expressed as a function of the scattering angle as

�F = ��

sin
��

2
− sin

2 ��

2

cos
2 ��

2

. (2.96)
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At high momentum transfer, the evaluation of this correction was done in Ref. [85] by using
a quark-parton representation of virtual Compton scattering. In the forward limit, for Q2

→

0 and � → 1, the �nite part of � (1)TPE reduces to the Feshbach term and an additional large
logarithmic terms in (1− �) (see Ref. [73]). We will call this expression the improved Feshbach
correction given by

�
(1)

TPE − �
int
IR ≈ �F +

�

�

√

1 − �

2

ln [2(1 − �)]
[

1

2

ln [2(1 − �)] + 1
]
. (2.97)

A more direct way to perform this calculation is to treat the proton as a point-like fermion,
i.e. by setting F1 = 1 and F2 = 0. This amounts to the replacement of the proton vertex functions
in Eq. (2.87) with corresponding 
 -matrices as Γ�p → 


� and Γ�
p
→ 


� . However, this calcu-
lation has the disadvantage that it ignores any e�ect that comes from the proton structure.
In this calculation, before performing the integral over the loop momentum kl , we evaluate
the traces that result from summing over �nal state polarizations after contracting the Born
matrix element with the box (xbox) matrix element given in Eq. (2.84). The calculation of the
traces and of the loop momentum was performed with the help of Mathematica package
FeynCalc using the methods of App. D, such that the resulting expression is given in terms
of products of four momenta and B0, C0 and D0 scalar integrals. The resulting expression is
too large to be given here. To evaluate numerically the more complicated four-point functions
the package LoopTools was used. We call the �nite part of this expression the point-like
calculation.

Another model dependent way to obtain both the elastic and inelastic contributions to
this correction is via dispersion relations. The dispersive approach consists in relating the
imaginary part of the TPE amplitude to the real part. The imaginary part can then be obtained
from experimental data by using the unitarity condition of the scattering matrix. In general,
the S matrix element f i = ⟨f | |i⟩, between the initial state i, with momentum pi and �nal
state f , with momentum pf can be written as

f i = �f i + i(2�)
4
�
4
(pf − pi)f i , (2.98)

where f i is the invariant amplitude. Unitarity requires that

2ℑf i = ∫
d� ∑

ℎ

∗

nf
ni , (2.99)

where d� is the covariant phase-space factor for a set of intermediate states ℎ. See Fig. 2.11
for a graphical representation of this relation.

Figure 2.11: A graphical representation of Eq. (2.99) (see Ref. [86]).
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In the limit of forward elastic scattering, i = f , the product of amplitudes in Eq. (2.99) can
be expressed as an observable and allows loop integrations to be evaluated in terms of on-shell
states, such that empirical data can be used as input in the calculation of the imaginary part.
The Cauchy integral formula allows the real and imaginary parts of f i to be related by

ℜf i(s) =

1

�


∫

inf

− inf

ds
′
ℑf i(s

′
)

s
′
− s

, (2.100)

where  denotes the principal value of the integral. To relate the two parts it is convenient to
decompose the hadronic tensor, as in the case of one photon exchange (OPE) into form factors
as (see Ref. [87])

��
= ūp(p
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)
(
F̃1
� + F̃2

i�
��
q�

2M

+ F̃3
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′
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4M
2 )

up(p) , (2.101)

where � �� = i

2
[


�
, 


�
] and the form factors F̃1, F̃2 and F̃3 are functions of Q2 and �. In the OPE

limit F̃1 and F̃2 reduce to the usual Dirac and Pauli form factors, while F̃3 vanishes. As in the
OPE limit it is convenient to introduce generalized Sachs form factors, which are given by
the ones from the OPE limit and a correction factor, as G̃E = GE + �GE and G̃M = GM + �GM .
The correction factors �GE and �GM have both a real and an imaginary part and are functions
of Q2 and �. In this approach the correction factors �GE and �GM , plus the extra form factor
F̃3 can then be calculated via dispersion relations. In Ref. [86] the contribution to the TPE
amplitudes arising from nucleon elastic intermediate states was calculated in terms of elastic
on-shell nucleon form factors parametrized as a sum of monopoles. The prescription of taking
on-shell values for the half o�-shell form factors in the direct calculations is an approxima-
tion, that seems to works well however at low energies (Q2

≤ 6GeV
2) This calculation can

therefore also be used as an alternative to the already mentioned ones and has the advantage
that it was implemented in a C++ program called TPEcalc (see Ref. [76]) and it is readily
available. Furthermore, the program allows the inclusion of various intermediate states. The
TPE relative correction can be expressed in terms of the correction factors �GE and �GM as

�
(1)

TPE ≈
2

�R
2
+ �

ℜ
(
�R

2
�GE

GE

+ �

�GM

GM
)
, (2.102)

where R = GE/GM . The ratios �GE/GE and �GM /GM can be obtained with the programTPEcalc.
In Fig. 2.12 the result obtained with TPEcalc, with a proton in the intermediate state is
shown, which corresponds to the elastic contribution of TPE. Note, however, that the authors
of TPEcalc use the approach of Mo and Tsai to regularize the IR divergences. Therefore,
for the comparison to be meaningful, we have added the �nite di�erence �di�

IR from Eq.(2.95) to
the result obtained with TPEcalc. A comparison between the di�erent calculations can also
be found in Fig. 2.12 for P2 kinematics. As can be seen from this �gure all other calculations
are in good agreement with the result obtained by Tomalak and Vanderhaeghen, that includes
both elastic and inelastic contributions. For the purpose of the P2 experiment, which aims at
per mile precision any of this calculations can be used. In particular, the Feshbach expression
is useful, since it has a simple form and can be easily implemented.
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Figure 2.12: A comparison between di�erent calculations of two photon exchange for P2 kine-
matics. The results called Tomalak total and Tomalak elastic are based on the work of Tomalak
and Vanderhaeghen. The Feshbach term was given in Eq. (2.96), while the improved Feshbach
expression was given in Eq. (2.97). The point-like result was obtained by treating the proton as
a point-like fermion, while the TPEcalc result was obtained with the program of Borisyuk
and Kobushkin to which the �nite contribution �di�

IR was added.

We conclude this section by saying that the result for the total TPE correction, as was
calculated in Ref. [74] is made available in the program POLARES only for P2 kinematics,
i.e. for a beam energy of 155 MeV and scattering angles between 25◦ and 45◦ in the laboratory
frame. However, as we have seen here, there are many other alternatives at low energies that
are a very good approximation of this result, that can be used also for di�erent kinematics.
In particular, the Feshbach, the improved Feshbach and the results obtained with TPEcalc
were also included in POLARES (see 5.1).

2.3.2 Hadronic self-energy and vertex corrections

γ +

se1h se2h verth

+

Figure 2.13: Feynman diagrams for �rst-order hadronic self-energy and vertex corrections.
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The interference between the Born matrix element and the matrix elements for the hadronic
self-energy and vertex corrections is given by

2ℜ(†

Bornse1h+se2h) + 2ℜ(†

Bornverth) , (2.103)

where the matrix elements correspond to the diagrams from Fig. 2.13. The relative correction
is then given by
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. (2.104)

In Ref. [34] the e�ects of these corrections are calculated by taking the proton form factors to
have a dipole form as

F
p
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2
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Q
2
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2

. (2.105)

In their calculation, the authors of Ref. [34] split the result into a part which is form factor
independent (denoted by �

(0)

el
), and a form factor dependent part (denoted by �

(1)

el
). The IR

divergence, that cancels when we include soft-photon hadronic radiation (see next section for
more details), is entirely contained in the form factor independent part, which is given by
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where x = (Q + �)
2
/4M

2 with �2 = Q2
+ 4M

2. The IR term �
(1ℎ)

IR is given by

�
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IR = −Z
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�

� (

Ep
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ln x − 1
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M
2

�
2
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For the expression of � (1)
el

, originating from the inclusion of form factors in the calculation of
the self-energy and vertex corrections, we refer to Ref. [34]. We mention here that � (1)

el
gives a

small contribution of approximately 0.2% forQ2
= 6GeV2 and a beam energy of E = 4.4GeV in

the study of Ref. [34]. Even at these higher energies this contribution is very small, at per mile
level. Since at lower energies we expect this contribution to be even smaller, we can conclude
that � (1)

el
can be safely ignored for P2 kinematics. As an alternative to this calculation we

present another way of calculating this contribution by ignoring the structure of the proton
and treating it as a fermion particle, i.e. setting the form factors to F1 = 1 and F2 = 0. By doing
so, the self-energies vanish for on-shell protons, as they do for on-shell leptons (see Sec.2.2.1),
such that the 1-loop correction to the proton side is given only by the vertex correction as

�
(1ℎ)

1loop =
2ℜ(†

Bornverth)

|Born|
2

, (2.108)

where the matrix element for the vertex correction is given by

vert = −
e
2

q
2
ū(l

′
)


�
u(l)ū(p
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vert, p
�

u(p), (2.109)

with

Γ
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�
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2
] [(p
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− M
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]

, (2.110)
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where a small �ctitious mass � for the virtual photon was introduced in order to regular-
ize the IR divergence. To perform the integration over the loop momentum we have used
the Mathematica package FeynCalc. The resulting tensor functions that result from
this integration are reduced to B0 and C0 scalar integrals, such that we obtain the following
expression for the vertex correction factor
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(1ℎ)

vert = − 2�Z
p

1
+

�

4� [

2
(
3B0(−Q

2
, M

2
, M

2
) − 4B0(M

2
, 0, M

2
)

− 2(2M
2
+ Q

2
)C0(M

2
, M

2
, −Q

2
, M

2
, �

2
, M

2
)
)

−

Q
2
(Q

2
− 4S)

2

(B0(−Q
2
, M

2
, M

2
) − B0(0, M

2
, M

2
) − 2)

(4M
2
+ Q

2
)(Q

2
(2(m

2

�
+ M

2
) − Q

2
) + 4Q

2
S − 8S

2
)

−
(4M

2
Q
2
− (Q

2
− 4S)

2

) (B0(−Q
2
, M

2
, M

2
) − B0(0, M

2
, M

2
) − 2)

Q
2
(2(m

2

�
+ M

2
) − Q

2
) + 4Q

2
S − 8S

2
]

,
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where S = l ⋅ p and �Z p

1
is the counter-term that removes the UV divergence and is given in

the on-shell prescription by

�Z
p

1
= −
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4�
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) + 4 + 4M

2
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, 0, M
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2
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)] . (2.112)

The expression of scalar integrals, B0 and C0 are given in App. D. The IR divergence is con-
tained in the expression of the C0 scalar integral and cancels exactly at the level of the cross
section when we include the square of the hadronic radiation Feynman diagrams, given in
Fig. 2.14, in the soft-photon limit (see next section for more details). The expression of � (1ℎ)vert
is similar in size with � (0)

el
from Eq. (2.106) and gives a very small contribution, of the order of

10
−7 for P2 kinematics.

2.3.3 Hadronic radiation

qγ + γ

(γih) (γfh)

Figure 2.14: Feynman diagrams for �rst-order hadronic bremsstrahlung corrections.

The matrix element for the radiative process �p → �p
 includes leptonic and hadronic radi-
ation and it is given by

1
 =�

1

+ℎ

1

. (2.113)
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The diagrams that describe the leptonic radiative process were given in Fig. 2.3, while the
ones that describe the hadronic radiative process are given in Fig. 2.14. As in the case of
leptonic radiation, we indicate with i and f , initial and �nal state hadronic radiation. The
matrix element that corresponds to these diagrams is given by

ℎ

1

=ℎ

1
 i
+ℎ

1
f
. (2.114)

We assume that the intermediate hadronic states are virtual proton ones and that the vertices
of the photon-proton interaction are described by the on-shell vertex operator Γ� , given in
Eq. (2.3). With these assumptions the matrix elements for hadronic initial and �nal state
radiation are given by

ℎ

1
 i = i
e
3

q
2
ū(l

′
)
�u(l)ū(p

′
)Γ

�

p

/p − /k + m�

−2pk
/�
∗
u(p) (2.115)

and
ℎ

1
 f = i
e
3

q
2
ū(l)
�u(l)ū(p

′
)/�
∗
/p
′
+ /k + m�

2p
′
k

Γ
�

p
u(p). (2.116)

As in the case of TPE, the intermediate hadronic states can be given by higher resonances.
From these intermediate states, Δ(1232) is the lowest resonance and is expected to give the
leading contribution (see Ref. [47]). Although, a simple estimate of theΔ(1232) correction, that
doesn’t take into account experimental cuts, leads to a signi�cant contribution to the hadronic
radiation process, the authors of Ref. [47] show that an accurate calculation at low energies,
by taking into account experimental cuts, leads to a small e�ect, smaller than 0.01%. Note
that in the case of hadronic radiation the momentum transfer squared is not shifted as in the
case of leptonic radiation, such that the momentum transfer squared that is being measured
is the real momentum transfer squared, denoted by Q

2

�
. In the soft-photon approximation,

neglecting the 4-momentum of the photon in the numerator we obtain the eikonal factor for
the total matrix element, which is given by

1
 → 1s
 = −e0


(
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k )

, (2.117)

where z = −1 in the case of negatively charged leptons. In the case of positively charged
lepton, the Dirac spinor u(l) is replaced by v(l) and this leads to z = 1 in this expression. With
this matrix element the cross section in the soft-photon approximation becomes

∫
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Evaluating the integral we �nd terms coming form the square of leptonic radiation and from
the hadronic radiation, but also terms from the interference between them. The total relative
soft-photon correction becomes

�
(1)

1s

(Δ) =

�

�
[
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2

(Bll − Bll′ + Bl′l′) + Z
2

(Bpp − Bpp′ + Bp′p′)
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− �

�

IR − �
ℎ

IR − �
int
IR .

(2.119)
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The correction arising from the leptonic squared termsBll , Bll′ andBl′l′ was treated in Sec. 2.2.1.
The hadronic squared terms are given collectively in Ref. [34] by

Bpp − Bpp′ + Bp′p′ = ln

4Δ
2

M
2
(

Ep

|p⃗
′
|

ln x − 1

)

−

Ep

|p⃗
′
|
[
−
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2

x

2

− ln x + Li2 (1 −
1

x
2)]

− 1, (2.120)

where x and � were de�ned in the previous section, while the interference terms are given by

Blp − Blp′ − Bl′p + Bl′p′ = 2
[
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2
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where � = E/E′. We separate the hadronic squared terms as

�
(1ℎ)
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Z
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(Bpp − Bpp′ + Bp′p′) − �
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and the interference terms

�
(1int)
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(Δ) =
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�

zZ (Blp − Blp′ − Bl′p + Bl′p′) − �
int
IR . (2.123)

Combining the square of hadronic radiation with the hadronic vertex correction, the IR di-
vergence cancels and we get a �nal result given by

�
(1ℎ)

non-rad(Δ) = �
(1ℎ)

1s

(Δ) + �

(1ℎ)

vert . (2.124)

In a similar way, combining the interference between hadronic and leptonic radiation with
the two-photon exchange correction we get a �nite result given by

�
(1int)
non-rad(Δ) = �

(1int)
1s


(Δ) + �
(1)

TPE. (2.125)

The cross section for the radiative process in which a photon can be emitted either from
the lepton side or from the hadron side is given by

d
4
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(1)

1ℎ

=

d
4
Γ1


4M|
⃗
l |

|1
 |
2
. (2.126)

The di�erential phase space d4Γ1
 for this cross section was given in Eq. (2.63) and a parametriza-
tion of it in App. E.1. Separating leptonic from hadronic radiation the averaged matrix element
squared becomes

|1
 |
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= |�
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|
2
+ |ℎ

1
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+ 2ℜ [(�

1
)

∗ℎ
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]. (2.127)
The averaged matrix element squared for leptonic radiation was given in Eq. (2.65). Similarly,
the averaged matrix element squared for hadronic radiation is given by
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(2.128)
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where the sum over the photon polarizations is implicit. The vertex operator Γ� is now eval-
uated for o� mass-shell values of one of its arguments. Following Refs. [42] and [40], the
on-shell vertex operator, given by

Γ
�
(p
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, p) = F

p

1 [(p
′
− p)

2

] 

�
+ F

p

2 [(p
′
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2

]

i

2M

�
��
(p

′
− p)� , (2.129)

is used when evaluating this matrix element. The averaged matrix element squared for the
interference between leptonic and hadronic radiation is given by
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where again the sum over photon polarizations is implicit. Also here the on-shell form of
the vertex operator given in Eq. (2.129) is used in the evaluation. As in the previous case of
leptonic radiation, the sum over �nal state electron and proton spins leads to an evaluation of
a trace, which is performed with the help of the package FeynCalc and expressed in terms
of invariant products of 4-momenta.

In Fig. 2.15 we show a comparison between �rst order non-radiative corrections for P2
kinematics. The purely hadronic correction �

(1ℎ)

non-rad is very small, with a contribution of ap-
proximately −0.01%, while the interference between hadronic and leptonic, � (1int)

non-rad is smaller
than 0.5% and is dominated by the two photon exchange correction. Adding also the hard
photon correction we get the results shown in Fig. 2.16. We see that the leptonic �rst order
correction becomes positive and it is still dominant at approximately 4%, while the change to
the hadronic part is negligible, since the the contribution coming from hadronic radiation is
very small.
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Figure 2.15: A comparison between hadronic and leptonic non-radiative corrections for P2
kinematics at forward angles, 25◦ < �� < 45◦.
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Figure 2.16: Same as Fig. 2.15, but including also hard-photon radiation with a cut on the
�nal state electron energy of E′min = 45 MeV. The relative corrections are de�ned as � (1� ) =
�
(1� )
/�

(0)
− 1, � (1int)

= �
(1int)

/�
(0)
− 1 and � (1ℎ) = � (1ℎ)/� (0) − 1.

We conclude this section by pointing out that the hadronic corrections, except for the TPE
correction, don’t have a signi�cant contribution at energies relevant for the P2 experiment
and they don’t need in principle to be included. Moreover, since the form factors have to
be extracted from data, if the hadronic corrections are not removed in this process, they are
contained inside the form factors. This is also why a clear and transparent extraction method
of the form factors has to be provided if one wants to isolate the hadronic corrections.

A more signi�cant contribution comes however from second-order leptonic corrections
and this is the topic of the next section.
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2.4 Second-order corrections

2.4.1 Non-radiative corrections
The Feynman diagrams for two-loop corrections at the lepton line are shown in Fig. 2.17. Their
contribution to the matrix element is denoted by 2-loop. The relative two-loop correction
factor includes the square of the one-loop corrections and is given by

�
(2)

2−loop =
|vert|

2

+ 2ℜ(†

Born2-loop)

|Born|
2

. (2.131)

For electron scattering, the Pauli form factor F �
2

can be neglected at order �2, since it doesn’t
contain order one logs. Then the two-loop correction reduces to

�
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. (2.132)

A compact expression for the second order renormalized form factor F � (2)
1

, in the on-shell
scheme, valid for Q2

�
≫ m

2

�
, can be extracted from Ref. [88] and is given by5
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,

where L = ln(Q2

�
/m

2

�). Eq. (2.133) agrees with the earlier calculations6 of Refs. [92] and [93].
After removing the UV divergent parts the expression still contains IR divergences which

5We note that the diagram of Fig. 2.17c is taken into account with an electron loop only. In principle,
there are also contributions with a heavy lepton or with hadronic states in the loop. These contributions can
be calculated for example with the help of a dispersion relation technique. From similar calculations for other
processes [89, 90], their numerical contribution can be estimated to be small.

6The two-loop electron form factor from a calculation where both UV and IR divergences are isolated in
dimensional regularization can be found in Ref. [91].

(a) (b) (c)

(d) (e) (f) (g)

+ ++

++

+

Figure 2.17: Feynman diagrams for two-loop vertex corrections.
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Figure 2.18: Feynman diagrams for two-photon bremsstrahlung.

cancel when soft-photon corrections are included at the level of the cross section. These
soft-photon corrections at second order are corrections from two-soft-photon radiation and
one-loop corrections for one-soft-photon radiation.

The diagrams for two-photon radiation are shown in Fig. 2.18. In the soft-photon approx-
imation, the corresponding correction factor is given by
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If both photon energies separately are taken smaller than the cut-o� value Δ, as we assume
here, the phase space integration factorizes and leads to

�
(2)
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=

1

2!
(
�
(1)

1s
)

2

. (2.135)

In contrast, if the integration is done by restricting the total unobserved energy, i.e., using
E
 + E

′



< Δ, as was done for example in Ref. [39], the soft-photon correction factor � (2)

2s


contains an additional term −
�
2

3
(L−1)

2, which comes from the phase-space overlap of the two
photons [38]. In our approach we take account of this overlap region in the contribution from
two hard photons. Of course, the �nal result has to be independent of the way the phase-space
slicing is implemented.

The Feynman diagrams for one radiated photon at one-loop order are shown in Fig. 2.19.
When treating the photon as soft, one can approximate their contribution by a factorized form
in terms of the one-photon and one-loop correction factors:

�
(2)

1−loop+1s
 (Δ) = �
(1)

1−loop�
(1)

1s

(Δ) . (2.136)
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Combining all non-radiative second order corrections at the level of the cross section we
obtain an IR �nite, but cut-o� dependent result,

�
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Inserting the expressions of the di�erent components we get the following expression:
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As was stated in Sec. 2.2 we don’t expect to have terms of Lwith powers higher than the order
of the coupling constant after combining virtual and real corrections, due to the Kinoshita-
Lee-Nauenberg theorem. In this particular case, at second order, L4 terms cancel when com-
bining the two loop correction with the soft photon correction, as can be seen from Eq. (2.138).
However, L3 terms only partially cancel after combining these two corrections. The remain-
ing L3 term comes exclusively from the diagram 3.3(c), with a vacuum polarization insertion
(VPI) in the propagator of the virtual photon. Up to terms of (1) the renormalized result for
this diagram is given by (see Ref. [62])

F
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. (2.139)

A complete result for this diagram can be extracted from the calculation given in Ref. [91] or
can be calculated with the methods given in Ref. [90]. The remaining L3 term cancels exactly
when the real pair production correction is also included (see Ref. [62] for more details). How-
ever, the real pair production correction has not been included yet in the present calculation.
This is why, for consistency, the expression for diagram 3.3(c) given in the previous equation
is subtracted from F

� (2,R)

1
. In Ref. [62] the real electron-positron pair production is estimated

to not exceed a 0.5% correction relative to the Born cross section.

2.4.2 One-loop corrections to radiative scattering
A complete second-order calculation of the cross section includes one-loop corrections for
the process with one radiated photon. The corresponding Feynman diagrams are shown in
Fig. 2.19. The renormalization of these diagrams is done in on-shell scheme, using dimensional
regularization for the UV divergences and a small photon mass for the regularization of the IR
divergences (see App. B for more details on the renormalization and regularization methods
that were used). In this renormalization scheme the lepton self energy corrections at external
legs vanish after renormalization as was described already in Sec.2.2.1.

First, there are two self-energy diagrams with a photon radiated from the o�-shell line.
Their contribution to the matrix element is denoted by

se1
 =se1
 i +se1
 f . (2.140)

The one-loop integral entering se1
 is IR �nite. Its UV divergence is removed by adding the
vertex counter-term proportional to �Z1 (see Eq. (2.42)).
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Next two diagrams are vertex corrections with a photon emitted from the o�-shell line
and their matrix element is denoted by

v1
 =v1
 i +v1
 f . (2.141)

The 4-point one-loop integrals needed here are UV �nite, but contain IR-divergent contribu-
tions.

The second row of diagrams in Fig. 2.19 have a photon attached to an external, on-shell
lepton line; two of them are self energy insertions in the o�-shell lepton line,

se2
 =se2
 i +se2
 f , (2.142)

and two of them describe a one-loop vertex correction,

v2
 =v2
 i +v2
 f . (2.143)

These diagrams are UV divergent and require renormalization by including counter-terms,
either at the vertex (�Z1) or at the lepton self energy (�Z2 and �m� ).

The second-order corrections due to these diagrams are obtained from the interference
with the �rst-order diagrams. The relative correction that takes into account their contribu-
tion can be split into four parts,

�
(1)

1−loop+1ℎ
 = �
(1)

se1
 + �
(1)

v1
 + �
(1)

se2
 + �
(1)

v2
 , (2.144)

where the individual relative corrections are de�ned by
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+
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(se1γi) (se1γf) (v1γi) (v1γf)

(v2γi) (v2γf) (se2γi) (se2γf)

+

Figure 2.19: Feynman diagrams for one-loop corrections to one-photon bremsstrahlung.
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The calculation of these diagrams was done by performing the Passarino-Veltman decom-
position and reducing the tensor integrals to scalar integrals with the help of the Mathe-
matica packageFeyncalc (see App. D for details on how the calculation was performed).
For the scalar integrals that result from the tensor decomposition we use analytical expres-
sions that are given in App. D. However, after the reduction to scalar integrals is performed,
we are left with huge expressions, that can take several mega bytes of hard disk space, which
makes them unpractical for the purpose of a numerical calculation. To simplify these expres-
sions we �rst used the Mathematica function Simplify. This function already reduces
the size considerable of these expressions, but after this simpli�cation we are still left with
relatively large expressions and with large powers of masses and invariants in the numerator,
which can create problems numerically in some regions of phase space. To further simplify
and reduce the size considerably of these expressions (up to ten times) we used recently devel-
oped algorithms that make use of partial fractioning techniques. One such algorithm is based
on Leinartas’ multivariate partial fraction algorithm and it is implemented in the computer
algebra system Singular (see Ref. [94]). Such a simpli�cation has the advantage, not only
that it reduces the size considerably, but also that it removes the higher order powers in the
numerator that could create problems numerically otherwise. The algorithm we have used
to simplify our expressions also makes sure not to introduce new spurious singularities (see
Ref. [95]).

In the following we present the treatment of UV and IR divergences of each of these cor-
rections.

Self-energy with a photon emitted from the o�-shell line

The amplitude corresponding to the diagram se1
 i from Fig. 2.19, with the correction for the
initial state electron line, is given by

se1
 i = i
e
3

q
′2
ū(l

′
)
�

/l − /k + me

−2lk

Λse1
 i(l, k)u(l)ū(p2)Γ
�

p
u(p1), (2.145)

where Λse1
 i is the loop correction and is given by

Λse1
 i(l, k) = (−ie
2
)�
4−D

∫

d
D
kl

(2�)
D



�
(/l − /k − /kl + me)/�

∗
(/l − /kl + me)
�

(k
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l
− �

2
) [(l − k − kl)

2
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2

e
] [(l − kl)

2
− m

2

e
]

. (2.146)

Λse1
 i is IR �nite, but contains an UV divergence due to the term proportional with 
 � /kl /�∗ /kl
� .
In order to remove the UV divergence, following Ref. [42], we need to add a counter-term to
the matrix element as

se1
 i → se1
 i + (CT )se1
 i, (2.147)

where the counter-term is given by

(CT )se1
 i =
 i
(−e

2
)

(4�)
2
�Z1, (2.148)

with
�Z1 = −

�

4� (
Δ� + ln

(

�
2

m
2

e
)
+ 2 ln

(

�
2

m
2

e
)
+ 4

)
. (2.149)
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Due to the Ward identity the counter-term for the vertex correction �Z1 is the same with the
counter-term for self-energy correction �Z2. Therefore �Z2 is replaced everywhere with �Z1.

In a similar way, the diagram se1
 f from Fig. 2.19, corresponding to the �nal state correc-
tion is given by

se1
 f = i
e
3

q
′2
ū(l

′
)Λse1
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′
, k)

/l
′
+ /k + me

2l
′
k
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�

p
u(p1), (2.150)

where Λse1
 f is given by
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To remove the UV divergence we need to add the following counter-term

se1
 f → se1
 f + (CT )se1
 f, (2.152)

where
(CT )se1
 f =
 f

(−e
2
)

(4�)
2
�Z1. (2.153)

Vertex with a photon emitted from the o�-shell line

The amplitude corresponding to the diagram v1
 i from Fig. 2.19, with a photon emitted from
the o�-shell initial state line is given by

v1
 i = i
e
3

q
′2
ū(l

′
)Λv1
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′
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p
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where the loop correction is given by
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×
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For the �nal state we get
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 f = i
e
3

q
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where the loop correction is given by
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Λv1
 i(l, l
′
, k) and Λv1
 f(l, l

′
, k) are UV �nite, but contain an IR divergence. The IR divergences

cancel out exactly at the level of the cross section where the result for one hard-photon and one
loop is combined with the result for two emitted photons, in which one is a soft-photon. The
treatment of the cross section for one-hard photon and one soft-photon is done in Sec. 2.4.3.
In Sec. 2.5 we provide a test of the cancellation of IR divergences.
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Vertex with a photon emitted from the on-shell line

The amplitude corresponding to the initial state diagram v2
 i from Fig. 2.19 is given by
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where Λv2
 i is the loop correction and is given by
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For the �nal state diagram v2
 f we get
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where Λv2
 i is the loop correction and is given by
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These diagrams contain UV divergences due to the terms in the numerator proportional
with 


�
/kl
� /kl
� . As before, in order to remove the UV divergence we need to add a counter-

term to the matrix elements as

v2
 i →v2
 i + (CT )v2
 i,

v2
 f →v2
 f + (CT )v2
 f,

where the counter-terms are the same as in the previous case, i.e.

(CT )v2
 i =
 i
(−e

2
)

(4�)
2
�Z1,

(CT )v2
 f =
 f
(−e

2
)

(4�)
2
�Z1.

Self-energy with a photon emitted from the on-shell line

The amplitude corresponding to the initial state diagram se2
 i from Fig. 2.19 is given by
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ū(l

′
)
�

/l − /k + me

−2lk

Λse2
 i(l, k)
/l − /k + me

−2lk
/�
∗
u(l)ū(p2)Γ
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where the initial state self energy correction is given by
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The UV divergence from the self-energy loop integral is removed through renormalization of
the electron �eld and electron mass. The renormalized self-energy is given then by

Λse2
 i → Λ
R

se2
 i = Λse2
 i − �Z1(/l − /k − me) − �m, (2.164)
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where the counter-term that renormalizes the electron mass was given in Sec. 2.2.1. The
amplitude for the �nal state is given by
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where the �nal state self-energy correction is
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The renormalized �nal self-energy is given therefore by

Λse2
 f → Λ
R

se2
 f = Λse2
 f − �Z1( /l
′
+ /k − me) − �m. (2.167)

2.4.3 One hard and one soft photon
The diagrams that contribute to the ep → ep

 process are given in Fig. 2.18. The matrix
element for these diagrams is denoted by

2
 =2
 ia +2
 ifa +2
 fa +2
 ib +2
 ifb +2
 ifb. (2.168)

Assuming one photon is soft and the other one is hard, it is possible to separate the IR diver-
gent part from the IR �nite one. Making use of the Dirac equation we can split 2
 into two
parts as

2
 = E(k1)1
 (k2) + R, (2.169)

where 1
 is the matrix element for the process ep → ep
 given by the diagrams from
Fig. 2.3 with photon k2 in the �nal state. The IR divergence is contained in E(k1), called the
eikonal factor, which is given by

E(k1) =
(
−

l1�1

l1k1

+

l2�1

l2k1
)
. (2.170)

The remainder R = R1 + R2 can be separated in two parts as

R1 =2
 ib +2
 fb ,

R2 = (2
 ia +2
 ifa +2
 fa +2
 ifb) − E(k1)1
 ,

(2.171)

where the di�erent contributions i correspond to the Feynman diagrams shown in Fig. 2.18.
The �rst part, R1, is given by those diagrams that have the soft-photon emitted from an o�-
shell line and are thus IR �nite. The second part, R2, is given by the sum of the rest of the
diagrams, with the soft-photon emitted from the on-shell line, from which the IR divergent
part, contained in the eikonal factor, is subtracted.

The cross section for two photons in the �nal state is given by

d
7
�
(2)

2

=

d
7
Γ2


2 ⋅ 4M|
⃗
l|

|2
 |
2
, (2.172)
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where a symmetrization factor of one-half is applied to take into account the fact that there
are two identical particles in the �nal state. Making the integration over the photon energies
explicit and taking into account that the cross section is symmetric with respect to interchang-
ing k1 ↔ k2, the separation between soft- and hard-photon phase space regions is done as
(see Ref. [28])

∫

E
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Δ
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. (2.173)

Only the second term on the right-hand side of Eq. (2.173) contributes to the part of the total
cross section considered here, where we require one hard and one soft photon. The �rst part
is purely soft-photon and contributes to the non-radiative cross section, combined with the
2-loop contribution, as was described in Sec. 2.4.1, while the last term for two hard photons
is described in the next sub-section.

Inserting Eq. (2.169) in Eq. (2.172) we get
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=
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 (k2)R

†
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where the over line that denotes the fact we have to sum over �nal states and average over the
initial states is implicit. When integrating from 0 up to a cut-o�Δ, the �rst term of Eq. (2.174) is
IR-divergent and must be combined with one-loop diagrams. The IR divergences contained in
the one-loop corrections to the radiative process described in the previous sub-section are can-
celed by corresponding IR divergences from 2-photon bremsstrahlung with one soft-photon.
Using the soft-photon approximation, this part can be integrated analytically with the meth-
ods presented in Sec. 2.2.1 and it is given by
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The second and third terms of Eq. (2.172) are �nite and proportional to Δ. We denote the cross
section that includes these two terms by

�
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[|R|
2
+ 2ℜ (E(k1)1
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)] . (2.176)

Since the cross section is proportional to Δ, it vanishes as Δ → 0. This behavior can be seen
also from Fig. 2.20, where �R

1ℎ
+1s

is plotted as a function of Δ. As Δ becomes smaller it can be

seen that the value of the cross section decreases, but also the numerical uncertainties become
larger.

The last part of Eq. (2.174) can be safely integrated numerically, since both photon energies
are bigger than the cut-o� Δ. This last term is described in the next sub-section.
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Figure 2.20: The �nite part of the cross section with one hard-photon and one soft-photon in
the �nal state plotted as a function of Δ.

2.4.4 Two hard photons cross section

The cross section for �p → �p

 is given by Eq. (2.172), while the matrix element is given by
Eq. (2.168) . The di�erential phase-space for this process is given by
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The treatment of the delta-functions and the derivation of integration limits is described in
App. E.2. Using the notation de�ned in App. E.2, the cross section for two-hard-photon radi-
ation is expressed as
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where the integration limits and the de�nition of the quantities �i are given in App. E.2.
Taking the complex conjugate squared of the matrix element, averaging over initial spin
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states and summing over the �nal state we get
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The sum over the �nal state electron spins leads to a calculation of a trace. For calculating the
trace the function Tr from FeynCalc package is used. The �nal result is expressed in term
of invariants and consists of a lengthy expression, which is not given here. To simplify and
reduce the size considerably of this expression we used a recently developed algorithm that
makes use of a partial fraction method called the Leinartas decomposition (see Ref. [95]). A
useful feature of this decomposition is that it avoids the introduction of new spurious denom-
inators, by separating the denominators which don’t share common zeros or are algebraically
dependent. The advantage of the algorithm that we have used over other algorithms, based
also on this method (see for example Ref. [94]), is that it allows for deviations from Leinartas’
form to allow for lower denominator degrees. Such a simpli�cation has the advantage, not
only that it reduces the size considerably, but also that it removes higher order terms in the
numerator and denominator that could create problems numerically otherwise.

Since the IR poles are cut-o� by integration limits on the photon energies, it is possible to
use standard integration packages for numerical calculations. However, there are another type
of poles in the di�erential cross section that could create problems numerically. These type of
poles appear whenever a photon is emitted collinear to the direction of either initial or �nal
state electron, for which reason they are called collinear poles. These poles are regularized
naturally by the electron mass, but since the electron mass is very small, a naive approach will
be numerically unstable. From Eq. (2.168) we �nd there are collinear poles due to initial, �nal
state radiation and a combination between the two. The poles for initial state radiation are
given by the 4-momenta products lk1 and lk2, while the poles for �nal state radiation are given
by l′k1 and l′k2. These 4-momenta products reduce in the laboratory frame to E
 (E − |

⃗
l|) and

E
 (E
′
−|
⃗
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′
|)whenever the photon k1 is emitted collinear to the initial state electron or �nal state
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⃗
l
′
|) whenever the photon k2 is emitted collinear to the

initial state electron or �nal state electron. Expanding for example the �rst of the 4-momenta
products we get

lk1 ≈

E


E

m
2

�
, (2.180)

which tells us that the collinear poles are of the order of 1/m2

�
if the emitted photon is hard,

i.e. E
 > Δ. In order to deal with this problem we have used a partial fractioning tech-
nique to separate the collinear poles. First, by multiplying the matrix element squared with
D1D2D3D4, where D1 = lk1, D2 = l

′
k1, D3 = lk2 and D4 = l

′
k2, we make sure that none of the

4-momenta products appear anymore in the denominator. Then, since we have to divide back
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by D1D2D3D4, we split this denominator as
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(2.181)

Splitting the denominator using this partial fractioning method we make sure that for each
part there is only one collinear pole, while the others appear as sums of terms that don’t
create additional singularities and numerical problems, since we are left only with sums of
denominators, Di + Dj , and all 4-momenta products are real numbers, greater than 0. The
cross section and implicitly the numerical integration is separated therefore into four parts,
for each collinear pole. For each term in the sum, after partial fractioning, we �nd a speci�c
change of integration variables which allows us to obtain an e�cient and numerically stable
integration. Since the cross section is symmetric under the interchange k1 ↔ k2, we make
use of this property to interchange the order of variables in Eq. (2.178). This allows us to deal
with the change of variables for denominators D1 and D3. Therefore, for the �rst denominator
D1 we replace the integration of �
 by ln(lk1/�2) as

cos �
 ,max

∫

cos �
 ,min

d cos �
 =

ln(lk1/�
2

)max

∫

ln(lk1/�
2
)min

d ln(lk1/�
2

)lk1
, (2.182)

with the Jacobian given by lk1
= lk1/|

⃗
l|E
 . We have introduced an arbitrary parameter �2,

which can be chosen with the same dimension of the logarithm, such that the numerical value
is not changed, but the argument becomes dimensionless. For D2 we replace � ′



by ln(lk2/�2)

as
cos �

′
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∫

cos �
′


 ,min

d cos �
′



=

ln(lk2/�
2
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∫

ln(lk2/�
2
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d ln(lk2/�
2

)lk2
, (2.183)

with the Jacobian given by lk2
= lk2/|

⃗
l|E

′



; For D3 we replace �
 by ln(l′k1/�2) as
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, (2.184)
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with the Jacobian l
′
k1
= l

′
k1/

⃗
l
′
E
 sin(�� ) sin(�
) sin(�
) and �nally for D4 we replace �′
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with the Jacobian l
′
k2
= l

′
k2/

⃗
l
′
E
′



sin(�� ) sin(�

′


) sin(�
′


). The phase space limits for the new
variables can be directly obtained from the limits of the old variables. For example, for D1 the
new limits are given by

ln(lk1/�
2

)min = ln [(EE
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,
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)min) /�

2

]
.

(2.186)

We note here that Eq. (2.168) contains two additional denominators, given by lk1+lk2−k1k2
and l′k1 + l′k2 + k1k2 that become problematic when both photons are emitted either collinear
to the initial state electron or to the �nal state electron. However, since they appear as a sum
in the denominator, it turns out that they don’t require a special treatment.

2.5 Numerical tests
In this section we present some numerical tests that can be used to check the consistency and
the accuracy of our results. Since we know that the bremsstrahlung cross section contains
narrow peaks that can create problems numerically, we �rst show some tests for the numerical
integration of these cross sections by varying the number of evaluations, to make sure they
reach a point for which the variations of the results are relatively small and they are within
the uncertainties predicted by the numerical integration. In the second part we use the fact
that we have introduced some unphysical parameters in our calculations in order to deal with
the divergent behavior of our expressions. The �nal result should be of course independent
of these parameters and we can vary them to check if the result stays, in fact, constant.

As can be seen from Eq. (2.62) the cross section with one hard radiated photon is propor-
tional to the following 4-momenta products

�
(1)

1ℎ

∝

1

(lk)(l
′
k)

, (2.187)

or the square of any of them. Because of this property the cross section is divergent if the
photon energy goes to 0, i.e. for E
 → 0. Using the phase-space slicing method allowed us to
separate the integration of this cross section into two parts, by de�ning a cut-o�, Δ, on the
photon energy. However, as was explained in the previous section, the cross section contains
also collinear peaks that can create problems numerically due to the smallness of the electron
mass and we want to make sure that the methods we are using for numerical integration
overcome this di�culty. At �rst order, as can be seen from Fig. 2.21 the integration is stable
and for a number of evaluations bigger than 107 has very small �uctuations, that lie within the
uncertainties predicted by the algorithm. As was mentioned in Sec. 2.2.2 we have used also two
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Figure 2.21: The dependence of the bremsstrahlung cross-section with one photon in the �nal
state on the number of evaluations used for the numerical integration. In this �gure we also
compare the results obtained with two di�erent numerical integration algorithms, Vegas and
Suave, and with two di�erent phase-space parametrizations, given in App. E.1. The kinematics
are chosen for the P2 experiment.

di�erent phase-space parametrizations (see App. E.1), which allows us to make an additional
consistency check by comparing the results obtained in two di�erent ways. Additionally, we
compare in this �gure also the results obtained with two di�erent algorithms. For the Vegas
algorithm, we perform beforehand an additional run with 107 evaluations, in order to train the
grid. As can be seen from this �gure, all integrations agree for a number of evaluations bigger
than 107 and have small �uctuations, from which we conclude that the numerical integration
is stable at �rst order, despite the collinear poles.

At second order, the cross section with two hard radiated photons is proportional, for
example, to the following 4-momenta products

�
(1)

1ℎ

∝

1

(lk1)(lk2)(l
′
k1)(l

′
k2)

, (2.188)

that contain four di�erent collinear poles which can create problems numerically and a�ect
the e�ciency of the integration. To deal with this problem we have used a partial fractioning
technique, as was shown in Sec. 2.4.4, that makes the numerical integration more stable. As
can be seen from Fig. 2.22 the partial fractioning method is enough to make the cross section
for two hard photons to become stable at above approximately 109 evaluations, with the Vegas
algorithms, for Δ = 10 MeV and P2 kinematics. Above 109 the result changes very little with
changes that lie within the uncertainties predicted by the algorithm. The fact that the result at
higher number of evaluations is not inside the errors predicted at lower number of evaluations
is a feature of the Vegas algorithm that tends to underestimate the errors for integrands with
higher peaks such as this one. For lower values of the cut-o� Δ we need increasingly more
evaluations to reach a stable point, above which the changes lie within the uncertainties. For
example, for Δ = 1 MeV this point is reached only above approximately 1010 evaluations as
can be seen from Fig. 2.23.

As was mentioned earlier, the presence of divergences forces us to introduce various reg-
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Figure 2.22: The dependence of the second order bremsstrahlung cross-section on the number
of evaluations used for the numerical integration at P2 kinematics and with the cut-o� of 10
MeV.

ularization parameters which must cancel in the �nal result (see App. B). The cancellation of
these parameters can then be used as a numerical test, since by varying these parameters the
result has to remain constant. There are essentially two types of divergences that appear in
our calculations, for which we use di�erent approaches as:

• UV divergences are treated in dimensional regularization where pole terms in Δ� appear
(Δ� is de�ned in App. B). They are accompanied by logarithms of a mass scale parameter
� introduced to keep the mass dimension of loop integrals homogeneous. Both the Δ�-
and �-dependence cancel by including corresponding counter-terms;

• IR divergences are regularized by a �nite photon mass �. Logarithms of the photon mass
have to cancel exactly between loop contributions and corrections from soft-photon
radiation at the level of the cross section.

• The phase space slicing parameter Δwas introduced to separate soft-photon from hard-
photon contributions. The part with E
 , E′
 < Δ is calculated in the soft-photon approx-
imation. Therefore the Δ-dependence disappears only in the limit Δ → 0. A residual
Δ-dependence may be visible if Δ is chosen too large (see Ref. [28]).

The analytical expressions of the scalar integrals (see App. D) allows us to keep the param-
eters Δ� , � and � in separate parts of the calculation. Their cancellation can therefore be tested
numerically. As an example, we show numerical results for the O(�) corrected one-photon
bremsstrahlung cross section, given in Eq. (2.20) for P2 kinematics, i.e. for electron scattering
with E = 155 MeV, �� = 35◦ ± 10◦ and E′min = 45 MeV and with a cut-o� for the photon energy
of Δ = 10 MeV. We take default values for the three regularization parameters as �2 = m

2

e
,

Δ� = 0 and �2 = 1. For these values the terms that contain the IR and UV divergences vanish
and we can use this result as a reference. From Tab. 2.1 we conclude that these unphysical
parameters can be varied over a very large range of values without leading to a signi�cant
numerical variation of the correction factor. The observed behaviour constitutes a test of an
important part of the calculation.
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Figure 2.23: The dependence of the bremsstrahlung cross-section with two photons in the
�nal state on the number of evaluations used for the numerical integration at P2 kinematics
and with the cut-o� of 1 MeV.

The non-radiative parts of the cross section depend logarithmically on the phase space slic-
ing parameter Δ. At �rst order we have � (1)non-rad ∝ lnΔ, while at second order � (2)non-rad ∝ ln

2

Δ.
An example of numerical results of the Δ-dependence for the case of the P2 experiment
is shown in Fig. 2.24. This Δ-dependence is canceled by the hard-photon contribution. In
Fig. 2.25 we show an example of how the Δ-dependence cancels when we include both con-
tributions, again for the kinematics of the P2 experiment. At large values of the soft-photon
cut-o�, when Δ reaches some 10 percent of the beam energy, the break-down of the soft-
photon approximation is visible. Below Δ ≃ 10 MeV, there is a nice plateau where the total
result is independent of the cut-o�. At �rst order, the cancellation looks perfect while for the
second-order calculation one can observe that the numerical cancellation becomes less and
less stable for decreasing Δ. However, the choice 1 MeV <

∼ Δ
<
∼ 10 MeV is appropriate for the

P2 experiment and guarantees that the soft-photon approximation used for the calculation of
the non-radiative part of the total correction does not lead to a signi�cant distortion of the
total result (see Ref. [28]).

It is also interesting to study an approximation for the calculation of � (1)
1−loop+1ℎ
 , Eq. (2.144).

The approximation consists in assuming that the one hard-photon correction and the loop
correction factorize also for �nite values of the photon energy. This approximation allows us
to replace the loop correction for the process with one radiated photon with the loop correc-
tion for the Born process as

�
(1)

1−loop+1ℎ
 → �
(1)

1−loop. (2.189)

Figure 2.25 shows an example of numerical results based on this approximation (green, dash-
dotted line). We �nd good agreement between the exact calculation and the approximation, at
the level of 10−4 and better for the energy and angle range shown in this �gure. The di�erences,
however, are larger in the vicinity of the �nal-state radiation peak, as can be seen in Fig. 2.29.

The results of this cross section were compared also with a recent calculation, imple-
mented in the code mcmule (see Refs. [96] and [97]), which uses a subtraction method to
deal with soft singularities. We have compared all intermediate results, both at the matrix
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4034.10 ± 0.92 4033.03 ± 0.90 4034.04 ± 0.94 4033.41 ± 0.92

Table 2.1: Test of the independence of � (2)
1ℎ


for electron scattering (see Eq. (2.20)) on the
unphysical regularization parameters �2, Δ� and �2. The uncertainty estimates are due to the
�nite statistics of the Monte Carlo integration.
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Figure 2.24: The dependence of the non-radiative parts of the correction factors for electron
scattering at �rst and second order on the phase space slicing cut-o� Δ.

level and at the cross section level, except for the R contribution, which was presented in
Sec. 2.4.2, that couldn’t be isolated in their approach, and found very good agreement. The
results for the two hard-photon cross section also agree very well, within the uncertainties,
with mcmule, as long as we take care we have enough number of evaluations, such that
the integration reaches the convergence point. However, in the �nal result we found that our
results disagree by approximately 8%, which translates to a di�erence smaller than 0.003% rel-
ative to the Born cross section. The results seem to agree well, within the uncertainties of the
numerical integration without the R contribution, which lead us to believe that the source of
disagreement is this contribution. However, we haven’t yet reach a �nal conclusion about the
source of disagreement. For the purpose of the P2 experiment this disagreement is irrelevant,
since the di�erence between the results is much smaller than the precision the experiment
can reach. Until this disagreement is solved we recommend to use the R contribution with
care and not include it, unless really necessary.
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Figure 2.25: Test of the Δ-independence of the complete correction factors when non-
radiative contributions and hard-photon radiative e�ects are added, at �rst order � = � (1)/� (0)−
1 and at second order � = � (2)/� (0) − 1. Beam energy and the range of the scattering angle is
chosen for electron scattering at the P2 experiment. The meaning of the labels “factorized”
and “exact” is explained in the text.

2.6 Numerical results 7

We start this section with the discussion of a few numerical results for leptonic radiative cor-
rections which are relevant for electron scattering at the P2 experiment at the MESA facility
in Mainz [27]. The P2 experiment plans to measure the parity-violating asymmetry in elastic
electron proton scattering with a polarized electron beam of energy E = 155 MeV. The P2
spectrometer covers an angular acceptance range of 35 ± 10◦ and for simplicity we assume
that only scattered electrons with a �xed energy of at least E′

min
= 45 MeV are detected. The

average momentum transfer squared is ⟨Q
2
⟩ = 6 ⋅ 10

−3 GeV2. An ancillary measurement for
the determination of the axial and strange magnetic form factors at backward angles is also
possible. Such a measurement could cover the angular range 135◦ ≤ �� ≤ 155◦. We repeat that
we have used a simple dipole parametrization for the proton form factors, GE = (1 + Q

2
/Λ

2

)

−2

and GM = �pGE with Λ = 0.71 GeV2 and we have checked that, while the cross sections can
change by a few per mill when using a di�erent form factor parametrization, the correction
factors are insensitive to this choice at the level well below one per mill.

The non-radiative part of the corrections is shown in Fig. 2.26. In this case, soft-photon
radiation is included with the cut-o� Δ = 10 MeV. The corrections reach the level of some
−8.5 % and exhibit a moderate Q2 dependence. Second-order corrections are small, but are
relevant at the level of 0.3 to 0.5 %. The layout of the P2 spectrometer with a solenoidal mag-
netic �eld is constructed in such a way that no bremsstrahlung photon emitted in the target
volume can reach the detector. Therefore, radiative scattering will contribute to the measured
cross section as long as the scattered electrons ful�l the condition E

′
> E

′

min
. The complete

7The text of this subsection is taken entirely from Ref. [28].
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Figure 2.26: The non-radiative part of the correction factors at �rst (dashed, blue curve) and
second order (full, red curve) in the range of scattering angles relevant for electron scattering
at the P2 experiment: forward scattering with 25◦ < �� < 45

◦ (left) and backward scattering
with 135◦ < �� < 155

◦ (right). Soft-photon corrections are included with the cut-o� �xed at
Δ = 10 MeV.
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Figure 2.27: The complete radiative correction factors at �rst (dashed, blue curve) and second
order (full, red curve) in the range of scattering angles relevant for electron scattering at the
P2 experiment: forward scattering with 25

◦
< �� < 45

◦ (left) and backward scattering with
135

◦
< �� < 155

◦ (right). Hard-photon radiation is included with the restriction that the �nal
state electron has an energy above E′

min
= 45 MeV.

radiative correction factor including hard-photon radiation is shown in Fig. 2.27. We �nd that
the cross section is increased signi�cantly by the inclusion of radiative processes. The cor-
rections are now positive, at the level of a few percent. The di�erence between the �rst- and
second-order calculations turns out to be slightly smaller in the forward region, but can still
reach somewhat more than half a percent in the backward region.

While it is not possible at the P2 experiment to impose a veto on hard radiated photons
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directly, the requirement of a minimum energy E
′

min
for the scattered electrons restricts the

phase space for photon emission indirectly. This introduces a strong dependence on E
′

min
.

Numerical results are shown in Fig. 2.28 (left), again both at �rst and at second order. In the P2
experiment energy loss can also occur when the incoming electron passes through the liquid
hydrogen target. It is therefore also important to know how the cross section depends on the
energy E of the incoming electrons. Results for the �rst- and second-order radiative correction
factors are shown in the right part of Fig. 2.28. For reduced E while keeping E′

min
= 45 MeV

�xed, hard-photon radiation will be suppressed and the corrections become negative. The
observed strong dependence on E and E′

min
highlights the necessity to include radiative e�ects

in a full Monte-Carlo simulation of the experiment where the acceptance for electron detection
may be a complicated function of the scattering angle.

For a better understanding and for completeness we also show results for the cross section
of radiative ep scattering in Fig. 2.29. This process is, in fact, not measurable at P2. The
plot of this �gure shows that bremsstrahlung is dominated by far by the emission of photons
collinear with the incoming electrons, but there is also a peak in the angular distribution where
photons are emitted in the direction of the scattered electron. The one-loop and soft-photon
corrections for radiative scattering are negative on the collinear peaks (−7% for �
 = �� =

35
◦) and positive for photon emission angles far away from the peaks (+11.4 % for �
 ≃ 15◦).

A particularly interesting feature is a dip on top of the �nal-state radiation peak, shown in
more detail in the upper right corner of Fig. 2.29. The �nal-state peak is determined by terms
proportional to 1/(l′k) in the soft-photon eikonal factor, see Eq. (2.53),

1

l
′
k

=

1

E
 (
E
′
− |
⃗
l
′
| cos  

)

, (2.190)

where  is the angle between the scattered lepton and the emitted photon. It is obvious that
for a photon emitted collinearly with the �nal-state electron, i.e. for  → 0, and for m� → 0
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Figure 2.28: The complete radiative correction factors at �rst (dashed, blue curve) and second
order (full, red curve) for electron scattering at the P2 experiment as a function of the cut-o�
on the energy of the scattered electron E

′

min
(left) and as a function of the beam energy with

�xed E′
min

(right). The scattering angle was integrated over the range 25◦ ≤ �� ≤ 45◦.
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this term diverges. One can show that for a �nite value of the electron mass the dominating
terms in the eikonal factor vanish for zero emission angle,

2l
′
l

(l
′
k)(lk)

−

m
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2
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1

E
2




4E
′ 4

m
4

�

 
2 (2.191)

for  ≪ m� /E
′
≪ 1, which explains the local minimum in the angular distribution of Fig. 2.29.

The details of this feature depend on the value of the lepton mass and will be particularly im-
portant for muon scattering. E�ects due to lepton-mass dependent terms in the cross section
have been discussed in detail also in Refs. [98, 99]. Our results agree with these references.

In Figure 2.30 we show an example of results for the radiative correction factor relevant
for the Qweak experiment. Here the beam energy is E = 1.16 GeV and the experiment covers
scattering angles between 5.8

◦ and 11.6◦. The corrections are similar to the case of P2 and
reach the level of roughly 5 %. The corrections at second order are smaller than at �rst order
by an order of magnitude.

Finally we conclude the discussion with a few results for the planned MUSE experiment
where also the scattering of muons o� protons will be measured. The beam momentum is
�xed at |

⃗
l| = 210 MeV and we do not impose a restriction on the energy of the �nal-state

muon. Results are shown in Fig. 2.31. The corrections are rather small and vary between
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Figure 2.29: Cross section for radiative electron scattering with an observed photon of energy
E
 ≥ Δ = 10 MeV at tree level (�rst order, blue dashed line) and including the e�ect due
one-loop corrections and a second unobserved soft photon with energy below the cut-o�
Δ = 10 MeV (second order exact, full red line). Additionally an approximation of this result
is included, described in the previous subsection (second order factorized, green dash dotted
line). The beam energy is E = 155 MeV and the scattering angle of the electron �xed at
�� = 35

◦. The energy of the scattered electron is integrated over the range E′ > 45 MeV.
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Figure 2.30: The complete radiative correction factors at �rst (dashed, blue curve) and second
order (full, red curve) in the range of electron scattering angles relevant for Qweak at E =

1.165 GeV. Hard-photon radiation is included with the restriction E′
min

= 0.35 GeV.

−0.1 % and −0.9 %. For the calculation of the second-order corrections in this �gure we have
used the expression Eq. (2.133) taken from Ref. [39].

We note that the ultra-relativistic approximation, where lepton mass terms suppressed by
powers of m2

�
/Q

2 are neglected, is not suitable in this case. Our calculation includes the full
lepton-mass dependence at leading order and for the �rst-order corrections. In the second-
order corrections, our calculation includes lepton-mass dependent terms for the radiative
parts, but the two-loop diagrams are known only in the ultra-relativistic approximation or in
the limit of vanishing momentum transfer. For electron scattering the expression Eq. (2.133)
for the two-loop corrections, valid for large momentum transfer, is an excellent approxima-
tion for our applications; however, for muon scattering this may not be applicable in the full
range of scattering angles covered by the MUSE experiment.

As a test we show in Fig. 2.32 the non-radiative correction factor over a larger range of Q2

values and using two alternative expressions taken from Ref. [88]. The one denoted “Mastrolia
Q
2
→ ∞” contains additional lepton mass dependent terms up to and including 4th powers

of � = (m
2

�
/Q

2

) and the option denoted “Mastrolia Q2
→ 0” includes terms up to �

−4. Our
expression derived from Hill’s result, Eq. (2.133), agrees with Ref. [88] at largeQ2, as expected,
and seems to provide a nice interpolation between the large-Q2 and small-Q2 limits of Ref. [88],
but this may be accidental. For a conclusive interpretation of a high-precision measurement
of muon scattering, a calculation of 2-loop and 2-photon corrections taking into account the
full mass dependence will be needed. We mention that radiative corrections for the MUSE
experiment based on an alternative approach have also been studied recently in Ref. [100].
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Figure 2.31: The complete radiative correction factors at �rst (dashed, blue curve) and sec-
ond order (full, red curve) in the range of scattering angles relevant for muon scattering at
the planned MUSE experiment. Hard-photon radiation is included without an additional re-
striction, i.e. E′

min
= m� . The soft-photon cut-o� is �xed at Δ = 0.01 MeV and we have used

Eq. (2.133) for the 2-loop corrections [39].
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Figure 2.32: The second-order non-radiative part of the corrections for muon scattering at
the MUSE experiment using di�erent approximations from Refs. [39, 88] as described in the
text.



Chapter 3

Polarized Lepton-Proton Scattering

3.1 De�nitions and general remarks

The asymmetry between cross sections for incident leptons with positive and negative helic-
ities, �±, is de�ned as

APV =
�+ − �−

�+ + �−

=

�P

�

, (3.1)

where the polarization-dependent part of the cross section �P = (�+−�−)/2 is obtained from the
di�erence between cross sections for leptons with positive and negative helicities. The helicity
spinors u(l, �) satisfy the Dirac equation, i.e. /lu(l, �) = mu(l, �), and are eigenstates of 
5 /� ,
i.e. 
5 /� u(l, �) = u(l, �), where � � is the spin four-vector (see App. F for more details). In the
limitm� → the helicity operators reduce to the chirality operators. However, unless stated, in
our work we use explicitly the helicity operators to derive the expressions for polarized cross
sections.

In a real experiment it is impossible to achieve a totally polarized beam. Therefore we
need to introduce a degree of polarization P and make the replacement �P → P�P .

The leading order asymmetry, at low momentum transfer and for E ≫ m� , is given by

A
(0)

PV
=

�
(0)

+
− �

(0)

−

�
(0)

+ + �
(0)

−

= −

GFQ
2

4

√

2��
[Q

p

W
− F(Q

2
)] , (3.2)

where GF is the Fermi constant and Q
p

W
is the weak charge of the proton, which at leading

order is given byQp

W
= 1−4 sin

2
�W . F (Q2

) comprises form factors describing the proton struc-
ture and are expected to be small at Q2 values relevant for the P2 experiment (see Ref. [27]).

At lowest order, polarized lepton nucleon scattering is described by the exchange of a
virtual Z 0 boson. The weak current for a spin-1/2 nucleon is given by

�

Z
= gZ ū(p

′
)Γ

�

Z
u(p), (3.3)

where gZ can be related to the Fermi constant GF as

g
2

Z
=

e
2

16 cos
2
�W sin

2
�W

=

GFM
2

Z

2

√

2

. (3.4)
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The weak current, as the electromagnetic current, can be decomposed into Pauli and Dirac
form factors, F Z

1
and F Z

2
, and an additional axial form factorGZ

A
. The weak charge of the proton

Q
p

w
is absorbed in the de�nition of the form factors F Z

1
and F Z

2
. For the sake of completeness we

note here that Lorentz invariance allows an extra pseudo-scalar form factor GP as q�

M

5GP , but

this will have no contribution on the parity-violating electron scattering. The proton vertex
in the case of Z 0 exchange is given therefore by

Γ
�

Z
= 


�
F
Z

1
+

i�
��
q�

2M

F
Z

2
+ 


�

5G

Z

A
. (3.5)

As in the case of the electromagnetic form factors we can de�ne Sachs form factors as

G
Z

E
(Q

2
) = F

Z

1
− �F

Z

2
and G

Z

M
(Q

2
) = F

Z

1
+ F

Z

2
. (3.6)

The weak Sachs form factors can be related to the electromagnetic Sachs form factors of the
proton and neutron as is shown in App. G. Using this vertex rule we can obtain the tree-
level cross section for scattering of polarized leptons with mass m� o� unpolarized nucleons.
We note here that since we need to take the di�erence between cross sections with positive
and negative helicities, the polarized cross section is proportional to the following matrix
elements:

2

d�
(0)

P

dQ
2
∝ |Z,+|

2
+ |Z,−|

2
+ 2ℜ [†



(Z,+ −Z,−)] , (3.7)

where |Z,+(−)|
2 are proportional to G

2

F
and therefore approximately 10

−5 smaller than the
interference term, which allows us to safely ignore them. We are left therefore with

d�
(0)

P

dQ
2
∝ ℜ[†



(Z,+ −Z,−)] ≡ ℜ (†



P

Z) . (3.8)

The di�erential Born polarized cross section is given then by

d�
(0)

P

dQ
2
=

ℜ (†

Born,
P

Born,Z)

16� [(s − m
2

�
− M

2
)
2
− 4m

2

�
M

2
]

. (3.9)

The Born matrix element for 
 exchange denoted here by Born,
 was given in Eq. (2.5). The
Born matrix element for Z 0 exchange is given by

Born,Z =
1

M
2

Z
− q

2
�,Z�

Z
, (3.10)

where �,Z = −gZ ū(l
′
)
�(gV + gA
5)u(l, �) is the lepton current for Z 0 exchange, for initial lep-

tons with helicity �. Here gV and gA stand for the vector and the axial couplings respectively,
given in table 3.1. Since Q2

≪ M
2

Z
, we can ignore Q2 in the denominator and the Born matrix

element for Z 0 exchange becomes

Born,Z = −
GF

2

√

2

ū(l
′
)
�(gV + gA
5)u(l, �)ū(p

′
)Γ

�

Z
u(p). (3.11)
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Fermion e gV gA

e, � , � −1 −1 + 4 sin
2
�W 1

u, c, t
2

3
1 −

8

3
sin

2
�W −1

d, s, b −
1

3
−1 +

4

3
sin

2
�W 1

Table 3.1: Standard Model values for the elementary electromagnetic and weak charges of the
fermions (see Ref. [101]).

The bar in Eq. (3.9) indicates that we need to average over initial state polarizations and sum
over the �nal ones. Since the initial state lepton is polarized we only need to average over the
initial state of the nucleon, which leads to

ℜ(†

Born,
P

Born,Z) =
1

2

∑

spins
ℜ(†

Born,
P

Born,Z) , (3.12)

where the sum over �nal state polarizations leads to the calculation of a trace. Using the
helicity projection operators from Eq. F.3 de�ned in App. F and assuming E ≫ m�

1, we obtain
the following expression for the averaged interference term after performing the trace

ℜ(†

Born,
P

Born,Z) = −
4��GF

√

2Q
2 [
2F1F

Z

1
gA (2M

2
Q
2
− Q

4
+ 2Q

2
S − 2S

2

)

− 2F1F
Z

2
gAQ

4
+ 2F1G

Z

A
gV (Q

2
− 2S)

− F2F
Z

2
gA

Q
2

M
2
(M

2
Q
2
− Q

2
S + S

2
)

− 2F2Q
2

(F
Z

1
gAQ

2
− G

Z

A
gV (Q

2
− 2S)) ]

,

(3.13)

where S = 2l ⋅ p. For �xed Q
2 the asymmetry is given by the ratio of the di�erential cross

sections

A
(0)

PV
=

d�P /dQ
2

d�/dQ
2
=

ℜ (†

Born,
P

Born,Z)

|
|
Born,
 ||

2

. (3.14)

The last expression can be written in a compact form using the de�nitions of the Sachs form
factors as

A
(0)

PV = −
GFQ

2

4��

√

2

�GEG
Z

E
+ �GMG

Z

M
− (1 − 4 sin

2
�W )�

′
GMG

Z

A

�G
2

E
+ �G

2

M

, (3.15)

where � and � were de�ned in Sec. 2.1 and �
′
=

√

(1 − �
2
)� (1 + �). This expression further

simpli�es if we assume E ≫ m� and a low momentum transfer squared and reduces to Eq. (3.2).
We note here that the integration over Q2 leads to important e�ects that cannot be ignored
(see Sec. 3.4 for more details).

For the de�nitions of the polarized cross sections, at leading order, �rst order and second
order, we import again the de�nitions from Sec. 2.1, to which we add an additional symbol
P , to denote they are polarized, as � → �P or � (0) → �

(0P). Furthermore we note that the
corrections for the polarized cross-section �P can be separated between photonic corrections,

1We note here that in our program the exact expression of the polarized cross section is used.
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i.e. corrections that involve virtual photons, and weak corrections, i.e. corrections that involve
virtual weak bosons. In this work we treat only photonic corrections.

In Eq. (3.2) we see that the parity violating asymmetry is proportional to Q2. Even though
the QED corrections are parity conserving and do not a�ect the weak charge of the proton
directly, they lead to a shift of the momentum transfer. If an experimental event-by-event
determination of Q2 is not possible, QED corrections have to be applied in the analysis to
extract Qp

W
from the measured asymmetry. Therefore, these corrections have to be calculated

from theory with high precision.
From the measurement of the scattering angle one can only obtain information about what

is called leptonic momentum transfer (see Ref. [28]) de�ned as

Q
2

l
= −(l − l

′
)
2
, (3.16)

where l and l
′ are the 4-momenta of the initial and �nal electrons. However, taking into

account bremsstrahlung e�ects (see Fig. 3.2), a photon with momentum k will shift the mo-
mentum transfer to the true value given by

Q
2
= −(l − l

′
− k)

2
. (3.17)

See Sec. 3.4 for the de�nition and calculation of the shift in momentum transfer squared. This
is why is important to include the full set of QED radiative corrections to the asymmetry. In
the next section we start with the treatment of �rst order photonic corrections to the polarized
cross section.

3.2 First order corrections
The asymmetry with (�) corrections is de�ned as

A
(0+1)

PV
=

�
(0+1)

+
− �

(0+1)

−

�
(0+1)

+ + �
(0+1)

−

=

�
(0+1)

P

�
(0+1)

. (3.18)

We separate (�) photonic corrections into non-radiative corrections, i.e. one-loop and one
soft photon corrections to the lepton line, and radiative corrections, i.e. corrections with a
hard-photon in the �nal state. At the level of the matrix element, the one-loop corrections are
given by

ℜ(†

1−loop,

p

Z)
+ ℜ (†



P

1−loop,Z) , (3.19)

+ +

se1 se2 vert

γ, Z0 γ, Z0 γ, Z0

Figure 3.1: Feynman diagrams for the one-loop corrections at the lepton line.
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where †



and Z are the Born matrix elements for 
 and Z

0 exchange respectively. The
self-energy corrections, diagrams se1 and se2 from Fig. 3.1, are the same for both unpolarized
and polarized cross-sections and they vanish for on-shell leptons in the on-shell renormaliza-
tion scheme as was shown in Sec. 2.2.1. Therefore, the one-loop photonic corrections to the
polarized cross-section are given by

�
(1P)

1−loop =
ℜ (†

vert,
P

Z)

ℜ (†


P

Z)

+

ℜ (†



P

vert,Z)

ℜ (†


P

Z)

. (3.20)

The vertex correction for 
 exchange can be taken into account by replacing the tree-level
on-shell vertex by



�
→ F

�

1
(Q

2

�
)


�
+

i

2m�

���q
�
F
�

2
(Q

2

�
) , (3.21)

where the expressions for F �
1
(Q

2

�
) and F �

2
(Q

2

�
) and the methods used for calculation were pre-

sented in Sec. 2.2. Analogous to Eq. (3.21), the tree-level on-shell vertex for Z 0 exchange can
be take into account by the replacement



�
(gV + gA
5) → gV

[
F
�

1
(q
2
)
� +

i

2m�

���q
�
F
�

2
(q
2
)
]
+ gA

[
F
�

A
(q
2
)
�
5 +

q�

m�

F
�

P

5
]
, (3.22)

where gV and gA are de�ned in Table 3.1. FP , however, does not give any contribution to the
polarized cross-section and can be ignored. As in the case of F �

1
, F �

A
is UV and IR divergent.

The UV divergence is removed by renormalization, while the IR divergence cancels at the level
of the cross-section, when we combine it with the soft-photon correction. The renormalized
axial form-factor in the on-shell renormalization scheme is given by

F
�

A

(1,R)

(Q
2

�
) = F

�

A

(1)

(Q
2

�
) − F

�

A

(1)

(0) = F
�

A

(1)

(Q
2

�
) + �ZA , (3.23)

where we introduced additional upper indices to display the loop-order and distinguish renor-
malized (with index R) from unrenormalized quantities. The counter-term �ZA is given in the
on-shell prescription by

�ZA = −

�

4� (
Δ� − ln

m
2

�

�
2
+ 2 ln

�
2

m
2

�

+ 2
)
= �Z1 −

�

2�

. (3.24)

The di�erence between the renormalized form-factors F �
1

and F �
A

is given by

F
� (1)

1
− F

� (1)

A
= −

�

2� (
1 −

2m
2

�

Q
2
v

ln

v + 1

v − 1)
, (3.25)

where v =

√

1 + 4m
2

�
/Q

2. It can be seen that for Q2
≫ m

2

�
the di�erence between the two

form-factors reduces to − �

2�
. Even though this di�erence is small, the exact result is included

in our calculation at �rst order. This approximation becomes important at second order, for
which the di�erence is proportional to �2 and can be safely neglected (see Sec. 3.3). Since F � (1)

1

is IR divergent, also F � (1)
A

contains the same IR divergence, that cancels, in the same way as in
the unpolarized scattering, with the inclusion of soft-photon radiation.
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l l′

p p′

q′γ, Z0 +

p′p

γ, Z0
q′

l′l

k k

(γi) (γf)

Figure 3.2: Feynman diagrams for �rst-order bremsstrahlung corrections.

The diagrams that contribute to the radiative process ep → ep
 are given in Fig. 3.2 for
both 
 and Z 0 exchange. The matrix element is given then by

1
 =


1
 i +



1
 f +
Z

1
 i +Z

1
 f . (3.26)

In the soft-photon approximation the matrix element for Z 0 exchange factorizes in the
same way as for 
 exchange as

Z

1

→ Z

1s

= −eZ

0

(

l�
∗

lk

−

l
′
�
∗

l
′
k )

(3.27)

where �� is the photon polarization vector. The integration over the photon 4-momentum
up to a cut-o� Δ in the soft-photon approximation for the polarized cross-section can be
performed in the same way as for the unpolarized cross-section (see Ref. [28]).

∫
E
<Δ

d
4
�
(1P)

1s

= d�

(0P)

(
−

�

2�
2)∫

E
<Δ

d
3
k

2E

(

l
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−

l
′

l
′
k)

2

. (3.28)

Therefore the relative one soft-photon correction to the polarized cross-section is the same
with the unpolarized one and given by

�
(1P)

1s

(Δ) =

(
−

�

2�
2)∫

E
<Δ

d
3
k

2E

(

l

lk

−

l
′

l
′
k)

2

= �
(1)

1s

(Δ) . (3.29)

The total �rst order non-radiative relative correction is IR �nite and given by

�
(1P)

non-rad(Δ) = �
(1P)

1−loop + �
(1P)

1s

(Δ) . (3.30)

The polarized cross-section with one radiated photon in the �nal state is given by

d
4
�
(1P)

1ℎ

=

d
4
Γ1


4M|
⃗
l |

ℜ (†

1
 ,

P

1
 ,Z)
, (3.31)

where the �ux factor is given for the �xed-target frame and the bar indicates that one has to
average and sum over the polarization degrees of freedom in the initial and �nal state, respec-
tively. Since the initial lepton is polarized, one has to average in the initial state only over the
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polarization degrees of freedom of the initial proton. The matrix element that corresponds to
the diagrams given in Fig. 3.2 for Z 0 exchange is given by

P

1
 ,Z
=

eGF

2

√

2

ū(l
′
)
[

�(gV + gA
5)

/l − /k + m�
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′
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′
)
[


�
(F

Z

1
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Z

2
) −

(p
′
+ p)

�

2M

F
Z

2
+ 


�

5G

Z

A
]
u(p).

(3.32)

The di�erential phase-space is the same as for the unpolarized cross-section and was given
in Sec. 2.2.2. As in the leading order, for incident polarized electrons we can use the helicity
projection operators from Eq. F.3 de�ned in App. F. The sum over �nal state electron spins
leads to a calculation of a trace, which is calculated with the help of FeynCalc package
and the �nal result is expressed in terms of invariant products of 4-momenta. The resulting
expression is too large to be given here.

3.3 Second-order corrections
The asymmetry with (�2) corrections is de�ned as

A
(0+1+2)

PV
=

�
(0+1+2)

+
− �

(0+1+2)

−

�
(0+1+2)

+ + �
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=
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(0)

P
+ �

(1)

P
+ �

(2)

P

�
(0)
+ �

(1)
+ �

(2)
. (3.33)

As in the �rst order we separate (�2) corrections into non-radiative corrections, that include
two-loop, one-loop, one soft-photon combined with one-loop and two soft-photons correc-
tions, and hard photon corrections. The hard photon corrections include one hard photon
combined with one-loop and one soft photon and two hard photons.

3.3.1 Non-radiative corrections

The Feynman diagrams for the two-loop correction are given in Fig. 3.3. The matrix elements
that describe the contribution of these diagrams are denoted by P

2-loop,Z for Z 0 exchange

(a)

γ, Z0

(b)

γ, Z0

(c)

γ, Z0

(d)

γ, Z0

(e)

γ, Z0

(f)

γ, Z0

(g)

γ, Z0

+ ++

++

+

Figure 3.3: Feynman diagrams for two-loop vertex corrections.
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and by 2-loop,
 for 
 exchange. The relative second order loop correction includes the two-
loop corrections to Z 0 exchange, the two-loop correction for 
 exchange and additionally the
square of the one-loop correction and is given by

�
(2P)

2−loop =
ℜ (†

1-loop,
P

1-loop,Z)

ℜ (†
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ℜ (†
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2-loop,Z)

ℜ (†


P

Z)

. (3.34)

The square of one-loop corrections can be easily taken into account by using the parametriza-
tion from Eqs. (3.21) and (3.22) and is given by

�
(2P)

1−loop =
ℜ (†

1-loop,
P

1-loop,Z)

ℜ (†


P

Z)

. (3.35)

In Sec. 2.2 was stated, as a consequence of the Kinoshita-Lee-Nauenberg theorem, that the
order of logarithms, L ≡ ln(Q2

/m
2

), cannot be higher than the order of the coupling constant,
such that the relative corrections have the form given in Eq. 2.61. This result implies that in
the di�erence F � (2)

1
− F

� (2)

A
we cannot have logarithms with higher powers than 2. Assuming

the coe�cient of L2 is of order (1), for Q2 relevant for the P2 experiment, the contribution
of such a term is not higher than 10−4 and can be safely neglected. This allows us to conclude
that the di�erence between the two-loop relative corrections for 
 and Z 0 exchange are very
small, of the order �2, which allows us to make the following approximation
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≈ 2F
� (2)

1
. (3.36)

A compact expression for F � (2)
1

, valid for Q2
≫ m

2

�
was given in Eq. 2.133.

The diagrams for the process ep → ep

 are given in Fig. 3.4. In the soft-photon approxi-
mation, if the photon energies are smaller than the cut-o�Δ, it is possible to factorize the same
eikonal factor, as was done in the unpolarized case (see Sec. 2.2.1). The relative corrections
are then given by

�
(2P)

2s

= �

(2)

2s

=

1

2!
(
�
(1)

1s
)

2

. (3.37)

The diagrams for one-loop and one radiated photon correction are given in Fig. 3.5. If the
radiated photon is soft we can approximate the contribution of this correction by considering
the one-loop and soft-photon factorize as

�
(2P)

1−loop+1s
 (Δ) = �
(1P)

1−loop�
(1P)

1s

(Δ) . (3.38)

Combining all non-radiative second order corrections at the level of the cross section we
obtain an IR-�nite result

�
(2P)

non-rad(Δ) = �
(2P)

2−loop + �
(1P)

1−loop�
(1P)

1s

(Δ) + �

(2P)

2s

(Δ) . (3.39)
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Figure 3.4: Feynman diagrams for two-photon bremsstrahlung.

3.3.2 Hard photon Corrections

(�2) radiative corrections include one-loop corrections to ep → ep
 process and two ra-
diated photons in the �nal state, in which one is hard and the other one soft, or with both
photons hard, i.e. with energies bigger than the cut-o� Δ.

The diagrams for one-loop and one hard-photon correction are given in Fig. 3.5. The
calculation of these diagrams goes along the same line as in Sec. 2.4.2 and is not given again
here. The renormalization for the corrections that enter in the polarized cross-section is done
in the on-shell scheme and di�ers from Sec. 2.4.2 only for se1
 and v2
 diagrams. In contrast

γ, Z0 γ, Z0 γ, Z0 γ, Z0

γ, Z0 γ, Z0 γ, Z0 γ, Z0

+

+ +

+ + +

(se1γi) (se1γf) (v1γi) (v1γf)

(v2γi) (v2γf) (se2γi) (se2γf)

+

Figure 3.5: Feynman diagrams for one-loop corrections to one-photon bremsstrahlung.
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with the unpolarized part, the UV divergence in the case of Z 0 exchange is removed for se1

and v2
 diagrams by adding the vertex counter-terms �Z1 for the vector part and �ZA for the
vector-axial part. The total renormalized polarized relative correction is given by the sum of
the relative corrections as

�
(2P)

1−loop+1ℎ
 = �
P

se1
 + �
P

v1
 + �
P

se2
 + �
P

v2
 , (3.40)

and has the same IR structure with the unpolarized one, which cancels out at the level of the
cross-section, when combined with the one hard-photon and one soft-photon correction. The
relative corrections are given in this case by

�
P

se1
 =
ℜ (†

se1
 ,
P

1
 ,Z) + ℜ (†

1
 ,
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 ,
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 ,

P

1
 ,Z)

.

The Feynman diagrams for one hard-photon and one soft-photon correction are given in
Fig. 3.4. As was shown in [28], this correction consists of an IR divergent part, that factorizes
in the soft-photon approximation, and an IR-�nite part, that can be calculated numerically.
The polarized cross-section for one hard-photon and one soft-photon is then given by

�
(2P)

1s
+1ℎ

(Δ) = �

(1P)

1s

(Δ)

∫

E
max



Δ

d
4
�
P

1

+ 2

∫

E
max



Δ

∫

Δ

0

(d
7
�
P

2
)

IR-�nite
1
→0

. (3.41)

Finally the polarized cross-section with two hard-photons in the �nal state is given by

d
7
�
(2P)

2ℎ

=

d
7
Γ2


4M|
⃗
l |

ℜ (†

2
 ,

P

2
 ,Z)
, (3.42)

where the 7-fold di�erential phase-space d7Γ2
 is the same as in the unpolarized cross-section
and was treated in Sec. 2.4.4. The matrix element that corresponds to the Feynman diagrams
from Fig. 3.4 for Z 0 exchange is given by
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2
 ,Z
=

e
2
GF

2

√
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Figure 3.6: The average relative shift of the momentum transfer due to hard photon radiation
as a function of the electron scattering angle and for di�erent cuts on the energy of the scat-
tered electron (left) and as a function of the minimum energy of the scattered electron (right).
The beam energy is �xed at E = 155 MeV as expected for the Mainz P2 experiment.

The sum over �nal state electron spins leads to a calculation of a trace, which is calculated
with the help of FeynCalc package and the �nal result is expressed in terms of invariant
products of 4-momenta. The resulting expression is too large to be given here.

3.4 Numerical tests and results

3.4.1 The shift in Q
2 due to photon radiation

We de�ne the average shift of the momentum transfer by

⟨ΔQ
2
⟩ =

1

�
(0+1) ∫

d
4
�
(1)

1

ΔQ

2
, (3.44)

where � (0+1) is the total unpolarized cross section with (�) corrections de�ned in Sec. 2.2,
while d4� (1)

1

is the di�erential cross section for the process with one radiated photon in the

�nal state. ΔQ2
= Q

2
− Q

2

l
is de�ned as the di�erence between the hadronic ("true") momen-

tum transfer square Q2 and the leptonic momentum transfer squared Q2

�
. The integration in

this expression can be performed numerically over the entire phase-space, since the product
d
4
�
(1)

1

ΔQ

2 is infra-red (IR) �nite. Results for the kinematical conditions of the Mainz P2 ex-
periment are shown in Fig. 3.6. We �nd that the average shift of the momentum transfer has
a strong dependence on kinematic variables. In Fig. 3.6 we see the dependence on the scat-
tering angle and we also �nd a strong dependence on the cut for the minimum value of the
scattered electron’s energy. This cut is related to the detector acceptance of the experiment.
From Eq. 3.2 we see that the asymmetry is proportional to Q

2 and therefore we expect that
a change in Q

2 will lead to a correction of similar size in the asymmetry when we include
photon radiation. To show this e�ect we plot in Fig. 3.7 the shift in Q2 at �xed angle, together
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the asymmetry due to �rst order QED radiative corrections for the same value of E′min.
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(�) and (�2) QED corrections. Kinematic variables are chosen as relevant for the Mainz P2
experiment.

with the �rst order QED corrections to the asymmetry by varying the lower cut on the energy
of the scattered electron as was done in the right plot of Fig. 3.6. We can see that at the same
value of E′min the change in the asymmetry, when including photon radiation, is of the same
size with the shift in Q2.

3.4.2 Results for the parity violating asymmetry

As was explained in the introduction, the weak mixing angle is running with Q
2. In our

calculation the running of sin2 �W is taken into account by using the implementation from
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the Fortran code alphaQED (see Ref. [20]).

While a determination of the true momentum transfer is di�cult or impossible, the de-
pendence of the asymmetry on the electron scattering angle, �� , is directly accessible in the
experiment. We therefore study the e�ect of QED radiative corrections on the �� -dependence
of APV . The total asymmetry, with (�) and (�2) corrections is independent of the cut-o�
Δ, as can be seen from Fig. 3.8. As in the study of the cross section (see Sec. ??), we see that
for bigger values of the cut-o�, the soft photon approximation breaks down, while for smaller
values the uncertainties become too large. However, we �nd that for 0.1 MeV <

∼ Δ
<
∼ 5 MeV

the asymmetry stays relatively constant and it is safe to choose any value of the the cut-o�
Δ in this range. The leading order asymmetry and the asymmetry with (�) corrections is
found to be of the same size as the relative shift of Q2. This is demonstrated by the numerical
results shown in Fig. 3.9. A numerical calculation of the parity-violating asymmetry results in
a very small second-order corrections. This can be seen in also in Fig. 3.9 where the curves for
APV at �rst and at second order are almost indistinguishable. In fact, radiative corrections for
the asymmetry are due to the shift of the momentum transfer Q2. This kinematical e�ect is
already fully present if there is one radiated photon and second-order corrections contribute
indeed only at the expected level with an additional factor of �/� . Therefore, second-order
QED corrections to the asymmetry have a negligibly small e�ect, as can be seen also from
Fig. 3.10 where the relative corrections to the asymmetry are plotted as a function of the
scattering angle.
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Figure 3.9: The parity violating asymmetry APV at leading order and including (�) and
(�2) QED corrections. Kinematic variables are again chosen as relevant for the Mainz P2
experiment. The asymmetry is shown as a function of the scattering angle acceptance Δ�l , i.e.
cross sections are integrated over the electron scattering angle in the range 35◦ − Δ�l ≤ �l ≤

35
◦
+ Δ�l .
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Chapter 4

Lepton-Carbon Scattering

4.1 De�nitions and general remarks
The P2 experimental program at the MESA facility in Mainz (see Ref. [27]) includes a plan
aiming also for a 0.3% determination of the weak charge of 12C. There are several reasons for
which this measurement is important. Apart from the extraction of the weak mixing angle,
sin

2
�W , which can be used to test the SM, electron scattering on heavier nuclei, like 12C, allow

the measurement of what is called the neutron skin, which is the measurement in the radii
of the neutron and proton distributions. This can be done because the Z 0 boson, which is
responsible for the parity violation, couples preferentially to neutrons. The goal of such a
measurement is to constrain the equation of state of neutron rich matter. Recently, the lead
(Pb) Radius EXperiment (PREX) has provided the �rst model-independent evidence in favor
of a neutron-rich skin in 208Pb (see Ref. [102]). Given this ambitious goal, a complete set of
order-� radiative corrections should be included. An important e�ect in the determination
of the weak charge of 12C at order-� is given by Coulomb distortions, which scale as Z� .
This e�ect, together with e�ects due to nuclear structure, have been recently addressed in
Ref. [103]. Here we study the e�ects of order-� leptonic radiation to the asymmetry between
left- and right-handed electrons in electron-12C scattering and in the extraction of the weak
charge of 12C.

As in the case of electron-proton scattering we choose a coordinate frame where the target
nucleus is at rest and the z axis is directed along the momentum of the incident lepton. The
notations for energies and angles of the particles that are involved in this scattering process
were given in Fig. 2.1, except that now we denote the four momenta of the initial state and
�nal state nucleus by c� and c′ � . Unless explicitly stated, in this section we used the de�nitions
given in Sec. 2.1 and Sec. 3.1.

We treat 12C as a spin-0 particle. By doing so, the S-matrix element that describes the
interaction between the virtual photon and the 12C particle, is given by

�
= Q

c

e
Γ
�


 , c
, (4.1)

where Qc

e
= −Ze is the electric charge of the carbon nucleus. 12C is made of 6 protons and 6

neutrons, such that Z = 6. The carbon vertex function that describes the interaction between
the virtual photon and spin-0 particle with one-photon exchange is described by

Γ
�


 , c
= Fch(c + c

′
)
�
, (4.2)



CHAPTER 4. LEPTON-CARBON SCATTERING 87

where Fch is the carbon electromagnetic (or charge) form factor, which is normalized to 1 at
Q
2
= 0. A parametrization of this form factor can be found in App. C.4. Other parametrizations

of this form factor can be found in Ref. [104]. In case of Z 0 exchange the S-matrix element of
12C is given by

�

Z
= gZQ

c

w
Γ
�


 , c
, (4.3)

where g2
Z
= GFM

2

Z
/2

√

2 and Q
c

w
= −4Z sin

2
� is the weak charge of 12C. The carbon vertex

function that describes the interaction of the virtual weak Z 0 boson with the spin-0 particle
is given by

Γ
�

Z , c
= Fwk(c + c

′
)
�
, (4.4)

where Fwk is the weak form factor, also normalized to 1 at Q2
= 0. The weak form factor can

be parametrized in the same way as the charge form factor, by using a symmetrized Fermi
function (see App. C). In absence of experimental data, following Refs. [103] and [105], we
choose the values of the parameters of the weak form factor to be the same with the charge
form factor, i.e. Fwk = Fch. In the Born approximation, the PV asymmetry for 12C takes the
following form (see Ref. [103])

A
PV
c
=

�
(0)

P

�
(0)
= −

GFQ
2

4

√

2��

Q
c

w

Z

Fwk

Fch
. (4.5)

Since the weak charge of the carbon is negative the asymmetry is a positive number and not
negative as in the case of the proton, for which the weak charge is a positive number.

Using the vertex rule from Eq. 4.2, the unpolarized Born cross section is given by

d�
(0)

dQ
2
=

|Born|2

16� [(s − m
2

�
− M

2
)
2
− 4m

2

�
M

2
]

, (4.6)

where M is here the mass of the carbon-12 nucleus. The Born matrix element is given by

Born =
1

q
2
��

= −

Ze
2

q
2
ū(l

′
)
�u(l)Γ

�


 , c
. (4.7)

Averaging over initial state lepton polarizations and summing over the �nal ones as

||
2

=

1

2

∑

spins
||

2

, (4.8)

we get the following expression for the di�erential Born cross section
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2
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2

�
M

2
]

, (4.9)

where s = (l + c)2 is the square of the energy in the center-of-mass frame.
The polarization dependent part of the di�erential cross section is given by

d�
(0)

P

dQ
2
=

ℜ (†

Born,
P

Born,Z)

16� [(s − m
2

�
− M

2
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2
− 4m
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�
M

2
]

. (4.10)
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Using vertex rule from Eq. 4.4, the Born matrix element for Z 0 exchange is given by

Born,Z =
1

M
2

Z
− q

2
�,Z�

Z
= −

GFQ
c

w

2

√

2

ū(l
′
)
�(gV + gA
5)u(l, �)Γ

�

Z
. (4.11)

However, in this case, the vector part of the leptonic current doesn’t contribute. Using for the
incident leptons the helicity projection operators from Eq. F.3 de�ned in App. F and summing
over �nal state polarizations

ℜ(†

Born,
P

Born,Z) = ∑

spins
ℜ(†

Born,
P

Born,Z) , (4.12)

we get the following expression for the polarized Born cross section

d�
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P
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�
M

2
]

. (4.13)

To obtain this expression we have used instead of the helicity projection operators, the chi-
rality projection operators de�ned in App. F. The di�erence between them is of the order of
the lepton mass squared and can be ignored for electron scattering. It’s easy to see that by
using the expressions for the di�erential unpolarized and polarized cross sections we get the
expression of the parity violating asymmetry from Eq. 4.5.

4.2 First order corrections

As in the case of electron-proton scattering we use a phase-space slicing method to deal with
the IR divergences that appear in the calculation of the cross section for the e12C → e

12
C


process (for more details see the Chapter 2).
The order-� non-radiative leptonic corrections to the process e12C → e

12
C consist of loop

corrections, which include vertex and self-energy corrections and soft-photon corrections.
The cross section which includes these corrections is given by

�
(1)

non-rad = �
(1)

1−loop + �
(1)

1s

, (4.14)

where � (1)
1−loop is the cross section with 1-loop corrections, while � (1)

1s

is the cross section with

one radiated soft-photon in the �nal state. The loop and soft-photon corrections were treated
in detail for both 
 and Z

0 exchange in Sec. 2.2.1 and Sec. 3.3.1 respectively and we don’t
repeat them here.

In the case of order-� hard-photon leptonic bremsstrahlung the only di�erence is given
by the matrix element squared, which for lepton-carbon unpolarized scattering is given by
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2

. (4.15)

The expression for the matrix element squared is simpler for a spin-0 nucleon, like 12C, and
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we can give it’s full expression here:
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(4.16)

where S = 2lc and U = −2l
′
c. The 4-momenta product between the scattered electron and the

�nal state photon can be expressed in terms of the other invariants as l′k = lk + Q2

�
/2 − Q

2
/2.

To simplify this expression we have used a partial fractioning technique implemented in an
algorithm which is described in Ref. [95].

For lepton-carbon polarized scattering the matrix element that describes the Z 0 exchange
for �rst order leptonic radiation is given by
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Summing over initial state spins, the interference between the matrix element for photon
exchange and the one for Z 0 exchange is given by
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Figure 4.1: Test of the Δ-independence of the complete correction factors to the electron-
12
C cross section. At order-� this correction factor is de�ned as � = �

(1)
/�

(0)
− 1. Kinematic

variables are chosen as relevant for the Mainz P2 experiment. The numerical uncertainties
are given by the thickness of the line.

where � � is the spin four-vector (see App. F). Although the di�erence between helicity pro-
jection operators and chirality projection operators is small, of the order of m2

�
, in this case,

these terms get enhanced by the collinear poles and can lead therefore to important e�ects.
For P2 kinematics, for example, this can lead on average to a 1% e�ect.

4.3 Numerical tests and results
As was explained in detail in Sec. 2.2.1, the total result must be independent of the cut-o� Δ.
In practice, however, as can be seen from Fig. 4.1, if the cut-o� is too large, the soft-photon
approximation breaks down, while if it’s too small, the uncertainties can become too large.
The numerical uncertainties are however small at �rst order and, as can be seen from this
�gure, is safe to choose any value of the cut-o� between 0.01 and 1 MeV.

The cross section for electron-carbon scattering with �rst order corrections, same as the
one for electron-proton scattering (see Sec. 2.6), has a strong dependence on kinematic pre-
scriptions. This behavior is shown in Fig. 4.2, where on the left side we see the dependence
of the di�erential cross section on the scattering angle and on the right side the dependence
of the correction factor to the minimum energy of the scattered electron, which is connected
experimentally to the detector threshold.

It is worth mentioning here that one of �rst measurements of nuclear form factors was
carried out at the Standford linear accelerator using electron-12C scattering (see Ref. [106]).
At the energies at which the measurement was performed (E = 420 MeV) the cross section
features two minima, known as di�raction minima. These minima appear for certain values
of Q2, for which the charge form factor goes to 0, Fch(Q

2
) → 0. This behavior is shown in
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Figure 4.2: The dependence of the di�erential cross section for electron carbon scattering at
�rst and leading order (on the left side) and the dependence of the correction factor on the
minimum energy of the scattered electron (on the right side). The kinematics are chosen for
the P2 experiment.

Fig. 4.3, where the leading order cross section is plotted together with the �rst order cross
section at di�erent values of the minimum of the scattered electron. As can be seen from this
�gure, when including photon radiation, the di�raction minima are washed out. Furthermore,
the smaller the value of the minimum of the scattered electron’s energy, the more signi�cant
the washing out e�ect. This e�ect can be explained by the fact that photon radiation leads to a
shift in momentum transfer squared and the leptonic momentum transfer squared is replaced
by the hadronic one asQ2

→ Q
′2 (see Sec. 3.4.1). Since the charge form factor isQ2 dependent,
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Figure 4.3: The di�erential cross section for electron-12C scattering as a function of the scat-
tering angle. The energy was chosen to match the one of the experiment that was performed
at the Standford linear accelerator (see Ref. [106]). Two di�raction minima can be seen at this
energy, that are washed out when photon radiation is included.
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Figure 4.4: The parity violating asymmetry dependence on the scattering angle in electron-
12C scattering, at leading order and with (�) QED corrections.

the new hadronic momentum transfer square leads to shift in the minima of the form factor,
because the form factor is now replaced with one that is Q′2 dependent as Fch(Q

2
) → Fch(Q

′2
).

A smaller value of the energy of the scattered electron E
′

min allows a bigger energy of the
emitted photon. A bigger energy of the emitted photon leads to a bigger shift in Q2, which in
turn leads to a bigger washing out e�ect.

As can be seen from Eq. 4.5, the asymmetry is proportional to Q
2. Therefore we expect

as well, as in the case of electron-proton scattering, a strong dependence on kinematical pre-
scriptions. This e�ect can be seen for example in Fig. 4.4 where we can see the dependence
on the scattering angle of the parity violating asymmetry at leading and at �rst order. Fur-
thermore, at �rst order, the only QED e�ect that contributes is a kinematical e�ect coming
from the shift of Q2, which was studied in Sec. 3.4. As can be seen from Fig. 4.5, the di�erence

0 1 2 3 4 5 6 7 8 9 10
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6 · 10−7
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≈ 5.2%

E = 155 MeV

E′min = 45 MeV
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1st order

leading order

Figure 4.5: The parity violating asymmetry APV at leading order and including (�) QED
corrections. Kinematic variables are again chosen as relevant for the Mainz P2 experiment.
The asymmetry is shown as a function of the scattering angle acceptanceΔ�l , i.e. cross sections
are integrated over the electron scattering angle in the range 35◦ − Δ�l ≤ �l ≤ 35◦ + Δ�l .
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between the leading order asymmetry and the one in which we include �rst order QED cor-
rections is of the same size of the shift in Q2, similar to the electron-proton asymmetry which
was studied in Sec. 3.4. In this �gure the asymmetry is plotted as a function of detector angle
acceptance, from which we can also see that an important e�ect is given also by the separate
integrations of the unpolarized and polarized cross sections over the scattering angle.

We conclude this section by noting that the e�ect from leptonic radiation is about 5%
for the P2 experiment, similar with the e�ect in electron proton scattering. Therefore it is
important to combine this correction with other order-� e�ects, like Coulomb distortions
which were calculated in Ref. [103].



Chapter 5

POLARES — an event generator for
polarized electron-proton scattering

5.1 Introduction
POLARES is a program for elastic electron-proton scattering with longitudinally polarized
electron beams. It includes QED radiative corrections at �rst and second order in perturbation
theory for the polarized, as well as for the unpolarized incident leptons. It can be used as an
integrator to calculate cross sections and asymmetries for given kinematic conditions, as well
as an event generator. The theory background was described in chapters 2 and 3. These
chapters may also be consulted for more details, e.g. concerning the de�nition of kinematic
variables, or of tests which have been performed to check the performance of the program. For
tests concerning the event generator see sec. 5.4. POLARES is build as a library with C++
code. For the Monte Carlo integration it uses the Cuba library [63]. The Cuba library is
contained in the POLARES package and doesn’t need to be separately installed. A reference
manual refman.pdf created by doxygen can also be found in the distribution, together with
the html version. The manual with the instructions of how to install and use the the program
can be found in App. H. The distribution can be found online at https://github.com/
razvanbucoveanu/POLARES.

5.2 Description of the integrator
The integrals that usually appear in our calculations are multi-dimensional and the integrands
are usually lengthy expressions that span many lines of code. For this reason, in order to
calculate these integrals, we need to use a Monte Carlo (MC) approach.

The idea of MC integration (see [107] for more details) is to replace an integral (for illus-
tration purposes we choose a 1-dimensional integral)

I =
∫

1

0

f (x)dx, (5.1)

by an MC estimator de�ned as

I ≈ ⟨I ⟩ =

1

N

N

∑

i=0

f (xi),

https://github.com/razvanbucoveanu/POLARES
https://github.com/razvanbucoveanu/POLARES
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where xi is a random number uniformly distributed between 0 and 1 and N the number of
points that are being sampled. As N → ∞ the MC estimator ⟨I ⟩ converges to the value of I ,
i.e. lim

N→∞

⟨I ⟩ = I . The error of the MC estimator is given by

�⟨I ⟩ =

�

√

N

, (5.2)

where the variance � 2 can be estimated using

�
2
=

1

N

N

∑

i=0

(f (xi) − ⟨I ⟩)
2

. (5.3)

This method works well for uniform functions. However, for more complicated functions with
high peaks, as the bremsstrahlung cross sections, this “naive” MC approach won’t provide us
with an accurate result. Since the error of the calculation is proportional to the variance of
the result, we need to �nd a way to reduce the variance. The advantage of using the Cuba
package for the numerical integration is that it includes di�erent algorithms that can achieve
this goal using di�erent approaches. All algorithms use adaptive methods in order to reduce
the variance, except Cuhre, which is a deterministic algorithm. The e�ciency of Cuhre drops
considerably with the number of dimensions however. One of these approaches, that is imple-
mented in the Vegas algorithm (see Ref. [108] and Ref. [109] for a new version called Vegas+),
is called importance sampling. This method changes the way we choose xi such that more
points are sampled where the contribution of the integrand is greater. Introducing a new
function g(x) we transform our integral I as

I =
∫

1

0

f (x)

g(x)

dG(x), (5.4)

where
G(x) =

∫

x

0

g(y)dy. (5.5)

Restricting g to be a positively-valued function, G(x) becomes a distribution function. Then,
by sampling points from the distribution G(x), the MC estimator becomes

⟨I ⟩ =

1

N

N

∑

1

f (G
−1
(ri))

g(G
−1
(ri))

, (5.6)

where ri is a random number uniformly distributed between 0 and 1. The variance of this MC
estimator is given by

�
2
=

1

N

N

∑

i=1

f
2
(xi)

g
2
(xi)

−
[

N

∑

j=1

f (xi)

g(xi)
]

2

, (5.7)

which can be reduce by making an appropriate choice for g(x) such that more points are gen-
erated where the contribution of the functions that is integrated is greater. This method can
then be used to accurately integrate even functions with high peaks like the bremsstrahlung
cross-sections.

Another algorithm that is included in the Cuba package is called Suave. Suave uses
Vegas-like importance sampling combined with a globally adaptive subdivision strategy (see
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Algorithm Vegas Suave Cuhre
�
(1)

1ℎ

(nb) 4291.3 ± 0.9 (64 s) 4290.3 ± 0.8 (89 s) 4290.2 ± 97.3 (58 s)

�
(2)

2ℎ

(nb) 152.17 ± 0.04 (828 s) 151.91 ± 0.06 (978 s) 143.75 ± 97.5 (1975 s)

Table 5.1: Comparison of integration time required for di�erent algorithms that are imple-
mented in the Cuba package. We do the integration for P2 kinematics, i.e. E = 155 MeV,
�� = 35

◦
± 10

◦ and E
′
= 45 MeV with the cut-o� Δ = 10 MeV. The integration is performed

with 2 ⋅ 108 evaluations on a i7-7700 CPU @ 3.60 GHz and 16 GB of RAM memory, by using
all available cores. For the Vegas algorithm we performed beforehand a "training" run with
10

8 evaluations by using the grid.

Ref. [110] for more details). Although Suave appears to have smaller uncertainties and reach
convergence faster, a big disadvantage of this algorithm is that it uses the computer memory
during the integration and the memory cost can be quite high if one requires a big number
of evaluation to obtain an accurate result. For example, for 2 × 108 evaluations Suave needs
approximately 15 GB of RAM memory. In Fig. 2.21 we showed a comparison between the two
algorithms at di�erent number of evaluations for the �rst order bremsstrahlung. As can be
seen from this �gure, at �rst order, 107 evaluations are enough for the numerical integration
to reach convergence and Vegas and Suave agree very well, within the uncertainties, such that
they can be used interchangeably. However, at second order, as can be seen from Fig. 2.22 and
Fig. 2.23 a higher number of evaluations are required to reach convergence, typically more
than 2 × 108, such that Suave cannot compete anymore with Vegas, which is not limited by
the available RAM memory. A further advantage of the Vegas algorithm over Suave is that it
uses a grid that can be stored and is re�ned after each integration. Using the grid allows us
to use Vegas also as an event generator (see next section for more details).

5.3 Description of the event generator
The event generator consists of two steps. In the �rst step the program performs an initializa-
tion, in which the integrator, described in the previous section, is used to calculate the total
cross section and to train the Vegas grid which will be used in the second step. The initializa-
tion is done using the initialization() function described in the manual (see App. H).
After the initialization is �nished the user can generate events using the events() function
as is described in the manual. This function generates events by using the Vegas algorithm as
a random number generator, but with numbers that are generated according to the previously
trained grid. When using multiple threads the number of the child process has to be added
to the seed using the set_child_process(const int child_process) function,
on order to get di�erent random numbers for each thread.

Schematically, a total cross section calculated by the program in the �rst step has the form

�tot = ∫
d
n
vf (v⃗), (5.8)

where v⃗ = (v1, ⋯ , vn) is a set of kinematic variables and f (v⃗) = dn�/dvn. In the next step we
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map the set of kinematic variables to a new set as

v⃗ → x⃗(v⃗). (5.9)

With the new set of variables the cross section is given by

�tot = ∫
d
n
x!(x⃗), (5.10)

and we choose these new variables such that !(x⃗) is �at. The Vegas algorithm obtains !(x⃗) by
using the method of importance sampling described in the previous section. Since the Vegas
algorithm performs a MC integration, the cross section will be approximated by

�tot ≈
1

N

N

∑

i=1

!(x⃗i) = W , (5.11)

where !(x⃗i) ≡ !i is called weight, while !(x⃗i)/W is called the average weight. Every event
that is generated in the second step with the events() function comes therefore with an
associated weight denoted by !i .

Usually we need to apply additional cuts to the total cross section �tot. This can be done by
using � functions in the integration, such that the new cross section to which the cuts were
applied is given by

�i ≡ Δ�(yi) = ∫
d
n
vf (v⃗)Θ(yi), (5.12)

where Θ(yi) = �(y(v⃗) − yi)�(yi + Δy − y(v⃗)). These cuts can be applied also to the event
generator, by generating events in a given bin de�ned by these cuts. For a given bin i, the
cross section �i can then be approximated by

�i ≈

1

N

N

∑

i=1

!(x⃗i)Θ(yi) ≡ Wi . (5.13)

5.4 Results and tests of the event generator
In the previous section we discussed the possibility of applying certain cuts to the integration,
such that instead of calculating a total cross section � = �tot, we calculate a cross section �i for
which we restrict the integration over the phase-space in a given interval. We saw that the
cross section with these cuts �i can be obtained in two ways. One way is to apply the given cuts
directly to the integration, while another way is to generate events in a bin i de�ned by these
cuts, according to the initialized grid, which is part of the Vegas algorithm. By calculating the
ratio, �i/� , we �nd a distribution that shows the relative contribution of the di�erent cross
sections �i . Such a distribution is shown in Fig. 5.1, where the total cross section is given in
this case by the �rst order bremsstrahlung cross section, � ≡ �

(1)

1ℎ

, to which the usual cuts for

the P2 experiment are applied, while the cross sections �i’s are obtained with the same P2 cuts
and additionally cuts are applied to the emitted photon polar angle as i < �
 < i + 2

◦, where
i takes values from 0

◦ to 48◦ in steps of 2◦. In this plot two peaks are visible, called collinear
peaks, for initial state and �nal state radiation, respectively. For a discussion of these collinear
peaks see Sec. ??.
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Figure 5.1: Histogram showing the distribution of the cross section �i , calculated with the
integrator, relative to the total cross section � . In this case � is given by the �rst order
bremsstrahlung cross section �

(1)

1ℎ

. We used the kinematics that are relevant for the P2 ex-

periment.

As was explained in the previous section, the value of the cross section in each bin de�ned
by the applied cuts, can be approximated by the sum of all generated event weights,Wi , in that
particular bin. Therefore, we expect that the distribution �i/� obtained using the integrator,
described in Sec. 5.2 can be approximated by the ratio of the weights Wi/W obtained with the
event generator, described in Sec. 5.3. A comparison of these two ratios can be used as a test of
the weights produced by the event generator, in order to make sure that the results obtained
by the integrator are consistent with the results obtained by the event generator. The key
here is that with the Vegas algorithm it is possible to store the grid which can be used later
to generate events. With this test we showed that the grid can indeed reproduce the correct
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Figure 5.2: This �gure shows the comparison between the ratio of the cross sections �i/�
for �rst order bremsstrahlung, obtained with the integrator, and the distribution of the event
weights Wi/W , obtained with the event generator. The number of events that was used is 108.
We used the kinematics that are relevant for the P2 experiment.
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obtained with the event generator. The number of events that was used is 107. We used the
kinematics that are relevant for the P2 experiment.

weights, that are consistent with the results of the integrator. The comparison �i/� −Wi/W is
shown in Fig. 5.2, where we �nd a very good agreement of the two distributions, at the level
of 10−4, with random �uctuations, which lay inside in the statistical errors predicted by the
Vegas algorithm. This result tells us that the event generator produces the correct weights
!i , such that the averaged sum over these weights on a given bin is consistent with the result
obtained with the integrator.

Using the same procedure, we can test the results of the event generator for the total cross
sections with �rst and second order corrections. These tests are shown in Figs. 5.3 and 5.4. In
the �rst �gure, the cross section � is given by the cross section with �rst order corrections
�
(0+1) to which the P2 cuts are applied. For the cross sections �i we apply additionally a cut
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Figure 5.4: Figure showing the comparison between the ratio of the second order cross sections
�
(2)
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(2) obtained with the integrator, and the distribution of the events weights W (2)

i
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(2),
obtained with the event generator. The number of events that was used is 108. We used the
kinematics that are relevant for the P2 experiment.
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on the scattering angle i < �� < i + 1
◦, where i takes values from 25

◦ to 44◦, in steps of 1◦.
Comparing the ratio �i/� to the weights ratio Wi/W obtained with the event generator we
�nd a good agreement with small �uctuations of the order of 10−4, which tells us that the
two methods are consistent and that the event generator performs well, within the numerical
uncertainties of the Monte Carlo integration. The same comparison is done for the second
�gure, except that the total cross section � is now given by the cross section with second
order corrections � (0+1+2). Although the agreement is a bit worse in this case, due to the higher
uncertainties of the second order calculation, the �uctuations are still at the level of 10−4 and
lie within the uncertainties of the numerical evaluation.



Chapter 6

Conclusions

In this work we have calculated leptonic QED corrections for elastic unpolarized and polarized
lepton nucleon scattering at �rst and second order. This includes one- and two-loop QED
virtual corrections and one and two photon real radiation.

In our study of numerical results, that were mostly done using the kinematics of the future
P2 experiment in Mainz, we showed that a careful analysis of radiative correction is needed,
that takes into account the experimental details which restricts the phase space for photon
radiation. For this reason we have implemented these corrections in a Monte Carlo simulation
called POLARES which is available on GitHub.

We have used various ways to test our results in Secs. 2.5 and and 3.4. As seen in Sec. 2.6
second-order corrections are generally small, but they become important for measurements
at the per mill level. In Sec. 3.4 we showed that photon radiation at �rst order leads to a
shift in the measured Q

2 of about 5% for P2 kinematics. We also showed that the e�ect of
second order radiation to the shift in Q

2 is negligible, since this is only a kinematical e�ect
given by the change in the scattered leptons energy. The P2 experiment plans to extract the
weak charge of the proton by measuring the parity violating asymmtry between electron
with positive and negative helicities. Since the parity violating asymmetry is proportional
to Q

2 it becomes very important to have available a careful Monte Carlo treatment of QED
radiative corrections. This goal was ful�lled with the implementation of our calculations in
the POLARES library, that can be easily combined with the simulation of the P2 experiment.

At �rst order we have included also known treatments of hadronic corrections for the
proton lines and we have presented a calculation of polarized and unpolarized lepton carbon
scattering. The hadronic corrections, except for the two photon exchange correction, have a
negligible e�ect. However, it is important to have a well de�ned separation of corrections that
are contained in the e�ective nucleon form factors from the corrections that are subtracted
during data analysis.



Appendix A

Cross-sections for ep → ep and
ep → ep


The matrix element squared for non-radiative ep scattering, averaged and summed over the
spin degrees of freedom in the initial and �nal states, can be given in a compact form using
the following form factor combinations:

G ≡ −2Q
2

(F
p

1
+ F

p

2 )

2

, H ≡ 4 (F
p

1 )

2

+

Q
2

M
2
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p

2 )

2

. (A.1)
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, (A.3)

and s = (l + p)2. The expression of the cross section for the process ep → ep
 was given in
Eq. 2.62. For the matrix element squared of the radiative process with one additional photon,
it is convenient to introduce also the variables S = 2l ⋅ p and U = −2l

′
⋅ p. Using a partial

fractioning decomposition, to separate initial state and �nal state contributions and the inter-
ference between the two, we �nd for the matrix element squared for ep → ep
 , averaged and
summed over initial and �nal state spin degrees of freedom the following expression:
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Appendix B

Renormalization and Regularization

A well known aspect of QFT is that it involves divergent quantities that have to be regularized.
The in�nities arise in fact because QFT was constructed as an idealized mathematical theory,
which assumes in�nitely extended �elds (from where the infra-red (IR) divergence comes
from) with in�nite spatial resolution (that gives the ultra-violet (UV) divergence, see Ref. [111]
for more details). The situation is somehow similar with what we know from electrostatics
(see Ref. [112]) in the calculation of the electric �eld from an in�nite line of charge for example.
To get a meaningful, physical result for the electric �eld in this case we need to “regularize”
the potential, for example by placing a cut-o� on the length of the wire. So absorbing in�nities
in QFT is a mathematical trick from which we can obtain, from our idealized mathematical
formulation, physical quantities that can be measured in a real experiment. The mechanism
that makes this happen in QFT is called renormalization and it involves the absorption of IR
and UV divergences.

In QED, the IR divergences originate from the coupling of a real photon with two on-shell
lepton lines. In order to regularize these type of divergences we introduce a vanishing photon
mass � → 0. The calculation with a photon mass regulator gives rise to IR divergent terms
that typically appear in the calculation of soft-photon radiation and vertex corrections. By
including both soft-photon radiation and vertex corrections the IR divergent terms exactly
cancel at the level of the cross-section. The other type of divergences that we encounter
in our calculations are the UV divergences, which originate in virtual corrections involving
loop diagrams. In order to regularize this type of divergences the dimensional regularization
method (see Ref. [113] and Ref. [112]) was used, in which the calculation is done in an arbitrary
dimensionD. Such a regularization results in terms like 1/�UV, with �UV = D−4, which becomes
divergent for D = 4. The advantage of this type of regularization (see Ref. [114]), compared
for example with a cut-o� regularization, is that it automatically preserves symmetries, which
is important for making the theory gauge invariant. However, the disadvantage of this type
of regularization is that it forces us to introduce an auxiliary unphysical scale factor � in
order to keep the integral dimensionless. Dimensional regularization can be, of course, done
also in the case of IR divergences. At one-loop order (NLO) we can switch between the two
regularization schemes with the following replacement:

ln
(

�
2

m
2)

↔ Δ� , (B.1)
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where Δ� is de�ned as
Δ� =

1

�IR
− 
E + ln(4�), (B.2)

with D the number of dimensions and 
E is the Euler constant. Here �IR is the singularity that
corresponds in this case to the IR divergence. However, for reasons of simplicity we have used
for the IR divergences the cut-o� scheme.

The bare quantities, as the mass, charge and wave-function, that enter the Lagrangian
contain the UV divergent terms that are left after regularization. These terms are removed by
adding a counter-term Lagrangian, a process which is called renormalization. This subtraction
can be done in di�erent ways. The method which we used in this work, which is suitable for
QED and for low energies is called the on-shell renormalization scheme.

The renormalized QED Lagrangian (see for example Ref. [42]) in this prescription is then
given by

R
= B

− CT
=

̄
 (i


�
)� − m) −

1

4

F��F
��
− e

̄
 


�
 A� , (B.3)

where B is the bare Lagrangian and CT the counter-term Lagrangian that takes the form

CT
= (Z2 − 1)

̄
 i


�
)� − (Z2Zm − 1)

̄
 m − (Z3 − 1)

1

4

F��F
��
− (Z1 − 1)e

̄
 


�
 A� . (B.4)

The counter-term renormalization constants are related to the renormalization constants
derived in Sec. 2.2 by

Z1 = 1 + �Z1,

Z2 = 1 + �Z2,

Z3 = 1 + �Z3,

�m = (1 − Zm)Z2m.

In the on-shell scheme we require, for example in the case of the lepton self-energy, that
the pole of the propagator S corresponds to the physical mass that is being measured in an ex-
periment (hence the name on-shell renormalization). The expressions of the renormalization
constants for the lepton self-energy were found in Sec. 2.2 by requiring that the propagator S
has a pole at /l − m� = 0 with residue 1. From this condition we found the expressions for the
counter-terms �Z2 and �m that were given in Eq. 2.30.

In the case of the vertex correction we can �nd the renormalization constant by requiring
that in the limit Q2

→ 0 we recover the tree-level vertex. This condition leads to the expres-
sion of �Z1 given in Eq. 2.42. As was shown in this section, as a consequence of the Ward
identity, �Z1 is the same with �Z2.

Finally, the renormalized vacuum polarization is obtained by recovering the experimental
value of the electric charge in the limit q → 0 of Coulomb scattering. This condition leads to
the expression of �Z3 given in Eq. 2.77.

It can be shown that the counter-term Lagrangian, which contains the renormalization
constants determined at NLO, does in fact remove the UV divergences to all orders. The
algorithm that is most commonly used to show that is the BPHZ algorithm (see for example
Ref. [114]).



Appendix C

Form factors parametrizations

C.1 Proton Form Factors parametrization
We describe here brie�y two parametrizations of the Sachs form factors de�ned in Sec. 2.1
that are included in our program. The �rst one, called “polynomial × dipole” (see Ref. [30]),
is an extension of the dipole parametrization, which is combined with a polynomial of Q2. It
has the following form:

G
E,M

polynomial×dipole(Q
2
) = GD(Q

2
) ×

(
1 +

8

∑

i=1

a
E,M

i
Q
2⋅i

)
, (C.1)

where the parameters aE
i

and aM
i

are given in table (C.1).

i a
E

i
a
M

i

1 −0.4980 0.2472
2 5.45925 −4.9123
3 −34.7281 29.7509
4 124.3173 −84.0430
5 −262.9808 129.3256
6 329.1395 −111.1068
7 −227.3306 49.9753
8 66.6980 −9.1659

Table C.1: Polynomial × dipole parameters. The values can be found in Ref. [115], pp. 181.

The second parametrization presented here was derived by Friedrich and Walcher [116],
who used the ansatz that the form factors are composed of a smooth part, which is identical
to a double dipole description given by

Gs(Q
2
) = s0

(
1 +

Q
2

s1
)

−2

+ (1 − s0)
(
1 +

Q
2

s2
)

−2

, (C.2)

and a bump contribution, which consists of a Gaussian in Q2 with an amplitude sb at position
Qb and width �b. The bump contribution can be described therefore by

Gb(Q
2
) = e

−
1

2(

Q−Q
b

�
b

)

2

+ e
−
1

2(

Q+Q
b

�
b

)

2

. (C.3)
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By normalizing the bump contribution, i.e. by multiplying with Q2, to be consistent with the
smooth part, we get the complete model as

G
E,M

Friedrich-Walcher(Q
2
) = Gs(Q

2
, s

E,M

0,1,3
) + s

E,M

b
⋅ Q

2
⋅ Gb(Q

2
, Q

E,M

b
, �

E,M

b
), (C.4)

where the parameters are given in table (C.2). For more details see Ref. [115].

Parameter GE GM

s0 13.13613 0.99377
s1 0.67183 0.71253
s2 0.67186 −2.93647
sb −0.18245 −0.05312
�b 0.00636 −0.39067
Qb 0.00636 −0.39067

Table C.2: Friedrich-Walcher parameters. The values can be found in [115], pp. 182.

C.2 Neutron Form Factors parametrization
The electric form factor Gn

E
can be parametrized by following the model of Galster [117]

G
n

E
=

A�

1 + B�

GD(Q
2
), (C.5)

where GD and � are de�ned in chapter 2.4. The parameters A and B are given with the fol-
lowing values: A = 2.28409 and B = 4.41942. The magnetic form factor of the neutron can be
described by a polynomial model, described in Ref. [118], as

G
n

M
(Q

2
) =

9

∑

0

a
n

i
Q
2i
, (C.6)

where the parameters an
i

are given in table C.3.

i a
n

i
i a

n

i

0 −1.9147 5 27.52359
1 6.47767 6 −12.81713
2 −17.32918 7 3.63457
3 31.80021 8 −0.57277
4 −37.18707 9 0.03843

Table C.3: Parameters for the magnetic neutron form factor. The values can be found in
Ref. [118].

C.3 Strangeness Proton Form Factors
The electric proton form factor that describes the contribution of the strange quarks can be
again parametrized as a Galster model

G
s

E
=

A
s
�

1 + B
s
�

GD(Q
2
), (C.7)
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where GD and � are de�ned in chapter 2.4. The parameters As and B
s are given with the

following values: As
= 0.32267 and Bs = 4.686. The magnetic form factor can be parametrized

with the help of a model determined by Young [119]

G
s

M
= 0.044 + 0.93 ⋅ Q

2
. (C.8)

C.4 12C form factors
The 12C form factor can be described using a symmetrized Fermi function (see Ref. [104]) as

Fch =
3

qc
(
(qc)

2
+ (�qa)

2

)

(

�qa

sinh(�qa)) [

�qa

tanh(�qa)

sin(qc) − qc cos(qc)
]
, (C.9)

where q =
√

Q
2, and a and c two constants given by

a = 0.4506fm ,

c = 2.342fm .

(C.10)

The weak form factor can be described by the same function. In absence of experimental
data we take the parameters that describe this form factor identical as for the charge form
factor, i.e Fch = Fwk. In our program we allowed the possibility for a user de�ned form factor,
that can be easily modi�ed if new data becomes available.



Appendix D

Method for the calculation of one loop
integrals and a list of scalar integrals

In order to perform the one-loop integrals we have used theMathematica packageFeyncalc
[120]. We automatically used all the conventions de�ned in Feyncalc when performing
the loop calculations. The most general one-loop integral can be written as

T
�1…�p

n =
∫

d
d
k

(2�)
d

k
�1
⋯k

�p

D0D1⋯Dn−1

, (D.1)

where n are the number of external momenta pi , d the number of dimensions and ki the loop
momenta. The quantities Di are de�ned as:

Di = (k + ri)
2
− m

2

i
+ i� , (D.2)

where ri are related to the external momenta as

rj =

j

∑

i=1

pi with j = 1, … , n,

r0 =

n

∑

i=1

pi = 0

(D.3)

as indicated in Fig. D.1. The functionOneLoop is used to perform the algebraic simpli�cation
of the amplitude into Passarino-Veltman integrals, while the function PaVeReduce is used

Figure D.1: Conventions for the loop momenta
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to reduce the Passarino-Veltman integrals to the scalar integrals B0, C0 and D0. Before using
the PaVeReduce function, we perform the sum (or average) over spins and polarizations.
For the calculation of the trace we used the function Tr from Feyncalc package. The �nal
result is given in terms of scalar integrals and invariants. The scalar integrals, that have more
complicated analytical expressions, were obtained by analytical continuation from the results
given in Ref. [121]. The expressions for the simpler cases of the scalar integrals can be found
in Ref. [122] and are given by

A0(m
2
) = m

2
(Δ� + 1 − log

m
2

�
2
), (D.4)

B0(0, m
2
, m

2
) = Δ� − log

m
2

�
2
, (D.5)

B0(m
2
, 0, m

2
) = Δ� + 2 − log

m
2

�
2
, (D.6)

B0(0, 0, m
2
) = Δ� + 1 − log

m
2

�
2
, (D.7)

B0(M
2
, 0, m

2
) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

Δ� + 2 + m
2
ln
(

m
2

�
2 )

−
M
2

M
2
−m

2
ln
(

M
2

�
2 )
, for M2

> m
2
,

Δ� + 2 +
m
2
−M

2

M
2
ln
(
1 −

M
2

�
2 )
, for M2

< m
2
,

(D.8)

B0(Q
2
, m

2
, m

2
) = Δ� + 2 − v ln(

1

x
)
− log

(

m
2

�
2 )

, (D.9)

B
′

0
(m

2
, �

2
, m

2
) = −

1

m
2
−

1

2m
2
log

�
2

m
2
, (D.10)

B
′

0
(0, m

2
, m

2
) =

1

6m
2
, (D.11)

C0(m
2
, m

2
, 0, m

2
, �

2
, m

2
) =

1

2m
2
log

�
2

m
2
, (D.12)

C0(m
2
, 0, M

2
, 0, m

2
, m

2
) = −

1

m
2
− M

2 [

�
2

6

− Li2
(

M
2

m
2)]

, (D.13)

C0(m
2
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, Q

2
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2
, �

2
, m

2
) = −

1

Q
2
v [
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(

�
2

m
2)

ln(x) − 2Li2(−x)

− 2 ln(x) ln(1 + x) +
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2

(x)

2

−

�
2

6 ]

, (D.14)

C0(0, Q
2

1
, Q

2

2
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2
, m

2
, m

2
) =

1

2(Q
2

2
− Q

2

1
)
[ln

2

(x1) − ln
2

(x2)] , (D.15)
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where Q1 ≠ Q2. In these expressions we have used he following notations:

Δ� ≡

2

�

− 
E + log 4�,

v ≡

√

1 +

4m
2

Q
2
,

x ≡

v − 1

v + 1

,

with Q
2
> 0. For x1 and x2 Q2 must be replaced with Q

2

1
and Q2

2
respectively. Q2

1
and Q2

2
can

represent di�erent Q2 de�nitions, e.g. the leptonic and the hadronic Q2.



Appendix E

Phase-space parametrizations

E.1 One-photon bremsstrahlung, ep → ep


E.1.1 First parametrization
The phase-space for the radiative process was given in Eq. 2.63. After integrating out the �nal-
state nucleon momentum to remove the �-function for energy-momentum conservation, the
phase space for �p → �p
 is given by

d
4
Γ =

∫

1

(2�)
5

d
3
l
′

2E
′

d
3
k

2E


� [(l + p − l
′
− k)

2
− M

2

] . (E.1)

Using energies and angles as shown in Fig. 2.1 we write

d
3
l
′
= E

′
|
⃗
l
′
| d cos �� d�� dE

′
,

d
3
k = E

2



d cos �
 d�
 dE
 ,

(l + p − l
′
− k)

2
− M

2
= 2(A − B cos �
 ) (E.2)

with

A =M(E − E
′
− E
 ) − EE

′
+ E

′
E
 − EE
 + |

⃗
l||
⃗
l
′
| cos ��

+ |
⃗
l|E
 cos �
 − E
 |

⃗
l
′
| cos �� cos �
 + m

2

�
,

B =E
 |
⃗
l
′
| sin �� sin �
 . (E.3)

We can perform the integration over the azimuthal angle of the scattered lepton �� and we
�nd

dΓ =
∫

1

4(2�)
4
E
 |

⃗
l
′
| dE

′
d cos �� dE
 d cos �
 d�
 � [2(A − B cos �
 )]

=

1

8(2�)
4

dE
′
d cos �� dE
 d cos �


sin �� sin �
 sin �


Θ
(
1 −

A
2

B
2)

, (E.4)

where sin �
 =
√

1 − A
2
/B

2. Integration limits follow from the condition

A
2

B
2
≤ 1 . (E.5)
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We �nd

m� < E
′
< E , (E.6)

max

(

EE
′
− M(E − E

′
) − m

2

�

|
⃗
l||
⃗
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′
|

, −1

)

< cos �� < 1 ,

y
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< E
 < −

y
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,

−F

√

F
2
+ D

2
− C

2
− DC

D
2
+ F

2
< cos �
 <

F

√

F
2
+ D

2
− C

2
− DC

D
2
+ F

2
,

where we have used

C =M(E − E
′
− E
 ) − EE

′
+ E

′
E
 − EE
 + |

⃗
l||
⃗
l
′
| cos �� + m

2

�
,

D =E
 (|
⃗
l| − |

⃗
l
′
| cos �� ) ,

F =E
 |
⃗
l
′
| sin �� ,

a =

√

|
⃗
l|
2
+ |
⃗
l
′
|
2
− 2|

⃗
l||
⃗
l
′
| cos �� ,

x =E
′
− E − M ,

y =M(E − E
′
) − EE

′
+ |
⃗
l||
⃗
l
′
| cos �� + m

2

�
.

E.1.2 Second parametrization

An alternative choice is to �x the scattered electron’s energy E
′ (see also [40]). From the

equation
(l + p − l

′
− k)

2
− M

2
= 0, (E.7)

we can express E’ by solving the second order equation as

E
′
=

BC ± A

√

m
2

�
(A

2
− B

2
+ C

2
)

A
2
− B

2
, (E.8)

where

A = |
⃗
l| cos �� − E
 cos  ,

B = E + M − E


C = E
 (E + M − |
⃗
l| cos �
 ) − ME − m

2

�
.

The minus sign is in most cases the only physical solution. The plus sign can give a con-
tribution only for a very large value of E
 , close to the energy of the incident lepton E, and
implicitly for very small values of E′, which are typically much below a detector’s threshold.
The contribution from the plus sign in these cases is of the other of 10−10, relative to the total
cross section, and is much below the uncertainties of the numerical integration and therefore
can be neglected.
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Fixing E′ the phase-space can then be expressed as

dΓ =

1

4(2�)
4
dE
d cos �� cos �
d�


E
 |
⃗
l
′
|
2

|
|
|
AE

′
− B|

⃗
l
′
|
|
|
|

Θ (m� − E
′

)Θ (E − E
′
− E
) . (E.9)

For the solution to be physical the value of E′ have to satisfy the two Θ functions given in the
previous equation. From E

′
< E − E
 we �nd that the photon energy has to satisfy

E
 <

M(E − m� )

M + E − |
⃗
l| cos �


.

The results obtained with the two phase-space parametrizations agree very well, within
the uncertainties of the numerical integration, as can be seen also from Fig. 2.21. Although, in
general, the second parametrization is faster than the �rst and can have smaller numerical un-
certainties, the default choice, that was used also to obtain results, is the �rst parametrization.
The reason for this choice is that for the �rst parametrization, since E′ is one of the integra-
tion variables, it’s possible to directly choose a limit for this energy, which is important for
the P2 experiment. While for the second one E′ can be only indirectly restricted after it was
calculated as a function of the other variables, which can be ine�cient and less numerical
precise. If, on the other hand, one would like to set limits to �
 , then the use of the second
parametrization would make more sense and it would be more e�cient.

E.2 Two-photon bremsstrahlung, ep → ep



We use the same notation as shown in Fig. 2.1, but consider two photons in the �nal state,
whose 4-momenta are denoted by k and k

′ with energies E
 , E′



and angles �
 , � ′


, �
 , and

�
′



, respectively. Using the � function from energy-momentum conservation, the integration

over the 4-particle phase space can be written as
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(E.10)

where �
 can be expressed as a function of �1, �2 and �3 by solving the equation

�1 sin �
 + �2 cos �
 = �3 , (E.11)
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The solution of Eq. E.11 depends on the the signs of �1 and �2 and is expressed by

�
 =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

arcsin
�3√

�
2

1
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2

2

− arctan
�2

�1

if �1 > 0 ,
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�3√

�
2

1
+�

2

2

− arctan
�2

�1

− � if �1 < 0 and �2 > 0 ,

arcsin
�3√

�
2

1
+�

2

2

− arctan
�2

�1

+ � if �1 < 0 and �2 < 0 .
(E.12)

Integration limits for angles and energies follow from the condition that the arguments of the
arcsin-functions in the expression for �
 in Eq. (E.12) have to be in the allowed range between
−1 and +1. This is also our �rst condition and the most important one that has to be checked
numerically and is given by

− 1 ≤

�3
√

�
2

1
+ �

2

2

≤ 1 (condition 0) . (E.13)

The required calculations that follow from this condition are straightforward, but tedious, and
we write down only a few partial results in the following. From E.13 we �nd the following
limits for �
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Next we need to make sure that the square roots are real numbers. It is easy to see that the
argument of �1 is always positive. Therefore, the next condition that we �nd is given by

� ≥ 0 (condition 1) , (E.15)

which we can use to determine the integration limits for �′
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For the square root to be real number we need the following condition


 ≥ 0 (condition 2) , (E.21)

which is always ful�lled provided that

E − E
′
− E
 − E

′



≥ 0 . (E.22)

It turns out that an explicit implementation of the kinematic limits given above in the
numerical integration routine together with the partial fraction methods described in 2.4.4
is su�cient to render the e�ciency of the Monte Carlo integration, which is de�ned by the
number of accepted events at a level above 27 %. More speci�cally, condition 2, allows on
average 86 % of events, while with condition 1, the allowed events drop considerably to 28 %
and �nally with condition 0 we get 27 % accepted events 1.

In our implementation of the numerical integration over the phase space we make sure
that no kinematic limit is missed by reconstructing always complete events and checking the
4-momentum conservation.

1This test was perfomed with the Vegas algorithm with 109 evaluations.



Appendix F

Helicity projection operators

For the calculation of the polarized cross section we need to di�erentiate between electrons
with positive and negative helicities. In order to achieve this we use helicity projection oper-
ators. We �rst de�ne the spin four-vector (see Ref. [123]) as

�
�
=

1

m�

(|
⃗
l|, E

̂
l), (F.1)

where ⃗
l is the lepton 3-momentum, ̂l its direction, E its energy and m� its mass, with the

following properties
� ⋅ � = −1 and � ⋅ l = 0. (F.2)

With the help of the spin four-vector we can de�ne the helicity projection operators for mas-
sive spin 1/2 particles as

u(l, �)ū(l, �) =

1

2

(1 + �
5 /� )(/l + m� ), (F.3)

where � = ±1 for positive and negative helicities, respectively. The helicity spinors u(l, �) sat-
isfy the Dirac equation and are eigenstates of 
5 /� with unit eigenvalue. In the ultrarelativistic
limit, i.e. E ≫ m� , the spin four-vector reduces to � � → l

�
/m� and we recover Eq. (3.2) in the

low Q
2 limit. For m� → 0 the helicity operators reduce to the chiral operators (1 + �
5)/2.
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Weak proton form factors

The weak proton Sachs form factors GZ

E,M
can be related to the quark substructure of the pro-

ton by writing them as contributions from u, d and s quarks (see Ref. [124]). If the contribution
from the heavy quarks (c, t and b) are neglected and each contribution of an individual quark
is weighted by the appropriate quark charge (see Table 3.1), then the proton’s electromagnetic
and weak Sachs form factors become
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Making the assumption of charge symmetry in the nucleon, which implies that Gu

E,M
and Gd

E,M

in the proton are simply interchanged in the neutron, we can write the Z 0 Sachs form factors
in terms of the electromagnetic Sachs form factors of the proton (p) and neutron (n) and a
contribution from the strange quarks as
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− G

s

E,M
. (G.2)

Some parametrizations for the neutron form factors and for the form factors of the strange
quarks contribution can be found in App. C.2 and App. C.3. We note here that isospin viola-
tion, or charge symmetry breaking, invalidates the assumption that u-quark �eld is identical
with the d-quark �eld in the neutron. The violation comes from mass di�erence and from
electromagnetic e�ects. By using di�erent theoretical models of the proton structure, the au-
thors of Refs. [125], [126] and [127] all come to the conclusion that the contribution from
isospin violation is of the order of 0.1%. The precision of the strange quark measurements
would have to be better than this level, before charge symmetry breaking adds signi�cant
uncertainty to the determination.

The electroweak axial form factor of the nucleon can be similarly deconstructed to reveal
the contribution of strange quarks, as described in Ref. [101].
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Manual

H.1 Installation and general description
The code of the program can be found in this GitHub repository. The prerequisites for in-
stalling the POLARES library are a GNU C++ compiler that supports the C++11 standard
(g++ version 1.6 or higher) and the GSL1 library. The present version of POLARES was
written and tested with GSL version 2.1 on Linux systems. The POLARES distribution comes
in a coMessed tar archive POLARES-x.y.tar.gz, where x.y is the version number. Execute the
usual sequence of commands to unpack and install the library:

gunzip -c POLARES-x.y.tar.gz | tar xvf -
cd POLARES-x.y
./configure
make
make install
make clean

This list of commands will install the library in the default path (/usr/local) which requires
root permission. The prefix-option can be used to choose a di�erent path:

./configure --prefix=/user/defined/path

In case the gsl library is not installed in the standard path it is possible to specify the
path by:

./configure GSL_CONFIG_PATH=/path/to/folder/containing/gsl-
config

or set the environment variable
1http://www.gnu.org/software/gsl/

https://github.com/razvanbucoveanu/POLARES
http://www.gnu.org/software/gsl/
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export GSL_CONFIG_PATH=/path/to/folder/containing/gsl-
config

If the POLARES library is not installed in the default path, one needs to set the environ-
ment variable

export LD_LIBRARY_PATH=/user/defined/path/lib

so that the linker can �nd the shared library of the POLARES package.
The library contains a sub-folder called examples, in which few example programs with

how to use the library are provided. The command make examples compiles all these
example programs that are found in sub-folder examples. After running this command, if the
compilation was successful, the user should be able to run any of the programs that were build
in this folder. However, if the command make clean is executed the compilation of these
programs will be deleted. This command can be of course omitted if the compilation of the
example programs is not required.

H.2 General description
After installation the user can include POLARES.h into his or her own program and use the
class PES, which is part of the namespace POLARES and contains all the necessary
functions. An example of how this class can be used can be found in the �le examples/-
main_example.cpp. More examples with the functions from this class are found in the sub-
folder examples/. In order to use the program, the user has to be careful specifying the paths
to the source code and to the POLARES library. A sample make�le, called Make�le_example,
can be found in the folder examples. Additionally, for the program to run, the working direc-
tory has to contain the folder named share which keeps additional input �les, for example for
the calculation of the hadronic part of the vacuum polarisation (see below).

The user can provide input to the program in a �le, for which the default name is PO-
LARES.in. The program looks for this �le in the working directory. The name of the input
�le can be changed from the input class. The program will create also an output �le with the
same name as the input �le and with the extension .out. A sample version of the input �le
comes with the distribution and contains all the possible input combinations.

In many cases, a complete speci�cation of input data is not needed and default values
de�ned in the library can be used. For this case, a basic input �le, called POLARES_basic.in, is
also provided and contains only the important input that a user requires to run the program.
In addition to using a �le to specify input options, one can also use the class Input in
the main program, as described in the next section. However, input from the input �le will
overwrite input from the input class.

For complete functionality the data �les vp_Ignatov.dat, vp_Jeger.dat and vp_KNT18.dat
are also required to run the program. They contain tables needed for the calculation of the
hadronic contribution to the vacuum polarization. The �les are shipped with the distribution
and can be found in the directory /user/de�ned/path/share/.
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Unless speci�ed, all the energies and momenta are given in natural units of 1 GeV in the
laboratory frame (see Sec. 2.1 for the de�nition of this reference frame). For convenience, the
angles are given in degrees in the input, but in radians in the output.

H.3 How to use the library: description of themain func-
tions

The POLARES class PES can be constructed explicitly by using
PES();

If values for parameters are de�ned in the input �le they will overwrite the ones fromclass Input.
A convenient way to start the calculations is by using the code
Input input;
// ...
// define input values as described below
// ...
PES my_pes_class;
my_pes_class.set_input(input);
my_pes_class.initialization();

and using functions of class PES to start event generation and analyze results. The most
important public functions that can be found in class PES are:

• void set_input(const Input& input);

This function is used to transfer values for input parameters de�ned in the main pro-
gram to the class PES.

• int initialization();

This function can be used to calculate total cross sections or asymmetries integrated
over the phase space de�ned in the input. It is also needed to generate grids which are
required for event generation. The output of this function is stored in two instances of
the class Output (see below for a detailed description of the output):

Output output;

contains the actual results for total and partial cross sections, and
Output errors;

contains estimates of the numerical uncertainties of the results.

• int sigma_diff_Omega_l(const double thl_deg);

This function calculates the di�erential cross section d�/dΩ = d�/(2� sin �d�) and the
corresponding asymmetries for a given scattering angle thl_deg (input value in de-
grees). The output is stored again in the objects output and errors. At next-to-
leading order, this function performs an integration over the phase space for bremsstrahlung
photons.
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• int shiftQ2(const double thl_deg);

This function calculates the average shift in Q2 due to hard photon bremsstrahlung for
a given scattering angle thl_deg (in degrees). The output is stored as in the case of
the initialization in the objects output and errors.

• int events();

This function generates events with a corresponding weight, which is stored in the �nal
state class (see below). The function events() can be used after the grid initialization
was completed successfully. Each call of this function generates one event and the user
is free to choose the number of events to be generated. For each event the output is
given in the object FS of the class Final_State (see below for a detailed descrip-
tion of its members).

• bool change_energy_initialization(const double E);

With this function the user can change the energy of the incoming lepton beam after a
�rst initialization. The input value for E is expected in units of GeV.

• bool change_energy_events(const double E);

This function is useful in case the user wants to generate events for a range of energies.
A sample program is provided in examples/multiple_random_E_test.cpp.
change_energy_events returns true if the given energy is valid and the grid
initialization was successful, false otherwise.

• bool set_child_process(const int child_process);

This function must be used in case the user wants to generate events on multiple cores
for creating di�erent seeds for each child process.

H.4 Description of the input

All required input can be de�ned in the input �le. A sample version with the name POLARES.in
is contained in the distributed package. Each input item consists of a key word (possibly
including spaces) and a value, separated by an equal sign, =. The order of input items in
this �le is arbitrary. Lines starting with # are comments. Passing the name of the input
�le to the program is done via class Input and giving this object as an argument to the
function set_input. The variable in which the user can de�ne the name of the input �le is
string input_file. For example, if the user wants to use the �le POLARES.in as input
the following code has to be used

Input input;
input.set_input("POLARES");
PES pes;
pes.set_input(input);
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All the input can be inserted directly in class Input, which contains also all the default
values, without the need of an input �le. However, by providing the required values in the
input �le, the input from class Input is overwritten. Below we show a list of the vari-
ables contained in class Input with their corresponding names from the input �le. All
the �ags can be accessed in class Input as input.flag[input.name_of_flag],
where name_of_flag is given below in square brackets after the corresponding name from
the input �le. For better readability the input �le is structured in four sections as

1. [General Input]

contains input required for the calculation of cross sections and asymmetries. Input
given in this section is used for both the elastic process (including soft-photon and
virtual corrections) and the radiative process with a hard photon in the �nal state.

2. [E_gamma < Delta]

contains input required for the calculation of the non-radiative part of the cross section,
including higher-order corrections.

3. [E_gamma > Delta]

contains input required only for the radiative part with hard-photon emission.

4. [Event Generator]

contains input required for the event generator.

The items contained in each section of the input �le are the following (unless speci�ed
the default value for the �ags is 0):

1. [General Input]

• Incident Lepton [lepton] — a �ag that speci�es the type of lepton in the
initial state. The options that are implemented in the current version are electron
(0), positron (1), muon (2), anti-muon (3).

• Target Particle [target] — a �ag that speci�es the type of target par-
ticle. The only options that are implemented in the current version are proton
(0), carbon-12 (1) and electron (2). For carbon-12 only �rst order corrections are
implemented.

• Incident Lepton Energy [double E] — in units of GeV. The default
value is 0.155 GeV.

• Polarization [double polarization] — degree of the longitudinal po-
larization of the incident lepton beam (−1 ≤ P ≤ 0 for left-handed, 0 ≤ P ≤ 1 for
right-handed polarization). Default value is 1.

• Type of Cuts [cuts_born] — a �ag with which the user can choose to use
cuts on the scattering angle �� (0) or on Q2 (1).

• theta_l min [double thl_min] andtheta_l max [double thl_max]
— minimum and maximum values of the scattering angle in degrees. Default val-
ues are 25◦ and 45◦.
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• Q^2 min [double Q2min] and Q^2 max [double Q2max] — minimum
and maximum values of Q2 in GeV2. Default values are 0.0044 GeV2 and 0.0134
GeV2.

• Delta [double Delta] — value of the photon energy cut-o� in GeV to sepa-
rate soft from hard photon radiation. Default value is 0.01 GeV.

• Asymmetry [asymmetry] — a �ag which tells the initialization function whether
to calculate (0) or not (1) the polarization-dependent part of the cross section and
the resulting asymmetries. Default value is 1.

• sin2thetaW [double sw2] — value of the weak mixing angle, sin �2
W
(MZ )

in the M̄S scheme, where MZ is the mass of the Z 0 boson. The default value is
sin �

2

W
(MZ ) = 0.23122 (see the latest PDG review by J. Erler and A. Freitas [72]).

• LO [LO] — �ag to suppress the calculation of the leading order (Born level) con-
tribution to the cross section (for LO=0). The default, LO=1, is to include leading
order.

• Form Factors [form_factors] — �ag for the form factor parametrization
of the proton. In the present version one can choose among the following options:
– Form Factors=0 — Simple dipole form factor with M

2

D
= 0.71 GeV2 and

the proton magnetic moment �p = 2.7928473;
– Form Factors=1 — Dipole times polynomial taken from Bernauer’s PhD

thesis [115], pp. 181 (see also [30]);
– Form Factors=2 — Friedrich-Walcher parametrization [116];
– Form Factors=3 — Static limit, GE = 1 and GM = �p;
– Form Factors=4 — User de�ned;
– Form Factors=5— Symmetrized Fermi Form Factor for 12C; (see Ref. [104]).
– Form Factors=6 — User de�ned form factor for 12C.

• Integration method [int_method] — �ag that speci�es with witch al-
gorithm is the integration over phase space performed. If the value is set to 0, the
program uses Vegas Monte Carlo routine. This is required for event generation
after initialization. Total cross sections can also be calculated with Suave (1) or
with Cuhre (2). See the Cuba documentation [63] for details.

• Maximum Number of Evaluations LO [int no_eval_LO] — maxi-
mum number of evaluations of the integrand during the initialization for the lead-
ing order and elastic cross sections (default value is 107).

• Maximum Number of Evaluations 1st [int no_eval_1st] —
maximum number of evaluations of the integrand during the initialization for the
�rst order hard-photon bremsstrahlung (default value is 108).

• Maximum Number of Evaluations gamma_loop [int no_eval_gamma_loop]
— maximum number of evaluations of the integrand during the initialization for
one hard-photon bremsstrahlung combined with one-loop (default value is 108).

• Maximum Number of Evaluations 2nd [int no_eval_2nd] —
maximum number of evaluations of the integrand during the initialization for the
second order hard-photon bremsstrahlung (default value is 109).
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• Maximum Number of Evaluations 2nd sg finite [int no_eval_2nd_add]
— maximum number of evaluations of the integrand during the initialization for
the �nite part of one hard-photon and one soft-photon correction (default value is
10

8).
• Minimum Number of Evaluations [int no_min_eval] — minimum

number of evaluations of the integrand during the initialization (default value is
10

5).
• Relative Accuracy [double epsrel] — required relative accuracy of

the numerical integration (default value is 0).
• Number of cores [int no_cores] — number of cores to be used by the

integration routines (default value is 4).
• Echo input [echo_input] — a �ag to tell the initialization function whether

to print the given input.
• Output [char output_file] — if any name is chosen here, a summary of

input parameters and results of the numerical integration is written to the �le
name-given.out. If 0 is inserted the program doesn’t create an output �le.

• Integration Output level [int_output] — �ag which tells the Cuba
library to print details about the integration (see the Cuba documentation [63] for
details, a copy of which is found in doc/cuba.pdf ).

• NSTART [int nstart] — Vegas parameter: the number of points per iteration
in the �rst iteration (see cuba.doc). Default value is 1000.

• NINCREASE [int nincrease] — Vegas parameter: increment for the number
of points in subsequent iterations (see cuba.doc). Default value is 500.

• NBATCH [int nbatch] — Vegas parameter: the batch size for sampling (see
cuba.doc). The default value is 1000.

• NNEW [int nnew] — Suave parameter: the number of new integrand evaluations
in each subdivision (see cuba.doc). Default value is 100000.

• NMIN [int nmin] — Suave parameter: the minimum number of samples for
subregions (see cuba.doc). Default value is 200.

• FLATNESS [double flattness] — Suave parameter to compute the �uctu-
ation of a sample (see cuba.doc). Default value is 5.

• Seed [double seed] — seed for the pseudo-random-number generator. See
cuba.doc for more details.

2. [E_gamma < Delta]

• Order SP_loop [order] — a �ag to control inclusion of higher-order loop
and soft-photon bremsstrahlung corrections. For hard-photon bremsstrahlung
corrections see Bremsstrahlung Type. 0: include only leading order, i.e.
Born- level cross section; 1: include �rst-order corrections, i.e. one-loop and one
soft-photon bremsstrahlung corrections; 2: include second-order corrections, i.e.
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two-loop, two soft-photon bremsstrahlung and one-loop + one soft-photon bremsstrahlung.
If Bremsstrahlung Type 1 or 2 is selected, this option adds also one hard-
photon bremsstrahlung + one-loop and one hard-photon bremsstrahlung + one
soft-photon. Default value is 2.

• Vacuum Polarization [vac_pol] — �ag for choosing the contribution
from the vacuum polarization correction (running �).
– Vacuum Polarization=0 — vacuum polarization is not included;
– Vacuum Polarization=1 — only electron one-loop contribution;
– Vacuum Polarization=2 — full leptonic contribution;
– Vacuum Polarization=3 — including leptonic and hadronic contri-

butions. The hadronic part is taken from [65];
– Vacuum Polarization=4 — including leptonic and hadronic contri-

butions. The hadronic part is taken from [128];
– Vacuum Polarization=5 — including leptonic and hadronic contri-

butions. The hadronic part is taken from [67].
The default value is 3.

• Hadronic corrections [hadr_corr] — �ag for choosing the contribu-
tion from corrections to the proton lines. 0: not included; 1: include only the
interference between leptonic and hadronic corrections, i.e. the two-photon ex-
change and the interference between leptonic and hadronic radiation; 2: only
purely hadronic terms, i.e. only corrections to the proton line; 3: total contribution,
i.e. includes both the interference and the purely hadronic contributions. Option 1
and 2 have to be combined with Two-photon exchange>0 in order for the
calculation to be consistent.

• Two-photon exchange [tpe] — �ag for choosing the contribution of the
two-photon exchange correction. The present version includes the Feshbach term
(1), i.e. the calculation in which the proton is treated as a point-like particle and a
calculation that includes both elastic and inelastic contributions (2) (see Ref. [74]).
The latter is valid however only for forward angles and for energy of the incoming
lepton of 155 MeV. The default value is 0, for which only the IR terms are included
(according to Maximon and Tjon see Ref. [34]).

• Kappa Form Factor [kappa_weak] — �ag that speci�es if the correction
factor responsible for the running of sin2 �W is included (1) or not(1). If 1 is inserted
the full contribution is included as described in Ref. [20] (the code is taken from
[129]).

3. [E_gamma > Delta]

• Bremsstrahlung Type [brems] — �ag for choosing the type and the order
of the leptonic bremstrahlung calculation. The default value is 2 for which �rst-
order and second order hard-photon bremsstrahlung is included. If 1 is inserted
only �rst order-bremsstrahlung is calculated and for 0 the program doesn’t include
at all hard-photon bremsstrahlung. For testing there are additional options that
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are provided, including only second order (3) and various di�erential cross section
(4-8). Use with care for testing! Wrong input can produce incomplete results.

• Bremsstrahlung Add [brems_add] — �ag for specifying whether the re-
mainder �nite contribution to one hard photon and one soft photon, �R

1ℎ
+1s

(see

Sec. 2.4.3 for details)is included (1), or not (0). This calculation is available only in
combination withOrder SP_loop=2 and withBremsstrahlung Type=1
or 2.

• Gamma Loop [GL] — �ag for specifying whether the exact calculation (0) or the
approximation (1) is used for one hard photon and one-loop correction (see Sec. ??).
This calculation is available only in combination with Order SP_loop=2 and
with Bremsstrahlung Type=1 or 2.

• Hadronic Radiation [brems_hadr] — �ag for specifying the type of con-
tribution coming from hadronic radiation. 0: the contribution is not included; 1:
only the interference terms between leptonic and proton radiation are included; 2:
only the squared terms from proton radiation are include; 3: the total contribution,
i.e. the interference and squared terms, are included. In order for the calculation to
be consistent this option has to be combined with the corresponding option from
Hadronic corrections. This correction is available only at �rst order.

• E_gamma max [double E_gamma_max] — maximum value of the photon
energy in GeV. The default value is E − E′min, i.e. the energy of the incident lepton
minus the minimum allowed energy for the scattered electron.

• E’ min [double E_prime_min] and E’ max [double E_prime_max]
— minimum and maximum values of the scattered electron energy in GeV. The
default values are the lepton mass m� and the energy of the incident lepton re-
spectively E.

• theta_gamma min [double thg_min] andtheta_gamma max [double thg_max]
— minimum and maxium values of the photon polar angle in degrees. The default
values are 0◦ and 180◦ respectively.

• Phase Space Parametrization [ps] — �ag for choosing the type of
phase space parametrization. It is valid only for the one hard-photon correction
and can be useful depending on the experimental cuts that are needed. If 0 is
inserted, the azimuthal angle �
 is expressed in terms of the remaining variables
E
′, �� , E
 , �
 . If 1 is inserted, then the energy of the scattered lepton E′ is expressed

of the remaining variables �� , E
 , �
 �
 .

4. [Event Generator]

• E min [double E_min] and E max [double E_max] — minimum and
maximum values for the energy of the incoming lepton. Maximum allowed range
that is implemented in this version is between 0.01 GeV and 10 GeV.

• Delta E [double Delta_E] — step size for event generation with variable
initial-state energy. Valid steps in the current version are 10−4, 10−3 and 10−2 GeV.



128 APPENDIX H. MANUAL

H.5 Description of the output

For the functionsinitialization(), sigma_diff_Omega_l(const double thl)
andshiftQ2(const double thl) the output is given in the objectsOutput output
and Output errors. The object output contains the results of the numerical integration
and the object errors the estimated uncertainties of these results. The output of the func-
tion int events() is given in the object Final_State FS. The detailed output for
each function is:

1. int initialization()

The members of output contain the values of partial cross sections, their uncertainties
and asymmetries. Their names are structured as follows:

output.sigma_
[

unpol
pol ]

_
[

elastic
inelastic ]

_
⎡

⎢

⎢

⎢

⎣

born
1st
2nd
loop

⎤

⎥

⎥

⎥

⎦

and similarly for errors. unpol and pol distinguish between unpolarized and polar-
ized parts of the cross section while inelastic and elastic separate contributions
to the cross section which have or have not a hard photon in the �nal state. born, 1st
and 2nd denote contributions at leading, next-to-leading and next-to-next-to-leading
order, i.e. the Born level cross section (Rosenbluth cross section, the contribution with
one virtual or real photon, and contributions with two virtual or real photons. The one-
loop correction to one-photon bremsstrahlung is denoted by the key word loop at the
end of the name. For the hadronic contributions there is an additional index that is added
after 1st called hadr. All cross sections are given in units of nanobarns. In addition,
the left-right asymmetries at Born level, as well as at �rst and second order are calcu-
lated and stored in the variables output.asymm_born, output.asymm_1st and
output.asymm_2nd. Finally, there are vectors to store results for multiple energies:

• output.sigma_born_vect— vector for storing the Rosenbluth cross section
in case the initialization is done for multiple energies (nb).

• output.sigma_unpol_vect — vector for storing the unpolarized total cross
section in case the initialization is done for multiple energies (nb).

• output.sigma_pol_vect — vector for storing the polarized total cross sec-
tion in case the initialization is done for multiple energies (nb).

• output.ev_brems — vector for storing the ratio between the inelastic and un-
polarized total cross sections in case the initialization is done for multiple energies
(nb).

2. int shiftQ2() The results for the shift in Q
2 are given in output.shiftQ2,

while the uncertainties for this result in errors.shiftQ2, both in GeV2.
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3. int sigma_diff_Omega_l(const double thl_deg)

The results of this function are stored in members of the output class as described
above for total cross sections, but now for the di�erential cross section d�/dΩ in units of
nanobarns times sterad. Details can be found in the sample program examples/sigma_Omega_l_test.cpp.

4. int events()

The results of the events function are stored in class FS as:

• FS.E_l — energy of the scattered lepton E′ (MeV).
• FS.theta_l — lepton scattering (polar) angle �� (rad).
• FS.phi_l — lepton azimuthal angle �� (rad).
• FS.E_p — energy of the �nal proton (MeV).
• FS.theta_p — �nal proton polar angle (rad).
• FS.phi_p — �nal proton azimuthal angle (rad).
• FS.E_gamma — emitted photon energy (MeV).
• FS.theta_gamma — photon polar angle (rad).
• FS.phi_gamma — photon azimuthal angle (rad).
• FS.Q2 — leptonic momentum transfer squared (GeV2).
• FS.l_1[4] — momentum 4-vector of the incoming lepton.
• FS.p_1[4] — momentum 4-vector of the incoming proton.
• FS.l_2[4] — momentum 4-vector of the scattered lepton.
• FS.p_2[4] — momentum 4-vector of the recoil proton.
• FS.k[4] — momentum 4-vector of the bremsstrahlung photon.
• weight — Event weight.
• avg_weight — Averaged event weight.
• FS.event_no — event number.
• FS.event_type — 0 for elastic (non-radiative) and 1 for radiative events.

The function int events() will generate two types of events:

1. Elastic events characterized by the scattered lepton and the recoil proton in the �nal
state. Event simulation follows the one-fold di�erential unpolarized and polarized cross
sections in the scattering angle (in units of nb/rad),

d�unpol

d��

and
d�pol

d��

.

At �rst order, the cross sections include one-loop corrections and a soft-photon correc-
tion which was obtained analytically by integrating over photon momenta with ener-
gies E
 < Δ. The cut-o� Δ must be chosen small enough so that the photon is soft and
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cannot be detected. Elastic events can be recognized by the fact that the photon energy
and angles in the �nal-state listing, Final_State FS, are exactly 0. At second order
the cross sections include two-loop, one-loop and one soft photon and two soft photon
corrections. The soft photon energies are taken to be separately smaller than the cut-o�
value, E
 , E′
 < Δ.

2. Radiative events which contain an additional bremsstrahlung photon with energy E
 >
Δ, or two bremsstrahlung photons with energies E
 > Δ and E

′



> Δ. The photon is

hard and can be detected, provided its energy is above a threshold and its angle within
the acceptance range of the detector. Event simulation is performed according to the
four-fold di�erential unpolarized and polarized cross sections (units nb/(GeV2rad2)) in
case of one radiated hard photon as

d
4
�unpol

dE
′
d��dE
d�


and
d
4
�pol

dE
′
d��dE
d�


.

or according to the seven-fold di�erential unpolarized and polarized cross sections (units
nb/(GeV2rad2)) in case of two radiated hard photons as

d
7
�unpol

dE
′
d��dE
dE

′



d�
d�

′



d�

′




and
d
7
�pol

dE
′
d��dE
dE

′



d�
d�

′



d�

′




.

H.6 Instructions of how to use the program
Typical running times can vary considerably, depending on the provided input options. The
initialization of unpolarized and polarized cross sections at second order can take about 6
minutes on a 2.3 GHz Intel Core i7 processor and Maximum Number of Evaluations
1st=100000 and Maximum Number of Evaluations 2nd=1000000. This
setting may be acceptable for testing when only a modest 1% precision is required. High-
precision results require much higher numbers of evaluations, in the order of several 108,
or even 10

9 for second order bremsstrahlung. Note that the evaluation of the polarization
asymmetry requires the separate evaluation of the unpolarized and polarized cross sections
resulting in a factor of two increase in the run-time.
The program was designed for low energy precision experiments and has to be used with care
for higher energies, typically above 10 GeV for the incoming lepton. The event generator also
is designed to work for energies between 0.1 and 10 GeV. The initialization will work with
energies outside this range, but not the events function.
The default input �le is POLARES.in and has to be present in the folder from which the pro-
gram is executed, unless the user chooses a di�erent input �le in the variable input_file.
When generating events the user has to make sure that the initialization is done using Vegas.
The other integration methods are just for calculation of the cross sections and do not work
for event generation.

H.6.1 Event simulation for variable initial-state energy
Event simulation always requires information about the fully di�erential cross section which
is stored in grids. This information is evaluated as a function of the energy of the incoming
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electron (positron). The program allows to administer grids for a list of beam energies such
that event generation can be performed with variable initial-state energy. The current version
of the event generator works only with energies of the incoming lepton up 0.01 and 10 GeV
with increments of 10−4, 10−3, or 10−2 GeV. The program will still work for energies outside
these values, but grids will not be stored.

Before event generation the user has to call the initialization for a grid of energy values:

for (E = input.E_min; E <= input.E_max; E += input.Delta_E) {
if (my_pes_class.change_energy_initialization(E))
my_pes_class.initialization();
}

Subsequent event generation can be performed with the following function:

for (int i = 0; i < no_events; i++) {
double Ei=//take value from somewhere//;
if (my_pes_class.change_energy_events(Ei))
my_pes_class.events();
//write or analyze event listing//
}

The energy value Ei has to be inside the range [E_min, E_max]. If Ei in this example is
not equal to one of the values in the list of energies for which the initialization was performed,
event generation will be called for the closest value found in the grid. my_pes_class.events()
will create an event listing and provide energies and scattering angles for all �nal-state parti-
cles in a class called FS. The members of this class have been described above in section H.5.
A sample program is contained in examples/multiple_random_E_test.cpp.

H.7 File list

Fig. H.1 contains a map of all class dependencies of the main class, called PES. Each class is
de�ned in a separate �le, except for the smaller input/output classes, which are de�ned in the
same �le. Below we provide a list of these �les and a short description of each class and how
they depend on the other classes:

• Polares.h — the main header �le that contains class PES. It de�nes all the main
functions and it depends on all other classes.

• IO_classes.h— header �le that contains the de�nitions of the input/output classes.
The description of these classes can be found in Sec. H.4 and Sec. H.5.

• parameters.h — header �le that contains the class Parameters which reads
the input from the input �le and sets all the parameters required by the program. It also
makes sure the correct input is given and gives warnings and/or modi�es it accordingly,
otherwise. Most other classes depend on this class.
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• cuba_param.h — header �le that contains class Cuba_parameters, which
de�nes all the parameters required by the cuba library (see [63]). Depends on the
class Parameters.

• gsl_rand.h — header �le that de�nes the class Rand which generates random
numbers using the GSL library. Class Integrands and class PES depend on
this class.

• integrands.h header �le that contains class Integrands which de�nes all
the integrands for numerical evaluation. class PES depends on this class.

• cross_sections.h header �le that contains class Cross_Setions which
de�nes all the expressions for the cross sections. Class Integrands depends on
this class.

• virtual_corrections.h header �le that containsclass Virtual_Corrections
which de�nes all the expressions for the non-radiative corrections. Class Cross_Setions
depends on this class.

• form_factors.h header �le that contains class Form_Factors which de-
�nes all form factors parametrizations. Class Cross_Setions depends on this
class.

• melem.h header �le that contains class Melem which de�nes second order unpo-
larized matrix elements. Class Cross_Setions depends on this class.

• melem_pol.h header �le that contains class Melem_pol which de�nes second
order polarized matrix elements. Class Cross_Setions depends on this class.

• interpolation.h header �le that contains class Interpolationwhich de-
�nes the interpolation functions for hadronic vacuum polarization and two photon ex-
change corrections. Class Cross_Setions, class Integrands andclass PES
depend on this class.

• gamma_looop.h header �le that contains class Gamma_Loopwhich de�nes the
corrections for one loop and one hard-photon. Class Virtual_Corrections
depends on this class.

• scalar_integrals.h header �le that contains the Scalar_Integrals class
which de�nes the expressions for the required scalar integrals. Class Gamma_Loop
depends on this class.

• const.h header �le that de�nes all the required constants. It is used by almost all
other �les.

Some examples of how the library can be used can be found in the folder examples.
These �les are

• main_example.cppA program �le that shows how to use theinitialization
and the events functions for a given energy of the incoming electron beam.
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POLARES::PES
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 interpolation

POLARES::Cross_Sections

 interpolation
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 param

 input

 param
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POLARES::Melem_pol param
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string
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POLARES::Form_factors  ff

POLARES::Final_State

 FS

 FS

POLARES::Output

 output
errors

 CP

 input

Figure H.1: Graph that shows the class dependencies of POLARES.

• multiple_random_E_test.cppA program �le that shows how to use theinitialization
and the events functions for a range of energies of the incoming electron beam.

• sigma_diff_Omega_l_test.cpp A program �le that shows how to use the
sigma_diff_Omega_l function to calculate the unpolarized and polarized di�eren-
tial cross section in respect to the solid angle of the scattered electron.

H.8 Examples
Here we reproduce the output generated from the program main_example.cpp using input
from the �le POLARES.in. It is contained in the �le named POLARES.out and can be found in
the package. This output is helpful for a user to test his/her new installation of POLARES.

##########################################################################
## POLARES 1.0
##
## Radiative Corrections for Polarized Electron-Proton Scattering
##
## R.-D. Bucoveanu
##
## Tue Jun 15 12:27:09 2021
##
## If you use POLARES please cite R.-D. Bucoveanu and H. Spiesberger,
## Eur. Phys. J. A (2019) 55: 57, arXiv:1811.04970 [hep-ph].
## Copyright (c) Razvan Bucoveanu, 2019. E-mail: rabucove@uni-mainz.de
##########################################################################
## Input
##
## [General Input]
## Type of incident lepton = electron
## Type of target particle = proton
## Incident lepton energy = 0.155 GeV
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## Lower cut-off value for the photon energy (Delta) = 10 MeV
## Type of cuts for elastic scattering = Scattering angle (theta_l) cuts
## theta_l min = 25 degrees
## theta_l max = 45 degrees
## Form factor parametrization = Simple Dipole
## Calculate the asymmetry = yes
## Degree of Polarization = 100%
## sin2thetaW = 0.23122
## kappa form factor = 1 - full contribution for the running of sin2thetaW
## Maximum number of evaluations for 1st order bremsstrahlung = 200000000
##
## [E_gamma < Delta]
## Vacuum Polarization = Hadronic contributions (Jegerlehner))
## Two-photon exchange correction (TPE) = no contribution
##
## [E_gamma > Delta]
## Type of hard-photon bremsstrahlung = 1st order
## Hadronic Radiation = no hadronic radiation contribution
## E_gamma max = 0.11 GeV
## E’ min = 0.045 GeV
## E’ max = 0.155 GeV
## theta_gamma min = 0 degrees
## theta_gamma max = 180 degrees
##########################################################################
## Numerical integration results
##
## Sigma unpol Born = 34539.26 +- 0.0217144 nb
## Sigma unpol soft-photon 1st order = 31994.53 +- 0.02011958 nb
## Sigma unpol hard-photon 1st order = 4292.418 +- 0.9364307 nb
## Sigma unpol 1st order = 36286.95 +- 0.9366468 nb
## Sigma pol soft-photon 1st order = -0.001303486 +- 8.742848e-10 nb
## Sigma pol hard-photon 1st order = -0.0001071267 +- 1.940444e-08 nb
## Sigma pol 1st order = -0.001410613 +- 2.027873e-08 nb
## Sigma pol Born = -0.001416725 +- 9.49381e-10 nb
## Asymm 1st order = -3.887384e-08 +- -1.148546e-12
## Asymm Born = -4.101782e-08 +- -3.768986e-14
##########################################################################



Appendix I

Constants

In this appendix we list the value of the constants that were used in our calculation. The
values are taken from the 2019 revision by C.G. Wohl (see Ref. [2]) and the 2018 CODATA
recommended values (see Ref. [130]).

� — �ne-structure constant (� = 1/137.035999084);
me — rest mass of the electron (me = 0.51099895 MeV);
m� — rest mass of the muon (m� = 105.658372 MeV);
m� — rest mass of the tau (m� = 1.77682 GeV);
M — proton rest mass (M = 938.27208816 MeV);
GF — Fermi coupling constant (GF = 1.1663787 GeV−2

);

sin
2 ̂
�W (MZ ) — weak mixing angle in the MS prescription (sin2 ̂�W (MZ ) = 0.23121);

mW — mass of the W± boson (mW = 80.379 GeV);
mZ — mass of the Z0 boson (mZ = 91.1876 GeV).
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