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Abstract
Weare concernedwith the barotropic compressibleNavier–Stokes system in abounded
domain of R

d (with d ≥ 2). In a critical regularity setting, we establish local
well-posedness for large data with no vacuum and global well-posedness for small
perturbations of a stable constant equilibrium state. Our results rely on new maxi-
mal regularity estimates—of independent interest—for the semigroup of the Lamé
operator, and of the linearized compressible Navier–Stokes equations.

1 Introduction

We are concerned with the following barotropic compressible Navier–Stokes system
in a C∞ bounded domain � of Rd , d ≥ 2:

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + div(ρu) = 0 in R+ ×�,

∂t (ρu)+ div(ρu ⊗ u)− 2 div(μD(u))−∇(λ div u)+∇P = 0 in R+ ×�,

u = 0 on R+ × ∂�,

(ρ, u)|t=0 = (ρ0, u0) in �.

(1.1)

The unknowns are the (scalar nonnegative) density ρ = ρ(t, x) and the vector-field
u = u(t, x). The notation D(u) stands for the symmetric part of the Jacobian matrix
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of u. The viscosity coefficients λ and μ are smooth functions of ρ satisfying μ > 0
and λ+ 2μ > 0. We shall often assume (with no loss of generality) that the average
value of the density on �, a conserved quantity, is equal to 1.

Themathematical study of the Cauchy problem (or initial boundary value problem)
for the compressible Navier–Stokes system has been initiated 60 years ago with the
pioneering works by Serrin [33] and Nash [32] who established the local-in-time exis-
tence and uniqueness of classical solutions. In the case � = R

3, the global existence
of strong solutions with Sobolev regularity has been first proved by Matsumura and
Nishida [26], for small perturbations of a constant state (ρ, u) = (ρ̄, 0) under the
stability condition P ′(ρ̄) > 0. The proof was based on subtle energy estimates that
enabled the authors to pinpoint some L2-in-time integrability for both the density and
the velocity, as well as algebraic time decay estimates.

With completely different methods based on parabolic maximal regularity in the
framework of Lebesgue spaces, local existence has been established by Solonnikov
[36] for general data with no vacuum (see also the more recent work by the first author
[9] where critical regularity is almost achieved) as well as global existence for small
perturbations of (ρ̄, 0) (see [23, 29, 31, 34, 37] and the survey paper [35]).

In the present paper, we want to recover the classical results of strong solutions
for (1.1) in the bounded domain case within a critical regularity setting, that is, in
functional spaces that are invariant by the following rescaling for all � > 0:

(
ρ0(x), u0(x)

)
�

(
ρ0(�x), �u0(�x)

)
and

(
ρ(t, x), u(t, x)

)
�

(
ρ(�2t, �x), �u(�2t, �x)

)
.

(1.2)

Observe that the above rescaling leaves the whole system invariant, up to a change of
the pressure term (provided the fluid domain is dilated accordingly, of course). As first
noticed by Fujita and Kato in [18] for the incompressible Navier–Stokes equations,
working in scaling invariant spaces is the key to getting optimalwell-posedness results.

Our main goal here is to prove the following type of statements:

• local well-posedness for general data ρ0 and u0 having critical regularity and such
that ρ0 > 0;

• if, in addition, P ′(1) > 0, global well-posedness for data (ρ0, u0) that are small
perturbations of (1, 0) (for some norm having the invariance of the first part
of (1.2)).

When the fluid domain is the whole space, a number of results in that spirit have
been established, and the critical norms are always built upon homogeneous Besov
spaces with last index equal to 1. More precisely, it has been first observed in [8]
that one can take any data such that ρ0 − 1 is small in Ḃd/2−1

2,1 (Rd) ∩ Ḃd/2
2,1 (Rd),

and u0 is small in Ḃd/2−1
2,1 (Rd). Later works (see, e.g., [5, 6]) pointed out that it is

actually enough to assume the high frequencies of the data to be in the larger space
Ḃd/p

p,1 (Rd)× Ḃd/p−1
p,1 (Rd) for some p in the range

(
2,min(4, 2d

d−2 )
)
.

Here we aim at extending those results to the physically relevant case where the
fluid domain is bounded and the velocity vanishes at the boundary. Compared to works
in the whole space, the expected difficulty is that one can no longer use techniques
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based on the Fourier transform to investigate (1.1) (in particular, global results of
[8] were based on a decomposition into low and high frequencies of the solution).
Whether one can adapt those techniques to more general domains is unclear. In the
present paper, we focus on the bounded domain case which is expected to be easier
than the unbounded domain case since, somehow, low frequencies do not have to be
considered.

Since the linearized compressible Navier–Stokes system may be associated to an
analytic semigroup in suitable functional spaces, using maximal Lq -regularity seems
to be an acceptable substitute to Fourier analysis. However, as already pointed out in
previous works (see, e.g., [9]), reaching critical regularity within the classical theory
would require maximal L1-regularity, which is false in the setting of Lebesgue or
Sobolev spaces for instance.

For the reader’s convenience, let us briefly recall what maximal regularity is. Let
X be a Banach space and−A : D(A) ⊂ X → X , the generator of a bounded analytic
semigroup (T (t))t≥0 on X . Consider for f ∈ Lq(R+; X), 1 ≤ q ≤ ∞, the abstract
Cauchy problem

{
u′(t)+ Au(t) = f (t) (t > 0),

u(0) = 0.

By virtue of [3, Prop. 3.1.16] the unique mild solution to this problem is given by the
variation of constants formula

u(t) =
∫ t

0
T (t − τ) f (τ ) dτ (t > 0).

We say that A has maximal Lq -regularity if, for every f ∈ Lq(R+; X), it holds for
almost every t > 0 that u(t) ∈ D(A), and Au ∈ Lq(R+; X). Notice that in this case
also u′ ∈ Lq(R+; X) and that the closed graph theorem implies the existence of a
constant C > 0 such that for all f ∈ Lq(R+; X) it holds

‖u′, Au‖Lq (R+;X) ≤ C‖ f ‖Lq (R+;X).

See the monographs of Denk, Hieber, and Prüss [13] and of Kunstmann andWeis [25]
for further information. Our aim here is to adapt an argument of real interpolation that
originates fromDa Prato–Grisvard’s work in [7] so as to reach the endpoint q = 1 that
turns out to be the key to proving global-in-time results in critical regularity framework
(in this respect, see also our recent paper [12]).

We perform the analysis first for the semigroup associated to the Lamé operator
(namely the linearization of the velocity equation if neglecting the pressure term), so
as to get a local well-posedness result for general data with critical regularity, then for
the linearization of the whole system (1.1) about (ρ, u) = (1, 0) to obtain a global
result.

Back to the nonlinear system, one cannot just push all nonlinear terms to the right-
hand side and bound them according to Duhamel’s formula, though. The troublemaker
is the convection term in the density equation, namely u · ∇ρ, that causes a loss
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of one derivative (this reflects the fact that the system under consideration is partly
hyperbolic). The way to overcome the difficulty is well-known: it is called Lagrangian
coordinates. Indeed, if rewriting (1.1) in Lagrangian coordinates, then one just has to
consider the evolution equation for the velocity which is of parabolic type. Therefore,
not only the loss of derivative may be avoided, but also the solution may be obtained
(either locally for large data, or globally for small data) by means of the contraction
mapping argument in Banach spaces.

Let us now come to the main results of the paper.

Theorem 1.1 Assume that � is a smooth bounded domain of Rd (d ≥ 2) and let p
be in (d − 1, 2d). Then, for all initial densities ρ0 ∈ Bd/p

p,1 (�), positive and bounded

away from zero, and all u0 ∈ Bd/p−1
p,1 (�;Rd), System (1.1) admits a unique solution

(ρ, u) on some nontrivial time interval [0, T ], such that

(ρ, u) ∈ Cb([0, T ];Bd/p
p,1 (�)× Bd/p−1

p,1 (�;Rd))

and

(ρ, u) ∈ W1,1(0, T ;Bd/p
p,1 (�)× Bd/p−1

p,1 (�;Rd))

∩L1(0, T ;Bd/p
p,1 (�)× Bd/p+1

p,1 (�;Rd)).

Furthermore, inf(t,x)∈[0,T ]×� ρ(t, x) > 0 and the average of ρ is time independent.

Proving a global result for small perturbations of a stable constant state is based on
maximal regularity estimates for the linearized compressible Navier–Stokes system
(where μ′ = λ+ μ):

⎧
⎪⎪⎨

⎪⎪⎩

∂t a + div u = f in R+ ×�,

∂t u − μ�u − μ′∇ div u +∇a = g in R+ ×�,

u = 0 on R+ × ∂�,

(a, u)|t=0 = (a0, u0) in �.

(1.3)

The following statement extends the work by Mucha and Zajączkowski [30] to the
endpoint case where the time Lebesgue exponent is equal to 1, and also provides
exponential decay for the solutions of the system, a property that has been pointed out
before in [17] byEnomoto andShibata (in the classicalmaximal regularity framework).

Theorem 1.2 Take initial data (a0, u0) in Bs+1
p,1 (�)× Bs

p,1(�;Rd) and source terms

( f , g) in L1(R+;Bs+1
p,1 (�)× Bs

p,1(�;Rd)) with (s, p) satisfying

1 < p <∞ and max

(
1

p
,

d

p
− d

2

)

− 1 < s <
1

p
.
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Assume also that the average of a0 and of f (t) (for a.e. t > 0) is zero. Then, Sys-
tem (1.3) has a unique global solution (a, u) in the space

Es
p :=W1,1(R+;Bs+1

p,1 (�)× Bs
p,1(�;Rd))

∩ L1(R+;Bs+1
p,1 (�)× Bs+2

p,1 (�;Rd)).
(1.4)

Additionally, there exist two positive constants c and C depending only on p, �, μ,
and μ′ such that if ect ( f , g) ∈ L1(R+;Bs+1

p,1 (�)× Bs
p,1(�;Rd)), then

‖ect (a, u)‖Es
p
≤ C

(

‖(a0, u0)‖Bs+1
p,1 ×Bs

p,1
+ ‖ect ( f , g)‖L1(R+;Bs+1

p,1 ×Bs
p,1)

)

. (1.5)

After recasting System (1.1) in Lagrangian coordinates, combining the above result
with nonlinear estimates allows to get the following global well-posedness result for
critical regularity:

Theorem 1.3 Let �, p, and d be as in Theorem 1.1 and assume in addition that
P ′(1) > 0. Let ρ0 ∈ Bd/p

p,1 (�) with average 1 and u0 ∈ Bd/p−1
p,1 (�;Rd). There exists

a constant α = α(λ,μ, p, d, P,�) > 0 such that if a0 := ρ0 − 1 and u0 satisfy

‖a0‖Bd/p
p,1
+ ‖u0‖Bd/p−1

p,1
≤ α, (1.6)

then System (1.1) admits a unique global solution (ρ, u) with (a, u) := (ρ − 1, u) in
the maximal regularity space Ep := Ed/p−1

p . In addition, there exists c > 0 depending
only on the parameters of the system, on p, and on � such that (a, u) fulfills:

‖ect (a, u)‖Ep ≤ C

(

‖a0‖Bd/p
p,1
+ ‖u0‖Bd/p−1

p,1

)

.

The rest of the paper unfolds as follows. The next two sections are dedicated to the
“linear study" namely proving maximal regularity results first for the Lamé operator,
and next for the linearized compressible Navier–Stokes system. In Sect. 5, we prove
our main global existence result. In Sect. 6, we establish local existence results with
no smallness condition on the velocity, first in the easy case where the initial density
is close to a constant and, next, assuming only that the density is bounded away from
zero. Some technical results are recalled/proved in Appendix.

2 Some background from semigroup theory

We use this section to introduce the basic functional analytic notions and arguments
that are crucial for the theory that is developed afterwards.

Let X denote a Banach space over the complex field. For θ ∈ (0, π) define the
sector Sθ in the complex plane

Sθ := {z ∈ C \ {0} : |arg(z)| < θ},

123



R. Danchin, P. Tolksdorf

and set S0 := (0,∞).
The standard definition of (bounded) analytic semigroups reads:

Definition 2.1 A family (T (z))z∈Sθ∪{0} ⊂ L(X), θ ∈ (0, π/2], is called an analytic
semigroup of angle θ if

(1) T (0) = Id and T (z + w) = T (z)T (w) for all z, w ∈ Sθ ;
(2) the map z �→ T (z) is analytic in Sθ ;
(3) limSϑ�z→0 T (z)x = x for all x ∈ X and all 0 < ϑ < θ .

If in addition

(4) ‖T (z)‖L(X) is bounded in Sϑ for all 0 < ϑ < θ ,

the family (T (z))z∈Sθ∪{0} is called a bounded analytic semigroup.

To any analytic semigroup of some angle θ ∈ (0, π/2], one can attach a unique
operator A : D(A) ⊂ X → X defined by

D(A) :=
{

x ∈ X : lim
t→0

1

t
(T (t)x − x) exists

}

and, for x ∈ D(A),

Ax := − lim
t→0

1

t
(T (t)x − x).

The operator −A is called the generator of (T (z))z∈Sθ∪{0}.
Combining (1) and (2) one readily sees that the range of T (z) is contained inD(A)

for any z ∈ Sθ and that the function u : [0,∞) → X given by u(t) := T (t)x solves
the abstract Cauchy problem

{
u′(t)+ Au(t) = 0 t > 0,
u(0) = x .

(2.1)

From the PDE perspective, one can wonder if, whenever A : D(A) ⊂ X → X is a
given linear operator, −A is the generator of an analytic semigroup. At this point, we
need to recall the notion of a sectorial operator.

Definition 2.2 A linear operator B : D(B) ⊂ X → X is called sectorial of angle ω

for some ω ∈ [0, π) if its spectrum satisfies σ(B) ⊂ Sω and if for all ω < ω′ < π

there exists C > 0 such that

‖λ(λ− B)−1‖L(X) ≤ C (λ ∈ C \ Sω′).

The following characterization theorem for analytic semigroups is classical [16,
Thm. II.4.6].

Theorem 2.3 Let A : D(A) ⊂ X → X be a linear operator. Then−A is the generator
of an analytic semigroup if and only if A is densely defined and there exists z ∈ C
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such that z + A is sectorial of some angle ω ∈ [0, π/2). Moreover, −A generates a
bounded analytic semigroup if and only if additionally one can choose z = 0, i.e., A
itself is sectorial of angle ω ∈ [0, π/2).

Remark 2.4 The condition that z + A is sectorial of angle ω ∈ [0, π/2) is equivalent
to the fact that there exists R > 0 such that σ(−A) ⊂ Sω ∪ B(0, R) and such that

‖λ(λ+ A)−1‖L(X) ≤ C (λ ∈ C \ [Sω′ ∪ B(0, R)]).

Remark 2.5 If −A generates a bounded analytic semigroup and if 0 ∈ ρ(A), then the
corresponding semigroup is exponentially decaying. Indeed, as A is sectorial of angle
ω ∈ [0, π/2) and as the resolvent set is open, one finds that

inf
λ∈σ(A)

Re(λ) > 0.

Thus, there exists ε > 0 and ω′ ∈ [0, π/2) such that A − ε is sectorial of angle ω′
which implies that the semigroup generated by ε− A is bounded. This in turn implies
the exponential decay of the semigroup generated by −A.

To solve nonlinear equations, it is helpful to consider (2.1) for a homogeneous
initial value but for an inhomogeneous right-hand side of the first equation, i.e.,

{
u′(t)+ Au(t) = f (t) t ∈ (0, T ),

u(0) = 0,
(2.2)

where 0 < T ≤ ∞ and f ∈ Lq(0, T ; X), 1 ≤ q ≤ ∞. As recalled in the introduction,
a densely defined operator A : D(A) ⊂ X → X is said to have maximal Lq-regularity
if there exists a constant C > 0 such that for all f ∈ Lq(0, T ; X), System (2.2) has
a unique solution u that satisfies u(t) ∈ D(A) for almost all t ∈ (0, T ), is almost
everywhere differentiable and such that

‖u′, Au‖Lq (0,T ;X) ≤ C‖ f ‖Lq (0,T ;X).

It is classical, see, e.g., Dore [14, Cor. 4.4], that the maximal Lq -regularity of A
implies that −A generates an analytic semigroup. Characterizing when a given oper-
ator admits maximal Lq -regularity is often a difficult issue, which involves questions
on the geometry of Banach spaces and operator-valued multiplier theorems, see [13,
25]. However, if one is willing to change the underlying Banach space into a real
interpolation space between X andD(A), then the question of maximal Lq -regularity
simplifies tremendously. It is a classical result of Da Prato and Grisvard [7], that is
described below.

To state the result, we need to introduce the definition of a part of an operator onto
another space.
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Definition 2.6 Let X and Y be Banach spaces and C : D(C) ⊂ X → X be a linear
operator. The part of C in Y is the operator given by

D(C) := {y ∈ D(C) ∩ Y : Cy ∈ Y }, Cy := Cy.

Let in the following B denote the time derivative operator on (0, T ), with 0 < T ≤ ∞,
i.e.,

B : D(B) := {u ∈W1,q(0, T ; X) : u(0) = 0} ⊂ Lq(0, T ; X) → Lq(0, T ; X),

u �→ u′.

It is well-known, see, e.g., [20, Sec. 8.4–8.6], that B is sectorial of angle π/2.
Furthermore, let A be a densely defined and sectorial operator of angleω ∈ [0, π/2),

i.e., −A is the generator of a bounded analytic semigroup. We lift the operator A to
the time-dependent space by defining

A↑ : D(A↑) := Lq(0, T ;D(A)) ⊂ Lq(0, T ; X) → Lq(0, T ; X),

[A↑u](t) := Au(t).

As the operator A does not explicitly depend on time, the resolvents of A↑ and B
commute, i.e., it holds

(λ− A↑)−1(μ− B)−1 = (μ− B)−1(λ− A↑)−1 (λ ∈ ρ(A), μ ∈ ρ(B)).

In their seminal paper [7], Da Prato and Grisvard investigated the closedness and
sectoriality of the sum of two resolvent commuting sectorial operators in real inter-
polation spaces and built the starting point of the development of many well-known
results such as of Dore–Venni [15], Giga–Sohr [19], or Kalton–Weis [22].We describe
their result in the context of our operators A↑ and B:

First of all, since A↑ is sectorial of angle ω ∈ [0, π/2) and B is sectorial of
angle π/2, the angles of sectoriality add up to a number strictly less than π . Thus,
Condition (3.10) in [7] is satisfied by −A↑ and −B. Moreover, since the resolvents
commute, Condition (3.2) in [7] is satisfied as well. The authors then define in (3.11)
an operator Sλ on their Banach space (given by Lp(0, T ; X) in our situation), which,
if we insert −A↑ and −B into their formula, is

Sλ := 1

2π i

∫

γ

(A↑ + z + λ)−1(z − B)−1 dz, (λ > 0).

Here, γ is a path running from ∞ e−iθ0 to the origin and then to ∞ eiθ0 in straight
lines and θ0 satisfies π/2 < θ0 < π − ω. It is then proven in [7, Lem. 3.5] that there
exists a constant N > 0 such that

‖Sλ f ‖Lp(0,T ;X) ≤ N

λ
‖ f ‖Lp(0,T ;X), (λ > 0). (2.3)
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Moreover, on the one hand, it is shown in [7, Lem. 3.10], that, if f is contained in the
real interpolation space (Lq(0, T ; X),D(A↑))θ,q = Lq(0, T ; (X ,D(A))θ,q), then

u := Sλ f ∈ D(A↑) ∩D(B) and (λ+ A↑ + B)u = f . (2.4)

On the other hand, [7, Lem. 3.6] states that

Sλ(λ+ A↑ + B)u = u (u ∈ D(A↑) ∩D(B)).

As a consequence, the operator λ + A↑ + B is injective and maps onto the space
Lq(0, T ; (X ,D(A))θ,q). Finally, Da Prato and Grisvard establish in [7, Thm. 3.11]
that for all f ∈ Lq(0, T ; (X ,D(A))θ,q) the function u = Sλ f even satisfies that

A↑u, Bu ∈ Lq(0, T ; (X ,D(A))θ,q). (2.5)

In combination with (2.4), this means if C denotes the part of the operator

C := A↑ + B with domain D(C) := D(A↑) ∩D(B)

in Lq(0, T ; (X ,D(A))θ,q), that even λ + C maps onto Lq(0, T ; (X ,D(A))θ,q). We
infer that (0,∞) ⊂ ρ(−C). The resolvent bound is transferred to the ground space
Lq(0, T ; (X ,D(A))θ,q) as follows: since A↑ and B have commuting resolvents, it is
evident that

A↑Sλ f = Sλ A↑ f , ( f ∈ D(A↑)).

Thus, (2.3) implies that

‖Sλ f ‖Lq (0,T ;D(A)) ≤ N

λ
‖ f ‖Lq (0,T ;D(A)), (λ > 0).

By real interpolation, we infer that

‖Sλ f ‖Lq (0,T ;(X ,D(A))θ,q ) ≤ N

λ
‖ f ‖Lq (0,T ;(X ,D(A))θ,q ), (λ > 0). (2.6)

Let us conclude this discussion with the following comment: if 0 ∈ ρ(A), then one can
choose Aε := A−ε instead of A in the previous discussion for some small ε > 0. Thus,
also the operator (ε + A↑ε + B) = A↑ + B is invertible on Lq(0, T ; (X ,D(A))θ,q),
implying the boundedness of A↑(A↑+ B)−1 and of B(A↑+ B)−1. As a consequence,
for some constants M, M ′ > 0 independent of λ ≥ 0 it holds that

‖A↑(λ+ A↑ + B)−1, B(λ+ A↑ + B)−1‖Lq (0,T ;(X ,D(A))θ,q )

≤ M‖(A↑ + B)(λ+ A↑ + B)−1‖Lq (0,T ;(X ,D(A))θ,q )

≤ M ′.
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Summarizing, from Da Prato and Grisvard’s paper [7], we get the following theorem.

Theorem 2.7 Let θ ∈ (0, 1), 1 ≤ q ≤ ∞, let A be sectorial on X with angle ω ∈
(0, π/2), and let 0 ∈ ρ(A). With the notation above, the part C of the operator

C := A↑ + B with domain D(C) := D(A↑) ∩D(B)

in the real interpolation space

(
Lq(0, T ; X),D(A↑)

)

θ,q = Lq(0, T ; (X ,D(A))θ,q)

satisfies [0,∞) ⊂ ρ(−C). Furthermore, there exists M > 0 such that for all λ ≥ 0
and f ∈ Lq(0, T ; (X ,D(A))θ,q) it holds that

‖A↑(λ+ A↑ + B)−1 f ‖Lq (0,T ;(X ,D(A))θ,q )

+‖B(λ+ A↑ + B)−1 f ‖Lq (0,T ;(X ,D(A))θ,q ) ≤ M‖ f ‖Lq (0,T ;(X ,D(A))θ,q ).

The application of this theorem to the situation of maximal regularity is as follows.
By construction, the solution operator to (2.2) is given by

(A↑ + B)−1,

so that the question of whether A has maximal Lq -regularity is about whether A↑ + B
is invertible and whether

A↑(A↑ + B)−1 and B(A↑ + B)−1

are bounded. However, this is precisely, what was shown before Theorem 2.7.
Thus, we can note that there exists a constant K > 0 such that whenever f ∈
Lq(0, T ; (X ,D(A))θ,q), the equation (2.2) has a unique solution u satisfying

‖u, u′, Au‖Lq (0,T ;(X ,D(A))θ,q ) ≤ K‖ f ‖Lq (0,T ;(X ,D(A))θ,q ). (2.7)

In later sections, we will in particular be interested in the case q = 1.
We conclude this section, by shortly discussing how to extend this theory to include

inhomogeneous initial values in (2.2) if q = 1. We have to investigate under which
conditions on x the function t �→ AT (t)x lies in L1(0, T ; (X ,D(A))θ,1). Now, we
use that the real interpolation space (X ,D(A))θ,q can be characterized by means of
the semigroup (T (t))t≥0. Indeed, e.g., by [20, Thm. 6.2.9] it holds (in the special case
1 ≤ q <∞)

(
X ,D(A)

)

θ,q =
{

x ∈ X : [x]qθ,q :=
∫ ∞

0
‖t1−θ AT (t)x‖q

X
dt

t
<∞

}

=: DA(θ, q) (2.8)
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and the norms

‖x‖(X ,D(A))θ,q and ‖x‖X + [x]θ,q =: ‖x‖DA(θ,q)

are equivalent. A similar result holds for q = ∞ with the obvious changes in the
definition of [x]θ,q . In our case q = 1, we directly find by the exponential decay
and the analyticity of the semigroup (i.e., we use that ‖eεss AT (s)‖L(X) is uniformly
bounded with respect to s > 0 for some ε > 0) that

∫ T

0
‖AT (s)x‖X ds ≤

∫ 1

0
sθ‖s1−θ AT (s)x‖X

ds

s
+

∫ ∞

1
‖s AT (s)x‖X

ds

s

≤
∫ 1

0
‖s1−θ AT (s)x‖X

ds

s
+ M

∫ ∞

1
e−εs ds ‖x‖X

≤ M ′‖x‖DA(θ,1).

Moreover, using the analyticity of the semigroup again, followed by occasional appli-
cations of Fubini’s theorem and the linear substitution rule yields for some constant
M > 0 that

∫ T

0

∫ ∞
0
‖t1−θ AT (t)AT (s)x‖X

dt

t
ds ≤ M

∫ ∞
0

∫ ∞
0

t1−θ

s + t

∥
∥
∥AT

(
1
2 (s + t)

)
x
∥
∥
∥

X

dt

t
ds

= M
∫ ∞
0

∫ ∞
t

t1−θ

τ

∥
∥
∥AT

(
1
2 τ

)
x
∥
∥
∥

X
dτ

dt

t

= M
∫ ∞
0

∫ τ

0
t−θ dt

∥
∥
∥AT

(
1
2 τ

)
x
∥
∥
∥

X

dτ

τ

= M

1− θ

∫ ∞
0

∥
∥
∥τ1−θ AT

(
1
2 τ

)
x
∥
∥
∥

X

dτ

τ

= M21−θ

1− θ
‖x‖DA(θ,1).

Thus, for all x ∈ (X ,D(A))θ,1, we find that

‖s �→ AT (s)x‖L1(0,T ;DA(θ,1)) ≤ M‖x‖DA(θ,1).

We formulate the results of this discussion as a corollary of the theorem of Da Prato
and Grisvard.

Corollary 2.8 Let X be a Banach space and let −A be the generator of a bounded
analytic semigroup on X with 0 ∈ ρ(A). Let θ ∈ (0, 1) and 0 < T ≤ ∞. Then for all
f ∈ L1(0, T ; (X ,D(A))θ,1) and for all x ∈ (X ,D(A))θ,1 the equation

{
u′(t)+ Au(t) = f (t) t ∈ (0, T ),

u(0) = x
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has a unique solution in the space

W1,1(0, T ; (X ,D(A))θ,1) ∩ L1(0, T ;D(A))

satisfying

‖u, u′, Au‖L1(0,T ;(X ,D(A))θ,1)
≤ K

(‖x‖(X ,D(A))θ,1 + ‖ f ‖L1(0,T ;(X ,D(A))θ,1)

)
.

Here, A denotes the part of A on (X ,D(A))θ,1.

3 Study of the Lamé operator

This section is dedicated to the study of the linearization of the velocity equation of
System (1.1), when neglecting the pressure. We shall first establish various regularity
results for the Lamé operator L given by

L = −μ�− z∇ div, (3.1)

where μ > 0 and z ∈ C, then look at the properties of the associated semigroup, with
particular attention to the maximal Lq -regularity on Besov spaces Bs

p,q(�;Cd) up to
the limit value q = 1. This is done by employing Amann’s technique of inter- and
extrapolation spaces. Throughout the section, � ⊂ R

d , d ≥ 1, is a smooth bounded
domain. The Lebesgue exponent p is supposed to satisfy 1 < p <∞, the microlocal
parameter q satisfies 1 ≤ q ≤ ∞, and we assume that the real number s is such that

−1+ 1

p
< s <

1

p
· (3.2)

Recall that (3.2) ensures that elements of Bs
p,q(�;Cd) have no trace at the boundary.

As a start, let us record the standard L2-theory of the Lamé operator, following the
exposition in [28]. Let Du denote the Jacobian matrix of a vector field u, and let ∇u
denote its transpose. Define the curl of u by

curl u := 1√
2
(∇u − Du).

Let μ > 0 and z ∈ C and define the sesquilinear form

a :

⎧
⎪⎨

⎪⎩

W1,2
0 (�;Cd)×W1,2

0 (�;Cd) −→ C,

(u, v) �−→ μ

∫

�

curl u · curl v dx + (μ+ z)
∫

�

div u div v dx,
(3.3)

where the matrix product is understood component-wise. As the complex parameter
z is not standard in usual considerations of the Lamé system, we give more details in

123



Critical regularity issues for the compressible Navier–Stokes...

the subsequent discussion. Under the supplementary condition that μ + Re(z) > 0,
the sesquilinear form a is bounded and coercive, cf. [28, Lem. 3.1]. Then, define the
Lamé operator on L2 by

D(L2) :=
{
u ∈W1,2

0 (�;Cd) : ∃ f ∈ L2(�;Cd) s.t. a(u, v) = 〈 f , v〉L2

for all v ∈W1,2
0 (�;Cd)

}

L2u := f (u ∈ D(L2)).

With this definition, L2 embodies (3.1) in the sense of distributions. Notice that

C∞c (�;Cd) ⊂ D(L2) ⊂W1,2
0 (�;Cd),

hence L2 is densely defined.Moreover, L2 is closed and, according to theLax–Milgram
theorem, invertible.

Following [27, Thm. 4.16 and Thm. 4.18] and using a covering argument, it is easy
to obtain the following regularity result for L2 (with the convention W0,2(�;Cd) =
L2(�;Cd)).

Proposition 3.1 Let μ > 0 and z ∈ C with μ + Re(z) > 0. Let k ∈ N0 and � be a
bounded domain with smooth boundary. Then, there exists a constant C > 0 such that
for all f ∈Wk,2(�;Cd) and u given by u = L−12 f , it holds

‖u‖Wk+2,2(�;Cd ) ≤ C‖ f ‖Wk,2(�;Cd ).

Having some L2-mapping properties of the Lamé operator at our disposal, we focus
nowon the Lp-theory. If 2 < p <∞, thenwe define the Lamé operator onLp(�;Cd),
denoted by L p, to be the part of L2 in Lp(�;Cd). Note that L p is a closed operator
and that C∞c (�;Cd) is included in D(L p).

For 1 < p < 2, define L p to be the closure of L2 in Lp(�;Cd) whenever L2
is closable in this space. That L2 is indeed closable in Lp(�;Cd) is deduced by
the following argument: since L2 is closed and densely defined, its L2-adjoint L∗2
is well-defined, densely defined, and closed. Clearly, this operator is the realization
of (3.1) with z replaced by its complex conjugate z. Now, the fact that L2 is closable in
Lp(�;Cd) stems from the following lemma1 that can be proved by basic annihilator
relations and is partly presented in [38, Lem. 2.8].

1 We use the following notation and convention: the antidual space of a Banach space X (i.e., the space of
all antilinear mappings X → C) is denoted by X ′. The adjoint of a densely defined operator A is denoted
by A′. In the particular situation where X = Lp(�;Cd ) and A : D(A) ⊂ Lp(�;Cd ) → Lp(�;Cd ) is
densely defined, the adjoint operator A′ is an operator A′ : D(A′) ⊂ Lp(�;Cd )′ → Lp(�;Cd )′. The
corresponding adjoint operator on Lp′ (�;Cd ) (where p′ stands for the Hölder conjugate exponent of p)

is denoted by A∗. Thus, if � denotes the canonical isomorphism Lp′ (�;Cd ) → Lp′ (�;Cd )′, then A∗ is
given by

A∗ := �−1A′� with domain D(A∗) := {u ∈ Lp′ (�;Cd ) : �u ∈ D(A′)}. (3.4)
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Lemma 3.2 Let 1 < p < 2. Then D(L2) is dense in Lp(�;Cd). Moreover, L2 is
closable in Lp(�;Cd) if and only if the part (L∗2)p′ of L∗2 in Lp′(�;Cd) is densely
defined. In this case, it holds L∗p = (L∗2)p′ and (L∗2)∗p′ = L p.

Having the Lp-realization of L2 at hand, we turn to the regularity theory of L p for
1 < p <∞. The counterpart of Proposition 3.1 (that is proved in Appendix) reads:

Proposition 3.3 Let μ > 0 and z ∈ C with μ + Re(z) > 0. Let k ∈ N0 and � be a
bounded domain with smooth boundary. For all 1 < p < ∞ it holds 0 ∈ ρ(L p) and
D(Lk

p) is continuously embedded into W2k,p(�;Cd). Moreover, in the case 2 ≤ p <

∞ there exists a constant C > 0 such that for all f ∈ Wk,p(�;Cd) and u given by
u = L−1p f it holds

‖u‖Wk+2,p(�;Cd ) ≤ C‖ f ‖Wk,p(�;Cd ). (3.5)

In the case 1 < p < 2 there exists a constant C > 0 such that for all f ∈ D(Lk
p) it

holds

‖u‖W2k+2,p(�;Cd ) ≤ C‖ f ‖W2k,p(�;Cd ). (3.6)

In particular, for any 1 < p <∞, we have

D(L p) =W2,p(�;Cd) ∩W1,p
0 (�;Cd). (3.7)

We aim at proving that −L p generates a bounded analytic semigroup on a wide
family of Besov spaces. Our starting point is the following proposition, which is a
consequence of [28, Thm. 1.3] and [9, App. A].

Proposition 3.4 Let μ,μ′ ∈ R with μ > 0 and μ+ μ′ > 0, 1 < p < ∞, and L p be
the Lamé operator with coefficients μ and z = μ′. Then, −L p generates a bounded
analytic semigroup on Lp(�;Cd).

We want to prove a similar result but at the scale of a ‘negative’ regularity space that
may be regarded as W−2,p. To proceed, we need to introduce the following canonical
isomorphism (where the dependency on r is omitted for notational simplicity):

� : Lr ′(�;Cd)→ Lr (�;Cd)′, � f :=
[

g �→
∫

�

f · g dx

]

. (3.8)

Recall that (L∗2)p′ is the Lamé operator with z replaced by z on Lp′(�;Cd). Since
D((L∗2)p′) is a closed subspace of W2,p′(�;Cd), the domain D((L∗2)p′) is a Banach
spacewhenendowedwith theW2,p′ -normand (L∗2)p′ ∈ Isom(D((L∗2)p′),Lp′(�;Cd)).
Denote the dual operator from Lp′(�;Cd)′ onto D((L∗2)p′)′ by a ◦, i.e.,

L̃p := (L∗2)◦p′ ∈ Isom(Lp′(�;Cd)′,D((L∗2)p′)
′)
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and define the extrapolation Lp of L p on the ground space X−1p := D((L∗2)p′)′ to be

Lp : D(Lp) ⊂ X−1p → X−1p , Lpu := L̃pu with D(Lp) := Lp′(�;Cd)′.
(3.9)

Observe that L̃p is defined as the adjoint of the bounded operator (L∗2)p′ :
D((L∗2)p′) → Lp′(�;Cd). This should be distinguished from the adjoint operator
(L∗2)′p′ : D((L∗2)′p′) ⊂ Lp′(�;Cd)′ → Lp′(�;Cd)′, where (L∗2)p′ is regarded as

a closed and densely defined operator on Lp′(�;Cd). The links between all these
definitions are clarified in Appendix (see Lemma A.3).

The previous lemma allows us to define an extrapolation Lp of the operator L p to
the larger ground space X−1p := D((L∗2)p′)′, which can be regarded as aW−2,p-space.
In particular, Lemma A.3 (3) allows us to write2

Lp = T L pT−1,

where T := L̃p� is an isomorphism from Lp(�;Cd) onto X−1p . This will enable
us to transport all kinds of functional analytic properties from L p to Lp. Finally,
Lemma A.3 (5) allows us to recover L p (modulo the canonical isomorphism �) from
Lp as its part on Lp′(�;Cd)′, so that Lp can indeed be regarded as an extrapolation
of L p. This eventually leads to the following proposition.

Proposition 3.5 Let μ,μ′ ∈ R with μ > 0 and μ+ μ′ > 0, 1 < p < ∞, and Lp be
the Lamé operator with coefficients μ and z = μ′ on X−1p . Then, −Lp generates a

bounded analytic semigroup on X−1p .

Having a bounded analytic semigroup on various function spaces at our disposal,
we want to deduce the maximal Lq -regularity of the Lamé operator on suitable inter-
mediate spaces. For this purpose, we briefly introduce the setting of Da Prato and
Grisvard established in [7].

For 1 < p <∞, define the spaces

Xk
p := �D(Lk

p) (k ∈ N0).

Endow Xk
p with the norm

‖u‖Xk
p
:= ‖Lk

p�
−1u‖Lp(�;Cd ) (u ∈ Xk

p).

Observe that, by construction, all spaces Xk
p (including X−1p ) are complete.

For −1 < s < 1, 0 < t < 2, and 1 ≤ q ≤ ∞ define the following intermediate
spaces via real interpolation:

Xs
p,q :=

(
X−1p , X1

p

)

(s+1)/2,q and Y t
p,q :=

(
X0

p, X2
p

)

t/2,q .

2 We endow the product of two operators A and B with its maximal domain of definition, i.e., D(AB) :=
{u ∈ D(B) : Bu ∈ D(A)}.
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Note that for all of the parameters above, the following continuous inclusions hold

Xs
p,q ↪→ X−1p and Y t

p,q ↪→ X0
p = D(Lp). (3.10)

For some combinations of the parameters, the spaces Xs
p,q and Y t

p,q are calculated as
follows. To formulate the proposition, introduce, for 1 < p < ∞, 1 ≤ q ≤ ∞, and
s ∈ R, the space

Bs
p,q,D(�;Cd) :=

{
{ f ∈ Bs

p,q(�;Cd) : f |∂� = 0}, if s > 1/p

Bs
p,q(�;Cd), if s < 1/p.

Here, elements in the Besov space Bs
p,q(�;Cd) are defined to be restrictions to � of

elements in Bs
p,q(Rd;Cd) and the norm of Bs

p,q(�;Cd) is given by the corresponding
quotient norm. Furthermore, if � is smooth enough, e.g., Lipschitz regular, then the
following interpolation identity holds (see more details in [40, Thm. 2.13]):

(
Bs0

p,q0(�;Cd),Bs1
p,q1(�;Cd)

)

θ,q
= Bs

p,q(�;Cd),

where

θ ∈ (0, 1), s0 �= s1 ∈ R, s = (1− θ)s0 + θs1, p ∈ (1,∞), and q0, q1, q ∈ [1,∞].

Proposition 3.6 Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Then, for −1/p′ < 2s < 2 with
2s �= 1/p it holds up to the identification by the isomorphism � that

Xs
p,q = B2s

p,q,D(�;Cd).

Furthermore, for 0 < s < 1 with 2s �= 1/p it holds

Y s
p,q = B2s

p,q,D(�;Cd).

In the case 2s = 1/p, it holds that

Xs
p,q ↪→ B2s

p,q(�;Cd) and Y s
p,q ↪→ B2s

p,q(�;Cd).

Proof First, we consider the spaces Y s
p,q . Notice that by [20, Prop. 6.6.7] and the

sectoriality of L p on Lp(�;Cd) it holds for 0 < s < 1

Y s
p,q =

(
X0

p, X2
p

)

s/2,q =
(
X0

p, X1
p

)

s,q .

Since, by definition of the spaces, � is an isomorphism

� : Lp(�;Cd)→ X0
p and � : D(L p)→ X1

p,
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it holds by virtue of [2, Thm. 5.2] whenever 2s �= 1/p with equivalent norms that

Y s
p,q =

(
X0

p, X1
p

)

s,q = �
(
Lp(�;Cd),D(L p)

)

s,q = �B2s
p,q,D(�;Cd).

If 2s = 1/p, then D(L p) ⊂W2,p(�;Cd) implies that

Y
1
2p
p,q =

(
X0

p, X1
p

)
1
2p ,q ⊂ �

(
Lp(�;Cd),W2,p(�;Cd)

)
1
2p ,q = �B

1
p
p,q(�;Cd).

We turn to study the spaces Xs
p,q . As we already calculated (X0

p, X1
p)θ,q for

θ ∈ (0, 1), we concentrate first on (X−1p , X0
p)θ,q and the case 1 < q < ∞. By

the definitions of the spaces and the duality theorem [39, Sec. 1.11.2], we find

(
X−1p , X0

p

)

θ,q =
(
Lp′(�;Cd),D((L∗2)p′)

)′
1−θ,q ′

= B2(1−θ)

p′,q ′,D(�;Cd)′ = B−2(1−θ)
p,q,D (�;Cd).

Notice that the following interpolation identities hold true, see [2, Thm. 5.2],

(
X0

p, X1
p

)

θ,q = �B2θ
p,q(�;Cd) (2θ < 1/p)

and

(
Lp′(�;Cd),D((L∗2)p′)

)

1−θ,q ′ = B2(1−θ)

p′,q ′ (�;Cd) (2(1− θ) < 1/p′).

In particular, [39, Sec. 4.8.2] implies that

B2(1−θ)

p′,q ′ (�;Cd)′ = B−2(1−θ)
p,q (�;Cd) (2(1− θ) < 1/p′).

Since {Bs
p,q(�;Cd)}−1/p′<s<1/p forms an interpolation family with respect to the real

interpolation method [39, Sec. 4.3.1], we find by [41] (see also [21]) and [2, Thm. 5.2]
modulo an identification with the canonical isomorphism � that

Xs
p,q = B2s

p,q,D(�;Cd) (−1/p′ < 2s < 2 with 2s �= 1/p).

The condition q = 1 or q = ∞ can now be added by the reiteration theorem. ��
Having the scale Xs

p,q of intermediate spaces at hand, we realize the Lamé operator
Lp,q,s on Xs

p,q as the part of Lp on this space, namely

D(Lp,q,s) := {u ∈ D(Lp) ∩ Xs
p,q : Lpu ∈ Xs

p,q}.

In Lemma A.4, it is shown that, for all 1 < p < ∞, 1 ≤ q ≤ ∞, and −1 < s < 1 it
holds with equivalent norms

D(Lp,q,s) = Y s+1
p,q . (3.11)
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In general, if an operator generates a bounded analytic semigroup, its part onto
a subspace need not generate a semigroup. However, as we already know that the
domain of Lp,q,s is Y s+1

p,q , this delivers right mapping properties of the resolvent of
Lp,q,s .

Proposition 3.7 For all 1 < p < ∞, 1 ≤ q ≤ ∞, and −1 < s < 1 the operator
−Lp,q,s with coefficients μ and z = μ′ generates a bounded analytic semigroup on
Xs

p,q with 0 ∈ ρ(L p).

Proof According to Lemma A.3, T := L̃p� is an isomorphism between Lp(�;Cd)

and X−1p , and Lp = T L pT−1. Hence ρ(Lp) = ρ(L p). Furthermore, because −L p

generates a bounded analytic semigroup, cf. Proposition 3.4, there exists some θ ∈
(π/2, π) and C > 0 such that

Sθ ⊂ ρ(−Lp) and ‖λ�(λ+ L p)
−1�−1‖L(X0

p) ≤ C for all λ ∈ Sθ .

Notice that LemmaA.3 (5) implies that (λ+Lp)
−1|X0

p
= �(λ+L p)

−1�−1. Thus,
since T : X0

p → X−1p is an isomorphism, it holds

‖λ(λ+ Lp)
−1‖L(X−1p )

= ‖λT �−1(�(λ+ L p)
−1�−1)�T−1‖L(X−1p )

≤ C‖λ�(λ+ L p)
−1�−1‖L(X0

p) ≤ C .

Then, by real interpolation we derive that for all 1 < p < ∞, 1 ≤ q ≤ ∞, and
−1 < s < 0 there exists C > 0 such that for all λ ∈ Sθ it holds

‖λ(λ+ Lp)
−1|Xs

p,q
‖L(Xs

p,q ) ≤ C . (3.12)

Finally, we prove that ρ(Lp) ⊂ ρ(Lp,q,s) and that (λ+Lp)
−1|Xs

p,q
= (λ+Lp,q,s)

−1
holds for λ ∈ ρ(−Lp).

Let λ ∈ ρ(−Lp). Clearly λ + Lp,q,s inherits the injectivity of λ + Lp. For the
surjectivity, let f ∈ Xs

p,q . Since λ ∈ ρ(−Lp), there exists u ∈ D(Lp) = X0
p such

that (λ+ Lp)u = f. Since X0
p ↪→ Xs

p,q , the definition of the part of an operator now
implies that u ∈ D(Lp,q,s) and that (λ + Lp,q,s)u = f. Consequently, this together
with (3.12) implies that −Lp,q,s generates a bounded analytic semigroup on Xs

p,q .
In the case 0 < s < 1 this follows immediately by the characterization in (2.8)

and the fact that −L p generates a bounded analytic semigroup on Lp(�;Cd), see
Proposition 3.4.

The final case s = 0 follows by interpolation. ��

Putting together all the previous results, it is now possible to state maximal Lq -
regularity for the Lamé operator in Besov spaces, including the case q = 1. In
particular the Da Prato – Grisvard theory provides a resolvent bound for the parabolic
solution operator in this setting.
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Theorem 3.8 Let μ,μ′ ∈ R with μ > 0 and μ+ μ′ > 0, 1 < p < ∞, 1 ≤ q ≤ ∞,
−1 < s < 1, and Lp,q,s be the Lamé operator with coefficients μ and z = μ′ on
Xs

p,q . Then, Lp,q,s has maximal Lq-regularity on the time interval R+. In particular,

if L↑p,q,s denotes the lifted operator to Lq(R+; Xs
p,q) (as in Sect. 2), then there exists

a constant C > 0 such that the sum operator d
dt + L↑p,q,s satisfies for all K > 0 and

for all f ∈ Lq(R+; Xs
p,q)

∥
∥
∥
∥∇2

(
d
dt + K + L↑p,q,s

)−1
f

∥
∥
∥
∥
Lq (R+;B2s

p,q (�;Cd3 ))

≤ C‖ f ‖Lq (R+;Xs
p,q ). (3.13)

Proof Fix 1 < p <∞ and 1 ≤ q ≤ ∞. By virtue of Proposition 3.7 we know for all
−1 < s0 < 1 that

−Lp,q,s0 generates a bounded analytic semigroup on Xs0
p,q with 0 ∈ ρ(Lp,q,s0).

Now, for s ∈ (s0,min{s0+1, 1}) the discussion below Theorem 2.7 that leads to (2.7),
reveals that the part of Lp,q,s0 in Xs

p,q has maximal Lq -regularity on the time interval
R+. Since the part ofLp,q,s0 in Xs

p,q is the operatorLp,q,s by Lemma A.4, this readily
proves the first part of the theorem.

The estimate (3.13) follows by the boundedness of ∇2L−1p,q,s from Xs
p,q into

B2s
p,q(�;C3) which is established by combining Lemma A.4 with Proposition 3.6.

The estimate is then concluded by an application Theorem 2.7. ��
Corollary 3.9 Let 0 < T ≤ ∞. Let 1 < p < ∞ and −1 + 1/p < s < 1/p. For any
u0 in Bs

p,1(�;Rd) and f ∈ L1(0, T ;Bs
p,1(�;Rd)), system

⎧
⎪⎨

⎪⎩

∂t u − μ�u − μ′∇ div u = f in (0, T )×�,

u|∂� = 0 on (0, T )× ∂�,

u|t=0 = u0 in (0, T )×�,

(L)

admits a unique solution u ∈ Cb([0, T ];Bs
p,1(�;Rd)) with

u ∈W1,1(0, T ;Bs
p,1(�;Rd)) ∩ L1(0, T ;Bs+2

p,1 (�;Rd))

and there exists a constant C > 0 depending only on p, s, μ′/μ, and � such that

sup
t∈[0,T ]

‖u(t)‖Bs
p,1
+

∫ T

0

(
‖∂t u‖Bs

p,1
+ μ‖u‖Bs+2

p,1

)
dt

≤ C

(

‖u0‖Bs
p,1
+

∫ T

0
‖ f ‖Bs

p,1
dt

)

.

(3.14)

Furthermore, C may be chosen uniformly with respect to μ′/μ whenever μ∗ ≤ μ′/μ ≤
μ∗ for some constants μ∗ and μ∗ such that −1 < μ∗ < μ∗.
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Proof Performing the time rescaling

u(t, x) = ũ(μt, x) and f (t, x) = μ f̃ (μt, x)

reduces the proof to the case μ = 1. So we assume μ = 1 in what follows.
Now, if u0 = 0, then the result is a mere reformulation of Theorem 3.8 with q = 1.

Indeed, from it, we get the maximal L1-regularity for Lp,1,s, then using (3.11) and
Proposition 3.6 gives the desired bound for ‖u‖Bs+2

p,1
. The initial value u0 can be added

by virtue of Corollary 2.8, and the bound on ‖u(t)‖Bs
p,1

follows from the bound on
∂t u and the fundamental theorem of calculus.

Let us finally prove that if μ = 1 (with no loss of generality) and −1 < μ∗ ≤
μ′ ≤ μ∗, then the constant C in (3.14) may be chosen independently of μ′. Argue
by contradiction, assuming that there exists a sequence (μ′n)n∈N in [μ∗, μ∗] and a
sequence (u0,n, fn)n∈N such that

‖u0,n‖Bs
p,1
+

∫ ∞

0
‖ fn‖Bs

p,1
dt = 1

and the solution un of (L) with coefficients μ = 1 and μ′ = μ′n, and data (u0,n, fn)

satisfies

∫ ∞

0

(‖∂t un‖Bs
p,1
+ ‖un‖Bs+2

p,1

)
dt ≥ n. (3.15)

Up to subsequence, we have μ′n → μ̄′ ∈ [μ∗, μ∗]. We observe that

∂t un −�un − μ̄′∇ div un = fn + (μ′n − μ̄′)∇ div un .

Hence applying Inequality (3.14) with coefficients 1 and μ̄′, we get some constant C
such that

∫ ∞

0

(
‖∂t un‖Bs

p,1
+‖un‖Bs+2

p,1

)
dt

≤ C

(

‖u0,n‖Bs
p,1
+

∫ ∞

0

(‖ fn‖Bs
p,1
+ |μ′n − μ̄′|‖∇ div un‖Bs

p,1

)
dt

)

.

Given the definition of the data, we deduce (changing C if need be) that

∫ ∞

0

(‖∂t un‖Bs
p,1
+ ‖un‖Bs+2

p,1

)
dt ≤ C

(

1+ |μ′n − μ̄′|
∫ ∞

0
‖un‖Bs+2

p,1
dt

)

.

For n large enough, the resulting inequality stands in contradiction with (3.15). ��
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4 The linearized compressible Navier–Stokes system

In this section, we are concerned with the full linearized compressible Navier–Stokes
system, in the case where the pressure function P satisfies P ′(1) > 0. We strive for a
maximal Lq -regularity result up to q = 1 on the whole time intervalR+.The difficulty
compared to the previous section is that we have to take into consideration the coupling
between the density equation which is of hyperbolic type and the velocity equation
which is of parabolic type.

As a first, let us observe that the following change of time scale and velocity:

(ρ, u)(t, x) � (ρ̃, cũ)(ct, x) with c := √
P ′(1) (4.1)

reduces the study to the case P ′(1) = 1, so that the linearization of the compressible
Navier–Stokes system about (ρ, u) = (1, 0) coincides with (1.3).

Throughout this section, we assume that 1 < p < ∞ and that −1/p′ < s < 1/p.
If 2 ≤ p <∞, then we let 1 ≤ q <∞ and if 1 < p < 2, then we assume additionally
that3

s >
d

p
− d

2
− 1 or s ≥ d

p
− d

2
− 1 and 1 ≤ q ≤ 2.

Notice that these assumptions guarantee that functions in the space Bs
p,q(�;Cd) admit

a well-defined trace and, owing to the boundedness of �, that

Bs
p,q(�;Cd) ↪→W−1,2(�;Cd) and Bs+1

p,q (�) ↪→ L2(�). (4.2)

To define the second-order operator involved in (1.3) in the context of the spaces
Bs

p,q(�;Cd), we set

X s
p,q := [Bs+1

p,q (�) ∩ Lp
0 (�)] × Bs

p,q(�;Cd)

D(Ap,q,s) := [Bs+1
p,q (�) ∩ Lp

0 (�)] × Bs+2
p,q,D(�;Cd),

where Lp
0 (�) denotes the space of Lp-functions which are average free.

Recall that Lp,q,s denotes the Lamé operator on Bs
p,q(�;Cd). Then, we put

Ap,q,s : D(Ap,q,s) ⊂ X s
p,q → X s

p,q ,

(
a
u

)

�→
(

div u
Lp,q,su +∇a

)

. (4.3)

The rest of the section is devoted to proving the following result which implies The-
orem 1.2.

Theorem 4.1 Let p, q, and s be chosen as above. Then −Ap,q,s generates an expo-
nentially stable analytic semigroup on X s

p,q , and Ap,q,s has maximal Lq-regularity
on the time interval R+.

3 Hence we must have p > 2(d − 1)/(d + 2) owing to s < 1/p.
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Proof The main steps are as follows. First, we show that for each 0 < T < ∞, the
operator Ap,q,s hasmaximal Lq -regularity on the interval (0, T ) (which, in light of [14,
Thm. 4.3], implies that operator −Ap,q,s generates an analytic semigroup on X s

p,q ).
Next, we prove that 0 is in the resolvent set of −Ap,q,s . In the third step – the core
of the proof – we establish that the whole right complex half-plane is in ρ(−Ap,q,s).

By standard arguments, putting all those informations together allows to conclude the
proof (last step).

First step: local-in-timemaximal regularity

We want to show that, for each 0 < T < ∞, the operator Ap,q,s has maximal Lq -
regularity on the interval (0, T ). To proceed, we introduce, for some K > 0 that will
be chosen later on, the auxiliary problem

( d
dt + K

)
(

ã
ũ

)

+ Ap,q,s

(
ã
ũ

)

=
(

f̃
g̃

)

(4.4)

for ( f̃ , g̃) ∈ Lq(R+;X s
p,q), supplemented with null initial data.

Clearly, (̃a, ũ) satisfies (4.4) if and only if (a, u)(t) := eK t (̃a, ũ)(t) is a solution
of

d
dt

(
a
u

)

+ Ap,q,s

(
a
u

)

=
(

f
g

)

(4.5)

with null initial data and ( f , g)(t) := eK t ( f̃ , g̃)(t).
The operator d

dt + K with domain W1,q
0 (R+;Bs

p,q(�;Cd)) is invertible on
Lq(R+;Bs

p,q(�;Cd)), with inverse given by

( d
dt + K

)−1
f̃ : t �→

∫ t

0
e−K (t−τ) f̃ (τ ) dτ.

Furthermore, it holds

∥
∥
∥
( d
dt + K

)−1
f̃
∥
∥
∥
Lq (R+;Bs

p,q (�;Cd ))
≤ K−1‖ f̃ ‖Lq (R+;Bs

p,q (�;Cd )). (4.6)

By abuse of notation, we will keep the same notation d
dt + K to designate the time

derivative plus K on Lq(R+;Bs+1
p,q (�)∩Lp

0 (�)).To solve the parabolic problem (4.4),
define

ã := ( d
dt + K

)−1
( f̃ − div ũ),
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where ũ is the unknown to be determined. Plugging this choice into the momentum
equation delivers

( d
dt + K

)
ũ + Lp,q,s ũ − ( d

dt + K
)−1 ∇ div ũ = g̃ − ( d

dt + K
)−1 ∇ f̃ =: G.

Notice that G is a function in Lq(R+;Bs
p,q(�;Cd)). To compute ũ, introduce the new

function ṽ := ( d
dt + K + Lp,q,s )̃u. Then,

( d
dt + K

)
ũ + Lp,q,s ũ − ( d

dt + K
)−1 ∇ div ũ

= ṽ − ( d
dt + K

)−1 ∇ div
(( d

dt + K + Lp,q,s
)−1

ṽ
)

.

Notice that by virtue of (4.6), Theorem 3.8 and Lemma A.4 the operator

( d
dt + K )−1∇div( d

dt + K + Lp,q,s)
−1

is bounded on Lq(R+;Bs
p,q(�;Cd)) and that there exists C > 0 (independent of K )

such that
∥
∥
∥
( d
dt + K

)−1 ∇ div
( d
dt + K + Lp,q,s

)−1∥∥
∥L(Lq (R+;Bs

p,q (�;Cd )))
≤ C K−1.

Thus, if taking K > C , then one may conclude that the operator

Id − ( d
dt + K )−1∇div( d

dt + K + Lp,q,s)
−1

is invertible on Lq(R+;Bs
p,q(�;Cd)) by a Neumann series argument. This allows to

express ṽ in terms of G, and eventually to get

ũ = ( d
dt + K + Lp,q,s

)−1 [
Id− ( d

dt + K
)−1 ∇ div

( d
dt + K + Lp,q,s

)−1]−1
G.

Then, reverting to the original parabolic problem (4.5), one can conclude the maximal
Lq -regularity of Ap,q,s on each interval (0, T ), with constant CeK T .

Second step: showing that 0 ∈ �(Ap,q,s)

To show surjectivity of Ap,q,s, we have to solve for all ( f , g) ∈ X s
p,q , the system

⎧
⎪⎨

⎪⎩

div u = f in �

Lp,q,su + ∇a = g in �

u = 0 on ∂�.

(4.7)

Take v ∈ Bs+2
p,q,D(�;Cd) such that div v = f . The existence of v is guaranteed by

interpolating the higher-order estimates in [24, Prop. 2.10].
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By considering u = v + w and h = g − Lp,q,sv, the problem is thus reduced to

⎧
⎪⎨

⎪⎩

divw = 0 in �

Lp,q,sw + ∇a = h in �

w = 0 on ∂�.

Of course, since divw = 0, we have Lp,q,sw = −μ�w, and we thus have only to
consider the Stokes system with homogeneous boundary condition and source term
in Bs

p,q(�;Cd), which is standard and can also be derived by interpolating the result
in [24, Prop. 2.10]. Finally, injectivity of Ap,q,s is an obvious consequence of the
corresponding property for the Stokes system.

Third step: showing thatC×+ := {z ∈ C \ {0} : Re(z) ≥ 0} is a subset of�(−Ap,q,s)

Given ( f , g) ∈ X s
p,q and λ ∈ C, the resolvent problem for the operator−Ap,q,s reads:

⎧
⎪⎨

⎪⎩

λa + div u = f in �

λu + Lp,q,su +∇a = g in �

u = 0 on ∂�.

(4.8)

As a first, we are going to show the result for a closed extension of Ap,q,s on L2
0(�)×

W−1,2(�;Cd). To this end, set

X := L2
0(�)×W−1,2(�;Cd) and D(A) := L2

0(�)×W1,2
0 (�;Cd).

With a denoting the sesquilinear form defined in (3.3), define A : D(A) ⊂ X → X
by

A :
(

a
u

)

�→
(

div u
W1,2

0 (�;Cd) � v �→ a(u, v)− 〈a, div v〉L2

)

.

To investigate the resolvent problem forA in the case λ �= 0, we eliminate a in the
second equation of (4.8), getting

a = λ−1( f − div u) and λu + Lp,q,su − λ−1∇ div u = g − λ−1∇ f .

To determine u, it is thus natural to consider the following sesquilinear form:

aλ :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W1,2
0 (�;Cd)×W1,2

0 (�;Cd) −→ C,

(u, v) �−→ λ

∫

�

u · v dx + μ

∫

�

curl u · curl v dx

+ (μ+ μ′ + λ−1)
∫

�

div u div v dx .
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For all λ ∈ C
×+, aλ is bounded on the Hilbert space W1,2

0 (�;Cd), and Re λ ≥ 0
implies that

Re

(

λ

∫

�

|u|2 dx + λ−1
∫

�

|div u|2 dx

)

≥ 0 (u ∈W1,2
0 (�;Cd)).

Consequently, employing [28, Lem. 3.1] and
√
2|z + α| ≥ |z| + α whenever α ≥ 0

and z ∈ C with Re(z) ≥ 0, we deduce that there exists c > 0 such that

Re(aλ(u, u)) ≥ c

{∫

�

|∇u|2 dx + Re

(

λ

∫

�

|u|2 dx + λ−1
∫

�

|div u|2 dx

)}

. (4.9)

Omitting the second term on the right-hand side of (4.9) and employing Poincaré’s
inequality yields a constant C > 0 such that

Re(aλ(u, u)) ≥ C‖u‖2
W1,2

0 (�;Cd )
(u ∈W1,2

0 (�;Cd), λ ∈ C
×+). (4.10)

An application Lax–Milgram’s theorem then yields the following lemma.

Lemma 4.2 Let λ ∈ C
×+. For every G ∈ W−1,2(�;Cd) there exists a unique u ∈

W1,2
0 (�;Cd) such that

aλ(u, v) = 〈v, G〉W1,2
0 ,W−1,2 (v ∈W1,2

0 (�;Cd)).

Furthermore, there exists C > 0 such that

‖u‖W1,2
0 (�;Cd )

≤ C‖G‖W−1,2(�;Cd ) (G ∈W−1,2(�;Cd)).

The previous lemma opens the way to prove that C×+ ⊂ ρ(−A). Indeed, let u ∈
W1,2

0 (�;Cd) be the unique function provided by Lemma 4.2 that satisfies

aλ(u, v) = 〈v, G〉W1,2
0 ,W−1,2 (v ∈W1,2

0 (�;Cd)),

withG := g − λ−1∇ f . (4.11)

Then, remembering a := λ−1( f − div u) ∈ L2
0(�), relation (4.11) turns into

〈v, g〉W1,2
0 ,W−1,2 + λ−1

∫

�

f div v dx

= λ

∫

�

u · v dx + μ

∫

�

curl u · curl v dx + (μ+ μ′ + λ−1)
∫

�

div u div v dx

= λ

∫

�

u · v dx + μ

∫

�

curl u · curl v dx + (μ+ μ′)
∫

�

div u div v dx

+ λ−1
∫

�

f div v dx −
∫

�

a div v dx .
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Consequently, λu − μ�u − μ′∇ div u +∇a = g holds in the sense of distributions.
To show that a and u are unique, let ( f , g) ≡ (0, 0). Eliminating a by the relation

λa = − div u yields that u ∈W1,2
0 (�;Cd) must satisfy

aλ(u, u) = 0.

By virtue of (4.10) this implies that u = 0 what in turn implies that a = 0.
To conclude the proof of λ ∈ ρ(−A), it suffices to show the closedness of λ+A.

For this purpose, assume that (a j , u j ) ∈ D(A) converges inX to some element (a, u)

and that there exists ( f , g) ∈ X such that

λa j + div u j =: f j → f in L2
0(�) and

λu j − μ�u j − μ′∇ div u j + ∇a j =: g j → g in W−1,2(�;Cd).

Eliminating again a j in the second equation, testing the respective equations for u j

and u� by u j − u�, j, � ∈ N, and taking differences of the resulting equations yields

|aλ(u j − u�, u j − u�)| ≤ ‖g j − g�‖W−1,2(�;Cd )‖u j − u�‖W1,2
0 (�;Cd )

+ |λ−1|‖ f j − f�‖L2(�)‖ div u j − div u�‖L2(�).

By virtue of (4.10) and Young’s inequality one obtains a constant C > 0 independent
of j and � such that

‖u j − u�‖W1,2
0 (�;Cd )

≤ C
(‖g j − g�‖W−1,2(�;Cd ) + ‖ f j − f�‖L2(�)

)
.

Consequently, u ∈W1,2
0 (�;Cd). It follows that (a, u) ∈ D(A) and that (a, u) satisfies

the equation (λ+A)(a, u) = ( f , g). This completes the proof of

C
×+ ⊂ ρ(−A). (4.12)

It is now easy to show the injectivity of λ+Ap,q,s for λ ∈ C
×+. Indeed, sinceX s

p,q ⊂ X
(cf. (4.2)) the operatorA is an extension of Ap,q,s . In particular, it holdsD(Ap,q,s) ⊂
D(A). Thus, (λ+ Ap,q,s)(a, u) = 0 implies that (λ+A)(a, u) = 0 and (4.12) in turn
implies that (a, u) = 0.

Let us finally show that the range of λ + Ap,q,s is X s
p,q for all λ ∈ C

×+. Thus, let
( f , g) ∈ X s

p,q . Since X s
p,q ⊂ X , (4.12) implies that there exists (a, u) ∈ D(A) with

(λ+A)

(
a
u

)

=
(

f
g

)

that is to say,

a = λ−1( f − div u) and

− μ�u − (λ−1 + μ′)∇ div u = g − λ−1∇ f − λu =: h.
(4.13)
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Here, the second equation is fulfilled in W−1,2(�;Cd). To prove the surjectivity of
λ + Ap,q,s it suffices to show (a, u) ∈ D(Ap,q,s), which follows once we derive
u ∈ Bs+2

p,q,D(�;Cd).
For this purpose, notice that by assumption it holds

μ+ Re(μ′ + λ−1) = μ+ μ′ + Re(λ)|λ|−2 > 0.

Thus, the operator

Lλ := −μ�− (μ′ + λ−1)∇ div (λ ∈ C
×+),

belongs to the class of operators that was studied in the previous section. Notice
that u ∈ W1,2

0 (�;Cd) implies that u ∈ Bs
r0,q(�;Cd) for all 1 < r0 < ∞ with

1/r0 > (s − 1)/d + 1/2. If 1/p > (s − 1)/d + 1/2, then one can take r0 = p so that
the right-hand side h defined in (4.13) lies in Bs

p,q(�;Cd). Then, by Lemma A.4 and

Proposition 3.6, it follows that u ∈ Bs+2
p,q,D(�;Cd), and we are done.

If 1/p ≤ (s − 1)/d + 1/2, then any r0 that satisfies the inequality above sat-
isfies 1/p < 1/r0. Moreover, it is possible to choose r0 large enough such that
s > −1 + 1/r0, so that Lemma A.4 together with Proposition 3.6 guarantees that
u ∈ Bs+2

r0,q,D(�;Cd). Then, by Sobolev embedding, h lies in a better space, which
in turn implies that u lies in a better space. Iterating this process delivers eventually
u ∈ Bs+2

p,q,D(�;Cd).

Last step: proving the global-in-timemaximal regularity

Step 1 tells us that the operator Ap,q,s has maximal Lq -regularity on finite time inter-
vals, and generates an analytic semigroup. Hence, by virtue of Remark 2.4 there exists
ϑ ∈ (π/2, π) and λ0 > 0 such that [B(0, λ0)c ∩ Sϑ ] ⊂ ρ(−Ap,q,s), and C > 0 such
that for all λ ∈ [B(0, λ0)c ∩ Sϑ ], it holds

‖λ(λ+ Ap,q,s)
−1‖L(X s

p,q ) ≤ C . (4.14)

Moreover, by virtue of the second step and of the openness of the resolvent set, there
exists ε > 0 such that B(0, ε) ⊂ ρ(−Ap,q,s). Since

Dε,λ := C
×+ ∩ [B(0, λ0) \ B(0, ε/2)]

is compact and sinceC×+ ⊂ ρ(−Ap,q,s), there existsC > 0 such that Inequality (4.14)
holds on Dε,λ. Now, because the resolvent set is open and the boundary of Dε,λ along
the imaginary axis is compact, one can eventually find some θ ∈ (π/2, ϑ) such that
Sθ ⊂ ρ(−Ap,q,s) and there exists C > 0 such that (4.14) holds for all λ ∈ Sθ , see also
Fig. 1. It follows that −Ap,q,s generates a bounded analytic semigroup. Moreover,
since 0 ∈ ρ(Ap,q,s) this semigroup is exponentially stable. Finally, [14, Thm. 5.2]
implies that Ap,q,s has maximal Lq -regularity on R+.

��
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Fig. 1 The ball B(0, λ0) and
half of the ball B(0, ε) are
depicted. The gray region
visualizes the set Dε,λ. Due to
the openness of the resolvent set
(which is indicated by the
dashed region), the spectrum
must keep some distance to
Dε,λ. One sees, that in this
constellation one can find a
sector Sθ with θ ∈ (π/2, ϑ) that
is contained in the resolvent set

Dε,λ

B(0, λ0)

B(0, ε)
θ

For completeness, let us end the section proving Theorem 1.2. As a start, we apply
Theorem 4.1 with q = 1 and notice that the last step of the proof ensures the existence
of some c > 0 depending only on μ, μ′ and � so that

{
z ∈ C : Re(z) ≥ −c

} ⊂ ρ(−Ap,1,s).

This implies that Ap,1,s + c
2 has maximal L1-regularity. This yields Inequality (1.5).

Of course, Theorem 4.1 directly yields that (a, u) is in Ep.

To add non-zero initial data (a0, u0) ∈ X s
p,1 in problem (1.3) we cannot simply

employ Corollary 2.8. The reason is that we would need to choose a ground space
X t

p,1 for some t slightly smaller than s. Then we would need to calculate the real
interpolation space (X t

p,1,D(Ap,1,t ))θ,1. However, as the first components of X t
p,1

and D(Ap,1,t ) are the same, the result of the real interpolation in this first component
will be the very same space and thus we will not reach initial data in X s

p,1.
To circumvent this problem, consider the caloric extension

(
ac(t)
uc(t)

)

:=
(
et�N a0
et�D u0

)

.

Here, �N denotes the Neumann Laplacian on Bs+1
p,1 (�) ∩ Lp

0 (�) and �D denotes

the Dirichlet Laplacian on Bs
p,1(�;Cd). Notice that both operators are invertible and

that �N generates a bounded analytic semigroup on Lp
0 (�) while �D generates a

bounded analytic semigroup onW−1,p(�;Cd). An application of Corollary 2.8 yields
the existence of a constant C > 0 such that

‖∂t ac, ac,∇2ac‖L1(R+;Bs+1
p,1 )

+ ‖∂t uc, uc,∇2uc‖L1(R+;Bs
p,1)
≤ C‖(a0, u0)‖X s

p,1
.
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Notice that this together with the boundedness of the gradient operator between
Bs+1

p,1 (�) and Bs
p,1(�;Cd) implies that

‖∇ac‖L1(R+;Bs
p,1)
≤ C‖ac‖L1(R+;Bs+1

p,1 )
.

Now, let (b, v) ∈ Ep with (b(0), v(0)) = (0, 0) solve

∂t

(
b
v

)

+ Ap,1,s

(
b
v

)

= −∂t

(
ac

uc

)

− Ap,1,s

(
ac

uc

)

∈ L1(R+;X s
p,1).

Then, for a := b + ac and u := v + uc one has (a, u) ∈ Ep and (a, u) solve (1.3)
with f and g being zero and non-zero initial data. ��

5 Global well-posedness for the compressible Navier–Stokes system

The fastest way to solve System (1.1) in the critical regularity setting is to recast it
in Lagrangian coordinates. To this end, let X be the flow associated to u, that is the
solution to

X(t, y) = y +
∫ t

0
u(τ, X(τ, y)) dτ. (5.1)

The ‘Lagrangian’ density and velocity are defined by

ρ̄(t, y) := ρ(t, X(t, y)) and ū(t, y) := u(t, X(t, y)). (5.2)

With this notation, relation (5.1) becomes

Xū(t, y) := X(t, y) = y +
∫ t

0
ū(τ, y) dτ, (5.3)

and thus

DXū(t, y) = Id+
∫ t

0
Dū(τ, y) dτ. (5.4)

The main interest of Lagrangian coordinates is that, whenever DXū(t, y) is invertible,
the density is entirely determined by Xū and ρ0 through the relation

ρ̄(t, y)Jū(t, y) = ρ0(y) with Jū(t, y) := det(DXū(t, y)). (5.5)

Furthermore, one can write

Aū(t, y) := (DXū(t, y))−1 = J−1ū (t, y) adj(DXū(t, y))
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where adj(DXū) (the adjugate matrix) stands for the transpose of the comatrix of
DXū(t, y). Define the ‘twisted’ deformation tensor and divergence operator by

DA(z) := 1

2

(
Dz · A + T A · ∇z

)
and divA z := T A : ∇z = Dz : A,

(
A ∈ R

d × R
d)

.

As shown in, e.g., [10], in terms of the unknowns ā := ρ̄ − 1 and ū, System (1.1)
translates into

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Jū∂t ā + (1+ ā)Dū : adj(DXū) = 0 in R+ ×�,

ρ0∂t ū − 2 div
(
μ(1+ ā) adj(DXū) · DAū (ū)

)

−∇(
λ(1+ ā) divAū ū

)

+Tadj(DXū) · ∇(P(1+ ā)) = 0 in R+ ×�,

ū = 0 on R+ × ∂�,

(ā, ū)|t=0 = (a0, u0) in �.

(5.6)

As pointed out in the Appendix of [10] (for Rd but the proof in the bounded domain
case is similar), in our functional framework, there exists ε > 0 such that whenever

∫ T

0
‖∇u‖

Bd/p
p,1 (�)

dt ≤ ε, (5.7)

the Eulerian and Lagrangian formulations of the compressible Navier–Stokes equa-
tions are equivalent on [0, T ].

The present section aims at proving a global existence result for small (a0, u0) in
the case P ′(1) > 0. Note that, after rescaling the time and velocity according to (4.1),
System (5.6) may be rewritten exactly as (4.5) with

f := (1− Jū)∂t ā + Dū : (Id− adj(DXū))− āDū : adj(DXū),

g := −a0∂t ū + 2 div
(
μ̃(ā) adj(DXū) · DAū (ū)− μ̄D(ū)

)

+∇(
(̃λ(ā) divAū ū − λ̄ div ū)

)+ (1−�(ā))∇ā +�(ā)(Id− adj(DXū)) · ∇ā.

Above,we denoted μ̃(z) := μ(1+z), λ̃(z) := λ(1+z),�(z) := P ′(1+z), μ̄ := μ(1)
and λ̄ := λ(1).

In the critical regularity setting, if we restrict ourselves to small perturbations of
(0, 0), then one can expect f and g (that contain only at least quadratic terms) to be
even smaller. Hence, it looks reasonable to get a global existence result for (5.6) by
taking advantage of our estimates for the linearized system. From the linear theory,
we have the constraint d/p − 1 < 1/p (that is p > d − 1) and, when handling the
nonlinear terms, the additional conditions p < 2d and d ≥ 2 will pop up. In the
end, we will obtain the following result, that is the counterpart of Theorem 1.3, in
Lagrangian coordinates. Recall that Ep was defined by

Ep =W1,1(R+;Bd/p
p,1 (�)× Bd/p−1

p,1 (�;Rd )) ∩ L1(R+;Bd/p
p,1 (�)× Bd/p+1

p,1 (�;Rd )).
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Proposition 5.1 Let the assumptions of Theorem 1.3 be in force. Then, System (5.6)
admits a unique global solution (ā, ū) in the maximal regularity space Ep, and there
exist two positive constants c and C depending only on the parameters of the system,
on p, and on �, such that

‖ect (ā, ū)‖Ep ≤ C

(

‖a0‖Bd/p
p,1
+ ‖u0‖Bd/p−1

p,1

)

. (5.8)

Proof Throughout, we use the short notationA for Ap,1,d/p−1. The proof of existence
is based on the fixed point theorem in the space Ec

p defined by

Ec
p :=

{
(a, u) : R+ ×�→ R× R

d s.t. (etca, etcu) ∈ Ep
}

for the map � : (b̄, v̄) �→ (ā, ū), where (ā, ū) stands for the solution in Ec
p to the

linear system

d
dt

(
ā
ū

)

+ A
(

ā
ū

)

=
(

f̄
ḡ

)

(5.9)

supplemented with initial data (a0, u0) and

f̄ := (1− Jv̄)∂t b̄ + Dv̄ : (Id− adj(DX v̄))− b̄Dv̄ : adj(DX v̄),

ḡ := −a0∂t v̄ + 2 div
(
μ̃(b̄) adj(DX v̄) · DAv̄

(v̄)− μ̄D(v̄)
)

+∇(
(̃λ(b̄) divAv̄

v̄ − λ̄ div v̄)
)+ (1−�(b̄))∇b̄ +�(b̄)(Id− adj(DX v̄)) · ∇b̄.

We claim that there exists some R ∈ (0, 1) such that, whenever (b̄, v̄) belongs to
the closed ball B̄Ec

p
(0, R) := {(b, v) ∈ Ec

p : ‖(b, v)‖Ec
p
≤ R}, System (5.9) admits

a solution in B̄Ec
p
(0, R). Now, from Theorem 4.1, we gather that there exists some

c > 0 depending only on �, p, μ and μ′ such that

‖(ā, ū)‖Ec
p

� ‖(a0, u0)‖X d/p−1
p,1

+ ‖ect ( f̄ , ḡ)‖
L1(R+;X d/p−1

p,1 )
. (5.10)

Hence our problem reduces to proving suitable estimates for f̄ and ḡ. To this end, we
need the following two results proved in Appendix: ��
Proposition 5.2 The numerical product is continuous from Bs

p,1(�) × Bd/p
p,1 (�) to

Bs
p,1(�) whenever −min(d/p, d/p′) < s ≤ d/p.

Proposition 5.3 Let K : R→ R be a smooth function vanishing at 0, and p ∈ [1,∞).

Then, there exists C > 0 such that for all functions z belonging to Bd/p
p,1 (�), the

function K (z) belongs to Bd/p
p,1 (�) and satisfies

‖K (z)‖
Bd/p

p,1 (�)
≤ C

(

1+ ‖z‖
Bd/p

p,1 (�)

)k

‖z‖
Bd/p

p,1 (�)
with k := �d/p�.
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Furthermore (without assuming K (0) = 0), for all pairs (z1, z2) of functions in
Bd/p

p,1 (�), we have

‖K (z2)− K (z1)‖Bd/p
p,1 (�)

≤ C(1+ ‖z1‖Bd/p
p,1 (�)

+ ‖z2‖Bd/p
p,1 (�)

)k‖z2 − z1‖Bd/p
p,1 (�)

with k := �d/p�.

For notational simplicity, we omit from now on the dependency on � in the norms.
Assume that R has been chosen so small as

‖Dv̄‖
L1(R+;Bd/p

p,1 )
≤ ε � 1. (5.11)

In particular, owing to the embedding

Bd/p
p,1 (�) ↪→ L∞(�), (5.12)

the range of b̄ is included in a small neighborhood of 0 and the functions μ̃, λ̃, and �

may thus be extended smoothly to the whole R without changing the value of ḡ. This
allows to apply Proposition 5.3 whenever it is needed.

Now, decompose f̄ into

f̄ = (1− Jv̄)∂t b̄ + Dv̄ : (Id− adj(DX v̄))− b̄ Dv̄ : adj(DX v̄)

= f̄ 1 + f̄ 2 + f̄ 3.

Proposition 5.2 ensures that the space Bd/p
p,1 is stable under products. Hence

‖ f̄ 1‖
Bd/p

p,1
� ‖1− Jv̄‖Bd/p

p,1
‖∂t b̄‖Bd/p

p,1
,

‖ f̄ 2‖
Bd/p

p,1
� ‖Dv̄‖

Bd/p
p,1
‖ Id− adj(DX v̄)‖Bd/p

p,1
,

‖ f̄ 3‖
Bd/p

p,1
� ‖b̄‖

Bd/p
p,1
‖Dv̄‖

Bd/p
p,1

(

1+ ‖ Id− adj(DX v̄)‖Bd/p
p,1

)

.

In order to bound the right-hand sides (as well as the terms in ḡ below), we will
use repeatedly the following inequality that is based on Neumann expansion argu-
ments, (5.11) and on the fact that Bd/p

p,1 is stable under products (see details in the

Appendix of [10] for the Rd situation):

sup
t≥0

(

‖1− Jv̄(t)‖Bd/p
p,1
+‖Av̄(t)− Id ‖

Bd/p
p,1
+‖ adj(DX v̄(t))−Id ‖

Bd/p
p,1

)

�‖Dv̄‖
L1(R+;Bd/p

p,1 )
. (5.13)

123



Critical regularity issues for the compressible Navier–Stokes...

In the end, we get

‖ect f̄ ‖
L1(R+;Bd/p

p,1 )
�

(

‖ect∂t b̄‖L1(R+;Bd/p
p,1 )

+
(

1+ ‖Dv̄‖
L∞(R+;Bd/p

p,1 )

)

‖ect b̄‖
L∞(R+;Bd/p

p,1 )

+‖ect Dv̄‖
L1(R+;Bd/p

p,1 )

)

‖Dv̄‖
L1(R+;Bd/p

p,1 )
. (5.14)

Next, we have to bound in L1(R+;Bd/p−1
p,1 ) the five terms constituting ḡ, namely

ḡ1 := −a0∂t v̄, ḡ2 := 2 div
(
μ̃(b̄) adj(DX v̄ ) · DAv̄

(v̄)− μ̄D(v̄)
)
,

ḡ3 := ∇(
(̃λ(b̄) divAv̄

v̄ − λ̄ div v̄)
)
, ḡ4 := (1−�(b̄))∇b̄,

ḡ5 := �(b̄)(Id− adj(DX v̄ )) · ∇b̄.

For ḡ1, a direct application of Proposition 5.2 yields, provided p < 2d and d ≥ 2,

‖ect ḡ1‖
L1(R+;Bd/p−1

p,1 )
� ‖a0‖Bd/p

p,1
‖ect∂t v̄‖L1(R+;Bd/p−1

p,1 )
. (5.15)

Similarly, combining Propositions 5.2 and 5.3 yields

‖ect ḡ4‖
L1(R+;Bd/p−1

p,1 )
� ‖ect b̄‖

L∞(R+;Bd/p
p,1 )
‖∇b̄‖

L1(R+;Bd/p−1
p,1 )

and since (argue by extension)

∇ : Bs+1
p,1 (�) → Bs

p,1(�) is a bounded operator, (5.16)

one can conclude that

‖ect ḡ4‖
L1(R+;Bd/p−1

p,1 )
� ‖ect b̄‖

L∞(R+;Bd/p
p,1 )
‖b̄‖

L1(R+;Bd/p
p,1 )

. (5.17)

To handle ḡ2, we use the decomposition

ḡ2 = 2 div
(
(μ̃(b̄)− μ̄) adj(DX v̄) · DAv̄

(v̄)+ μ̄(adj(DX v̄)− Id) · DAv̄
(v̄)

+μ̄(DAv̄
(v̄)− D(v̄))

)
.

From the definition of DAv̄
, (5.11) and (5.13), we gather that

‖ect (DAv̄
(v̄)− D(v̄))‖

L1(R+;Bd/p
p,1 )

� ‖ect Dv̄‖
L1(R+;Bd/p

p,1 )
‖Dv̄‖

L1(R+;Bd/p
p,1 )

.

Hence, combining with Propositions 5.2 and 5.3 , (5.13) and (5.16), as (5.11) is ful-
filled, we get
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‖ect ḡ2‖
L1(R+;Bd/p−1

p,1 )

�
(

1+ ‖b̄‖
L∞(R+;Bd/p

p,1 )

)

‖ect Dv̄‖
L1(R+;Bd/p

p,1 )
‖Dv̄‖

L1(R+;Bd/p
p,1 )

.
(5.18)

Bounding ḡ3 is exactly the same. Finally, we have

ḡ5 = (
1+ (�(b̄)− 1)

)
(Id− adj(DX v̄)) · ∇b̄

and thus, combining Propositions 5.2 and 5.3 with (5.16), one ends up with

‖ect ḡ5‖
L1(R+;Bd/p−1

p,1 )

�
(

1+ ‖b̄‖
L∞(R+;Bd/p

p,1 )

)

‖Dv̄‖
L1(R+;Bd/p

p,1 )
‖ect b̄‖

L1(R+;Bd/p
p,1 )

.
(5.19)

Recall that the embedding W1,1(R+;Bd/p
p,1 ) ↪→ L∞(R+;Bd/p

p,1 ) allows to control the

L∞-norms of quantities involving b̄ by their norm in Ep. Now, plugging Inequali-
ties (5.14), (5.15), (5.17), (5.18), and (5.19) in (5.10) and using the definition of the
norm in Ep yields

‖ect (ā, ū)‖Ep ≤ C

(

‖(a0, u0)‖X d/p−1
p,1

+ (1+ ‖(b̄, v̄)‖Ep )‖(b̄, v̄)‖Ep‖ect (b̄, v̄)‖Ep

)

.

Remembering (1.6) and (b̄, v̄) ∈ B̄Ec
p
(0, R) with R ∈ (0, 1), one thus gets up to a

change of C,

‖(ā, ū)‖Ec
p
≤ C(α + R2).

Therefore, choosing R = 2Cα and assuming that 4Cα ≤ 1, one can conclude that
(ā, ū) ∈ B̄Ec

p
(0, R).

To complete the proof of existence of a fixed point for �, it is only a matter of
exhibiting its properties of contraction. So let us consider (b̄i , v̄i ) ∈ B̄Ec

p
(0, R) and

(āi , ūi ) := �(b̄i , v̄i ), i = 1, 2. Denote ( f̄i , ḡi ), i = 1, 2 the right-hand sides of
System (5.9) corresponding to (b̄i , v̄i ). Then, from Theorem 1.2, we gather

‖(δa, δu)‖Ec
p

� ‖ect (δ f , δg)‖
L1(R+;X d/p−1

p,1 )
, (5.20)

where δa := ā2 − ā1, δu := ū2 − ū1, δ f := f̄2 − f̄1, and δg := ḡ2 − ḡ1.
Let us use the short notation divi := divvi and so on and also introduce δb := b̄2−b̄1

and δv := v̄2 − v̄1. We see that

δ f 1 = (1− J1)∂tδb + (J1 − J2)∂t b̄2,

δ f 2 = Dv̄1 :
(
adj(DX1)− adj(DX2)

)+ Dδv : (Id− adj(DX2)),

δ f 3 = b̄1
(
Dv̄1 : (adj(DX1)− adj(DX2))− Dδv : adj(DX2)

)− δb Dv̄2 : adj(DX2).

123



Critical regularity issues for the compressible Navier–Stokes...

Since we have

A2(t)− A1(t) =
∞∑

k=1
(−1)k

k−1∑

j=0

(∫ t

0
Dv̄2 dτ

) j(∫ t

0
Dδv dτ

)(∫ t

0
Dv̄1 dτ

)k−1− j

and similar identities4 for J2(t)− J1(t) and adj(DX2(t))−adj(DX1(t)),we get thanks
to the stability of Bd/p

p,1 under multiplication and to (5.11) (remember that R is small)
that for all t ≥ 0,

‖A2(t)− A1(t)‖Bd/p
p,1
+ ‖ adj(DX2(t))− adj(DX1(t))‖Bd/p

p,1

+‖J±12 (t)− J±11 (t)‖
Bd/p

p,1
� ‖Dδv‖

L1(R+;Bd/p
p,1 )

. (5.21)

Hence, using once more the stability of Bd/p
p,1 under multiplication eventually yields

‖ectδ f ‖
L1(R+;Bd/p

p,1 )

�
(

‖Dv̄1‖L1(R+;Bd/p
p,1 )
+ ‖Dv̄2‖L1(R+;Bd/p

p,1 )
+ ‖∂t b̄2‖L1(R+;Bd/p

p,1 )

+‖b̄1‖L∞(R+;Bd/p
p,1 )

)

·
(

‖ect Dδv‖
L1(R+;Bd/p

p,1 )
+ ‖ect∂tδb‖L1(R+;Bd/p

p,1 )

)

.

(5.22)

We compute:

δg1 := −a0∂tδv,

δg2 := 2 div
(
(μ̃(b̄2)− μ̃(b̄1)) adj(DX2) · DA2(v̄2)

+ μ̃(b̄1)
((
adj(DX1)− Id

) · (DA2(v̄2)− DA1(v̄1)
)

+ (
adj(DX2)− adj(DX1)

) · DA2(v2)
)

+ (μ̃(b̄1)− μ̄)
(
DA2(v̄2)− DA1(v̄1)

)+ μ̄
(
DA2(v̄2)− DA1(v̄1)− D(δv)

))
,

δg3 := ∇
((

λ̃(b̄2)− λ̃(b̄1)
)
divA2 v̄2 +

(
λ̃(b̄1)− λ̄

)((
divA2 v̄2 − divA2 v̄1

)

+ (
divA2 v̄1 − divA1 v̄1

))+ λ̄
(
divA2 v̄2 − divA1 v̄1 − div δv

))
,

δg4 := (1−�(b̄1))∇δb + (
�(b̄1)−�(b̄2)

)∇b̄2,

δg5 := �(b̄1)(Id− adj(DX1)) · ∇δb +�(b̄1)(adj(DX1)− adj(DX2)) · ∇b̄2

+ (�(b̄2)−�(b̄1))(Id− adj(DX2)) · ∇b̄2.

4 More details may be found in the appendix of [10].
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It is straightforward that

‖ectδg1‖
Bd/p−1

p,1
≤ C‖a0‖Bd/p

p,1
‖ect∂tδv‖Bd/p−1

p,1
. (5.23)

Next, from Propositions 5.2 and 5.3, (5.16) and Inequality (5.21), we easily get for
i = 2, 3, 4, 5,

‖ectδgi‖
L1(R+;Bd/p−1

p,1 )

�
(
‖b̄2,∇v̄1,∇v̄2‖L1(R+;Bd/p

p,1 )
+ ‖b̄1‖L∞(R+;Bd/p

p,1 )

)
‖ectδb‖

L1(R+;Bd/p
p,1 )

+
(
‖b̄1, b̄2,∇v̄1,∇v̄2‖L1(R+;Bd/p

p,1 )
+ ‖b̄1‖L∞(R+;Bd/p

p,1 )

)
‖ectδb‖

L∞(R+;Bd/p
p,1 )

+
(
‖b̄1, b̄2,∇v̄1,∇v̄2‖L1(R+;Bd/p

p,1 )
+ ‖b̄1‖L∞(R+;Bd/p

p,1 )

)
‖ect∇δv‖

L1(R+;Bd/p
p,1 )

.

Note again, that the embeddingW1,1(R+;Bd/p
p,1 ) ↪→ L∞(R+;Bd/p

p,1 ) allows to control

the L∞-norms of quantities involving b̄1 or b̄2 by their norm in Ep. Altogether, we
conclude that

‖(δa, δu)‖Ec
p
≤ C(R + α)‖(δb, δv)‖Ec

p
.

Since we chose R of order α, we see that, indeed, the map � is contracting provided
α is small enough. Then, Banach fixed point theorem ensures that � admits a fixed
point in B̄Ec

p
(0, R). Hence, we have a solution for (5.6) with the desired property.

In order to prove the uniqueness, consider two solutions (ā1, ū1) and (ā2, ū2) in
Ec

p of (5.6) supplemented with the same data (ρ0, u0). Then, we have (āi , ūi ) =
�((āi , ūi )), i = 1, 2, and one can repeat the previous computation on any interval
[0, T ] such that

max

(∫ T

0
‖∇ū1‖Bd/p

p,1
dt,

∫ T

0
‖∇ū2‖Bd/p

p,1
dt

)

≤ ε � 1.

On such an interval, we obtain (with obvious notation)

‖(δa, δu)‖Ep(T ) ≤ C
(‖(ā1, ū1)‖Ep(T ) + ‖(δa, δu)‖Ep(T )

)‖(δa, δu)‖Ep(T ).

Since the function t �→ ‖(δa, δu)‖Ep(t) is continuous and vanishes at 0 and because one
can assume with no loss of generality that (ā1, ū1) is the small solution constructed
just above, we get uniqueness on [0, T ]. Then, using a standard bootstrap argument
yields uniqueness for all time. ��
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6 Local existence for general data with no vacuum

For achieving the local well-posedness of the compressible Navier–Stokes equations,
there is no need to take the linear coupling of the density and velocity equations
into consideration, and the sign of P ′ does not matter. Actually, in the Lagrangian
formulation (5.6), it is enough to solve the velocity equation, since Jū ρ̄ = ρ0 and
Jū maybe computed from ū.The pressuremay be seen as a source term, and combining
Corollary 3.9 with s = d/p − 1 and q = 1, with suitable nonlinear estimates allows
to solve (5.6) locally in the critical regularity setting.

Clearly, a basic perturbative method relying on our reference linear system with
constant coefficients is bound to fail if the density variations are too large. However,
since, in our functional setting, ρ0 has to be uniformly continuous in�, one can expect
that difficulty to be challengeable if using a suitable localization argument.

Here, for expository purpose, we first present the proof of the local well-posedness
in the easier case where ρ0 is close to some positive constant. Then, we explain what
has to be modified to tackle the general case where one just assumes that it is bounded
away from 0.

6.1 The case of small variations of density

Our goal here is to establish the following result that implies Theorem 1.1 in the case
of small density variations.

Proposition 6.1 Let the assumptions of Theorem1.1be in force, and assume in addition
that, for a small enough α > 0, we have

‖a0‖Bd/p
p,1 (�)

≤ α. (6.1)

Then, System (5.6) admits a unique solution (ā, ū) on some interval [0, T ], such that
1+ ā := J−1ū ρ0 is bounded away from zero on [0, T ] ×� and

(ā, ū) ∈W1,1(0, T ;Bd/p
p,1 (�)× Bd/p−1

p,1 (�;Rd))

∩L1(0, T ;Bd/p
p,1 (�)× Bd/p−1

p,1 (�;Rd)).

Proof Throughout, we use the short notation L for Lp,1,d/p−1. Since the variations of
density are small, one can look at the velocity equation as follows:

∂t ū + Lū = −a0∂t ū + 2 div
(
μ̃(ā) adj(DXū) · DAū (ū)− μ̄D(ū)

)

+∇(
(̃λ(ā) divAū ū − λ̄ div ū)

)− T adj(DXū) · ∇(P(1+ ā))

with ā given by

ā = J−1ū ρ0 − 1 = (J−1ū − 1)(1+ a0)+ a0.
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To proceed, we introduce for T > 0, the space

Fp(T ) :=W1,1
(
0, T ;Bd/p−1

p,1 (�;Rd)
)
∩ L1

(
0, T ;Bd/p−1

p,1 (�;Rd)
)

.

We consider the map � : v̄ �→ ū where ū is the solution to

∂t ū + Lū = h̄ in (0, T )×� and u|t=0 = u0 in �,

with h̄ = h̄1 + h̄2 + h̄3 + h̄4 and

h̄1 := −a0∂t v̄, h̄2 := 2 div
(
μ̃(b̄) adj(DX v̄ ) · DAv̄

(v̄)− μ̄D(v̄)
)

h̄3 := ∇(
(̃λ(b̄) divAv̄

v̄ − λ̄ div v̄)
)
, h̄4 := −T adj(DX v̄ ) · ∇(P(1+ b̄)).

Above, the function b̄ is defined by

b̄ = J−1v̄ ρ0 − 1 = (J−1v̄ − 1)(1+ a0)+ a0. (6.2)

We claim that there exists α > 0 in (6.1) such that for small enough R, T > 0, the
function� is a self-map on B̄Fp(T )(uL , R),where uL := e−tLu0. To justify our claim,
we set ṽ := v̄ − uL and look for ū under the form ū := uL + ũ with ũ satisfying

∂t ũ + Lũ = h̄ in (0, T )×� and ũ|t=0 = 0 in �.

Consequently, Corollary 3.9 yields some C > 0 independent of T > 0 such that

‖ũ‖Fp(T ) ≤ C‖h̄‖
L1(0,T ;Bd/p−1

p,1 )
and ‖uL‖Fp(T ) ≤ C‖u0‖Bd/p−1

p,1
. (6.3)

By Lebesgue’s dominated convergence theorem, ‖∇uL‖L1(0,T ;Bd/p
p,1 )

converges to 0 as

T → 0. Hence, for any R > 0, one can find T > 0 so that

∫ T

0
‖∇uL‖Bd/p

p,1
dt ≤ R

2
. (6.4)

Next, we have to bound h̄1 to h̄4 in L1(0, T ;Bd/p−1
p,1 ). We shall use repeatedly Propo-

sition 5.2 with s ∈ {d/p, d/p − 1} and Proposition 5.3, as well as the local-in-time
version of (5.13). First, it is obvious that

‖h̄1‖
L1(0,T ;Bd/p−1

p,1 )
� ‖a0‖Bd/p

p,1
‖∂t v̄‖L1(0,T ;Bd/p−1

p,1 )

� αR.

In order to bound the next terms, we shall use the fact that, owing to the decomposition
of b̄ in (6.2), the product and composition results in Proposition 5.2 and 5.3 , and the
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local-in-time version of (5.13), we have for all smooth functions k vanishing at 0 and
t ∈ [0, T ],

‖k(b̄(t))‖
Bd/p

p,1
� ‖b̄(t)‖

Bd/p
p,1

� ‖a0‖Bd/p
p,1
+

(

1+ ‖a0‖Bd/p
p,1

)

‖J−1v̄ (t)− 1‖
Bd/p

p,1

� ‖a0‖Bd/p
p,1
+

(

1+ ‖a0‖Bd/p
p,1

) ∫ t

0
‖∇v̄‖

Bd/p
p,1

dτ

� α + R.

To bound h̄2, we use the decomposition

μ̃(b̄) adj(DX v̄ ) · DAv̄
(v̄)− μ̄D(v̄)

= (μ̃(b̄)− μ̄) adj(DX v̄ ) · DAv̄
(v̄)+ μ̄(adj(DX v̄ )− Id) · DAv̄

(v̄)+ μ̄(DAv̄
(v̄)− D(v̄)).

Hence, using the aforementioned results and also (5.16), we find that for all t ∈ [0, T ],

‖h̄2‖
Bd/p−1

p,1
� ‖b̄‖

Bd/p
p,1
‖ adj(DX v̄) · DAv̄

(v̄)‖
Bd/p

p,1

+‖(adj(DX v̄)− Id) · DAv̄
(v̄)‖

Bd/p
p,1
+ ‖DAv̄

(v̄)− D(v̄)‖
Bd/p

p,1
,

whence we have

‖h̄2‖
L1(0,T ;Bd/p−1

p,1 )
� ‖b̄‖

L∞(0,T ;Bd/p
p,1 )
‖∇v̄‖

L1(0,T ;Bd/p
p,1 )
+ ‖∇v̄‖2

L1(0,T ;Bd/p
p,1 )

� R (α + R).

Bounding h̄3 is clearly the same. Finally, to handle h̄4 (that is, the pressure term), we
assume with no loss of generality that P(1) = 0, and use the decomposition

h̄4 = (Id−T adj(DX v̄)) · ∇(P(1+ b̄))−∇(P(1+ b̄)).

Hence

‖h̄4‖
L1(0,T ;Bd/p−1

p,1 )
�

(

1+ ‖ Id−T adj(DX v̄)‖L∞(0,T ;Bd/p
p,1 )

)

‖P(1+ b̄)‖
L1(0,T ;Bd/p

p,1 )

�
(

1+ ‖∇v̄‖
L1(0,T ;Bd/p

p,1 )

)

‖b̄‖
L1(0,T ;Bd/p

p,1 )

� T (α + R).

Reverting to (6.3), we end up with

‖ũ‖Fp(T ) ≤ C(α + R)(T + R).
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Consequently, if one takes R = α and assumes, in addition to (6.4), that T ≤ α, we
obtain

‖ũ‖Fp(T ) ≤ 4Cα2.

One can thus conclude that � is a self-map on B̄Fp(T )(uL , R) provided 8Cα ≤ 1.
To complete the proof of existence of a fixed point for �, one has to exhibit its

properties of contraction. Consider v̄i ∈ B̄Fp(T )(uL , R) and ūi := �v̄i , i = 1, 2,with
R and T as above. Then, according to Corollary 3.9, we have

‖δu‖Fp(T ) � ‖δh‖
L1(0,T ;Bd/p−1

p,1 )
,

where δu := ū2 − ū1, and so on. We see that δu fulfills (where δg2 and δg3 have been
defined just above (5.23)):

∂tδu + Lδu = −a0∂tδv + δh2 + δh3 − T adj(DX1) · ∇(P(1+ b̄2)− P(1+ b̄1))

−T(adj(DX2)− adj(DX1)) · ∇(P(1+ b̄2)). (6.5)

Then, one has to perform always the same type of computations as just above and in
the previous section. The details are omitted. One ends up with

‖δu‖Fp(T ) ≤ C R‖δv‖Fp(T ),

which, provided C R < 1, allows to complete the proof of a fixed point for �, and
thus of a solution for (5.6), in the desired regularity space.

Proving uniqueness is similar as for the global existence theorem, except that we
now use (6.5) with v̄ = ū instead of the full system for (ā, ū). In particular, there is
no need to assume that the velocity of one of the solutions is small. Again, the details
are left to the reader. ��

6.2 The case of large variations of density

This part is devoted to the proof of Theorem 1.1 in full generality. The main issue is
to adapt Corollary 3.9 to the following system:

⎧
⎪⎨

⎪⎩

ρ∂t u − 2 div(μD(u))−∇(λ div u) = f in (0, T )×�,

u|∂� = 0 on (0, T )× ∂�,

u|t=0 = u0 in �,

(6.6)

where ρ = ρ(x), λ = λ(x), and μ = μ(x) are given functions in Bd/p
p,1 (�), such that

inf
x∈�

ρ(x) > 0, inf
x∈�

μ(x) > 0, and inf
x∈�

(λ+ 2μ)(x) > 0. (6.7)
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Proposition 6.2 Let T > 0. Let 1 < p < ∞ and −1 + 1/p < s < 1/p with
s ≤ d/p−1. Take u0 inBs

p,1(�;Rd) and f inL1(0, T ;Bs
p,1(�;Rd)). Assuming (6.7),

System (6.6) admits a unique solution u ∈ Cb([0, T ];Bs
p,1(�;Rd)) in the space

u ∈W1,1(0, T ;Bs
p,1(�;Rd)) ∩ L1(0, T ;Bs+2

p,1 (�;Rd))

and there exists a constant C > 0 depending only on ρ, λ, μ, p, s and �, such that

sup
t∈[0,T ]

‖u(t)‖Bs
p,1
+

∫ T

0

(
‖∂t u‖Bs

p,1
+ ‖u‖Bs+2

p,1

)
dt

≤ C

(

‖u0‖Bs
p,1
+

∫ T

0
‖ f ‖Bs

p,1
dt

)

. (6.8)

Proof The key idea is that the embedding Bd/p
p,1 (�) ↪→ C(�) implies that the coeffi-

cients of System (6.6) are uniformly continuous on �, hence have small variations on
small balls, so that one can take advantage of Corollary 3.9, after localization of the
system.

To start with, as in [9], we introduce a covering (Bk)1≤k≤K of � by balls of radius
δ ∈ (0, 1) and center xk ∈ �,with finitemultiplicity (independent of δ), and a partition
of unity (φk)1≤k≤K of smooth functions on Rd such that:

• ∑K
k=1 φk ≡ 1 in �;

• ‖∇αφk‖L∞(Rd ) ≤ Cαδ−α, α ∈ N;
• the support of φk is included in Bk .

This covering may be constructed from a smooth function θ supported in the unit ball,
such that

∑

k∈Zd

θ(x − k) = 1 on R
d .

It is just a matter of setting φk(x) := θ(δ−1(x − δk)) with xk = δk, then relabelling
the family (φk), keeping only indices for which Suppφk ∩ � is nonempty. Clearly,
combining the bounds of ∇αφk with the fact that Suppφk ⊂ Bk ensures that

‖∇αφk‖Lp(Rd ) ≤ C ′αδ
d
p−α

, α ∈ N

and thus, by interpolation,

‖φk‖Bd/p
p,1 (Rd )

≤ C and ‖∇φk‖Bd/p
p,1 (Rd )

≤ Cδ−1. (6.9)

We also need another two families (φ̌k)1≤k≤K and (φ̃k)1≤k≤K such that φ̌k ≡ 1 on the
support of φk and φ̃k ≡ 1 on the support of φ̌k, with φ̌k and φ̃k supported in slightly
larger balls than φk, and such that ‖∇αφ̌k‖L∞ ≤ Cαδ−α and ‖∇αφ̃k‖L∞ ≤ Cαδ−α

hold.
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Let ρk := ρ(xk), uk := uφk, fk = ρk f , λk = λ(xk), and μk = μ(xk). Then, we
observe that uk satisfies:

⎧
⎪⎨

⎪⎩

ρk∂t uk − μk�uk − (λk + μk)∇ div uk = Fk in (0, T )×�,

uk |∂� = 0 on (0, T )× ∂�,

uk |t=0 = u0,k in �,

(6.10)

with uk,0 := u0φk and

Fk := fk + (ρk − ρ)∂t uk + 2 div
(
φk(μ− μk)D(u)

)+ ∇(
φk(λ− λk) div u

)

−2μD(u) · ∇φk − λ div u ∇φk − μk div
(
u ⊗∇φk + ∇φk ⊗ u

)− λk∇(u · ∇φk).

Therefore, in light of Corollary 3.9 and denoting μ̃k := μk/ρk, we have for all
t ∈ [0, T ],

‖uk(t)‖Bs
p,1
+

∫ t

0

(
‖∂t uk‖Bs

p,1
+ μ̃k‖uk‖Bs+2

p,1

)
dτ

≤ C

(

‖uk(0)‖Bs
p,1
+ ρ−1k

∫ t

0
‖Fk‖Bs

p,1
dτ

)

. (6.11)

Note that our ellipticity condition (6.7) ensures that C is independent of k.

Throughout, we fix some ε > 0 and take δ so that for all k ∈ {1, . . . , K },

max
(
‖1− ρ/ρk‖L∞(Bk ), μ

−1
k ‖μ− μk‖L∞(Bk ), μ

−1
k ‖λ− λk‖L∞(Bk )

)
≤ ε. (6.12)

Actually, aswe have to perform estimates inBesov spaces,we need a stronger property,
namely

max

(

‖φ̃k(1−ρ/ρk)‖Bd/p
p,1 (�)

, μ−1k ‖φ̃k(μ−μk)‖Bd/p
p,1 (�)

, μ−1k ‖φ̃k(λ−λk)‖Bd/p
p,1 (�)

)

≤ε, (6.13)

which is proved at the end of the Appendix.
Let us now estimate all the terms of Fk . We have thanks to Proposition 5.2

and (6.13),

‖(ρk − ρ)∂t uk‖Bs
p,1(�) ≤ C‖φ̃k(ρk − ρ)‖

Bd/p
p,1 (�)

‖∂t uk‖Bs
p,1(�)

≤ Cερk‖∂t uk‖Bs
p,1(�),
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and, using also (6.9), with the notation ũk := φ̃ku,

‖ div(φk(μ− μk)D(u)
)‖Bs

p,1(�) � ‖φ̃k(μ− μk)‖
Bd/p

p,1 (�)
‖φk∇u‖Bs+1

p,1 (�)

≤ Cεμk

(

‖∇(φku)‖Bs+1
p,1 (�)

+ ‖∇φk ⊗ φ̃ku‖Bs+1
p,1 (�)

)

≤ Cεμk

(

‖uk‖Bs+2
p,1 (�)

+ δ−1‖ũk‖Bs+1
p,1 (�)

)

.

The next termmay be estimated in the same way. In order to estimate the termμD(u) ·
∇φk, let us set ǔk := φ̌ku. Applying Proposition 5.2 and (6.9) yields

‖μD(u) · ∇φk‖Bs
p,1(�) � ‖μ‖

Bd/p
p,1 (�)

‖D(u) · ∇φk‖Bs
p,1(�)

� ‖μ‖
Bd/p

p,1 (�)
‖∇φk‖Bd/p

p,1 (�)
‖φ̌k D(u)‖Bs

p,1(�)

� δ−1‖μ‖
Bd/p

p,1 (�)

(
‖∇(φ̌ku)‖Bs

p,1(�) + ‖φ̃ku ⊗∇φ̌k‖Bs
p,1(�)

)

� δ−1‖μ‖
Bd/p

p,1 (�)

(
‖ǔk‖Bs+1

p,1 (�)
+ δ−1‖ũk‖Bs

p,1(�)

)
.

A similar estimate holds for λ div u ∇φk . Finally,

‖∇(u · ∇φk)‖Bs
p,1(�) � ‖uφ̃k · ∇φk‖Bs+1

p,1 (�)

� ‖∇φk‖Bd/p
p,1 (�)

‖ũk‖Bs+1
p,1 (�)

� δ−1‖ũk‖Bs+1
p,1 (�)

,

and the same holds for div
(
u ⊗∇φk +∇φk ⊗ u

)
.

Let us denote ζ ∗ := 1+‖λ/μ‖L∞ . Then, altogether, reverting to (6.11) and assum-
ing that ε has been chosen small enough (so as to absorb the terms with ∂t uk and
‖uk‖Bs+2

p,1 (�)
), we end up for all k ∈ {1, . . . , K } with

‖uk(t)‖Bs
p,1
+

∫ t

0

(

‖∂t uk‖Bs
p,1
+ μ̃k‖uk‖Bs+2

p,1

)

dτ ≤ C

(

‖uk(0)‖Bs
p,1
+

∫ t

0
‖ fk‖Bs

p,1
dτ

+μ̃kδ−1
∫ t

0

(

ζ∗‖ũk‖Bs+1
p,1
+ μ−1k ‖(λ, μ)‖

Bd/p
p,1
‖ǔk‖Bs+1

p,1

)

dτ

+ρ−1k δ−2
∫ t

0
‖(λ, μ)‖

Bd/p
p,1
‖ũk‖Bs

p,1
dτ

)

. (6.14)

Let us introduce the notation:

‖z‖
Bs,ψ

p,1
:=

K∑

k=1
‖ψk z‖Bs

p,1(�) for ψ ∈ {φ, φ̌, φ̃}.
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Then, summing up on k ∈ {1, . . . , K } in (6.14) and denoting μ̃∗ := inf� μ/ρ,

μ̃∗ := sup� μ/ρ and ρ∗ := inf� ρ, we conclude that

‖u(t)‖Bs,φ
p,1
+

∫ t

0

(

‖∂t u‖Bs,φ
p,1
+ μ̃∗‖u‖Bs+2,φ

p,1

)

dτ

≤ C

(

‖u0‖Bs,φ
p,1
+

∫ t

0
‖ f ‖Bs,φ

p,1
dτ

+ δ−1μ̃∗ζ ∗
∫ t

0
‖u‖

Bs+1,φ̃
p,1

dτ

+ δ−1ρ−1∗
∫ t

0
‖(λ, μ)‖

Bd/p
p,1

(‖u‖
Bs+1,φ̌

p,1

+ δ−1‖u‖
Bs,φ̃

p,1

)
dτ

)

.

(6.15)

Since the properties of the support of the families (φ̃k) and (φ̌k) guarantee that

φ̃k =
∑

k′∼k

φ̃kφk′ and φ̌k =
∑

k′∼k

φ̌kφk′,

we may write for all −min(d/p, d/p′) < σ ≤ d/p, owing to Proposition 5.2 and
Inequality (6.9),

‖ũk‖Bσ
p,1
≤ C

∑

k′∼k

‖φ̃k‖Bd/p
p,1
‖uk′ ‖Bσ

p,1
≤ C

∑

k′∼k

‖uk′ ‖Bσ
p,1

.

A similar property is true for ǔk . Hence

‖u‖
Bσ,φ̃

p,1
� ‖u‖Bσ,φ

p,1
and ‖u‖

Bσ,φ̌
p,1

� ‖u‖Bσ,φ
p,1

.

This means that φ̃ and φ̌ may be replaced by φ in the right-hand side of (6.15) (up to
a change of C of course). Now, the terms of (6.15) involving the index s + 1 may be
bounded by interpolation as follows for all A > 0 and ε > 0 :

A‖u‖
Bs+1,φ

p,1
≤ C

∑

k

A‖uk‖1/2Bs
p,1
‖uk‖1/2Bs+2

p,1

≤ εμ̃∗
∑

k

‖uk‖Bs+2
p,1
+ Cε−1μ̃−1∗ A2

∑

k

‖uk‖Bs
p,1

= εμ̃∗‖u‖Bs+2,φ
p,1

+ Cε−1μ̃−1∗ A2‖u‖Bs,φ
p,1

,

with C independent of A and ε. Hence, taking either A = Cδ−1μ̃∗ζ ∗ or A =
Cδ−1ρ−1∗ ‖(λ, μ)‖

Bd/p
p,1

, Inequality (6.15) entails (observing that the last term of it

can be dominated by the other ones resulting from the computations just above),
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‖u(t)‖
Bs,φ

p,1
+

∫ t

0

(

‖∂t u‖
Bs,φ

p,1
+ μ̃∗‖u‖Bs+2,φ

p,1

)

dτ

≤ C

(

‖u0‖Bs,φ
p,1
+

∫ t

0
‖ f ‖

Bs,φ
p,1

dτ + ρ−1∗ μ̃−1∗ δ−2
(

ρ∗(ζ∗)2(μ̃∗)2 + ρ−1∗ ‖(λ, μ)‖2
Bd/p

p,1

)

×
∫ t

0
‖u‖

Bs,φ
p,1

dτ

)

.

Since, ρ∗μ̃∗ ≤ μ∗, and thus ρ∗μ̃∗ � ‖μ‖
Bd/p

p,1
, applying Gronwall lemma eventually

leads to

‖u(t)‖Bs,φ
p,1
+

∫ t

0

(‖∂t u‖Bs,φ
p,1
+ μ̃∗‖u‖Bs+2,φ

p,1

)
dτ

≤ C

(

‖u0‖Bs,φ
p,1
+

∫ t

0
‖ f ‖Bs,φ

p,1
dτ

)

exp
(

Cμ̃−1∗ δ−2ρ−2∗ (ζ ∗)2‖(λ, μ)‖2
Bd/p

p,1
t
)
.

(6.16)

Since the covering is finite, the norms ‖ · ‖Bσ,φ
p,1

are actually equivalent to the Besov

norms ‖ · ‖Bσ
p,1(�) (with bounds depending on K of course), which eventually ensures

the desired inequality (6.8).
In order to prove the existenceof a solution to (6.6) in the spaceFs

p(T ) corresponding
to the statement of Proposition 6.2, one may adapt the continuity method used in [9,
Thm. 2.2].

For all θ ∈ [0, 1],we define the linear operatorLθ acting on time-dependent vector
fields u by:

Lθ u := ρθ∂t u − 2 div(μθ D(u))−∇(λθ div u)

with ρθ := (1− θ)+ θρ, μθ := 1− θ + θμ and λθ := θλ. Note that the ellipticity
condition (6.7) is ensured uniformly for θ ∈ [0, 1] and that the value of δ and ofC may
be chosen independent of θ in Inequality (6.16) (hence Inequality (6.8) corresponding
to System (6.6) with coefficients ρθ , μθ and λθ is uniform with respect to θ as well).

We denote by E the set of parameters θ ∈ [0, 1] such that for all data u0 and f
satisfying the hypotheses of Proposition 6.2, System (6.6) with coefficients ρθ , μθ

and λθ has a solution in Fs
p(T ). Corollary 3.9 guarantees that 0 is in E . Now consider

any θ0 ∈ E and data u0, f . Solving

Lθ u = f , u|∂� = 0, u|t=0 = u0

in Fs
p(T ) amounts to finding a fixed point in Fs

p(T ) for the map � : v �→ u such that
u is a solution in Fs

p(T ) of

Lθ0u = f + (Lθ0 − Lθ )v, u|∂� = 0, u|t=0 = u0. (6.17)
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Obviously, we have

(Lθ0 − Lθ )v = (θ − θ0)
(
(1− ρ)∂tv + 2 div

(
(μ− 1)D(v)

)+ div
(
λ div v

))
.

Hence, using Proposition 5.2 eventually leads to

‖(Lθ0 − Lθ )v‖Bs
p,1
≤ C |θ − θ0|

(‖∂tv‖Bs
p,1
+ ‖v‖Bs+2

p,1

)
.

The constant C depends of course on ρ, λ andμ, but is independent of θ and θ0.Now,
since θ0 ∈ E, equation (6.17) is solvable in Fs

p(T ) and estimate (6.8) combined with
the above computation gives us

‖�(v)‖Fs
p(T ) ≤ C

(

‖u0‖Bs
p,1
+

∫ T

0
‖ f ‖Bs

p,1
dt +

∫ T

0
‖(Lθ0 − Lθ )v‖Bs

p,1
dt

)

≤ C
(
‖u0‖Bs

p,1
+ |θ − θ0|‖v‖Fs

p(T )

)
.

The same computation leads for all pairs (v1, v2) in Fs
p(T ) to

‖�(v2)−�(v1)‖Fs
p(T ) ≤ C |θ − θ0| ‖v2 − v1‖Fs

p(T ).

Hence, setting ε = 1/2C, one can conclude by the contracting mapping argument
that � admits a fixed point u in Fs

p(T ) whenever |θ − θ0| ≤ ε. Since ε is independent
of θ0, we deduce that 1 is in the set E, which completes the proof of existence. ��
Proof of Theorem 1.1 As in the previous parts, we shall rather prove the result in
Lagrangian coordinates. Having Proposition 6.2 at hand, it suffices to modify the
fixed point map � introduced a couple of pages ago accordingly. More precisely, we
observe that we want the Lagrangian velocity ū to satisfy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lρ0 ū = 2 div
(
μ(ρ̄ū) adj(DXū) · DAū (ū)− μ0D(ū)

)+∇(
λ(ρū) divAū ū − λ0 div ū

)

− T adj(DXū) · ∇(P(ρ̄ū)),

ū|∂� = 0,

ū|t=0 = u0

with λ0 := λ(ρ0), μ0 := μ(ρ0), Lρ0 ū := ρ0∂t ū − 2 div(μ0D(ū))−∇(λ0 div ū) and
ρ̄ū := ρ0 J−1ū .

Define � : Fp(T ) → Fp(T ) to be the map v̄ �→ ū with ū the solution in Fp(T )

provided by Proposition 6.2 that corresponds to the right-hand side of the above system
with v̄ instead of ū. Denote by uρ0

L the solution to Lρ0u = 0 with initial data u0 given
by Proposition 6.2.

Then, by following the proof of Proposition 6.1, it is not difficult to check that� sat-
isfies the conditions of the contraction mapping theorem on some ball B̄Fp(T )(u

ρ0
L , R)

provided R and T are small enough. In fact, the main changes are that the term corre-
sponding to h̄1 is no longer present (hence we do not need to assume ρ0 to be close to
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some constant) and that one has to bound in Bd/p
p,1 terms like μ(ρ̄v̄) − μ0. However,

owing to Propositions 5.2 and 5.3, and to Inequality (5.13), we may write

‖μ(ρ̄v̄(t))− μ0‖Bd/p
p,1

� ‖ρ̄v̄(t)− ρ0‖Bd/p
p,1

� ‖ρ0‖Bd/p
p,1
‖J−1v̄ (t)− 1‖

Bd/p
p,1

� ‖ρ0‖Bd/p
p,1

∫ t

0
‖Dv̄‖

Bd/p
p,1

dτ

hence the proof may be easily completed. The details are left to the reader. ��
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Appendix A. Results on the Lamé operator

As a first, for the convenience of the reader, we recall the proof of regularity estimates
in Sobolev spaces for the Lamé operator.

Proof of Proposition 3.3 The first step is to prove that there exists a constant C > 0
such that all solutions u ∈Wk+2,p(�;Cd) to the equation

{
−μ�u − z∇ div u = f in �

u = 0 on ∂�

for some f ∈Wk,p(�;Cd) satisfy

‖u‖Wk+2,p(�;Cd ) ≤ C
(‖ f ‖Wk,p(�;Cd ) + ‖u‖Lp(�;Cd )

)
. (A.1)

In dimension d = 1, the result readily follows by integration. In themulti-dimensional
case, it is a consequence of the theory of Agmon, Douglis, and Nirenberg (more
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precisely [1, Thm. 10.5]). To verify the assumptions therein, define the symbol of L
by

S(ξ) := μ|ξ |2 Id+zξ ⊗ ξ (ξ ∈ R
d). ��

Lemma A.1 Let μ > 0 and z ∈ C with μ+ Re(z) > 0. Let δ ∈ (0, 1) be any number
that satisfies δμ+Re(z) ≥ 0. Then, for each ξ ∈ R

d the determinant of S(ξ) satisfies

μd(1− δ)d2−
d
2 |ξ |2d ≤ |det(S(ξ))| ≤ (

μ+ |z|)d |ξ |2d .

Proof The result for z = 0 being obvious, assume from now on that z �= 0. Let M
denote the matrix M := ξ ⊗ ξ . Because M is real and symmetric, S(ξ) is diagonaliz-
able. Let η ∈ C

d be a unit eigenvector to S(ξ) with corresponding eigenvalue α ∈ C.
Then,

αη = S(ξ)η = μ|ξ |2η + zMη, hence z−1(α − μ|ξ |2)η = Mη.

Hence, η is an eigenvector to M with corresponding eigenvalue z−1(α−μ|ξ |2). Since
M is real and symmetric, η and z−1(α − μ|ξ |2) must be real. Thus, keeping in mind
that |η| = 1, we get

α = μ|ξ |2 + zMη · η = μ|ξ |2 + z[ξ · η]2.

Let δ ∈ (0, 1) be such that δμ + Re(z) ≥ 0 holds. This combined with μ > 0 and
some trigonometry yields

|α| =
∣
∣
∣μ

(|ξ |2 − δ[ξ · η]2)+ (δμ+ z)[ξ · η]2
∣
∣
∣

≥ 1√
2

(
μ(1− δ)|ξ |2 + (δμ+ Re(z))[ξ · η]2)

≥ μ(1− δ)√
2

|ξ |2.

Consequently, the determinant of S(ξ) satisfies

|det(S(ξ))| ≥ μd(1− δ)d2−
d
2 |ξ |2d .

The other inequality follows from

|α| ≤ μ|ξ |2 + ∣
∣z[ξ · η]2∣∣ ≤ (

μ+ |z|)|ξ |2. ��
If d ≥ 3, then Lemma A.1 implies that the operator −μ� − z∇ div is elliptic in

the sense of Agmon, Douglis, and Nirenberg, and we get (A.1). For d = 2, one needs
to verify the following supplementary condition.
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Lemma A.2 Let d = 2 and let ξ, ξ ′ ∈ R
2 be linearly independent. Then, det(S(ξ +

τξ ′)) regarded as a polynomial in the complex variable τ has exactly two roots with
positive and two roots with negative imaginary part.

Proof The determinant of S(ξ + τξ ′) is calculated as

det(S(ξ + τξ ′)) = μ(μ+ z)
[
(ξ + τξ ′) · (ξ + τξ ′)

]2
. (A.2)

Due to the assumptions on μ and z, the prefactor cannot be zero. If there would be a
real root to the equation det(S(ξ + τξ ′)) = 0, then ξ and ξ ′ would have to be linearly
dependent, a contradiction. Thus, (A.2) determines a fourth order polynomial in τ

with real coefficients and no real roots. Hence, there must be two roots with positive
and with negative imaginary part. ��

Let us now go to the existence part of the proposition. Clearly, the case p = 2
follows from Proposition 3.1. The case p > 2 will be also a consequence of it.
Indeed, then L p is injective as it is the part of L2 in Lp(�;Cd). Next, to prove
the surjectivity of L p, let us first consider p1 ≥ 2 satisfying 1/p1 − 1/2 ≤ 2/d,

and let f ∈ C∞(�;Cd). By Proposition 3.1 there exists a unique u ∈ D(L2) with
L2u = f and u ∈ Wk+4,2(�;Cd). By Sobolev’s embedding theorem, we conclude
that u ∈ Wk+2,p1(�;Cd). Thus, by virtue of Inequality (A.1) we discover that there
exists a constant C > 0 such that

‖u‖Wk+2,p1 (�;Cd ) ≤ C
(‖ f ‖Wk,p1 (�;Cd ) + ‖u‖Lp1 (�;Cd )

)
.

Moreover, by Sobolev’s embedding theorem and again by Proposition 3.1 followed
by Hölder’s inequality together with the boundedness of �, we derive

‖u‖Wk+2,p1 (�;Cd ) ≤ C
(‖ f ‖Wk,p1 (�;Cd ) + ‖u‖W2,2(�;Cd )

)

≤ C
(‖ f ‖Wk,p1 (�;Cd ) + ‖ f ‖L2(�;Cd )

)

≤ C‖ f ‖Wk,p1 (�;Cd ).

(A.3)

To proceed let p2 ≥ p1 with 1/p1 − 1/p2 ≤ 2/d. By Proposition 3.1, we now find
u ∈ Wk+6,2(�;Cd) ↪→ Wk+2,p2(�;Cd). Inequality (A.1) followed by Sobolev’s
embedding theorem then provide the estimate

‖u‖Wk+2,p2 (�;Cd ) ≤ C
(
‖ f ‖Wk,p2 (�;Cd ) + ‖u‖W2,p1 (�;Cd )

)
.

Combining this with (A.3) in the case k = 0, Hölder’s inequality, and the boundedness
of � we conclude that

‖u‖Wk+2,p2 (�;Cd ) ≤ C‖ f ‖Wk,p2 (�;Cd ).

Bootstrapping this argument delivers the stated estimate of the proposition for all
p ≥ 2. By density, we get (3.5) for all f ∈ Wk,p(�;Cd). Taking k = 0 gives the
surjectivity of L p.
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Let us next consider the case 1 < p < 2. Then, the invertibility of its adjoint (as
according to Lemma 3.2, it is equal to (L∗2)p′ , and L∗2 is L2 with z replaced by z), and
standard annihilator relations imply that L p is injective and has dense range.

Next, for f ∈ L2(�;Cd) ↪→ Lp(�;Cd), let u ∈ D(L2) be such that L2u = f .
In this case, we already know that u ∈ W2,2(�;Cd) ↪→ W2,p(�;Cd) is valid, and
Inequality (A.1) implies

‖u‖W2,p(�;Cd ) ≤ C
(‖ f ‖Lp(�;Cd ) + ‖u‖Lp(�;Cd )

)
. (A.4)

As u ∈ D(L p), there exists by definition a sequence (un)n∈N ⊂ D(L2) which con-
verges in Lp(�;Cd) to u and for which fn := L2un converges in Lp(�;Cd) to
f := L pu. Estimate (A.4) implies then that (un)n∈N converges in W2,p(�;Cd).

Hence (A.4) is valid for all u ∈ D(L p).
One can show that (3.6)with k = 0 is valid by contradiction.Assuming the contrary,

we obtain the existence of a sequence (un)n∈N ⊂ D(L p) with fn := L pun such that
for all n ∈ N

‖un‖W2,p(�;Cd ) = 1 and ‖ fn‖Lp(�;Cd ) → 0 as n →∞.

By compactness (and by going over to a subsequence), (un)n∈N converges in
Lp(�;Cd) to some u ∈ Lp(�;Cd). The closedness of L p then implies u ∈ D(L p)

and L pu = 0. Since we already know that L p is injective, it follows that u = 0.
Now, (A.4) gives a contradiction and thus we infer that (3.6) for k = 0 is valid.
This estimate in turn implies that the range of L p is closed and since it is dense in
Lp(�;Cd), we deduce that 0 ∈ ρ(L p).

Next, let f ∈ D(L p) and u ∈ D(L2
p) with L pu = f . By definition, there exists

( fn)n∈N ⊂ D(L2) with fn → f and L2 fn → L p f in Lp(�;Cd) as n → ∞.
By (A.4) it holds

‖ fn − fm‖W2,p(�;Cd ) ≤ C
(‖L2( fn − fm)‖Lp(�;Cd ) + ‖ fn − fm‖Lp(�;Cd )

)
.

Thus, ( fn)n∈N is a Cauchy sequence in W2,p(�;Cd). Define un := L−12 fn ∈ D(L2
2)

and observe that un → u in Lp(�;Cd) as n →∞. SinceD(L2
2) ↪→W4,2(�;Cd) ↪→

W4,p(�;Cd), Inequality (A.1) guarantees that

‖un − um‖W4,p(�;Cd ) ≤ C
(‖ fn − fm‖W2,p(�;Cd ) + ‖un − um‖Lp(�;Cd )

)
.

In the limit, this implies that u ∈W4,p(�;Cd) and

‖u‖W4,p(�;Cd ) ≤ C
(‖ f ‖W2,p(�;Cd ) + ‖u‖Lp(�;Cd )

)
.

As above, (3.6) for k = 1 follows from a contradiction argument. The case k ≥ 2
follow the same strategy by iterating this argument.

Finally, using what we just proved in the case k = 0 in the definition of D(L2)

ensures that D(L p) ↪→ W2,p(�;Cd) ∩W1,p
0 (�;Cd), and the reverse embedding is

obvious. ��
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The following lemma clarifies the relationships between L p, Lp and L̃p.

Lemma A.3 Let 1 < p <∞. Under the notations in (3.8) with r = p′, and (3.9), the
following statements hold true:

(1) For all u ∈ D(L p) it holds

�−1L̃p�u = L pu.

(2) For all f ∈ Lp(�;Cd) it holds

�−1L−1p � f = L−1p f .

(3) For T := L̃p�, we have that T : Lp(�;Cd) → X−1p is an isomorphism and that

Lp = T L pT−1.

(4) If Lp denotes the part of Lp in Lp′(�;Cd)′, then it holds

Lp = (L∗2)′p′ .

(5) It holds

�−1Lp� = L p.

Proof (1) Let u ∈ D(L p). Then, by virtue of the definition of L̃p, the definition given
in (3.4), and Lemma 3.2, we have

�−1L̃p�u = �−1(L∗2)◦p′�u = (L∗2)∗p′u = L pu.

(2) This is just a reformulation of (1).
(3) Notice that since L p maps into Lp(�;Cd) it holds

D(L̃p�L p�
−1L̃−1p ) = D(L p�

−1L̃−1p ).

Let u ∈ D(L p�
−1L̃−1p ). Since L p is invertible, there exists f ∈ Lp(�;Cd) such

that

L−1p f = �−1L̃−1p u.

Applying (2) delivers f = �−1u and it follows that u ∈ D(Lp). Furthermore,
another application of (2) yields

T L pT−1u = L̃p�L p�
−1L̃−1p u = L̃pu = Lpu.
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Conversely, let u ∈ D(Lp) = Lp′(�;Cd)′. Then (1) implies

u = L̃p��−1L̃−1p ��−1u = L̃p�L−1p �−1u.

It follows that �−1L̃−1p u ∈ D(L p) and thus that u ∈ D(L p�
−1L̃−1p ).

(4) Let u ∈ D(Lp). Then by definition of the part of an operator, it holds
u ∈ Lp′(�;Cd)′ and (L∗2)◦p′u ∈ Lp′(�;Cd)′. In particular, there exists w ∈
Lp′(�;Cd)′ such that for all v ∈ D((L∗2)p′) it holds

〈(L∗2)◦p′u, v〉D((L∗2)p′ )′,D((L∗2)p′ ) = 〈w, v〉
(Lp′ )′,Lp′ .

Consequently,

〈u, (L∗2)p′v〉(Lp′ )′,Lp′ = 〈(L∗2)◦p′u, v〉D((L∗2)p′ )′,D((L∗2)p′ ) = 〈w, v〉
(Lp′ )′,Lp′ .

This implies that u ∈ D((L∗2)′p′) and that (L∗2)′p′u = w.

Conversely, let u ∈ D((L∗2)′p′). By definition, it holds u ∈ Lp′(�;Cd)′ and there

exists w ∈ Lp′(�;Cd)′ such that for all v ∈ D((L∗2)p′) it holds

〈u, (L∗2)p′v〉(Lp′ )′,Lp′ = 〈w, v〉
(Lp′ )′,Lp′ .

Thus,

〈(L∗2)◦p′u, v〉D((L∗2)p′ )′,D((L∗2)p′ ) = 〈u, (L∗2)p′v〉(Lp′ )′,Lp′ = 〈w, v〉
(Lp′ )′,Lp′ .

It follows that (L∗2)◦p′u ∈ Lp′(�;Cd)′ and thus u ∈ D(Lp).
(5) This readily follows by combining (4) with (3.4) and Lemma 3.2.

��
Lemma A.4 For all 1 < p < ∞, 1 ≤ q ≤ ∞, and −1 < s < 1 it holds with
equivalent norms that D(Lp,q,s) = Y s+1

p,q .

Furthermore, if θ ∈ (0, 1) and s + θ < 1, then the part of Lp,q,s on Xs+θ
p,q !

B2(s+θ)
p,q (�;Cd) coincides with Lp,q,s+θ .

Proof First of all, recall thatLp is invertible and that its inverse is a bounded operator

L−1p : X−1p → X0
p. (A.5)

If f ∈ X1
p, then f can be written as f = � f for some f ∈ D(L p). Now, Lemma A.3 (2)

implies

L−1p f = �L−1p �−1f = �L−1p f .
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By virtue of Proposition 3.3, we thus have

‖L−1p f‖X2
p
= ‖L2

p L−1p f ‖Lp(�;Cd ) ≤ C‖L−1p f ‖W4,p(�;Cd )

≤ C‖ f ‖W2,p(�;Cd ) ≤ C‖f‖X1
p
.

It follows that L−1p gives rise to a bounded operator

L−1p : X1
p → X2

p. (A.6)

Interpolating (A.5) and (A.6) reveals that for all −1 < s < 1, 1 < p < ∞, and
1 ≤ q ≤ ∞ the operator L−1p is a bounded operator

L−1p : Xs
p,q → Y s+1

p,q . (A.7)

Let u ∈ D(Lp,q,s). Then, by (A.7)

u = L−1p Lpu ∈ Y s+1
p,q .

Moreover, since Lpu = Lp,q,su, the boundedness stated in (A.7) implies that there
exists C > 0 such that

‖u‖Y s+1
p,q
≤ C‖Lp,q,su‖Xs

p,q
.

Conversely, let u ∈ Y s+1
p,q . Since D(Lp) = Lp′(�;Cd)′ and since Y s+1

p,q ↪→ X0
p =

Lp′(�;Cd)′ (cf. (3.10)), we have u ∈ D(Lp). By (A.7), we find Lpu ∈ Xs
p,q and the

only information we need, to conclude that u ∈ D(Lp,q,s), is that u ∈ Xs
p,q . This,

however, follows by Proposition 3.6. Finally, the inequality follows from

‖Lp,q,su‖Xs
p,q
= ‖Lpu‖Xs

p,q
≤ C‖u‖Y s+1

p,q
.

Finally, to prove the second part of the lemma, we use that the domain of the part of
Lp,q,s on Xs+θ

p,q is by definition given as

{
u ∈ D(Lp,q,s) ∩ Xs+θ

p,q : Lp,q,su ∈ Xs+θ
p,q

}

= {
u ∈ D(Lp) ∩ Xs

p,q ∩ Xs+θ
p,q : Lpu ∈ Xs

p,q ∩ Xs+θ
p,q

}

= {
u ∈ D(Lp) ∩ Xs+θ

p,q : Lpu ∈ Xs+θ
p,q

}

= D(Lp,q,s+θ ). ��
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Appendix B. Some results for Besov spaces in domains

Proof of Proposition 5.2 Consider two real valued functions u ∈ Bs
p,1(�) and v ∈

Bd/p
p,1 (�).Wewant to prove that uv lies in Bs

p,1(�), if−min(d/p, d/p′) < s ≤ d/p.

The result is classical for � = R
d and the general domain case follows from the

definition of Besov spaces by restriction given in Sect. 3. Indeed, if u ∈ Bs
p,1(�) and

v ∈ Bd/p
p,1 (�), then for any extension ũ ∈ Bs

p,1(R
d) and ṽ ∈ Bd/p

p,1 (Rd) of u and v on

R
d , we may write

‖ũ ṽ‖Bs
p,1(R

d ) � ‖ũ‖Bs
p,1(R

d )‖̃v‖Bd/p
p,1 (Rd )

.

As ũ ṽ is an extension of uv on R
d , taking the infimum on all extensions gives the

result. ��
Proof of Proposition 5.3 Looking at the proof of [11, Prop. 1.7] and using the embed-
ding of Bd/p

p,1 (Rd) in L∞(Rd), we see that in the Rd case, we do have the result with
the estimate

‖K (z)‖
Bd/p

p,1 (Rd )
≤ C

(

1+ ‖z‖
Bd/p

p,1 (Rd )

)k

‖z‖
Bd/p

p,1 (Rd )
with k := �d/p�.

The result in a general domain then follows, considering all the extensions z̃ ∈
Bd/p

p,1 (Rd) of z ∈ Bd/p
p,1 (�), then taking the infimum.

The second part of the proposition follows from the first part, the following formula:

K (z2)− K (z1) = K ′(0)(z2 − z1)+
∫ 1

0

(
K ′(z1 + τ(z2 − z1))− K ′(0)

)
(z2 − z1) dτ

and Proposition 5.2. ��
Property (6.13) is a consequence of the following proposition.

Proposition B.1 Let f be in Bd/p
p,1 (Rd) for some 1 ≤ p ≤ ∞. Let ψ be a smooth

function, supported in the unit ball of Rd . Denote ψδ,x0 := ψ(δ−1(· − x0)) for δ > 0
and x0 ∈ R

d . Then,

lim
δ→0

‖ψδ,x0 ( f − f (x0))‖Bd/p
p,1
= 0 uniformly with respect to x0.

Proof Let us first establish the result for g a smooth function with bounded derivatives
at all order. Let without loss of generality δ ∈ (0, 1). We first notice, owing to the
mean value theorem and the fact that ψδ,x0 is supported in a ball of radius δ that

‖∇αψδ,x0(g − g(x0))‖Lp ≤ C‖∇g‖L∞δ
1+ d

p−α for all α ∈ N.
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Next, we see that for any couple (β, γ ) of integers with γ ≥ 1,

‖∇βψδ,x0 ∇γ (g − g(x0))‖Lp ≤ C‖∇γ g‖L∞δ
d
p−β

.

Consequently, in light of Leibniz formula, for all integer α there exists a constant
Cα > 0 depending only on g and such that for all x0 ∈ R

d and δ ∈ (0, 1),

‖∇α(ψδ,x0 (g − g(x0)))‖Lp ≤ Cαδ
d
p+1−α

.

If α ∈ N is such that d/p < α ≤ d/p + 1, the exponent of δ in the previous inequal-
ity is non-negative. Moreover, combining the derived estimates with the following
interpolation inequality

‖h‖
Bd/p

p,1
≤ C‖h‖1−

d
pα

Lp ‖h‖
d
pα

Wα,p

and the assumption that δ < 1 yields that there exists a constant Cg > 0 depending
only on g, p and d such that

‖ψδ,x0 (g − g(x0))‖Bd/p
p,1
≤ Cgδ

(1+ d
p )(1− d

pα
) (B.1)

for all δ ∈ (0, 1) and x0 ∈ R
d .

Let us now prove the proposition for a general function f in Bd/p
p,1 . Fix some ε > 0

and take g smooth with bounded derivatives at all order such that ‖ f − g‖
Bd/p

p,1
≤ ε.

We have

‖ψδ,x0 ( f − f (x0))‖Bd/p
p,1
≤ ‖ψδ,x0 (g − g(x0))‖Bd/p

p,1

+‖ψδ,x0 ( f − g)‖
Bd/p

p,1
+ | f (x0)− g(x0)|‖ψδ,x0‖Bd/p

p,1
.

Using
Proposition 5.2, Inequality (B.1) and the embedding Bd/p

p,1 ↪→ L∞, we thus have

‖ψδ,x0 ( f − f (x0))‖Bd/p
p,1
≤ Cgδ

(1+ d
p )(1− d

pα
) + C‖ψδ,x0‖Bd/p

p,1
‖ f − g‖

Bd/p
p,1

.

Using the invariance (up to an harmless constant) of the norm in Bd/p
p,1 (Rd) by trans-

lation and dilation, and the definition of g, we end up with

‖ψδ,x0 ( f − f (x0))‖Bd/p
p,1
≤ Cgδ

(1+ d
p )(1− d

pα
) + Cε,

which ensures

‖ψδ,x0 ( f − f (x0))‖Bd/p
p,1
≤ 2Cε

provided δ is small enough. ��
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