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Abstract
We derive a priori error estimates of the Godunov method for the multidimensional com-
pressible Euler system of gas dynamics. To this end we apply the relative energy principle
and estimate the distance between the numerical solution and the strong solution. This yields
also the estimates of the L2-norms of the errors in density, momentum and entropy. Under
the assumption, that the numerical density is uniformly bounded from below by a positive
constant and that the energy is uniformly bounded from above and stays positive, we obtain
a convergence rate of 1/2 for the relative energy in the L1-norm, that is to say, a convergence
rate of 1/4 for the L2-error of the numerical solution. Further, under the assumption—the
total variation of the numerical solution is uniformly bounded, we obtain the first order con-
vergence rate for the relative energy in the L1-norm, consequently, the numerical solution
converges in the L2-norm with the convergence rate of 1/2. The numerical results presented
are consistent with our theoretical analysis.
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1 Introduction

We consider the Euler system governing the ideal motion of a compressible gas on a bounded
domain � ⊂ R

d (d = 1, 2, 3), i.e.

∂tU + divx F(U) = 0, (t, x) ∈ (0, T ) × �. (1.1)

Here U := (�,m, E)T denotes the conservative vector with the fluid density �, momentum
m and total energy E , while F is the flux function given by

F = (m, u ⊗ m + pI, u(E + p))T . (1.2)

Moreover for positive �, u = m
�
is the velocity of the fluid and p is the pressure satisfying

the equation of state

p = (γ − 1)�e, γ ∈ (1, 2] (1.3)

with the specific internal energy e = E
�

− 1
2 |u|2.

We close the system with initial data

U(0, x) = U0 = (�0,m0 := �0u0, E0)
T (1.4a)

satisfying

�0 > 0 and E0 ∈ L1(�) (1.4b)

and the impermeability boundary condition

u · n|∂� = 0, (1.5)

where n is the outer normal vector on the boundary ∂�. Taking the second law of thermo-
dynamics into account we further require that the entropy inequality holds, i.e.

∂t η(U) + divx q(U) ≥ 0 (1.6)

with the physical entropy pair (η, q) defined by

η = Cv�S, q = ηu with Cv = 1

γ − 1
and S = ln

(
p

�γ

)
. (1.7)

It is well-known that for the multidimensional Euler system there may exist infinitely many
weak entropy solutions, i.e. the solutions satisfying (1.1)–(1.6) in theweak sense, cf. DeLellis
and Székelyhidi [6], Chiodaroli et al. [2, 3], and Feireisl et al. [8]. As a consequence, the
convergence analysis of standard numerical schemes for theEuler equations and identification
of physically reasonable limiting solutions are of fundamental importance.

Over the past few decades there is a rapid development of efficient numerical methods
for the Euler equations, cf. Toro [29], Feistauer et al. [14], Li et al. [21], Godunov [15], Shu
and Osher [24] and LeVeque [20]. Despite the success in practical simulations, a rigorous
convergence analysis of the numerical methods still remains open in general. Most results
on error analysis were focused on scalar conservation laws. For example, Kuznetsov [19]
showed that the (upper) L1-error bound isO(h1/2) for multi-dimensional scalar conservation
laws under the assumptions on the boundedness of the total variation and continuity in time
of numerical solutions, where h is the mesh parameter. Further, Cockburn et al. [4] and Vila
[30] extended the result of Kuznetsov and obtained the L1-error bounds of O(h1/4) without
the assumptions of bounded total variation and continuity in time.
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Concerning the linear advection equation, Tang and Teng [26] showed the sharpness of the
O(

√
�x) L1-error for monotone difference schemes with BV initial data. For the nonlinear

scalar equation Teng and Zhang [28] showed the optimal convergence rate of 1 in the L1-
norm for the viscosity method and monotone schemes if a solution is piecewise constant
with finitely many shocks. Moreover, for the piecewise smooth entropy solution with finitely
many rarefaction waves, Tang and Teng [27] showed that the error of viscosity solution
to the inviscid solution is bounded by O(ε| log ε| + ε) in the L1-norm, where ε denotes
the viscosity coefficient. Furthermore, Tadmor and Tang [25] studied the pointwise error
estimates and showed that the thicknesses of the shock and rarefaction layers are of order
O(ε) andO(ε log2 ε), respectively.We point out that the error estimates for scalar hyperbolic
conservation laws are typically given in terms of the L1-norm in space. We also refer a reader
to the recent works of Kröner and Rokyta on the error estimates of finite volume schemes
for scalar convection–diffusion equation [17, 18].

When considering the multidimensional nonlinear system of hyperbolic conservation
laws, to our best knowledge, the only result was done by Jovanović and Rohde [16]. The
authors obtained a convergence rate of 1/2 in terms of the L2-errors between the numerical
solutions and a classical solution (U ∈ C1) under the assumptions of uniform bounded-
ness of (numerical) solutions. Moreover, their result required the first-order derivatives to be
bounded in the L2- and L∞-norms.

In our recent work [22] we have proved the convergence of numerical solutions obtained
by the Godunov method. In general we have obtained only weak* convergence to a gener-
alised, dissipative measure-valued solution. If the limit is a weak entropy solution then the
convergence is also strong. Moreover, if the Euler system admits a strong solution then the
numerical solutions converge strongly to the strong solution as long as the latter exists.

Our aim is to extend the previous convergence analysis and show the error estimates for
the Godunov method under the assumption that the Euler system (1.1)–(1.5) admits a strong
solution. The main tool used in the present paper is the so-called relative energy functional
originally introduced by Dafermos [5]. This technique has been largely used in the analysis
of the weak–strong uniqueness and singular limit of the compressible fluid flows, see the
monograph of Feireisl and Novotný [13], Březina and Feireisl [1], and Feireisl et al. [11, 12].
Recently, this technique has also been successfully applied to the convergence analysis of
numerical solutions of compressible viscous fluids, see Feireisl et al. [7] and Mizerová and
She [23]. Here we adapt the technique to the Euler system and estimate the corresponding
relative energy, which yields the L2-error estimates of density, momentum and entropy. We
prove a convergence rate of 1/2 for the relative energy in the L1-norm and a convergence
rate of 1/4 for the L2-errors. Furthermore, assuming that the total variation of the numerical
solution is bounded, which is weaker than the assumptions in [16], we obtain the same
convergence rate.

The rest of the paper is organized as follows. In Sect. 2 we introduce some preliminaries.
More precisely, we recall the Godunov method and its consistency formulation proved in
Lukáčová and Yuan [22]. We define the strong solution of the Euler system and the relative
energy. Then, we prove the relative energy inequality in Sect. 3 and estimate its error in
the L1-norm. Finally, in Sect. 4 we present some numerical experiments to validate our
theoretical results.
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2 Preliminaries

In this section we introduce the preliminaries, including the formulation of the Godunov
method, its consistency formulation, the definition of strong solution and the concept of the
relative energy.

To begin with, we define the following notations for the later use

• a � b if a ≤ c b with a positive constant c,

• a ≈ b if a � b and b � a.

2.1 GodunovMethod

The computational domain � consists of rectangular meshes � := ⋃
K K . We denote the

set of all mesh cells as Th and the set of all interior faces of Th as 	int . We consider the space
of piecewise constant functions

Qh(�) = {v : v| ◦
K

= constant, for all K ∈ Th} (2.1)

and define the projection operator


h : L1(�) → Qh(�), 
h[φ]K = 1

|K |
∫

K
φ(x) dx, (2.2)

where |K | is the Lebesgue measure of K .
We are looking for Uh(t) ∈ Qh(�;Rd+2), t ∈ (0, T ) satisfying the semi-discrete form

of the finite volume method with the Godunov flux, i.e. the Godunov method,∫
�

φ
d

dt
Uh dx −

∑
σ∈	int

∫
σ

F(U R P
σ ) · n[[φ]] d Sx = 0, (2.3a)

Uh0 = 
h[U0]. (2.3b)

Here φ ∈ Qh(�;Rd+2) is the test function, U R P
σ is the exact solution of the local Riemann

problem along the interface σ , F is the flux function given (1.2), and the notation [[·]] denotes
the jump along the interface.

2.2 Consistency Formulation

This section introduces the necessary results of [22], i.e. the weak BV estimate and the
consistency formulation, which will be needed in this paper. We refer to [22] for the details
and the proofs. In the following we start with the following assumption.

Assumption 2.1 We assume that the solution to (2.3) satisfies

0 < � ≤ �h, 0 < Eh ≤ E uniformly for h → 0 (2.4)

for all t ∈ [0, T ], where �, E are some positive constants.

From the above assumption we have the following estimates, see e.g. Feireisl et al. [10,
11].

Lemma 2.2 Under Assumption 2.1 there hold

0 < � ≤ �h ≤ �, |uh | ≤ u, 0 < p ≤ ph ≤ p, (2.5)
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|mh | ≤ m, 0 < E ≤ Eh ≤ E, 0 < ϑ ≤ ϑh ≤ ϑ (2.6)

uniformly for h → 0, t ∈ [0, T ] with positive constants �, u, p, p, m, E, ϑ, ϑ depending

on �, E, where ϑ := p
�

is the absolute temperature.

Next, we report the consistency error of the Godunov method, see [22,Theorem 3.1].

Theorem 2.3 (Consistency formulation [22]) Let (�h,mh, ηh) be a numerical solution
obtained by the Godunov method (2.3) on the time interval [0, T ] satisfying Assumption
2.1. Then for any τ ∈ (0, T ) we have:

• For all φ ∈ W 1,∞((0, T ) × �) it holds1[∫
�

�hφ dx

]t=τ

t=0
=

∫ τ

0

∫
�

(
�h∂tφ + mh · ∇xφ

)
dx dt +

∫ τ

0
e�,h(t, φ) dt; (2.7)

• For all φ ∈ W 1,∞((0, T ) × �;Rd)[∫
�

mh · φ dx

]t=τ

t=0
=

∫ τ

0

∫
�

(
mh · ∂tφ + mh ⊗ mh

�h
: ∇xφ

+ phdivxφ

)
dx dt +

∫ τ

0
em,h(t,φ) dt;

(2.8)

• For all φ ∈ W 1,∞((0, T ) × �), φ ≥ 0[∫
�

ηhφ dx

]t=τ

t=0
≥

∫ τ

0

∫
�

(
ηh∂tφ + qh · ∇xφ

)
dx dt +

∫ τ

0
eη,h(t, φ) dt; (2.9)

• ∫
�

Eh(τ ) dx =
∫

�

E0,h dx (2.10)

with bounded consistency errors e j,h ( j = �,m, η) satisfying

‖e j,h‖L1(0,τ ) � h‖φ‖W 1,∞((0,T )×�)

∫ τ

0

∑
σ∈	int

∫
σ

|[[Uh]]| dSx dt

� h1/2‖φ‖W 1,∞((0,T )×�)

⎛
⎝∫ τ

0

∑
σ∈	int

∫
σ

|[[Uh]]|2 dSx dt

⎞
⎠

1/2

,

(2.11)

where Uh = (�h,mh, Eh) is the vector of conservative variables.

Theorem 2.3 presents a “weak” form of the Euler system satisfied by the numerical solutions
modulus the consistency errors, which depend on the test function as well as on the jumps
of numerical solutions on the interfaces. Note that the jumps can be controlled by the weak
BV estimate stated in [22,equation (3.10)].

Lemma 2.4 (Weak BV estimate [22]) Under Assumption 2.1 for any τ ∈ [0, T ] it holds∫ τ

0

∑
σ∈	int

∫
σ

|[[Uh]]|2 dSx dt � 1. (2.12)

1 Throughout the paper, we refer φ ∈ W 1,∞ to φ ∈ W 1,∞ ⋂
C0 .
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2.3 Strong Solution

In this section, the concept of strong solution of the Euler system (1.1)–(1.5) is introduced.

Definition 2.5 (Strong solution) Let � ⊂ R
d be a bounded domain with a boundary ∂� of

class C1. We say that a triple [̃�, ũ, η̃] is the strong solution of the Euler system (1.1)–(1.5)
if

�̃ ∈ W 1,∞((0, T ) × �), ũ ∈ W 1,∞((0, T ) × �;Rd), η̃ ∈ W 1,∞((0, T ) × �),

�̃ > 0 and ϑ(̃�, η̃) > 0 for any (t, x) ∈ [0, T ] × �

and the Eqs. (1.1)–(1.5) are satisfied almost everywhere.

Let us point out that we consider � and η as the independent thermodynamical variables
throughout the paper, meaning that all other thermodynamical variables are functions of
(�, η). Accordingly, wewrite ṽ = v(̃�, η̃), v ∈ {p, e, ϑ, S}, for the strong solution.Moreover,
we denote Ũ := (̃�, m̃, Ẽ)T , where functions m̃, Ẽ are computed from the strong solution
(̃�, ũ, η̃).

Since the domain is bounded and (̃�, ϑ̃) is continuous and positive, we have

0 < � ≤ �̃, 0 < ϑ ≤ ϑ̃ . (2.13)

Remark 2.6 According to the definition of strong solution, we know that an entropy solution
only containing finitely many rarefaction waves is also a strong solution.

We recall Gibbs’ relation

ϑdS = de + p d (1/�) . (2.14)

Consequently, for any strong solution (̃�, ũ, η̃) we obtain the following equations

∂t �̃ + ũ · ∇x �̃ + �̃ divx ũ = 0,

∂t ũ + ũ · ∇x ũ + 1

�̃
∇x p̃ = 0,

∂t η̃ + ũ · ∇x η̃ + η̃ divx ũ = 0,

∂t p̃ + ũ · ∇x p̃ + γ p̃ divx ũ = 0,

∂t S̃ + ũ · ∇x S̃ = 0,

∂t ϑ̃ + ũ · ∇x ϑ̃ + (
∂η̃ p̃

)̃
�
divx ũ = 0,

(2.15)

which will be used in Sect. 3. See [11, 29] for more details on the existence of such a strong
solution.

2.4 Relative Energy

Finally we conclude this section with the relative energy, which can measure the distance
between the numerical solution and the strong solution of the Euler system. Moreover, we
derive the relationship between the relative energy and the L2-error of the numerical solution.
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In the context of the compressible Euler system, the relative energy reads

E (�,m, η | �̃, ũ, η̃) = 1

2
�

∣∣∣∣m� − ũ

∣∣∣∣
2

+ �e − ∂(�e)

∂�

∣∣∣
(̃�,̃η)

(� − �̃) − ∂(�e)

∂η

∣∣∣
(̃�,̃η)

(η − η̃) − �̃ẽ

(2.16)

for � > 0.

Lemma 2.7 Let (̃�, ũ, η̃) be the strong solution of the Euler system in the sense of Defini-
tion 2.5 and let (�h,mh, ηh) be the numerical solution of the Euler system obtained by (2.3)
and satisfy Assumption 2.1. Then we have the following equivalence

E (�h,mh, ηh | �̃, ũ, η̃) ≈ |mh − m̃|2 + |ηh − η̃|2 + |�h − �̃|2. (2.17)

Proof The first step is to prove

E (�h,mh, ηh | �̃, ũ, η̃) ≈ |uh − ũ|2 + |ηh − η̃|2 + |�h − �̃|2. (2.18)

To this end we recall the definition of the relative energy (2.16). As �h is bounded from above
and below by positive constants, we know that the first term on the right hand side of (2.16)
can be estimated as

1

2
�h

∣∣∣∣mh

�h
− ũ

∣∣∣∣
2

≈ |uh − ũ|2.

Note that the last four terms of (2.16) represent the second order remainder of the Taylor
expansion of �e around (̃�, η̃). Thus they can be estimatedwith the Hessianmatrix∇2

(�,η)(�e)
evaluated at some point between (�h, ηh) and (̃�, η̃). Hence, the goal is to show the bound-
edness of the Hessian matrix ∇2

(�,η)(�e).
Taking the derivatives of �e with respect to (�, η) we obtain

∂� (�e) = (1 + Cv) ϑ − ηϑ

�
, ∂η (�e) = ϑ. (2.19)

Further, applying the product rule and Gibbs’ relation (2.14) we derive

dϑ = ϑ

Cv�

(
1 − η

�

)
d� + ϑ

Cv�
dη, (2.20)

and

d

(
(1 + Cv)ϑ − ϑη

�

)
=

(
(1 + Cv) − η

�

)
dϑ − ϑ

�
dη + ϑη

�2 d�, (2.21)

which leads to

∇2
(�,η)(�e) = ϑ

Cv�

⎛
⎝ 1 1 − η

�

1 − η
�

Cv +
(
1 − η

�

)2
⎞
⎠ . (2.22)

Since (�h, ηh) and (̃�, η̃) are bounded, the Hessian matrix ∇2
(�,η)(�e) is symmetric positive

definite. Moreover, its eigenvalues are bounded from below and above by positive constants,
see “Appendix A”, which implies (2.18).

Next, we recall Assumption 2.1 and the uniform upper bound of uh due to Lemma 2.2 to
conclude that
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|mh − m̃|2� |�h(uh − ũ)|2 + |(�h − �̃)ũ|2 � |uh − ũ|2 + |�h − �̃|2,
|uh − ũ|2 � |̃�(uh − ũ)|2 � |mh − m̃|2 + |uh (̃� − �h)|2 � |mh − m̃|2 + |�h − �̃|2.

Substituting the above two inequalities into (2.18) we finish the proof. ��
Lemma 2.7 shows that the L1-norm of E (�h,mh, ηh | �̃, ũ, η̃) is equivalent to the square

of the L2-error of the numerical solution (�h,mh, ηh) as long as (�h,mh, ηh) is obtained by
a entropy stable scheme and satisfies Assumption 2.1 and (̃�, ũ, η̃) is the strong solution of
the Euler system in the sense of Definition 2.5.

3 Error Estimates

Equipped with the consistency formulation of the Godunov method we are now ready to
estimate the relative energy in the L1-norm and the error of the numerical solution in the
L2-norm.

Theorem 3.1 (Error estimate) Let � ⊂ R
d , d = 1, 2, 3, be a bounded domain with a

boundary ∂� of class C1. Let (̃�, ũ, η̃) be the strong solution of the complete Euler system
(1.1) in the sense of Definition 2.5 with initial data satisfying

‖Uh0 − U0‖L2(�) � h1/2. (3.1)

Suppose that (�h,mh, ηh) is the numerical solution obtained by the Godunov method
(2.3). Let Assumption 2.1 hold. Then the following estimate of the relative energy holds for
any τ ∈ (0, T ] ∫

�

E (�h,mh, ηh | �̃, ũ, η̃) (τ, ·) dx ≤ D h1/2, (3.2)

where D stands for a positive constant which depends only on τ, |�|and‖Ũ‖W 1,∞((0,T )×�;Rd+2).

Proof The proof can be divided into two steps summarized as follows:

• Taking suitable functions of the strong solution (̃�, ũ, η̃) as test functions in the con-
sistency formulation, we derive the relative energy inequality between (�h,mh, ηh) and
(̃�, ũ, η̃);

• Approximating the above inequality such that all terms on the right hand side can be
bounded by the discretization parameter h or by the relative energy, we finally estimate
the relative energy by Gronwall’s lemma.

Step 1. Rewriting the relative energy (2.16) into a more convenient form we obtain

E (�h,mh, ηh | �̃, ũ, η̃) = 1

2
�h

∣∣∣∣mh

�h
− ũ

∣∣∣∣
2

+ �heh −
(

(1 + Cv)ϑ̃ − ϑ̃ η̃

�̃

)
(�h − �̃)

− ϑ̃(ηh − η̃) − �̃ẽ

=
[
1

2

|mh |2
�h

+ �heh

]
+ �h

[
1

2
|ũ|2 − (1 + Cv)ϑ̃ + ϑ̃ η̃

�̃

]

− mh · ũ − ηh ϑ̃ + p̃.

(3.3)

Then, we take 1
2 |ũ|2 − (1+ Cv)ϑ̃ + ϑ̃ η̃

�̃
as the test function in consistency formulation of the

density Eq. (2.7) to derive
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[∫
�

�h

(
1

2
|ũ|2 − (1 + Cv)ϑ̃ + ϑ̃ η̃

�̃

)
dx

]t=τ

t=0
=

∫ τ

0

∫
�

(
�h∂t

(
1

2
|ũ|2 − (1 + Cv)ϑ̃ + ϑ̃ η̃

�̃

)

+ mh · ∇x

(
1

2
|ũ|2 − (1 + Cv)ϑ̃ + ϑ̃ η̃

�̃

) )
dx dt +

∫ τ

0
e�,h

(
t,

1

2
|ũ|2 − (1 + Cv)ϑ̃ + ϑ̃ η̃

�̃

)
dt .

Analogously, setting ũ and ϑ̃ respectively as the test functions in consistency formulations
of the momentum Eq. (2.8) and entropy inequality (2.9) we obtain

[∫
�

mh · ũ dx

]t=τ

t=0
=

∫ τ

0

∫
�

(
mh · ∂t ũ + mh ⊗ mh

�h
: ∇x ũ + phdivx ũ

)
dx dt

+
∫ τ

0
em,h(t, ũ) dt,

and
[∫

�

ηh ϑ̃ dx

]t=τ

t=0
≥

∫ τ

0

∫
�

(
ηh∂t ϑ̃ + ηh

mh

�h
· ∇x ϑ̃

)
dx dt +

∫ τ

0
eη,h(t, ϑ̃) dt .

Thus, substituting the above three formulae together with the energy equality (2.10) into the
integral of the relative energy (3.3) we have

[∫
�

E (�h,mh, ηh | �̃, ũ, η̃) (t, ·) dx

]t=τ

t=0

≤ −
∫ τ

0

∫
�

(�h ũ − mh) ⊗ (�h ũ − mh)

�h
: ∇x ũ dx dt

+
∫ τ

0

∫
�

(
( p̃ − ph)divx ũ + (∂t p̃ + ũ · ∇x p̃)

)
dx dt

+
∫ τ

0

∫
�

(�h ũ − mh) ·
[
∂t ũ + ũ · ∇x ũ + 1

�̃
∇x p̃

]
dx dt

−
∫ τ

0

∫
�

(
�h∂t

(
(1 + Cv)ϑ̃ − ϑ̃ η̃

�̃

)
+ mh · ∇x

(
(1 + Cv)ϑ̃ − ϑ̃ η̃

�̃

))
dx dt

−
∫ τ

0

∫
�

(
ηh∂t ϑ̃ + ηh

mh

�h
· ∇x ϑ̃ + (�h ũ − mh)

1

�̃
∇x p̃

)
dx dt

+
∫ τ

0
eh(t, Ũ) dt,

(3.4)

where we have used the following identities

ũ ⊗ ũ : ∇x ũ = ũ · (ũ · ∇x ũ),

∫
�

ũ · ∇x p̃ dx = −
∫

�

p̃ divx ũ dx,

(�h ũ − mh) ⊗ (�h ũ − mh)

�h
: ∇x ũ = �h ũ ⊗ ũ : ∇x ũ + mh ⊗ mh

�h
: ∇x ũ

−mh · (ũ · ∇x )ũ − ũ · (mh · ∇x ) ũ

and the notation

eh(t, Ũ) := e�,h

(
t,
1

2
|ũ|2 − (1 + Cv)ϑ̃ + ϑ̃ η̃

�̃

)
− em,h(t, ũ) − eη,h(t, ϑ̃).
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Further, employing the relations (2.20) and (2.21) we obtain after lengthy but straightforward
calculations from (3.4)[∫

�

E (�h,mh, ηh | �̃, ũ, η̃) (t, ·) dx

]t=τ

t=0

≤ −
∫ τ

0

∫
�

(�h ũ − mh) ⊗ (�h ũ − mh)

�h
: ∇x ũ dx dt

−
∫ τ

0

∫
�

[
ph − p̃ − ∂�̃ p̃(�h − �̃) − ∂η̃ p̃(ηh − η̃)

]
divx ũ dx dt

+
∫ τ

0

∫
�

(�h ũ − mh) ·
[
∂t ũ + ũ · ∇x ũ + 1

�̃
∇x p̃

]
dx dt

+
∫ τ

0

∫
�

[(
1 − �h

�̃

)
∂�̃ p̃ −

(
ηh − �h

�̃
η̃

)
∂�̃ϑ̃

] [
∂t �̃ + ũ · ∇x �̃ + �̃ divx ũ

]
dx dt

+
∫ τ

0

∫
�

[(
1 − �h

�̃

)
∂η̃ p̃ −

(
ηh − �h

�̃
η̃

)
∂η̃ϑ̃

]
[∂t η̃ + ũ · ∇x η̃ + η̃ divx ũ] dx dt

−
∫ τ

0

∫
�

(
ηh − �h

�̃
η̃

) (
mh

�h
− ũ

)
· ∇x ϑ̃ dx dt +

∫ τ

0
eh(t, Ũ) dt (3.5)

where we have denoted ∂�̃ p̃ := ∂ p
∂�

(̃�, η̃) and the definitions of ∂η̃ p̃, ∂η̃ϑ̃ and ∂η̃ϑ̃ are
analogous. Then applying the equalities stated in (2.15)–(3.5) we have[∫

�

E (�h,mh, ηh | �̃, ũ, η̃) (t, ·) dx

]t=τ

t=0

≤ −
∫ τ

0

∫
�

(�h ũ − mh) ⊗ (�h ũ − mh)

�h
: ∇x ũ dx dt

−
∫ τ

0

∫
�

[
ph − p̃ − ∂�̃ p̃(�h − �̃) − ∂η̃ p̃(ηh − η̃)

]
divx ũ dx dt

−
∫ τ

0

∫
�

(
ηh − �h

�̃
η̃

) (
mh

�h
− ũ

)
· ∇x ϑ̃ dx dt +

∫ τ

0
eh(t, Ũ) dt

(3.6)

Step 2. We begin with the following observation owing to the uniform bounds on �̃, ϑ̃ and
η̃, as well as (2.18)∣∣∣∣
(

ηh − �h

�̃
η̃

)
·
(
mh

�h
− ũ

)∣∣∣∣ �
∣∣∣∣ ηh − �h

�̃
η̃

∣∣∣∣
2

+
∣∣∣∣mh

�h
− ũ

∣∣∣∣
2

� | ηh − η̃|2 +
∣∣∣∣̃η − �h

�̃
η̃

∣∣∣∣
2

+
∣∣∣∣mh

�h
− ũ

∣∣∣∣
2

= | ηh − η̃|2 + |̃� − �h |2
(

η̃

�̃

)2

+
∣∣∣∣mh

�h
− ũ

∣∣∣∣
2

� |ηh − η̃|2 + |�h − �̃|2 +
∣∣∣∣mh

�h
− ũ

∣∣∣∣
2

� E (�h,mh, ηh | �̃, ũ, η̃) .

Recall that the consistency errors are bounded by h1/2, cf. (2.11) and (2.12). Since the first
and the second term on the right hand side of inequality (3.6) are bounded by the relative
energy, we obtain[∫

�

E (�h,mh, ηh | �̃, ũ, η̃) (t, ·) dx

]t=τ

t=0
≤ c

(|�|, ‖Ũ‖W 1,∞((0,T )×�;Rd+2)

)
h1/2

+c
(
�, ‖Ũ‖W 1,∞((0,T )×�;Rd+2)

) ∫ τ

0

∫
�

E (�h,mh, ηh | �̃, ũ, η̃) (t, ·) dx dt . (3.7)
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Recalling the assumption on initial data (3.1) and Lemma 2.7 we obtain the first order
estimate of the discrete initial data, i.e.∫

�

E (�h0,mh0, ηh0 | �0,m0/�0, η0) dx � h.

Now applying Gronwall’s lemma concludes the proof, i.e.∫
�

E (�h,mh, ηh | �̃, ũ, η̃) (τ, ·) dx ≤ exp
(
τ c

(|�|, ‖Ũ‖W 1,∞((0,T )×�;Rd )

)) ·
(

c
(|�|, ‖Ũ‖W 1,∞((0,T )×�;Rd )

)
h1/2 +

∫
�

E (�h0,mh0, ηh0 | �0,m0/�0, η0) dx

)

≤ D h1/2,

where D is the constant depending on τ, |�|, ‖Ũ‖W 1,∞((0,T )×�;Rd ). ��

Combining Lemma 2.7 we directly obtained the following a priori error estimates in the L2

norm.

Proposition 3.2 Under the same condition as Theorem 3.1 it holds for any τ ∈ (0, T ]
‖�h − �̃‖L2(�) � h1/4, ‖mh − m̃‖L2(�) � h1/4, ‖ηh − η̃‖L2(�) � h1/4. (3.8)

In what follows we obtain the first order convergence rate in terms of the relative energy
under an additional assumption on uniform boundedness of the total variation of numerical
solutions.

Theorem 3.3 In addition to the assumptions of Theorem 3.1, we assume that

∑
σ∈	int

∫
σ

|[[Uh]]|σ dSx � 1. (3.9)

Then it holds ∫
�

E (�h,mh, ηh | �̃, ũ, η̃) (τ, ·) dx � D h,

where D stands for a positive constant which depends only on τ, |�| and
‖Ũ‖W 1,∞((0,T )×�;Rd+2).

Proof With the help of (3.9) and (2.11) the consistency error eh(t, Ũ) in (3.6) can be improved
as follows

‖eh(t, Ũ)‖L1(0,T ) � ‖Ũ‖W 1,∞((0,T )×�) h,

which concludes the proof. ��
Remark 3.4 Here we point out that assumption (3.9) is slightly weaker than the assumption
used in the work of Jovanović and Rohde [16]

∑
σ∈	int

∫
σ

|[[Uh]]|2
h

dSx � 1. (3.10)

Moreover, for the case of d = 1 the assumption (3.9) is exactly the TVB condition, which
is a known property for the Godunov method.
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Remark 3.5 Let us consider piecewise constant initial data which generate only finitely many
rarefaction waves. It is obvious that such kind of initial data fulfills the condition ‖Uh0 −
U0‖L2(�) � h1/2 assumed in Theorem 3.1. Moreover, we can expect (3.9) or (3.10) to hold,
which consequently implies Theorem 3.3. Thus, in this case it holds ‖Uh − Ũ‖L2(�) � h1/2

for any τ ∈ (0, T ).

4 Numerical Experiments

In this section we simulate several one- and two-dimensional Riemann problems. The exam-
ples only containing rarefaction waves are used to validate our theoretical results, meanwhile,
the other examples containing contact waves or shock waves or both are also tested for com-
parisons and future interests. We point out that in our simulations there is no projection error
of initial data due to these simple Riemann problems and good uniform meshes.

In addition to the Godunov method, we also test the convergence rates of the viscosity
finite volume (VFV) method in order to generalize our analysis and for comparison. The
VFV method was originally introduced and studied by Feireisl et al. [9]. It can be described
as follows

Dt�h + divuph (�h, uh) = 0,

Dtmh + divuph (mh, uh) + ∇h ph = hα�huh,

Dt Eh + divuph (Eh, uh) + phdivhuh + uh · ∇h ph = 1

2
hα�h(|uh |2).

The discrete operators are defined by

(
divuph (rh, vh)

)
K =

∑
σ∈∂K

|σ |
|K | Fh(rh, vh), (divhvh)K =

∑
σ∈∂K

|σ |
|K | {{vh}} · n,

(∇hrh)K =
∑

σ∈∂K

|σ |
|K | {{rh}} n, �hrh =

∑
σ∈∂K

|σ |
|K |

[[rh]]
h

,

Fh(rh, vh) = U p[rh, vh] − hβ [[rh]], 0 < β < 1,

U p[rh, vh] = {{rh}} {{vh}} · n − 1

2
|{{vh}} · n| [[rh]],

In the following simulations, we use the forward Euler time discretization for both meth-
ods, and takeCFL = 0.9 for theGodunovmethod,whileCFL = 0.3,α = 1.8,β = 0.2 for the
VFV method. Unless otherwise specified, we take γ = 1.4; the errors of (�,m, η),E mean
the L2-error of (�h,mh, ηh) and the L1-norm of the relative energy E(�h,mh, ηh |̃�, ũ, η̃);
the convergence rates of (�,m, η),Emean the convergence rates of the errors of (�,m, η),E.
In addition, the error diagrams of �,m, η and E (also denoted as RE in the plots) will be
drawn with symbols “�”, “+”, “◦” and “�”, respectively. Moreover, the solid line without
a marker represents the reference slope of h1/2.

4.1 One Dimensional Experiments

We start with one dimensional Riemann problems in the computational domain � = [0, 1].
Here, the strong solution Ũ in the relative energy is taken as the reference (exact) solution
computed on the uniform mesh with 20,480 cells.
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Table 1 Initial data of 1D single wave

� u p � u p � u p

C Left 0.5 0.5 5 R Left 0.5197 −0.7259 0.4 S Left 1 0.7276 1

Right 1 0.5 5 Right 1 0 1 Right 0.5313 0 0.4
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(c) Godunov - Shock
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0 0.2 0.4 0.6 0.8 1

x

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

de
ns

ity

Exact
32
64
128
256
512
1024

(e) VFV - Rarefaction
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(f) VFV - Shock

Fig. 1 Example 4.1: density � obtained by the Godunov method (top) and the VFV method (bottom)

Example 4.1 (1D single wave) This example is used to measure the convergence rate
of three different types of waves—a single contact (C) wave, a single rarefaction (R) wave
and a single shock (S) wave.

Given the initial data in Table 1, we compute the contact, rarefaction and shock wave till
T = 0.2, 0.2 and 0.25, respectively. Figure 1 (resp. Fig. 2) shows the density � (resp. the
entropy η) obtained on different meshes with n = 1/h = 32, 64, . . . , 1024 cells. Moreover,
we present in Fig. 3 the errors of (�,m, η),E, see the details in Tables 2 and 3.

The numerical results indicate that :

• The Godunov method and the VFV method have similar convergence rates. Moreover,
the convergence rates of the VFV method are slightly better than those of the Godunov
method;

• For the single rarefaction wave the convergence rate of (�,m, η) (resp. E) is slightly
greater than 1/2 (resp. 1), which is consistent to our theoretical results;

• For the single contact wave the convergence rate of (�,m, η) (resp. E) is around 1/4
(resp. 1/2);

• For the single shock wave the convergence rate of (�,m, η) (resp.E) is around 1/2 (resp.
1).

In Fig. 2 we see the approximation of the entropy of the order 10−2, which is the same as the
order of the density error in Fig. 1.
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(a) Godunov - Contact (b) Godunov - Rarefaction (c) Godunov - Shock

(d) VFV - Contact (e) VFV - Rarefaction (f) VFV - Shock

Fig. 2 Example 4.1: entropy η obtained by the Godunov method (top) and the VFV method (bottom)

Remark 4.2 Here we compare the above observation with the result of Tadmor and Tang [25]
for the rarefaction wave and the shock wave.

• Directly applying the pointwise error estimate for scalar equation in [25], i.e.

|(uε − u)(x, t)| ≈ dist(x, R(t))−1ε log2 ε

with rarefaction set R(t), we obtain that the L2-error is bounded by ε1/2 log2 ε. Setting
the vanishing viscosity coefficient ε ≈ h means that our numerical analysis gives a better
upper bound for the convergence rate in the case of a single rarefaction wave.

• In the case of a shock applying the pointwise error estimate for scalar equation in [25],
i.e.

|(uε − u)(x, t)| ≈ dist(x, S(t))−1ε,

where S(t) is the streamline of shock discontinuities, we obtain that the L2-convergence
rate is 1/2, which is consistent with our observations.

Example 4.3 This experiment is used to further test our theoretical analysis. It describes
left-going and right-going rarefaction waves, whose initial data are given by

(�, u, p)(0, x) =
{

(1, −2, 0.4), x < 0.5,

(1, 2, 0.4), x > 0.5.

Figure 4a and b show the density � obtained at T = 0.15 by the Godunov method and the
VFV method, respectively. Moreover, the corresponding L2-error of (�,m, η) as well as the
L1-norm of E are shown in Fig. 4c and d, see also Table 4.

In our numerical results the convergence rate is approximately 1/2 (resp. 1) for (�,m, η)

(resp. E), which is consistent with our theoretical analysis.
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(e) Godunov - Shock
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Fig. 3 Example 4.1: errors obtained with different stepsizes h = 1/32, . . . , 1/1024. The black solid lines
without any marker denote the reference slope of h1/2

Example 4.4 This experiment is devoted to the 1D Sod problem. Our aim is to test the
convergence rate when the exact solution consists of rarefaction, contact and shock waves.
In this example the final time is set to T = 0.15 and the initial data are given by

(�, u, p)(0, x) =
{

(1, 0, 1), x < 0.5,

(0.125, 0, 0.1), x > 0.5.
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Table 2 Example 4.1: Errors and convergence rates of �, η,E obtained by the Godunov method

n = 1/h Contact Rarefaction Shock

Error Order Error Order Error Order

Density

32 0.0569 – 0.0292 – 0.0459 –

64 0.0479 0.2497 0.0201 0.5380 0.0297 0.6252

128 0.0395 0.2753 0.0135 0.5743 0.0224 0.4072

256 0.0332 0.2504 0.0089 0.6098 0.0160 0.4886

512 0.0278 0.2565 0.0057 0.6398 0.0112 0.5183

1024 0.0234 0.2501 0.0036 0.6656 0.0080 0.4805

Entropy

32 0.1038 – 0.0150 – 0.0139 –

64 0.0869 0.2563 0.0105 0.5138 0.0085 0.7083

128 0.0719 0.2732 0.0073 0.5335 0.0054 0.6689

256 0.0603 0.2551 0.0049 0.5524 0.0034 0.6375

512 0.0504 0.2580 0.0033 0.5687 0.0021 0.6807

1024 0.0423 0.2522 0.0022 0.5818 0.0014 0.5978

Relative energy

32 0.069415 – 0.001640 – 0.004126 –

64 0.048272 0.5241 0.000752 1.1246 0.001771 1.2207

128 0.032676 0.5630 0.000330 1.1871 0.000998 0.8274

256 0.022931 0.5109 0.000139 1.2519 0.000504 0.9858

512 0.015997 0.5195 0.000056 1.3075 0.000247 1.0266

1024 0.011269 0.5054 0.000022 1.3554 0.000126 0.9697

Figure 5a and b show the density � obtained by the Godunov and VFV methods on different
meshes. Moreover, the errors of (�,m, η) and E are shown in Fig. 5c and d, respectively, see
also Table 5 for more details.

These numerical results indicate that the convergence rate of (�,m, η) (resp. E) on
discontinuities is reduced; it is between 1/4 and 1/2 (resp. between 1/2 and 1).

4.2 Two Dimensional Experiments

In this section we present four two-dimensional Riemann problems. The computational
domain is taken as [0, 1]2. Here the solution Ũ used in the relative energy is taken as the
reference solution computed by the corresponding numerical method on the uniform mesh
with 40962 cells.

Example 4.5 The first 2D Riemann problem describes the interaction of four rarefaction
waves. The initial data are given by

(�, u, p)(0, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 0, 0, 1), x1 > 0.5, x2 > 0.5,

(0.5197, −0.7259, 0, 0.4), x1 < 0.5, x2 > 0.5,

(1, −0.7259, −0.7259, 1), x1 < 0.5, x2 < 0.5,

(0.5197, 0, −0.7259, 0.4), x1 > 0.5, x2 < 0.5.
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Table 3 Example 4.1: errors and convergence rates of �, η,E obtained by the VFV method

n = 1/h Contact Rarefaction Shock

Error Order Error Order Error Order

Density

32 0.0751 – 0.0440 – 0.0575 –

64 0.0619 0.2784 0.0307 0.5185 0.0391 0.5584

128 0.0507 0.2877 0.0205 0.5805 0.0268 0.5440

256 0.0418 0.2784 0.0131 0.6479 0.0178 0.5882

512 0.0345 0.2799 0.0081 0.7021 0.0120 0.5752

1024 0.0285 0.2759 0.0048 0.7436 0.0082 0.5465

Entropy

32 0.1356 – 0.0270 – 0.0214 –

64 0.1117 0.2791 0.0182 0.5696 0.0124 0.7956

128 0.0916 0.2862 0.0120 0.6043 0.0068 0.8582

256 0.0755 0.2792 0.0077 0.6295 0.0037 0.8719

512 0.0622 0.2799 0.0049 0.6510 0.0020 0.8713

1024 0.0513 0.2764 0.0031 0.6675 0.0011 0.8287

Relative energy

32 0.116107 – 0.004119 – 0.006390 –

64 0.078778 0.5596 0.001906 1.1118 0.003002 1.0899

128 0.052828 0.5765 0.000818 1.2196 0.001409 1.0911

256 0.035875 0.5583 0.000327 1.3248 0.000613 1.2011

512 0.024321 0.5608 0.000122 1.4157 0.000271 1.1768

1024 0.016577 0.5530 0.000044 1.4865 0.000123 1.1391

In this example the final time is set to T = 0.2. Figure 6a and b show the density isolines
obtained by the Godunov and VFV methods on a mesh with 40962 cells. Moreover, Fig. 6c
and d show the L2-errors of (�,m, η) and L1-norm of E on successively refined meshes, see
Table 6 for details.

In this case the convergence rates of (�,m, η) (resp. E) are slightly better than 1/2 (resp.
1). This may indicate that our rigorous error estimates are suboptimal in the case of finitely
many rarefaction waves.

Example 4.6 The initial data of the second 2D Riemann problem are given by

(�, u, p)(0, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0.5, 0.5, −0.5, 5), x1 > 0.5, x2 > 0.5,

(1, 0.5, 0.5, 5), x1 < 0.5, x2 > 0.5,

(2, −0.5, 0.5, 5), x1 < 0.5, x2 < 0.5,

(1.5, −0.5, −0.5, 5), x1 > 0.5, x2 < 0.5.

The exact solution consists of four interacting contact discontinuities yielding vortex sheets
with negative signs. We simulate till T = 0.2. Figure 7a and b show the density isolines
obtained by the Godunov and VFV methods on a mesh with 40962 cells. The L2-errors of
(�,m, η) as well as the L1-norm of E are shown in Fig. 7c and d, see also Table 7.

The numerical results indicate that (�,m, η) converges with a convergence rate about
1/2 and the convergence rate for E is approximately 1.
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Fig. 4 Example 4.3: density � (top) and the errors of �,m, η,E (bottom) obtained by the Godunov method
(left) and the VFV method (right). The black solid lines without any marker in the last two subfigures denote
the reference slope of h1/2

Table 4 Example 4.3: Errors and convergence rates of �,m, η,E obtained by the Godunov and VFVmethods

n Density Momentum Entropy Relative energy

Error Order Error Order Error Order Error Order

Godunov

32 0.0523 – 0.1299 – 0.1271 – 0.008792 –

64 0.0346 0.5987 0.0869 0.5803 0.0864 0.5566 0.003810 1.2064

128 0.0230 0.5865 0.0579 0.5853 0.0605 0.5135 0.001641 1.2148

256 0.0152 0.6012 0.0380 0.6090 0.0418 0.5354 0.000706 1.2162

512 0.0098 0.6303 0.0244 0.6392 0.0280 0.5755 0.000305 1.2101

1024 0.0062 0.6531 0.0153 0.6671 0.0186 0.5944 0.000134 1.1928

VFV

32 0.1019 – 0.2310 – 0.3146 – 0.047945 –

64 0.0639 0.6723 0.1602 0.5279 0.1824 0.7866 0.019004 1.3350

128 0.0433 0.5616 0.1126 0.5091 0.1153 0.6617 0.007298 1.3808

256 0.0307 0.4950 0.0792 0.5072 0.0807 0.5151 0.002798 1.3830

512 0.0213 0.5301 0.0543 0.5453 0.0560 0.5261 0.001086 1.3660

1024 0.0142 0.5878 0.0361 0.5904 0.0373 0.5884 0.000427 1.3453
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Fig. 5 Example 4.4: density � (top) and the errors of �,m, η,E (bottom) obtained by the Godunov method
(left) and the VFV method (right). The black solid lines without any marker in the last two subfigures denote
the reference slope of h1/2

Table 5 Example 4.4: Errors and convergence rates of �,m, η,E obtain the Godunov and VFV methods

n Density Momentum Entropy Relative energy

Error Order Error Order Error Order Error Order

Godunov

32 0.0378 – 0.0376 – 0.0615 – 0.005135 –

64 0.0273 0.4693 0.0269 0.4819 0.0484 0.3481 0.002642 0.9587

128 0.0203 0.4260 0.0206 0.3855 0.0400 0.2735 0.001561 0.7594

256 0.0151 0.4268 0.0154 0.4217 0.0328 0.2865 0.000913 0.7741

512 0.0114 0.4025 0.0117 0.4003 0.0268 0.2895 0.000554 0.7202

1024 0.0088 0.3773 0.0087 0.4153 0.0221 0.2831 0.000342 0.6978

VFV

32 0.0491 – 0.0525 – 0.0929 – 0.010427 –

64 0.0381 0.3658 0.0377 0.4779 0.0703 0.4023 0.005392 0.9514

128 0.0285 0.4183 0.0270 0.4802 0.0546 0.3641 0.002844 0.9231

256 0.0205 0.4774 0.0192 0.4958 0.0430 0.3441 0.001514 0.9090

512 0.0148 0.4650 0.0140 0.4524 0.0343 0.3274 0.000859 0.8176

1024 0.0110 0.4293 0.0104 0.4337 0.0276 0.3153 0.000508 0.7595
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Fig. 6 Example 4.5: density isolines (top) on a mesh with 40962 cells and the errors of �,m, η,E (bottom)
obtained by the Godunov method (left) and the VFV method (right). The black solid lines without any marker
in the last two subfigures denote the reference slope of h1/2

Table 6 Example 4.5: errors and convergence rates of �,m, η,E obtained by the Godunov and VFV methods

n Density Momentum Entropy Relative energy

Error Order Error Order Error Order Error Order

Godunov

16 0.0572 – 0.0749 – 0.0365 – 0.007821 –

32 0.0421 0.4408 0.0549 0.4475 0.0267 0.4482 0.004021 0.9597

64 0.0298 0.4975 0.0390 0.4950 0.0192 0.4808 0.001952 1.0430

128 0.0202 0.5636 0.0265 0.5567 0.0132 0.5354 0.000874 1.1594

256 0.0129 0.6402 0.0171 0.6316 0.0087 0.6026 0.000354 1.3038

512 0.0077 0.7434 0.0103 0.7353 0.0054 0.6973 0.000125 1.5033

VFV

16 0.0751 – 0.0946 – 0.0515 – 0.014156 –

32 0.0541 0.4729 0.0677 0.4823 0.0353 0.5451 0.007097 0.9962

64 0.0375 0.5276 0.0464 0.5454 0.0235 0.5868 0.003257 1.1237

128 0.0247 0.6061 0.0302 0.6195 0.0151 0.6347 0.001354 1.2666

256 0.0152 0.6976 0.0186 0.7026 0.0093 0.6997 0.000504 1.4263

512 0.0087 0.8063 0.0106 0.8093 0.0054 0.7938 0.000163 1.6287
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Fig. 7 Example 4.6: density isolines (top) on a mesh with 40962 cells and the errors of �,m, η,E (bottom)
obtained by the Godunov method (left) and the VFV method (right). The black solid lines without any marker
in the last two subfigures denote the reference slope of h1/2

Example 4.7 The initial data of the third 2D Riemann problem are given by

(�, u, p)(0, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1.5, 0, 0, 1.5), x1 > 0.5, x2 > 0.5,

(0.5323, 1.206, 0, 0.3), x1 < 0.5, x2 > 0.5,

(0.138, 1.206, 1.206, 0.029), x1 < 0.5, x2 < 0.5,

(0.5323, 0, 1.206, 0.3), x1 > 0.5, x2 < 0.5,

which describes the interaction of four shock waves. In this example the final time is set to
T = 0.35. Figure 8 shows the density isolines on a mesh with 40962 cells and the errors
of (�,m, η) and E obtained on successively refined meshes. Table 8 lists the errors and
convergence rates.

This example indicates that (�,m, η) converges with a ratio between 1/4 and 1/2 and E

converges with a ratio between 1/2 and 1.

Example 4.8 The initial data of the fourth 2D Riemann problem are given by

(�, u, p)(0, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0.5313, 0, 0, 0.4), x1 > 0.5, x2 > 0.5,

(1, 0.7276, 0, 1), x1 < 0.5, x2 > 0.5,

(0.8, 0, 0, 1), x1 < 0.5, x2 < 0.5,

(1, 0, 0.7276, 1), x1 > 0.5, x2 < 0.5.
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Table 7 Example 4.6: Errors and convergence rates of �,m, η,E obtained by the Godunov and VFVmethods

n Density Momentum Entropy Relative energy

Error Order Error Order Error Order Error Order

Godunov

16 0.1534 – 0.2355 – 0.2045 – 0.311123 –

32 0.1177 0.3816 0.1780 0.4040 0.1599 0.3543 0.187175 0.7331

64 0.0958 0.2979 0.1419 0.3267 0.1283 0.3180 0.122058 0.6168

128 0.0757 0.3390 0.1096 0.3724 0.1012 0.3425 0.075685 0.6895

256 0.0578 0.3903 0.0816 0.4266 0.0773 0.3881 0.043366 0.8034

512 0.0414 0.4792 0.0569 0.5190 0.0556 0.4761 0.021832 0.9901

VFV

16 0.1932 – 0.3048 – 0.2854 – 0.505011 –

32 0.1547 0.3206 0.2380 0.3572 0.2199 0.3760 0.316830 0.6726

64 0.1241 0.3173 0.1861 0.3548 0.1714 0.3601 0.199627 0.6664

128 0.0970 0.3558 0.1422 0.3878 0.1323 0.3737 0.120510 0.7281

256 0.0729 0.4129 0.1051 0.4360 0.0994 0.4115 0.067199 0.8426

512 0.0514 0.5029 0.0731 0.5248 0.0708 0.4910 0.032644 1.0416

(a) Godunov - � (b) VFV - �

1/512 1/256 1/128 1/64 1/32 1/16

h

10 -2

10 -1

er
ro
rs

m

RE

(c) Godunov - errors

1/512 1/256 1/128 1/64 1/32 1/16

h

10 -2

10 -1

er
ro
rs

m

RE

(d) VFV - errors

Fig. 8 Example 4.7: density isolines (top) on a mesh with 40962 cells and the errors of �,m, η,E (bottom)
obtained by the Godunov method (left) and the VFV method (right). The black solid lines without any marker
in the last two subfigures denote the reference slope of h1/2
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Table 8 Example 4.7: Errors and convergence rates of �,m, η,E obtained by the Godunov and VFVmethods

n Density Momentum Entropy Relative energy

Error Order Error Order Error Order Error Order

Godunov

16 0.1589 – 0.1764 – 0.2013 – 0.061809 –

32 0.1284 0.3077 0.1404 0.3292 0.1639 0.2964 0.038141 0.6965

64 0.0963 0.4160 0.1133 0.3098 0.1337 0.2940 0.022547 0.7584

128 0.0739 0.3806 0.0926 0.2917 0.1078 0.3106 0.014170 0.6701

256 0.0576 0.3590 0.0777 0.2523 0.0867 0.3137 0.009518 0.5740

512 0.0466 0.3084 0.0650 0.2577 0.0734 0.2409 0.006632 0.5212

VFV

16 0.2075 – 0.2018 – 0.2840 – 0.107017 –

32 0.1566 0.4063 0.1765 0.1938 0.2090 0.4420 0.061465 0.8000

64 0.1246 0.3290 0.1471 0.2626 0.1647 0.3441 0.038455 0.6766

128 0.0975 0.3546 0.1168 0.3325 0.1342 0.2957 0.022700 0.7605

256 0.0719 0.4397 0.0912 0.3576 0.1044 0.3614 0.012882 0.8173

512 0.0519 0.4707 0.0706 0.3689 0.0790 0.4018 0.007407 0.7985

This experiment describes the interaction of four discontinuities (the left and bottom discon-
tinuities are two contact discontinuities and the top and right are two shock waves). The final
time is set to T = 0.25. Figure 9 shows the density isolines obtained by the Godunov and
VFV methods on a mesh with 40962 cells. The L2-errors of �,m, η, and the L1-norm of E
are presented in Fig. 9 and Table 9.

These numerical results indicate a convergence rate around 1/2 for the L2-error of
(�,m, η) and a rate around 1 for the L1-norm of the relative energy E.

5 Conclusion

In this paper we have analyzed a priori error estimates between the numerical solution
obtained by the Godunov method and the strong exact solution of the multidimensional
Euler system via the relative energy. Assuming that there exist a uniform positive lower
bound on the density and a positive upper bound on the energy, we showed that the L1-norm
of the relative energy is equivalent to the square of the L2-norm of the error of the numeri-
cal solution, see (2.17). Recalling the consistency formulation proved in [22] and applying
Gronwall’s lemma, we have derived the estimates for the relative energy in Theorem 3.1.
Specifically, the relative energy converges at least at the rate of 1/2 in the L1-norm. At
the same time, the density, momentum and entropy converge at least at the rate of 1/4 in
the L2-norm. Being inspired by the fact that the Godunov method for scalar conservation
laws has bounded total variations we have formulated an additional hypothesis (3.9). If we
assume that (3.9) holds, the convergence rate of density, momentum and entropy (resp. rela-
tive energy) can be improved to at least 1/2 (resp. 1), see Theorem 3.3. Finally, we pointed
out that our theoretical analysis rigorously holds only for strong solutions, e.g. for a solution
that contains only finitely many rarefaction waves.
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Fig. 9 Example 4.8: density isolines (top) on a mesh with 40962 cells and the errors of �,m, η,E (bottom)
obtained by the Godunov method (left) and the VFV method (right). The black solid lines without any marker
in the last two subfigures denote the reference slope of h1/2

Table 9 Example 4.8: Errors and convergence rates of �,m, η,E obtained by the Godunov and VFVmethods

n Density Momentum Entropy Relative energy

Error Order Error Order Error Order Error Order

Godunov

16 0.0791 – 0.1351 – 0.0557 – 0.010648 –

32 0.0604 0.3891 0.1055 0.3567 0.0479 0.2184 0.006658 0.6775

64 0.0458 0.4012 0.0821 0.3619 0.0413 0.2134 0.004084 0.7050

128 0.0344 0.4103 0.0643 0.3538 0.0356 0.2145 0.002519 0.6971

256 0.0258 0.4152 0.0507 0.3426 0.0296 0.2664 0.001537 0.7128

512 0.0191 0.4382 0.0391 0.3724 0.0242 0.2932 0.000896 0.7786

VFV

16 0.1013 – 0.1992 – 0.1343 – 0.023507 –

32 0.0764 0.4069 0.1556 0.3559 0.1066 0.3340 0.014532 0.6938

64 0.0559 0.4522 0.1186 0.3921 0.0837 0.3493 0.008488 0.7757

128 0.0404 0.4676 0.0891 0.4126 0.0650 0.3647 0.004795 0.8240

256 0.0293 0.4640 0.0667 0.4174 0.0493 0.3992 0.002630 0.8664

512 0.0207 0.5035 0.0484 0.4632 0.0355 0.4719 0.001340 0.9725
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Wehave experimentally computed convergence rates for several one- and two-dimensional
Riemann problems. From Examples 4.1 and 4.3 containing only rarefaction waves, we
observed that the convergence rates of density, momentum and entropy (resp. relative energy)
are slightly better than 1/2 (resp. 1), which is consistent with the theoretical results presented
in Theorem 3.3. In our experiments for the Riemann problem the Godunov and VFV meth-
ods have a convergence rate about 1/4 for the contact wave and about 1/2 for the shock
wave, respectively. In future it will be interesting to analyze theoretically the convergence
rate towards a unique weak entropy solution containing shock and contact waves.
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A Boundedness of the HessianMatrix∇2
(%,�)

(%e)

In this section we derive positive lower and upper bounds of the Hessian matrix
∇2

(�,η)(�e). Denote

f (λ) = λ2 − (1 + Cv + a)λ + Cv

with a : =
(
1 − η

�

)2
. It is easy to find that

∣∣∣∣Cv�

ϑ
∇2

(�,η)(�e) − λI

∣∣∣∣ = f (λ) , f (0) = Cv > 0, f

(
1

1 + Cv + a

)
> 0.

Let λ∗
1, λ

∗
2 (λ∗

1 < λ∗
2) be the roots of the quadratic polynomial f (λ). Then it holds

0 <
1

1 + Cv + a
< λ∗

1 <
1 + Cv + a

2
< λ∗

2 < 1 + Cv + a, (A.1)
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consequently, we obtain

1

1 + Cv +
(
1 + max(|η/�|, |η/�|)

)2 < λ∗
1 < λ∗

2 < 1 + Cv +
(
1 + max(|η/�|, |η/�|)

)2
,

(A.2)

where η and � are lower bounds of η and �, respectively. Analogously, η denotes an upper

bound of η. Thus, we obtain lower and upper bounds of ∇2
(�,η)(�e), i.e.,

ϑ

Cv� b
I < ∇2

(�,η)(�e) <
ϑ b

Cv�
I (A.3)

with b : = 1 + Cv + (1 + Cv max(|η/�|, |η/�|))2. Here �, ϑ are respective upper bounds
of �, ϑ and ϑ is a lower bound of ϑ .
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