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Abstract
The inverse Henderson problem refers to the determination of the pair potential which
specifies the interactions in an ensemble of classical particles in continuous space,
given the density and the equilibrium pair correlation function of these particles as
data. For a canonical ensemble in a bounded domain, it has been observed that this pair
potential minimizes a corresponding convex relative entropy functional, and that the
Newton iteration for minimizing this functional coincides with the so-called inverse
Monte Carlo (IMC) iterative scheme. In this paper, we show that in the thermodynamic
limit analogous connections exist between the specific relative entropy introduced by
Georgii and Zessin and a proper formulation of the IMC iteration in the full space.
This provides a rigorous variational framework for the inverse Henderson problem,
valid within a large class of pair potentials, including, for example, Lennard-Jones-
type potentials. It is further shown that the pressure is strictly convex as a function of
the pair potential and the chemical potential, and that the specific relative entropy at
fixed density is a strictly convex function of the pair potential. At a given reference
potential and a corresponding density in the gas phase, we determine the gradient and
the Hessian of the specific relative entropy, and we prove that the Hessian extends to a
symmetric positive semidefinite quadratic functional in the space of square integrable
perturbations of this potential.
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1 Introduction

Numerical simulation has established itself as an independent and indispensable
branch of research in the natural sciences, on equal footing with theory and experi-
ment. To be truly useful, numerical approaches have to face and master the multiscale
nature which is ubiquitous in almost all relevant applications. This is particularly true
for soft matter, where spatial scales may bridge from the electron scale up to the
millimeter scale of biomaterials or polymers. Concerning examples we refer to the
excellent survey by Noid [31], the collected volume edited by Monticelli and Salonen
[28], or the recent special issue [40] of Journal of Physics: Condensed Matter.

An important technique to advance numerical algorithms to the particular needs
of multiscale applications consists in coarse-graining, cf., e.g., Noid [32], or Peter
and Kremer [33]: small-scale features are discarded on the coarser scale by replacing
detailed descriptions of molecules or matter by artificial beads of a certain shape.
The simulation then focusses only on these beads and their interaction with the other
constituents of the system. When and where necessary, fine details can be reinserted
back into the simulation for better accuracy as, e.g., in the AdResS scheme ( [6, 34]).

Of course, to evaluate the equations of motion for the coarse-grained model, it
is necessary to derive the prevailing effective forces on these beads. Concerning the
transition from an atomic microscale to a molecular macroscale in thermodynamic
equilibrium, for example, there are essentially two ways to settle this problem. On the
one hand, one can employ an ab initio bottom-up approach and evaluate and assem-
ble the resulting forces from the eliminated details of the fine-grained description,
cf. Ercolessi and Adams [5], or run a fine-grained simulation, compute the corre-
sponding forces, and somehow approximate them on the coarse level as suggested,
e.g., by Izvekov and Voth [20], and Wang et al [46]. The other alternative is to follow
a top-down strategy and use the given structural information about the location of the
beads on the coarse scale to formulate an inverse problem: Which are the appropriate
forces or interactions on the coarse level that define ensembles with the same structural
properties?

In this work, we treat one of the simplest incarnations of the latter approach. Let us
presume that the probabilities of the snapshots of the coarse-grained bead ensembles
are in good agreement with a model which only uses additive pairwise translation
invariant interactions of the beads. Such interactions can be formulated in terms of
a scalar pair potential which only depends on the relative position of the respective
pair of beads. The pair correlation function, which measures the empirical likelihood
to observe two beads at a given relative position, appears to be an adequate piece of
data to be used for finding the corresponding potential, because both the data and the
unknown consist of a scalar function of the space variable in that case. In fact, in a
celebrated paper, Henderson [18] argued that the pair potential is uniquely specified
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this way, i.e., under given conditions of temperature and density, no two different pair
potentials can give rise to the same piece of empirical data. Finding a pair potential
that reproduces the given pair correlation function is therefore sometimes called the
inverse Henderson problem.

The numerical solution of the inverse Henderson problem is demanding because of
the lack of a mathematical formula for computing the pair correlation function for a
given pair potential, or vice versa. In the old days people have developed approximate
identities like the Percus–Yevick or hypernetted chain integral equations for this pur-
pose, cf. Hansen and McDonald [17], or have used parametric ansatz functions like,
e.g., Lennard-Jones potentials, and optimized the corresponding parameters numeri-
cally. Today, the state of the art is to use nonparametric potentials and employ iterative
schemes which, in each iteration, simulate the equilibrium ensemble for the current
guess of the pair potential, and use the associated data fit to somehow generate a new
guess. Well-known examples are the iterative Boltzmann inversion (IBI), cf. Soper
[42] and Reith, Pütz, and Müller-Plathe [35], and the inverse Monte Carlo method
(IMC) by Lyubartsev and Laaksonen [26]. We recommend the valuable reviews by
Toth [44] and Rühle et al [37] for a comparison of these and further methods.

We emphasize that the setting of the inverse Henderson problem is generally
accepted to be far too simplistic to capture all the relevant features of a real sys-
tem, cf., e.g., [25, 32, 45], mostly because multibody interactions are neglected. In
particular, thermodynamic properties of the coarse-grained model may differ from the
real system, especially at other temperatures or densities.

But its simplicity offers a great opportunity for a mathematical analysis, which
in turn may lead to a better understanding of other, more flexible coarse-graining
techniques that are routinely being employed in practice. Still, only few rigorous
mathematical results have yet been obtained, e.g., in [2, 7, 16, 23, 24, 30], the reason
being, again, the lack of explicit formulae to attack the problem.

The aim of this paper is to point out and advocate an alternative access point
for theoretical investigations, which goes back to a nice observation by Shell [41]
from within the chemical physics community: He argues that the Henderson potential
minimizes the (information theoretic) relative entropy

Srel =
∑

γ

P∗(γ ) log
P∗(γ )

P(γ )
, (1.1)

where—in his words—the summation is over all possible (coarse grained) ensemble
configurations γ , P∗(γ ) denotes the target (or observed) probability of γ , and P(γ )

is the corresponding probability of a model with a given pair potential. (Compare, for
example, Georgii [12] for background on the concept of relative entropy in stochas-
tics.) Subsequently, Murtola, Karttunen, and Vattulainen [29] pointed out that the
functional (1.1) is convex, and that the Newton iteration for minimizing the relative
entropy coincides with the aforementioned IMC iteration (see also Rosenberger et al
[36]).

Like Henderson’s paper [18], the results in [29, 36, 41] lack mathematical rigor,
because their arguments are restricted to bounded domains, whereas an unambigu-
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ous definition of a “translation invariant ensemble” is only possible in the full space.
Concerning the Henderson theorem, this shortcoming has recently been fixed in [7],
building on fundamental work by Ruelle and by Georgii. Here, we focus on the pro-
posal by Shell and his colleagues, provide a rigorous justification of their results, and
elaborate further on them.

To be specific, we outline in Sect. 2 that the (appropriately formulated) relative
entropy (1.1) divided by the volume of the bounded domain converges in the thermo-
dynamic limit to the specific relative entropy, first introduced for continuum systems
by Gallavotti and Miracle-Sole [8] in the case of hard-core interactions, and further
investigated by Georgii and Zessin in [9, 10, 13] for general additive pair interactions.
Under mild assumptions on the model and target ensembles to be utilized, we prove
that this specific relative entropy is a strictly convex functional on the corresponding
set of pair potentials (which include Lennard-Jones type and hard-core potentials),
and that its (unique) minimizer is the particular potential which solves the inverse
Henderson problem (see Sects. 3 and 4).

From Sect. 5 onward, we restrict ourselves to low densities (the “gas phase”),
where the specific relative entropy is a differentiable function of the pair potential. We
calculate its Hessian, and in Sect. 6, we verify that the Newton iteration for minimizing
the specific relative entropy does indeed coincide with the IMC iteration formulated in
the thermodynamic limit. In Sect. 7, we investigate theHessian inmore detail and show
that it can be represented by a self-adjoint positive semidefinite operator in L2. The
mapping properties of this operator can be analyzed somewhat further for the particular
class of Lennard-Jones-type pair potentials; we conclude with a corresponding result
in Sect. 8.

We hope that this variational framework for the inverse Henderson problem opens
a possibility to discuss the convergence of the IMC iteration, or to come up with
measures to stabilize or regularize this popular iterative scheme.

2 The relative entropy in the thermodynamic limit

To reformulate Shell’s approach within a rigorous mathematical framework we start
with the assumption that the target ensemble is given by a translation invariant prob-
ability measure P∗ on the configuration space

� = { γ ⊂ R
d : � ⊂ R

d bounded ⇒ #(γ ∩ �) < ∞}

with density ρ∗ and finite locally second moments, compare Georgii [9]. For the
model ensemble, we restrict ourselves to ensembles of classical particles with additive
pairwise interactions defined by ameasurable even pair potential u : Rd → R∪{+∞}.
Concerning the latter, we assume that there exists r0 > 0 and decreasing positive
functions ϕ : (0, r0) → R

+
0 and ψ : [0,∞) → R

+ with

∫ r0

0
rd−1ϕ(r) dr = +∞ and

∫ ∞

0
rd−1ψ(r) dr < ∞ , (2.1)
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such that
u(x) ≥ ϕ(|x |) for 0 < |x | < r0 ,

|u(x)| ≤ ψ(|x |) for |x | ≥ r0 ,
(2.2)

holds true almost everywhere; for our convenience, we take ψ to be a bounded and
decreasing function defined for all r ≥ 0. We denote by U0 the subset of the above
pair potentials, which also belong to L∞

loc(R
3 \ {0}), and define U to be the union of

U0 with the hard-core potentials, which satisfy (2.2) with ψ as above and ϕ replaced
by +∞; accordingly, r0 is taken to be the hard-core radius in this case. Technically,
we do not distinguish between potentials (and functions in general) which differ on
sets of Lebesgue measure zero.

Remark 2.1 The setU is convex. To see this let ui ∈ U , i = 1, 2, be such that (2.1) and
(2.2) hold for r0,i > 0 and decreasing functionsϕi andψi satisfying (2.1), respectively.
Without loss of generality, we may assume that r0,1 ≤ r0,2. Let u = tu1 + (1 − t)u2
for some fixed t ∈ (0, 1). We distinguish two cases. If u2 is a hard-core potential, then
u is also a hard-core potential with hard-core radius r0,2. In this case, we can choose
r0 = r0,2,

ϕ(r) = +∞ for 0 < r < r0,2 ,

ψ(r) = tψ1(r) + (1 − t)ψ2(r) for r ≥ 0 ,

to achieve the assumption (2.2) for u. On the other hand, if u2 is no hard-core potential,
then u2 is bounded on [r0,1, r0,2), and there exists c ≥ 1, such that

|u2(x)| ≤ cψ2(|x |) for r0,1 ≤ |x | < r0,2.

It follows that u satisfies the inequalities (2.2) with r0 = r0,1 and

ϕ(r) = tϕ1(r) + (1 − t)ϕ2(r) for 0 < r < r0,1 ,

ψ(r) = tψ1(r) + (1 − t)cψ2(r) for r ≥ 0.

In either case, we have verified that u ∈ U , hence U is convex. 
Let � = [−�, �]d be a bounded box inRd . In analogy to Shell, who considered the

relative entropy framework for canonical ensembles in�, we take the restriction P∗,�

of P∗ as target, and the grand canonical ensemble in � with chemical potential μ ∈ R

and pair potential u ∈ U as model. For a configuration γ ∈ � of N = N (γ ) particles
located at {x1, . . . , xN } ⊂ �, the probability density of the model is thus given by

P(γ ) = 1

	�

eβμN (γ )e−βU (γ ) ,

where β > 0 is the inverse temperature,

U (γ ) = U (x1, . . . , xN ) =
∑

1≤i< j≤N

u(xi − x j ) (2.3)
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is the interaction energy, and

	� =
∞∑

N=0

eβμN

N !
∫

�N
e−βU (x1,...,xN ) dx1 · · · dxN

is the corresponding grand canonical partition function.
Note that most of the quantities we deal with depend on β; however, since we

will keep the temperature fixed throughout this paper, we refrain from making this
dependency explicit in our notation.

Let S(P∗,�) denote the entropy associated with P∗,�. In the spirit of (1.1), we then
specify the relative entropy

Srel,� = S(P∗,�) +
∫

��

(
log	� − βμN (γ ) + βU (γ )

)
dP∗,�(γ )

= S(P∗,�) + log	� − βμE∗,�[N ] + β E∗,�[U ] ,

where E∗,�[ · ] denotes expectation with respect to P∗,�. Take note that the entropy
and the expected interaction energy may be +∞. Dividing by β|�|, we arrive at

1

β|�| Srel,� = 1

β|�| S(P∗,�) + 1

β|�| log	� − μρ∗ + 1

|�| E∗,�[U ]. (2.4)

Now, we want to derive the analog of this identity for the thermodynamic limit
� → ∞. Concerning this limit it is known that there is a sequence (�k)k with �k → ∞,
such that the probability densities associated with the corresponding grand canonical
ensembles converge in a local topology to a translation invariant tempered Gibbs
measure on �, cf. Ruelle [39], for brevity called (μ, u)-Gibbs measure in the sequel.
In general, different sequencesmay lead to different (μ, u)-Gibbsmeasures, e.g., when
different phases coexist. For any such sequence, however, the limit

p(μ, u) = lim
�→∞

1

β|�| log	� (2.5)

is always the samewell-defined and nonnegative finite number, namely the pressure of
the ensemble in the thermodynamic limit, cf. Ruelle [38]. Therefore, passing in (2.4)
to the thermodynamic limit � → ∞, we can (uniquely) define the relative entropy
Srel(μ, u) of all these (μ, u)-Gibbs measures with respect to the target model P∗ as

1

β
Srel(μ, u) = 1

β
S∗ + p(μ, u) − μρ∗ + E(u,P∗) , (2.6)

where the individual terms on the right-hand side of (2.6) are the corresponding limits
of the respective terms in (2.4): S∗ = S(P∗) is the specific entropy and E(u,P∗) is
the specific interaction energy (with respect to the potential u) of the target ensemble,
both of which have been shown to be well-defined in R ∪ {+∞}, cf. [11, 13]. If P∗
satisfies a Ruelle condition (compare (A.1) in the appendix), then the specific entropy
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is finite; this is the case, e.g., when P∗ is a (μ∗, u∗)-Gibbs measure for some u∗ ∈ U
and μ∗ ∈ R, compare [39, Corollary 5.3]. For this latter particular case, it has further
been shown in [7] that

E(u,P∗) = 1

2

∫

Rd
u(x)ρ(2)∗ (x) dx , (2.7)

where ρ
(2)∗ (x) is the pair correlation function associated withP∗. Here, and throughout

this paper, we deliberately use the short-hand notation ρ(2)(x) instead of ρ(2)(x, 0)
for the pair correlation function of a translation invariant point process.

In [10], Georgii studied the relative entropy Srel(μ, u) in detail and established the
following Gibbs variational principle:

Theorem A (Gibbs variational principle) Let P∗ be a translation invariant probability
measure on � with finite locally second moments. Then, the relative entropy (2.6) is
nonnegative real or +∞ for every u ∈ U and μ ∈ R. There holds Srel(μ, u) = 0, if
and only if P∗ is a (μ, u)-Gibbs measure.

We have utilized this result in [7] to prove a rigorous version of the Henderson
theorem:

Theorem B (Henderson theorem) Let u1, u2 ∈ U and μ1, μ2 ∈ R. If P1 and P2 are
(μ1, u1)- and (μ2, u2)-Gibbs measures, respectively, which share the same density
and the same pair correlation function, then u1 = u2 and μ1 = μ2.

Combining Georgii’s Gibbs variational principle and the Henderson theorem, we
can formulate an alternative version of the Gibbs variational principle. This version is
the one that we will mostly use below.

Theorem 2.2 (Gibbs variational principle, alternative form) If the target P∗ is a
(μ∗, u∗)-Gibbs measure for some u∗ ∈ U and μ∗ ∈ R, then the relative entropy
Srel(μ, u) becomes minimal, if and only if u = u∗ and μ = μ∗.

Proof According to TheoremA, it remains to investigate the case when Srel(μ, u) = 0
for some u ∈ U and μ ∈ R. The Gibbs variational principle states that P∗, is then
a (μ∗, u∗)- and (μ, u)-Gibbs measure at the same time. In particular this means that
these two Gibbs measures share the same density and pair correlation function. The
assertion thus follows from the Henderson theorem. ��

Georgii investigated the relative entropy for fixed interaction and chemical poten-
tials u andμ, and varied the target modelP∗. In connection with the inverse Henderson
problem, our interest is sort of dual to this: we assume that P∗ is fixed, and consider
the relative entropy as a function of μ and u.

3 Strict convexity of the pressure and the relative entropy

It is well-known that the pressure is a convex function of the chemical potential, cf. [38,
Theorem3.4.6]. This convexity is strict,whenever aGibbs variational principle is valid,
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cf., e.g., Hughes [19, Sect. 4.3]. In the sequel, we show that under our assumptions
the pressure is also strictly convex in μ and u.

Theorem 3.1 The pressure p = p(μ, u) of (2.5) is a strictly convex function of μ ∈ R

and u ∈ U . Moreover, for u ∈ U0, there holds

p(μ, u)

μ
→ +∞ asμ → +∞. (3.1)

Proof To begin with, we first observe that R×U is convex by virtue of Remark 2.1.
Now let μ1, μ2 ∈ R and u1, u2 ∈ U be arbitrarily chosen, not both being equal at

the same time, and define

μ = tμ1 + (1 − t)μ2 and u = tu1 + (1 − t)u2

for some fixed t ∈ (0, 1). When choosing for P∗ a corresponding (μ, u)-Gibbs mea-
sure, then it follows from (2.6) and the Gibbs variational principle of Theorem 2.2
that

p(μ, u) = − 1

β
S∗ + μρ∗ − E(u,P∗). (3.2)

In particular, the specific entropy S∗ is finite becauseP∗ is a Gibbsmeasure, and hence,
so is the specific interaction energy. Likewise, we obtain

p(μ1, u1) > − 1

β
S∗ + μ1ρ∗ − E(u1,P∗)

and

p(μ2, u2) > − 1

β
S∗ + μ2ρ∗ − E(u2,P∗) ,

which gives

t p(μ1, u1) + (1 − t) p(μ2, u2) > − 1

β
S∗ + μρ∗ − E(u, P∗)

because of the linearity of the specific interaction energy. A comparison with (3.2)
thus shows that the pressure is strictly convex.

Consider now a fixed pair potential u ∈ U0. It has been shown in the proof of [9,
Lemma 7.1] that for any ρ > 0 there exists a translation invariant probability measure
Pρ on� with density ρ, such that S(Pρ) < ∞, and E(u,Pρ) < ∞. ChoosingP∗ = Pρ

in (2.6), Georgii’s Gibbs variational principle (Theorem A) yields the inequality

p(μ, u) − μρ ≥ − 1

β
S(Pρ) − E(u,Pρ) =: cρ > −∞ (3.3)
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for every μ ∈ R. In other words,

p(μ, u)

μ
≥ ρ + cρ

μ
,

and hence,

lim inf
μ→+∞

p(μ, u)

μ
≥ ρ.

Since ρ > 0 has been arbitrary, this implies (3.1). ��
We thus have shown that the relative entropy (2.6) is the sum of a strictly convex

functional and an affine function of (μ, u). Accordingly, the relative entropy is also a
strictly convex functional of μ and u, as long as it is finite.

Another immediate consequence of Theorem 2.2 is the following inequality for the
pressure.

Corollary 3.2 For μ1, μ2 ∈ R and u1, u2 ∈ U , there holds

(μ2 − μ1)ρ1 − 1

2

∫

Rd
(u2 − u1)(x)ρ

(2)
1 (x) dx

≤ p(μ2, u2) − p(μ1, u1) ≤ (μ2 − μ1)ρ2 − 1

2

∫

Rd
(u2 − u1)(x)ρ

(2)
2 (x) dx .

(3.4)
whenever ρi and ρ

(2)
i are the density and pair correlation function of a (μi , ui )-Gibbs

measure, respectively. Both inequalities are strict, unless μ1 = μ2 and u1 = u2. In
particular, if u1 = u2 and μ1 < μ2, then ρ1 < ρ2.

Proof The two inequalities (3.4) follow readily from Theorem 2.2 by choosing for
P∗ the corresponding (μi , ui )-Gibbs measures, respectively. They are strict, unless
μ1 = μ2 and u1 = u2. ��

4 The relative entropy functional for fixed density

Returning to the inverse Henderson problem formulated in the introduction, we now
constrain our model ensembles to have the same density ρ∗ as the target ensemble.
We do so because numerical simulations are often done in the canonical ensemble,
where the density is the crucial quantity, and because this is also the setting used by
Henderson and by Shell, as well as in the definition of the IMC scheme mentioned
before. Since the attainable densities for hard-core potentials are bounded, we need to
distinguish the case whether u is a hard-core potential or not. We focus our analysis
on the latter case and mention the necessary modifications for hard-core potentials in
Remark 4.4 later in this section.

The first fundamental problem to settle concerns the question whether and how
the prescribed density ρ∗ can be attained by some (μ, u)-Gibbs measure for a given
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u ∈ U0. When the chemical potential is sufficiently small, i.e., when the system is in
the gas phase (see Sect. 5 for a specification of this term), then it is known that there is a
one-to-one relation between the corresponding chemical potentials and the associated
densities, and in this case, the inverse map ρ �→ μ can even be computed by means
of cluster expansions, cf., e.g., Jansen, Kuna, and Tsagkarogiannis [22]. Outside the
gas phase, where phase transitions may occur, the problem becomes more difficult.
Adopting amethod fromChayes and Chayes [2], we can establish the following result,
which holds for the full range of possible densities.

Theorem 4.1 Let u ∈ U0 and ρ∗ > 0 be fixed. Then, there is a unique chemical
potential μ∗ = μ∗(u) ∈ R, for which there exists a (μ∗, u)-Gibbs measure with
density ρ∗.

Proof For every μ ∈ R and the given u ∈ U0, let Pμ,u be a (μ, u)-Gibbs measure,
and denote by p(μ) and ρ(μ) the associated pressure and density, respectively.

It is well-known, cf. [38, Theorem 4.3.1], that for small chemical potentials, the
pressure is a differentiable function with

p′(μ) = ρ(μ). (4.1)

In other words, if ρ∗ is sufficiently small, then the corresponding chemical potential
μ∗ from the formulation of the theorem is given as the uniqueminimum of the function

�(μ) = p(μ) − μρ∗ , (4.2)

the latter being strictly convex by virtue of Theorem 3.1. We will proceed by showing
that the minimizer of � is also the appropriate chemical potential to choose for larger
values of ρ∗.

To see this, we first observe that

�(μ) ≥ −μρ∗ ,

because the pressure is nonnegative, whereas

�(μ) ≥ c(1+ε)ρ∗ + εμρ∗ (4.3)

for any suitable ε > 0 and corresponding constant c(1+ε)ρ∗ by virtue of (3.3) (with
ρ = (1 + ε)ρ∗). This shows that � is bounded from below and that

�(μ) → +∞ , whenever |μ| → ∞.

Therefore, � attain its minimum for a uniquely defined value μ = μ∗.
For any μ ∈ R, μ �= μ∗, we now conclude from (3.4) and (4.2) that

(μ∗ − μ)ρ(μ) < p(μ∗) − p(μ) = �(μ∗) + μ∗ρ∗ − �(μ) − μρ∗ ,
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i.e.,

(μ∗ − μ)
(
ρ(μ) − ρ∗

)
< �(μ∗) − �(μ) < 0.

This means that
ρ(μ) < ρ∗ for μ < μ∗ ,

ρ(μ) > ρ∗ for μ > μ∗ .
(4.4)

Now, let (μ+
k )k be a strictly decreasing sequence and (μ−

k )k a strictly increas-
ing sequence of chemical potentials, both of which converge to μ∗. By virtue of
Lemma A.1 from the appendix, there exist (μ∗, u)-Gibbs measures P− and P

+ with
densities

ρ(P−) = lim
k→∞ ρ(μ−

k ) and ρ(P+) = lim
k→∞ ρ(μ+

k ).

The inequalities (4.4) imply that

ρ(P−) ≤ ρ∗ ≤ ρ(P+) ,

and hence, there is some t ∈ [0, 1], for which P = tP− + (1 − t)P+ has density

ρ(P) = tρ(P−) + (1 − t)ρ(P+) = ρ∗ .

Since the set of (μ∗, u)-Gibbs measures is convex, P has all the desired properties
from the statement of this theorem, and the proof is done. ��

In the light of the above theorem, we can now restrict our attention to (μ, u)-Gibbs
measures with density ρ∗, i.e., with chemical potential μ = μ∗(u), when looking at
the relative entropy functional. Further, we drop the constant offset S∗ in (2.6), as it is
independent of u. This leads to the functional

(u) = p∗(u) − μ∗(u)ρ∗ + E(u,P∗) (4.5)

for u ∈ U0, where we have set

p∗(u) = p(μ∗(u), u) (4.6)

for brevity. By a slight abuse of wording we will keep calling  the relative entropy
functional. As we will see next, although p∗ may fail to be convex, in general, the
functional  is strictly convex, again.

Theorem 4.2 Let P∗ be as in Theorem A. Then, the functional  : U0 → R of (4.5)
is strictly convex as long as the specific interaction enery E(u,P∗) is finite.

Proof Let u1 and u2 be two different pair potentials fromU0. For any fixed 0 < t < 1,
define

u = tu1 + (1 − t)u2 ,
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and, as in Theorem 4.1, denote by μ = μ∗(u) the chemical potential associated with
u and density ρ∗. Finally, let ρ(2) be the pair correlation function of the associated
(μ, u)-Gibbs measure constructed in Theorem 4.1.

Then, we obtain from (4.6) and (3.4)—with μi = μ∗(ui ) for i = 1, 2—that

p∗(u) − tp∗(u1) − (1 − t)p∗(u2)
= t

(
p∗(u) − p∗(u1)

) + (1 − t)
(
p∗(u) − p∗(u2)

)

< t

(
(μ − μ1)ρ∗ − 1 − t

2

∫

Rd
(u2 − u1)(x)ρ

(2)(x) dx

)

+ (1 − t)

(
(μ − μ2)ρ∗ − t

2

∫

Rd
(u1 − u2)(x)ρ

(2)(x) dx

)

= μρ∗ − tμ1ρ∗ − (1 − t)μ2ρ∗ .

Note that this inequality is strict because u is different from u1 and u2 by construction.
Reordering terms, we thus arrive at

p∗(u) − μρ∗ < t
(
p∗(u1) − μ1ρ∗

) + (1 − t)
(
p∗(u2) − μ2ρ∗

)
. (4.7)

It thus follows from (4.5) and (4.7) that if the specific interaction energy E( · ,P∗)
stays finite, then  is strictly convex, because E( · ,P∗) is linear in the first argument.

��
Theorem 4.2 implies that the relative entropy functional has at most one local

minimizer, which is then also a global one. Concerning this minimizer, we have the
following result.

Theorem 4.3 Let P∗ be a (μ, u∗)-Gibbs measure for some u∗ ∈ U0 and μ ∈ R, and
let ρ∗ be its density. Then, the relative entropy function (4.5) attains its minimum for
u = u∗.

Proof The given Gibbs measure P∗ has finite specific entropy S∗, and hence, (2.6)
implies that

(u) = 1

β
Srel

(
μ∗(u), u

) − 1

β
S∗ (4.8)

for every u ∈ U0. Since P∗ has density ρ∗ the chemical potential μ associated with
P∗ must be given byμ = μ∗(u∗) according to Theorem 4.1. From (4.8) and the Gibbs
variational principle (Theorems A and 2.2), it follows that

(u∗) = − 1

β
S∗ <

1

β
Srel

(
μ∗(u), u

) − 1

β
S∗ = (u) (4.9)

for every u ∈ U0 \ {u∗}, and this was to be shown. ��
Note from (4.9) that the minimal value of  depends on the specific entropy of the

target Gibbs measure, and is therefore unknown in general.
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Remark 4.4 For a hard-core potential u ∈ U the density ρ of any associated (μ, u)-
Gibbsmeasure is bounded fromabove by afinite closest-packing densityρcp = ρcp(u):
This bound only depends on the hard-core radius r0 of (2.2) and is a decreasing function
of r0, cf. [9, Sect. 7]. We formally set ρcp(u) = +∞ for u ∈ U0.

If the given density ρ∗ of the target happens to be below ρcp(u) for a given u ∈ U ,
then Theorem 4.1 is still valid for this pair potential; to establish (4.3) in its proof,
ε > 0 must be so small that (1+ ε)ρ∗ is still below ρcp(u), because this is needed for
[9, Lemma 7.1], and hence, for (3.3). The relative entropy functional (4.5), however,
is only well-defined on the domain

D() = { u ∈ U : ρcp(u) > ρ∗ } ,

but this is again a convex set, compare Remark 2.1, and happens to be strictly convex
on D(). Theorem 4.3 extends literally to every u∗ ∈ U with this understanding of
the domain of . 

Theorem 4.3 is the basis for a variational setting of the inverse Henderson problem:
If the density and the pair correlation function of a (μ∗, u∗)-Gibbs measure target
P∗ are given, then the unique minimizer of the strictly convex relative entropy func-
tional (4.5) with E(u,P∗) of (2.7) yields the corresponding pair potential u∗, i.e., the
solution of the inverse Henderson problem. Nevertheless, this approach also has some
pitfalls as discussed in the following remark.

Remark 4.5 If the target P∗ fails to be some (μ, u)-Gibbs measure, then it is not clear
to us whether the relative entropy functional  will still be bounded from below on
U , and even if it may, its infimum need not be attained on U .

Vice versa, ifu∗ ∈ U happens to be themiminizer of, then this does not imply that
P∗ is a (μ∗(u∗), u∗)-Gibbs measure. To see the latter, consider the following example:
Let u∗ be any hard-core potential in U and ρ∗ < ρcp(u∗); compare Remark 4.4.
Then, provided ρ∗ is sufficiently small, a result by Kuna, Lebowitz, and Speer [24,
Corollary 4.3] states that there exist uncountably many distinct translation invariant
probability measures with finite specific entropy and density ρ∗, which share the pair
correlation function ρ

(2)∗ with the (μ∗(u∗), u∗)-Gibbs measure P, but P is the only
(μ, u)-Gibbs measure among them according to the Henderson theorem. Because the
specific interaction energy is given by (2.7) for all of these probability measures, the
relative entropy functional does not differ, and hence, u∗ is its unique minimizer,
regardless which of them has been the target P∗.

Finally, wemention that even if the targetP∗ is a (μ, u∗)-Gibbsmeasure, and hence,
the functional (4.5) is minimized by u∗ according to Theorem 4.3, then this does not
seem to imply that the model and the target have the same pair correlation function. To
illustrate this, imagine that a fluid corresponding to a pair potential u∗ ∈ U exhibits a
so-called triple point (compare, e.g., [17]), where three different phases coexist at the
same thermodynamical state point, i.e., for the same values of pressure (or chemical
potential μ∗, say) and temperature (or inverse temperature β). It can be expected
that the different phases have linearly independent pair correlation functions; taking
convex combinations of the corresponding Gibbs measures, one can thus determine
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two (μ∗, u∗)-Gibbs measures which have the same density ρ∗, but have different pair
correlation functions. One of them could be the target and the other one theminimizing
model. We will see in Sect. 5 that if the density ρ∗ belongs to the gas phase of the
minimizer of , then the pair correlation function of the minimizing Gibbs measure
always coincides with the given ρ

(2)∗ ; see Remark 5.5. 

5 Differentiability of the relative entropy functional

In the remainder of this paper, we further analyze the case when  is a differentiable
function of u. For this, we build upon our earlierwork [14, 15].1 A conceptual difficulty
in this context is the fact that U lacks a universal topology. Therefore, following
[14], we consider a tailored neighborhood for any given u0 ∈ U by introducing a
corresponding Banach space V of perturbations, consisting of all even measurable
functions v : Rd → R, for which the associated norm

‖v‖V = sup
x∈Rd

|v(x)|
ψ0(|x |) (5.1)

is finite. Here,ψ0 is themajorantψ of (2.1) associatedwith u0. Note that the norm (5.1)
is somewhat stronger than the one employed in [14] because it is more restrictive in
the core region 0 < r < r0, and hence, the resulting space of perturbations is smaller.
We believe that this restriction allows a more natural formulation of our results.

Remark 5.1 It can easily be seen that for any v ∈ V the sum u0 + v belongs to U :
If u0 is a hard-core potential, then r0 is its hard-core radius and the corresponding
function ϕ from (2.1) equals +∞, and we have

u0(x) + v(x) ≥ ϕ(|x |) for 0 < |x | < r0 ,∣∣u0(x) + v(x)
∣∣ ≤ (

1 + ‖v‖V
)
ψ0(|x |) for |x | ≥ r0 .

Otherwise, there exists r1 ∈ (0, r0] such that ϕ(r) ≥ ‖v‖V ψ0(0) for 0 < r ≤ r1, and
therefore

u0(x) + v(x) ≥ ϕ(|x |) − ‖v‖V ψ0(0) for 0 < |x | < r1 ,

∣∣u0(x) + v(x)
∣∣ ≤

(
sup

|x ′|≥r1

|u(x ′)|
ψ0(|x ′|) + ‖v‖V

)
ψ0(|x |) for |x | ≥ r1 .

In either case, this shows that u0 + v ∈ U . 
We now consider the ball

BV (u0) = {
u = u0 + v : ‖v‖V < δ0

} ⊂ U (5.2)

1 The results in [14, 15] are formulated in three-dimensional space (i.e., for d = 3) and for pair potentials,
which are rotation invariant; also, hard-core potentials had not been considered. All results extend verbatim
to the setting considered here.
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around u0 for a suitable radius δ0 with 0 < δ0 < 1; we further specify δ0 in the
context of (5.7) below. As has been verified in [14, Proposition 2.1], there are positive
constants cβ and B, such that every u ∈ BV (u0) satisfies

∫

Rd
|e−βu(x) − 1| dx ≤ cβ , (5.3)

and the interaction energy of every configuration γ ⊂ R
d with N (γ ) particles is

bounded from below by
U (γ ) ≥ −BN (γ ) . (5.4)

Moreover, for every u ∈ BV (u0) and μ ∈ R and every associated (μ, u)-Gibbs
measure, the sequence

ρ(μ, u) = [ρ, ρ(2), . . . ]T

of itsm-particle correlation functions is a solution of the so-calledKirkwood-Salsburg
equations (cf., e.g., [39, Corollary 5.3], or compare (A.3) in the appendix), which can
be written in the form

(
I − eβμA(u)

)
ρ(μ, u) = eβμe1 , (5.5)

where e1 = [1, 0, . . . ]T , I is the identity operator, and A(u) is a bounded operator in
an associated Banach space X of sequences of L∞ functions. This operator A(u) is
given by a certain infinite-dimensional matrix of integral operators, compare [14, 38],
and is Fréchet differentiable with respect to u ∈ BV (u0).

We fix

μ0 <
1

β
log

1

cβe2βB+1 , (5.6)

and call the rangeμ ≤ μ0 of chemical potentials the gas phase associated with the pair
potentials in BV (u0). In this gas phase, the Kirkwood-Salsburg equations (5.5) have
a unique solution ρ(μ, u), which can be developed in a converging Neumann series
in X ; in particular, this means that for u ∈ BV (u0), there exists only one (μ, u)-
Gibbs measure for each chemical potential μ within the gas phase. The individual
components ρ(m)(μ, u) of ρ(μ, u) are Fréchet differentiable (in L∞) with respect to
u, analytic with respect to μ < μ0 and continuous in μ ≤ μ0. It is also easy to see
that ρ is a C1 function of μ ≤ μ0 and u ∈ BV (u0).

Further, for fixed u ∈ BV (u0), the density ρ = ρ(μ, u) of the associated Gibbs
measure, i.e., the first entry of ρ(μ, u), is differentiable and strictly increasing in μ up
to μ = μ0 by virtue of Corollary 3.2. Since it is also continuous in u ∈ BV (u0), we
can choose δ0 in (5.2) so small that

ρ0 = inf
{
ρ(μ0, u) : u ∈ BV (u0)

} ≥ (1 − ε) ρ(μ0, u0) (5.7)

for any given ε > 0, and then every density ρ ∈ (0, ρ0) belongs to the gas phase of all
pair potentials in BV (u0). Finally, for fixed u ∈ BV (u0), the pressure p(μ, u) is also
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differentiable and strictly increasing in μ up to μ = μ0, and its derivative is given by
the density, cf. (4.1).

Proposition 5.2 Let 0 < ρ∗ < ρ0 with ρ0 as in (5.7). Then, the chemical potential
μ∗ = μ∗(u) defined in Theorem 4.1 is differentiable with respect to u ∈ BV (u0) with
derivative μ′∗(u) ∈ V ′ given by

μ′∗(u) v = −∂uρ(μ∗(u), u) v

∂μρ(μ∗(u), u)
for v ∈ V , (5.8)

where ∂μρ and ∂uρ denote the partial derivatives of ρ(μ, u), and V ′ is the dual space
of V .

Proof Since the pressure and the density of a fixed pair potential u ∈ BV (u0) are
strictly increasing and differentiable functions of the chemical potential in the gas
phase, we can rewrite each of these functions as a strictly increasing function of any
of the other ones. The pressure, for example, can be written as a function of density,
which we call π to avoid any confusion, i.e.,

p(μ, u) = π
(
ρ(μ, u), u

)
.

Then, the chain rule can be applied to obtain

∂μ p(μ, u) = ∂ρπ
(
ρ(μ, u), u

)
∂μρ(μ, u) , (5.9)

because it has been shown in [39, Theorem 4.3] that π is a differentiable function of
the density in the gas phase. For μ = μ∗(u), we thus conclude from (4.1) and (5.9)
that

ρ∗ = ρ
(
μ∗(u), u

) = ∂μ p
(
μ∗(u), u

) = α ∂μρ
(
μ∗(u), u

)
(5.10)

with

α = ∂ρπ(ρ∗, u) > 0 .

It thus follows from (5.10) that ∂μρ
(
μ∗(u), u

)
> 0, so that the implicit function

theorem is applicable to the equation

ρ(μ∗(u + v), u + v) = ρ∗

near v = 0. From this, we readily obtain (5.8); moreover,μ′∗(u) belongs toV ′ because
∂uρ ∈ V ′. ��

Now, we return to our analysis of the relative entropy functional (4.5).

Theorem 5.3 Let u0 ∈ U be a fixed pair potential and BV (u0) ⊂ U be defined as in
(5.2) with δ0 so small that (5.7) holds. Furthermore, let the target P∗ of the relative
entropy functional have density ρ∗ < ρ0, and assume that the associated specific
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interaction energy E( · ,P∗) is bounded on BV (u0). Then,  is Fréchet-differentiable
in every u ∈ BV (u0) with derivative ′(u) ∈ V ′, given by

′(u)v = E(v,P∗) − 1

2

∫

Rd
v(x)ρ(2)(x) dx (5.11)

for v ∈ V , where ρ(2) is the pair correlation function of the associated (μ∗(u), u)-
Gibbs measure.

Proof Let u ∈ BV (u0) and v ∈ V . We apply Corollary 3.2 to u1 = u and u2 = u + v

with μ1 = μ∗(u) and μ2 = μ∗(u + v). This yields

−1

2

∫

Rd
v(x)ρ(2)(x) dx ≤ p∗(u + v) − μ∗(u + v)ρ∗ − (

p∗(u) − μ∗(u)ρ∗
)

≤ −1

2

∫

Rd
v(x)ρ̃(2)(x) dx ,

where ρ̃(2) denotes the pair correlation function of the corresponding (μ∗(u+ v), u+
v)-Gibbs measure. It follows that

E(v,P∗) − 1

2

∫

Rd
v(x)ρ(2)(x) dx ≤ (u + v) − (u)

≤ E(v,P∗) − 1

2

∫

Rd
v(x)ρ̃(2)(x) dx ,

i.e., that

0 ≤ (u + v) − (u) −
(
E(v,P∗) − 1

2

∫

Rd
v(x)ρ(2)(x) dx

)

≤ 1

2

∫

Rd
v(x)

(
ρ(2) − ρ̃(2))(x) dx .

This shows that
∣∣∣∣(u + v) − (u) −

(
E(v,P∗) − 1

2

∫

Rd
v(x)ρ(2)(x) dx

)∣∣∣∣

≤ Cψ0

2
‖v‖V ‖ρ̃(2) − ρ(2)‖L∞(Rd ) ,

where

Cψ0 = |Sd−1|
∫ ∞

0
rd−1ψ0(r) dr < ∞

by virtue of (2.1). We finally observe that

ρ̃(2) = ρ(2)(μ∗(u + v), u + v)
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converges to ρ(2) = ρ(2)(μ∗(u), u) in L∞(Rd) as ‖v‖V → 0 because of Propo-
sition 5.2 and the smoothness of ρ(2) as a function of μ and u. We have therefore
established that

∣∣∣∣(u + v) − (u) −
(
E(v,P∗) − 1

2

∫

Rd
v(x)ρ(2)(x) dx

)∣∣∣∣ = o(‖v‖V )

as ‖v‖V → 0, which yields (5.11). Since E( · ,P∗) is bounded on BV (u0), it is
easy to see that E( · ,P∗) ∈ V ′, and hence, it follows in the same way as above that
′(u) ∈ V ′ with

‖′(u)‖V ′ ≤ ‖E( · ,P∗)‖V ′ + Cψ0

2
‖ρ(2)‖L∞(Rd ) .

This concludes the proof. ��
Remark 5.4 We emphasize that the dual space V ′ of V is a complicated Banach space.
However, the representation (5.11), in combination with (2.7), reveals that if P∗ has a
bounded and measurable pair correlation function ρ

(2)∗ , then ′(u) can be identified
with

∇(u) = 1

2

(
ρ(2)∗ − ρ(2)(μ∗(u), u)

) ∈ L∞(Rd) , (5.12)

when using the natural dual pairing

′(u)v = 〈 v,∇(u) 〉 =
∫

Rd
v(x)

(∇(u)
)
(x) dx (5.13)

of L2(Rd).
This is the case, for example, if P∗ is a (μ, u∗)-Gibbs measure for some u∗ ∈ U

(with μ = μ∗(u∗)), and then (5.12) can further be rewritten as

∇(u) = 1

2

(
ω(2)(μ, u∗) − ω(2)(μ∗(u), u)

)
,

where
ω(2)(μ, u) = ρ(2)(μ, u) − ρ(μ, u)2 . (5.14)

It follows from (5.17) below that ∇(u) then also belongs to L1(Rd), and hence, to
L2(Rd) as well. Note that V is embedded in L2(R) for the same reason. We refer to
Sect. 7 for further arguments which support the choice of the L2-pairing. 
Remark 5.5 Assume that the target P∗ has a bounded and measurable pair correlation
functionρ

(2)∗ , and that the relative entropy functional isminimized by some u∗ ∈ U .
Assume further that the given densityρ∗ belongs to the gas phase of u∗. Then, it follows
from Theorem 5.3 that  is differentiable at u∗, and that ∇(u∗) = 0. From (5.12),
we thus conclude that the target and the model share the same pair correlation function
in this case; compare Remark 4.5. 
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Remark 5.6 For a (μ, u)-Gibbs measure the cluster functions, sometimes also called
Ursell functions (e.g., Stell [43], and [15]), or truncated correlation functions (e.g.,
Jansen [21]), are defined recursively by the constant functionω(1) = ρ and, form ≥ 2,
by

ω(m)(x1, . . . , xm) = ρ(m)(x1, . . . , xm) −
m∑

k=2

∑

π∈�m
k

k∏

i=1

ω(|πi |)(xπi ) , (5.15)

cf. [38, p. 87], where �m
k denotes the set of partitions π of x1, . . . , xm into k subsets

xπ1 , . . . , xπk . Note that it immediately follows from (5.15) that each cluster function
inherits the translation and permutation invariance of the correlation functions.

For m = 2, we recover from (5.15) the definition (5.14), and for fixed μ and u, we
adopt the short-hand notation

ω(2)(x) = ρ(2)(x) − ρ2

for ω(2)(x, 0) from the pair correlation function. Note that

ω(2)(x) = ω(2)(−x) for every x ∈ R
d (5.16)

because of the translation invariance.
We will make repeatedly use of [38, Theorem 4.4.8] which states that

∫

(Rd )(m−2)

∣∣ω(m)( · , 0, x3, . . . , xm)
∣∣ dx3 · · · dxm ∈ L1(Rd) , (5.17)

provided that u ∈ U and μ ≤ μ0; see also Lemma A.4 in the appendix. In particular,
(5.17) shows that ω(2) ∈ L1(Rd). 

Based on Theorem 5.3, we now compute the Hessian of .

Theorem 5.7 Under the assumptions of Theorem 5.3, the relative entropy func-
tional (4.5) is twice differentiable, and its Hessian at u ∈ BV (u0) is given by

′′(u)(v, ṽ) = − 1

∂μρ

(
∂uρ ṽ

)(
∂uρ v

) − 1

2
〈 v, ∂uρ

(2) ṽ 〉 (5.18)

in terms of the dual pairing (5.13) of L2(Rd), where v, ṽ ∈ V , and the partial
derivatives ∂uρ and ∂uρ

(2) are evaluated at the pair potential u and the chemical
potential μ∗(u).

Proof We differentiate (5.11) with respect to u in the direction ṽ ∈ V . Keeping in
mind that ρ(2) in (5.11) stands for ρ(2)(μ∗(u), u), the chain rule gives

′′(u)(v, ṽ) = −1

2

∫

Rd
v(x)

(
∂μρ(2)μ′∗(u) ṽ + ∂uρ

(2) ṽ
)
(x) dx

= −μ′∗(u) ṽ

2
〈 v, ∂μρ(2) 〉 − 1

2
〈 v, ∂uρ

(2) ṽ 〉 ,

(5.19)
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where we have adopted the notation (5.13), and the partial derivatives of ρ(2)—which
belong to L∞(Rd)—are evaluated at the pair potential u and the chemical potential
μ∗(u).

To determine ∂μρ(2)(μ, u) for an arbitrary chemical potential μ < μ0 we apply
Corollary 3.2 with u1 = u and u2 = u + w for any w ∈ V , and with μ1 = μ2 = μ:
As in the proof of Theorem 5.3, we conclude that the pressure is differentiable with
respect to u with derivative ∂u p(μ, u) ∈ V ′ given by

∂u p(μ, u) w = −1

2

∫

Rd
w(x)ρ(2)(x) dx = −1

2
〈w, ρ(2) 〉 ,

where ρ(2) is the pair correlation function of the (μ, u)-Gibbs measure. Schwarz’s
theorem and (4.1) therefore yield

〈w, ∂μρ(2) 〉 = ∂μ〈w, ρ(2) 〉 = −2 ∂μ

(
(∂u p)w

) = −2 ∂u(∂μ p)w = −2 ∂uρ w .

(5.20)
Inserting this into (5.19), we obtain

′′(u)(v, ṽ) = (
μ′∗(u) ṽ

)(
∂uρ v) − 1

2
〈 v, ∂uρ

(2) ṽ 〉 ,

and assertion (5.18) thus follows from Proposition 5.2. ��
Note that ′′(u) is a continuous bilinear form: This follows readily from the result

in [14] that ∂uρ ∈ V ′ and ∂uρ
(2) ∈ L

(
V , L∞(Rd)

)
. We further observe that ′′ is

continuous in u because ρ and ρ(2) are C1 functions of μ and u. This implies that
′′(u) is a symmetric bilinear form. Finally, this bilinear form is positive semidefinite,
because  is strictly convex.

6 The connection to the IMC iterative scheme

In the preceding section, we have seen that the relative entropy functional is twice
differentiable at any u0 ∈ U , provided that the target density ρ∗ belongs to its gas
phase. The convex quadratic approximation

2(u0 + v) := (u0) + ′(u0)v + 1

2
′′(u0)(v, v) ≈ (u0 + v) , (6.1)

valid for small enough v ∈ V , attains its minimum for every solution v0 ∈ V of the
variational problem

′′(u0)(v0, w) = −′(u0)w for allw ∈ V , (6.2)

and the well-known Newton scheme for minimizing  consists in updating u0 via

u1 = u0 + v0 (6.3)
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to obtain a (hopefully) better approximation of the global unique minimizer of .
Unfortunately, however, we only know that ′′(u0) is semidefinite; it is therefore not
clear whether (6.2) has a solution, and if it does, whether it is unique.

The bilinear form ′′(u0) defines a linear operator A : V → V ′ via the identity

′′(u0)(v, ṽ) = 〈 ṽ, Av 〉V ×V ′ for all v, ṽ ∈ V .

As in Remark 5.4 the dual form on the right-hand side can be replaced by the dual
pairing induced by L2(Rd), when A is identified with the (bounded) operator

A : V → L∞(Rd) , A : v �→ −1

2
∂uρ

(2)v − 1

∂μρ
(∂uρ v)∇uρ , (6.4)

where ∇uρ ∈ L∞(Rd) denotes the representative of the functional ∂uρ ∈ V ′ for this
pairing. This is an immediate consequence of Theorem 5.7. According to [15, Sect. 6]
there holds

∇uρ(x) = −βρ(2)(x) − β

2

∫

Rd
χ(3)(0, x + x ′, x ′) dx ′ , (6.5)

where

χ(3)(0, x + x ′, x ′) = ω(3)(0, x + x ′, x ′) + ρ ω(2)(x ′) + ρ ω(2)(x + x ′)

is given in terms of the second and third cluster functions associated with μ and u;
compare Remark 5.6. Using the translation and permutation invariance of ω(3), this
can be rewritten as

χ(3)(0, x + x ′, x ′) = ω(3)(x, 0,−x ′) + ρ ω(2)(x ′) + ρ ω(2)(x + x ′) . (6.6)

Note that it has been shown in [15, Proposition4.2] that the integral in (6.5) is absolutely
convergent and that it defines a bounded function of x ∈ R

d . Since ω(2) ∈ L1(Rd), it
thus follows from (6.6) that

∫

Rd

∣∣ω(3)( · , 0,−x ′)
∣∣ dx ′ ∈ L∞(Rd) , (6.7)

and inserting (6.6) into (6.5), we finally arrive at the representation

∇uρ(x) = −βρ(2)(x) − β

2

∫

Rd
ω(3)(x, 0, x ′) dx ′ − βρ

∫

Rd
ω(2)(x ′) dx ′ , (6.8)

which will be used later on.
Now, we introduce the (nonlinear) “Henderson operator”

F : u �→ ρ(2)(μ∗(u), u
)
, (6.9)
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which maps u ∈ BV (u0) to its associated pair correlation function at the given density
ρ∗, and which is an injective operator according to the Henderson theorem. Since
F(u) + 2∇(u) is independent of u according to (5.11), see also (5.12), it follows
that F : BV (u0) → L∞(Rd) is differentiable for ρ∗ < ρ0 with

〈 ṽ, F ′(u0)v 〉 = −2′′(u0)(v, ṽ) . (6.10)

This shows that if the target P∗ has a pair correlation function ρ
(2)∗ ∈ L∞(Rd), then

the variational problem (6.2) is equivalent to the linear operator equation

F ′(u0)v0 = ρ(2)∗ − F(u0) . (6.11)

The step (6.3) for minimizing  with Newton’s method is thus equivalent to one
iteration of the IMC method, where the update v0 is determined by solving (6.11).
This is the thermodynamic limit analog of the observation in [29, 36], referred to in
the introduction.

Remark 6.1 As follows from Theorem 5.3 and (2.7), the Henderson operator satisfies

〈 v, F(u0) 〉 = 2 E(v,P0) ,

whereP0 denotes the corresponding (μ∗(u0), u0)-Gibbsmeasure. In the IMC scheme,
as introduced in [26], this interaction energy is approximated by the corresponding
expectation value

E(v,P0) ≈ 1

|�| 〈 V 〉ρ∗,�

of the canonical ensemble corresponding to the pair potential u0 at density ρ∗ in the
bounded box � ⊂ R

d , where V is the observable

V (γ ) =
∑

1≤i< j≤N

v(xi − x j )

associatedwith the perturbation v ∈ V , compare (2.3). Likewise, the derivative F ′(u0)
is approximated in the IMC scheme via the cross-correlation matrix

− 2β

|�|
(
〈 V Ṽ 〉ρ∗,� − 〈 V 〉ρ∗,�〈 Ṽ 〉ρ∗,�

)
≈ 〈 ṽ, F ′(u0)v 〉 .

It has to be emphasized that the density constraint ρ(u) = ρ∗ is inherently built
into the canonical ensemble. Accordingly, this approximation of F ′(u0) does respect
this constraint. When working in the grand canonical ensemble instead (or in the
thermodynamic limit), this constraint necessitates a correction term to project the
unconstrained derivative into the tangent plane of the manifold of pair correlation
functions corresponding to particle systems with the correct density. This is the reason
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for the first term on the right-hand side of (5.18) which does not (and need not) occur
in the original IMC scheme. 

7 Extension of the Hessian to a semidefinite bilinear form on L2(Rd)

In the remainder of this paper, we study the Hessian of the relative entropy functional
somewhat further. More precisely, we examine the mapping properties of the Jacobian
of the Henderson map, which is connected to the Hessian ′′ via (6.10).

To begin with, recall from Remark 5.4 that the right-hand side of (6.11) belongs to
L∞(Rd) ∩ L1(Rd), when the target P∗ is a (μ, u∗)-Gibbs measure. As our first result
of this section, we show that F ′(u0) has matching mapping properties.

Theorem 7.1 Under the assumptions of Theorem 5.3, the Jacobian F ′(u0) of the Hen-
derson operator (6.9) belongs toL (V , L∞(Rd)) ∩ L (V , L1(Rd)).

Proof We already know from Sect. 6 that F ′(u0) = −2A ∈ L (V , L∞(Rd)). It
thus remains to establish that F ′(u0) ∈ L (V , L1(Rd)). To this end, we rewrite the
Henderson operator in terms of the cluster function (5.14), i.e.,

F(u0) = ω(2)(μ∗(u0), u0) + ρ2∗ ,

which yields

F ′(u0)v = ∂μω(2)(μ∗, u0) μ′∗(u0) v + ∂uω
(2)(μ∗, u0) v , (7.1)

where μ∗ = μ∗(u0). The partial derivative of the cluster function with respect to the
chemical potential is given by

∂μω(2)(μ, u) = ∂μ

(
ρ(2)(μ, u) − ρ(μ, u)2

)

= ∂μρ(2)(μ, u) − 2ρ(μ, u)∂μρ(μ, u) .
(7.2)

From (5.20) and (6.8), we conclude that

∂μρ(2)(x) = −2∇uρ(x)

= 2β ρ(2)(x) + β

∫

Rd
ω(3)(x, 0, x ′) dx ′ + 2βρ

∫

Rd
ω(2)(x ′) dx ′ ,

and hence, together with Lemma A.2, it follows that

∂μω(2)(x) = 2β ω(2)(x) + β

∫

Rd
ω(3)(x, 0, x ′) dx ′ . (7.3)

In particular, this shows that ∂μω(2) ∈ L1(Rd) by virtue of (5.17). Together with
Proposition 5.2 and (7.1), we thus obtain
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‖F ′(u0) v‖L1(Rd )

≤
(
‖∂μω(2)(μ∗, u0)‖L1(Rd )‖μ′∗(u0)‖V ′ + ‖∂uω(2)(μ∗, u0)‖L (V ,L1(Rd ))

)
‖v‖V ,

because it has been proved in [15] that ∂uω
(2) ∈ L (V , L1(Rd)). This shows that

F ′(u0) ∈ L (V , L1(Rd)). ��
Since L∞(Rd) ∩ L1(Rd) ⊂ L2(Rd), Theorem 7.1 shows that F ′(u0) is a bounded

operator from V to L2(Rd). As V is a dense subspace of L2(Rd), and because we
have repeatedly identified the dual pairing V × V ′ with the dual pairing of L2(Rd),
this raises the question whether F ′(u0) extends to a bounded operator in L2(Rd), or, in
terms of the relative entropy functional, whether ′′(u0) extends to a quadratic form
on L2(Rd). This will be answered to the affirmative in the remainder of this section.

Lemma 7.2 Under the assumptions of Theorem 5.3, the Jacobian of the Henderson
map is given by

(
F ′(u0) v

)
(x) = −βρ(2)(x)v(x) (7.4a)

− 2βρ (ω(2) ∗ v)(x) − β (ω(2) ∗ ω(2) ∗ v)(x) (7.4b)

+ 1

2∂μρ
∂μω(2)(x)

∫

Rd
∂μω(2)(x ′) v(x ′) dx ′ (7.4c)

− 2β
∫

Rd
ω(3)(x, 0, x ′) v(x ′) dx ′ (7.4d)

− β

2

∫

Rd

∫

Rd
ω(4)(x, 0, x ′′, x ′ + x ′′) dx ′′ v(x ′) dx ′ (7.4e)

for v ∈ V and x ∈ R
d .

Proof According to (6.4), we have

F ′(u0)v = −2Av = ∂uρ
(2) v + 2

∂μρ
(∂uρ v)∇uρ ,

where

(∂uρ
(2) v)(x) = −βρ(2)(x)v(x) − 2β

∫

Rd
ρ(3)(x, 0, x ′)v(x ′) dx ′

− β

2

∫

Rd
v(x ′)

∫

Rd

(
ρ(4)(x, 0, x ′′, x ′′ + x ′) − ρ(2)(x)ρ(2)(x ′)

)
dx ′′ dx ′

(7.5)

by virtue of [15, Eq. (6.9)]. Concerning the nested integral in the second line of (7.5),
it has further been shown in [15, Proposition 4.3] that the inner integral converges
absolutely and defines an L∞ function of x and x ′. It follows that

(
F ′(u0)v

)
(x) = −βρ(2)(x) v(x) +

∫

Rd
k(x, x ′)v(x ′) dx ′ (7.6)
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with integral kernel

k(x, x ′) = 2

∂μρ
∇uρ(x)∇uρ(x ′) − 2β ρ(3)(x, 0, x ′)

− β

2

∫

Rd

(
ρ(4)(x, 0, x ′′, x ′′ + x ′) − ρ(2)(x)ρ(2)(x ′)

)
dx ′′ .

(7.7)

We now rewrite the individual terms of this kernel function. To begin with, we
recall from (5.20) and (7.2) that

∇uρ = −1

2
∂μρ(2) = −1

2
∂μω(2) − ρ ∂μρ ,

so that

2

∂μρ
∇uρ(x)∇uρ(x ′) = 1

2∂μρ
∂μω(2)(x) ∂μω(2)(x ′)

+ ρ ∂μω(2)(x) + ρ ∂μω(2)(x ′) + 2ρ2∂μρ .

The partial derivatives with respect to μ in the final three terms of the right-hand side
can be eliminated with the help of (7.3) and Lemma A.2: This yields

2

∂μρ
∇uρ(x)∇uρ(x ′) = 1

2∂μρ
∂μω(2)(x) ∂μω(2)(x ′)

+ 2βρ ω(2)(x) + βρ

∫

Rd
ω(3)(x, 0, x ′′) dx ′′ + 2βρ ω(2)(x ′)

+ βρ

∫

Rd
ω(3)(x ′, 0, x ′′) dx ′′ + 2βρ3 + 2βρ2

∫

Rd
ω(2)(x ′′) dx ′′ .

(7.8)

Concerning the second term of the integral kernel (7.7), we apply definition (5.15)
of the cluster functions to rewrite

ρ(3)(x, 0, x ′) = ω(3)(x, 0, x ′) + ρ ω(2)(x) + ρ ω(2)(x − x ′) + ρ ω(2)(x ′) + ρ3 ,

(7.9)
where we have also used (5.16).

In the same way, we can rewrite the integrand of the integral in (7.7) in terms of
the cluster functions:

ρ(4)(x, 0, x ′′, x ′′ + x ′) − ρ(2)(x)ρ(2)(x ′)
= ω(4)(x, 0, x ′′, x ′′ + x ′) + ω(3)(x, 0, x ′′) ρ + ω(3)(x, 0, x ′′ + x ′) ρ

+ ω(3)(x, x ′′, x ′′ + x ′) ρ + ω(3)(0, x ′′, x ′′ + x ′) ρ

+ ω(2)(x − x ′′) ω(2)(x ′′ + x ′) + ω(2)(x − x ′ − x ′′) ω(2)(x ′′)
+ ω(2)(x ′′ − x) ρ2 + ω(2)(x ′′ + x ′ − x) ρ2

+ ω(2)(x ′′) ρ2 + ω(2)(x ′′ + x ′) ρ2
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= ω(4)(x, 0, x ′′, x ′′ + x ′) + ω(3)(x, 0, x ′′) ρ + ω(3)(x, 0, x ′′ + x ′) ρ

+ ω(3)(x ′, 0, x − x ′′) ρ + ω(3)(x ′, 0,−x ′′) ρ

+ ω(2)(x − x ′′) ω(2)(x ′′ + x ′) + ω(2)(x − x ′ − x ′′) ω(2)(x ′′)
+ ω(2)(x ′′ − x) ρ2 + ω(2)(x ′′ + x ′ − x) ρ2

+ ω(2)(x ′′) ρ2 + ω(2)(x ′′ + x ′) ρ2,

where we have used in the second step that the cluster functions are translation and
permutation invariant. Integrating over x ′′ ∈ R

d , we thus obtain

∫

Rd

(
ρ(4)(x, 0, x ′′, x ′′ + x ′) − ρ(2)(x)ρ(2)(x ′)

)
dx ′′

=
∫

Rd
ω(4)(x, 0, x ′′, x ′′ + x ′) dx ′′ + 4ρ2

∫

Rd
ω(2)(x ′′) dx ′′

+ 2ρ
∫

Rd
ω(3)(x, 0, x ′′) dx ′′ + 2ρ

∫

Rd
ω(3)(x ′, 0, x ′′) dx ′′

+ (
ω(2) ∗ ω(2))(x + x ′) + (

ω(2) ∗ ω(2))(x − x ′),

(7.10)

where all the terms on the right-hand side are bounded functions of x and x ′: This
follows from (6.7) and the fact that ω(2) ∈ L1(Rd) ∩ L∞(Rd).

Inserting (7.8), (7.9), and (7.10) into (7.7), we conclude that

k(x, x ′) = 1

2∂μρ
∂μω(2)(x) ∂μω(2)(x ′) − 2β ω(3)(x, 0, x ′) − 2βρ ω(2)(x − x ′)

− β

2

∫

Rd
ω(4)(x, 0, x ′′, x ′′ + x ′) dx ′′

− β

2

(
ω(2) ∗ ω(2))(x + x ′) − β

2

(
ω(2) ∗ ω(2))(x − x ′) .

Note that the final two terms of this integral kernel representation define the same
convolution operator

v �→ −β

2

∫

Rd

(
ω(2) ∗ ω(2))( · − x ′) v(x ′) dx ′ ,

because every v ∈ V is an even function. The assertion (7.4) thus follows readily from
(7.6). ��

Now, we can prove the main result of this section.

Theorem 7.3 Under the assumptions of Theorem 5.3, the operator F ′(u0) extends to
a self-adjoint negative semidefinite operator on L2(Rd).

Proof We already know from Theorem 7.1 that F ′(u0) ∈ L (V , L2(Rd)). Since V is
a dense subset of L2(Rd), it remains to discuss the continuity from L2(Rd) to L2(Rd)

of each of the terms defined in lines (7.4a)–(7.4e) of Lemma 7.2.
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For the multiplication operator in (7.4a), this is true because the pair correlation
function ρ(2) is bounded. The autoconvolution ω(2) ∗ ω(2) of the cluster function
ω(2) ∈ L1(Rd) belongs to L1(Rd) again, hence the two convolution operators in
(7.4b) are bounded operators in L2(Rd). From (7.3), it follows that ∂μω(2) belongs
to L1(Rd) ∩ L∞(Rd): the L1 property has been verified in the argument following
(7.3); the L∞ property of the second term in (7.3) has been established in (6.7).
This shows that ∂μω(2) ∈ L2(Rd), and the continuity of the operator in (7.4c) is
therefore a consequence of the Cauchy–Schwarz inequality. By virtue of (5.17), the
cluster function ω(3)( · , 0, · ) belongs to L1(Rd × R

d). Since it is bounded, it also
belongs to L2(Rd ×R

d). Therefore, (7.4d) defines a compact operator inL (L2(Rd)).
Concerning (7.4e), we have already pointed out after (7.10) that the inner integral of
ω(4) is a bounded function of x and x ′. It also belongs to L1(Rd × R

d) by virtue of
(5.17), again. The continuity of the operator defined in (7.4e) therefore follows in the
same way as in the previous case.

In summary, this shows that F ′(u0) extends to an operator inL (L2(Rd)). By virtue
of (6.10), this extension is self-adjoint and negative semidefinite. ��

Concerning theHessian of the relative entropy functional, we readily conclude from
(6.10) the following corollary.

Corollary 7.4 Under the assumptions of Theorem5.3 theHessian′′(u0)of the relative
entropy functional (4.5) defines a symmetric and positive semidefinite bilinear form
on L2(Rd).

As indicated before, we leave it as an open problem whether F ′(u0) is injective,
i.e., whether the local quadratic approximation (6.1) of the relative entropy functional
is strictly convex.

8 Lennard-Jones-type pair potentials

In this final section, we establish a stronger regularity result for the derivative of the
Henderson map, respectively, the Hessian of the relative entropy functional, which is
valid when the potential u0 ∈ U satisfies (2.2) with a majorant of the form

ψ0(r) = C(1 + r2)−α/2 (8.1)

for some C > 0 and α > d. This class of potentials includes the so-called potentials
of Lennard-Jones type, cf. [38].

It it known that in the gas phase, the cluster function ω(2) corresponding to such a
pair potential satisfies the same rate of decay near infinity as ψ0 does. This entails the
following result.

Theorem 8.1 Let u0 satisfy (2.2) for some ϕ as in (2.1) and ψ = ψ0 of (8.1). Let the
space V of perturbations of u0 be defined as before, cf. (5.1), and let ρ∗ belong to the
gas phase of u0. Then, F ′(u0) ∈ L (V ).
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Proof The aforementioned result about the cluster function states that ω(2) ∈ V under
the given assumptions; compare Lemma A.4 in the appendix.

Now, we discuss the continuity of each of the operators corresponding to the indi-
vidual terms in (7.4). Continuity obviously holds for the multiplication operator in
(7.4a), because ρ(2) is bounded. Concerning the convolutions in (7.4b), we refer to
[16, Proposition 4.1] for the fact that the convolution is a continuous bilinear mapping
fromV ×V toV . Accordingly, the two terms in (7.4b) also define operators inL (V ).

For the remaining terms, we make use of Lemma A.4 again. For m = 3, this
auxiliary result gives ∫

Rd

∣∣ω(3)( · , 0, x ′)
∣∣ dx ′ ∈ V , (8.2)

and since

∣∣∣∣
∫

Rd
ω(3)(x, 0, x ′) v(x ′) dx ′

∣∣∣∣ ≤ ‖v‖L∞(Rd )

∫

Rd

∣∣ω(3)(x, 0, x ′)
∣∣ dx ′

for every x ∈ R
d , it follows that

∥∥∥∥
∫

Rd
ω(3)( · , 0, x ′) v(x ′) dx ′

∥∥∥∥
V

≤ ‖v‖L∞(Rd )

∥∥∥∥
∫

Rd

∣∣ω(3)( · , 0, x ′)
∣∣ dx ′

∥∥∥∥
V

.

Much the same argument applies to the term in (7.4e):

∣∣∣∣
∫

Rd

∫

Rd
ω(4)(x, 0, x ′′, x ′ + x ′′) dx ′′ v(x ′) dx ′

∣∣∣∣

≤ ‖v‖L∞(Rd )

∫

Rd

∫

Rd

∣∣ω(4)(x, 0, x ′′, x ′)
∣∣ dx ′ dx ′′

for every x ∈ R
d , and the right-hand side again belongs to V as a function of x by

virtue of Lemma A.4 for m = 4. Since V is continuously embedded in L∞(Rd) this
shows that the two terms in (7.4d) and (7.4e) correspond to operators inL (V ).

Finally, concerning the term in (7.4c), we conclude from (7.3), (8.2), and the fact
that ω(2) ∈ V that ∂μω(2) belongs to V as well. Accordingly, this term also represents
a bounded operator from V to V , and the proof is done. ��

Note that if the target P∗ and the model P0 are Gibbs measures corresponding to
pair potentials u∗ and u0 inU and their associated chemical potentials, where u∗ and
u satisfy (2.2) for the same majorant ψ = ψ0 given by (8.1), and if the density ρ∗
belongs to the gas phase of both pair potentials, then the cluster functionsω

(2)∗ andω
(2)
0

of P∗ and P0, respectively, both belong to V . It thus follows from Remark 5.4 that the
gradient∇(u0) of the relative entropy functional belongs to V as well, and therefore
the Newton equation (6.11) of the IMC iterative scheme is an operator equation in
V by virtue of Theorem 8.1. As shown in [16, Remark 6.5], a valid choice u0 ∈ U ,
which satisfies (2.2) for the same majorant (8.1), is given by the potential of mean
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force,

u0 = − 1

β
log

(
ρ(2)∗ /ρ2∗

) = − 1

β
log

(
1 + ω(2)∗ /ρ2∗

)
,

provided the density ρ∗ is sufficiently small. Moreover, u∗ − u0 belongs to V for this
initial guess.
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Appendix

In this appendix, we provide some auxiliary results. In doing so, we will repeatedly
make use of the short-hand notation

xn = (x1, . . . , xn) ∈ (Rd)n .

The first result is needed for the proof of Theorem 4.1, where we construct a (μ, u)-
Gibbs measure for a pair potential u ∈ U with prescribed density ρ∗ < ρcp(u).

Lemma A.1 Let u ∈ U and assume that the sequence (μk)k ⊂ R satisfies μk → μ ∈
R as k → ∞. Furthermore, for every k ∈ N let Pk be a (μk, u)-Gibbs measure. Then,
(Pk)k has an accumulation point with respect to the local topology, and every such
accumulation point is a (μ, u)-Gibbs measure.

Proof Let (ρ(m)
k )m be the sequence of correlation functions of Pk . Since the sequence

(μk)k is bounded, the measures Pk satisfy a uniform Ruelle condition by virtue of [39,
Corollary 5.3], i.e., there exists ξ > 0, such that

∥∥ρ
(m)
k

∥∥
L∞((Rd )m )

≤ ξm for every k,m ∈ N . (A.1)
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This implies that for fixed m ∈ N, the sequence (ρ
(m)
k )k of correlation functions

has a weak∗ convergent subsequence in L∞((Rd)m) with limit ρ(m), say. With a
diagonalization argument, we can thus find a subsequence of indices k ∈ N, for which

ρ
(m)
k ⇀∗ρ(m), k → ∞ , (A.2)

holds for every m ∈ N. This is equivalent to saying that (Pk)k has a subsequence
which converges to some probability measure P in the local topology. To simplify the
notation, we assume in the sequel that the entire sequence (Pk)k is convergent.

Since every Pk is a Gibbs measure, the respective correlation functions satisfy the
Kirkwood-Salsburg equations, cf., e.g., [39, Corollary 5.3]: For each k ∈ N and every
m ∈ N0, there holds

ρ
(m+1)
k (x0, xm) = eβμk e−βW (x0;xm ) ·

⎛

⎝ρ
(m)
k (xm) +

∞∑

n=1

1

n!
∫

(Rd )n

n∏

j=1

f (x0 − y j )ρ
(m+n)
k (xm, yn) dyn

⎞

⎠ ,
(A.3)

where ρ
(0)
k = 1, yn = (y1, . . . , yn) ∈ (Rd)n ,

f (x) = e−βu(x) − 1 (A.4)

is the well-known Mayer function, and

W (x0; xm) =
m∑

i=1

u(x0 − xi ) ,

the latter being taken to be zero for m = 0. Note that the right-hand side of (A.3)
converges in L∞((Rd)m+1) by virtue of the Ruelle condition (A.1) and the fact that
the Mayer function (A.4) belongs to L1(Rd); compare (5.3). Moreover, since the
Ruelle condition is uniform in k, this convergence is also uniform with respect to
k, and hence, the weak∗ convergence (A.2) and the convergence μk → μ imply
that the Kirkwood-Salsburg equations (A.3) also hold true for the limiting correlation
functions (ρ(m))m . It thus follows from [39, Corollary 5.3] again that P is a tempered
(μ, u)-Gibbs measure. Finally, since ρ

(m)
k is translation invariant for every k ∈ N and

every m ∈ N, its weak∗ limits ρ(m) must also be translation invariant, and hence P is
translation invariant. ��

The remaining two results of the appendix concernproperties of the cluster functions
(see Remark 5.6) within the gas phase. The proofs make use of their cluster expansions
(compare [38, Sect. 4.4] and [43])

ω(m)(xm) =
∞∑

n=m

enβμ

(n − m)!
∫

(Rd )n−m
φ(n)(xn) dxm+1 · · · dxn (A.5)
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for xm ∈ (Rd)m with

φ(n)(xn) =
∑

C∈Cn

∏

(i, j)∈C
f (xi − x j ) , (A.6)

where f is, again, the Mayer function (A.4), and Cn denotes the set of undirected
connected graphswith vertices {1, . . . , n} and edges (i, j) ∈ C, which connect vertices
i and j ; for n = m the integral in (A.5) has to be replaced by the value φ(m)(xm) of
its integrand. These cluster expansions are absolutely convergent for u0 ∈ U and
μ ≤ μ0 with μ0 of (5.6).

Lemma A.2 Let u0 ∈ U and μ < μ0 with μ0 as in (5.6). Then, the density ρ of the
corresponding Gibbs measure is differentiable with respect to μ and the derivative is
given by

∂μρ = βρ + β

∫

Rd
ω(2)(x) dx . (A.7)

Proof By (A.5) and (5.15), there holds (with x1 = 0)

ρ = ω(1)(0) =
∞∑

n=1

enβμ

(n − 1)!
∑

C∈Cn

∫

(Rd )n−1

∏

(i, j)∈C
f (xi − x j ) dx2 · · · dxn .

Differentiating with respect to μ, we obtain

∂μρ =
∞∑

n=1

nβ enβμ

(n − 1)!
∑

C∈Cn

∫

(Rd )n−1

∏

(i, j)∈C
f (xi − x j ) dx2 · · · dxn

= β

∞∑

n=1

enβμ

(n − 1)!
∑

C∈Cn

∫

(Rd )n−1

∏

(i, j)∈C
f (xi − x j ) dx2 · · · dxn

+ β

∫

Rd

⎛

⎝
∞∑

n=2

enβμ

(n − 2)!
∑

C∈Cn

∫

(Rd )n−2

∏

(i, j)∈C
f (xi − x j ) dx3 · · · dxn

⎞

⎠ dx2

= βρ + β

∫

Rd
ω(2)(0, x2) dx2 .

Using the short-hand notation for ω(2) and (5.16), the assertion follows. ��
Remark A.3 Lemma A.2 is general folklore, at least its “grand canonical version”

∂μρ�(0) = βρ�(0) + β

∫

�

(
ρ

(2)
� (0, x) − ρ�(0)ρ�(x)

)
dx (A.8)

for a bounded domain � ⊂ R
d is well-known, where ρ� and ρ

(2)
� denote the cor-

responding grand canonical correlation functions; compare, e.g., [43, Eq. (2-9)], or
Ben-Naim [1, Eq. (1.53)]. An alternative proof of (A.7) is thus obtained by passing in
(A.8) to the thermodynamic limit. 
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Our final lemma strenghtens Ruelle’s result (5.17) for Lennard-Jones-type pair
potentials, and extends [16, Corollary 5.2] to higher-order cluster functions.2

Lemma A.4 Let u ∈ U be a pair potential which satisfies (2.1), (2.2) with majorant
ψ = ψ0 as in (8.1), and let ω(m), m ∈ N, be the associated cluster functions. Further,
let the chemical potential satisfy μ ≤ μ0, cf. (5.6). Then, ω(2) ∈ V , and for m ≥ 3,
there holds

∫

(Rd )m−2

∣∣ω(m)( · , 0, x3, . . . , xm)
∣∣ dx2 · · · dxm ∈ V .

Proof For μ < μ0, it follows from [16, Lemma 5.1] that φ(n) of (A.6) satisfies

∫

(Rd )n−2

∣∣φ(n)(xn)
∣∣ dx3 · · · dxn ≤ C�

(
cβe

βB)n
nn−2 ψ0(|x1 − x2|)

for some constant C� > 0, every x1, x2 ∈ R
d and every n ≥ 2, where cβ and B are

the constants defined in (5.3), (5.4); for n = 2 the left-hand side of this inequality has
to be replaced by

∣∣φ(2)(x1, x2)
∣∣ = ∣∣ f (x1 − x2)

∣∣ .

Plugging this into the cluster expansion (A.5) for m ≥ 3, it follows that

∫

(Rd )m−2

∣∣ω(m)(xm)
∣∣ dx3 · · · dxm ≤ C� ψ0(|x1 − x2|)

∞∑

n=m

nn−2

(n − m)!
(
cβe

β(B+μ)
)n

≤ C� ψ0(|x1 − x2|)
∞∑

n=m

nm−2(cβe
β(B+μ)+1)n ,

wherewe have used the inequality nn−m/(n−m)! ≤ en in the final step. Sinceμ ≤ μ0,
the positive number q = cβeβ(B+μ)+1 is below one, and hence the series on the right-
hand side converges, its value being Cμ,m , say. This estimate extends to m = 2 when
the left-hand side is replaced by

∣∣ω(2)(x2)
∣∣. The assertion therefore follows from (5.1).

��
We refer to [3, 4, 27] for further results on the decay of the higher-order cluster

functions.
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