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Communicated by Y. Maekawa

Abstract. We introduce dissipative solutions to the compressible Navier-Stokes system with potential temperature transport
motivated by the concept of Young measures. We prove their global-in-time existence by means of convergence analysis of
a mixed finite element-finite volume method. If a strong solution to the compressible Navier-Stokes system with potential
temperature transport exists, we prove the strong convergence of numerical solutions. Our results hold for the full range of
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1. Introduction

We consider a compressible viscous Newtonian fluid that is confined to a bounded domain Ω ⊂ R
d,

d ∈ {2, 3}. Its time evolution is governed by the following system:

∂t� + divx(�u) = 0 in (0, T ) × Ω, (1.1)

∂t(�u) + divx(�u ⊗ u) + ∇x p(�θ) = divx(S(∇xu)) in (0, T ) × Ω, (1.2)

∂t(�θ) + divx(�θu) = 0 in (0, T ) × Ω. (1.3)

Here � ≥ 0, u, p and θ ≥ 0 stand for the fluid density, velocity, pressure, and potential temperature,
respectively. The viscous stress tensor S(∇xu) is given by

S(∇xu) = μ

(
∇xu + (∇xu)T − 2

d
divx(u)I

)
+ λ divx(u) I , (1.4)

where μ and λ are viscosity constants satisfying μ > 0 and λ ≥ − 2
d μ . Denoting by γ > 1 the adiabatic

index, the pressure state equation reads

p(�θ) = a(�θ)γ , a > 0 . (1.5)

This type of Navier-Stokes equations is often used in meteorological applications; see, e.g., [1] and the
references therein. System (1.1)–(1.5) governs the motion of viscous compressible fluids with potential
temperature, where diabatic processes and the influence of molecular transport on potential temperature
are excluded. Only potential entropy stratification in the initial data is imposed. We refer a reader to
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Feireisl et al. [2], where the singular limit in the low Mach/Froude number regime of the above Navier-
Stokes system with γ > 3/2 was analyzed. For γ > 9/5, Bresch et al. [3] showed that the low Mach number
limit for the considered system is the compressible isentropic Navier-Stokes equation. In [4] Lukáčová-
Medvid’ová et al. use a slightly more complex version of the above system as the basis for their cloud
model; see also Chertock et al. [5], where the uncertainty quantification was investigated. Due to the link
between potential temperature and entropy, system (1.1)–(1.5) is often reported in the literature as the
Navier-Stokes system with entropy transport. To avoid any misunderstanding, we call it in the present
paper the Navier-Stokes system with potential temperature transport.

In literature we can find several existence results for the Navier-Stokes system (1.1)–(1.5). The question
of stability of weak solutions for γ > 3/2, d = 3 was analyzed by Michálek [6]; see also [7], where the
stability of weak solutions for the compressible Navier-Stokes equations with a scalar transport was
studied for γ > 9/5 by Lions. Under the assumption γ ≥ 9/5 in the case d = 3 and γ > 1 in the case
d = 2, system (1.1)–(1.5) is known to admit global-in-time weak solutions; see Maltese et al. [8, Theorem
1 with T (s) = sγ ]. Note that in the aforementioned paper the authors work with the entropy s instead
of the potential temperature θ. However, in their framework the specified choice of the function T yields
s = θ. We point out that the physically relevant adiabatic indices γ lie in the interval (1, 2] if d = 2 and in
the interval (1, 5/3] if d = 3. Consequently, in three space dimensions there are physically relevant values
of the adiabatic index for which the global-in-time existence of weak solutions remains an open problem
for the Navier-Stokes system (1.1)-(1.5).

A simpler model for viscous compressible fluid flow is the barotropic Navier-Stokes system with the
state equation p = a�γ , a = const. The first global-in-time existence result for weak solutions of this
system allowing general initial data was established in 1998 by Lions [7] for γ ≥ 3/2 if d = 2 and γ ≥ 9/5
if d = 3. In 2001, Feireisl, Novotný, and Petzeltová [9] extended Lions’s result to the situation γ > 1
for d = 2 and γ > 3/2 for d = 3; see also Feireisl, Karper, Pokorný [10]. To date, the latter is the best
available global-in-time existence result for weak solutions for the barotropic Navier-Stokes system. The
main obstacle that hampers the derivation of the existence result for γ ≤ 3/2 in three space dimensions
is the lack of suitable a priori estimates for the convective term �u⊗u. These difficulties are inherited by
the full Navier-Stokes-Fourier system that includes an energy equation, too. In [11], Feireisl and Novotný
obtained the existence of global-in-time weak solutions for the Navier-Stokes-Fourier system. However,
their result holds only for a very restrictive class of state equations. In particular, the natural example
of the perfect gas law p = �θ is still open for the existence of weak solutions. In this context, we refer
a reader to [12], where the complete Navier-Stokes-Fourier system for the perfect gas was studied in the
context of generalized solutions.

The question of uniqueness of weak solutions remains open in general. However, we have a weak-strong
uniqueness principle for the barotropic Navier-Stokes equations. It means that weak and strong solutions
to the Navier-Stokes system emanating from the same initial data coincide; see, e.g., Feireisl, Jin, Novotný
[13] or Feireisl [14].

In [15], Feireisl et al. introduced a new concept of generalized solutions to the barotropic Navier-Stokes
system. They work with the so-called dissipative measure-valued (DMV) solutions that are motivated
by the concept of Young measures. In this context, a DMV-strong uniqueness principle was established
and the existence of global-in-time DMV solutions for a class of pressure state equations including the
barotropic case with γ ≥ 1 was achieved. In our recent work [16], we have extended the DMV-strong
uniqueness result to the Navier-Stokes system with potential temperature transport (1.1)–(1.5).

In [17, Chapter 13], Feireisl et al. give a constructive existence proof and demonstrate that DMV
solutions to the barotropic Navier-Stokes system can also be obtained by means of a convergent numerical
method that was originally developed by Karlsen and Karper [18], [19], [20], [21]. However, their result
is based on the assumption that γ > 6/5 if d = 3 and γ > 8/7 if d = 2; for the three-dimensional case see
also Feireisl and Lukáčová -Medvid’ová [22]. Again, the difficulties
for small values of γ are related to the convective term in the momentum equation. To overcome this
problem we have added the artificial pressure term hη(�k

h,Δt)
2 to the momentum method of the scheme.

This allows us to prove rigorously the existence of a dissipative weak solution to Navier-Stokes system
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Fig. 1. Strategy for proving convergence of the numerical scheme

with potential temperature transport for all γ > 1 by analyzing the convergence of a suitable numerical
scheme. To this end, we propose a new version of the mixed finite element-finite volume method of Karlsen
and Karper. We note that the artificial pressure approach was used independently in the recent work of
Kwon and Novotný [23] also for the Navier-Stokes equations.

The paper is organized as follows: In Sect. 2, we introduce our notion of DMV solutions to the Navier-
Stokes system with potential temperature transport and present our main result. Sect. 3 is devoted to
the numerical method and the collection of its basic properties. Subsequently, we follow the strategy
delineated in Figure 1 to prove the convergence of the numerical scheme: In Sect. 4, we state a discrete
energy balance for our method which serves as a basis for several stability estimates. The consistency of the
numerical method is established in Sect. 5 and in Sect. 6 we conclude that any Young measure generated
by the solutions to our numerical method represents a DMV solution to the Navier-Stokes system with
potential temperature transport. In particular, we show that the numerical solutions converge weakly
to the expected values with respect to the Young measure and that the convergence of the numerical
solutions is strong as long as a strong solution of (1.1)–(1.5) exists. The mesh-related estimates can be
found in Appendix A.1.

2. Dissipative Measure -Valued Solutions

Before defining dissipative measure-valued solutions to the Navier-Stokes system with potential temper-
ature transport, we fix the initial and boundary conditions. The Navier-Stokes system with potential
temperature transport (1.1)–(1.5) is endowed with the initial data

�(0, ·) = �0 , θ(0, ·) = θ0 , u(0, ·) = u0 , (2.1)

and the no-slip boundary condition

u|[0,T ]×∂Ω = 0 . (2.2)

We henceforth write Ωt = (0, t) × Ω whenever t > 0. Furthermore, P : [0,∞) → R,

P (z) =
a

γ − 1
zγ , (2.3)

is the so-called pressure potential. If V = {V(t,x)}(t,x) ∈ ΩT
is a parametrized probability measure (Young

measure) acting on R
d+2, we write

〈V(t,x); g〉 ≡
∫
Rd+2

g dV(t,x) ≡
∫
Rd+2

g(�, θ,u) dV(t,x)(�, θ,u)
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whenever g ∈ C(Rd+2). Moreover, we tend to write out the function g in terms of the integration variables
(�, θ,u) ∈ R × R × R

d ∼= R
d+2: if, for example, g(�, θ,u) = � u, then we also write

〈V(t,x); � u〉 instead of 〈V(t,x); g〉 .

We proceed by defining dissipative measure-valued solutions to the Navier-Stokes system with potential
temperature transport (1.1)–(1.5).

Definition 2.1 (DMV solutions). A parametrized probability measure V = {V(t,x)}(t,x) ∈ ΩT
that satisfies

V ∈ L∞
weak�(ΩT ;P(Rd+2))1, R

d+2 =
{
(�, θ,u)

∣∣ �, θ ∈ R,u ∈ R
d
}
,

and for which there exists a constant c� > 0 such that

V(t,x)

(
{� ≥ 0} ∩ {θ ≥ c�}

)
= 1 for a.a. (t,x) ∈ ΩT ,

is called a dissipative measure-valued (DMV) solution to the Navier-Stokes system with potential tem-
perature transport (1.1)–(1.5) with initial and boundary conditions (2.1) and (2.2) if it satisfies:

• (energy inequality)

uV ≡ 〈V;u〉 ∈ L2(0, T ;W 1,2
0 (Ω)d) ,

〈
V;

1
2

� |u|2 + P (� θ)
〉

∈ L1(ΩT ) ,

and the integral inequality∫
Ω

〈
V(τ, · );

1
2

� |u|2 + P (� θ)
〉

dx +
∫ τ

0

∫
Ω
S(∇xuV) : ∇xuV dxdt

+
∫

Ω

dE(τ) +
∫

Ωτ

dD ≤
∫

Ω

[
1
2

�0|u0|2 + P (�0θ0)
]

dx (2.4)

holds for a.a. τ ∈ (0, T ) with the energy concentration defect

E ∈ L∞
weak�(0, T ;M+(Ω))

and the dissipation defect

D ∈ M+(ΩT ) ;

• (continuity equation)

〈V; � 〉 ∈ Cweak([0, T ];Lγ(Ω)) , 〈V(0,x); � 〉 = �0(x) for a.a. x ∈ Ω

and the integral identity[ ∫
Ω

〈V(t, · ); � 〉ϕ(t, ·) dx

]t = τ

t = 0

=
∫ τ

0

∫
Ω

[
〈V; � 〉 ∂tϕ + 〈V; � u〉 · ∇xϕ

]
dxdt (2.5)

holds for all τ ∈ [0, T ] and all ϕ ∈ W 1,∞(ΩT )2;
• (momentum equation)

〈V; � u〉 ∈ Cweak([0, T ];L
2γ

γ+1 (Ω)d) , 〈V(0,x); � u〉 = �0(x)u0(x) for a.a. x ∈ Ω

and the integral identity[ ∫
Ω

〈V(t, · ); � u〉 · ϕ(t, ·) dx

]t = τ

t = 0

=
∫ τ

0

∫
Ω

[
〈V; � u〉 · ∂tϕ + 〈V; � u ⊗ u + p(� θ)I〉 : ∇xϕ

]
dxdt

−
∫ τ

0

∫
Ω
S(∇xuV) : ∇xϕ dxdt +

∫ τ

0

∫
Ω

∇xϕ : dR(t)dt (2.6)

1Here, the (Lipschitz) continuous representative of ϕ ∈ W 1,∞(ΩT ) is meant.
2P(Rd+2) denotes the space of probability measures on R

d+2.
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holds for all τ ∈ [0, T ] and all ϕ ∈ C 1(ΩT )d satisfying ϕ|[0,T ]×∂Ω = 0, where the Reynolds concen-
tration defect fulfills

R ∈ L∞
weak�(0, T ;M(Ω)d×d

sym,+)3

and dE ≤ tr(R) ≤ dE for some constants d ≥ d > 0;

• (potential temperature equation)

〈V; � θ 〉 ∈ Cweak([0, T ];Lγ(Ω)) , 〈V(0,x); � θ 〉 = �0(x)θ0(x) for a.a. x ∈ Ω

and the integral identity[ ∫
Ω

〈V(t, · ); � θ 〉ϕ(t, ·) dx

]t = τ

t = 0

=
∫ τ

0

∫
Ω

[
〈V; � θ 〉 ∂tϕ + 〈V; � θ u〉 · ∇xϕ

]
dxdt (2.7)

holds for all τ ∈ [0, T ] and all ϕ ∈ W 1,∞(ΩT );
• (entropy inequality)

〈V(0,x); � ln(θ)〉 = �0(x) ln(θ0(x)) for a.a. x ∈ Ω

and for any ψ ∈ W 1,∞(ΩT ), ψ ≥ 0, the integral inequality[ ∫
Ω
〈V(t, · ); � ln(θ)〉ψ(t, ·) dx

]t = τ

t = 0

≥
∫ τ

0

∫
Ω

[
〈V; � ln(θ)〉 ∂tψ + 〈V; � ln(θ)u〉 · ∇xψ

]
dxdt (2.8)

is satisfied for a.a. τ ∈ (0, T );
• (Poincaré’s inequality)

there exists a constant CP > 0 such that∫ τ

0

∫
Ω

〈V; |u − U |2〉 dxdt ≤ CP

(∫ τ

0

∫
Ω

|∇x(uV − U)|2 dxdt +
∫ τ

0

∫
Ω

dE(t)dt +
∫

Ωτ

dD
)

(2.9)

for a.a. τ ∈ (0, T ) and all U ∈ L2(0, T ;W 1,2
0 (Ω)d).

Remark 2.2. Note that the physical entropy S is proportional to � ln(θ). We require that our dissipative
solutions satisfy the Second Law of Thermodynamics that is expressed by (2.8) for adiabatic processes.
The entropy inequality (2.8) and Poincaré’s inequality (2.9) included in the definition of DMV solutions
to the Navier-Stokes system with potential temperature transport are fundamental to guarantee DMV-
strong uniqueness; see [16].

We are ready to formulate the main result of this paper: the existence of DMV solutions to the
Navier-Stokes system with potential temperature transport.

Theorem 2.3 (Existence of DMV solutions). Let γ > 1, T > 0, d ∈ {2, 3}, and Ω ⊂ R
d a bounded

Lipschitz domain. Further, let �0, θ0 ∈ L
∞(Ω) and u0 ∈ W 1,2

0 (Ω)d, where

�0 > 0 a.e. in Ω and c� < θ0 < c� a.e. in Ω (2.10)

for some constants 0 < c� < c�. Then there is a DMV solution V to system (1.1)–(1.5) subject to the
initial and boundary conditions (2.1) and (2.2) that additionally satisfies

V(t,x)

(
{θ ≤ c�}

)
= 1 for a.a. (t,x) ∈ ΩT . (2.11)

3. Numerical Scheme

In this section, we present our numerical method, the mixed finite element-finite volume method.

3M(Ω)d×d
sym,+ denotes the set of bounded Radon measures defined on Ω and ranging in the set of symmetric positive

semi-definite matrices, i.e., M(Ω)d×d
sym,+ =

{
μ ∈ M(Ω)d×d

sym

∣∣ ∫
Ω φ(ξ ⊗ ξ) : dμ ≥ 0 for all ξ ∈ R

d, φ ∈ C(Ω), φ ≥ 0
}
.
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3.1. Spatial discretization

We choose H ∈ (0, 1) and approximate the spatial domain Ω ⊂ R
d by a family {Ωh}h ∈ (0,H] that is

related to a family of (finite) meshes (Th)h ∈ (0,H] by the constraint

Ωh =
⋃

K ∈ Th

K for all h ∈ (0,H].

We assume that the subsequent conditions hold:

• Ωh ⊂ Ω for all h ∈ (0,H];
• each element K of a mesh Th is a d-simplex that can be written as

K = hAK(Kref) + aK , AK ∈ R
d×d , aK ∈ R

d ,

where the reference element Kref is the convex hull of the zero vector 0 ∈ R
d and the standard unit

vectors e1, . . . , ed ∈ R
d, i.e., Kref = conv{0, e1, . . . , ed} ;

• there exist constants C > c > 0 such that

spectrum(AT
KAK) ⊂ [c, C] for all K ∈

⋃
h ∈ (0,H]

Th ;

• the intersection of two distinct elements K1,K2 of a mesh Th is either empty, a common vertex, a
common edge, or (in the case d = 3) a common face;

• for all compact sets K ⊂ Ω there exists a constant h0 ∈ (0,H] such that

K ⊂ Ωh for all h ∈ (0, h0). (3.1)

The symbol Eh denotes the set of all faces (d = 3) or all edges (d = 2) in the mesh Th. Further, we define
the sets

Eh,ext =
{
σ ∈ Eh

∣∣σ ⊂ ∂Ωh

}
and Eh,int = Eh\Eh,ext

and, for K ∈ Th, the sets

Eh(K) =
{
σ ∈ Eh

∣∣σ ⊂ K
}

and Eh,z(K) =
{
σ ∈ Eh,z

∣∣σ ⊂ K
}

,

where z ∈ {int, ext}. The elements of Eh,int, Eh,int(K) and Eh,ext, Eh,ext(K) are referred to as exterior and
interior faces (edges), respectively. In connection with these sets, we introduce the notation∫

Eh,int

≡
∑

σ ∈ Eh,int

∫
σ

and
∫

Eh(K)

≡
∑

K ∈ Th

∑
σ ∈ Eh(K)

∫
σ

.

Moreover, we equip each σ ∈ Eh with a unit vector nσ by following the subsequent procedure:
We fix an arbitrary element Kσ ∈ Th such that σ ∈ Eh(Kσ) and set nσ = nKσ

(xσ). Here, xσ denotes
the center of mass of σ and nKσ

(xσ) is the outward-pointing unit normal vector to the element Kσ at
xσ. Finally, it will be convenient to write A � B whenever there is an h-independent constant c > 0 such
that A ≤ cB and A ≈ B whenever A � B and B � A.

3.2. Function Spaces and Projection Operators

We proceed by defining the relevant discrete function spaces. The space of piecewise constant functions
is denoted by

Qh =
{
v ∈ L2(Ω)

∣∣ v|Ω\Ωh
= 0 and v|K ∈ P0(K) for all K ∈ Th

}
4.

4Pn(K) denotes the set of all restrictions of polynomial functions R
d → R of degree at most n to the set K.
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For v ∈ Qh and K ∈ Th we set vK = v(xK), where xK denotes the center of mass of K. The projection
ΠQ,h ≡ · : L2(Ω) → Qh associated with Qh is characterized by

(ΠQ,hv)
∣∣
K

≡ v|K ≡ 1
|K|

∫
K

v dy for all K ∈ Th .

The Crouzeix-Raviart finite element spaces are denoted by

Vh =

⎧⎨
⎩v ∈ L2(Ω)

∣∣∣∣∣∣
v|Ω\Ωh

= 0, v|K ∈ P1(K) for all K ∈ Th, and∫
σ

lim
δ → 0+

(
v(x − δnσ) − v(x + δnσ)

)
dSx = 0 for all σ ∈ Eh,int

⎫⎬
⎭ ,

V0,h =
{

v ∈ Vh

∣∣∣∣
∫

σ

lim
δ → 0+

v(x − δnσ) dSx = 0 for all σ ∈ Eh,ext

}
.

With these spaces we associate the projection ΠV,h : W 1,2(Ω) → Vh that is determined by∫
σ

ΠV,hv dSx =
∫

σ

v dSx for all σ ∈ Eh.

Additionally, we agree on the notation

Q+
h =

{
v ∈ Qh

∣∣ v|K > 0 for all K ∈ Th

}
, Q0,+

h =
{
v ∈ Qh

∣∣ v|K ≥ 0 for all K ∈ Th

}
,

Qh = (Qh)d , Vh = (Vh)d , and V0,h = (V0,h)d .

3.3. Mesh-Related Operators

Next, we define some mesh-related operators. We start by introducing the discrete counterparts of the
differential operators ∇x and divx . They are determined by the stipulations

(∇hv)|K = ∇x(v|K) for all v ∈ Vh ∪ Vh and all K ∈ Th

and divh(v)|K = divx(v|K) for all v ∈ Vh and all K ∈ Th,

respectively. We continue by defining several trace operators. For arbitrary σ ∈ Eh, x ∈ σ, and

v ∈ (Qh ∪ Qh) ∪ (Vh ∪ Vh) ∪ (C(Ω) ∪ C(Ω)d)

we put

v in, σ(x) = lim
δ → 0+

v(x − δnσ) , v out, σ(x) =

{
lim

δ → 0+
v(x + δnσ) if σ ∈ Eh,int,

0 else
.

Further, we define

�v�σ = v out, σ − v in, σ , {v}σ =
v out, σ + v in, σ

2
, and 〈v〉σ =

1
|σ|

∫
σ

v in, σ dSx .

The convective terms will be approximated by means of a dissipative upwind operator. For σ ∈ Eh,
v ∈ V0,h, and r ∈ Qh ∪ Qh we put

Up[r,v]σ = r out, σ [〈v · nσ〉σ]− + r in, σ [〈v · nσ〉σ]+ ,

F up
h [r,v]σ = Up[r,v]σ − hε

2
�r�σ = {r}σ〈v · nσ〉σ − 1

2
�r�σ

(
hε + |〈v · nσ〉σ|

)
,

where ε > 0 is a given constant,

[x]+ = max{x, 0} , and [x]− = min{x, 0} .

Remark 3.1. In the sequel, we tend to omit the letter σ in the subscripts and superscripts of the operators
defined in Sects 3.2 and 3.3. In some places, we also suppress the letter h and the superscript in in the
notation if no confusion arises.
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3.4. Time Discretization

In order to approximate the time derivatives, we apply the backward Euler method, i.e., the time derivative
is represented by

Dts
k
h =

sk
h − sk−1

h

Δt
,

where Δt > 0 is a given time step and sk−1
h and sk

h are the numerical solutions at the time levels
tk−1 = (k − 1)Δt and tk = kΔt, respectively. For the sake of simplicity, we assume that Δt is constant
and that there is a number NT ∈ N such that NT Δt = T .

3.5. Numerical Scheme

We are now ready to formulate our mixed finite element-finite volume (FE-FV) method.

Definition 3.2 (FE-FV method). A sequence (�k
h, θk

h ,uk
h)k ∈N ⊂ Q+

h ×Q+
h ×V0,h is a solution to our FE-FV

method starting from the initial data (�0
h, θ0

h ,u0
h) ∈ Q+

h × Q+
h × Vh if the following equations hold for all

k ∈ N, φh ∈ Qh, and φh ∈ V0,h:∫
Ωh

(Dt�
k
h)φh dx −

∫
Eint

F up
h

[
�k

h ,uk
h

]
�φh� dSx = 0 , (3.2)

∫
Ωh

Dt(�k
hθk

h )φh dx −
∫

Eint

F up
h

[
�k

hθk
h ,uk

h

]
�φh� dSx = 0 , (3.3)

∫
Ωh

Dt

(
�k

huk
h

)
· φh dx −

∫
Eint

F up
h

[
�k

huk
h ,uk

h

]
·
�
φh

�
dSx + μ

∫
Ωh

∇huk
h : ∇hφh dx

+ ν

∫
Ωh

divh(uk
h) divh(φh) dx −

∫
Ωh

(
p(�k

hθk
h ) + hδ

[
(�k

h)2 + (�k
hθk

h )2
])

divh(φh) dx = 0 , (3.4)

where

δ > 0 and ν =
d − 2

d
μ + λ ≥ 0 .

Remark 3.3. We note that our FE-FV method is a generalization of the scheme presented in [17, Chapter
13]. New ingredients are a modified upwind operator and the artificial pressure terms hδ(�k

h)2, hδ(�k
hθk

h )2.
The latter are added to ensure the consistency of our method for values of γ close to 1, see Sects 4, 5.

3.5.1. Initial Data. The initial data for the FE-FV method (3.2)–(3.4) are given as

�0
h = ΠQ�0 , θ0

h = ΠQθ0 , and u0
h = ΠV u0 . (3.5)

As a consequence of this stipulation, we observe that (�0
h, θ0

h ,u0
h) ∈ Q+

h × Q+
h × Vh and

c� < θ0
h < c� in Ωh. (3.6)

3.5.2. Properties of the Numerical Method. We proceed by summarizing several properties of the FE-FV
method (3.2)–(3.4).

Lemma 3.4. Let k ∈ N and (�k−1
h , θk−1

h ,uk−1
h ) ∈ Q+

h × Q+
h × Vh be given.

(i) Solvability: There exists a solution (�k
h, θk

h ,uk
h) ∈ Q+

h × Q+
h × V0,h to (3.2)–(3.4).

(ii) Every solution (�k
h, θk

h ,uk
h) ∈ Qh × Qh × V0,h to (3.2)–(3.4) has the following properties:

• Positivity preservation: �k
h, θk

h ∈ Q+
h . If, in addition, there are constants 0 < c < c such

that c < θk−1
h < c in Ωh, then c < θk

h < c in Ωh.
• Conservation: ||�k

h||
L1(Ωh)

= ||�k−1
h ||

L1(Ωh)
and ||�k

hθk
h ||

L1(Ωh)
= ||�k−1

h θk−1
h ||

L1(Ωh)
.
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Proof. For the proof we refer the reader to Appendix A.3. �

From Lemma 3.4 we easily deduce the following corollary.

Corollary 3.5. Any solution (�k
h, θk

h ,uk
h)k ∈N to the FE-FV method (3.2)–(3.4) starting from the discrete

initial data (3.5) has the following properties:
(i) For every k ∈ N, �k

h > 0 in Ωh and c� < θk
h < c� in Ωh.

(ii) It fulfills ||�k
h||

L1(Ωh)
= ||�0

h||
L1(Ωh)

and ||�k
hθk

h ||
L1(Ωh)

= ||�0
hθ0

h ||
L1(Ωh)

for all k ∈ N.

4. Stability

We continue by discussing the stability of the FE-FV method (3.2)–(3.4) that follows from a discrete en-
ergy balance. For its derivation, we rely on the concept of (discrete) renormalization. The same technique
will be used to establish a discrete entropy inequality.

4.1. Discrete Renormalization

In the sequel, we shall state renormalized versions of (3.2) and (3.3) that describe the evolution of b(�k
h)

and b(�k
hθk

h ), �k
hb(θk

h ), respectively, where b ∈ C 2(0,∞). Together with suitable choices for the function b,
the first two renormalized equations will help us to handle the pressure terms when deriving the discrete
energy balance. The last equation will be used to establish the discrete entropy inequality.

Lemma 4.1. Let (�k
h, θk

h ,uk
h)k ∈N be a solution to the FE-FV method (3.2)–(3.4) starting from the discrete

initial data (3.5). Further, let (rk
h)k ∈N0 ∈ {(�k

h)k ∈N0 , (�
k
hθk

h )k ∈N0}. Then for every (b, k) ∈ C 2(0,∞) ×N

(i) there exist values (ξ(1)
r,b,k,σ)σ ∈ Eint , (ξ

(2)
r,b,k,σ)σ ∈ Eint ⊂ R satisfying

{(rk
h)in,σ(xσ), (rk

h)out,σ(xσ)} ≤ ξ
(1)
r,b,k,σ, ξ

(2)
r,b,k,σ ≤ max{(rk

h)in,σ(xσ), (rk
h)out,σ(xσ)}

and a function ξr,b,k ∈ Qh satisfying

min{rk−1
h , rk

h} ≤ ξr,b,k ≤ max{rk−1
h , rk

h}
such that

0 =
∫

Ωh

Dt b(rk
h) dx +

∫
Ωh

(
b ′(rk

h)rk
h − b(rk

h)
)
divh(uk

h) dx

+
1
2

∫
Ωh

b ′′(ξr,b,k)
(rk

h − rk−1
h )2

Δt
dx +

hε

2

∫
Eint

�rk
h� �b ′(rk

h)� dSx

+
1
2

∫
Eint

(
b ′′(ξ(1)

r,b,k,σ)
[
〈uk

h · nσ〉
]+ − b ′′(ξ(2)

r,b,k,σ)
[
〈uk

h · nσ〉
]−)

�rk
h�2 dSx ; (4.1)

(ii) there exist values (ζ(1)
b,k,σ)σ ∈ Eint , (ζ

(2)
b,k,σ)σ ∈ Eint ⊂ R satisfying

min{(θk
h )in,σ(xσ), (θk

h )out,σ(xσ)} ≤ ζ
(1)
b,k,σ, ζ

(2)
b,k,σ ≤ max{(θk

h )in,σ(xσ), (θk
h )out,σ(xσ)}

and a function ζb,k ∈ Qh satisfying

min{θk−1
h , θk

h} ≤ ζb,k ≤ max{θk−1
h , θk

h}
such that

0 =
∫

Ωh

Dt(�k
hb(θk

h ))ψh dx −
∫

Eint

Up
[
�k

hb(θk
h ) ,uk

h

]
�ψh� dSx

+
Δt

2

∫
Ωh

b ′′(ζb,k) �k−1
h

(
θk
h − θk−1

h

Δt

)2

ψh dx +
hε

2

∫
Eint

��k
hθk

h � �b ′(θk
h )ψh� dSx
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+
1
2

∫
Eint

(
b ′′(ζ(1)

b,k,σ)�k
hψ out

h

[
〈uk

h · nσ〉
]+ − b ′′(ζ(2)

b,k,σ)(�k
h)outψh

[
〈uk

h · nσ〉
]−)

�θk
h �2 dSx

+
hε

2

∫
Eint

��k
h�

�(
b(θk

h ) − b ′(θk
h )θk

h

)
ψh

�
dSx (4.2)

for all ψh ∈ Qh.

Proof. The proof of assertion (i) can be found in [19, Lemma 5.1]. The main idea is to take φh =
b ′(�k

h)1Ωh
in (3.2) and φh = b ′(�k

hθk
h )1Ωh

in (3.3) and to rewrite the results by means of basic algebraic
manipulations, Gauss’s theorem, and Taylor expansions.

Assertion (ii) can be proven similarly; see, e.g., [24, Lemma A.1 with h1−ε replaced by hε/2]. Here,
one chooses φh = b ′(θk

h )ψh in (3.3). �

4.2. Discrete Energy Balance

We now have all necessary tools at hand to establish the energy balance for our numerical method.

Lemma 4.2. Let (�k
h, θk

h ,uk
h)k ∈N be a solution to the FE-FV method (3.2)–(3.4) starting from the discrete

initial data (3.5) and P the pressure potential introduced in (2.3). Denoting the discrete energy at the
time level k ∈ N0 by

Ek
h ≡ Ek

h(�k
h, θk

h ,uk
h) =

∫
Ωh

[
1
2

�k
h|uk

h|2 + P (�k
hθk

h ) + hδ
(
(�k

h)2 + (�k
hθk

h )2
)]

dx , (4.3)

we deduce that

DtE
k
h +

∫
Ωh

[
μ |∇huk

h|2 + ν |divh(uk
h)|2

]
dx

= − 1
2

∫
Ωh

P ′′(ξ
θ,P,k)
(�k

hθk
h − �k−1

h θk−1
h )2

Δt
dx − hε

2

∫
Eint

��k
hθk

h � �P ′(�k
hθk

h )� dSx

− 1
2

∫
Eint

(
P ′′(ξ(1)


θ,P,k,σ)
[
〈uk

h · nσ〉σ

]+ − P ′′(ξ(2)

θ,P,k,σ)

[
〈uk

h · nσ〉σ

]−)
��k

hθk
h �2 dSx

−
∫

Ωh

Δt

2
�k−1

h

∣∣∣∣∣
uk

h − uk−1
h

Δt

∣∣∣∣∣
2

dx − hε

2

∫
Eint

{�k
h}

�
uk

h

�2

dSx

− 1
2

∫
Eint

(
(�k

h)in
[
〈uk

h · nσ〉σ

]+ − (�k
h)out

[
〈uk

h · nσ〉σ

]−)�
uk

h

�2

dSx

− hδ

∫
Ωh

(�k
h − �k−1

h )2

Δt
dx − hδ

∫
Eint

(
hε + |〈uk

h · nσ〉σ|
)
��k

h�2 dSx

− hδ

∫
Ωh

(�k
hθk

h − �k−1
h θk−1

h )2

Δt
dx − hδ

∫
Eint

(
hε + |〈uk

h · nσ〉σ|
)
��k

hθk
h �2 dSx , (4.4)

for all k ∈ N, where ξ
θ,P,k ∈ Qh and (ξ(1)

θ,P,k,σ)σ ∈ Eint , (ξ

(2)

θ,P,k,σ)σ ∈ Eint ⊂ R are chosen as in Lemma 4.1(i).

Proof. The proof can be done following the arguments in [10, Chapter 7.5]. Therefore, we depict only the
most important steps. First, taking φh = uk

h in (3.4) yields

tohDt

(
�k

huk
h

)
· uk

h dx −
∫

Eint

F up
h

[
�k

huk
h ,uk

h

]
·
�
uk

h

�
dSx +

∫
Ωh

[
μ |∇huk

h|2 + ν |divh(uk
h)|2

]
dx

−
∫

Ωh

(
p(�k

hθk
h ) + hδ

[
(�k

h)2 + (�k
hθk

h )2
])

divh(uk
h) dx = 0 . (4.5)
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Next, we observe that
∫

Ωh

Dt

(
�k

huk
h

)
· uk

h dx =
1
2

∫
Ωh

⎛
⎝Dt

(
�k

h|uk
h|2
)

+ (Dt�
k
h)|uk

h|2 + Δt �k−1
h

∣∣∣∣∣
uk

h − uk−1
h

Δt

∣∣∣∣∣
2
⎞
⎠dx . (4.6)

Then, we use φh = 1
2 |uk

h|2 as a test function in (3.2) to deduce that

1
2

∫
Ωh

(Dt�
k
h)|uk

h|2 dx =
1
2

∫
Eint

F up
h

[
�k

h ,uk
h

]�
|uk

h|2
�

dSx . (4.7)

Moreover, by applying Lemma 4.1(i) with b = P and b = hδ(·)2, we obtain∫
Ωh

p(�k
hθk

h ) divh(uk
h) dx

= −
∫

Ωh

DtP (�k
hθk

h ) dx − 1
2

∫
Ωh

P ′′(ξ
θ,P,k)
(�k

hθk
h − �k−1

h θk−1
h )2

Δt
dx − hε

2

∫
Eint

��k
hθk

h � �P ′(�k
hθk

h )� dSx

− 1
2

∫
Eint

(
P ′′(ξ(1)


θ,P,k,σ)
[
〈uk

h · nσ〉σ

]+ − P ′′(ξ(2)

θ,P,k,σ)

[
〈uk

h · nσ〉σ

]−)
��k

hθk
h �2 dSx , (4.8)

hδ

∫
Ωh

(�k
h)2 divh(uk

h) dx

= −hδ

[∫
Ωh

Dt(�k
h)2 dx +

∫
Ωh

(�k
h − �k−1

h )2

Δt
dx +

∫
Eint

(
hε + |〈uk

h · nσ〉σ|
)
��k

h�2 dSx

]
, (4.9)

hδ

∫
Ωh

(�k
hθk

h )2 divh(uk
h) dx

= −hδ

[∫
Ωh

Dt(�k
hθk

h )2 dx +
∫

Ωh

(�k
hθk

h − �k−1
h θk−1

h )2

Δt
dx +

∫
Eint

(
hε + |〈uk

h · nσ〉σ|
)
��k

hθk
h �2 dSx

]
.

(4.10)

Plugging (4.6)–(4.10) into (4.5), we see that we have almost arrived at (4.4). Indeed, it only remains to
show that

1
2

∫
Eint

F up
h

[
�k

h ,uk
h

]�
|uk

h|2
�

dSx −
∫

Eint

F up
h

[
�k

huk
h ,uk

h

]
·
�
uk

h

�
dSx

=
hε

2

∫
Eint

{�k
h}

�
uk

h

�2

dSx +
1
2

∫
Eint

(
(�k

h)in
[
〈uk

h · nσ〉σ

]+ − (�k
h)out

[
〈uk

h · nσ〉σ

]−)�
uk

h

�2

dSx ,

which follows by direct calculations. This completes the proof. �

4.3. Time-Dependent Numerical Solutions and Energy Estimates

Next, we formulate appropriate stability estimates for the time-dependent numerical solutions introduced
below.

Definition 4.3. Let (�k
h, θk

h ,uk
h)k ∈N be a solution to the FE-FV method (3.2)–(3.4) starting from the

initial data (�0
h, θ0

h ,u0
h). We define the functions

�h, θh : R × Ω → R , uh : R × Ω → R
d ,

that are piecewise constant in time by setting

(�h, θh,uh)(t, ·) =

{
(�k

h, θk
h ,uk

h) if t ∈ ((k − 1)Δt, kΔt] for some k ∈ N and

(�0
h, θ0

h ,u0
h) if t ≤ 0,
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The most important stability estimates that can be obtained from the discrete energy balance (4.4)
read as follows.

Corollary 4.4 (Stability estimates). Any solution (�h, θh,uh) to the FE-FV method (3.2)–(3.4) starting
from the initial data (3.5) has the following properties:

||�h|uh|2||
L∞(0, T ;L1(Ωh))

� 1 , ||�h||
L∞(0, T ;Lγ(Ωh))

� 1 , ||�huh||
L∞(0, T ;L2γ/(γ + 1)(Ωh)d)

� 1 , (4.11)

||∇huh||
L2(0, T ;L2(Ωh)d×d)

� 1 , ||divh(uh)||
L2(0, T ;L2(Ωh))

� 1 , ||uh||
L2(0, T ;Lq(Ωh)d)

� 1 , (4.12)

||�hθh||
L∞(0, T ;Lγ(Ωh))

� 1 , ||hδ/2�h||
L∞(0, T ;L2(Ωh))

� 1 , ||hδ/2�hθh||
L∞(0, T ;L2(Ωh))

� 1 , (4.13)

||�hθhuh||
L∞(0, T ;L2γ/(γ + 1)(Ωh)d)

� 1 , ||�huh||
L2(0, T ;L2(Ωh)d)

� h− d+3δ
6 , (4.14)

hδ

∫ T

0

∫
Eint

max {hε, |〈uh · nσ〉σ|} ��h�2 dSx dt � 1 , (4.15)

hδ

∫ T

0

∫
Eint

max {hε, |〈uh · nσ〉σ|} ��hθh�2 dSx dt � 1 , (4.16)

hε

2

∫ T

0

∫
Eint

{�h}�uh�2 dSx dt � 1 , (4.17)

1
2

∫ T

0

∫
Eint

(
� in

h

[
〈uh · nσ〉σ

]+ − � out
h

[
〈uh · nσ〉σ

]−)
�uh�2 dSx dt � 1 , (4.18)

∫ T

0

∫
Eint

∣∣��h�〈uh · nσ〉σ

∣∣ dSx dt � h−δ/2(1 + h−1/2) , (4.19)

∫ T

0

∫
Eint

∣∣��hθh�〈uh · nσ〉σ

∣∣ dSx dt � h−δ/2(1 + h−1/2) , (4.20)

where q ∈ [1,∞) if d = 2 and q ∈ [1, 6] if d = 3.

Proof. The proof is provided in Appendix A.4. �

4.4. Discrete Entropy Inequality

We conclude this section by stating a discrete entropy inequality. It is obtained by taking b = χ in
Lemma 4.1(ii).

Lemma 4.5. Let (�k
h, θk

h ,uk
h)k ∈N be a solution to the FE-FV method (3.2)–(3.4) starting from the discrete

initial data (3.5) and χ ∈ C 2(0,∞) a concave function. Then

0 ≤
∫

Ωh

Dt(�k
hχ(θk

h ))ψh dx −
∫

Eint

Up
[
�k

hχ(θk
h ) ,uk

h

]
�ψh� dSx

+
hε

2

∫
Eint

��k
hθk

h � �χ ′(θk
h )ψh� dSx +

hε

2

∫
Eint

��k
h�

�(
χ(θk

h ) − χ ′(θk
h )θk

h

)
ψh

�
dSx (4.21)

for all ψh ∈ Q0,+
h .
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5. Consistency

The goal of this section is to establish the consistency of the FE-FV method (3.2)–(3.4).

Theorem 5.1 (Consistency of the FE-FV method). Let d ∈ {2, 3}. Further, suppose (�h, θh,uh)h ∈ (0,H] is
a family of solutions to the FE-FV method (3.2)–(3.4) with

γ > 1 , Δt ≈ h , ε > 1, and 0 < δ < 1
2 (5.1)

starting from the initial data (�0
h, θ0

h ,u0
h)h ∈ (0,H] defined in (3.5). Then, for β = min

{
ε − 1, 1−2δ

4

}
,

−
∫

Ω
�0

h ϕ(0, ·) dx =
∫ T

0

∫
Ω

[
�h∂tϕ + �huh · ∇xϕ

]
dxdt + O(hβ) (5.2)

for all ϕ ∈ C ∞
c ([0, T ) × Ω) as h ↓ 0,

−
∫

Ω
�0

hθ0
h ϕ(0, ·) dx =

∫ T

0

∫
Ω

[
�hθh∂tϕ + �hθhuh · ∇xϕ

]
dxdt + O(hβ) (5.3)

for all ϕ ∈ C ∞
c ([0, T ) × Ω) as h ↓ 0,

−
∫

Ω
�0

hu0
h · ϕ(0, ·) dx +

∫ T

0

∫
Ω

[
μ∇huh : ∇xϕ + ν divh(uh) divx(ϕ)

]
dxdt + O(hβ)

=
∫ T

0

∫
Ω

[
�huh · ∂tϕ + �huh ⊗ uh : ∇xϕ +

(
p(�hθh) + hδ

[
�2

h + (�hθh)2
])

divx(ϕ)
]
dxdt (5.4)

for all ϕ ∈ C ∞
c ([0, T ) × Ω)d as h ↓ 0, and

−
∫

Ω
�0

h ln(θ0
h)ψ(0, ·) dx ≥

∫ T

0

∫
Ω

[
�h ln(θh)∂tψ + �h ln(θh)uh · ∇xψ

]
dxdt + O(hβ) (5.5)

for all ψ ∈ C ∞
c ([0, T ) × Ω), ψ ≥ 0, as h ↓ 0.

The structure of the proof of Theorem 5.1 is essentially the same as that of [17, Theorem 13.2]. In
particular, we will use similar tools. Apart from the estimates listed in Appendix A.1, we will need the
following results.

Lemma 5.2. Let φ ∈ C 2
c ([0, T ) × Ω), (rk

h)k ∈N0 ⊂ Qh, and define rh : R × Ω → R via

t, ·) =

{
rk
h if t ∈ ((k − 1)Δt, kΔt] for some k ∈ N and

r0
h if t ≤ 0.

Then the subsequent relations hold:∣∣∣∣∣
∫ T

0

∫
Ωh

[
(Dtrh)ΠQφ + rh ∂tφ

]
dxdt +

∫
Ω

r0
h φ(0, ·) dx

∣∣∣∣∣
� Δt ||φ||

C 2(ΩT )

(
||rh||

L1(0, T ;L1(Ωh))
+ ||r0

h||
L1(Ωh)

)
, (5.6)

∣∣∣∣∣
∫ T

0

∫
Ωh

[
(Dtrh)ΠV φ + rh ∂tφ

]
dxdt +

∫
Ω

r0
h φ(0, ·) dx

∣∣∣∣∣
� (Δt + h)

(
||φ||

C 2(ΩT )
||rh||

L1(0, T ;L1(Ωh))
+ ||φ||

C 1(ΩT )
||r0

h||
L1(Ωh)

)
. (5.7)
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Lemma 5.3. Let r, f ∈ Qh, v ∈ V0,h, and φ ∈ C 1(Ωh). Then∫
Ωh

rv · ∇xφ dx −
∫

Eint

F up
h [r ,v] �f � dSx

=
∫

Ωh

r (f − φ) divh(v) dx +
∫

E(K)

(f − φ) �r�
[
〈v · nK〉σ

]− dSx

+
∫

E(K)

(
φ − 〈φ〉σ

)
r
(
v · nK − 〈v · nK〉σ

)
dSx +

hε

2

∫
Eint

�r� �f � dSx .5 (5.8)

Corollary 5.4. Let s, g ∈ Qh, w ∈ V0,h, and ψ ∈ C 1(Ωh)d. Then∫
Ωh

s ⊗ w : ∇xψ dx −
∫

Eint

F up
h [s ,w] · �g� dSx

=
∫

Ωh

s · (g − ψ) divh(w) dx +
∫

E(K)

(g − ψ) · �s�
[
〈w · nK〉σ

]− dSx

+
∫

E(K)

(
ψ − 〈ψ〉σ

)
· s
(
w · nK − 〈w · nK〉σ

)
dSx +

hε

2

∫
Eint

�s� · �g� dSx . (5.9)

Remark 5.5. The formula in Lemma 5.3 also holds true when the dissipative upwind term is replaced by
the usual upwind term and the last term on the right-hand side of the identity is canceled. The same
applies to Corollary 5.4.

Lemma 5.6. Let r ∈ Qh, v ∈ V0,h, φ ∈ C 1
0 (Ωh), and φ ∈ C 1

0 (Ωh)d. Then∫
Ωh

∇hv · ∇hΠV φ dx =
∫

Ωh

∇hv · ∇xφ dx (5.10)

and
∫

Ωh

r divh(ΠV φ) dx =
∫

Ωh

r divx(φ) dx . (5.11)

For the proof of the Lemmata 5.2, 5.3, and 5.6, we refer to [17, Preliminaries, Lemma 8], [10, Chapter
9.2, Lemma 7 with χ = 1], and [10, Chapter 9.3, Lemma 8], respectively. For the proof of Lemma 5.3, we
additionally need to observe that∫

σ

〈φ〉σ r
(
v · nK − 〈v · nK〉σ

)
dSx = 0 ,

which follows from the fact that r ∈ Qh. Corollary 5.4 can be proven by applying Lemma 5.3 with
(r, f,v, φ) = (si, gi,w, ψi), i ∈ {1, . . . , d}.

Having all necessary tools at our disposal, we can approach the proof of Theorem 5.1.

Proof of Theorem 5.1. Let ϕ,ψ ∈ C ∞
c ([0, T ) × Ω), ψ ≥ 0, and ϕ ∈ C ∞

c ([0, T ) × Ω)d be arbitrary test
functions. We set ϕh = ΠQϕ, ψh = ΠQψ, ϕh = ΠV ϕ and make the following introductory observations:

• Due to the construction of the family (Ωh)h ∈ (0,H], we have ϕ ∈ C ∞
c ([0, T )×Ωh)d, provided h ∈ (0,H]

is sufficiently small (cf. (3.1)), which we henceforth assume.
• Recall that the elements of Qh and Vh vanish outside Ωh. This allows us to replace Ωh by Ω when

appropriate.
The continuity equation.

From (3.2) we deduce that∫ T

0

∫
Ω
(Dt�h)ϕh dxdt −

∫ T

0

∫
Eint

F up
h [�h ,uh] �ϕh� dSx dt = 0 . (5.12)

5In integrals of the form
∫
E(K) we consider the the vector nσ in the definition of the trace operators (·)in,σ and (·)out,σ to

be replaced by nK .
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Applying the first estimate in Lemma 5.2 with (rh, φ) = (�h, ϕ) as well as (A.15), the second estimate in
(4.11), and the fact that Δt ≈ h, we obtain∫ T

0

∫
Ω
(Dt�h)ϕh dxdt = −

∫
Ω

�0
h ϕ(0, ·) dx −

∫ T

0

∫
Ω

�h ∂tϕ dxdt − I1,h ,

where

|I1,h| � Δt
(
||ϕ||

C 2(ΩT )
||�h||

L1(0, T ;L1(Ω))
+ ||ϕ||

C 1(ΩT )
||�0

h||
L1(Ω)

)

� h
(
||�h||

L∞(0, T ;Lγ(Ω))
+ ||�0||L1(Ω)

)
� h .

Next, let us consider the second term on the left-hand side of (5.12). Using Lemma 5.3 with (r,v, f, φ) =
(�h,uh, ϕh, ϕ)(t, ·), t ∈ [0, T ], as well as the estimates (A.4)–(A.6) and (A.11), we deduce that

∫ T

0

∫
Eint

F up
h [�h ,uh] �ϕh� dSx dt =

∫ T

0

∫
Ω

�huh · ∇xϕ dxdt +
5∑

j = 2

Ij,h ,

where

|I2,h| � h

∫ T

0

∫
E(K)

∣∣��h�
[
〈uh · nK〉σ

]−∣∣ dSx dt , |I3,h| � h

∫ T

0

∫
E(K)

∣∣ �h

(
uh − 〈uh〉σ

)∣∣dSx dt ,

|I4,h| � h

∫ T

0

∫
Ω

∣∣�h divh(uh)
∣∣ dxdt , |I5,h| � h1+ε

∫ T

0

∫
Eint

∣∣��h�
∣∣dSx dt .

These terms can be further estimated as follows.
• Term |I2,h|. Due to (4.19), we obtain

|I2,h| � h

∫ T

0

∫
Eint

∣∣��h� 〈uh · nσ〉σ

∣∣dSx dt � h1−δ/2(1 + h−1/2) .

• Term |I3,h|. By means of Hölder’s inequality, the second estimate in (A.2), the first estimate in
(A.1), the second estimate in (4.13), and the first estimate in (4.12), we derive

|I3,h| � h ||�h||
L2(0, T ;L2(Ω))

||∇huh||
L2(0, T ;L2(Ω)d×d)

� h1−δ/2 ||hδ/2�h||
L∞(0, T ;L2(Ω))

||∇huh||
L2(0, T ;L2(Ω)d×d)

� h1−δ/2.

• Term |I4,h|. Employing Hölder’s inequality, the second estimate in (4.12), and the second estimate
in (4.13), we conclude that

|I4,h| � h ||�h||
L2(0, T ;L2(Ω))

||divh(uh)||
L2(0, T ;L2(Ω))

� h1−δ/2 ||hδ/2�h||
L∞(0, T ;L2(Ω))

||divh(uh)||
L2(0, T ;L2(Ω))

� h1−δ/2 .

• Term |I5,h|.
Applying the first estimate in (A.1) and the second estimate in (4.11), we get

|I5,h| � hε ||�h||
L1(0, T ;L1(Ω))

� hε ||�h||
L∞(0, T ;Lγ(Ω))

� hε .

Consequently,

−
∫

Ω
�0

h ϕ(0, ·) dx =
∫ T

0

∫
Ω

[
�h∂tϕ + �huh · ∇xϕ

]
dxdt + O(hα1) (5.13)

with α1 = min
{
ε, 1−δ

2

}
> 0 as h ↓ 0. Next, using Hölder’s inequality, the first estimate in (A.2), the

second estimate in (4.13), and the first estimate in (4.12), we see that∣∣∣∣∣
∫ T

0

∫
Ω

�h

(
uh − uh

)
· ∇xϕ dxdt

∣∣∣∣∣ � ||�h||
L2(0, T ;L2(Ω))

||uh − uh||
L2(0, T ;L2(Ω)d)
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� h1−δ/2 ||hδ/2�h||
L∞(0, T ;L2(Ω))

||∇huh||
L2(0, T ;L2(Ω)d×d)

� h1−δ/2 . (5.14)

Therefore, we may rewrite (5.13) as

−
∫

Ω
�0

h ϕ(0, ·) dx =
∫ T

0

∫
Ω

[
�h∂tϕ + �huh · ∇xϕ

]
dxdt + O(hα1) as h ↓ 0.

The potential temperature equation.

The proof of (5.3) can be done by repeating the proof of (5.2) with �h and �0
h replaced by �hθh and

�0
hθ0

h , respectively.
The momentum equation.

From (3.4) we deduce that
∫ T

0

∫
Ω

Dt(�huh) · ϕh dxdt −
∫ T

0

∫
Eint

F up
h [�huh ,uh] · �ϕh� dSx dt + μ

∫ T

0

∫
Ω

∇huh : ∇hϕh dxdt

+ ν

∫ T

0

∫
Ω

divh(uh) divh(ϕh) dxdt −
∫ T

0

∫
Ω

(
p(�hθh) + hδ

[
�2

h + (�hθh)2
])

divh(ϕh) dxdt = 0 .

(5.15)

Let us consider the first term on the left-hand side of (5.15). Due to the second estimate in Lemma 5.2
with (rh, φ) = (�huh,i, ϕi), i ∈ {1, . . . , d}, as well as Remark A.1, Hölder’s inequality, the third estimate
in (4.11), and the fact that Δt ≈ h, we have

∫ T

0

∫
Ω

Dt(�huh) · ϕh dxdt = −
∫

Ω
�0

hu0
h · ϕ(0, ·) dx −

∫ T

0

∫
Ω

�huh · ∂tϕ dxdt − J1,h ,

where

|J1,h| � (Δt + h)
(
||ϕ||

C 2(ΩT )d ||�huh||
L1(0, T ;L1(Ω)d)

+ ||ϕ||
C 1(ΩT )d ||�0

hu0
h||

L1(Ω)d

)

� h
(
||�huh||

L∞(0, T ;L2γ/(γ + 1)(Ω)d)
+ ||�0||L2(Ω)

||u0||W 1, 2(Ω)d

)
� h .

Next, we turn to the last three terms on the left-hand side of (5.15). It follows from Lemma 5.6 that

μ

∫ T

0

∫
Ω

∇huh : ∇hϕh dxdt +
∫ T

0

∫
Ω

(
ν divh(uh) − p(�hθh) − hδ

[
�2

h + (�hθh)2
])

divh(ϕh) dxdt

= μ

∫ T

0

∫
Ω

∇huh : ∇xϕ dxdt +
∫ T

0

∫
Ω

(
ν divh(uh) − p(�hθh) − hδ

[
�2

h + (�hθh)2
])

divx(ϕ) dxdt .

Finally, let us examine the second term on the left-hand side of (5.15). Applying Corollary 5.4 with
(s,w, g,ψ) = (�huh,uh,ϕh,ϕ)(t, ·), t ∈ [0, T ], as well as the estimates (A.7)–(A.9) and (A.12), we
deduce that

∫ T

0

∫
Eint

F up
h [�huh ,uh] · �ϕh� dSx dt =

∫ T

0

∫
Ω

�huh ⊗ uh : ∇xϕ dxdt +
5∑

j = 2

Jj,h ,

where

|J2,h| � h

∫ T

0

∫
E(K)

∣∣��huh�
[
〈uh · nK〉σ

]−∣∣ dSx dt , |J3,h| � h

∫ T

0

∫
E(K)

|�huh|
∣∣uh − 〈uh〉σ

∣∣dSx dt ,

|J4,h| � h

∫ T

0

∫
Ω

∣∣�huh divh(uh)
∣∣ dxdt , |J5,h| � h1+ε

∫ T

0

∫
Eint

∣∣��huh�
∣∣ dSx dt .

We continue by estimating the above terms.
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• Term |J2,h|. We observe that ��huh� = � out
h �uh� + ��h�uh

in, which implies

|J2,h| � h

∫ T

0

∫
E(K)

∣∣� out
h �uh�

[
〈uh · nK〉σ

]−∣∣ dSx dt + h

∫ T

0

∫
E(K)

∣∣��h�uh

[
〈uh · nK〉σ

]−∣∣dSx dt . (5.16)

Employing Hölder’s inequality, (4.18), (A.3), the first estimate in (A.1), the first and third estimate
in (4.12), and the second estimate in (4.13), we see that

h

∫ T

0

∫
E(K)

∣∣� out
h �uh�

[
〈uh · nK〉σ

]−∣∣dSx dt

� h

(∫ T

0

∫
E(K)

−� out
h �uh�2

[
〈uh · nK〉σ

]− dSx dt

)1/2(∫ T

0

∫
E(K)

� out
h |〈uh〉σ| dSx dt

)1/2

= h

(∫ T

0

∫
Eint

(
� in

h

[
〈uh · nσ〉σ

]+ − � out
h

[
〈uh · nσ〉σ

]−)
�uh�2 dSx dt

)1/2

×

×
(∫ T

0

∫
E(K)

� out
h |〈uh〉σ| dSx dt

)1/2

� h
(
h−1 ||�h||

L2(0, T ;L2(Ω))

(
||uh||

L2(0, T ;L2(Ω)d)
+ h ||∇huh||

L2(0, T ;L2(Ω)d×d)

))1/2

� h
(
h−1−δ/2 ||hδ/2�h||

L∞(0, T ;L2(Ω))

(
||uh||

L2(0, T ;L2(Ω)d)
+ h ||∇huh||

L2(0, T ;L2(Ω)d×d)

))1/2

� h1/2−δ/4 + h1−δ/4 . (5.17)

Next, using Hölder’s inequality, the estimates (A.1), (A.3), (4.15), the first and third estimate in
(4.12), the second estimate in (4.13), and the fact that Δt ≈ h, we deduce that

h

∫ T

0

∫
E(K)

∣∣��h�uh

[
〈uh · nK〉σ

]−∣∣ dSx dt

� h1−δ/2

(
hδ

∫ T

0

∫
E(K)

��h�2|〈uh · nK〉σ| dSx dt

)1/2(∫ T

0

∫
E(K)

uh
2|〈uh〉σ| dSx dt

)1/2

� h1−δ/2
(
h−1 ||uh||2

L2(0, T ;L6(Ω)d)

(
||uh||

L∞(0, T ;L3/2(Ω)d)
+ h ||∇huh||

L∞(0, T ;L3/2(Ω)d×d)

))1/2

� h1−δ/2
(
h−1(Δt)−1/2

(
||uh||

L2(0, T ;L3/2(Ω)d)
+ h ||∇huh||

L2(0, T ;L3/2(Ω)d×d)

))1/2

� h1/4−δ/2 + h3/4−δ/2 . (5.18)

Consequently, plugging (5.17) and (5.18) into (5.16), we obtain

|J2,h| � h1/2−δ/4 + h1−δ/4 + h1/4−δ/2 + h3/4−δ/2 .

• Term |J3,h|. Applying Hölder’s inequality, the first estimate in (A.1), the second estimate in (A.2),
the first estimate in (4.12), and the second estimate in (4.14), we conclude that

|J3,h| � h ||�huh||
L2(0, T ;L2(Ω)d)

||∇huh||
L2(0, T ;L2(Ω)d×d)

� h1−(d+3δ)/6 .

• Term |J4,h|. Employing Hölder’s inequality, the first estimate in (4.12), and the second estimate in
(4.14), we obtain

|J4,h| � h ||�huh||
L2(0, T ;L2(Ω)d)

||divh(uh)||
L2(0, T ;L2(Ω))

� h1−(d+3δ)/6 .

• Term |J5,h|.
Using the first estimate in (A.1) and the third estimate in (4.11), we deduce that

|J5,h| � hε ||�huh||
L1(0, T ;L1(Ω)d)

� hε ||�huh||
L∞(0, T ;L2γ/(γ + 1)(Ω)d)

� hε .
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Consequently, we have

−
∫

Ω
�0

hu0
h · ϕ(0, ·) dx +

∫ T

0

∫
Ω

[
μ∇huh : ∇xϕ + ν divh(uh) divx(ϕ)

]
dxdt + O(hα2)

=
∫ T

0

∫
Ω

[
�huh · ∂tϕ + �huh ⊗ uh : ∇xϕ +

(
p(�hθh) + hδ

[
�2

h + (�hθh)2
])

divx(ϕ)
]
dxdt (5.19)

with α2 = min
{
ε, 1−2δ

4

}
> 0 as h ↓ 0. Then, using Hölder’s inequality, the first estimate in (A.2), the

second estimate in (4.14), and the first estimate in (4.12), we deduce that∣∣∣∣∣
∫ T

0

∫
Ω

�huh ⊗
(
uh − uh

)
: ∇xϕ dxdt

∣∣∣∣∣ � ||�huh||
L2(0, T ;L2(Ω)d)

||uh − uh||
L2(0, T ;L2(Ω)d)

� h ||�huh||
L2(0, T ;L2(Ω)d)

||∇huh||
L2(0, T ;L2(Ω)d×d)

� h1−(d+3δ)/6 .

Hence, we may rewrite (5.19) as

−
∫

Ω
�0

hu0
h · ϕ(0, ·) dx +

∫ T

0

∫
Ω

[
μ∇huh : ∇xϕ + ν divh(uh) divx(ϕ)

]
dxdt + O(hα2)

=
∫ T

0

∫
Ω

[
�huh · ∂tϕ + �huh ⊗ uh : ∇xϕ +

(
p(�hθh) + hδ

[
�2

h + (�hθh)2
])

divx(ϕ)
]
dxdt

as h ↓ 0.
The entropy inequality.

Taking χ = ln in Lemma 4.5, we deduce that

0 ≤
∫ T

0

∫
Ω

Dt(�h ln(θh))ψh dxdt −
∫ T

0

∫
Eint

Up[�h ln(θh) ,uh] �ψh� dSx dt −
7∑

j = 5

Hj,h , (5.20)

where

H5,h =
hε

2

∫ T

0

∫
Eint

��h��ψh� dSx dt , H6,h = −hε

2

∫ T

0

∫
Eint

��h��ln(θh)ψh� dSx dt ,

H7,h = −hε

2

∫ T

0

∫
Eint

��hθh�

�
ψh

θh

	

dSx dt .

Now we may rewrite the first two integrals in (5.20) following the procedure used to handle the continuity
equation. We arrive at

−
∫

Ω
�0

h ln(θ0
h)ψ(0, ·) dx ≥

∫ T

0

∫
Ω

[
�h ln(θh)∂tψ + �h ln(θh)uh · ∇xψ

]
dxdt +

7∑
j = 1

Hj,h , (5.21)

where for j ∈ {1, . . . , 4} the error term Hj,h equals Ij,h with �h replaced by �h ln(θh) and ϕh replaced
by ψh. Here, it is to be noted that the analogue of the error term I5,h will not be there since (5.20)
contains the usual upwind operator Up[ · , · ] instead of the dissipative upwind operator F up

h [ · , · ]. Since
H5,h = −I5,h, c� ≤ θh ≤ c� and

∣∣��k
h ln(θk

h )�σ

∣∣ = ∣∣��k
h�σ{ln(θk

h )}σ + {�k
h}σ�ln(θk

h )�σ

∣∣ =
∣∣∣∣��k

h�σ{ln(θk
h )}σ +

1
ηθ,k,σ

{�k
h}σ�θk

h �σ

∣∣∣∣
=
∣∣∣∣��k

h�σ{ln(θk
h )}σ +

1
ηθ,k,σ

(
��k

hθk
h �σ − ��k

h�σ{θk
h}σ

)∣∣∣∣ �
∣∣��k

h�σ

∣∣+ ∣∣��k
hθk

h �σ

∣∣
for every (k, σ) ∈ N × Eint and suitably chosen values (ηθ,k,σ)σ ∈ Eint ⊂ [c�, c

�], it is easy to see that

|Hj,h| � hα1 for 1 ≤ j ≤ 5.
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Moreover, combining c� ≤ θh ≤ c� with Hölder’s inequality, the first estimate in (A.1), the second estimate
in (4.11) and the first estimate in (4.13), we deduce that

|H6,h| , |H7,h| � hε−1 .

Finally, seeing that (by a computation similar to that in (5.14)) we have∣∣∣∣∣
∫ T

0

∫
Ω

�h ln(θh)
(
uh − uh

)
· ∇xϕ dxdt

∣∣∣∣∣ � h1−δ/2 ,

we may rewrite (5.21) as

−
∫

Ω
�0

h ln(θ0
h)ψ(0, ·) dx ≥

∫ T

0

∫
Ω

[
�h ln(θh)∂tψ + �h ln(θh)uh · ∇xψ

]
dxdt + O(hα3) ,

where α3 = min{α1, ε − 1}. In particular, we can choose β = min{α1, α2, α3} = min
{
ε − 1, 1−2δ

4

}
. �

6. Convergence

We proceed by proving our main result, namely Theorem 2.3.

Proof of Theorem 2.3. Let {(�h, θh,uh)}h ↓ 0 be a sequence of solutions to the FE-FV method (3.2)–(3.4)
starting from the initial data {(�0

h, θ0
h ,u0

h)}h ↓ 0 defined in (3.5). Here we suppose that the parameters
satisfy (5.1).

Due to the second estimate in (4.11), the first estimate in (4.13), the third estimate in (4.12),
(A.15), and Corollary 3.5(i), the sequence {(�h, θh,uh)|ΩT

}h ↓ 0 generates a Young measure V ∈ L∞
weak�

(ΩT ;P(Rd+2)) that satisfies

V(t,x)

(
{� ≥ 0} ∩ {c� ≤ θ ≤ c�}

)
= 1 for almost all (t,x) ∈ ΩT .

Taking into account the remaining estimates in (4.11)–(4.14) as well as the first estimate in (A.2) and
passing to a subsequence as the case may be, we obtain that

�hf(θh) ⇀� 〈V; �f(θ)〉 in L∞(0, T ;Lγ(Ω)) for all f ∈ C(0,∞), (6.1)

�hf(θh)uh ⇀� 〈V; �f(θ)u〉 in L∞(0, T ;L
2γ

γ+1 (Ω)d) for all f ∈ C(0,∞), (6.2)

uh,uh ⇀ uV ≡ 〈V;u〉 in L2(ΩT )d and ∇huh ⇀ U in L2(ΩT )d×d, (6.3)

hδ
[
�2

h + (�hθh)2
]

⇀� R(δ, �, θ) in L∞
weak�(0, T ;M+(Ω)), (6.4)

�huh ⊗ uh + p(�hθh)I ⇀� �u ⊗ u + p(�θ)I
w

in L∞
weak�(0, T ;M(Ω)d×d), (6.5)

1
2
�h|uh|2 + P (�hθh) ⇀� 1

2
�|u|2 + P (�θ)

w

in L∞
weak�(0, T ;M(Ω)), (6.6)

|∇huh|2 ⇀� |∇xu|2 w
and |divh(uh)|2 ⇀� |divx(u)|2 w

in M(ΩT ) (6.7)

as h ↓ 0.Here we have added a w to the standard bar notation for the weak limits to avoid any confusion
with the projection operator · ≡ ΠQ,h. Following the arguments given in [10, Chapter 10.2.1, pp. 139
and 142/143], we deduce that

uV ∈ L2(0, T ;W 1,2
0 (Ω)d) and U = ∇xuV . (6.8)
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Moreover, using Hölder’s inequality, (A.15), the first estimate in (A.2), the assumption on the initial data,
and Lemma A.2, we easily verify that∫

Ω
�0

hf(θ0
h)ϕ dx →

∫
Ω

�0f(θ0)ϕ dx for all ϕ ∈ C ∞(Ω) and f ∈ C 1(0,∞), (6.9)

∫
Ω

�0
hu0

h · ϕ dx →
∫

Ω
�0u0 · ϕ dx for all ϕ ∈ C ∞(Ω)d, (6.10)

and
∫

Ω

[
1
2

�0
h|u0

h|2 + P (�0
hθ0

h) + hδ
(
(�0

h)2 + (�0
hθ0

h)2
)]

dx →
∫

Ω

[
1
2

�0|u0|2 + P (�0θ0)
]

dx (6.11)

as h ↓ 0.
Energy inequality.

From the discrete energy balance (4.4) we derive that∫ T

0

φ

[ ∫
Ω

(
1
2

�h|uh|2 + P (�hθh) + hδ
[
�2

h + (�hθh)2
])

dx +
∫ τ

0

∫
Ω

[
μ|∇huh|2 + ν|divh(uh)|2

]
dxdt

]
dτ

≤
∫ T

0

φ

∫
Ω

(
1
2

�0
h|u0

h|2 + P (�0
hθ0

h) + hδ
[
(�0

h)2 + (�0
hθ0

h)2
])

dxdτ

for all φ ∈ C ∞
c (0, T ), φ ≥ 0. Due to (6.11), (6.4), (6.6), and (6.7), we may perform the limit h ↓ 0 to

obtain ∫ T

0

φ

[ ∫
Ω

d
(

1
2
�|u|2 + P (�θ)

w

+ R(δ, �, θ)
)

(τ) +
∫

Ωτ

d
(

μ |∇xu|2 w
+ ν |divx(u)|2 w

)]
dτ

≤
∫ T

0

φ

∫
Ω

[
1
2

�0|u0|2 + P (�0θ0)
]

dxdτ (6.12)

for all φ ∈ C ∞
c (0, T ), φ ≥ 0. Furthermore, we make the subsequent observations:

• In view of the first estimate in (4.11) and the first in (4.13), we may apply [17, Chapter 5, Proposition
5.2] to see that 〈

V;
1
2

� |u|2 + P (� θ)
〉

∈ L1(ΩT ). (6.13)

Moreover, we may use [15, Lemma 2.1] with F ≡ 0 and G(�, θ,u) = 1
2 � |u|2 +P (� θ) to deduce that

E =
(

1
2
�|u|2 + P (�θ)

w

−
〈

V;
1
2

� |u|2 + P (� θ)
〉)

+ R(δ, �, θ) ∈ L∞
weak�(0, T ;M+(Ω)) .

• Applying measure-theoretic arguments to the viscous terms, we conclude that

D = μ |∇xu|2 w
+ ν |divx(u)|2 w −

[
μ|∇xuV |2 + ν|divx(uV)|2

]
∈ M+(ΩT ) .

• Using the density of C ∞
c (Ω) in W 1,2

0 (Ω) as well as Gauss’s theorem, we easily verify that∫ τ

0

∫
Ω

[
μ|∇xuV |2 + ν|divx(uV)|2

]
dxdt =

∫ τ

0

∫
Ω
S(∇xuV) : ∇xuV dxdt .

In particular, we may rewrite (6.12) in the form∫
Ω

〈
V(τ, · );

1
2

� |u|2 + P (� θ)
〉

dx +
∫ τ

0

∫
Ω
S(∇xuV) : ∇xuV dxdt

+
∫

Ω

dE(τ) +
∫

Ωτ

dD ≤
∫

Ω

[
1
2

�0|u0|2 + P (�0θ0)
]

dx for a.a. τ ∈ (0, T ).
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Continuity equation.
In view of (6.1), (6.2), and (6.9), we may perform the limit h ↓ 0 in (5.2). We obtain

−
∫

Ω
�0 ϕ(0, ·) dx =

∫ T

0

∫
Ω

[
〈V; � 〉 ∂tϕ + 〈V; � u〉 · ∇xϕ

]
dxdt (6.14)

for all ϕ ∈ C ∞
c ([0, T ) × Ω). Following the arguments presented in [17, Chapter 2.1.3], we deduce from

(6.14) that 〈V; � 〉 ∈ Cweak([0, T ];Lγ(Ω)). Consequently, (6.14) can be rewritten in the form[ ∫
Ω
〈V(t, · ); � 〉ϕ(t, ·) dx

]t = τ

t = 0

=
∫ τ

0

∫
Ω

[
〈V; � 〉 ∂tϕ + 〈V; � u〉 · ∇xϕ

]
dxdt (6.15)

for all τ ∈ [0, T ] and ϕ ∈ C ∞(ΩT ). Here, we have set V(0,x) = δ
[6]
(
0(x),θ0(x),u0(x)).

6 Due to the integrability
properties of 〈V; � 〉 and 〈V; � u〉, the boundedness of ΩT , the fact that C ∞(ΩT ) is dense in W 1,p(ΩT )
for every p ∈ [1,∞), and the Sobolev embedding W 1,q(ΩT ) ↪→ C(ΩT ) for q > d + 1, we may extend the
validity of (6.15) to test functions ϕ of the class W 1,∞(ΩT ).

Potential temperature equation.
The potential temperature equation can be handled in the same manner as the continuity equation.

Momentum equation.
Thanks to (6.3)–(6.5), (6.8), and (6.10), we can take the limit h ↓ 0 in (5.4). We obtain

−
∫

Ω
�0u0 · ϕ(0, ·) dx +

∫ T

0

∫
Ω

[
μ∇xuV : ∇xϕ + ν divx(uV) divx(ϕ)

]
dxdt

=
∫ T

0

∫
Ω
〈V; � u〉 · ∂tϕ dxdt +

∫ T

0

∫
Ω

∇xϕ : d
(

�u ⊗ u + p(�θ)I
w

+ R(δ, �, θ)I
)

dt (6.16)

for all ϕ ∈ C ∞
c ([0, T ) × Ω)d. Next, we make the following observations:

• Analogous to above, it follows from (6.16) that 〈V; � u〉 ∈ Cweak([0, T ];L
2γ

γ+1 (Ω)d).
• Using Gauss’s theorem, we conclude that∫ T

0

∫
Ω

[
μ∇xuV : ∇xϕ + ν divx(uV) divx(ϕ)

]
dxdt =

∫ T

0

∫
Ω
S(∇xuV) : ∇xϕ dxdt .

• Due to (6.13), 〈V; �u⊗u+ p(� θ )I〉 ∈ L1(ΩT ). Moreover, applying [15, Lemma 2.1] with F ≡ 0 and
G(�, θ,u) = (ξ ⊗ ξ) : (� u ⊗ u + p(� θ )I), ξ ∈ R

d, we deduce that

R =
(

�u ⊗ u + p(�θ)I
w − 〈V; � u ⊗ u + p(� θ )I〉

)
+ R(δ, �, θ)I ∈ L∞

weak�(0, T ;M(Ω)d×d
sym,+) .

In particular,

dE ≤ tr[R] ≤ dE , where d = min{2, d(γ − 1)} and d = max{d, d(γ − 1)} .

Consequently, (6.16) can be rewritten as[ ∫
Ω
〈V(t, · ); � u〉 · ϕ(t, ·) dx

]t = τ

t = 0

+
∫ τ

0

∫
Ω
S(∇xuV) : ∇xϕ dxdt

=
∫ τ

0

∫
Ω

[
〈V; � u〉 · ∂tϕ + 〈V; � u ⊗ u + p(� θ )I〉 : ∇xϕ

]
dxdt +

∫ τ

0

∫
Ω

∇xϕ : dR(t)dt (6.17)

for all τ ∈ [0, T ] and all ϕ ∈ C ∞
c ([0, T ] × Ω)d. It is easy to see that (6.17) also holds for test functions ϕ

of the class C 1
c ([0, T ]×Ω)d. Moreover, for every ϕ ∈ C 1(ΩT )d satisfying ϕ|[0,T ]×∂Ω = 0 we can construct

a sequence {ϕn}n ∈N ⊂ C 1
c ([0, T ] × Ω)d of smoothed truncations of ϕ such that

(ϕn,∇xϕn, ∂tϕn) → (ϕ,∇xϕ, ∂tϕ)

6δy denotes the Dirac measure centered on y ∈ R
d+2.
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pointwise in ΩT and sup
n ∈N

{
||ϕn||

C 1(ΩT )

}
< ∞.

Accordingly, we may use the dominated convergence theorem to extend the validity of (6.17) to test
functions ϕ ∈ C 1(ΩT )d satisfying ϕ|[0,T ]×∂Ω = 0.

Poincaré’s inequality.
Let τ ∈ [0, T ] and ε > 0 be arbitrary. Further, let {ϑk}k ∈N ⊂ Cc(Rd+2) be the sequence of functions
defined by

ϑk(y) =

⎧⎨
⎩

1 if |y| < k,
1 + k − |y| if |y| ∈ [k, k + 1), and

0 else,

and C ≥ 1 a constant such that

||vh||
L2(Ω)

≤ C ||∇hvh||
L2(Ω)d for all h ∈ (0,H] and vh ∈ V0,h (6.18)

and ||v||
L2(Ω)

≤ C ||∇xv||
L2(Ω)d for all v ∈ W 1,2

0 (Ω). (6.19)

Clearly, such a constant exists due to (A.10) and the usual Poincaré inequality. Due to (6.19), we observe
that ∫ τ

0

∫
Ω
〈V; |u − U |2〉 dxdt ≤ 2

∫ τ

0

∫
Ω
〈V; |u − uV |2〉 dxdt + 2

∫ τ

0

∫
Ω

|uV − U |2 dxdt

≤ 2
∫ τ

0

∫
Ω
〈V; |u − uV |2〉 dxdt + 2C 2

∫ τ

0

∫
Ω

|∇x(uV − U)|2 dxdt .

Using the monotone convergence theorem, Lemma A.3, Lemma A.2(ii), (iii), the first estimate in (A.2),
the first estimate in (4.12), and (6.3), we deduce that∫ τ

0

∫
Ω
〈V; |u − uV |2〉 dxdt = lim

k → ∞

∫ τ

0

∫
Ω
〈V; |u − uV |2ϑk(�, θ,u)〉 dxdt

= lim
k → ∞

(
lim
h ↓ 0

∫ τ

0

∫
Ω

|uh − uV |2ϑk(�h, θh,uh) dxdt

)
≤ lim inf

h ↓ 0

∫ τ

0

∫
Ω

|uh − uV |2 dxdt

≤ 3 lim inf
h ↓ 0

∫ τ

0

∫
Ω

(
|uh − uh|2 + |uh − ΠV,huV |2 + |ΠV,huV − uV |2

)
dxdt

≤ 12C 2 lim inf
h ↓ 0

∫ τ

0

∫
Ω

|∇huh − ∇hΠV,huV |2 dxdt

≤ 24C 2 lim inf
h ↓ 0

∫ τ

0

∫
Ω

(
|∇huh − ∇xuV |2 + |∇xuV − ∇hΠV,huV |2

)
dxdt

= 24C 2

(
lim inf

h ↓ 0

∫ τ

0

∫
Ω

|∇huh|2 dxdt −
∫ τ

0

∫
Ω

|∇xuV |2 dxdt

)
≤ 24C 2

μ

∫
Ωτ

dD (6.20)

for almost all τ ∈ (0, T ). Consequently, choosing CP = 48C 2/μ we obtain∫ τ

0

∫
Ω
〈V; |u − U |2〉 dxdt ≤ CP

(∫ τ

0

∫
Ω

|∇x(uV − U)|2 dxdt +
∫

Ωτ

dD
)

.

Entropy inequality.
Due to (6.1), (6.2), and (6.9), we may take the limit h ↓ 0 in (5.5). We obtain

−
∫

Ω
�0 ln(θ0)ψ(0, ·) dx ≥

∫ T

0

∫
Ω

[
〈V; � ln(θ)〉 ∂tψ + 〈V; � ln(θ)u〉 · ∇xψ

]
dxdt (6.21)

for all ψ ∈ C ∞
c ([0, T ) × Ω), ψ ≥ 0. By an approximation argument similar to that in the case of the

continuity equation, the validity of (6.21) can be extended to test functions ψ ≥ 0 of the class Cc([0, T )×
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Ω)∩W 1,∞(ΩT ). In particular, we may consider test functions of the form ψ = φτ,δ η, where η ∈ W 1,∞(ΩT ),
η ≥ 0, τ ∈ (0, T ), δ ∈ (0,min{T − τ, τ}), and φτ,δ ∈ Cc([0, T )),

φτ,δ(t) =

⎧⎪⎨
⎪⎩

1 if t < τ − δ,
1
2

(
1 + (τ − t)/δ

)
if t ∈ [τ − δ, τ + δ], and

0 if t > τ + δ.

Consequently,

1

2δ

∫ τ+δ

τ−δ

∫
Ω
〈V; � ln(θ)〉 η dxdt −

∫
Ω

�0 ln(θ0) η(0, ·) dx

≤
∫ T

0

∫
Ω

φτ,δ

[
〈V; � ln(θ)〉 ∂tη + 〈V; � ln(θ)u〉 · ∇xη

]
dxdt

for all η ∈ W 1,∞(ΩT ), η ≥ 0, τ ∈ (0, T ), δ ∈ (0,min{T − τ, τ}). The entropy inequality (2.8) follows by
performing the limit δ ↓ 0 in the above inequality. For the limit process, we rely on Lebesgue’s differenti-
ation theorem as well as the dominated convergence theorem. This completes the proof of Theorem 2.3.

�

From the proof of Theorem 2.3 it follows that any Young measure generated by a sequence
{(�h, θh,uh)|ΩT

}h ↓ 0 obtained from a sequence of solutions {(�h, θh,uh)}h ↓ 0 to our FE-FV method (3.2)–
(3.4) represents a DMV solution to the Navier-Stokes system with potential temperature transport (1.1)–
(1.5). Moreover,

�h ⇀� 〈V; � 〉 in L∞(0, T ;Lγ(Ω)), θh ⇀� 〈V; θ〉 in L∞(ΩT ), and uh ⇀ 〈V;u〉 in L2(ΩT )d.

If there is a strong solution to system (1.1)–(1.5) for given initial data (�0, θ0,u0), then we may
use the DMV-strong uniqueness result established in [16] to strengthen the aforementioned convergence
statement as follows.

Theorem 6.1. Let the assumptions of Theorem 2.3 be satisfied and suppose there is a strong solution
(�, θ,u) to system (1.1)–(1.5) from the regularity class

�, θ ∈ C 1(ΩT ) , �, θ > 0 , u ∈ C 1(ΩT ) ∩ L2(0, T ;W 2,∞(Ω)) , u|[0,T ]×∂Ω = 0,

emanating from the chosen initial data. Further, let (�h, θh,uh)h ↓ 0 be a sequence of solutions to the FE-
FV method (3.2)–(3.4) starting from the corresponding discrete initial data defined in (3.5) and suppose
the parameters satisfy (5.1). Let p ∈ [1,∞) and q ∈ [1, 2) be arbitrary. Then

�h → � in Lγ(ΩT ), θh → θ in L
p(ΩT ), and uh → u in L

q(ΩT )d as h ↓ 0.

Proof. Let (�h, θh,uh)h ↓ 0 be a sequence as described above. To prove Theorem 6.1, it suffices to show
that every subsequence (�h�

, θh�
,uh�

)h� ↓ 0 of (�h, θh,uh)h ↓ 0 possesses a subsequence (�h′ , θh′ ,uh′)h′ ↓ 0

such that

�h′ → � in Lγ(ΩT ), θh′ → θ in L
p(ΩT ), and uh′ → u in L

q(ΩT )d

as h′ ↓ 0. Thus, let (�h�
, θh�

,uh�
)h� ↓ 0 be an arbitrary subsequence of (�h, θh,uh)h ↓ 0. From the proof

of Theorem 2.3 and the DMV-strong uniqueness principle established in [16] we deduce that there is a
subsequence (�h′ , θh′ ,uh′)h′ ↓ 0 of (�h�

, θh�
,uh�

)h� ↓ 0 such that

�h′θm
h′ ⇀ �θm in Lγ(ΩT ) for all m ∈ N0, ||�h′ |uh′ |2||

L1(ΩT )
→ ||�|u|2||

L1(ΩT )
,

�h′uh′ ⇀ �u in L
2γ

γ+1 (ΩT )d, uh′ ⇀ u in L2(ΩT )d and �h′θh′ → �θ in Lγ(ΩT )

as h′ ↓ 0. Consequently,

||�h′ − �||
L1(ΩT )

� ||�h′θ − �θ||
L1(ΩT )

� ||�h′θh′ − �θ||
L1(ΩT )

+ ||�h′θ − �h′θh′ ||
L1(ΩT )
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� ||�h′θh′ − �θ||
Lγ(ΩT )

+
(
||�h′ ||

L1(ΩT )
||�h′(θ − θh′)2||

L1(ΩT )

)1/2

� ||�h′θh′ − �θ||
Lγ(ΩT )

+ ||�h′(θ − θh′)2||1/2
L1(ΩT )

h′ ↓ 0−−−−→ 0 ,

i.e., �h′ → � in L1(ΩT ) as h′ ↓ 0. Therefore,

||(θh′ − θ)2m||
L1(ΩT )

� ||1{
h′ ≤ 
/2}(θh′ − θ)2m||
L1(ΩT )

+ ||�h′(θh′ − θ)2m||
L1(ΩT )

� ||1{
h′ ≤ 
/2}||L1(ΩT )
+ ||�h′(θh′ − θ)2m||

L1(ΩT )
h′ ↓ 0−−−−→ 0

for all m ∈ N, where � = inf(t,x) ∈ ΩT
{�(t,x)} > 0. That is, θh′ → θ in L

p(ΩT ) as h′ ↓ 0. This in turn
implies

||�h′ − �||
Lγ(ΩT )

� ||�h′θh′ − �θh′ ||
Lγ(ΩT )

� ||�h′θh′ − �θ||
Lγ(ΩT )

+ ||�θ − �θh′ ||
Lγ(ΩT )

� ||�h′θh′ − �θ||
Lγ(ΩT )

+ ||θ − θh′ ||
Lγ(ΩT )

h′ ↓ 0−−−−→ 0 ,

i.e., �h′ → � in Lγ(ΩT ) as h′ ↓ 0. Finally, if q ∈ [1, 2), then

|||uh′ − u|q||
L1(ΩT )

� |||uh′ − uh′ |q||
L1(ΩT )

+ |||uh′ − u|q||
L1(ΩT )

� ||uh′ − uh′ ||q
L2(ΩT )d + |||uh′ − u|q||

L1(ΩT )

� (h′)q ||∇h′uh′ ||q
L2(ΩT )d×d + |||uh′ − u|q||

L1(ΩT )

� (h′)q + ||1{
h′ ≤ 
/2}|uh′ − u|q||
L1(ΩT )

+ ||�q/2
h′ |uh′ − u|q||

L1(ΩT )

� (h′)q +
∣∣∣
∣∣∣1{
h′ ≤ 
/2}

∣∣∣
∣∣∣
L

2
2−q (ΩT )

||uh′ − u||q
L2(ΩT )d + ||�h′ |uh′ − u|2||q/2

L1(ΩT )

h′ ↓ 0−−−−→ 0 ,

i.e., uh′ → u in L
q(ΩT )d as h′ ↓ 0. �

7. Conclusions

In the present paper, we introduced DMV solutions to the Navier-Stokes system with potential tempera-
ture transport (1.1)–(1.5) and proved their existence. For the existence proof we examined the convergence
properties of solutions to a mixed FE-FV method that is a generalization of the method developed for the
barotropic Navier-Stokes equations; see [22], [17, Chapter 13], [10, Chapter 7]. In particular, we showed
that any Young measure generated by a sequence {(�h, θh,uh)|ΩT

}h ↓ 0 obtained from a sequence of solu-
tions {(�h, θh,uh)}h ↓ 0 to our FE-FV method (3.2)–(3.4) represents a DMV solution to the Navier-Stokes
system with potential temperature transport (1.1)–(1.5).

In order to ensure the validity of our existence result for all physically relevant values of the adiabatic
index γ – that is, γ ∈ (1, 2] if d = 2 and γ ∈ (1, 5/3] if d = 3 – we added two artificial pressure terms
to our method. In the case of values of γ close to 1, these terms provided us with sufficiently good
stability estimates for the limit process. In the limit process itself, we profited from the generality of
DMV solutions that allowed us to hide the terms arising from the artificial pressure terms in the energy
concentration defect and the Reynolds concentration defect, respectively. The strategy of adding artificial
pressure terms points out a flexibility of the DMV concept. Indeed, it would not work in the framework
of weak solutions.

In spite of the generality of DMV solutions to system (1.1)–(1.5), we can show DMV-strong uniqueness,
i.e., provided there is a strong solution, we can show that in a suitable sense any DMV solution on the
same time interval coincides with it. We will present the detailed result in our upcoming paper [16]. Here,
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we made use of this result to prove the strong convergence of the solutions to our FE-FV method to the
strong solution of the system.
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A Appendix

A.1 Mesh-related estimates

We summarize several important mesh-related estimates; see, e.g., [17] and the references therein.
We begin with the discrete trace and inverse inequalities. We have

||rK ||
Lp(σ)

� h−1/p ||r||
Lp(K)

and ||r||
Lp(Ωh)

� hd( 1
p − 1

q ) ||r||
Lq(Ωh)

(A.1)

for all r ∈ Qh, all K ∈ Th, all σ ∈ Eh(K), and all 1 ≤ q ≤ p ≤ ∞. In addition,

||v − v||
Lp(K)

� h ||∇hv||
Lp(K)d , ||v − 〈v〉σ||

Lp(σ)
� h ||∇hv||

Lp(σ)d , (A.2)

and ||〈v〉σ||
Lp(σ)

� h−1/p
(
||v||

Lp(K)
+ h ||∇hv||

Lp(K)d

)
(A.3)

are valid for all p ∈ [1,∞], all v ∈ V0,h, all K ∈ Th, and all σ ∈ Eh(K). Moreover, given φ ∈ C 1(Ω), an
application of Taylor’s theorem yields∣∣∣∣� φ

�∣∣∣∣
L∞(σ)

� h ||φ||
C 1(Ω)

for all σ ∈ Eh,int, (A.4)

∣∣∣∣φ − φK

∣∣∣∣
L∞(σ)

� h ||φ||
C 1(Ω)

for all K ∈ Th and all σ ∈ Eh(K), (A.5)

||φ − 〈φ〉σ||
L∞(σ) � h ||φ||

C 1(Ω)
for all K ∈ Th and all σ ∈ Eh(K), (A.6)

∣∣∣∣� ΠV,hφ
�∣∣∣∣

L∞(σ)
� h ||φ||

C 1(Ω)
for all σ ∈ Eh,int, (A.7)

∣∣∣∣φ − ΠV,hφK

∣∣∣∣
L∞(σ)

� h ||φ||
C 1(Ω)

for all K ∈ Th and all σ ∈ Eh(K), (A.8)

and
∣∣∣∣φ − ΠV,hφ

∣∣∣∣
L∞(Ωh)

� h ||φ||
C 1(Ω)

. (A.9)

Next, combining [25, Theorem 6.1] with [26, Lemma 2.2] we obtain a discrete version of Poincaré’s
inequality, namely

||v||
Lq(Ωh)

� ||∇hv||
L2(Ωh)d (A.10)

http://creativecommons.org/licenses/by/4.0/
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for all v ∈ V0,h, where q ∈ [1,∞) if d = 2 and q ∈ [1, 6] if d = 3. Due to [27, Theorem 5], we have the
following estimates for the projection operators ΠQ,h and ΠV,h:

||φ − φ||
Lq(Ωh)

≡ ||φ − ΠQ,hφ||
Lq(Ωh)

� h ||φ||
W 1, q(Ω)

, (A.11)

||φ − ΠV,hφ||
Lq(Ωh)

+ h ||∇xφ − ∇hΠV,hφ||
Lq(Ωh)d � h ||φ||

W 1, q(Ω)
, (A.12)

||ψ − ΠV,hψ||
Lq(Ωh)

+ h ||∇xψ − ∇hΠV,hψ||
Lq(Ωh)d � h2 ||ψ||

W 2, q(Ω)
(A.13)

for all q ∈ [1,∞], all φ ∈ W 1,q(Ω), and all ψ ∈ W 2,q(Ω). The latter estimates are also known as the
Crouzeix-Raviart estimates.

Remark A.1. Clearly, the operators ΠQ,h and ΠV,h are linear. Furthermore, we may use (A.12) and the
triangle inequality to deduce that there exists an h-independent constant C > 0 such that

||ΠV,hv||
Lq(Ω)

≤ (1 + Ch) ||v||
W 1, q(Ω)

for all v ∈ W 1,q(Ω), q ∈ [1,∞]. (A.14)

Consequently, ΠV,h is continuous. The continuity of ΠQ,h is a consequence of Jensen’s inequality which
yields (cf. [10, p.90])

||ΠQ,hv||
Lq(Ω)

≤ ||v||
Lq(Ω)

for all v ∈ Lq(Ω), q ∈ [1,∞]. (A.15)

A.2 Auxiliary Results for the Projections ΠQ,h and ΠV ,h

This section is devoted to some important auxiliary results concerning the projections ΠQ,h and ΠV,h.
Combining suitable density arguments with the estimates (A.11)–(A.13), one easily establishes the sub-
sequent lemma.

Lemma A.2. Let p ∈ [1,∞) be arbitrary. Then

(i) ||ΠQ,hv − v||
Lp(Ω)

h ↓ 0−−−→ 0 for all v ∈ L
p(Ω),

(ii) ||ΠV,hv − v||
Lp(Ω)

h ↓ 0−−−→ 0 for all v ∈ W 1,p(Ω), and

(iii) ||∇hΠV,hv − ∇xv||
Lp(Ω)d

h ↓ 0−−−→ 0 for all v ∈ W 1,p(Ω).

Next, we prove the following auxiliary result that is needed in the proof of Theorem 2.3.

Lemma A.3. Let τ ∈ [0, T ] be arbitrary. Further, let uV , {uh}h ↓ 0, and C be the same as in the proof of
Theorem 2.3. Then

lim inf
h ↓ 0

(∫ T

0

∫
Ω

|uh − ΠV,huV |2 dxdt

)
≤ 4C 2 lim inf

h ↓ 0

(∫ T

0

∫
Ω

|∇huh − ∇hΠV,huV |2 dxdt

)
.

Proof. Let ε > 0 be arbitrary. Further, let φ ∈ L2(0, T ;C ∞
c (Ω)d) ⊂ L2(0, T ;W 1,2

0 (Ω)d) be a function
satisfying

4C 2 ||φ − uV ||2
L2(0, T ;W 1,2

0 (Ω)d)
≤ ε .

Using (6.18), we deduce that∫ T

0

∫
Ω

|uh − ΠV,huV |2 dxdt ≤ 2
∫ T

0

∫
Ω

(
|uh − ΠV,hφ|2 + |ΠV,h(φ − uV)|2

)
dxdt

≤ 2C 2

∫ T

0

∫
Ω

(
|∇huh − ∇hΠV,hφ|2 + |ΠV,h(φ − uV)|2

)
dxdt
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≤ 4C 2

∫ T

0

∫
Ω

(
|∇huh − ∇hΠV,huV |2 + |∇hΠV,h(uV − φ)|2 + |ΠV,h(φ − uV)|2

)
dxdt ,

provided h is sufficiently small. Therefore, an application of Lemma A.2(ii), (iii) yields

lim inf
h ↓ 0

(∫ T

0

∫
Ω

|uh − ΠV,huV |2 dxdt

)

≤ 4C 2

[
lim inf

h ↓ 0

(∫ T

0

∫
Ω

|∇huh − ∇hΠV,huV |2 dxdt

)
+ ||φ − uV ||2

L2(0, T ;W 1,2
0 (Ω)d)

]

≤ 4C 2 lim inf
h ↓ 0

(∫ T

0

∫
Ω

|∇huh − ∇hΠV,huV |2 dxdt

)
+ ε .

Since ε > 0 was chosen arbitrarily, the desired result follows. �

A.3 Properties of the Numerical Scheme

In this section, we present a proof of Lemma 3.4 that is based on the following lemma.

Lemma A.4 ([28, Theorem A.1]). Let M,N be natural numbers, C1 > α > 0 and C2 > 0 real numbers,
and

V =
{
(r,v) ∈ R

N × R
M
∣∣ r > 0 componentwise

}
,

W =
{
(r,v) ∈ R

N × R
M
∣∣α < r < C1 componentwise and |v| < C2

}
.

Further, let F : V ×[0, 1] → R
N ×R

M be a continuous function that complies with the following conditions:

(i) If f ∈ V satisfies F (f , ζ) = (0,0) for some ζ ∈ [0, 1], then f ∈ W .
(ii) The equation F (f , 0) = (0,0) is a linear system with respect to f and admits a solution in W .

Then there is f ∈ W such that F (f , 1) = (0,0).

The proof of Lemma 3.4 is done in two steps.

Proof of Lemma 3.4(i). We start by showing that, given (�k−1
h , Zk−1

h ,uk−1
h ) ∈ Q+

h × Q+
h × Vh, there is

(�k
h, Zk

h ,uk
h) ∈ Q+

h × Q+
h × V0,h such that∫

Ωh

(Dt�
k
h)φh dx −

∫
Eint

F up
h

[
�k

h ,uk
h

]
�φh� dSx = 0 , (A.16)

∫
Ωh

(DtZ
k
h)φh dx −

∫
Eint

F up
h

[
Zk

h ,uk
h

]
�φh� dSx = 0 , (A.17)

∫
Ωh

Dt

(
�k

huk
h

)
· φh dx −

∫
Eint

F up
h

[
�k

huk
h ,uk

h

]
·
�
φh

�
dSx + μ

∫
Ωh

∇huk
h : ∇hφh dx

+ ν

∫
Ωh

divh(uk
h) divh(φh) dx −

∫
Ωh

(
p(Zk

h) + hδ
[
(�k

h)2 + (Zk
h)2
])

divh(φh) dx = 0 (A.18)

for all φh ∈ Qh and φh ∈ V0,h. The proof of this fact is essentially identical to that of [17, Lemma 11.3].
In order to be able to apply Lemma A.4, we set

V =
{
((�k

h, Zk
h),uk

h) ∈ Q2
h × V0,h

∣∣ �k
h, Zk

h > 0 in Ωh

}
and W =

{
((�k

h, Zk
h),uk

h) ∈ Q2
h × V0,h

∣∣α < �k
h, Zk

h < C1 in Ωh and ||uk
h|| < C2

}
,
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where ||uk
h|| ≡ ||∇huk

h||
L2(Ωh)d×d and the numbers α,C1, C2 are yet to be determined. Clearly, we can

construe Q2
h as a subset of R

2N and V0,h as a subset of R
dM , where N is the number of tetrahedra

(triangles) and M the number of inner faces (edges) of the mesh Th. Next, we define the continuous map

F : V × [0, 1] → Q2
h × V0,h via (((�k

h, Zk
h),uk

h), ζ) �→ ((��, Z�),u�) ,

where ((��, Z�),u�) is the uniquely determined element of Q2
h × V0,h satisfying∫

Ωh

��φh dx =
∫

Ωh

(Dt�
k
h)φh dx − ζ

∫
Eint

F up
h

[
�k

h ,uk
h

]
�φh� dSx ,

∫
Ωh

Z�φh dx =
∫

Ωh

(DtZ
k
h)φh dx − ζ

∫
Eint

F up
h

[
Zk

h ,uk
h

]
�φh� dSx ,

∫
Ωh

u� · φh dx = μ

∫
Ωh

∇huk
h : ∇hφh dx + ζ ν

∫
Ωh

divh(uk
h) divh(φh) dx

+
∫

Ωh

Dt

(
�k

huk
h

)
· φh dx − ζ

∫
Eint

F up
h

[
�k

huk
h ,uk

h

]
·
�
φh

�
dSx

− ζ

∫
Ωh

[
p(Zk

h) + hδ
(
(�k

h)2 + (Zk
h)2
)]

divh(φh) dx

for all φh ∈ Qh and φh ∈ V0,h. To show that F satisfies assumption (i) of Lemma A.4, we suppose that
((�k

h, Zk
h),uk

h) ∈ V solves F (((�k
h, Zk

h),uk
h), ζ) = (0,0) for some ζ ∈ [0, 1], i.e.

0 =
∫

Ωh

(Dt�
k
h)φh dx − ζ

∫
Eint

F up
h

[
�k

h ,uk
h

]
�φh� dSx , (A.19)

0 =
∫

Ωh

(DtZ
k
h)φh dx − ζ

∫
Eint

F up
h

[
Zk

h ,uk
h

]
�φh� dSx , (A.20)

0 = μ

∫
Ωh

∇huk
h : ∇hφh dx + ζ ν

∫
Ωh

divh(uk
h) divh(φh) dx +

∫
Ωh

Dt

(
�k

huk
h

)
· φh dx

− ζ

∫
Eint

F up
h

[
�k

huk
h ,uk

h

]
·
�
φh

�
dSx − ζ

∫
Ωh

[
p(Zk

h) + hδ
(
(�k

h)2 + (Zk
h)2
)]

divh(φh) dx (A.21)

for all φh ∈ Qh and φh ∈ V0,h. Adapting and repeating the arguments from Sect. 4 to derive the energy
estimates, we deduce that

||uk
h|| < C2 ≡ C2(�k−1

h , Zk−1
h ,uk−1

h ) . (A.22)

Next, we choose K ∈ Th such that (�k
h)K = minR ∈ Th

{(�k
h)R}. Taking φh = 1K in (A.19), leads to

|K|
(
(�k

h)K − (�k−1
h )K

)

= ζΔt
∑

σ ∈ Eint(K)

∫
σ

(
(�k

h)out
[
〈uk

h · nσ〉σ

]− + (�k
h)in

[
〈uk

h · nσ〉σ

]+ − hε

2
��k

h�

)
�1K � dSx

≥ ζΔt
∑

σ ∈ E(K)

∫
σ

((
(�k

h)out − (�k
h)K

)[
〈uk

h · nσ〉σ

]− +
(
(�k

h)in − (�k
h)K

)[
〈uk

h · nσ〉σ

]+)
�1K � dSx

+ ζΔt
∑

σ ∈ E(K)

∫
σ

(�k
h)K 〈uk

h · nσ〉σ �1K � dSx

≥ ζΔt
∑

σ ∈ E(K)

∫
σ

(�k
h)K (uk

h · nK) dSx = −|K|ζΔt
(
�k

h divh(uk
h)
)
K

≥ −|K|ζΔt
(
�k

h |divh(uk
h)|
)
K

.

Consequently, �k
h ≥ (�k

h)K ≥ (
k−1
h )K

1+ζΔt |(÷h(uk
h))K | in Ωh and, similarly, Zk

h ≥ (Zk
h)L ≥ (Zk−1

h )L

1+ζΔt |(÷h(uk
h))L| in

Ωh, where L ∈ Th is chosen in such a way that (Zk
h)L = minR ∈ Th

{(Zk
h)R}. In view of (A.22), we can
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find a constant α ≡ α(�k−1
h , Zk−1

h ,uk−1
h ) > 0 such that �k−1

h , Zk−1
h , �k

h, Zk
h > α in Ωh. Finally, taking

φh = 1Ωh
in (A.19) yields

||�k
h||

L1(Ωh)
=
∫

Ωh

�k
h dx =

∫
Ωh

�k−1
h dx ≡ M0,
 > 0.

Thus, we have

�k
h ≤ M0,


minR ∈ Th
{|R|} in Ωh and, analogously, Zk

h ≤ M0,Z

minR ∈ Th
{|R|} in Ωh.

Consequently, there is a constant C1 ≡ C1(�k−1
h , Zk−1

h ,uk−1
h ) > 0 such that �k−1

h , Zk−1
h , �k

h, Zk
h < C1 in

Ωh. Therefore, F fulfills assumption (i) of Lemma A.4. We proceed by proving that F satisfies assumption
(ii) of Lemma A.4. To this end, we consider the equation F (((�k

h, Zk
h),uk

h), 0) = (0,0) that can be written
as

(�k
h, Zk

h) = (�k−1
h , Zk−1

h ) ,

0 = μ

∫
Ωh

∇huk
h : ∇hφh dx +

∫
Ωh

�k−1
h

uk
h − uk−1

h

Δt
· φh dx for all φh ∈ V0,h.

Obviously, this is a linear system for ((�k
h, Zk

h),uk
h) with a positive definite matrix. Thus, the equa-

tion F (((�k
h, Zk

h),uk
h), 0) = (0,0) has a unique solution. Therefore, F also satisfies assumption (ii) of

Lemma A.4 and the existence of a solution (�k
h, Zk

h ,uk
h) ∈ Q+

h × Q+
h × V0,h to (A.16)–(A.18) follows from

Lemma A.4.
Finally, given (�k−1

h , θk−1
h ,uk−1

h ) ∈ Q+
h × Q+

h × Vh, we set Zk−1
h = �k−1

h θk−1
h ∈ Q+

h , find a solution
(�k

h, Zk
h ,uk

h) ∈ Q+
h × Q+

h × V0,h to (A.16)–(A.18), and observe that (�k
h, θk

h ,uk
h) ∈ Q+

h × Q+
h × Vh,0, where

(θk
h )R =

(Zk
h)R

(�k
h)R

for all R ∈ Th,

is a solution to (3.2)–(3.4). �

Proof of Lemma 3.4(ii). Suppose the triplet (rk−1
h , rk

h,uk
h) ∈ Q+

h × Qh × V0,h satisfies∫
Ωh

(Dtr
k
h)φh dx −

∫
Eint

F up
h

[
rk
h ,uk

h

]
�φh� dSx = 0 for all φh ∈ Qh.

Then [10, Chapter 7.6, Lemma 6] shows that rk
h ∈ Q+

h . The desired conclusions concerning the positivity
preservation follow by applying this observation with

(rk−1
h , rk

h) ∈
{
(�k−1

h , �k
h), (�k−1

h θk−1
h − c�k−1

h , �k
hθk

h − c�k
h)
}

∪
{
(�k−1

h θk−1
h , �k

hθk
h ), (c�k−1

h − �k−1
h θk−1

h , c�k
h − �k

hθk
h )
}

.

Taking into account the positivity of �k
h and θk

h , the conservation statements follow by taking φh ≡ 1 in
(3.2) and (3.3). �

A.4 Stability Estimates

The aim of this section is to provide the reader with a proof of Corollary 4.4.

Proof of Corollary 4.4. To begin with, we observe that 0 ≤ Ek
h ≤ Ek−1

h for all k ∈ N. This follows from
the fact that the second term on the left-hand side of (4.4) is nonnegative and all terms on the right-
hand side are nonpositive. Here, the nonpositivity of the terms on the right-hand side is ensured by the
convexity of the pressure potential P . Moreover, employing Hölder’s inequality and Remark A.1, we see
that

E0
h =

∫
Ωh

[
1
2

�0
h|u0

h|2 + P (�0
hθ0

h) + hδ
(
(�0

h)2 + (�0
hθ0

h)2
)]

dx
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� ||�0
h||

L∞(Ωh)
||u0

h||2
L2(Ωh)d + ||�0

h||γ
L∞(Ωh)

||θ0
h ||γ

Lγ(Ωh)
+ hδ

(
||�0

h||2
L2(Ωh)

+ ||�0
h||2

L∞(Ωh)
||θ0

h ||2
L2(Ωh)

)
� ||�0||L∞(Ω)

||u0||2W 1,2(Ω)d + ||�0||γL∞(Ω)
||θ0||γLγ(Ω)

+ hδ
(
||�0||2L2(Ω)

+ ||�0||2L∞(Ω)
||θ0||2L2(Ω)

)
� 1.

Using this observation, it is easy to establish the first estimate in (4.11), the first two estimates in (4.12),
the estimates in (4.13), and the estimates (4.15)–(4.18). Then, due to Corollary 3.5(i), the second estimate
in (4.11) follows from the first estimate in (4.13). Next, applying Hölder’s inequality, we observe that

||�huh||
L∞(0, T ;L2γ/(γ + 1)(Ωh)d)

= sup
k ∈ {1,...,NT }

{
||�k

huk
h||

L2γ/(γ + 1)(Ωh)d

}
≤ sup

k ∈ {1,...,NT }

{
||�k

h||1/2
Lγ(Ωh)

||�k
h|uk

h|2||1/2
L1(Ωh)

}

≤
(

sup
k ∈ {1,...,NT }

{
||�k

h||
Lγ(Ωh)

}
sup

k ∈ {1,...,NT }

{
||�k

h|uk
h|2||

L1(Ωh)

})1/2

≤
(
||�h||

L∞(0, T ;Lγ(Ωh))
||�h|uh|2||

L∞(0, T ;L1(Ωh))

)1/2

.

Consequently, the last estimate in (4.11) follows from the first two. Furthermore, an application of
Poincaré’s inequality (A.10) reveals that the last estimate in (4.12) is a consequence of the first. Due
to Corollary 3.5(i), the validity of the first estimate in (4.14) results from the third estimate in (4.11).
Using Hölder’s inequality and the second estimate in (A.1), we deduce that

||�huh||
L2(0, T ;L2(Ωh)d)

=

(∫ T

0

||(�2
h|uh|2)(t, ·)||

L1(Ωh)
dt

)1/2

�
(∫ T

0

||�h(t, ·)||2
L3(Ωh)

||uh(t, ·)||2
L6(Ωh)d dt

)1/2

� h− d+3δ
6

(∫ T

0

||hδ/2�h(t, ·)||2
L2(Ωh)

||uh(t, ·)||2
L6(Ωh)d dt

)1/2

� h− d+3δ
6 ||hδ/2�h||

L∞(0, T ;L2(Ωh))
||uh||

L2(0, T ;L6(Ωh)d)
.

Therefore, the second estimate in (4.14) follows from the third estimate in (4.12), the second estimate
in (4.13), and (A.15). Finally, we combine Hölder’s inequality, the estimates (A.3) and (4.15), the first
estimate in (A.1), and the first and third estimate in (4.12) to conclude that∫ T

0

∫
Eint

∣∣��h�〈uh · nσ〉σ

∣∣ dSx dt

� h−δ/2

(
hδ

∫ T

0

∫
Eint

��h�2 |〈uh · nσ〉σ| dSx dt

)1/2(∫ T

0

∫
Eint

|〈uh〉σ| dSx dt

)1/2

� h−δ/2

(∫ T

0

h−1
(
||uh(t, ·)||

L1(Ωh)d + h ||∇huh(t, ·)||
L1(Ωh)d×d

)
dt

)1/2

� h−δ/2
(
h−1||uh||

L2(0, T ;L2(Ωh)d)
+ ||∇huh||

L2(0, T ;L2(Ωh)d×d)

)1/2

� h−δ/2(1 + h−1/2) .

We note in passing that estimate (4.20) can be proven in the same way. �
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[9] Feireisl, E., Novotný, A., Petzeltový, H.: On the Existence of Globally Defined Weak Solutions to the Navier-Stokes
Equations. J. Math. Fluid Mech. 3, 358–392 (2001)
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[17] Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: Numerical Analysis of Compressible Fluid Flows, volume
20 of MS&A. Springer International Publishing, (2021)

[18] Karlsen, K.H., Karper, T.K.: A convergent nonconforming finite element method for compressible Stokes flow. SIAM
J. Numer. Anal. 48(5), 1846–1876 (2010)

[19] Karlsen, K.H., Karper, T.K.: Convergence of a mixed method for a semi-stationary compressible Stokes system. Math.
Comp. 80, 1459–1498 (2011)

[20] Karlsen, K.H., Karper, T.K.: A convergent mixed method for the Stokes approximation of viscous compressible flow.
IMA J. Numer. Anal., 32(3):725–764, 09 (2011)

[21] Karper, T.K.: A convergent FEM-DG method for the compressible Navier-Stokes equations. Numer. Math. 125(3),
441–510 (2013)
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[24] Feireisl, E., Karper, T.K., Novotný, A.: A convergent numerical method for the Navier-Stokes-Fourier system. IMA J.
Numer. Anal. 36(4), 1477–1535 (2016)

[25] Pietro, D.A., Ern, A.: Discrete functional analysis tools for Discontinuous Galerkin methods with application to the
incompressible Navier-Stokes equations. Math. Comp. 79, 1303–1330 (2010)
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