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Abstract

Many neutrino detectors, like for example the IceCube Neutrino Observatory, consist
of several tons of light transparent media instrumented with hundreds to thousands
of individual photosensors. They detect light emitted following a neutrino interaction
with the respective medium. An important step and big challenge in these detec-
tors is to infer (or reconstruct) the parameters of a model, describing the neutrino
interaction, based on the detected photons. The entire process from photon emission
via photon propagation to photon detection is too complicated to be fully known an-
alytically. Therefore, statistical inference methods such as the maximum likelihood
method rely on approximations of the photon arrival distributions at the sensors to
reconstruct neutrino event parameters.
In contrast to the reconstruction, the simulation of neutrino events includes more de-
tails about the involved physics. Machine learning methods trained on simulation can
gain access to this detailed information, but do not provide the same level of versatil-
ity and interpretability as, for example, a likelihood function. Most machine learning
techniques provide only a single information per event, while a likelihood function can
be used for e.g. parameter inference, the determination of confidence regions, and the
calculation of likelihood ratios.

This work introduces a hybrid machine learning-likelihood method, called FreeDOM,
where the likelihood is directly learned from simulation. It can be used to reconstruct
events in a detector consisting of an array of individual photosensors. The high flex-
ibility of this method makes it easily applicable to IceCube’s low energy extension
DeepCore, the IceCube Upgrade or in fact any desired geometry. It can handle differ-
ent sensor types which is indispensable for the application to the IceCube Upgrade and
likely any other future IceCube extension. In addition, the method is about 100 times
faster than current likelihood-based reconstructions in DeepCore without sacrificing
the benefits of using a likelihood, like determining confidence regions or calculating
likelihood ratios. The reconstruction speed is an important point because DeepCore
MC event samples contain many millions of events that need to be reconstructed and
current likelihood-based reconstructions need O(10s) per event.
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1. Introduction

A central step for many particle detectors is to estimate or reconstruct the event-level
parameters of interest θ (e.g. energy, direction of an incoming particle) based on the
actual measurement x (e.g. a time-dependent electrical current in a detector unit). A
frequently used statistical method is the definition of a so-called likelihood function
that calculates how likely it is to observe x for a given θ. However, a likelihood
is not a probability density, since it is not normalized correctly. Ratios between
likelihood values can be used to compare different hypotheses [1], where a higher
likelihood value means that the hypothesis is more preferred by the data. Finding
the maximum of the likelihood yields the so-called best-fit parameter values, which
represent an estimator for the true values. The likelihood function can also be used
to calculate confidence level regions (uncertainties) for the parameter values, based
on the likelihood landscape around the maximum. In addition, likelihood ratios
between hypotheses with different sets of parameters θ show how important single
parameters are to explain the measurement. Thus, a minimal model to describe
the measurement x can be found. Furthermore, in the Bayesian interpretation of
probability (see sec. 3.1), the likelihood can be used to sample posterior probability
distributions for the parameters.
However, defining the correct likelihood function is challenging and actually
intractable for many modern physics experiments. These experiments rely on
approximations and simplifications to compute a likelihood function and reconstruct
events. Often, simulating events includes more details than reconstructing them.
For example, propagating photons from a certain start point through a transparent
medium can be done including many details about the involved medium [2], although
the likelihood function is unknown. Inverting the problem and asking about the
origin of a detected photon, as needed for a reconstruction, is more difficult. The
probabilities for all possible light sources to produce a photon reaching the specific
sensor would have to be known which is not the case if the likelihood is unknown.
Machine learning offers techniques for universal function approximation. These
techniques can make use of the detailed simulation and directly extract the relation
between x and θ from the simulated data. While they only require forward θ → x
simulation to train on, most machine learning based approaches work as point
regressors, meaning that they only give a point estimation of the parameter values θ
without the additional benefits of a likelihood function described earlier.

The IceCube Neutrino Observatory at the South Pole, introduced in chapter 4,
faces the problems described above. Its low energy extension DeepCore detects
atmospheric neutrinos at a rate in the order of mHz (see fig. 5.2) but has an
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1. Introduction

intractable likelihood. Thus, assumptions must be made about the propagation of
photons in ice in order to reconstruct events. The high number of detected events
means that the speed of a reconstruction method is an important factor too.
Since IceCube will be upgraded in the next years, which involves completely new
sensors in a new arrangement, a reconstruction must be flexible in both the type of
sensors and their positioning.

Combining likelihood and machine learning methods keeps the likelihood bene-
fits and can make use of detailed simulations. Likelihood-free inference [3] is an
example for such a hybrid method. In this approach, the likelihood function is
learned directly from the simulation, without the need to make explicit assumptions
about the function in advance.
This work introduces a hybrid machine learning-likelihood reconstruction framework,
called FreeDOM, which is geometry flexible and therefore suitable for IceCube
DeepCore, the IceCube Upgrade, and in fact any detector consisting of an array of
photosensors.
Chapter 2 gives an overview of the physics background that is important to under-
stand what needs to be reconstructed, i.e. what θ is in the IceCube low energy
context. The concept of neutrino oscillation is described as well as the neutrino mass
ordering, both are used to demonstrate use cases of the reconstruction later on.
Chapter 3 introduces different concepts of parameter estimation. The likelihood
formalism is explained, followed by an overview of machine learning. Finally,
the technique of likelihood-free inference, which is the basis of the reconstruction
framework presented in this thesis, is introduced.
In chapter 4 the IceCube detector as well as its low energy extension and upgrade
are described. The chapter familiarizes with the installed hardware of the detector
and what exactly is measured with it, i.e. what x is in IceCube. Also the used set of
model parameters θ that should be reconstructed is introduced. The chapter closes
with an overview of the currently used reconstructions.
The implementation of FreeDOM is the focus of chapter 5. It starts with a derivation
of the expected form of the likelihood function which will be approximated. Details
on the training process are given and the quality of the likelihood approximation
is verified. It is also described how the minimization process of the negative
log-likelihood function is performed.
Reconstruction results are shown in chapter 6. Parameter resolutions for IceCube
DeepCore and the IceCube Upgrade as well as their impact on sensitivities to neutrino
oscillation parameter and mass ordering analyses are presented. In addition, further
applications of FreeDOM are highlighted to demonstrate its flexibility and versatility.
As mentioned before, to be able to determine per event parameter reconstruction
uncertainties is an advantage of knowing the likelihood. Chapter 7 discusses ways to
extract these uncertainties from the networks. It also shows the potential of using
uncertainty weights in an analysis as well as some achieved improvements.
Finally, chapter 8 summarizes the results and gives an outlook on necessary next
steps and possible future applications of the technique presented in this thesis

2



2. Physics background

To be able to construct a model whose parameters θ can then be reconstructed, a
solid understanding of the underlying physics is essential. Reconstructing neutrino
induced events therefore requires detailed knowledge about these particles, how they
are produced and how they interact.
For different physics analyses different parameters might be of importance. For exam-
ple an analysis of a neutrino oscillation phenomenon depends on other aspects of the
neutrino interaction than a neutrino mass measurement. While it might be of advan-
tage to reconstruct as much information as possible from a measurement, the focus
will usually be on just a few parameters. Identifying these parameters also requires
knowledge about the physics background involved.

2.1. Neutrinos

The existence of neutrinos was first postulated by Wolfgang Pauli in 1930 [4] to
explain the continuous energy spectrum of electrons emitted in a β-decay. If only two
particles (electron and proton) would be the product of this decay just one specific
energy value would be allowed for each of them to conserve energy, momentum,
and spin. Only the existence of a third involved particle, unknown at that time,
could explain a continuous energy spectrum. The name neutrino goes back to Enrico
Fermi (Pauli suggested neutron as name) and means something like small neutral
particle. Fermi developed a theory of the β-decay that includes a neutrino in 1933 [5].
This was the first attempt to theoretically describe the particle and its interaction.
While the theoretical description followed rather quick, it took 26 years to confirm
Pauli’s prediction with a direct measurement. In 1956 Clyde L. Cowan and Frederick
Reines detected electron anti-neutrinos via the inverse β-decay with their so called
poltergeist project [6]. It was the first measurement of a neutrino, but just confirmed
the existence of the electron neutrino. Measurements at the Alternating Gradient
Synchrotron located at the Brookhaven National Lab performed by Leon Lederman,
Melvin Schwartz, and Jack Steinberger proved the existence of a second neutrino
type, the muon neutrino, in 1962 [7]. It was produced in pi meson decays. This also
demonstrated the doublet structure of leptons. The third neutrino type, the tau
neutrino, was finally detected by the DONUT collaboration in 2000 [8].
Since then neutrinos from different sources (e.g. solar [9], atmospheric [10] or
reactor [6]) were observed. Today neutrinos are an important part of the current
research.

3



2. Physics background

Neutrinos belong to the leptons of the Standard Model (SM, fig 2.1) of parti-
cle physics and thus to the most fundamental components of the universe. As leptons
they are fermions with a spin of 1

2 . One can distinguish between three different
neutrino eigenstates (either flavor described in sec. 2.1.1 or mass introduced in
sec. 2.1.2), one for each family of the SM. Measurements performed at the LHC at
CERN on the Z0 resonance confirmed the existence of Nν = 2.9840 ± 0.0082 [11]
neutrinos with less than half the Z0 mass. This does not exclude the existence of
additional sterile neutrinos which do not interacting weakly but could interact with
the “active” ones via neutrino oscillation 2.2.

Figure 2.1.: The standard model (SM) of particle physics including the Higgs boson.
The SM contains all fundamental building blocks (particles) of our uni-
verse that are known. Mass, electrical charge, and spin of all particles are
given. The three neutrinos are highlighted with a red border.

2.1.1. Flavor eigenstates and interactions

Figure 2.1 shows the neutrino eigenstates in their flavor representation which is used
to describe how neutrinos interact. They have no electric and no color charge, hence
they only interact via the weak force and one could also interpret the flavor eigenstates
as eigenstates of the weak interaction.
Two different interaction types are possible in the weak interaction:

1. Charged current (CC) interactions mediated by the exchange of an electri-
cally charged W±-boson. Here the neutrino is converted to the SM lepton with

4



2. Physics background

the corresponding flavor or vice versa. Consequentially, for neutrinos in the ini-
tial state, there is an energy threshold for the interaction type which is the rest
mass of the respective lepton.

2. Neutral current (NC) interactions mediated by the exchange of an electrically
neutral Z0-boson. All flavor eigenstates with any initial energy can interact.

Like for all SM fermions, for each neutrino flavor eigenstate there is a corresponding
anti-neutrino state. Neutrinos and anti-neutrinos differ in their helicity, neutrinos
are always left-handed (spin vector points in opposite direction to the momentum
vector) while anti-neutrinos are right-handed. Right-handed neutrinos have not been
observed so far but are a candidate for sterile neutrinos. If there are more differences
than the helicity of the particles is subject of current research. Since it does not
carry electrical charge, the neutrino could also be its own anti-particle, a so called
Majorana particle.

That they can only interact weakly leads to the fact that neutrino interactions
have very low cross-sections [12]. Depending on the neutrino energy different
processes are important. At low energies, starting at a few MeV, the inverse β-decay
has the highest cross-section, but only electron anti-neutrinos can undergo this
process. For the other flavors elastic and quasi-elastic neutrino nucleon scattering
are the dominant processes (for energies of just a few MeV elastic neutrino electron
scattering is also important). The difference between these two processes is that
elastic scattering refers to a neutral current interaction while quasi-elastic refers to a
charged current interaction. At a few GeV resonance production becomes possible.
Here the neutrino excites a nucleon to a baryonic resonance state. For higher energies
of several GeV, the region interesting for IceCube (chapter 4), so-called deep inelastic
neutrino nucleon scattering becomes the dominant process. The neutrino energy is
high enough to break up the nucleon and create a shower of secondary particles.
Figure 2.2 shows the result of cross-section measurements for neutrino and
anti-neutrino nucleon interactions at GeV energies. Individual cross-sections for
quasi-elastic scattering (QE), resonance production (RES), and deep inelastic
scattering (DIS) are displayed as well.
It can be seen that from about 5-10GeV deep inelastic scattering is the dominant
process. If the neutrino energy is high enough, its de Broglie wavelength [13] becomes
short enough to resolve individual quarks in a nucleon and the neutrino can directly
interact with them. In this process momentum is transferred from the neutrino to
the quark which is kicked out of the nucleon as a result. This leads to a hadronic
cascade because due to confinement [14] quarks can not exist freely. In case of a CC
interaction the neutrino is converted into its leptonic partner which additionally leads
to an electromagnetic cascade. Depending on the energy and type of lepton, this
cascade is located closer or further away from the interaction point.
Figure 2.3 shows the Feynman diagrams [15] for a CC (left) and NC (middle) deep
inelastic scattering. The right plot in the figure illustrates why the interaction cross-
section is higher for neutrinos compared to anti-neutrinos. Matter consists mainly

5



2. Physics background

Figure 2.2.: Neutrino (left) and anti-neutrino (right) interaction cross-sections at GeV
energies [12]. The individual cross-sections for quasi-elastic scattering
(QE), resonance production (RES), and deep inelastic scattering (DIS)
are given as well as their sum (TOTAL). One can see that the neutrino
cross-section is about twice as high as the one for anti-neutrinos.

of quarks and not of anti-quarks. In a neutrino quark interaction there is no overall
spin s and all scattering angles θ are possible. However, in a anti-neutrino quark
interaction there is a overall spin of 1. The spin has to be conserved and consequently
high scattering angles are suppressed. Therefore, the final state phase space is reduced
and thus the cross-section for the process. This is called helicity suppression.

Figure 2.3.: Feynman diagram of a CC (left) and NC (middle) DIS interaction. The
right plot illustrates the helicity suppression for anti-neutrino interactions.
See text for more details.

6
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2.1.2. Mass eigenstates and their ordering

The following abbreviations are used in this and all subsequent sections of this thesis
to keep equations short and improve clarity:

sij ≡ sin(θij)

cij ≡ cos(θij)

∆m2
ij ≡ m2

i −m2
j

∆ij ≡ ∆m2
ij ·

L

E
,

where θij is one of the mixing angles defined in this section, mi the mass of the
eigenstate νi also defined in this section, E the energy and L the traveled distance of
the neutrino.

In the original SM formulation neutrinos were assumed to be masseless. The
observation of neutrino oscillation 2.2 implied that this can not be true for all of
them. As can be seen by looking at a simplified two flavor oscillation probability
defined in equ. 2.16, oscillation is only possible if the different neutrino eigenstates
have different masses ∆m2 ̸= 0. Therefore, only a maximum of one can have a mass
of zero and all other have to have non zero masses.
There is no well defined mass for each of the flavor eigenstates. They are mixtures of
the different neutrino masses, which themselves are represented by mass eigenstates.
Each mass eigenstate has a well defined mass, but no well defined way to interact
(as the flavor eigenstates have). To change between the three known flavor (νe, νµ,
ντ ) and the respective mass eigenstates (ν1, ν2, ν3) of a neutrino, a three dimen-
sional matrix is needed. This matrix is called Pontecorvo–Maki–Nakagawa–Sakata
(PMNS [16]) matrix and it is similar to the CKM matrix [17] in the quark sector. νe

νµ
ντ

 =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 ν1
ν2
ν3

 . (2.1)

The PMNS matrix U is the product from three rotation matrices and basically a
base change of the space describing the eigenstate composition of a neutrino. The
respective rotation angles, also called mixing angles, are named θ12, θ13 and θ23.
Figure 2.4 illustrates the relation between the eigenstates shown as vectors which can
be mapped onto each other by rotation through the mixing angles.
Writing out the elements of the PMNS matrix by explicitly multiplying the three
individual rotations leads to:

7



2. Physics background

Figure 2.4.: Mixing between the three flavor and mass eigenstates. The eigenstates
are represented as vectors and the mixing via Euler angles [18]. The plot
does not include CP violation.

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13eiδCP 0 c13

 c12 s12 0
−s12 c12 0
0 0 1



=

 c12c13 s12c13 s12e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13

 .

Here, δCP is a charge-parity (CP) violating phase introduced to be able to account
for possible CP violation of the weak interaction. Measurements of the PMNS matrix
elements [19] yield that they are comparatively close together, meaning that a strong
mixing is present for neutrinos. This is different for quarks, where the CKM matrix
is rather diagonal and the magnitudes of its elements differ by more than two orders.

While the mixing is strong, the values of the neutrino masses are orders of
magnitudes smaller compared to all other particles of the standard model. The
exact masses are still unknown but the current upper limit, set by the KATRIN
collaboration, is mν < 0.8 eV [20]. This would be at least five orders below the second
lightest particle, the electron with a rest mass of about 0.5MeV.

Not only the values of the three different masses are unknown, their ordering
(NMO for Neutrino Mass Ordering) is also undetermined. From measurements of
solar neutrinos [21] it is known that m1 < m2 and ∆m2

21 ≈ 7.5 · 10−5 eV2. However,
the relative ordering of the third mass compared to the other two is still unknown.

Only the absolute distance |∆m2
31+∆m2

32
2 | ≈ 2.4 · 10−3 eV2 could be determined from

atmospheric neutrino measurements [10]. This leaves two different possible orderings
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of the masses. The so-called “normal” (m1 < m2 < m3, NO) and the so-called
“inverted” (m3 < m1 < m2, IO) ordering. The normal ordering is illustrated in the
left part of fig. 2.5 and the inverted ordering in the right part of the same figure.

Figure 2.5.: The two different possible realizations of the neutrino mass ordering, so
the ordering of the (squared) masses of the three neutrino mass eigen-
states. In the normal ordering (left) the eigenstates are ordered like their
names suggest m1 < m2 < m3 (where mi is the mass of eigenstate νi).
In the inverted ordering (right) m3 is the lightest mass, followed by m1

and m2. The colors represent the fractions of the flavor eigenstates to the
respective mass eigenstate. ∆m2

31 refers to the difference of the squared
masses (not the square of the mass difference) and can therefore be neg-
ative. The sign of ∆m2

31 (or ∆m2
32) is usually used to distinguish the

orderings.

The main difference between the two possible orderings (apart from the sum of the
masses of the three mass eigenstates) is the sign of ∆m2

31 or ∆m2
32, which is positive

for the normal and negative for the inverted ordering. As discussed in sec. 2.2 ∆m2
ik

is a neutrino oscillation frequency and consequently neutrino oscillation properties
have to be studied to determine the NMO. However, the sign of ∆m2

ik is not easily
accessible. This can be seen by looking at formula 2.6 which shows that

Pα→β ∝ sin2(∆m2
ik) = sin2(|∆m2

ik|) . (2.2)

Nevertheless, there are multiple ways to determine the NMO. The approach used by
IceCube (and similar detectors) is to explore matter effects (sec. 2.2.2) on oscilla-
tions as exploited for the “solar” ordering. More details about the IceCube NMO
determination follow in sec. 6.2.2.
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2.1.3. Atmospheric neutrinos

Since neutrinos only interact weakly, they can only be produced as a result of a weak
interaction process. The β-decay, which lead Pauli to the postulation of the neutrino,
is an example of such a process. In general, particles decaying via the weak interaction
nearly always produce neutrinos to conserve the lepton family number. Also fusion
processes involving the weak interaction, like the ones in the sun, produce neutrinos.
These two types of processes lead to a wide range of neutrino sources: man made
sources like particle accelerators or nuclear power plants, as well as natural sources
like cosmic accelerators or radioactive decays in the Earth. Even most living beings
are neutrino sources because of radioactive decays of 40K in their bodies.
Another natural source of neutrinos, important for IceCube, is the Earths atmosphere.
Uninterruptedly the Earth is bombarded by electrically charged particles with un-
known origin. These particles are called (primary) cosmic radiation [22] and most of
them are hadrons (mainly protons). In a height between 10-20 km [23] these particles
interact with the different nucleons that make up the Earths atmosphere and as a
result of these interactions particle showers are produced. The left part of fig. 2.7
shows a sketch of such a shower production. This is the so-called secondary cosmic
radiation, which mainly consists of photons. Neutrinos, which are also part of this
secondary radiation, are produced in the following interactions:

p+N → π± +X

π− → µ− + νµ

µ− → e− + νe + νµ

p+N → K± +X

K− → µ− + νµ (63.56%)

K− → π− + π0 (20.67%)

K− → e− + νe + π0 (5.07%)

Kaon branching ratios are taken from [24].
Charged pions and muons from the kaon decays subsequently also decay like it
is shown on the left side. The dominant decay channel for the neutral pion (π0)
with about 98.8% [25] is π0 → 2γ. Here the decay chains for the negatively charge
particles are shown, the reactions for π+ and K+ are identical but with neutrinos
and anti-neutrinos exchanged (and all charges positive).

Most of the decay chains end with a muon that further decays into an elec-
tron. In the muon production one muon neutrino and in the muon decay one muon
and one electron neutrino is created. If all muons decay the fraction of muon and
electron neutrinos would be

R ≡ #(νµ + νµ)

#(νe + νe)
≈ 2 . (2.3)

However, if the muon energy is high enough it may not decay on its way to the
detector on the ground. This means that no electron neutrino is produced and the
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ratio R defined above increases for higher energies, which can be seen in fig. 2.6.

Figure 2.6.: Ratio of the atmospheric muon and electron neutrino flux versus the neu-
trino energy for three different flux models [26]. The sum of neutrino and
anti-neutrino flux is used in each case. The ratio increases because at
higher energies less atmospheric muons decay on their way to the ground.

Above a certain energy threshold ε interactions of the pions (επ ≈ 115GeV [27]) and
kaons (εK ≈ 850GeV [27]) are favored over their decay. The ratio between the number
of produced pions and kaons also depends on the energy. At low energies more pions
are produced because their mass is smaller than the kaon mass which leads to a larger
phase space for their production. Consequently, at low energies more neutrinos are
created in pion decays, while at high energies more neutrinos occur from kaon decays.
The right part of fig. 2.7 shows the measured flux of atmospheric electron and muon
neutrinos and anti-neutrinos over their energy. The plot was made for the South Pole
and averages over all directions and one year in time. One can see that more neutrinos
are produced at lower energies and that R increases for higher energies.

2.1.4. Neutrino detection via Cherenkov radiation

Neutrinos are extremely difficult to detect. As mentioned several times before they
only interact weakly and therefore have very low cross-sections. This makes a direct
detection practically not feasible. A neutrino will not interact more than once in
a detector nor emit any detectable radiation itself. However, there are multiple
ways to indirectly detect these elusive particles. The one important for this thesis is
Cherenkov radiation [29] produced by charged particles that are created following an
neutrino interaction.
In deep inelastic scatter processes charged particles are produced (see fig. 2.3). If a
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(a) Particle shower after cosmic ray inter-
action in the atmosphere of the Earth.
Atmospheric neutrinos are produced as
well as atmospheric muons. Figure taken
from [28].

(b) Measured energy spectra of the atmo-
spheric neutrino fluxes at the South Pole.
The plot shows the averaged data over one
year. Figure adapted from [23].

Figure 2.7.: Production and flux of atmospheric neutrinos.

charged particle flies through a dielectric medium (like ice) faster than the speed of
light in this medium, Cherenkov radiation is emitted.

The speed of light in a medium is given by the vacuum speed of light c di-
vided through the refractive index n of the medium. n is a dimensionless number
which indicates the light diffractivity of the medium. It is always greater than 1,
so light is never faster than c. For water respectively ice the refractive index varies
between 1.35 and 1.30 for photon wavelengths between 250 nm and 900 nm [30].
On its way the charged particle polarizes the atoms in the dielectric medium. This
is illustrated in the left part of fig. 2.8. If the velocity of the particle is faster than
c
n the polarization is asymmetric (case b in the plot) because the atoms can not
rearrange fast enough. When the atoms depolarize, they emit electromagnetic waves.
Constructive inference of this waves leads to a cone of light as can be seen in the
right plot of fig. 2.8. This constructive inference is only possible starting from a
asymmetric polarization. The principle is similar to the sonic boom “emitted” by a
jet aircraft flying faster than the speed of sound.
The emission angle θ of the radiation relative to the direction of the charged particle
can be calculated by:

cos(θ) =
c
n · t

β · c · t
=

1

βn
. (2.4)
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Figure 2.8.: Cherenkov radiation emergence. The left plot shows the polarization of
atoms by a charged particle flying slower (a) and faster (b) than light in
that medium. In the right plot the formation of a Cherenkov light cone is
visualized. The left plot is based on [31], the right plot is taken from [32].

Equation 2.4 also shows that no radiation is emitted for v < c
n , where v is the speed

of the charged particle. Assuming a refractive index of 1.33 this leads to a kinetic
energy threshold of Eth,µ ≈ 55MeV for muons and Eth,e ≈ 0.26MeV for electrons in
water and ice [33]. Both energies are well below one GeV.
The number of emitted photons N per path length ∂x and wavelength interval ∂λ is
given by the Frank-Tamm formula [34]:

∂2N

∂x∂λ
=

2παz2

λ2

(
1− 1

(βn(λ))2

)
, (2.5)

where α is the fine-structure constant [35], β the speed of the charged particle divided
by the (vacuum) speed of light c, z the electric charge of the particle, and n(λ)) the
wavelength-dependent refractive index of the traversed material.
These photons can be detected by photosensors and thus lead to an indirect detection
of neutrinos.

2.2. Neutrino oscillations

The first experiment that measured neutrinos produced in the sun was the Homes-
take experiment [9] by Raymond Davis Jr. in 1968. It had the goal to basically look
inside a star and directly verify the hypothesis of nuclear energy generation in stars.
Calculations of the number of nuclear fusion processes to explain the intensity of solar
radiation on the Earth’s surface lead to an expected number of neutrino interactions
in the detector. The experiment successfully detected solar neutrinos, but only about
one-third of the predicted number. Since this discrepancy was way too large to be
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explained by uncertainties and neither in the experiment nor in the theory errors
could be found, it got the name solar neutrino problem. The solution to this problem,
proposed by Bruno Pontecorvo [36] before the actual measurement and even earlier
by Ziro Maki, Masami Nakagawa and Shoichi Sakata [16], builds on the fact that the
Homestake detector was only sensitive to electron neutrinos. The sun only produces
electron neutrinos, so it should be sufficient to only search for them. However, in case
neutrinos have mass they could change their flavor on their way to the detector after
being produced and therefore be invisible for the detector. This phenomenon is called
neutrino oscillation.
The solar neutrino problem was seen as the first experimental hint for neutrino oscil-
lation, but actually solar neutrinos do not really oscillate on their way to Earth. Solar
neutrinos are produced in the electron flavor state which is a coherent superposition of
all three mass eigenstates. However, in very dense media, like the core of the sun, the
νe eigenstate is nearly identical to the ν2 eigenstate. That means most of the neutri-
nos leave the sun as ν2, which is a decoherent superposition of the three flavor states.
ν2 has a well defined mass and therefore can not change to another mass eigenstate
with a different mass. When it arrives at the detector, ν2 has a certain probability to
be detected in each flavor. This probability is about a third for each flavor (c.f. 2.5)
and explains the number of νe events being only a third of the prediction. The solar
neutrino non-oscillation is explained in more detail in [37].
Actual neutrino oscillation was measured (and confirmed) with atmospheric neutri-
nos by the Super-Kamiokande experiment in 1998 [38]. The Earths atmosphere is
a spherical source with the detector inside of it. According to Gauss’s law [39] one
would expect the same number of neutrinos arriving from each direction, even if the
detector sits very close to one side of the sphere. Atmospheric neutrinos from each
direction have the same energy (spectrum) but not the same distance to travel. So
neutrinos from certain directions will oscillate more than others and one would observe
for example less up-going muon neutrinos than down-going muon neutrinos. That is
what Super-Kamiokande found. Figure 2.9 shows the number of observed neutrino
events compared to the no oscillation prediction in grey and to the prediction with
oscillations in black. The measurement can best be explained with the presence of
oscillation.
Neutrino oscillation is another perfect example for the nature of quantum mechanics.
To explain it neutrinos have to exist in different states at the same time and only
when they interact they have to take one specific. While this seems unintuitive, it
can be described mathematically. In Vacuum, the probability that a neutrino with
energy E that was created in the flavor state α will interact in the flavor state β after
traveling the distance L is given by:

Pα→β = |
∑
i

Uαi U∗
βi exp

(
−i

∆m2
ik

2E
L

)
|2 (2.6)

with ∆m2
ik = m2

i −m2
k and U is defined in (2.1.2).

Note that this is only the probability that if the neutrino interacts it will be in that
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Figure 2.9.: Super-Kamiokande neutrino oscillation evidence [38]. The plot shows the
zenith angle distribution of µ-like and e-like events in the detector. It
is subdivided into different energy and momentum regions. The hatched
region marks the expectation without neutrino oscillations, while the solid
line shows the best-fit including oscillations. It can be clearly seen that
the scenario with oscillations fits much better.

specific flavor. The probability that the neutrino interacts at all is much smaller and
given by the cross-section of the specific interaction. So to get the probability of a
specific interaction one has to multiply cross-section and oscillation probability.

2.2.1. Vacuum oscillations

The derivation of the vacuum oscillation probability is based on lecture notes by Hu-
bert Spiesberger which are not publicly available anymore.
There are several ways to derive equation 2.6, but most of them do not get along
without some inconsistencies. Since neutrino oscillation is a quantum mechanical
phenomenon it is not possible to fully describe it with classical arguments. Elemen-
tary particles, as neutrinos are, do not travel along well-defined trajectories but well
defined path and time are needed for a classical approach. So assumptions about en-
ergy and momentum of the neutrino states would be needed to compute the oscillation
probability. An attempt to better describe the neutrino propagation is the wave pack-
age approach, where (for fixed energy or momentum) plane waves ψ(x⃗, t) = ei(p⃗x⃗−Et)

are assumed for path and time1. These waves are not localized and not moving but
describe the location of the neutrino at every point in space-time. While this approach

1The full neutrino state in the flavor space would then be given by |να(x⃗, t)⟩ =
∑

i Uαiψi(x⃗, t) |νi⟩,
where |νi⟩ are the mass eigenstates
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describes the propagation well, it can not fully describe the production and detection
mechanism. The approach that is considered to be most complete is the Quantum
Field Theory (QFT) formalism (even though in practice it also needs approximations).
Three steps are needed to derive the oscillation probability in the QFT framework:

1. First one has to define the initial and final state for the quantum mechanical
system which consists of the particle (neutrino), the source and the detector
state.

2. Next the interaction Hamiltonian Hint has to be determined. It basically trans-
forms the initial to the final state. This includes defining field operators that
act on the neutrinos (usually they create or annihilate the particle).

3. Finally, the oscillation probability Pα→β can be calculated from transition am-
plitude for going from the initial to the final state.

Define the initial and the final state

The quantum mechanical system considered basically consists of the neutrino, its
source (S) and the detector (D). So both the initial and final state have to describe
these three components. For the source and the detector a excited (E) as well as a
ground (G) state exists. The excited state is the one before emitting (for the source)
respectively after absorbing (for the detector) the neutrino, while the ground state is
the respective state after emitting/before absorbing the neutrino. In the following,
the states are written as: |SE⟩, |SG⟩, |DE⟩, |DG⟩.
The source and the detector are assumed to be very heavy which means that the
uncertainties on position and velocity given by Heisenberg‘s uncertainty principle are
very small for them:

∆p ·∆x ≥ 1

2
−−−−→
large M

∆v ·∆x ≥ O
(

1

M

)
.

For M → ∞ S and D can therefore be considered as localized (∆x ≈ 0) and with
a precisely known velocity ∆v ≈ 0. That makes it possible to express source and
detector in eigenstates of the position operator in the following way:

〈
x⃗′
∣∣ e−iH0τ |x⃗⟩ = δ(3)(x⃗− x⃗′)e−iMτ +O

(
1

M

)
.

Here H0 ≃ M + p2

2M was used as well as the previously made assumption that the
states are very heavy. τ denotes the time in the rest frame.

Ground and exited state for the source and the detector have different energies
(and masses). The source looses energy −∆S by going from SE to SG, while the
detector gains energy ∆D when getting excited (DG → DE). This leads to a phase
difference of e−i∆St for the source and ei∆Dt for the detector.
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Combining source, detector and neutrino yields the full state of the system.
The initial |i⟩ respectively final |f⟩ state are defined as

|i⟩ = |SE⟩ ⊗ |DG⟩ ⊗ |0ν⟩ ,
|f⟩ = |SG⟩ ⊗ |DE⟩ ⊗ |0ν⟩ .

(2.7)

Both states do not actually contain a neutrino (represented as |0ν⟩), because the initial
state is defined as the state before the neutrino was emitted and the final state is the
state after the absorption of the neutrino.

Determine the interaction Hamiltonian Hint

After defining the initial and final state, the next step is to define how the former
is transformed to the latter. The interaction responsible for that is described by
the interaction Hamiltonian, which basically describes the time evolution of the states.

In the spectral representation quantum mechanical operators can be decomposed in
their eigenvalues. For the Hamiltonian that reads

for source: e−i∆St |SG⟩ ⟨SE | ,
for detector: ei∆Dt |DE⟩ ⟨DG| .

(2.8)

Simplified speaking, because of the orthogonality of the eigenstates ⟨Si|Sj⟩ = δij , the
source operator for example basically replaces the state |SE⟩ with the state |SG⟩ and
adds the energy (or mass) difference −∆S (which means it subtracts the energy ∆S).

The interaction leads to a neutrino production. As mentioned before neutrinos
interact in their flavor state and therefore the neutrino is produced in a flavor
eigenstate |να⟩ at the source. Then the neutrino propagates to the detector, but
not as flavor but as mass eigenstates. The mixing between the flavor and the mass
eigenstates |νi⟩ is represented by the PMNS matrix (see sec. 2.1.2). At the detector
the neutrino is absorbed in the flavor state |νβ⟩ (because absorption is an interaction
again), which can be but does not have to be the same flavor state as |να⟩. So the
neutrino in the flavor and mass eigenstate representation is given by

for source: |να⟩ =
∑
i

Uαi |νi⟩ ,

for detector: |νβ⟩ =
∑
i

U∗
βi |νi⟩ .

(2.9)

Emission (SE → SG + να) and absorption (DG + νβ → DE) of the neutrino
happen via the weak interaction, because neutrinos do not participate in other inter-
actions. So common weak coupling with coupling constant g can be assumed for both.
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Now only the neutrino propagation has to be added to the Hamiltonian. This
can be done by using Dirac field operators ϕ for the mass eigensates (|νi⟩ → ϕi(t, x⃗)).
With the “rotating wave approximation” that separates creation and annihilation of
the neutrino, the field operators can be written as

ϕ
(−)
i (t, x⃗) =

1

(2π)3

∫
d3p

2Ep
a+p⃗,i e

−i(Ept−p⃗x⃗) ,

ϕ
(+)
i (t, x⃗) =

1

(2π)3

∫
d3p

2Ep
ap⃗,i e

i(Ept−p⃗x⃗) .

(2.10)

Here a and a+ are the quantum mechanical particle annihilation and creation
operator for the neutrino.

The complete Hamiltonian is then given by

Hα→β
int (t) = g

∑
i

{Uαi ϕ
(−)
i (t, 0) e−i∆St |SG⟩ ⟨SE |+

U∗
βi ϕ

(+)
i (t, L⃗) ei∆Dt |DE⟩ ⟨DG|} .

(2.11)

Calculate Pα→β from transition amplitude

Now that the initial and final state as well as the Hamiltonian are defined, the tran-
sition probability can be calculated. The first step is to calculate the transition am-
plitude Aα→β from the S-matrix (S = T e−i

∫
dtHint(t). Here T is the time ordered

product (sometimes also called time-ordering operator). The transition amplitude is
simply given by

Aα→β = ⟨f |S |i⟩ . (2.12)

To perform the calculation the Taylor expansion of the e-function (exp(x) = 1 + x+
x2

2 + ...) is used. At second order2 this reads

Aα→β =
(−i)2

2

∫ τ+T

τ
dt1

∫ t1

0
dt2 ⟨f |Hint(t1)Hint(t2) |i⟩ . (2.13)

The first time integral represents the detector which is active in the time interval [τ ,
τ+T] and the second time integral represents the activity of the source at all times
t2 < t1.

Considering the orthogonality of the quantum mechanical states (⟨Ki|Lj⟩ = δijδKL

with K,L ∈ [S,D] and i, j ∈ [G,E]) the bracket simplifies to

2The zeroth and first order term vanish because of the orthogonality of the eigenstates.
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⟨f | ... |i⟩ = g2
∑
i

UαiU∗
βi e

−i∆St2ei∆Dt1 ⟨0ν |ϕ(+)
i (t1, L)ϕ

(−)
i (t2, 0) |0ν⟩

= g2
∑
i

UαiU∗
βi e

−i∆St2ei∆Dt1

∫
d3p

(2π)3
1

2Ep
e−i(t1−t2)Ep⃗+ip⃗L⃗ .

(2.14)

For the same reason the first two terms of the Taylor expansion vanish, because one
has to replace the source and detector part in the initial state to not get a 0 but the
Hamiltonian contains only one bra (and ket) vector.

The transition probability is the square of the absolute transition amplitude

Pα→β = |Aα→β|2 .

At this point all necessary parts are defined and only the mathematical calculation
is left. The result of the two 1-dimensional time integrals and the 3-dimensional
momentum integral is

Pα→β =
g4

πL2
|
∑
i

Uαi U∗
βi e

−i
m2

i L

2∆S |2 . (2.15)

The only difference between this result and the oscillation formula shown in equa-

tion 2.6 is the (geometric) suppression term g4

πL2 . This suppression occurs because
here the probability to measure a |νβ⟩ at the detector starting with a |να⟩ at the
source is shown, which is the product of the probability to measure the neutrino
times the oscillation probability. ∆S , which for reasons of energy conservation has to
be equal to ∆D, can be identified as the neutrino energy.

The principle of neutrino oscillation does not change for two (or more than
three flavor). For many purposes it is sufficient to look at the simpler two flavor case,
where only one mixing angle (θ) and one mass difference (∆m2) exist. The oscillation
probability formula then is reduced to

Pα→β ≈ sin2(2θ) · sin2
(
∆m2L

4E

)
. (2.16)

Here sin(x) = eix−e−ix

2i was used.
This simplified form demonstrates the effect of the oscillation parameters. The mixing
angle represents the amplitude and the squared mass difference the frequency of the
oscillation.

2.2.2. Matter effects (MSW effect)

As mentioned before, neutrinos only interact weakly and therefore have very small
cross-sections. Consequentially, neutrinos traverse large amounts of matter without
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being absorbed or deflected. Nevertheless, neutrinos “feel” matter effects even if they
cross it apparently undisturbed. Elastic forward scattering of neutrinos does not
change their momentum or direction, but has an impact on neutrino oscillations in
matter. This effect is called MSW effect, after Stanislav Michejew, Alexei Smirnow
and Lincoln Wolfenstein, and was first introduced by Lincoln Wolfenstein in 1978 [40].
Elastic forward scattering changes the oscillation properties of neutrinos because it
influences the different flavor in a different way. Normal matter contains electrons
(mostly in bound states), but no muons or taus. So for the electron neutrino flavor
charged current interactions are possible in matter. All neutrino flavor can scatter
via the exchange of a Z-boson (neutral current, right Feynman diagram in fig. 2.10).
In addition, electron neutrinos can scatter via a W-boson (charged current, middle
Feynman diagram in fig 2.10) and electron anti-neutrinos can be annihilated and
recreated by a W-boson interaction with an electron (charged current, left Feynman
diagram in fig 2.10).

Figure 2.10.: Neutrino interactions in matter. Left: CC annihilation of an electron
anti-neutrino. Middle: CC scattering of an electron neutrino. Right:
NC scattering of all neutrino and anti-neutrino types.

This leads to higher cross-sections for νee → νee scattering compared to νµ,τe →
νµ,τe [41].
So the electron neutrino component “feels” a different matter potential compared to
the other neutrino flavors. The principle does not change considering the three or two
flavor case, so the rest of this section will focus on the two flavor case as shown in [42].
Only the electron flavor sees a effective matter potential, so in the flavor base it can
be expressed through:

Vmatter =

( √
2GFne 0
0 0

)
(2.17)

where GF is the Fermi coupling constant and ne the electron density in the traversed
matter. In the following V =

√
2GFne is used.

To get the neutrino Hamiltonian in matter, this potential has to be added to the
Vacuum Hamiltonian. For the two flavor example the matter Hamiltonian then looks
like
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H = U

 0 0

0
∆m2

2E

U† +

(
V 0
0 0

)

=
∆m2

2E

(
1− cos(2θ) + 2EV/∆m2 sin(2θ)

sin(2θ) 1 + cos(2θ)

)
.

(2.18)

The oscillation probability can be calculated with the S-matrix S = e−iH in the same
way as before

Pα→β = |Sβα|2 . (2.19)

The detailed calculations are shown in [42] for two and three flavor and [43] for the
three flavor case. The result looks very similar to the Vacuum result

Pmatter
α→β =

sin2(2θ)

sin2(2θ) + (cos(2θ)− 2EV
∆m2 )2

sin2

∆m2L

4E

√
sin2(2θ) +

(
cos(2θ)− 2EV

∆m2

)2
 .

Introducing the effective squared mass difference and mixing angle in matter

∆m2
eff = ∆m2

√
sin2(2θ) +

(
cos(2θ)∓ 2V E

∆m2

)2

sin(2θeff ) =
sin(2θ) ·∆m2

∆m2
eff

, (2.20)

where the minus occurs for neutrinos and the plus for the same calculation with anti-
neutrinos, allows to rewrite equation 2.2.2 to

Pmatter
α→β = sin2(2θeff ) · sin2

(
∆m2

effL

4E

)
. (2.21)

It now has the exact same structure as equation 2.16. This basically shows that matter
does not fundamentally change neutrino oscillations but it changes the oscillation
parameters ∆m2 (frequency) and sin(2θ) (amplitude).
The calculation for the three flavor case is very similar. The Hamiltonian for that
case is

H = U

 0 0 0

0
∆m2

21
2E 0

0 0
∆m2

31
2E

U† +

 V 0 0
0 0 0
0 0 0

 . (2.22)

More details on the 3-flavor calculation can be found in [43] and [42].
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The strength of the matter potential V (and therefore the MSW effect itself)
depends on the electron density ne of the traversed medium. The electron density on
the other hand depends on the matter density ρ

ne = Y · ρ

mN
(2.23)

where Y is the electron fraction in the material and mN the nucleon mass.
All these quantities vary for different materials. For example, according to the Pre-
liminary Reference Earth Model (PREM, [44]) the matter density in the Earth varies
between roughly 1 and 13 g

cm3 for the other crust and inner core. Atmospheric neu-
trino experiments rely on a precise knowledge of the density profile of the Earth to
calculated the expected oscillation probabilities.
Figure 2.11 shows the probability for a muon neutrino which traversed nearly the
whole Earth (11.500 km) to oscillate into an electron neutrino. Different models for
the matter density (ρ) distribution in the Earth are included: A model with constant
ρ (grey), a simple 3 layer model with two constant ρ layers for the mantel and one
constant ρ layer for the core (green), a optimized 3 layer model where ρmantle and
ρcore are calculated specifically for the chosen baseline (red) and the accurate treat-
ment using small slabs of constant density (black). For a baseline of L = 2REarth the
red and the green curve would be identical. The vertical lines indicate the positions
of the resonances (sin2(2θeff ) = 1) for the 3 layer model, on the left the core and on
the right the two mantle layers.
The plot shows the strong dependence of neutrino oscillations on the traversed density
profile.
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Figure 2.11.: νµ → νe oscillation probability for neutrinos which traversed nearly
the whole Earth [42]. Different Earth matter density models are com-
pared. The oscillation parameter values used for this calculation are:
sin2(2θ12) = 0.79, sin2(2θ23) = 1.0, sin2(2θ13) = 0.05, ∆m2

21 = 8.1 ·
10−5 eV2, ∆m2

31 = 2.2 · 10−3 eV2 and δCP = 0.
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3. Parameter estimation

In (particle) detectors measured data x are observed. For example, the change over
time of an electric current. More interesting than the data itself, however, is the
underlying cause that produced them (e.g. a particle interacting inside the detector
volume). The properties of this underlying cause have to be described by a model
using a well defined set of parameters θ (e.g. energy of that particle and point of the
interaction). The challenge is now to determine the most probable values for all or
some θ parameters based on the measurement x. This process is called parameter es-
timation or reconstruction. In addition to the most probable values, confidence levels
or posterior distributions for the parameters are also of interest.
A frequently used reconstruction method is the so-called maximum likelihood esti-
mation. For this method, a likelihood function (sec. 3.2) has to be constructed that
connects x and θ via probability distributions. Maximizing this function yields the
best-fit θ values based on x. Another inference method are direct parameter esti-
mators which use machine learning (sec. 3.3) to gain knowledge about the relation
between x and θ. They are trained on large amounts of simulated data and directly
predict the most probable θ values without the need of a minimization (in the infer-
ence process). It is also possible to combine likelihood and machine learning efforts,
for example using likelihood-free inference (sec. 3.4). Here, machine learning is used
to learn the likelihood function.

3.1. Probability

The concept of probability is essential for parameter inference in particle detectors.
Because of the randomness of the involved processes, like for example photon propaga-
tion or particle decays, the exact same θ can produce different x if repeated multiple
times. Conversely, two different θ can produce the same x because of the limited de-
tector resolution. Therefore, even the perfect reconstruction method will not always
return the true θ values but the most probable values given the data x. Thus, it has
to be defined what most probable means.
There are two main interpretations of probability, the frequentist and the Bayesian
interpretation. Both are shortly introduced in the following.

Frequentist interpretation

In the frequentist interpretation, probability is defined as the relative frequency of
occurrence in the limit of infinite trials. For example the probability P (1) to role a
one with a dice would be obtained by
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P (1) = lim
N→∞

N1

N
, (3.1)

where N is the number of trials and N1 the number of ones rolled.
This concept works for repeatable observations but not if the probability should be
defined for a unique event, e.g. what the probability is for a specific team to win the
championship this year. In the frequentist interpretation this probability would either
be 0 or 1, but it is unknown which.

Bayesian interpretation

In the Bayesian interpretation, probability is defined as the degree of belief based on
personal prior knowledge. This is a subjective definition because there is no general
prescription for priors. It is possible to assign a probability even to unique events like
the question about the probability for a specific team to win the championship this
year. However, this probability value will differ depending if a person is asked that
knows a lot about sports compared to a person without this knowledge.
The name Bayesian interpretation goes back to Bayes’ theorem for conditional prob-
abilities P (θ|x). In general, the probability for θ and x to occur together is:

P (x ∩ θ) = P (x|θ)P (θ) , (3.2)

so the probability for θ to be true multiplied with the conditional probability observing
x given θ. Bayes’ theorem states that P (θ ∩ x) = P (x ∩ θ) and that this can be
rewritten as:

P (θ|x) = P (x|θ)P (θ)
P (x)

, (3.3)

where P (θ|x) is the so-called posterior, P (x|θ) is the likelihood (see sec. 3.2), P (θ)
is the prior, and P (x) is called evidence.
Bayes’ theorem basically defines, for certain prior probabilities, how these probabili-
ties should change given the data.

For both interpretations the Kolmogorov axioms [45] of probability apply:

� P (A) ∈ R, P (A) ≥ 0: Probabilities are real numbers greater or equal to 0.

� P (Ω) = 1: The total probability is 1.

� P (
⋃N

i=1Ai) =
∑N

i=1 P (Ai): The probability for mutual exclusive events to hap-
pen together is the sum of the individual probabilities.

The difference between the two interpretations is what they consider as random
variable. For Bayesians θ is treated as random variable to which probabilities can be
attributed, while for a Frequentist θ is fixed but unknown and the parameters of the
x distributions are random variables.
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If probabilities should be assigned to a continuous spectrum x, a so-called Probability
Density Function (PDF) p(x) is used. It defines the probability of a ≤ x ≤ b as
follows:

P (a ≤ x ≤ b) =

∫ b

a
p(x)dx . (3.4)

3.2. Likelihood function

The likelihood function L(θ|x) is used to calculate the conditional probability of the
assumed model parameters θ given the observed data x. The basic idea of the concept
goes back to Ronald Fisher [46,47].
Let us assume that p(x|θ) is the probability distribution (probability mass function
for discrete and probability density function for continuous variables) for observing
a specific value of x given θ. The likelihood for a concrete measurement x1 is then
L(θ|x1) = p(x1|θ). Here only θ is variable, while x1 is fixed. In case of multiple
measurements x⃗ = (x1,x2, ...,xn) the likelihood is calculated by the product of the
individual probabilities

L(θ|x⃗) =
n∏

i=1

p(xi|θ) . (3.5)

To find the optimal values of the model parameters θopt, L(θ|x⃗) has to be maximized
with respect to θ.
Note that while p(x|θ) is a PDF, L(θ|x⃗) is not, since it is not normalized to 1 and
therefore violates Kolmogorov’s second axiom. The correct normalization is only
given by Bayes’ theorem.
Because the values of L are usually very small, it is common to use the logarithm
of the likelihood L = ln(L) (or LLH) to ensure numerical stability. Instead of
maximizing L, depending on the optimization algorithm of choice, minimizing −L
can be preferred.

According to the likelihood principle [48, 49], the correct likelihood function
yields the full information that can be extracted from the measurement. That does
not mean that a reconstruction based on the true likelihood will always yield the true
values of the θ parameters, but the most probable given the information provided by
the detector. How close these values are to the truth depends on the detector.
An advantage of having a likelihood function is that it can be evaluated everywhere
in the θ space. Since it strongly depends on the number of individual measurements,
it is difficult to interpret the absolute value of the likelihood function. However, ratios
between likelihood values (equivalent to differences of the log likelihood) can be used
to compare how much the data support different θ. This is sometimes referred to as
law of likelihood [1]. In fact, the likelihood ratio is the most powerful test-statistic to
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compare two θ [50] in the light of a measurement x. Different parameter values can
be compared as well as different numbers of free parameters.
The former is used to find the optimal values θopt for the model parameters. In
addition, it is possible to calculate the extent to which certain parameter values
are preferred over others, and consequently to calculate confidence levels for the
parameters. The later can be used to test the model. It opens the possibility to
find out how important a specific model parameter is to explain the data. While
additional free parameters will always lead to an equal or better modeling, the
important question is how much they improve the optimal likelihood value compared
to the other parameters. In general, an attempt should be made to use a model that
is as simple as possible (has as few parameters as necessary) [51].

A not insignificant disadvantage of the likelihood approach on the other hand
is that one has to exactly know p(x|θ) to compute the likelihood. While this might be
possible for simple experiments, it is not for any real world particle physics detector.
The probability distributions for a real detector are just too complicated to be fully
known. That means p(x|θ) has to be approximated, which can be associated with
high computational effort and high effort on the part of physicists who must model
all the physical phenomena involved. In addition, approximations lead to worse
reconstruction results.
Therefore, although the probability approach is in principle the best possible, its
implementation is often very difficult.

3.3. Machine learning

Machine learning describes a brought set of techniques where computer algorithms or
more generally artificial systems learn in order to improve performance on a task by
extracting knowledge from data. For a specific task it is not necessary to explicitly
tell the system how to solve it. Rather the system will learn a solution by iterating
through the data multiple times. In a successful learning process, the data are not
just memorized, but patterns and relations in the data are “understood”. The quality
of a trained system is defined by its performance on data that were not part of the
training process.
Often machine learning is seen as part of or equated with artificial intelligence, but
while there are intersections, machine learning in general does not require acting
independently, drawing conclusions or extrapolate the learned.

A simple example for machine learning would be an affine regression. Let us
assume a set of noisy data (xi, yi) generated from yi = a · xi + b + ∆n, where ∆n

is random (e.g. Gaussian) noise. The true values of a and b are unknown, but it
can be assumed that the functional relation between x and y can be described by
y = α · x + β. That is the model (function) and it has two free parameters namely
α and β. The next step is to define a so-called loss function that describes how well
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the model predicts the data. Here, for example the squared difference of the model
prediction and the actual value

∑
i(yi −α · xi + β)2 can be used. Minimizing this loss

with respect to α and β over the data points is nothing but learning a and b. With
an infinite amount of data, a and b could be learned perfectly.
For most tasks the learning process is to minimize a loss function which expresses the
difference of the expected and the actual system behavior. Another example would
be a binary classification where the loss function could be the mean of the absolute
difference between the predicted and the actual label. Minimizing this function over
the whole training set will lead to the optimal possible classifier.

Machine learning is used for example for medical applications [52, 53], speech
recognition [54, 55], in autonomous systems [56], or for playing a game [57, 58]. It is
also widely used in particle physics. Noise rejection [59], particle identification [60],
and also parameter estimation [61] are suitable tasks for machine learning.

What makes machine learning so useful for particle physics is the fact that it
only requires simulated data to train on. As mentioned in 3.2, p(x|θ) is usually
untraceable. However, forward simulation, for example Monte Carlo (MC [62])
simulation, is feasible with acceptable computational effort. So while it is not
possible to analytically write down p(x|θ), it is possible to effectively draw from
the distribution and show the results to a machine learning algorithm. Thus the
algorithm has access to p(x|θ) without the need to provide the function explicitly. In
addition, a trained model is fast to evaluate (especially on GPUs [63]).
Disadvantages are that it is not trivial to access the internal representation of the
data in the artificial systems. That makes it difficult to optimize machine learning
models as it is not clear which part prevents the model from a better understanding
of the data. Machine learning algorithms are also bad at extrapolating beyond what
they have learned and prone to biases [64]. It must therefore be ensured that the
training data cover the whole parameter space of interest as uniformly as possible.
Another problem might be the amount of available training data. Although having
training data at all is sufficient to train a model, a large amount may be required to
get a good model. From the point of view of reconstruction, it is disadvantageous
that for a specific x the model only returns a specific θ, without providing any
other information. For parameter uncertainties or parameter importance measures,
additional machine learning models would be required.

3.3.1. Categories

Depending on the available data (or better the information that can be extracted
from them) and the given task (e.g. regression, clustering or playing a game) one can
roughly distinguish between three main categories of machine learning: Supervised
learning, unsupervised learning and reinforcement learning.
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Supervised learning

Supervised learning is probably the most common category. Here the artificial
system is trained on labeled data. For each step in the training process the desired
output (true label ytrue) is known and compared to the actual output of the system
(predicted label ypred). This comparison is done with a loss function, which yields
smaller values if ytrue and ypred match better. Minimizing the loss function will
lead to better predictions of the model and is called training. The minimization is
done via so-called backpropagation [65]. First, the model evaluates the training data
and calculates the loss based on this prediction and the truth. Then, the derivative
of the loss function is taken with respect to all free parameters of the model, so a
gradient-based minimizer can change these parameters to reduce the loss value. This
is repeated until no more improvement is achieved on an independent data set that
was not part of the training and is used to avoid overfitting the training data.

Supervised learning problems can be divided into two main types:

� Regression: learning to predict the output of a continuous function. For ex-
ample predicting the energy of a particle based on some detector data.

� Classification: sorting the input into different classes, which is basically map-
ping onto a discrete function. Noise or particle identification are examples for
this type.

Parameter estimation, in the context of a particle detector, falls into this category.

Unsupervised learning

If the data are unlabeled, there is no desired output which the artificial system can
learn to predict. In unsupervised learning it searches for similarities or anomalies in
the data. Thus, the system tries to identify clusters or hidden patterns that are not
predefined by its creator. This is done by trying to mimic the data and consequently
learning about their structure. Therefore, unsupervised learning is well suited for
generative tasks or image and pattern recognition. It can also be used for feature
reduction, for example with a principal component analysis [66] or a singular value
decomposition [67].

Reinforcement learning

Reinforcement learning does not require data but an environment in which the
artificial system, called agent, cant take actions and earns a reward for it. The
learning process consist of multiple tries of the agent to gain the highest possible
reward from the environment. Actions that lead to a higher reward at the end are
given preference. In that way the agent learns the optimal behavior in the given
environment. Reinforcement learning can be seen as the part of machine learning
that is closest to artificial intelligence.
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Machine learning is a constantly evolving field and there are applications that
do not perfectly fit in any of these categories.

3.3.2. Methods

Many different methods can be used in machine learning. As mentioned before an
affine regression is (a rather simple but still) a machine learning method. The same
is true for a linear and a logistic regression. More general methods include for ex-
ample random forests [68], (boosted) decision trees (e.g. [69]), or support vector ma-
chines [70]. This list is far from being complete, and new methods are constantly
being developed.
Some methods are mainly used in one machine learning category. For example cluster-
ing methods like k-means clustering [71] solve unsupervised learning problems, while
Q-learning [72] is a method used in reinforcement learning.

Neural networks

Artificial neural networks have become the most successful machine learning method
in recent years. They are inspired by the biological neuron that forms the brain. The
basic idea goes back to McCulloch and Pitts in 1943 [73]. Rosenblatt succeeded in
making the first simple implementation (called perceptron) in 1957 [74].
An artificial neuron basically represents the function shown in fig. 3.1. It gets n
input values x1, x2, ..., xn, where n can be any integer 1 or higher. The input values
are provided by other neurons or are the inputs of the network itself. Each input is
assigned a weight w1, w2, ..., wn that represents how important the connection between
the two neurons is. Everything the neuron does is to sum up all its weighted inputs
and add a bias b. The result is then inserted into an activation function f , which
calculates the output of the neuron. The purpose of the activation function is to
only pass important information and to make the calculation non-linear. A famous
example is the Rectified Linear Units (ReLU) function which is 0 for negative values
and the identity elsewhere. Thus important information encoded as high positive
output values can pass through while less important information is filtered out. For
more details on activation functions, see [75].
The weights as well as the bias are trainable parameters. That means that during
the training (or learning) process they are changed to achieve the optimal result.
Similar to the learning process in the human brain some connections between neurons
become more important (high weight) and also some neurons get a higher chance to
be activated (high bias).
There are many types of neural networks but they mainly differ in the way the neurons
are connected to each other and the structure of the input. The most interesting for
this thesis is the multilayer perceptron (MLP), often referred to as densely or fully
connected neural network. It consists of multiple layers of neurons and connects each
neuron in a layer to every neuron of the previous layer. The first and the last layer
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Figure 3.1.: Function represented by an artificial neuron. It gets n inputs (x1, ..., xn)
and returns a single (float) output value. Each input xi is multiplied by
a weight wi and added up. A bias b is added to this sum. Finally, the
result is inserted into an activation function f . Weights and bias are the
free trainable parameters of the artificial neuron. This is the fundamental
building unit of most neural networks.

are called input respectively output layer. All layers in between are hidden layers. At
least one hidden layer is needed in a MLP. Figure 3.2 shows a sketch of a MLP.

Figure 3.2.: Sketch of a multilayer perceptron or fully connected artificial neural net-
work with two hidden layers.

A fully connected network with only a single hidden layer can already approximate
any Borel measurable function if it consist of enough hidden neurons (“Universal
Approximation Theorem” [76]). However, deep neural networks, i.e. networks with
many hidden layers, are usually used because they need fewer neurons to achieve
acceptable results. Training deep networks is called deep learning [77].
How a network is trained depends on the task it is trained for. For this thesis
supervised learning is the most important category of machine learning. As explained
in sec. 3.3.1, backpropagation is used to calculate the gradient of the loss function
with respect to the network weights over the training data. Changing the weights
opposite to the gradient reduces the loss function. This is called gradient descend. In
case of large training samples and many network weights, this calculation can become
computationally expensive. To avoid this, a stochastic approximation [78] of gradient
descent is used, called stochastic gradient descent. Instead of calculating the gradient
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over the entire training sample, randomly chosen small batches of training data are
used to iteratively update the network parameters. The size of the batches has to
be balanced between the speed of the calculation, which is faster for smaller batches,
and the quality of the gradient approximation, which is better for a lager batch size.

In practice it can be very difficult to construct and train a network to achieve
sufficient results. Since there is no clear mathematical way to optimize its structure
for a given task, the best practice is often trial and error. Also the amount and
distribution of available training data are crucial numbers for the quality of the
network approximation of the data.

3.4. Likelihood-free inference

One approach to combine the advantages of having a likelihood function and using
machine learning techniques is likelihood-free inference with amortized approximate
ratio estimators introduced in [3]. Likelihood-free in this context means that it is
not necessary to construct a likelihood function in advance, rather it is learned from
simulated data. No prior knowledge of the likelihood is required for this, it must only
be possible to create a forward simulation (e.g. MC) to train on.

In general, learning to predict the output of a function would be a regression
task. However, in the likelihood-free approach a binary classifier d(x,θ) is trained
to distinguish dependent correlated combinations of measurement x and model
parameters θ from independent random combinations of x and θ. The dependent
combinations originate from forward simulation and are basically drawn from p(x,θ).
They get the class label 1. The independent combinations are randomly drawn from
the product of their individual probability distributions p(x)p(θ). They are assigned
a class label of 0. Using the Binary Cross-Entropy (BCE, see equ. 3.6) as loss function
and the sigmoid activation (see equ. 3.10) in the final layer of the classifier, it can be

used to approximate the likelihood-to-evidence ratio p(x|θ)
p(x)

: = r(x,θ). The evidence,

sometimes also called marginal likelihood, is the probability p(x) of observing the
measured data x. For a specific measurement, p(x) is constant and consequently
r(x,θ) is proportional to the likelihood p(x|θ).
Figure 3.3 illustrates the basic idea of the algorithm used to train d(x,θ). Note that
it proposes to newly simulate a batch of x in every iteration. This would take very
long, and besides, the simulation data were already created in advance. Figure 3.4
shows a way to prepare pre existing MC simulation for the algorithm.

In the following, it is shown why the proposed training procedure leads to the fact
that the classifier d(x,θ) can be used to approximate the likelihood-to-evidence ratio
r(x,θ).
The binary cross-entropy loss H for the training is given by:
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Figure 3.3.: The algorithm used for the likelihood-free training process. ϕ refers to
the trainable parameters of the classifier d(x,θ), BCE stands for binary
cross-entropy. Image from [3].

H = −p(x,θ) ln(d(x,θ))− p(x)p(θ) ln(1− d(x,θ)) (3.6)

In the process of training the classifier this loss is minimized and the optimal classifier
d∗(x,θ) sits at the minimum of the loss function.

δH

δd

∣∣∣∣
d∗

= 0 ⇒ − p(x,θ)

d∗(x,θ)
+

p(x)p(θ)

1− d∗(x,θ)
= 0 (3.7)

Rearranging equation 3.7 yields:

d∗(x,θ)

1− d∗(x,θ)
=

p(x,θ)

p(x)p(θ)
=
p(x|θ)
p(x)

= r(x,θ) (3.8)

So the optimal classifier yields the likelihood-to-evidence ratio. A non optimal classifier
d(x,θ) will therefore represent the ratio estimator r̂(x,θ)

d(x,θ)

1− d(x,θ)
= r̂(x,θ) ≈ r(x,θ) =

p(x|θ)
p(x)

. (3.9)

This ratio estimator can be extracted from a trained classifier by taking its decision
function X, so the input of the final sigmoid activation function.
The sigmoid function is defined as:

sigmoid(X) =
eX

eX + 1
= d(x,θ) (3.10)
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Rearranging the definition of r̂(x,θ) yields:

d(x,θ) =
r̂(x,θ)

r̂(x,θ) + 1
(3.11)

From equation 3.10 and 3.11 it follows

X = ln(r̂(x,θ)) ≈ ln

(
p(x|θ)
p(x)

)
(3.12)

So the classifier output before the final sigmoid activation approximates the loga-
rithm of the ratio estimator. That also means that for a fixed measurement x it
is the logarithm of the likelihood plus a constant term, which can be neglected for
minimization tasks or likelihood ratios.
An additional advantage of extracting the logarithm of the likelihood-to-evidence
ratio from the classifier is that it is numerically more stable.

As mentioned before, the simulation data usually already exist. The recom-
mended way to prepare existing MC simulation to train a classifier for likelihood-free
inference is illustrated in fig. 3.4. Instead of creating new simulation in each iteration,
the combinations of x and θ labeled with 0 are obtained by randomly shuffling θ
(or x). That is equal to randomly drawing from p(x) and p(θ). Accordingly, the
combination of x and θ obtained in this way will have the probability p(x)p(θ).
The shuffling can be repeated in each iteration to show the classifier more different
combinations. Another important feature of the shuffling is that it yields balanced
class labels (same number of 1 and 0 labeled combinations). So the classifier will not
be biased towards one of the classes.
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Figure 3.4.: The recommended way to prepare existing MC simulation data for a
likelihood-free inference training process. Combinations of θ and x that
come from simulation are labeled as 1, while random combinations ob-
tained from shuffling θ (or x) get the class label 0. Plot made by Aaron
Fienberg.
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4. The IceCube Neutrino Observatory

The IceCube Neutrino Observatory [79] located at the Geographic South Pole is a
particle detector specialized in the measurement of neutrinos. This chapter introduces
the detector and explains what exactly it measures. It is also described how these
measurements can be used in a reconstruction.

IceCube is among the largest detectors in the world, featuring an instrumented
volume of about one cubic kilometer. It consists of 5160 photosensors frozen into the
deep antarctic glazier mainly detecting Cherenkov radiation (see sec. 2.1.4) emitted
from charged particles produced after neutrino interactions with the surrounding
ice. IceCube is designed as a neutrino telescope with the primary goal of observing
high energetic (TeV or higher) neutrinos from outside our galaxy to enable inferences
about their sources. However, it is also able to observe lower energetic (GeV)
atmospheric neutrinos to study their properties.
86 holes were melted into the ice sheet down to a depth of about 2450m, which is
roughly 400m above the Antarctic bedrock. Each of them is filled with photosensors
attached to a cable called string. The last 8 strings belong to the low-energy infill of
IceCube, called DeepCore, discussed in 4.3.1. For the others the instrumented region
reaches from a depth of 1450m to 2450m. With 60 sensors per string this results in a
vertical sensor spacing of roughly 17m. The horizontal spacing between these strings
is about 125m. All strings are connected to the so-called IceCube laboratory at the
surface which provides the power and collects the data from the strings. After the
(pre-processed) data is collected, it is sent to the “north” via satellite.
Figure 4.1 shows a schematic view of the detector including its sub-arrays.

IceTop

IceTop [80] is an extensive air shower array build at the surface above the IceCube
main detector. It consists of two Cherenkov tanks per in-ice IceCube string separated
by 10m from each other. The tanks are filled with clear ice and two DOMs each.
The original idea for IceTop was to use it as veto for the in-ice detector. If there is a
coincident signal in IceTop and the in-ice detector, there is a high probability that the
observed event is either a atmospheric neutrino or muon and not of galactic origin.
However, IceTop only covers a small area of the solid angle and no analysis actually
used it as a veto [81]. IceTop is used to study cosmic rays [82].
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50 m

1450 m

2450 m 

2820 m

Eiffel Tower
324 m 

IceCube Lab

Bedrock

IceCube In-Ice Array
 86 strings including DeepCore
5160 optical sensors

DeepCore 
8 strings optimized for lower energies +

480 + 420 optical sensors

IceTop
81 stations / 162 tanks
324 optical sensors

7 standard central strings

Figure 4.1.: Sketch of the IceCube neutrino telescope located at the geographic South
Pole. The antarctic glazier ice is displayed in a transparent light blue
color. IceCube strings and DOMs are shown as grey lines respectively
black dots. On the left side the depth below the surface and on the right
side the numbers of deployed modules are shown. The cosmic ray detector
IceTop (colored) and the low energy sub-detector DeepCore (green) are
also part of the sketch. In addition, the Eiffel Tower is used to demonstrate
the size of the detector. Plot taken from [79].

4.1. The detection medium - deep Antarctic ice

The deep Antarctic glazier ice is the detection medium for IceCube and can therefore
be considered as part of the detector. In the following, the optical properties of this
medium are briefly discussed.
At the instrumented depths this ice is under a enormous pressure. Ice has a density of
about 0.92 g cm−3 [83]. So the pressure increases about 0.92 bar per 10m depth and
reaches about 190 bar to 230 bar in the DeepCore volume. Impurities, for example
air bubbles, in the ice are compressed to a point where they only contribute very
slightly to photon absorption. Therefore this ice is extremely clear. The absorption
length for 400 nm photons ranges from about 50 to more than 250m [84]. Only at
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a depth around 2050m the absorption is larger due to a dust layer in the ice. The
high absorption lengths make it possible to use a sensor spacing of tens or hundreds
of meters.
However, light scattering in ice plays a more important role for IceCube. Figure 4.2
shows the absorption and scattering properties of the Antarctic glazier ice at different
depths.

Figure 4.2.: Optical properties of the deep Antarctic ice. Plot taken from [85].

It can be see that the scattering length is only about 20m to 80m in the DeepCore
region. So while photons fly long paths through the ice, these paths are not straight
lines. This makes a reconstruction difficult because a photon arriving from a certain
direction was not necessarily produced in that direction. In addition, scattering is a
stochastic process and photon trajectories may look very different even if the initial
photon started under the exact same conditions. An example of the result of photon
scattering can be seen in fig. 5.11 where the arrival time distributions of photon hits
at different DOMs are shown.

Scattering and absorption are the most prominent optical properties of a medium.
However, there are more effects to be considered. The Antarctic glazier is moving
with a speed of about 10m per year at the Pole [86]. This leads to an optical
anisotropy in the flow direction [85]. In addition, the bedrock of the Antarctic
continent is not completely flat. While the ice is moving it fills the bedrock valleys
and the ice depth layers are tilted to form the same structure as the ground. Ice
anisotropy and tilt further complicate the photon propagation. They make the glazier
ice a inhomogeneous medium.
More about the optical properties of the deep Antarctic glazier ice can be read in [85]
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in great detail.

4.2. The Digital Optical Module

The installed photosensors are called Digital Optical Modules (DOMs) [87]. They
mainly consist of a photomultiplier tube, a pressure vessel as well as readout and sup-
ply electronics. The DOM is the fundamental building block of the IceCube detector.

PhotoMultiplier Tube

The actual photon detection unit of a DOM is a PhotoMultiplier Tube (PMT). PMTs
are light sensors that are sensitive enough to detect single photons.
The important components of a PMT are a photocathode and several metal plates,
called dynodes, in an evacuated tube. A high voltage is applied to the plates which
increases from plate to plate. Figure 4.3 shows a sketch of the different components
of a PMT and how they are arranged.

Figure 4.3.: A sketch of the essential components of a PhotoMultiplier Tube (PMT).
Plot taken from [88].

The photon detection principle is based on the photoelectric effect [89]. A photon
whose energy is high enough can release an electron, called PhotoElectron (PE), out
of the photocathode. This electron is then accelerated towards the first dynode where
it releases multiple secondary electrons. These electrons are accelerated towards the
second dynode and the electron multiplication continues. At each dynode the number
of electrons is multiplied and at the final dynode or anode a current is measurable.
Since an electron does not always release exactly the same number of electrons from
a dynode, this current varies even for the same number of initial PEs. Usually, the
current is translated into a corresponding charge. The average current produced by a
single initial photoelectron is assigned a charge value of 1 PE.
More details about PMTs can be found in [88].

DOM composition

The DOM PMT is a 25 cm diameter Hamamatsu R7081-02 [90] operated with the
photocathode grounded. It is surrounded by a glass pressure vessel with a thickness
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of 13mm, which is able to withstand the high pressure at the instrumentation
depths. PMT and pressure vessel are optically connected via an optical silicon
(Room Temperature Vulcanization - RTV) gel ensuring an sufficient optical coupling
of the two components. To protect the PMT from external magnetic fields (e.g.
the Earth’s magnetic field), a mu-metal grid is placed between PMT and pressure
vessel. Several electronic components are installed to make the modules work as
independently as possible. A modular high voltage power supply provides 2 kV for
the PMT. Each DOM has a mainboard incorporated, which digitizes the measured
signals and performs first processing steps before sending the recorded data to the
surface. The mainboard contains a Field Programmable Gate Array (FPGA) and a
Central Processing Unit (CPU). The installed digitizers are described in sec. 4.2.1.
A Light-Emitting Diode (LED) flasher board can be used for calibration purposes
or to study ice properties by emitting short light pulses that can be detected by
other DOMs. After assembling, the DOMs are filled with dry nitrogen till their inner
pressure reaches half an atmosphere to make them mechanically stable.
Figure 4.4 illustrates the components of a DOM and how they compose the module.

Figure 4.4.: A sketch of the essential components of a Digital Optical Module (DOM).
Plot taken from [87].

4.2.1. Definition of a DOM hit

The DOMs are operated continuously. Every time the PMT sees a signal height of
more than 25% of the value that an average single photon would produce (0.25PE),
the DOM gets triggered.
The analog PMT signal is digitized by two different devices:
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� ATWD: A Analog Transient Waveform Digitizer (ATWD) [91] with a sampling
rate of 300 megasamples per second. It has three channels with different am-
plification levels (x16, x2 and x0.25). The most amplified channel is read out
first. If any sample in a channel exceeds a count of 768 the channel “saturates”
and the next lower amplified channel is digitized. 128 samples are stored, which
together with the sampling period of 3.3 ns leads to a coverage of an interval of
about 422 ns by the ATWD. The readout process takes about 29µs. No other
waveform can be digitized during this time, so it can be considered as deadtime.
Two ATWD chips are installed per DOM to reduce the deadtime.

� FADC: A Fast-Analog-to-Digital-Converter (FADC) with a sampling period of
25 ns (40 megasamples per second). It records 256 samples and therefore covers
an interval of 6400 ns. The FADC introduces no additional deadtime to the
readout.

Waveform unfolding [92] is performed on the digitized signal to determine a time and
a PE charge value for each hit. The hit time is an indicator of the arrival time of
the Cherenkov photons. In principle, a PMT can detect single photons. However,
due to a limited timing resolution multiple photons arriving promptly one after the
other can be combined in one hit with a higher charge. Figure 4.5 shows two example
waveforms and the result of their unfolding. The left one is a simple waveform likely
caused by only one photon. The right one seems to contain four photons. All of them
could be resolved into individual hits here.
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Figure 4.5.: Examples of hit time and charge determination via waveform unfold-
ing [92]. The solid histograms show the recorded signals digitized by
the ATWD (blue) and FADC (black). The dashed lines are the result
of fits to the respective histogram. Red lines indicate the hit time and
charge (right y-axis) obtained by waveform unfolding.

A distinction is made between two types of hits. Every time a DOM sees a hit it
is checked if there is also a hit in the two neighboring DOMs above or below on the
same string (so 4 DOMs are checked) within a time of ±1µs. If this is the case, the
hit is labeled as Hard Local Coincidence (HLC). HLC leads to a full readout of the
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FADC and ATWD channels. If there are no other hits in the time window the hit is
labeled as Soft Local Coincidence (SLC). The name is a bit misleading because there
is actually no coincident hit at all. For an SLC hit the readout is reduced to only 3 out
of the first 25 samples of the FADC (the highest amplitude bin and its two neighbors).
No ATWD readout is done for SLC hits.

Background hits

Not all hits recorded by a DOM originate from Cherenkov photons emitted by charged
particles. These additional hits do not provide any physics information and are there-
fore called background hits.
One source of background hits is so-called noise. For PMTs, dark noise is the dominant
background source [79]. Dark noise means that a PMT signal was produced although
no photon was present. It has many possible sources including for example thermal
motion that can release electrons from the PMT’s photocathode or radioactive decays
in the glass of the PMT and pressure vessel. Fortunately, some of these effects are
suppressed at low temperatures. When a DOM is cooled down, until reaching a tem-
perature of -5 °C, its noise rate decreases, but increases again for lower temperatures.
This behavior is not completely understood. The overall DOM noise rate is about
560Hz [79].
Another type of non-signal hits observed in DOMs are so called late hits. They oc-
cur when photoelectrons are scattered back from and accelerated again to the first
dynode. Around 4% of all hits are late hits, most of them arriving 26-65 ns after the
primary signal [93].
A third type of background hits are afterpulses. The PMT is not perfectly evacuated.
When electrons are accelerated between the dynodes they can interact with residual
gas molecules and produce ions. These ions are accelerated onto the photocathode
where they emit electrons which then produce delayed signals. The time delay depends
on the ion type and ranges from a few hundred ns to a few µs [94].

4.3. Low energy instrumentation

The IceCube string and sensor spacing was optimized to detect and contain TeV-PeV
neutrino events. However, the IceCube detection principle is also ideally suited for the
detection of neutrinos with lower energies. A subset of the DOMs was arranged in a
closer spacing to be able to also adequately measure atmospheric neutrinos with ener-
gies in the GeV range. This existing IceCube low energy instrumentation is presented
in this section as well as a future extension of it.

4.3.1. DeepCore

The last 8 strings (79-86) deployed for IceCube have a closer horizontal spacing of
between 40m and 90m instead of 125m. Also their vertical DOM spacing is reduced
from 17m to 7m. The lower 50 DOMs on these strings only cover depths between
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2100m and 2450m, where the ice is extremely clear and the atmospheric muon back-
ground strongly reduced. The upper 10 DOMs cover depths between 1750m and
1850m just above the dust layer. DOMs on these 8 strings have a Higher Quantum
Efficiency (HQE), so a higher probability to detect a photon. They form the Deep-
Core [95] sub-array whose purpose is to measure atmospheric neutrinos with energies
on the GeV scale. Note that sometimes the (bottom 22 DOMs of the) 7 adjacent Ice-
Cube strings are also considered as part of DeepCore. The DeepCore energy threshold
is considered to be ∼5GeV.
Figure 4.1 shows the position of DeepCore in IceCube and fig. 4.6 its sensor spacing
and instrumentation depth.

The DeepCore event extraction

The IceCube detector runs without major breaks (>99% uptime [79]). A procedure
is needed to extract individual events from this continuous data stream. This
includes both triggering and vetoing. Hit cleaning, which targets background
hits, is performed as part of the event extraction process. Many different algo-
rithms “filter” the IceCube data stream for interesting events. It depends on the
analysis which one to use. For low energy (∼GeV) analyses there is the so-called
DeepCore filter. If all conditions of this filter are fulfilled a DeepCore event is recorded.

The goal of the DeepCore filter is to keep/catch atmospheric neutrino events
(initial rate ∼4mHz) while rejecting atmospheric muons (initial rate ∼3 kHz).
As trigger condition a Simple Multiplicity Trigger (SMT) is defined. It requires three
HLC hits in DeepCore DOMs within a time window of 2.5µs. This trigger condition
is called SMT3. All hits, HLC and SLC, occurring in this 2.5µs time window are
included as part of the triggered event. It is designed to accept neutrino events,
but does not explicitly reject atmospheric muons. The rate of events passing the
SMT3 trigger is ∼280Hz and thus significantly higher than the expected atmospheric
neutrino rate.
So a veto algorithm is needed to reduce the number of muon events. First, a
“fiducial” and a “veto” region is defined in the detector. The fiducial DOMs are all
high quantum efficiency DOMs as well as the DOMs on strings immediately adjacent
to the HQE strings. All other DOMs form the veto region. A hit cleaning, which
targets background hits, is performed for all hits in fiducial DOMs. It removes DOMs
with the first hit occurring more than one standard deviation away from the mean
hit time. Then, a so-called SeededRT cleaning is performed, which iteratively looks
for hits that could be causally connected. It starts with a subset of hits, typically
all HLC hits, and checks for all other hits if they are within a radius of 125m and a
time of 500 ns to one of the hits in this subset. All hits that meet these criteria are
added to the subset, and the remaining hits are checked again against the now larger
subset. This is repeated until no hits are added to the subset anymore.
For the cleaned fiducial hits the Center of Gravity (CoG) is calculated:
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x⃗CoG =

∑N
i x⃗i
N

, (4.1)

where N is the number of all hits and x⃗ the vertex position.
An average hit time is calculated assuming a isotropic light emission at x⃗CoG and
neglecting any scattering:

tCoG =

∑N
i ti − |x⃗i−x⃗CoG|

c/nice

N
, (4.2)

with t being the time of a hit, c the vacuum speed of light, and nice the refractive
index of ice.
For all hits in veto DOMs an effective particle speed v is calculated based on the CoG
of the fiducial hits:

v =
|x⃗CoG − x⃗hit|
tCoG − thit

. (4.3)

Atmospheric muons traverse the whole detector approximately at c (0.3m/ns). They
often deposit (nearly) unscattered hits first in veto and then in fiducial DOMs. This
leads to positive v values of about 0.3m/ns. Neutrino events on the other hand occur
inside the detector and will illuminate fiducial DOMs first (and sometimes exclusively).
This leads to negative v values. If more than one veto hit gets an effective speed of
0.25m/ns ≤ v ≤ 0.4m/ns, the event is rejected.
The algorithm reduces the atmospheric muon rate from 280Hz after the SMT3 trigger
to about 17Hz while keeping 99.4% of neutrino events in DeepCore [96].

4.3.2. The IceCube Upgrade

The IceCube Upgrade [97] is a planned (and completely funded) low energy exten-
sion to the existing instrumentation. 7 additional strings will be deployed featuring
approximately 700 optical sensors in total. The sensor spacing is further reduced
compared to DeepCore and is about 20m (horizontal) and 3m (vertical). The new
sensors will be located in the clearest ice region inside the DeepCore volume.
Figure 4.6 shows the Upgrade string layout compared to the existing IceCube and
DeepCore strings.
As indicated in fig. 4.6, new types of optical modules have been developed for the
Upgrade. The main difference to the standard IceCube DOM is that the new modules
consist of more than one PMT. The two modules the Upgarde will essentially consist
of are the mDOM [98] and the D-Egg [99].
The multi-PMT Digital Optical Module or short mDOM hosts 24 PMTs in a
spherical pressure vessel. This design is based on the module used by the KM3Net
collaboration [100, 101]. The installed mDOM PMTs have about one-third the
diameter of a DOM PMT. Their different orientations nearly cover the entire solid
angle and provide directional information about the incoming photons. In addition,
hit coincidences in a single module can be used for triggering.
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Figure 4.6.: Position and instrumentation of the Upgrade strings. The left plot shows
the position of the strings in the horizontal plane relative to the existing
IceCube and DeepCore strings. The instrumented depth and sensor spac-
ing is also compared to the existing strings. More details on individual
string instrumentation can be seen in the right plot. Plots taken from [97]
and [98].

The D-Egg incorporates two PMTs and is oval shaped to fit into thinner bore holes.
One of the PMTs looks straight down (towards Earth) and the other straight up
(towards the surface). They are HQE PMTs with about 80% of the size of a DOM
PMT. Its design is based on the original DOM, but the D-Egg has a higher photon
collection efficiency while being cost-effective.
Figure 4.7 shows an image of both new module types.

The Upgrade will lower IceCube’s energy threshold from about 5GeV to approxi-
mately 1GeV. This will increase the number of detected atmospheric neutrinos [97].
In addition, a improved atmospheric neutrino event selection can be expected with
the Upgrade (see sec. 6.3.1). The additional information, more hits per event and the
different PMT orientations, will moreover allow to better reconstruct events at low
energies. All this will increase the sensitivity of IceCube to the atmospheric oscilla-
tion parameters [97]. Figure 6.16 illustrates that most of the atmospheric neutrino
oscillation happens below the DeepCore threshold, the Upgrade will give better access
to this region.
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(a) Rendering of an (exploded) mDOM [98].

(b) Picture of an D-Egg [99].

Figure 4.7.: Images of the two optical module types that will mainly be deployed for
the IceCube Upgrade.

4.4. Low energy reconstruction

Reconstructing GeV neutrino events in IceCube is challenging. Due to the large sensor
spacing, after noise cleaning, there are not many hits left in an event. A median
DeepCore GeV event contains 17 hits, distributed over 14 DOMs and 6 strings, most
of which have a charge of about 1PE [102]. This is only a small fraction of the modules
in the detector. Moreover, the number of events to be reconstructed is usually on the
order of several millions, so a fast reconstruction algorithm is preferred.
In the following it is explained what information is available in an IceCube low energy
reconstruction and what is expected as its result. In addition, the reconstructions
currently in use are introduced.

4.4.1. Measurement and model parameters in the IceCube low energy
context

It is important to understand what the available observations x are that can be used
by a reconstruction algorithm, as well as what knowledge θ should be inferred from
these observations.

Measurement x

Speaking of a measurement in the context of a single DOM means a hit with a time
and a charge value. In addition, the position of the DOM can also be counted as
measurement. More details about DOM hits can be found in sec. 4.2.1. For the
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Upgrade modules the orientation of the hit PMT can also be added to the measurement
variables.
An IceCube measurement or event consists of a collection of DOM hits. These hits
come from multiple modules, but a single DOM can contribute more than one hit to
this collection. Because the detector runs continuously, a trigger system is needed to
determine when an interesting event happened and which hits should be part of it.
This task is fulfilled by the DeepCore filter described in sec. 4.3.1.
Figure 4.8 shows two example displays of simulated DeepCore events. Both events
contain a higher number of hits and hit DOMs compared the median of 17 respectively
14.

(a) Simulated event display of a 25GeV νe CC
neutrino interaction with the Antarctic ice
inside the DeepCore sub-volume.

(b) Simulated event display of a 25GeV νµ CC
neutrino interaction inside DeepCore. As
result of the interaction a 8GeV µ is pro-
duced (solid black line).

Figure 4.8.: Example event displays of two simulated IceCube low energy events. The
colored spheres represent hit DOMs. The size of a sphere corresponds
to the summed charge of all hits and the color to the first hit time in a
DOM. The black dashed line indicates the true neutrino direction, and
the black dot marks the interaction vertex. IceCube strings are shown as
grey lines. Plots are taken from [102].

With regard to machine learning applications it is important to note that the number
of hits, and hit DOMs, as well as where they appear in the detector varies between
different events. Thus, a machine learning method must be able to handle inputs of
different lengths, if it should be used to reconstruct e.g. DeepCore events.

Model parameters θ

An event model has to describe the properties of the incoming neutrino as well as the
interaction itself. At GeV energies the neutrino interaction with the highest cross-
section is deep inelastic neutrino nucleon scattering (see fig. 2.2). To include the
interaction in the model is important, because, for example, a muon neutrino with
the exact same properties can produce different event signatures depending on if it
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interacts via a charged or neutral current.
The following 8 parameters are used to describe a neutrino interaction with the Antarc-
tic ice:

Position (x, y, z)
Three dimensional position of the interaction vertex in the detector.

Time t
Time of the interaction relative to the first trigger time.

Direction (ϕazimuth, θzenith)
Azimuth and zenith angle of the direction the incoming neutrino.

Cascade energy Ecascade

Energy of all particles produced after the neutrino interaction that are neither
a neutrino nor the highest energetic muon.

Track energy Etrack

Energy of the highest energetic muon produced following the the neutrino inter-
action. If no muon is produced, the track energy is 0.

For most IceCube low energy analyses the total deposited energy Edeposited =
Ecascade + Etrack, which is a proxy for the incoming neutrino energy, and the cosine
of the zenith angle, which translates to the traveled distance of an atmospheric neu-
trino [103], are the most important parameters. This can be illustrated by looking at
equ. 2.16 which shows the two flavor oscillation probability of a neutrino. Therefore, it
can be useful to reparameterize the model. Cascade energy and track energy can be re-
placed by the total deposited energy and the track energy fraction (Etrack/Edeposited)
or inelasticity (Ecascade/Edeposited). The advantage of this parameterization is that
both parameters of interest are directly included, which makes it easier to calculate
uncertainties for them.
The other parameters of the event model can be of interest for an analysis too. They
are used for background and containment cuts as well as data-MC comparisons.

4.4.2. Particle IDentification (PID)

Particle identification is another important aspect for IceCube low energy analyses.
Although in this case no specific types of particles are identified, but a distinction is
made between two event signatures called tracks and cascades.
For an neutrino oscillation analysis, ideally the different neutrino flavors could be
distinguished, but this is not possible with DeepCore. All neutrino interactions
produce a similar sphere-like event signature called a cascade. In principle, there
are two different types of cascades namely electromagnetic cascades, produced by
electrons or taus after a νe CC respectively ντ CC interaction, and hadronic cascades,
produced by quarks after all interaction types and for all neutrino flavors. The light
yield is different for the two cascade types. In electromagnetic cascades more light

48



4. The IceCube Neutrino Observatory

per energy is deposited in the detector than in hadronic cascades [104], but they
are indistinguishable because it is always possible to scale the cascade energy to
match either type. However, there is one interaction that produces a different event
signature compared to all others. In a νµ CC interaction, a muon is produced which
flies about 5m per GeV [105] through the ice before decaying. At a few GeV muons
can travel far enough to leave the cascade and produce a elongated event signature
which is called a track. A second important point is that muons travel with nearly the
vacuum speed of light c trough the ice, while photons only have a speed of ∼ 0.75 c
in ice. That means Cherenkov light emitted by muons can produce earlier hits than
the Cherenkov photons from the cascade, but only in one direction.
Figure 4.9 illustrates the different interactions and what signatures they produce.

Figure 4.9.: Different neutrino interaction signatures in IceCube. All NC interactions
only produce a hadronic cascade, while CC interactions also produce a
electromagnetic cascade. A muon neutrino CC interaction produces a
muon which can travel long distances (∼ 5 m

GeV [105]) through the detec-
tor. This is called a track. In IceCube particle identification (PID) means
distinguishing tracks (νµCC) from cascades (all other interactions).

The primary goal of the IceCube low energy PID is to distinguish νµ CC interactions
from all others. Most atmospheric neutrinos are produced as νµ (see fig. 2.6) and for
DIS the CC cross-section is higher than the NC cross-section [106]. Consequently,
even though they are only produced in one interaction, more than half of the detected
neutrino events are tracks (see e.g. fig 6.15).
A machine learning classifier, like for example a boosted decision tree, is suitable for
PID [102]. However, according to the Neyman-Pearson lemma [107], a likelihood ratio
would be the most efficient test statistic. The ratio between a fit including a free track
energy and a fit with track energy fixed to 0 gives information about how important
the track is to explain the measurement. Thus, a likelihood based reconstruction
algorithm directly provides a PID.
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4.4.3. Current reconstructions

All advanced reconstruction methods used so far in IceCube low energy analyses are
based on a maximum likelihood (or minimum χ2) approach. As mentioned in 3.2,
pθ(x) is unknown for the DeepCore detector, therefore the distribution must be
approximated. A general concept in IceCube reconstruction is the use of so-called
photon lookup tables [2]. These tables contain the expected photon arrival time
distributions at a DOM, for a given event hypothesis, as well as the expected number
of detected photons.
To build a photon table, repeated forward θ → x simulation of the same light source
(e.g. a cascade or a muon) is used. The table contains the light flux in spacetime
around the source and is binned in 6 dimensions: 3 spatial coordinates and a time
relative to the photon emission point, the photon emission angle from the light source
principle axis, and the photon zenith direction angle. To avoid binning effects and be
able to evaluate the table at any point in the 6 dimensional space, the table is spline
interpolated and only the resulting splines are used. Because not only the photon
arrival time distribution is of interest, but also in the expected number of photons,
the table is split up into a part giving the arrival time PDF and a part giving the
normalization. The first part can be evaluated for individual hits, while the second
part is evaluated once per DOM.
Since a single table only describes one specific source, a set of tables is needed for
reconstruction. As explained in sec. 4.1, the Antarctic ice is not homogeneous. That
means properties like the position, especially the depth, and direction of the light
source make a difference and require a new table.

While there are more reconstructions that were developed for DeepCore, this
section will focus on the two used in the latest round of IceCube low energy
analyses, called oscNext. The first are actually two algorithms. The Single-string
Antares-inspired Analysis (SANTA, [102]) and the so-called LEERA algorithm. The
second reconstruction is called RetroReco [102].

SANTA/LEERA

SANTA focuses on the reconstruction of the neutrino direction angles. It is a fast
(∼0.15 s per event) reconstruction method. The algorithm is designed to only use hits
produced by unscattered photons, so-called direct hits. To achieve this, a cleaning
routine which aims to remove hits produced by light that has undergone significant
scattering is used in advance. The expected observation time of direct hits from
Cherenkov photons can be calculated geometrically using the Cherenkov angle in ice
and the direction of the neutrino respectively the charged particles produced following
the neutrino interaction. With this expected time and the measured time a χ2-fit can
be performed.
LEERA is a table-based energy reconstruction algorithm. It uses SANTA and another
fast reconstruction output to determine the direction and vertex of the event. The
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algorithm then scales the cascade energy and the track energy until the hit-no-hit
probability is maximized across all DOMs. The reconstruction time per event is at
the order of seconds.
The combination of SANTA and LEERA is fast, but only about 40% of the events in
the final oscNext selection (see sec. 5.2.1) fulfill the criteria to be reconstructed with
SANTA [102].

RetroReco

RetroReco is a table-based maximum likelihood approach. It attempts to reconstruct
all 8 parameters of the neutrino interaction model (see sec. 4.4.1) at the same time.
The likelihood function used in RetroReco has the following form:

L(θ|q⃗, t⃗ ) =
∑
i

qi ln(λ(ti|θ) + n)−
∫
λ(t|θ)dt−N (4.4)

where qi and ti are the charges respectively times of all detected hits. λ(ti|θ) + n is
the time dependent, unnormalized probability of registering a hit, consisting of the
contribution from the neutrino interaction λ(ti|θ) and the noise rate n.

∫
λ(t|θ)dt is

the total number of expected physics hits and N the total number of noise hits.
The reason for weighting the hits with their charge is that the reconstruction is based
on a collection of photons. As described in 4.2, due to a limited timing resolution of
the DOM, multiple photons can be combined to a single hit with a higher charge.

RetroReco uses a different approach to generate its photon tables. Instead of
simulating light sources and propagate the emitted photons, the sensors themselves
are treated as emitter. Hence the name RetroReco. A track hypothesis is modeled
as a series of colinear, constant luminosity emitters placed every ∼0.9m along the
trajectory.
RetroReco can handle scattered photons and therefore reconstruct all events. It is the
state of the art IceCube low energy reconstruction and shows superior performance
compared to SANTA and previous algorithms [102]. However, the RetroReco
reconstruction is significantly slower (∼40 s per event).

Another disadvantage of the table-based approach taken by RetroReco is that
it is difficult to transfer to the IceCube Upgrade. The tables for the new sensor
types would need more memory, because the PMT orientation has to be added as
dimension. Also the progress made in determining the ice properties would require
larger tables that include more details about the ice. In addition, the higher number
of hits will further slow down the reconstruction.

4.4.4. Potential

Finally, it is shown how potential improvements in parameter resolutions and PID
would affect the sensitivity of DeepCore to different analyses. As example analyses
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the determination of the atmospheric oscillation parameters and the neutrino mass
ordering are used. Both analyses are describe in sec. 6.2.2.
The artificial improvement is realized by shifting the reconstructed RetroReco values
of a parameter p by a fraction of the difference between reconstructed and true values:

pnewreco = poldreco + a · (ptrue − poldreco) , (4.5)

where a is the improvement fraction, ptrue the true parameter value, and p
old/new
reco the

reconstructed parameter value before respectively after the improvement.
Figure 4.10 shows the change in sensitivity depending on a change in resolution for
deposited energy, cosine zenith, or PID. For the PID, the BDT described in [102] is
used. It returns values between 0, the true value for cascade-like events, and 1, the
true value for track-like events. The left plot shows the 90% contour of the sensitivity
to the atmospheric oscillation parameters. The right plot shows the median sensitivity
to the neutrino mass ordering for different relative improvements.

Figure 4.10.: Potential gain in sensitivity due to improved parameter resolutions and
PID. Atmospheric oscillation parameters (left) and neutrino mass order-
ing (right) are shown. Only one resolution is changed at a time.

The PID has the strongest effect on both analyses. A 15% relative PID improvement,
a = 0.15 in equ. 4.5, would nearly double DeepCore’s NMO sensitivity. The other two
parameters have a less strong effect, but would still lead to an improvement.
Note that for this study, the binning of the analyses was not changed. With improved
resolutions, a finer binning could be used to better resolve oscillation signals imprinted
in the detected neutrino rates per bin. This would increase the sensitivity further.
However, it is not clear whether the detector provides enough information to actually
achieve these improvements.
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Light propagation in ice is a stochastic process. Even the exact same neutrino
interaction will produce different hit pattern if repeated multiple times. In addition,
the inhomogeneous glazier ice prevents translation equivariance, so the exact same
neutrino interaction will produce different hit patterns depending on the position of
the interaction in the detector. Learning the likelihood, so the conditional probability
of the model parameters θ depending on the observation, therefore has advantages
over the direct prediction of θ. The likelihood does not only encode information
about the most likely θ values, but also about the confidence in those values.
While in principle each binary classifier can be used for likelihood-free inference, deep
neural networks have dramatically improved the state-of-the-art in many domains of
machine learning [77]. So neural networks are used as classifier here.
DeepCore is not the ideal detector for many types of neural networks. The strings
are not aligned in a symmetrical arrangement. This will also be the case for future
detector extensions like the IceCube Upgrade. Thus, an approach that is flexible
with respect to the position of the sensors/observations is required. This is a problem
for e.g. convolutional neural networks which assume their inputs to be on a regular
grid when performing the convolution. Moreover, the number of hits strongly varies
between different events. That means it is important for the classifier to be flexible
about the length of its input data.

In this chapter, the implementation of a likelihood-free inference based recon-
struction method for particle detectors consisting of individual photosensors is
presented. This includes IceCube and its low energy facilities, but is also applicable
to any other detector of this type like for example KM3NeT [108] or Hyper-
Kamiokande [109].
First, assumptions about the likelihood function that should be learned are discussed,
followed by a description of how to learn the function. Then, the accuracy of how
well the function is learned is verified. Finally, a minimization process is presented,
that can minimize the likelihood.

5.1. Decomposing the likelihood

The first step is to think about what actually should be learned by the network.
Although the exact function is unknown, it is possible to make reasonable assumptions
about the composition of the likelihood.
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IceCube, as well as its sub-detectors and extensions, consists of a large number of
individual photosensors. To detect a particle interaction, observed hits in some of
these sensors is required. However, all sensors will never be illuminated and for
low energy events the vast majority will see no light. In addition, a single sensor
can register multiple hits in the same event. As mentioned in 4.4.1, a measurement
(event) x is basically a variable-length collection of hits, each of which provides a
time, a charge and a position. Each sensor contributes zero or more times to this hit
collection, so the total number of hits in the detector is an important component of
the measurement in addition to the information provided by the individual hits.

A likelihood suited for problems where the number of observations itself is a
relevant part of the measurement is the Extended Maximum Likelihood (EML) [110].
For a single sensor, the function is written as:

L(θ|x) =

[
N∏
i=1

p(xi|θ)

]
N (θ)Ne−N (θ) , (5.1)

where p(x|θ) is the Probability Density Function (PDF) for a single hit, N the
observed number of hits, and N (θ) the expected number of hits given the hypothesis
parameters θ.

The likelihood for multiple different sensors/PMTs is composed of the individ-
ual as follows,

L(θ|x) =
Nsens∏
s=1

[
Ns∏
i=1

ps(xi,s|θ)

]
Ns(θ)

Nse−Ns(θ) , (5.2)

where s is the sensor index and Nsens is the total number of sensors. The hit PDF
ps(xi,s|θ), expected number of per sensor hits Ns, and observed number of per sensor
hits Ns is different for each sensor. Therefore, each quantity must be subscripted
with an additional s. In this treatment of the different sensors, it is assumed that
the statistical variations are independent for each of them. That is the case, because
individual photons propagating through the ice do not affect each other and also the
noise in a sensor is independent of other sensors.
Equation 5.2 involves a product over hits that depends on ps(x|θ) and a scaling term
Ps(Ns|θ) = Ns(θ)

Nse−Ns(θ) that depends on Ns(θ). So the extended likelihood can
be expressed in terms of two probability distributions:

L(θ|x) =
Nsens∏
s=1

[
Ns∏
i=1

ps(xi,s|θ)

]
Ps(Ns|θ) . (5.3)

Consequently, knowledge of two different probability distributions is required. The
likelihood formulation presented in 5.3 will be called per-sensor formulation in the
following.
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While equ. 5.2 provides a complete description of the problem, it comes with
the practical disadvantage that while there may be only a small number of hits in a
given event, one must determine Ns for every sensor, including those with no hits.
This scales with the number of individual sensors that form the detector and can
become computationally expensive in cases where many thousands of sensors are
involved. To avoid that problem, equ. 5.2 can be rearranged defining the expected
number of hits in the total detector Ntot =

∑Nsens
s=1 Ns and the observed number of

hits in the total detector Ntot =
∑Nsens

s=1 Ns

L(θ|x) =

[
Ntot∏
i=1

Nsi(θ)

Ntot(θ)
psi(xi|θ)

]
Ntot(θ)

Ntote−Ntot(θ) . (5.4)

The details of this rearrangement can be found in sec. B in the appendix.
Now there is a term for each observed hit, with si indicating the sensor for hit i, and
an overall factor relating the total number of observed hits Ntot, to its expectation.
In this formulation, the non-hit sensors contribute solely through Ntot.

Finally, introducing ptotsi (x|θ) :=
Nsi (θ)

Ntot(θ)
psi(x|θ) and a similar probability distribution

for the scaling term as in the previous formulation Ptot(Ntot|θ) = Ntot(θ)
Ntote−Ntot(θ),

L(θ|x) =

[
Ntot∏
i=1

ptotsi (xi|θ)

]
Ptot(Ntot|θ) . (5.5)

This has the exact same form as equ. 5.1. In this formulation, s has taken the role
of an observable quantity rather than a label. Indeed, ptots (x|θ) is a joint probability
over x and s. If Ptot(Ntot|θ) is a Poisson distribution, then equ. 5.3 differs from
equ. 5.4 only through the proportionality constant Ntot!, which is independent of θ
and has no effect on parameter inference.
This formulation, written in equation 5.5, will be refereed to as all-sensor formulation
in the following.

The likelihood formulations described above assume that every single photon
can be resolved, but as described in 4.2 the timing resolution of the DOMs is limited
and photons that arrive within a short time can be combined to a hit with higher
charge. Both probability distributions, in both formulations, have to be modified
to include the charge information. The charge of a hit indicates approximately the
number of photons that are part of the hit. So the time pdf must be multiplied by
the charge of the respective hit, representing the different photons arriving at roughly
the same time, and in the scaling part the charge substitutes the number of hits. So
for example equ. 5.5 takes the following form including hit charges

L(θ|x) =

[
Ntot∏
i=1

qi p
tot
si (xi|θ)

]
Ptot(Qtot|θ) , (5.6)
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where qi is the charge of a individual hit and Qtot the complete charge observed in
the total detector.
For equ. 5.6 it does not make a difference if a single hit with charge 2 or two hits with
charge 1 are observed, assuming all other hit information are the same, and thus the
likelihood is less depended on the ability of the readout system to resolve individual
photons.

Illustration of the likelihood decomposition

To verify the validity of the likelihood decomposition discussed above and to illustrate
the difference between the per-sensor formulation and the all-sensor formulation of
the extended likelihood, a simple toy experiment can be used. In the toy experiment,
cascades are modeled as isotropic point-like light sources and tracks as sequence of
cascades. Analytic approximations of the PDFs that describe light propagation are
used. More details about the toy model settings can be found in chapter A in the
appendix.
The toy detector used here consists of a single string of five photosensors located in
the x-y plane. They all have a y-coordinate of 0 and their x-coordinates are linearly
spaced between -5 and 5, resulting in a distance of 2.5m between the sensors. The
example event is located in the x-y plane. It has a total energy of 2GeV distributed
evenly between cascade and track energy with the track pointing perpendicular to the
x-y plane.
Figure 5.1 shows the LLH (see sec. 3.2) contours corresponding to the nσ levels (n ∈
1, 2, 3, 4, 5) of x-y likelihood scans for this toy example. The different sub terms in
equ. 5.3 (first column) and equ. 5.5 (second column) formulation are shown as well as
the complete likelihood. The third plot in each row shows the difference between the
first two. The capital T marks the true position of the light source.
In the per-sensor formulation, ps(xi,s|θ) can not strongly constrain the position, be-
cause the probability for a photon to reach the respective sensor is part of Ps(Ns|θ)
and ps(xi,s|θ) is only responsible for the timing of the hits. In the all-sensor formu-
lation on the other hand, Ptot(Ntot|θ) does not contain information about individual
sensors. Therefore, the photon survival probability is part of ptotsi (xi|θ), which allows
the position to be better constrained.
The two formulations conceptualize and decompose the likelihood function differently
but ultimately yield the same result. However, the second formulation in terms of
Ntot does not require an explicit sum over all sensors. Hence, the all-sensor formula-
tion is considered to be faster to evaluate and less computing resource (e.g. memory)
intensive. It is used for most applications in this thesis. A comparison of networks
trained for both formulations is shown in sec. 6.1.2.

5.2. Learning the likelihood

The decomposed likelihood gives an idea of what should be approximated (learned)
by a neural network. The next step is to implement a process that allows neural net-
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Figure 5.1.: Two formulations of the extended likelihood for an event from the illus-
trative toy example described in the text. Contours in the negative log-
likelihood rather than the likelihood itself are shown. The first column
depicts terms from equ. 5.3, and the second depicts terms from equ. 5.5.
The respective terms are written in the title. In addition, their difference
is shown in the third column. The black T indicates the true location of
the interaction vertex.

work(s) to actually learn the likelihood function of the detector in question. Essential
components of this process are the training set from which the likelihood should be
learned, the structure of the neural networks and the training procedure itself.
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5.2.1. Training set

This section will focus on the MC simulation that was used to train the Deep-
Core networks, whose reconstruction performance is presented in sec. 6.2. For
all toy experiment results presented in this thesis the training set was uniformly
generated in all considered parameters of the neutrino interaction model, namely
[x, y, z, t, ϕazimuth, cos

(
θzenith

)
, E, I]. The IceCube Upgrade training event samples

are described in sec. 5.2.3.
For DeepCore the current IceCube low energy MC simulation sample was used to
train the networks. The sample is called osNext and goes through several selection
levels introduced in the following.

oscNext

The oscNext MC simulation and event selection is the most advanced for IceCube
low energy studies. It is used for (nearly) all analyses working with GeV energy
atmospheric neutrinos. The selection is subdivided into different levels representing
different cuts applied to the data. Figure 5.2 shows the expected neutrino rates
for different flavors in the sample at the different selection levels together with the
background rates from atmospheric muon and sensor noise. The goal of the cuts
performed at each level are also indicated.

Figure 5.2.: Rates of atmospheric neutrinos, muons, and noise at the different oscNext
selection levels. The plot is taken from [111].

Level 2 (L2) is a very basic selection/processing level used in all IceCube analyses. It
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contains all events that meet any of the trigger conditions defined for the detector.
Several low level quantities have been calculated at L2, like the calibrated waveforms
of the PMT signals. L2 represents the data acquisition described in [79]. The
DeepCore (DC) filter specifically selects events that show activity in the sub-detector.
It is described in sec. 4.3.1.
The specific oscNext selection starts after L2 and the DeepCore filter. It is shortly
described here. The reason for using different levels is that higher levels use more
complicated cuts that require more computing power. Applying these cuts to events
that can be removed with simpler cuts would be a waste of resources.

L3 uses simple cuts on variables that are fast to calculate, like the number of
hit DOMs or the time difference between the first and last hit, to remove noise
only1 events, atmospheric muons, and coincident events. It cuts out regions of
bad data-MC agreement resulting from event types that are not simulated, such
as atmospheric muon bundles or coincident events. Several different cuts are used
which will not be described here in detail. In summary, it can be said that muons
are identified by searching for temporally and spatially coincident hits in the veto
regions around the DeepCore detector (mainly above). Noise only events are
identified by looking at the number of hits or the hit times relative to each other.
Coincident muon events are usually longer in duration. Overall, the cuts significantly
reduce the noise only and muon rates while keeping most neutrino events (see fig. 5.2).

L4 uses Boosted Decision Trees (BDTs) to further reduce the number of muon
and noise only events in the sample. Two BDTs were trained (one for each type of
background) to distinguish neutrino (signal) events from the respective background.
The LightGBM [112] algorithm is used for both classifiers. Only cuts on the two
classifier outputs are used in L4.

L5 mainly aims to reject the remaining atmospheric muons. The muons that
have survived to this level do not have a clear muon-like signature (otherwise they
would have been caught by the BDT). At L5 two types of cuts are used. Starting
Containment cuts are designed to remove events that occur outside or at the edge of
the DeepCore fiducial volume. Corridor cuts should remove muons that pass through
the outer DeepCore veto region along specific corridors in the hexagonal IceCube grid
without producing light in any of the IceCube strings used as veto. Starting from L5,
the sample is neutrino dominated.

L6 involves the high level reconstructions described in sec. 4.4.3. The number
of events in the sample is now reduced to a rate that can be fully reconstructed
with a reasonable computational effort. Cuts based on reconstructed quantities are
performed at this level.

1events where no particle was present

59



5. Implementation of likelihood-free inference - FreeDOM

L7 is the final event selection level. More cuts are applied based on recon-
structed quantities from the previous level. These cuts can depend on the analysis
the sample is used for.

Only neutrino MC events, so events where a neutrino interaction was simu-
lated, are used in the training. The reason is that the likelihood of a neutrino
interaction should be learned, no muon or noise only model. Noise is also present in
simulated (and of course real) neutrino events and it is possible that for some only
noise hits are registered. However, even in that case information about the neutrino
interaction is provided, namely that it was to faint to cause more hits.
In order to maximize the event statistics, all MC events of the oscNext simulation
that pass the DeepCore filter (L2) were used to train the networks. This corresponds
to about 37.6 million events (∼8 million νe, ∼20 million νµ, ∼9.6 million ντ ), while
at the level where reconstructions are applied only about 8 million (∼2 million νe,
∼4 million νµ, ∼2 million ντ ) MC events are left. Higher selection level only cut out
entire events but no further hit cleaning (sec. 4.3.1) is performed, which would change
the average hit pattern observed from an event. Thus, it is save to reconstruct higher
level events with networks trained on L2+DC events. Figure C.6 in the appendix
shows that networks trained on L2+DC events can reconstruct L6 events better or
equally well than networks trained on L6 events.

However, not all L2+DC events are used in the training. It has been seen
that the track energy is the most difficult parameter to learn for the classifier (see
e.g. sec. 6.1.1). On the one hand, the light emission from a track is more complicated
to model than from a cascade. On the other hand, more than half of the events
are cascades, i.e. they have a track energy of 0, but all other track energy values
occur much less frequently. If half of the events in a training sample have the exact
same parameter value, but the distribution of the parameter is actually continuous,
this could lead to a bias towards this value. Therefore, all νµ and only 20% of
the νe events are used in the training. Thus, the networks have the chance to
learn each event signature but the track energy distribution is more uniform. ντ
events are not part of the training because at GeV energies their signature is identi-
cal to one of νe events. This still leaves a bit less than 22 million events for the training.

Figure 5.3 shows the true simulated distributions of all 8 parameters of the
neutrino interaction model at L2. The total deposited energy-inelasticity parameter-
ization is used. The x and y vertex position are combined in a single plot to better
visualize the distribution around the strings. Also the total deposited energy and
inelasticity are combined in a two dimensional plot. Its uppermost bins contain the
cascades and give an impression about the cascade energy distribution.
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Figure 5.3.: True parameter distributions for the used training set. The x and y vertex
as well as the total deposited energy and inelasticity are shown in a two
dimensional histogram. This visualizes the higher probability for an event
to be triggered close to a DeepCore string as well as the cascade energy
distribution. The positions of IceCube and DeepCore strings are marked
in the x-y plot as black dots respectively squares. The instrumented depth
of DeepCore strings is indicated as red dashed lines in the z plot.

5.2.2. Neural networks and training process

This section focuses on the specific application of likelihood-free inference on a
DeepCore-like detector, so a detector consisting of individual light sensors. A general
introduction to the method is given in sec. 3.4.
Following the approach discussed in [3] fully connected artificial neural networks
are used to approximate the likelihood discussed in sec. 5.1. These networks can
not handle a variable-length input, such as a variable-length collection of hits,
because they have a fixed number of input nodes. Fortunately, due to negligible
photon-photon interactions, the photon propagation in ice does not dependent on
other photons traveling through the ice. Consequently, hits are independent from
other hits in the same event. In order to solve the variable-length input issue, the
individual hit information, time and position of a single hit, for only one hit is given
to a network at a time. This network is called HitNet. This is done for all hits
in an event one after another and the network output is added up to build up the
likelihood. This way the network always sees the same input structure no matter
how many hits are part of the event. The number of hits just changes how often the
network is evaluated. However, information about the total number of hits is lost in
this process. Therefore, a second fully connected network, which is called ChargeNet,
has to be trained which gets the number of hits in an event as input. The output
of this second network has to be added to the output of the first one to obtain the
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complete likelihood. Figure C.3 in the appendix illustrates this construction of the
likelihood. The all-sensor formulation of the likelihood was used for the figure, the
difference between the networks in the different likelihood formulations are explained
in the following.

As described in 5.1, there are two different ways decomposing the extended
maximum likelihood. In both cases one gets a individual hit probability part (covered
by the HitNet) and an expected number of hits part (covered by the ChargeNet). One
formulation is using the expected number of hits per sensor equ. 5.2 and the other is
using the total number of expected hits for the total detector equ. 5.4. The training
process differs between the different versions of the networks. In general, the training
process introduced in [3] requires showing the networks combinations of measurement
x and model parameters θ as they come from the simulation labeled with 1 and
random combinations, obtained by randomly shuffling x to different θ, labeled
with 0 (see fig. 3.4). What changes for the different versions of the networks is the
observation x in case of the ChargeNets and the way to shuffle x and θ for the HitNets.

In the following, the networks are described in more detail. Both networks get
the full set of neutrino interaction model parameters θ as input, but they get different
observations x.

HitNet

The main purpose of the HitNet is to learn the photon arrival time distribution in a
specific DOM (at a specific DOM position) depending on θ. It gets time and position
of a hit as x input.
In the per-sensor formulation the HitNet x is shuffled in-sensor, meaning that only
observations from the exact same sensor are used for the shuffling. Thereby the
network learns ps(x|θ). For the HitNet in the all-sensor formulation x is shuffled
between all sensors, which allows the network to learn ptotsi (x|θ). Noise hits are treated
in the same way as signal hits in the shuffling, because they can not be distinguished
if they survived the noise cleaning.
Two additional steps have to be done for the HitNet training. Firstly, all MC events
are simulated at the same absolute time. This time is then shifted depending on the
event trigger time because this also defines the time scale for real data where the true
time of the interaction is unknown. This explains the spread in fig. 5.3. However,
even with this time spread the distribution is very narrow. To let the network also
experience larger time differences for shuffled x − θ combinations in the training,
the true event and corresponding hit times are smeared by a Gaussian. Since only
relative time differences are important for the likelihood this is not a problem for
true combinations but allows to see larger time differences for shuffled combinations.
Without this time smearing, the network can not properly learn to exclude large time
differences and instead starts to guess the likelihood. This can be a problem for events
with large time differences between the hits, like for example long tracks.
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Secondly, each hit has a charge expressed in Photo Electrons (PEs). The charge
includes the limited time resolution of the sensors which sometimes combines multiple
photons into a single hit with a higher charge. To be independent of the hit charge,
a hit with charge N is split up into N identical hits for the training. However, charge
values are not integer. A single photon will only on average produce a charge of 1 in
a PMT. So the modulo 1 value of the charge is interpreted as probability to create
another hit. For example a hit with charge 3.7 has a 70% probability to be split up into
4 hits and a 30% chance to be split up into 3 hits. Consequently, in the reconstruction
the likelihood contribution of each hit is multiplied (weighted) by its charge.

ChargeNet

The task of the ChargeNet is to learn the charge distribution in a specific DOM
respectively the whole detector depending on θ. Its measurement input x depends
on the likelihood formulation it is trained for.
The ChargeNet in the per-sensor formulation gets the total charge in and the position
of a single sensor as input and approximates Ps(Ns|θ) 2 as introduced in equ. 5.2.
Similar to the HitNet there are multiple observations per event, one per sensor, that
have to be added up to get the likelihood. The all-sensor formulation ChargeNet
gets the total charge in the detector as input to approximate Ptot(Ntot|θ) as shown
in equation 5.4, respectively Ptot(Qtot|θ) as shown in equation 5.6. In addition, its
gets the number of DOMs seeing light. The latter is not necessary but improved the
network performance.

These are the essential procedures to learn the complete likelihood function
L(θ|x⃗). In addition, to further improve the network performance a transformation
layer is used as first network layer. Quantities the likelihood should depend on, like for
example the distance between sensor and interaction vertex, can be calculated in that
layer and passed to the network instead of directly passing x and θ. Pre-processing
of the network input distributions can be performed in this layer too. The use
of pre-processing, for example normalizing the input distributions, can improve
the network performance [113]. Since HitNet and ChargeNet get different inputs,
different transformation layers are required.
In contrast to the activation in the last layer, the activation functions in all other
layers can be chosen freely. However, it is advantageous to use a smooth activation
function, otherwise the learned likelihood may not be smooth.
It is also recommended to reshuffle the independent combinations of x and θ, which
are labeled with 0, after each epoch of the classifier training. In this way, more
combinations can be used without having unbalanced class labels in the training.
Once the networks are trained, to obtain the logarithm of the likelihood from the
them, the activation function in the last layer is changed from sigmoid to linear, as
described in sec. 3.4.

2Actually, in the presence of charge it rather approximates Ps(Qs|θ)
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Figure 5.4 shows the structure of a network from its input to output including
a transformation layer. The plot shows two red output nodes even though there is
actually just one. The first one represents a node with a linear activation, the second
with a sigmoid activation. The sigmoid is used in the training process, the linear
activation during reconstruction.

Figure 5.4.: The structure of the neural networks used for likelihood-free inference. T⃗
represents variables calculated from x and θ. cout is the classifier output
and lies between 0 and 1.

As indicated in fig. 5.4, the number of nodes in each hidden layer is the same. Other
structures, like an inverted hour glass, were tested but did not improve over this simple
structure.

5.2.3. Changes for the IceCube Upgrade

Upgrade event refers to an event that occurs after the deployment of the IceCube
Upgrade, so DeepCore and the new strings can detect light. For the Upgrade two
new sensor types (mDOM and D-Egg) will be installed in the Antarctic ice. Together
with the already installed DOMs there are three module types involved in an Upgrade
event. The big difference between the module types is that the new ones consist of
multiple PMTs oriented in different directions. In addition, the PMTs have different
sizes and therefore different effective areas and dark noise rates. Also the glass used
for the pressure vessel is different for each of the module types changing the noise
from radioactive decays. All these information could be included in the HitNet
transformation layer while the ChargeNet transformation layer could pass the total
charge for each module type. But this would make the task for the networks even
more complicated. So to not add additional features the networks have to learn, three
different Hit- and ChargeNets (one per module type) were trained for the Upgrade
reconstruction. This does not slow down the reconstruction since the individual hits
are anyway processed on after another. The three module types can be handled
independently of each other for the same reason as the individual DOMs, photon
propagation in ice is independent from other photons.
The training process does not differ for the different module types and is identical to
the DeepCore training discussed in the previous section.
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The upgrade MC simulation and event selection process is currently under ac-
tive development. Implementing the detector response of the newly developed
module types is difficult because the modules are still under development themselves
and the electronic readout system is not yet finished. Another big uncertainty is the
noise rate of the new modules. The noise rate of the mDOM PMTs strongly differs
from its original assumption. More about this can be read in sec. 6.3.2.
So to test FreeDOMs performance on Upgrade events a noise free MC set was
simulated using simplified but conservative assumptions about the module readout.
This set contains about 1 million νµ events located in the Upgrade fiducial volume.
In addition, 30 thousand test events have been simulated that are not part of the
network training. Depending on their interaction muon neutrinos can produce a
cascade or track event signature. So only this flavor was simulated. A plot of the
true interaction model parameter distributions for this set can be found in fig. C.2 in
the appendix.
The MC set described here was used for most results presented in sec. 6.3, except for
the mDOM noise study discussed in sec. 6.3.2 which uses MC simulation specifically
produced for this study. More details about this MC set can be found in sec. 6.3.2.

5.3. Verifying the likelihood

The next step is to verify that the neural networks trained as described in the previous
section really approximate the underlying likelihood function of the (MC) data used
in the training. To be able to verify the network outputs is a big advantage of the
likelihood-free technique compared to direct regressors.
First, networks trained on toy data are verified. There, it is possible to directly
compare the network output to the true likelihood and thus proof the functionality of
the method. The general toy experiment setup used for all detector configurations in
this thesis is described in sec. A in the appendix. Then, real detector MC simulation is
used to verify that the method is also capable to approximate the likelihood function
of non-toy detectors.

5.3.1. Toy detectors

The most obvious way to check if likelihood-free inference can be used to learn a
likelihood function (or more accurately a function proportional to it) is to use a toy
experiment where the true likelihood function can be described analytically, and thus
is known. This allows for a direct comparison of the network learned function with
the truth.
Two toy detector configurations are presented here. The first one is the same configu-
ration that was used to demonstrate the validity of the extended maximum likelihood
decomposition in sec. 5.1. It only consists of one string of five photosensors. The
second toy detector consists of a spherical arrangement of 162 photosensors with a
radius of 10m. For the positioning of the individual sensors, the icosphere python
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package [114] was used, which generates points uniformly distributed over the sphere.
The goal here to use a sensor placement, like it could be used for a liquid scintilator
or water-filled detector.

One-string toy detector

This simple detector is used as a proof of concept. To also keep the problem simple,
all events used here are located in the x-y plane and point upwards. Thus, only five
parameters of the event model are important for this detector. Namely the x and
y coordinate of the interaction vertex, the time of the interaction, the total energy
(brightness) of all light sources, and the fraction of energy that goes into the first
cascade, called inelasticity. A Hit- and a ChargeNet for the all-sensor formulation of
the decomposed likelihood were trained for this example.
First, two dimensional likelihood scans are used to give an impression about the quality
of the likelihood approximation. In fig. 5.5 scans of the true likelihood are compared
to the function learned by the networks. The first row shows scans through x and y,
while for the second row total energy and inelasticity were scanned. Each plot shows
contour levels for the ∆LLH values above the minimum of the scan. So it does not

matter that the networks actually learn
p(x|θ)
p(x)

, because p(x) is a constant term in

the scan and thus only provides an offset in the log-likelihood. This was done for three
different events. The true parameter values are marked with a capital T in each plot.
For all three example events the results are in a good agreement. Remaining
differences are due to the limited amount of training events (about 2 million events
here) and the imperfect training process. A more detailed study about the required
amount of training data follows in sec. 6.1.1.

Another way to verify and visualize the quality of the likelihood approxima-
tion is Markow-Chain-Monte-Carlo (MCMC) [115] sampling. It is a Bayesian
inference technique to access the so-called posterior distribution p(θ|x), which
encodes information about the model parameters θ for a given observation x. The
normalization of the provided input density is not important for the Markow chains,
so it does not matter that the networks actually learn a function proportional to the
likelihood.
Figure 5.6 shows a comparison of the posterior distribution obtained by sampling
based on the true analytic likelihood and a distribution obtained by sampling based
on the network learned function. The emcee python package [116] was used for the
sampling.
Similar to the likelihood scans, the network and true result agree well. The correla-
tions between the parameters as well as the shape of the distribution are modeled by
the networks in a similar way as it is for the truth.

This can be seen as a proof of concept: In principle, it is possible to learn
the decomposed likelihood described in sec. 5.1 with the likelihood-free method
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Figure 5.5.: Comparison of true (Analytic) and neural network learned (NN) likelihood
for three example events in the one-string toy detector. The 1-5 sigma
contours of likelihood scans are shown. For each scan all other parameter
values remain at their respective truth. The capital T marks the truth of
the scanned parameters.

introduced in sec. 3.4 and its realization explained in sec. 5.2.

Spherical toy detector

This toy detector features a geometry similar to water-filled neutrino detectors like
the Sudbury Neutrino Observatory (SNO) [117] or liquid scintilator-filled detectors
like the Jiangmen Underground Neutrino Observatory (JUNO) [118]. The training
set only consists of events that are completely contained in the detector. Contained
means that the interaction vertex and the last track element are inside the detector
volume. Four networks were trained for this toy detector: one Hit- and one ChargeNet
each for the all-sensor and the per-sensor formulation.

For this toy detector all eight parameters of the neutrino interaction model
(sec. 4.4.1) are varied in the event generation process. Therefore, more two dimen-
sional likelihood scans, compared to the one-string detector, would be needed to
demonstrate the quality of the learned likelihood.
MCMC sampling would still be possible, but another way to verify the network
outputs, suggested in [3], is to reweight events with the ratio estimator r̂(x,θ)
learned by the networks. It approximates the likelihood-to-evidence ratio r(x,θ)
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Figure 5.6.: MCMC sampling for an event in the one-string toy detector. The result
based on the true likelihood (orange) is compared to the results based on
the network learned function (blue). The 2D 68% and 95% contours are
shown as well as the individual 1D distributions. The red lines mark the
true parameter values. 2.5 · 105 samples are used each.

and is defined in equ. 3.9. This is achieved by reweighting the distribution p(x) of
measurement variables from the training set to match p(x|θi) for specific values of
the model parameters θi

p(x)r̂(x,θi) ≈ p(x)r(x,θi) = p(x)
p(x,θi)

p(x)
= p(x,θi) . (5.7)

To realize this, the networks are evaluated for each x in the training set in combi-
nation with the specific θi. The result yields the weight for the respective x. The
measurement variables are time and vertex of a hit (mainly used by the HitNets) as
well as the charge of the hit (used by the ChargeNets). If the networks learned the
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correct likelihood-to-evidence ratio, the reweighted p(x) distribution should look like
p(x|θi) so the true analytic PDF for x at θi.
In case p(x|θi) is unknown, the reweighted p(x) distribution can also be compared to
repeated MC simulation of θi. Thus, this reweighting method can be used to verify
the likelihood even if the true function is intractable. This is done in sec. 5.3.2 for
DeepCore MC simulation.

The quality of the HitNets can be visualized by looking at the time distribu-
tions of the hits. Figure 5.7 shows the times of all hits in all events of (a sample
similar to) the training sample. This is p(x), where x is the time of a hit. For three
different sets of event parameters θ1,2,3, the true analytic hit time PDF p(x|θ1,2,3) is
shown as dashed lines. p(x) is reweighted for each of the three θi which yields the
distribution in the respective color.
In the left panel an all-sensor HitNet was used for the reweighting and in the right
panel a per-sensor HitNet. They describe different parts of the decomposed likelihood
and consequently different PDFs. In the all-sensor formulation the ChargeNet does
not contribute individual sensor information, so the HitNet has to learn the arrival
time distribution times the probability for the photon to arrive at the respective
module. In the per-sensor formulation the ChargeNet provides information about
individual sensors and the HitNet only has to learn the time distribution. That is
the reason why it is trained by only shuffling within a sensor.

0 50 100 150 200
x = Hit time

0.000

0.005

0.010

0.015

PD
F

All-sensor
p(x| 1)
p(x| 2)
p(x| 3)
p(x)
p(x)r(x, 1)
p(x)r(x, 2)
p(x)r(x, 3)

0 50 100 150 200
x = Hit time

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

Per-sensor
p(x| 1)
p(x| 2)
p(x| 3)
p(x)
p(x)r(x, 1)
p(x)r(x, 2)
p(x)r(x, 3)

Figure 5.7.: Likelihood verification based on event reweighting. The black distribu-
tions show the times of all hits in the sample the network was trained
on. The dashed lines represent the true hit time PDFs for three example
events. The colored distributions are obtained by reweighting the black
distributions according to the respective event parameter values. In the
left plot the all-sensor formulation is used and in the right the per-sensor
formulation.

All reweighted distributions look similar to the respective true PDFs. The maximum
differences between true PDFs and reweighted distributions of the blue, orange,
and green event are [5.1, 4.8, 3.9] · 10−4 for the all-sensor formulation respectively
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[6.0, 1.4, 3.2] ·10−4 for the per-sensor formulation. So the networks have approximated
the likelihood well at these points in the θ space.

The same reweighting can be done for the charge of a hit and the ChargeNets.
Figure 5.8 shows the total detector charge (left) and per-sensor charge (right)
distributions. Again the distributions for the event sample similar to the training
sample are shown in black. The reweigthed distributions for three example sets of
event parameters are shown in blue, orange, and green. The expected charge PDFs
(Poisson) are drawn as dashed lines.
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Figure 5.8.: Likelihood verification based on event reweighting. In the left plot, the
black distribution shows the charge deposited in the complete detector
for all events in the training sample. The right plot shows the charges for
(all) individual sensors. The dashed lines represent the respective charge
PDFs for three example events. The colored distributions are obtained
by reweighting the black distributions according to the respective event
parameter values.

Also the ChargeNets learned the likelihood well at the tested event model parameter
values. Here the maximum differences between the true PDFs and the reweighted
distributions of the blue, orange, and green event are [2.9, 18.5, 4.2] · 10−3 for the all-
sensor formulation respectively [10.6, 11.1, 2.3] · 10−3 for the per-sensor formulation.
The event shown in orange has an energy of 2GeV, while the two other events have
an energy of 5GeV.
Figure C.1 in the appendix shows the per-sensor charge distributions for a few
individual example sensors.

The reweighting method shows the quality of the likelihood approximation for
three points in the event model parameter space. This method is a complementary
test to a likelihood scan, because it verifies p(x|θi)∀x, while a scan verifies p(xi|θ)∀θ.
Also a reconstruction (minimization) can be used to verify the likelihood function. If
the likelihood is approximated well, the resolutions obtained from a reconstruction
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using the learned function should match the ones using the true likelihood. A
comparison between a reconstruction with the true analytic and one using the
network learned likelihood is shown in sec. 6.1.2.

5.3.2. IceCube simulation

That the likelihood-free inference method works for a toy experiment is no guaranty
that it will also work for the real IceCube detector. As mentioned before, the true
likelihood is untraceable for this detector. Therefore, it is not possible to directly
compare the network outputs to the true function.
However, one way to still get an impression of whether the networks have learned
something useful is to compare likelihood scans between them and other established
likelihood based reconstructions used in IceCube. In fig. 5.9 two dimensional likelihood
scans of the likelihood learned by the FreeDOM networks are compared to scans with
the current reconstruction RetroReco (described in sec. 4.4.3) and its predecessor
PegLeg [119]. Both reconstructions use photon tables to build up their likelihood.
For each scan all other parameters are set to their true value. The blue lines mark the
respective true parameter values and the white star the minimum of the scan. The
color encodes the likelihood difference to the minimum of the scan.
All three likelihoods look similar, both in shape and scale of variations. This is a
good sign for FreeDOM because, even though they are just approximating the true
likelihood function, the other likelihoods are not expected to look completely different
from the truth.
A few noticeable differences are visible in these scans. In general the FreeDOM
likelihood is smoother than the others. While this is of course only a good thing if the
true likelihood is also smooth, it makes the minimization easier for some optimizers
(including the one used here).
In the first (x-y) scan there are likelihood maxima (in blue) visible on both sides of
the minimum. They are at locations of DeepCore strings. If an event sits close to a
string a high charge is expected in that string. So a lower charge event was likely not
close to a string. These maxima are less prominent in the likelihood learned by the
FreeDOM networks. A reason could be that these maxima represent fast changes in
the likelihood which are difficult to approximate.
The fourth scan (time-z) shows an acausal region of the parameter space in the
lower right corner. At these times the event would happen too late to cause most
of the hits. For PegLeg and RetroReco this region is highly excluded and only a
small constant noise hit probability is assigned here. However, FreeDOM shows
some structure in this region which is not necessarily a bad thing. Noise hits have
a different probability to survive noise cuts depending on their position in time and
space relative to other hits. So there is actually no constant noise hit probability,
as assumed by PegLeg and RetroReco, but a more complicated structure that could
have been learned by FreeDOM, which is trained on a sample containing noise.

Thanks to the reweigthing described in [3], which was already used for the
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Figure 5.9.: Comparison between the function learned by the FreeDOM networks and
other likelihood based reconstructions used in IceCube. Five two di-
mensional scans of the same event but different scanned parameters are
shown. All other parameters are fixed to their true value for the scan.
The blue lines mark the true parameter values and the white star the
minimum of the scan. The first row shows the reconstruction used in pre-
vious DeepCore analyses (PegLeg), the second the current reconstruction
(RetroReco), and the last the FreeDOM results.

spherical toy detector in fig. 5.7 and fig. 5.8, there is another way to verify the learned
function. This time it is not possible to compare the reweighted p(x) distributions
to an analytic truth. However, it is possible to resimulate the tested event model
parameters multiple times, so draw multiple measurements x based on the same
model parameter values θ = θi. The obtained distribution for a measurement p(x|θi)
can then be compared to the distribution p(x) in the training set weighted by the
ratio estimator r̂(x|θi) learned by the networks. If the networks learned to correct
likelihood-to-evidence ratio, the reweighted p(x) distribution should approximate
p(x|θi).
Figure 5.10 shows, similar to 5.7 and 5.8, a comparison of reweighted p(x) and the
distributions obtained by repeated simulation for three example events. p(x) is shown
in black again, the reweighted distributions as dashed, and the resimulated p(x|θi) as
solid histograms. As before, the colors represent different events (different θi) with
energies of 6.37GeV (blue), 11.71GeV (orange), and 18.19GeV (green).
The left plot was made for the hit time and a HitNet, the right plot for the total
detector charge and a ChargeNet. The all-sensor formulation is used for the networks.
The agreements between the reweighted and resimulated distributions show that, even
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Figure 5.10.: Reweighting of hit time (left) and total detector charge (right) distribu-
tion. The black distributions are from all events in the training set. The
solid colored distributions are obtained by resimulating the same event
(parameters) multiple times. Reweighting the black distributions by the
network output for these parameters (and the respective measurement)
yields the dashed colored distributions. The all-sensor formulation of
the decomposed likelihood is used here.

for the realistic IceCube MC, FreeDOM is able to approximate the true likelihood
function, at least for these specific points in the parameters space.

Another way to verify the learned function, based on repeated MC simulation
of the same θi, is to look at photon arrival distributions in individual DOMs. Here
r̂(x,θi) is not used to reweight hits but the ratio estimator is evaluated for different
hit times in combination with θi, similar to a likelihood scan. Since evaluating
r̂(x,θi) ≈ p(x,θi)

p(x) for different hit times would change p(x), the interaction time is
changed instead. This does not make a difference for the likelihood, because the
function depends only on the time difference between interaction and hit time, but it
keeps p(x) constant for the scan. Therefore, normalizing the scan yields p(x,θi) for
a DOM.
Figure 5.11 shows, for a selection of six DOMs, the photon arrival time PDF predicted
by FreeDOM compared to the actual hit times obtained by the event resimulation.
In each histogram the hits are weighted by their charge to actually match photon
counts. This is necessary because in the network training hits are split up by their
charge to achieve the same effect.
Network prediction and actual hit time distribution agree well for the used event and
selected DOMs. For all six DOMs the network correctly identified the causality edge,
so the time where the first (not noise) photons arrive, within a few nanoseconds.
Also the falling edges, which are the result of the photon scattering in ice, match the
actual distributions.
It may be surprising that a closer distance to the interaction vertex does not
necessarily lead to more arriving photons. The reason why that is not the case is
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Figure 5.11.: Hit time distributions at different DOMs for the resimulation (blue) com-
pared to the network predicted PDFs (black dashed). Each entry is
weighted by the charge of the hit. The DOM position (string index,
DOM index) as well as its distance (d) to the event vertex are given in
the respective title of each plot.

the direction of the initial neutrino. Due to momentum conservation, most shower
particles fly in similar directions to the neutrino. These particles constantly emit
light while moving through the ice, so more light is emitted in regions that lie in
the direction of flight of the neutrino from the interaction point. In addition, light
is emitted under the Cherenkov angle which also leads to photons being directed
towards the original neutrino direction.

All methods discussed above, apart from the likelihood scans, only verify the
quality of the learned function at one point in the θ parameter space. To prove the
quality of the network output across more points of the parameter space (aka more
events), for example a minimizer can be used. For the toy detectors it is possible to
compare parameter resolutions to get a better idea of the goodness of the learned
likelihood. This is done in sec. 6.1.
Also MCMC sampling includes different points in the θ parameter space. An example
of a DeepCore MCMC sampling is shown in sec. 6.2.3.

Upgrade PMT segmentation

For this part, the changes to the network training described in sec. 5.2.3 were applied
and the training set described in this section was used.
In contrast to a DOM, the new optical modules deployed in the IceCube Upgrade
host more than one PMT per module. The mDOM for example incorporates 24 PMTs
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with different orientations. As a consequence, the optical efficiency of an mDOM is not
symmetric around its azimuth (as it is for a DOM). This adds an additional dimension
to the photon tables used in other likelihood reconstructions (like RetroReco) and
significantly increases their size/memory usage. So far these tables just assume that
the modules are equally effective around their azimuth. FreeDOM’s memory usage is
not affected by different PMT orientations, just the likelihood it learns.
To ensure that the FreeDOM networks correctly learned the meaning of the different
PMT orientations, the following artificial test case involving an mDOM is constructed.
A 10GeV cascade at a distance of 20m to the mDOM is used. The direction of the
cascade points towards the center of the mDOM. The measurement x is a single hit
in only one of the PMTs in the mDOM 110 ns after the event time. So there are 24
cases to test here, one for each PMT.
Figure 5.12 shows the HitNet part of a likelihood scan where the cascade is moved
around the mDOM in a sphere keeping the distance and always pointing to the module.
The angles ϕ and θ in the plots refer to the relative position of the cascade with respect
to the mDOM. The difference between the 24 plots in the figure is the PMT where
the hit was deposited. The black dot in each plot marks the direction of view of this
PMT.
The black dot in each plot lies very close to the respective likelihood minimum. This
makes sense because if only one PMT sees light the most probable position of the
light source is right in front of this PMT. FreeDOM correctly modeled this behavior
and consequently can make use of the additional information provided by the differ-
ent PMT orientations. Parameter resolutions of reconstructions including the new
modules are presented in sec. 6.3.

5.4. Minimizing the likelihood

To get a complete reconstruction method, it is not enough to construct a likelihood
function, it also has to be minimized. The minimizer used to find the minimum of the
FreeDOM likelihood is the same that is used for RetroReco. However, for FreeDOM
all 8 parameters of the neutrino interaction model are used in the minimization while
for RetroReco the energy parameters are minimized separately.
The minimization is performed by a custom version of a derivative free, global
optimization algorithm. The simplex based controlled random search with local
mutation algorithm crs2 described in [120], is modified to correctly treat the direction
angles (ϕazimuth, θzenith).

Simplex based optimization algorithm refers to so-called downhill simplex methods,
based on the Nelder-Mead [121] method, which can be used to minimize nonlinear
functions. These methods evaluate the objective function at a number of points,
called livepoints, and iteratively try to substitute the livepoint(s) with the worst
function value. This is done until a convergence criterion is met, e.g. no improvement
in a certain number of iterations or the standard deviation of all current livepoints
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Figure 5.12.: Likelihood scans demonstrating the PMT orientations of an mDOM and
that FreeDOM correctly learned them. For each of the individual plots
a single hit was placed in one of the 24 PMTs. The black dot marks the
direction of view for this PMT while the title gives the PMT number.
Then, a light source was moved in a sphere around the mDOM. The
scanned parameters ϕ and θ refer to the relative orientation between
mDOM and light source.

is below a certain threshold. No gradient information are necessary and, depending
on the number and initial distribution of livepoints, global optimization can be
performed with simplex methods.

Crs2 is chosen because it can handle multi-modal target functions. Like most
simplex based optimization algorithms, crs2 uses geometric point reflections and
centroid calculations. A Euclidean geometry is assumed for these operations, which
is not the case for angles. To correctly treat the azimuth and zenith angle, the
calculations for these two dimensions are performed on a sphere. This changes the
mentioned operations in the following way:

Centroid Calculation: The centroid of a given set of points in spherical co-
ordinates is calculated by transforming the points to Cartesian coordinates and place
them on the unit sphere. Then the element-wise average in x, y and z is calculated.
The result will be somewhere inside the unit sphere, so it is renormalized to sit on
the surface of the sphere again. Finally, the coordinates are transformed back to
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spherical coordinates to obtain the centroid in zenith and azimuth. This procedure
can be done for any number of points.

Point Reflection: Performing correct geometric point reflections in spherical
coordinates needs more modification than the centroid calculation. For a point
reflection around the centroid (ϕc, θc), a coordinate transformation is performed that
moves the centroid to the North Pole of the unit sphere. This is done in two steps.
First a rotation about the z-axis (RT

z (ϕc)) such that the centroid point will be on the
x-z plane, then a rotation around the y-axis (RT

y (θc)) until it reaches the Pole. Now
a reflection about the centroid is nothing but taking the negative values of the x and
y value of the respective point in its Cartesian representation. At the end the points
have to be rotated back by using the inverse rotations. The full operation is shown
in equation 5.8 for a point p in its Cartesian representation.

p = Rz(ϕc) ·Ry(θc) · diag(−1,−1, 1) ·RT
y (θc) ·RT

z (ϕc) · p

=

 cϕ(−cϕc2θ + cϕs
2
θ)− s2ϕ cϕsϕ + sϕ(−cϕc2θ + cϕs

2
θ) 2cϕcθsθ

cϕsϕ + cϕ(−sϕc2θ + sϕs
2
θ) −c2ϕ + sϕ(−sϕc2θ + sϕs

2
θ) 2sϕcθsθ

2cϕcθsθ 2sϕcθsθ c2θ − s2θ

 · p,
(5.8)

where cϕ = cosϕc, sϕ = sinϕc, cθ = cos θc and sθ = sin θc.
An open-source implementation of the modified algorithm is available3.

Seeding

The crs2 algorithm needs as many seed points to start as should be used in the
minimization. They are uniformly drawn from a predefined initialization range, which
is different for each of the 8 parameters involved. For the vertex coordinates the range
is centered around the charge weighted center of gravity of all hits in the respective
event and symmetrically expands around its centers. The charge weighted center of
gravity is also used to get the time range. But in contrast to the vertex the time
range only expands to earlier times, because the neutrino interaction time should
be significantly earlier than the average hit time. For both angles the full range of
possible values is used. However, the zenith angle is sampled uniformly in its cosine
instead of the angle itself, to get a uniform distribution of directions. Also the different
energies are sampled over the full range allowed during the fit, but in contrast to all
other parameters with a exponentially decreasing probability to make sure more points
start at low energies. This should reflect the true distribution of atmospheric neutrino
energies (see fig. 2.7).
Unless otherwise specified, all results presented in this thesis were achieved with 97
points present in the minimization process, of which 12 are moved simultaneously in
each iteration.

3https://pypi.org/project/spherical-opt/
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Boundaries

Boundaries are implemented in order to prevent the minimizer from leaving the area
of the parameter space that is considered to be physically possible. An uncorrelated
minimum and maximum value is specified for each parameter, resulting in an eight
dimensional box the minimizer is bound to. This box is defined as:

� −500m ≤ x, y ≤ 500m

� −1000m ≤ z ≤ 700m

� 800ns ≤ t ≤ 20000ns

� 0 ≤ ϕazimuth ≤ 2π

� 0 ≤ θzenith ≤ π

� 0.1GeV ≤ Ecascade ≤ 1000GeV

� 0GeV ≤ Etrack ≤ 1000GeV

Using a (hard) boundary is especially important when working with neural networks,
which usually extrapolate very poorly. When the networks are asked to evaluate the
likelihood value of a point outside the physically possible range or more general a
point far away from the parameter space covered by the respective training set, they
start to extrapolate. This can result in preferred likelihood values at point that should
be excluded with a high confidence.

Convergence

Three stopping criteria are defined for the minimizer. They are tested after each
iteration, and if any of them is satisfied, the minimization process is terminated. For
two of the criteria the fit is considered successful: if the standard deviation of the
log-likelihood values of all current minimizer points is ≤ 0.1. Or if the number of
consecutive iterations without finding a better log-likelihood value is ≥ 1000. If the
number of iterations reaches 10000, the fit terminates unsuccessfully. Note that there
is another case where the minimization is considered unsuccessful. Namely, when all
seeding points are outside of the allowed region. In that case, the fit terminates after
one iteration.

The minimizer successfully converges for nearly all events, but that does not
necessarily mean the global minimum was found. It is very difficult to prove that
the global minimum was found; in principle a full eight dimensional parameter scan
would be needed, which is a substantial computational effort. There are some tests
that can be performed to verify the quality of the optimizer.
A simple test is to check if the final point chosen by the minimizer yields a better
likelihood value than the truth. This is possible for simulated events and the case for
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approximately 97% of all fits.
It is also possible to look at parameter resolutions for different minimizer settings
to verify if the used settings are sufficient. For the following plots in this section,
showing parameter resolutions for different minimizer tests, oscNext L2 events were
used. This explains the difference in resolution compared to fig. 6.9 which shows
resolutions for a final level event selection sample.

Optimizing minimizer configuration

The first test that can be done for simplex based minimizer is to increase the number
of points used by the minimizer. Thereby it will explore more of the likelihood space
at the same time. This of course will make the centroid less “mobile” meaning that
the change of one point has less of an effect on it. To compensate for that effect the
number of points moved in each iteration has to be increased by the same factor as
the total number of minimizer points. While an increased number of minimizer points
will improve the resolution, it also increases the minimization time respectively the
computational effort by about the factor of additional points. For fig. 5.13 the number
of points was increased by a factor of 5 compared to the default.

Figure 5.13.: Change in energy and zenith resolution achieved by increasing the num-
ber of crs2 points by a factor of 5 (orange) compared to default the value
(97, blue). The drawn distributions are the result of a Kernel Density
Estimation (KDE) [122,123].

Figure 5.13 shows that the total deposited energy resolution is virtually unaffected
by the increase of minimizer points. The zenith resolution for low track energies is
also very similar using significantly more points. However, for higher track energies
there is a slight increase in angular resolution. This is the reason for showing the
zenith angle versus the true track energy and can be explained by the fact that,
for long tracks, the likelihood minima become very narrow for the angles. These
narrow minima might be missed by a minimizer using a lower point density which
consequently samples the likelihood space more coarsely. Since there is only a slight
increase in performance, in a region that is less interesting for most low energy
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analyses, but a increase in reconstruction time of about a factor of 5, 97 minimizer
points are assumed to be sufficient.

The global crs2 minimizer can be followed by a gradient based local minimizer
like minuit [124] to better locate the exact position of the minimum. Assuming
the global minimization at least roughly identified the global minimum but did not
perfectly converge on it. In fig. 5.14 the performance of crs2 only is compared to crs2
followed by minuit. The local minimizer is seeded with the best fit point of the global
one.

Figure 5.14.: Energy and zenith resolution for a global fit with crs2 only (blue) com-
pared to a global followed by a local fit with cr2 and minuit (orange).
The drawn distributions are the result of a KDE.

No significant improvement was achieved in either of the parameters but the fitting
procedure now takes about twice as long. So crs2 identifies the position of the
minimum with a sufficient precision and no second round of minimization is needed.

A nice feature of the likelihood free inference technique used in this thesis is
that training on a set of events and reconstructing the very same events involves
different evaluations of the networks. It is very unlikely that the exact true point
in the parameter space is hit during the minimization, so the networks see different
combinations of x and θ compared to the training and can not overfit the event
sample as fast as it would be possible in a direct regression. As a result the resolutions
of events that were part of the training process and those that were not should be the
same and it would not necessary to produce a specific training set that is independent
from the set that needs to be reconstructed.
Figure 5.15 compares the energy and zenith resolution of events that were part of the
network training process with events that were not.
No significant difference in energy and zenith resolution can be seen between the two
event samples. This means there is no overfitting present in the likelihood learning
process.
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Figure 5.15.: Energy and zenith resolution for events that were part of the network
training (orange) and new events that were never seen by the networks
(blue). The drawn distributions are the result of a KDE.

Parameter transformations

As mentioned in sec. 4.4.1 it can be advantageous to use another representation of
the neutrino interaction model parameters. Instead of passing the cascade Ecascade

and track energy Etrack to the minimizer, the total deposited energy Edeposited and
the track or cascade energy fraction (the latter is called inelasticity I = Ecascade

Edeposited )
can be used. This does not change the underlying likelihood function but the way
the minimizer has access to it. In chapter 7 the minimizer points visited during
the minimization process are used to calculate parameter uncertainties. Since the
total energy is important for most analyzes, the uncertainty on it is needed. In the
parameterization including Edeposited this uncertainty can directly be extracted from
the minimizer points.
Also networks can in principle be trained in each parameterization. To be able to
use different parameterizations for networks and minimizer, a transformation feature
was added to the minimizer. However, networks trained with either parameterization
showed similar performances.
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As seen in the previous chapter, FreeDOM can be used for any IceCube-like detector,
i.e. any array of photosensors in any configuration, without major changes. This
chapter discusses the results of the application of FreeDOM to different detectors.
First, different toy experiment configurations are used to compare the parameter res-
olutions achieved with the learned function to the results of a reconstruction based
on the true likelihood (sec. 6.1). Then, the performance for DeepCore (MC) events is
evaluated and compared to RetroReco. Finally, results for IceCube Upgrade events
are discussed.

6.1. Toy experiment studies

In this section the reconstruction performance of FreeDOM on the different toy ex-
periment configurations is shown. The toy detectors are the same that were used
in sec. 5.3.1 to verify the validity of the likelihood-free approach. In addition, a
FreeDOM-based detector optimization study is presented.

6.1.1. One-string toy experiment

The first configuration is the simple one-string toy detector, that was used to verify
the likelihood decomposition. Ten thousand events were reconstructed. Just as in
sec. 5.3.1, they are restricted to be located in the x-y plane and pointing upwards.
The events were simulated uniformly in x, y, time, total energy, and inelasticity,
while the z coordinate and the angles are fixed. The all-sensor formulation of the
decomposed likelihood was used for the networks.
Figure 6.1 shows the parameter resolutions for a reconstruction using the true analytic
likelihood function together with the results of a reconstruction using the function
learned by the FreeDOM networks. For each distribution the 50 percent Inter Quantile
Range (IQR), the difference between the 0.25 and 0.75 quantile, is included.
The reconstruction performance achieved with the FreeDOM learned likelihood is
similar to the one using the true analytic likelihood. There are nearly no visible
biases and the parameter resolutions are comparable. However, there are small
differences for example in the total energy resolution. These differences can (among
other things) be attributed to the limited amount of available training data. The
networks used in fig. 6.1 were trained with about 2.5 million events.

This raises the question how many events are needed to perfectly learn the
likelihood, so how the network quality depends on the number of training events.
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Figure 6.1.: Parameter resolutions for the one-string toy experiment. The results of
a reconstruction with the true analytic likelihood (blue) are compared
to those with the function learned by the networks (orange). For each
distribution the IQR is given in the legend. The drawn distributions are
the result of a KDE.

To address this question, first the network quality has to be defined. Ideally, there
would be no difference between the true analytic likelihood and the one learned
by the networks. As a consequence, also the distributions showing the difference
of the reconstructed and true parameter values should be identical. Comparing
these distributions includes many events and is much faster to do than comparing
likelihood scans. One way to quantify how similar two (one-dimensional probability)
distributions are is the Kolmogorow-Smirnow (KS) test [125], which looks at the
cumulative distributions. This test has to be done for each of the five parameters
individually. The average of the five resulting KS values can then be used as a
measure of how well the networks have approximated the true likelihood.
Now that the network quality is defined, it is possible to study the likelihood
approximation depending on the number of events in the training sample. First, a
Hit- and a ChargeNet is trained with a certain number of training events. After-
wards, always the same set of test events is reconstructed with these networks. KS
values are calculated for the resulting parameter resolution distributions. Finally,
the average of these KS values can be determined. The reconstruction itself (min-
imizer, boundaries, seeding, ...) is not changed here, only the used likelihood function.

Figure 6.2 shows the result of the procedure described above. In the left plot
the individual parameter KS values as well as their averages are shown. The used
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number of events to train the networks is given by the lower x-axis, while the upper
x-axis displays the memory usage of the respective training set. In addition, the black
dashed line gives the average KS value of a comparison of the analytic results with
a second round of reconstruction using the true likelihood. Since the crs2 minimizer
is seeded randomly, even two fits with the same settings might not yield the same
result. Therefore, it is not possible to reach perfect agreement (KS value of 0), but
the dashed line marks the limit where differences in the likelihood do not matter
anymore compared to the minimizer.
The right plot shows the average KS value at each point for three different network
sizes. Both the network depth and width have been changed. The smaller networks
have about 60% of the number of free parameters compared to the “normal” ones,
while the big networks have about 1.66 times the number of free parameters.

Figure 6.2.: Quality of the likelihood approximation depending on number of events
in the training sample. KS values between the resolution distributions
obtained with the true and the network learned likelihood are shown. In
the left plot, the individual KS values for all five parameters (colored) are
plotted together with their average (black). The right plot shows average
KS values for three different networks sizes. The dashed black line is the
average KS value of two reconstructions with the true likelihood. The
upper x-axis gives the memory usage of the training sample.

There is a strong fluctuation of the individual KS values, but their average decreases
with more training events before it saturates after about half a million events. Also
the spread of the individual KS values becomes smaller. The inelasticity I appears
to be the most difficult parameter to learn with low numbers of training events. It
has higher KS values than the average for all but the last tested number of training
events.
The number of events in training is more important than the size of the networks
here. The fluctuation in the average KS values for different network sizes is ∼0.012
and thus smaller than the trend for more training events. As measure for the KS
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fluctuation, the mean of the standard deviations of the three KS values at the
different numbers of training events was used.

In the previous plot one set of events was used for each number of training
events. However, especially at low numbers it can make a difference which events
are included in the training. Also the network quality will be different even if the
networks are trained twice on the same data. To take the variability of the training
set and process into account, five different training sets were simulated for each
number of events.
Figure 6.3 shows the KS results of the sets. The plot on the left shows the KS values
averaged over all model parameters for the different training sets together with their
average value. The error bar of the black line is the standard deviation of the colored
dots. So the blue dots here are equivalent to the black dots in the previous plot and
the black line represents the average of average KS values.
The right plot shows an extrapolation of the KS values. A ad-hoc fit to the KS values
is used to estimate the average KS value at higher numbers of training events. It just
assumes the most simple function that could describe the data and has no theoretical
motivation.

Figure 6.3.: Estimation of the number of events needed to perfectly learn the likeli-
hood. KS values between the resolution distributions obtained with the
true likelihood and network learned likelihood are shown. The left plot
shows the average KS value for five different training sets (colored) to-
gether with their average (black). In the right plot, the same black line is
used. In addition, a fit to the black data points is included.

The average (average) KS values monotonically decrease for networks that saw more
events during the training process. This is expected because more events provide
more information about the likelihood landscape that should be learned. However,
the KS value only approaches the optimal line asymptotically and does not reach the
optimum even for the highest number of training events.
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To estimate how many event would be needed to finally get close to the dashed black
line, an extrapolation is used. It indicates that a memory usage of several terabyte
would be necessary to finally approach the optimal line. However, the likelihood
might not have to be learned perfectly, depending on what it is supposed to be used
for. In sec. 6.2.4 the KS value is compared to physics sensitivities obtained with the
reconstruction based on the respective likelihood for a DeepCore-like toy detector in
order to evaluate this question.

6.1.2. Spherical toy experiment

As explained in sec. 5.3.1, networks in both likelihood formulations have been trained
for the spherical toy detector configuration. Now their reconstruction performances
can be directly compared to each other (and the true likelihood). Similar to the
training set, the set of reconstructed events only contains tracks that are completely
contained in the detector.
Figure 6.4 shows the resolutions for both formulations together with the resolutions
based on the true analytic likelihood. In contrast to the one-string toy detector, all
eight parameter of the neutrino interaction model are shown here. For the total energy
the difference between the reconstructed and true values was replaced by the difference
of their logarithms.
The networks in the different formulations perform similar. This is not surprising
because they are trained on similar numbers of events and ultimately represent
the same function. The resolutions obtained from the reconstruction with the true
likelihood are slightly better than the network results. Especially for the angular
resolution there is still potential to improve the networks in the future. The limited
number of training events as well as an imperfect training process1 are reasons for
the difference. Also the combination of only considering events completely contained
in a spherical detector and the isotropic light emission implemented in the toy exper-
iment makes it difficult for the networks to learn everything about the event direction.

While the parameter resolutions are similar, there is a speed difference between the
two formulations. In the per-sensor formulation the ChargeNet has to be evaluated
once per sensor to calculate the likelihood at a specific θ. However, in the all-sensor
formulation it has to be evaluated only once. The number of HitNet evaluations is
the same in both formulations and is equal to the number of hits.
The mean reconstruction time t̄per-sensor for the per-sensor networks is 59.0 s, while
the mean reconstruction time t̄all-sensor for the all-sensor networks is only 27.1 s. For
their ratio, the following relation holds:

t̄per-sensor
t̄all-sensor

≈ N̄hits +Nsensors

N̄hits + 1
, (6.1)

1Imperfect training means that not the best possible values for all network weights were found by
the training process.
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Figure 6.4.: Parameter resolutions of networks trained in both likelihood formulations
compared to the resolutions obtained with the true analytic likelihood
(which is the same in both formulations). The drawn distributions are
the result of a KDE.

where N̄hits is the average number of hits in the reconstructed event sample and
Nsensors the number of sensors in the detector.

The difference in reconstruction speed will be larger for IceCube which con-
sists of more sensors. That is the reason why, for all following studies including the
IceCube/DeepCore detector, networks trained for the all-sensor formulation of the
decomposed likelihood are used. They should yield the same parameter resolutions
with much faster reconstruction times. In addition, the memory required to train
a per-sensor ChargeNet is higher by a factor of Nsensors compared to a all-sensor
ChargeNet. With Nsensors being the number of sensors in the detector.
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6.1.3. Detector optimization

A big advantage of the likelihood-free inference technique implemented in FreeDOM is
its high flexibility. In the per-sensor formulation the HitNet and the ChargeNet only
receive per sensor information. If the transformation layer only passes relative and no
absolute positional information, the networks basically become independent from the
actual detector configuration. So networks trained on a specific detector configuration
can be used to reconstruct every possible configuration. This can be used to test
the impact of different configurations on reconstruction resolutions without changing
or retraining the networks. As a result detector optimization studies can be performed.

An example of such a study in the toy model framework is presented here. A
HitNet and a ChargeNet were trained on a simulation sample featuring only a single
sensor. The events in the training sample were placed randomly in a sphere with
a radius of 50m around the sensor to cover all possible sensor-event combinations.
This simple detector configuration also makes it possible to simulate and train on a
huge number of events (O(107)).
The detector configuration that should be tested is a 5x5x5 cubic grid. The distance
between neighboring sensors is the same in all three dimensions. For the optimization
study the sensor density is varied without changing the number of sensors, only their
distance to one another. The reconstructed event sample consists of tracks that are
also generated in a cubic volume of the size of the smallest detector configuration
tested here. So the generation volume is always completely contained in the detector,
but the tracks are not necessarily. A minimum number of 4 hits was required for each
detector configuration, to only get reconstructable events. This has the effect that
smaller detectors reconstruct more low energetic events (that do not deposit 4 hits in
larger detectors), even though the events for all detectors were drawn from uniform
distributions in all parameters using the same parameter ranges.
Figure 6.5 shows the relative change in parameter resolution (quantified by the
IQR) for all eight parameters describing a neutrino interaction. The resolutions are
normalized to the best one in the plot.
For most parameters, a more densely instrumented detector is preferred. The three
vertex variables show a virtually identical behavior and their resolutions get better
with higher sensor densities. Both findings are in agreement with expectations, be-
cause the three dimensions are identical in this toy detector and a closer sensor spacing
can better resolve positions. The same is true for the reconstruction of the time vari-
able. For all other parameters, the fact that longer tracks have a higher probability
not being completely contained in a smaller detector plays an important role. This
can be seen most clearly in the energy resolution. If a track is not completely con-
tained in the detector there is essentially light missing and the event seems to be
less energetic. That also affects the angular resolutions, because the pointing of the
track might not be visible. The angular resolutions start to decrease at lower detector
volumes, compared to the energy, because for the directional reconstruction the track
does not have to be completely contained in the detector to get a good estimate.
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Figure 6.5.: The influence of sensor density on parameter resolutions for a fixed num-
ber of 125 sensors in a cubic geometry (with varying sensor distances).
Parameter resolutions are quantified by the IQR. The relative resolutions
compared to the best one are shown. The error ranges are determined via
one-sample bootstrapping [126].

Thus, for a given true energy range, the physics signal region, and a given number
of sensors, limited by the funding of the detector, there is an optimal sensor density
where the best resolutions can be achieved. FreeDOM can be used to identify this
optimal value, thanks to its high flexibility. It is also possible to test completely dif-
ferent (non-cubic) sensor arrangements to find the optimal one.
In this study, only the effect of sensor density on parameter resolutions was inves-
tigated. Additional effects of different effective volumes and trigger rates were not
considered because they are independent from the reconstruction.

6.2. DeepCore studies

All DeepCore studies presented in this section use the networks described in sec. 5.2,
so a ChargeNet and a corresponding HitNet in the all-sensor formulation of the de-
composed likelihood.
The reconstructed event set consists of 612517 neutrino events (140018 νCC

e , 259250
νCC
µ , 124989 νCC

τ , and 67586 νNC). That is ∼10% of the nominal oscNext MC set
at L6 described in sec. 5.2. None of the events was part of the network training. The
true parameter distributions for the set can be seen in fig. 6.6.
The reconstruction performance (sec. 6.2.1) and physics sensitivities (sec. 6.2.2) are
compared to the current sate-of-the-art reconstruction RetroReco, which is introduced
in sec. 4.4.3. In addition, it is estimated how the size of the training set affects the
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sensitivities (sec. 6.2.4).

6.2.1. Reconstruction performance

First, the performance of the reconstruction itself is demonstrated.
In fig. 6.6 the one-dimensional best-fit parameter distributions of the two reconstruc-
tions are compared to the true “injected” distributions for each parameter of the
neutrino interaction model described in sec. 4.4.1. In addition, the logarithm of the
total deposited energy is shown.
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Figure 6.6.: Best-fit distributions for FreeDOM (orange) and RetroReco (blue) com-
pared to the true injected parameter distributions (green). All eight pa-
rameters of the neutrino interaction model are included together with the
total deposited energy. KDEs of the distributions are shown.

All three y and z vertex distributions look similar. For the x vertex, a few peaks are
visible for FreeDOM compared to the truth, due to a bias towards string positions.
This bias is less pronounced in the y-distribution because there are essentially only
two positions around which the strings cluster. The true time distribution shows a
wiggle structure that is not present in the reconstructed distributions. This structure
is not completely understood but probably results from the way events are triggered
in IceCube. The time period of these wiggles is 25 ns which is the FADC sampling
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period.
The reconstructed azimuth distributions also show an oscillation structure. This is
likely the result of the irregular detector grid which makes it more difficult to recon-
struct certain directions in the horizontal plane. In addition, FreeDOM reconstructs
less very up-going events while RetroReco reproduces the zenith distribution well.
A bias towards lower cascade energies is visible for both reconstructions, slightly
stronger for FreeDOM. The small peak in the FreeDOM distribution at very low cas-
cade energies are events that hit the minimizer boundary. Also for the track energy
both reconstructions return more small and less high values than the truth. RetroReco
returns discrete track energy values which explains its structure at low values. Free-
DOM reconstructs a continues value for the track energy but nearly never returns high
track energy values. This might be the case because of the low number of long tracks
in the training sample. The total energy distributions look similar. The reconstructed
distributions are biased towards the medium energy range, again FreeDOM more than
RetroReco.

Timing

The per event reconstruction time becomes important when millions of events have to
be reconstructed. In the following the reconstruction speed achievable with FreeDOM
is compared to the time RetroReco needs to reconstruct events.
Figure 6.7 gives an impression of the speed that can be achieved with FreeDOM.
The upper plot shows the time needed to reconstruct an event for FreeDOM and
RetroReco without paralellization on a Graphics Processing Unit (GPU). FreeDOM
is ∼35% faster than RetroReco an average. The lower left plot shows the number of
likelihood (LLH) calls needed to minimize the FreeDOM likelihood.
Neural networks can be evaluated on GPUs very efficiently [127]. This allows to re-
construct many events in parallel and reduce the per event reconstruction time. In the
lower right plot the effective time per likelihood evaluation is shown versus the number
of parallel evaluations in a GPU batch. In case of no paralellization, represented by
the first blue dot, it takes about 5ms per likelihood evaluation. Multiplying this with
the average number of evaluations yields the average time shown in the upper plot.
However, the time per likelihood evaluation can be strongly reduced increasing the
GPU batch size. If several hundreds of events are reconstructed in parallel this time
is ∼50µs, i.e. about a factor of 100 faster. Consequently, the average reconstruction
time per event is reduced to about 0.2 s, which is more than a hundred times faster
than RetroReco. The GPU used in this example is a NVIDIA Tesla V100 [128].

Parameter resolutions

The quality of a reconstruction method is mainly determined by its parameter reso-
lutions, i.e. how close the reconstructed parameter values are to their true values. To
illustrate the different parameter resolutions depending on the true parameter values,
fig. 6.8 shows the reconstructed versus true values for the same choice of parameters
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Figure 6.7.: Time to reconstruct oscNext DeepCore events. The upper plot shows
the time needed to minimize the likelihood per event (in case of no GPU
paralelization). The two lower plots show the number of likelihood calls
per event for FreeDOM and the effective time per call for different GPU
batch sizes. KDEs of the distributions are shown

as in fig. 6.6.
For the vertex distributions the one to one (1:1) line is always inside the respective
IQR. The maximum distance of the median line to the 1:1 line is [6.6, 4.2, 1.6]m for
RetroReco and [10.5, 4.9, 2.0]m for FreeDOM for x, y, and z respectively. The slight
curve structure in x and y arises from the non-homogeneous string placement and
is similarly visible in both reconstructions. The time experiences a bias to values
between roughly 9700 ns and 9800 ns. The absolute hit time is defined by the trigger
time and most of the hits in each event have time values in that range. This pulls
reconstructions towards these values.
For high azimuth values, the median RetroReco line is closer to the 1:1 line than
the FreeDOM median line, while for low azimuth values this difference is smaller.
This is not expected because 0 and 2π are identical for azimuth and it suggests that
the angle was not modeled correctly by the networks. The equality of 0 and 2π is
also the reason for the bending of the azimuth lines at these values. A “symmetric”
distribution with mean 0 for example would result in a median of π in this plot. The
form of the zenith curves looks similar for both reconstructions, but RetroReco’s IQR
for up-going events is 0.076 rad smaller than FreeDOM’s, while for down-going the
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Figure 6.8.: Reconstructed vs true parameter values for FreeDOM (orange lines) and
RetroReco (blue surfaces). The median as well as the IQR and 90 per-
cent inter quantile range are shown. In addition, the one to one line is
represented as dotted black line.

difference is only 0.028 rad.
As seen before the cascade energy is underestimated in both methods. That is the
case for nearly all values except for those below 5GeV. In addition, FreeDOM under-
estimates the track energy starting at about 10GeV of true track energy. The total
deposited energy is reconstructed similarly by both methods, the maximal relative
difference in IQR is 16% of the (RetroReco) IQR value. All three energies show a
bending at the edges of the shown energy ranges. The reason for over-predicting low
energy values is that low energetic events usually do not contain many hits. Only
events with more hits than expected on average pass the event selection and the low
energy events in this plot can be considered as “over-fluctuated”. For high-energy
events, it is exactly the opposite. Figure 5.10 shows the different charges the same
event can deposit in the detector if resimulated. This also gives an impression about
the variation of the number of hits.

As explained in sec. 4.4.1, the two most important parameters for atmospheric
neutrino oscillation analyses with IceCube are the total deposited energy and the
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cosine of the zenith angle. One dimensional resolutions for these parameters are
shown in fig. 6.9. The plot contains events with a true deposited energy between
5GeV and 50GeV. As can be seen in fig. 6.8, events below 5GeV can not be
reconstructed well with DeepCore and above 50GeV there is nearly no atmospheric
oscillation (see fig. 6.16).
For the energy, the logarithm of the ratio between the reconstructed and the true
value is used to quantify the resolution. It shows the relative energy difference which
is important because it makes a difference if a 1GeV event is reconstructed with a
precision of 1GeV compared to a 50GeV event. Furthermore, a bias would only shift
the entire distribution along the x-axis, not change its width. For the cosine of the
zenith angle, the difference of the reconstructed and true value is used.

Figure 6.9.: OscNext resolutions for total energy and cosine zenith angle. FreeDOM
(orange) is shown together with RetroReco (blue). KDEs of the distribu-
tions are shown.

The total energy resolution in the considered energy range is similar for both
reconstructions. The IQR values differ by about 3%. Both methods also experience
the same bias towards higher values. This might seem surprising because fig. 6.8
shows that the energy is underestimated for most of the considered energy region.
However, there are more low energy events in the sample, which can be seen in
fig. 6.6. These events tend to be reconstructed at higher energies, so the overall bias
here is positive.
The difference in zenith resolution is about 6% with RetroReco being better than
FreeDOM. The FreeDOM distribution is skewed to the right which likely results
from the fact that FreeDOM has difficulties reconstructing very up-going events (see
fig. 6.6).

At higher energies more light is deposited in the detector and therefore more
information is available for a reconstruction algorithm. Consequently, higher ener-
getic events should also be better reconstructed.
Figure 6.10 shows the parameter resolutions versus the true deposited energy for the
vertex position and the deposited energy. For the angular resolutions, the true track
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energy is used on the x-axis, because the direction of long tracks is expected to be
reconstructed better. In addition to azimuth and cosine zenith resolutions, the angle
between the reconstructed and true direction (∆Ψreco

true) is included. The cascade and
track energy resolutions are shown versus their respective truth. The time resolution
is not included, because its absolute value is less important for an analysis compared
to the other parameters.

Figure 6.10.: Parameter resolutions versus true energy for FreeDOM (orange lines)
and RetroReco (blue surfaces). Depending on the parameter, different
energies are used on the x-axis. The median as well as the IQR and 90
percent inter quantile range are shown.

Up to about 100GeV vertex resolutions get worse before they improve again. A
reason for this is that low energetic events only consist of a few hits rather close to
the interaction vertex. So their resolution is better than the resolution for medium
energy events, which more often contain hits further away from the vertex. At high
energies the large number of hits allows to better locate the vertex again. Above
100GeV some events are reconstructed more then 30m above their actual position.
These events are sitting below the detector but are bright enough to deposit light in
lower DeepCore DOMs. As a result, they are reconstructed closer to the detector.
This only happens for events below DeepCore because it is located at the bottom of
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IceCube. That means there are DOMs above DeepCore that can be used to properly
locate the event.
All angular resolutions improve with higher track energies, i.e. longer tracks. These
tracks typically produce more elongated signatures that allow for a better estimation
of the orientation of the event. The median ∆Ψreco

true value for RetroReco goes from
about 1 rad at 1GeV track energy down to about 0.15 rad at 300GeV, while for
FreeDOM it goes from about 1 rad to about 0.39 rad. Internal studies [129] showed
that this behavior is less strong for reconstructions based purely on neural networks.
The energy plots show the same as in fig. 6.8 and are only included for completeness.
It is noticeable that, for all parameters, the 90 percent inter quantile range for
FreeDOM does not improve at high energies but the IQR does. This indicates that
the likelihood space at high energies is not well modeled for every event in the sample.
This is not unexpected given that the networks are mainly trained on low energetic
events.

Finally, looking at the resolutions for the different flavors and interactions is
important, because the networks were mainly trained with muon neutrinos and no
tau neutrino events were present in the training set. It has to be tested, in comparison
with RetroReco, if there is any unexpected behavior for the FreeDOM reconstruction
of tau events. It is also interesting how the reconstruction performs for the different
event topologies described in sec. 4.4.2, so if there are differences between tracks and
cascades.
Figure 6.11 shows the energy and zenith resolutions for the different flavors and
interactions. The same cut on the true energy is used as in fig. 6.9.
The different interactions show slightly different energy biases and resolutions.
The energy of νCC

e events is overestimated, while the energy of νNC events is
underestimated. That is because of the different light yields of electromagnetic and
hadronic cascades (see sec. 4.4.2). This behavior is identical for both FreeDOM
and RetroReco. The νCC

µ energy resolution shows the larges difference between the
reconstructions.
In agreement with the expectation, the angular resolution for νCC

µ (tracks) is better
than for all other interactions (cascades). Again, both reconstructions show similar
relations between the interactions, with RetroReco showing better resolutions.

FreeDOMs performance for tau neutrinos is similar to RetroRecos. So even
there were no taus present in the training, they can be reconstructed. It is surprising
that the energy resolution for νCC

µ is not as good as it should be, looking at the
RetroReco resolutions, even though it was the most frequent interaction in the
training sample. This again suggests, similar to the toy studies in sec. 6.1.1, that the
track energy is the most difficult parameter to model.
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Figure 6.11.: Energy and zenith resolution per flavor and interaction. All neutral
current (NC) events are combined in one distribution. FreeDOM (first
row) and RetroReco (second row) are shown. KDEs of the distributions
are shown.

Particle IDentification (PID)

The particle identification has a significant impact on many of IceCube’s atmospheric
neutrino oscillation analyses (see fig. 4.10). That makes it important for a reconstruc-
tion to also provide a PID. As explained in sec. 4.4.2, a likelihood function can also
be used for particle identification in the IceCube low energy context.
For each event a second fit is performed for which the track energy is fixed to zero.
This fit is seeded at the best-fit result of the full eight dimensional fit and uses the
same minimizer settings. The FreeDOM PID score is defined as:

PID =
min|Etrack=0(−L)−min(−L)

Qtot
, (6.2)

where L is the logarithm of the likelihood and Qtot the total charge in the event.
FreeDOM actually does not provide the likelihood but the likelihood-to-evidence
ratio. However, since the evidence is identical for both fits (same x), it cancels
out in the calculation. The reason for including Qtot is that it improved the PID
performance by about 5%.
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Based on this PID score the Receiver Operating Characteristic (ROC) curves
shown in fig. 6.12 could be calculated. These curves visualize, for different cut values
on the PID score, how many tracks are identified correctly (true positive) versus how
many cascades are falsely classified as track (false positive). Two pairs of ROC curves
are shown. One containing all events above the DeepCore energy threshold, the other
focusing on high energy events which are easier to distinguish, because high energy
tracks are longer and differ more from cascades. The Area Under the Curve (AUC)
quantifies the goodness of the particle identification. Respective curves for FreeDOM
and RetroReco are included.

Figure 6.12.: Particle identification based on likelihood ratios for different energy cuts.
ROC curves for FreeDOM (orange) and RetroReco (blue) are shown. For
the solid lines all events with true energies above 5GeV are used, while
for the dashed lines only higher energetic events are included. The area
under each curve is given in the legend. The black dots mark the one to
one line.

At low false positive rates, the FreeDOM curves raise faster, which allows to extract
a purer track sample, compared to RetroReco, that still contains about 20% of all
tracks. Overall, the two PIDs are comparable with RetroReco being about 3% better
in the AUC.

This demonstrates that the likelihood learned by the FreeDOM networks can
be used for a PID. No separate networks or classifiers have to be trained. Considering
FreeDOMs previously seen difficulties modeling long tracks, there should also be
some potential in its PID performance.
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Stability for systematic sets

The MC simulation used to train the networks was produced with specific values for
the different systematics that affect an IceCube atmospheric oscillation analysis. These
values are referred to as nominal in the following. Important systematic parameters are
the DOM efficiency, the optical properties of the hole ice, and the bulk ice scattering
and absorption length. All of which are shortly introduced in the following.
The DOM efficiency determines how effective the modules detect photons. A increased
DOM efficiency leads to more hits in an event and vice versa. Hole ice refers to the ice
in the string holes which were drilled during the deployment of the detector. These
holes refreeze after the strings are deployed, producing an hole ice cylinder around
each string. This ice is not as transparent as the surrounding deep Antarctic glazier
ice (which is called bulk ice) and effectively changes the angular acceptance of the
deployed modules. The optical properties of the bulk ice, mainly the photon scattering
and absorption, also affect the times and number of expected hits in an event.
For the purpose of oscNext, different systematic MC sets were produced. Each with
one or more systematic parameters changed compared to the nominal set. FreeDOM
has to be robust against changes of the systematic parameters to be able to reconstruct
real data, because it is unlikely that the nominal assumptions about this parameters
correspond to the truth. To test FreeDOMs stability against systematics, events from
eight systematic sets are reconstructed and compared to the performance for the
nominal set. RetroReco is used to estimate the expected reconstruction differences
for each systematic set.
Table 6.1 shows the considered systematic changes with respect to the nominal set.

Set number change to nominal

0 no change (nominal set)

1 -10% DOM efficiency

4 +10% DOM efficiency

100 angular acceptance of PMT

106 -3% DOM efficiency, angular acceptance of PMT

150 angular acceptance of PMT

152 angular acceptance of PMT

500 +5% scattering and absorption in bulk ice

503 -5% scattering and absorption in bulk ice

Table 6.1.: The considered systematic sets and their difference to the nominal set.

About 14000 events (∼20% νe and ∼80% νµ) per set are used for this comparison.
Figure 6.13 shows the total energy resolution for all systematic sets compared to the
nominal.
The standard deviation of the different IQR values is about 1.3% of the IQR value of
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Figure 6.13.: FreeDOM energy resolutions for systematic sets compared to RetroReco.
The left plot shows the FreeDOM energy resolution distributions for all
sets on top of each other. The drawn distributions are the result of
KDEs. The right plot shows their median and IQR compared to the
respective RetroReco values.

the nominal set. So FreeDOM’s energy resolution is similar to the nominal one for all
systematic sets.
The median values show a stronger fluctuation for different systematic sets. Their
standard deviation is about 9% of the nominal IQR value. The standard deviation of
the medians must also be compared to the IQR because it is important how much the
distributions are shifted compared to their width not to their absolute position. The
stronger fluctuation of the medians is to be expected and RetroReco shows the same
behavior. For example looking at the DOM efficiency sets, a higher efficiency will
lead to more hits in the detector and consequently to higher reconstructed energies.
Therefore, it is consistent that the median for this systematic set is higher than for
the nominal set, while the median value for the systematic set with a lower DOM
efficiency is lower than the one for the nominal set.

Figure 6.14 shows the same comparison as fig. 6.13 for the cosine of the zenith
angle.
Similar to the energy resolution, the standard deviation of the different IQR values
is only about 2.1% of the IQR value of the nominal set. The zenith resolution is not
strongly affected for the systematic sets.
In contrast to the energy, there are no strong biases visible for the angle. Here, the
standard deviation of the medians is about 3.7% of the nominal IQR value. Again,
the biases are strongly correlated between FreeDOM and RetroReco.

In summary, FreeDOM is stable against systematic changes in the MC sets.
This shows that it did not overfit the nominal set, which is important for its
application to real data.
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Figure 6.14.: Zenith resolution for systematic sets compared to RetroReco. The left
plot shows the FreeDOM zenith resolution distributions for all sets on
top of each other. The drawn distributions are the result of KDEs.
The right plot shows their median and IQR compared to the respective
RetroReco values.

Data-MC agreement (pre-fit)

Finally, the FreeDOM performance on real detector data has to be compared to the
MC performance. This ensures that the networks did not learn MC specific features
and are applicable to data.
The oscNext data set consist of 9.5 years of DeepCore data, but is not unblinded2

yet. Therefore, only 1% of all available data are used here, which corresponds to
10698 data events. After applying the final level cuts that are used for oscNext analy-
ses, but based on the FreeDOM reconstruction, this number is reduced to 3142 events.

It is not possible to compare parameter resolutions for data events, but the
best-fit distributions between MC and data events can be compared. Figure 6.15
shows the reconstructed distribution for the nominal MC set and the data. Since
atmospheric muons are the largest background in the detector, muon MC simulation
is also included in the plot. This corresponds to 640 events after final cuts, which
were also reconstructed with FreeDOM. The included uncertainty for the data points
is the Poisson uncertainty. The MC events are weighted by an atmospheric flux
model (Honda [23]), their oscillation probability, and interaction cross-section. The
small plots at the bottom show the ratio between data and MC events in each bin
compared to the uncertainty on the data.
Figure 6.15 shows data-MC comparisons for the IceCube low energy analysis variables
for FreeDOM and RetroReco.
These plots were made pre-fit, which means that, for example, the oscillation param-
eter values used to calculate the MC event weights are the nominal ones and not

2Blind analyses are performed in IceCube. That means it is not allowed to look at analysis variable
distributions for data events.
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Figure 6.15.: Pre-fit data-MC agreement for total deposited energy (first row), cosine
zenith (second row), and PID score (third row). The reduced χ2 value
for the data (black dots) and MC expectations (colored bars) is given
in each plot. FreeDOM (first column) and RetroReco (second column)
data-MC comparisons are shown.
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extracted from a fit to the data. Using post-fit values would violate the blindness and
is not allowed at this point. Considering this fact, FreeDOM shows an acceptable data
MC agreement for all three variables. None of the reduced χ2 values is significantly
above one. The existing differences are similar to RetroReco, e.g. the lack of low
energy events in data.
Even though FreeDOM was exclusively trained on the nominal MC set, it can be used
to reconstruct real detector data.

6.2.2. Physics sensitivities

In this section, the impact of the reconstruction on different analyses is presented.
The PISA [130] software framework, which was developed for IceCube low energy
analyses, is used to calculate the sensitivities.

Atmospheric neutrino oscillations are mainly νµ to ντ oscillations [10]. Fig-
ure 6.16 shows this oscillation probability depending on the neutrino energy and the
cosine of its zenith angle relative the IceCube detector. A cosine of 1.0 means that
the event is down-going (from the detector point of view), so the neutrino interaction
happened in the atmosphere above the South Pole. Down-going events only travel a
few kilometers and do not traverse any Earth matter. A cosine of -1.0 means that
the neutrino came from the direction of the Earth and is up-going. These events
traversed the entire Earth. A neutrino production height of 20 km [23] was assumed
to translate cos

(
θzenith

)
into a traveled distance.

The interesting region of the oscillogram illustrated in fig. 6.16 is the lower left quarter.
At GeV energies, there are no oscillations for down-going to horizontal events because
their traveled distance is too short. Also above ∼60GeV no νµ to ντ oscillation
is visible. Sub-GeV energies are very interesting for atmospheric oscillations, but
DeepCore can not detect or reconstruct such low energetic neutrinos (as demonstrated
in the previous section). IceCube’s sensitivity to atmospheric oscillation physics comes
from precisely examining this oscillation pattern based on a high number of detected
atmospheric neutrino events.
For an analysis, events are binned in the three dimensions total deposited energy,
cosine of the zenith angle, and PID score. It is not yet possible to identify GeV tau
neutrinos in IceCube, but the PID introduced in sec. 4.4.2 aims to separate νCC

µ from
all other flavors and interactions. Each analysis bin contains a number of detected
events with the respective reconstructed quantities. Figure C.7 in the appendix shows
an example of such an event histogram.

Definition of the sensitivity

All sensitivities presented in this thesis are so-called “Asimov” sensitivities. The
Asimov approach is introduced e.g. in [131, 132]. It assumes that the sensitivity of
an experiment can be calculated from the mean experimental outcome. Therefore,
instead of sampling pseudo experiments, the exact model predictions for the number
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Figure 6.16.: Atmospheric νµ → ντ oscillation probability depending on neutrino en-
ergy and cosine of its zenith angle relative to the detector. For zenith
values below the horizontal red line neutrinos traverse the inner iron core
of the Earth. The vertical red line indicates DeepCore’s energy thresh-
old.

of events in each analysis bin are used in the sensitivity calculation.
As metric to quantify the sensitivities a modified χ2 is used, which takes into account
the uncertainties arising from the finite amount of MC simulation. It is defined as
follows:

χ2
mod =

NBins∑
i

(Ni − ni)
2

ni + σ2i
, (6.3)

where NBins is the number of analysis bins, Ni the observed number of events in bin
i, ni the expected number of events in bin i, and σi the uncertainty on ni.

The sensitivities of two IceCube low energy analyses are presented in the fol-
lowing. Once using the state-of-the-art reconstruction RetroReco and once using
FreeDOM.
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Oscillation parameters

The first analysis aims to determine the atmospheric neutrino oscillation parameters.
Oscillation parameters refers to the neutrino mixing angles and the differences of the
squared masses of the neutrino mass eigenstates. As illustrated in equ. 2.16, for the
simplified two flavor case, they define the amplitude (mixing angle) and frequency
(mass difference) of the oscillation. This analysis is performed by determining the
position and shape of the oscillation maxima and minima shown in fig. 6.16.
As mentioned before, atmospheric neutrino oscillation is mainly νµ to ντ oscillation.
Hence, DeepCore looks for νµ disappearance respectively ντ appearance in the data
and is mainly sensitive to the mixing angle θ23 and the mass difference ∆m2

31. The
latest published DeepCore oscillation parameter studies can be found in [133] (ντ
appearance) and [134] (νµ disappearance).

The sensitivity to θ23 and ∆m2
31 is shown in fig. 6.17. A χ2 scan with fixed

systematic parameters is used to demonstrate the impact of FreeDOM on the
analysis. The 90% contour level is shown which corresponds to a ∆χ2 value of 4.61
above the minimum for two degrees of freedom [135].

Figure 6.17.: Sensitivity to the atmospheric oscillation parameters θ23 and ∆m2
31. The

90% contour level (∆χ2 = 4.61) is shown using the RetroReco recon-
struction (blue) and using FreeDOM (orange). The red cross marks the
injected true parameter values. All systematic parameters were fixed to
their true value for the scan.

The constraint on the mixing angle θ23 is nearly identical for both reconstructions,
with the FreeDOM curve shifted slightly to the left.
The mass difference ∆m2

31 can be better constraint with RetroReco. The constraining
power for this parameter mainly comes from tracks with energies around 15-20GeV.
So FreeDOMs difficulties to correctly model higher energetic tracks is likely the cause
for the visible difference here.
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NMO

The second analysis is the determination of the neutrino mass ordering introduced
in sec. 2.1.2. IceCube’s NMO sensitivity comes from the different impact of matter
(sec. 2.2.2) on neutrinos and anti-neutrinos.
Matter effects only become important in very dense media like for example Earth’s
core. In fig. 6.16 these effects are visible as distortion of the oscillation pattern for
very up-going neutrinos, so neutrinos that traversed the inner core of the Earth.
In the normal ordering this distortion only affects neutrinos, while in the inverted
ordering it only affects anti-neutrinos. IceCube can not distinguish between neutrinos
and anti-neutrinos, but they have different interaction cross-sections (σ(ν) ∼ 2σ(ν̄),
see fig. 2.2) and the atmospheric neutrino flux is higher than the anti-neutrino flux
(ϕ(ν) > ϕ(ν̄) [23]). Therefore, IceCube detects more than twice as many neutrinos
than anti-neutrinos and the NMO can be determined based on the strength of the
distortion in the measured data. The matter effects have the strongest influence
between 5 and 10GeV, which is just above DeepCore’s energy threshold. As a
consequence, DeepCore’s sensitivity to the NMO is below a discovery threshold of
3σ. Please refer to [136] for the latest published DeepCore NMO study.

NMO sensitivity refers to the median sensitivity, which is defined by the prob-
ability that a test statistic result of an experiment assuming the wrong ordering
is below (NO=True)/above (IO=True) the median test statistic result of the true
ordering assumption. As test statistic the metric difference between a fit assuming
the NO and a fit assuming the IO is used. In this thesis, a χ2 is used as metric so the
test statistic would be χ2

NO − χ2
IO.

More information about the NMO determination can for example be found in [137]
or [138].

Figure 6.18 shows test statistic distributions of 300 pseudo experiments for
RetroReco and FreeDOM. The true parameter values for the inverted ordering were
obtained from an Asimov fit, assuming the inverted ordering, to the normal ordering
with injected true parameter values. For this plot only the atmospheric oscillation
parameters θ23 and ∆m2

31 were free for the fit while all systematic parameters were
fixed to their nominal values. In addition, the Asimov sensitivity values are shown to
demonstrate that the Asimov assumption is (approximately) correct in this case.
The one-sided sensitivities calculated from the Asimov values are σRetroReco = 1.4 and
σFreeDOM = 1.3.
Similar to the first analysis, both reconstructions lead to similar sensitivities with
slight advantages for RetroReco. RetroReco’s better PID performance is expected to
be the main reason for the difference here, because the PID has the strongest influence
on the NMO (see fig. 4.10).
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Figure 6.18.: Test statistic values of 300 pseudo experiments drawn from each mass
ordering together with the respective Asimov value. Only θ23 and ∆m2

31

were free in the fits, all other parameters (systematics) were fixed to
their true values.

6.2.3. MCMC posterior sampling

As demonstrated in sec. 5.3.1, the function learned by the neural networks can be used
for MCMC sampling of the posterior distribution (defined in sec. 3.1). Thus, contours
for the parameters of the neutrino interaction model can be determined, including
correlations between the different parameters. This can be used, for example, for
pointing studies in IceCube similar to [139], which looks at higher energies (>1TeV).
Estimating the contours of the neutrino direction is more important for extragalactic
than for atmospheric neutrinos. However, in this section, using atmospheric neutrinos
as an example, it is shown that FreeDOM can be used for such studies. To transfer
this to higher energies, an adapted training set would be required.
Figure 6.19 shows the sampled posterior distribution for an example DeepCore MC
event.
The truth is inside the 68% contour for all parameter combinations. Expectable
parameter correlations like z vertex position and zenith angle (vertical alignment) or
x and y vertex position and azimuth angel (horizontal alignment) can be seen. The
inelasticity is not constraint for this event because the event only has a true track
energy of roughly 4GeV, meaning that the track is too short to be resolved by the
DeepCore sensor spacing. As a consequence, the angular 95% contour covers about
2 rad in azimuth and 1.8 rad in zenith.

Figure 6.20 shows the sampled posterior distribution for a real data event.
Since the truth is unknown, RetroReco is shown as comparison. This time a higher
energetic track, about 127GeV according to RetroReco, was chosen.
The two reconstruction methods agree for this event, meaning that the RetroReco
best-fit values are inside the FreeDOM 68% contours for nearly all parameter
combinations. The angular contours for this event are much narrower than for the
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Figure 6.19.: MCMC posterior sampling for a DeepCore MC event. The 2D 68% and
95% contours are shown as well as the individual 1D distributions. The
red lines mark the true parameter values. 1.65 · 105 samples are used.

first event. The 95% contours spans about 0.1 rad in zenith and 0.1 rad in azimuth.
So the direction of a long track can be estimated with a higher confidence than for a
short track. The total energy region expands to higher values, which can be explained
by the fact that the track is not fully contained in the DeepCore detector. Thus,
making the track even longer is only constraint by non-DeepCore strings which have
a less dense spacing.

In summary, FreeDOM shows the expected behavior for longer tracks and pa-
rameter correlations. The sampled posterior distributions agree with the truth
respectively RetroReco values. FreeDOM is a promising candidate for pointing or, in
fact, any MCMC-based analysis.
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Figure 6.20.: MCMC posterior sampling for a DeepCore data event. The 2D 68%
and 95% contours are shown as well as the individual 1D distributions.
The green lines mark the RetroReco best-fit parameter values. 2.5 · 105
samples are used.

6.2.4. Estimating the influence of training sample size on sensitivities

As shown in sec. 6.1.1, even for a simple detector, huge amounts of training events are
needed to approximate the true likelihood function to the point where the influence
of the minimizer on the best-fit points is dominant.
The goal of this section is to estimate how the physics sensitivities of a DeepCore-like
detector are affected by the number of training events. This is done in three steps.
First, a DeepCore-like toy detector is used to study the relation between the training
sample size and the KS values between the parameter resolution distributions achieved
with the true and learned likelihood function. This is identical to the study shown
in sec. 6.1.1. Then, the parameter resolutions of the oscNext sample are changed
to obtain the relation between the KS values of the original and changed parameter
resolution distributions and the relative change in sensitivity. Finally, the training
sample size and the relative change in sensitivity are connected via the respective KS
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values.

Relation between KS values and training sample size from toy detector

A DeepCore-like toy detector is used to estimate the relation between KS values and
training sample size. The general toy experiment setting is described in sec. A. The
toy detector consist of 480 sensors located at the same positions as the HQE DOMs
on the last 8 IceCube strings.
The KS value calculation is done in the same way as in sec. 6.1.1. For each number
of training events, five different training sets have been simulated and used to train
networks. These networks were used to reconstruct the always same set of test events.
Thus, five KS values per parameter could be calculated for each number of training
events. This time the KS value is not averaged over all parameters but the individual
parameter results are used, averaged over the five training sets per number of training
events.
Figure 6.21 shows the mean KS values for the total energy, cosine zenith, and inelas-
ticity. The latter is used as PID proxy. The errorbar represents the standard deviation
of the respective five KS values. The same fit function as in sec. 6.1.1 was used to
extrapolate the data sets. The horizontal dashed lines are the individual KS values
resulting from a second reconstruction using the true likelihood.

Figure 6.21.: KS values between the parameter resolution distributions obtained with
the true and network learned likelihood function for a DeepCore-like toy
detector depending on number of training events.

Based on the inverse functions of these three fits a conversion from KS values to
number of training events can be made for each parameter.

Relation between KS values and sensitivity from scaled oscNext

The next step is to estimate how much a change in parameter resolution, represented
by the KS value between the old and new parameter resolution distributions, affects
the sensitivity of an analysis. The same oscNext events as in sec. 6.2.2 are used to
calculate the sensitivities for the oscillation parameter and NMO determination. To
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be able to calculate a relative change in sensitivity, the sensitivity to the oscillation
parameters is quantified by the area of the 90% contour (as shown in fig. 6.17).
As optimal resolutions 15% improved RetroReco resolutions are used. The reason for
using improved resolutions is to emulate a detector that is sensitive to both analyses
presented before. With the actual resolutions the NMO sensitivity is to weak to allow
conclusions about the quality of a reconstruction.
Now two different methods are used to change the resolutions. The new reconstructed
parameter values pnew are calculated based on the optimal poptimal in the following
way:

� pnew = poptimal+a ·(ptrue−poptimal) ·N (1, 0.15): Similar to the estimation of the
potential in sec. 4.4.4, the reconstructed values are moved by a certain fraction
of their distance to the truth. Here the values are moved further away from the
truth (a < 0). The KS value is increased by increasing the absolute value of a.
N (1, 0.15) is a random Gaussian smearing of the parameter shift.

� pnew = poptimal + s · N (0, b): A simple Gaussian smearing of the reconstructed
values. s is a scaling factor which is different for each parameter. For the energy
s = Edeposited

true , for the cosine zenith s = 2, and for the PID s = 1. The KS value
is increased by increasing the standard deviation of the Gaussian smearing b.

The first method assumes a correlation between the poptimal and new reconstruc-
tion, while the second only assumes that they will roughly find the same best-fit values.

To demonstrate the impact of the different parameters, the resolution of only
one of them is changed each time. This would result in six different relations between
KS value and relative change in sensitivity (three parameters times two methods to
change the resolution). However, the first method is not applicable to the PID score,
because at some point shifting away the classification score from the truth improves
the classifier. Basically, a classifier that is always wrong is just as useful as a classifier
that is always right. Therefore, fig. 6.22 only shows five curves. The curves labeled
with an a used the first method to change the parameter resolution, while the curves
labeled as b used the second. The vertical dotted lines show the KS value of the last
point in fig. 6.21 for each parameter.
except for the green curve in the NMO plot, all curves show a almost linear relation
between KS values and relative change in sensitivity. Therefore, a linear interpolation
is used to convert KS values into a relative change in sensitivity.

Relation between training sample size and sensitivity

Now the number of training events and the relative change in sensitivity can be con-
nected via their respective relation to the KS values. This is done with the fits shown
in fig. 6.21 and the linear interpolations shown in fig. 6.22. Figure 6.23 shows the rel-
ative change in sensitivity depending on the number of training events. The vertical
black line shows the number of events that were used to train the oscNext networks.
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Figure 6.22.: Relation between the KS value of changed parameter resolution distri-
butions and the relative change in sensitivity resulting from the changed
resolutions.

Figure 6.23.: Relative change in sensitivity to the oscillation parameters (left) and
NMO (right) for different numbers of events in the training sample.

The plot suggests that for the oscillation parameters, several orders of magnitude
more events than in the oscNext sample would be needed to approximate the
likelihood to a level where there is no significant reduction in sensitivity. The
analysis would benefit from a better modeling of all three parameters Also the NMO
sensitivity would benefit from more events than there are in the oscNext sample.
In contrast to the oscillation parameters, with one order of magnitude more data,
energy and PID would be modeled well enough to not significantly reduce the NMO
sensitivity.

Note that this study makes some assumptions, e.g. about the change in reso-
lution, and should only be considered as rough estimation of the relation between
training sample size and sensitivity. It is also not made for DeepCore but a
DeepCore-like detector because the optimal resolution as well as the true likelihood
for the real DeepCore detector are unknown.
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6.3. IceCube Upgrade studies

There currently is no likelihood based reconstruction method for the IceCube
Upgrade. The photon tables used for RetroReco make symmetry assumptions
about the optical modules that are no longer valid for the mDOM and the D-Egg.
Dropping these assumptions would result in prohibitively large memory and CPU
requirements for the reconstruction. In addition, the reconstruction time would
increase significantly. For reference, the reconstruction of the oscNext DeepCore MC
sets with RetroReco takes more than two million CPU hours.
FreeDOM, on the other hand, requires almost no changes to work with Upgrade
data because it is trained without such assumptions. The only change, described
in sec. 5.2.3, is the use of a separate Hit- and ChargeNet for each module type.
This makes FreeDOM a promising candidate for the future of IceCube low energy
reconstruction, while RetroReco will not be developed further to work with Upgrade
data.
It should be mentioned that there is also a Graph Neural Network (GNN) based
reconstruction under development that shows promising performance on Upgrade
simulation. However, the GNN can only estimate a single quantity (e.g. best-fit
values, uncertainties, PID) at a time and does not provide a likelihood function.

Most studies presented in this section were performed with the noise free muon only
Upgrade MC set described in sec. 5.2.3. Only the mDOM noise study section uses
different MC sets specifically generated for the purpose of this study. These sets are
described in sec. 6.3.2.

The Upgrade parameter resolutions in this section are not compared to an-
other reconstruction, simply because there is none that estimates all eight parameters
of the neutrino interaction model. Instead, they are compared to DeepCore only
resolutions to demonstrate the benefit of the Upgrade. The DeepCore only resolutions
are obtained in a second fit to the same MC events, which includes only DOMs and
uses the DOM networks that are also part of the Upgrade fits. That is an advantage
of having a separate pair of networks for each optical module type. However, making
a fair comparison between DeepCore and the Upgrade is difficult. There are events
with too few hits in DOMs to be reconstructed with DeepCore but enough hits in
the new module types to be reconstructed with the Upgrade. Having these events
in the test sample would decrease DeepCore’s resolutions, but only including events
that can be well reconstructed with DeepCore would underestimate the improvement
through the Upgrade. For the following plots, events are used where the minimizer
has successfully converged for both detectors and where there is at least one hit in
the DeepCore detector. In addition, a paragraph was added to show the Upgrade
performance on events that have to few hits in DeepCore to be selected for a
DeepCore event sample.

Note that, unless otherwise specified, Upgrade always includes new strings and
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DeepCore strings. Furthermore, the shown parameter resolutions are considered
optimistic because no noise is present in the events. The presence of noise worsens the
resolutions, especially for low energy events. So the focus should be on the relative
improvement to the DeepCore resolutions.

6.3.1. Reconstruction performance

First, the reconstruction performance of the Upgarde (including DeepCore strings) is
compared to the DeepCore only resolutions.
Figure 6.24 shows the one-dimensional best-fit distributions of the Upgrade and Deep-
Core compared to the true “injected” parameter distributions. The same selection of
parameters was made as in fig. 6.6.

Figure 6.24.: Best fit distributions of the Upgrade (blue) and DeepCore only (orange)
compared to true (injected) parameter distributions (green). All eight
parameters of the neutrino interaction model are included together with
the total deposited energy. KDEs of the distributions are shown.

The vertex distributions recovered by the Upgrade look similar to the true distribu-
tions, while DeepCore shows biases towards its string positions. Events that only
illuminate a single DeepCore string are pulled towards this string in the reconstruc-
tion. This also explains the bias towards later times for DeepCore. If an event is
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reconstructed closer to a string its reconstructed time is shifted later to produce the
same hit times. The Upgrade time distribution does not show this bias.
DeepCore also shows some biases for the angles. For events that provide nearly no
information about the azimuth, the likelihood should be flat. However, due to statis-
tical fluctuations in the training set and process, the function learned by the networks
is not perfectly flat. In the minimization process, the minimizer finds these artificial
minima in the function. The trend towards down-going was also visible in fig. 6.6 but
not as strong as here. The lower number of training events, compared to the oscNext
set, leads to a worse approximation of the likelihood (see sec. 6.1.1) and could amplify
biases.
The track energy shows a significant difference between the true and reconstructed
distribution for both detectors. The toy experiments (sec. 6.1) showed that, espe-
cially for low numbers of training events, the division in track and cascade energy is
the most difficult parameter to learn for the networks. The track energy is shifted to
lower values while the cascade energy is biased towards higher energies. This leads
to a stronger difference for the track energy in fig. 6.24 because of the logarithmic
x-axis. The reason for the track energy to be biased towards lower energies is that
it is possible to have no track but not to have no cascade. The reconstructed total
energy distributions look more like the truth, which also indicates that the division in
cascade and track energy was not learned well.

Timing

The Upgrade adds nearly ten thousand additional PMTs to the current instrumen-
tation, which leads to more recorded hits per event. While this provides more infor-
mation for the reconstructions, it also requires more likelihood evaluations since the
likelihood is called once per hit. Thus, each minimizer iteration needs more time and
the reconstruction takes longer.
For the tested MC sample, the median of the ratio of reconstruction times

median

(
tUpgrade

tDeepCore

)
and the median of the ratio of hits median

(
NUpgrade

hits

NDeepCore
hits

)
are

both ∼7.47. Therefore, the difference in reconstruction times can be explained by the
higher number of hits.
The mean Upgrade reconstruction time is 79.6 s. Taking into account the speedup
from event paralellization on a GPU, as shown in sec. 6.2.1, this is still less than one
second per event. So the Upgrade reconstruction with FreeDOM is much faster than
the DeepCore reconstruction with RetroReco, which takes about 40 s. This will save
computing resources and allows for either larger MC sets or more systematic sets.

Parameter resolutions

The important question for IceCube with respect to the Upgrade is how much the
parameter resolutions will benefit from the additional photosensor instrumentation.
To answer this question fig. 6.25 shows the reconstructed versus true values for all
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eight parameters of the neutrino interaction model plus the total energy.

Figure 6.25.: Reconstructed versus true parameter values for using the Upgrade (blue
surfaces) and DeepCore only (orange lines) hits of an event in the recon-
struction. The median as well as the IQR and 90 percent inter quantile
range are shown. In addition, the one to one line is indicated by the
dotted black line.

For the vertex resolutions, the Upgrade 90 percent inter quantile ranges are compa-
rable to the DeepCore IQRs. The more dense module spacing and different PMT
orientations help locating the interaction vertex. The latter helps locating the relative
position of the vertex with respect to the optical module. The time bias for the
Upgrade is only a few ns, while it is more than 30 ns for DeepCore, which is similar
to fig. 6.8. The time values are different compared to fig. 6.8 because the absolute
time depends on the trigger time. The trigger here is based on all strings including
the Upgrade ones.
Also the angular resolutions strongly benefit from the additional PMTs installed in
the ice. Different PMT orientations, as arranged in the mDOM, also contribute to
the improved directional resolutions. Even a single mDOM can provide information
about the relative position and orientation of a light source to the module, as it has
multiple PMTs. However, it should be mentioned that the directional resolution is
likely to deteriorate in the presence of noise.
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The energy biases, which could already be seen in fig. 6.24, are stronger for lower
energies. This behavior can be seen for both detectors but the bias, represented by
the distance from the median to the 1:1 line, is less pronounced for the Upgrade.
Since a different track energy behavior was seen in fig. 6.8, it can be assumed that
more training events change the picture here too. At low energies the total energy
resolution of the Upgrade, defined by the inter quantile ranges, supersedes DeepCore
while at higher energies they are equal. DeepCore’s median is closer to the 1:1 line
at low energies, but this does not mean it can better reconstruct low energy events.
Many of these events only have very few hits in DeepCore and consequently are
reconstructed at low energy values. This lowers the median but widens the inter
quantile ranges which are a better indication of the actual parameter resolution. Note
that the resolutions at low energies will change when including noise. More about
that can be found in sec. 6.3.2.

The dependence of the resolutions on the true energy are of special interest
here because it shows if the Upgrade really provides better resolutions at low energies.
Figure 6.26 shows the parameter resolutions versus true energy. For all vertex
parameters the true deposited energy is used. The angular resolutions, including the
angle between reconstructed and true direction (∆Ψreco

true), are plotted versus the true
track energy, because they are expected to be reconstructed better for longer tracks.
Energy resolutions are shown versus their respective truth.
The Upgrade can locate the interaction vertex of events at deposited energies down
to 1GeV within less than 3m IQR, while the Deepcore vertex resolution at 1GeV
is about 60m. The DeepCore value is different than in sec. 6.2 because of the
different event sample (selection process) used here. The Upgrade vertex resolution is
better than DeepCore’s throughout the entire tested energy range, but the strongest
difference can be seen below 10GeV.
The same applies to angular resolutions. The median ∆Ψreco

true for track energies
around 100GeV is 5.6° for DeepCore and 3.1° for the Upgrade, while for 1GeV tracks
it is 49° for DeepCore and 21° for the Upgrade.
The energy behavior was already seen in fig. 6.25.

One advantage of having a separate pair of networks for each type of optical
module is that it is possible the look at their individual contributions to the overall
likelihood. It is also possible to only use one module type in the reconstruction and
get an impression of their individual contribution to the Upgrade performance. This
is similar to the DeepCore only resolutions which represent the DOM contribution.
Figure 6.27 shows the total deposited energy and cosine zenith resolutions of
reconstructions only using one optical module type respectively compared to the full
Upgrade.
The overall energy resolution of mDOMs and D-Eggs are virtually the same and
both are worse than the DeepCore (DOM) result. The reason for this is likely the
higher number of DOMs in the detector and their more even distribution, as can be
seen in sec. 4.3.2. But even though their individual energy resolutions are worse, in
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Figure 6.26.: Parameter resolutions versus true energy for the Upgrade (blue surfaces)
and DeepCore only (orange lines). Depending on the parameter, different
energies are used on the x-axis. The median as well as the IQR and 90
percent inter quantile ranges are shown.

combination with the DOMs the new modules improve the energy resolution of the
detector.
The cosine zenith resolution shows the benefit of the different PMT orientations in the
new modules for angular reconstruction. Both individual resolutions clearly exceed
the DOM resolution. That different PMT orientations play an important role here
can be seen from the fact that the mDOM (24 PMT orientations) zenith resolution
is significantly better than the one for D-Eggs (2 PMT orientations). The Upgrade
further improves upon the individual mDOM result.

Upgrade performance for non DeepCore reconstructable events

The Upgrade does not only provide more hits for events that could already be re-
constructed with DeepCore, it also allows to reconstruct events that do not produce
enough hits in DeepCore strings. This will lower the energy threshold of the detector
and result in larger data samples.
Figure 6.28 shows the total deposited energy and cosine zenith resolutions for events
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Figure 6.27.: Energy and zenith resolutions of reconstructions using only hits from one
optical module type compared to the full Upgrade resolutions. DeepCore
(orange) is identical to the DOM only resolutions. KDEs of the distri-
butions are shown.

that can be reconstructed with both detectors and such that can only be reconstructed
with the Upgrade. Events are considered as not reconstructable with DeepCore if they
have less than eight hits in DOMs. For the oscNext event sample, this cut was used
because there are eight parameters that need to be estimated.

Figure 6.28.: Energy and zenith resolutions for events with less than eight hits in
DOMs (dashed lines) compared to all events (solid lines). For each of
the two cases Upgrade (blue) and DeepCore only (orange) resolutions
are shown.

The dashed DeepCore lines confirm that these events can not be reconstructed using
only DeepCore strings. The low number of DOM hits results in a strong underesti-
mation of the energy and nearly no sensitivity to the zenith angle.
The Upgrade, on the other hand, can estimate energy and zenith of these events nearly
unbiased and with much better resolutions. Both resolutions are worse compared to
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the Upgrade resolutions including all events, because if there are fewer hits in DOMs,
there is also less information available for the Upgrade. However, the important point
is that having less than eight hits in DOMs is no longer a reason to remove an event
from a data sample.

Particle IDentification (PID)

The Upgrade likelihood function can be used for particle identification in the IceCube
low energy context in the same way as for DeepCore before.
Figure 6.29 shows PID ROC curves obtained with the full Upgrade likelihood and the
DeepCore only part of it. A cut was made on the true deposited energy of the events.
The solid lines only contain events with energies above 15GeV, while the dashed lines
are for low energetic events below 15GeV. A 15GeV track has a length of roughly
70m, while the horizontal spacing of DeepCore strings is between 40m and 90m (see
sec. 4.3.1).

Figure 6.29.: The PID performance based on the Upgrade likelihood (blue) compared
to the DeepCore only part (orange). A likelihood ratio is used as PID
score. The solid lines only include high energetic events above 15GeV,
while the dashed lines only include low energy events below this value.
The area under each curve is given in the legend. The black dots indicate
the one to one line.

For low energetic events below 15GeV, DeepCore has nearly no distinguishing power
(AUC≈ 0.5). These tracks are too short to be resolved by the DOM spacing. The
Upgrade can distinguish tracks and cascades even at energies below 15GeV. It basi-
cally lowers the PID threshold of the detector which will be important for example for
the NMO sensitivity. At energies above 15GeV, both detectors can separate tracks
from cascades. However, the Upgrade AUC is about 10% better than DeepCore’s.
In addition, the Upgrade ROC curve reaches a true positive rate of 60% at a false
positive rate of roughly 0. This allows for a pure νµ sample that contains about 60%
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of the tracks, while less than 2% of the cascades.
Again, it has to be mentioned that including noise will worsen these performances.

6.3.2. mDOM noise study

As seen is the previous section, the mDOM is a important component of the IceCube
Upgrade. More than half of the newly deployed modules will be mDOMs. A single
mDOM hosts 24 PMTs so it has a higher noise rate (∼ 2700Hz specified, extrapolated
from [140]) per module compared to other modules (e.g. ∼ 560Hz [79] for a DOM).
Therefore, it is important to use PMTs with a noise rate as small as possible. In the
production of these PMTs a new kiln was used. This lead to a higher radioactive
contamination in the PMT glass than specified by the manufacturer and consequently
to a higher noise rate. The PMT noise rate was increased by roughly a factor of 3
(from 111Hz to 360Hz [140]). Since this was a failure of the producing company,
they agreed to either give a discount on the already delivered PMTs or replace them
which however would take more than a year. The question that had to be answered
now was how much the increased mDOM noise decreases the Upgrade parameter
resolutions and if it would be acceptable to keep the high noise PMTs.
To answer this question two MC sets were produced. One with the specified noise
rates and the other with the observed increased rates. Each of the sets consists of
about two million νµ events. A noise cleaning based on a graph neural network [141]
was applied to both sets. FreedDOM networks were trained on 90% of each set
respectively. Then, the remaining 10% were reconstructed by the respective networks.

Figure 6.30 shows the relative change in resolution for the analysis variables

for the new higher noise rate. The resolution is defined by the IQR of ln
(
Ereco
Etrue

)
for

the deposited energy and cos
(
θzenithreco

)
− cos

(
θzenithtrue

)
for the zenith angle. An event

selection based on the number of hits per event was applied, which removes the same
fraction of noise only events in both sets. This leads to a selection of events with at
least 10 hits for the low noise rate and at least 20 for the high rate after cleaning,
where the first set contains about twice as many events as the second one.
For high energies the energy resolution is basically unchanged because higher
energetic events deposit more light in the detector. This leads to more hits that
are actually caused by arriving photons in the modules. For low energies, a higher
fraction of hits are noise hits. Below 10GeV the energy resolution significantly drops
for the increased noise scenario. Events in that energy region become more and more
noise dominated with the increased noise rates.
The angular resolution for short tracks is up to 20% worse with the higher noise rate,
for the same reason as the energy resolution, but it becomes better for long tracks.
Getting better angular resolutions with more noise sounds counter intuitive, even for
long tracks. The main reason for this behavior is the applied event selection. For
the higher noise rate simulation, only events with at least 20 hits are considered,
while for the low noise rate simulation, at least 10 hits were required. Long tracks
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Figure 6.30.: Effect of the increased mDOM noise on energy and zenith resolution. A
reconstruction of events simulated with a higher noise rate is compared
with a reconstruction of events with a lower noise rate. The ratios of the
resolution IQRs are shown versus the true deposited energy (energy) and
true track energy (zenith) respectively. The error ranges are determined
via one-sample bootstrapping. The grey dashed line represents the point
where both reconstructions are equally good.

are rather elongated events which makes it easier for the noise cleaning to remove
hits that do not align with the track. Having more hits in an event helps with the
directional resolution. Considering only events with more than 20 hits consequently
leads to better resolutions.

In summary, an increased noise rate degrades the energy and zenith resolution
at a few GeV. For higher energetic events, starting at about 30GeV, there is no
difference for the energy and an improvement for the zenith angle.
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7. Uncertainty estimations

A big advantage of knowing the likelihood landscape is that it is possible to calculate
per event parameter uncertainties based on the width of the likelihood minimum1.
This additional knowledge can be used to weight events in an analysis. Events with
high uncertainties are expected to be reconstructed with larger residuums on average
than events with low uncertainties. Assigning low weights to these low-quality events
should reduce their influence on an analysis and consequently improve its sensitivity.
In this chapter, the two physics analyses described in the previous chapter are re-
peated with weighted events. First, it is described how to extract per event parameter
uncertainties from the reconstruction. Then, it is shown how these uncertainties are
converted into event weights. Finally, the impact of these weights on the physics
sensitivities is discussed.

7.1. Estimate per event parameter uncertainties

Uncertainties can be calculated for each parameter that affects the likelihood function
in the minimization process, i.e. for each of the eight parameters which describe the
neutrino interaction. However, since IceCube low energy analyses are binned in the
three dimensions of total deposited energy, cosine of the zenith angle (see sec. 4.4.1),
and particle identification (sec. 4.4.2), uncertainties on these parameters are consid-
ered to be of more interest than others.
There are multiple methods to estimate the width or curvature of a likelihood mini-
mum, even without explicitly differentiating the function. The use of a simplex based
optimization algorithm, such as crs2, enables the possibility to use the points visited
during the minimization process. Such methods considered during this study include:

Likelihood weighted standard deviation
For all points with a ∆LLH <= 2 to the minimum, calculate the standard
deviation of the difference of their respective parameter value to the best-fit.
Each point is weighted with e−∆LLH in this calculation.

Furthest point within ∆LLH = 2
For all points with a ∆LLH <= 2 to the minimum, return the largest absolute
difference between the value for the respective parameter and its best-fit result.

Fitting a parabolic envelope
A parabolic fit to the minima in some slices of the parameter is performed. The
size of a slice is defined by the standard deviation described above.

1Minimum of the negative log-likelihood
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Area of convex hull
The area of the convex hull that includes all points with a ∆LLH <= 2.

Figure C.4 in the appendix illustrates the different methods of uncertainty estimation
using the z-vertex coordinate as an example.
The likelihood weighted standard deviation was chosen as uncertainty measure for
two reasons. First, it never fails (never returns a NAN value), which is only true for
the standard deviation and furthest point method. Second, it showed slightly higher
correlations with the true absolute residuum, so the absolute difference between the
reconstructed and the true value of a parameter, than the furthest point method.
Since it is possible to extract gradient information from neural networks, in principle
the Fisher information, i.e. the curvature of the log likelihood function at the best-fit
point, could be used to determine parameter uncertainties. However, unlike the
other methods, this uncertainty estimate would be based on only a single point of
the approximated function. The likelihood function is not approximated perfectly
and methods based on multiple points are less affected by local fluctuations of the
approximation.

Figure 7.1 shows the correlation between the uncertainty estimated based on
the standard deviation of likelihood points and the true absolute residuum. It
contains the same oscNext final level DeepCore events that are used in sec. 6.2.
Ideally, the solid blue line would increase monotonically and the spread represented
by the two dashed blue lines would be 0. The title of each subplot contains the
Pearson product-moment correlation coefficient ρ [142] between uncertainty and
residuum. A higher ρ value means that the uncertainty is a better estimation of the
true residuum.
The Edeposited-Etrack fraction parameterization of the neutrino interaction model
parameters was used in the minimization. The uncertainty on the logarithm of the
total deposited energy is calculated by:

∆ log
(
Edeposited

reco

)
= log

(
Edeposited

reco +∆Edeposited
reco

Edeposited
reco

)
. (7.1)

It is noticeable that some events get estimated uncertainties of zero for nearly all
parameters, but they are not perfectly reconstructed. Indeed, they are reconstructed
worse than events with a small but nonzero estimated uncertainty. Events with esti-
mated uncertainties of ∼ 0 are events that were pulled to sit exactly at the bottom
of the allowed range during the minimization. Figure C.5 in the appendix shows the
z vertex position of these events. Usually, events that are fitted below the DeepCore
volume (z< −500) are excluded from an analysis. So events with an estimated uncer-
tainty of nearly zero for any parameter are thrown away.
Apart from that, for all parameters a positive correlation between uncertainty and
residuum can be seen. Low estimated uncertainties really mean that the parameter is
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Figure 7.1.: Correlation between the per event estimated uncertainty and the true ab-
solute residuum. The uncertainty estimation is based on the likelihood
weighted standard deviation of the points visited during the minimization
process. The solid blue line shows the median residuum for all events with
the uncertainty given on the x-axis, the dashed blue lines the correspond-
ing IQR. Parameter name and Pearson coefficient ρ are given in the titles.
The grey histograms show the number of events with this estimated un-
certainty and belong to the right y-axes.

likely reconstructed well, which is a requirement for using the uncertainties to weight
events.

Data-MC agreement

Estimated uncertainties can only be used safely in an analysis if they describe real
detector data in the same way that they describe MC simulation. Again it is not
possible to compare the estimated uncertainty to the true residuum for real data
events, but the distribution of the uncertainty estimations for a set of events can be
compared.
In fig. 7.2 the distributions of the uncertainty estimations for the logarithm of the total
deposited energy, the zenith angle, and the PID are shown. The same MC and data
events are used as before. As PID uncertainty, the uncertainty on the track energy
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7. Uncertainty estimations

fraction (third row second column in fig. 7.1) is used.

Figure 7.2.: Data-MC agreement for the logarithm of the total energy, zenith, and
PID uncertainty estimations. The reduced χ2 value for the data and MC
expectations is given in each plot.

All χ2
red values are below 1 which means data and MC agree within the uncertainty

of the data points. So the estimated uncertainties can be used in an analysis. It is
worth mentioning that the events with the lowest estimated uncertainty on the zenith
angle are almost all νCC

µ events, so events containing a muon track. This makes sense
because the direction of tracks can be reconstructed better as the direction of cascades
(see fig. 6.11), especially if the tracks have a high energy (see fig. 6.10).

7.2. Weighting events

Once parameter uncertainties are determined for each event and parameter, they can
be used to weight the events in an analysis histogram. In principle, there are infinite
possibilities to turn the uncertainties into event weights. The optimal way depends on
the analysis that should benefit from weighting the events and is not obvious without
thorough testing.
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7. Uncertainty estimations

The essential questions are what uncertainties should be used and how should the
weight be calculated based on them. As mentioned in the previous section, typical
IceCube low energy analyses are binned in the logarithm of the total deposited energy,
cosine of the zenith angle and, PID. For the energy and the zenith angle, uncertainties
can directly be extracted from the points visited during the minimization. For the
PID, the uncertainty on the track energy fraction is used as a proxy. The three
quantities are shown in fig. 7.2.
The only constrains to the function that calculates the event weights are that it should
give higher values for smaller uncertainties and that it should only return positive
weights. In addition, it can be required that a uncertainty of zero gives a weight
of one. This suggests for example a function based on exponential functions of the
following form for an event weight W :

W = e
−a·∆log

(
Edeposited

reco

)
· e−b·∆θzenith

reco · e−c·∆PIDreco , (7.2)

where a, b, and c are scaling factors adjusting the relative strength of the individual
uncertainties on the weight. The scaling factors as well as the uncertainties always
have positive values, so the weights calculated with function 7.2 are always between
zero and one.
As mentioned earlier, finding the right values for the scaling factors depends on the
analysis that should benefit from the event weighting. This is similar to cuts on events,
which are also optimized for specific analyses. An analysis specific optimization of the
weight calculation is needed.

Impact on resolutions

The main reason why the uncertainty weights described above can improve the sen-
sitivity in different analyses is that they should effectively improve the parameter
resolutions and PID classification performance.
Figure 7.3 shows the normalized resolutions to the analysis binning variables in Ice-
Cube low energy studies. It contains the unweighted FreeDOM and RetroReco re-
sults as well as two weighted FreeDOM results. For the first weight Wunc the esti-
mated reconstruction uncertainties are used, while for the second weight Wresi the
true residuum values are used instead of the uncertainties. The latter demonstrates
the theoretical potential of weighting events for the analyses, because it shows what
happens for an ideal uncertainty estimation. The two weight distributions are shown
in the lower right plot. In this figure a, b, and c are chosen in a way that the weight
distributions look similar, so the weights have similar magnitudes. This makes a al-
most fair comparison of the impact of two weights possible. For Wunc this results in
a, b, c = 3 and for Wresi a, b, c = 1 was chosen arbitrarily. In the legend of the upper
two plots the inter quantile ranges of the weighted distributions are given.
The weights improve FreeDOM’s resolutions for all parameters important for an anal-
ysis. It was clear that this is the case for the residuum weights, but also the weights
calculated from the estimated uncertainties give a boost in resolution. The gain in
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7. Uncertainty estimations

Figure 7.3.: Impact of weighting events on energy and zenith resolution as well as
PID. The unweighted RetroReco (blue) and FreeDOM (orange) results
are compared to FreeDOM weighted with the estimated uncertainty (red)
and FreeDOM weighted with the true residuum (black). The last plot
shows the distribution of weights for the two cases and chosen weight
scaling factors mentioned in the text.

energy is about 5%, in terms of IQR reduction, and the gain in zenith ∼10%. The
PID AUC is increased by about 7%.
It would be possible to get even better resolutions with more extreme weights, i.e.
higher values of a, b, and/or c. However, this would result in only a few events with
much higher weights than all others. These events would likely be reconstructed well,
but an analysis has to take the fact into account that only a few events really con-
tribute to a bin (in an event histogram). That means the used metric to calculate
sensitivities has to be adjusted accordingly. This is done in the next section. Here
it can be said in advance that extreme weight distributions, even though they yield
better resolutions, lower the sensitivity to both analyses investigated in this thesis.
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7. Uncertainty estimations

7.3. Impact of weights on sensitivities

Finally, the impact of the weights calculated based on the estimated uncertainties
on the physics sensitivities discussed in the previous chapter can be examined. At-
mospheric oscillation parameters and NMO sensitivity were calculated again using
weighted events in the analysis histograms. To be able to do this the used metric has
to be adjusted to the use of weights.

How to modify the χ2 metric

The χ2 metric defined in equ. 6.3 assumes that the bin counts represent a number of
events. That is not the case anymore for weighted events. The number of expected
events ni in the denominator actually represents the square of the uncertainty of the
bin count. As long as the bins simply contain numbers of events they are described
by Poisson statistics and the uncertainty is the square root of the bin count. Conse-
quently, the square of the uncertainty of the bin count is the bin count itself. However,
in the case of weighted events the bin uncertainty changes to the square root of the
sum of all weights in the bin squared [143]. So equ. 6.3 has to be rewritten to

χ2
weight =

Bins∑
i

(Wi − wi)
2

∆w2
i + σ2i

, (7.3)

where Wi is the observed sum of weights of all events in bin i, wi the expected sum
of weights, ∆wi the uncertainty on the expected sum of weights and σi the MC
uncertainty on the expected number of events in the bin weighted with the respective
event weights of all events in the bin.
Each event basically has two different weights. The MC weight wMC that represents
a number of events and the uncertainty weight wunc from a reconstruction which
would be applied to real data in the same way. The difference between the (Poisson)
MC uncertainty and the uncertainty of the sum of the bin weights is that ∆wi =√∑

j wMC,j · w2
unc,j while σi =

√∑
j w

2
MC,j · w2

unc,j . In case of no uncertainty weights

(wunc,j = 1) ∆w2
i would just be

∑
j wMC,j which represents the number of events in

the bin and is identical to the Poisson uncertainty (squared). So in that case χ2
weight

is identical to χ2
mod defined in equ. 6.3.

Oscillation parameters

For the atmospheric oscillation parameters (θ23 and ∆m2
31), new sensitivity scans

were made with weighted FreeDOM results. The same true values for θ23 and ∆m2
31

as before were used. They are indicated as red cross in fig. 7.4. The analysis binning
was not changed for any of the variables.
The left plot in the figure shows the 90% contours for RetroReco and FreeDOM with
unweighted events. These are the same curves as shown in fig. 6.17. In addition, a
FreeDOM curve made with events weighted by their estimated uncertainties and a
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curve made with events weighted by their true residuum values are included. Both
curves use values of a, b, c = 5 for the scaling factors introduced in equ. 7.2. Different
values for the weight scaling factors have been tested but did not lead to significant
improvements. However, it might still be possible that a specific combination of a, b,
and, c is better suited here.
The right plot in fig. 7.4 shows sensitivity curves made with FreeDOM results weighted
by the true residuum. The differences between the curves are the used weight scaling
factors a, b, c. Only one value was used for all three factors to keep it simple. So the
black and orange curves in the two plots are identical.

Figure 7.4.: Sensitivities to the atmospheric oscillation parameters θ23 and ∆m2
31 us-

ing weighted event samples. In the left plot, the RetroReco (blue) and
unweighted FreeDOM (orange) curve are identical to the ones in fig. 6.17.
The red curve shows the FreeDOM result for events weighted by their es-
timated uncertainties, while the black curve uses true residuum weights.
The right plot shows the results including residuum weights for different
weight factors. Black and orange curves are identical in both plots.

For this specific choice of weight scaling factors, the area enclosed by the 90% contour
line shrinks by only less than 1% using the estimated parameter uncertainties for the
weights. The sensitivity to the oscillation parameters mostly stems from medium long
tracks between 20GeV and 50GeV, which are not modeled well by the FreeDOM
likelihood. That could explain why a weight calculated based on the shape of this
likelihood does not improve the sensitivity much.
However, weighting with the true residuum shows the potential of this idea. A better
estimation of the reconstruction error would lead to a significant improvement of the
sensitivity to the atmospheric oscillation parameters θ23 and ∆m2

31.
As mentioned before, higher values of the weight scaling factors a, b, c lead to better
resolutions but also to less events really contributing to the sensitivity calculation.
Too high values of these scaling factors will consequently reduce the sensitivity. This
can be seen in the right plot of fig. 7.4 (where for reasons of simplicity a = b = c).
Increasing the weight scale up to a factor of ∼5 also increases the sensitivity to θ23
and ∆m2

31. For higher values of a the sensitivity decreases again.
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NMO

Also for the neutrino mass ordering analysis new DeepCore sensitivities with weighted
FreeDOM results were calculated. Again, the only thing that was changed compared
to the results in sec. 6.2.2 is the introduction of event weights.
Figure 7.5 shows Asimov NMO sensitivities for RetroReco, FreeDOM, and FreeDOM
weighted with its estimated uncertainties. Fit results where only θ23 and ∆m2

31 were
free in the fit, labeled as “Physics only”, are shown as well as fits including systematic
parameters, labeled as “Systematics”. A table containing all systematic parameters
can be found in the appendix (tab. C.1).
The left plot of the figure simply shows the calculated sensitivities for each of the
cases. The weight scaling factors used here are a = b = c = 12. The impact of the
scaling factors on the NMO sensitivity can be seen in the right plot of fig. 7.5. Again,
for reasons of simplicity the same value was used for all three factors. It is given as a
on the x-axis.

Figure 7.5.: NMO sensitivities using weighted event samples. Fits where only θ23 and
∆m2

31 were free (“Physics only”, blue) are shown as well as fits includ-
ing systematic parameters (“Systematics”, orange). In the left plot the
unweighted RetroReco and FreeDOM results are compared to FreeDOM
using events weighted by their estimated uncertainty. The right plot shows
the sensitivity for the latter case and different weight scaling factors a.

In contrast to the oscillation parameter sensitivity, FreeDOM’s NMO sensitivity can
be improved using weights calculated from estimated parameter uncertainties. This is
the case with and without including systematic parameters in the NMO fit. IceCube’s
NMO sensitivity comes from a lower energy region and not predominately from
track-like events. So it is not surprising that the weighting has a different impact on
this analysis. The weighted FreeDOM result supersedes the (unweighted) RetroReco
result. In principle, it is possible to do the same weighting with RetroReco. So it
could be that also this results can be improved further. However, this would require
reconstructing all events again, since the information needed to calculate the weights
was not stored for RetroReco.
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Again, the right choice of the weight scaling factors is important. In this thesis,
always the same value for all three scaling factors was used. A value of 12 appears to
be the optimal choice for the “physics only” case, while the “systematics” fit yields
the best results for a value of 14. For higher values of a (and equivalently b and c)
the sensitivity decreases again. Using different values for a, b, and c might further
increase the sensitivity.

In summary, weighting events with their parameter uncertainties is a promis-
ing way to increase the sensitivity of different analyses. For the NMO better results
were achieved with the current choice of weights and quality of uncertainty estimation.
With a better estimation of the parameter uncertainties also the sensitivity to the
atmospheric oscillation parameters θ23 and ∆m2

31 can be improved. There are many
options which combination of parameter uncertainties should be used to calculate
the event weights and what the individual weight factors should be. The best choice
strongly depends on the analysis in question and the used likelihood function. It has
to be studied for each analysis individually.
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This thesis introduced a hybrid machine learning-likelihood method, called Free-
DOM, which is capable of approximating the likelihood-to-evidence ratio of arbitrary
configurations of individual photosensors. It is based on likelihood-free inference [3]
and solely requires forward θ → x MC simulation to train on. Therefore, it can even
learn likelihood functions which are actually intractable. The method can be verified
by comparing its predictions to an known truth, for toy detectors, or repeated MC
simulation, for real detectors. In contrast to pure machine learning based methods,
which act as point estimators, FreeDOM provides information about the entire
likelihood and not only about its maximum value.

The presented work focused on a specific form of a decomposed likelihood [110].
It is designed for problems where the measurement consists of a variable length of
observations and the number of observations itself also provides information. This is
the case with a detector consisting of a number of individual photosensors. To tackle
this type of problem, two artificial neural networks are trained. One of them, called
HitNet, learns to use the information provided by single observations, which is mainly
information about the propagation of photons. The other network, called ChargeNet,
learns about the information provided by the number of observations, which is mainly
information about the brightness of the light source. The combination of these two
networks then yields the complete function.

Toy detectors show that the implementation of the method works for detectors
consisting of an array of individual photosensors. It is very flexible and can be
used for different detector configurations without major changes. Preliminary
detector optimization studies can be run quickly to examine the influence of sensor
arrangements on parameter resolutions. Moreover, not only was the minimum of the
likelihood learned but also the likelihood landscape around it. Therefore, confidence
levels or posterior distributions can also be determined.
However, it also became clear that a huge amount of training data is needed to
approximate the true likelihood. Even for a simple detector, consisting of only five
sensors aligned in a row, the likelihood could not be approximated to a level where
the best-fit results of a reconstruction are dominated by the minimizer and not the
likelihood approximation. Other network structures, changes in the training process,
or the inclusion of more information about the underlying physics could reduce the
number of events needed. This needs to be further investigated. Possible helpful
physics information would be, for example, the velocity, lifetime, and lightyield of
muons. However, care should be taken not to oversimplify the problem or provide
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too much information. Finally, the true likelihood should be learned, not a simplified
version.

The application of FreeDOM to DeepCore MC demonstrates that it also works
for a realistic detector simulation. The achieved parameter resolutions are compara-
ble to the state of the art likelihood-based reconstruction RetroReco, but FreeDOM
is about 100 times faster. The learned likelihood is stable to changes in systematic
parameters and applicable to real data. In addition, it can be used to determine a
particle identification score by calculating the likelihood ratio of a track hypothesis
and a no track hypothesis. Similar to the parameter resolutions, the sensitivities
obtained with FreeDOM are comparable, but slightly worse than with RetroReco.
The fact that better sensitivities can be obtained with RetroReco shows that Free-
DOM has not approximated the correct likelihood to the point where it is superior to
a simplified, human-constructed function. The most probable explanation why this
is not the case is a lack of training data. About 20 million events were used in the
training. For an eight dimensional problem this results in a bit more than 8 points
per dimension, which is low given the complexity of the problem.

FreeDOM is the first likelihood-based reconstruction successfully used for the
IceCube Upgrade. Reconstructing Upgrade events poses challenges for methods
building a likelihood with photon tables. The new optical module types developed
for the Upgrade violate symmetry assumptions made by the photon tables. Dropping
these assumptions would lead to prohibitively large memory and CPU requirements.
FreeDOM on the other hand only needs MC simulation including the new module
types to approximate the likelihood function. Likelihood scans as well as parameter
resolutions showed that the additional information provided by the new module types
could be used by the reconstruction. Other machine learning techniques can also be
used to reconstruct Upgrade events, but they do not provide a Upgrade likelihood
function.
In addition, FreeDOM also proved useful for the detector development process. It
can estimate the effects of detector changes, such as an increased noise rate, on
the reconstruction performance. If further maintained, FreeDOM has the potential
to play an important role in the Upgrade and any future IceCube low energy
reconstruction.
It should be noted that most of the presented Upgrade results are preliminary
obtained with a noise-free simulation. Further studies with updated simulation are
needed to determine FreeDOM’s true potential for the Upgrade.

Access to the likelihood landscape makes it possible to estimate per event pa-
rameter uncertainties, which can be used to weight individual events in an analysis
and improve its sensitivity. Using the true residuum shows that the potential gain
in sensitivity can be high for a perfect estimation of the uncertainty. FreeDOM can
estimate per event parameter uncertainties based on the simplex minimizer points
visited. The estimated uncertainties correlate with the true residuum and show
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a good data-MC agreement. They do not significantly improve the sensitivity to
the atmospheric oscillation parameters, but they do improve the sensitivity to the
neutrino mass ordering.
Since only sensitivity studies were conducted in this thesis, the impact of uncertainty
weighting has yet to be tested in a full analysis.

There are many possibilities for future applications of FreeDOM. Firstly, it will be
developed further alongside the IceCube Upgrade to reconstruct Upgrade events once
the detector is taking data. Furthermore, machine learning reconstructions are very
fast, so it is computationally feasible to run several of them on the same data and
combine their results. FreeDOM can make an important contribution to this, as it
differs from other reconstructions based purely on machine learning. Initial internal
studies already indicated the potential of such a combination. Figure 8.1 shows
energy and zenith resolutions of three methods involving machine learning, namely
FreeDOM, a CNN-based method [144], and a GNN-based method [145], compared to
RetroReco. In addition, the resolutions of two fully connected neural networks that
get the best fit values of the three machine learning methods as input are included.
These fully connected networks are called GAUNNTLET (Grand Algorithm Unifying
Neural Networks To Leverage Effective Traits).

Figure 8.1.: Energy and zenith resolutions for different machine learning reconstruc-
tions and their combination (GAUNNTLET) compared to RetroReco.

The combined GAUNNTLET resolutions supersede the individual resolutions of
the three included methods. The energy resolution is also better than RetroReco’s.
Although three reconstructions and one additional network evaluation must be
performed, getting a GAUNNTLET result is much faster than RetroReco. RetroReco
needs O(10 s) per event for a reconstruction, FreeDOM O(100ms) and everything
else O(µs).
It should be noted that improved versions of all three machine learning methods have
been developed since this study was conducted and that the GAUNNTLET networks
were just a initial proof of concept and not strongly optimized.
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The application of FreeDOM is not only limited to the low energy part of Ice-
Cube. In principle, the method is also applicable to the reconstruction of TeV or
higher energetic events in IceCube. MCMC sampling, for example, can be used in
pointing analyses to estimate parameter contours for the neutrino direction. However,
the way the information about the measurement is passed to FreeDOM needs to be
modified to efficiently handle large numbers of hits. Summary statistics, like time
of the first hit or median hit time in a DOM, have to be used instead of feeding
individual hits to lower the computational effort.

Finally, the presented method can also be used outside IceCube. It has al-
ready been tested for the EOS detector [146] and helps with detector development,
e.g. how high the concentration of liquid scintillator should be. As shown using the
different toy configurations, all detectors consisting of individual photosensors can
use FreeDOM without major changes. Moreover, the likelihood-free inference method
itself can be transferred to other detectors as well. As long as a sufficient amount of
simulation is available, the method can be used to learn any likelihood function.
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A. Toy experiment setup

To verify the validity of the likelihood-free method and to demonstrate some of its
use-cases, a toy model was developed. It was aimed to be as realistic as possible,
but one should still be able to analytically write down the true likelihood function.
This allows to directly compare the function learned by the neutral networks to the
truth. Furthermore, the achieved parameter resolutions can be compared to the
optimal ones. The toy model makes it possible to test different detector configurations.

The detector response implements a segmented interaction model with parame-
terized time and distance functions. The event model itself consists of the same
eight parameters as used for the real IceCube detector (described in sec. 4.4.1). The
cascade part is modeled as an isotropic light emission with 12819 Cherenkov photons
per GeV [84]. The track part is modeled as a line of cascade emissions placed every
1m along the track, to a total length of 4.5m/GeV, and a constant 2451 photons of
Cherenkov light emitted each meter [84].

The expected amount of photons arriving at a sensor scales with 1/r2 geomet-
rically, plus an additional absorption of e−r/λa , where the absorption length was set
to λa = 100m (see fig. 4.2). The actual number of photons is drawn from a Poisson
distribution. The time arrival distribution at sensors is modeled via a convolved
Pandel function [147], for which the absorption length was set to the same value
λa = 100m and the scattering length to λs = 30m (also see fig. 4.2). The refractive
index of the surrounding medium was assumed to be n = 1.3 (ice, [30]). The
Gaussian smearing of the convolution was set to 10 ns, representing the non-perfect
time resolution of the modules.

Note that different detector configurations (sensor alignments) are used in this
thesis.
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B. Likelihood formulation rearrangement

In this chapter the rearrangement of the per-sensor formulation of the decomposed
likelihood, shown in equ. 5.2, that leads to the all-sensor formulation, shown in equ.
5.4, is presented in more detail.

L(θ|x) =
Nsens∏
s=1

[
Ns∏
i=1

ps(xi,s|θ)

]
Ns(θ)

Nse−Ns(θ)

=

Nsens∏
s=1

[
Ns∏
i=1

Ns(θ)ps(xi,s|θ)

]
e−Ns(θ)

=

∑Nsens
s=1 Ns∏
i=1

Nsi(θ)psi(xi|θ)

 e−∑Nsens
s=1 Ns

=

[
Ntot∏
i=1

Nsi(θ)psi(xi|θ)

]
Ntot(θ)

Ntot

Ntot(θ)Ntot
e−Ntot(θ)

=

[
Ntot∏
i=1

Nsi(θ)

Ntot(θ)
psi(xi|θ)

]
Ntot(θ)

Ntote−Ntot(θ)

(B.1)
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Figure C.1.: Likelihood verification based on event reweighting. The black distribu-
tion shows p(x) for individual sensors. The dashed lines represent the
respective charge PDFs for three example events. The colored distribu-
tions are obtained by reweighting the black distributions according to the
respective event parameter values.
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Figure C.2.: True parameter distributions for the noise free muon only MC simulation
that is used to test FreeDOMs Upgrade performance.

Figure C.3.: Likelihood scans for an example DeepCore MC event. The all-sensor
formulation of the likelihood is used.
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Figure C.4.: All tested parameter uncertainty estimation methods demonstrated at
the example of the z vertex coordinate.

Figure C.5.: The best-fit z vertex position of events that got at least one estimated
parameter uncertainty of ∼0 (blue) compared to all other events (orange).
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Figure C.6.: Parameter resolution ratios for networks trained on L6 events and net-
works trained on L2 events. L6 events were used in the reconstruction.
The included uncertainties were obtained by one-sample bootstrapping
and only include statistical uncertainties from the reconstructed event
set, no possible uncertainties from the network training.

Figure C.7.: Example event histogram used in IceCube atmospheric neutrino oscilla-
tion analyses. Twelve logarithmic bins from 5 GeV to 300 GeV in energy,
ten linear bins from -1 to 0.3 in cosine zenith, and three PID bins are
used. oscNext final selection level MC events are shown reconstructed
with RetreReco.
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Systematics

νe
νµ

ratio
Covers uncertainity on ratio of atmospheric electron and
muon neutrino production.

Barr Up/Hor ratio
Covers uncertainity on ratio of atmospheric neutrinos pro-
duced at the Poles (Up) and close to the horizon (Hor).
Parameterization based on [148].

Barr
ν

ν̄

Covers uncertainity on ratio of atmospheric neutrino and
anti-neutrino production. Parameterization based on [148].

Atmospheric index
Covers uncertainty on the energy spectrum of the atmo-
spheric neutrino flux. Simply changes assumed power law
by its value.

DIS CSMS
Covers uncertainty on deep inelastic scattering cross section.
Based on [149].

Aeff scale
Effective area scale. Scales number of events in all analysis
bins.

Table C.1.: Systematic parameters used in the NMO analysis.

143



Bibliography

[1] I. Hacking, Logic of Statistical Inference.
Cambridge, England: Cambridge University Press, 1965.
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structure constant with an accuracy of 81 parts per trillion,” Nature, vol. 588,
no. 7836, pp. 61–65, 2020.

[36] B. Pontecorvo, “Neutrino Experiments and the Problem of Conservation of Lep-
tonic Charge,” Zh. Eksp. Teor. Fiz., vol. 53, pp. 1717–1725, 1967.

[37] A. Y. Smirnov, “Solar neutrinos: Oscillations or no-oscillations?,” 2017.

[38] Y. Fukuda et al., “Evidence for oscillation of atmospheric neutrinos,” Physical
Review Letters, vol. 81, pp. 1562–1567, aug 1998.

[39] C. F. Gauss, Theoria attractionis corporum sphaeroidicorum ellipticorum homo-
geneorum, methodo nova tractata, pp. 279–286.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1877.

[40] L. Wolfenstein, “Neutrino oscillations in matter,” Phys. Rev. D, vol. 17,
pp. 2369–2374, May 1978.

[41] W. J. Marciano and Z. Parsa, “Neutrino–electron scattering theory,” Journal of
Physics G: Nuclear and Particle Physics, vol. 29, pp. 2629–2645, oct 2003.

[42] J. Kopp, “Phenomenology of Three-Flavour Neutrino Oscillations,” diploma,
Technische Universität München, München, 2006.

[43] H. W. Zaglauer and K. H. Schwarzer, “The Mixing Angles in Matter for Three
Generations of Neutrinos and the Msw Mechanism,” Z. Phys. C, vol. 40,
p. 273, 1988.

146

https://home.web.cern.ch/science/physics/cosmic-rays-particles-outer-space


Bibliography

[44] A. M. Dziewonski and D. L. Anderson, “Preliminary reference earth model,”
Physics of the Earth and Planetary Interiors, vol. 25, no. 4, pp. 297–356,
1981.

[45] A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung.
Ergebnisse der Mathematik und ihrer Grenzgebiete, J. Springer, 1933.

[46] R. A. Fisher, “On the ”probable error” of a coefficient of correlation deduced
from a small sample.,” 1921.

[47] R. A. Fisher, Statistical Methods for Research Workers, pp. 66–70.
New York, NY: Springer New York, 1992.

[48] A. Birnbaum, “On the foundations of statistical inference,” Journal of the Amer-
ican Statistical Association, vol. 57, no. 298, pp. 269–306, 1962.

[49] G. A. Barnard, G. M. Jenkins, and C. B. Winsten, “Likelihood inference and
time series,” Journal of the Royal Statistical Society. Series A (General),
vol. 125, no. 3, pp. 321–372, 1962.

[50] J. Neyman and E. S. Pearson, “On the problem of the most efficient tests of
statistical hypotheses,” Philosophical Transactions of the Royal Society of
London. Series A, Containing Papers of a Mathematical or Physical Char-
acter, vol. 231, pp. 289–337, 1933.

[51] B. Duignan, “Occam’s razor.” https://www.britannica.com/topic/

Occams-razor.
Accessed: 2022-06-18.

[52] S. S. Yadav and S. M. Jadhav, “Deep convolutional neural network based med-
ical image classification for disease diagnosis,” Journal of Big Data, vol. 6,
pp. 1–18, 2019.

[53] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng,
“Cardiologist-level arrhythmia detection with convolutional neural net-
works,” 2017.

[54] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,
S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep speech: Scaling
up end-to-end speech recognition,” 2014.

[55] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen,
A. Kannan, R. J. Weiss, K. Rao, E. Gonina, N. Jaitly, B. Li, J. Chorowski,
and M. Bacchiani, “State-of-the-art speech recognition with sequence-to-
sequence models,” 2018.

[56] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous
driving: Common practices and emerging technologies,” IEEE Access, vol. 8,
p. 58443–58469, 2020.

[57] A. L. Samuel, “Some studies in machine learning using the game of checkers,”
IBM Journal of Research and Development, vol. 3, no. 3, pp. 210–229, 1959.

147

https://www.britannica.com/topic/Occams-razor
https://www.britannica.com/topic/Occams-razor


Bibliography

[58] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go
with deep neural networks and tree search,” Nature, vol. 529, pp. 484–489,
01 2016.

[59] M. Abbas, A. Khan, A. S. Qureshi, and M. W. Khan, “Extracting signals of
higgs boson from background noise using deep neural networks,” 2020.

[60] A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner,
G. Pawloski, F. Psihas, A. Sousa, and P. Vahle, “A convolutional neu-
ral network neutrino event classifier,” Journal of Instrumentation, vol. 11,
p. P09001–P09001, Sep 2016.

[61] R. Abbasi et al., “A Convolutional Neural Network based Cascade Reconstruc-
tion for the IceCube Neutrino Observatory,” 1 2021.

[62] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the American
Statistical Association, vol. 44, no. 247, pp. 335–341, 1949.

[63] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art deep learn-
ing software tools,” 2016.

[64] G. Hooker, Diagnostics and Extrapolation in Machine Learning.
PhD thesis, Stanford, CA, USA, 2004.
AAI3145521.

[65] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, pp. 533–536, Oct 1986.

[66] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points in space,”
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, vol. 2, no. 11, pp. 559–572, 1901.

[67] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares
solutions,” Numer. Math., vol. 14, p. 403–420, apr 1970.

[68] T. K. Ho, “Random decision forests,” in Proceedings of 3rd International Con-
ference on Document Analysis and Recognition, vol. 1, pp. 278–282 vol.1,
1995.

[69] C. G. Tianqi Chen, “XGBoost: A Scalable Tree Boosting System,” 2016.

[70] A. Y. C. V. N. Vapnik, “A class of algorithms for pattern recognition learning,”
Avtomat. i Telemekh., vol. 25, no. 6, pp. 937–945, 1964.

[71] H. Steinhaus, “Sur la division des corps matériels en parties,” Bull. Acad. Pol.
Sci., Cl. III, vol. 4, pp. 801–804, 1957.

[72] C. Watkins, “Learning from delayed rewards,” 01 1989.

[73] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–
133, Dec 1943.

148



Bibliography

[74] F. Rosenblatt, “The perceptron - a perceiving and recognizing automaton,”
Tech. Rep. 85-460-1, Cornell Aeronautical Laboratory, Ithaca, New York,
January 1957.

[75] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:
Comparison of trends in practice and research for deep learning,” 2018.

[76] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,
1989.

[77] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[78] H. E. Robbins, “A stochastic approximation method,” Annals of Mathematical
Statistics, vol. 22, pp. 400–407, 2007.

[79] M. G. Aartsen et al., “The IceCube Neutrino Observatory: Instrumentation and
Online Systems,” JINST, vol. 12, no. 03, p. P03012, 2017.

[80] R. Abbasi et al., “Icetop: The surface component of icecube,” Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment, vol. 700, p. 188–220, Feb 2013.

[81] M. Rongen. internal communication.

[82] K. Andeen and M. Plum, “Latest cosmic ray results from icetop and icecube,”
EPJ Web of Conferences, vol. 210, p. 03005, 01 2019.

[83] V. Petrenko and R. Whitworth, Physics of Ice.
OUP Oxford, 1999.

[84] M. G. Aartsen et al., “Measurement of South Pole ice transparency with the
IceCube LED calibration system,” Nucl. Instrum. Meth. A, vol. 711, pp. 73–
89, 2013.

[85] M. Rongen, Calibration of the IceCube Neutrino Observatory.
PhD thesis, RWTH Aachen U., 2019.

[86] D. Lilien, T. Fudge, M. Koutnik, H. Conway, E. Osterberg, D. Ferris,
E. Waddington, and C. Stevens, “Holocene ice-flow speedup in the vicin-
ity of south pole,” Geophysical Research Letters, vol. 45, 06 2018.

[87] R. Abbasi et al., “The IceCube Data Acquisition System: Signal Capture, Digi-
tization, and Timestamping,” Nucl. Instrum. Meth. A, vol. 601, pp. 294–316,
2009.

[88] H. P. K.K., Photomultiplier Tubes: Basics and Applications.
Hamamatsu Photonics K.K.
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