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Telomere shortening rates inversely correlate with life expectancy and hence it is critical to
understand how telomere shortening is regulated. Recently, the telomeric non-coding
RNA, TERRA has been implicated in the regulation of replicative senescence. To better
understand how TERRA is regulated we employed a proteomics approach to look for
potential RNA regulators that associate with telomeric sequences. Based on the results,
we have identified proteins that may regulate TERRA in both a positive and negative
manner, depending on the state of the telomere. In this mini-review, we discuss and
speculate about these data to expand our understanding of TERRA and telomere
interactors with respect to telomere shortening dynamics.
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INTRODUCTION

Telomeres make up the terminal structures of linear chromosomes that protect chromosome
ends and contribute to safe-guarding genome integrity (Arnoult and Karlseder, 2015). Unless
maintained by telomerase, telomeres shorten upon each passage through S phase due to the end
replication problem (Lingner et al., 1995). As a result, when telomeres reach a critically short
length they activate a checkpoint-mediated cell cycle arrest, termed replicative senescence
(Lundblad and Szostak, 1989; Bodnar et al., 1998; Campisi and Di Fagagna, 2007). In higher
organisms, replicative senescence serves as a tumor suppressor that controls the number of
divisions a cell can undergo (Campisi and Di Fagagna, 2007). The rate at which telomeres
shorten must be tightly regulated, as the accumulation of senescent cells contributes to
organismal aging (Baker et al., 2016; Hernandez-Segura et al., 2018). Uncontrolled telomere
shortening may lead to the accumulation of senescent cells at a premature age. Indeed, when
comparing across species, it appears to be the rate at which telomeres shorten, and not their
absolute length, which correlates with lifespan (Whittemore et al., 2019). In budding yeast, one
single critically short telomere is sufficient to trigger replicative senescence (Abdallah et al.,
2009), whereas multiple short telomeres are needed in human cells (Kaul et al., 2012). Thus, in
telomerase negative cells, it is imperative to repair the short telomeres that spontaneously arise
in early population doublings to prevent accelerated senescence onset. In budding yeast,
homology-directed repair (HDR) promotes telomere recombination at critically short
telomeres and prevents premature senescence (Le et al., 1999; Fallet et al., 2014). HDR at
telomeres is also important for the viability of post-senescence yeast cells, called ‘survivors’, and
for cancer cells that lack active telomerase and rely on the Alternative Lengthening of Telomere
mechanisms (ALT tumors) (Lundblad and Blackburn, 1993; Claussin and Chang, 2015; Sobinoff
and Pickett, 2017). An understanding of HDR-mediated telomere maintenance is therefore
critical to 1) provide mechanistic insights into senescence regulation and 2) to elucidate
potential targets for cancers that rely on HDR for immortality.
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Telomeres are transcribed by RNA polymerase II into
Telomere Repeat-containing RNA (TERRA) (Azzalin et al.,
2007; Luke et al., 2008; Schoeftner and Blasco, 2008;
Feuerhahn et al., 2010). TERRA exists in both a “free”
nucleoplasmic RNA form, but can also associate to telomeric
chromatin as an RNA-DNA hybrid (R-loop) (Balk et al., 2013;
Pfeiffer et al., 2013; Arora et al., 2014; Nanavaty et al., 2017). In
wild type yeast, telomeric R-loops are transient at normal length
telomeres and do not overtly affect telomere dynamics. However,
at critically short telomeres TERRA and TERRA R-loops become
stabilized and promote HDR-mediated repair, which in turn,
plays a pivotal role in preventing the onset of premature
senescence (Balk et al., 2013; Graf et al., 2017). TERRA
R-loops are also important for the optimal growth rates of
post-senescent survivors in yeast (Misino et al., 2018). In ALT
cancer cells, TERRA R-loops promote repair at telomeres by
inducing replication stress (Silva et al., 2021). For this reason,
TERRA R-loop regulation becomes essential for optimal telomere
maintenance in the absence of telomerase.

TERRA and R-loop levels inversely correlate with telomere
length, suggestive of a regulatory mechanism to ensure low
R-loop abundance at normal length telomeres and increased
R-loop accumulation at short telomeres. However, even at
short telomeres (where stable R-loops promote repair), the
hybrids must also eventually be resolved, as hyper R-loop
stabilization accelerates senescence rates in yeast (García-
Rubio et al., 2018). In this regard, R-loop regulation at
telomeres may be similar to their regulation at some double
strand breaks (DSBs), where R-loops are both necessary for the
initiation of DNA repair but even eventually need to be removed
at a later stage to allow Rad51 loading (Ohle et al., 2016;
D’Alessandro et al., 2018; Niehrs and Luke, 2020; Marnef and
Legube, 2021). Together, these results suggest that telomere
maintenance via HDR, may require a myriad of factors
regulating R-loop levels (positively and negatively),
recombination intermediates and telomere localization.

In order to identify novel telomere interactors we recently
employed a proteomics-based approach to identify proteins that
associate to telomeric sequences, in an RNA-dependent manner
(Pérez-Martínez et al., 2020). Briefly, an oligonucleotide bait
harboring telomeric sequences was incubated with cell extracts
from both non-senescent and senescent yeast cells. This allowed
us to identify a set of proteins that interact with telomeric-like
sequences in vitro in the context of wild-type and senescent cells
using mass spectrometry. Subsequently, we repeated the
experiment in the presence of recombinant RNase A and
RNase H, to identify the protein candidates that associate with
telomeric-like sequences in an RNA-dependent manner in the
context of senescent cells. This was important as TERRA may
participate in the recruitment of proteins to telomeres in
senescent cells, when TERRA levels are elevated (Graf et al.,
2017). Furthermore, the identification of RNA-dependent
telomere interactors may help to elucidate the telosome in
other cellular contexts when TERRA levels are elevated, such
as early S phase of the cell cycle (Graf et al., 2017). In the recent
years, similar approaches have been used to identify telomere-
and TERRA-interactors in human cells (Scheibe et al., 2013;

Kappei et al., 2017; Bluhm et al., 2019; Viceconte et al., 2021).
Here, we will discuss some of the identified telomere interactors
and their potential implications in telomere/TERRA
maintenance. Further characterization of their functions may
contribute to our mechanistic understanding of telomere
regulation during aging and cancer.

RNA Binding Proteins and Helicases at
Telomeres
Due to their established roles in R-loop dynamics, RNA binding
proteins (RBPs) and helicases are interesting, and obvious,
candidates for the regulation of TERRA and telomeric R-loops
(Table 1) and make up the largest class of telomeric interacting
proteins identified (Pérez-martínez et al., 2020). Similarly, a
recent study showed that TERRA interactors in both human
andmouse cells are largely made up of RNA binding proteins and
helicases (Viceconte et al., 2021). RBPs are well-known genome
stability factors, which bind nascent transcripts and prevent their
re-hybridization to the template DNA. To this end, RBPs can
prevent unscheduled R-loop formation and preserve genome
integrity. However, it should be pointed out that RBPs can
also bind and stabilize R-loops that have pre-accumulated at
specific R-loop-prone loci (Gavaldá et al., 2016; García-Rubio
et al., 2018; Pérez-martínez et al., 2020). Therefore, depending on
the context, nascent transcription vs pre-stabilized R-loops, RBPs
may either prevent the formation of R-loops or promote their
stabilization, respectively. Similarly, a dual role in R-loop
regulation has been suggested for certain helicases. Indeed,
helicases such as human DDX1 and UPF1 have been
implicated in both promoting R-loop formation at the IgG
locus and at DSBs, respectively (Almeida et al., 2018; Ngo
et al., 2021). Paradoxically, DDX1 has also been shown to
remove R-loops at DSBs (Li et al., 2016) and UPF1 can
remove TERRA from telomeres (Azzalin et al., 2007).
Therefore, it is highly likely that, in addition to RNase H
enzymes, helicases and RBPs also regulate R-loops at
telomeres depending on telomere length. Some factors may
contribute to ensuring low (transient) R-loop levels at wild-
type length telomeres and others may promote R-loop
accumulation (stability) at shortened telomeres.

RBPs likely ensure balanced R-loop levels at telomeres through
the binding of nascent TERRA transcripts, similar to their role at
other transcribed loci (Niehrs and Luke, 2020). Helicases, on the
other hand, may regulate TERRA R-loops by either removing, or
promoting RNA:DNA hybrid structures. The regulation of
TERRA and TERRA R-loops is most certainly dependent on
the cellular context and telomere length status. In non-senescent
budding yeast cells, TERRA hybrids remain transient to prevent
replication stress and unscheduled HDR. Hence, RBPs and
helicases found associated with telomeric sequences in non-
senescent yeast extracts (Table 1; Figure 1 top) may represent
a class of negative regulators of TERRA R-loops. This R-loop
preventing function has been proposed in the past for several
yeast RBPs (Pfeiffer et al., 2013; Santos-Pereira et al., 2013; Yu
et al., 2014). In addition, mammalian hnRNPs (a class of RBPs)
bind telomeres and TERRA to regulate telomere stability and
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TABLE 1 | Highlighted yeast helicases and RBPs identified as telomere interactors.

Function Human Homolog Telomere
Association

in Non-
Senescent

Cells

Telomere
Association

in Senescenct
Cells

Protein
Levels

in
Senescent
vs. WT Cells

Helicases Upf1 ATP-dependent RNA helicase UPF1 + + decreased
Dbp2 ATP-dependent RNA helicase of the DEAD-box protein family DDX5, DDX17 + + decreased
Dbp7 Putative ATP-dependent RNA helicase of the DEAD-box family DDX31 + + decreased
Dbp10 Putative ATP-dependent RNA helicase of the DEAD-box

protein family
DDX54 + + decreased

Sen1 ATP-dependent 5′ to 3′ RNA/DNA and DNA helicase SETX − + not changed
Pif1 DNA helicase, potent G-quadruplex DNA binder/unwinder PIF1 − + not changed
Dbp1 ATP-dependent RNA helicase of the DEAD-box protein family DDX1, DDX3X, DDX3Y,

DDX4, DDX 41
− + not changed

Dbp9 DEAD-box protein required for 27S rRNA processing; exhibits
DNA, RNA and DNA/RNA helicase activities

DDX56 − + decreased

Hcs1 DNA helicase associated with DNA polymerase alpha;
stimulated by replication protein A

IGHMBP2 − + not changed

RBPs Npl3 RNA-binding protein; promotes elongation, regulates
termination, and carries poly(A) mRNA from nucleus to
cytoplasm

hnRNPA1, SRSF
factors

+ + not changed

Yra1 Nuclear polyadenylated RNA-binding protein; required for
export of poly(A)+ mRNA from the nucleus

ALY1, POLDIP3 − + decreased

FIGURE 1 | (Top) At normal length telomeres TERRA is transcribed and degraded in a cell cycle dependent manner. Along with RNase H2, other telomere
interacting proteins (Dbps and Upf1 as well as the ssRNA binding protein Npl3) may contribute to the removal of TERRA (middle) When telomeres become critically
shortened, TERRAR-loops accumulate at telomeres which promotes HDRmediated telomeremaintenance. The absence of RNase H2 at short telomeres contributes to
R-loop stability, however there may also be proteins which actively promote R-loop formation and stabilization. Npl3, for example can stabilize R-loops at short
telomeres, how it changes from an R-loop preventer to promoter remains elusive. R-loops at short telomeres may drive replication stress and this may in turn trigger
HDR. (bottom) Although telomeric R-loops are important to trigger HDR, it is likely that their removal is also required either to allow proper resection and/or re-annealing of
the 3′ strand that was elongated. Helicases such as Pif1 and Sen1 are prime candidates to carry out such a function.
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length (LaBranche et al., 1998; Zhang et al., 2006; De Silanes et al.,
2010; Redon et al., 2010; Flynn et al., 2011; Redon et al., 2013).

With regards to helicases, it is particularly interesting that we
have identified yeast Upf1 as a telomeric interacting protein. In
human cells it has been demonstrated that UPF1 facilitates
telomere replication specifically on the leading strand (where
TERRA hybridizes) in non-senescent cells (Chawla et al., 2011).
Moreover, TERRA accumulates at human telomeres when UPF1
levels are reduced by shRNA (Azzalin et al., 2007). Together, it
has been speculated that both human and yeast Upf1 may
promote telomere replication through the removal of RNA-
DNA hybrids. In yeast, the deletion of UPF1 results in very
short telomeres (Askree et al., 2004; Gatbonton et al., 2006),
however it remains to be determined if RNA-DNA hybrids play a
role in this context. Recently, is has also been shown that human
UPF1 can promote R-loop formation at subtelomeric DSBs,
which in turn facilitates resection (Ngo et al., 2021). Together,
these data highlight that the Upf1 protein is tightly intertwined
with telomeres and RNA-DNA hybrid regulation, although the
complete picture has not yet fully emerged. Indeed, it will be
interesting to determine how Upf1 may be implicated in the
regulation of TERRA R-loops.

Similar to Upf1, other identified yeast DEAD-box helicases,
such as Dbp2, Dbp7 and Dbp10 might oppose telomeric R-loops
in non-senescent yeast cells (Table 1). In particular, Dbp2, the
yeast ortholog of DDX5, may limit R-loop accumulation at
telomeres as it has been demonstrated to have RNA:DNA
hybrid unwinding activity in vitro (Ma et al., 2013). Dbp2
regulates R-loop formation at the GAL locus (Cloutier et al.,
2016) and associates to RNA transcripts within R-loop forming
regions as well as to binding sites of the RNA/DNA helicase Sen1
(Senataxin in humans) (Tedeschi et al., 2018). Altogether, these
data implicate Dbp2, as well as other yeast helicases associated
with telomere sequences from non-senescent cells, in the negative
regulation of telomeric R-loops. Interestingly, this regulation may
be conserved in mammalian cells, as both human and mouse
DEAD-box helicases (including DDX1 and DDX5) were shown
to associate to TERRA-like sequences (Viceconte et al., 2021).

When telomeres shorten in telomerase-negative cells, TERRA
and R-loops accumulate at telomeres (Churikov et al., 2016; Graf
et al., 2017; Pinzaru et al., 2020). Interestingly, both RBPs and
helicases may participate in these senescence-associated
processes. At short telomeres, stable R-loops are important to
promote HDR, recruit repair factors and prevent senescence
onset (Balk et al., 2013; Graf et al., 2017; Pérez-martínez et al.,
2020). Therefore, one could speculate that some of the helicases
and RBPs associated to telomeric sequences from senescent
extracts may help to promote or stabilize R-loops at telomeres
(Table 1; Figure 1). However, if critically short telomeres behave
in a manner to DSBs, then the hybrids would eventually have to
be removed to facilitate Rad51 loading. Hence, it is feasible that
helicases and RBPs associated with telomeric sequences from
senescent extracts could either promote or oppose RNA-DNA
hybrid formation.

Our recent data suggests that during replicative senescence
Npl3 and other RBPs may participate in the R-loop stabilization
process, perhaps by binding TERRA and reducing the

accessibility of R-loop degrading enzymes to short telomeres
(Figure 1) (Pérez-Martínez et al., 2020). Presumably, this may
trigger replications stress and facilitate telomere elongation.
Likewise, some of the identified yeast helicases binding to
telomeres in the context of senescent cells may contribute to
R-loop formation or stability, similar to human RTEL1 (Ghisays
et al., 2021). Specific yeast helicases like Dbp1 or Dbp9 may either
stabilize R-loops in the context of senescent cells or promote their
formation in trans (Almeida et al., 2018). Indeed, Feretzaki et al.
recently demonstrated that human TERRA can form telomeric
R-loops in trans (Feretzaki et al., 2020). Therefore, it remains
possible that some of the telomere binders identified in senescent
cells participate in R-loop formation in trans. It is important to
mention that, when using senescent yeast cell extracts, most of the
telomere binding candidates identified associated to telomeric
sequences in an RNA-dependent manner (Pérez-Martínez et al.,
2020). This observation highlights the importance of RNA
(presumably TERRA) in defining the telosome in senescent
cells. Since mammalian TERRA sequences also associate with
a myriad of helicases (Viceconte et al., 2021) and TERRA
preferably forms R-loops at short telomeres (Graf et al., 2017;
Feretzaki et al., 2020), it is likely that the TERRA-mediated
recruitment of factors to short telomeres is conserved in
higher organisms.

In order to allow R-loop accumulation and stabilization at
shortened telomeres, R-loop-degrading factors would need to
dissociate from telomeres while stabilizing factors are being
recruited. This dissociation of R-loop stabilizers could either
be a consequence of changes in their protein levels in
senescent cells or due to lack of binding. Interestingly, the
protein levels of the Dbp2, Dbp7 and Dbp10 helicases
decrease in senescent yeast cells (Wagner et al., 2020),
suggesting that their reduced abundance may allow R-loop
accumulation (Figure 1). In this regard, these DEAD-box
helicases could behave similar to RNase H2, which
preferentially binds wild-type telomeres to degrade R-loops
and decreases its interaction with short telomeres to allow
R-loop accumulation (Graf et al., 2017). Altogether, the
recruitment of potential R-loop stabilizers and the decreased
binding of R-loop removers to short telomeres may combine
to ensure R-loop stabilization. Similar to their role at DSBs,
R-loops may act as scaffold structures to recruit repair factors
to telomeres and promote HDR initiation (D’Alessandro et al.,
2018) (Figure 1).

Once HDR has been initiated, R-loops need to be removed to
successfully complete recombination and to allow Rad51 loading
(Ohle et al., 2016; D’Alessandro et al., 2018; Marini et al., 2019;
Niehrs and Luke, 2020; Marnef and Legube, 2021). To achieve
this, both the dissociation of R-loop stabilizing factors as well as
the recruitment of R-loop removing proteins may be required at
telomeres (Figure 1). Indeed, over stabilization of telomeric
R-loops negatively impacts senescence rates (García-Rubio
et al., 2018). To counter-act this effect, R-loop stabilizers, such
as Npl3, may dissociate from short telomeres via post-
translational modifications by checkpoint kinases (Smolka
et al., 2007). In addition, we suggest that, following HDR
initiation, specific R-loop removing factors get recruited to
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critically short, recombining telomeres. In particular, the yeast
helicases Sen1 or Pif1 are good candidates, as they associate with
telomeric sequences specifically in the context of senescent cells
(Pérez-Martínez et al., 2020) (Table 1).

Hence, once the recombination machinery is recruited to
R-loops at short telomeres, the above-mentioned helicases may
subsequently unwind R-loops to allow Rad51 loading (Figure 1
bottom) (Mischo et al., 2011; Pohl and Zakian, 2019; Schauer
et al., 2020). In addition, helicases like Hcs1 may limit the
formation of aberrant recombination intermediates, thereby
coordinating telomere maintenance, similar to Srs2 in DSB
repair (Putnam et al., 2010; Elango et al., 2017; Vasianovich
et al., 2017). In summary, as a second step to RNA-DNA hybrid
stabilization at short telomeres, other helicases may act to
eventually remove RNA-DNA hybrids at critically short
telomeres in an analogous manner to how helicases were
described to clear hybrids for the efficient repair of DSBs (Li
et al., 2016; Marnef and Legube, 2021).

It remains unclear how all of these factors are specifically
recruited to short, recombining telomeres. Replication fork
stalling at short R-loop harboring telomeres may recruit
specific R-loop degrading factors like Pif1 (Schauer et al.,
2020). Another possibility is that the displaced DNA strand of
the R-loop recruits degrading factors, either through RPA
binding (as in the case of RNase H1) or even recognition of the
secondary structure of the ssDNA (Nguyen et al., 2017;
Carrasco-Salas et al., 2019). Of note, the helicase activity of
Hcs1 is stimulated by RPA (Biswas et al., 1993; Biswas E. E
et al., 1997; Biswas S. B et al., 1997). Alternatively, it is possible
that protein-protein interactions mediate the recruitment of
R-loop degrading proteins. Certainly, some helicases like
Dbp2 may interact with repair factors to ensure R-loop
removal only after HDR has been initiated. In this respect,
some helicases may behave similar to DDX5, which interacts
with BRCA2 for DNA repair in human cells (Sessa et al.,
2021).

In summary, there are likely a host of factors involved in the
regulation of TERRA and its telomeric R-loops. Those that
remove TERRA R-loops in non-senescent cells to prevent
replication stress, those that ensure R-loop formation to
identify critically short telomeres and induce HDR-initiating
replication stress and finally, those that remove the hybrid to
allow the progression of HDR (Rad51 loading).

Other Factors at Telomeres
In addition to helicases and RBPs, other telomere binders
identified may be implicated in HDR-mediated telomere
maintenance in telomerase-null cells, among them the repair
factor Mgm101 and the transcription factor Sdd4.

Mgm101, one of the strongest hits in the proteomics screen
for telomere binders, plays a role in the maintenance of

mitochondrial DNA but also participates in the nuclear DNA
damage response (Chen et al., 1993; Rendeková et al., 2016).
Interestingly, its repair function is linked to Mph1 (Ward et al.,
2012; Rendeková et al., 2016; Silva et al., 2016), a known
regulator of R-loops and replicative senescence (Lafuente-
Barquero et al., 2017). In this context, Mph1 has been
proposed to remodel replication forks at stable RNA-DNA
hybrids. These findings, together with the slight upregulation
of Mgm101 protein levels during senescence, raise the
possibility that Mgm101 acts as an R-loop regulatory factor
that balances senescence rate.

The transcription factor Sdd4 was identified as telomere-
associated protein in WT cells (Pérez-Martínez et al., 2020).
Its expression is induced in response to the DNA-damaging
agent methyl methanesulfonate (MMS) (Lee et al., 2007; Yang
et al., 2010). Sdd4 has recently been implicated in
interchromosomal pairing of a specific locus in diploid cells
(Kim et al., 2019). Having a predicted binding motif which is
very similar to telomeric repeats (CCCCAC), one could speculate
that Sdd4 also assists in the pairing of telomeres for their
maintenance through HDR.

CONCLUDING REMARKS

The identification and characterization of novel telomere factors
remains essential to understand how telomere length is regulated.
Since TERRA R-loops have been shown to regulate rates of
telomere shortening (Balk et al., 2013) and senescence onset, it
is also important to consider potential regulators of RNA-DNA
hybrids. For this reason, the screening for telomere binders
performed by Pérez-Martínez et al. is a powerful resource to
study new players of telomere regulation. In particular, RBPs and
helicases may be important factors for telomere length
maintenance through TERRA R-loop regulation. Given the
parallel mechanisms between short telomere maintenance and
DSB repair, the identified telomere factors may also shed light
onto DNA repair mechanisms.
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