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In search of more detailed explanations for body-mind interactions in physical
activity, neural and physiological effects, especially regarding more strenuous sports
activities, increasingly attract interest. Little is known about the underlying manifold
(neuro-)physiological impacts induced by different motor learning approaches. The
various influences on brain or cardiac function are usually studied separately and
modeled linearly. Limitations of these models have recently led to a rapidly growing
application of nonlinear models. This study aimed to investigate the acute effects of
various sequences of rope skipping on irregularity of the electrocardiography (ECG)
and electroencephalography (EEG) signals as well as their interaction and whether
these depend on different levels of active movement noise, within the framework of
differential learning theory. Thirty-two males were randomly and equally distributed to
one of four rope skipping conditions with similar cardiovascular but varying coordinative
demand. ECG and EEG were measured simultaneously at rest before and immediately
after rope skipping for 25 mins. Signal irregularity of ECG and EEG was calculated via
the multiscale fuzzy measure entropy (MSFME). Statistically significant ECG and EEG
brain area specific changes in MSFME were found with different pace of occurrence
depending on the level of active movement noise of the particular rope skipping
condition. Interaction analysis of ECG and EEG MSFME specifically revealed an
involvement of the frontal, central, and parietal lobe in the interplay with the heart.
In addition, the number of interaction effects indicated an inverted U-shaped trend
presenting the interaction level of ECG and EEG MSFME dependent on the level of
active movement noise. In summary, conducting rope skipping with varying degrees
of movement variation appears to affect the irregularity of cardiac and brain signals
and their interaction during the recovery phase differently. These findings provide
enough incentives to foster further constructive nonlinear research in exercise-recovery
relationship and to reconsider the philosophy of classical endurance training.
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INTRODUCTION

Today’s fast-paced society is always in search of maximum
performance and efficiency, particularly in human’s physical and
cognitive capacities. Effects of physical activity (PA) especially
on the cardiovascular system (Fagard, 1997; Lavie et al., 2015;
Nystoriak and Bhatnagar, 2018) and cognition (Li et al.,
2017; Voelcker-Rehage et al., 2017; Etnier and Chang, 2019;
Hillman et al., 2019; Ludyga et al., 2020) are well known.
More recently and next to the type, intensity, or duration of
a PA (Tomporowski, 2003; Schneider et al., 2009a,b; Brümmer
et al., 2011; Pesce and Audiffren, 2011; Chang et al., 2012; Cox
et al., 2016), the psycho-physiological effects that are induced
by motor learning approaches (MLA) receive growing interest,
mostly regarding possible benefits for cognitive and (neuro-
)physiological performance (Brady, 2008; Henz and Schöllhorn,
2016; Schöllhorn, 2016; Henz et al., 2018; John and Schöllhorn,
2018; Fuchs et al., 2020). Especially the investigation of the
PA underlying internal body processes related to the (neuro-
)physiological system is of emerging demand (Wymbs and
Grafton, 2009; Lage et al., 2015; Wright et al., 2016; John
and Schöllhorn, 2018; Pauwels et al., 2018; Tomporowski and
Pendleton, 2018; Sai Srinivas et al., 2021). This study represents a
follow-up study based on the investigation (John and Schöllhorn,
2018) of how a short bout of rope skipping conducted with
different underlying MLAs influences the (neuro-)physiological
system. In a within-subject design three different MLAs, i.e.,
repetitive learning (RL) and according to the differential learning
approach (DL) (Schöllhorn, 2000) instructed variable as well
as self-created variable learning, were compared considering
electrical brain activity by means of the electroencephalography
(EEG), heart rate variability (HRV), and rating of perceived
exertion. Borg scale of perceived exertion (RPE) as well as
rating of mental effort were significantly higher in both DL
interventions as in RL, whereas pure physical effort did not reveal
significant differences. Thus, higher cognitive workload in both
DL approaches was assumed. Immediately post exercise, slightly
greater changes in HRV of DL suggested a higher sympathetic
activation portending higher cognitive demands compared to RL.
Referring to EEG analysis, higher parietal and temporal alpha
power was found in RL compared to both DL interventions.
Consecutive recovery of up to 30 mins revealed also higher
temporal, parietal, and occipital theta, alpha and beta power in
contrast to DL. Recapitulating, next to indices of a reciprocal
impact of RPE, heart and brain activity, it was concluded that
already a single bout of short time rope skipping could promote
brain states presumably beneficial for cognitive learning. But
adding movement noise actively via coordinatively demanding
tasks with the application of the DL approach was supposed
to provoke an overload of the mental capacity. Here, active
movement noise is understood as the intentional augmentation of
movement variability in a rather constructive manner, as opposed
to the nuisance traditionally interpreted as destructive. Based
on prior findings, the question arose whether the instructional
frequency of nearly one new task per second is responsible for
overloading mental performance due to the added stress of time
pressure during a cyclic exercise. This study takes up the issue

by adapting the task instruction frequency and analyzing its
induced changes. In regard to existing indicators of a reciprocal
influence of (neuro-)physiological strain in rope skipping (John
and Schöllhorn, 2018), a study conducting an exhaustive PA
(John et al., 2020) found brain lobe specific correlations of
EEG spectral power with peripheral physiology, i.e., HRV. Thus,
further incentives of a possible interaction between the two
biosystems, in terms of brain and heart activity were given. With
respect to the communication between the (neuro-)physiological
systems and its accepted four major ways (McCraty, 2015),
i.e., the biochemical, biophysical, energetic and neurological
communication, here an interaction between both biosignals is
seen in a neurological way, i.e., processes of the nervous system.
However, the explanatory power of an interaction analysis
via correlation of different analysis parameters based even on
different biosignals, as conducted in John et al. (2020), has to
be handled with caution. Investigating an interaction between
brain and heart activity proves problematic due to various signal
content between the (neuro-)physiological systems (Sik et al.,
2017). Furthermore, different data preprocessing, e.g., band-
pass and artifact filtering, as well as calculation techniques, e.g.,
time- versus frequency domain, dependent on the respective
brain or heart measure aggravates besides varying value ranges
of these parameters an interference-free interaction analysis.
Thus, the application of a common signal processing and
analysis procedure between (neuro-)physiological systems would
be appreciated. This could be achieved using nonlinear analysis.

The most popular approaches for analyzing nonlinear signal
characteristics investigate signal irregularity based on the entropy
theory (Shannon, 1948). Commonly, irregularity of the EEG is
characterized as signal noise, whereas it may contain valuable
information (Sik et al., 2017) and seems relevant for a healthy,
efficient and flexible neural function (Kosciessa et al., 2020).
Regarding ECG, it is well known that the heart activity (HRV)
needs to contain some noise or irregularity for being healthy
(Peng et al., 1995). A suggested method for the interaction
analysis of the brain and heart activity represents the signal
entropy with its vast different types (Borowska, 2015; Jamin
and Humeau-Heurtier, 2020). Low entropy values indicate a
more deterministic signal with a high level of regularity or
similarity, in contrast high values emerge in a less predictive
signal with less regularity (Lin et al., 2017). Related to PA,
entropy analysis of the brain and heart has only been investigated
separately so far (Table 1). An interaction analysis between both
biosignals using just entropy measures was only found in pure
resting conditions without any physical demand. Accordingly,
relevant previous research of entropy analysis is presented for
both biosystems separately with a concluding description of the
interaction studies.

A field of extensive application was the analysis of the HRV-
entropy. A walking study (Shi et al., 2017) compared HRV-
entropy measures of a 5-min walking exercise on a treadmill at
a regular speed with a resting seated position. Dependent on the
entropy measure, differing effects were found with a comparable
significant decrease of sample entropy as well as fuzzy entropy
during walking. Related to a longer walking duration of 30 mins,
HRV-entropy measures of sedentary and physical active subjects
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TABLE 1 | Overview of entropy research with analyzed electroencephalography (EEG), electrocardiography (ECG), and their interaction.

Study Entropy type PA Intervention Analysis

EEG ECG Interaction

Javorka et al., 2002 SampEn + Step-test +*

Lewis and Short, 2007 SampEn + Cycling +*

Ramanand et al., 2004 SampEn + Physical exertion (n.s.) and Cognitive
tests

+

Hogan et al., 2015 SampEn + Cycling and Cognitive tests +

Chuckravanen et al., 2015 InformationEn + Cycling and Cognitive tests +

Lin et al., 2017 FuzzyEn + Cycling + +**

Shi et al., 2017 ApEn, SampEn, FuzzyEn, PermEn, CE,
and DistEn

+ Walking +*

Solis-Montufar et al., 2020 ApEn, SampEn, FuzzyEn + Walking +*

Lin et al., 2014 MultiscaleEn – Rest + +* +

Li et al., 2016 ApEn – Cognitive tests +

Gao et al., 2016 WaveletEn – MBSR + +* +

Sik et al., 2017 WaveletEn – MBSR + +* +

Bhavsar et al., 2018 SampEn – Rest + +* +

Chronologically ordered entropy research with analyzed EEG, ECG, or their interaction. PA, physical activity;+ analyzed parameters. Entropy measures: ApEn, approximate
entropy; SampEn, sample entropy; FuzzyEn, fuzzy entropy; PermEn, permutation entropy; CE, conditional entropy; DistEn, distribution entropy; InformationEn, information
entropy; WaveletEn, wavelet entropy; MultiscaleEn, multiscale entropy; MBSR, mindfulness-based stress reduction; n.s., not specified. *Only HR or HRV entropy
calculation was analyzed. **EEG ECG interaction with at least one non-entropy measure.

were compared to a prior resting condition (Solis-Montufar
et al., 2020). For sedentary subjects, entropy values were high at
rest and decreased with moderate physical activity. In contrast,
physically active subjects revealed increased or related to rest
stable entropies. Furthermore, longer physical demand seemed
to slightly decrease entropies with emerging fatigue. According
to more intense physical activity, a HRV study conducted an
8-min step-test of 70% of individual maximal power output
with prior and posterior resting phases (Javorka et al., 2002).
Sample entropy was marginally reduced after the exercise and
reached pre-rest values after 25–30 mins of recovery. A graded
exercise study on a bicycle ergometer (Lewis and Short, 2007)
also measured HRV sample entropy before, during and after the
cycling intervention. Sample entropy increased at the beginning
of the physical workload, i.e., at light-to-moderate intensity,
decreased with increments in exercise intensity and produced
after a short gain a further decline in ongoing recovery.

Considering the entropy analysis of EEG, a cycling study
(Lin et al., 2015) compared the effects of moderate and severe
fatigue on EEG power spectrum and sample entropy. Severe
fatigue appeared with incrementing EEG power in all frequency
bands with continuing exercise. Sample entropy of electrode C3
attenuated gradually from resting to the last exercise session
during moderate fatigue, and enhanced in severe fatigue during
the late exercising stage (Lin et al., 2015). Another study
(Ramanand et al., 2004) supports the use of entropy measures
in EEG as a robust quantifier of complexity, applicable to detect
variations induced by mental tasks or PA and the related fatigue.
To investigate possible different effects of cardiorespiratory
fitness and acute PA on executive functioning and EEG entropy,
a study (Hogan et al., 2015) compared executive function
performance and EEG sample entropy of higher and lower fit

subjects after a bout of acute exercise or rest. No significant
changes of acute exercise on EEG entropy were determined.
EEG entropy of the left frontal area was significantly lower
for higher fit participants compared to lower fit ones. The
authors hypothesized that less fit subjects required greater effort
eventually relying on higher levels of information processing,
i.e., sample entropy (Hogan et al., 2015). Authors suggested
that physical fitness could improve cognition by enabling higher
functionality referring to lower levels of frontal EEG entropy.
Another experiment found increasing approximate entropy
(ApEn) of EEG with increments in task difficulty supposing
ApEn applicable for evaluating of cognitive workload (Abhang
et al., 2016). Regarding a possible relation between brain and
heart activity, a study (Lin et al., 2017) investigated the effect of
increasing heart rate during a tiring physical workload on EEG
brain activity by means of EEG spectral power and fuzzy entropy.
With increasing heart rate, spectral power of all measured
electrodes, i.e., C1, C2, P1, and P2, similarly raised as fuzzy
entropy portending a direct relation. But fuzzy entropy revealed
superior specificity in determining frequency bands related to
varying heart rate intensity and in addition provides a better
computational efficiency.

Considering the analysis of the interaction between brain
and heart activity, only studies correlating brain and heart
entropies with no relation to PA were found. A study (Sik
et al., 2017) investigated a relation of the (neuro-)physiological
systems comparing a mental exercise with a resting condition.
A linear correlation between brain and heart rate wavelet entropy
was found during the mental exercise in contrast to the resting
condition, particularly in central brain regions. Both, brain and
heart rate entropy decreased compared to an eye-closed resting
state. Therefore, irregularity of brain and heart activity was
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lowered indicating a higher coordination during mental exercise
between the two biosignals, especially in somatosensory brain
regions. A similar reduction of EEG and heart rate entropy was
determined during mindfulness-based stress reduction training,
but particularly in the occipital and frontal lobes (Gao et al.,
2016). Also in a pure resting condition without any intervention,
a low positive correlation between EEG, in frontal as well as
somatosensory brain regions, and heart RR interval complexity
based on sample entropy was found (Bhavsar et al., 2018). In
contrast, a multiscale entropy study (Lin et al., 2014) revealed
at rest an inversely correlated effect between RR intervals and
EEG time signal at frontal, central and temporal regions. These
opposing results could be due to multiple time scales present in
and between biosignals (Humeau-Heurtier, 2020; Platisa et al.,
2020), such as the brain (Papo, 2013; Hari and Parkkonen,
2015) and heart signal (Costa et al., 2005; Porta et al., 2009).
The measure of sample entropy includes the disadvantage of
only taking one time scale, i.e., the raw scale, into account for
entropy calculation. Conversely, the multiscale entropy analysis
(Costa et al., 2005) includes an adaptation of the time scale
of the underlying signal to accentuate time scale dependent
signal characteristics in entropy. In consequence, a quantitative
comparison of interaction effects of heart and brain entropy with
differing underlying time scales becomes feasible. Via correlating
multiscale entropy values of EEG and ECG data, a possible
relation of brain and heart signal irregularity considering the time
scale characteristic of each biosignal could be declared. Whether
the correlating effects of previous studies are persistent in general
and in context with PA, needs further research.

This study aimed on one side to investigate the combined
neuronal and physiological effects of single bouts of cyclic
exercise-sequences with increased coordinative demand, i.e., rope
skipping, that are based on various MLAs. Another purpose
was to examine in particular whether the MLA dependent
frequency of additional movement noise has an impact on the
heart brain interaction. EEG brain and ECG heart activity by
means of the nonlinear analysis method of multiscale fuzzy
measure entropy (MSFME) were compared directly prior and
after the PA. The underlying MLAs were repetitive learning and
three chaotic DL approaches with differing frequencies of task
instruction. The fact that previous study results were only based
on the examination of highly automatized movements without
a still existing noteworthy coordinative demand, i.e., cycling or
walking, aggravates deriving hypotheses for the investigation
of a highly coordinative PA like rope skipping. Additionally,
mostly only a selection of particular brain regions of interest was
analyzed and no consistent entropy measures were used. Based
on this alternative type of analysis, i.e., applying a time scale
specific interaction analysis between two biosignals with different
time characteristics based on entropy, hypotheses were defined in
rather general terms.

According to the results of the previous studies (Lewis and
Short, 2007; Lin et al., 2017), we hypothesized increased general
EEG and decreased ECG entropy independent of motor learning
condition at rest, immediately after exercise termination. During
recovery, entropy of ECG may increase slowly toward pre-rest
value (Javorka et al., 2002; Lewis and Short, 2007). Due to

missing references on EEG entropy results after a physical load
in recovery, we assumed a subsequent monotone reduction of
EEG entropy toward pre-exercise level. Furthermore, according
to the different motor learning conditions, we hypothesize higher
general entropy levels in all DL conditions due to additional
cognitive workload compared to RL (Abhang et al., 2016; John
and Schöllhorn, 2018). Referring to the sparse state of research
concerning an interaction analysis between the brain and heart
signal by means of (multiscale) entropy, hypotheses could only
be defined undirected and based on separate EEG or ECG entropy
results. Because of the additional cognitive load in DL, differences
in the correlation of brain and cardiac multiscale entropy, i.e., the
relationship between brain area and time-scale dependent brain
and cardiac entropy, are hypothesized to occur immediately after
training and in subsequent recovery between MLAs.

MATERIALS AND METHODS

Participants
A total of 32 healthy right-handed male volunteers between 18
and 40 (27.3 ± 4.7) years participated in this study. Participation
criteria were selected regarding gender and age dependent effects
on the brain (Wada et al., 1994; Wackermann and Matousek,
1998) and heart activity (Umetani et al., 1998; Kuo et al.,
1999) as well as handedness related differences in brain activity
(Serrien et al., 2006; Sun and Walsh, 2006). Volunteers classed
themselves as neurologically and cardiologically healthy, without
knowledge of any associated pre-existing medical conditions. No
physical or cerebral activity influencing substances (Zschocke
and Hansen, 2012), like coffee, alcohol or medication, have been
consumed at least 12 h before the measurement. All subjects
confirmed being able to perform common rope skipping. Subjects
gave their written informed consent for study participation. For
anonymity of personal data, subjects were coded with numbers.
The study has been conducted in accordance with the Declaration
of Helsinki (2013). Compliance with the ethical standards was
approved of the local institutional ethics committee.

Study Design and Procedure
The study was conducted at the Sports Institute of the Johannes
Gutenberg University of Mainz. With a between-subject design,
the effects of four different coordination related MLAs were
investigated. Participants were randomly and equally distributed
to one of the four conditions resulting in eight subjects per
group (one subject of RL condition was excluded due to massive
artifactual signal noise). A priori power analysis based on the
lowest effect size of EEG results (Cohen’s d = 1.843) of a previous
rope skipping study (John and Schöllhorn, 2018) resulted in
a recommended sample size of at least seven participants per
group. EEG brain activity and ECG were chosen as measurement
parameters for aftereffects in the (neuro-) physiological system.
The measurements were carried out under laboratory conditions.
Changes in brightness, ambient noise and temperature were
standardized or kept to a minimum.

The test procedure (Figure 1) started by measuring
synchronized spontaneous EEG activity and ECG heart activity
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FIGURE 1 | Test procedure.

at rest for 5 mins just before the rope skipping training. The
training bout was in accordance to a previous study (John and
Schöllhorn, 2018) defined by 3 mins of rope skipping according
to one of the underlying MLAs. During rope skipping, the heart
rate (HR) was measured to check for any differences in the
cardiovascular demand between MLAs. Prior to the training,
subjects conducted a short rope skipping warmup of 15 s with
a jumping frequency determined by an acoustic timer with 120
beats per minute. Perceived exertion (RPE) was rated directly
after training termination. Immediately following, the recovery
process was assessed during 60 mins at rest with synchronized
EEG brain and ECG heart activity measurement. Measurements
before and after rope skipping took place sitting on an immobile
chair with eyes open facing to a white wall. Subjects were asked
to sit comfortably, but also to minimize their head and eye
movements. A mean duration of 112, SD 35 s was needed after
the training before recovery measurement started. Due to partly
loss of data during rest after the training bout, only the first
25 mins of the recovery process are used in this investigation.

Apparatus
Motor Learning Approaches
The four different interventions were based on the interventions
of the previous rope skipping study (John and Schöllhorn,
2018) and consisted of three DL variants with different levels
of additional perturbations and RL. DL training generally
uses movement variations to provoke a self-organized learning
process by destabilizing the system via increased fluctuations,
i.e., adding diffuse energy between two subsequent movement
executions. This self-organized learning process is suggested to
help finding an individually optimized solution for a certain
physical activity problem that have to be adapted situationally.
In contrast to RL, differences to the to-be-learned skill are not
considered to be erroneous and detrimental to the learning
process, but rather as essential fluctuations in living systems
with a beneficial influence on learning. Hence, no repetition of
an ideal, to-be-learned movement execution is recommended
and in consequence no error correction has to be given
(Schöllhorn, 2000).

All DL interventions relied on the chaotic DL model with
verbal task instruction (John and Schöllhorn, 2018), but with
a different frequency of task instructions. Based on the prior
study, movement variations were applied by changes only in
joint angles or their movements (Schöllhorn, 1999), e.g., feet
crossed, head circling or knees flexed. All instructions were
read aloud one after another depending on the predefined
instruction frequency. The specific frequency of instructions was

adequately practiced by the investigator prior to the start of the
study to best possible ensure the compliance of the demanded
frequency and to minimize variations in the frequency during
the intervention. The condition names are chosen to present a
general time continuous structure with the suffix of each DL
condition representing the frequency of a new task instruction
given. DL1 is defined by one task instruction nearly each second,
which corresponds to a frequency of 1 Hz, resulting in maximal
180 different tasks. The other two DL interventions contained
every ten (DL01), which corresponds to a frequency of 0.1 Hz,
and every twenty seconds (DL005), which corresponds to a
frequency of 0.05 Hz, one new task instruction resulting in 18 and
nine different tasks, respectively. Each task should be performed
until the next task instruction was given. Subjects were demanded
to comply to a rope skipping frequency of 120 beats per minute,
which corresponds to 2 Hz. RL was common, repetitive rope
skipping with a frequency of 120 beats per minute and one
ground contact per beat. Fitting to the structure of condition
labeling, the RL condition was renamed to DL0 according to
a variation frequency of 0 Hz, i.e., no given task instruction
at all. The skipping rope was a steel rope including a bearing
and individually adjusted to the anthropometric measures of the
subject. In order to keep the psychological stress low in case of
an interruption during rope skipping, the subjects were informed
beforehand that they should simply resume the exercise as soon
as possible. The total number of interruptions during the training
intervention was documented.

Borg Scale of Perceived Exertion
The Borg rating of perceived exertion scale (RPE) (Borg, 1982)
was applied to evaluate the exertion level between MLAs.
Immediately after the training bout, subjects were asked to rate
their individual RPE shortly. Subjects read an instruction of RPE
1 day and directly prior to the measurement beginning to ensure
reliable exertion output. A RPE of 6 was defined as no effort at all
and a RPE of 20 as maximum effort ever experienced.

Electroencephalography
Spontaneous resting EEG was assessed by means of the wired
EEG-system Micromed SD LTM 32 BS (Venice, Italy) with a
sampling rate of 1,024 Hz and recorded by the international 10–
20 system using 19 electrodes, including Fp1, Fp2, F7, F3, Fz, F4,
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. EEG was
recorded before and after training sessions at rest. For all EEG
measurements a homogeneous and low impedance (<10 k�) of
the electrodes in all points was sought. The conduction of brain
activity was unipolar with grounding on the nose. Furthermore,
a two channel electrooculogram with electrodes at the medial
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upper and lateral orbital rim of the right eye was applied. To
minimize artifacts such as EEG cable or cap movement caused
by rope skipping, all loose EEG cables were fixed in the EEG cap
or in the compressive net tubing, which was worn on the upper
body of participants. Prior to each EEG measurement, the correct
position of the EEG cap according to the 10–20 system was
checked. Data was recorded by means of a commercially available
software (SystemPlus Evolution - Micromed, Venice, Italy).

Electrocardiography
Electrocardiography was assessed by means of an additional
bipolar channel of the EEG-system Micromed SD LTM 32 BS
with a sampling rate of 1,024 Hz and recorded by the 2nd lead
according to Einthoven. One electrode of the 2nd Einthoven
limb lead was placed on the right side of the body, lateral,
directly below the clavicle and the other on the left body side,
lateral, directly below the costal arch to reduce artifacts during
movement. ECG was recorded before and after rope skipping at
rest by means of the software SystemPlus Evolution (Micromed,
Venice, Italy). To reduce artifacts because of body or ECG
cable movement, the upper body of participants was dressed up
with a compressive net tubing. To assess the HR during rope
skipping, the Polar watch RS800CX (Kempele, Finland) including
a chest strap was used.

Data Processing
Behavioral data was prepared for statistical analysis via Microsoft
Excel 2019 (Microsoft, Redmond, WA, United States). Data of
the recorded measurements of brain and heart activity were
processed by means of MATLAB R2020b as well as MATLAB-
based software EEGLAB 14_1_1b (MathWorks, Natick, MA,
United States; Swartz Center of Computational Neuroscience,
San Diego, CA, United States) (Delorme and Makeig, 2004).

Electroencephalography
A basic finite impulse response (FIR) filter was used to bandpass
data (3–80 Hz). Power line noise (50 Hz) was filtered via
spectrum interpolation (Leske and Dalal, 2019). Interference-
prone channels were interpolated. Furthermore, an independent
component analysis (ICA) (Makeig et al., 1996) was conducted.
Recurring artifacts, such as eye closing, eye movement, and
muscular artifacts were filtered by reducing interference-prone

components. After visual inspection of the complete recordings,
individually occurring abnormal interferences of the electric
potential, like body movements or sweat artifacts, were
eliminated out of the data length. After data cleaning, time
signals were bandpass filtered via a minimum-order FIR filter
to the total EEG spectrum of interest (4–70 Hz). Data of
each electrode was down sampled to 256 Hz, split into
nonoverlapping 10 s intervals and Z-transformed to efficiently
calculate the entropy.

Electrocardiography
Electrocardiography data was bandpass filtered by a basic FIR
filter (0.02–40 Hz). After visual inspection of the complete
recordings, individual occurring abnormal interferences of the
electric potential, like body movements or sweat artifacts, were
eliminated out of the data length. Data was down sampled
to 256 Hz, split into nonoverlapping 10 s intervals and
Z-transformed.

Heart rate of the pre-exercise rest and during the rope
skipping condition was averaged for each subject. To minimize
individual differences in HR, averaged HR of the training bout
was normalized by defining pre-rest HR as baseline (100%)
and presenting HR of the training bout relative to the baseline
(%Baseline) by dividing the training through the baseline HR.
The difference between relative training HR and baseline was
calculated to assess the change of relative HR due to the
training intervention.

Multiscale Fuzzy Measure Entropy
Regularity within EEG and ECG time signal was assessed via
the MSFME (Figure 2) that is a combination of the fuzzy
measure entropy (Chen et al., 2007; Liu et al., 2013) and the
multiscale approach (Takahashi et al., 2009; Platisa et al., 2020).
The fuzzy measure entropy was chosen due to the inclusion of
local and global signal characteristics in the calculation of signal
regularity and its better statistical stability compared to other
entropy measures, like approximate and sample entropy (Chen
et al., 2009; Liu et al., 2013). As fuzzy membership function, the
exponential function with a vector similarity weight n of 2 and
threshold r of 0.15 was used (Lin et al., 2017). The multiscale
approach (Takahashi et al., 2009; Platisa et al., 2020) was applied
to handle the different time characteristics of EEG and ECG time

FIGURE 2 | Data processing and analysis procedure.
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signals in the heart and brain interaction analysis. The scale factor
τ was defined by the range of 1–20 (Takahashi et al., 2009; Platisa
et al., 2020). MSFME was determined for every 10 s interval of
the EEG and ECG time signal, containing 2,560 data values at
scale 1 and 128 data points at scale 20. The embedding dimension
m was set to 2, which is seen adequate for the analysis of at
least 128 data points (Richman and Moorman, 2000; Chen et al.,
2007). MSFME values of 10 s intervals were averaged to 1-min
values. Baseline values were created relying on the last minute
of pre-rest condition. Regarding the post-rest condition, 1-min
average MSFME values were determined for the first 5 mins
(Post1–5) to examine short-term recovery effects as well as for
the last minute (Post25) to check for a remaining impact after
total recovery time. To minimize individual differences, MSFME
values of the post-rest condition were normalized by defining
pre-rest MSFME as baseline (100%) and presenting post-rest
MSFME relative to the baseline (%Baseline) by dividing the
post-rest through the baseline MSFME. The difference between
relative post-rest MSFME and baseline was calculated to assess
the change of relative MSFME due to the training intervention
during the recovery phase. EEG electrode specific MSFME values
were averaged across their cerebral areas, i.e., FP1 and FP2
for the frontopolar lobe (FP), F7, F3, Fz, F4, and F8 for the
frontal lobe (F), C3, Cz, and C4 for the central lobe (C), T3,
T4, T5, and T6 for the temporal lobe (T), P3, Pz, and P4 for
the parietal lobe (P) as well as O1 and O2 for the occipital lobe
(O). Furthermore, MSFME data of all electrodes were averaged
to gain information about the total brain regularity (total cortex,
TC). To minimize the influence of signal noise as well as the
interference of possible outliers (Whitley and Ball, 2002) and due

to a rather small number of subjects in each group, the median
of each condition’s MSFME was used for further condition
analysis. To reduce the amount of possible statistical tests
regarding the number of scale factors to a relevant minimum,
only MSFME values of scale factors with noteworthy differences
between conditions were considered for further analysis. This
procedure is based on the assumption that additional movement
noise induced by means of different coordinative resp. cognitive
demand takes influence on the level of EEG signal irregularity
(Abhang et al., 2016). Thus, for each post-rest minute (Post1–5
and Post25) and brain area of interest (TC, FP, F, C, T, P,
and O), a condition independent heterogeneity measure was
implemented. This measure was defined by the calculation of
the sum of MSFME differences between each condition’s median
pair for each scale factor

(∑
i |1i,j|

)
(Figure 3). The related

MSFME values of the scale factor representing the maximum of
heterogeneity over all scales

(
max

(∑
i |1i,j|

))
were used for the

consecutive statistical analysis.
Concerning the interpretation of entropy in this study, it is

refrained from a direct relation of high entropy to complexity.
Entropy is only considered as irregularity of a time signal in
its fundamental sense. Complexity is seen as balance between
order and disorder resp. regularity and irregularity (Fernández
et al., 2014). Absolut irregularity, i.e., highest entropy, represents
pure chaos, but the amount of information needed to describe
the investigated system, i.e., complexity (Prokopenko et al.,
2009), is quite low (Gershenson and Fernandez, 2012). To
investigate concrete complexity of a signal, applying further
measures beside entropy, going beyond the scope of this study,
would be obligatory.

FIGURE 3 | Scale determination via heterogeneity measure of TC multiscale fuzzy measure entropy (MSFME) Post1. Changes of baseline normalized MSFME values
(1% MSFME) of all motor learning approaches (MLA)’s dependent on the scale interval (i = 1–20), index j for differentiation between pairwise condition choice of 1%
MSFME difference calculation (j = 1–6).
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Correlation of Multiscale Fuzzy Measure Entropy
To analyze an interaction effect between the heart and brain
signal irregularity, Spearman correlation of time and amplitude-
normalized EEG and ECG MSFME according to pre-defined
scales was applied. To handle the different underlying time
characteristics of the heart and brain signal, MSFME EEG
and ECG values with differing scale factors were used for the
correlation analysis. For each post-rest minute (Post1–5 and
Post25) and brain area of interest (TC, FP, F, C, T, P, and O), the
following procedure was conducted: The determination of EEG
and ECG scale factor was set via a MLA condition independent
heterogeneity measure (Figure 3), calculating for each scale
factor the sum of MSFME differences between each MLA
condition’s median pair

(∑
i |1i,j|

)
. The related MSFME values of

the scale factor representing the maximum of heterogeneity over
all scales

(
max

(∑
i |1i,j|

))
were used for the following EEG and

ECG correlation analysis. For the correlation, all 10-s MSFME
intervals of the relevant post-rest minute were included.

Data Analysis
According to Fisher statistics, a statistical significance level of five
percent (p ≤ 0.05) was set. No claim to generalization of results
is followed, instead results are taken to be a sufficient basis to
encourage further similar studies. Calculation of effect size relied
on Neyman-Pearson statistics (Neyman and Pearson, 1933) and
results were presented by Cohen’s d (Cohen, 1988): d < 0.5
(small effect), d < 0.8 (medium effect), d > 0.8 (large effect).
Processed data and all the other measured data were entered
into the software SPSS 23 (IBM, Armonk, NY, United States)
for statistical analysis. All conducted statistical tests were non-
parametric due to non-standard normal distributed data and to
minimize possible influence of artifacts. Based on rank scaling,
the interference of possible outliers in data analysis is reduced
(Whitley and Ball, 2002). Descriptive statistics were compiled for
every subregion of analysis (Table 2).

Behavioral Data and Borg Scale of Perceived
Exertion
To check for possible differences in age, RPE as well as number
of rope skipping interruptions between all conditions, Kruskal-
Wallis test including post hoc Bonferroni correction was used.

Multiscale Fuzzy Measure Entropy
The following statistical tests were conducted for each EEG brain
area as well as ECG dependent MSFME values: To statistically
evaluate the acute training intervention and short-term recovery
effects, the Wilcoxon test comparing the baseline with each
of the first five post-rest minutes was used for each training
intervention. A possible remaining effect of an intervention after
recovery was examined by comparing the baseline with the last
post-rest minute by means of the Wilcoxon test. Regarding a
direct comparison between training interventions in acute short-
term, i.e., first five post-rest minutes, and at the end of recovery,
i.e., last post-rest minute, the Kruskal-Wallis test with Bonferroni
post hoc test was chosen.

TABLE 2 | Descriptive statistics of selected variables.

DL0 DL005 DL01 DL1

N 7 8 8 8

Age 28 (6) 28.5 (7) 27.5 (7) 27 (8)

HR (1%) 112.6 (37.4) 128.5 (33.9) 131.8 (48.4) 129.7 (56.7)

RPE (6–20) 15 (2) 12 (3) 12.5 (4) 15.5 (4)

Interruptions 10 (12) 12.5 (8) 17.5 (4)*DL0 23 (15)*DL0

MSFME (1%)

EEG

TC Post1 6.2 (12) –3.5 (10.6) 0.3 (13.1) –5.5 (14.3)

Post5 3.8 (14.3) –2.3 (17.6) 0.1 (8.2) –5.4 (8.3)

Post25 –8.5 (11.6) –6.5 (12) –5.8 (22.3) –1 (10.9)

FP Post1 9.9 (48.4) –11.9 (35.5) –3.1 (46) –9.4 (20.3)

Post5 –1.7 (61.1) –8.1 (33.1) 6.5 (31.5) –3.1 (16.7)

Post25 –0.3 (50.5) –6.4 (22.9) –2 (24.1) –2.1 (14.5)

F Post1 7.1 (14.8) –6.2 (11.8) 3.1 (24) –4.4 (13.6)

Post5 –0.7 (12.8) –3.6 (14) 5.5 (11.8) –4.7 (15.7)

Post25 –9.6 (14.7)* –6.3 (7.3) –9.4 (24.5) –2.8 (18)

C Post1 8.6 (19.4) 2.9 (41.8) 8.2 (12) 0.6 (7.7)

Post5 4.4 (22.5) 2.9 (23.9) –3.7 (16.4) –7.6 (14.2)*

Post25 –7.1 (4.5)* –5.8 (13.1) 0.6 (19) –1 (15.3)

T Post1 –2.3 (16.8) –8.4 (4.6) –6.7 (10.6)* –3.9 (14)

Post5 –4.8 (13.5) –1 (18.2) –0.7 (9) 5.9 (19.7)

Post25 –13.6 (11.8)* –3.7 (12.4) –7 (19.3)* –2.1 (18.8)

P Post1 8.1 (22.7) –1.2 (8.9) –8 (10.8) –1.9 (5.5)

Post5 4.5 (17.5) 1.3 (22.1) –2.2 (7.2) –6.6 (8.4)*

Post25 –2.5 (3.7) –0.7 (9.2) –9.5 (11.7)* –4.1 (14.5)

O Post1 19.4 (28.4)* 11.1 (34.7) 3.1 (23.3) 3.2 (9.8)

Post5 4.2 (12.1) 2.6 (20.6) –6.1 (19.3) –6.7 (7.5)

Post25 13.5 (28.2)* 5.6 (35.9)* 2.6 (29.8) –6.3 (11.8)

ECG Post1 26.3 (24.7)* 2 (55.1) 31 (76.8) 12.4 (59.4)

Post5 7.2 (33.9) 28.3 (28.8)* 24.2 (32) 11.2 (51.6)

Post25 11.9 (14.9) 22.8 (28.1) 20.5 (23.7) 4.3 (24.8)

Columns defined by motor learning approaches, rows defined by behavioral and
MSFME EEG and ECG variables. EEG MSFME divided by cerebral lobes. Median
(IQR) values, 1% defining relative change to baseline. *Signifies significant time
effect to baseline. *DL0 signifies significant difference to DL0 motor learning
approach.

Correlation of Multiscale Fuzzy Measure Entropy
For calculation of an interaction effect of brain and heart
signal irregularity, Spearman correlation was used due to
nonparametric data and to the advantage of minimizing the effect
of possible outlier measurement data. Only Spearman correlation
coefficients (rs) with rs ≥ 0.3 (moderate relation) were considered
for the further presentation of results and their interpretation.
Correlation coefficients rs ≥ 0.5 represent a strong relation
(Cohen, 1992).

RESULTS

Behavioral Data and Borg Scale of
Perceived Exertion
Statistical analysis showed no significant differences in age, RPE
and heart rate intensity of the training interventions between
MLAs. Only the number of interruptions in rope skipping
significantly differed between the training interventions. Post
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hoc analysis showed significantly more interruptions in DL1 and
DL01 compared to DL0.

Multiscale Fuzzy Measure Entropy
The statistical analysis of MSFME during the first five and the
last post-rest minutes yielded neither in EEG nor in ECG any
significant effects in condition comparison.

Analysis of time effects regarding the acute and short-term as
well as remaining impact led to condition dependent significant
effects (Table 3). The investigation of time effects in MSFME
regarding the first 5 mins after rope skipping revealed condition,
and in relation to EEG, brain lobe dependent effects. DL0 showed
directly at the beginning of post-rest session an increase of O
MSFME. In the 3rd post-rest minute, there was a reduction of
MSFME in F. More statistically significant effects were found
in DL005. A reduction of MSFME in TC as well as particularly
in F and O were observed already during the 2nd post-rest
minute. The effect in O remained till the 3rd post-rest minute
accompanied with an increase of T MSFME. DL01 decreased as
the only significant change its T MSFME immediately following
rope skipping. The condition with the latest present changes
was defined by DL1. Not until the 3rd post-rest minute, a
reduction in P and an increase in T regions were determined.
Later on, a reduction of C MSFME was added. Till the end
of the 5th post-rest minute, C and P MSFME stayed reduced.
Analysis of ECG MSFME revealed significant increases in all
conditions except DL01 dependent on time of first occurrence.
DL0 led immediately after rope skipping to an increase. But this
increment only prolonged till the end of the 2nd post-rest minute.
Following DL0, DL1 showed a brief increment in the 2nd post-
rest minute. Similarly in occurrence time, the most prolonged

increase of ECG MSFME, till the end of the 5th post-rest minute,
was observed in DL005.

The analysis of a remaining effect after total recovery
compared to baseline (Table 3) led alike to significant changes
with condition differences, at least regarding EEG data. DL0
kept at the end of recovery the significant changes of short-term
recuperation in F and O stable, whereas a reduction in C and T
was added. DL05 reduced its short-term recovery effects to only
a remaining decrease in O MSFME. DL01 added to its decrease
in T, also a reduction in P. In contrast to all other conditions,
no remaining effects were found in DL1 indicating a reset of
MLA related rope skipping effects. Regarding ECG, at the end of
recovery there were no sustained significant effects.

Correlation of Multiscale Fuzzy Measure
Entropy
The correlation analysis of brain area dependent EEG and ECG
MSFME revealed condition specific differences (Table 4). Fewest
relations were found in DL0 with general lowest absolute relation
level compared to other conditions. The effects were only of
negative correlation with a medium relation, firstly present in C
of the 2nd post-rest minute and later in P and TC. DL005 led
also to mainly negative relations, but with partially strong effects
and different involved brain regions. Particularly, FP yielded from
the 1st till the end of the 4th post-minute session constantly
a negative relation to ECG MSFME. F and P regions showed
negative relation in the 4th post-minute. The only positive
correlation was in the 5th post-rest minute with a strong relation
of O and ECG. Even more brain lobes were moderately related
in DL1 with mainly positive relations at least till the end of
the 4th post-rest minute. In the 2nd post-rest minute, C, P,

TABLE 3 | Significant time effects of EEG and ECG multiscale fuzzy measure entropy (MSFME) changes.

Post1 Post2 Post3 Post4 Post5 Post25

z p d z p d z p d z p d z p d z p d

EEG

DL0 F –2.197 0.028 2.981 –2.028 0.043 2.387

C –2.366 0.018 3.996

T –2.366 0.18 3.996

O 2.028 0.043 2.387 2.028 0.043 2.387

DL005 TC –1.96 0.05 1.922

F –1.96 0.05 1.922

T 1.96 0.05 1.922

O –2.24 0.025 2.594 –2.1 0.036 2.217

DL01 T –2.1 0.036 2.217 –1.96 0.05 1.922

P –2.1 0.036 2.217

DL1 C –2.1 0.036 2.217 –1.96 0.05 1.922

T 2.1 0.036 2.217

P –2.1 0.036 2.217 –2.38 0.017 3.115

ECG

DL0 2.366 0.018 3.996 2.028 0.043 2.387

DL005 2.38 0.017 3.115 2.24 0.025 2.594 2.1 0.036 2.217 2.1 0.036 2.217

DL01

DL1 2.1 0.036 2.217

Columns defined by post-rest minutes of interest (Post1–5 and Post25). Rows defined by EEG and ECG MSFME, each divided in conditions, EEG MSFME additionally
divided in cerebral lobes with significant changes. Values of statistical tests.
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TABLE 4 | Correlation results of EEG and ECG MSFME.

Post1 Post2 Post3 Post4 Post5 Post25

DL0 TC –0.337

C –0.314 –0.34

P –0.409

DL005 FP –0.459 –0.39 -0.543 -0.541

F –0.436 –0.483

P –0.38

O 0.567

DL01 TC 0.331 0.322

FP 0.377 0.629 0.522 0.787 0.633 0.329

C 0.406 0.416 0.386

T –0.318

P 0.421 0.321

O 0.408

DL1 TC –0.371

FP 0.348

C 0.446 –0.303

T 0.426 0.518

P 0.32 –0.504

O 0.411

Columns defined by post-rest minutes of interest (Post1–5 and Post25). Rows
defined by the conditions, subdivided in cerebral lobes (TC, FP, F, C, T, P, and
O) with at least moderate effects (rs ≥ 0.3). Spearman correlation coefficient rs
values, strong effects (rs ≥ 0.5) in bold.

and O as well as in the 4th post-rest minute, FP and T led to
positive relations to ECG MSFME. Only in the 5th post-rest
minute, negative relations were determined in TC as well as C
and P. The most and highest correlation effects were ascribed
to the DL01 condition. In all brain regions except F, mainly
positive relations of EEG and ECG MSFME were found. The
only negative correlation was in T in the 1st post-rest minute.
Moderate positive relations emerged in TC, C, and P from the
3rd post-rest minute on and in O in the 5th post-rest minute.
A stable and even mostly strong relation of EEG and ECG
MSFME over the whole recovery time, including the ultimate
post-rest minute, was observed in FP. No remaining, at least
moderate relations of EEG and ECG MSFME were assessed in
the other conditions.

DISCUSSION

This study aimed to investigate and compare the influence
of a cyclic and coordination demanding physical activity (PA)
of medium physical load with different underlying motor
learning approaches (MLA) on brain and heart activity by
means of a nonlinear analysis via multiscale fuzzy measure
entropy (MSFME). Furthermore, brain and heart interactions
were examined via the correlation of EEG and ECG MSFME.
An increased general EEG and reduced ECG MSFME in all
motor learning conditions immediately after rope skipping at
rest was hypothesized. In recovery, MSFME of EEG and ECG
may change slowly towards pre-rest value. Referring to an
effect of the MLAs, we assumed higher general MSFME in
DL005, DL01, and DL1 due to additional cognitive workload
compared to DL0. Furthermore, differences in the interaction of

EEG and ECG MSFME via correlation analysis between MLAs
were hypothesized immediately following rope skipping and in
subsequent recovery. For interpretation of results, it was resorted
to the possible direct link between power spectrum and entropy
(Lin et al., 2017).

The analysis of behavioral data as well as perceived exertion
did not significantly differ between MLAs indicating a similar
physical load. Nevertheless, the number of interruptions, was
significantly different, particularly in DL01 and DL1 with
more interruptions compared to DL0. This is in line with a
much higher coordinative demand in DL approaches according
to the additional movement tasks. Regarding the descriptive
data, a linear relationship between the number of movement
interruptions and the frequency of task instructions could be
assumed. However, since the number of interruptions was small
compared to the number of correctly performed movements
and no significant difference between behavioral as well as
perceived exertion between conditions was found, a dominant
influence of movement variety on the EEG and ECG effects
could be speculated.

Motor Learning Approach Dependent
Effects in Electroencephalography and
Electrocardiography Signal Irregularity
Recapitulating, a lower entropy indicates a more predictive
signal with a high level of regularity, whereas higher entropy
suggests a less predictive signal with less regularity (Akaike,
1985; Lin et al., 2017). Irregularity analysis immediately after
rope skipping revealed MLA dependent different time effects in
EEG and ECG MSFME. The hypothesized general increase in
EEG and decrease in ECG MSFME independent of MLAs was
not found. Furthermore, the hypothesized general changes in
recovery toward pre-rest level could not be identified. Regarding
the short-term recovery, i.e., first 5 mins of recovery, MLAs
showed in both biosignals referring to the pace of occurrence
differing statistically significant effects. Besides, EEG MSFME
varied in the alteration, i.e., present positive as well as negative
changes, and in the brain lobes. Additionally, even after the fully
analyzed recovery time of 25 min, there were still remaining
MLA dependent significant EEG MSFME effects. In contrast,
ECG MSFME led to no remaining significant effects independent
of MLA indicating a complete metabolism related recovery of
the rope skipping induced changes after total recovery time. All
these general statements point to a specific impact of additional
movement noise on brain and heart signal irregularity. Based
on varying effects dependent on brain lobes and pace of effect
occurrence, a more detailed interpretation of results is presented
in the following.

Considering EEG MSFME, DL0 increased as the only MLA
immediately after rope skipping, i.e., 1st post-rest minute, its
EEG signal irregularity, in the occipital lobe (O). According to
no additional movement noise in DL0 during rope skipping,
subjects could perhaps have focused more on visual instead
of on other types of sensory processing. DL01 in contrast
decreased its signal irregularity in the temporal lobe (T) possibly
indicating a reduction of auditive or emotional processing (Kolb
and Whishaw, 2009). Movement tasks during rope skipping
were verbally instructed, thus a higher demand of auditive

Frontiers in Behavioral Neuroscience | www.frontiersin.org 10 February 2022 | Volume 16 | Article 816334

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-816334 February 22, 2022 Time: 14:56 # 11

John et al. Impact of Exercise on Neurophysiological-Responses

sensory processing could have led to a subsequent fatigue of
this functionality or a reduction of focusing to this sensory
area. Whether a decreasing entropy also implies a shift in
frequency composition to lower frequencies has to be examined
in future research. In this context, provoked lower frequencies,
e.g., theta, could lead to a wider integration of different brain
regions (Caplan et al., 2003; Backus et al., 2016) which could
be interpreted as a more holistic communication over various
brain lobes. DL005 and DL1 resulted in a delayed change of their
EEG signal irregularity, not before the 2nd and 3rd post-rest
minutes. MSFME was first reduced in the total cortex (TC),
the frontal lobe (F) as well as O in DL005, and even later in
the parietal (P) and central lobe (C) in DL1. DL005 seems to
reduce its signal irregularity in TC, particularly in F as well as
O. Considering the specific brain lobes, a reduction in processes
of movement selection as well as visuomotor and object-
recognition functions could be assumed (Kolb and Whishaw,
2009). Regarding DL1, it could be hypothesized that only with
prolonged recovery a reduction of processing in somatosensory
and motor areas (Nolte, 2009) emerged. Furthermore, both
MLAs revealed additionally an increase of signal irregularity in
T in the 3rd post-rest minute perhaps indicating a provoked
organization of sensory input (Kolb and Whishaw, 2009).

Regarding the analysis of a remaining effect at the end of
the measured recovery phase (after 25 min), except DL1 all
MLAs led to still significant changes compared to pre-exercise
baseline. DL0 yielded the most changes in brain regions with
a reduction in F, C, and T as well as an increase in O signal
irregularity. In addition to hypothesizing decreased processing of
motor movements and auditive or emotional information, still
provoked visual processing could be assumed. Fewer changes
were found in DL01 with a decrease in T and P as well as in
DL005 with only an increase in O signal regularity. These changes
in DL01 could suppose a reduction in the organization of sensory
input as well as somatosensory processing. Total recovery time in
DL005 could have led to a reduced visual processing function.

The results of ECG MSFME showed also differences between
MLAs till first significant changes were determined. As the only
MLA, DL0 revealed immediately after rope skipping an increase
in ECG signal irregularity. Subsequently, i.e., in the 2nd post-
rest minute, additionally DL1 and DL005 raised their MSFME. In
respect of the following recovery, only DL005 kept a significant
increase till the end of the short-term recovery, i.e., 5th post-
rest minute. In contrast, DL01 provoked no significant change
of its ECG MSFME during the total recovery time at all. Thus, all
MLAs except DL01 seem to provoke the heart signal irregularity
with different paces. Whether the specific frequency of changes
in movement tasks in DL01 were responsible for its stable signal
irregularity, needs further research.

Motor Learning Approach Dependent
Effects in the Correlation of
Electroencephalography and
Electrocardiography Signal Irregularity
The investigation of the Spearman-correlation between the brain
and heart MSFME revealed different effects in MLAs dependent
on the brain region and the time till first significant changes could

be identified. This refers to the acute impact immediately after
rope skipping, to the subsequent short-term recovery and the
control of any remaining effects after the total recovery phase.
Hence, the hypothesis regarding a different impact of MLAs on
the MSFME EEG and ECG correlation received corroboration.
For a first rough impression, the focus was given only to the
most prominent correlation effects for interpretation. Therefore,
only results with at least moderate correlation effects were
considered independent of their sign because both indicate a
closer relationship between the two entropy signals.

DL0 as the MLA with no additional movement noise revealed
the fewest, latest, smallest, and solely negative correlation effects
in comparison of MLAs. The signal irregularity of C correlated
moderately negatively in the 2nd and 5th post-rest minute, P
in the 4th and TC not until the 5th post-rest minute with
the heart. DL005, MLA with the lowest grade of additional
coordinative demand, revealed noteworthy effects in more brain
lobes, in the frontopolar lobe (FP) particularly from beginning
of recovery on, and even with partly strong effects. Except a
strong positive effect in O in the 5th post-rest minute, all other
noteworthy correlations of FP, F, and P with the heart were
negative. The most, fastest, and highest correlation effects over all
brain areas except F were found in DL01, the MLA with medium
additional coordinative load, with the particular characteristic of
mainly positive correlations. Especially, correlations of FP mainly
representing strong relations to the heart in all measurement
times were prominent. FP of DL01 was additionally the only
remaining effect induced by a MLA after the total recovery
time. The coordinatively most demanding MLA, DL1, yielded
in the same brain regions as in DL01 fewer and slightly later as
well as smaller correlations. Furthermore, beside several positive
correlations, negative correlation effects increased compared to
DL01. Summarizing, the most correlation effects were found in
FP, C, and P. Thus, these lobes and their underlying functions
seem to be prominent in the interaction with the heart, at least
related to the non-linear analysis used and as a consequence of
rope skipping with additional movement noise. Regarding this, a
particular involvement of the central autonomic network (CAN)
could be suggested. The CAN represents a complex of brain
structures and connections controlling the autonomic regulation
in multiple physiological conditions (Silvani et al., 2016; Valenza
et al., 2019; Candia-Rivera et al., 2021). Particular parts of the
CAN are the FP, middle, and posterior cingulate cortex, which’s
brain activity were positively associated with the instantaneous
heart rate at rest (Valenza et al., 2019). These brain structures
could correspond in a way to the most prominent structures in
this study, if hypothesizing the measurement of C and P electrical
activity contains signal content of the deeper lying middle and
posterior cingulate cortices. FP is among others assumed to be
responsible for the top-down control of executive functions like
selective attention, self-control and -regulation (Robertson and
Marino, 2016). In this context, the correlations of these brain
regions with the heart could indicate a provoked interaction of
the top-down control of executive functions and the heart signal
irregularity dependent on the additional movement noise level
given. Because statistical correlation contains no information
about the cause-effect relationship, whether the FP area is more
sensitive to the heart signals or the other way round needs to be
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studied in future too. Nevertheless, it could be hypothesized that
an activation of FP could possibly indicate an indirect training
of the executive functions by means of physical activity which
would be beneficial besides sports in other life areas. Considering
this study, including additional movement noise could probably
lead to an even higher and faster demand of structures that
support certain executive functions, but only to a specific limit
of additional movement noise.

In the search for possible underlying neurophysiological
structures that could be responsible for some of the observed
phenomena, the nucleus locus coeruleus (LC) could be a primary
candidate. The LC is the near exclusive source of Noradrenalin in
cortical areas and not only projects to the forebrain (Chandler,
2016) and motor areas (Ludwig, 2020) but also augments
inhibitory transmission to parasympathetic cardiac vagal neurons
(Wang et al., 2014). In the waking state, two modes of LC function
are distinguished (Aston-Jones and Cohen, 2005). In the phasic
mode, short bursts (<300 ms) of higher frequency activity (10–
15 Hz) regulate the encoding of salient stimuli (Vazey et al., 2018).
The tonic mode is characterized by an irregular but continuous
baseline activity (1–6 Hz) and associated with exploratory and
highly distractable behavior as well as with reduced task utility
or stress (Aston-Jones and Cohen, 2005). Interestingly, phasic
activity is absent with a low and high tonic LC baseline (Janitzky,
2020). Only medium tonic activity, as e.g., in exercising settings
(Dietrich and Audiffren, 2011; Audiffren, 2016), is associated
with phasic activity that is essential for optimal neural network
function (Janitzky, 2020). According to this study, the conducted
rope skipping frequency of approximately 2 Hz could interfere
via the resonance effect with the present averaged pulse frequency
around 2.5 Hz. This could result in potential changes of the
autonomic nervous system (ANS) and subsequently influence
the ANS related brain processes (Ako et al., 2003; Tang et al.,
2009; Garcia et al., 2011; Kuo et al., 2016; Triggiani et al., 2016).
All together would provide a plausible model for an inverted
U-shape relationship (Aston-Jones and Cohen, 2005) between the
level of additional movement noise during load and the heart-
brain relaxation behavior. Interestingly, the relationship between
noise level and learning rate also shows an inverted U-shape
(Schöllhorn, 2005; Schöllhorn et al., 2006, 2009). Further studies
will have to show to what extent the same causes underlie both.
The possible scope of the consequences would be worth the effort.

In addition, based on the vertical deflection of the total
body during rope skipping, other neuronal and mechanical
stimulations with similar frequencies become candidates for
interactions. Besides direct rhythmic neuronal activations
of somatosensory and motor areas by cyclic activation of
the leg muscles, the modification of primarily muscular
“microvibrations” (Rohracher, 1962), the mechanical stimulation
by means of the pulse wave traveling through the blood vessels
of the brain, as well as the whole body-tissue stimulation by
the cyclic impacts have to be distinguished. In this context,
the physiological effects are highly dependent on the type of
underlying stimulation. Whole-body vibrators usually stimulate
neuronal activation of cortex areas via tonic muscle activation
and modification of “microvibrations” with varying stimulation
frequencies of 1–25 Hz at a vertical amplitude of up to 2.5 cm

(Taiar et al., 2018) and an only slightly increased heart rate
(Furness et al., 2014). The frequency during rope skipping was
approximately 2 Hz, the averaged heart rate around 150 bpm
and the vertical amplitude at appr. 15 cm, leading to significantly
increased accelerations of the head and the brain tissue within
it including all blood vessels. Consequently, due to the specific
skipping characteristics and the level of cardiovascular intensity
as well as the new information inflow by means of additional
movement noise, a parallel impact of rope skipping on LC activity
and heart rate could be assumed. Future research must show
to what extent phase shifts of the signals have an effect. Similar
frequencies around 2 Hz in disco beat, folk and shamanic dances
as well as in pendulum swinging in preparation for hypnosis
suggest a more general significance of this frequency. To what
extent this phenomenon can be harnessed for prophylaxis in
Parkinson’s and Alzheimer’s disease due to their dependence on
LC will be revealed by future research (Janitzky, 2020).

As the prior rope skipping study (John and Schöllhorn, 2018)
suggested, high levels of additional movement noise could lead
to emotional and cognitive overload. The comparison of the
underlying MLAs investigated supports this hypothesis. But,
instead of the highest level of additional movement noise, the
far lower additional movement noise defined by DL01 seems
to produce in the subsequent recovery the highest interaction
level between the FP area and the heart signal irregularity. C,
i.e., the primary motor cortex, is associated with the execution
of motor movements and P to the sensory perception of the
body, somatosensory processing and motor learning (Penfield
and Boldrey, 1937; Nolte, 2009). Compared to FP, a in a
broader sense similar, but slighter trend of C as well as P
interaction with the heart could be assumed dependent on
additional movement noise.

Primarily, this study used the interaction analysis to identify
concatenations between the brain, differentiated by brain lobes,
and the heart dependent on physical and coordinative load.
Interactions of the (neuro-)physiological systems are seen to
be fundamental for sustaining homeostasis in a continuously
changing environment (Chang et al., 2016). Elucidating that
positive as well as inverse correlation effects represent a type
of communication between the two biosignals, both correlation
types are seen as some sort of concatenation between the heart
and the brain activity. Considering this, the correlation type
could be disregarded in a first approach and an overall measure
of concatenation could be implemented. Thus, the amount of
each underlying MLA’s correlation effects between the EEG
and ECG MSFME, independent of the recovery time, could be
modeled in general as an inverted U-shape with the level of
coordinative demand on the X-axis and the number of at least
moderate correlations on the Y-axis (Figure 4). Previous EEG
research based on linear analysis already supposed the existence
of an inverted U-shape regarding the cognitive functioning, i.e.,
working memory, based on exercise intensity (Kamijo et al., 2004)
and regarding the spectral power based on exercise duration
related to emerging fatigue (Gronwald and Hottenrott, 2013). In
this case, it would indicate that an optimum trend exists that
neither no nor the highest amount of additional movement noise,
but a specific amount in between lead to a highest concatenation
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FIGURE 4 | Movement noise – electroencephalography (EEG)/ electrocardiography (ECG) irregularity interaction.

FIGURE 5 | Movement noise – Weighted pace of correlation effect occurrence relative to maximal weighted pace. Weighted pace calculated via weighting at least
moderate correlation effects according to their occurrence in time. Effect occurrence was weighted as followed: 1st post-rest minute – value 1, prior weighted pace
value divided by 2 defining pace value of subsequent post-rest minute. Weighted pace values of each post-rest minute of interest and brain lobe were summarized
for all conditions and divided by the maximal weighted pace possible (% max).

between brain and heart signal irregularity. Referring to the time
till first noteworthy correlation effects appear, a similar inverted
U-shape, but with the Y-axis defined as the weighted pace of
correlation occurrence could be suggested (Figure 5).

Limitations
This study took a more holistic approach to investigate
the interaction of the heart and brain as a function of

physical and coordinative stress. Due to the novelty, only
a rough impression of the complexity between the two
biosignals could be aimed at. Many more questions arose
that need to be investigated in the future. Due to the
chosen design and statistics, no claim to general validity is
made. Each of the following limitations holds the potential to
explore a different criterion and expand our understanding of
human complexity.
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Considering the determination of the underlying DL MLAs,
particularly the frequency of new tasks and their absolute
number, there is an enormous span between DL01 with 18
tasks and DL1 with 180 tasks in total. In respect to the
study results and the derived inverted U-shape representing
the general brain heart interaction dependent on the level of
additional movement noise, another underlying MLA condition
with a task frequency somewhere between DL01 and DL1 would
provide more detailed insight to underpin this suggestion. In
this context, comparing the influence of an intervention with
various movement tasks only once executed with an intervention
of a limited number of differing, but periodically switching
movement tasks would be of interest, too. More specifically, the
contextual interference approach (Magill and Hall, 1990) as an
underlying MLA would lead to, e.g., three skipping exercises
between those the subjects would have to switch either in blocked,
serial, or random order in the applied time schedule every
10 or 20 s. Accordingly, the impact of ever new compared
to differing, but repeated information could be investigated.
In addition, whether the supposed inverted U-shape of brain
heart interaction in general would also fit to the concatenation
level between each single brain lobe and the heart needs to be
clarified in the future. Further on, the influence of rope skipping
interruptions on EEG and ECG compared to the influence of
exercise number has to be partialized out in future research.
Furthermore, with respect to the method of analysis, the setting
of data interval length and entropy calculation parameters could
have influenced the analysis output. Based on the alternative
research character, the setting of parameters was premised on
the recommendations of previous studies. Regarding the data
interval length, the different underlying time scales of the brain
and heart signal aggravate their comparison. Therefore, an
interval length was chosen that was assumed to be adequate to
include enough time characteristics especially of the rather slow
heart signal. Future research should address the investigation
of the impact of varying parameter settings and data interval
lengths. Regarding the MSFME calculation, the determination of
scales of interest via the heterogeneity measure used represents

only a first possibility to reduce the huge data amount to
a relevant minimum. Considering this, it is fundamental to
declare that this procedure relies on the prerequisite that physical
activity leads according to varying additional movement noise
to different outputs in signal irregularity. Nevertheless, enough
incentives to this analysis application were given by the EEG
spectral power results of the prior rope skipping study (John and
Schöllhorn, 2018) and a study indicating similar EEG entropy
as their spectral power results (Lin et al., 2017). However, this
direct relation between EEG spectral power and entropy still has
to be handled with caution and it strives for further research.
Further on, the applied interpretation type of entropy, i.e., solely
as irregularity of a time signal, represents only one way of
entropy explanation. Despite and especially because of all the
limitations, all the findings together promote a more holistic
analysis of the complex interactions in our bodies during and due
to physical activity.
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