
CUSHAW3: Sensitive and Accurate Base-Space and Color-
Space Short-Read Alignment with Hybrid Seeding
Yongchao Liu1*, Bernt Popp2, Bertil Schmidt1*

1 Institut für Informatik, Johannes Gutenberg Universität Mainz, Mainz, Germany, 2 Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany

Abstract

The majority of next-generation sequencing short-reads can be properly aligned by leading aligners at high speed.
However, the alignment quality can still be further improved, since usually not all reads can be correctly aligned to large
genomes, such as the human genome, even for simulated data. Moreover, even slight improvements in this area are
important but challenging, and usually require significantly more computational endeavor. In this paper, we present
CUSHAW3, an open-source parallelized, sensitive and accurate short-read aligner for both base-space and color-space
sequences. In this aligner, we have investigated a hybrid seeding approach to improve alignment quality, which
incorporates three different seed types, i.e. maximal exact match seeds, exact-match k-mer seeds and variable-length seeds,
into the alignment pipeline. Furthermore, three techniques: weighted seed-pairing heuristic, paired-end alignment pair
ranking and read mate rescuing have been conceived to facilitate accurate paired-end alignment. For base-space alignment,
we have compared CUSHAW3 to Novoalign, CUSHAW2, BWA-MEM, Bowtie2 and GEM, by aligning both simulated and real
reads to the human genome. The results show that CUSHAW3 consistently outperforms CUSHAW2, BWA-MEM, Bowtie2 and
GEM in terms of single-end and paired-end alignment. Furthermore, our aligner has demonstrated better paired-end
alignment performance than Novoalign for short-reads with high error rates. For color-space alignment, CUSHAW3 is
consistently one of the best aligners compared to SHRiMP2 and BFAST. The source code of CUSHAW3 and all simulated data
are available at http://cushaw3.sourceforge.net.
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Introduction

The emergence and rapid progress of next-generation sequenc-

ing (NGS) technologies has driven a substantial amount of

research efforts into the development of short-read alignment

algorithms. To date, a variety of short-read aligners have been

developed, which can be further classified into two generations in

terms of functionality. The first-generation aligners are usually

designed and optimized for very short reads (typically #100 bps).

These aligners usually postulate that the short-reads have very

small deviations from the genome, and thus typically only allow

mismatches. Even though some aligners provide support for gaps,

the maximum allowable number of gaps is also quite limited

(typically one gap) for the sake of speed. Example first-generation

aligners include RMAP [1], MAQ [2], BFAST [3], Bowtie [4],

BWA [5], CUSHAW [6] and SOAP3 [7].

With the progress of NGS, the maximum or average read

lengths are steadily increasing beyond 100 for Illumina sequenc-

ing, which is most widely used. However, these longer short-reads

usually come at the expense of higher sequencing error rates. On

the other hand, these reads are prone to have more true insertions

or deletions (indels) to the genome. These new features make the

first-generation aligners become inefficient to align such longer

reads in terms of alignment quality, speed or even both, and thus

motivate the development of second-generation aligners that allow

for fully gapped alignments with more mismatches and indels

supported.

Several second-generation aligners have been developed

recently, including BWA-SW [8], GASSST [9], Bowtie2 [10],

CUSHAW2 [11], GEM [12], SeqAlto [13], SOAP3-dp [14] and

BWA-MEM [15]. All these aligners are designed based on the

seed-and-extend paradigm. In this paradigm, a read is aligned by

first identifying seeds, i.e. short ungapped/gapped alignments, on

the genome and then extending the alignment to the rest of the

read using dynamic programming. Constraints and filtrations are

often exerted on alignment extensions to further reduce search

space. Different seeding polices may be employed by different

aligners. BWA-SW employs variable-length gapped seeds, and

Bowtie2 extracts fixed-length ungapped seeds (inexact matches).

Both GASSST and SeqAlto employ fixed-length exact-match k-

mer (a k-mer is a substring of k bases) seeds, while CUSHAW2 and

BWA-MEM respectively identifies variable-length maximal exact

match (MEM) seeds and super MEM seeds. SOAP3-dp is an

aligner based on graphics processing unit (GPU) computing and

adopts a similar seeding approach to Bowtie2, while GEM adopts

a filtration-based approximate string matching approach to extract

relevant candidate matches by suitable pigeonhole-like rules. In

addition, Novoalign (http://www.novocraft.com) is a proprietary

short-read aligner for fully gapped alignments. However, its

method has not been published. Although these aligners can
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efficiently align the majority of short-reads at high speed, they still

have difficulties in correctly aligning all reads, even for simulated

ones, to large genomes such as the human genome [11] [16].

Hence, it is of great significance to design new short-read aligners

to further improve alignment quality.

In this article, we present CUSHAW3, an open-source sensitive

and accurate short-read aligner for both base-space and color-

space sequences. In our aligner, we have investigated a hybrid

seeding approach to improve alignment quality, which incorpo-

rates three different seed types: MEM seeds, exact-match k-mer

seeds and variable-length seeds derived from local alignments, into

the alignment pipeline. Furthermore, three techniques: weighted

seed pairing heuristic, paired-end (PE) alignment pair ranking and

read mate rescuing, have been proposed to facilitate accurate PE

alignment. It needs to be stressed that the concept of hybrid

seeding has already been implied in some other implementations

for short-read alignment. One example is Stampy [17], an aligner

for Illumina sequencing, which first aligns reads with BWA (based

on inexact-match seeds) and then processes unmapped reads with

another seed-and-extend-based approach using exact-match k-

mers. Another example is TMAP (https://github.com/

iontorrent/TMAP), an aligner for Ion Torrent sequencing, which

incorporates the alignment approaches from SSAHA (fixed-length

k-mer seeds) [18], BWA, BWA-SW and BWA-MEM.

The performance of CUSHAW3 has been assessed by aligning

both simulated and real short-reads to the human genome in terms

of single-end (SE) and PE alignment. For base-space alignment,

our aligner is further compared to Novoalign, CUSHAW2, BWA-

MEM, Bowtie2 and GEM. The experimental results reveal that

CUSHAW3 is consistently superior to CUSHAW2, BWA-MEM,

Bowtie2 and GEM for both SE and PE alignments. Furthermore,

our aligner achieves better PE alignment quality than Novoalign

for short-reads with higher error rates. As for the speed,

CUSHAW3 is inferior to CUSHAW2, BWA-MEM, Bowtie2

and BWA-MEM, but nearly always faster than Novoalign. As for

color-space alignment, our aligner is consistently one of the best

aligners in terms of alignment quality at superior speed, compared

to SHRiMP2 [19] and BFAST.

Results

Evaluation on Base-space Reads
We have evaluated the performance of CUSHAW3 (v3.0.2) by

aligning both simulated and real short-reads to the human genome

(hg19). This performance is further compared to that of

CUSHAW2 (v2.1.10), Novoalign (v3.00.04), BWA-MEM

(v0.7.3a), Bowtie2 (v2.1.0) and GEM (v 1.376). All tests are

conducted in a workstation with a dual hex-core Intel Xeon

X5650 2.67 GHz CPUs and 96 GB RAM, running Linux

(Ubuntu 12.04 LTS).

To measure alignment quality, we have used the sensitivity

metric, which is calculated by dividing the number of aligned

reads by the total number of reads, for both simulated and real

reads. For simulated reads, as the true mapping positions are

known beforehand, we have further used the recall metric, which

is defined as dividing the number of correctly aligned reads by the

total number of reads. For simulated reads, an alignment is

deemed to be correct if the mapping position has a distance of

#10 to the true position on the genome. Considering that GEM

reports all detected alignments and BWA-MEM might produce

multiple primary alignments for a read, we define that a read is

deemed to be correctly aligned if any of its reported alignments is

correct. To provide fair comparisons, we have configured

CUSHAW3, CUSHAW2 and Bowtie2 to report a maximum of

10 alignments for each read and Novoalign to report all repetitive

alignments. Detailed alignment parameters of all evaluated

aligners can be obtained from Tables S1, S2, S3, S4 and S5 in

File S1. In addition, all best values in the following tables have

been highlighted in bold.

On simulated data. We have simulated three Illumina-like

PE datasets from the human genome (hg19) using the wgsim

simulator in SAMtools v0.1.18 [20]. All datasets have the same

read lengths of 100, but with different mean base error rates: 2%,

4% and 6%. Each dataset comprises one million read pairs with

insert-sizes drawn from a normal distribution N(500, 50).

Firstly, we have compared the alignment quality of all evaluated

aligners by considering all reported alignments (see Table 1), by

setting the minimum mapping quality score (MAPQ) to 0. For the

SE alignment, Novoalign yields the best sensitivity and recall for

each dataset. CUSHAW3 holds equally best sensitivity for the

dataset with 2% error rate, and is consistently the second best for

all other datasets. With the increase of error rates, each aligner has

experienced some performance drops in terms of both measures.

Novoalign has the smallest sensitivity (recall) decrease by 0.02%

(2.95%), whereas Bowtie2 shows the most significant sensitivity

(recall) decrease by 18.10% (21.66%). CUSHAW3 gives the

second smallest performance drop with a sensitivity (recall)

decrease by 0.74% (3.76%). With PE information, each aligner

gets the alignment quality improved over the SE alignment in

terms of both measures. In terms of sensitivity, CUSHAW3,

Novoalign and BWA-MEM are consistently the top three aligners

for all datasets, and Bowtie2 is the worst. In terms of recall,

CUSHAW3 is superior to other aligners for the dataset with 6%

error rate, while Novoalign performs best for all remaining

datasets. CUSHAW3 outperforms CUSHAW2, BWA-MEM,

Bowtie2 and GEM for each dataset. Similar to the SE alignment,

the error rates also have significant impact on the sensitivity and

recall for each aligner. As the error rate grows, Novoalign gives the

least significant performance drop and CUSHAW3 the second

least in terms of sensitivity. However, in terms of recall,

CUSHAW3 has the smallest performance decrease.

Secondly, we have further assessed all evaluated aligners by only

considering the first alignment occurrence per read in the SAM

file, with the minimum MAPQ set to 0. This alignment sampling

does not affect the sensitivity of each aligner, but might change the

recall. Hence, all aligners are only compared in terms of recall in

this evaluation (see Table 1). In terms of SE alignment, Novoalign

achieves the best recall for each dataset and CUSHAW3 performs

second best. In terms of PE alignment, CUSHAW3 is superior to

all other aligners for the dataset with 6% error rate, while BWA-

MEM performs best for the remaining datasets. Bowtie2 is the

worst for each case. Some readers may argue that for a read with

multiple alignments, we can choose the alignment with the largest

MAPQ instead of the first alignment. Actually, we can explain that

for each evaluated aligner, our evaluation by choosing the first

alignment occurrence per read is consistent with that by selecting

the alignment with the largest MAPQ from amongst the multiple

alignments. Firstly, GEM does not compute MAPQs, but stratifies

all identified alignments of a read in ascending order of string

distance (Hamming distance or edit distance) [12]. This suggests

that GEM implicitly considers the first alignment occurrence as

the best candidate in terms of the specified distance metric.

Secondly, when enabling multiple alignments per read (by option

‘‘-k’’), Bowtie2 assigns a pseudo MAPQ to the identified

alignments of a read and then reports them in descending order

of alignment score (see Bowtie2 manual and command-line help).

Thirdly, CUSHAW3, CUSHAW2 and BWA-MEM rank the

alignments and build a sorted list with the alignments ordered
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from best to worst. Both CUSHAW3 and CUSHAW2 produce

the same MAPQ for the alignments (possibly with slight

differences depending on the degree of soft clipping). BWA-

MEM computes one MAPQ for one alignment, but ensures that

the MAPQ of each alignment must not exceed that of the best

alignment, i.e. the first alignment in the sorted list (refer to the

source code). Finally, for a read with multiple alignments,

Novoalign first ranks the multiple alignments and then determines

the significance of the alignments based on the alignment score

difference between the best alignment and the rest of the

alignments (see the Novoalign manual). Since the source code of

Novoalign is closed, we are not able to reveal more details about

the mapping quality score computation and alignment reporting.

However, after having examined the alignments on the simulated

data, we found that the first alignment occurrences hold the largest

MAPQs for each dataset.

Thirdly, we have generated the receiver operating characteristic

(ROC) curves by plotting the true positive rate (TPR) against the

false positive rate (FPR) in terms of MAPQ, where for each dataset

all alignments are sorted in descending order of MAPQ. For any

MAPQ q, we compute TPR by dividing the number of correctly

aligned reads, whose MAPQs are not less than q, by the total

number of reads, and FPR by dividing the number of incorrectly

aligned reads, whose MAPQs are not less than q, by the number of

aligned reads whose MAPQs are also not less than q. In this

evaluation, we have merely taken into account the alignments

whose MAPQs are greater than 0. As GEM does not compute

MAPQs, it has been excluded. For Bowtie2, we have disabled the

option ‘‘-k’’ to enable meaningful MAPQ and have used the

default setting to report at most one alignment per read.

CUSHAW2 and CUSHAW3 have both been configured to

report at most one alignment per read for the SE and PE

alignments. For Novoalign, we have used the ‘‘-r Random’’ option

to report at most one alignment for a single read. Figure 1 shows

the ROC curves for all evaluated aligners on the simulated data.

We can see that Novoalign produces the most significant MAPQs

for each case.

On real data. Finally, we have assessed all aligners using

three real PE datasets produced from the Illumina sequencing. All

datasets are publicly available and named after their accession

numbers in the NCBI sequence read archive (see Table 2). The

performance of each aligner is evaluated from two aspects: one is

to calculate the sensitivity from all reported alignments; and the

other is to calculate the sensitivity after removing the alignments

with low aligned base proportion per read. This is because we have

observed that some alignments, produced by Novoalign, BWA-

MEM, Bowtie2 and GEM, have low aligned base proportion per

read (typically ,50%) due to soft clipping. Intuitively, such short

alignments to the genome are supposed to have higher probabil-

ities to be false positives compared to those aligned to the reference

in full lengths (or with high aligned base proportion per read).

However, this is not surly the case, especially when there are large

indels at the end of the read. In such cases, the correct alignments

of the read may be shortened with soft-clipping. However, it is still

of great significance to re-evaluate the sensitivity of each aligner by

removing the alignments with ,50% aligned base proportion per

read, which may more truly reflect the alignment quality of an

aligner on real data.

Table 3 shows the alignment quality of all evaluated aligners

with or without alignment removal, where the minimum MAPQ

threshold is set to 0. For each value x/y in the table, x is the

sensitivity calculated from all reported alignments and y is the

sensitivity after removing the alignments with ,50% aligned base

proportion per read. Without alignment removal, in terms of SE

alignment, CUSHAW3 aligned the most reads for each dataset

and GEM is the worst. In terms of PE alignment, BWA-MEM

gives the best sensitivity and CUSHAW3 is the second best for all

datasets. However, after alignment removal, the sensitivities of

both BWA-MEM and Novoalign significantly drop for all datasets

in terms of both SE and PE alignment. Bowtie2 keeps its SE

sensitivity, but has a slight decrease in PE sensitivity. GEM has

also experienced significant PE sensitivity drops for all datasets.

Both CUSHAW2 and CUSHAW3 keep their sensitivities

unchanged for each case. With alignment removal, CUSHAW3

is consistently superior to all other aligners for each dataset in

Table 1. Alignment quality on simulated reads (in %).

Aligner 2% 4% 6%

Sensitivity Recall* Recall** Sensitivity Recall* Recall** Sensitivity Recall* Recall**

SE

CUSHAW3 100.00 99.04 95.96 99.92 97.85 94.81 99.26 95.28 92.32

CUSHAW2 99.95 99.00 95.96 99.33 97.61 94.64 95.45 92.84 90.04

Novoalign 100.00 99.59 96.20 99.97 98.81 95.42 99.98 96.65 93.33

BWA-MEM 99.99 95.95 95.95 99.59 94.33 94.33 97.38 89.86 89.86

Bowtie2 99.30 95.69 92.98 93.64 87.59 85.20 81.20 74.03 72.03

GEM 99.76 99.02 95.46 97.08 92.28 89.09 90.46 77.64 75.11

PE

CUSHAW3 100.00 99.54 97.35 100.00 99.14 96.99 99.96 98.06 96.28

CUSHAW2 99.73 99.43 97.27 99.36 98.71 96.61 96.47 95.07 93.16

Novoalign 100.00 99.87 97.57 100.00 99.23 96.93 100.00 97.13 94.88

BWA-MEM 100.00 97.59 97.59 100.00 97.11 97.11 99.88 95.55 95.55

Bowtie2 99.45 98.53 96.41 93.54 91.52 89.54 80.29 77.37 75.68

GEM 100.00 99.20 96.85 99.79 98.06 95.77 97.99 93.24 91.15

*means the recall is calculated from all reported alignments per read and ** means the recall is calculated form the first alignment occurrence per read.
doi:10.1371/journal.pone.0086869.t001
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terms of both SE and PE alignment. In addition, we have shown

how the sensitivity (without alignment removal) varies as MAPQ

changes (see Figure S1 in File S1). In this evaluation, all alignments

are first sorted in descending order of MAPQs and then the

sensitivity corresponding to any MAPQ q (0#q#255) is computed

by taking into account all alignments whose MAPQs are not less

than q.

Speed and memory comparison. Besides alignment qual-

ity, the speed of each aligner has been evaluated using the

aforementioned simulated and real data. We have run each aligner

Figure 1. ROC curves of all evaluated aligners on the simulated data with the minimum MAQP.0.
doi:10.1371/journal.pone.0086869.g001

Table 2. Real dataset information.

Name Type Length No. of Reads Mean Insert

SRR034939 PE 100 36,201,642 525*

SRR211279 PE 100 50,937,050 302*

ERR024139 PE 100 53,653,010 313*

*estimated using CUSHAW3.
doi:10.1371/journal.pone.0086869.t002

CUSHAW3: A Short-Read Aligner with Hybrid Seeding
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with 12 threads on the aforementioned workstation. For fair

comparisons, GEM has counted in the SAM format conversion

time (sometimes takes .50% of the overall runtime), as every

other aligner reports alignments in SAM format. In addition, all

runtimes are measured in wall clock time.

Table 4 shows the runtime (in minutes) of all evaluated aligners

on both simulated and real data. For the simulated data,

Novoalign is the slowest for nearly all cases, with an exception

that CUSHAW3 performs worst in terms of PE alignment for the

dataset with 4% error rate. For the SE alignment, BWA-MEM

runs fastest on the datasets with 2% and 4% error rates, while

Bowtie2 performs best for the dataset with 6% error rate. For the

PE alignment, BWA-MEM is superior to all other aligners for each

dataset, with an exception that GEM has a tie with BWA-MEM

for the dataset with 4% error rate. In addition, the runtimes of

both Novoalign and CUSHAW3 are more sensitive to the error

rates compared to other aligners. For the real data, BWA-MEM is

consistently the fastest for each case and Novoalign is the worst.

As for memory consumption, the peak resident memory of each

aligner has been calculated by performing PE alignment on the

dataset with 2% error rate using a single CPU thread (see Figure 2).

Bowtie2 takes the least memory of 3.2 GB and Novoalign

consumes the most memory of 7.9 GB. CUSHAW3 and

CUSHAW2 have a memory footprint of 3.3 GB and 3.5 GB,

respectively. For BWA-MEM and GEM, the peak resident

memory is 5.2 GB and 4.1 GB, respectively.

Evaluation on Color-space Reads
In addition to base-space alignment, we have evaluated the

performance of CUSHAW3 for color-space alignment, and have

further compared our aligner to SHRiMP2 (v2.2.3) and BFAST

(v0.7.0a). In this evaluation, we have simulated two mate-paired

datasets (read lengths are 50 and 75) from the human genome

using the ART (v1.0.1) simulator [21]. Each dataset has 10%

coverage of the human genome (resulting in 6,274,322 reads in the

50-bp dataset and 4,182,886 reads in the 75-bp dataset) and has

an insert-size 200620.

Both CUSHAW3 and SHRiMP2 are configured to report up to

10 alignments per read and BFAST to report all alignments with

the best score for each read. Each aligner conducts mate-paired

alignments and runs with 12 threads on the aforementioned

workstation. Table 5 shows the alignment quality and the runtimes

of the three aligners. In terms of sensitivity, CUSHAW3

outperforms both SHRiMP2 and BFAST for the 50-bp dataset,

while BFAST is the best for the 75-bp dataset. When considering

all reported alignments, SHRiMP2 produces the best recall and

CUSHAW3 performs second best for every dataset. When only

considering the first alignment occurrence per read, CUSHAW3 is

superior to both SHRiMP2 and BFAST for each dataset. In terms

of speed, CUSHAW3 is the fastest for each case. On average,

CUSHAW3 achieves a speedup of 9.5 (and 11.9) over SHRiMP2

(and BFAST). In particular, for the 75-bp dataset, our aligner runs

13.56and 19.96 faster than SHRiMP2 and BFAST, respectively.

In addition, for each aligner, the recall gets improved as the read

length increases.

Evaluation on GCAT Benchmarks
Finally, we have evaluated the performance of our aligner using

the public benchmarks at GCAT (http://www.bioplanet.com/

gcat), which is a free collaborative platform for comparing multiple

genome analysis tools across a standard set of metrics. In this

evaluation, we have compared CUSHAW3 to CUSHAW2, BWA-

MEM and Novoalign in terms of alignment quality and variant

calling. The evaluation results for each aligner can also be

obtained from our CUSHAW3 homepage (http://cushaw3.

sourceforge.net).

In terms of alignment quality, two Illumina-like SE datasets as

well as two Illumina-like PE datasets have been used. For the two

datasets of each alignment type, one has small indels in reads (the

small-indel dataset) and the other contains large indels (the large-

indel dataset). All of the four datasets are simulated from the

human genome and have read length 100, where there are

11,945,249 reads in each SE dataset and 11,945,250 reads in each

Table 3. Alignment quality on real reads (in %).

Aligner SRR034939 SRR211279 ERR024139

SE

CUSHAW3 98.48/98.48 99.25/99.25 99.12/99.12

CUSHAW2 93.86/93.86 96.76/96.76 96.74/96.74

Novoalign 96.80/91.27 98.44/98.28 98.49/97.50

BWA-MEM 98.30/97.14 99.17/98.58 99.07/98.50

Bowtie2 95.56/95.56 97.13/97.13 97.20/97.20

GEM 93.69/93.69 95.10/95.10 94.82/94.81

PE

CUSHAW3 98.92/98.92 99.46/99.46 99.33/99.33

CUSHAW2 94.38/94.38 96.94/96.94 96.92/96.92

Novoalign 98.00/94.23 99.25/98.85 99.13/97.87

BWA-MEM 99.06/97.14 99.49/98.58 99.36/98.50

Bowtie2 96.23/95.56 97.31/97.13 97.39/97.20

GEM 95.52/93.69 96.16/95.10 96.15/94.81

For each value x/y, x is the sensitivity calculated from all reported alignments
and y is the sensitivity after removing the alignments with ,50% aligned base
proportion per read.
doi:10.1371/journal.pone.0086869.t003

Table 4. Runtimes (in minutes) on simulated and real base-
space reads.

Simulated 2% 4% 6%

SE PE SE PE SE PE

CUSHAW3 3.4 6.2 3.7 8.1 3.9 10.7

CUSHAW2 2.5 2.5 2.8 2.9 2.9 3.1

Novoalign 6.7 6.6 38.1 7.0 131.7 12.6

BWA-MEM 1.4 2.3 1.9 1.9 2.0 2.1

Bowtie2 2.1 3.6 2.0 2.7 1.7 2.2

GEM 5.7 2.4 5.9 1.9 5.4 2.0

Real SRR034939 SRR211279 ERR024139

SE PE SE PE SE PE

CUSHAW3 62.0 292.4 78.6 317.9 85.1 264.1

CUSHAW2 38.0 38.5 47.2 49.0 51.4 50.5

Novoalign 862.1 497.6 2,024.0 1,243.8 754.2 460.3

BWA-MEM 25.2 25.9 24.6 26.1 27.7 30.9

Bowtie2 50.4 55.9 79.1 69.5 78.0 72.7

GEM 53.0 34.4 72.2 44.7 68.3 51.0

doi:10.1371/journal.pone.0086869.t004

CUSHAW3: A Short-Read Aligner with Hybrid Seeding
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PE dataset. To be consistent with the GCAT standard evaluations,

both CUSHAW2 and CUSHAW3 are configured to report at

most one alignment per read for both the SE and PE alignments.

Table 6 shows the alignment results of all evaluated aligners. In

terms of SE alignment, CUSHAW3 yields the best sensitivity for

both datasets. The best recall is achieved by CUSHAW3,

CUSHAW2 and BWA-MEM on the small-indel dataset and by

BWA-MEM on the large-indel dataset. CUSHAW3 performs

better than Novoalign for each case. CUSHAW2 outperforms

Novoalign on the small-indel dataset in terms of both sensitivity

and recall, while yielding smaller recall on the large-indel dataset.

In terms of PE alignment, BWA-MEM performs best for each case

and CUSHAW3 is the second best. On the small-indel dataset,

CUSHAW2 outperforms Novoalign in terms of both sensitivity

and recall. On the large-indel dataset, CUSHAW2 yields better

sensitivity than Novoalign, while Novoalign gives better recall. In

addition, the alignment accuracy of different aligners has been

further compared by plotting the percentage of incorrectly aligned

reads against the percentage of correctly aligned reads with respect

to MAPQs. In this plotting, all alignments of each aligner are first

sorted in descending order of MAPQ and then the correct and

incorrect percentages are calculated. Figures S2, S3, S4 and S5 in

File S1 show the alignment accuracy comparison for both SE and

PE alignments. In terms of SE and PE alignment, Novoalign is

superior to all other aligners and BWA-MEM is the second best

with respect to the plotting. CUSHAW2 and CUSHAW3 have

demonstrated nearly identical curves, and still need further

improvement on the calculation of MAPQs compared to

Novoalign and BWA-MEM.

In terms of variant calling, a real exome sequencing dataset has

been used in this test. This dataset is comprised of Illumina 100-bp

PE reads and has 306coverage of the human exome. In this test,

we have used SAMtools as the variant caller. Table 7 shows the

variant calling results, where the novel single nucleotide polymor-

phisms (SNPs) in the dbSNP database are not taken into account.

BWA-MEM yields the maximum sensitivity and Novoalign

performs second best. In terms of specificity, Novoalign achieves

the best performance, while CUSHAW2 and CUSHAW3 tie for

the second place. As for Ti/Tv ratio, CUSHAW2 produces the

maximum value of 2.323 and Novoalign gives the second best

value of 2.289. CUSHAW3 and BWA-MEM are joint third.

BWA-MEM identifies the most correct SNPs, while Novoalign

Figure 2. Peak resident memory of all evaluated aligners.
doi:10.1371/journal.pone.0086869.g002

Table 5. Alignment quality and runtimes on color-space
reads.

Dataset Measure CUSHAW3 SHRiMP2 BFAST

50-bp Sensitivity 92.13 91.55 88.94

Recall* 86.28 88.58 81.01

Recall** 84.72 84.22 81.01

Time(min) 41 227 160

75-bp Sensitivity 92.27 92.33 93.44

Recall* 91.16 91.24 86.14

Recall** 89.31 88.15 86.14

Time(min) 20 263 389

Same as Table 1.
doi:10.1371/journal.pone.0086869.t005

Table 6. Alignment results on GCAT benchmarks.

Dataset Measure CUSHAW3 CUSHAW2 Novoalign BWA-MEM

SE

Small
indels

Sensitivity 100.00 99.86 97.56 99.99

Recall 97.52 97.52 97.47 97.52

Large
indels

Sensitivity 100.00 99.50 97.56 99.99

Recall 97.37 97.04 97.35 97.40

PE

Small
indels

Sensitivity 100.00 99.99 98.85 100.00

Recall 99.06 99.05 98.83 99.22

Large
indels

Sensitivity 100.00 99.71 98.84 100.00

Recall 98.91 98.62 98.69 99.08

doi:10.1371/journal.pone.0086869.t006
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yields the most correct indels. Compared to CUSHAW2,

CUSHAW3 holds a smaller Ti/Tv ratio, but has an improved

sensitivity as well as identifies more correct SNPs and indels. In

addition, we have given a Venn diagram (see Figure S6 in File S1)

to show the variant concordance between the evaluated aligners.

Discussion

In this article, we have presented CUSHAW3, an open-source

tool for sensitive and accurate short-read alignment to large

genomes, such as the human genome. This aligner is designed

based on the well-known seed-and-extend heuristic and has

introduced a hybrid seeding approach to improve alignment

quality for both SE and PE alignments. This hybrid seeding

approach works by incorporating three different seed types,

namely MEM seeds, exact-match k-mer seeds and variable-length

seeds derived from local alignments, into our alignment pipelines.

Furthermore, we have proposed three critical bioinformatics

techniques: weighted seed-paring heuristic, PE alignment pair

ranking and read mate rescuing, to facilitate accurate PE

alignments. CUSHAW3 accepts short-reads represented in

FASTA, FASTQ, SAM/BAM [20] format, which can be

uncompressed or zlib-compressed, and provides an easy-to-use

and well-structured interface as well as a more detailed documen-

tation about the installation and usage. In addition, our aligner

produces PHRED [22] compliant MAPQs for all alignments and

reports them in SAM format. This enables seamless integration of

our aligner with established downstream analysis tools like

SAMtools [20] and GATK [23].

CUSHAW3 provides support for both base-space and color-

space alignments. For base-space alignment, we have assessed the

performance of CUSHAW3 and other top-performing short-read

aligners: Novoalign, CUSHAW2, BWA-MEM, Bowtie2 and

GEM using simulated as well as real reads from the human

genome. For both simulated and real data, we have employed the

sensitivity measure. Additionally, the recall measure has been

further used on simulated data, as the ground truth of alignments

is known beforehand. On simulated data, CUSHAW3 achieves

consistently better alignment quality (by considering all reported

alignments) than CUSHAW2, BWA-MEM, Bowtie2 and GEM in

terms of both SE and PE alignment. Compared to Novoalign,

CUSHAW3 has comparable PE alignment performance for short-

reads with low error rates, but performs better for short-reads with

high error rates. On real data, CUSHAW3 achieves the highest

SE and PE sensitivities for each dataset. As for speed, CUSHAW3

does not have any advantage over CUSHAW2, BWA-MEM,

Bowtie2 and GEM, but shows to be nearly always faster than

Novoalign. In terms of color-space alignment, we have evaluated

and compared the performance of CUSHAW3, SHRiMP2 and

BFAST using simulated mate-paired color-space reads. The results

show that CUSHAW3 is consistently one of the best color-space

aligners in terms of alignment quality. Moreover, on average

CUSHAW3 is one order-of-magnitude faster than both SHRiMP2

and BFAST on the same hardware configurations. From our

evaluations, we have observed that a considerable number of

alignments, reported by Novoalign, BWA-MEM, Bowtie2 and

GEM, have low aligned base proportion per read (,50%),

especially for the PE alignments. Furthermore, even though both

CUSHAW3 and Novoalign are shown to have higher alignment

accuracy, some simulated reads still missed their correct

alignments. Moreover, this situation becomes even worse as the

error rate grows larger. Hence, more research efforts are still

required in order to better align short-reads with high error rates.

Finally, as shown in our evaluations, the hybrid seeding approach

does improve accuracy, but at the expense of speed. To

significantly reduce the runtime, one promising solution is the

use of GPU computing, as some pioneer work (e.g. [6] [7] [14])

has shown that short-read alignment can significantly benefit from

the GPU computing with respect to speed. This acceleration based

on special hardware can be considered as part of our future work.

Methods

Hybrid Seeding
Our hybrid seeding approach incorporates MEM seeds, exact-

match k-mer seeds, and variable-length seeds at different phases of

the alignment pipeline. For a single read, the alignment pipeline

generally works as follows (see Figure 3).

First, we produce the MEM seeds for both strands of the read

based on Burrows-wheeler transform [24] and FM-index [25].

Secondly, from each seed we determine on the genome a potential

mapping region for the read, and then perform the Smith-

Waterman algorithm [26] to gain the optimal local alignment

score between the read and the mapping region. All seeds are

subsequently ranked in terms of optimal local alignment score,

where greater scores mean higher ranks.

Thirdly, dynamic programing is employed to identify the

optimal local alignment of the read to the genome from the

highest-ranked seeds. If satisfying the local-alignment constraints,

Table 7. Variant calling results on a GCAT benchmark.

Aligner Sensitivity Specificity Ti/Tv
Correct
SNP

Correct
Indel

CUSHAW3 83.74 99.9930 2.285 115,709 5,974

CUSHAW2 83.51 99.9930 2.323 112,727 5,841

Novoalign 84.10 99.9951 2.289 121,992 9,416

BWA-MEM 85.30 99.9926 2.285 124,459 9,232

Sensitivity = TP/(TP+FN), specificity = TN/(TN+FP) and Ti/Tv is the ratio of
transitions to transversions in SNPs.
doi:10.1371/journal.pone.0086869.t007

Figure 3. Program workflow of the single-end alignment using
hybrid seeding.
doi:10.1371/journal.pone.0086869.g003
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including minimal percentage identity (default = 90%) and aligned

base proportion per read (default = 80%), the optimal local

alignment will be considered as qualified. Otherwise, we will

attempt to rescue the read using a semi-global alignment

approach. As an optimal local alignment usually indicates the

most similar region on the genome, our semi-global alignment

approach takes the optimal local alignment as a variable-length

seed, re-computes a new mapping region on the genome and then

performs semi-global alignment between the read and the new

mapping region to obtain an optimal semi-global alignment. If the

optimal semi-global alignment satisfies the global-alignment

constraints, including minimal percentage identity (default = 65%)

and aligned base proportion per read (default = 80%), this

alignment will be deemed to be qualified. This double-alignment

approach enables us to capture the alignments with more

continuous mismatches and longer gaps. This is because we might

fail to get good enough optimal local alignments in such cases, as

the positive score for a match is usually smaller than the penalty

charged for mismatches and indels.

Finally, when we still fail to get any qualified alignment, this

likely means that the true alignment is implied by none of the

evaluated MEM seeds. In this case, we attempt to rescue the

alignment by re-seeding the read using exact-match k-mer seeds.

To improve speed, we search all non-overlapping k-mers of the

read against the genome to identify seed matches. Subsequently,

we employ the k-mer seeds to repeat the aforementioned

alignment process to rescue the read. If we still fail to gain a

qualified alignment, we will stop the alignment process and then

report this read as unaligned.

Paired-end Mapping
In comparison with SE alignment, the long-range positional

information contained in PE reads usually allow for more accurate

short-read alignment, by either disambiguating alignments when

one of the two ends aligns to repetitive regions or rescuing one end

from its aligned mate. In addition, for aligners based on the seed-

and-extend heuristic, the PE information, such as alignment

orientations and insert-size of both ends, can aid to significantly

reduce the number of noisy seeds prior to the time-consuming

alignment extensions. This filtration can be realized through a

seed-paring heuristic [11], as a seed determines the alignment

orientation of a read and the mapping distance constraint on seed

pairs can be inferred from the insert-size of read pairs.

For a read pair S1 and S2, our PE alignment pipeline generally

works as follows (see Figure 4). First, we generate and rank the

MEM seeds, following the same procedure as in SE alignment.

Secondly, a weighted seed-paring heuristic is introduced to pair

seeds, where only high-quality seeds, whose scores are not less than

a minimal score threshold (default = 30), will be taken into

account. This heuristic enumerates each high-quality seed pair

of S1 and S2 to identify all qualified seed pairs that meet the

alignment orientation and insert-size requirements. To distinguish

all qualified seed pairs in terms of quality, we have calculated a

weight for each qualified seed pair and further ranked all of them

by a max-heap data structure. This quality-aware feature allows

for us to visit all qualified seed pairs in the descending order of

quality. Thirdly, if failed to find any qualified seed pair, we will

resort to the re-seeding based on exact-match k-mers by

sequentially checking both ends to see if either of them has not

yet been re-seeded. If so, the k-mer seeds will be produced for that

end and all new seeds will be ranked in the same way as for MEM

seeds. Subsequently, we merge all high-quality k-mer seeds with

the high-quality MEM seeds, and then re-rank all seeds. The seed

merge is used because some significant alignments, which are not

covered by MEM seeds, may be reflected by k-mer seeds, and vice

versa. After getting the new list of seeds, we repeat the weighted

seed-paring heuristic to gain qualified seed pairs. The seed-paring

and re-seeding process will be repetitively continued until either

both ends have been re-seeded or any qualified seed pair has been

identified. Fourthly, we compute the real alignments of both ends

from the qualified seed pairs. An alignment pair will be considered

as qualified if their mapping position distance satisfies the insert-

size constraint. Similar to the weighted seed-pairing approach, we

have also ranked all qualified alignment pairs by means of a max-

heap data structure. In this manner, we would expect better

alignment pairs to come out earlier in the output. Finally, we

attempt to rescue read mates from the best alignments of each end,

when failed to pair reads in previous steps.

Weighted Seed-pairing Heuristic and Alignment Pair
Ranking
To guide the production of real PE alignments in a quality-

aware manner, we introduce a weighted seed-paring heuristic

computing a weight w for each qualified seed pair as follows.

w~
2w1w2

w1zw2

wi~
qi

DSi D|m
,i~1,2

ð1Þ

where qi is the optimal local alignment score between read Si
(1#i#2) and the mapping region derived from the seed, and m is

the positive score for an alignment match. To rank all qualified

seed pairs, we employ w as the key of each entry in the max-heap.

In addition to seed pairs, all qualified alignment pairs have been

further ranked in terms of weight and edit distance. For an

alignment pair, we calculate its weight following Equation (1) with

Figure 4. Program workflow of the paired-end alignment with
hybrid seeding.
doi:10.1371/journal.pone.0086869.g004
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the difference that qi is not definitely the optimal local alignment

score, but might be the optimal semi-global alignment score. This

is because an alignment is possibly produced from a semi-global

alignment as mentioned above. Furthermore, when two qualified

alignment pairs hold the same weights, we further rank them by

comparing the sums of the edit distances of each alignment pair. In

this case, smaller edit distance sums mean higher ranks.

Read Mate Rescuing
For unpaired reads, we have employed a read mate rescuing

procedure, which attempts to rescue one read from the top hits of

its aligned mate by using the paired-end long-range distance

information. In general, our rescuing procedure works as follows.

First, the best alignments of the two reads are computed (if

available). The read, whose best alignment has a MAPQ

exceeding a minimum threshold (default = 20), will be used to

rescue its mate. If an optimal alignment satisfying the aforemen-

tioned constraints has been gained for the mate, the two reads are

considered as paired. Otherwise, we will continue the rescuing

process using the alignments with smaller MAPQs. Secondly, if the

two reads have not yet been properly paired, we will attempt to

pair them from more top hits of both reads. The rescuing process

will not stop until the two reads have been properly paired or

having reached the maximum number (default = 100) of top seeds

for each read. Finally, for unpaired reads, we will report their best

alignments (if available) in a SE alignment mode.

This read mate rescuing is usually time-consuming mainly due

to two factors. One is the dynamic-programing-based alignment

with quadratic time complexity. The other is the maximal insert-

size of a read pair, which basically determines the mapping region

size of the mate on the genome. In sum, the more reads are paired

by seed-pairing heuristic; the less time is taken by the read mate

rescuing procedure.

Color-space Alignment
Most existing color-space aligners encode a nucleotide-based

genome as a color sequence and then identify potential short-read

alignment hits in color space. However, different approaches may

be used to produce the final base-space alignments. For a color-

space read, one approach is to identify a final color-space

alignment and then convert the color sequence to nucleotides

under the guidance of the alignment using dynamic programming

[5]. An alternative is to directly perform color-aware dynamic-

programming-based alignment by simultaneously aligning all four

possible translations [3] [19].

In our aligner, we also convert a nucleotide-based genome to a

color sequence and perform short-read alignment in color-space

basically following the same workflow as the base-space alignment

(mentioned above). For a color-space read, after obtaining a

qualified color-space alignment, we must convert the color

sequence into a nucleotide sequence. This conversion is accom-

plished by adopting the dynamic programming approach

proposed by Li and Durbin [5]. Subsequently, the translated

nucleotide sequence will be re-aligned to the nucleotide-based

genome using either local or semi-global alignment depending on

how its parent alignment has been produced.
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