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Abstract

Background: There are a growing number of observational studies that do not only focus on single biomarkers for
predicting an outcome event, but address questions in a multivariable setting. For example, when quantifying the
added value of new biomarkers in addition to established risk factors, the aim might be to rank several new markers
with respect to their prediction performance. This makes it important to consider the marker correlation structure for
planning such a study. Because of the complexity, a simulation approach may be required to adequately assess
sample size or other aspects, such as the choice of a performance measure.

Methods: In a simulation study based on real data, we investigated how to generate covariates with realistic
distributions and what generating model should be used for the outcome, aiming to determine the least amount of
information and complexity needed to obtain realistic results. As a basis for the simulation a large epidemiological
cohort study, the Gutenberg Health Study was used. The added value of markers was quantified and ranked in
subsampling data sets of this population data, and simulation approaches were judged by the quality of the ranking.
One of the evaluated approaches, the random forest, requires original data at the individual level. Therefore, also the
effect of the size of a pilot study for random forest based simulation was investigated.

Results: We found that simple logistic regression models failed to adequately generate realistic data, even with
extensions such as interaction terms or non-linear effects. The random forest approach was seen to be more
appropriate for simulation of complex data structures. Pilot studies starting at about 250 observations were seen to
provide a reasonable level of information for this approach.

Conclusions: We advise to avoid oversimplified regression models for simulation, in particular when focusing on
multivariable research questions. More generally, a simulation should be based on real data for adequately reflecting
complex observational data structures, such as found in epidemiological cohort studies.
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Background
When planning a new, potentially large cohort study, sim-
ulations can help to judge aspects such as sample size or
choice of a statistical approach that might be needed for
adequately investigating the effect of biomarkers for an
outcome of interest. In particular, such simulation studies
allow to take potentially complex correlation structures,
covariate distributions and potentially non-linear effects
or interactions into account when investigating several
biomarkers and known risk factors simultaneously. There-
fore, a simulation study may be more adequate for exam-
ple to assess the sample size needed than using probably
oversimplifying sample size formulas. A simulation might
also be useful beyond sample size planning, e.g. for pick-
ing good measures for biomarker performance. Since a
simulation study could also be based on oversimplifying
assumptions, at the risk of answers that are not better
than, e.g., closed-form sample size formulas, it is of prime
importance to use a data generating model of adequate
complexity, reflecting realistic data structure. Naturally,
this entails the danger of requiring a large amount of
information about the population and covariate struc-
ture of interest, or introducing a considerable number
of simulation parameters that cannot be selected ade-
quately. In the following, this work focusses specifically
on how to generate correlated covariates with realistic
distribution and on what generating model should be
used for a simulated outcome to deal with a complex
multivariable research questions, exemplarily consider-
ing the task of ranking biomarkers with respect to their
added value.
There is a lack of literature on sample size or power

calculationmethods with consideration of correlatedmul-
tidimensional covariate data in a regression model and as
well on a simulation methodology for this setting. Most
of the established methods are using sample size formu-
las for a regression model with only one covariate [1, 2].
Schmoor et al. [3] proposed a sample size formula for a
prognostic problem, where additionally a second corre-
lated factor is considered. This requires knowledge about
the joint distribution of these two factors and is restricted
to a Cox proportional hazards model with one predictor
of interest. Jinks et al. [4] derived a formula for a multi-
variable prognostic model based on the overall prognostic
ability, where the prognostic ability is quantified by the
measure of discrimination D and sample size calculation
is based on the significance of the D value. Comparable
approaches can be applied with the overall discrimination
ability (AUC) [5] of the model, for which a sample size
calculation can be derived as well [6, 7]. Other authors
discuss methods for the problem, where the number of
predictors is larger than the actual number of samples.
This introduces a selection problem, where informative
predictors have to be identified in amixture of informative

and non-informative predictors. De Valpine et al. [8] gave
a two-step method, where in the first step a simulation
is used to reproduce the selection process of informa-
tive predictors and in a second step an approximation
method for a linear discriminant problem is used. A sim-
ilar two step approach was developed by Dobbin et al.
[9] but with another methodology. A further approach
with a variable selection step was proposed in Götte et al.
[10], where the sample size determination is focused on
the prediction accuracy instead of power. Unfortunately,
most of these approaches are based on uncorrelated vari-
ables. Binder et al. [11] investigated different scenarios
with a small or large amount of information, different
covariates distributions and non-linear functional forms
of relationship. The simulation revealed the importance
of aspects like covariates distributions or functional form
and demonstrated the impact. However, the primary aim
of that work was not the planning of new studies but
comparing approaches for modeling of non-linear effects.
Therefore, the present work specifically investigates the
degree of complexity that may be required for a realistic
simulation study and techniques to use for an adequate
generating model.
We exemplarily consider settings with a binary out-

come, which are frequently found in observational data
for biomedical research questions considering disease
risks. However, most aspects of the simulation method
can be easily applied to a continuous outcome as well.
As candidate technique for generating simulated covari-
ate distributions, i.e. biomarkers and established pre-
dictors, two approaches were compared. Drawing from
multivariate normal distributions or additionally transfor-
mation according to a known empirical distribution to
mimic this distribution as exactly as possible. For gen-
erating the clinical outcome, standard linear models and
extensions via non-linear terms and interactions were
used. As a non-parametric approach the random forest
model was considered, which requires individual data as
basis. As gold standard, repeated sampling from a large
population-based, epidemiological cohort, the Gutenberg
Health Study (GHS) was used, and judged how close sim-
ulated data based on aggregate information, such as odds
ratios or correlation matrices (which might be found e.g.
in the literature), agree with the gold standard. The use
of a pilot study [12] as basis for simulation was also
considered, and the effect of the pilot study size was
investigated. As a measure to assess the performance of
simulation compared to the defined gold standard, the
ranking of biomarkers based on simulated data and based
on repeated draws from the population data, were com-
pared. For ranking biomarkers according to their added
value, the difference in Brier score, the increase in AUC
and the difference in pseudo-R2 were considered as added
value measures.
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In “Population sample” section the GHS study and
the exemplary biomarkers and endpoints to be used for
investigating simulation approaches are introduced. Con-
cerning the latter, the overall simulation structure is pre-
sented in “The general simulation structure” and discuss
simulation of covariates in “Covariate matrix” section,
and different approaches for generating a simulated
phenotype in “Clinical response generating” section.
Different measures for added value are discussed in
“Quantifying added value” section and the simulation
quality criterion in “Reference ranking” section. The
population results are presented in “Population sam-
ple results” section. Results on different strategies for
simulation are presented in “Reference mean ranks”
and in “Comparison of simulation approaches” sections.
“Pilot sample size” section specifically investigates differ-
ent pilot study sizes. Concluding remarks are given in
“Discussion and Conclusions” sections.

Methods
Population sample
As an application example, the Gutenberg Health Study
(GHS [13]) sample was used. The GHS is a population-
based prospective, observational, single-center cohort
study from Germany at the University Medical Cen-
ter in Mainz. With the first 5000 participants enrolled
from April 2007 to October 2008, it is so far a cross
sectional, large, population based sample. The primary
aim of the GHS study is to evaluate and improve car-
diovascular risk prediction. The participants are aged
between 35 and 74 years with nearly equal proportion of
men and women. The sample was taken from the pop-
ulation in Mainz and Mainz-Bingen area in Germany.
The whole study sample includes 15010 individuals. The
analysis was restricted on the first 5000 enrolled par-
ticipants due to the fact that the measurement of the
biomarkers of interest was only accomplished for this sub-
sample. After quality control and data cleaning using the
complete case principle for the variables of interest, a sam-
ple with 4519 individuals remains. Most missing values
occurred in the outcome. Missing values were randomly
distributed and resulted mainly from logistical problems.
Specifically, the binary variable functional cardiac disor-
der (FCD [14]) was used as medical outcome. The focus of
this work was on a binary outcome, because this approach
is commonly used inmedicine and plays amore important
role in risk prediction than continuous traits do. A basic
prediction model for this event was defined as a simple
model with sex, age and body-mass-index as covariates.
This basic model was extended with different biomarkers.
One biomarker was added at a time, and the improvement
in prediction was evaluated with three different added
value methods described in Quantifying added value. The
following biomarkers of interest were selected in advance:

MR-proADM, Nt-proBNP, hs-CRP, CT-proAVP and MR-
proANP. The results in GHS sample are presented inmore
detail in 8.

The general simulation structure
For exploring the best simulation approach, the following
simulation structure was used. The generation algorithm
of artificial data can be divided into two parts. First,
the covariate data set which included established pre-
dictors and all biomarkers of interest need to be gen-
erated based on population data. In this regard, the
distribution of simulated covariates, including the cor-
relation structure, should reflect the structure in the
real data. Two different approaches were used in general
for this, the covariates either follow a multivariate
normal distribution and or an empirical distribution
extracted from existing data, e.g. a pilot study. To eval-
uate and illustrate the approach, the population data
that cover non-normal data distributions was used.
Two approaches are described in more detail in 8.
The second part is the generation of a simulated clin-
ical response using the simulated covariates of the
first part. For this purpose, four different approaches
with increasing complexity were used: starting with a
simple logistic regression model, followed by a logis-
tic regression model which includes selected interac-
tion terms, and a generalized additive model (GAM)
model with non-linear effects. The last approach was
the random forest model, a rather complex approach.
All approaches are described further in 8. In total, four
different approaches for the clinical response simulation
and two different methods for covariate data generation
were investigated. To compare simulation approaches, a
gold standard is required on which the evaluation of
the simulation quality can be judged. This gold stan-
dard has to be reproduced with simulated data. As a
gold standard, the reference ranking of biomarkers and
the reference values of the added value measures in
application example were used. The application exam-
ple is described with more details in 8 and the rank-
ing procedure is described in 8. The four approaches
were compared without the consideration of the pilot
study size. This means, for the generating of artifi-
cial data, the whole population sample was taken as a
source of information. The pilot study size will be inves-
tigated at the end for the best simulation approach. The
simulation design is presented schematically in Fig. 1:
on the left side the determination of reference val-
ues is displayed and on the right side the structure
of the simulation procedure [15]. All simulations were
done in R version 3.2.2 (2015-08-14) [16]. Addition-
ally the following R packages were used: mvtnorm ver-
sion 1.0-3 [17, 18], gam version 1.12 and randomForest
version 4.6-12 [19].
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Fig. 1 Structure of the simulation. On the left side the determination of reference values is illustrated and on the right side the structure of the
simulation procedure. *This step is skipped for the first part of simulation where the best simulation model was investigated and only used to
determine the needed sample size of a pilot study

Generating artificial data
Covariatematrix
For a successful simulation of a realistic sample, covari-
ate data need to be simulated in a sufficient way. One
of the major aspects for the simulation is the correlation
structure of the covariate matrix. Not only the correlation
betweenmarkers and basic model covariates is important,
the correlation between markers themselves has a key
role. Consequently, the whole correlation matrix includ-
ing all markers of interest and known risk factors must
be taken into account. A natural way to simulate the dis-
tribution of covariates while simultaneously considering a
correlation structure is to use a multivariate normal dis-
tribution based on the correlation matrix, location and
dispersion of real data. Where a predefined covariance
matrix can be given to determine the variance as well
as the correlation structure of generated data [20], this
covariance matrix can be easily obtained from the pop-
ulation data. Since the dichotomous variable sex was
included into the model, all random covariate data were
generated sex-specifically and pooled afterwards. As all
covariates of interest, except sex, were nearly normally
distributed or log-transformed to approximate the normal
distribution. Though the method covers the correlation
structure of the original data well, variables are rarely
exact normally distributed in a real data set. A more
exact method to mimic the real distribution is to generate
the covariate matrix with multivariate normal distribu-
tion and to take the corresponding quantiles from the
empirical distribution of a real data set. It requires more
information, but reflects even small deviations from the
normal distribution if present, without destroying the cor-
relation structure. By using this method, artificial data
with a correct correlation structure can be generated that

perfectly mimic the true distribution. This can be seen as
the most realistic and sophisticated simulation method of
the covariate data. In the simulation of this work, both
approaches and the benefit of these additional efforts
were explored.

Clinical response generating
For the generation of the clinical response, the relation-
ship between outcome and the covariate matrix has to
be taken into account as accurate as possible. For this
purpose, prediction models for the outcome were fitted
in population data using different modeling approaches.
These prediction models are then used to predict the
probabilities of the event given the artificial, simulated
covariate data. To generate the outcome for the simulation
data set, random numbers were generated from the bino-
mial distribution given the predicted probabilities. Even
if the biomarker comparison is made by a simple logistic
regression model, more complex models can be used for
the simulation of the relationship. Additionally, in terms
of comparison of markers it is essential that the associa-
tion to the outcome is simulated considering all markers
simultaneously. For that purpose, the prediction models
for the binary endpoint in the population data were fit-
ted using all markers and covariates in one model. For
the simulation, a set of different models with rising com-
plexity were selected. The simplest approach would be
the modeling of the relationship in a linear way with a
logistic regression (GLM). Additional interaction effects
can be taken in account, which leads to a GLM model
with interaction terms (GLM+I). For this model, a set of
the six strongest pairwise interaction effects with a step-
wise bidirectional selectionmethod based on AIC (Akaike
information criterion) [21] was selected and added to the
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GLM model. Following interactions were selected auto-
matically: sex with age, CT-proAVP with age, Nt-proBNP
with MR-proANP and interactions of MR-proADM with
BMI, Nt-proBNP, CT-proAVP and MR-proANP. Where
even not significant biomarkers were included in interac-
tions and seem to improve the global model. The resulting
information could be important because the interactions
between the markers cannot be detected in a predic-
tion model including only a single marker, but this may
influence the overall results of the simulation. If the rela-
tionship between the outcome and the biomarkers is in
reality a non-linear relationship, a non-linear modeling
would be more appropriate. Generalized additive model
with smoothing splines (GAM) [22] was used to model
complex non-linear relationships if present, but interac-
tions are omitted in this approach. To cover non-linear
relationships and complex interaction structures simulta-
neously, a more complex model could be necessary. One
possibility is to use the random forest model (RF) [23],
based on classification trees (CART) [24–26]. For the ran-
dom forest models, no pruning step was performed, so all
trees were maximal grown trees. The number of trees was
set to 1000 and the number of variables randomly sampled
as candidates at each split was

⌈√p
⌉
[27], where p is the

number of predictors available. This method is described
inmore details in the next section 8. In this work only both
methods to generate the covariate data with the GLM
and random forest approaches are presented. For all other
approaches, only covariate data simulated based on the
empirical distribution are presented as this leads to better
simulation results.

Random Forest approach
Since random forest (RF) plays an important role in the
simulation and is not a standard method, it is described
in more detail in the following. A short overview of the
construction of RF can be found at the end of the section.
Random forest is an ensemble of classification or regres-
sion trees (CARTs). For the case of a binary outcome, the
classification trees are used. The trees in RF are unpruned.
This means that each tree is grown to the largest extent
possible, but may require a minimum node size of termi-
nal nodes, usually 1. Each tree is grown in a bootstrap
subsample drawn from the original training sample. Let N
be the number of individuals in the whole training sample
and N∗ the size of a bootstrap sample. In usual, N∗ = N
for sampling with replacement and N∗ < N for sampling
without replacement. For the simulation, sampling with
replacement was used. The number of independent indi-
viduals in the bootstrap sample is then Ń∗ ≈ 0.632 · N ,
see [28]. The remaining N − Ń∗ individuals are out-of-
bag (OOD) and can be used for an internal validation or
out-of-bag prediction, which is not explained here further.
One of the tuning parameters of RF is the number of trees

to be generated. Let B be the number of trees, and conse-
quently the number of bootstrap samples in RF, often also
called ntree. Another source of diversity in RF is the fact
that not all predictor variables are used at the same time,
rather a set of randomly selected predictors is used in each
node for split in a tree. Let m identify the total number
of predictors available in the training sample and mtry
the number of predictors randomly chosen in each node.
Consequently, mtry is another tuning parameter of RF.
The default for classification problems is usually

⌈√
m

⌉
.

Classification trees use a splitting function called Gini-
index to determine which attribute to split on and what
the best cutoff is. Gini-index is defined as Gk = 2f (1− f ),
where f represents the fraction of events assigned to node
k. In contrast to using one classification tree, RF returns
not only the classification decision but can also estimate
the predicted probability for an event. For B trees in RF,
the predicted probability for a new individual is:

P̂(y = 1|x) = 1
B

B∑

b=1
πb(x),

where πb(x) is the majority vote in terminal node where
the new individual is dropped in for bth tree, so the clas-
sification decision of a single tree for outcome status y ∈
{0, 1}, given the covariate matrix x. For more information
and features of RF see [29, 30].
The construction of RF is described in the following

steps:

1. Select randomly a total of N∗ individuals from the
original training sample, with replacement. This leads
to a bootstrap sample. Repeat this procedure B times.

2. In each bootstrap sample, grow an unpruned
classification tree. The tree is constructed by
recursively splitting data into two distinct
sub-samples. At each node, randomly select mtry
predictors from the total m predictor variables.
Choose the best split from among the mtry
predictors by minimize the Gini-index as a measure
of node purity.

3. For calculation of predicted probability, each new
individual is dropped down a tree until its terminal
node. The majority voting for an event status in this
terminal node is determined. The probability
estimate is then the average of majority votes over all
trees.

Gold standard
Quantifying added value
For comparing the predictive strength of biomarkers, the
concept of added value that describes the prediction per-
formance of a model was chosen. This can be measured
with several different established measurements. Three
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of them without intend to have a complete list of exist-
ing measures were selected. The first one, the Brier score
[31, 32], measures the mean squared difference between
the predicted probability and the actual outcome. It takes
values between zero and one, since this is the largest
possible difference between a predicted probability and
a binary outcome. The lower the Brier score, the better
the prediction performance. The Brier score is defined
for a binary outcome as BS = 1

n
∑n

i=1(pi − yi)2, where
p is the predicted probability, n is the sample size and
y is the actual, observed outcome. The second common
measure is the area under the curve AUC [5, 7, 32–34]
from Receiver Operating Characteristic (ROC) method-
ology which quantifies the discrimination ability. It can
be interpreted as the probability that a randomly selected
subject with an event will be ranked higher in terms of
predicted probability than a randomly selected subject
without an event. One possible definition of AUC is given
by AUC = 1

n1n0

(∑n
i=1(rank(pi)yi) − n21+n1

2

)
, where n1 is

number of events and n0 is the number of non-events.
Third, the coefficient of determination R2, in this case
for a binary outcome the generalization of R2 for gen-
eralized linear models from Nagelkerke [35] was used.
Nagelkerke R2 coefficient is scaled to a minimum of 0
for no determination and a maximum of 1 for perfect
determination. The definition of R2 with log-likelihood
is 1

e(−2LL0/n)−1
(
e((−2LL1+2LL0)/n)) − 1

)
where the LL0 is the

log-likelihood from the null model only with the inter-
cept term and LL1 is the log-likelihood from the model of
interest.
Since to quantify the improvement of the extended

model, including an additional marker, compared to the
basic model, it is straightforward to use the difference in
these measures. This results in following three measures:
Brier score difference that has the form

BSD = 1
n

( n∑

i=1
(p1i − yi)2 −

n∑

i=1
(p0i − yi)2

)

,

the p1 stands for the predicted probability from the model
with the new marker and p0 for the predicted probability
from basic model. The increase in AUC could be reduced
to the form

IAUC = 1
n1n0

( n∑

i=1
(rank(p1i)yi) −

n∑

i=1
(rank (p0i) yi)

)

.

Nagelkerke R2 difference,

R2D = 1
e(−2LL0/n) − 1

(
e(−2LL1/n) − e(−2LL2/n)

)
,

with LL1 as log-likelihood from the basic model and LL2
from the extended model. The different measures repre-
sent different aspects of improvement in prediction, like

calibration for Brier score or discrimination ability for
AUC [36]. This small set of measures is a good represen-
tation of most common performance measures with dif-
ferent approaches and covers the most important aspects
of added value.

Reference ranking
As a criterion for simulation success, the relative ranking
of biomarkers was used. It reflects the biomarker compar-
ison study aims in a direct and intuitive way and allows
the comparison of the results from different added value
measures. Therefore, the top three markers were ranked
by each added value measure separately. The simulation
is restricted to the top three markers because the others
have very small to non-existent effects, see 8. As the basic
prediction model is used as a reference for all markers,
ranking based on the added value measure itself or on the
difference of it lead to the same ranking. To get reference
rankings, a resampling method on population data was
used, in this case the target criterion is the mean rank of
markers. To access the mean rank, 10000 bootstrap sam-
ples from population data were drawn. By bootstrapping
with real data the distribution and correlation structure of
population data is considered in a natural way. For each
bootstrap sample, the added value measures were calcu-
lated and compared between each biomarker. This leads
to a specific rank in each bootstrap sample for each of the
top three markers. The mean rank of a marker from all
bootstrap samples is used as the reference. This reference
has to be replicated in the artificial data in the simulation
to ensure the applicability of the simulation approach. The
resulting reference rankings are shown in 8. Additionally,
the similarity of absolute added values from simulation
results to reference values as a more specific criterion was
examined. A good consistency in absolute values would
demonstrate even better simulation accuracy.

Results
Population sample results
To ensure a stable and well specified model for risk pre-
diction, model diagnostics were carried out in the pop-
ulation data for all models, including the basic model,
the extended model with one biomarker and a full model
with all markers simultaneously. Model diagnostic cov-
ers calibration, influential observations and collinearity.
The event frequency was 26.7% (n = 1205 of N = 4519),
so even in a full model there were 150 events per covari-
ate. The overall calibration was good in all models as
the mean predicted probability ranged between 26.02%
and 26.87%. The calibration in subgroups of prediction
was similar good in all models and only led to a sig-
nificant Hosmer-Lemeshow test [37] (p = 0.042) in
one model, which shouldn’t be over-interpreted with this
large sample size. By using the Cook’s distance [38, 39],
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no strong influential observations were detected. The
Cook’s distanced is based on a single case deletion statistic
which quantifies the changes of estimates after removing a
single observation.
The variance inflation factor (VIF) [40, 41] was used

to examine the collinearity. Values of the VIF greater
than 5 were considered as problematic. In the single
extended models with only one additional marker, no
VIF values over 2 were observed. In the full model
with all biomarkers incorporated simultaneously, the
maximum VIF was 2.6 for MR-proANP. In summary,
the basic model was stable and well calibrated; there
were no collinearity problems and no strong outliers
or influential observations after the log-transformation
of markers.
Regarding the prediction ability of the model with sex,

age and body-mass-index as covariates, the basic model
had a moderate predictive value according to the three
measures of added value. The AUC of the basic model
was 0.76, the Brier score was 0.163 and the R2 0.227.
A basic AUC of 0.76 is in mid-range between random
(AUC = 0.5) and perfect discrimination (AUC = 1).
Consequently, the basic prediction model was reason-
able, but offers enough space for improvement in pre-
diction. Nevertheless, the evaluation of the models addi-
tionally incorporating one of the biomarkers of inter-
est yielded in only a weak influence of the biomarkers.
The associations with MR-proADM, Nt-proBNP and hs-
CRP, respectively, was significant on the 5% level and the
association with CT-proAVP and MR-proANP, respec-
tively, was not significant. All results can be seen in
Table 1. The top three markers were clearly arranged
by strength in prediction improvement with all three
added value measures. The improvement by including
the markers in the model remains under the expecta-
tions and provides only small differences. As CT-proAVP
and MR-proANP were non-informative, the simulation
was restricted to the top three markers, MR-proADM,
Nt-proBNP and hs-CRP. Additionally, the effect of hs-
CRP is very weak and doesn’t look very promising,
but it can be used for comparison with the other top
two markers.

Reference mean ranks
After evaluating the added value measures in bootstrap
samples from population data, these values were used to
obtain the reference ranking. The data is presented in
Table 2 as mean ranks.
Themean rank forMR-proADM ranges from 1.38 using

AUC to 1.57 using the Brier score. Using the R2 resulted
in a mean rank of 1.45, which lies somewhere in between.
Consequently, the AUC shows a stronger ability to sep-
arate the top marker than the Brier score or the R2 in
the population data. For Nt-proBNP, Brier score and AUC
were about 2, the R2 provided a little smaller mean rank
of 1.86 and thus a little higher ranking. The mean rank
of the third marker is not important, because it’s already
completely determined with the first two ranking posi-
tions. It is not exactly clear how the differences can be
explained. One possibility could be the fact that differ-
ent measures represent different aspects of prediction like
discrimination or calibration. Another source could be
small deviations from the assumptions like linearity or
normal distribution, with a heterogeneous effect on the
different measurements. The second explanation would
make it even more important to cover these aspects in the
simulation.

Comparison of simulation approaches
Mean ranks criterion
In Fig. 2, the simulation results summarized four differ-
ent approaches using the empirical covariate distribution
and additionally the results for GLM and random forest
using the covariate data drawn from the normal distri-
bution are shown. The results from multivariate normal
distribution with simple logistic regression event genera-
tion algorithm (GLM normal data) are interesting. In this
approach, where the conditions where ideal meaning that
all covariates, except the dichotomous sex, are normally
distributed and the relationship is perfectly linear, there
is no difference in ranking between the three measures.
Consequently, the differences between the measures in
other approaches could be explained by small deviations
from the normal distribution of covariates and from the
assumed relationship, which may not be perfectly linear

Table 1 Logistic regression models: results from population data

Marker OR per-SD Lower 95%CI Upper 95%CI p-value Brier score diff. Increase in AUC R2 difference

MR-proADM 1.18 1.08 1.30 0.00035 -0.00048 0.00232 0.00349

Nt-proBNP 1.15 1.05 1.25 0.0017 -0.00033 0.00151 0.00272

hs-CRP 1.08 1.00 1.17 0.044 -0.00024 0.00084 0.00111

CT-proAVP 1.04 0.96 1.12 0.36 0.00000 0.00014 0.00022

MR-proANP 0.99 0.91 1.07 0.75 0.00000 -0.00004 0.00003

All biomarkers were log-transformed. The models were adjusted for sex, age and bmi. The basic model had Brier score of 0.163, AUC of 0.759 and R2 of 0.227
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Table 2 Mean ranks

Ranking measure MR-proADM Nt-proBNP hs-CRP

Brier score difference 1.57 1.99 2.43

Increase in AUC 1.38 1.96 2.66

R2 difference 1.45 1.86 2.69

Mean rank is calculated on 10000 bootstrap samples from population data. Only the
top three markers were ranked

or has been influenced by interactions. The mean ranks
of the GLM method using normal covariate data differ
strongly from the reference mean ranks except for MR-
proADM using the Brier score difference and for hs-CRP
using the IAUC or the R2 difference. TheGLMapproaches
with interactions (and quantile covariate data) and the
GAM approach (using quantile covariate data) influence
the results in a greater way than the covariate generat-
ing algorithm with GLM, but the reference mean ranks
are still not reproduced. One possible explanation could
be that the interactions and non-linear relationships were
not considered in these approaches. The random forest
approach (using quantile covariate data) addresses this
points and leads to better results. For MR-proADM, the
random forest approach yields in mean ranks compara-
ble to the ranks in the reference, except of small devia-
tions that remain under the simulation uncertainty. For
NT-proBNP and hs-CRP with Brier score difference and
IAUC, the deviations become larger due too weak effects
and consequently larger uncertainty as well as for hs-CRP
having the same reason. Only with Nagelkerke R2 differ-
ence, the simulation fails to reproduce the reference mean
ranks for the last two markers and yields in large devia-
tions from the reference mean ranks that clearly exceed

several fold the simulation uncertainty. In this setting, the
GLM approach with quantile covariate data exhibits bet-
ter performance. This may be due to the fact that the
Nagelkerke R2 is likelihood-based and therefore cannot
detect model misspecification. Correspondingly, an over-
simplified generating model may have no strong effect. If
one compares the results of the random forest method
using normally distributed covariate data with the results
of the random forest method using the quantile covari-
ate data, the same event generation algorithm is used,
but the simulation of the covariate data differs. Here, the
mean ranks of the two approaches are substantial differ-
ent, using the covariate data drawn from the empirical
distribution leads to better results in most cases. Only if
one uses the IAUC or R2 difference, the mean rank of MR-
proADM does not differ between the two approaches. For
the other event generating methods, this difference is also
present and can be even stronger (results not shown). To
sum things up, only the random forest approach using
covariate data drawn from empirical distributions led
to simulated data, where the ranking of the biomarkers
approximates the reference ranking. The additional effort
by using the data drawn from the empirical distributions
is worthwhile as this, especially in the case of the RF
as event generating algorithm, lead to remarkably better
results. Furthermore, there were differences in precision
of results of the measures for added value. The Brier score
difference seems to have greater precision then the IAUC.

Absolute values criterion
In the following, the results are presented in terms of
absolute values. Even if the simulation design was built up
for stable ranking, it could be of interest to see the absolute

Fig. 2 Simulated mean ranks. The mean rank is based on 10000 simulation runs, with different methods of data generation. The dashed line
represents the reference mean ranks from population data. Normal data: multivariate normal distributed covariate data. Quantile data: covariate data
drawn from the empirical distribution. GLM: modeling of the relationship with logistic regression. GAM: modeling of the relationship with
generalized additive models



Schulz et al. BMCMedical ResearchMethodology  (2017) 17:90 Page 9 of 12

values of the added value. These results are presented in
Fig. 3. The results are compared to the reference effects in
the population data. The incremental values are very small
even for a strongly significant marker like MR-proADM.
The basic Brier score of 0.163 was only reduced by 0.0005
with the strongest marker and by 0.00024 by the weak one
(hs-CRP). The increase in AUC was somewhere between
0.00084 and 0.0024, which is apparently small compared
to the basic AUC of 0.759. The same is also true for dif-
ferences in R2: The maximum of improvement is 0.0035
compared to 0.227 in the basic model. Like in the results
regarding the mean ranks, the best approximation of the
reference values was reached by random forest approach.
The GLM model with interactions seems to overestimate
the true improvement largely. The GAM model seems to
be more accurate in some cases as GLM, but not overall.
For the R2 difference could not achieve a good approxi-
mation of the true values, comparable to the results from
the ranking. To sum up, random forest approach were able
to achieve good accuracy of simulated effects, at least for
Brier score difference and the IAUC.

Pilot sample size
In themain simulation, the complete population sample as
basis for the simulation was used. Consequently, it was a
sample with 4519 observations as a source of information
available. If one wants to use a pilot study or an interim
analysis as the source of information, it is important to
know at least approximately how large this subsample has
to be to produce adequate results. A sample size over
1000 is unrealistic in real-life settings, particularly for a
pilot study, where these observations are not used in the
actual study. In terms of an interim analysis in a large

cohort study with many thousand individuals, larger sub-
sample size is conceivable. Even if the term pilot study is
used in this work, these results will be as well valid for an
interim analysis or other sources of raw data. In additional
simulation, the needed sample size for a pilot study to
cover the effects from our reference population was inves-
tigated. For this purpose, simulations with different sizes
of pilot study samples, with which the artificial data was
generated, were performed. Considering the results of the
main simulation, the random forest approach with empir-
ical distributions of covariate data was used for additional
simulation. The pilot study samples were randomly drawn
from our reference sample. Subsequently, the correlation
structure, empirical distributions and the random forest
model were generated based on this sample. The sim-
ulated data was built up with the original sample size
of reference sample, so with 4519 observations. Only
the results of the best marker MR-proADM is shown as
example. These results are displayed in Fig. 4, where the
mean rank for MR-proADM using all three measures and
pilot sample size ranged from n=100 to n=1000 in 50th
steps was calculated. For every step, 1000 simulation runs
were used, which led to less precision compared to the
main simulation. With Brier score difference, the refer-
ence value could be achieved with a sample size of 250.
The IAUC had an acceptable, but not exact accordance
with 250 observations. Here, the accordance only slowly
improved with increasing sample size and reached a good
value only at over 600 observations. This fits to the previ-
ous simulation results, where IAUC had a lesser precision
than the Brier score difference. With R2 difference, the
sample size of 350 was needed for a good accordance
with reference values. The interpretation of results with

Fig. 3 Simulated absolute values. Absolute values of differences were generated with 10000 simulation runs and with different models. Dashed lines
represent the reference values, thus the differences between the values of the basic model and the values of the extended model in population
data. GLM stands for generalized linear models, GAM for generalized additive models
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Fig. 4 Pilot sample size investigation. Mean ranks for MR-proADM with random forest approach and different pilot sample sizes. For every step 1000
simulation runs were used. The dashed line represents the reference mean rank from population data

R2 difference is difficult, because it fails to reproduce all
effects properly and showed sufficient performance only
for the strongest marker. It should be noted that these
results cannot be generalized, because the needed sample
size for a pilot study is strongly dependent on the effect
size of the marker, the clinical outcome and, as we have
shown, from the choice of the measure. But even for weak
effects in the application example a sample size of about
250 seems to be sufficient, which should be a feasible
sample size for a pilot study.

Discussion
In this work we investigated the necessary tools to per-
form simulation of realistic data with complex structure,
e.g. to plan a new study for biomarker comparison or for
other subject matter questions corresponding to a mul-
tivariable analysis. Except for one specific performance
measure (the Nagelkerke R2), our results indicate a good
simulation should be based on individual level pilot data,
as the detailed information required for an adequate sim-
ulation cannot be extracted from typical aggregate results
given in prior publications. Artificial data from theoretical
distributions fail to represent the real situation properly
and can lead to wrong results. Even small violations of
assumptions, which are often negligible in other situa-
tions, could be essential for simulation results. Based on
a comparison of four different approaches for generating
the outcome, the random forest approach (using covari-
ate data drawn from the empirical distribution) seemed to
be the most successful. These results are also valid if one
takes into account the variation of the rank, which was
comparable between the different approaches. Unfortu-
nately, this is the most complex model considered and as
all machine learning methods it requires more data [42]. It
leads us to the conclusion that non-linear relationship and
interaction are playing an important role. Although our
reference sample had no clear non-linear relationships,
there may be small but nevertheless relevant deviations

from linearity. For the analysis of a sample it is common
to use a linear model even for a relationship that may be
not perfectly linear in order to avoid overfitting, but for a
simulation setting is seems to be rather crucial to also con-
sider small deviations from linearity. As the basic model
was extended only with one marker at a time, interactions
between biomarkers would often be missed in an analy-
sis, but they are playing an important role for the marker
ranking in simulations. We think the appropriate model-
ing of the relationship is a more important aspect than
the distribution of covariate data, as long as the correla-
tion structure was adequately reflected. This last part is
achieved in a straightforward manner by using covariate
data drawn from the empirical distribution, although this
requires more information. Nevertheless, we think that
this effort is worthwhile as it results in better simulation
results and does not need to be adapted if the distribution
is non-normal. Additionally, the random forest approach
does also need the information on the individual level
and thus using the empirical distribution is no additional
expenditure in this case. One known disadvantage of ran-
dom forest approach is the black box nature of the model,
but as our aim is to perform a data based simulation, there
is no need for a good interpretability of generating model.
The model must only adequately reflect the data structure
and deliver realistic simulated outcomes. Another aspect
to be considered when using the random forest approach
is the appropriate choice of tuning parameters, such as
the tree size. The difficulty is to choose these parame-
ters in a way that ensures sufficient degrees of freedom,
but avoids the overfitting at the same time. The tree size
determines the interaction order of the model, so trees
with only one split, so called stumps, result in a model
without interactions. Each additional split increases the
order of possible interactions. This parameter should not
be too small; otherwise the model fails to reproduce the
interactions in the data. In case of simulations, the choice
of adequate tree size is not very critical as long as the
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model has sufficient degrees of freedom, because a cer-
tain amount of overfitting is even desirable. The model
must not be generalizable for new data, on the contrary,
it must simulate the data with their special characteristics
such as random noise as well as possible. Consequently,
the pruning of the trees might not be as important in this
case. Instead of recommending an added value measure,
we recommend to include the choice of the added value
measure into the planning phase. For example, a better
separation between the markers was possible when using
IAUC, but the Brier score difference had a better precision
in results. Only the Nagelkerke R2 difference is not recom-
mended as the results could not be recovered well within a
simulation study. Another aspect that should be taken into
account when choosing the measure is the sample size of a
pilot study or interim sample study. With the right choice
of themeasure, the required sample size could be reduced.
From this point of view, the Brier score difference can be
recommended.We used the improvement of prediction in
nested models with adding a new single marker, but this
concept could be used as well for improvement with sev-
eral newmarkers simultaneously. This could be important
when investigating weak markers, like genetic SNP mark-
ers for example [43], where interaction between markers
could play an even more important role.
In addition to the scenarios investigated here, other

data analysis scenarios might be considered, e.g. a com-
parison of two sets of markers or a set of markers with
one single marker. We expect that our results also trans-
fer to such other multivariable settings to some extent,
as the strategy presented here ensures that the correla-
tion structure with exact covariate distribution is con-
sidered as well as the relationship to event with interac-
tions and non-linearity. Naturally, our results may strongly
depend on the specific data source, the Gutenberg
Health Study (GHS), and the specific markers and out-
come considered in our investigation, but we expect
that the level of complexity seen there is not unusual
and needs to be anticipated when setting up a large
cohort study.

Conclusions
Generalizing from the present results, we would not rec-
ommend potentially oversimplified regression models for
representing the relationship between markers and the
outcome when simulating complex data. It seems that
more flexible approaches, such as random forest, may
be more appropriate for adequate simulation of complex
multivariate data. This better takes into account impor-
tant aspects such as non-linear relationships or inter-
actions and therefore provides more adequate results.
Yet, these methods require information on individual
level and thereby a pilot study or other preliminary
data sources. Additionally, the results of the simulation

emphasize that some not readily apparent properties of
the underlying data structure can affect (the performance
of) marker identification. This also is an important lesson
for other situations where realistic data structure needs to
be simulated.
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