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Notch receptors play an essential role in the regulation of central cellular processes during
embryonic and postnatal development. The mammalian genome encodes for four Notch
paralogs (Notch 1–4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like
(Jagged1/2) ligands. Further, non-canonical Notch ligands such as epidermal growth factor
like protein 7 (EGFL7) have been identified and serve mostly as antagonists of Notch sig-
naling. The Notch pathway prevents neuronal differentiation in the central nervous system
by driving neural stem cell maintenance and commitment of neural progenitor cells into
the glial lineage. Notch is therefore often implicated in the development of brain tumors, as
tumor cells share various characteristics with neural stem and progenitor cells. Notch recep-
tors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and
loss-of-function studies in vitro and in vivo.To this end, special attention is paid to the impact
of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to
growth, survival, invasion, and recurrence of brain tumors. Based on the outcome of ongo-
ing studies in vivo, Notch-directed therapies such as γ-secretase inhibitors and blocking
antibodies have entered and completed various clinical trials. This review summarizes the
current knowledge on Notch signaling in brain tumor formation and therapy.

Keywords: brain tumor therapy, clinical trials, glioma, medulloblastoma, Notch signaling, stem-like brain tumor-
propagating cells

INTRODUCTION
Malignant gliomas represent the most futile type of brain tumor in
adults with an annual incidence of 5 per 100,000 individuals (1, 2).
According to the World Health Organization (WHO) guidelines,
they can be characterized as astrocytomas, oligodendrogliomas,
ependymomas, or oligo-astrocytomas (mixed gliomas). Another
WHO classification is based on the malignancy of the neoplasms
and ranges from grade I, corresponding to low-proliferative non-
invasive tumors, up to grade IV, assigned to cytologically malig-
nant, highly infiltrative, mitotically active, and necrosis-prone
glioblastoma multiforme (GBM, malignant glioma). Most of the
diagnosed GBMs (90–95%) are primary tumors, although sec-
ondary glioblastomas might also arise from low-grade tumors
(3, 4). Medulloblastomas, the most frequent neoplasms in chil-
dren, are of a cerebellar origin and are therefore not included
in this glioma classification system (5). WHO grades reflect
patients’ prognosis: grade I tumors are generally curable by sur-
gical resection alone (1), while the current standard care for
GBM involves maximal surgical resection followed by temozolo-
mide (TMZ) chemotherapy and radiation. Unfortunately, this
treatment regimen has severe side-effects and barely extends the
median survival from 12.1 to 14.6 months (6). Currently, the
genetics and molecular biology of brain tumors are the focus of
extensive studies. It is well established that glioma-driving muta-
tions affect pathways regulating cellular parameters such as cell
growth, apoptosis, migration, and angiogenesis (7–9). Master reg-
ulators of these biological processes frequently mutated in glioma
are TP53, PTEN, PDGFR, NF1 or epidermal growth factor recep-
tor (EGFR) and there is growing evidence that developmental

signaling cues such as Notch are deregulated in malignant brain
tumors as well.

MAMMALIAN NOTCH RECEPTORS AND LIGANDS
Notch receptors are single-pass transmembrane proteins formed
by two non-covalently associated polypeptide chains. The
Drosophila melanogaster genome encodes only a single Notch
gene, but four receptors (Notch 1–4) are found in mammals.
After the synthesis of a single-chain precursor, the receptor under-
goes a so-called S1 cleavage mediated by furin-like proteases in
the trans-Golgi network. S1 generates an N-terminal extracellu-
lar domain (NECD) and a C-terminal fragment corresponding to
the transmembrane domain (NTM) extending into the cytoplasm
(intracellular Notch domain, NICD). The resulting heterodimer,
held together by non-covalent bonds, is inserted into the plasma
membrane (10). The NECD consists of multiple EGF-like repeats,
which partially bind calcium ions and are required for ligand inter-
action (11). The Notch1 receptor contains 36 EGF repeats in the
intracellular domain (12), while Notch2 contains 35 repeats (13),
Notch3 34 repeats (14), and Notch4 29 repeats (15). The NECD
negative regulatory region (NRR) is composed of three cysteine-
rich Lin12/Notch repeats (LNR) (16) and a juxtamembrane het-
erodimerization domain. As the name suggests, NRR is responsible
for the auto-inhibition of the Notch receptor (17, 18) and binds to
a short extracellular region of NTM (19). The intracellular domain
NICD of the Notch receptor is involved in cellular signaling and
includes the recombination signal-binding protein Jκ (RBP-Jκ)
associated module (RAM) (20), seven ankyrin (ANK) repeats
(21), two nuclear-localization signals (NLS) (22), a transactivation
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domain (TAD) (23), and a C-terminal PEST sequence (rich in
proline, glutamic acid, serine, and threonine) (24).

The canonical Notch ligands belong to the so-called Delta-
Serrate-Lag2 (DSL) family and include the five mammalian type
I transmembrane proteins Delta-like 1 (Dll1) (25), Dll3 (26), Dll4
(27), Jagged1 (28), and Jagged2 (29). The N-terminal region, the
DSL domain and the first two EGF-like repeats are necessary for the
interaction with EGF-like repeats of Notch receptors (30, 31). In
addition, several transmembrane and soluble proteins have been
described as non-canonical ligands, e.g., F3/contactin (32), Delta-
like 1 (Dlk1), Dlk2, Delta and Notch-like EGF-related receptor
(DNER), or the EGF-like protein 7 (EGFL7) (33–35). Common
structural features of this group are the presence of EGF-like
repeats and the absence of DSL domain. Dlk1, Dlk2, and DNER
are transmembrane proteins (although Dlk1 and Dlk2 also exist
in soluble forms), while EGFL7 is a bona fide secreted factor. Inter-
estingly, DNER stimulates Notch signaling while current evidence
indicates an inhibitory function of Dlk1/2 and EGFL7 (36).

NOTCH SIGNALING PATHWAY
Both Notch receptors and canonical ligands are transmembrane
proteins, thus requiring close proximity of the plasma mem-
branes in which they are embedded for interaction. The interaction
between neighboring cells is referred to as in-trans interaction and
switches Notch signaling on (Figure 1). This type of association
relies on the EGF-like repeats 11 + 12 of Notch1/2/4 and repeats
10 + 11 of Notch3, respectively (11, 36). In-cis interaction between
receptors and ligands expressed on the same cell inhibit the Notch
pathway (37–39) and involves the EGF-like repeats 24–29 of
Notch1 receptor (40). In-trans activation triggers the ubiquitina-
tion and internalization of the respective ligand and disrupts the
hydrophobic interactions between NECD and NTM in the Notch
receptor. This in turn exposes NTM to the extracellular S2 cleavage
by “a disintegrin and metalloprotease” 10 (ADAM10) or ADAM17
(41). The phenotype of ADAM10 knock-out mice resembles Notch
deficiencies (42, 43); however, cell culture-based experiments indi-
cate that ADAM10 and 17 may share substrates including Notch
receptors in vitro (44, 45). Both proteases create an intermedi-
ate membrane-tethered Notch extracellular truncation (NEXT),
which is subsequently processed by the γ-secretase–presenilin
complex (19). This so-called S3 cleavage releases the intracellu-
lar Notch domain NICD, which translocates into the nucleus (46)
and binds to a protein complex containing DNA-binding proteins
of the CSL family (RBP-Jκ/CBF-1/KBF2 in mammals) and medi-
ates its conversion from a repressor to an activator of transcription
followed by the recruitment of the co-activator mastermind-like
1 (MAML1) (47). In turn, the NICD–RBP-Jκ–MAML1 ternary
complex recruits further components of the RNA polymerase II
holoenzyme such as the histone acetyltransferases CBP/p300 (48)
or PCAF/GCN5 (49). Ultimately, these events lead to the tran-
scriptional de-repression of several genes that are often themselves
transcriptional repressors such as Hairy/Enhancer of Split (Hes)
and Hey (subfamily of Hes, related with YRPW motif) proteins
(50–52). Hes-1, Hes-5, and Hey-1 are well-described direct Notch
targets (53, 54), and growing evidence suggests Hes-7, Hey-2, and
Hey-L as direct target genes (55). The list of genes regulated by
Notch is still expanding and includes transcription factors such as

FIGURE 1 | Canonical Notch signaling with points of intervention of
current therapies. The interaction between Delta/Jagged-type ligands and
Notch receptors leads to S2 cleavage on the extracellular site by “a
disintegrin and metalloprotease” 10 (ADAM10) or ADAM17, which is
followed by S3 cleavage by the γ-secretase–presenilin complex. The S3
cleavage gives rise to an intracellular Notch fragment (NICD) that
translocates into the nucleus, where NICD binds to a protein complex
containing recombination signal-binding protein Jκ (RBP-Jκ). This mediates
the conversion of RBP-Jκ from a repressor to a transcriptional activator and
is followed by the recruitment of the co-activator mastermind-like 1
(MAML1). These events lead to the de-repression of transcription of
hairy/enhancer of split (Hes) and Hey. Several stages of the Notch signaling
pathway are prone to pharmacological intervention and are labeled in the
figure. Gamma-secretase inhibitors and blocking antibodies are already in
clinical trials and decoys have been tested in animal models. Peptide
inhibitors represent potential future treatment modalities. NECD, Notch
extracellular domain; NTM, Notch transmembrane domain.

NFκB (56, 57), PPAR (58), c-Myc (59–61), Sox2 (62), Pax6 (63), as
well as cell cycle regulators such as cyclin D1 (64), and p21/Waf1
(65) among many others.

ROLE OF NOTCH SIGNALING IN THE HEALTHY DEVELOPING
BRAIN
Notch signaling is an evolutionary conserved pathway that pre-
vents equipotent cells from acquiring identical cell fates. This
can be accomplished through the so-called lateral inhibition; a
process in which a cell that stochastically acquires enhanced ligand
expression stimulates neighboring cells. The in-cis inhibition of
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Notch on the ligand-expressing cells renders this interaction uni-
lateral. In neural development, the signal-sending cell will differ-
entiate into a neuronal precursor while the signal receiving cell
will remain as an uncommitted progenitor. This correlates with a
decreased expression of Hes-1, Hes-5, and proneural genes as well
as Notch ligands in uncommitted progenitors (66, 67).

Notch signaling plays a pivotal role in biological processes
including apoptosis, cell proliferation, differentiation, and cell lin-
eage decision in stem cells. Therefore, Notch governs embryonic
development and is highly active in undifferentiated cells of the
embryonic central nervous system, while its expression is reduced
and spatially restricted in the adult brain (66, 68, 69). The relevance
of Notch is in part due to its impact on the maintenance of neural
stem (NSCs) and progenitor cells (NPCs) as well as the stimula-
tion of their glial differentiation at the expense of their neuronal
fate (70–72). Notch1 knock-out mice die before E11.5, approxi-
mately the time of neuronal maturation, among other reasons due
to a loss of neuroblasts and premature neuronal differentiation
(73, 74).

ROLE OF NOTCH IN BRAIN NEOPLASMS
Due to the central role of Notch in differentiation, its deregu-
lation leads to multiple malignancies. The first evidence of the
tumorigenic potential of Notch came from the translocation t (7;
9) in T cell acute lymphoblastic leukemia (T-ALL), which leads
to a fusion of genes encoding the β chain of T cell receptors
and the TAN1/NOTCH1 gene. The product of this gene acts like
as a constitutively active form of NICD (75). Subsequently, the
components of the Notch pathway have been described to be
deregulated in numerous hematological malignancies and brain
tumors including gliomas and medulloblastomas (76). The fre-
quency and intensity of Notch2 expression in medulloblastoma is
higher than that of Notch1 (77, 78). Moreover, Notch2 was shown
to promote tumorigenesis of medulloblastoma, whereas, Notch1
inhibited tumor growth (77). In glioma, however, the correlation
between tumor grade and expression of Notch isoforms has not
been fully clarified, yet. The tumor-suppressive role of Notch1 is
supported by the fact that it has been detected in all gliomas but a
subset of grade IV tumors (79). Along the line, Notch1 expression
has been shown to be higher in grade II and III malignancies than
in glioblastomas (80). Furthermore, nuclear Notch1 staining has
been correlated with a better outcome in high-grade glioma sub-
types (81). These data suggest a favorable prognosis for patients
carrying Notch1-positive tumors. However, according to other
reports, the expression of Notch1 exhibits a positive correlation
with glioma progression (82, 83), and high expression of Notch1
protein has been reported to be an independent predictor of poor
survival in glioma (82). The oncogenic potential of Notch2 is indi-
cated by the fact that the loss of Notch2 positively correlated with
a favorable prognosis in small groups of patients diagnosed with
oligodendroglioma and GBM (84). However, this conclusion has
not yet been fully supported by experimental data.

Various other components of the Notch pathway have been
used as markers for different stages of glioma. Transcription of
Dll1 has been described to be regulated by the neurogenic tran-
scription factor Hash-1 (85). Both Hash-1 and Dll1 has been
found to be upregulated in progressive astrocytoma (grade II and
III) as well as in secondary GBM, accompanied by a decrease in

the Notch target gene Hes-1. These data indicate that enhanced
Dll1 expression inhibits Notch signaling in these subgroups of
gliomas. In primary GBM, on the other hand, there is the oppo-
site pattern of Hash-1 and Hes-1 expression (86), implying that
enhanced Dll1 expression inhibits Notch signaling while active
Notch characterizes primary GBM. Interestingly,Phillips et al. pro-
posed a different classification of gliomas from that of the WHO
(81), in which the tumor is assigned into one of three subtypes
based on genomic data: proneural, proliferative, or mesenchy-
mal. In terms of prognosis, the proneural group correlates with
longer survival as compared to the other two groups. This group
contains most of grade III and secondary grade IV tumors (87)
and displays the expression of neuroblast and developing neurons
markers including Hash-1 and Dll1. These data are in accordance
with other publications that show that Notch is active in primary
GBM, while low-grade astrocytomas express the ligands Dll1 and
Jagged1 (88, 89).

Notch receptors and ligands are post-translationally regulated
by ubiquitylation and endocytosis. Two proteins regulating these
processes have attracted attention in the cancer field, namely Neu-
ralized1 (Neurl1) and Numb. The former is known to bind and
to monoubiquinate Jagged1 in mammalian cells (90). The chro-
mosomal fragment 10q25.1 encoding Neurl1 has been found to
be frequently lost in grade II astrocytomas and GBM. Moreover,
expression of human Neurl1 was nearly absent in high-grade astro-
cytoma and the majority of investigated glioma cell lines in con-
trast to the normal brain tissue (91). Analysis of Neurl1 expression
in medulloblastoma led to similar results as it was downregulated
compared to normal cerebral tissue (92). Numb, another antago-
nist of Notch signaling, is not an ubiquitin ligase itself but rather
serves as an adapter protein for the E3 ubiquitin ligase Itch (also
known as AIP4) (Figure 2) (93). Overexpression of Numb led to
the proteasomal degradation of NICD (94) but the degradation
of Numb by ligand of Notch protein X (LNX) overcame Notch
downregulation (95). Expression of LNX is reduced in gliomas
of different grades (96), offering another putative mechanism for
enhanced Notch signaling in brain tumors.

Notch activity is often measured by the expression levels of
its direct target genes. Consequently, there are reports linking
the expression of Hes/Hey transcriptional repressors to can-
cer prognosis. Expression of Hey-1 correlated with a twofold
shorter disease-free survival compared to patients carrying Hey-1-
negative tumors. In addition, Hey-1 is more frequently expressed
in GBM as compared to low-grade astrocytomas while no expres-
sion was found in normal brain tissue or in neuroblastoma (97).
Further, these observations have been confirmed by clinical data
from 62 GBM patients, where the expression of Hey-1 correlated
with a shorter overall survival. In Hey-1-negative cases, on the
other hand, survival was significantly longer and accompanied by
a high number of long-term survivors (98).

Non-canonical Notch ligands represent the least explored
group of glioma-related markers. Dlk1 has been found to be upreg-
ulated in a subset of GBM as compared to the healthy brain. The
protein has been suggested as a Notch inhibitor, which is supported
by the finding that Hes-1 was downregulated in glioma cell lines
stably expressing Dlk1 or treated with Dlk1-conditioned medium.
Moreover, GBM cell lines transfected with this ligand exhibited an
augmented proliferation (99).
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FIGURE 2 | Notch signaling modules relevant for brain tumors. Notch
signaling has been shown to be modulated on multiple levels in glioma cells
and is linked upstream and downstream to other tumorigenic pathways. Its
expression is induced by Ras and Akt, while Notch itself induces expression
of epidermal growth factor (EGFR) via p53 (indirectly; hence dashed arrow)
and pro-migratory glycoprotein tenascin C (TNC). Hypoxia-inducible factor 1α

(HIF-1α) and HIF-2α compete for NICD binding. The Notch inhibitor HIF-2α is
displaced by HIF-1α under hypoxic conditions. Further, several proteins
modulate the Notch pathway at the level of NICD. Examples are Numb, which
promotes Notch degradation via ubiquitin ligases such as FBW7 or Itch, or
Numb4d7 and ligand of Notch protein X (LNX), which stimulate Notch
signaling.

NOTCH IN GLIOMA CELLS
The response of brain tumor cells to the modulation of Notch
signaling has been investigated by Purow and colleagues (80), who
demonstrated that the siRNA-mediated knock-down of Notch1
in glioma cell lines led to an increased cell death, decreased
proliferation as well as cell cycle arrest. Further, the treatment
affected cell morphology and triggered the outgrowth of neurite-
like extensions (80). Another group reported an upregulation of
the astrocyte marker glial fibrillary acidic protein (GFAP) and a
downregulation of the mesenchymal marker vimentin as well as
reduced proliferation of glioma cell lines upon Notch inhibition
(88). These morphologic features are indicative of differentiation,
suggesting that remaining in an undifferentiated state enhances the
oncogenic potential of glioma cells. These in vitro data suggest that
Notch1 acts as an oncogene in glioma,which has been confirmed in
an intracranial xenograft model, where mice injected with control
U251MG cells died sooner as compared to mice that received cells
in which Notch1 or Dll1 were downregulated by siRNA. Knock-
down of Jagged1 did not improve survival and caused a milder
inhibition of proliferation in vitro as compared to the Dll1 knock-
down (80). Furthermore, a recent report compared the role of the
Notch paralogs Notch1 and Notch2, which displayed opposing
effects on the propagation of glioma cells. Equally, knocking-
down Notch1 or overexpressing Notch2 suppressed cell growth
and invasion in addition to enhancing apoptosis of subcutaneously
engrafted U251 and A172 glioma cells (100).

Much less is known about molecules exerting a Notch-
driven malignant phenotype in glioma. One report suggests that
Notch expression is linked to enhanced cell migration medi-
ated by tenascin C (TNC), whose promoter is activated by the

Notch-induced transcription factor RBP-Jκ (Figure 2) (78). In
brief, TNC is a matrix glycoprotein that induced proliferation
and migration of neuronal precursors and its expression increases
in GBM as compared to grade III astrocytomas. Moreover,
patients lacking TSC in the extracellular matrix (ECM) survived
significantly longer than patients with TNC-positive lesions (101).

NOTCH IN STEM-LIKE BRAIN TUMOR-PROPAGATING CELLS
Glioblastoma, like other cancers, result from the accumulation of
genetic and epigenetic mismatches (102). Until recently, it was
presumed to originate solely from glial cells, i.e., astrocytes or
oligodendrocytes, residing within the brain parenchyma. How-
ever, the discovery of proliferating cells in the adult brain led to a
modification of this hypothesis. According to studies performed in
genetically modified mouse models, gliomas may arise from NSCs
or NPCs (103–105). More differentiated cells were also investi-
gated: experiments with mosaic inactivation of Tp53 and Nf1 in
NSCs showed that the most rapid phase of tumor growth occurs
when the cells migrate out of the stem cell niche and become
Olig2-positive oligodendroglial progenitor cells (106). In a differ-
ent genetic model, non-stem cell progenitor cells were shown to
generate astrocytomas and oligodendrogliomas upon the trans-
genic induction of v-erbB combined with Tp53 deletion (107).
Another strain utilized to investigate the tumorigenic potential of
differentiated cells is Ink4A/Arf knock-out mice. These animals are
prone to develop brain tumors as compared to wild-type mice. The
Ink4A/Arf locus encodes two tumor suppressors: p16INK4a, which
prevents Rb phosphorylation by binding CDK4, and p14/19ARF,
which prevents p53 degradation via MDM2 inhibition. Both
processes are crucial for cell cycle regulation. Astrocytes derived
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from these animals were shown to undergo de-differentiation and
induce glioma upon the expression of the EGFRvIII oncogene or
stimulation with EGF or PDGF in vivo (103, 108).

The term“cancer stem cell”has been coined in order to describe
tumor-propagating cells (109). These cells differ from normal
tissue stem cells as they lack a well-defined and conserved hier-
archy (110). Further confusion is caused by referring to them as
tumor-initiating cells, which is supposed to reflect that they are
the origin of tumors. In our opinion, the term stem-like brain
tumor-propagating cell (BTPC) is more appropriate to “cancer
stem cell” or “tumor-initiating cell” in the context of glioma for-
mation as it refers to the most solid biological feature of this
cell type, namely, the propagation of glioma in vivo. Relying on
the expression of cell markers (or the lack thereof) to name this
cell type may be misleading, as the transcriptome of BTPCs is
highly variable (111) and this cell type expresses all types of cel-
lular markers (e.g., nestin, GFAP, or beta III-tubulin) in parallel
(own observations). Initially, BTPCs were isolated from gliomas
based on CD133 expression, propagated in serum-free medium
and shown to recapitulate glioma growth in vivo (112). However,
CD133 cannot be considered a universal BTPC marker because
CD133-negative cells also give rise to tumors, and some tumors
are fully devoid of CD133-positive cells (113). It should be pointed
out that several groups have reported that CD133 is also expressed
by endothelial cells (114–116) and might thus be better suited as
a marker of enhanced angiogenesis. In support of this hypothe-
sis, vascular CD133, but not tumor-expressed CD133, was found
to correlate with glioma grade (117). Several other extracellular
molecules have been proposed as BTPC markers including CD44,
CD15, and integrin α6. However, they have not yet been verified by
the glioma community as bona fide BTPCs markers (118). Further-
more, considerable attention has been paid to stem cell-specific
intracellular proteins like the transcription factors Sox2, Oct-4,
Bmi-1, and Id4, RNA-binding protein Musashi-1 or the interme-
diate filament nestin, a stem cell marker and transcriptional target
of Notch (119, 120). There is evidence that the expression levels of
Musashi-1 and nestin positively correlate with high glioma grade
and poor survival (121).

Notch has been suggested to play an important role in the
maintenance of BTPCs as it regulates the maintenance and dif-
ferentiation of NSCs (122–124). First results hinted that glioma
cells cultured under stem cell conditions express Notch1, Notch4,
Dll1, and Dll3 (125). In another publication, nine glioma-derived
cell lines were divided into two groups based on sphere-forming
capacity, CD133 expression and high invasiveness. Two of the tran-
scripts belonging to the Notch cascade were overexpressed in the
tumorigenic group while their expression was not increased in
any cell line from the less stem-like/invasive group (126). Over-
expressing NICD in the human glioma cell line SHG-44 led to
enhanced proliferation as well as higher colony- and sphere-
formation potentials. Moreover, the sphere-forming cells dis-
played BTPC characteristics such as the expression of the NSC
marker nestin and the ability to differentiate into all three neural
lineages based on immunofluorescence staining for GFAP, MAP2,
and GalC (89). When NICD-overexpressing BTPCs were intracra-
nially implanted into nude mice, they formed highly vascularized
tumors containing large vessels with a central lumen. The cells
were, however, hardly disseminating in contrast to control cells,

which infiltrated both hemispheres (127). Taken together, these
results suggest that due to the activation of multiple cell responses,
Notch may play different roles in BTPCs depending on the cellular
and environmental context. Furthermore, intracellular modifiers
of Notch signaling, such as Numb proteins, are involved in the
regulation of BTPCs. Numb4 promotes Notch degradation via
FBW7 ubiquitin ligase assembly, while its truncated form, Numb4
delta 7 (Numb4d7), generated by alternative splicing, increases
Notch signaling (Figure 2). Although Numb4d7 opposes growth-
inhibitory effect of Numb4, both isoforms promote expression
of stem cell markers in BTPCs. Thus, it appears Numb4 can
affect BTPC differentiation independent from Notch inhibition
itself (128).

Lastly, microvascular proliferation is an important feature of
glioblastoma, underlining the essential role of angiogenesis in
brain tumor development (1, 129). Formation of blood ves-
sels is a response to hypoxia that results in the stabilization of
the hypoxia-inducible factors (HIF)-1α and -2α and the subse-
quent upregulation of pro-angiogenic factors like VEGF. Notch
signaling has been shown to be activated by hypoxia in nor-
mal and neoplastic cells as evidenced by the increased expres-
sion of Notch1, Hes-1, Hey-1, Dll1, and Dll4 (130, 131). Notch
plays a central role in maintaining NSCs undifferentiated under
hypoxic conditions (132), and therefore, its impact on BPTCs
has been investigated. Treatment of medulloblastoma-derived
BTPCs with immobilized recombinant Dll4 under hypoxic condi-
tions (2% oxygen) led to the expansion of CD133-positive and
nestin-positive cells. Inhibition of the Notch pathway resulted
in the opposite effect as tumor cells underwent neuronal dif-
ferentiation when treated with the γ-secretase inhibitor (GSI)
N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl
ester (DAPT) to inhibit Notch signaling (133). Further, the mainte-
nance of glioma BTPCs can be hindered by the depletion of HIF-1α

or inactivation of Notch signaling, partly because of the interac-
tion between HIF-1α and NICD (134). This interaction has been
confirmed by another group, which also described competition
between HIF-1α and HIF-2α for NICD binding. HIF-2α inhibited
Notch and was displaced by HIF-1α under hypoxic conditions
(135).

CROSS-TALK OF NOTCH WITH THE EGFR PATHWAY
Overexpression and increased activity of EGFR is one of the hall-
marks of primary GBM (136, 137). EGFR is a receptor tyrosine
kinase that initiates multiple cellular pathways such as mitogen-
activated protein kinase (MAPK) cascade or phosphoinositide
3-kinase (PI3K) pathway. Aberrant enhancement of EGFR sig-
naling, which can be caused by overexpression, increase in gene
copy number or ligand-independent mutated receptors, leads to
cancer-driving processes such as augmented proliferation, angio-
genesis, migration/invasion, and impaired apoptosis (138). Such
activities, albeit strictly regulated, are especially crucial during
ontogeny, including brain development and neurogenesis. There-
fore, EGFR signaling has been investigated in the context of other
neurogenic pathways such as Notch. Aguirre et al. presented evi-
dence that EGFR and Notch have opposite effects on cells derived
from subventricular zone (SVZ). Enhanced EGFR signaling caused
an expansion of NPCs at the expense of self-renewing NSCs and
downregulated Notch signaling via Numb (139). This antagonism

www.frontiersin.org January 2015 | Volume 4 | Article 341 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Teodorczyk and Schmidt Notch signaling in brain tumors

ceased in the later stages of cell differentiation, as both EGFR and
Notch have been shown to direct cells toward a glial fate (140,
141). Along this line, a synergy between the EGFR and Notch
pathways in glioma was indicated by Purow et al. who showed
that EGFR is under the transcriptional control of Notch signaling
(Figure 2). Experiments involving silencing or overexpression of
Notch and p53 indicate that this regulation was mediated by p53.
Moreover, Notch1 and EGFR expression correlated in high-grade
astrocytomas that were negative for the amplification of the EGFR
gene (142).

Epidermal growth factor receptor stimulation leads to the
activation of multiple signal mediators including the Ras fam-
ily of small GTPases. Ras-transformed astrocytes have been
shown to express higher levels of Notch1 as compared to their
non-transformed counterparts and inhibition of Notch signal-
ing reduced their aggressive phenotype. However, introduction
of NICD did not lead to a transformation of the immortalized
astrocytes on its own and did not enhance cell growth of Ras-
transformed cells (88). The tumorigenic cooperation between Ras
and Notch might occur at an earlier stage of cell development as the
overexpression of NICD and K-Ras in glial progenitors induced
periventricular lesions with stem-like characteristics in the SVZ
(based on retention of proliferation and nestin expression). K-
Ras and Notch acted in a synergistic manner in this model as
the individual overexpression of each did not cause a comparable
phenotype (119). Further evidence showed that both Ras and Akt
induce Notch1 expression in a mouse glioma model (143).

NOTCH-BASED BRAIN TUMOR THERAPIES IN CLINICAL
TRIALS
γ-SECRETASE INHIBITORS
Brain tumor-propagating cells have been shown to exhibit a higher
resistance to chemo- and radiotherapy than bulk tumor cells (144,
145). However, they seem equally sensitive to treatments targeting
stem cell pathways such as Notch (146, 147). Cleavage of Notch
receptors and the formation of the NICD fragments is inhibited
by GSIs in order to shut off Notch signaling (Figure 1). Several
of them have been successfully applied in animals. The first GSI
tested in a brain tumor model was DAPT. Treatment of mice
harboring D283 medulloblastoma xenografts with DAPT resulted
in decreased proliferation and increased apoptosis of tumor cells
(148). The promising results of DAPT treatments prompted the
development and testing of other inhibitors such as GSI-18 (149).
This drug has been tested in two different subcutaneous brain
tumor models. In the first setting, pretreatment of DAOY medul-
loblastoma cells hindered the growth of subcutaneous xenografts
(147). The same group applied tumorspheres isolated from pri-
mary GBMs for subcutaneous implantation studies. Spheres pre-
treated with GSI-18 did not form tumors anymore. These obser-
vations were confirmed in intracranial implantation studies in a
relatively small cohort of animals. Mice treated with GSI-18 sur-
vived significantly longer post-engraftment as compared to the
control group (146).

Chemotherapy is often based on a combination of drugs and
thus GSIs have been tested together with already established anti-
tumor agents. Ex vivo treatment with TMZ and DAPT lowered
the tumorigenicity of U87NS and U373NS cells in subcutaneous

mouse xenograft models. Moreover,administration of GSI (LY411,
575) and TMZ in vivo blocked tumor progression in four out
of eight mice carrying U87NS xenografts (150). Administration
of TMZ plus RO4929097 (Roche) was partially effective in mice
intracranially injected with Hs683 cells. The authors identified
the ECM protein EFEMP1 as a mediator of TMZ resistance and a
target of the GSI. Further, the analysis of publicly available glioblas-
toma databases revealed that EFEMP1 expression correlated with
the resistance to TMZ treatment and such could serve as a marker
for the application of GSIs (151). GSIs (DAPT and L685, 458) were
also shown to dramatically increase cell death of irradiated glioma
BTPCs in vitro. This phenotype was reversed by the overexpression
of NICD of Notch1 or Notch2, confirming that Notch is essen-
tially involved in the survival of glioma BTPCs post irradiation.
Furthermore, siRNA-mediated knock-down of Notch1 or Notch2
impaired tumor formation in xenografts but unfortunately, GSIs
were not tested in this setting (152).

Several GSIs have been tested in clinical studies in various
tumor types (Table 1). RO4929097 has been shown to extend the
median survival rate in an intracranial mouse glioma model (153).
This GSI has completed several phase I studies: applied alone (154),
in combination with the VEGF tyrosine kinase inhibitor ceridanib
(155) or in combination with gemcitabine (156). Additionally,
a phase Ib trial tested the combination of RO4929097 and the
mTOR inhibitor temsirolimus (157). All four studies showed that
the drug is tolerable, and few patients showed a partial response.
Although patients bearing a broad range of solid tumors were
recruited, the drug was not tested on brain tumor patients. Cur-
rently, there are three ongoing trials directed against malignant
glioma: a phase I study that combines the GSI RO4929097 with
TMZ and radiation therapy (NCT01119599), a phase I/II study
in which the drug is tested in combination with bevacizumab,
a monoclonal anti-VEGF antibody (NCT01189240) and applied
alone in a phase II trial (NCT01122901). The outcome of these
treatments still awaits publication but the results of two different
phase II cancer studies have been published. Unfortunately, none
of 33 treated patients with colorectal metastatic cancer showed an
objective radiographic response and the median progression-free
survival was only 1.8 months in total (158). The outcome of a study
on patients previously treated for metastatic pancreatic carcinoma
did not meet its goals either. Consequently, the development of
RO4929097 was discontinued by the sponsor (159).

MK-0752 is a GSI designed by Merck and has been tested in
several phase I studies. It was applied to a cohort of 103 patients
with solid tumors. Weekly dosing was well tolerated and led to the
modulation of the expression of nine Notch-related genes referred
to as Notch gene signature. This study generated promising results
as one patient with anaplastic astrocytoma had a complete remis-
sion lasting for more than 1 year in addition to a stable disease
progression lasting for more than 4 months in 12 patients. All
12 patients were affected by brain malignancies and 10 of them
were diagnosed with glioma (24% of all glioma patients in the
study) (160). Further, MK-0752 was well tolerated by children
with recurrent central nervous system malignancies (161). GBM
patients were also included in an ongoing phase I trial involv-
ing the combination of MRK-0752 and ridaforolimus, a small-
molecule mTOR inhibitor (NCT01295632). The last clinically
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Table 1 | Clinical trials involving GSIs and relevant for brain tumor therapy.

Compound Co-treatment Phase Status Tumor type Identifier

BMS906024 Paclitaxel, 5-fluorouracil (5FU), carboplatin,

leucovorin, irinotecan

I Recruiting Advanced or metastatic solid tumors NCT01653470

BMS906024 I Recruiting Advanced or metastatic solid tumors NCT01292655

LY900009 I Completed Advanced cancer NCT01158404

MK-0752 I Completed Advanced solid tumors NCT00106145

MK-0752 Ridaforolimus I Ongoing Advanced cancer NCT01295632

MK-0752 I Terminated Pediatric CNS cancer NCT00572182

MK-0752 Dalotuzumab I Terminated Advanced cancer NCT01243762

PF-03084014 I Ongoing Advanced cancer NCT00878189

RO4929097 Temozolomide, radiation I Ongoing Malignant glioma NCT01119599

RO4929097 I Terminated Recurrent invasive gliomas NCT01269411

RO4929097 Capecitabine I Ongoing Refractory solid tumors NCT01158274

RO4929097 Gemcitabine hydrochloride I Completed Refractory solid tumors NCT01145456

RO4929097 Cediranib maleate I Ongoing Advanced solid tumors NCT01131234

RO4929097 I Completed Metastatic or unresectable solid

malignancies

NCT01096355

RO4929097 Temsirolimus I Completed Metastatic or unresectable solid

malignancies

NCT01198184

RO4929097 Dexamethasone I Withdrawn Pediatric solid tumors, CNS tumors NCT01236586

RO4929097 Ketoconazole, rifampin, midazolam

hydrochloride, omeprazole, tolbutamide,

dextromethorphan hydrobromide

I Ongoing Advanced solid tumors NCT01218620

RO4929097 I Completed Advanced solid tumors NCT00532090

RO4929097 Stereotactic radiosurgery, whole-brain

radiation therapy

I/II Terminated Breast cancer-derived brain metastases NCT01217411

RO4929097 Bevacizumab I/II Ongoing Progressive or recurrent malignant glioma NCT01189240

RO4929097 I/II Terminated Solid tumors, CNS tumors NCT01088763

RO4929097 II Ongoing Recurrent or progressive glioblastoma NCT01122901

Bold: explicitly, brain tumors have been mentioned in these studies.

tested GSI is PF-03084014 from Pfizer, currently in phase I for
a wide range of solid and leukemic tumors (NCT00878189) and
in the recruiting phase for several other trials but no results have
been published so far.

It should be noted that administering GSIs raises several con-
cerns. First of all, γ-secretases are involved in the cleavage of a
multitude of proteins (162, 163). Furthermore, animal studies and
phase I clinical trials have shown that systemic drug distribution
leads to gastrointestinal toxicity, caused by the accumulation of
secretory goblet cells in the intestine and due to the inactivation
of Notch signaling (164–166). However, animal experiments indi-
cate that these side-effects may be ameliorated by the application
of glucocorticoids (167).

BLOCKING ANTIBODIES
Several antibodies blocking Notch activity have been developed
for the treatment of brain tumors due to their higher speci-
ficity as compared to GSI inhibitors. Furthermore, they can be

used to block individual Notch receptors and ligands. Treatments
using specific antibodies offer the advantage of fewer side-effects
as compared to GSIs. Accordingly, agents neutralizing Notch1,
Notch2, or Dll4 did not affect intestinal goblet cell differentiation
in mice (168, 169).

Blocking antibodies targeting Notch receptors can be divided
into two groups (Figure 1). Members of the first group are
directed against the NRR block the receptor conformation that
allows ADAM cleavage. Such antibodies have been raised against
Notch1 (NRR1), Notch2 (NRR2), and Notch3 (NRR3) and have
been tested in pre-clinical as well as in vitro studies (169–171).
The other approach is to block Notch receptor–ligand interac-
tions by hindering EGF repeats required for binding (170). The
antibodies of this group are also effective against receptors car-
rying NRR mutations that destabilize the auto-inhibited receptor
conformation and cause constitutive ligand-independent Notch
signaling. Based on the success of pre-clinical studies, a humanized
antibody targeting Notch1 (OMP-52M51) and Notch2/Notch3
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Teodorczyk and Schmidt Notch signaling in brain tumors

(OMP-59R5; both OncoMed Pharmaceuticals) have entered a
dose escalation phase I study in patients with solid tumors
(NCT01778439, NCT01277146) followed by phase Ib/II trials
in pancreatic and lung cancer patients in case of OMP-59R5
(Table 2).

Out of all Notch ligands, the blocking of Dll4 has been most
thoroughly investigated. This protein plays an important role in
angiogenesis and blocking the Dll4-Notch interaction (by over-
expression of a soluble Dll4-Fc decoy peptide) enhanced vascular
density and angiogenic sprouting in tumors derived from the rat
glioma line C6. Surprisingly, this vasculature was rendered non-
functional as subcutaneous xenografts of Dll4-Fc-treated cells
grew smaller in nude mice. A similar response in C6 tumors was
induced upon systemic delivery of Dll4-Fc using an adenoviral
overexpression system. Further, the authors developed the first
pharmacological model for anti-Dll4 treatment, i.e., using defined
amounts of systematically delivered recombinant agent. Adminis-
tration of recombinant Dll4-Fc or anti-Dll4 polyclonal antibody in
an HT1080-RM (generated from a bevacizumab-resistant human
fibrosarcoma) tumor model caused an increase in vessel density
and smaller tumors volumes (172). These results were recapitu-
lated by Li et al. in the human glioma cell line U87 subcutaneously
implanted in nude mice. The authors showed that the overex-
pression of dominant negative soluble Dll4ECD-Fc enhanced the
number of blood vessel and reduced tumor growth in vivo. Accord-
ingly, the ectopic expression of Dll4 caused the opposite response.
Moreover, examination of 20 surgical GBM specimens yielded
an upregulation of Dll4 both in GBM tumor cells as well as
endothelial cells (173). The same tumor model was applied to
identify Dll4 as a mediator of tumor resistance to anti-VEGF ther-
apy. According to data presented, the Dll4-mediated formation
of larger vessels insensitive to anti-VEGF treatment was respon-
sible for the resistance observed (174). Anti-Dll4 antibodies have
already entered clinical trials (Table 2). The pharmacokinetics of
three of them, MEDI0639 (175) (Astrazeneca, NCT01577745),
OMP-21M18 (OncoMed Pharmaceuticals, NCT00744562), and
REGN421 (Regeneron Pharmaceuticals, NCT00871559) have
been tested in solid tumors in phase I studies but the results
have not yet been published. However, it should be noted that
side-effects of manipulating Dll4-induced Notch signaling have
been reported in animal studies. One study showed that the
treatment with anti-Dll4 antibody led to pathological changes
in rat livers and the formation of vascular neoplasms, resem-
bling hemangioblastomas (176). Another group reported chimeric
Dll4 to affect hematopoiesis by inhibition of megakaryocyte
differentiation (177).

DECOYS
Soluble extracellular domains of Notch receptors and ligands offer
an alternative to blocking antibodies (Figure 1). A Notch1 decoy
has been shown to act as a pan-ligand antagonist, which can be
applied to block Notch signaling in endothelial cells. Even though
the decoy did not affect mouse breast cancer or human neuroblas-
toma cells in vitro, its overexpression in engrafted cells decreased
tumor viability and disrupted vessel formation in vivo (178, 179).
Soluble forms of Dll1 (180), Dll4 (172, 181), and Jagged1 (182)
have also been used to block Notch signaling. Endogenous, solu-
ble Notch antagonists like Dll1ECD (183) are either the product
of metalloproteinases or are bona fide secreted proteins such as
EGFL7, a novel non-canonical soluble Notch ligand with estab-
lished neurovascular implications. The protein has been shown
to act as an antagonist of Jagged1 and inhibited Notch activity
in NSCs (34) and primary endothelial cells (184), thus offering
a promising tool for the manipulation of glioma formation. In
a genetically engineered mouse model of lung cancer, blocking
ECM-associated EGFL7 with the antibody m18F7 (Genentech)
enhanced progression-free and overall survival induced by anti-
VEGF therapy (185). Moreover, silencing of EGFL7 by siRNA
in vitro has been shown to inhibit the adherence of endothelial cells
to a collagen-coated semipermeable membrane in a co-culture
system with U251 glioma cells (186).

OTHER AGENTS
Certain natural compounds have been shown to affect the Notch
signaling pathway and, even though their mode of action is not
entirely known, they have been tested for therapeutic purposes.
Curcumin, for example, has been shown to hinder proliferation
and invasion of osteosarcoma cells in vitro by inhibiting Notch
signaling (187). Several publications report enhanced apoptosis in
glioma cell lines and decreased tumor growth in vivo. In most of
these reports, the effect on Notch pathway activation has either
not been mentioned at all (188) or has not been observed (189).
Regardless of the mode of action a phase I study that measured cur-
cumin bioavailability in glioblastoma patients has been completed
(NCT01712542). Further natural compounds such as resvera-
trol and inducing apoptosis in glioma cells have been discussed
elsewhere (190). The last group of compounds to be discussed
here includes peptides affecting intracellular Notch signaling and
small RNA molecules. A stapled peptide that mimics MAML1
binding to NICD–RBPJ has been shown to disrupt the ternary
transcription complex and to pass through the cell membrane
(191). Although RNA interference is still mostly a tool for basic
research, it should be noted that siRNA targeting mutant KRAS

Table 2 | Clinical trials involving Notch signaling-specific antibodies and relevant for brain tumor therapy.

Compound Target Phase Status Tumor type Identifier

MEDI0639 Dll4 I Recruiting Advanced solid tumors NCT01577745

OMP-21M18 Dll4 I Completed Solid tumors NCT00744562

REGN421 Dll4 I Completed Advanced solid tumors NCT00871559

OMP-52M51 Notch1 I Recruiting Solid tumors NCT01778439

OMP-59R5 Notch2, Notch3 I Ongoing Solid tumors NCT01277146
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in pancreatic cancer passed phase I (192) and entered phase II of
clinical trials (NCT01676259).

CONCLUDING REMARKS
The improved understanding of genetics and molecular biology
has increased the number of novel anti-glioblastoma therapies in
clinical trials. The Notch signaling pathway is increasingly rec-
ognized as a central player in brain tumor formation beyond
targeting the “usual suspects” such as EGFR and PI3K. One rea-
son is that the oncogenicity of Notch can be connected to the
maintenance of an undifferentiated cell state of brain tumor cells.
Altering Notch signaling might lead to the differentiation of cancer
cells, while targets such as EGFR or PI3K target cell proliferation
only. In the former case, one might get rid of the tumor, while
it just grows more slowly in the latter. Consequently, a combi-
nation of both strategies could be fruitful. The earliest efforts to
modulate the Notch pathway focused on GSIs. Despite concerns
regarding side-effects, several compounds have completed phase I
of clinical studies and are awaiting further testing. The means to
circumvent drawbacks of systemic administration of GSIs are still
emerging. One possibility is the targeted delivery of a drug, e.g.,
via silica nanoparticles (193). Advances in recombinant protein
technologies offer further possibilities to modulate Notch signal-
ing, and consequently, reagents such as Notch blocking antibodies
are entering clinical trials, while decoys have already been tested
in animals. Their specificity might prove advantageous over small
molecules and it should be noted that techniques previously con-
sidered inapplicable, such as siRNA technology, are now being
tested in patients as well. Moreover, blocking Notch transcription
factors with cell-permeable peptides offers a promising alterna-
tive for brain tumor therapy. The future of cancer treatment lies
in personalized regimens and the combination of treatments. The
means for molecular diagnostics are rapidly advancing and Notch-
targeting drugs are the focus of various clinical trials; therefore, the
future is bright for Notch-based brain tumor therapies.
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