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Surrogates of whole-brain white matter (WM) networks reconstructed using diffusion tensor imaging (DTI) are
novel markers of structural brain connectivity. Global connectivity of networks has been found impaired in clin-
ical Alzheimer3s disease (AD) compared to cognitively healthy aging. We hypothesized that network alterations
are detectable already in preclinical AD and investigated major global WM network properties. Other structural
markers of neurodegeneration typically affected in prodromal AD but seeming largely unimpaired in preclinical
AD were also examined.
12 cognitively healthy elderly with preclinical AD as classified by florbetapir-PET (mean age 73.4 ± 4.9) and 31
age-matched controls without cerebral amyloidosis (mean age 73.1 ± 6.7) from the ADNI were included. WM
networks were reconstructed from DTI using tractography and graph theory. Indices of network capacity and
the established imaging markers of neurodegeneration hippocampal volume, and cerebral glucose utilization
asmeasured byfludeoxyglucose-PETwere compared between the two groups. Additionally,wemeasured surro-
gates of global WM integrity (fractional anisotropy, mean diffusivity, volume).
We found an increase of shortest path length and a decrease of global efficiency in preclinical AD. These results
remained largely unchanged when controlling for WM integrity. In contrast, neither markers of neurodegenera-
tion nor WM integrity were altered in preclinical AD subjects.
Our results suggest an impairment ofWMnetworks in preclinical AD that is detectablewhile other structural im-
agingmarkers do not yet indicate incipient neurodegeneration. Moreover, these findings are specific toWMnet-
works and cannot be explained by other surrogates of global WM integrity.

© 2015 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The novel diagnostic concept of Alzheimer3s disease (AD) includes
subjects with AD dementia, prodromal AD and preclinical AD, i.e. cogni-
tively healthy elderly with positive imaging or neurochemical bio-
markers of AD (Albert et al., 2011; McKhann et al., 2011; Sperling
et al., 2011). Biomarkers have been arranged along a hypothetical time-
line, on which cerebral amyloid (Amyloid-β) deposition is assumed to
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be a very early event of AD, followed by synaptic dysfunction,
hypometabolism and cortical and subcortical atrophy as markers of
neurodegeneration (Jack et al., 2013; Jack et al., 2010). Histopathologi-
cal studies of AD showed demyelination and axonal damage, which
are likely to result in functionally relevant disconnections between
brain areas in addition to a specific pattern of structural graymatter de-
fects (Delbeuck et al., 2003). Diffusion tensor imaging (DTI) has been
used successfully to detect deterioration of white matter (WM) integri-
ty in vivo in AD and prodromal AD (Chua et al., 2008; Damoiseaux et al.,
2009). Studies investigatingWM in preclinical AD as of yet are rare and
show heterogeneous results, reporting regional increases (Racine et al.,
2014) and decreases of indices of WM integrity (Chao et al., 2013), or
even both (Ryan et al., 2013). However they suggest early alterations
of WM in AD.

Surrogates of whole-brain WM networks reconstructed from DTI
and assessed by graph theory are a novel imaging marker that inte-
grates microstructural and topological information of WM (Bullmore
and Sporns, 2009; Iturria-Medina et al., 2007; Iturria-Medina et al.,
2008). Several studies have so far demonstrated impairment of network
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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connectivity both in the prodromal and dementia stages of AD (Daianu
et al., 2013; Lo et al., 2010;Wee et al., 2011), thereby supporting the no-
tion of AD as a disconnection disease. Interestingly, Raj et al. demon-
strated that AD cortical atrophy and hypometabolism patterns can be
predicted from healthy WM network topology (Raj et al., 2012; Raj
et al., 2015). Some of the mechanisms suggested, e.g. a prion-like prop-
agation of disease agents along WM tracts, imply very early involve-
ment of the WM network in AD pathology. Furthermore, a recent
longitudinal study by Nir et al. showed that WM network architecture
not only predicts cortical atrophy but also AD conversion in patients
with mild cognitive impairment at risk for developing AD (Nir et al.,
2015).

Taken together, these findings led us to hypothesize that WM net-
work alterations might be detectable even at the preclinical stage of
AD. In order to test this hypothesis, we examined group differences of
network properties between subjects of preclinical AD, i.e. cognitively
normal subjects with Amyloid-β deposition (Sperling et al., 2011), and
normal controls. For comparison,we also examined other structural im-
aging markers of neurodegeneration that are known to be affected in
prodromal AD, i.e. hippocampal volume and cerebral glucose metabo-
lism. In order to show that WM network alterations are specific to net-
work properties and do not simply reflect global WM integrity, we
repeated analyses for WM volume, WM mean fractional anisotropy
(FA) and WMmean diffusivity (MD).

2. Materials and methods

The data for the present study were obtained from the database of
the Alzheimer3s Disease Neuroimaging Initiative (ADNI), available at
http://adni.loni.usc.edu. The ADNI was launched in the United States
in 2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-
profit organizations, as a $60million, 5-year public–private partnership.
The primary goal of ADNI has been to test whether serial magnetic res-
onance imaging (MRI), positron emission tomography (PET), other bio-
logical markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment
(MCI) and early AD. For a more detailed and up to date description of
the ADNI please refer to http://www.adni-info.org.

2.1. Subjects

Following the study design, the selection criteria for the database
were classification as cognitively healthy and the availability of T1-
weighted, florbetapir (AV45) and DTI imaging at baseline, yielding 47
subjects from the ADNI 2 phases of the ADNI project. One of these had
to be excluded because of data corruption of the DTI scan and another
subject was excluded because of extensive white matter pathology, de-
fined as a visual Fazekas scale rating of 3 (Fazekas et al., 1987), all in all
yielding 45 subjects thatwere included in the present study. The sample
was dichotomized using a cutoff point for AV45-imaging standardized
uptake value ratio (SUVR) of 1.1 (Joshi et al., 2012). 13 subjects with
an SUVR ≥1.1 were classified as preclinical AD. 32 with an SUVR b1.1
were classified as normal controls (NC). One subject from each group
Table 1
Descriptive statistics of demographical data.

Total sample NC Preclinical AD p-Value

N 43 31 12
Gender (f/m) 23/20 13/18 10/2 .015a

Age 73.1 ± 6.2 73.1 ± 6.7 73.4 ± 4.9 .886
Years of education 16.2 ± 2.7 16.7 ± 2.7 14.9 ± 2.4 .052

NC, normal controls. p-Values of between group differenceswere calculated using the chi-
square test for gender, and t-test for all other variables.

a Considered statistically significant.
later had to be excluded due to classification as outliers (see
Section 3). For descriptive statistics of the subjects3 demographical
data, please refer to Table 1.

In ADNI, subjects undergo several neuropsychological examinations.
For this study, we chose to report thewell-knownminimental state ex-
amination (MMSE) and Alzheimer3s disease assessment score— cogni-
tive section (ADAS-Cog) in order to allow the reader to judge the
cognitive state of the sample. Detailed information about neuropsycho-
logical testing and diagnostic criteria are available at the ADNI website
(http://adni.loni.usc.edu/methods).

2.2. Imaging data acquisition

DTI and inversion-recovery spoiled gradient recalled (IR-SPGR) T1-
weighted imaging data were acquired on several General Electric 3 T
scanners using scanner specific protocols. Briefly, DTI data were ac-
quired with a voxel size of 1.372 × 2.70 mm3, 41 diffusion gradients
and a b-value of 1000 s/mm2. IR-SPGR data were acquired with a
voxel size of 1.022 × 1.20 mm3.

AV45 and fludeoxyglucose (FDG-PET) imaging data were acquired
on several types of scanners using different acquisition protocols. In
order to increase data uniformity, the data underwent a standardized
preprocessing procedure at the ADNI project.

All imaging protocols and preprocessing procedures are available at
the ADNI website (http://adni.loni.usc.edu/methods/).

2.3. AV45 and FDG-PET data processing

Subject AV45 and FDG standardized uptake value ratios (SUVRs)
were calculated at ADNI core laboratories following a standardized
pipeline that is available at the ADNI website (http://adni.loni.usc.edu/
methods/pet-analysis/). Briefly, AV45 SUVR was calculated as the aver-
age of the uptake values of the frontal, angular/posterior cingulate, lat-
eral parietal and temporal cortices divided by the mean uptake values
of the cerebellum. FDG SUVR was calculated as the mean uptake of
the left and right angular, bilateral posterior cingular and inferior tem-
poral gyri normalized by the uptake of the pons/cerebellar vermis
region.

2.4. DTI and T1-weighted imaging data processing

For detailed information on T1-weighted data processing, please
refer to Appendix A — section Data processing. T1-weighted IR-SPGR
data were automatically segmented using Freesurfer (https://surfer.
nmr.mgh.harvard.edu/) in order to calculate white matter hypo-
intensity volume (WMHV) and hippocampal volume. Additionally, IR-
SPGR data were tissue segmented using SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/) in order to extract total graymatter (GM) andWMvolume.

For detailed information on DTI data processing, please refer to
Appendix A— section Data processing. DTI data were processed as pre-
viously described (Fischer et al., 2014). Briefly, diffusion tensors were
fitted to the data using CAMINO (http://cmic.cs.ucl.ac.uk/camino/) and
FA and MD maps were calculated and coregistered to IR-SPGR data in
order to extract total WM mean FA and MD.

2.5. Network reconstruction

For detailed information on brain network reconstruction please
refer to Appendix A — section Network reconstruction. Briefly, we de-
fined the network nodes as the 111 cortical and subcortical brain
areas defined by the Harvard–Oxford probabilistic brain atlas. Deter-
ministic streamline tractographywas conducted between each possible
pair of the 111 brain regions and the number of resulting streamlines
was considered the respective edge weight (Fischer et al., 2014;
Hagmann et al., 2008; Li et al., 2009) (for exemplary tractography re-
sults please see Supplementary Fig. 1 of Appendix B). The resulting
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Table 2
Descriptive statistics and group differences of network properties controlling for age, gen-
der, education and white matter hypointensities.

Normal controls Preclinical AD p-Values of ANCOVA

CC .0192 ± .0046 .0182 ± .0035 .365
L .0599 ± .0141 .0723 ± .0085 .036a

Eglobal 38.1 ± 5.3 32.5 ± 3.2 .015a

CCnorm 5.2 ± 0.3 5.1 ± 0.2 .982
Lnorm 2.0 ± 0.3 2.1 ± 0.2 .253
N 108.4 ± 0.9 108.1 ± 1.4 .339
E 701.4 ± 65.2 676.7 ± 71.8 .282
C 85,116.1 ± 12,691.8 75,084.0 ± 10,925.1 .109

Mean ± standard deviation. ANCOVA, analysis of covariance. Group differences are con-
trolled for age, gender and white matter hypointensity volume. CC, clustering coefficient,
L, shortest paths, Eglobal, global efficiency, CCnorm, normalized clustering coefficient, Lnorm,
normalized shortest paths, N, number of connected nodes, E, number of edges, C, total
sum of edge weights.

a Considered statistically significant.
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undirected and weighted brain network graphs were then thresholded
to contain at least threefibers per connection in order to reduce the like-
lihood of false positives (Li et al., 2009; Lo et al., 2010; Shu et al., 2009).

2.6. Network properties

For a detailed description of how the network property indices were
calculated, please refer to Appendix A — section Quantification of brain
networks.We assessed the clustering coefficient CC and the normalized
clustering coefficient CCnorm, shortest paths L and normalized shortest
paths Lnorm as well as global efficiency Eglob, number of nodes N, number
of edges E as well as total cost C in order to quantify topological brain
network properties. These properties were chosen for the sake of com-
parability with other studies investigating brain networks in patients of
AD (Tijms et al., 2013). An introduction and overview to graph theoret-
ical methods in neuroimaging can be found in Kaiser (2011).

For supplementary regional analyses, we also calculated the nodal
weighted degree WD in each subject, as well as the mean nodal be-
tweenness centrality BC across all subjects.

2.7. Statistics

The significance threshold was set to p ≤ .05 for all analyses.
All continuous variables were tested for normal distribution within

subgroups using the Kolmogorov–Smirnov test. The Grubbs-test was
used to detect outliers (Grubbs, 1950).

Differences between preclinical AD subjects and NC regarding de-
mographical data (age, sex, years of education) andWMHVwere calcu-
lated as follows: the chi-square test was used for categorical variables,
the t-test was used for continuous normally distributed variables and
the Mann–Whitney test was used for continuous not normally distrib-
uted variables.

Simple linear regression was used to investigate whether the
potential confounding variables age, gender, education and WM
hypointensity volume (WMHV) had a significant influence on any of
the network indices. In order to investigate possible group differences
of WM network indices between NC and preclinical AD as well as
markers of neurodegeneration (hippocampal volume, cerebral glucose
metabolism), global GM and WM properties (mean FA, mean MD, vol-
ume), we used analysis of covariance (ANCOVA), wherein all confound-
ing variables that had a significant influence on at least one network
index were used as covariates. In an additional analysis we investigated
regional network alterations by repeating ANCOVA on the WD of each
node controlling for age, education, gender and WMHV. Group differ-
ences of mean BC between nodes with altered WD in preclinical AD
were calculated using the Mann–Whitney test.

Residuals were tested for normal distribution using the Kolmogorov–
Smirnov test throughout ANCOVA analyses.

3. Results

All continuous variables except WMHV were normally distributed.
Two outliers were found for global efficiency (standard deviation 3.1
and 2.5) and excluded from all subsequent analyses, one within each
subgroup. Significant differences of demographic data between NC
andpreclinical ADwere found for gender (please see Table 1 for details).
WMHV did not differ significantly between groups (NC: 3.2 ± 1.9; pre-
clinical AD: 4.0 ± 2.5; p = .285). No group differences in cognitive per-
formance were found for MMSE (NC: 28.7 ± 1.6; preclinical AD: 28.9±
1.3; p = .621) or ADAS-cog (NC: 8.4 ± 4.1; preclinical AD: 9.4 ± 4.5;
p = .457).

Linear regression revealed a significant influence of age, gender, ed-
ucation and WMHV on at least one network index and they were thus
used as covariates for ANCOVA. Residuals of all ANCOVAwere normally
distributed.
3.1. Group differences

RegardingWM network properties, analyses revealed an increase of
shortest paths and a decrease of global efficiency in the preclinical AD
group. Please see Table 2 for an overviewof network property groupdif-
ferences and Fig. 1 for boxplots of the data.

No differences were found for the markers of early neurodegenera-
tion hippocampal volume and cerebral glucose metabolism as mea-
sured by FDG-uptake. Likewise, total GM and WM volume as well as
FA and MD were unchanged in preclinical AD. Please see Table 3 for
details.

Supplementary regional analyses revealed decreasedWD in the pre-
clinical AD group for the following 13 nodes defined by the Harvard–
OxfordAtlas: left frontal pole (p= .018), posterior division of the left in-
ferior temporal gyrus (p= .04), posterior division of the left (p= .027)
and right cingulate gyri (p = .020), left precuneus cortex (p = .033),
anterior division of the left parahippocampal gyrus (p = .05), left
central opercular cortex (p = .019), left planum polare (p = .025),
left hippocampus (p = .047), right insular cortex (p = .007), superior
(p= .045) and inferior (p= .029) divisions of the right lateral occipital
cortex and frontalmedial cortex (p= .029). Themean BC of these nodes
across subjectswas higher than the remaining nodes showing increased
importance for global network integration of the nodes impaired in pre-
clinical AD (p= .016). Please see Supplementary Table 1 Appendix C for
details.

4. Discussion

Themainfindingof this studywas thatWMnetwork alterations pre-
viously reported in clinical AD could also be detected in preclinical AD.
Notably, preclinical AD patients with WM network alterations showed
no signs of neurodegeneration such as atrophy or reduced cortical glu-
cose utilization. Moreover, these findings were specific to network
properties and could not be explained by global WM integrity surro-
gates (FA, MD, volume).

Alterations of structural and functional brain network properties in
AD have been demonstrated repeatedly (Tijms et al., 2013). Using struc-
tural MRI, DTI, EEG or magnetoencephalography (MEG) in combination
with graph theory, these studies generally reported an increase of
shortest path length. One study assessed WM networks reconstructed
using DTI fiber tractography in a manner comparable to the present
study (Lo et al., 2010). They reported decreased global efficiency and in-
creased mean shortest path length in AD. The findings of the present
studymay be interpreted as an extension of these findings to preclinical
AD. This means that an impairment of the global structural integration
of brain regions is alreadymeasurable at the preclinical stage of AD. No-
tably this is in contrast to normal aging, where global efficiency was
found to be preserved (Gong et al., 2009).



Fig. 1. Boxplots of network properties, global white matter properties and markers of neurodegeneration. A–C: Global white matter network properties. D–F: Global white matter prop-
erties. FA, fractional anisotropy. MD, mean diffusivity. G and H: Markers of neurodegeneration.
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Assessing the total brain WM has two main advantages over ROI
based, voxel-wise or morphometric approaches. First, the networks
and their properties integrate more of the information available from
imaging scans than either of the approaches cited above. Specifically,
microstructural tissue composition (e.g. FA), morphometry (fiber thick-
ness) as well as topology (fiber orientation, interconnection of GM re-
gions) are all condensed into one WM network surrogate and its
properties. Second, in addition to information integration, the network
property indices provide a straightforward and objective way of quanti-
fying, characterizing and interpreting the data contained in the net-
work. Network property indices such as clustering coefficient, shortest
Table 3
Descriptive statistics and group differences of markers of neurodegeneration, and global
properties of gray matter and white matter controlling for age, gender, education and
white matter hypointensities.

Normal controls Preclinical AD p-Values of ANCOVA

Hippocampal volume 7.11 ± 1.1 7.3 ± 0.9 .505
FDG-PET 6.5 ± 0.6 6.5 ± 0.8 .409
GM volume 724.8 ± 62.2 691.1 ± 56.6 .807
WM volume 454.2 ± 43.6 428.5 ± 34.5 .334
WM mean FA 0.37 ± 0.02 0.36 ± 0.01 .083
WM mean MD 0.83 ± 0.05 0.83 ± 0.03 .186

Mean ± standard deviation. Group differences are controlled for age, gender and white
matter hypointensity volume. ANCOVA, analysis of covariance. FDG-PET, fludeoxyglucose
positron emission tomography. GM, graymatter. WM, white matter. FA, fractional anisot-
ropy. MD, mean diffusivity.
paths and global efficiency intuitively model the efficiency of local and
global information traversal and processing and (in the case of DTI net-
works) have been found to be associatedwith cognition, age and gender
(Fischer et al., 2014; Gong et al., 2009; Li et al., 2009) as well as sensitive
toWMpathology (Lo et al., 2010). These views are supported further by
the findings of the present study. The integration of more information
available from the imaging data than other approaches is beneficial
with respect to detecting alterations in preclinical AD: neither global
FA andMDnor totalWMvolume showed group differences in ANCOVA.
We additionally performed voxelwise analyses for groupdifferences be-
tweenHC andpreclinical AD for FA andMDusing tract based spatial sta-
tistics (TBSS) and simple t-test, but none were found (data not shown).

Cerebral Amyloid-β deposition plays an early key role in the preclin-
ical pathogenesis of AD.However, it is not sufficient by itself for the clin-
ical manifestation of AD. The prodromal phase of AD is instead marked
by neurodegenerative processes, whose associationwith Amyloid-β de-
position is an ongoing area of research (Jack et al., 2013). One of these
neurodegenerative processes is an impairment of WM connectivity
measurable by DTI. Studies in mouse models have histologically con-
firmed a negative association of Amyloid-β deposition andWMconnec-
tivity (Song et al., 2004; Sun et al., 2005). However, more recent studies
in mice reported contradicting results showing both negative and posi-
tive associations (Muller et al., 2013; Qin et al., 2013; Shu et al., 2013;
Zerbi et al., 2013). Studies in asymptomatic humanswithAmyloid-β de-
position are rare, of limited comparability and heterogeneous (Chao
et al., 2013; Racine et al., 2014; Ryan et al., 2013). Thus the relationship
between amyloid and WM integrity does not seem to be straight
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forward. Our finding of unaltered FA and MD of total WM as well as at
the voxel level (data not shown, please see above) may thus be due to
unknown modifying factors, or due to the small sample size.

The human brain network as reconstructed from various imaging
modalities has consistently been shown to exhibit small world organi-
zation, where several regions form locally densely connected clusters
(Bullmore and Sporns, 2009). These clusters are in turn interconnected
by network hubs that provide “shortcuts” for efficient information tra-
versal between any region in the network. This network layout is robust
to random elimination of nodes, since the number of these network
hubs is relatively small compared to overall network size (He et al.,
2008). The finding of the present study where shortest paths were in-
creased and global efficiency decreased while network reference values
such as size, number of edges and total cost remained unaltered in pre-
clinical AD thus implies degradation of hub regions in preclinical AD
(please see Fig. 2 for network plots). Indeed, there ismounting evidence
that hubs are focal areas of pathology in neurodegenerative diseases
(Buckner et al., 2009; Crossley et al., 2014; Raj et al., 2015). In a supple-
mentary regional analysis, we were able to confirm this view: network
Fig. 2. For this figure, we averaged individual networks in the groups of NC (left) and preclinica
symbolize gray matter regions and blue lines white matter connections among them. Please n
networks were considered.
nodes with locally impaired connectivity in preclinical AD (i.e. de-
creased weighted degree) also showed a significantly higher contribu-
tion to global network integration (i.e. betweenness centrality, see
Appendix A, Quantification of brain networks) than nodes with
unaltered connectivity and may thus be regarded as hub regions
(Bullmore and Sporns, 2009).

Unlike shortest path length, normalized shortest path length did not
show an increase between NC and preclinical AD. This constellation is
analogous to findings of other studies that showed consistent increase
of shortest path length in patients of AD but heterogeneous results for
normalized shortest path length (Tijms et al., 2013). This apparent dis-
crepancymay be due to different effects of the normalization depending
on underlying network topology (vanWijk et al., 2010). However, as to-
pology could be altered in AD (Sanz-Arigita et al., 2010), this might lead
to underestimation of effects.

Atrophy and hypometabolism have been detected in preclinical AD
before by other studies, particularly in the hippocampus (Chetelat
et al., 2010; Mosconi et al., 2008). However, neither the hippocampus
nor the other structural markers of neurodegeneration investigated in
l AD (right). A per-connection threshold of at least 3 streamlines was applied. Red spheres
ote that networks were only averaged for this figure; in all statistical analyses individual
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this study, i.e. brain volume and FDG uptake, were altered in preclinical
AD. This finding implies that WM network impairment may occur be-
fore significant neurodegeneration is detectable.

Integration of different structures spread across the brain is vital for
many cognitive functions. It follows that connectivity between these re-
gions has an impact on howwell they can synchronize and cooperate to
work on a specific task. Indeed, properties of structural and functional
whole brain networks have been shown to be associated with cognitive
performance in healthy subjects and patients of AD (Li et al., 2009; van
den Heuvel and Hulshoff Pol, 2010; Wen et al., 2011). Furthermore,
other studies have shown an association of amyloid deposition and cog-
nitive performance (Rodrigue et al., 2012; Storandt et al., 2009, 2009;
Villemagne et al., 2011). Considering these prior findings together
with the altered network indices in preclinical AD as reported by the
present study, onemight assume cognitive differences between thepre-
clinical AD group and NC that are driven by an association with the net-
works. However, in an exploratory analysis, we were unable to show
either (data not shown). Possible explanations are the small sample
size as well as the cognitive tests available with ADNI, which put more
emphasis on diagnosis and disease progression monitoring than sensi-
tivity to subtle cognitive differences within the healthy range (http://
adni.loni.use.edu/methods/documents/).

This study has several limitations. First, due to the cross sectional de-
sign of the study, group differences between HC and preclinical ADmay
be due to selection bias. However, we controlled for age, education and
sex in all analyses of covariance. Second, the sample size of this study is
relatively small and it may not adequately represent the population.
Third, the data were acquired at several different centers. However,
major efforts for the standardization of data acquisition were undertak-
en during the design and execution of the ADNI project. Fourth, we
refrained from using correction for multiple comparisons in light of
the exploratory nature of this study.

5. Conclusion

Using DTI tractography and graph theory we were able to demon-
strate that alterations of whole-brain white matter network properties
are detectable in preclinical AD even before structural markers of
brain atrophy show significant neurodegeneration. Moreover, WM net-
work alterations could not be explained by global WM integrity.
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