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“I believe there is no philosophical high-road in science, with epistemological signposts.         

No, we are in a jungle and find our way by trial and error, building our road behind us as we 
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Zusammenfassung 

 
Primäre biologische Aerosolpartikel (PBAP) sind in der Erdatmosphäre allgegenwärtig und 

bestehen hauptsächlich aus Pilzsporen, Pollen, Bakterien und Viren. Pilzsporen sind die 

prominentesten PBAP. Sie können sowohl als Allergene als auch als Krankheitserreger 

wirken und damit die menschliche Gesundheit als auch landwirtschaftlich genutzte Pflanzen 

schädigen. Herkömmliche Methoden zur Untersuchung von Pilzsporen bestehen aus 

mikrobiologischen und mikroskopischen Methoden, oder aus der Analyse des Genoms. 

Diese Methoden sind zeitintensiv und entweder nicht in der Lage die Pilzspezies präzise zu 

bestimmen, oder, wie im Falle der Genomanalyse präzise, aber arbeits- und kostenintensiv. 

Daher werden zusätzliche Methoden zur schnellen und einfachen Klassifizierung von 

Pilzsporen benötigt. 

Non-target Ultra-Hochleistungsflüssigkeitschromatographie gekoppelt mit hochauflösender 

Massenspektrometrie (UHPLC - HRMS) ermöglicht eine schnelle und umfassende Analyse 

des Metaboloms der Pilzsporen. Pilze produzieren eine Vielzahl von Verbindungen, 

darunter potenziell klassenunterscheidende Sekundärmetaboliten. Ziel dieser Arbeit war 

die Bewertung, ob eine Klassifizierung von Pilzsporen in die entsprechenden Klassen oder 

Spezies anhand ihres Metaboloms möglich ist, und wenn ja, die Entwicklung einer 

geeigneten Methode. Verschiedenste Algorithmen des maschinellen Lernens wurden 

untersucht, unter anderem Dimensionsreduktion, unüberwachtes Clustering und 

überwachte Klassifikation, um geeignete Methoden zu identifizieren. Die entwickelte 

Methode wurde für die Klassifizierung sowohl auf Klassen- als auch auf Spezies-Ebene 

angewendet.   

Der Methode beginnt mit der Extraktion der Pilzsporen durch Methanol, gefolgt von einer 

Normalisierung anhand der Anzahl und Größe der Pilzsporen. Die UHPLC-HRMS Messungen 

wurde auf einer C18-Säule durchgeführt, anschließend folgte die Massenanalyse mittels 

Orbitrap-Massenspektrometer. Die Ionisierung wurde mit Elektrospray (ESI) und 

chemischer Ionisierung bei Atmosphärendruck (APCI) durchgeführt, sowohl im positiven 

als auch im negativen Modus. ESI im positiven Modus erwies sich als die am besten 

geeignete Ionisierungsmethode. Die umfassende Datenanalyse enthält eine 

Log Transformation, gefolgt von einer z-Score Standardisierung und einer 

Dimensionalitätsreduktion durch Hauptkomponentenanalyse (PCA). Die überwachte 

Klassifizierung zeigte eine höhere Genauigkeit als das unüberwachte Clustering, wobei die 

Support Vector Machine mit linearem Kernel (SVM) die besten Ergebnisse lieferte. Die 

Unterscheidung verschiedener Pilzporen Klassen erreichte eine Genauigkeit von 99 % mit 
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einer Standardabweichung von 3 %. Die Proben stammten aus vier Klassen respektive 5 

Familien (Aspergillus, Botrytis, Cladosporium, Verticillium und Trichoderma spp.), mit 75 

biologischen und zusätzlichen 20 technischen Replikaten. Für die Klassifizierung von 

verschiedenen Spezies wurden eine Genauigkeit von 95 % mit einer Standardabweichung 

von 5 % erreicht. Bei den Proben handelte es sich um 5 verschieden Spezies respektive 6 

Stämmen der Gattung Trichoderma mit 42 biologischen und zusätzlichen 14 technischen 

Replikaten. Die Ergebnisse wurden durch 10-fache stratifizierte Kreuzvalidierung ermittelt 

und mittels Validierungsproben überprüft. Darüber hinaus wurde untersucht, ob klassen- 

oder spezies-spezifische Merkmale identifiziert wurden. Die hierarchische Clustering-

Analyse zeigte einige spezies-spezifische Merkmale. Jedoch konnten aufgrund der hohen 

Variabilität zwischen den Spezies keine spezifischen Substanzen identifiziert werden, die als 

Marker verwendet werden könnten. Eine weitere Anwendung von non-target-UHPLC-HRMS 

umfasste ein kleines Probenset von Basidiomyceten Sporen auf Filtern aus dem Amazonas-

Regenwald. Das hierarchische Clustering zeigte speziesspezifische Merkmalsregionen, die 

darauf hindeuten, dass eine Klassifizierung möglich ist. Maschinellen Lernalgorithmen für 

Non-Target-HRMS-Daten wurden nicht nur zur Analyse biologischer Matrices angewendet. 

Die hierarchische Clusteranalyse wurde in dieser Arbeit zur Untersuchung von E-Zigaretten 

Liquids und Kondensaten verwendet.  

Abschließend wurde gezeigt, dass eine Differenzierung von Pilzsporenklassen und -spezies 

auf der Grundlage der non-target UHPLC-HRMS-Analyse mittels Algorithmen des 

maschinellen Lernens möglich ist. Die Anwendung von maschinellem Lernen ermöglichte 

Einblicke in komplexe biologische und medizinische Matrizes, die sonst nicht möglich 

gewesen wären. 
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Abstract 

 
Primary biological aerosol particles (PBAP) are ubiquitous in the earth’s atmosphere and 

consist of fungal spores, pollen, viruses, bacteria, and debris of such. Fungal spores are the 

most prominent PBAP and can negatively impact human health and agricultural crops, as 

they can act as allergens and pathogens. Traditional methods for the investigation of the 

fungal bioaerosol consist of microbiological cultivation and microscopy techniques, or 

analysis of the fungal genome. These methods are time-consuming and either not able to 

precisely determine the fungal species, or in the case of genome analysis precise but labor 

and cost intensive. Therefore, additional methods for rapid and easy classification of fungal 

spores in environmental samples are needed. 

Non-target ultra-high-performance liquid chromatography high-resolution mass 

spectrometry (UHPLC – HRMS) allow a fast and comprehensive analysis of the fungal spores’ 

metabolome. Fungi produce a variety of compounds, including potentially class- or species-

distinguishing secondary metabolites. The aim of this work was the evaluation whether it is 

possible to differentiate fungal spore classes or species based on their metabolome and if so, 

to develop a suitable workflow. Therefore, various machine learning algorithms, including 

dimensionality reduction, unsupervised clustering, and supervised classification methods, 

were investigated to find a suitable classification method. The developed workflow was 

applied to both class- and species differentiation. 

The developed workflow starts with the extraction of the fungal spores by methanol and is 

followed by sample normalization based on fungal spore count and size. UHPLC-HRMS 

measurements were performed on a C18 column followed by mass analysis with an orbitrap 

mass spectrometer. Ionization was carried out with electrospray- (ESI) and atmospheric 

pressure chemical ionization (APCI) in both positive and negative modes. ESI in positive 

mode was found to be the most suitable ionization method. The comprehensive data 

analysis included a log transformation followed by a z-score standardization and a 

dimensionality reduction by principal component analysis (PCA). Supervised classification 

showed higher accuracies than unsupervised clustering, whereby the support vector 

machine with linear kernel (SVM) producing the best results. The class differentiation of 

fungal spores resulted in classification accuracies of 99 % with a standard deviation of 3 %. 

Samples consisted of four classes from five different families (Aspergillus, Botrytis, 

Cladosporium, Verticillium and Trichoderma spp.) with a total of 75 biological and 

additional 20 technical replicates. Species differentiation resulted in classification 

accuracies of 95 % with standard deviations of 5 %. Samples belong to the genus 
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Trichoderma and contained 5 species from six strains with a total of 42 biological and 

additional 15 technical replicates. Results were obtained by 10-fold stratified cross-

validation and verified with validation samples. In addition, the classification of mixed-

species samples was tested, resulting in correct classification according to the prevailing 

species in the sample. Furthermore, it was studied if features were detected that are class- 

or species-specific. Hierarchical clustering analysis revealed some species-specific feature 

spaces but due to high inter-species variability, no specific features which could be used as 

chemical tracers were detected. Additional applications of non-target UHPLC-HRMS 

included a provisional sample set of basidiomycetes spores on filters from the Amazonian 

rainforest. Hierarchical clustering showed species-specific feature regions, suggesting that 

classification by is possible. Data analysis with machine learning algorithms for non-target 

HRMS data was not only applied to biological matrices. Hierarchical clustering analysis was 

used in this work to study e-cigarette liquids and condensates.  

Concluding, it has been shown, that differentiation of fungal spore classes and species is 

possible based on non-target UHPLC-HRMS analysis using machine learning algorithms. The 

application of machine learning provided insights into complex biological and medical 

matrices, that would not have been possible otherwise.  
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1. Introduction 

 

Fungal spores are ubiquitous in the air. They influence our lives in many ways, from 

enhancing cloud formation over acting as allergens to either destroying crops as plant 

pathogens or acting beneficially as biological plant protectants. Fungal spores are primary 

biological aerosol particles which are also called bioaerosol.  

 

1.1. Bioaerosols  

 

1.1.1. Aerosols 

 
Aerosols generally are described as a heterogeneous suspension of solid or liquid particles 

in a gas phase. Sources of atmospheric aerosols can vary between natural and 

anthropogenic sources and primary and secondary particle formation. Primary particles are 

directly emitted from their source, natural aerosols like mineral dust (e.g., Sahara dust 

events), sea spray, but also anthropogenic like industrial exhaust or soot. Secondary 

particles are formed in the atmosphere by gas to particle conversion, precursors can be 

plant emissions like isoprene or alpha-pinene, or anthropogenic gases from e.g., car engines 

like NOx. In total 12800 teragram (Tg) of particles are emitted or formed in the troposphere 

(2 – 20 km altitude) with some particles even reaching the stratosphere (16 – 25 km 

altitude). Aerosols from anthropogenic sources contribute less to the global aerosol load 

than those from natural sources but are prone to negatively influencing climate and health 

(Pöschl, 2005, Schnelle-Kreis et al., 2007, Seinfeld, Pandis, 2012). An overview of the 

source's contribution to the aerosol load is given in Table 1.1.  
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Table 1.1: Estimated aerosol emissions in teragrams per year according to their origins (Seinfeld, 
Pandis, 2012). 

 Source Estimated Tg/a 

 Natural - Primary  

        Mineral dust 2407 

        Sea salt 10000 

        Volcanic ash 30 

        Bioaerosol 50 

 Natural – Secondary  

        Sulfates 32 

Organic aerosol, from biogenic precursors 11 

 Total natural  12530 

Anthropogenic- Primary  

        Industrial dust (without soot) 100 

        Soot 12 

        Organic aerosol 81 

 Anthropogenic - Secondary  

        Sulfates 49 

        Nitrates 21 

 Total anthropogenic 263 

 

Mineral dust and Sea salt are the dominant sources of aerosol particles. However, 

anthropogenic particles like industrial dust contribute to the aerosol load as well, especially 

in densely populated areas. The effects of aerosols on climate and health depend on the 

nature of the particle.  

Aerosols can influence the earth's climate directly and indirectly. They influence directly by 

scattering and absorbing light from solar and terrestrial sources. Scattering solar radiation 

has a cooling effect, whereas black carbon absorbs solar radiation and has a warming effect 

(Pöschl, Shiraiwa, 2015). They influence indirectly by contributing to cloud formation, as 

cloud condensation nuclei (CCN) and ice nuclei (IN). Without aerosol particles to enable 

condensation or freezing, water would need to be supercooled for hours, or in the case of 

homogenous freezing, temperatures need to fall to -36.5 °C or lower (Henderson-Begg et al., 

2009). Ice nuclei enable freezing processes at temperatures between – 30 °C (mineral dust) 

and 1.5. °C (biological particles, see also in chapter 1.1.3). By enabling cloud formation, thus 

increasing radiation reflection aerosols contribute to negative forcing, as well as influencing 

the earth's hydrological cycle. The total feedback of aerosols to the global climate is still not 

completely understood, a total positive radiative forcing is estimated (Lohmann, Feichter, 

2005). 
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Aerosols can also influence human health. Air Quality with a high aerosol load of fine 

particulate matter (PM 2.5.) is known to correlate with higher mortality and increased risk 

for cardiovascular disease. The finer the particle, the deeper they can be inhaled into the 

lung.  Bigger particles (> 5 µm) deposit in the larger bronchial areas but smaller particles 

(< 0.5 µm) reach the alveoli where they can cause chronic inflammatory diseases or even 

cancer. (Krug, Wick, 2011, Pöschl, 2005, Pöschl, Shiraiwa, 2015). The health effects of 

biological aerosols are described in chapters 1.1.3 and 1.2.3. 

 

1.1.2. Bioaerosols 

 
Bioaerosols or more exactly primary biological aerosol particles (PBAP) are natural, 

primary aerosols from living or dead biological organisms, such as fungal spores, bacteria, 

viruses, and pollen but also from plant debris and animal dander. In subordinate quantities 

also archaea, fern spores, and lichen, cyanobacteria are part of the biological aerosol. The 

estimated total global emissions of PBAP lay in a wide range between 10 and 1000 Tg/a, 

depending on which size range and if cellular fragments are included in the estimation 

(Després et al., 2012, Fröhlich-Nowoisky et al., 2016). PBAP are between 1 nm and 100 µm 

in size, an overview is given in Figure 1.1. 

 

 

Figure 1.1: Size ranges of major biological aerosols. After (Fröhlich-Nowoisky et al., 2016). 

 
Viruses are the smallest PBAP, followed by bacteria (<1 – 4 µm). Spores are usually bigger, 

with sizes between 1 and 50 µm. The largest PBAP type is pollen with sizes between 9 to 

over 40 µm. Fungal or plant fragments can reach sizes up to 100 µm. Larger particles 

sediment quickly and therefore do not travel far, but smaller particles can travel far 

distances either by themselves or attached to dust and even cross oceans. Also, high 

altitudes are possible with metabolically active PBAB (fungi and bacteria) found at 20 km 

height  (Bowers et al., 2009, Després et al., 2012, Fröhlich-Nowoisky et al., 2016). 
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Biological particles occur in high number concentrations of up to 104 particles per m3, 

depending on the particles' size they contribute to the mass load as well. An overview of the 

aerosol load by different PBAP classes is given in Table 1.2. 

Table 1.2: Estimated PBAP emissions (Després et al., 2012, Fröhlich-Nowoisky et al., 2016). 

Source 
Global emission 

Tg/a 
Number concentration         

[cells m-3] 
Mass concentration 

[µg m-3] 

Bacteria 0.4 - 28 104 0.1 

Fungal spores (and 
fragments) 

8 - 190 103 - 104 0.1 - 1 

Pollen 47 - 84 10 - 103 1 

Plant debris - - 0.1 - 1 

Algae - 100 - 103 10-3 

Viruses - 104 10-3 

 

Bigger particles like plant debris have a high mass, but a low number concentration, 

whereas very small particles like viruses have a high number concentration but a small 

mass concentration. Interesting are PBAP with a high global emission, like bacteria, pollen, 

and fungi. Fungal spores and fragments are one of the biggest contributors to the global 

bioaerosol load and one of the most prevalent classes of PBAP. General implications of 

biological particles for health and the environment are given in the following chapter, with 

more in-depth information on fungal bioaerosols in chapters 1.1.4 and 1.2.3. 

 

1.1.3. Contributions of bioaerosol to climate and health 

 
As mentioned in chapter 1.1.1 aerosols can act as cloud condensation nuclei (CCN) and ice 

nuclei (IN). PBAP are known to act as very effective ice nuclei, enabling freezing in clouds at 

much higher temperatures than mineral ice nuclei. Biological particles, mostly fungi, and 

bacteria can induce freezing at temperatures above -10 °C and even at temperatures as high 

as -1.8 °C (Pseudomonas syringae). P. syringae for example, has ladder-like proteins on its 

surface, which order water molecules, thus supporting ice formation.  (Henderson-Begg et 

al., 2009, Pandey et al., 2016). Acting as IN/CCN enables the deposition and distribution of 

biological particles. It is estimated, that PBAP are important for ice formation in warm 

clouds (temperature > -15 °C)  and even dominate cloud formation in warm, humid regions 

with high biological aerosol load, like rainforests (Andreae, Rosenfeld, 2008, Spracklen, 

Heald, 2014). Especially over pristine regions, PBAPs can influence the hydrological cycle. 

Over the Amazonian rainforest, PBAB contribute up to 67 % of the total particulate matter 
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and absorb up to 47 % of the radiation, which can therefore influence the climate on a local 

scale (Fröhlich-Nowoisky et al., 2016, Spracklen, Heald, 2014).  

Biological aerosols can be harmful to humans’ health, not only by the effects described in 

chapter 1.1.1 but also because of their unique biological properties. The most prominent 

example right now is the COVID-19 (coronavirus disease 2019) pandemic, with SARS-CoV-2 

(severe acute respiratory syndrome coronavirus type 2) viral particles being transmitted by 

air (Robert Koch-Institut, 2021). Many diseases caused by airborne biological particles are 

known, from severe sicknesses like tuberculosis (bacteria) or diphtheria (bacteria) to 

milder illnesses like the common cold (virus).  PBAP can also cause allergies and asthma, or 

chronic inflammatory diseases when biological particles are inhaled in high concentrations 

over a long period. Biological aerosols can also produce endotoxins (bacteria) and 

mycotoxins (fungi). (Fröhlich-Nowoisky et al., 2016, Kim et al., 2018).  Further elaboration 

on the health impact of fungal spores is given in chapter 1.2.3. 

 

1.1.4. Fungal bioaerosol 

 
One of the most prevalent classes of PBAP, and a large source of organic aerosol, are fungal 

spores. Global estimated emissions for fungal spores vary greatly between 50 and 186 

Tg/year (Elbert et al., 2007, Jacobson, Streets, 2009, Janssen et al., 2021a, 2021b). Modelling 

estimated high fungal spore abundancy over tropical rainforest., accounting for up to 45 % 

of the particle mass (1 – 10 μm) (Elbert et al., 2007). Figure 1.2 shows the estimated mean 

number concentration of fungal spores in the boundary layer. Notable is the intensity over 

rainforests, especially the Amazonian rainforest, where an influence on the local 

hydrological cycle by PBAP is proposed (Elbert et al., 2007, Heald, Spracklen, 2009). 
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Figure 1.2: Simulated surface annual mean of fungal spore number concentration per cubic meter in 
the boundary layer, dark red represents the highest concentration, mainly in regions with rainforests 
(Amazonian, central Africa, and southeast Asia) (Spracklen, Heald, 2014). 

 
In urban and suburban areas fungal spore contribution is smaller but still essential at up to 

11 % in fine particle mass (< 2.5 μm). Fungal spores contribute to 8 % of the continental 

supermicron (> 1 μm) number concentration. (Spracklen, Heald, 2014).  To gain further 

understanding of the fungal spore composition some basics about fungi are needed which 

are discussed in chapter 1.2.  

 

1.2. Fungi 

 

1.2.1. General information about fungi 

 
Fungi are important for our everyday life, from food like mushrooms, over symbiotic 

relationships with plants to the production of life-saving medications (penicillin, 

cyclosporine). They are essential for ecosystems as they act as decomposers and symbionts, 

as well as pathogens. The symbiosis with plants, e.g., trees or photobionts like algae 

improves plant growth by absorbing soil nutrients. Fungi are heterotroph organisms, 

meaning they obtain carbon and energy by absorption, and not by photosynthesis (Bonfante, 

Genre, 2010, Webster, Weber, 2007, Wu et al., 2019).  

As eukaryotes, fungi are, contrary to beliefs in former times, more closely related to animals 

than to plants. Fungi separation from animalia is suggested to have taken place 1.5 billion 

years ago, about 9 million after separation from plantae, with fungal fossils found to be 550 
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to 350 million years old (Hibbett et al., 2007, James et al., 2006, McLaughlin et al., 2009, 

Wang et al., 1999). Fungi are the third-largest eukaryotic kingdom besides animalia and 

plantae, with estimated species numbers between 2.2 – 3.8 million and 11.7 – 13.2 million. 

(Hawksworth, Lücking, 2017, Wu et al., 2019). An overview of the evolutionary separation 

is given in Figure 1.3. The taxonomic kingdoms, e.g., bacteria, animalia, or fungi are further 

taxonomically separated into phyla, classes, orders, families, genera, and finally species, 

reflecting evolutionary relationships between organisms. An overview of the separation of 

the kingdom fungi into phyla is also given in Figure 1.3. 

 

Figure 1.3: Taxonomy of the kingdom true fungi, starting from the proposed last universal common 
ancestor separation. The separation of the kingdom fungi from the kingdom prokaryotes, archaea, 
plantae, and animalia is proposed to have taken place in the shown order (light green area). The 
kingdom fungi is separated into several phyla, shown in the dark green area. The length of the 
branches is not proportional to evolutionary distances. Drawing after: (Moore et al., 2020, Spatafora 
et al., 2017). 

 

Classification of fungi remains a dynamically changing research field, with phylogenetic 

analysis bringing new information to light which leads to regular alterations of taxonomic 

trees. Historically fungi were separated into the kingdom fungi, the oomycetes, and the 

slimes molds, e.g., myxomeycetes. Nowadays it is clear, that oomycetes are closer related to 

algae than to the rest of the fungi and slime molds are not classified as fungi anymore. Later 

the kingdom fungi was divided into four phyla: Ascomycota, Basidiomycota, 

Chytridiomycota, and Zygomycota. Nowadays phylogenetic analysis suggests seven to eight 

different phyla: Basidiomycota and Ascomycota, Mucoromycota, Zoopagomycota, 
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Chytridiomycota, Blastocladiomycota, Microsporidia, and Crypotmycota, the last two were 

suggested to belong to the phyla Opisthosporidia  (Adl et al., 2012, Li et al., 2021, Moore et 

al., 2020, Naranjo-Ortiz, Gabaldón, 2019, Tedersoo et al., 2018, Webster, Weber, 2007). 

The most important lineages, Ascomycota and Basidiomycota together form the clade 

Dikarya (Hibbett 2007). Ascomycota has 64000 described species and Basidiomycota 

31500 described species. Most edible fungi are Basidiomycota, like the button mushroom 

Agaricus or the Boletus edulis . Commonly known Basidiomycota have a stem and a fleshy 

cap, but there are also basidiomycetes without a stem, like rusts (fungi from the order 

Pucciniales) and smuts (fungi from the order Ustilagnales).  Typical examples of 

ascomycetes are brewer’s/baker’s yeast, Penicillium of which the first antibiotic was 

detected, or Aspergillus which is commonly known as black mold (Aspergillus niger). 

Ascomycetes can act as pathogens for either human/animals (Candida alibans, Aspergillus 

niger) and plants (mildews, etc.) but also as beneficial organisms. For further information 

see chapter 1.2.3 (Hibbett et al., 2007, Moore et al., 2020, Spatafora et al., 2017, Webster, 

Weber, 2007). 

 

1.2.2. Fungal metabolism 

 
The primary metabolism describes the processes and molecules needed for the homeostasis, 

like growth, respiration, and reproduction. The primary metabolism is evolutionary 

conserved and consists of compounds like sugars, amino acids, fatty acids, and nucleosides. 

Out of those precursors, more complex molecules are formed: polysaccharides, proteins, 

lipids, and nucleic acids. All other metabolites are described as secondary metabolites, 

meaning they are not immediately necessary for an organism’s life, but increase the fitness 

and chance of survival immensely. Some secondary metabolites can specifically occur in 

certain steps of the fungi’s life cycle, like reproduction or when influenced by the 

environment. Fungi  produce a broad variety of metabolites, from highly sought metabolites 

like penicillin to toxic compounds like aflatoxin (Bayram, Braus, 2012, Boruta, 2018).  

The primary metabolism of fungi is very similar to other eukaryotes. Fungal cell walls 

consist of 80 – 90 % polysaccharides, with lipids and proteins as the remainder. Also 

dominant in fungal cell walls, at least in Asco- and Basidiomycota, is the sterol ergosterol, in 

its function comparable to animals’ cholesterol. As well as ergosterol, fungi use chitin in 

their cell walls, comparable to plants, which use cellulose. Further compounds are β 1,3-
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glucan and on the outside of the cell wall a layer of mannoproteins (Moore et al., 2020, 

Weete et al., 2010). 

The secondary metabolism varies immensely between fungal species (Zeilinger et al., 

2015b). Fungal secondary metabolites are diverse and complex classes of molecules, like 

polyketides, terpenoids, alkaloids or non-ribosomal peptides.  They can be used for 

promoting growth, defense, or even communication between microorganisms. The 

occurrence or concentration of secondary metabolites depends on the life cycle, the 

environment, and the growth condition of the fungi (Boruta, 2018, Keller, 2019, Zeilinger et 

al., 2015b, Zeilinger et al., 2016). To highlight the variety of fungal secondary metabolisms a 

few structures are presented in Figure 1.4. 

 

 

Figure 1.4: Examples of secondary metabolites. 1) Alamethicin, peptaibol from Trichoderma spp. 
(Payne et al., 1970). 2) Ergotamin, alkaloid from Claviceps purpurea (german: Mutterkorn) (O'Neil, 
2006). 3) Cyclosporin A, first detected in Tolypocladium inflatum (Merluzzi, 1995). 4) Penicillin G, 
beta-lactam antibiotic from Penicillium notatum (Dexter, van der Veen, 1978). 5) Ferrichrome, 
siderophore first detected in Ustilago sphaergoena (van der Helm et al., 1980). 6) Aflatoxin B1, 
mycotoxin from  Aspergillus spp. (Do, Choi, 2007). 

 

Shown are diverse secondary metabolites, with different heteroatoms and functional groups, 

some are peptides, and some are small molecules. The secondary metabolites have different 
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functions, e.g., Ferrichrome (5) helps with the fungi’s iron uptake whereas Alamethicin (1) 

or Penicillin (4) are part of the fungis’ defense mechanisms. Secondary metabolites of fungi 

can be used as drugs, e.g., Cyclosporin (3). Many antibiotics, like Penicillin (4) originate 

from fungi. (Keller, Turner, 2012, Moore et al., 2020, Webster, Weber, 2007).  

 

1.2.3. Biology of fungal spores and their implication for health and environment 

 
Spores are the reproductive units of fungi. The size ranges from 1 up to 50 µm, with most 

spores varying between 2 and 10 µm. Spores can be dispersed by wind and over wide 

distances, e.g., in the case of dust events across oceans. They withstand extreme 

temperatures, UV radiation, and dryness and still germinate after years. Viable forms of 

fungal spores were found in deserts, ice from glaciers, tundra, hailstones, the artic, and even 

on the international space station (ISS) (Cortesão et al., 2020, Feofilova et al., 2012, 

Fröhlich-Nowoisky et al., 2016, Griffin, 2007). 

Spores have a reduced metabolism, thick cell walls, and usually some form of pigmentation 

to withstand UV radiation. They are rich in carbohydrates like glycerol, mannitol, arabitol, 

erythritol, and trehalose increasing their heat resistance. Other components increasing the 

spore’s survival in unfavorable conditions are e.g., glycolipids, lysophosphatidic acid, chitin, 

chitosan, glucans, sporopollenin, hydrophobins, and melanin. Spores remain dormant, 

meaning with a reduced metabolism (maximum 50% metabolic activity) until a suitable 

environment is reached. Water alone is not sufficient to “awake” any spore, usually, carbon 

and/or nitrogen sources are necessary. Secondary metabolites can control the dormancy, 

with several substances suppressing or inducing germination (Dijksterhuis, 2019, Feofilova 

et al., 2012, Keller, 2019, Madelin, 1994, Moore et al., 2020, Thines et al., 2004). 

Spores can result from sexual or asexual reproduction and are mostly haploid. Most fungi 

can reproduce sexually (teleomorph) and asexually (anamorph), but some are only known 

with asexual reproduction (imperfect fungi). Some fungal spore types are characteristic for 

their clade, like basidiospores (Basidiomycetes) or ascospores (sexual reproduction of 

Ascomycetes). Conidia are produced by mitosis and are typical for the asexual reproduction 

of Ascomycetes. Some spore types are more specialized, like teliospores or chlamydospores 

which are thick-walled resting spores to survive unfavorable conditions (Elbert et al., 2007, 

Janssen et al., 2021a, Moore et al., 2020). 

Spores can be dispersed actively, e.g., by osmotic pressure or surface tension and other 

mechanisms, leading to the accelerated discharge of spores. Passive, “dry” discharge is 
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achieved by wind speeds at 1 m·s-1. Spore discharge is connected to meteorological 

parameters like temperature, humidity, and wind speed, also day-night rhythms were 

observed with spore discharge higher at night when the relative humidity was increased 

and can vary depending on the season, especially regarding different species. Additionally to 

metrological conditions, location can influence the presence of certain spore species, with 

rural locations showing higher fungal diversities and abundances than urban locations. 

(Abrego et al., 2020, Oliveira et al., 2010). The highest fungal spore concentrations were 

found over tropical rainforests (see chapter 1.1.4) (Elbert et al., 2007, Fröhlich-Nowoisky et 

al., 2012, Fröhlich-Nowoisky et al., 2016). 

Fungal spores are the most genetically diverse group of PBAP. The composition of the fungal 

bioaerosol is complex and mostly unknown. Besides the unknown diversity of airborne 

fungal spores, their contribution to the global aerosol load remains unclear.  Previous 

studies examined fungal spores sampled in outdoor air, with conidia compromising 30 to 

60 % of the total amount, with the remaining percent being sexual spores. Cladosporium 

seems to be the most predominant genus found, present in almost all samples on every 

continent (Ovaskainen et al., 2020, Pace et al., 2019). Fungal spores were present in the fine 

(< 2.5 µm) and the coarse (> 2.5 µm) mode with similar species richness in both fractions 

(Fröhlich-Nowoisky et al., 2016, Janssen et al., 2021b). Most detected airborne fungal spores 

belong to the clade Dikarya, with one study estimating Basidiomycetes at 64 % and 

Ascomycota at 34 %, as well as examining the classes of Ascomycetes and Basidiomycetes, 

see Figure 1.5 (Fröhlich-Nowoisky et al., 2009).  
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Figure 1.5: Diversity of airborne fungal spores, as examined by DNA analysis. Left: Class diversity of 
Ascomycetes. Middle: Diversity of phyla, Ascomycota (red), and Basidiomycota (blue) are dominant. 
Right: Class diversity of Basidiomycetes (Fröhlich-Nowoisky et al., 2009). 

 

For Basidiomycetes, the class Agaricomycetes is dominant with 87 %. Among the 

Ascomycetes the diversity between classes is more distributed, whereby the composition of 

the different classes can change with the season, e.g., the genera Cladosporium spp. and 

Alternaria spp. occurring more in summer and Penicillium spp. or Blumeria graminis in 

winter (Fröhlich-Nowoisky et al., 2009). There are several analytical methods to examine 

airborne fungal spores, an overview is given in chapter 1.2.4. 

 

Implications of fungal spores on health and environment 

Fungal spores in the air can have diverse influences on ecosystems and their inhabitants. 

Additionally, to the already mentioned climate effects, fungi can act as major pathogens for 

humans (see also chapter 1.1.3). They can cause allergic reactions or infections. The impact 

on human health is significant, 20 to 30 % of all allergic asthma diseases are caused by 

mildew mold allergies, and 30 % of the total population reacts sensitively to fungal allergens. 

Common fungal allergens are known from Alternaria, Cladosporium, Aspergillus, and 

Penicillium. Fungal spores are small enough to be inhaled deep into the lung, reaching 

bronchia and causing inflammations. Serious or life-threatening fungal infections usually 

only affect immuno-compromised persons. (Dales, Munt, 1982, Fröhlich-Nowoisky et al., 

2016), (Fischer, Dott, 2003, Rivera-Mariani, Bolaños-Rosero, 2012). Fungal spores can also 

infect crops and in severe cases, fungal diseases destroy them completely, which results in 



                                                                          Introduction 

13 
 

famine and huge economical damage to agriculture. A prominent example is the Irish potato 

famine from 1845 to 1852, where the potato harvest was destroyed by the fungal-like 

microorganism oomycetes Phytophthora infestans causing the potato blight (Haas et al., 

2009). Nowadays fungal diseases are on the rise, possibly due to climate change, in some 

cases with extensive resistance to fungicides. The most prevalent fungal plant pathogens 

now are Magnaporthe oryzae, Botrytis cinerea. and Puccinia spp. Fungal diseases will 

remain a threat to food security (Fisher et al., 2012, Ghosh et al., 2018, (Almeida et al., 2019, 

Kim et al., 2018).  

But besides the negative impact fungi also act as symbionts and can enhance plant growth 

and can improve plant stress tolerance (Singh et al., 2011). In some cases, fungi can be used 

as a biological plant protectant, meaning a suspension of suitable fungal spores is applied on 

the field, introducing the beneficial organism onto the plant. One of the most prominent 

biological plant protectants is the genus Trichoderma. It emits several secondary 

metabolites which can promote plant growth and influences root formation. Trichoderma  

spp. are used in this work. A more detailed description of the fungal species used in can be 

found in chapter 4.1. As one example Trichoderma atroviride Sc1 is sold under the name 

“Vintec” as a biological control acent against the grapevine disease “Esca” which is caused by 

pathogenic fungi (Zin, Badaluddin, 2020). Biological plant protectants are seen critically by 

some, as it can’t be excluded that toxic secondary metabolites are formed, which do not form 

under artificial conditions in a laboratory. A need for modern tools which could control 

whether toxic compounds are formed in situ is needed. Also, the influence of biological plant 

protectants on biological diversity is not well examined. (Abdelfattah et al., 2018, Deising et 

al., 2017) Nonetheless, biological plant protectants might play an important role in the 

future, as the global population is increasing and the need for food production with it. 

Chemical pesticides/fungicides can be problematic as they can pose risk to health, 

environment, and biodiversity (Almeida et al., 2019, Ghosh et al., 2018, Kvakkestad et al., 

2020). 

Biological plant protectants might present an alternative to conventional plant protectants, 

but further research is needed. Overall, there are many uncertainties about the occurrence 

of fungal spores in the air, whether there are beneficial or harmful. Several measurement 

methods are available, which are presented in the next chapter with established and 

possible novel methods discussed.   
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1.2.4. Measurement methods  

 
The detection and analysis of fungal spores in the air can be accomplished in different ways. 

Either online/real-time measurements are employed, or, more often, samples are collected 

by filters, spore traps, impactors, cyclones, electrostatic precipitation, or impingers 

(Caruana, 2011, Després et al., 2012). In the following an overview of established and novel 

methods is given. 

 

Established methods 

Real-time sensing uses fluorescence spectroscopy, Raman spectroscopy, light scattering, or 

online mass spectrometry. Current research examines the real-time determination of which 

PBAP is present, e.g., if it is pollen or bacteria. The identification on a more in-depth 

taxonomic level e.g. if a fungal spore is basidiomycetes or ascomycetes is not possible. (D 

Strycker et al., 2019, Gosselin et al., 2016, Huffman et al., 2019). For in-depth identification, 

offline methods are used, like cultivation, microscopy, DNA/RNA sequencing, or chemical 

tracers. With cultivation living spores from viable samplers can be grown on a suitable 

medium and further analyzed. The back draw is that only a very small fraction of fungal 

spores is cultivable (~17 %). To examine all airborne fungal spores other, more elaborate 

methods are needed (Fröhlich-Nowoisky et al., 2016, Gosselin et al., 2016, Rivera-Mariani, 

Bolaños-Rosero, 2012). 

The easiest offline/sample-based method would be light microscopy, where a trained 

person distinguishes spore types, some on the genus level, but others only on the family or 

class level, by their image. Manual counting can give the total spore count but is time and 

labor-intensive and prone to mistakes. With fluorescence microscopy and elaborate data 

analysis, current research develops methods to identify biological particles from non-

biological. With flow cytometry counting of labeled cells is possible (Després et al., 2012, 

Kumar, Attri, 2016).  

The most accurate method is by sequencing the fungi’s DNA or RNA. This approach is very 

exact but cost-intensive and needs highly trained personnel and laboratory equipment. 

Some regions in an organisms’ genome are very specific for the genus or even species and 

can be used for identification. In the case of fungi, the ribosomal DNA internal transcribed 

spacer (ITS)-region is the primary fungal barcode. As not all fungal species are accurately 

identified by ITS-sequencing, a secondary barcode, the translational elongation factor 1α 

(TEF1α) was introduced but is not commonly used yet. For sequencing, either Sanger 

sequencing or next-generation sequencing is used. Quantitative PCR can be used to estimate 
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the DNA concentration, thus allowing conclusions about the initial sample concentration. 

With a BLAST approach also unidentified samples can be compared to find matching 

sequences in a data bank. Another DNA-based approach is the terminal restriction fragment 

length polymorphism technique (TRFLP) where target genes are fluorescence marked. The 

fluorescence dyed fragments give a TRFLP profile that can be compared to other samples or 

a data bank. In contrast to barcoding, TRFLP can’t be used for taxonomic studies.  (Després 

et al., 2012, Meyer et al., 2019, Ovaskainen et al., 2020, Womack et al., 2015).  

The third major approach besides microscopy and DNA analysis is the chemical tracer 

analysis. Chemical tracers, also called biomarkers are molecules that are characteristic of 

the sample. There are tracers available for all major PBAP groups, with ergosterol, mannitol, 

and arabitol used for fungi.  As mannitol and arabitol also occur in plants, only ergosterol is 

a reliable marker for fungal spores. The quantitative abundance of fungal spores and PBAP 

can be determined by this approach, but not the spore’s species. (Buiarelli et al., 2013, 

Buiarelli et al., 2019, Di Filippo et al., 2013).   

Overall, all current methods have their limitations, either in the accuracy or in costs and 

time. Still, the airborne fungal diversity is not well examined, and in times of growing health 

threats and food insecurities more knowledge, about when, where, which, and how many 

fungal spores are present, especially regarding pathogens and agricultural pests, is needed.   

 

Novel methods 

A novel approach is using chemotaxonomy combined with metabolomics. Fungal secondary 

metabolites can be species or even strain-specific and present a metabolic fingerprint. In 

some cases, DNA analysis, especially when just analyzing the ITS sequence cannot differ 

between more closely related species, e.g. Aspergillus and Penicillium, or within fungal 

species like Trichoderma (Kang, 2011, Lücking et al., 2020). Analysis of the metabolome can 

bring insights into relationships between fungi (Aliferis et al., 2013, Kang, 2011, Lücking et 

al., 2020, Maciá-Vicente et al., 2018, Zwickel et al., 2018).  

For the chemotaxonomic approach non-target analysis, where all features of a sample are 

detected, is needed (Kluger et al., 2015). Non-target analysis usually requires high-

resolution mass spectrometry, often coupled to chromatography (for further information 

see chapter 2.1). As non-target high-resolution mass spectrometry data produces a 

considerable feature list, the application of machine learning algorithms (see chapter 2.2.3) 

can help obtain sensible information out of non-target data. Many of these techniques were 

first used in bioinformatics/DNA/RNA analysis, but with the further spread of high-
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resolution mass spectrometers are made usable in the field of e.g., metabolomics. An 

explanatory workflow for non-target metabolomics is shown in Figure 1.6, with further 

explanations in the following chapter. 

 

 

Figure 1.6: Explanatory workflow for metabolic profiling and fingerprinting. Figure after (Zeilinger et 
al., 2015b). 

 

Samples need to be carefully chosen, as well as conditions in which samples are grown to 

account for biological variation. Blank samples are needed to make sure detected 

substances originate from the sample and not e.g., the growth media. Data needs to undergo 

extensive pre-processing like blank subtraction, filtering steps, etc., resulting in an extensive 

list of “features” that might be specific for the fungal species or strain. As manual control and 

comparison between samples are not possible anymore, as feature lists easily have 

thousands of entries, several algorithms and techniques from machine learning are used to 

identify which compounds are of interest. Dimensionality reduction and clustering are 

possibilities to get trends out of non-target data (Aliferis et al., 2013, Kluger et al., 2015, 

Smedsgaard, Nielsen, 2005, Zeilinger et al., 2015b).  

Non-target analysis in general and of biological samples brings some challenges. Metabolite 

concentration between primary and secondary can differ in orders of magnitude, with 

primary metabolites like e.g., ergosterol being much more abundant than secondary ones. 

Most primary metabolites are evolutionary conserved and have relatively constant 

concentration therefore won’t help much in the differentiation between species. Secondary 

metabolites on the other hand show much larger differences and can be influenced by the 

environment. Environmental factors can influence which secondary metabolites are 

expressed, possibly leading to different metabolic profiles of the same species, if grown 

under different environmental influences (González-Riano et al., 2020, Müller et al., 2013, 

Smedsgaard, Nielsen, 2005).  

In recent years metabolic profiling was performed on several fungal species, but to our 

knowledge always on filamentous fungi and not on the spores. Metabolic profiling was used 
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in chemotaxonomy and enabled differentiation between species and strains that would not 

have been possible by traditional phenotyping  (Smedsgaard, Nielsen, 2005). In some cases, 

chemotaxonomy was consistent with results from ITS-sequencing. Several groups used LC-

MS measurements to examine differences in the metabolome. Separation of Alternaria 

species was performed by (Gotthardt et al., 2020), evaluation of root endophytic fungi 

belonging to different orders by (Maciá-Vicente et al., 2018), of the species Ascochyta and 

Phoma which belong to the same order by (Kim et al., 2016), of Trichoderma species by 

(Kang, 2011) and the differentiation of Alternaria species by their toxin profile by (Zwickel 

et al., 2018). Also, the detection of fungal genera, in general, is examined by trying to find 

genera-specific biomarkers to determine if said fungi are present. (Xie et al., 2022) Also 

possible is the use of GC-MS to either find differences in volatile compounds of a fungal 

species or just look at the volatile organic compounds themselves finding an “odor” profile 

(Aliferis et al., 2013, Guo et al., 2020a, Müller et al., 2013). 

Furthermore, MALDI-TOF is used for fungal chemotaxonomy, but whereas GC-MS and LC-

MS look at the metabolome with MALDI-TOF the proteome is examined as bigger molecules 

like proteins in the 2- 20 Dalton range are checked. In some studies, fungal spores were 

evaluated, using proteins on the spores' surface, but mostly protein extracts from the 

mycelium are used (Becker et al., 2014, Chalupová et al., 2014, Lau et al., 2013, Li et al., 2000, 

Ulrich et al., 2016).  

Chemotaxonomy is a promising approach, but it must be kept in mind that biological 

variation in a species can be high, as different strains can express different secondary 

metabolites. Therefore, enough samples need to be processed to take inter-species 

variability into account (Becker et al., 2014). Overall application of machine learning 

algorithms can enable novel insight not only in the field of chemotaxonomy or 

metabolomics but also in other research fields using non-target mass spectrometric data, 

like aerosol research. Examination of fungal spores combines chemotaxonomy and 

bioaerosol research. Required methods are described in the following chapter 2. 
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2. Analytical Methods and Instruments  

 

For the non-target analysis of complex biological samples, the separation of analytes by 

chromatography with subsequent exact mass measurements is very important. In this work, 

this is reached by coupling liquid chromatography to an Orbitrap ultra-high resolution mass 

spectrometer. Additional information about volatile compounds can be obtained using gas-

chromatography coupled to mass spectrometry. In the following chapter, the instruments 

(chapter 2.1.) and techniques for data exploration (chapter 2.2.) are described. 

 

2.1. Instruments 

 

2.1.1. High-Performance Liquid Chromatography 

 
High-Performance Liquid Chromatography (HPLC) enables the separation of analytes based 

on their affinity for the solid and liquid phase. The analytes are separated from one another 

by interacting with the stationary and the mobile phase, leading to an equilibrium of 

distribution between the two phases. The set-up is the following: The mobile phase is stored 

in a solvent reservoir (also called eluent reservoir) and is pumped under high pressure. A 

static mixer ensures that eluents are well mixed before reaching the 6-way valve, in which 

the sample is injected into the sample loop and waits for entering the mobile phase flow. 

The sample is then transported by the mobile phase into the HPLC column which contains 

the solid phase. This is where the separation takes place. The separated analytes then reach 

the detector one after another.  

 

 
Figure 2.1: Explanatory construction of an HPLC. The eluent is transported by the pump onto the 
HPLC column, where the analytes are separated. Figure after (Gey, 2015). 
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The stationary phase consists of a column (5 to 20 cm) filled with spherical particles with a 

modified surface. The particles are as small as 1 µm in ultra-high performance liquid 

chromatography (UHPLC) resulting in a high packing density and high back pressures of up 

to 1000 bar.  Usually, reverse phase (RP) columns are used, where the column material is 

functionalized with a nonpolar component, like C18 (n-Octadecyl) residues. Different 

functionalization and functional groups can influence the polarity of the stationary phase. 

The mobile phase consists of organic solvents mixtures of different eluents usually a watery 

phase as eluent A and acetonitrile or methanol as eluent B. To improve the speed and 

quality of the separation a gradient is used, changing the composition of the eluent over 

time to increase its eluting force. In RP chromatography the eluent starts with a high 

percentage of water and ends with a high percentage of an organic eluent like methanol or 

acetonitrile.  Possible detectors for an HPLC system are e.g. a UV/VIS detector or a mass 

spectrometer (Gey, 2015, Harris, 2014).  

 

2.1.2. Gas chromatography  

 
In gas chromatography (GC) analytes are separated based on their vapor pressure and 

polarity. The gas chromatograph consists of an injector, a column inside an oven, and a 

detector. The stationary phase is usually inside of a capillary column, the mobile phase is a 

gas. Analytes need to be thermally stable as high temperatures of 400 °C can be reached. 

Injection of the analyte usually is performed by solubilizing the analyte and transferring a 

small quantity into an injector where it is vaporized and transferred onto the column, either 

completely (splitless) or at a percentage (split), meaning only e.g., 10 % of the sample is 

transferred onto the column and 90 % discarded, to avoid column overload.  Another 

method is thermal-desorption gas chromatography, which is shown in Figure 2.2. The 

volatile analyte is trapped during sampling on an adsorption material like Tenax, molecular 

sieve, or active charcoal inside of a tube. By this approach, the sample is pre-concentrated 

on the tube. After sampling the tube is capped and stored until analysis. The injection takes 

place by heating the tube, thus desorbing the sample. The sample is then transported by the 

mobile phase into a trap, where it is focused before injection. The trap works by cooling to 

less than -180 °C, condensing the analyte. The injection takes place by rapidly heating the 

trap, transferring the analytes into the gas phase, and transporting them onto the column 

(Gerstel, 2021, Gey, 2015, Harris, 2014).  
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Figure 2.2: Explanatory scheme of gas chromatography with thermal desorption system and helium 
(He) as the mobile phase. The sample is desorbed from a sampling tube, transferred into the 
cryofocussing trap, and injected from there.  Figure after (Gey, 2015). 

 

Modern columns consist of a thin film on the inside of the capillary column with lengths of 

usually 30 or 60 meters. The thin film consists of Polyphenylmethylsiloxane or other 

siloxane derivates, depending on the required polarity of the column. For the mobile phase 

gases like nitrogen, helium or hydrogen can be used. Helium is the most common one as it 

has better properties when compared to nitrogen and is not explosive as hydrogen (Gey, 

2015, Harris, 2014).  

The column is inside an oven, where the temperature can be controlled precisely. Gas 

chromatography usually is performed with a temperature gradient, starting at low 

temperatures, e.g., 30 °C rising to high temperatures of over 200 °C. This enables a good 

separation of analytes with different vapor pressures and boiling points. The analyte is 

transported by the mobile phase and adsorbs and desorbs on the stationary phase several 

thousand times. The higher the vapor pressure the shorter the analyte will adsorb on the 

stationary phase resulting in shorter retention times. Polarity can play a role in the 

interaction between the analyte and the stationary phase, influencing separation and 

retention times. For detection, several detectors are possible with flame ionization detectors 

and mass spectrometers being the most common ones (Gey, 2015, Harris, 2014). 
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2.1.3. Mass Spectrometry 

 
In a mass spectrometer ionized atoms and molecules are separated according to their mass-

to-charge ratio (m/z ratio) and detected qualitatively as well as quantitatively. A mass 

spectrometer consists of different parts: An ionization source one or more mass analyzers, 

and a detector. 

 The whole mass spectrometer is operated under vacuum, reaching pressures lower than 

1·10-9 millibar (mbar) in the case of the orbitrap mass spectrometers. Other mass 

spectrometers work at pressures under 1·10-7 mbar. The pressures are reached by 

operating several (turbo) vacuum pumps.   

The ionization source transfers non-charged analytes into charged species. The introduction 

of the sample into the ionization source can be done directly or by coupling to a 

chromatographic system. There are different sources available for the ionization step, three 

of which are introduced in the following sub-chapter.  

The analyte ions reach the mass spectrometer, are focused into an ion beam, and the 

pressure is reduced to a high vacuum (<10-5 mbar). The separation takes place in the mass 

analyzer, of which there are different types (Quadrupole, Ion trap, Time of Flight, Orbitrap, 

etc.). The detector follows the mass analyzer, but in some cases, the detection occurs in the 

mass analyzer itself by ion current imaging (Gross, 2013). For further structure clarification, 

MSn experiments are possible, where single m/z-ratios are chosen and fragmented inside 

the mass spectrometer. Those fragments can be analyzed again, providing insights into the 

structure of the analyte (Gross, 2013, (Harris, 2014)). 

 

2.1.4. Ionization Sources 

 
Several ionization sources are available for introducing the analyte into the mass 

spectrometer. For the combination of gas chromatography with a mass spectrometer, the 

electron ionization (EI) is usually used, description is on page 25. With HPLC the 

electrospray ionization (ESI), the atmospheric pressure chemical ionization (APCI), or the 

atmospheric pressure photoionization (APPI) are commonly used.  

With ion sources coupled to an HPLC, ionization happens at atmospheric pressure, and 

resulting ions are introduced into the mass analyzer where the pressure is stepwise reduced 

until a sufficient vacuum is reached. All three ionization types have in common, that they are 
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“soft” ionization methods, meaning compounds are ionized almost without fragmentation, 

leading to molecular ions, which maintain the analytes' structural information.  

 

Figure 2.3: Suitable analyte polarity and molecular weight for different ionization sources (ESI, APCI, 
APPI). Figure after (Riches et al., 2017). 

 

As shown in Figure 2.3 the different ionization sources have different strengths. ESI is 

extensively used, as a wide range of mid- to non-polar compounds can be easily ionized. The 

formation of multiply charged ions is especially useful for the detection of high molecular 

weight compounds like proteins. With charges of more than one, the m/z-ratio stays small 

even at high molecular weights. This enables detection by common mass spectrometers, e.g., 

the orbitrap can detect ions up to a m/z ratio of 6000. Compounds that are not well 

ionizable by ESI are non-polar compounds, like sterols, which need other ionization sources 

like the APCI or APPI. As seen in Figure 2.3 APCI and ESI complement each other (Rosenberg, 

2003).  

 

Electrospray ionization 

The analyte is introduced into the source at atmospheric pressure, dissolved in a liquid, e.g. 

the HPLC eluent. The sample is sprayed through the capillary, at the tip of which a potential 

is applied, forming an electrically charged aerosol. Heated sheath and auxiliary gas enhance 

the formation of the aerosol and the evaporation of the solvent. Ion formation in positive 

mode is shown in Figure 2.4. 
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Figure 2.4: Construction of an electrospray ionization source. The analytes are solubilized and enter 
the ionization area in a fine spray. Figure after (Riches et al., 2017). 

 

When the solved sample leaves the capillary, it is exposed to an electric field of 3-4 kV, 

leading to charge separation and the formation of the so-called Taylor cone. From the tip of 

this cone small, highly charged droplets are emitted. The droplet’s liquid evaporates and 

when the Rayleigh Limit is reached, smaller highly charged droplets are formed from the 

bigger ones. The final ion release is discussed in two models. The charged residue model 

(CRM) suggests smaller and smaller droplets until the final droplet contains only one 

analyte molecule. Finally, evaporation leads to ion formation by charge transfer from e.g., 

the solvents protons. The ion evaporation model suggests that ions leave highly charged 

droplets when the field strength on the droplet’s surface enables field desorption. As a third 

option, proton transfer in the gas phase is discussed (Gross, 2013, Ho et al., 2003, Sleighter, 

Hatcher, 2007). The potential difference between the capillary tip and the MS entrance leads 

the freshly formed ions into the MS.  

 

Atmospheric Pressure Chemical Ionization 

Atmospheric pressure chemical ionization, short APCI is a technique in which molecules in 

the gas phase are ionized under ambient pressure. Analytes need to be thermally stable as 

temperatures in the ion source reach up to 400 °C. APCI can be used for direct input by a gas 

stream or coupled to liquid chromatography systems. (Hoffmann, Stroobant, 2011).  
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Figure 2.5: Schematics of an APCI ionization source. The analytes evaporate in the transfer capillary 
and reach the corona discharge area, where the ions are generated. Figure after (Hoffmann, 2013). 

 

The analytes are introduced into the ion source via gaseous or liquid phase and enter 

through an up to 400 °C heated transfer capillary in which solvents are evaporated. Heated 

sheath and auxiliary gas (N2) support the evaporation. After evaporation, the analyte-

molecules reach the plasma which is produced by a  corona discharge (up to 5 kV). Here a 

row of ion-molecule reactions takes place. At first, primary ions are formed out of the 

reactant gas, e.g., evaporated solvent molecules, nitrogen, or oxygen. Those primary ions 

transfer their charge onto the analytes. Positive as well as negative ion formation is possible, 

with the reaction mechanism depending on the applied voltage (Gross, 2013). For the 

reaction mechanism see Figure 2.6. 

 

Figure 2.6: Positive and negative ionization formation in the APCI. Sheath and auxiliar gas, containing 
water, nitrogen and oxygen are crucial for the final ionization of the analyte molecule M (Gross, 

2013). 
 

Analyte ions are formed by a chain reaction with proton transfer or abstraction as the last 

step. The addition or loss of n water molecules, resulting in adducts is also possible. For 

protonation, the proton affinity of the analyte needs to be higher than the one of water, 
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which is the case for many organic molecules. In negative mode especially acid groups are 

easily deprotonated. After ionization the ions are guided into the mass spectrometer, 

reaching the vacuum area ( (Gross, 2013, Harris, 2014, Hoffmann, 2013). 

 

Electron ionization 

With electron ionization, the analyte is ionized with energetic electrons. In contrast to ESI 

and APCI, it is a hard ionization method, meaning the analyte is fragmented into several 

pieces. This can enable structure determination. A scheme of an electron ionization source is 

shown in Figure 2.7. 

 

Figure 2.7: Schematics of an EI ionization source. The analyte is ionized by electrons which are 
emitted and accelerated to reach a kinetic energy of 70 eV. Figure after (Hoffmann, 2013). 

 

The source consists of a heated filament emitting electrons. The electrons are accelerated in 

the direction of the anode/electron trap. The electrons' velocity influences the wavelength 

and usually, a kinetic energy of 70 electron volt (eV) is chosen, where the electrons have a 

wavelength of 1.4 Å, which is roughly the length of a C-C bond. The analyte, which is in the 

gas phase and the electron collide, forming a positive ion with an odd electron number M + 

e-  → M+. + 2e-. The resulting radical cation is transferred into the direction of the mass 

analyzer, usually fragmenting. Neutral fragments won’t reach the analyzer and are removed 

by the vacuum system. Fragment patterns can be replicable at 70 eV and be used to compare 

with databases. 
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2.1.5. Mass spectrometers 

 
In the following chapter, the Orbitrap mass analyzer for high-resolution mass 

measurements and the ion trap analyzer with a nominal mass resolution are described.  

 

Ion-trap mass spectrometer 

An ion trap is a mass analyzer consisting of a ring-shaped electrode (cathode) and two end 

electrodes (anode). A three-dimensional high-frequency field is formed in which ions can be 

“stored”. The ions move in stable, saddle-like trajectories according to their mass-to-charge 

ratio. The corresponding voltages and frequencies to maintain stable trajectories can be 

described by the Mathieu formulas which give two parameters for az and qz. These two 

parameters can be varied, destabilizing the trajectories of chosen ions, which then leave the 

analyzer in direction of the detector. This procedure is called mass selective instability 

(Gross, 2013, Hoffmann, 2013).  

 

Figure 2.8: Stability diagram for a 3D ion trap, green represents the area where ion trajectories are 
stable. Adapted after (Hoffmann, 2013). 

 

Figure 2.8 describes at which AC voltage (qz term) and at which DC voltage (az term) the 

ions move on stable trajectories. Usually, the DC voltage is not changed, resulting in a 

working line at az =0. The ions are in different positions on the working line depending on 

their m/z  ratio. 

 



                            Analytical Methods and Instruments 

27 
 

A small amount of helium is present in the ion trap; it has two functions. On the one hand, it 

serves as a buffer gas, the kinetic energy of the ions is reduced by collisions and the ions are 

focused in the ion trap. They all have the same kinetic energy, which increases the 

resolution. On the other hand, in MS/MS experiments, the helium fragments selected ions by 

collisions (Gross, 2013, Hoffmann, 2013).  

As a detector, a secondary electron multiplier is used. Ions leave the ion trap and impinge 

onto a diode, knocking electrons out of this diode. The electrons are accelerated by applying 

a voltage, hitting other dynodes, from which they knock out several secondary electrons, 

amplifying the signal. In the end, the electrons are measured by an electrode that detects the 

voltage change (Gross, 2013, Hoffmann, 2013). 

 

Orbitrap mass spectrometer 

The Orbitrap mass analyzer enables ultra-high resolution mass spectrometry with a mass 

resolution of R = 140,000. The mass accuracy can achieve under 1 ppm with internal and 

under 5 ppm with external calibration. A mass range of m/z 6000 is covered (Thermo 

Fisher Scientific Inc., 2012) The only other mass spectrometers reaching resolutions this 

high or higher are FTICR (Fourier transforming ion cyclotron resonance) devices which are 

much more expensive. The mass-to-charge ratio is determined by measuring the oscillation 

frequency of the respective ions (Gross, 2013, Hoffmann, 2013). The scheme of an Orbitrap 

Q Exactive is shown in Figure 2.9.  

 

 
Figure 2.9: Schematics of the Orbitrap Q Exactive Hybrid Quadrupol Orbitrap mass spectrometer. 
Adapted from Thermo Fisher Scientific Inc., 2012. 
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First, the analytes are ionized in the ion source (APCI or ESI) and enter the orbitrap's high 

vacuum area through the ion entry system. A lens system focuses the ions and a 90° bend 

flatapole filters neutral particles by only allowing charged particles to enter the quadrupole 

mass analyzer, which works as a pre-filter for the orbitrap mass analyzer.  

The quadrupole mass analyzer consists of four hyperbolical stab rods, arranged parallel to 

one another. On two opposite rods, a radio frequency (RF) or respectively a DC offset 

voltage is applied. A periodical variation of the voltage attracts or repels the passing ions 

alternately. Only ions of certain m/z ratios can pass the quadrupole on stable trajectories. 

All other ions either impact on the electrodes or are removed by the vacuum system. Using 

this technique single nominal masses can be filtered and chosen for MSn. 

After passing the quadrupole the ions reach the C-trap (curved linear trap), a bend RF-

Quadrupole. Ions are stored and focused to a package by collisions with a cooling gas, which 

reduces kinetic energy. The ion package is then injected into the orbitrap mass analyzer. 

Behind the C-Trap is the HCD Collision Chamber (higher-energy collisional dissociation HCD) 

in which chosen mass-to-charge ratios can be fragmented for MS2 experiments. 

Fragmentation is performed by the acceleration of the analyte ions followed by collision 

with nitrogen. After fragmentation, the ions are led through the C-trap into the Orbitrap 

mass analyzer (Hu et al., 2005, Thermo Fisher Scientific Inc., 2017, Zubarev, Makarov, 2013) 

The Orbitrap mass analyzer itself consists of a spindle-like electrode surrounded by a  

barrel-like electrode. The outer electrode is separated into two pieces. Through a split ions 

are inserted decentral axial from the C-trap. The ions start oscillating around the inner 

electrode on stable trajectories. Attraction by the inner electron is in balance with the 

oppositional acting centrifugal force. 

 

 
Figure 2.10: Schematics of the Orbitrap mass analyzer and movement of ions around the inner 
electrode (Thermo Fisher Scientific Inc., 2017). 
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The ions move periodically along the z-axis (see Figure 2.10). The movement is harmonic 

and independent of all parameters except the mass-to-charge ratio. The only dependent 

measurand is the frequency which can be measured very precisely, the corresponding 

formula is shown in Formula (1). This enables the very high mass resolution of the Orbitrap 

(Hu et al., 2005).  

𝜔 =  √
𝑧

𝑚
 ×  𝑘 (1) 

ω = frequency of the harmonic oscillation,  m/z: mass-to-charge ratio, k: Instrumental 

constant 

The harmonic axial motion induces a current on each half of the electrode. The current is 

determined by a differential amplifier on the respective half of the outer electrode. The 

resulting frequency out of this ion current image is Fourier transformed into the mass-to-

charge ratio of the ions (Hu et al., 2005, Zubarev, Makarov, 2013). 

 

High-resolution mass spectrometry 

The mass resolution R describes the difference between two m/z -ratios which can just be 

separated. Often the resolution is indicated for the full width at half maximum (FWHM) 

(Gross, 2013). The formula for the mass resolution is shown in (2). 

𝑅 =  
𝑚

∆𝑚
 (2) 

 

The influence of the mass resolution is shown in Figure 2.11: 

 

 

Figure 2.11: Zoom on nominal mass 251.7 in low (left) and high (right) mass resolution (Nizkorodov 
et al., 2011).  
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At a resolution power of R = 5000 isobaric peaks of a nominal mass can’t be determined 

from one another. At R =100,000 four different peaks can be determined. (Nizkorodov et al., 

2011, Nozière et al., 2015).  

Also important is the determination of the exact mass. The calculated exact mass and the 

mass determined by the mass analyzer should be as close as possible to each other, 

desirable are relative mass accuracy’s lower than 5 ppm (Nozière et al., 2015). 

∆
𝑚

𝑧
=  

𝑚
𝑧 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

−  
𝑚
𝑧 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑚
𝑧 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

 (3) 

A high mass accuracy enables the calculation of the molecular formula. To improve the 

reliability of the molecular formula’s calculation, the Seven Golden Rules can be applied, as 

“older” rules like the nitrogen rule or the RDBE are insufficient at masses higher than 500 

Da (Kind, Fiehn, 2007). The seven golden rules give restrictions for element numbers during 

formula generation for small molecules, depending on the mass. For molecules smaller than 

1000 Da, e.g., carbon numbers of more than 78 are unlikely. Also, the LEWIS rules, the 

isotopic pattern filter, the element ratios, and an element probability check are used by most 

programs to increase the reliability of the molecular formula calculation (Kind, Fiehn, 2007). 

 

2.2. Data analysis 

 

Obstacle in the analysis of non-target high-resolution mass spectrometry data is the sheer 

abundance of detected compounds, resulting in compound lists of thousands or even tens of 

thousands of possible features. Data analysis by the human eye is not possible. To enable 

data analysis a data processing workflow consisting of several steps is needed, including 

raw data processing, spectral deconvolution, component detection, data normalization, and 

multivariate statistical analysis (Blekherman et al., 2011).  

 

2.2.1.  Raw data processing 

 
Raw data from mass spectrometry measurements need to be processed. Open-source and 

commercial options are available, to perform peak detection and deconvolution, extracting 

mass-to-charge ratios and retention times of the sample features, filtering for adducts and 

complexes, and calculating molecular formulas. Pre-processed data is further filtered, blank 
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subtracted, and aligned, resulting in a feature list ready for further data analysis by e.g., van 

Krevelen plots or machine learning methods like Principal Component Analysis or 

clustering. Those methods are described in the following chapters. (Blekherman et al., 2011, 

Enot et al., 2008, Yi et al., 2016). 

 

2.2.2. Normalization 

 
Before clustering or classification, the data must be normalized to take differences in 

metabolite recoveries, concentrations, or instrumental electronic noise into account. 

Different samples concentrations can influence the clustering result, as well as fluctuations 

in the experimental setup. With LC-MS not only mass accuracy drift or variability in 

retention times need to be controlled, but also ion suppression poses a problem, with 

biological samples there is high natural variability in samples. Also, metabolite 

concentration varies immensely, with the highest concentration not necessarily belonging to 

metabolites of interest. Metabolites like ergosterol are highly abundant and present in all 

samples whereas secondary metabolites, which make the difference between 

samples/species might have low concentrations. Normalization ensures that the clustering 

depends on relative intensities and not on absolute values with large differences. 

(Bouguettaya et al., 2015, Filzmoser, Walczak, 2014, Frochte, 2019, Meinicke et al., 2008). 

Normalization can be done sample- or data-based and performed pre- or post-acquisition. 

Figure 2.12 gives an overview of the normalization techniques. There’s a wide range of 

possible normalization methods, which are very controversially discussed and used 

(Blekherman et al., 2011, Bouguettaya et al., 2015, Daellenbach et al., 2019, Enot et al., 2008, 

Filzmoser, Walczak, 2014, Forsberg et al., 2018, Livera et al., 2012, Misra, 2020, Sysi-Aho et 

al., 2007, van den Berg et al., 2006, Veselkov et al., 2011, Winkler, 2020, Wu, Li, 2016, Yi et 

al., 2016).  
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Figure 2.12: Normalization strategies divided into sample-based and data-based approaches. Adapted 
after (Misra, 2020). 

 

Sample-based methods would be to normalize data based on properties like cell count, the 

concentration of a marker (e.g., ergosterol), weight, or the use of different internal or 

external standards. Cell count or weight can be used pre-acquisition by diluting the samples 

to their respective factors, approaches like standards can be used post-acquisition. Data-

based approaches are used post-acquisition. In data-based approaches the terms Scaling, 

Centering, Standardizing, Normalizing, and Transforming are sometimes used 

interchangeably. 

 

Transformation 

Often the first normalization step is a transformation to reduce data heteroscedasticity and 

skewness. Several transformation methods are available: log (base 2 or 10), BoxCox, square-

root, cube-root, CODA (centered log-ratio), arcsine, and other less common transformations. 

Log transformation is the most common one. Negative or zero values need to be adjusted 

with a factor, shifting the complete dataset. By a transformation, larger values are relatively 

more reduced than smaller ones. (Enot et al., 2008, Livera et al., 2012, Misra, 2020, van den 

Berg et al., 2006).  
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Standardization and centering  

After transformation normalization follows for which the terms centering/standardizing 

/scaling/normalizing are used interchangeably. Centering adjusts the data to a zero mean, 

or a zero median e.g., by subtracting the mean. Standardization adjusts to a zero mean and a 

variance of 1. The most common method is the z-score standardization, which is also called 

autoscaling (see Formula (4)) with µ being the mean and 𝜎 the standard deviation,  

𝑥′ =
(𝑥 −  𝜇)

𝜎
 (4) 

The prerequisite is that the data follows near Gaussian distribution, e.g., by previous log 

transformation. Pareto scaling is similar to autoscaling but used the square root of the 

standard deviation instead of the standard deviation as the denominator, being a less 

“invasive” normalization method than autoscaling (van den Berg et al., 2006). 

Another popular normalization method is global normalization where the same scaling 

factor for all features is used. In mass spectrometry, one would be using the total ion count 

(TIC) as the scaling factor. Another method would be using level-scaling with the mean or 

median:  

𝑥′ =
(𝑥 −  𝜇)

𝜇
 (5) 

Other methods are min-max normalization, min-max scaling, probabilistic quotient 

normalization (PQN), median fold change normalization, LOESS normalization (Locally 

weighted scatter plot smoothing), normalization to Euclidean unit length, quantile 

normalization, and more, shown in table Table 2.1. 
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Table 2.1: Normalization methods by formula. 

𝑞𝑖𝑗 = 𝑥𝑖𝑗
𝑇𝐼𝐶/𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙,𝑗

𝑇𝐼𝐶  

TIC normalization 

(Wulff, Mitchell, 

2018) 

𝑋𝑖 = {𝑥𝑖[1] … 𝑥𝑖[𝑚]},    �̅� = {�̅�[1] … �̅�[𝑚]} = {
∑ 𝑥𝑖[1]

𝑛
𝑖=1

𝑛
…

∑ 𝑥𝑖[𝑚]
𝑛
𝑖=1

𝑛
} 

With 𝑋𝑖  ordered set of intensities for sample i 

𝑋𝑖
𝑁 = {�̅�[𝑟𝑎𝑛𝑘(𝑥𝑖1)] … �̅�[𝑟𝑎𝑛𝑘(𝑥𝑖𝑚)]} 

Quantile 

normalization 

(Wulff, Mitchell, 

2018) 

𝑛𝑘
MFC = 𝑚𝑒𝑑𝑖𝑎𝑛 (

𝑥𝑖𝑘

𝑥𝑖𝑟
)  

Median fold change 

(MFC) (Veselkov et 

al., 2011) 

�̃�𝑖𝑗 =
𝑥𝑖𝑗−�̅�𝑖

(𝑥𝑖𝑚𝑎𝑥−𝑥𝑖𝑚𝑖𝑛)
, �̅�𝑖 = mean 

Range scaling (van 

den Berg et al., 

2006) 

 

Normalization methods are very controversially discussed having their advantages and 

disadvantages and should be chosen carefully. Nonetheless, normalization is needed for 

methods like principal component analysis, as variables need to have the same standard 

deviation (for detail see chapter 2.2.4) (Blekherman et al., 2011, Enot et al., 2008, Filzmoser, 

Walczak, 2014, Sysi-Aho et al., 2007, van den Berg et al., 2006, Veselkov et al., 2011, Wu, Li, 

2016). 

 

2.2.3. Machine learning algorithms 

 
Machine learning algorithms enable determining trends in non-target data and detecting 

features that differ samples from one another. As the number of features and/or samples 

can be very high dimensionality reduction techniques like Principal component analysis 

(PCA), linear discriminant analysis (LDA) or t-distributed stochastic neighbor embedding 

(t-SNE) can help. PCA can be used to reduce the data set to a smaller size. This smaller 

dataset is then used as input for further algorithms from the areas of unsupervised- and 

supervised learning. Unsupervised means, that no knowledge of which sample is which class 

is needed, whereas in supervised methods a training set with known classification is needed. 

Unsupervised learning includes clustering techniques like hierarchical clustering (HCA), k-

means clustering, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), or 

self-organizing maps (SOM). Clustering techniques can be used as a first step in determining 
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interesting features. Supervised learning requires some input in form of a training set (see 

chapter 2.2.5) and includes classification methods like the k-nearest neighbor, random 

forest (RF), support vector machine (SVM), partial least squares discriminant analysis (PLS-

DA), or linear discriminant analysis (LDA). To determine how well a classification performs 

cross-validation is used. The variance-bias trade-off and the problem of over-or underfitting 

can be handled by choosing the right parameters for the algorithms and performing cross-

validation (see chapter 2.2.6) (Blekherman et al., 2011, Bouguettaya et al., 2015, Frochte, 

2019, Yi et al., 2016). The methods used in this work are explained in the following chapters. 

In-depth mathematical explanations were omitted as they would go beyond the scope of this 

work, but can be found in (Frochte, 2019, Merkl, 2015). 

 

2.2.4. Dimensionality reduction  

 
Dimensionality reduction is a necessary step before applying unsupervised or supervised 

machine learning algorithms because of the so-called “curse of dimensionality”. Especially 

non-target LC-MS data can be very high dimensionally with several hundred to thousands of 

features per sample. With high-dimensional data, the distance measurements in a Euclidean 

space become less meaningful the more dimensions are included. This is also called distance 

concentration and is explained in literature (Zimek et al., 2012). The curse of dimensionality 

leads to less meaningful clustering and classification results with high dimensionality data. 

Several methods are available to reduce dimensionality with principal component analysis 

being the most prominent one. A rule of thumb says that at least five samples should be 

available per dimension (Koutroumbas, Theodoridis, 2010). This rule of thumb should be 

carefully examined for each data set, as also more dimensions can be useful as long as they 

contain relevant information.  

 

Principal Component Analysis 

Principal component analysis is a multivariate statistical method that uses linear 

combination to reduce dimensionality in a data set and helps to get a first look at the data. A 

dataset with 10,000 dimensions can be reduced to only two or three, enabling graphic 

representation. PCA also gives information on which variable is the most valuable for 

clustering the data.  

Principal components are eigenvectors of the data’s covariance matrix. As a first step, the 

data imperatively need to be standardized, so that features have the same weight 

independent of their unit of measure. Secondly, the covariance matrix is calculated as well 
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as the eigenvalues and eigenvectors for the covariance matrix. eigenvalues and their 

corresponding eigenvectors are sorted, depending on how much of the data’s variance is 

explained by the eigenvalue. The eigenvector or principal component which explains the 

highest amount of variance is the first, the one which explains the second most of the 

variance the seconds, and so forth. A scree plot can help to see how much of the data’s 

variance is explained by the respective principal component, an example is shown in Figure 

2.13.  

 
Figure 2.13: Explanatory scree plot showing how much of the variance is explained by the principal 
components. 

 

Depending on the user a certain number k of principal components is chosen, e.g., the 

number of PCs which explain 90 % of the data’s variance. In the case of Figure 2.13, these 

would be the first two principal components. The chosen k eigenvalues are used to form a 

matrix of corresponding eigenvectors, which are then used to transform the original matrix 

(feature matrix ⨯ chosen number of eigenvectors = transformed, dimensionality reduced 

data). Results can be visualized by making a scatter plot representing the samples according 

to the first two principal components, see the example in Figure 2.14. The data represented 

is the Fisher iris data set concerning three species of the flower genus Iris, which is 

commonly used in machine learning contexts (FISHER, 1936). 
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Figure 2.14: Exemplary score plot on the example of the Fisher Iris Data set. Even with only the 
information of two principal components a difference between the classes, especially between class 1 
and the other two classes can be visualized. 

 

In some cases, differences between classes can be visualized by a PCA and allow a first 

visual inspection of the data (see Figure 2.14). Additional plots like loading plots where the 

eigenvectors are visualized to see which variables correlate with which PC or a biplot, 

where score and loading plot are superimposed can give additional information, e.g., which 

variable is important for differences between samples. An example of a loading plot is 

shown in Figure 2.15. Features that correlate (Feature 1 and 2) are very close to one 

another.  

 
Figure 2.15: Explanatory loading plot with four features with different correlations. 

 

No correlation would mean that features are at a 90 ° angle as shown with features 2 and 3. 

Anti-correlation is shown with features 1 and 4 which are placed at a 180 ° angle. 
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Score, loading, and biplot have to be carefully interpreted as they show only the variance 

that the first two principal components can explain (Frochte, 2019, Merkl, 2015, Wentura, 

Pospeschill, 2015).   

 

t-distributed stochastic neighbor embedding 

t-SNE is a dimensionality reduction technique that is used for visualization. In contrast to 

PCA it is not used for feature extraction, and it is a non-linear dimensionality reduction 

technique with a focus on keeping similar data points close together in low dimensional 

space. t-SNE briefly explained uses two steps, at first, a probability distribution is 

constructed with high probabilities for similar objects and low probabilities for less similar 

objects. Then the probability distribution is performed in low dimensions and compared 

with the one in the high dimensional space while minimizing the Kullback-Leibler (KL) 

divergence. The KL divergence is a measure of the difference between two probability 

distributions, in this case between the one in the high- and the one in the low dimensionality 

space (van der Maaten, Hinton, 2008). The Python implementation of t-SNE needs several 

parameters to be set by the user, mainly the perplexity, with values between 5 and 50. It is 

equivalent to the number of neighbors used in other machine learning algorithms, the 

bigger the dataset the higher the perplexity should be. An explanatory picture is shown in 

Figure 2.16 with the Fisher iris data set. T-SNE performed similarly to PCA as in the iris data 

set mostly linear relationships exist.   

 

Figure 2.16: t-SNE protection of Fisher iris data set. Class 1 is separated from classes two and three. t-
SNE component 1 on x-axis, t-SNE component 2 on y-axis.  
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2.2.5. Unsupervised learning methods 

 
With unsupervised learning, no previous input before clustering is needed. The information 

on which sample belongs to which class is not necessary. 

 

Hierarchical Clustering 

Hierarchical clustering can be performed divisive or agglomerative (“bottom-up”). Here the 

agglomerative approach is described.  Results can be visualized as dendrograms and as heat 

maps.  Agglomerative hierarchical clustering consists of several steps. Firstly, the 

normalized data is saved in an m ⨯ n matrix (m: feature, n: sample), and the distance matrix 

between two objects i and j is calculated with the Euclidean Distance (Formula (6)). Other 

distances like Manhattan/City block, Minkowski's, Mahalanobis, cosine, hamming, etc. can 

be used.  

𝑒𝑗𝑘 = √∑(𝑋𝑖𝑗 − 𝑋𝑖𝑘)2

𝑛

𝑖=1

 (6) 

With j and k being two objects, n the number of attributes, Xij and Xik the coordinates for the 

two objects. Often also the quadrated Euclidean distance is used (Wentura 2015). 

After distance calculation, the proximity of two objects i and j are used to group them into 

clusters. The two objects with the minimal distance are combined into a cluster. 

Subsequently, the distances between this newly formed cluster and the other clusters are 

calculated to find the next clusters to be joined together. Several linkage algorithms are 

available: Unweighted average distance (UPGMA), centroid (UPGMC), complete, single, 

median, ward (minimum variance algorithm), etc. Table 2.2 gives an impression.  
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Table 2.2: Typical linkage algorithms with an explanatory picture on the right (The MathWorks, 
2021b).  

 

Average linkage is considered robust compared to other linkage methods (Everitt 1993, 

Kalkstein 1987, Robinson 2013). A cophenetic correlation coefficient can be used to 

determine which linkage method is best suited to find the closest relationship between the 

two variables X and Y. The cophenetic correlation coefficient measures how accurately the 

linkage function determined the distance of the original data. Ideally, the correlation 

coefficient should be close to one.  

𝑐 =
∑ (𝑌𝑖𝑗 − 𝑦)(𝑍𝑖𝑗 − 𝑧)𝑥

𝑖<𝑗

√∑ (𝑌𝑖𝑗 − 𝑦)2 ∑ (𝑍𝑖𝑗 − 𝑧)2𝑥
𝑖<𝑗

𝑥
𝑖<𝑗

 
(7) 

Z: output of linkage function, Y: distance, c: cophenetic distance. Yij: distance between 

objects I and j in Y. Zij: cophenetic distance objects I and j in Z. y and z: average of Y and Z 

(The MathWorks, 2021a). 

After completion, a clustering tree is formed, where the height of each arm shows the 

“similarity” of the clusters to one another. Features are then sorted following the clusters’ 

order. The whole process is repeated sample-wise. After sorting, a heat map is used to 

visualize the results, enabling fast detection of similar and distinctive features (Bouguettaya 

et al., 2015, Frochte, 2019, Murtagh, Contreras, 2012). An explanatory heatmap is shown in 

Figure 2.17 with tree diagrams visualizing the clustering for samples (horizontal) and 

features (vertical). Dark red implicates high intensities, and dark blue low intensities of the 

features in the heat map.   
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Figure 2.17: Explanatory heat map with tree diagrams to visualize hierarchical clustering results. The 
vertical tree diagram represents features and the horizontal tree diagram the samples. The heatmap 
shows the intensities of the different features, sorted according to the clusters. Own work, LC-MS 
analysis of fungal spore samples.  

 

The heatmap gives information about the relationship between samples and the 

relationship between features. Additionally, the heatmap can show if certain features are 

intense for a certain sample group. However, it doesn’t give information on which kind of 

molecule the features of interest are. A van Krevelen plot can help visualize features and get 

information about the feature’s nature. In a van Krevelen plot, the hydrogen (H) to carbon 

(C) ratio is plotted against the oxygen (O) to carbon ratio. As biological molecule groups 

have definitive ranges in which the O/C and the H/C ratios lay, regions can be defined, as 

seen in Figure 2.18 (Brockman et al., 2018, Kew et al., 2017, Kim et al., 2003, Rivas-Ubach et 

al., 2018). 
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Figure 2.18: Van Krevelen plot with regions for biomolecules marked in color. Adapted from 
(Brockman et al., 2018). 

 

The van Krevelen plot gives information if a molecule is belonging to a certain group of 

biomolecules. Areas can overlap as molecules can have the same stoichiometric constraints 

but different structures.  

 

k-means clustering 

With k-means clustering, a dataset is grouped into k  clusters. The number of clusters k  is 

fixed and determined by the user, depending on the data. An elbow plot helps find a good 

value for k.  

k gives the number of centroids whose position is selected randomly. Afterward, the data 

points are ordered to their nearest centroid. The position of the centroid is recalculated, and 

the ordering is repeated until the sum of squares within the cluster is minimal and the 

clustering centroids have their final position (Hartigan, Wong, 1979) (Blekherman et al., 

2011, Frochte, 2019, Merkl, 2015). 

𝐽 = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗∈𝑆𝑖

𝑘

𝑖=1

 (8) 

With 𝑥𝑗  as the data points, 𝜇𝑖  as the centroids of the clusters 𝑆𝑖  and ‖𝑥𝑗 − 𝜇𝑖‖
2

 as the 

quadrated Euclidean distance. 
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For choosing the right value k  an elbow plot, using WCSS is calculated. WCSS ( Within-

Cluster Sum of Square )  is the sum of squared distances between each point and the 

cluster's centroid. The optimum k value is at the “elbow”, the number k  where the slope of 

the graph changes. For clustering, the fisher iris data set the elbow plot shows the optimal 

number of clusters at 3, see Figure 2.19.   

 

Figure 2.19: Elbow plot on the example of the Fisher iris data set. The optimal number of clusters is 
three. 

 

Clustering with 3 centroids results in the picture shown in Figure 2.20. Class 1 is determined 

correctly. Class 2 and 3 are closer together (see PCA results Figure 2.14) and not all data 

points were correctly determined as k-means can’t separate correctly between the two 

classes.  

 

Figure 2.20: k-means clustering for the Fisher iris data set. The black x represents the centroid. Red = 
cluster 1; Grey = cluster 2; Orange = cluster 3. 
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The k-means algorithm is susceptible to noise and outliers. Density-based clustering 

(DBSCAN) is an alternative unsupervised clustering method that performs better when 

noise is present.  

 

DBSCAN 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) uses the density of 

point groups to determine clusters and noise. The parameter epsilon (ε) determines a 

radius and another parameter the minimum number of points required to form a dense 

region. DBSCAN works by marking points as core points, edge points, or outliers. Core 

points are in a certain environment ε to other points and have a certain number of neighbor 

points belonging to the same cluster. The cluster can grow from these points. In Figure 2.21 

they are marked red, each point has at least two neighbor points which are also core points. 

Edge points marked yellow in the figure are in the correct radius to another point, but only 

have one neighbor. The cluster can’t grow any further from an edge point. Some points (blue 

color in the figure) are neither in the distance ε nor have any neighbors, determining them 

as outliers (Frochte, 2019, Merkl, 2015).  

 

 

Figure 2.21: Exemplary DBSCAN with core points (red), edge points (yellow), and outlier points 
(blue). Modified after (Frochte, 2019). 

 

DBSCAN is commonly used but doesn’t work in high-dimensionality datasets. Data 

dimensionality is needed before performing DBSCAN. Overall is unsupervised clustering 

able to give an idea of how many different classes are in a dataset, but the results aren’t as 

accurate as results from supervised learning.  
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2.2.6. Supervised learning methods 

 
Supervised learning methods need a training data set, where classes are known.  The 

algorithm is trained, and parameters are optimized. After training a test data set is used to 

determine how well the classifier performed. Performance and robustness testing of the 

classification is often done by cross-validation, which is described in the following chapter.  

 

Cross-Validation 

Cross-validation makes it possible to estimate the best parameters for an algorithm and to 

estimate the accuracy of a predictive classification. Usage reduces overfitting and helps with 

the bias/variance trade-off. Bias and variance are two error sources that need to be 

controlled so that the algorithm performs correctly when faced with unknown samples. A 

high bias error would result in underfitting, meaning the assumptions from the training data 

do not represent the data. A high variance error would result in overfitting, meaning the 

algorithm is perfectly trained for the training data, but as soon as an outlier or novel 

(unknown) data is presented the performance of the algorithm is not accurate.  

Cross-validation is used by splitting a dataset with known classes into a test and a train set. 

The train set is introduced into the algorithm after training, and it can be determined how 

many of the samples were correctly classified.  Generally, 70 – 85 % of the data set is used 

for training and 15 – 30 % for testing. There are different forms of cross-validation, 

depending on the size of the data set. Typically, n-fold cross-validation (usually n=10) is 

used, whereas the “leave-one-out” approach is used for small data sets.   

 

n-fold cross-validation 

The dataset is separated into n randomly chosen subsets of similar size. 
𝑛−1

𝑛
 of the data set is 

used for training and 
1

𝑛
  for testing. This is repeated n-times while variating which subset is 

used for training and which for testing (see Table 2.3).  
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Table 2.3: Schematics of n-fold cross-validation, adapted from (Frochte, 2019). 

 

 

The dataset usually is randomly partitioned into subsets. As shown in Table 2.3 90 % of the 

data set is used for training and 10 % for testing. This is repeated 10 times with a different 

subset for training and testing in each round. 10 repetitions are the usual number for n-fold 

cross-validation. 

Leave one out cross-validation 

With small datasets, a leave-one-out approach can be chosen, where n-1 objects are used for 

training and just 1 for testing. This can be repeated for each object of the data set.  

In the end, for all cross-validation methods, the accuracy, see formula (9) can be calculated 

(Frochte, 2019):  

Accuracy =
Number of correct predictions

Total number of predictions
 (9) 

 

The accuracy itself doesn’t give more information about the false predictions. It doesn’t 

show if a sample from the wrong class was classified as X or if a sample from class X was 

classified wrongly. To visualize this a confusion matrix is helpful (see Figure 2.22). 

 

 

Figure 2.22: Example of a confusion matrix. Adapted after (Frochte, 2019). 

 

In the example from Figure 2.22, one can find out if a sample is from species X or not. The 

classifier determined 7 samples as true positive and 12 samples as true negative. However, 
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5 samples were determined as not belonging to species X although they belong to species X, 

making those false-negative results. There were no false-positive results from the classifier. 

By this, the specificity (true negative (TN) rate), the sensitivity (true positive (TP) rate), and 

the precision (positive predictive value) can be determined. Confusion matrices can also be 

used with multi-level classifiers (Frochte, 2019, Merkl, 2015).  

 

Support Vector Machine 

A support vector machine (SVM) is a supervised learning method that performs 

classification and regression analysis. SVM is robust, flexible, and shows a high classification 

performance. SVM can also classify if many features are present, as they can work in higher 

dimensions.  With a support vector machine, the margin between classes is maximized. SVM 

uses hyperplanes to separate classes from one another (see Figure 2.23), with the 

hyperplane having the maximum distance between the classes.  

 

 

 
Figure 2.23: Hyperplanes separating two classes. H1 doesn’t separate, H2 separates at a small margin 
and H3 separates at the maximum margin. Figure after (Weinberg, 2012). 

 

In Figure 2.23 hyperplane H1 doesn’t separate the classes at all, hyperplane 2 does, but only 

by a small margin, and hyperplane 3 gives the maximum margin. The figure shows the 

separation in two dimensions, but SVM performs the classification in higher dimensions 

using the so-called “kernel trick”. The hyperplanes are determined in a high-dimensionality 

space and then transferred back into lower dimensions.  Several kernels are available, the 

most common ones being linear, polynomial, and radial basis function (rbf) (Frochte, 2019, 

Merkl, 2015). When running SVM several parameters need to be chosen, the kind of kernel, 
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the value C, and gamma being the main ones. C is a regularization parameter, penalizing 

wrong classifications during training, high C values can lead to overfitting. Gamma is a 

kernel coefficient, with 1/n features being a common setting. Cross-validation can help find 

the optimal parameters.  

 

k-nearest neighbors algorithm 

k-nearest neighbor (kNN) is a supervised non-parametric classifier used for classification 

and regression. Data should be normalized as a distance metric is used and a dimensionality 

reduction should be performed before applying the algorithm. The advantage is, that there 

are no parameters besides the number of k neighbors that need to be chosen.  Objects are 

classified by looking at the k nearest neighbors. E.g., with k=1 only the nearest neighbor is 

used to define into which class the new sample belongs. With k=3 the three nearest 

neighbors are used and so on. Cross-validation can be used to determine the best number 

for k. (Frochte, 2019, Merkl, 2015).  

 

Machine learning for non-target MS analysis 

Overall, supervised learning methods can be a powerful tool to determine which class a new, 

unknown sample belongs to. A prerequisite is that there is a sufficient training data set. 

Generally, in machine learning contexts several thousand samples are used as training data, 

which is usually not possible with biological or environmental sample sets. Studies on 

biological samples like fungi differentiation or environmental samples like water usually 

include less than 100 samples (Aliferis et al., 2013, Erler et al., 2020, Gotthardt et al., 2020, 

Guo et al., 2020b, Kang, 2011, Kim et al., 2016, Kruve, 2019, Maciá-Vicente et al., 2018, 

Müller et al., 2013, Samanipour et al., 2019, Zwickel et al., 2018).  

Biological samples show intrinsic biological variation, which makes classifications and 

unsupervised clustering approaches a difficult task. Biological or environmental variation 

leads to dynamic feature spaces.  Especially with high-resolution mass spectrometry 

features spaces become more and more complex, consisting of several thousand features. 

Nonetheless, machine learning can do what a human cannot, extracting information out of 

complex datasets with several thousand dimensions. For biological samples, relative 

abundances between features can be more meaningful than absolute (yes/no) abundancies. 

It can’t be expected that all samples from class X will express a certain feature. Some 

samples might express the feature in very low abundances, below the measurement 

threshold, or not at all. But machine learning algorithms evaluate hundreds or thousands of 
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features, detecting patterns within complex feature spaces,  which enables the 

determination of classes. Having a multiclass problem when classifying different fungal 

species for example enhances the difficulty of the classification. Careful method 

development including cross-validation is necessary (Liebal et al., 2020, Samanipour et al., 

2019). 

In conclusion, machine learning is a valuable technique for various analytical questions 

including the analysis of non-target LC-MS data. Applying machine learning algorithms on 

LC-MS data is a relatively novel approach, first applied in metabolomic studies in medical 

fields. First publications emerged in the early 2000s (Liebal et al., 2020). Together with 

high-resolution mass spectrometry, machine learning algorithms show high potential for 

the analysis of environmental and biological samples. 
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3. Thesis Motivation 

 

Fungal spores are part of primary biological aerosol particles and influence our lives every 

day. They can act as allergens and human or plant pathogens, but also as biological plant 

protectants. Monitoring methods are either not precise, like microscopy, or time-consuming 

and expensive, like DNA analysis. Additional methods for fast and easy classification of 

fungal spores in environmental samples are needed.  

Direct analysis of fungal spores enables filter sampling from the air and passes over the 

cultivation step. This is especially useful as less than 20 % of fungal species can be cultivated. 

Results from fungal spore analysis might be better generalizable and therefore transferable 

to real-world samples than results from axenic, single-species cultures. In axenic cultures, 

the fungi’s metabolome usually does not represent the metabolome under “real-world” 

environmental conditions, as the expression of metabolites is highly dependent on growth 

conditions and the presence of other organisms (Begley, 2020, Overy et al., 2014, Rämä, 

Quandt, 2021). Because fungal spores are metabolically dormant and need to survive in 

many environments, they might not be as adapted to a certain environment and results 

might therefore be generally applicable.  

Non-target high-resolution mass spectrometry can give a picture of the fungal spores’ 

metabolome, including potentially class-differentiating secondary metabolites. High-

resolution mass spectrometry allows a fast and comprehensive analysis. Even for 

metabolically dormant fungal spores the features detected by non-target LC-HRMS can be 

highly complex. Biological variation in-between species can be high, which hinders the 

detection of class-specific features. This makes novel data analysis methods including 

machine learning algorithms, particularly useful. The data analysis of biological samples 

with machine learning algorithms is demanding. Biological sample sets usually provide only 

a limited number of samples whereas high-resolution mass spectrometry data provides high 

dimensionally feature spaces. Data pre-processing, machine learning algorithms, and 

parameters need to be carefully chosen and validated, to obtain a sensible and robust 

method. 

Fungal classification based on LC-or GC-MS analysis of fungal axenic cultures has been 

reported, but not based on fungal spores.  The main aim of this doctoral work was the 

development of the first classification method of fungal species and classes based on non-

target LC-HRMS data of fungal spores.  
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During this work, several machine learning algorithms, including unsupervised clustering 

and supervised classification methods, are investigated to find a suitable classification 

method. The developed method is applied for the class differentiation of fungal spores from 

four fungal classes from five different families. Additionally, it is examined if fungal spores of 

different species, but the same genus can be classified. This is evaluated on five fungal 

species from six different strains. The mass spectrometric analysis is performed with ESI 

and APCI ionization in both positive and negative modes to determine the most suitable 

ionization methods which would give a comprehensive picture of the fungal spores’ 

metabolome. In addition, it is studied if features are detected that are class- or species-

specific. Furthermore, basidiomycetes spores from the Amazonian rainforest are examined 

as well as a thermal desorption GC-MS system for the volatile organic compound profile of 

fungi. Additional application of non-target LC-HRMS data analysis for the evaluation of e-

cigarette liquids and condensates is investigated.  
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4. Experimental Setup 

 

In the following chapters, the experimental setup is described.  First, the fungal spore 

samples are explained, then the experimental workflow. Instruments, chemicals, and 

computer programs used in this work are shown in the supplementary information, see 

appendix chapter 8.1.1.  

 

4.1. Fungal spore samples 

 
The main sample set consists of different ascomycetes, Aspergillus versicolor, Cladosporium 

cladosporioides, Botrytis cinerea, Verticillium dahlia, and several Trichoderma spp. 

(T. longibrachiatum, T. fasciculatum, T. minutisporum, T. atroviride and T. harzianum with 

two different strains). The taxonomic classification is shown in Table 4.1. 

Table 4.1: Table of ascomycetes used in this work. Taxonomic classification from (Index Fungorum, 
2020). 

Genus Family Order Class 

Aspergillus Trichocomaceae Eurotiales Eurotiomycetes 

Cladosporium Davidiellaceae Capnodiales Dothideomycetes 

Botrytis Sclerotiniaceae Helotiales Leotiomycetes 

Trichoderma Hypocreaceae Hypocreales Sordariomycetes 

Verticillium Plectosphaerellaceae Glomerellales Sordariomycetes 

 

The samples belong to different classes, with exception of Verticillium and Trichoderma, 

which both belong to the class Sodariomycetes. An overview of different fungal classes and 

their connection with one another is given in Figure 4.1. 

https://en.wikipedia.org/wiki/Trichocomaceae
https://en.wikipedia.org/wiki/Davidiellaceae
https://en.wikipedia.org/wiki/Capnodiales
https://en.wikipedia.org/wiki/Dothideomycetes
https://en.wikipedia.org/wiki/Sclerotiniaceae
https://en.wikipedia.org/wiki/Helotiales
https://en.wikipedia.org/wiki/Leotiomycetes
https://en.wikipedia.org/wiki/Hypocreaceae
https://en.wikipedia.org/wiki/Hypocreales
https://en.wikipedia.org/wiki/Sordariomycetes
https://de.wikipedia.org/wiki/Glomerellales
https://de.wikipedia.org/wiki/Sordariomycetes
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Figure 4.1: Tree illustrating relationships between groups of fungi. Fungal classes of Ascomycetes 
used in this work are marked in red. Adapted from (Grigoriev et al., 2014). 

 

All classes belong to the subclade Pezizomycotina with Eurotiomycetes and 

Dothideomycetes being more closely related on the one hand and Leotiomycetes and 

Sodariomycetes on the other hand. 

Aspergillus versicolor is ubiquitously occurring in different environments like soil, marine, 

and indoor. It is commonly associated with indoor molds. The genus Aspergillus contains 

more than 350 species and is known to produce toxic or allergenic secondary metabolites 

(see chapter 1.2.3). Aspergillosis affects 14 Mio. People yearly, causing death to 600,000 

individuals (Powell, 1994).  

Cladosporium cladosporioides occur worldwide, outdoor as well as indoors. The genus 

Cladosporium contains over 700 species and is often found in bioaerosol samples. 

Cladosporium species produce no major mycotoxins of concern but are often found in very 

high concentrations outdoors, especially in summer, and can cause allergies (Grinn-Gofroń 

et al., 2019).  

Botrytis cinerea is a plant pathogen known to infect more than 200 different kinds of plants. 

It lives parasitic and induces apoptosis in plants. If Botrytis infects grapes in spring it leads 

to a loss of harvest, but if it infects ripe grapes in fall, it can induce the so-called noble rot 

(german: Edelfäule), resulting in sweeter and more complex wines. Control is possible with 

chemical fungicides, although multiple fungicide resistances were reported (Rupp et al., 

2016).  

https://en.wikipedia.org/wiki/Dothideomycetes
https://en.wikipedia.org/wiki/Leotiomycetes
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Verticillium dahlia is a plant pathogen with more than 50 species known to the genus 

Verticillium. Over 300 different kinds of plants can be infected and control by fungicides is 

difficult as Verticillium can persist in the soil (Barbara, Clewes, 2003). 

Trichoderma has a teleomorph form called Hyprocrea. Nevertheless, the genus is called 

Trichoderma.  Trichoderma consists of more than 200 species and is usually found on plant 

material or in soil, in some cases also as house mold.  Trichoderma produces a wide range of 

secondary metabolites, peptaibols, siderophores, and diketopiperazines like gliovirin, 

polyketides, terpenes, pyrones, and isocyane metabolites. Some have antibiotic activity 

and/or improve plant and root growth and act against phytopathogenic fungi. Some 

Trichoderma strains are used as biological plant protectants, improving crop productivity. 

The strain Trichoderma atroviride , which was used in this work is used as a biological plant 

protectant in vineyards (tradename “Vintec” by Belchim Crop Protection).  Trichoderma 

also produces VOCs some of them with a characteristic flavor (“coconut”) which can be used 

for species or strain determination (Almeida et al., 2019, Bissett et al., 2003, Harman et al., 

2004, Harman, 2006, Reino et al., 2007, Sood et al., 2020, Stoppacher et al., 2007, Zeilinger et 

al., 2015a, Zeilinger et al., 2016). 

The CBS (Centraalbureau voor Schimmelcultures- central bureau of fungal cultures) or DSM 

(Deutsche Sammlung von Mikroorganismen und Zellkulturen German Collection of 

microorganisms and cell cultures) number of the used strains is given in Table 4.2. 

Table 4.2: Table of species used in this work. Corresponding numbers are from the Centraalbureau 
voor Schimmelcultures (CBS) and Deutsche Sammlung von Mikroorganismen (DSM). 

Species/ Strain Number 

Botrytis cinerea DSM 877 

Aspergillus versicolor DSM 19652 

Cladosporium cladosporioides CBS 109.21 

Verticillium dahliae DSM 11938 

Trichoderma longibrachiatum CBS 488.78 

Trichoderma fasciculatum CBS 118.72 

Trichoderma minutisporum CBS 584.95 

Trichoderma harzianum strain B CBS 608.89 

Trichoderma harzianum strain A CBS 348.96 

Trichoderma atroviride CBS 122089 
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Fungal spore samples were grown under different conditions to induce phenotypical 

plasticity. Differences were growth media, temperature, day/night rhythm, and partly also 

season. Samples from Trichoderma harzianum strain A and B and Trichoderma atroviride 

were examined for three years and stored in between in the “Stammsammlung” at 4 °C. 

Fungi that are reactivated from a dormant state can change their phenotype after each 

activation. The media used were PDA (potato dextrose agar) and HMG (yeast malt agar) at 

26 °C (darkness) and 20 °C (day-night light rhythm) with incubation periods between 14 

and 30 days. Both T. harzianum. and T. atroviride. were also subjected to growth at 20 °C in 

darkness and 26 °C with day/night rhythm in another laboratory building. In Figure 4.2 it is 

shown that fungal samples of the same species, grown under different conditions, have 

different appearances. Samples shown in the upper right corner (samples 5-10), which were 

grown in darkness show noticeably less pigmentation than samples shown in the lower 

right corner, which were grown in daylight. 

 

 
Figure 4.2: Photograph of fungal cultures before harvest. Left to right. Column 1: Blank samples, 2: 
Cladosporium cladosporioides, 3: Botrytis cinerea, 4: Aspergillus versicolor, 5: Trichoderma 
minutisporum. 6: Trichoderma fasciculatum, 7: Trichoderma longibrachiatum, 8: Trichoderma 
atroviride, 9: Trichoderma harzianum strain B, 10: Trichoderma harzianum strain A. 
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An overview of the biological replicates is given in Table 4.3. 

Table 4.3: Overview of biological replicates of fungal spore samples.  

Genera/Species/ Strain Biological replicates parameters Biological replicates 

Aspergillus versicolor 
PDA and  HMG  20°C/26°C each. 

Repetition after 1 month. 
8 

Botrytis cinerea 
PDA and  HMG  20°C/26°C each. 

Repetition after 3 months. 
8 

Cladosporium cladosporioides 
PDA and  HMG  20°C/26°C each. 

Repetition after 3 months. 
8 

Verticillium dahliae 
PDA and  HMG  20°C/26°C each. 

Repetition after 1 month. 
9 

Trichoderma longibrachiatum 
PDA and  HMG  20°C/26°C each. No 

repetition. 
4 

Trichoderma fasciculatum 
PDA and  HMG  20°C/26°C each. No 

repetition. 
4 

Trichoderma minutisporum 
PDA and  HMG  20°C/26°C each. No 

repetition. 
4 

Trichoderma harzianum strain B 

PDA and  HMG  20°C/26°C, grown in 

fall 2019 (old laboratory), spring 

2021, and fall 2021. 

8 

Trichoderma harzianum strain A 

PDA and  HMG  20°C/26°C, grown in 

fall 2019 (old laboratory), spring 

2021, and fall 2021. 

9 

Trichoderma atroviride 

PDA and  HMG  20°C/26°C, grown in 

fall 2019 (old laboratory), spring 

2021, and fall 2021. 

13 

Trichoderma samples biological 

replicates total 

Total of Trichoderma biological 

replicates, see above. 
42 

Biological replicates 
Total of all biological replicates, see 

above 
75 

 

At least 8 samples which are biological replicates are available per genera except for 

Trichoderma where 5 different species with a total of 6 strains are available, totaling 42 

Trichoderma samples. All together 75 biological replicates are available.  
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Basidiomycetes samples from the Amazonian rainforest 

Additionally, fungal spore samples from Brazil were examined, which were sampled on 

filters. They were collected in the Amazonian Rainforest at the Amazonian Tall Tower 

Observatory (ATTO), close to São Sebastião do Uatumã, Brazil. Sampling and taxonomical 

classification were performed by Cybelli Barbosa (C.Barbosa@mpic.de). The samples are 

four single spore samples and one mixed sample. The single spore samples were taken very 

close to the fungi’s fruiting body, by a pump with sucked the spores onto a filter. Taxonomic 

classification was based on the fruiting body. The mixed sample was taken on ground level 

at the research site, close to the trees where the fruiting bodies occur.  The samples are 

basidiomycetes of the genera Trametes, Picnoporus, and Ganoderma. One sample was 

classified on the family level as Polyporaceae. The sample set is very small. Planned further 

samples couldn’t be collected due to COVID-19 related closures in 2020 and 2021. 

Table 4.4: List of basidiomycetes used in this work. 

Sampling 

Period 
Genus Family Order Class 

Wet 2019 Trametes 

Polyporaceae 
Polyporales Agaricomycetes 

Wet 2019 Picnoporus 

Wet 2019 Polyporaceae 

Dry 2018 Ganoderma Ganodermataceae 

Dry 2018 Field Mix mixed mixed mixed 
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4.2. Workflow for extraction, measurement, and data processing 

 

The workflow is shown in Figure 4.3. In short, samples were harvested, followed by 

extraction and spore counting. The resulting raw extracts were resolubilized and diluted, 

measured by LC-MS, and pre-processed by MZmine. Afterward, blank subtraction and 

alignment in MATLAB finalized the pre-processing step. Machine learning, including 

normalization, dimensionality reduction, unsupervised and supervised learning was 

performed with Python. 

 

 

Figure 4.3: Workflow for sample preparation, extraction, measurement, and data processing of fungal 
spore samples.  

 

Fungal spore samples were grown by Hendrik Neumann and Andrea Ebert-Jung, Thines 

Group at the Biology Department, University Mainz.  PDA consists of 26.5 grams of Potato-

Extract-Glucose Bouillon (Carl Roth GmbH) on 1 L of water with 2 % agar. HMG consists of 

10 grams glucose, 4 grams yeast extract, and 10 grams barley malt on 1 L water with 2 % 

agar at pH 5.5. Blank medium samples were incubated at the same time as fungal samples. 

The incubation varied between 14 and 30 days, depending on the individual growth 

progression of the samples.  

The fungal spores were harvested with Milli-Q water and a scraper and filtered through 

Miracloth to separate the spores from the mycelium. The absence of mycelium was 

controlled by light microscopy. The filtrated spores in water were filled to the maximum in a 

50 mL Grainer tube, homogenized, and a 1 mL aliquot was taken for counting. The 
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suspension was centrifuged (5 min, 3500 rpm) and the aqueous supernatant was discarded. 

The spore pellet was frozen at – 25 °C until further use. Samples were frozen at least once 

before extraction as freezing improves cell wall breakage. Counting was performed on a 

Neubauer improved counting plate, using double sampling. Samples were diluted until a 

suitably countable dose, equaling around 150 cells per middle square, was reached.  

Extraction of the metabolites was performed as follows: 15 mL of an organic solvent were 

given onto the pellet, followed by homogenization. Extraction was performed in an 

ultrasonic bath at ambient temperatures for 15 minutes. Centrifugation (3500 rpm, 5 min) 

separated the spores from the solvent which was removed by a syringe. The extract was 

filtered through a 0.2 µm PTFE syringe filter into a brown glass vial. The solvent was 

evaporated at 30 °C under a gentle nitrogen stream. This procedure was repeated twice. 

Fungal spores from filters were prepared by taking 1/8 of the filter (diameter 47 mm) and 

cutting it into small pieces. The filter pieces were placed into a brown glass vial, 15 mL of 

methanol was added, and extraction was performed by ultrasonication. The liquid extract 

was removed by a syringe and filtered through a 0.2 µm PTFE syringe filter into a brown 

glass vial. The solvent was evaporated at 30 °C under a gentle nitrogen stream. This 

procedure was repeated twice. 

The solvents were evaporated until dry, and the extract was taken up in 2 mL methanol. The 

solution was transferred into an HPLC vial through a syringe filter (PTFE, 0.2 µm). Dilution 

of samples was performed according to their spore count and a factor concerning the spore 

size (see page 66), reaching 1·106 spore equivalents per µL.  

The UHPLC was operated with water/acetonitrile (98:2 % with 400 µL/L formic acid) as 

eluent A and methanol as eluent B. As a column, the Hypersil Gold C18 with 50 mm length 

and a particle size of 1.9 µm was chosen. The injection volume was 5 µL and the following 

gradient was used:  

Table 4.5: Eluent gradient for UHPLC measurements. Eluent A; Water/acetonitrile, eluent B: 
Methanol. 

Minute Eluent A [%] Eluent B [%] Flow [µL/min] 

0 95 5 500  

5 50 50 500  

10 0 100 500 

15 0 100 500 

16 95 0 500  
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Samples were measured thrice, in positive and negative mode, with HESI and APCI 

ionization. Between samples of a different species or growing condition, a blank sample of 

pure methanol was used. Every 20 samples a quality control sample was used with the 

following compounds (500 ng/mL), measured in positive and negative mode:  

Table 4.6: Composition of the quality and retention time control sample. 

Substance Corresponding ion Retention time 

Ergosterol 379.3359 [M+H-H2O+] 10.57 

Reserpin 609.2806  [M+H+] 5.81 

Caffeine 195.0876  [M+H+] 2.07 

Syringealdehyde 183.0651  [M+H+] 2.76 

Vanillin 153.0546 [M+H+] 2.53 

Gluconic acid 195.0510  [M-H-] 0.32 

Camphersulfonic acid 231.0696 [M-H-] 2.38 

Lauric acid 199.1703   [M-H-] 8.93 

Mannitol 181.0717 [M-H-] 0.31 

Xylitol 151.0611  [M-H-] 0.33 

 

The Orbitrap was calibrated daily with a customized sodium acetate (2 mM/mL) solution, 

where the acetate clusters are used for calibration. Calibration with commercially available 

CalMix was performed approximately every 3 months and after each bake-out. The Orbitrap 

and ion sources were operated under the following parameters: 
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Table 4.7: Parameters for Orbitrap and ionization sources.  

Parameter 
HESI 

positive 

APCI 

positive 

HESI 

negative 

APCI 

negative 

Scan Range (m/z) 50 - 750 50 - 750 50 - 750 50 - 750 

Polarity positive positive negative negative 

Resolution 140,000 140,000 140,000 140,000 

Microscans 1 1 1 1 

Lock masses Off Off Off Off 

AGC target 1e6 1e6 1e6 1e6 

Maximum inject time (ms) 50 200 200 200 

Sheath gas flow rate (a.u.) 53 10 53 24 

Aux gas flow rate (a.u.) 14 0 14 5 

Sweep gas flow rate (a.u.) 3 0 3 0 

Spray voltage (kV) 3.5 4.0 2.5 3.3 

Capillary temp. (°C) 269 320 269 250 

Vaporizer temp (°C) 438 388 438 388 

 

The resulting raw files were checked if their ergosterol peak showed mass accuracy or 

signal intensity deviation to detect outliers early. Samples with low ergosterol content were 

usually too diluted. If possible, measurements were repeated at a higher sample 

concentration. The quality control samples were checked if the retention times were stable 

and if signal intensities and mass accuracy were as expected. 

The raw data was processed by MZMine 2.51, using the ADAP algorithm. For further 

information on the ADAP, algorithm see (Du et al., 2020) One sample, including its triple 

technical replicates and the corresponding blank measurement, was processed in one batch. 

Parameters for the data processing in MZMine are shown in the supporting information, see 

Table 8.4. Molecular formulas were calculated by MZMine. The raw data processing resulted 

in a feature list with m/z ratio, retention time, peak area, and predicted molecular formula. 

Subsequently, the respective blank sample is subtracted by an in-house build MATLAB 

script (adapted from Martin Brüggemann, brueggemann@tropos.de see supporting 

information page 136). Blank values were multiplied by the factor 3 to ensure complete 

subtraction. After subtraction, only signals which were present in all three technical 

replicates were kept and the resulting values were averaged.  After blank removal the 

samples were aligned by an in-house MATLAB script, at retention times and mass accuracy 
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ranges adapted to the samples, usually at around 1 minute retention time range and 5 ppm 

mass accuracy range (see also chapter 5.1.4). After alignment, data was checked, if the 

ergosterol peak was aligned correctly, and if there were deviations in the mass accuracy, 

which would lead to incorrect alignment.  

Afterward, a dimension reduction by PCA was performed using the Python 3 scikit-learn 

package. Before performing the PCA, data were log-transformed followed by a z-score 

standardization. t-SNE visualization, k-means, DBSCAN clustering, and supervised learning 

classification (Support Vector Machine and k.nearest neighbors) were performed in Python, 

using the respective functions implemented in Scikit-learn. More information on the 

functions can be found in the documentation of each function online (scikit-learn developers, 

2021). Parameters will be discussed in method development. Visualization was performed 

with Pythons Matplotlib and Seaborn. Hierarchical clustering analysis was performed with a 

MATLAB script adapted from Denis Leppla (Hoffmann group). Parameters were adjusted to 

the respective problem as part of the method development and are discussed in chapters 

5.2.2 to 5.2.4. The MATLAB and Python scripts are available in the supporting information 

see page 136 et seq. 
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5. Method Development 

 

5.1. Sample preparation and measurement 

 

In the following chapter the method development of the extraction and measurement 

procedure is presented in chronological order of the workflow, see Figure 4.3. Data 

processing and machine learning development will be presented in chapter 5.2. 

 

5.1.1. Fungal spore cultivation and extraction 

 

Cultivation 

Fungal spore cultivation was tested on Petri dishes (diameter 94 mm), Fernbach flasks, and 

canisters. As growth was good and harvest was easier from Petri dishes those were chosen 

for further use. Different media for growth were tested, small animal litter (wood chips), 

oatmeal agar (OM), yeast-glucose agar (CM),  yeast-malt extract (HMG), and potato-

dextrose extract agar (PDA). HMG and PDA showed good sporulation and were therefore 

chosen for further experiments. PDA consists of potato starch, glucose, and agar, whereas 

HMG consists of dextrose, malt extract, yeast extract, and agar, showing different nutritional 

profiles, resulting in different environments for the fungi to grow on. Together with 

different temperatures and day-light cycles, this can induce phenotypical plasticity.  

Additional to the fungal spores described in the experimental two more samples from the 

Trichoderma genus, Trichoderma hamatum, and Trichoderma viride were tested, but they 

showed very minimal sporulation and weren’t used further.  

Extraction 

Fungal spores have a sturdy membrane that needs to be penetrated to extract the 

metabolites of interest. Extraction was tested under different conditions, from protocols 

from IBWF (Institut für Biotechnologie und Wirkstoff-Forschung, Mainz, Germany) and 

literature (Castrillo, Oliver, 2011, Feussner, Feussner, 2019, Gummer et al., 2012, Madla et 

al., 2012, Winder, Dunn, 2011). Extraction was performed with ultrasonication to break cell 

walls. Additionally, samples were frozen before extraction and in between extractions as ice 

crystals can penetrate the cell wall as well.  
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For comparison of solvents, methanol (MeOH), ethyl acetate (EtOAc), and a methanol: water 

Mixture (60:40) were tested, all three commonly used in the extraction of fungi. The 

methanol: water mixture (polarity index ~7.2) is the most polar, methanol is polar (polarity 

index 5.1), and ethyl acetate is semi-polar, with a polarity index of 4.4 (Snyder, 1974). As 

test samples, two Trichoderma harzianum strain A samples were aliquoted into three 

subsamples and extracted with the three solvents. Samples were measured with APCI and 

ESI to check if any major differences are detected by the methods.  

The ergosterol value was examined because detection of ergosterol as a membrane 

compound implies breakage of the membrane. The methanol extract showed the highest 

ergosterol peak areas with ~3·107 arbitrary units (a.u.), followed by ethyl acetate with 

~9·106 a.u. and water: methanol extract with the lowest ~1·106 a.u. As ergosterol is a non-

polar molecule with only one hydroxy group it is expected that very polar solvents wouldn’t 

work well, however, methanol seemed to have extracted/solubilized ergosterol the best.   

More importantly, it was tested how many different substances were extracted as in non-

target analysis a compound profile as complete as possible is desirable. With ESI ionization 

in positive mode, a total of 761 compounds could be detected. On average between the T. 

harzianum replicates, 368 compounds were detected in the methanol extract, 361 in the 

methanol: water extract, and 170 compounds in the ethyl acetate extract. 82 compounds 

were exclusively found in methanol: water extract, 60 exclusively in the methanol extract, 

and 30 compounds exclusively in the ethyl acetate extract. Especially with methanol and 

methanol: water some compounds were present in both extracts. To check if extracts of a 

certain solvent solvated groups of biomolecules specifically a van Krevelen plot were 

calculated for the three extracts, see Figure 5.1. 

 

Figure 5.1: van Krevelen plot for Trichoderma harzianum extracts with different solvents. Ionization 
with ESI in positive mode. Left: Methanol: water extract, middle: Methanol extract, right: Ethyl 
acetate extract. 
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Methanol: Water and Methanol extracts show similar van Krevelen profiles, with a higher 

density in the area where peptides are found (see page 42). The ethyl acetate extract 

contains fewer compounds and doesn’t show an emphasis on a certain biomolecule group. 

Methanol and methanol:water show some compounds in the carbohydrate group where 

ethyl acetate is not. This is presumably due to the polar nature of carbohydrates. Methanol 

shows some compounds in the polyketide region (O/C ratio: 0-0.4; H/C ratio: 0.5 – 1) which 

might be interesting for metabolic profiling.   

It was checked if results would be different when ionized with APCI, which is more likely to 

also ionize non-polar compounds. With APCI 508 compounds were detected, with 343 in the 

methanol extract, 314 in the methanol: water extract, and 127 in the ethyl acetate extract. 

119 compounds were present in both methanol and methanol: water, of which none was 

present in the ethyl acetate sample. 38 compounds were only available in the ethyl acetate 

extract, 139 in only the methanol extract, and 120 only in the methanol: water extract. 67 

compounds were present in all three extracts. 

 

 

Figure 5.2: van Krevelen plot for Trichoderma harzianum extracts with different solvents. Ionization 
with ACPI in positive mode. Left: Methanol: Water extract, middle: Methanol extract, right: Ethyl 
acetate extract.  

 

The van Krevelen plots are very similar to the ones measured with ESI. As differences are 

minor it can’t be determined which ionization method is better for metabolite profiling.  

Ethyl acetate which is the least polar compound was expected to extract compounds that are 

more likely to be ionized with APCI but that doesn’t seem to be the case. 

Overall, ethyl acetate showed the least number of compounds, and very few compounds that 

could not have been extracted by methanol or methanol:water. Methanol and 

methanol:water show very similar results with ergosterol being better soluble in pure 

methanol. As the evaporation times of pure methanol extracts are distinctively shorter, 
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Methanol was chosen to extract the fungal spore samples. The ionization methods didn’t 

give majorly different results; therefore, ionization will be performed by both methods to 

determine which is better for non-target profiling on the full data set.  

 

5.1.2.  Sample-based normalization 

 
To compare profiles of different spore genera and for performing analysis by 

clustering/classifications, roughly the same concentration of all samples is needed, 

otherwise, differences between samples are based on concentration and not on the 

difference of the actual sample. Sample-based normalization was tested with spore count 

and spore weight. As a mix of data- and sample-based normalization the relationship 

between spore count/weight and content was examined.  

Samples were counted with a Neubauer counting chamber and diluted to the same spore 

number in each sample (about 1·106  spore equivalents per microliter). With spores of the 

same genera/type, this worked smoothly, whereas comparing spores of different genera 

showed difficulties because of different spore sizes. The spore volume was calculated from 

the reported spore sizes (see Table 5.1), to calculate a factor that compensates for the 

different sizes.  

Table 5.1: Spore sizes and calculated approximate volumes for spores of different genera.  

Genera 
Mean size 

(µm) 

~Volume 

(µm3) 
Source 

Trichoderma 3.3 19 (Di Filippo et al., 2013, Harman et al., 2004) 

Aspergillus 2.9 12 
(Lau et al., 2006, Miller, Young, 1997, 

Pasanen et al., 1999) 

Cladosporium 3.7 27 
(Buiarelli et al., 2013, Lee et al., 2007, 

Pasanen et al., 1999, Yamamoto et al., 2012) 

Botrytis 8.8 350 (C.H. Chen et al., 2009) 

Verticillium 3.9 31 (Feng et al., 2002, Qin et al., 2008) 

 

Spore size and volume and the respective dilution factor were compared with Trichoderma, 

which has a spore size of around 3.3. µm and a volume of approximately 19 µm3. Aspergillus 

spores are smaller and were therefore diluted less by a factor of 0.5 than the other samples.  

Botrytis was diluted 10-fold more than the other samples, as the spores were the biggest of 

the data set. Overall, the dilution factors were not always reliable, and samples needed to be 
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either diluted further or concentrated after a first preliminary measurement. The counting 

is a source of error, as sometimes spores clumped together despite homogenization, or the 

necessary spore count on a middle field wasn’t reached at lower concentrated samples. 

Additionally, the calculated spore volume is only a rough estimate and therefore also the 

dilution factor.  

To enhance sample base normalization, it was tested if the samples could be diluted 

according to the weight of the raw extract after evaporation. Raw extract weights varied 

between 2 and 20 mg, depending on how well the samples sporulated. The blank weight 

showed values between 0.5 and 3.8 mg with a standard deviation of 1.5 mg. This might be 

because the media was sometimes very solid and sometimes quite fragile, leading to 

different amounts of media being incorporated into the samples. This makes it impossible to 

determine the actual weight of the spore’s raw extract.  

To have additional control over the concentration of the sample it was checked if the 

ergosterol content or the total ion count could be used for normalization respectively for 

validation if a sample needed to be measured again at a different concentration.  

 

5.1.3. Ionization source and polarity, chromatography, and quality control 

 
All samples were measured in positive and negative modes with the ionization sources HESI 

and APCI. This should enable a comprehensive picture of the fungal spores' composition and 

determine which method is most suitable for the differentiation of genera and species.  

 

Chromatography 

Chromatography was performed on a standard C18 column. C18 is a universal reverse 

phase column that is suitable for most analytes. Polar components of fungal spores like 

sugars won’t be separated, but secondary metabolites, which often have a non-polar part 

will be separated on the column.  Several column lengths were tested, but as methanol was 

to be found the most suitable eluent only the shorter column of 50 mm could be used due to 

the upper-pressure limit of the UHPLC. For eluents, acetonitrile and methanol as the organic 

solvent were tested. Previous work in the Hoffmann group showed a better separation and 

peak shape for ergosterol when using methanol as the organic eluent (Martin Müller, 2016). 

Acetonitrile has a higher elution strength than methanol, leading to shorter retention times, 

which is a good choice for target analysis but not necessarily for non-target analysis, which 

is why methanol was chosen. 
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To control the quality of the separation and the stability of retention times a quality control 

standard was chosen, of which ergosterol is an ingredient. ergosterol will also be important 

for the control of the concentration. For the quality control sample, a wide range of mass-to-

charge ratios and retention times was preferred, ionizable in positive and/or negative mode 

to control retention time and mass accuracy as well as overall instrument performance for 

the complete run. Several compounds were tested, e.g. glutamine, glycerine, asparagine, 

bilirubin, cholesterol, palmitic acid, cortisone, glucose, urea, beta-carotene with the final 

mixture containing the following compounds: ergosterol (fungal membrane compound), 

reserpine, caffeine, syringaldehyde, vanillin, gluconic acid, camphor sulfonic acid, lauric acid, 

mannitol (fungal compound) and xylitol, which cover as a mass-to-charge range from m/z 

151 to m/z 609 and a retention time range from 0.3 min (no retention) to 10.5 min.  

 

Ionization 

Ionization was performed in positive and negative modes to evaluate which method would 

give the most comprehensive picture and if certain substances are unique for a fungal genus.  

As ergosterol is a biomarker for fungal spores (see chapter 1.2.4) its ionization was 

evaluated. Usually, ergosterol measurements are performed with GC-MS or LC-MS (Headley 

et al., 2002, Lau et al., 2006, Miller, Young, 1997, Srzednicki et al., 2004).  Previous methods 

for the quantitation of Ergosterol in fungal spores included GC-MS, Limit of detection (LOD) 

0.22 – 2.1 ng/mL  (Miller, Young, 1997); HPLC-UV, LOD 20-80 ng/mL (Beni et al., 2014, 

Miller, Young, 1997),  and HPLC-MS; LOD: 8.6 ng/mL (Headley et al., 2002).  

The UHPLC-Orbitrap was tested for its LOD and Limit of Quantitation (LOQ) of ergosterol, 

after DIN 32465 from the slope of the calibration line. Two ions were found corresponding 

to ergosterol: m/z 397.3465 [M+H]+ and m/z 379.3357 [M+H-H2O]+. The intensity of the 

[M+H-H2O]+ adduct is considerably higher, therefore the adduct will be used for 

quantitation and the [M+H]+ ion for additional identification. The Orbitrap and ionization 

source settings are described in the experimental information, chapter 4. The Limit of 

Detection and Quantitation of ergosterol ([M+H-H2O]+) with two different ionization 

sources are presented in Table 5.2. 
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Table 5.2: Limit of Detection and limit of quantitation for ergosterol with HESI and APCI ionization for 
m/z [M+H-H2O]+. 

 HESI APCI 

LOD [ng/mL] 20.5 0.9 

LOQ [ng/mL] 76.8 4.8 

 

The LOD with the electrospray ionization source was in the range of the reported values in 

Literature for HPLC-MS measurements. The APCI LOD is at 0.9 ng/mL significantly lower 

than the HESI LOD.  

 

5.1.4. Raw data processing, blank subtraction, and alignment 

 
For the processing of raw data several commercial and open-source programs are available, 

like XCMS, OpenMS, Thermo Fishers SIEVE, or MzMine (Domingo-Almenara, Siuzdak, 2020, 

Du et al., 2020). In this work open-source programs were tested, as support for the available 

program SIEVE has been discontinued; novel commercial programs are expensive and not 

as versatile as open-source programs. MzMine was chosen as it implemented the ADAP 

algorithm which is favorable compared to XCMS due to fewer false-positive peaks (Myers et 

al., 2017). 

Data processing in MzMine consists of several steps; extracting the mass-to-charge ratios, 

forming extracted ion chromatograms, detection of chromatographic peaks and 

differentiation from noise, deconvolution, several alignments, and filtering steps, and 

calculation of molecular formulas. In total 11 steps with 50 settings need to be chosen. 

Settings were evaluated on several samples of Trichoderma harzianum and kept for the 

whole data set to maintain reproducible results. The three technical replicates of a sample 

were processed together with the technical replicates of the corresponding blank sample, 

resulting in a list with mass-to-charge ratio, retention time, predicted molecular formula, 

and intensity. 

For background subtraction, the blank intensities were multiplied by the factor 3 to ensure 

complete blank subtraction. Some features, like signals for sugars like mannose, etc. tend to 

be subtracted as well as the blanks are rich in sugars as well. This loss of information is 

necessary as the blank information should not influence the final feature list.  

Alignment was first tested based on features having the same molecular formula and the 

same retention time. It has turned out that this approach is not tenable, as not all features of 
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the same mass-to-charge ratio will be calculated with the same molecular formula. Small 

deviations in the fourth digit after the comma will lead to different molecular formulas or no 

molecular formula at all. Therefore, the alignment was changed to align according to the 

mass-to-charge ratio and retention time. Tolerance of mass-to-charge value corresponds to 

the mass accuracy of the measurements which was ideally below 2 ppm. But as instrument 

performance varies higher mass tolerances need to be chosen to enable alignment of 

samples. Usually, a mass tolerance of 5 ppm is sufficient but in the case of alignment of 

samples that are one or more years apart, with several instrument maintenance and 

technical procedures in between the mass tolerance needed to be risen to 7 ppm to ensure 

correct alignment. Alignment correctness was mainly controlled by the known mass-to-

charge ratios for the ergosterol [M+H+] and [M+H+-H2O+] ion as well as with randomly 

chosen features. Retention time tolerance was usually chosen to be around one minute to 

account for all peaks. In the case of alignment of samples which were measured with an old 

column and different capillaries retention time tolerance needed to be risen to up to 2 

minutes. This was especially important when samples that were measured on an old C18 

column were aligned with samples measured on a new C18 column. Despite being the same 

model and manufacturer retention times varied up to a minute between measurements. 

After alignment samples were ready for further data analysis. 

 

5.1.5. Data evaluation – Semi target approach 

 
In non-target high-resolution mass spectrometry, a wide range of compounds is available 

for analysis. Depending on the parameters chosen for analysis, like peak intensity threshold 

or filtering steps, several thousand compounds are measured per sample. Many of those 

compounds are not sample-specific, they can originate, e.g., from the fungi’s primary 

metabolism, meaning they occur in all fungal samples. However, secondary metabolites can 

be strain-, species- or genera-specific and are proposed to differentiate fungal spore 

samples from one another.  

The easiest approach to finding those specific compounds would be a filtering step if certain 

compounds are only present in samples of a specific species. Evaluating this approach for 

fungal spores showed, that the phenotypical plasticity impedes this approach. Supposedly 

species-specific metabolites are also present in species of the same genera. Finding genera-

specific compounds showed to be unsuccessful as well.  When evaluating all five species of 

Trichoderma no compounds were found that are present in all samples. Detailed results are 

shown in chapter 6.2.3. 
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Overall, finding species or genera-specific markers in fungal spore samples was not 

successful. Even if analyzed fungal spores were metabolically dormant, they showed a wide 

variety of phenotypes. The human eye can’t make sense of a fungal spores’ profile if 

compounds are only present in 80 or 90 % of samples, especially when confronted with 

thousands of compounds. However, computer-aided methods can find patterns in the 

sample’s profiles and find similarities or differences where a human can’t. The application of 

machine learning in non-target analysis gets more and more important, especially with the 

wider availability of high-resolution mass spectrometers. In the following chapter, the 

method development for the application of machine learning on fungal spore samples is 

described. 

 

5.2. Data analysis with machine learning algorithms 

 

All method development was performed on the smaller and the larger datasets (see Table 

4.3 and Table 5.5) and all ionization methods, Electrospray ionization (ESI) and 

Atmospheric Pressure chemical ionization (APCI) in both positive and negative modes. As 

results are similar, the method development results are discussed for the larger dataset, 

with all samples, including samples from 2020 (see Table 4.3), ionized by ESI in the positive 

mode if not stated otherwise. Results from method development for the other ionization 

methods are shown in the attachment.  

 

5.2.1. Data-based normalization 

 
Data-based normalization is an important step before applying machine learning algorithms. 

Sample-wise normalization is performed to correct different sample concentrations so that 

distances between features of different samples are due to biological differences and not 

due to concentrations. Additionally, feature-wise normalization ensures that highly 

abundant metabolites don’t overpower the analysis as absolute distances between highly 

concentrated metabolites could be larger than smaller distances between less abundant 

metabolites.  Sample-wise normalization was tested with ergosterol as a marker, with total 

ion count (TIC), mean and median. Feature-wise normalization by mean, median, and z-

score was tested. Additionally, a log transformation was performed. The theoretical 

background is described in chapter 2.2.2. 
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As a first step, the data were log2 transformed to remove heteroscedasticity. 

Heteroscedasticity is typical for MS data as the distribution of the signal intensities does not 

correspond to a normal distribution. As log2 can’t be calculated from zero values all feature 

intensity values were shifted by 1 before the transformation. (Blekherman et al., 2011, Enot 

et al., 2008, Filzmoser, Walczak, 2014, Sysi-Aho et al., 2007, van den Berg et al., 2006, 

Veselkov et al., 2011, Wu, Li, 2016, Yi et al., 2016)  

Sample-wise normalization with a marker compound is a typical approach. Ergosterol 

would be a suitable marker compound as it is available in all samples and measurable at 

least in positive mode. However, the ergosterol content of fungal spores differs between 

species with values ranging between 0.68 and 5.11 picogram(pg)/spore depending on the 

publication (Lau et al., 2006, Miller, Young, 1997).  Cladosporium shows ergosterol 

concentrations between 1.9 and 3.1 pg/spore with Trichoderma in the same range, 

Aspergillus shows lower values between 1.3 and 2.5 pg/spore (Di Filippo et al., 2013, Miller, 

Young, 1997, Pasanen et al., 1999). Overall ergosterol concentrations vary widely between 

species. Most of these calculations assume the same size/weight of the spores which doesn’t 

reflect reality. Spore sizes and morphology vary greatly with spores in this work being 

either spherical or elongated (Cladosporium) (Buiarelli et al., 2013, Di Filippo et al., 2013, 

Lau et al., 2006, Lee et al., 2007, Miller, Young, 1997). Therefore the ergosterol 

concentration isn’t necessarily linearly correlated with spore size and spore content. 

(Gutarowska et al., 2015, Pasanen et al., 1999). Additionally, the extraction efficiency can 

vary. Normalizing by ergosterol can introduce bias and results were not sensible. 

Another common normalization approach for LC-MS analysis is by total ion count (TIC). 

This presumes, that the total sum of the TIC reflects the sample’s total concentration. Each 

feature value would be divided by the sum of the respective TIC so, resulting in all samples 

having the same sum of total ion count. This should theoretically adjust the concentrations 

of the different samples. But this representation of a sample’s concentration by TIC is not 

always the case for biological samples like fungal spores. Different environmental factors 

can induce or suppress the presence of secondary metabolites resulting in different 

metabolite abundances. One well ionizable metabolite may be expressed intensely leading 

to a very large signal intensity. The resulting total sum of ion counts is also very large, even 

if the sample’s fungal spore concentration might not be exceptionally large.  An example to 

further visualize the problem is shown in Figure 5.3:  
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Figure 5.3: Total ion counts of two samples (Verticillium on HMG at 20°C and 26°C) with different 
ionization methods.  

 

Two Verticillium samples were measured with each method. Spore number concentrations 

for the samples were the same in every ionization method, therefore the concentration ratio 

should be the same. If the TIC would represent the concentration correctly, it should present 

a very similar TIC ratio for the samples. . However, the TIC of sample 1 (Verticillium at 20 °C) 

with ESI positive ionization is 1.03 times the TIC of sample 2, with APCI positive just 0.91 

times, with ESI negative just 0.77 and with APCI negative 1.46 times the TIC of sample 2. 

This shows that the sum of the total ion count represents the abundancies of ionizable 

compounds in a sample but not necessarily the sample's actual concentration.  If the TIC 

can’t represent the concentration of a sample that was grown at the same time on the same 

media just at different temperatures, then it is not suitable for normalization. Other sample-

wise normalizations like median or mean normalization suffer from the same problem. 

Additionally, is the use of markers/ions problematic as ionization efficiencies vary and ion 

suppression can alter actual concentrations. High analyte signals don’t necessarily mean 

high metabolite concentration, especially in complex biological matrices (Bouguettaya et al., 

2015, Wu, Li, 2016).  

Feature-wise scaling is necessary for the PCA and subsequent clustering and classifications. 

Feature-wise normalization ensures, that largely abundant metabolites don’t overpower 

smaller metabolites, especially if those metabolites are of interest. The most common and 

robust scaling method is z-score scaling. Adaptation of z-score scaling for sparse matrices 

didn’t show an influence, leading to the use of the “classic” z-score scaling (see chapter 

2.2.2). 
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5.2.2. Visualization and dimensionality reduction 

 
Principal component analysis was used for dimensionality reduction. For visualization PCA 

and t-SNE were tested. The theoretical background is described in chapter 2.2.4. 

 

PCA 

As machine learning algorithms are sensitive toward high-dimensional feature spaces 

usually a dimension reducing step is performed. High resolution mass spectrometric data is 

very high dimensional with 26,047 features and 89 samples for the ESI positive mode full 

data set. Those 26,047 dimensions are reduced by PCA to a maximum of 89 

dimensions/principal components (PC) which explains the full variance of the data set. By 

choosing only a subset of PCs the information to differentiate between different 

classes/fungal species is kept while information explaining noise is discarded.  

To determine how many principal components are used as input for further machine 

learning the explained variance per principal component was evaluated for each dataset. A 

scree plot that shows the variance explained by the principal components helps to choose 

the right number of PCs (Figure 5.4). The first PCs don’t explain high amounts of variance 

with the first PC explaining only 5.8 %. This means taking only the first two or three 

principal components wouldn’t explain the data set well. 

 

 

Figure 5.4: Scree plot showing the variance explained by principal components, shown for the full 
data set B with ESI positive mode ionization. The blue bar chart represents the variances explained 
by each component and the black line diagram the cumulative variance.  
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A commonly used threshold is the number of PCs that are needed to explain 80 % of the 

dataset’s variance (Jolliffe, 2002). In the example shown in Figure 5.4, one would need 45 

PCs to explain 80 % of the variance. For some machine learning algorithms, this is still too 

high-dimensional, therefore further method development needs to focus on determining 

how few principal components can be used as input without losing too much information. 

This is discussed in the following chapters for each algorithm.  

Visualization of the principal components was performed by a scatter plot, showing the 

sample's distribution as explained by the first two principal components.  

 

 

Figure 5.5: Visualization of the data as explained by the first two principal components. Different 
fungal genera are marked in color.  

 

In Figure 5.5 one can see that samples of different genera are scattered differently. Most 

Botrytis samples are scattered along the x-axis (PC1), meaning PC1 contains information 

that differentiates Botrytis from other genera. Aspergillus is spread along the x- and y-axis, 

meaning PC1 and 2 contain information regarding this genus. But even if data is scattered 

together like Trichoderma and Verticillium that doesn’t mean that data isn’t separable, it 

just means that the first two principal components don’t contain the information needed for 

separation of classes. To visualize more information a 3D scatter plot also containing the 

information of the third principal component can help.  In the case of ESI negative mode, the 

samples couldn’t be separated well by the first three principal components. More 

dimensions are needed in cases like this to separate samples. As more than three 

dimensions can’t be visualized other methods like t-SNE are needed, which is explained on 
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page 77, together with the PCA plot for ESI negative mode in  Figure 5.7. PCA plots for ACPI 

in positive and negative mode are shown in the supporting information Figure 8.1. 

Another way to get information by PCA is a loading plot and a biplot. For the theoretical 

background see page 37. In a biplot the variables are represented as vectors, giving 

information on which variable gave how much information to which principal component. 

This can help, for example,  to investigate which variables were interesting for the spread of 

the Botrytis samples along with principal component 1. As the feature spaces in the 

evaluated data set consist of more than 20,000 features, this approach is not feasible.  In a 

loading plot, the features are shown as explained by the principal components. Again, as 

there are so many features reading a loading plot becomes near impossible. An example of a 

loading plot for the feature space of ESI positive mode is shown in Figure 5.6. 

 

 

Figure 5.6: Loading plot, all features represented by the first three principal components. ESI positive 
mode. 

 

The loading plot shows some regions with higher density but overall appears like a ball. This 

represents the complexity of the samples and the problem, that many of the fungal spore 

substances might occur in all samples, regardless of genera. Biological samples are highly 

complex, and features might not always correlate linearly.  

In cases when the PCA visualization doesn’t seem to show any clusters, another 

visualization method called t-SNE can be useful.  t-SNE is especially helpful if the 
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relationship between features is complex and non-linear. As visualization with principal 

components can only show the first three components, it is sometimes not clear if classes 

are separable, especially if the first components don’t explain a lot of the variance. t-SNE can 

help with that, however as it has many input parameters to control, it can be difficult to get a 

robust answer. The main parameter is perplexity which should be in the 5 to 50 range (van 

der Maaten, Hinton, 2008). The perplexity equals the number of neighbors in the learning 

algorithm and should be bigger with larger datasets. This parameter is critical as a wrong 

setting can misrepresent the relationship between samples. Choosing the perplexity value 

with the lowest Kullback-Leibler (KL) divergence can help, as a low KL-divergence indicates 

that the low dimensionality visualization is similar to the high dimensional distribution (van 

der Maaten, Hinton, 2008). Other settings like learning rate need to be evaluated as well, as 

they can influence the results as well. An example where t-SNE is helpful is shown in Figure 

5.7. PCA of the data set in ESI negative mode didn't show any clusters whereas t-SNE does. A 

perplexity of 50 was chosen as it had the lowest KL-divergence.  

 

 

Figure 5.7: PCA (left) and t-SNE (right) for the fungal spore samples measured in negative mode, ESI 
ionization. Two principal components don’t hold enough information needed to separate fungal 
genera from one another. With t-SNE a two-dimensional visualization is possible.  

 

In the left picture, one can see that no clusters are visualized. T-SNE visualizes the whole 

dataset in two dimensions and can detect clusters. Therefore t-SNE can help if the data 

structure is unclear, and the first two or three principal components don’t hold enough 

information. 
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5.2.3. Unsupervised Machine Learning: Clustering 

 
Unsupervised clustering is helpful if no information about the samples is available, e.g., one 

doesn’t know how many classes are present. Unsupervised clustering doesn’t need 

information from the user nonetheless some parameters need to be optimized. In this work 

k-means, DBSCAN, and hierarchical clustering analysis (HCA) were used. The theoretical 

background is described in chapter 2.2.5. 

 

Hierarchical clustering 

For distance measurement, the Euclidean distance was used. Other distance measurements 

like Minkowski or Mahalanobis distance were evaluated but not beneficial for this work. To 

determine the best linkage method, the cophenetic correlation coefficient was calculated for 

several linkage methods. The cophenetic correlation factor should be close to one (The 

MathWorks, 2021a). For theoretical background see Table 2.2 and Formula 7.  

Table 5.3 shows results for the clustering of samples and features. Centroid and median 

linkage produced non-monotonic cluster trees and were therefore not appropriate.  

Overall, the average linkage method produced the best results for clustering of the samples 

with 0.79 being closest to 1. As 0.79 is not a very high factor, the results of the dendrogram 

representing the samples should be read carefully.  

Table 5.3: Cophentic correlation factor for different linkage algorithms. 

Linkage 
Cophenetic correlation factor 

for sample space 

Cophenetic correlation factor 

for feature space 

average 0.79 0.93 

ward 0.47 0.64 

single 0.33 0.91 

complete 0.60 0.84 

weighted 0.70 0.89 

 

The clustering for the features produced higher cophenetic correlation factors, with average 

linkage being the best as well. As the factor 0.93 is closer to one, it represents the actual 

relationship between features well.  The average linkage methods showed to be the most 

appropriate for hierarchical clustering of the sample and feature space. This was the case for 
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all four ionization methods. Results represented by heatmaps and tree diagrams will be 

shown in chapters 5.3.5 and 5.4.3.  

Overall hierarchical clustering showed regions of features that were more intense for 

certain fungal classes. To further evaluate the features the van Krevelen plot was used. As 

not all features were calculated with a molecular formula and some molecular formulas 

calculated by MzMine are not reasonable the van Krevelen plot won’t represent all features.  

 

k-means clustering 

Before performing k-means a PCA is used to reduce dimensionality. The k-means results 

depend on how many PCs are used as an input for the algorithm. To determine the best 

number of clusters, a so-called elbow plot where the WCSS (Within cluster sum of 

squares/variance) is plotted against the prospective number of clusters used. The optimum 

number of clusters is at the point where the steepness of the WCSS plot changes and the 

WCSS gets minimal. WCSS plots for different example variances are shown in Figure 5.8. 

 

 

Figure 5.8: WCSS plots for different input of principal components. Left: 5 principal components as 
input (20 % variance explained). Right: 45 principal components as input (80 % of variance 
explained). ESI positive mode.  

 

If choosing low dimensional input like in the left picture (5 PCs which explain 20 % of the 

data) an elbow forms at around 5 clusters. Higher-dimensional inputs don’t show a change 

in steepness; therefore, an optimum number of clusters can’t be determined. This is the 

extreme case on the right side of Figure 5.8, where an input of 45 principal components (80 

% variance explained) results in a straight line. This shows that k-means is highly impacted 

by the curse of dimensionality. To check performance, k-means is evaluated with the 

different PCs as input. The number of clusters is 5 in all examples (Figure 5.9 and Figure 

5.10). Initialization is chosen to be k-means++, which is an improved version of the classic 
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k-means algorithm (Arthur, Vassilvitskii, 2007). Other parameters like maximum numbers 

of iterations and the number of times the k-means algorithm will run with different 

centroids were optimized as well, with relatively high numbers (max_iter = 1000, n_init = 

50) to ensure optimum results. For in-depth information on parameters see Pythons sci-kit 

learn documentation (scikit-learn developers, 2021). 

In the following, the k-means results for low-dimensionality input on the one hand and high 

dimensionality input, on the other hand, are discussed. 

 

 
Figure 5.9: k-means clustering for low-dimensional input. 5 PCs, 20 % variance explained. ESI 
positive mode. 

 

To see the actual class distribution, see Figure 5.5. The plot in Figure 5.9 had 20 % of 

variance explained as input. All but two Botrytis samples form Cluster 3 (orange), most 

Cladosporium samples form cluster 5 (brown), and half of the Aspergillus samples form 

cluster 4 (green). Two samples which are Trichoderma were clustered together in the small 

cluster 2 (grey). The rest of the samples were clustered in the big cluster 1 (red), with no 

separation between Trichoderma and Verticillium. The clustering by low-dimensional input 

resembles the actual distribution but can’t differ between Verticillium and Trichoderma. An 

input of 9 PCs explaining 30 % of the variance produced the same results. There is possibly 

not enough information in only 5 or 9 PCs to explain the difference between those two 

fungal classes.   



                                                         Method Development 

81 
 

 
Figure 5.10: k-means clustering for high-dimensional input. 45 PCs, 80 % variance explained. ESI 
positive mode. 

 

The clustering with 45 PCs explaining 80 % of the variance showed the least sensible results, 

with two Botrytis samples being clustered alone (Cluster 1, red and cluster 2, grey), Two 

Aspergillus samples clustered alone (cluster 5, brown), and the rest of Cladosporium; 

Verticillium, and Trichoderma being clustered into the orange and green cluster. The green 

cluster belongs mainly to Trichoderma and the orange to Cladosporium, Verticillium, and 

the rest of the Trichoderma samples. Clustering with 50 % of variance explained also didn’t 

produce sensible results. Also, there two clusters contained only one sample.  

Overall k-means clustering apparently can’t work well with high dimensional data as 

present in high-resolution mass spectrometric data. Results are somewhat arbitrary, 

especially at high dimensions. At lower dimensions results are more meaningful but rely on 

less information, which might not explain the data set fully, e.g., Verticillium and 

Trichoderma weren’t separated. The problem is that k-means expects the data to be 

spherical around the cluster center, which is not true in this work and usually is not true for 

biological samples in general.  A tweak of k-means is k-means with spectral clustering. 

Spectral clustering consists of two steps including nearest neighbor embedding as the first 

step and k-means clustering as the last step. It is suitable when the clusters are non-convex. 

It didn’t show better results as Botrytis, Cladosporium, and Aspergillus were clustered 

together, and Trichoderma and Verticillium were parted between 4 clusters.  
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DBSCAN 

As k-means results were not very precise, DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise), another unsupervised clustering method was tested. Core samples 

with high density are found and expanded from those cores (theoretical background see 

chapter 2.2.5). The main parameter to be set is epsilon which chooses the maximum 

distance between two samples to be considered as neighbored. Other parameters like 

minimum samples are not as crucial but were optimized nonetheless. DBSCAN showed to be 

very sensitive to the “curse of dimensionality”. Input larger than 10 PCs lead to results 

where more samples were considered noise than an actual sample. Moreover, the samples 

were put into just one cluster. At high dimensions, distance measurements become artifacts 

for dimensionality-sensitive algorithms like DBSCAN. For more information on the “curse of 

dimensionality” see chapter 2.2.4. 

 

 

Figure 5.11: DBSCAN for inputs of different dimensionality. Parameters: Epsilon of 40 and minimum 
sample number of 3. ESI positive mode. Left: PC3 (~ 14 % of variance explained), Right: PC10, (~ 30 
% of variance explained). 

 

With a small dimensional input (PC3, 14 % of variance explained) most of the Botrytis 

samples were considered a cluster (red), and Trichoderma, Cladosporium, and Verticillium 

another (yellow). Aspergillus samples were considered noise. This shows that spread-out 

classes like Aspergillus are problematic for DBSCAN as they don’t show the density needed 

to be evaluated as a cluster. At higher dimensionality input (right side of Figure 5.11), 

Cladosporium samples were clustered together (orange), but Botrytis and Aspergillus were 

considered noise, as well as some Trichoderma and Verticillium samples. Optimizing 

parameters didn’t improve the clustering performance. Overall DBSCAN showed worse 

results than k-means and is not considered a good clustering method for the data sets in this 

work.  
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As unsupervised clustering was not able to reliably distinguish between samples correctly, 

supervised machine learning was used.  

 

5.2.4. Supervised Machine Learning: Classification 

 
For classification two methods, k-nearest neighbor (kNN) and support vector machine (SVM) 

were tested. The performance of the classification was tested with 10-fold cross-validation. 

For theoretical background on supervised classification and cross-validation see chapter 

2.2.6. 

 

k-nearest neighbor (kNN) 

The first algorithm tested was kNN. For kNN the number of principal components needs to 

be chosen as well as the number of nearest neighbors. Aside from that, kNN doesn’t need 

any input. With kNN, the dimensionality of input should be lower than the number of 

samples, as kNN is very sensitive to “the curse of dimensionality”. Neighbor numbers of 1 

and 2 were excluded as regarding only the nearest neighbor of a data point is prone to 

overfitting. In the example of the full data set measured with ESI in positive mode, the 

effects of the principal component input and the neighbor number are shown in Figure 5.12.  

 

Figure 5.12. kNN accuracy dependence on the dimensionality of input (number of principal 
components). The graph is shown for PCs 2 to 89. ESI positive mode.  

 

As seen in Figure 5.12 taking the first two or three principal components doesn’t explain the 

data set well enough. Between an input of 4 and 15 principal components, accuracies vary in 
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the 94 to 96 % range which are very good results. Taking more than 15 principal 

components results in a loss of accuracy. More dimensions don’t increase the classifier's 

performance but lead to the “curse of dimensionality”. The optimal number of principal 

components varies between ionization methods but is in the range of 10 to 20 principal 

components for data in this work. 

 

Support Vector Machine (SVM) 

For support vector machines the number of dimensions isn’t as crucial, as the” kernel trick” 

takes advantage of high dimensions and isn’t as susceptible to the “curse of dimensionality”. 

Especially the linear kernel is very robust and not susceptible to dimensionality or 

overfitting. Nonetheless, several settings must be chosen with SVMs implementation in 

sklearn. The kernel, the gamma value, and the error penalty value C see chapter 2.2.6 and 

sci-kit documentation (scikit-learn developers, 2021). In this work following parameters 

were tested: Kernel: rbf, linear, polynomial and sigmoid; Gamma value:  1.0, 0.75, 0.5, 0.25, 

0.1, 0.01, 0.001, 'auto’ and 'scale'; C value: 0.001, 0.01, 0.1, 0.5, 1.0, 10 and 100. The linear 

kernel is only influenced by the C value, but the other kernels are sensitive to the gamma 

value.  High gamma and low C values are prone to overfitting, as they won’t allow 

misclassification of the training data.   

In the following figure, an example for gamma = “auto” and C = 0.01 is shown. Scale gamma 

value showed similar results, as well as gamma values of 1.  
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Figure 5.13: SVM accuracy dependence on the dimensionality of input (number of principal 
components) for three different kernels: linear, polynomial order three, and rbf. Gamma: auto, C = 
0.01.   ESI positive mode. 

 
The linear kernel shows the best results with accuracies well over 90 %, whereas 

polynomial works well for lower PCs but worse for high. The rbf kernel doesn’t work well, 

as the C value of 0.01 in this example is set too low. With C values of 1 accuracy values of 93 

% are reached for low PC inputs for the rbf kernel.  Nonetheless, the linear kernel gives the 

best results. RBF and polynomial kernel are more easily influenced by noise.  

The high accuracy of the linear kernel shows that the classes are linearly separable and that 

the linear kernel should be chosen for a robust approach. The C value doesn’t influence 

results significantly, indicating that a large margin between classes can be maintained even 

when misclassification of samples is prevented. The optimization approach was performed 

for all datasets and all ionization types, but overall, the linear kernel performed best. For all 

future SVM classifications, the linear kernel was chosen with a C value of 0.01.  

 

Stratified vs. unstratified cross-validation 

Not all classes are represented uniformly in the sample set, .g., the class Trichoderma is 

represented by more samples than the other classes. Some classifications have a bias, giving 

too much weight during training to the most represented class. Stratification of the cross-

validation checks that all classes are uniformly distributed between train/test sets in each 
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fold. The data was shuffled before each train/test split, for both stratified and unstratified 

cross-validation. Results are shown in Figure 5.14. 

 

 

Figure 5.14: Comparison of stratified (red) and unstratified (blue) 10-fold cross-validation for SVM 
(left) and kNN (right), dataset B, ionization: ESI positive mode. 

 
The results from the stratified k-fold cross validation were only 1 or 2 % points lower than 

the unstratified, showing that the classifier could robustly separate classes from one 

another. It also shows that different abundances of the different classes don’t influence the 

classifiers' performance a lot, especially not with SVM classification. Results for all 

ionization methods can be found in the attachment. Future results will be shown for 

stratified k-fold cross-validation.  

 

Comparison of datasets 

The classification was evaluated with a smaller and a bigger dataset that include samples 

with lower respective higher possible phenotypical plasticity. Results can indicate if the 

classifiers react sensibly toward samples from different laboratories, seasons, or 

measurement periods. This is important as the algorithm’s performance should correctly 

differentiate between different species/genera even if the samples' phenotypes show 

plasticity. Additionally, some samples were extracted with solvents from a different 

manufacturer and measured before the orbitrap mass spectrometer was subjected to 

several maintenance procedures and changes of MS parts. For both datasets, the classifiers 

were trained and tested by stratified 10-fold-cross validation. 

Dataset A is the smaller dataset. It includes only samples of the season Fall/Winter 2021 

which have less possible phenotypical plasticity. Dataset B includes more, additional 
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samples compared to Dataset A, which could also include higher phenotypical plasticity. 

Dataset B includes Trichoderma harzianum strain A and B and Trichoderma atroviride 

samples from 2019/2020 and spring 2021. Some samples (2019/2020) were cultivated 

partly in another laboratory building, at other seasons, and therefore other humidity.  

Samples were stored in a chilled culture, therefore dormant between cultivation, which can 

induce and change in metabolism and therefore can introduce more variation into the data 

set B. The number of biological replicates for both datasets can be seen in Table 5.4.   

 
Table 5.4: Overview of biological replicates of fungal spore samples.  

Genera/Species/ Strain 

Dataset A: Biological 

replicates from 

Fall/Winter 2021 

Dataset B: Additional biological 

replicates from 2020 and spring 

2021 

Aspergillus versicolor 8 Equivalent to dataset A 

Botrytis cinerea 8 Equivalent to dataset A 

Cladosporium cladosporioides 8 Equivalent to dataset A 

Verticillium dahliae 9 Equivalent to dataset A 

Trichoderma longibrachiatum 4 Equivalent to dataset A 

Trichoderma fasciculatum 4 Equivalent to dataset A 

Trichoderma minutisporum 4 Equivalent to dataset A 

Trichoderma harzianum strain B 4 

Samples from dataset A plus two 

samples  from 2020 and two 

samples from spring 2021 

Trichoderma harzianum strain A 4 

Samples from dataset A plus one 

from 2020 and four from spring 

2021 

Trichoderma atroviride 4 

Samples from dataset A plus five 

from 2020 and four from spring 

2021 

Total 57 57 + 4 + 5+ 9 = 75 

 

Additionally to biological replicates some samples were measured several times, 

introducing technical replicates into the data set, where instrument performance and user 

performance (e.g., dilution of samples) could contribute to the variation of the samples. 

These samples were treated as technical replicates and included in the datasets. 
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An overview of biological and technical replicates per ionization method for dataset B is 

given in Table 5.5. Dataset A has the same numbers of technical replicates except for 

Trichoderma harzianum strain A and B and Trichoderma atroviride, where the additional 

biological replicates were measured.  

 
Table 5.5: Overview of available biological and technical replicates for each ionization method.  

Genera/Species/ Strain Biological + technical replicates for dataset B 

 Ionization: 

ESI positive 

Ionization: 

APCI positive 

Ionization: 

ESI negative 

Ionization: 

APCI negative 

Aspergillus versicolor 12 13 9 6 

Botrytis cinerea 8 8 11 8 

Cladosporium cladosporioides 8 9 9 9 

Vertilillium dahliae 8 9 9 9 

Trichoderma longibrachiatum 4 4 3 4 

Trichoderma fasciculatum 5 4 6 4 

Trichoderma minutisporum 5 4 6 4 

Trichoderma harzianum strain B 13 15 14 13 

Trichoderma harzianum strain A 12 13 13 16 

Trichoderma atroviride 14 17 15 15 

Trichoderma total 58 57 57 56 

Total 89 96 95 88 

 

Additionally, to exclude bias from the operator and exclude overfitting seven samples were 

labeled by a colleague and measured. As these samples originate from the same spore 

harvest as the others and were just aliquoted at the spore stage, they represent technical 

replicates. Results will be shown in 6.1.2.  

Results of stratified 10-fold cross-validation for datasets A and B are shown in Table 5.6. The 

number of principal components used as input were evaluated during method development 

and are available in the supporting information see Table 8.6 to Table 8.9.  
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Table 5.6: Results of stratified 10-fold cross-validation for both datasets. Accuracies are shown with 
the corresponding standard deviations in brackets. 

Classifier kNN classification accuracy SVM classification accuracy 

Dataset 
 

Dataset B Dataset A Dataset B Dataset A 

ESI positive 0.96 (0.07) 0.94 (0.09) 0.99 (0.03) 0.98 (0.06) 

APCI positive 0.94 (0.08) 0.92 (0.08) 0.99 (0.03) 0.94 (0.07) 

ESI negative 0.93 (0.07) 0.91 (0.11) 0.94 (0.08) 0.96 (0.07) 

APCI negative 0.97 (0.05) 0.97 (0.07) 0.98 (0.04) 0.97 (0.07) 

 

For all ionization methods, accuracies are very high for dataset A but even higher for dataset 

B. There is only one exception, in ESI negative mode the kNN classifier performs slightly 

better with dataset A.  But in general, these results show that samples with more variability 

don’t decrease the classifiers' performance, but rather increase it. This is probably due to 

more training instances. That means that the classifiers work robustly and indicates that the 

introduction of more samples with more variances doesn’t lead to problems, but rather 

gives the classifier more information to work with.  

 

Choosing the classifier 

Overall, both classifiers performed very well, regardless of the dataset or if cross-validation 

was performed stratified or unstratified. Finally, SVM is the better classifier for genus 

differentiation. SVM reacts more stable with inputs of different dimensionality and showed 

to be robust with the input of higher variability. This was also the case for species 

differentiation, as not only genera were differentiated, but also species of the Trichoderma 

genus. Parameters for species differentiation were cross-validated and are available in the 

supporting information. The results of species differentiation with optimized principal 

component input are shown in the following table. 

 
Table 5.7: Accuracy results for Trichoderma species differentiation with kNN and SVM. 

Ionization modes kNN classification accuracy SVM classification accuracy 

ESI positive 0.95 (0.08) 0.98 (0.05) 

APCI positive 0.78 (0.13) 0.9 (0.13) 

ESI negative 0.82 (0.12) 0.89 (0.09) 

APCI negative 0.87 (0.13) 0.97 (0.07) 
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For species differentiation, SVM showed clearly better accuracies, especially with APCI 

ionization. This might be due to the fact, that for species differentiation some species 

(T. longibrachiatum, minutisporum, and fasciculatum) are only presented by a few samples 

and kNN would need further training data. In total, SVM shows a better performance for 

species differentiation.  

 

Results of method development 

Fungal spore growth was performed on PDA and HMG media at two different temperatures, 

one at day-night rhythm, and the other one in darkness. Additional Trichoderma samples 

increase the variability of data. Extraction is performed with methanol which showed the 

overall most extracted compounds, extracted ergosterol very well and was easier to handle 

than methanol: water. Measurement was performed on a C18 column with methanol as an 

organic eluent. As it couldn’t be determined which ionization method (ESI/APCI 

positive/negative mode) was the most performant the sample set was measured with all 

four. Dimensionality reduction will be performed with PCA, and additional visualization 

with t-SNE can be performed if necessary.  Unsupervised clustering allows a first glance at 

the data. Hierarchical clustering enables visualization of features that are more intense for 

certain classes, allowing further data evaluation with van Krevelen plot, etc. HCA results will 

be discussed in the following results chapters. Overall supervised machine learning enables 

the classification of fungal classes and species at very high accuracies, with support vector 

machine with the linear kernel showing the most promising results. The linear kernel is not 

prone to overfitting as only the C value can influence the fit. Different C values didn’t show 

an influence on the accuracy results making the linear kernel for this sample set a very 

robust choice. Parameters and PC input will be chosen as optimized by 10-fold stratified 

cross-validation. Dataset B will be chosen to present the results for genus differentiation as 

it includes a higher variance of samples. A validation data set for genus respective class 

differentiation will be shown in the results. Species differentiation will be performed with 

all available biological and technical replicates of Trichoderma samples.  
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6. Results and Discussion 

 

6.1. Differentiation between fungal classes and families 

 

Hereafter the results of the differentiation of fungal classes based on the fungal spores are 

presented. The sample set consists of 5 different taxonomic families from 4 different classes 

(see Table 4.1). The data set consists of 75 biological replicates and, including technical 

replicates 90 to 95 samples, depending on the ionization method, see Table 5.5. During 

method development, methods to achieve distinction by non-target liquid chromatography 

high-resolution mass spectrometry analysis for the given samples were evaluated. 

Supervised classification algorithms, especially SVM were found to produce the best results. 

Additionally, fungal species of the genus Trichoderma were differentiated (see chapter 6.2). 

Furthermore, it was evaluated if certain compounds or fingerprints could be found which 

were specific for a certain species.  

 

6.1.1. Comparison of SVM results for different ionization methods 

 
Support vector machine was found to be the more robust classification method and showed 

higher classification accuracies. The mean accuracies over 10-fold stratified cross-validation 

are shown in Table 6.1. The standard deviation represents the bandwidth of the accuracy for 

each method during the 10-fold cross-validation.  

 
Table 6.1: Mean Accuracy for classification of fungal genera by support vector machine classification. 
Accuracy and standard deviation were calculated from 10-fold stratified cross-validation. 

Ionization method Mean accuracy (Standard deviation) 

ESI positive mode 0.99 (0.03) 

APCI positive mode 0.99 (0.03) 

ESI negative mode 0.94 (0.08) 

APCI negative mode 0.98 (0.04) 

 

All methods showed a mean classification accuracy of over 90 % after 10-fold cross-

validation, giving excellent results. The mean accuracies are accompanied by very low 

standard deviations, meaning each repeated classification resulted in accuracies in or over 

the 90 % range. As the train/test split was chosen randomly, the results are independent of 

which samples were chosen for training or testing of the algorithm.  
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In positive mode, accuracies were the highest with very low standard deviations of 3 %. In 

the negative mode, APCI showed higher results than ESI. Also, with ESI in negative mode, a 

higher number of principal components was needed to achieve the classification. The 

optimal number of principal components was evaluated during cross-validation. APCI/ESI 

in positive mode and APCI in negative mode only needed the input of 15 to 18 principal 

components explaining 50 to 59 % of the data variance. ESI in negative mode needed 30 PCs, 

explaining 75 % of the variance as input. This indicates that the features detected by ESI in 

negative mode don’t explain the differences between different fungal classes as well.  

The confusion matrices allow a closer look at the classification:  

 

 

Figure 6.1: Confusion matrices for the differentiation of fungal spore genera by SVM. Left: Ionization 
by ESI in positive mode. Right: Ionization by APCI in positive mode. 

 
In positive mode, all samples were classified correctly. The classification was performed 

stratified with 80 % of data per class used for training and 20 % for testing. This indicates 

that even the small training sample size provided enough information to classify all test data 

correctly.  
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Figure 6.2: Confusion matrices for the differentiation of fungal spore genera by SVM. Left: Ionization 
by ESI in negative mode. Right: Ionization by APCI in negative mode. 

 
In negative mode APCI showed a correct classification of all samples, whereas with ESI two 

samples were misclassified, representing an accuracy of 92 %. One Trichoderma sample 

was misclassified as Botrytis and one Verticillium sample was misclassified as Trichoderma. 

This points to the hypothesis, that ESI negative mode might not contain enough information 

to separate classes in all cases. Nonetheless, results over 90 % are very promising, especially 

as it is suggested that more training data might even improve the classifiers' accuracy (see 

also method development page 89). 

 

6.1.2. Validation of classification 

 
To test the performance of the classifier, six unknown samples for APCI positive/negative 

and ESI negative mode, respective seven samples for ESI positive mode were tested.  The 

classifier has never been trained with those samples, to that the decision regions formed by 

the classifier weren’t formed with information from the samples themselves. The samples 

are technical replicates, meaning they are genetically the same and presumably 

phenotypically very similar to samples the algorithm was trained with. Samples were 

relabelled by a colleague after harvest, extraction, and dilution so that the user couldn’t 

introduce any bias in the training/test process of the classifier.  Parameters for the SVM 

were chosen according to the parameters evaluated in method development (chapter 5.2.4). 
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Table 6.2: Results for the classification of validation samples. Classification by SVM with parameters 
evaluated for the training samples. 

Ionization method: ESI positive 
APCI 

positive 
ESI negative 

APCI 

negative 

Actual Species Predicted species by classification 

Aspergillus versicolor Aspergillus Aspergillus Aspergillus Aspergillus 

Trichderma atroviride Trichoderma Trichoderma Trichoderma Trichoderma 

Cladosporium 

cladosporiodes 
Cladosporium n/a n/a n/a 

Trichderma 

minutisporium 
Trichoderma Trichoderma Trichoderma Trichoderma 

Trichoderma 

longibrachiatum 
Trichoderma Trichoderma Trichoderma Trichoderma 

Trichoderma harzianum 

strain A 
Trichoderma Trichoderma Trichoderma Trichoderma 

Verticillium dahliae Verticillium Verticillium Verticillium Verticillium 

 

All ionization methods were able to classify all technical replicates correctly. The 

Cladosporium sample was only available for ESI positive mode measurements. It should be 

noted that the classification outcome is sensitive to the number of principal components 

used as input. The results were produced with the principal component number evaluated 

during the cross-validation but also tested with other principal component inputs. Low PC 

input that explains 30 % of the data’s variance or less didn’t produce sensible results. They 

probably don’t hold enough information to differentiate accurately between classes. It 

indicates, that for unknown samples enough of the data needs to be explained, to enable the 

classification of unknowns, in this case at least 50 % of the data’s variance. It also 

emphasizes that training with cross-validation is crucial, to prevent under- or overfitting. 

The number of PCs should be included in the cross-validation. If in question, a higher 

number of PCs should be chosen, taking advantage of the fact that SVM with a linear kernel 

is less susceptible to the curse of dimensionality.  

Overall classification results are very high, also in the case of unknown samples, the 

classifier hasn’t been trained before. It should be noted that the unknown samples were 

technical replicates, originating from the same culture as samples that the algorithm has 

been trained with.  That means, that the algorithm was trained with very similar data. 

Nevertheless, it indicates that fungal spore samples of different classes are linearly 
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separable. Also, Trichoderma samples of different species were classified as Trichoderma 

spp. This indicates that distances within species of the same genus are smaller than 

distances between different fungal families’ classes, despite possible high inter-species 

diversity. This should be further examined in future projects with more samples.  

 

6.1.3. Genus’s differentiation in mixed-species samples  

 
Additionally, it was tested if the SVM could differentiate between mixed samples on a small 

data set. In actual environmental samples, there will always be a mixture of fungal species 

present. Mixed samples were created by mixing single species extracts. Samples consist of 

the following mixtures:  

Table 6.3: Composition of mixed samples for classification testing. Mixed from their diluted single-
species extracts. 

Sample number Mixture 

1 
80 % Aspergillus versicolor 

20 % Trichoderma harzianum strain A 

2 
50 % Aspergillus versicolor 

50 % Trichoderma harzianum strain A 

3 
20 % Aspergillus versicolor 

80 % Trichoderma harzianum strain A 

4 

33.3 % Verticillium 

33,3 % Trichoderma harzianum strain A 

33.3 % Trichoderma fasciculatum 

 

The algorithm is not trained with mixed samples; therefore, the best parameters and the 

optimum number of principal components couldn’t be determined and parameters for 

single species samples were used. The classification was performed with the SVM and kNN 

and PC input was chosen that 50 and 80 and 100 % of variance were explained. Low 

variance input for kNN and high variance input for SVM showed the best results. The best 

results mean in this case, that samples were classified according to the species with a higher 

proportion. The classification of evenly mixed samples is not possible with this method that 

only allows one label for each sample.  
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Table 6.4 Classification results for mixed samples. The classification was performed with SVM at a PC 
input that explained the full data set. Correctly predicted samples are marked in green. As sample 2 
consists of equal parts of two samples the prediction wasn’t coloured. 

Sample ESI positive 
mode 

APCI positive 
mode 

ESI negative 
mode 

APCI negative 
mode 

1 Aspergillus Aspergillus Aspergillus Aspergillus 

2 Trichoderma Aspergillus Trichoderma Trichoderma 

3 Trichoderma Aspergillus Trichoderma Trichoderma 

4 Trichoderma Trichoderma Trichoderma Trichoderma 

 

With SVM and principal component input of 100 % variance explained, almost all samples 

were classified according to the species with the highest proportion. As sample 2 is a 50:50 

mixture the classification as either Aspergillus or Trichoderma won‘t be rated. 

With PC input that explains 80 % variance, input results were worse with only one-third of 

the samples being classified correctly. With all ionization types sample 4 was classified as 

Verticillium, the lower proportional part. With 50 % variance explained as input results 

were approximately the same as with 80 % variance input, with one major misclassification: 

In APCI negative mode sample 3 was classified as Cladosporium, which is not present in the 

sample. This means, that the decision regions formed by the hyperplanes in SVM 

classification at low information input aren’t very suitable to classify mixed samples. It 

should be examined if the training of the algorithm with mixed-species samples would 

increase the classifications' performance. Classification by kNN produced the results 

presented in Figure 6.5. 

Table 6.5: Classification results for mixed samples. The classification was performed with kNN at a PC 
input that explained 50 % of the data set’s variance. Correctly predicted samples are marked in green. 
As sample 2 consists of equal parts of two samples the prediction wasn’t colored. 

Sample 
ESI positive 

mode 
APCI positive 

mode 
ESI negative 

mode 
APCI negative 

mode 

1 Aspergillus Aspergillus Aspergillus Aspergillus 

2 Aspergillus Aspergillus Aspergillus Aspergillus 

3 Trichoderma Aspergillus Trichoderma Trichoderma 

4 Trichoderma Verticillium Trichoderma Trichoderma 
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Almost all samples are classified correctly if using 50 % of the variance. With 80 % variance 

results are just slightly less accurate, with all of sample 4 being classified as Verticillium. 

With 100 % of variance explained the results were acceptable, except for APCI positive 

mode. Sample 4 was classified as Aspergillus with no Aspergillus being present in the 

sample. Overall kNN showed good results but showed some signs of the “curse of 

dimensionality” with higher dimensionality data. With mixed samples, the principle of kNN 

using the n nearest neighbors for classification might be beneficial. With SVM, samples need 

to be within the decision region, but mixed samples might be on the border of decision 

regions. With kNN samples classification works according to the closest neighbors which 

might represent the composition of a mixed sample more reliably.  

Overall, it is surprising that the algorithm classified samples correctly if it wasn’t trained 

with mixed samples. The sample set was very small but can hint toward the application of 

machine learning algorithms to find the major fungal class in a sample. This would be 

preferable with filter samples of air, especially when one fungus dominates the sample. 

Examples of a fungal spore species dominating the aerosol would be plant pathogens 

infecting a field. When looking at environmental samples it should be considered that the 

background/noise might be interfering. Many other substances are present in the air, 

including other biological or anthropogenic aerosols. Those compounds would probably 

need to be filtered or excluded beforehand, e.g., by using artificially made anthropogenic 

aerosol filters as blank. 

 

6.1.4. Evaluation of feature space 

 
Despite results being too complex to analyze by the human eye, the supervised machine 

learning algorithms find structures in the feature space that enables differentiation between 

samples of different genera, respective classes. The ionization method doesn’t seem to 

influence the performance of the algorithm extensively, with ESI negative ionization 

showing slightly lower accuracies than the other ionization methods. To get further 

information if different ionization methods focus on different biomolecule groups the 

respective feature spaces were plotted in van Krevelen plots. 
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Figure 6.3: Van Krevelen plots for all compounds detected in all fungal spore samples by the different 
ionization methods. Upper left: ESI positive mode. Upper right: APCI positive mode. Lower left: ESI 
negative mode. Lower right: APCI negative mode.  

 

Figure 5.17 shows the complexity of the feature space. All biomolecule groups are 

represented according to their O/C and H/C ratio. The largest number of compounds was 

detected by ESI in positive mode, with 26,047 features spread over ~90 samples, followed 

by APCI negative mode with 22,383 features. ESI ionization in negative mode produced 

18,450 features and APCI in positive mode the least with 11,595 compounds. The van 

Krevelen plots look very similar for all four ionization methods. ESI positive mode and APCI 

negative mode show higher densities, but this is probably a result of the larger feature space. 

As the van Krevelen plots don’t give insights into the feature space as they are too complex, 

hierarchical clustering analysis is performed.  

 

6.1.5. Hierarchical clustering of features 

 
Hierarchical clustering analysis is used to cluster feature- and sample-wise, to get 

information if certain features are “responsible” for the distinction between different genera. 

Heatmaps with large samples and feature cases like in this example get very complex. The 

samples are represented by the horizontal tree diagram and the features by the vertical.  
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Figure 6.4: HCA of fungal spore samples ionized by ESI positive mode. The legend shows the color 
coding for the different fungal genera. The horizontal tree diagram represents the sample-wise 
clustering, and the vertical tree diagram the feature-wise clustering.  

 

Samples of the same class weren’t necessarily clustered together, as shown by the color-

coded horizontal bars in the figure. This was expected, as the cophenetic correlation 

coefficient for sample-wise clustering indicated (see Table 5.3). However, feature-wise 

classification showed a cophenetic correlation factor close to one, meaning representation 

by the vertical cluster tree is close to actual distances between features.  By looking closely 

at the heatmap one can see, that certain areas of the heatmap are dark red, indicating a high 

intensity of features. Some of these features are intense only for samples of a certain fungal 

class. The vertical color-coded bar shows the areas where features occur more intensely for 

the respective class. These features could be specific to the fungal class.  

In the following also the HCA results for the other ionization methods are shown:  
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Figure 6.5: HCA of fungal spore samples ionized by APCI positive mode. The legend shows the color 
coding for the different fungal genera. The horizontal tree diagram represents the sample-wise 
clustering, and the vertical tree diagram the feature-wise clustering. 

 

HCA results of APCI positive mode ionization are very similar to ESI positive mode. Samples 

weren’t clustered together, but features show some order according to the fungal genera. 

Features specific to Cladosporium are smaller and less intense when compared to ESI 

positive mode ionization. 
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Figure 6.6: HCA of fungal spore samples ionized by APCI negative mode. The legend shows the color 
coding for the different fungal genera. The horizontal tree diagram represents the sample-wise 
clustering, and the vertical tree diagram the feature-wise clustering. 

 

With APCI negative mode ionization results show again, that samples aren’t clustered 

together, but feature regions that are more intense for samples of a specific genus. The 

upper dark red/dark blue regions represent features that are present in some samples but 

are absent in others. The presence or absence of those features can’t be correlated to 

environmental conditions like growth media or temperature. As the features are not present 

in all samples they presumably aren’t originating from the primary metabolism. As they are 

present in samples of different genera it indicates that fungi of different genera produce the 

same secondary metabolites even if they are not very closely related. This is known from 

secondary metabolites like melanin which can be present in fungi of different classes (Calvo 

et al., 2002). 
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Figure 6.7: HCA of fungal spore samples ionized by ESI negative mode. The legend shows the color 
coding for the different fungal genera. The horizontal tree diagram represents the sample-wise 
clustering, and the vertical tree diagram the feature-wise clustering. 

 

With ESI negative mode the least number of features was detected which is also reflected in 

the heatmap of the hierarchical clustering analysis. Still, there are feature regions more 

specific for samples of one genus, but the feature number is quite small. Overall, ESI in 

negative mode showed lower accuracies and fewer features, indicating that it is not the best 

method to choose for non-target analysis. This might be because polar molecules ionizable 

by ESI in negative mode are rather originating from the primary metabolism, like 

carbohydrates than from the secondary metabolism.  

When filtering manually for features that are only present in samples of one fungal species, 

one can see that those features were all clustered into one cluster. This was the case for the 

specific feature spaces of all species The problem using these specific feature spaces is 

discussed in the following chapter and chapter 6.2.3.  
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6.1.6. Evaluation of possible specific fingerprints 

 
To take a closer look at the more species-specific regions which were clustered by HCA the 

features were averaged for all respective samples of each species. Shown are the results for 

ESI positive mode ionization. 

 

 
Figure 6.8: Hierarchical clustering analysis for fungal spores of different classes. ESI positive mode. 
The results of the biological and technical replicates per species were averaged to get a clearer 
picture of the feature space. The different classes are marked in colour. The different Trichoderma 
species are labeled with a number.  

 

The species-specific feature regions are clearly detectable. What is also more clearly 

visualized is the differences between samples of different species but the same genus 

(Trichoderma). The different Trichoderma species show different high-intensity feature 

areas, with no feature being present in every single of the Trichoderma samples. Even 

samples of the same species but different strains show differences. This will be further 

discussed in chapter 6.2.3. It also means that those specific regions for Aspergillus 

versicolor might not be specific for other Aspergillus species. Altogether it makes the 
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determination of a genus-specific fingerprint near impossible as the phenotypical plasticity 

of each species can be very large. 

Despite all the differences in the feature space of different species, the unsupervised 

clustering shows all Trichoderma samples in the clustering diagram next to each other, with 

height differences between the Trichoderma genera being smaller than between different 

genera/classes. Verticillium is more closely to Trichoderma possibly because they belong to 

the same class. But as the fungis’ metabolism is so diverse this might be coincidental. More 

Verticillium species and other samples from the Sordariomycetes class would be needed to 

support or refute the hypothesis, that hierarchical clustering can represent relationships 

between fungi of different genera. In some cases, phenotyping has been shown to be 

supporting taxonomic identification by DNA analysis (Aliferis et al., 2013, Kang, 2011).  

 

6.1.7. Summary of fungal class/family differentiation 

 
The first method to differentiate between fungal classes by non-target LC-HRMS analysis 

based on fungal spores was developed. Support vector machine with linear kernel worked 

the best, with cross-validated accuracy results as high as 99 % and very low standard 

deviations. The sample-set is rather small, but samples showed some phenotypical variety, 

showing that classification is robust towards inter-species or inter-genera variability, at 

least in the presented data. Especially that all five Trichoderma species, despite showing 

different intense feature spaces, were still classified into the same genus support the results.  

Species or genus differentiation by mass spectrometry has been evaluated before (see 

chapter 1.2.4). Previous LC-MS or GC-MS studies used the mycelium itself or VOCs emitted 

by the mycelium to perform genus, order, family, or class differentiation.  Some studies used 

machine learning algorithms to classify species. Müller et al. (Müller et al., 2013) separated 

9 different fungal species (Basidiomycetes: Stropharia, Pholiota, Armillaria Laccaria, and 

two Paxillus strains. Ascomycetes: Verticillium, Trichoderma, and Cenococcum) based on 

the VOC profile with accuracies of 55 to 83 %.  Kim et al. (Kim et al., 2016) evaluated 

Ascochyta in a chemotaxonomically approach by LC-MS. Some Phoma species were included 

in the sample set consisting of 45 strains. Ascochyto and Phoma belong to the same 

taxonomic order and weren’t always separable in the study. The only studies including 

fungal spores are performed with MALDI-TOF (Becker et al., 2014, Chalupová et al., 2014), 

but most MALDI studies were performed on filamentous fungal samples. When using fungal 

spores, concentrations of 2 - 5x109 spores/mL were used which is in the same range as in 

this work (1 x 109 spores/mL). Differentiation by MALDI-TOF is based on a peptide 

https://en.wikipedia.org/wiki/Sordariomycetes
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fingerprint (m/z 1000 – 20000). The resulting fingerprints are saved in a databank and can 

be compared to unknown samples. Comparison is performed by the commercially available 

software Biotyper by Bruker. One study (Lau et al., 2013) used proteins extracted from the 

fungi’s colony to identify clinically relevant mold, mostly Aspergillus species. A correct 

identification on species-level of 88.9 %  of samples was reached. With MALDI-TOF different 

pigmentation of the sample caused trouble (Chalupová et al., 2014), something that was not 

encountered in this work, probably because ESI/APCI works differently than MALDI. Also, 

problems when working with variable colony ages were reported, something that wasn’t 

problematic in this work as well.  

Fungal spores are presumably not as subjected to phenotypical fluctuations as the 

mycelium/whole fungus. In general, results of fungal spores are more likely to be 

transferred to environmental samples than results from pure single-species cultures 

containing the whole fungus. Fungal spores aren’t as susceptible to environmental changes, 

as fungal spores need to be adapted to and survive many environmental influences. Fungal 

spores can easily be sampled on filters and extraction with subsequent LC-MS analysis is 

very fast. This makes differentiation based on fungal spores a very promising approach. 

Future investigations should increase the sample set further and get samples grown in 

different laboratories. Also, including samples that belong to a different order or family of 

one of the classes would be a promising next step. As the small mixed sample set indicates, 

that the predominant species in a sample can be classified, more mixed samples at different 

species ratios should be evaluated. Further environmental influences should be examined 

and samples from fungi from different origins, e.g., different continents should be included 

in future data sets. This should induce more phenotypical plasticity, which is important, as 

fungal samples from different origins can behave very differently and express different 

metabolites even if the genome is very similar. Additionally, samples should be measured by 

different orbitrap mass spectrometers (inter-laboratory comparison) to see if the 

robustness of the method is maintained.  
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6.2. Differentiation between fungal species 

 

Genus’s differentiation by supervised classification methods on the given data set showed 

promising results. All Trichoderma species were classified as Trichoderma, even if the 

samples were grown under different influences, e.g., in different laboratories, two different 

media and temperatures, and after interim storage in a cooling culture. It was evaluated if 

SVM or kNN can differentiate on a species level, something that is sometimes difficult to 

achieve even with DNA analytics (Aliferis et al., 2013, Kang, 2011, Lücking et al., 2020). The 

results are presented hereafter.  

 

6.2.1. Supervised classification  

 
For species differentiation, the Trichoderma samples which were also used in the genus 

differentiation data set were evaluated. The sample set consists of 42 biological replicates 

over five species and six strains. Including technical replicates, the sample set consists of 56 

to 58 samples depending on the ionization mode. For an exact listing of the species 

distribution see Table 5.4 and Table 5.5. 

For the supervised classification of fungal species in this work, SVM is the better choice as 

accuracies reached by kNN are always a few percentage points lower than SVM. kNN results 

are shown in the supplementary information. The lower accuracies of kNN might be due to 

the small data set. In the case of T. minutisporum, T. fasciculatum, and T. longibrachiatum, 

only 4 biological replicates, and, including technical replicates, only 5 to 6 instances per 

species were available. SVM classification accuracies were again calculated from 10-fold 

stratified cross-validation.  

 

Table 6.6: SVM classification accuracy for the differentiation of Trichoderma spores on species level. 

Ionization method Mean accuracy (Standard deviation) 

ESI positive mode 0.98 (0.05) 

APCI positive mode 0.90 (0.13) 

ESI negative mode 0.89 (0.09) 

APCI negative mode 0.97 (0.07) 

 

For species differentiation ESI in positive mode and APCI in negative mode show very good 

results with accuracies of 98 % respective 97 % with low standard deviations. APCI positive 
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and ESI negative showed lower accuracies, but nonetheless good results with accuracies of 

90 % and 89 % with slightly higher standard deviations. Low APCI positive mode accuracies 

might be connected that the overall detected feature space for the Trichoderma samples 

was only 7934, which is significantly lower than the feature spaces of the other ionization 

methods. It might be, that Trichoderma spp. don’t produce that many semi- to nonpolar 

compounds with functional groups that can be ionized in positive mode. With ESI in positive 

mode, 17834 features were detected, and with APCI in negative mode 15835 features. ESI in 

negative mode had a feature space of 12449, which is not significantly lower. Lower 

accuracies with ESI negative mode coincide with lower accuracies in class differentiation 

(see chapter 6.1). Again, for ESI negative mode higher number of PCs were needed as input, 

needing a higher percentage of the explained variance of the feature space to differentiate 

between samples.  

The confusion matrices allow a closer look at the species differentiation. The classifier was 

trained to look at Trichoderma harzianum strain A and B as one class. Strain differentiation 

is covered in chapter 6.2.4. 

 

 

Figure 6.9: Confusion matrices for the differentiation of fungal spore species of the genus 
Trichoderma by SVM. Left: Ionization by ESI in positive mode. Right: Ionization by APCI in positive 
mode. 

 

With ESI positive mode the samples were 100 % accurately classified, which is in the 

standard deviation range of the mean accuracy. With APCI in positive mode, an overall 

accuracy of 93 % is achieved, meaning one T. atroviride samples was misclassified as T. 

harzianum. It should be kept in mind, that an accuracy of 100 % originates from the small 



Results and Discussion 

108 
 

size of the data set. With larger datasets, the classifiers' performance usually increases, but 

some misclassification cannot be prevented and is normal.  

 

 

Figure 6.10: Confusion matrices for the differentiation of fungal spore species of the genus 
Trichoderma by SVM. Left: Ionization by ESI in negative mode. Right: Ionization by APCI in negative 
mode. 

 

Species differentiation in negative mode shows that with APCI negative mode results are 

much more accurate than with ESI in negative mode. ESI in negative mode produces overall 

87 % accuracy in this example, meaning one T. atroviride and one T. harzianum sample 

were misclassified as the respective other class.  

 

Validation of classification 

The results are validated with four samples (compare validation of class differentiation, 

chapter) the classifier has never been trained before. For validation, the classifier is 

operated with the parameters evaluated during methods development. In the case of SVM 

with a linear kernel, it only includes the input number of principal components and the C-

value.  
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Table 6.7: Validation of the classification of Trichoderma spp. by support vector machine. Linear 
kernel. Results are shown for a C-value of 0.01. PC input numbers were chosen as evaluated by the 
10-fold cross-validation of the train/test sample set.  

Ionization 

method: 
ESI positive APCI positive ESI negative APCI negative 

Actual Species Predicted species by classification 

T. atroviride T. atroviride T. atroviride T. atroviride T. atroviride 

T. 

minutisporium 
T. minutisporum T. minutisporum T. harzianum T. minutisporum 

T. 

longibrachiatum 

T. 

longibrachiatum 

T. 

longibrachiatum 

T. 

longibrachiatum 

T. 

longibrachiatum 

T. harzianum 

strain A 
T. harzianum T. harzianum T. harzianum T. harzianum 

 

With ESI positive all four validation samples were classified correctly. As an input 

parameter, the C value was varied between 0.0001 and 10 and the classification remained 

correct throughout. This indicates that also samples of the same genus, but different species 

are robustly linearly separable. The C-value doesn’t seem to influence classification even at 

different values meaning ESI positive ionization contains enough information to clearly 

separate between species. This was also the case for APCI in positive and negative modes, 

where all samples were classified correctly unregarding the C-parameter. Only with ESI in 

negative mode, not all validation samples were classified correctly. T. minutisporum was 

misidentified as T. harzianum. Additionally, the classification was dependent on the C 

parameter and only the C value of 0.01 worked correctly. With higher C values also the T. 

harzianum samples were misclassified as T. atroviride. Furthermore, is ESI in negative mode 

the only ionization method which required higher PC numbers as input. Overall seems ESI in 

negative mode not suitable for the non-target analysis of fungal spores. All other ionization 

methods produced very good results with the validation set. Future studies should include 

more samples for training/testing and validation purposes to further improve the 

robustness of the classification method regarding phenotypical plasticity.  

 

6.2.2. Hierarchical clustering analysis 

 
It was evaluated whether species differentiation can be attributed to certain species-specific 

features. For that, a hierarchical clustering analysis was performed. In the following, the 

results for ESI positive mode ionization are shown. The hierarchical clustering results for 

the other ionization methods are available in the supporting information (see Figure 8.3 to 

Figure 8.5) as the results are similar. 
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Figure 6.11: Hierarchical clustering analysis of Trichoderma species ionized by ESI in positive mode. 
The legend shows the color coding for the different fungal species. The horizontal tree diagram 
represents the sample-wise clustering, and the vertical tree diagram the feature-wise clustering. 

 

Samples were not clustered species-wise and under disregard for the environmental 

conditions they were grown in. The cophenetic correlation factor is with 0.75 rather low, 

meaning the horizontal clustering tree doesn’t represent the actual distances between 

species very well.  

The cophenetic correlation factor for feature-wise clustering is higher with 0.95. However, 

there are no joined features present in all samples, which could behave as a general 

Trichoderma specific marker. Diversity within the genus Trichoderma is too large. Samples 

of the same species have some similarities, but these are partly very small. E.g., only 32 

compounds are specific for T. minutisporum, and present in all 4 biological replicates.  

This inter-species variability is also present in e.g., Aspergillus versicolor, where close to 

100 compounds were present in all Aspergillus samples. But when thinking of other 

Aspergillus species one can imagine how few, if any compounds are left which are always 

available in all samples of all species of a genus. Even two strains of the same species show 

high variability. Comparing the two strains A and B of Trichoderma harzianum, one finds no 

compound present in all samples of T. harzianum, but not present in samples of other 

species. This diversity is illustrated in the following sub-chapter. 
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6.2.3. Evaluation of possible species-specific fingerprints 

 
In the following figure, exemplary fingerprints of the inter-species averaged signal 

intensities for the Trichoderma species are shown. The feature space, meaning all 

compounds expressed by on average by all samples of a species represents the resulting 

fingerprint. In the following figure, the averaged results for all samples of a species are 

shown.  Fingerprint of the remaining Trichoderma species are shown in the supporting 

information Figure 8.6.  

 

 

Figure 6.12: Fingerprint of features for Trichoderma averaged (upper left), T. fasciculatum (upper 
right), T. longibrachiatum (lower left), and T. harzianum strain B (lower right). ESI positive mode. 
The maximum intensity in all figures is 1e9.  

 

The upper left picture shows the averaged signal intensities for all Trichoderma species. 

One could assume that features shown in this fingerprint are typical for Trichoderma, 

however, not all features are present in all species as shown in the heatmap in Figure 6.11. 

For example, the peak at minute 4.2 is present in Trichoderma harzianum strain B in high 

abundancies but not in the other species, see Figure 6.12 and supporting information Figure 

8.6. Nonetheless, some similarities are present, like the denser region around minute 9. 

These features at this retention time weren’t present in e.g., the examined Aspergillus 
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versicolor samples (see Figure 8.2). The presumption is, that all Trichoderma samples have 

this feature region and that it might be specific for Trichoderma spp. This assumption 

should be validated with a larger sample set, containing more Trichoderma species in the 

future. There are, however, still many features available in the time region from minute 8 to 

10, 1546 features were detected on average between all Trichoderma species. Plotting these 

features in a van Krevelen plot resulted in a denser region fitting for lipids and peptides, see 

Figure 6.13.  

 

 

Figure 6.13: Van Krevelen plot for features present in Trichoderma genus, averaged over all species 
analyzed in this work. Only features that had a retention time of 9 – 10 minutes are shown.  

 

There are still many features present which do not belong to a specific biomolecule region. 

Nonetheless, could these be molecules that differ Trichoderma from other classes. The 

abundance of features and the fact that they are not always present in all samples makes it 

difficult to determine which features are the most important ones. To evaluate reliably 

which features are more likely to be present in samples of Trichoderma, more samples 

would be needed, possibly also containing several strains to include more inter-species and 

inter- genera variability. In future investigations, additional machine learning algorithms 

like Random-Forest could be helpful for research topics like this. 

One thing to be considered when evaluating van Krevelen plots is, that not all features were 

calculated with the molecular formula, meaning a van Krevelen plot doesn’t give the full 

picture of the metabolome. Different ionization efficiencies of biomolecules can play an 

additional part when trying to find species-specific regions in a metabolome. Nonetheless, 
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tendencies of a density of biomolecules of a certain class should be detectable, even if not all 

biomolecules were ionizable or calculated with a molecular formula. 

To examine if these similarities and dissimilarities are also present in samples of the same 

species but different strains, the averaged intensity values for both strains of T. harzianum 

were plotted. 

 

 

Figure 6.14: Fingerprint of features of T. harzianum strain A and B. ESI positive mode. The maximum 
intensity of 1e9 for all figures. 

 

T. harzianum samples in this work share the intense peak at minute 4.2. Some features 

present in strain B aren’t present in strain A, as the intense peaks at minutes 7 to 8. This 

emphasizes the inter-species variability. To see if all samples of one strain share the same 

features the signals for some T. harzianum strain B samples were plotted in Figure 6.15. The 

fingerprint of all T. harzianum strain B samples are available in the appendix Figure 8.7.  
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Figure 6.15: Fingerprint of features for different samples of T. harzianum B. ESI positive mode. 
Average for all samples of T. harzianum strain B upper left part of the figure. The maximum intensity 
of 1e9 for all figures. 

 

Some samples present very high signals and others very low signals. This is unrelated to the 

ergosterol content of the samples and therefore presumably unrelated to the sample’s 

concentration. Additionally, the relative abundancies of signals are different, e.g., Sample 1 

shows the peak at min 7.9 as the most intense whereas sample 3 has the peak at min 4.2. as 

the most intense one. Nonetheless, the spectrums are still similar. It also shows that even 

the same strain can express different features at different abundancies, and presumably 

intense features for a specific strain might not be intense or even under a certain threshold 

for some samples of this strain.  
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As strains showed a similar pattern but some differences in abundancies of features it was 

checked if they could be differentiated when both T. harzianum strains were treated as their 

own class. The results are discussed in the following chapter.  

 

6.2.4. Species differentiation including T. harzianum strains 

 
The T. harzianum class was separated into two for strains A and B. SVM and kNN 

classification were evaluated by stratified 10-fold cross-validation. kNN classification 

produced considerably lower accuracy values than SVM. kNN results are available in the 

supporting information. Best SVM parameters were the same as for the class and species 

differentiation.  

Table 6.8. SVM classification results for strain and species differentiation of Trichoderma. Stratified 
10-fold cross-validation.  

Ionization method Mean accuracy (Standard deviation) 

ESI positive mode 0.94 (0.13) 

APCI positive mode 0.82 (0.12) 

ESI negative mode 0.84 (0.09) 

APCI negative mode 0.95 (0.08) 

 

SVM classification results show similar results as for species differentiation with ESI in 

positive mode and APCI in negative mode producing the best results. Standard deviations 

are higher, presumably because fewer training instances were available for T. harzianum. In 

general, the differentiation of more closely related samples can be more difficult, as 

distances between samples of different species might be small. To see which samples were 

misclassified the confusion matrices are evaluated. 
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Figure 6.16: Representative correlation matrices for SVM classification of fungal species and strains 
for Trichoderma.  

 

For ESI in positive mode and APCI in negative mode, only one sample was misclassified on 

average. It was either a mix-up between the two strains of T.harzianum or misclassification 

of T.atroviride as mostly T. harzianum strain B. It is possible that by splitting T. harzianum 

into two classes the training of the algorithm isn’t extensive enough so that T. harzianum 

and T. atroviride aren’t always distinguishable. For APCI in positive mode and ESI in 

negative mode accuracies were lower and more samples were misclassified. But also, here 

the most mix-up happened between T. harzianum of both strain and T. atroviride. It could 

also be the case, that for the other species only one sample was used for testing, and with 

more samples and more inter-species variation results could look different. This should be 

tested in future studies.  

By introducing strain differentiation into the classification, the overall accuracy decreased, 

probably due to fewer training instances. Nonetheless, the classification differentiated in 

many cases between the two strains of T. harzianum. 
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6.2.5. Summary of fungal species differentation 

 
The classification was reliable for the sample set even if the inter-species variation was high, 

as seen in the evaluation of the feature space. Especially ESI in positive mode and APCI in 

negative mode produced very high accuracies over 95 %. The sample-set is rather small, 

therefore more samples should be incorporated in the future. Both species and strain 

differentiation worked well. When misclassification happened it was between T. harzianum 

and T. atroviride, which was also the case when T. harzianum was treated as one class. 

Comparing these results to studies from the literature shows comparable accuracies. Aliferis 

et al. achieved 83.33 % correct classification of 30 Rhizoctonia solani strains by GC-MS 

(Aliferis et al., 2013). Zwickel et al. evaluated 93 Alternaria strains from 4 species by LC-MS, 

with a focus on mycotoxin profiles. Species were clustered into high- or low toxin producers 

and not into species groups. No species-specific mycotoxin profile was detected (Zwickel et 

al., 2018). Gotthardt et al. analyzed three Alternaria alternata isolates and one Alternaria 

solani isolate by a non-target LC-MS metabolomics approach. Also here high variation 

between biological replicates led to ambiguous unsupervised clustering results (Gotthardt 

et al., 2020). This “problem” of high inter-species variability was also observed with the 

Trichoderma species used in this work. 

Additional applications of non-target metabolome studies are chemotaxonomy by LC- or GC 

MS. Kang et. al compared the taxonomical classification of Trichoderma by chemotaxonomy 

and by ITS sequencing, based on the mycelium and found concordance between 

chemotaxonomically and DNA-analysis results.  Species or strain differentiation by 

phenotype is especially interesting as taxonomic classification can be even challenging when 

using DNA analysis ((Cai, Druzhinina, 2021, Lücking et al., 2020). One recent study showed 

that the identification of Trichoderma species by DNA barcoding is difficult even for experts 

(Cai, Druzhinina, 2021). Chemotaxonomical approaches can give valuable additional 

information. It is not clear how well the taxonomy is represented by fungal spores. This 

could be an additional research question in future work.  

Overall, did supervised classification achieve high accuracies for species- and strain 

differentiation even in the presence of inter-species variability. Future applications could be 

monitoring of fungal spores which are used as biological plant protectants, e.g., Trichoderma 

spp. In the future, more samples are needed to further investigate strain- and species-level 

differentiation. Especially T. longibrachiatum, T. fasciculatum, and T. minutisporum were 

available in only few instances and the sample number of biological replicates should be 



Results and Discussion 

118 
 

increased. A suggested sample size should include 5 strains for at least 5 species each grown 

under different conditions to get more meaningful results.  

 

6.3. Additional fungal samples 

 

A small sample set of fungal spores on filter samples was available to evaluate with the 

workflow developed in this work. The fungal spores originate from the Amazonian 

Rainforest, Brazil, and belong to the taxonomic division Basidiomycetes.  

Furthermore, a first investigation of the volatile organic compound profile of Trichoderma 

was conducted.  

 

6.3.1. Basidiomycetes spores from the Amazonian rainforest 

 
Filter fungal spore samples originate from the ATTO (Amazon Tall Tower Observatory) site 

in the Amazonian rainforest. The research site is in a pristine part of the Amazonian 

rainforest in the nature reserve “Uatumã Sustainable Development Reserve” 150 km from 

Manaus. Fungal spores were sampled by a cooperation partner. For further information and 

experimental see Chapters 4.1 and 4.2. The taxonomic classification of the fungal spore 

samples is given in the following table.  

Table 6.9: Fungal spore samples from the Amazonian rainforest with the taxonomic classification.  

Sampling 

Period 
Genus Family Order Class 

Wet 2019 Trametes 

Polyporaceae 
Polyporales Agaricomycetes 

Wet 2019 Picnoporus 

Wet 2019 - 

Dry 2018 Ganoderma Ganodermataceae 

Dry 2018 Field Mix mixed mixed mixed 

 

All samples belong to the same order and three samples belong to the same family. The 

order Polyporales usually contains wood-decaying fungi. Taxonomic classification was 

performed down to genus level except for one sample, which was classified as belonging to 

the family Polyporaceae. Visual classification at the genus level was not possible. The 

Polyporaceae samples were sampled in the wet season of 2019, whereas the mixed sample 
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and the Ganoderma sample were sampled in the dry season of 2018. Both positive and 

negative modes of APCI were applied. Each sample was measured twice (negative mode) or 

trice (positive mode). As the sample set is quite small, supervised classification is not 

possible. The unsupervised method of hierarchical clustering analysis was applied to both 

positive and negative modes. Figure 6.17 shows the results of positive mode ionization by 

APCI. 

 

 

Figure 6.17: Hierarchical clustering analysis of Basidiomycetes spores from ATTO site. APCI positive 
mode ionization. The horizontal tree diagram represents the sample-wise clustering, and the vertical 
tree diagram the feature-wise clustering. 

 

The cophenetic correlation factor of the sample- and feature-wise clustering was 0.98 and 

0.95, meaning they represent the actual distances between samples' respective features 

quite well. One can see that fungi of the family Polyporaceae are clustered very closely 

together. The sample where the genus wasn’t determined is clustered at a very low distance 

with Picnoporus. Only phylogenetic analysis could show if the unknown genus might be 

closely related to Picnoporus. Ganoderma was clustered at a larger distance. This could be 

due to actual less accordance with the other samples, as Ganoderma belongs to a different 

family. Nonetheless is Ganoderma still closely related to the other samples as it belongs to 

the “core polyporoid” clade of the order Polyporales (Hage et al., 2021). The mixed samples 

show some feature overlap (dark red regions) with Trametes, the Polyporcaea sample, and 

Ganoderma. The Picnoporus sample has some overlap with the mixed sample in the same 
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region as the Ganoderma sample. Overall, 1179 features were detected, with 92 features 

detected in all five samples. According to their calculated molecular formula at least 10 of 

those 92 features were sterol derivates. Both [M+H]+ and [M+H-H2O]+ ions of ergosterol 

were present and were identified unambiguously. Of the 92 features, at least 20 had low 

molecular masses (< m/z  100) and molecular formulas fitting to oxygenated unsaturated 

hydrocarbons. They could originate from isoprene or similar precursors that were emitted 

from the surrounding vegetation (Bates, Jacob, 2019, Tong et al., 2019). Vegetation markers 

could be included in these samples as the blank filters were not sampled with air but just 

exposed shortly to the pump and surrounding air.  

 

 

Figure 6.18: Hierarchical clustering analysis of Basidiomycetes spores from ATTO site. APCI negative 
mode ionization. The horizontal tree diagram represents the sample-wise clustering, and the vertical 
tree diagram the feature-wise clustering. 

 

In negative mode, results are similar with Polyporaceae of unknown genus and Picnoporus 

clustered the closest, then Trametes and then Ganoderma. With negative mode ionization, 

more features (3578) were detected but there is less overlap between samples. Only 4 

features were present in all 5 samples and only 5 features in the 4 single species samples. 

These features are according to their molecular formula most likely fatty acids which are 

ubiquitous. Also, here inter-species variability couldn’t be considered due to the small 

sample size.  
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Summary 

Altogether also Basidiomycetes spore showed some distinct features regions for each 

sample. Spore sampling and extraction by filter sampling worked well and filter samples 

usually show fewer contaminants when compared to spores from agar plates. With spore 

harvest from agar plates, small pieces of agar can be incorporated into the sample. This 

preliminary study indicates that the developed method can be applied to fungal spores 

sampled from the environment by filters.  If features more specific to the fungal spore 

should be evaluated a blank filter that contains vegetation or other bioaerosol markers 

should be included in the data processing. Clustering in this small sample set produced 

results according to the taxonomy, but more samples are needed to include inter-genus 

variability. LC-MS Analysis of fungal spores can be a non-destructive analysis method that is 

faster than DNA analysis and could give additional information about the taxonomic 

classification. Further studies with more samples could also include supervised 

classification. This supervised classification might also help classify samples of unknown 

genera like in this case the Polyporaceae further. An interesting approach would be the 

comparison of fungal spores analysis by DNA data with supervised clustering based on LC-

MS or GC-MS data. In the future other supervised classification methods like Random Forest 

could be included which can give additional information about the relationship between 

fungal samples.  

 

6.3.2. Fungal volatile organic compounds 

 
Volatile organic compounds (VOC) are commonly associated with microorganisms, 

including fungi. They derive from the fungi’s metabolisms and play an important role in the 

organism’s biology, e.g., having an antibiotic activity or promoting plant growth (Guo et al., 

2020b, Müller et al., 2013, Stoppacher et al., 2010). Fungal VOCs consist of different groups 

of molecules, like terpenoids, alcohols and aldehydes, aromatics, and other heteroaromatic 

and aliphatic compounds. Odor profiles of fungi might be used as a “fingerprint” or used to 

find chemical tracers typical for a certain fungal species (Moularat et al., 2008, Müller et al., 

2013). The fungi Trichoderma is known to produce several VOC, therefore it was tested if 

the in-lab thermal desorption system was able to detect such fingerprint profiles. The 

species evaluated was Trichoderma atroviride.  The experimental information is given in the 

supporting material (chapter 8.1.4). For theory on thermal desorption see chapter 2.1.2. 

Samples were measured by a thermal desorption GC-MS system. Despite the hydrophobic 

MARKES tubes which are suited for high humidity samples, there was too much water vapor 



Results and Discussion 

122 
 

trapped in the sampling tubes during the thermal desorption process. As the split flow 

fluctuated during the cryofocussing and injection process, a freezing of the transfer capillary 

due to water or a similar substance is likely. This resulted in shifted retention times (>2 min) 

for the samples, especially for the blank sample. The retention time shift is not evenly but is 

most pronounced in the first minutes of the chromatogram and not detectable at the end, 

due to the helium flow to the column reaching the setpoint after the transfer capillary is 

thawed. Due to that, aligning the sample with MZMine was not possible. Several programs 

were tested to find a suitable alignment solution, but alignment could not be obtained. 

Therefore, blank subtraction could not be performed by the in-house MATLAB script, also 

comparison between samples was hindered. A linear temperature-programmed retention 

index system (LTPRI) according to Van der Dool and Kratz (van den Dool, Dec. Kratz, 1963) 

was tested to help with data analysis. An alkane standard solution for LTPRI determination 

was measured. In the first few minutes, retention times fluctuated as well and only for 

nonane and higher alkanes the retention indices showed a linear response and could be 

calculated. Unfortunately, the calculated RI for the known compounds in the sample, e.g., 

ortho-Xylol (890 (literature) to 917 (calculated)) differed substantially. To enable analysis 

the blank subtraction was performed manually for prominent signals. An overview about 

the detected mass-to-charge ratios with proposed identity according to the EI-spectra is 

given in table Table 6.10. 
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Table 6.10: VOC of Trichoderma atroviride. Sources 1) (Guo et al., 2020a), 2) (Stoppacher et al., 
2010). 

m/z ratio 
RT 

[min] 

Sample 1 
20 °C, 
HMG 

Sample 2 
26 °C, 
HMG 

Sample 3 
Kanister, 

26 °C, 
HMG 

Substances 
according to 

NIST or 
literature search 

Described in 
literature, 

source 1 or 
2 

81 - NF NF 8E+04 Methylfuran - 

67.00 3.9 7E+03 6E+02 4E+04 Cyclopropene - 

78 4.2 NF NF 3E+03 Benzene 
Possible 

contaminant 

81, 96 4.9 NF NF 4E+04 Hexadienal - 

95, 96 5.0 NF NF 2E+04 Dimethylfuran - 

65, 94 5.4 8E+03 4E+03 4E+04 - - 

91 6.5 NF 4E+03 2E+05 Toluene 
Possible 

contaminant 

74, 101 6.8 3E+04 2E+04 3E+04 Butanoic acid - 

106, 91 9.6 4E+03 5E+03 9E+04 Xylol_1 
Possible 

contaminant 

106, 91 9.9 1E+04 1E+04 2E+05 Xylol_2 
Possible 

contaminant 

106, 91 10.8 5E+03 5E+03 1E+05 Xylol_3 
Possible 

contaminant 

121, 91 12.4 3E+03 4E+03 1E+05 Terpen (1, 2) 

105 13.5 1E+04 2E+04 1E+05 Cumen - 

105, 120 13.7 3E+03 5E+03 4E+04 Trimethylbenzol - 

99 14.6 2E+04 7E+04 3E+04 
Propylcyclo-

hexanol 
- 

81 14.7 3E+05 7E+03 3E+05 Pentylfuran (2) 

121, 91 15.7 1E+03 8E+03 6E+05 
Terpen, possibly 
ß-phellandrene 

(1, 2) 

107, 122 15.8 4E+03 6E+03 1E+05 Phenylacetat - 

91, 121 16.2 1E+04 3E+04 3E+06 y-Terpinene (1, 2) 

81, 95 21.5 6E+03 2E+04 1E+05 
Cyclopentane or 

Dodecan 
(1, 2) 

128 22.2 5E+04 1E+04 2E+05 Napthalen 
Possible 

contaminant 

81 22.3 9E+03 1E+03 8E+04 Heptylfuran* - 

147 22.8 3E+04 2E+04 5E+04 - - 

115, 144 23.6 NF NF 4E+04 Phenylfuran - 

91, 95 25.6 5E+03 9E+03 1E+05 Terpen derivate (1, 2) 

115, 141 26.2 1E+04 2E+03 9E+04 
Napthalene 

derviat* 
- 

105, 119 31.0 3E+04 9E+03 1E+06 
Sesquiterpene, 

Farnesene 
(1, 2) 

147, 189 31.3 1E+03 1E+04 2E+04 
Sesquiterpene, 

Zingiberene 
(1, 2) 

119, 189 31.8 1E+04 1E+04 2E+04 Sesquiterpene (1, 2) 

119, 189 32.1 1E+04 4E+04 5E+04 Sesquiterpene (1, 2) 

119, 161 32.8 3E+04 8E+04 1E+05 Sesquiterpene (1, 2) 

119, 161 33.1 2E+05 3E+05 6E+05 Sesquiterpene (1, 2) 
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Not all compounds could be determined clearly, especially as LTPRI shifted and couldn’t be 

used. Suggestions by the NIST library were controlled manually to achieve the best possible 

identification. Some features were only detected in sample 3, probably due to the larger 

sample volume from the canister. NIST search together with manual mass spectrum 

comparison (Linstrom, 1997, Matsuyama, Wasada, 2019) could determine 10 compounds as 

terpenoids or sesquiterpenoids, which are reported in Trichoderma (Guo et al., 2020a) 

(Stoppacher et al., 2007). Five compounds were determined as furan derivatives, of which 

pentylfuran was described in the literature (Stoppacher et al., 2010). Some compounds like 

toluene were also described in the literature but it is not clear if they might occur from the 

desorption tube, environment, or air and weren’t subtracted fully by blank subtraction.   

The thermal-desorption GC-MS produced some interesting results and shows that 

T. atroviride emitted volatile organic compounds. To make this approach feasible an 

improved thermal desorption system, preferably with a more controlled helium flow and 

moisture trap is needed. A high-resolution mass spectrometer would show better sensitivity 

and would detect more features, enabling more in-depth profiling. If retention times are 

stable the data analysis workflow presented in this work could be applied to GC-MS data.  

 

6.4. Non-target LC-MS analysis of electronic cigarettes 

 

6.4.1. Introduction 

 
E-cigarettes are marketed as a “healthy” alternative to traditional cigarettes. Electronic 

cigarettes consist of an electrical device in which liquids are evaporated, producing smoke 

which is then inhaled by the user. The liquid contains glycerol and/or propylene glycol, 

nicotine in variable amounts, and in some cases flavors (El Mubarak et al., 2018). The liquid 

is combusted by heating to 100 - 250°C degrees by a metal coil (Rowell, Tarran, 2015). 

During this process, toxic compounds, including aldehydes, nitrosamines, metals, volatile 

organic compounds, phenolic, and polycyclic aromatic compounds can be formed, especially 

at high temperatures and if the combustion is “dry” (Cheng, 2014, Farsalinos et al., 2015). 

Overall e-cigarettes are thought to be less harmful than normal cigarettes, but negative 

consequences are still unknown (Margham et al., 2016). 

The evaluation of possible toxic compounds in e-cigarettes was part of a collaboration with 

the University Medicine Mainz. In the study (Kuntic et al., 2020) the influence of e-cigarette 
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consumption on the endothelial function was evaluated. The endothelial function of healthy 

human subjects was tested while they were consuming smoke from e-cigarettes. 

Additionally, were e-cigarette liquids and condensates tested on their influence on human 

endothelial cells. Furthermore, animal studies on mice that lacked phagocytic NADPH 

oxidase (NOX-2) were performed. E-cigarette vapor exposure caused endothelial 

dysfunction and induced inflammation and oxidative stress. The NOX-2 pathway was 

identified as the source of oxidative stress. Negative effects on the cells were significantly 

more pronounced with condensates than with liquids. This indicates additional toxicity in 

the condensate, originating from the vaporization process (Kuntic et al., 2020). To identify 

toxic compounds in e-cigarette liquids and condensates LC-HRMS was used.  

 

6.4.2. Experimental work 

 
Detailed information is available in (Kuntic et al., 2020) and the supporting information 

(chapter 8.1.4). E-cigarette liquids consisting of 50% propylene glycol and 50 % vegetable 

glycerol were evaporated with a commercially available e-cigarette and the resulting vapor 

was condensed. Two liquids were tested, one with 12 mg/LmL nicotine and one without any 

nicotine. The resulting liquids and condensates were diluted and measured by LC-HRMS 

with the ESI source. Columns used were C18- and PFP-(Pentafluorophenyl) phased on the 

UHPLC system described in this work. Ionization was performed in positive and negative 

modes with mass spectrometry measurement at high resolution (R=140.000) on the 

Orbitrap Q Exactive.  

HPLC analysis by M. Kuntic presumed the presence of aldehydes, a compound group known 

to be produced by e-cigarettes and known cell-damaging properties (El Mubarak et al., 2018, 

Farsalinos et al., 2015, Kim et al., 2014). Many aldehydes in e-cigarettes are very small 

molecules and show no retention on non-polar columns. Direct detection by the orbitrap Q 

Exactive with a minimum scan range of m/z  50 is therefore not possible. Aldehyde 

standards, as well as the e-cigarette condensates, were derivatized by M. Kuntic with DNPH 

(2,4-Dinitrophenylhydrazine) which increases the molecular weight and enables UV-

detection. The orbitrap high-resolution mass spectrometer was then used to identify the 

aldehyde derivates based on the exact mass together with a retention time comparison of 

standards.  
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6.4.3. Results 

 
The DNPH derivatized aldehyde standards, e-cigarette liquid, and condensate were 

measured on a C18 column in negative mode. Retention times of suspects in liquid and 

condensate were compared to the retention times of the aldehyde standards as well as the 

exact mass-to-charge ratios. Five aldehydes were identified unambiguously, one suspect 

was present in the e-cigarette samples, but no standard was available.  

Table 6.11: Analysis of DNPH-aldehyde standards as well as DNPH derivatized e-cigarette liquids and 
condensates. ESI negative mode, C18 column.  

Sample Condensate-DNPH Liquid-DNPH 
Aldehyde-DNPH 

Standard 1ng/mL 

Molecule Mean Std Dev Mean Std Dev Mean Std Dev 

Formaldehyde 2.5E+05 7.4E+03 1.2E+04 1.3E+03 1.3E+03 9.1E+02 

Acetaldehyde 4.8E+04 3.4E+03 5.4E+03 3.8E+03 0.0E+00 0.0E+00 

Acrolein 6.8E+02 9.7E+02 0.0E+00 0.0E+00 2.0E+04 4.5E+03 

Propionaldehyde 9.1E+03 4.8E+03 1.1E+03 7.7E+02 5.5E+03 3.2E+03 

Butyraldehyde 9.4E+02 6.6E+02 0.0E+00 0.0E+00 3.0E+02 1.5E+03 

[M-H]- C10H9N4O4 1.6E+04 1.4E+03 7.6E+02 1.1E+03 n/a n/a 

 

The LC-MS analysis confirmed the presence of formaldehyde, acetaldehyde, 

propionaldehyde, and an unknown compound [M-H]- C10H9N4O4 in the e-cigarette liquid. 

Acrolein and butyraldehyde were either not present in the liquid or below the limit of 

detection. All aldehydes were present in the condensate with signal intensities at least 8.4-

fold higher than in the corresponding liquid. The unknown [M-H]- C10H9N4O4 signal is 

suspected to be a DNPH adduct of either crotonaldehyde and/or methacrolein. Both 

aldehydes are known to have harmful effects on the cardiovascular system (Farsalinos et al., 

2015, Pei et al., 2014, Samburova et al., 2018). The detected aldehydes especially acrolein 

showed NOX-2 activation and acrolein protein-adducts were found in lung tissue of mice 

exposed to e-cigarette vapor (Kuntic et al., 2020). 

With aldehydes and especially acrolein potent activators of the NOX-2 pathway were 

identified. To evaluate if additional compounds are present in the condensates which might 

be responsible for the toxic effect a semi-target approach was chosen. Data were clustered 

and visualized by hierarchical clustering. The resulting cluster(s) specific for the 
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condensates were evaluated if compounds which were reported in the literature for e-

cigarettes are present.  

 

 

Figure 6.19: Hierarchical clustering analysis of LC-HRMS analysis by ESI positive mode of e-cigarette 
liquids and condensates. C18 column. The horizontal tree diagram represents the sample-wise 
clustering, and the vertical tree diagram the feature-wise clustering. 

 

Both condensates (0 and 12 mg/mL nicotine) are clustered together at a very low distance. 

They show one significant cluster where compounds are present in both condensates but 

not in the liquids. This indicates that those compounds were formed during heating and 

evaporation in the e-cigarette device. A total of 320 compounds were present in both 

condensates but not the liquid. Around ¼ of the compounds showed no or only minimal 

retention (< RT 0.6 min). A total of 140 compounds had no calculated molecular formulas. 

Only 10 % of molecular formulas had reasonable N/C and O/C ratios. Out of these 

compounds, some were found to match mass-to-charge ratio and calculated molecular 

formula to compounds described in the literature e.g., 3-methylbutanoate, 

o-methylbenzaldehyde, or 2-methoxyphenol (Goniewicz et al., 2014, Qasim et al., 2017, 

Uchiyama et al., 2013).  
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Figure 6.20: Hierarchical clustering analysis of LC-HRMS analysis by ESI negative mode of e-cigarette 
liquids and condensates. C18 column. The horizontal tree diagram represents the sample-wise 
clustering, and the vertical tree diagram the feature-wise clustering. 

 

With negative mode ionization condensate and liquid containing 0 mg/mL nicotine were 

clustered together. Also, here one cluster represents compounds only present in the 

condensates. This cluster contains 362 compounds of which 1/3 had very low (< RT 0.6 min) 

retentions times. Also, here only ~ 10 % had reasonable molecular formula. Compounds 

were found with mass-to-charge ratio and calculated molecular formula fitting to 

hydroquinone, methylglyoxal, or also methoxyphenol, which were described in the 

literature (Goniewicz et al., 2014, Qasim et al., 2017, Uchiyama et al., 2013). 

Additional compounds were detected with positive and negative mode ionization in the 

liquid and condensate containing nicotine. Those suspects are piperidone, imidazole, cresol 

anatabine, cotinine, and myosmine. These compounds or compounds from the scaffold 

group have been described in the literature for e-cigarettes or conventional cigarettes (Nicol 

et al., 2020, Zhu et al., 2015). The three later compounds are nicotine-related alkaloids that 

originate from the tobacco plant (Flora et al., 2016). As the compounds are presumed 

according to their exact mass-to-charge ratio they need confirmation by a standard.   
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The low retention time was a limiting factor in this analysis as some ion suppression was 

detectable in the low retention time range. The ion suppression is probably caused by well-

ionizable compounds present in higher abundances like nicotine and/or the matrix 

compound glycol and glycerol. A PFP column was tested but didn’t show significantly better 

results. In the future, a more polar column or even a HILIC column should be tested for 

evaluation of e-cigarette liquids and condensates. Also, the calculation of molecular 

formulas was not always correct and in ~1/3 of compounds, no molecular formula was 

calculated. It should be tested if better programs for molecular formula calculation are 

available or if MZmine 3, published in March 2022 has implementations that improve the 

molecular formula calculation.   

Overall e-cigarettes are less harmful than conventional cigarettes but are not as safe as 

marketed. Long-term studies are missing but short-term studies showed cytotoxic effects. 

Also, more severe illnesses like vaping product use-associated lung injury (EVALI) have 

been reported. More studies are needed on the toxicity of e-cigarettes. Also, liquids 

containing flavoring or other additives like tetrahydrocannabinol (THC) and vitamin E 

should be examined (Marques et al., 2021, Rehan et al., 2018). High-resolution mass 

spectrometry can help identify potentially harmful compounds. Confirmation of a 

compound with the respective standard is needed but HRMS gives information about the 

molecular formula of the compounds, minimizing the number of potential targets. Non-

target data analysis techniques like hierarchical clustering can facilitate and visualize the 

detection of compounds that are significant in the condensates or liquids. With more 

samples comparing different flavorings, etc. this can be especially helpful. Some toxic 

compounds present in e-cigarette vapor are reported to be below the limit of detection. The 

development of an enrichment method during samples preparation like e.g., solid phase 

extraction might be promising. 
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7. Conclusions and Outlook 

 

In this work, a classification method for the class or species differentiation of fungal spores 

based on non-target LC-HRMS analysis was successfully developed. To our knowledge, it is 

the first classification of fungi based on the metabolome of the spores. Samples for class 

differentiation consisted of four classes from five different families (Aspergillus versicolor, 

Botrytis cinerea, Cladosporium cladosporioides, Verticillium dahlia, and Trichoderma spp.). 

Samples for species differentiation belong to the genus Trichoderma and contained five 

species from six strains. ESI and APCI in positive and negative modes were used to find the 

most suitable ionization method for the non-target metabolome detection. Several machine 

learning algorithms, including dimensionality reduction, unsupervised clustering, and 

supervised classifications were evaluated for data analysis. The final workflow consists of 

extraction with methanol and a sample-based normalization by spore number and size as 

the first step. The data analysis includes log-transformation and z-score normalization 

followed by a dimensionality reduction with principal component analysis. The 

classification is performed with a support vector machine with a linear kernel. The 

evaluation of the feature space was conducted with a hierarchical clustering analysis.  

Classification resulted in very high accuracies with low standard deviations based on 10-

fold cross-validation. Overfitting is unlikely due to the robustness of the classifiers’ 

performance regarding the C-parameter, and the high classification accuracy during cross-

validation and for validation samples. The sample-set for the class differentiation included 

75 biological replicates and 15 to 20 additional technical replicates, depending on the 

ionization mode. Validation was performed on additional 6 samples. The sample set for the 

species differentiation contains 42 biological replicates and depending on the ionization 

mode ~15 technical replicates. Validation was performed with 4 additional samples.  

Overall, the ionization with ESI in positive mode provided the best results for both class and 

species differentiation. For genus differentiation accuracies of 99 % with a standard 

deviation of 3 % were reached. For species differentiation, the accuracy was 98 % with a 

standard deviation of 5 %. Also, the other ionization methods, especially APCI in negative 

mode, provided very high accuracies of over 90 % for genus and strain differentiation. Due 

to the general availability of the ESI ionization source, ESI is probably the most sensible 

choice for future applications. 

The fungal spore samples were grown under different environmental conditions to induce 

phenotypical plasticity. Samples grown under different environmental conditions were 

classified correctly according to the respective species/genus, indicating that the 
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classification of fungal spores is somewhat robust to environmental influences. This makes 

the differentiation based on fungal spores a promising approach, especially as the 

cultivation step can be skipped. This also allows the investigation of fungal spores which 

usually cannot be cultivated under laboratory conditions (> 80 % of fungal species). Several 

class distinctive feature regions were visualized and clustered by hierarchical clustering 

analysis. However, analysis of Trichoderma spp. and the two strains of T. harzianum showed 

that presumably characteristic features might not always be present in all samples when 

species exhibit phenotypical plasticity. With high inter-species and inter-genus variation, 

the classification of different classes or species cannot be pinpointed to a certain feature 

space. Machine learning algorithms recognize patterns even if absolute or relative 

abundances of features vary. This is what makes them so valuable for non-target 

metabolomic or chemotaxonomic approaches. 

Additionally, the performance of the classifier was investigated for mixed species samples 

on a small sample set. The classifier was able to classify the mixed sample according to the 

predominant species in a large proportion of the samples. This should be further evaluated 

on a larger data set but is promising for future field application, where mixed species 

samples will be common. Future applications could include monitoring fungal allergens or 

plant pathogens in the air. Also, the dissemination of biological plant protectants could be 

monitored. Furthermore, filter samples of basidiomycetes spores from the Amazonian 

rainforest were investigated. Genus distinctive feature regions were available, and the 

hierarchical clustering was performed according to the taxonomic relationship. Using the 

fungal spores’ metabolome is an interesting approach to support taxonomic classification 

and hasn’t been evaluated yet. Metabolome studies can provide valuable information to 

improve the classification of closely related species, especially when classic DNA analysis 

approaches like ITS sequencing are not sufficient. Moreover, a thermal desorption GC-MS 

system was tested for the investigation of fungal VOCs but showed the need for an improved 

instrumental setup. Nonetheless are future applications of the developed workflow on GC-

HRMS data obvious as it is not only applicable to LC-HRMS data. Also, future application of 

the developed workflow to other bioaerosol types like bacteria is conceivable. With machine 

learning algorithms for non-target HRMS data not only biological matrices can be evaluated, 

but also other fields like medical or environmental matrices. Hierarchical clustering analysis 

was used in this work to investigate e-cigarette liquids and condensates. Results from e-

cigarette analysis were partly published in cooperation with the University Medicine Mainz 

(Kuntic et al., 2020). 
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For the application on environmental samples, further investigations should focus on 

including more samples accounting for additional inter-species and inter-genus variability. 

Ideally, each genus should be represented by several species and each species by several 

strains. The samples should originate from different locations, e.g., different plants and 

different continents. In addition, the workflow could be tested in different laboratories to 

evaluate the robustness also regarding different Orbitrap instruments. Furthermore, sexual, 

and asexual spores of the same species could be included, as their metabolism can vary. 

Overall, the application of machine learning algorithms to non-target LC-MS data has great 

potential, whether for fungal spore classification, aerosol research, environmental or 

medical questions.  
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8. Appendix 

 

8.1. Supporting information 

 

8.1.1. Instruments, chemicals, and programs 

 
Following instruments were used in this work:  

Table 8.1: Table of instruments and programs. 

Instrument Model Manufacturer 

Ion source (ESI/APCI) Ion Max Source, OPTON-20012 
Thermo Scientific, 

Bremen, Germany 

High-resolution mass 

spectrometer 
Q Exactive Hybid quadrupole Orbitrap 

Thermo Scientific, 

Bremen, Germany 

UHPLC UltiMate 3000 
Thermo Scientific, 

Bremen, Germany 

UHPLC column 
Gold Hypersil: C18 50 mm x 2.1 mm x 

1.9 µm 

Thermo Scientific, 

Bremen, Germany 

Thermal desorption 

system 
In-house build none 

Thermal desorption 

sampling tubes 

Sorbent tubes Odour/sulphur (C6/7 – 

C30) and Universal (C2/3 – C30) 

Markes International 

GmbH, Offenbach, 

Germany 

Gas Chromatograph Trace GC 2000 
Thermo Fisher, San 

Jose, CA, USA 

Ion Trap Mass 

spectrometer 
Polaris Q ion trap 

Thermo Fisher, San 

Jose, CA, USA 

GC column 

Rxi 5 MS: 5% diphenyl, 95% dimethyl-

polysiloxane, 0.25 μm film thickness, 

30 m × 0.25 mm i.d.) 

Restek Corp., PA, USA 

Centrifuge Rotanta AP 
Andreas Hettich GmbH 

& Co.KG 

Counting Chamber Neubauer improved 

Paul Marienfeld GmbH 

& Co. KG, Lauda-

Königshofen, Germany 

 

Data processing and machine learning were performed with the following tools:  
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Table 8.2: Programs, programming languages, and libraries used for data processing. 

Program Version Developer 

Preprocessing MZmine 2.51 
Mzmine2 (Pluskal et al., 

2010) 

Programming Language 

MATLAB 
MATLAB R2020a The MathWorks, Inc. 

Programming Language 

Python 
 Python 3.9 Python Software Foundation 

PyCharm Integrated 

Development 

Environment 

2021.1.3 x64 JetBrains s.r.o. 

Distribution for Python/ 

package management 
Anaconda 2021.05 Anaconda, Inc. 

Scikit-learn Machine 

Leaning Library 
1.0.1 

Scikit-learn: Machine 

Learning in Python (scikit-

learn developers, 2021) 

Matplotlib Visualization 

Library 
3.5.0  Developer: (Hunter, 2007) 

NumPy array processing 

Library 
1.22.0 

Developer: (Harris et al., 

2020) 

pandas data analysis 

library 
1.3.5 

(The pandas development 

team. pandas-dev/pandas: 

Pandas 1.4.0rc0, 2022) 

Seaborn statistical data 

visualization library 
0.11.2 Developer: (Waskom, 2021) 

 

For extraction, HPLC and GC measurements following solvents and chemicals were used: 

Table 8.3: Table of chemicals and solvents. 

Chemical Manufacturer Purity 

Water (MilliQ) 
From a Merck Milli-Q Water 

purification system 
18,2 MΩ·cm, TOC < 1 ppb 

Methanol various LC-MS Quality 

Water (Orbi-grade) Fisher chemical LC-MS Quality 

Acetonitrile various LC-MS Quality 

Ethylacetate various LC-MS Quality 

Formic Acid various 99% for LC-MS 

Miracloth Millipore, Merck KGgA - 

Potato Dextrose Bouillon 
Carl Roth GmbH + Co. KG, 

Karlsruhe, Germany 
- 

Pierce LTQ Velos 

Calibration Solution 
Thermo Scientific - 

Helium various 5.0. 
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Table 8.4: Parameters for Data Processing with MzMine 2.51. 

Step Setting positive mode Setting negative mode 

Mass Detection 
Mass detector: Exact mass 

Noise level 5.0E4 

Mass detector: Exact mass 

Noise level 5.0E4 

FTMS shoulder 

peaks filter 

Filter: Gaussian 

Mass resolution: 140000 

Filter: Gaussian 

Mass resolution: 140000 

ADAP 

chromatogram 

builder 

Min group size of scans: 3 

Group intensity threshold: 

5.0e4 

Min highest intensity: 5.0e4 

m/z tolerance 2.0e-4 or 3.0 ppm 

Min group size of scans: 3 

Group intensity threshold: 5.0e4 

Min highest intensity: 5.0e4 

m/z tolerance 2.0e-4 or 3.0 ppm 

smoothing Filter width: 7 Filter width: 7 

Chromatogram 

deconvolution 

Wavelets (ADAP) 

Mz center calculation: Auto 

S/N threshold: 10 

S/N estimator Intensity window 

SN 

Min feature height 50,000 

Coefficient/area threshold: 80 

Peak duration range: 0 – 3 

RT wavelet range 0-0.1 

Wavelets (ADAP) 

Mz center calculation: Aut0 

S/N threshold: 10 

S/N estimator Intensity window 

SN 

Min feature height 50,000 

Coefficient/area threshold: 80 

Peak duration range: 0 – 3 

RT wavelet range 0-0.1 

Isotopic peaks 

grouper 

m/z tolerance: 3.0e-4, 5.0 ppm 

Retention time tolerance: 0.2 

Maximum charge: 1 

Representative isotope: Most 

intense 

m/z tolerance: 3.0e-4, 5.0 ppm 

Retention time tolerance: 0.2 

Maximum charge: 1 

Representative isotope: Most 

intense 

Adduct search 

Retention time tolerance: 0.2 

m/z tolerance 2.0e-4, 3.0 ppm 

Max relative adduct peak 

height: 100 % 

Adducts: M+Na-H, M+MeOH-H, 

M+H2O-H 

Retention time tolerance: 0.2 

m/z tolerance 2.0e-4, 3.0 ppm 

Max relative adduct peak height: 

100 % 

Adducts: M+Na-H, M+MeOH-H, 

M+H2O-H 

Complex search 

Mode: M+H+ 

Retention time tolerance: 0.2 

m/z  tolerance 2.0e-4 or 3.0 

ppm 

Max complex peak height 100 % 

Mode: M+H+ 

Retention time tolerance: 0.2 

m/z  tolerance 2.0e-4 or 3.0 ppm 

Max complex peak height 100 % 

Join aligner 

m/z tolerance 2.0e-4, 3.0 ppm 

Weight m/z: 10 

Retention time tolerance: 0.2 

min 

Weight RT: 10 

Compare isotope pattern: 

isotope m/z tolerance 5e-4 or 5 

ppm 

Min absolute intensity: 1e3 

m/z tolerance 2.0e-4, 3.0 ppm 

Weight m/z: 10 

Retention time tolerance: 0.2 min 

Weight RT: 10 

Compare isotope pattern: 

isotope m/z tolerance 5e-4 or 5 

ppm 

Min absolute intensity: 1e3 

Minimum score: 70 % 
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Minimum score: 70 % 

Formula 

prediction (9 

times with 

decreasing 

intensity 

100 bis 75 % für 

normal dann 

nnochmal mit 2 

chlor atomen und 

am ende nochmal 

mit 9 phosphor 

und 95 % 

accuracy 

 

Ionization type: M+H+ 

m/z tolerance 2.0e-4 or 3 ppm 

max best formulas per peak 1 

max numbers for elements: 

H:236, C: 156, O:63, S: 14, N:32 

Element count heuristics: check 

H/C ratio, NOPS/C ratios, 

multiple elements counts 

RDBE restrictions: 0-40, must 

be an integer 

Isotope pattern filter:  m/z 

tolerance 0.001 or 5 ppm, min 

absolute intensity 1e3, 

minimum score 100 % 

Ionization type: M+H+ 

m/z tolerance 2.0e-4 or 3 ppm 

max best formulas per peak 1 

max numbers for elements: 

H:236, C: 156, O:63, S: 14, N:32 

Element count heuristics: check 

H/C ratio, NOPS/C ratios, multiple 

elements counts 

RDBE restrictions: 0-40, must be 

an integer 

Isotope pattern filter:  m/z 

tolerance 0.001 or 5 ppm, min 

absolute intensity 1e3, minimum 

score 100 % 

Duplicate peak 

filter 

Filter mode: NEW average, 

m/z tolerance: 2.0e-4, 3.0 ppm 

Retention time tolerance: 0.2 

min 

Require same identification 

 

Filter mode: NEW average, 

m/z tolerance: 2.0e-4, 3.0 ppm 

Retention time tolerance: 0.2 min 

Require same identification 

 

 

 

Table 8.5: MATLAB and Python Code used in this work. 

MATLAB code 

Background subtraction 

%bis subtract_background inklusive, leicht abgewandelt von: Martin %Brüggemann 

Leibniz-Institut für Troposphärenforschung e.V. (TROPOS) %brueggemann@tropos.de, 
filtering steps von Regina Huesmann, Johannes-%Gutenberg Universität 

% check ob csv datei am Ende ein Komma hat (siehe Code Zeile 90-92)  

[files, path] = uigetfile('*.csv','Please select a file to convert!', 

'C:\Users', 'MultiSelect', 'on'); 

outdir = uigetdir('C:\Users'); 

% get blank identifiers from user 

disp(' ');disp(' '); 

disp('***************************************************');disp(' '); 

disp('Please give identifiers of blank samples!');disp(' '); 

blank_ID_in = input('Enter now the blank IDs: ','s'); 

for i = 1:length(files) 

    file = string(files(i)); 

    splittedFile = strsplit(file, ".");  

    outputfile = splittedFile(1);  

outputpath = strcat(outdir, "\", outputfile, "_Substracted.xlsx"); 

disp('chosen file:') 

disp(file) 

disp('output file:') 

disp(outputpath) 

filename = fullfile(path, file); 

for i=1:length(file) 

    disp(file(i)) 
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end 

% parameters mass accuracy 

tol_mz_abs = 0.0005; % mass tolerance in Da 

tol_mz_rel = 3;      % mass tolerance in ppm 

RT_tolerance = 0.2;  % retention time tolerance in min 

% define parameters for background subtraction 

bg_factor = 3;      % multiplier for background signals 

% give some user feedback 

disp(' ');disp(' '); 

disp('***************************************************');disp(' '); 

disp(['The following peaklist will be processed:' file]);disp(' ');disp(' '); 

disp('The following parameters will be used for all processing:');disp(' '); 

disp(['m/z tolerance: ' num2str(tol_mz_abs) ' or ' num2str(tol_mz_rel) ' ppm']); 

disp(['retention time tolerance: ' num2str(RT_tolerance) ' min']); 

disp(['background subtraction factor: ' num2str(bg_factor)]);disp(' '); 

disp('***************************************************');disp(' '); 

if strcmp(blank_ID_in,'SK16CW') 

    blank_ID = ["ACN" "BW" "A30" "A31" "A43"]; 

elseif strcmp(blank_ID_in,'SK16F') 

    blank_ID = ["ACN" "F15" "F27"]; 

else 

    blank_ID_in = split(blank_ID_in,", "); 

    blank_ID_in = string(blank_ID_in)'; 

    blank_ID = blank_ID_in; 

end 

disp(' ');disp(' '); 

disp('The following blank IDs will be used for blank subtraction:'); 

disp(blank_ID);disp(' '); 

disp('***************************************************');disp(' '); 

cutoff_thrshld = 1e5; % peaks that are smaller than this value will be removed 

from the dataset 

%% read peaklist and get initial data 

data = readtable(filename); %the orginal peak data will be saved in this 

variable 

if ~exist([path, '\Xtract\'], 'dir') 

  mkdir([path, '\Xtract\']); 

end 

% read columns 

clmns = data.Properties.VariableNames; 

%% remove last column (because of end comma in csv file) 

data = data(:,1:end-1); 

clmns = clmns(1:end-1); 

%% remove duplicates from peaklist and sum up the corresponding peak areas 

dummy = data; 

clmn_idx_height = find(contains(clmns,'PeakHeight')); 

clmn_idx_areas = find(contains(clmns,'PeakArea')); 

clearvars data_filtered 

i = 0; 

while ~isempty(dummy) 

    i = i+1; 

    %take the maximum of relative and absolute m/z tolerance 

    mz_tolerance = max([tol_mz_abs, dummy.rowM_z(1) * tol_mz_rel * 1e-6 ]); 

     

    [~,mz_idx] = 

ismembertol(dummy.rowM_z(1),dummy.rowM_z,mz_tolerance,'DataScale',1,'OutputAllIn

dices',1); 

    mz_idx = cell2mat(mz_idx); 

    [~,RT_idx] = 

ismembertol(dummy.rowRetentionTime(1),dummy.rowRetentionTime,RT_tolerance,'DataS

cale',1,'OutputAllIndices',1); 

    RT_idx = cell2mat(RT_idx); 

    [MF_idx,~] = 

find(strcmp(dummy.rowIdentity_mainID_(1),dummy.rowIdentity_mainID_)); 

     

    idx = intersect(MF_idx,intersect(mz_idx,RT_idx)); 

    %idx = intersect(mz_idx,RT_idx); 

  

    data_filtered(i,:) = dummy(idx(1),:); 
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    data_filtered(i,clmn_idx_areas) = array2table( sum( 

table2array(dummy(idx,clmn_idx_areas)),1 ) ); 

    data_filtered(i,clmn_idx_height) = array2table( 

nanmean(table2array(dummy(idx,clmn_idx_height)),1 ) ); 

 

    dummy(idx,:) = []; 

end 

clear dummy i idx mz_idx RT_idx MF_idx idx clmn_idx_height clmn_idx_areas 

%% extract some data from the 'data_filtered' table 

% read columns 

clmns = data_filtered.Properties.VariableNames; 

[~,idx] = find(contains(clmns,'rowIdentity_mainID'),1); 

Formula = data_filtered{:,idx}; 

% get sample names 

[~,idx] = find(contains(clmns,'Area')); 

samples = data_filtered.Properties.VariableNames(idx); 

% get peak areas from table 

areas = data_filtered{:,idx}; 

areas = array2table(areas,'VariableNames',samples); 

% get m/z and RT columns 

[~,idx] = find(contains(clmns,'rowM_z'),1); 

mz = data_filtered{:,idx}; 

[~,idx] = find(contains(clmns,'rowRetentionTime'),1); 

RT = data_filtered{:,idx}; 

clear idx 

%% background subtraction (and removal of blank peaks from peaklist) 

[areas_minus_blanks,blanks] = subtract_background(areas,bg_factor); % remove 

signals from blank samples 

%% prepare data for next step: filtering, calculate average 

Ident = string(Formula); 

% Return a boolean array named 'empties' (with same dimensions as cell array 

% 'A') with true for each empty element and false otherwise 

empties = cellfun('isempty',Ident); 

% % Now change all the empty cells in A from empty strings '' to double NaN 

Ident(empties) = {'"'}; 

% clearvars -except mz RT clmns areas_minus_blanks Formula Ident samples 

data_filtered 

%% delete rows with too many zerovalues, hier einstellen wenn auch 2 von 3 areas 

größer null ok  

%Ident = Formula; 

mydata = table2array(areas_minus_blanks); 

[rowIdcs, colIdcs]=find(mydata~=0); 

[counts, bins] = histcounts(rowIdcs,1:size(mydata,1)); 

% Wenn alle mit 0 löschen counts ~= 0, ansonsten >= 2 oder 3 

binstocount = bins(counts >=2); 

%binstocount = bins(counts >=3); 

%binstocount gibt die rows an die behalten werden sollen 

dataohne0=mydata(binstocount,:); 

mzohne0=mz(binstocount); 

RTohne0=RT(binstocount); 

Identohne0=Ident(binstocount,:); 

%clearvars -except mz RT clmns areas_minus_blanks Formula Ident samples newdata 

mztokeep RTtokeep Identtokeep 

%% calculate average of signal intensities hier ändern wenn man averagen will 

Samplemean = mean(dataohne0,2); 

% Return a boolean array named 'empties' (with same dimensions as cell array 

% 'A') with true for each empty element and false otherwise 

datagesamtone0 = [mzohne0 RTohne0 Samplemean]; 

%% alle Reihen löschen in denen noch ein Complex ist 

new = strfind(Identohne0, 'Complex'); 

TF = cellfun('isempty', new); 

sumohnecomplex = Identohne0(TF); 

dataohnecomplex = datagesamtone0(TF,:); 

clear new TF  

%% Alle Reihen löschen in denen noch ein adduct ist 

new2 = strfind(sumohnecomplex, 'adduct'); 

TF = cellfun('isempty', new2); 

sumohneadduct = sumohnecomplex(TF); 
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dataohneadduct = dataohnecomplex(TF,:); 

gesamtohneadduct =[dataohneadduct(:,1:2) sumohneadduct(:,:)  

dataohneadduct(:,3:end)]; 

clear new TF  

%clearvars -except ohneadduct sumnew2 

%% change Sample Name manually name Table data 1, 2, 3 for later alignment 

endtablename = areas_minus_blanks.Properties.VariableNames(1,1); 

%% 

colNames = [{'mz','RT','Ident'}, endtablename];             %change Sample Name 

Table = array2table(gesamtohneadduct,'VariableNames',colNames); 

%% write in excel file 

writetable(Table,outputpath); 

end 

 

Background subtract function 

function [out,blanks] = subtract_background(data,factor,identifier) 

if nargin < 3, identifier = "blank"; end %name of blank samples (multiple 

arguments possible) 

if nargin < 2, factor = 3; end %factor for background subtraction of peak areas 
[~,idx] = find(contains(data.Properties.VariableNames,identifier)... 
    & contains(data.Properties.VariableNames,'Area')); %get peak area columns of 

blanks 
blanks = data(:,idx); 
avg_blanks = mean(table2array(blanks),2); 
AreasToSubtract = avg_blanks * factor; 
out = data;      %create new data table from old one 
out(:,idx) = []; %remove blanks from data table 
for i=1:size(out,2) 
    dummy = table2array(out(:,i)) - AreasToSubtract; 
    dummy(dummy<0) = 0; 
    out(:,i) = array2table(dummy); 
end 
AreasToSubtract = 

array2table(AreasToSubtract,'VariableNames',{'subtracted_area'}); 
blanks = [blanks, AreasToSubtract]; %make complete table for blank export 
%remove rows of blank signals from data table 
% idx = []; 
% for i=1:size(out,1) 
%     dummy = sum(table2array(out(i,20:end))); 
%     if dummy <= 1000 
%         idx = [idx; i]; 
%     end 
% end 
%  
% out(idx,:) = []; 
end 

 

 

Alignment 

%% March 2021, Regina Huesmann, Department Chemistry, University of Mainz, AK 

Hoffmann  
% choose file from which you want to import your data/ which user wants to be 

aligned 
% get path and filenames from user 
[files, path] = uigetfile('*.xlsx','Please files to convert!', 'C:\Users', 

'MultiSelect', 'on'); 
%% give output file path 
outdir = uigetdir('C:\Users'); 
%% give output file name 
outputfile = input('Give output filename: ', 's'); 
%% final name 
outputpath = strcat(outdir, "\", outputfile, "_aligned.xlsx"); 
outputpath2 = strcat(outdir, "\", outputfile, "_rohfassungaligned.xlsx"); 
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%% read peaklist and get initial data 
clearvars joined  
for j = 1:length(files) 
    file = string(files(j)); 
    filename = fullfile(path, file);   
    opts = detectImportOptions(filename); 

 
    for i = 1:length(opts. VariableTypes) 
        if(i == 3) 
            opts.VariableTypes{i} = 'string'; 
        else 
            opts.VariableTypes{i} = 'double'; 
        end 
    end 

     
    % all files are joined into one file 
    if (j == 1) 
        joined = readtable(filename, opts); 
    else  
        joined =  outerjoin(joined, readtable(filename, opts), 

'Mergekeys',true); 
    end 
end 
joined{:,4:end}(isnan(joined{:,4:end})) = 0; 
%% parameters for alignment, can be changed to preference of user 
tol_mz_abs = 0.0008; % mass tolerance in Da 
tol_mz_rel = 7;      % mass tolerance in ppm 
RT_tolerance = 2.5;  % retention time tolerance in min 
 %% Sort for mz and then RT 
C = joined; 
RT_sort = sortrows(C,[1 2]); 
clear C 
%% Alignment via mz and RT and sum up of the corresponding peak areas.  
dummy = RT_sort; 
clmns = RT_sort.Properties.VariableNames; 
clmn_idx_areas = clmns(:,4:end); 
clearvars data_filtered 
i = 0; 
while ~isempty(dummy) 
    i = i+1; 
    %take the maximum of relative and absolute m/z tolerance 
     mz_tolerance = max([dummy.mz(1) * tol_mz_rel * 1e-6 ]); 
%    mz_tolerance = max([tol_mz_abs, dummy.mz(1) * tol_mz_rel * 1e-6 ]); 
    [~,mz_idx] = 

ismembertol(dummy.mz(1),dummy.mz,mz_tolerance,'DataScale',1,'OutputAllIndices',1

); 
    mz_idx = cell2mat(mz_idx); 
    [~,RT_idx] = 

ismembertol(dummy.RT(1),dummy.RT,RT_tolerance,'DataScale',1,'OutputAllIndices',1

); 
    RT_idx = cell2mat(RT_idx); 
    idx = intersect(mz_idx,RT_idx); 
    data_filtered(i,:) = dummy(idx(1),:); 
    data_filtered(i,clmn_idx_areas) = array2table( sum( 

table2array(dummy(idx,clmn_idx_areas)),1 ) ); 
    dummy(idx,:) = []; 
end 
clear dummy i idx mz_idx RT_idx idx clmn_idx_height clmn_idx_areas 
%% save two excel files one with the final aligned table and the second one (RT-

sort) to keep the information of sum formulas 
writetable(data_filtered,outputpath); 
writetable(RT_sort,outputpath2); 
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Hierarchical Clustering 

% Basic script for clustering by Denis Leppla, Hoffmann Group, Department of 

Chemistry, University of Mainz. Modified by Regina Huesmann. 
%% import data, Ident/Sum Formula in column 3 will be imported as string, Rest 

of data as double 
[file, path] = uigetfile('*.xlsx', 'Please select file!', 'C:\Users'); 
j = 1:length(file); 
    file = string(file(j)); 
    filename = fullfile(path, file);  
    opts = detectImportOptions(filename); 
    for i = 1:length(opts. VariableTypes) 
        if(i == 3) 
            opts.VariableTypes{i} = 'string'; 
        else 
            opts.VariableTypes{i} = 'double'; 
        end 
    end 
C_complete  = readtable(filename, opts); 
%%  Determine output path for excel file 
outdir = uigetdir('C:\Users'); 
%% Determine output path for pictures 
outdir2 = uigetdir('C:\Users'); 
%% Give filename 
outputfile = input('Give output filename: ', 's'); 
outputpath = strcat(outdir, "\", outputfile, "_clustered.xlsx"); 
%% Clear temporary variables 
clear opts 
%% find signals per row and delete compounds which are just present in one 

sample 
ML_matrix = table2array(C_complete(:,4:end)); 
MassList_final = (C_complete); 
Samples = MassList_final.Properties.VariableNames(4:end); 
clear ML_matrix l b idx 
% log2, vorher shift 
ML_matrix =table2array(MassList_final(:,4:end)); 
datawithshift = ML_matrix + 1; 
gelogt = log(datawithshift); 
ML_matrix = gelogt; 
%%% Calculate z-scores (standardization) 
z_scores = normalize(ML_matrix,2, 'zscore'); 
z_scores_trans = z_scores'; 
%% create Colormap  
% colors = colormap either DIY or from MATLAB of your choice 

Compounds = table2cell(MassList_final(:,3)); 
 Samples = C_complete.Properties.VariableNames(4:end); 
%% Cluster analysis for compounds // Plot Dendrogram for compounds 
f1 = figure('color',[1 1 1],'units','centimeters','position',[1.5 2 7 25],... 
            'paperunits','centimeters','paperposition',[0 0 7 25],... 
            'papersize',[7 25]); 
dist_1 = pdist(z_scores); 
link_1 = linkage(dist_1,'average'); 
c_oben = cophenet(link_1, dist_1); 
leafOrder_1 = optimalleaforder(link_1,dist_1);  
[~,D_1] = dendrogram(link_1,50,'reorder',leafOrder_1,'Orientation','left');   % 

adjust 2nd input according to number of clusters you want (0 = all) 

  
find_axes = findall(0,'Type','axes');                   % Y axis needs to be 

reversed, 'findall' opens the figure editor in the Workspace 
set(find_axes,'YDir','reverse') 
print('-painters','Dend_comp_60Cluster', '-dsvg', '-r1200') 
print('-painters','Dend_comp_60Cluster', '-dmeta', '-r1200') 
f1 = gcf 
%% 
saveas(f1,strcat(outdir2, "\", outputfile, "_dendroseite.png")); 
%% rearange rows (compounds) & Find compounds in specific clusters 
z_scores_rearange = z_scores(leafOrder_1,:); 
Comp_rearange = Compounds(leafOrder_1,:); 
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C_complete_reaarange = C_complete(leafOrder_1,:); 
%% Number of row transpose leaf_order 
leafOrder_1_Liste = transpose(leafOrder_1); 
%% 
SumFormula = C_complete(:,3); 
%% Cluster analysis for samples // Plot Dendrogram for samples %% 
%% check Inconsitency 
f2 = figure('color',[1 1 1],'units','centimeters','position',[1.5 5 40 7],... 
            'paperunits','centimeters','paperposition',[0 0 40 8],... 
            'papersize',[40 7]); 
dist_2 = pdist(z_scores_trans); 
link_2 = linkage(dist_2,'average'); 
c_seite = cophenet(link_2,dist_2); 
leafOrder_2 = optimalleaforder(link_2,dist_2); 
[~,D_2] = dendrogram(link_2,0,'reorder',leafOrder_2); 
% calculate cophenet 
c = cophenet(link_2,dist_2); 
clear dist_2 link_2 
f2 = gcf 
saveas(f2,strcat(outdir2, "\", outputfile, "_dendrooben.png")); 
%% rearange rows (compounds) 
z_scores_rearange_2 = z_scores_rearange(:,leafOrder_2); 
Samples_rearange = Samples(:,leafOrder_2); 
%% Plot heatmap WITH arangement! 
f3 = figure('color',[1 1 1],'units','centimeters','position',[1.5 2 40 25],... 
            'paperunits','centimeters','paperposition',[0 0 40 25],... 
            'papersize',[40 25]); 
h1=heatmap(z_scores_rearange_2(:,:),'GridVisible','off','CellLabelColor','none',

'Colormap',colors,'XLabel','Sample','YLabel','Compound',... 
    'XDisplayLabels',Samples_rearange) 
caxis([-1 1]) 
saveas(h1,strcat(outdir2,  "\", outputfile, "_heatmap2.png")); 
close(f3) 
clear f3 
%% Erstellen einer Tabelle in der alle compounds nach Reihenfolge der cluster 

geeordnet sind. 
[H,T,outperm]=dendrogram(link_1,100,'reorder',leafOrder_1,'Orientation','left'); 
T_table = array2table(T); 
mat = [T_table C_complete]; 
mat_reaaranfge = mat(leafOrder_1,:); 
%% get number of elements in each formula 
sumohneadduct=table2array(mat_reaaranfge(:,4)); 
A = "C0H0O0"; 
sumohneadduct = fillmissing(sumohneadduct,'constant', A); 
 count_elements = zeros(length(sumohneadduct),9); % we want the order C, H, O, 

N, S, P, Cl, Br, I 
element_symbol = {'C' 'H' 'O' 'N' 'S' 'P' 'Cl' 'Br' 'I'}; 
count_others = cell(length(sumohneadduct),1); % to determine if other elements 

are present 
for j = 1:9 

     
    for i=1:size(sumohneadduct,1) 
        dummy = [sumohneadduct{i,1} '##'];    % get formula in row i 
        k = strfind(dummy,element_symbol{1,j}); % find position of element 

symbol in formula / dummy 
        if ~isempty(k) % if element is not present k is empty and we skip this 
            k = k(1,1); % take only first occurence of element symbol 
            if length(element_symbol{j}) > 1    % for elements like Cl we have 

to add one position to k 
                k = k+1; 
            end             
            if ~isnan(str2double(dummy(k+1:k+2)))   % check if element > 9 (two 

positions) 
                count_elements(i,j) = str2double(dummy(k+1:k+2)); 
            elseif ~isnan(str2double(dummy(k+1)))   % check if there is a number 

after the element 
                count_elements(i,j) = str2double(dummy(k+1)); 



                                                                                Appendix 

143 
 

            else                                    % if there is only the 

symbol set the number to 1 
                count_elements(i,j) = 1; 
            end 
        else                                        % if element is not present 

set the number to 0 
            count_elements(i,j) = 0; 
        end 
        %look also for other elements (but only in the last round) 
        if j==5 
            search_other = {'A','a','B','b','D','d','E','e','F','f','G',... 
                'g','J','j','K','k','L','M','m','Q','q','R','T','t','U',... 
                'u','V','v','W','w','X','x','Y','y','Z','z'}; 
            k = contains(string(dummy),search_other,'IgnoreCase',false); 
            if k == 1 
                count_others{i,1} = 'yes'; 
            else 
                count_others{i,1} = 'no'; 
            end 
        end 
    end 

     
end 
clear dummy i j k 
%% alles in eine Tabelle 
elements_table = array2table(count_elements); 
elements_table.Properties.VariableNames = element_symbol; 
%% combine tables 
Final_table = [mat_reaaranfge elements_table]; 
%% save as excel file 
writetable(Final_table,outputpath); 
%% end 

 

 

Python Code 

Principal Component Analysis 

# import packages 

from matplotlib import pyplot as plt 

import pandas as pd 

import numpy as np 

from sklearn.decomposition import PCA 

import seaborn as sns 

from sklearn.preprocessing import StandardScaler 

from mpl_toolkits.mplot3d import Axes3D 

from pylab import figure 

from mpl_toolkits.mplot3d.proj3d import proj_transform 

from matplotlib.text import Annotation 

from matplotlib.colors import ListedColormap 

import matplotlib.patches as mpatches 

from matplotlib.lines import Line2D 

# import data, df for data, df1 for labels, insert filepath 

df = pd.read_excel(r'C:\Users') 

df1 = pd.read_excel(r'C:\Users') 

# extrakt data from df, all rows and designated columns 

matrix = df.iloc[:, 3:110] 

# Transpose data 

matrixtrans = matrix.T 

# get names of matrix columns 

names = matrixtrans.index 

newnames = [] 

for name in names: 
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    newnames.append(name.split("_")[0]) 

# shift +1 then log10 data 

matrixshift = matrixtrans +1 

matrixlog = np.log2(matrixshift) 

# scale with StandardScaler/zscore 

scaler = StandardScaler() 

x = scaler.fit_transform(matrixlog) 

# convert x to data frame 

z = pd.DataFrame(x, index=newnames) 

# perform PCA 

pca_data = PCA(n_components = 10) 

principalComponents_data = pca_data.fit_transform(z) 

# create Data Frame with all principal component values/ only necessary if 

indexing is performed by column header as later in visualization 

pcadataDf = pd.DataFrame(data = principalComponents_data, columns = ['PC1', 

'PC2', 'PC3','PC4','PC5','PC6','PC7','PC8','PC9','PC10']) 

pcadata = pd.DataFrame(data = principalComponents_data, columns = ['PC1', 'PC2', 

'PC3','PC4','PC5','PC6','PC7','PC8','PC9','PC10'], index = newnames) 

# create labels from df1 

y = np.array(df1) 

labels = np.ravel(y) 

list_of_tuples = list(zip(newnames, labels)) 

labelnames = pd.DataFrame(list_of_tuples, columns = ['SampleName', 'Index']) 

# plot 2D 

fig = plt.figure(figsize=(10,8)) 

fig,ax =plt.subplots() 

x_axis = pcadataDf.loc[:,'PC1'] 

y_axis = pcadataDf.loc[:,'PC2'] 

ax.set_facecolor('white') 

ax.spines['left'].set_color('grey') 

ax.spines['bottom'].set_color('grey') 

ax.spines['right'].set_color('lightgrey') 

ax.spines['top'].set_color('lightgrey') 

ax.set_xlabel('PC 1') 

ax.set_ylabel('PC 2') 

ax.grid(True, color='gainsboro') 

colors = ['#0173b2', '#de8f05', '#029e73', '#d55e00', '#cc78bc'] 

p1 =sns.scatterplot(x_axis, y_axis, hue = 

(labelnames.loc[:,'Index']),marker='o', palette = colors,s=40) 

lines = [Line2D([0], [0], color=c, linewidth=0, linestyle=None, marker='o') for 

c in colors] 

labels =['Trichoderma','Aspergillus','Botrytis','Cladosporium','Verticillium'] 

plt.legend(frameon=False) 

leg = plt.legend(lines,labels) 

leg.get_frame().set_color('white') 

leg.get_frame().set_edgecolor('gainsboro') 

plt.title('Cluster by PCA Components') 

plt.tight_layout() 

plt.show() 

# Plot Visualization 3D 

fig = plt.figure(figsize=(10,8)) 

ax = fig.add_subplot(projection='3d') 

ax.set_facecolor('white') 

xs_axis = pcadataDf.loc[:,'PC1'] 

ys_axis = pcadataDf.loc[:,'PC2'] 

zs_axis = pcadataDf.loc[:,'PC3'] 

cmap_bold = ListedColormap(['#0173b2', '#de8f05', '#029e73', '#d55e00', 

'#cc78bc']) 

lines = [Line2D([0], [0], color=c, linewidth=0, linestyle=None, marker='o') for 

c in colors] 

labels =['Trichoderma','Aspergillus','Botrytis','Cladosporium','Verticillium'] 

plt.legend(frameon=False) 

leg = plt.legend(lines,labels,loc='best') 
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leg.get_frame().set_color('white') 

leg.get_frame().set_edgecolor('gainsboro') 

ax.set_facecolor('white') 

ax.spines['left'].set_color('grey') 

ax.spines['bottom'].set_color('grey') 

ax.spines['right'].set_color('lightgrey') 

ax.spines['top'].set_color('lightgrey') 

ax.set_xlabel('PC 1') 

ax.set_ylabel('PC 2') 

ax.set_zlabel('PC 3') 

ax.grid(True, color='gainsboro') 

plt.title('Cluster by PCA Components') 

ax.scatter(xs_axis, ys_axis, zs_axis, marker ='o',c = 

(labelnames.loc[:,'Index']),cmap=cmap_bold, s=40) 

plt.tight_layout() 

plt.show() 

t-SNE 

# First steps simultaneous to PCA, import data and packages, transpose and 

normalize data, make labels 

#import additional packages 

from sklearn.manifold import TSNE 

#perform tsne 

n_components = 2 

tsne = TSNE(n_components, verbose=2, perplexity=50, 

n_iter=5000,learning_rate='auto', random_state=42) 

tsne_result = tsne.fit_transform(z) 

tsne_result.shape 

tsne_result_df = pd.DataFrame({'tsne_1': tsne_result[:,0], 'tsne_2': 

tsne_result[:,1], 'label': labels}) 

#make plot visualize tsne 

fig = plt.figure(figsize=(8,8)) 

fig, ax = plt.subplots(1) 

plt.title('Perplexity: 50') 

colors = ['#0173b2', '#de8f05', '#029e73', '#d55e00', '#cc78bc'] 

sns.set_palette((colors)) 

from matplotlib.lines import Line2D 

lines = [Line2D([0], [0], color=c, linewidth=0, linestyle=None, marker='o') for 

c in colors] 

labelsleg = ['Trichoderma', 'Aspergillus', 

'Botrytis','Cladosporium','Verticillium'] 

p1=sns.scatterplot(x='tsne_1', y='tsne_2', hue='label', data=tsne_result_df, 

ax=ax,s=100, palette=colors) 

lim = (tsne_result.min()-5, tsne_result.max()+5) 

x_axis = tsne_result_df.loc[:,'tsne_1'] 

y_axis = tsne_result_df.loc[:,'tsne_2'] 

import matplotlib.ticker as ticker 

tick_spacing=1 

ax.xaxis.set_major_locator(ticker.MultipleLocator(tick_spacing)) 

ax.yaxis.set_major_locator(ticker.MultipleLocator(tick_spacing)) 

ax.tick_params(axis='both',direction='out',color='gainsboro', width=2) 

ax.set_xlabel('t-SNE 1') 

ax.set_ylabel('t-SNE 2') 

ax.set_aspect('equal') 

ax.set_facecolor('white') 

ax.spines['left'].set_color('grey') 

ax.spines['bottom'].set_color('grey') 

ax.spines['right'].set_color('lightgrey') 

ax.spines['top'].set_color('lightgrey') 

ax.grid(True, color='white') 

ax.legend(lines, labelsleg, loc='best', facecolor='white',edgecolor='gainsboro', 

bbox_to_anchor=(1,1)) 



Appendix 

146 
 

plt.tight_layout() 

plt.show() 

k-Means 

# First steps simultaneous to PCA, import data and packages, transpose and 

normalize data, perform PCA 

#import additional packages 

from sklearn.cluster import KMeans 

# elbow plot to check cluster size for kmeans after pca 

wcss = [] 

for i in range(1,20): 

    model=KMeans(n_clusters = i, init = "k-means++", random_state = 42, max_iter 

= 1000, n_init = 50) 

    model.fit(pcadataDf) 

    wcss.append(model.inertia_) 

fig = plt.figure(figsize=(10,8)) 

ax = fig.add_subplot() 

ax.set_facecolor('white') 

ax.spines['left'].set_color('dimgray') 

ax.spines['bottom'].set_color('dimgray') 

ax.spines['right'].set_color('darkgrey') 

ax.spines['top'].set_color('darkgrey') 

ax.grid(True, color='gainsboro') 

plt.xlabel('Number of Clusters',fontsize = 15) 

plt.ylabel('WCSS',fontsize = 15) 

plt.title('Explained Variance by components: 10',fontsize = 15) 

plt.plot(range(1,20),wcss) 

plt.tight_layout() 

plt.show() 

# perform kmeans clustering 

kmeans = KMeans(n_clusters = 5,                 # Set amount of clusters 

                init = 'k-means++',             # Initialization method for 

kmeans 

                max_iter = 1000,                 # Maximum number of iterations 

                n_init = 50,                    # Choose how often algorithm 

will run with different centroid 

                random_state = 42)               # Choose random state for 

reproducibility 

pred_y = kmeans.fit_predict(pcadataDf) 

y_kmeans =kmeans.predict(pcadataDf) 

# Plot the kmeans results 

fig = plt.figure(figsize=(10,8)) 

ax = fig.add_subplot() 

ax.set_facecolor('white') 

ax.spines['left'].set_color('grey') 

ax.spines['bottom'].set_color('grey') 

ax.spines['right'].set_color('lightgrey') 

ax.spines['top'].set_color('lightgrey') 

ax.set_xlabel('PC 1') 

ax.set_ylabel('PC 2') 

ax.grid(True, color='gainsboro') 

plt.tight_layout() 

plt.scatter(pcadataDf.loc[:,'PC1'], pcadataDf.loc[:,'PC2'], c=y_kmeans, s=30, 

cmap='Set1', label="y_means"); 

# Plot the clusters 

plt.scatter(kmeans.cluster_centers_[:, 0], 

            kmeans.cluster_centers_[:, 1], 

            s=30, marker='x',                           # Set centroid size 

            c='black', label="y_means"); 

plt.show() 
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DBSCAN 

# First steps simultaneous to PCA, import data and packages, transpose and 

normalize data, perform PCA 

# import additional packages 

from sklearn.cluster import DBSCAN 

#perform DBSCAN 

epsilon=40 

db=DBSCAN(eps=epsilon, min_samples=3).fit(X) 

core_samples_mask = np.zeros_like(db.labels_, dtype=bool) 

core_samples_mask[db.core_sample_indices_] = True 

labels=db.labels_ 

# Number of clusters in labels, ignoring noise if present. 

n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) 

n_noise_ = list(labels).count(-1) 

no_clusters = len(np.unique(labels) ) 

no_noise = np.sum(np.array(labels) == -1, axis=0) 

print('Estimated no. of clusters: %d' % no_clusters) 

print('Estimated no. of noise points: %d' % no_noise) 

# Plot result 

import matplotlib.pyplot as plt 

fig = plt.figure(figsize=(10,8)) 

ax = fig.add_subplot() 

ax.set_facecolor('white') 

ax.spines['left'].set_color('grey') 

ax.spines['bottom'].set_color('grey') 

ax.spines['right'].set_color('lightgrey') 

ax.spines['top'].set_color('lightgrey') 

ax.grid(True, color='gainsboro') 

plt.xlabel('pc1') 

plt.ylabel('pc2') 

x_axis = pcadataDf.loc[:,'PC1'] 

y_axis = pcadataDf.loc[:,'PC2'] 

p1 =sns.scatterplot(x_axis, y_axis, hue = (labelnames.loc[:,'Index']), palette = 

"deep") 

plt.title('Clusters by PCA Components') 

plt.show() 

# Black removed and is used for noise instead. 

ax = fig.add_subplot() 

ax.set_facecolor('white') 

ax.spines['left'].set_color('grey') 

ax.spines['bottom'].set_color('grey') 

ax.spines['right'].set_color('lightgrey') 

ax.spines['top'].set_color('lightgrey') 

ax.grid(True, color='gainsboro') 

ax.set_facecolor('white') 

unique_labels = set(labels) 

colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, 

len(unique_labels))] 

for k, col in zip(unique_labels, colors): 

    if k == -1: 

        # Black used for noise. 

        col = [0, 0, 0, 1] 

    ax = fig.add_subplot() 

    ax.set_facecolor('white') 

    ax.spines['left'].set_color('grey') 

    ax.spines['bottom'].set_color('grey') 

    ax.spines['right'].set_color('lightgrey') 

    ax.spines['top'].set_color('lightgrey') 

    ax.grid(True, color='gainsboro') 

    class_member_mask = labels == k 

    xy = X[class_member_mask & core_samples_mask] 
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    ax.set_facecolor('white') 

    plt.plot( 

        xy[:, 0], 

        xy[:, 1], 

        "o", 

        markerfacecolor=tuple(col), 

        markeredgecolor="k", 

        markersize=5, 

    ) 

    xy = X[class_member_mask & ~core_samples_mask] 

    ax.set_facecolor('white') 

    plt.plot( 

        xy[:, 0], 

        xy[:, 1], 

        "o", 

        markerfacecolor=tuple(col), 

        markeredgecolor="k", 

        markersize=5, 

    ) 

ax.set_facecolor('white') 

plt.xlabel('PC 1') 

plt.ylabel('PC 2') 

plt.title("PC5 Eps40 minsamp3", fontsize = 15) 

plt.show() 

Cross Validation, unstratified and stratified, with Support Vector Machine or kNN 

Classification for a chosen range of principal components 

# First steps simultaneous to PCA, import data and packages, transpose and 

normalize data 

#settings for Support Vector Machine 

from sklearn.svm import SVC 

svm = SVC(kernel='linear', random_state=42, gamma='auto', C=0.01) 

# setting for kNN 

from sklearn import neighbors 

n_neighbors = 3 

clf = neighbors.KNeighborsClassifier(n_neighbors) 

# make empty list to save later results 

cv_scoress = [] 

AverageAccuracy =[] 

# settings for cross validation and stratified kfold validation 

from sklearn.model_selection import StratifiedKFold 

from sklearn.model_selection import KFold 

from sklearn.model_selection import cross_val_score 

cv = KFold(n_splits=10, random_state=42, shuffle=True) 

skf = StratifiedKFold(n_splits=10, random_state=42, shuffle=True) 

#import labels from df1 

y = np.array(df1) 

y = np.ravel(y) 

### perform PCA with number of PC in range, perform cross validation either 

unstratified or ### stratified for either kNN or SVM 

for i in range(2, 54): 

    pca_data = PCA(n_components=i) 

    principalComponents_data = pca_data.fit_transform(z) 

    # create Data Frame with all principal component values 

    pcadataDf = pd.DataFrame(data=principalComponents_data) 

    X = np.array(pcadataDf) 

    cv_scores = cross_val_score(clf, X, y, scoring='accuracy', cv =skf) 

    cv_scoress.append(cv_scores) 

AverageAccuracy =[] 

StandardDeviation =[] 

# calculate mean accuracy and standard deviation, save in results 

for scores in cv_scoress: 
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    AverageAccuracy.append(np.mean(scores)) 

    StandardDeviation.append(np.std(scores)) 

 

results = pd.DataFrame({'Accuracy':AverageAccuracy, 

'StandardDeviation':StandardDeviation}) 

Grid search for best SVM parameters, beginning similar to cross validation,and PCA 

cv = KFold(n_splits=20, random_state=42, shuffle=True) 

from sklearn.model_selection import GridSearchCV 

param_grid = {'C': [0.01, 0.1, 0.5, 1, 10, 100], 

              'gamma': [1, 0.75, 0.5, 0.25, 0.1, 0.01, 0.001,'auto','scale'], 

              'kernel': ['rbf', 'poly', 'linear']} 

grid = GridSearchCV(SVC(random_state = 42), param_grid, scoring='accuracy', 

cv=cv) 

grid.fit(X_train, y_train) 

best_params = grid.best_params_ 

print(f"Best params: {best_params}") 

svm_clf = SVC(**best_params) 

svm_clf.fit(X_train, y_train) 

pred = svm_clf.predict(X_test) 

print(f"Accuracy Score: {accuracy_score(y_test, pred) * 100:.2f}%") 

Visualize classification, here SVM, kNN works the same 

# First steps simultaneous to PCA, import data and packages, transpose and 

normalize data, perform PCA 

#perform classification 

from sklearn.svm import SVC 

svm = SVC(kernel='linear', random_state=0, gamma='auto', C=1) 

svm.fit(X_train, y_train) 

print('The accuracy of the svm classifier on training data is {:.2f} out of 

1'.format(svm.score(X_train, y_train))) 

print('The accuracy of the svm classifier on test data is {:.2f} out of 

1'.format(svm.score(X_test, y_test))) 

from sklearn.metrics import accuracy_score 

# instantiate learning model (k = 3) 

# predict the response 

pred = svm.predict(X_test) 

# evaluate accuracy 

print("accuracy: {}".format(accuracy_score(y_test, pred))) 

# make confusion matrix and visualize 

from sklearn.metrics import classification_report, confusion_matrix 

cm = (confusion_matrix(y_test, pred)) 

print(confusion_matrix(y_test, pred)) 

print(classification_report(y_test, pred)) 

import matplotlib.pyplot as pl 

cm_df = 

pd.DataFrame(cm,index=['Trichoderma','Aspergillus','Botrytis','Cladosporium','Ve

rticillium'], columns 

=['Trichoderma','Aspergillus','Botrytis','Cladosporium','Verticillium']) 

import seaborn as sns 

ax = sns.heatmap(cm_df, annot=True, cmap='coolwarm', vmax=1) 

ax.set_title('Confusion Matrix with labels\n\n'); 

ax.set_xlabel('\nPredicted Genus') 

ax.set_ylabel('Actual Genus '); 

## Display the visualization of the Confusion Matrix. 

plt.tight_layout() 

plt.show() 

#Visualize SVM results 

from matplotlib.colors import ListedColormap 

from sklearn import neighbors 
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# Create color maps 

from mlxtend.plotting import plot_decision_regions 

Xvorvis =X[:,0:2] 

cmap_light = ListedColormap(['#46B0EA', '#ffb93f', '#34e7b5', '#fe9543', 

'#f7b5eb']) 

cmap_bold = ListedColormap(['#0173b2', '#de8f05', '#029e73', '#d55e00', 

'#cc78bc']) 

svm.fit(Xvorvis, y) 

x_min, x_max = X[:, 0].min() - 5, X[:, 0].max() + 5 

y_min, y_max = X[:, 1].min() - 5, X[:, 1].max() + 5 

xx, yy = np.meshgrid(np.arange(x_min, x_max), 

                     np.arange(y_min, y_max)) 

Z = svm.predict(np.c_[xx.ravel(), yy.ravel()]) 

Z = Z.reshape(xx.shape) 

fig = plt.figure() 

ax = fig.add_subplot() 

plt.pcolormesh(xx, yy, Z, cmap=cmap_light, shading='auto') 

plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) 

ax.scatter(X_test[:, 0], X_test[:, 1], marker='.', color='k') 

plt.xlim(xx.min(), xx.max()) 

plt.ylim(yy.min(), yy.max()) 

#colors = ['#0173b2','#48beff', '#de8f05', '#029e73', '#d55e00', '#cc78bc'] 

colors = ['#0173b2', '#de8f05', '#029e73', '#d55e00', '#cc78bc'] 

lines = [Line2D([0], [0], color=c, linewidth=0, linestyle=None, marker='o') for 

c in colors] 

#labels =['Trichoderma','Aspergillus','Botrytis','Cladosporium','Verticillium'] 

labels = ['T. harzianum','T. atroviride', 'T. fasciculatum','T. 

longibrachiatum', 'T. minutisporum'] 

#labels =['T. harzianum 177', 'T. harzianum 178' ,'T. atroviride', 'T. 

fasciculatum','T. longibrachiatum', 'T. minutisporum'] 

#labels = ['Trichoderma', 'Aspergillus', 

'Botrytis','Cladosporium','Verticillium'] 

plt.legend(frameon=False) 

leg = plt.legend(lines,labels) 

leg.get_frame().set_color('white') 

leg.get_frame().set_edgecolor('gainsboro') 

plt.title('SVM Classification') 

plt.xlabel('PC 1') 

plt.ylabel('PC 2') 

plt.tight_layout() 

plt.show() 
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8.1.2. Supporting information for fungal class differentiation 

 

 

Figure 8.1: PCA for fungal classes. Upper picture: ACPI positive mode, lower picture: APCI 
negative mode. 

 

Table 8.6: Tables for iterating principal component input to find the best number of PC for SVM and 
KNN. Stratified 10-fold cross-validation. ESI positive mode. 

ESI positive  Dataset B class 

differentiation 

Dataset A class 

differentation 

Trichoderma 

species 

Differentiation 

kNN, 

n = 3 

PC input 15 9 8 

Accuracy 0.96 0.94 0.95 

Std Deviation 0.07 0.09 0.08 

SVM linear 

Kernel C =0.01 

PC input 9 10 16 

Accuracy 0.99 0.98 0.98 

Std Deviation 0.03 0.06 0.05 

 

Table 8.7: Tables for iterating principal component input to find the best number of PC for SVM and 
KNN. Stratified 10-fold cross-validation. APCI positive mode. 

APCI positive  Dataset B class 

differentiation 

Dataset A class 

differentation 

Trichoderma 

species 

Differentiation 

kNN, 

n = 3 

PC input 16 15 15 

Accuracy 0.94 0.92 0.78 

Std Deviation 0.08 0.08 0.13 

SVM linear 

Kernel C =0.01 

PC input 15 15 16 

Accuracy 0.99 0.94 0.90 

Std Deviation 0.03 0.07 0.13 
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Table 8.8: Tables for iterating principal component input to find the best number of PC for SVM and 
KNN. Stratified 10-fold cross-validation. ESI negative mode. 

ESI negative  Dataset B class 

differentiation 

Dataset A class 

differentation 

Trichoderma 

species 

Differentiation 

kNN, 

n = 3 

PC input 30 12 12 

Accuracy 0.93 0.91 0.82 

Std Deviation 0.07 0.11 0.12 

SVM linear 

Kernel C =0.01 

PC input 33 20 31 

Accuracy 0.94 0.98 0.89 

Std Deviation 0.08 0.07 0.09 

 

Table 8.9: Tables for iterating principal component input to find the best number of PC for SVM and 
KNN. Stratified 10-fold cross-validation. APCI negative mode. 

APCI negative  Dataset B class 

differentiation 

Dataset A class 

differentation 

Trichoderma 

species 

Differentiation 

kNN, 

n = 3 

PC input 18 9 13 

Accuracy 0.97 0.97 0.87 

Std Deviation 0.05 0.07 0.13 

SVM linear 

Kernel C =0.01 

PC input 19 9 18 

Accuracy 97 0.95 0.97 

Std Deviation 0.04 0.07 0.07 
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Figure 8.2: Fingerprints for species used for class differentiation. Averaged for all biological and 
technical replicates of the respective species. Maximum intensity varies for each species. 

 

8.1.3. Supporting information for fungal species differentiation 

 

Table 8.10: SVM classification (linear kernel C = 0.01). Stratified 10-fold cross-validation. Accuracy 
for the differentiation of Trichoderma spores on species level. 

Ionization method PC Input  Mean accuracy (Standard deviation) 

ESI positive mode 16 0.98 (0.05) 

APCI positive mode 16 0.90 (0.13) 

ESI negative mode 31 0.89 (0.09) 

APCI negative mode 18 0.97 (0.07) 
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Table 8.11: SVM, linear Kernel, C = 0.01, stratified 10-fold Cross Validation, Trichoderma Species and 
Strain Differentiation. 

Ionization method PC % variance explained by 

PC 

Accurary (Standard 

Deviation) 

ESI positive mode 10 45 0.94 (0.13) 

APCI positive mode 15 65 0.82 (0.12) 

ESI negative mode 34 95 0.84 (0.09) 

APCI negative mode 9 50 0.95 (0.08) 

 

Table 8.12: kNN, n=3, stratified 10-fold Cross Validation, Trichoderma Species and Strain 
Differentiation. 

Ionization method PC % variance explained by 

PC 

Accurary (Std Dev) 

ESI positive mode 11 48 0.91 (0.15) 

APCI positive mode 26 80 0.75 (0.11) 

ESI negative mode 11 70 0.58 (0.20) 

APCI negative mode 23 75 0.81 (0.15) 
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Figure 8.3: Hierarchical clustering analysis, Trichoderma species, APCI positive mode. The horizontal 
tree diagram represents the sample-wise clustering, and the vertical tree diagram the feature-wise 
clustering. 

 

Figure 8.4: Hierarchical clustering analysis, Trichoderma species, ESI negative mode. The horizontal 
tree diagram represents the sample-wise clustering, and the vertical tree diagram the feature-wise 
clustering. 
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Figure 8.5: Hierarchical clustering analysis, Trichoderma species, APCI negative mode. The horizontal 
tree diagram represents the sample-wise clustering, and the vertical tree diagram the feature-wise 
clustering. 

 

Figure 8.6: «Fingerprint» Spectra of Trichoderma spp. ESI positive mode. Fingerprint is obtained 
from averaging the signal intensity of all samples of the respective species.  



                                                                                Appendix 

157 
 

 

Figure 8.7: «Fingerprints» of Trichoderma harzianum strain B samples. Supplement to Figure 6.15. 
ESI positive mode. 

 

8.1.4. Further supporting information 

 

Experimental thermal desorption GC-MS 

For testing of fungal VOC, Trichoderma atroviride (Vintec) was grown on four different 

growth media by the Thines Group (Hendrik Neumann). The growth media CM (Komplett-

Medium/ Yeast Glucose Agar), PDA (Potato dextrose agar), OM (Oatmeal) and HMG (Hefe-

Malz-Glucose) were tested. Tests were conducted with oatmeal and HMG to determine 

where the blank signal were lower and which sample showed more intense VOC signals. 

Standard Agar plates (9 cm) were placed open in a cleaned and sealed exicator and were 

kept for 30 minutes to allow an equilibration. After 30 minutes sampling was started with 

clean air (VOC and HEPA filtered) at 100 mL/min. Sampling took place for 30 min (total 

volume of 3 L) and capped afterwards. HMG showed more VOC signals and less blank 

signals than OM samples. To obtain better sample/blank ratios bigger samples were grown 

in Fernbach flask and a canister, all three on HMG medium at 20 °C and 26 °C (Fernbach and 

Kanister). A blank sample was incubated at 26 °C (Fernbach).  The thermal desorption 
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system consists of an in-house build thermal-desorption device connected to a TRACE 

GC2000 gas chromatograph. The GC instrument is interfaced to a Polaris Q ion trap mass 

spectrometer equipped with an external electron ionization (EI) source (Thermo Fisher, San 

Jose, CA, USA). Previously self-build solid traps containing Carbotrap and Tenax were used, 

but testing showed that commercially available solid traps (MARKES Universal. C2/3-C30 

and Odour/Sulfur. C6/7-C30, Inert-coated) showed better results, e.g., lower blank signals 

and therefore better limits of detection. The solid traps were desorbed for 10 min at 250 °C, 

the cooling trap was held at -196 °C, injection took place at 210 °C for 2 min. A Rxi® 5MS 

fused silica capillary column was installed (Crossbond® 5% diphenyl, 95% dimethyl-

polysiloxane, 0.25 μm film thickness, 30 m × 0.25 mm i.d.) (Restek Corp., PA, USA) with 

Helium as carrier gas and a constant pre-column pressure of 0.5 bar. The ion source was 

operated at an electron energy of 70 eV and a temperature of 250 °C. The compound 

identification was performed by comparison with the mass spectral library of the GC/MS 

data system. Data were acquired and processed using Xcalibur software, version 1.2 

(Thermo Fisher). Results were compared to the NIST98 Library. During measurements, a 

fluctuation in the split flow during desorption was detected, in extreme cases the split flow 

decreased to zero. Possible explanation is the complete freezing of the transfer capillary, 

due to excess moisture trapped in the solid traps, or other VOC which are present in excess 

amounts. When freezing occurred a shift in retention times was detected, most pronounced 

for the first few minutes of each chromatogram. This is most likely due to shift in the helium 

flow which could not be controlled externally. The helium flow reached its designated set 

point only after complete thawing of the transfer capillary, resulting in the extreme 

retention time shifts. 

Experimental e-cigarette liquid 

For DNPH derivatization see Kuntic et al 2020. DNPH-adducts of aldehyde standards and 

DNPH reaction mixtures with e- cigarette liquid or condensate were diluted and subjected 

to LC- MS analysis. LC-settings were as follows: Thermo Fisher Ultimate 3000 UHPLC; 

Column: Hypersil Gold C18 column (2.1 x 50 mm 1.9 μm); Eluent A: H2O (98%), acetonitrile 

(2%), formic acid (400 μL/L); Eluent B: acetonitrile (98%), H2O (2%). The following 

gradient for the mobile phases was applied: 0 min 2% B; 1 min 35% B; 3.5 min 50% B; 4.5 

min 100% B; 6 min 100% B; 6.2 min 2% B. Flow rate was 0.5 mL/min and injection volume 

was 5 μL. MS-Settings were as follows: Thermo Fisher Orbitrap Exactive; daily calibration 

ensured a mass accuracy of below 1 ppm; Settings for sample measurements: Full MS; Scan 

Range 50.0 to 400.0 m/z; Resolution: 140000. Ion Source: Heated Electrospray Ionization ; 
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Polarity: Negative; Settings: Spray Voltage: 3.3 kV, Sheath Gas Flow Rate: 60 a.u., Auxiliary 

Gas Flow Rate: 20 a.u., Capillary temperature: 320 °C, Aux Gas heater temperature: 150 °C. 
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8.2. List of abbreviations 

 
ACN   acetonitrile 

APCI   atmospheric pressure chemical ionization  

APPI   atmospheric pressure photo ionization 

CBS Centraalbureau voor Schimmelcultures- central bureau of fungal 
cultures 

CCN   cloud condensation nuclei  

CPC   condensation particle counter  

DBSCAN  density-based spatial clustering of applications with noise 

DNA    deoxyribonucleic acid 

DSM Deutsche Sammlung von Mikroorganismen und Zellkulturen – 
German            Collection of microorganisms and cell cultures 

EI   electron ionization 

ESI    electrospray ionization 

EtOAc   ethyl acetate 

GC   gas chromatography 

H/C   hydrogen to carbon ratio 

HCA   hierarchical clustering analysis 

HMG   Hefe-Malzextract Agar – yeast malt extract agar 

HPLC    high performance liquid chromatography  

HRMS   high resolution mass spectrometry 

IN   ice nuclei  

ITS   internal transcribed spacer 

kNN   k- nearest neighbor 

LC   liquid chromatography 

LOD   limit of detection 

LOQ   limit of quantitation 

MeOH   methanol 

MS   mass spectrometry 

m/z   mass-to charge ratio 

O/C   oxygen to carbon ratio 
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PBAP   primary biological aerosol particle 

PC   principal component 

PCA   principal component analysis 

PCR   polymerase chain reaction 

PDA   potato dextrose agar 

pg   picogram 

ppm   parts per million  

PM   particulate matter  

PTFE   polytetrafluoroethylene 

rbf   radial basis function 

RNA   ribonucleic acid 

RP   reverse phase 

SOA   secondary organic aerosol  

spp.   species pluralis 

SVM   support vector machine 

TEF1α   Translation elongation factor 1α 

TIC   total ion count 

Tg   teragram 

t-SNE   t-distributed stochastic neighbor embedding 

UHPLC   ultra high-performance liquid chromatography 

VOC   volatile organic compound 

WCSS   within cluster sum of square 
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