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Abstract

In this thesis we will consider two models of random walks in random environment. The first one is a directed

random walk on the backbone of oriented percolation generated by the contact process. In Chapter 2 we

prove a comparison result between the quenched and the annealed law on the level of constant boxes and use

this to prove the existence of a measure Q on the environments that is invariant with respect to the point

of view of the particle and absolutely continuous with respect to the a priori measure P. We show that φ,

the Radon-Nikodym derivative of Q with respect to P, satisfies a certain concentration property and prove a

quenched local limit theorem comparing the quenched law with the annealed law times φ. Additionally we

prove an annealed local central limit theorem.

This model was introduced by Birkner et al. [BČDG13] and therein a quenched central limit theorem

(CLT) proven. In [Ste17] Steiber improved on these results and proved estimates on the differences be-

tween quenched and annealed hitting probabilities of boxes of different sizes which are still growing in N ,

the number of steps.

The main difficulty stems from the fact that our environment is not i.i.d. and the random walk not uniformly

elliptic, in fact not even elliptic. Uniform ellipticity would ensure that a quenched random walk can visit

any site. Once it hits the backbone of oriented percolation our quenched random walk is unable to visit sites

that lie outside. We overcome this difficulty by introducing so called “social” boxes which guarantee that

two random walks starting in the same box can meet in some finite time depending on the size of the box.

Furthermore, to deal with the correlation in the environment, we use the fact that the probability for the

contact process started from a single site to die out after surviving for n steps falls exponentially in n. This

allows us, with high probability, to approximate the original environment with one, where the correlations

only have finite range. We can show that the density of “good” boxes is high with high probability. To show

the existence of Q we consider the quenched law of the environment as seen from the particle after N steps.

We then obtain Q as a weak limit of their Cesàro means along a subsequence. This has the advantage that

Q is then invariant with respect to the point of view of the particle by construction. To prove the quenched

local limit theorem we introduce hybrid measures and use space-time convolutions of these measures and

the quenched law.

The second model is a class of random walks in an environment given by oriented percolation, where we make

more general assumptions on the dynamics of the random walk and was introduced in [BČD16]. Here the

random walk does not have to stay on the percolation cluster but rather its transition probabilities depend

on the environment locally in some general way. Furthermore we assume the transitions to have finite range

and, while on the cluster, the transition kernels are suitably close to a deterministic symmetric transition

kernel. Lastly we have a symmetry assumption that leads to the annealed mean being 0.

In Chapter 3 we prove a quenched central limit theorem in the regime where the parameter p of the underlying

Bernoulli-field, on which the percolation cluster is build, is close to 1. To prove the quenched CLT we

control the the square of the quenched average under Lipschitz test functions. To that end we consider the

dynamics of two random walks evolving in the same environment and therefore define a suitable regeneration

construction for two random walks evolving in the same environment, as well as in independent environments.

We use these regeneration times to compare the two different pairs of random walks. It turns out that,

although the correlations in the environment have infinite range, they decay exponentially with distance and
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we can prove that two random walks in a joint environment, that are far from each other, are behaving

like they are in independent environments with high probability. To make use of this we show that two

random walks in a joint environment separate fast and spend enough time apart such that we can couple

them with two in independent environments for at least N −N b1 of the first N steps, where 0 < b1 < 1/2.

Our approach to prove the quenched CLT requires us to split the proofs in dimensions d ≥ 2 and d = 1. This

is necessary because in d = 1 the random walks meet too often and we therefore need to control the time

they spend while close to each other. Furthermore, for d = 1, we make use of a martingale decomposition

for the dynamics of the two random walks evolving in a joint environment and show that cancellations in

the predictable process of this decomposition, during the time at which the random walks are close to each

other, lead to vanishing error terms.
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Chapter 1

Introduction

The models considered in this thesis both fall under the broad umbrella of random walk in random envi-

ronment (RWRE). In general RWRE describe the movement of particles in a disordered or inhomogeneous

medium.

RWRE can be used to model a wide variety of processes occurring in physics and biology. We give some

examples of those to give a more intuitive access to the topic. We begin with examples from physics such as

disordered solids where atoms are placed at random points in the space Rd and thus the potential becomes

random. In that case the positions of the atoms constitute a random environment and electrons moving in

the solid are the random walks, see [Kir07]. Other examples include crystal growth, see [Tem69], electrical

lines of random conductances, see [ABSO81] or transport processes, see [BG90], among a host of possible

applications in physics.

Continuing with Biology, every population evolving in an environment where the individual’s fitness

depends on the spatial position or other factors such as age or size, see [BS09] or [MSDL+17], can be

modeled as a random environment. This is the case whenever individuals compete for resources, which

results in a higher fitness for individuals in sparsely populated areas and a lower fitness in densely populated

areas.

By studying the ancestral lineages of a population we can study, among other interesting things, the

spatial distribution, the distribution of types and movement of ancestors of a sample of individuals [BR19].

This is the main motivation behind the models we will introduce later and we will therefore discuss it in a

bit more detail.

As discussed in [BR19], we can extract a vast amount of information about a population from its pedigree.

Ancestry can be used to identify relatives of a given individual, e.g. by finding the most recent common

ancestor of a group of individuals. The ancestral lineages are random walks in random environment, where

the environment is given by the population and its evolution over time. The dynamics of the ancestral

lineages are then given by the dynamics of the population, i.e. migration and birth or death of individuals.

As a possible application consider ancestral lineages in a haploid stepping stone model. In the stepping

stone model the population is arranged on a discrete array, e.g. Z, of colonies of fixed size N . During each

generation the old individuals are completely replaced by new individuals and we assign a new individual
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in colony x a parent in colony y with probability p(x, y) = p(y − x), where p(·) is symmetric. Children

assume the types of their parent and then independently of everything else mutate with probability u to a

completely new type. Let ψ(x, y) be the probability, in equilibrium, that two individuals randomly drawn

from colonies x and y have the same type. Using the fact that ancestral lineages are random walks we can

calculate

ψ(x, y) =

∞∑
k=1

(1− u)2kP(M = k |X0 = x, Y0 = y) =

∑∞
k=1(1− u)2kp2k(x, y)

N +
∑∞

k=1(1− u)2kp2k(0, 0)
,

where X and Y are random walks moving according to p with starting positions X0 and Y0, M is the

meeting time of X and Y and pk is the k-step transition kernel, see e.g. [Saw76] for more details. Now X

and Y are the ancestral lineages of the two drawn individuals and M is the time that the first common

ancestor is found. For the two individuals to have the same type there can not be any mutations along the

ancestral lineages until the first common ancestor. Therefore we get the factor (1−u)2k, that is no mutation

for k generations for both ancestral lineages. Any mutation before the ancestral lineages meet would lead

to different types. To summarize, we can use the behaviour of the ancestral lineages as random walks to

determine the probability for two sampled individuals to have the same type.

In this thesis we will dedicate ourself to studying the long time behaviour of ancestral lineages in two models

and derive results on the spatial distribution of the ancestors. Note that the evolution of the ancestral

lineage depends on the modeling of the population since it depends on the dynamics of the evolution of the

population. In the scope of this work we will focus on models with no selection nor mutation but add a

spatial component for the individuals and thus introduce migration.

1.1 Discrete time contact process and its relation to oriented per-

colation

One vital ingredient for the models considered in this work is the discrete time contact process η := (ηn)n∈Z,

since it will be the environment in which the random walks evolve.

It was first introduced in its continuous time version (ηt)t≥0 by Harris in [Har74], where ηt is a random

map taking values in {0, 1}Zd

that assigns every site x ∈ Zd the value 1 or 0. Harris interpreted η as the

spread of an infection. In that context we say that an individual at position x is infected at time t if ηt(x) = 1

and healthy if ηt(x) = 0. An infected individual can recover at rate 1 and become healthy, while a healthy

individual can be infected by its nearest neighbours (according to the supremum norm) at rate λ > 0 for

each infected neighbour, i.e. this yields the rate

r(ηt, x) =

1, if ηt(x) = 1,

λ · |{y ∈ Zd : ∥x− y∥∞ = 1, ηt(y) = 1}|, if ηt(x) = 0.

at which the state of ηt at site x ∈ Zd is flipped.
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Since we think of ancestral lineages we call a site (x, n) inhabited if ηn(x) = 1 and uninhabited if ηn(x) = 0.

Similar to the continuous time contact process, in discrete time an uninhabited site will be inhabited in the

next generation with probability p if there exits a site in its nearest neighbourhood that is inhabited. And

an inhabited site will be uninhabited in the next generation with probability 1 − p. In this section we will

give a precise definition and introduce some known results for the discrete time contact process we will need

later on.

The discrete time contact process will be build on an i.i.d. family of Bernoulli random variables for every

space-time point (x, n) ∈ Zd ×Z, where we refer to x ∈ Zd as the spatial component and n ∈ Z as the time.

We start with ω := {ω(x, n) : (x, n) ∈ Zd+1} a family of i.i.d Bernoulli random variables with ω(x, n) ∼ Berp

and p ∈ [0, 1] on some probability space (Ω,F ,P). Thus ω ∈ {0, 1}Zd+1

and P ◦ω−1 is a probability measure

on {0, 1}Zd+1

. Now we call a site (x, n) ∈ Zd+1 open if ω(x, n) = 1 and closed otherwise.

Definition 1.1.1 (Directed open path). Let (x,m), (y, n) ∈ Zd+1 be two sites andm < n. Given a realization

of an environment ω we call a space-time sequence (xm,m), . . . , (xn, n) ∈ Zd+1 a directed open path starting

at (x,m) and ending in (y, n) if xm = x, xn = y, ∥xk − xk−1∥ ≤ 1 for all k = m+ 1, . . . , n and ω(xk, k) = 1

for all k = m, . . . , n. In that case we write (x,m) →ω (y, n).

A directed open path consists of nearest neighbour jumps, according to the supremum norm, on only

open sites. For x ∈ Zd we set U(x) := {y ∈ Zd : ∥x− y∥ ≤ 1}, i.e. U(x) is the neighbourhood of x according

to the sup-norm. With that, given an environment ω, for a set A ⊂ Zd, we define ηA,m := (ηA,m
n )n≥m :=

(ηA,m
n )n≥m(ω) as the discrete time contact process starting at time m ∈ Z from the set A as

ηA,m
m (y) = 1A(y), y ∈ Zd,

and then iteratively for n ≥ m

ηA,m
n+1 (x) =

1 if ω(x, n+ 1) = 1 and ηA,m
n (y) = 1 for some y ∈ Zd with ∥x− y∥ ≤ 1,

0 otherwise,
(1.1.1)

i.e. ηA,m
n (y) = 1 if and only if there exists a directed open path starting from some (x,m) ∈ A × {m} and

ending in (y, n), or in short (x,m) →ω (y, n). The process ηA,m starts from the configuration ω(x,m) = 1A(x)

for all x ∈ Zd, while for n > m and y ∈ Zd the ω(y, n) are again i.i.d. Bernoulli. Note that ηA,m depends on

ω but to shorten the notation we refrain from writing that dependency explicitly every time. Similar to the

continuous version we call that a site (x, n) infected or inhabited if ηA,m
n (x) = 1 and healthy or uninhabited

otherwise. In light of that we can interpret ηA,m as a population process, where an individual lives at site

(x, n), i.e. ηA,m
n (x) = 1, if there exists a possible parent in the previous generation, i.e. ηA,m

n−1(y) = 1 for some

y ∈ Zd with ∥x− y∥ ≤ 1. Sometimes we want to identify ηA,m
n with the set of inhabited sites at time n ≥ m.

We define τA,m := inf{n ≥ m : ηA,m
n = ∅}, the time at which the contact process started from A× {m} dies

out. Theorem 1 from [GH02] tells us that there exists a critical value pc ∈ (0, 1) for the success probability

such that, the contact process survives with positive probability if and only if p > pc.

Theorem 1.1.2. For d ≥ 1 and p > pc we have P(τA,m = ∞) > 0.
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We define τA := inf{n ≥ 0 : ηA,0
n = ∅} and in particular for A = {0} we write τ0 = τ{0},0 and get

P(τ0 = ∞) > 0. For the rest of this thesis assume p > pc and if we require more, say p close to 1, we will

specify that. For two sets A,B ⊂ Zd with A ⊂ B we obtain, by construction of the contact process

ηA,0
0 ⊂ ηB,0

0 and ηA,0
n ⊂ ηB,0

n for all n ∈ N.

Let µn be the distribution of ηZ
d,0

n , then, by the above monotonicity of the contact process and the Markov

property, µn ≤ µ0, i.e. µ0 stochastically dominates µn and by attractiveness µn+m ≤ µn for all m ∈ N.
Therefore, by compactness of the set of probability measures on {0, 1}Zd

, there exists a unique weak limit

ν = lim
n→∞

µn. This limit is non-trivial since p > pc and ν is called the upper invariant measure. This is a

well known result; see Chapter IV and Theorem 2.3 in Chapter III from [Lig05] for the definition therein

and existence. Thus for ηZ
d,m, taking m→ −∞, we obtain a stationary process

η := (ηn)n∈Z := (ηZ
d

n )n∈Z (1.1.2)

where for a given realization of ω we have ηn(x) = 1 if and only if for every m ≤ n there exists some y ∈ Zd

such that (y,m) →ω (x, n). That means ηn(x) = 1 if there exists an infinitely long open path backwards in

time starting from (x, n). In Chapter 2, for notational convenience, we consider the process ξ = (ξn)n on

{0, 1}Zd

, defined by ξn(x) = 1 iff (x, n) → ∞, i.e. there exists an infinite directed open path connecting (x, n)

to ∞, and ξn(x) = 0 otherwise. Note that L((ξn)n) = L((η−n)n), since η−n(x) = 1 iff there exists an open

path (x,−n) → ∞ which, in the time-reversed picture, translates to (x, n) → ∞ and ξn(x) = 1. Therefore

the process ξ can be interpreted as the time reversal of the stationary discrete time contact process η defined

in (1.1.2). In particular, for any n ∈ Z the random field ξn(·) is distributed according to the upper invariant

measure ν of the discrete time contact process, which is non-trivial in the case p > pc.

We define by

C :=
{
(x, n) ∈ Zd × Z : (x, n)

ω−→ ∞
}

(1.1.3)

the backbone of the space-time cluster of oriented percolation, i.e. the set of all space-time sites which are

connected to “time +∞” by an open directed path, see 1.1.1. Note that C depends on ω and that we have

P(|C| = ∞) = 1 for p > pc. The process ξ := (ξn)n∈Z satisfies

ξn(x) = 1C
(
(x, n)

)
. (1.1.4)

Furthermore for a measure µ on {0, 1}Zd

we write ηµ,m for the contact process started with initial

configuration distributed according to µ at time m.

Lastly we want to mention a useful relation between the upper invariant measure ν and a Bernoulli product

measure.

Lemma 1.1.3. The upper invariant measure of the contact process stochastically dominates a Bernoulli

product measure Ber⊗Zd

p′ for some p′ > 0.

Lemma 1.1.3 was proven for the continuous time contact process in [LS06] Theorem 1.1.

1.1.1 Connection to oriented percolation

We stick to a short definition that demonstrates a comparison between the discrete time contact process and

oriented site percolation. A more detailed description of oriented site percolation and some results can be
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found in [Lig99]. We define oriented site percolation as a discrete time Markov chain An of subsets of Zd

with percolation parameter p ∈ [0, 1]. The evolution of this process is defined by: conditioned on the past of

the process A0, A1, . . . , An, for x ∈ Zd, the events {x ∈ An+1} are independent and

P(x ∈ An+1 |A0, A1, . . . , An) =

p, if An ∩ U(x) ̸= ∅,

0, if An ∩ U(x) = ∅,

where U(x) again is the neighbourhood of x. With the interpretation that a site x is occupied at time n if

x ∈ An and empty if x /∈ An. Comparing oriented percolation with the contact process from equation (1.1.1)

the similarities are obvious even in the definitions.

Since we consider two different models in chapters 2 and 3 respectively we present the required results about

the contact process for each chapter in the two subsections in Section 1.5.

1.2 Directed random walk on the backbone of oriented percolation

The results presented in this section and the related proofs in Chapter 2 were obtained in a joint article

[BBDS21] with Stein Andreas Bethuelsen, Matthias Birkner and Andrej Depperschmidt.

Our goal is to study the directed random walk on the cluster C. This random walk was studied in

[BČDG13] in the case that the initial point of the random walk belongs to the cluster. Here we want to

compare the annealed and quenched laws for starting points without checking whether they are on the cluster

or not. Thus, we define the random walk here differently: It behaves as a simple random walk (which jumps

uniformly to one of the sites in the unit ball around the present site) as long as it is not on the cluster and

once it hits the cluster it will behave as the random walk from [BČDG13]. For a site (x, n) ∈ Zd × Z we

define its neighbourhood at time (n+ 1) by

U(x, n) := {(y, n+ 1) : ∥x− y∥∞ ≤ 1}. (1.2.1)

Since we mainly consider the sup-norm we set ∥·∥ := ∥·∥∞ for rest of this thesis. Given ω and therefore the

random cluster C and (y,m) ∈ Zd × Z we consider here random walks (Xn)n=m,m+1,... with initial position

Xm = y and transition probabilities for n ≥ m given by

P(Xn+1 = z |Xn = x, ω) =


|U(x, n) ∩ C|−1 if (x, n) ∈ C and (z, n+ 1) ∈ U(x, n) ∩ C,

0 if (x, n) ∈ C and (z, n+ 1) /∈ U(x, n) ∩ C,

|U(x, n)|−1 if (x, n) /∈ C.

(1.2.2)

We will write Pω for the conditional law of P given ω and Eω for the corresponding expectation. In particular,

for the transition probabilities we have

Pω(Xn+1 = z |Xn = x) = P(Xn+1 = z |Xn = x, ω). (1.2.3)

For the above random walk we denote by P
(y,m)
ω its quenched law and by E

(y,m)
ω the corresponding expec-

tation. The annealed (or averaged) law of that random walk is denoted by P(y,m) and its expectation by
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E(y,m). Note that for any A ∈ σ(Xn : n = m,m+ 1, . . . ) we have

P(y,m)(A) =

∫
P (y,m)
ω (A) dP(ω). (1.2.4)

Annealed and quenched CLT for the random walk defined in (1.2.2) were obtained in [BČDG13] which

in particular shows that the quenched and annealed laws after N steps are comparable on the level of boxes

of side length N1/2. These results were refined in [Ste17, Chapter 3]. In particular (and relevant for our

purposes here), he obtained a comparison result between the quenched and annealed laws after N steps on

the level of boxes of side length Nθ/2 for θ ∈ (0, 1). We recall this result here in Theorem 2.7.1 below. In

fact in [Ste17, Section 3.4] he also studied such comparisons on boxes which grow on even slower scales.

In Theorem 1.1 in [BČDG13] it is shown that the random walk (Xn) starting in 0 ∈ Zd at time 0 satisfies

an annealed central limit theorem and the limiting law is a non-trivial centred isotropic d-dimensional normal

law. In particular its covariance matrix Σ is of the form σ2Id for a positive constant σ2 and the d-dimensional

identity matrix Id. Recall that in [BČDG13] it is assumed that the space-time origin is contained in C so

that the random walk starts and stays on C. This is not a big constraint because the time a random walk

needs to hit the cluster C has exponentially decaying tails; see Lemma 2.11.1.

The annealed CLT from [BČDG13] can be strengthened to an annealed local CLT. For a proof of the

following theorem we refer to Section 2.2.

Theorem 1.2.1 (Annealed local CLT). For d ≥ 1 and Σ as above we have

lim
n→∞

∑
x∈Zd

∣∣∣P(0,0)(Xn = x)− 1

(2πn)d/2
√
detΣ

exp
(
− 1

2n
xTΣ−1x

)∣∣∣ = 0. (1.2.5)

The main goal is to strengthen this further and prove a quenched local limit theorem which is an analogue

of Theorem 1.2.1. In order to state the precise result, we need to introduce some notation. First, for

(y,m) ∈ Zd × Z, we define the space-time shift operator σ on Ω by

σ(y,m)ω(x, n) := ω(x+ y, n+m) (1.2.6)

and we write ξm(y;ω) for ξm(y) read off from a given realization ω as in (1.1.3) and (1.1.4). We define the

transition kernel for the environment seen from the particle (compare this with (1.2.2)) by

Rf(ω) :=
∑

∥y∥≤1

g(y;ω)f(σ(y,1)ω) (1.2.7)

acting on bounded measurable functions f : Ω → R, where

g(y;ω) := 1{
∑

∥z∥≤1 ξ1(z;ω)>0, ω(0,0)=1}
ξ1(y;ω)∑

∥z∥≤1 ξ1(z;ω)
+ 1{

∑
∥z∥≤1 ξ1(z;ω)=0 or ω(0,0)=0}

1

3d
. (1.2.8)

Definition 1.2.2. A measure Q on Ω is called invariant with respect to the point of view of the particle if

for every bounded continuous function f : Ω → R∫
Ω

Rf(ω) dQ(ω) =

∫
Ω

f(ω) dQ(ω). (1.2.9)

Theorem 1.2.3. Let d ≥ 3 and p ∈ (pc, 1]. Then there exists a unique measure Q on Ω which is invariant

with respect to the point of view of the particle satisfying Q≪ P and the concentration property (2.1.9) below.
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The concentration property tells us that on large boxes [−M,M ]d, with high probability (depending on

M), the average of the Radon-Nikodym derivative dQ/dP evaluated for all possible shifts x ∈ [−M,M ]d of

the environment is close to 1.

The main result of Chapter 2 is a quenched local limit theorem which is an analogue of Theorem 1.11 in

[BCR16] in the case of our model.

Theorem 1.2.4 (Quenched local limit theorem). Let d ≥ 3 and p ∈ (pc, 1], let Q be the measure from

Theorem 1.2.3 and denote by φ = dQ/dP ∈ L1(P) the Radon–Nikodym derivative of Q with respect to P.
Then for P almost every ω we have

lim
n→∞

∑
x∈Zd

∣∣P (0,0)
ω (Xn = x)− P(0,0)(Xn = x)φ(σ(x,n)ω)

∣∣ = 0. (1.2.10)

Remark 1.2.5 (Uniqueness of Q). It will be proven in Lemma 2.9.1 that the function φ in (1.2.10) is P almost

surely unique. Furthermore, it will follow from the arguments in the proofs (cf. also Remark 2.1.6) that if

a measure Q′ on Ω is invariant with respect to the point of view of the particle and satisfies Q′ ≪ P and

(1.2.10) with φ′ = dQ′/dP then this measure Q′ satisfies the concentration property (2.1.9) as well and thus

in particular agrees with Q.

Outlook and open questions While we do exhibit a measure Q which is invariant with respect to

the point of view of the particle and absolutely continuous with respect to P, we can currently establish

uniqueness only in the class of such measures satisfying the additional property (2.1.9), see Remark 1.2.5.

Furthermore, because of non-ellipticity, Q is not equivalent to P, see the discussion in Remark 2.1.6 below.

We leave open the questions whether property (2.1.9) is necessary for uniqueness and whether Q is equivalent

to P when restricted to the set Ω̃ from (2.1.11) in Remark 2.1.6.

We restrict our analysis to the case d ≥ 3. This is essentially owed to the fact that Theorem 2.7.1,

which we quote from [Ste17, Thm. 3.24], is presently only available under this assumption. It was proved

there using an environment exposure technique from [BS02], which was also used by [BCR16], and the proof

exploited the fact that in dimension at least 3, two independent random walks will almost surely meet only

finitely often, irrespective of the number N of steps they take. In spatial dimension d = 2, two independent

walks will meet infinitely often, but the number of intersections up to time N grows quite slowly (of order

logN). It is conceivable that with substantial technical effort, the proof of [Ste17, Thm. 3.24] and also the

results of the present investigation could be adapted to cover the case d = 2. We leave this question for

future research. For our model, simulations suggest that Theorem 1.2.4 should hold even in spatial dimension

d = 1. However, it seems that a rigorous analysis of the case d = 1 would require a completely new approach.

We prove in Theorem 1.2.4 a quenched local limit theorem for a very specific model of a non-elliptic

random walk in a non-trivial dynamic random environment, and our proofs do exploit specific properties

of this environment, namely the oriented percolation cluster. However, we think that this environment is

prototypical for a large class of dynamic environments which can be “mapped” to it by suitable coarse-

graining procedures, see [BČD16], Section 3 and the concrete example in Section 4 there. It seems quite

possible that given substantial technical effort, our approach to Theorem 1.2.4 could be extended to the class

of environments from [BČD16]. We leave this for future work.
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Regeneration times

We recall the regeneration times for this model constructed in [BČDG13]. Recall that we think of the random

walks as ancestral lineages. At this point we want to return to that interpretation. Since it is a priori not

known which sites are on the cluster, the ancestral lineages are constructed locally with the aim to find times

at which the local construction finds a “real” ancestor. For that we introduce new random variables that

decide at which possible site the parent lived in the previous generation. For (x, n) ∈ Zd let ω̃(x, n) be a

uniformly chosen permutation of U(x, n) := {(y, n + 1) ∈ Zd × Z : ∥x− y∥ ≤ 1} the neighbourhood of x at

time n + 1, independent of everything else. Let ω̃ be the family of all these permutations. Conditioned on

the event that (x, n) ∈ C and given a starting site (x, n), k, ω and ω̃, we define a path γ
(x,n)
k of length k via

γ
(x,n)
k (j) =



(x, n), if j = 0,

ω̃(γk(j − 1))[1] if An,k(j) = ∅ and j = 1, . . . , k − 1

ω̃(γk(j − 1))[min(An,k(j))] if An,k(j) ̸= ∅ and j = 1, . . . , k − 1

ω̃(γk(j − 1))[1], if j = k

where here γk(j) = γ
(x,n)
k (j) and An,k(j) := {i : ω̃(γk(j − 1))[i] →ω Zd ×{n+ k− 1}} is the set of all sites in

U(γk(j−1)) that are, in ω, connected to some site at time n+k−1. That means the path starts at position

(x, n) and then chooses the first of the neighbouring sites in the previous generation, so a site in U(x, n),

that appears first in the permutation ω̃(x, n) if none of them are connected to Zd × {n + k − 1}. As soon

as there is a site that is connected to Zd × {n+ k − 1} we restrict our choice in the previous generation to

those and choose the first one of them according to ω̃. Note that once the path finds a site that is connected

to Zd × {n+ k− 1} it will stay on such sites. This is iterated for every step replacing (x, n) with its current

position until j = k, where γk just chooses the first coordinate of the permutation. Note that γ
(x,n)
k only

depends on values of ω(y,m) and ω̃(y,m) for (y,m) ∈ Zd × {n, . . . , n + k − 1} which means we can decide

the position of the path without observing all of the environment ω. We interpret γ
(x,n)
k (k) as a “potential”

ancestor of (x, n) from k generations ago.

A few properties of γ
(x,n)
k are discussed in Lemma 2.1 and Remark 2.2 in [BČDG13]. Due to those properties

we can couple the random walk (Xk, k)k started in (x, n) with ω and ω̃ by setting

(Xk, k) = lim
j→∞

γ
(x,n)
j (k).

There exist times at which the random walk and the path obtained from the local construction coincide. Let

T0 := 0,

Tj := inf{k > Tj−1 : ξ(γ
(x,n)
k (k)) = 1}, j ≥ 1

with a slight abuse of notation in ξ(y,m) = ξm(y) for (y,m) ∈ Zd × Z. The Tj ’s are exactly those times

and thus the local construction finds a “real” ancestor of (x, n). We call those times regeneration times. In

Figure 1.1 we illustrate how the construction finds the regeneration times using only local information about

the environment. Let

τi = Ti − Ti−1 and Yi := XTi
−XTi−1

,

then we have the following lemma from [BČDG13]
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T0

T1

T2

T3

Tn

T1

Figure 1.1: The left-hand picture shows how the construction discovers the trajectory of the random walk

and the respective regeneration times T1, T2, . . . , Tn locally. We restrict the paths and random walk to steps

in U = {−1, 1}. On the right-hand side we zoom in on the environment between T0 and T1. There are two

sites at which there exist two possibilities for the path to continue. At those sites we drew the first choice,

according to ω̃, with a solid arrow and the second choice with a dashed arrow.

Lemma 1.2.6. Conditioned on the event B(x,n) := {ω : (x, n) ∈ C} the sequence ((Yi, τi))i≥1 is i.i.d. and Y1

is symmetrically distributed. Furthermore, there exist constants C, c ∈ (0,∞), such that

P(∥Y1∥ > n |B(x,n)) ≤ Ce−cn and P(τ1 > n |B(x,n)) ≤ Ce−cn.

Note that, as was mentioned above, the random walk introduced in [BČDG13] is a random walk on the

the cluster C and thus its initial position has to be on the cluster. Birkner et. al already mention in Remark

2.3 that this can be expanded to a random walk not starting on C. Using the fact that the random walk in

our model hits the cluster fast, see Lemma 2.11.1, the same bounds on analogous regeneration times hold

for our model.

1.3 A more general class of random walks in oriented percolation

The results presented in this section and the related proofs in Chapter 3 were obtained while working on an

upcoming article with Matthias Birkner and Andrej Depperschmidt.

In this section we recall the auxiliary model from [BČD16] and present our main result. We aim to apply this

result via coarse graining to the more general class of models that was introduced in Section 3 in [BČD16].

This will be included in the upcoming article with M. Birkner and A. Depperschmidt.

The model is a natural generalization of the model introduced above and in [BČDG13]. We will allow the

random walks to step on 0’s of the contact process and impose more general assumption on the transitions,

e.g. finite range instead of only allowing nearest neighbour jumps. These assumptions also make sense for

populations. We allow migration with a bounded range, where the movement is only depended locally on the
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environment, e.g. available resources and competition. We aim to prove a quenched CLT and the main tool

will be to define appropriate regeneration times. In [BČD16] Birkner et al. introduced regeneration times for a

single random walk and proved an annealed LLN and CLT. We expand on their idea to define simultaneous

regeneration times for two random walks to apply the strategies used in [BČDG13] to prove a quenched

CLT. For that we will consider two random walks evolving in the same environment and compare them to

two random walks evolving in independent environments. It turns out that, although the environment has

correlations with infinite range, these two pairs of random walks will behave almost equally as long as the

starting distance (within each pair respectively) is large, see Lemma 3.2.1.

Recall the definition of the discrete time contact process η from (1.1.2) and let p > pc. To define a random

walk in the random environment generated by η, or more precisely by its time-reversal, let

κ :=
{
κn(x, y) : n ∈ Z, x, y ∈ Zd

}
(1.3.1)

be a family of random transition kernels defined on the same probability space as η, in particular κn(x, · ) ≥ 0

and
∑

y∈Zd κn(x, y) = 1 holds for all n ∈ Z and x ∈ Zd. Given κ, we consider a Zd-valued random walk

X := (Xn)n=0,1,... with X0 = 0 and transition probabilities given by

P
(
Xn+1 = y

∣∣Xn = x, κ
)
= κn(x, y), (1.3.2)

that is, the random walk at time n takes a step according to the kernel κn(x, · ) if x is its position at time

n. We impose the following four assumptions on the distribution of κ. Recall that ξ, which we used above,

is the time-reversal of η, i.e. η−n(·) = ξn(·). Since we aim to apply the results obtained in Chapter 3 to a

more general class of models and in there might not exist a time-reversal equivalent to η in those, we will

stick with η.

Assumption 1.3.1 (Locality). The transition kernels in the family κ depend locally on the time-reversal

of η, that is for some fixed Rloc ∈ N

κn(x, ·) depends only on
{
ω(y,−n), η−n(y) : ∥x− y∥ ≤ Rloc

}
. (1.3.3)

Assumption 1.3.2 (Closeness to a symmetric reference measure on η−n(x) = 1). There is a deterministic

symmetric probability measure κref on Zd with finite range Rref ∈ N, that is κref(x) = 0 if ∥x∥ > Rref , and

a suitably small εref > 0 such that

∥κn(x, x+ · )− κref( · )∥TV < εref whenever η−n(x) = 1. (1.3.4)

Here ∥ · ∥TV denotes the total variation norm.

Assumption 1.3.3 (Space-time shift invariance and spatial point reflection invariance). The kernels in the

family κ are shift-invariant on Zd × Z, that is, using notation

θz,mω( · , · ) = ω(z + · ,m+ · ),

we have

κn(x, y)(ω) = κn+m(x+ z, y + z)(θz,mω). (1.3.5)
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Moreover, if ϱ is the spatial point reflection operator acting on ω, i.e., ϱω(x, n) = ω(−x, n) for any n ∈ Z
and x ∈ Zd, then

κn(0, y)(ω) = κn(0,−y)(ϱω). (1.3.6)

Assumption 1.3.4 (Finite range). There is Rκ ∈ N such that a.s.

κn(x, y) = 0 whenever ∥y − x∥ > Rκ. (1.3.7)

As the main result we obtain the following quenched CLT.

Theorem 1.3.5 (Quenched CLT). For any d ≥ 1 one can choose 0 < εref sufficiently small and p sufficiently

close to 1, so that if κ satisfies Assumptions 1.3.1–1.3.4 then X satisfies a quenched central limit theorem

with non-trivial covariance matrix, i.e. for all bounded, continuous functions f

lim
n→∞

Eω

[
f(Xn/

√
n)
]
= Φ(f), for almost all ω, (1.3.8)

where Φ is non-trivial normal law.

At first glance it seems unsatisfying that we obtain Theorem 1.3.5 only for εref sufficiently small and p

close to 1. A natural question arises: What do we gain with this theorem if we have such strict requirements

on the parameters? The true value is shown by applying it through a coarse graining argument to a more

general class of models.

Under certain assumptions on the environment and random walks, which allow us to compare the environ-

ment to oriented percolation on suitably large space-time scales via a coarse-graining construction, we can

transfer our result for the random walks in an environment given by oriented percolation to a more abstract

setting. This will be done in an upcoming article together with M. Birkner and A. Depperschmidt, but to

show where this is roughly going we will present the assumptions. It is not necessary to read this upcoming

part to understand the rest of this thesis, but we hope that the similarities to the percolation model can be

seen.

These assumptions were stated in [BČD16], where they proved an annealed CLT and transferred this

result to a more general class of models and we will state some of them to illustrate the abstract setting.

In essence we want the environment to behave similar to oriented percolation when we zoom out, i.e. on a

box-level.

Note that the following notation somewhat overlaps with the previous. The objects introduced here are just

to illustrate where we aim to go and will not be used in the rest of this thesis. Starting with some notation

to formulate the assumptions, let

U := {U(x, n) : x ∈ Zd, n ∈ Z}

be an i.i.d. random field with U(0, 0) taking values in some Polish space EU , e.g. in our model here this

would mean EU = {0, 1}. Furthermore for Rη ∈ N let BRη
⊂ Zd be the ball of radius Rη around the origin

with respect to the sup-norm. Let

φ : ZBRη

+ × E
BRη

U → Z+

be a measurable function. Now we can state the first assumption.
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Assumption 1.3.6 (Markovian, local dynamics, flow construction). We assume that η := (ηn)n∈Z is a

Markov chain with values in ZZd

+ whose evolution is local in the sense that ηn+1(x) depends only on ηn(y)

for y in a finite ball around x. In particular we assume that η can be realised using the driving noise U as

ηn+1(x) = φ(θxηn|BRη
, θxU(·, n+ 1)|BRη

), x ∈ Zd, n ∈ Z. (1.3.9)

Here θx denotes the spatial shift by x, i.e. θxηn(·) = ηn(·+x) and θxU(·, n+1) = U(·+x, n+1). Furthermore

θxηn|BRη
and θxU(·, n+ 1)|BRη

are the respective restrictions to the ball BRη .

The second assumption is what allows us the comparison between η and supercritical oriented percolation.

By observing η on the level of space-time boxes we want good configurations to propagate. Furthermore if

we have two good configurations at the bottom of a box then good noise inside the box produces a coupled

region at the top.

In notation this reads, for (x̃, ñ) ∈ Zd × Z let

blockm(x̃, ñ) := {(y, k) ∈ Zd × Z : ∥y − Lsx̃∥ ≤ mLs, ñLt < k ≤ (ñ+ 1)Lt},

i.e. blockm(x̃, ñ) is a space-time box placed on (Lsx̃, ñLt), where we think of Lt > Ls ≫ Rη. Furthermore

for A ∈ Zd × Z let U |A be the restriction of the random field U to A.

Assumption 1.3.7 (“Good” noise configurations and propagation of coupling). There exist a finite set

of “good” local configurations Gη ⊂ ZB2Ls (0)
+ and a set of “good” local realisations of the driving noise

GU ⊂ E
B4Ls (0)×{1,2,...,Lt}
U with the following properties:

� For a suitably small εU we have

P
(
U |block4(0,0) ∈ GU

)
≥ 1− εU .

� For any (x̃, ñ) ∈ Zd × Z and any configurations ηñLt , η
′
ñLt

∈ ZZd

+ at time ñLt,

ηñLt |B2Ls (Lsx̃), η
′
ñLt

|B2Ls (Lsx̃) ∈ Gη and U |block4(x̃,ñ) ∈ GU

⇒ η(ñ+1)Lt
(y) = η′(ñ+1)Lt

(y) for all y with ∥y − Lsx̃∥ ≤ 3Ls

and η(ñ+1)Lt
|B2Ls (Ls(x̃+ẽ)) ∈ Gη for all ẽ with ∥ẽ∥ ≤ 1,

and

ηñLt |B2Ls (Lsx̃) = η′ñLt
|B2Ls (Lsx̃) ⇒ ηk(y) = η′k(y) for all (y, k) ∈ block(x̃, ñ),

where η = (ηn) and η
′ = (η′n) are given by (1.3.9) with the same noise U but possibly different initial

conditions.

� There is a fixed reference configuration ηref ∈ ZZd

+ such that ηref |B2Ls (Lsx̃) ∈ Gη for all x̃ ∈ Zd.

For the random walk we ask the following assumptions. Let X = (Xk)k be the random walk in the

random environment generated by η. Moreover let Û := (Û(x, k) : x ∈ Zd, k ∈ Z+) be an independent i.i.d.

space-time field of random variables uniformly distributed on (0,1) and let

φX : ZBRX
+ × ZBRX

+ × (0, 1) → BRX
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be a measurable function, where RX ∈ N is the range of the jumps the random walk X as well as the range

of the dependence. Given η, we define

Xk+1 := Xk + φX

(
θXkη−k|BRX

, θXkη−k−1|BRX
, Û(Xk, k)

)
, k = 0, 1, . . . ,

with X0 = 0. For the random walk we again assume it to be close to a simple random walk whenever it

starts at a good box, i.e. a box with a good starting configuration and good noise.

1.4 Random walks in random environment

In this section we want to introduce the general concept of RWRE. Since the results and methods used in

Chapter 2 are inspired by Berger et. al [BCR16] we want to highlight their model as an example for RWRE

in this section. This serves two purposes, firstly we introduce a more general class of RWRE that has been

well researched and can provide a good entry to RWRE, secondly we can emphasize the differences that

required additional work for adjusting their approach to the model we consider later on in Chapter 2. For

the proofs of the results in this subsection we refer mostly to Berger et. al [BCR16] and a review of the field

by Drewitz and Ramı́rez [DR14].

Broadly speaking a random walk in random environment is a random experiment with two steps:

1. Choose an environment according to some probability measure.

2. Let a random walk evolve in the chosen environment.

The transition probabilities of a random walk depend on the environment.

We will only consider random walks on Zd. To illustrate the concept we recall the model introduced by

Berger et. al in [BCR16]. Sticking to their notation, let Md denote the space of all probability measures on

Ed = {±ei}di=1, the unit vectors, and define Ω = (Md)
Zd

. We call an element ω ∈ Ω an environment. Then,

for x ∈ Zd and e ∈ Ed, we identify with ω(x, e) the probability that ω(x) gives e. Often we are interested in

probability measures P on Ω with the following two properties:

(IID) We call an environment i.i.d. if the coordinate maps on the product space Ω are i.i.d. under P .

(UE) We call an environment uniformly elliptic if there exits a constant δ > 0 such that for all x ∈ Zd

P (ω(x, e) > δ for all e ∈ Ed) = 1.

Note that, if the environment is i.i.d., the property (UE) can be reduced to P (ω(0, e) > δ for all e ∈ Ed) = 1.

These two properties are the key differences between this model and our models in Chapter 2 and Chapter 3.

To deal with them in Chapter 2, we construct tools which enable us to be able to develop the ideas in the

proofs from [BCR16]. For this section we assume P has the above properties.

Given an environment ω the quenched random walk is a Markov chain on Zd. Let x ∈ Zd, then the transition

probabilities of the so called quenched random walk are

P x
ω

(
Xn+1 = y + e |Xn = y

)
= ω(y, e), y ∈ Zd, e ∈ Ed

and its starting position is x, i.e. P x
ω (X0 = x) = 1. Whenever we fix an environment and consider a random

walk in this environment, we call it quenched random walk and its distribution quenched law. Alongside the
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quenched law, there is also the so called annealed law. We define the annealed law of the random walk with

starting position x as

Px(·) =
∫
Ω

P x
ω (·) dP (ω).

One process that is of particular interest is the environment viewed from the particle. For x ∈ Zd let σx

be the shift of ω in direction x, i.e. σxω(y, ·) = ω(x+ y, ·) for every y ∈ Zd.

Definition 1.4.1. Let (Xn)n be a RWRE. We define the environment viewed from the particle as the

discrete time process

ω̄n = σXn
ω,

for n ≥ 0, with state space Ω.

Even under the annealed measure this process is Markovian, which was shown by Sznitman [BS02] in

the following result.

Proposition 1.4.2. Consider a RWRE in an environment with law P . Then, under P0, the process (ω̄n)n

is Markovian with state space Ω, initial law P , and transition kernel

Rg(ω) :=
∑
e∈Ed

ω(0, e)g(σeω),

defined for g bounded measurable on Ω.

Proof. For the proof we refer to Proposition 1 in [DR14] or [BS02].

Having defined (ω̄n)n we can ask about properties of this process. One interesting object to study is the

invariant measure for this process.

Definition 1.4.3. A probability measure Q on Ω, endowed with some topology (e.g. for Ω = {0, 1}Zd

we

will choose the product topology), is said to be invariant with respect to the point of view of the particle, if

for every bounded continuous function g : Ω → R∫
Ω

Rg(ω) dQ(ω) =

∫
Ω

g(ω) dQ(ω). (1.4.1)

Furthermore we define the measure QR by the identity∫
Ω

g(ω) d(QR)(ω) =

∫
Ω

Rg(ω) dQ(ω). (1.4.2)

One possible way to construct a measure that is invariant with respect to the point of view of the particle

is given in the following lemma from [DR14]. This is also the method used in Chapter 2 to construct such a

measure for the model studied there, as well as what Berger et. al used in [BCR16].

Lemma 1.4.4. Consider a RWRE and the corresponding environmental process (ω̄n)n. Then, if Q is any

probability measure on Ω, there exists at least one limit measure of the Césaro means

1

N + 1

N∑
k=0

QRk.

Furthermore, every limit measure of these Césaro means is an invariant probability measure for the Markov

chain (ω̄n)n.
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Proof. We use the fact that the space of probability measures defined on Ω is compact under the topology

of weak convergence. Therefore we can find a subsequence of the Césaro means that has a limit measure.

Since by definition of QR in (1.4.2) ∫
Rg d(QRk) =

∫
g d(QRk+1)

we only get a shift inside the sum of the Césaro mean. This does not change the limit and we obtain (1.4.1).

For more details see the proof of Lemma 1 in [DR14].

A measure Q that is invariant with respect to the point of view of the particle is particularly useful when

it is equivalent to the original measure of the environment P . If such a measure exists, it can be used to

prove a law of large numbers, see Corollary 1 in [DR14].

In the case that the measure P of the environments is elliptic and ergodic there is the following useful theorem

by Kozlov [Koz85] that can be employed to show, among other things, equivalence of another measure ν on

the environments and P .

Theorem 1.4.5 (Kozlov). Assume P is elliptic and ergodic with respect to the shift {σx}x∈Zd . Assume there

exists an invariant probability measure ν for the environment seen from the random walk which is absolutely

continuous with respect to P . Then the following hold:

(i) ν is equivalent to P .

(ii) The environment as seen from the random walk with initial law ν is ergodic.

(iii) ν is the unique invariant probability measure for the environment as seen from the particle which is

absolutely continuous with respect to P .

(iv) The Césaro means { 1
N+1

∑N
k=0 PR

k} converge weakly to ν.

Proof. See the proof of Theorem 3 in [DR14].

Next we want to introduce the concept of ballisticity.

Definition 1.4.6. We call a RWRE ballistic in a given direction l ∈ Sd := {x ∈ Rd : ∥x∥2 = 1} if P0-a.s.

lim inf
n→∞

⟨Xn, l⟩
n

> 0.

Ballisticity ensures the existence of regeneration times for the random walk, see Theorem 2.8 in [BCR16],

which are a powerful tool to analyze the long time behaviour of the random walk and are often used to

prove laws of large numbers and central limit theorems. Constructing suitable regeneration times for two

random walks walking in the same environment will play a central part in Chapter 3. More specifically

we will consider directed random walks in random environment. We interpret the last coordinate as time

and the random walk will evolve in the positive (in Chapter 2) or negative (in Chapter 3) time direction.

Therefore ballisticity holds trivially. Despite this, since the environment is not i.i.d. the construction of

suitable regeneration times requires a bit more work.
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1.4.1 Random walks in dynamic random environment

In the special case where the environment itself changes over time, and thus the transition probabilities for

the random walks also change over time, we speak of random walks in dynamic random environment. This

is a subclass of RWRE but deserves its name because of the special role time plays in it. In this case the

random walk is ballistic by definition, since it evolves directed in the time direction.

The contact process plays a vital part in the models we will consider in Chapter 2 and Chapter 3. In

both chapters the environment in which the random walks evolve will be given by the contact process. As in

(1.1.1) can be seen, the last coordinate, which we interpret as time, plays a special role. The contact process

itself evolves over time and values at spatial sites can change, and therefore the environment changes over

time. Thus, we consider random walks in dynamic random environment in both models.

Random walks in static and dynamic random environments is a very active research area. For a review

of random walks in random environments and basic concepts and objects we refer the reader to [Szn04]; for

a more recent review see [DR14].

The random walks that we consider here can be seen as a random walks in a dynamic random environment.

Comparing the random walk considered in Chapter 2 to random walks in dynamic random environments in

the literature we want to briefly mention some examples. In [JRA11] the authors consider environments that

are “refreshed in each step”, i.e. time slices are i.i.d., which does not hold for the contact process (ξn)n. The

contact process (ξn)n does not fulfil the uniform coupling conditions used in [RV13]. The main differences to

the model considered in [BCR16] are that the random environment is not uniformly elliptic and is not i.i.d. In

fact the environment that we consider here even has infinite range dependencies, due to the fact that the steps

of the random walk are restricted to the backbone of the oriented percolation cluster once it hits the cluster.

The environment also does not satisfy mixing conditions such as (conditional) cone-mixing in contrast to the

model considered in [HSS13]. These differences extend to the setting in Chapter 3 since there we consider a

generalization of the model from Chapter 2. In [BHT20] a much weaker mixing assumption than cone-mixing

is introduced (literally for a continuous time model) and our models satisfy their assumption. However, they

only prove a LLN for a nearest neighbour random walk in d = 1. Furthermore, in contrast to the models

considered in [AHR11], [HdHS+15], [BV16] and [SS18], our models are special in that the random walks and

the random environment do not evolve in the same time direction, i.e. in our case forwards in time for the

walk means backwards in time for the environment. A comprehensive overview of the recent literature on

random walks in dynamic random environments can also be found in the introduction of [BHT20]. See also

[BGS19, Remark 1.1].

Results on quenched local limit theorems for random walks in random environments are very recent. Our

research in Chapter 2 is inspired by [BCR16] where a quenched local limit theorem was shown (in dimension

d ≥ 4) for the case of an i.i.d. random environment and where the random walk satisfies a ballisticity criterion

and has uniformly elliptic transition probabilities. (Note that ballisticity is trivial in our models. Uniform

ellipticity and the i.i.d. property are not satisfied.)

Other results on local limit theorems in random environments that we are aware of are concerned with

specific models. In [DG19] the quenched local CLT is proven for random walks in a time-dependent balanced

random environment. In [DG20b] and [DG20a] quenched local limit theorems are obtained for random walks

in random environments on a strip. A different class of random walks in random media for which quenched
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local CLTs have been obtained are the so called random conductance models. In [ADS16] and [And14] the

authors proved local limit theorems for the random conductance model. In [BS20] and [DNS18] a quenched

functional CLT was obtained for the static random conductance model and in [ACDS18] for the dynamic

random conductance model under ergodic degenerate conductances. For a recent work in this direction and

a more detailed overview of the literature see [ACS21] and references therein.

1.5 Collection of results for the contact process

This section aims to accumulate results for the contact process needed in the later chapters.

1.5.1 Relevant results for the contact process for Chapter 2

The objective of this subsection is to collect all results about the contact process that are necessary to

understand the proofs in Chapter 2. We want some form of control on the time at which the contact process

η{0},0 started from single site, here the origin (0, 0) ∈ Zd×Z, evolved to look like the contact process started

from every site. The following lemma from [DG82] gives us exactly that:

Lemma 1.5.1. There exist positive constants C, c1 and c2 such that

P(η{0},0n (x) ̸= ηZ
d,0

n (x) |τ0 = ∞) ≤ Ce−c1n (1.5.1)

for all ∥x∥ ≤ c2n.

In [DG82] this was proved for the continuous time contact process but the methods can be adapted to

the discrete time version.

Proof. The proof is an adaption of the arguments in [DG82] for the proof of equation (34) therein.

Lemma 1.5.2. For p > pc there exist C, γ ∈ (0,∞) such that

P(n ≤ τ0 <∞) ≤ Ce−γn (1.5.2)

and

P(τA <∞) ≤ Ce−γ|A|. (1.5.3)

Proof. Equation (1.5.2) is Lemma A.1 in [BČDG13] and a proof can be found there.

For a proof of (1.5.3) in the continuous case we refer to [Lig99] Theorem 2.30.

1.5.2 Relevant results for the contact process for Chapter 3

We want to establish some results about the contact process that are needed for Chapter 3. The first ones

being Theorem 1 and Theorem 2 from [CMS10] for a contact process restricted to a “wedge” in d = 1.

There proven for the continuous time contact process the results can be adapted to the discrete time contact

process. We start with some notation.

For 0 < αl < αr < 1 and M ≥ 0 we define so called “wedges” with slopes αl and αr as well as base M as

W = W(αl, αr,M) by

W = {(x, n) ∈ Z× N0 : αln ≤ x ≤M + αrn}.
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Let ηW = (ηWn )n∈N be the contact process restricted to the wedge W, i.e. starting with ηW0 = 1[0,M ]∩Z and

for n ≥ 1 and x ∈ Z

ηWn (x) =

1, if x ∈ [αln,M + αrn], ω(x.n) = 1 and ηWn−1(y) = 1 for some y ∈ U(x)

0, otherwhise.

Theorem 1.5.3. Let p > pc and 0 < αl < αr < 1, then, for W = W(αl, αr,M) and ηW0 = [0,M ] ∩ Z,

lim
M→∞

P(ηWn ̸= ∅ for all n ≥ 0) = 1 (1.5.4)

Thus by increasing the base the probability for survival goes to 1. We can actually be a bit more precise.

If ηW survives it looks like ην , the unrestricted contact process started from the upper invariant measure ν.

Let

rWn := max{x : ηWn (x) = 1},

lWn := min{x : ηWn (x) = 1},
(1.5.5)

be the rightmost and leftmost inhabited sites of ηW at time n.

Theorem 1.5.4. Let p > pc and 0 < αl < αr < 1, W = W(αl, αr,M) and ηW0 = [0,M ] ∩ Z. On the event

{ηWn ̸= ∅ for all n ≥ 0},

lim
n→∞

rWn
n

= αr and lim
n→∞

lWn
n

= αl a.s. (1.5.6)

Furthermore, ηWn and ηνn can be coupled so that on the event {ηWn ̸= ∅ for all n ≥ 0},

ηWn (x) = ηνn(x) for all x ∈ [lWn , rWn ] for all large n a.s. (1.5.7)

Equation (1.5.6) tells us that the rightmost inhabited site is close to the right border of the wedge

(analogously for the leftmost), whereas equation (1.5.7) shows exactly that, after we let enough time pass,

the contact process restricted to the wedge looks like the contact process started from ν in the area where

it “lives”.

Next we recall two Lemmas from [BČD16].

Lemma 1.5.5. Let η{0},0 = (η
{0},0
n )n≥0 and let ην = (ηνn)n≥0, where ν is the upper invariant measure. For

p sufficiently close to 1 there exist constants scoupl > 0, C <∞, c > 0 such that

P(η{0},0n (x) = ηνn(x) for all ∥x∥ ≤ scoupln | η{0},0n ̸= ∅) ≥ 1− Ce−cn, n ∈ N. (1.5.8)

Lemma 1.5.5 tells us that the contact process started from the origin can be coupled to the contact

process started from the upper invariant measure with high probability in a “small” box around the origin.

Small is here in quotation marks since the box grows linearly in the time passed but with a small constant

scoupl.

Lemma 1.5.6. For p < 1 large enough there exists ε(p) ∈ (0, 1] satisfying limp↗1 ε(p) = 0 such that for any

set V = {(xi, ti) : 1 ≤ i ≤ k} ⊂ Zd × Z with t1 > t2 > · · · > tk, we have

P(ηt(x) = 0 for all (x, t) ∈ V ) ≤ ε(p)k. (1.5.9)
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1.6 FKG inequality and Coupling

In this section we want to briefly introduce two useful tools that we will use later on. The first one being

the so called FKG inequality, a popular tool in random graphs and percolation theory. This inequality is a

correlation inequality that, informally, says that increasing events are positively correlated. We will provide

the FKG inequality adjusted to our setting. Let (Ω,F ,P) be a probability space. Let S = {0, 1}Zd+1

be

the state space of a random variable ω on Ω, where we think of x as the spatial coordinate and n the time

coordinate, and, for (x, n) ∈ Zd+1, let ω(x, n) be i.i.d. Bernoulli random variables with parameter p ∈ (0, 1).

We introduce the partial order

ω ≤ ω′ if ω(x, n) ≤ ω′(x, n) for all (x, n) ∈ Zd+1.

We call an event A increasing if for ω ≤ ω′

1A(ω) ≤ 1A(ω
′).

The FKG inequality then states that for increasing events A and B we have

P(A ∩B) ≥ P(A) · P(B).

Coupling is a very potent tool that we will make use of. Therefore we will give a short description on what

coupling is to help understand the respective parts where it comes into play. Coupling allows to compare two

random variables, more precisely their distributions, by creating a joint construction of them on a common

probability space. To be more precise, let X1 and X2 be two random variables, each defined on probability

spaces (Ω1,F1,P1) and (Ω2,F2,P2) respectively. Then a coupling of X1 and X2 is a new probability space

(Ω3,F3,P3) on which there exist two random variables Y1 and Y2 such that X1 =d Y1 and X2 =d Y2.

At first glance this does not seem helpful, but this construction becomes particularly interesting if Y1

and Y2 are not independent. One way we will make use of this is, that we will couple two random walks by

letting them evolve until they meet on a site and force them to stay together from that point on. This does

not change the distribution for each of the random walks but they are now highly dependent.

1.7 Outline

The purpose for this section is to give a good overview of Chapters 2 and 3. We will describe the main goals

for each section and reference the crucial points.

Outline Chapter 2 The proofs of the main results are long and quite technical. Let us describe the main

ideas of the proofs and explain how this chapter is organised: In Section 2.1 we first give several auxiliary

results which we then use for the proofs of Theorem 1.2.3 and of Theorem 1.2.4.

Annealed estimates: In Section 2.2 we prove several annealed derivative estimates which build on, and extend

somewhat, previous work by [Ste17]. These estimates will be used for the proof of the annealed local CLT,

Theorem 1.2.1, also presented in Section 2.2. Starting with Section 2.3 the chapter is devoted to the proofs

of the auxiliary results from Section 2.1.
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Comparison of the quenched and annealed laws: Lemma 2.1.1, proven in Section 2.3, provides a comparison

between the quenched and annealed laws on the level of large (but finite) boxes. In particular it shows

that the total variation distance between P(XN ∈ ·) and Pω(XN ∈ ·) on the level of boxes of side length

M ≫ 1 is small with very high probability as N → ∞ in a suitably quantified way; see equation (2.1.1). The

starting point of the proof of Lemma 2.1.1 is [Ste17, Theorem 3.24], recalled in Theorem 2.7.1 below, which

gives an analogous result for boxes whose size grows like Nθ/2 with 0 < θ < 1 as N → ∞, and therefore

much slower than the diffusive scale N1/2. We augment this with an iteration scheme that is guided by the

proof of Theorem 5.1 in [BCR16]. The main argument towards the proof of Lemma 2.1.1 is formulated as

Proposition 2.3.1. The proof of that proposition is long and relies to a large extent on ideas from [BCR16]

and is postponed to Section 2.7. It requires a suitable control of the density of “good” boxes on which an

estimate as in equation (2.1.1) from Lemma 2.1.1 holds locally uniformly, see Definition 2.7.2. This deviates

from the set-up in [BCR16] because our environment is not i.i.d. and in fact here the boxes are in principle

correlated over arbitrary lengths, albeit weakly.

Measure for the point of view of the particle: The function φ = dQ/dP from (1.2.10) is the density of a

measure Q which is invariant with respect to the point of view of the particle and absolutely continuous with

respect to P. For the existence of such a measure Q we consider the quenched laws QN of the environment

seen from the particle after N steps of the walk; see (2.1.4). The measure Q is constructed as a weak limit

of the Cesàro average of the measures QN along a subsequence; see (2.1.6) and (2.1.8). In Proposition 2.1.2

and Corollary 2.1.4 we show that averages of dQN/dP and dQ/dP over large boxes are close to one with

high probability depending on the size of the boxes. It will turn out that the measure Q which we obtain as

described above is unique, i.e. it does not depend on the particular subsequence; see Remark 2.1.6.

Proposition 2.1.2 and Corollary 2.1.4 are proven in Section 2.4. To this end we construct a coupling of

QN and PN , the law of the environment viewed relative to the annealed walk (note that PN = P for all N).

Lemma 2.1.1 allows for a coupling which puts both walks in the same M -box with very high probability.

We strengthen this to a coupling which puts both walks at exactly the same spatial position with uniformly

non-vanishing probability; see the proof of Lemma 2.4.3.

Since we average over the environment in the definition of the annealed law of the random walk in

equation (1.2.4) it is clear that the annealed random walk does not see any specific environment. In contrast

to that the quenched random walk knows the exact environment it walks in. So, to compare the annealed and

quenched laws of the random walk, the annealed walk needs to see the environment of the quenched random

walk. This is done through reweighting by φ. In particular, a consequence of multiplying the annealed law

with φ is that this product will be zero for all space-time point (x, n) ∈ Zd ×Z in which the contact process

ξ is 0 in the environment ω.

In Proposition 2.1.8 we show that the annealed law of the random walk at time n reweighted with the

function φ converges for almost all ω to a probability law on Zd. It is proven in Section 2.5.

In Lemma 2.9.1 we will see that a prefactor φ satisfying (1.2.10) is unique. A quite general proof of that

result is given in Section 2.9.

Hybrid measures: For the proof of Theorem 1.2.4, instead of comparing the quenched and annealed laws

directly, we use the triangle inequality, some “hybrid” measures and space-time convolutions of quenched-

annealed measures; see Definition 2.1.7. In Proposition 2.1.9, proven in Section 2.6, we show that the total

variation distance of some of these measures converges to 0 as n, the number of steps of the random walk,
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goes to infinity. An essential tool of the proof of Proposition 2.1.9 is Lemma 2.6.1 in which we study the total

variation distance of quenched laws of two random walks starting at different positions. The idea is to use

couplings with the annealed measures on the level of large (growing) boxes combined with annealed derivative

estimates in order to first ensure that the two walks are in the same box with probability bounded away

from 0. Using connectivity properties of the oriented percolation clusters (see below) the above described

procedure can be iterated to produce a literal coupling where the two walks coincide with high probability

after sufficiently many steps. Lemma 2.6.1 is proven in Section 2.8.

Oriented percolation results: In Section 2.10, we show that two infinite percolation clusters intersect with

high probability within a finite time. This result was pointed out in [GH02], who proved that two infinite

clusters do intersect almost surely, but without the quantification of the time of intersection. Finally, in

Section 2.11, we show that the probability that a random walk started off the cluster does not hit the cluster

within time t decays exponentially with t.

Outline of Chapter 3 To give a good overview of Chapter 3 we describe here the steps to proof Theo-

rem 1.3.5.

Regeneration construction: In Section 3.1 we provide a framework and the necessary auxiliary tools to

prove the quenched CLT. We follow the ideas used in [BČDG13] and expand the regeneration construction

introduced in [BČD16] to two random walks. An essential tool in the construction of regeneration times of

a random walk in [BČD16] was a cone based at the current position of the random walk. This cone consists

of an inner and outer cone and the region between the inner and the outer cone is referred to as the cone

shell. This is needed in the construction because the cone shell separates the information collected by the

random walk on the random environment inside the inner cone and outside the outer cone.

The construction is expanded to a double cone (see Figure 3.1) and the cone shell is extended to a double

cone shell: we consider two cones based at the current respective positions of the two random walks, see

(3.1.4). This object is used for the definition of joint regeneration times of two random walks and to combine

ideas from [BČDG13] and [BČD16]. Similarly to the case of the single walk, the double cone shell separates

the information collected by the two random walks together on the random environment inside the inner

cones and outside the outer cones of the double cone.

Next we define a sequence of stopping times (σsim
n )n at which the reasons for 0’s of the contact process η

in the vicinity of the two random walks are explored and thus no “negative correlation” carries over to the

future of the random walks. We prove that the increments of this sequence have exponential tails.

Intuitively the cone shell together with the sequence σsim isolate the part of the environment that the

random walks have explored from everything outside the shell and this is a central building block for the

construction of regeneration times.

Finally we define regeneration times and in Lemma 3.1.15 we show that their increments have polynomial

tails with exponent −β < 0. Furthermore, β is large when p is close to 1 and εref is small. The details can

be found at the end of the proof of Lemma 3.1.15.

Auxiliary results: In Section 3.2 we prove some auxiliary results that are useful for all dimensions and give

the main proposition, Proposition 3.2.2, that we use to prove Theorem 1.3.5.

The QCLT 1.3.5 in dimensions d ≥ 2: In Section 3.3 we prove the quenched CLT, Theorem 1.3.5, for d ≥ 2.

The reason we need to split the proof for dimension d = 1 essentially boils down to the fact that the random
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walks meet too often for d = 1 and thus we require more detailed calculations. The arguments are however

robust enough to treat the cases d = 2 and d ≥ 3 together.

We prove a comparison result between two random walks in the same environment and in two independent

environments in Lemma 3.2.1. This lemma enables us to couple two random walks in the same environment

with two independent random walks as long as their starting positions have a large enough distance. The

main tool for the proof of the quenched CLT, Theorem 1.3.5, is Proposition 3.2.2, which proves a quenched

CLT along regeneration times and most of Section 3.3 is used to prove this proposition. Equation (3.2.6)

hints to the reason why we need to be able to control the behaviour of two random walks in the same

environment: expand the square in the expectation in order to see that once we can replace two walks in the

same environment by two walks in independent environments up to a small error term, we obtain bounds

on the variance of the quenched transition operator.

To ensure that we can effectively use the coupling argument provided by Lemma 3.2.1 the random walks

need to spend most of the time at enough distance to each other. Lemma 3.3.1 tells us, that the random

walks will separate “fast enough” to a suitable distance at which we can start the coupling argument. These

arguments are made more specific in Lemma 3.3.2 and its proof.

Lastly we need to make sure that the random walk behaves well between regeneration times and that

the convergence to a normal distribution carries over.

The special case for d = 1: Section 3.4 aims to fill in the gaps to prove Proposition 3.2.2 for d = 1. Note that

the proof of Theorem 1.3.5 then does not require any additional work for d = 1. The main difficulty arises

from the fact that two random walks will meet often in d = 1. Thus, we need to calculate the duration of

suitable “excursions of separation” during which the random walks have a certain minimal distance to each

other so that we can use the coupling argument via Lemma 3.2.1. We split the time axis into 2 alternating

“phases”, a “black box phase”, where the random walks are close to each other and we cannot use the

coupling argument and a “white box phase” where we know that the random walks have at least a certain

distance, see definitions (3.4.10) and (3.4.11). We show that the pair of random walks will spend most the

time in the “white box phase”, more precisely during n steps the number Rn, see (2.7.8), of steps spent in a

“black box” is of order o(n) and a certain moment condition holds, see Lemma 3.4.1. To prove convergence

to a normal law along the joint regeneration times we consider Doob decompositions of X and X ′. Using

a quantitative version of a martingale CLT from [Rac95] and Lemma 3.4.1 we obtain upper bounds on the

decompositions which are good enough to carry over the convergence to a normal distribution to X and X ′

along joint regeneration times.

Contributions

Since both Chapter 2 and Chapter 3 are based on a joint work with other Authors, I want to point out my

own contributions. For Chapter 2 I adapted the results from [BCR16] to our model working around the fact

that we do not have uniform ellipticity and i.i.d. environments. For Chapter 3 I expanded the construction

for the regeneration times to two random walks which allowed me to adapt the results from [BČDG13] to

the model from [BČD16] and to then go on and prove the QCLT.
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Chapter 2

Quenched local limit theorem for a

directed random walk on the

backbone of oriented percolation

This chapter is mainly concerned with proving equation (1.2.10), that is

lim
n→∞

∑
x∈Zd

∣∣P (0,0)
ω (Xn = x)− P(0,0)(Xn = x)φ(σ(x,n)ω)

∣∣ = 0,

from Theorem 1.2.4, a quenched local limit theorem for a directed random walk on directed percolation.

We show the existence of a measure Q on Ω that is invariant with respect to the point of view of the

particle. Furthermore it is absolutely continuous with respect to P and the Radon–Nikodym derivative

dQ/dP satisfies a certain concentration property (2.1.9). Moreover we show that φ = dQ/dP is the unique

prefactor satisfying (1.2.10).

We start by refining a comparison between quenched and annealed law on slowly growing boxes, see

Theorem 3.24 in [Ste17], to boxes of constant size.

2.1 Proofs of the main results

In this section we collect several important auxiliary results and present towards the end of this section how

to utilise them to prove Theorem 1.2.3 and Theorem 1.2.4. The proofs of the auxiliary results are postponed

to the subsequent sections.

Our starting point is a lemma which can be seen as an adaptation of Theorem 5.1 in [BCR16] to our

setting. Recall between (1.2.3) and (1.2.4) the definitions of the quenched measure P
(x,m)
ω and the annealed

measure P(x,m) for the random walk (Xn)n=m,m+1,... with Xm = x. For any positive real number L we

denote by ΠL a partition of Zd into boxes of side length ⌊L⌋.

Lemma 2.1.1. Let d ≥ 3. For N,M ∈ N, c, C > 0 denote by K(N) := K(N,M, c, C) the set of environments

29



ω ∈ Ω such that for every x ∈ Zd satisfying ∥x∥ ≤ N∑
∆∈ΠM

∣∣P (x,0)
ω (XN ∈ ∆)− P(x,0)(XN ∈ ∆)

∣∣ ≤ C

M c
+

C

N c
. (2.1.1)

If c > 0 is small enough and C <∞ large enough, there are universal positive constants c̃, C̃, for which we

have

P
(
K(N)

)
≥ 1− C̃N−c̃ logN for all N. (2.1.2)

In words, Lemma 2.1.1 shows that the total variation distance between the annealed measure P(x,0)(XN ∈
·) and the quenched measure P

(x,0)
ω (XN ∈ ·) on the level of boxes of side length M ≫ 1 is small with very

high probability as N → ∞. The proof of Lemma 2.1.1 is given in Section 2.3. It builds on a preliminary

result by Steiber [Ste17, Theorem 3.24] which we recall in Theorem 2.7.1 below. The latter gives an analogous

result to Lemma 2.1.1 for boxes of side length Nθ/2 with 0 < θ < 1 for large N . In particular, for N → ∞
the side length of these boxes grows much more slowly than the diffusive scale N1/2.

Lemma 2.1.1 allows to construct a coupling of the quenched walk under P
(x,0)
ω and the annealed walk

under P(x,0) which puts both walks in the same M -box with very high probability. We strengthen this

coupling to a coupling which puts both walks at exactly the same spatial position with uniformly non-

vanishing probability; see Lemma 2.4.3 below. This, in turn, is essential for the next statement which

concerns the difference between the annealed and quenched law of the environment viewed relative to the

walk after N steps, which we denote by PN and QN respectively. More precisely, for N ∈ N, we define QN

and PN by

PN (A) := E
[ ∑
x∈Zd

P(0,0)(XN = x)1{σ(x,N)ω∈A}

]
(2.1.3)

and

QN (A) := E
[ ∑
x∈Zd

P (0,0)
ω (XN = x)1{σ(x,N)ω∈A}

]
. (2.1.4)

Note that, in fact we have PN = P for all N ; see (2.4.9).

The following proposition is proven in Section 2.4.

Proposition 2.1.2. For M ∈ N let ∆0(M) denote a d-dimensional cube of side length M in Zd centred at

the origin. There exists a universal constant c > 0 so that for every ε > 0 there is M0 =M0(ε) ∈ N so that

for M ≥M0 and all N ∈ N

P
(∣∣∣ 1

|∆0(M)|
∑

x∈∆0(M)

dQN

dP
(σ(x,0)ω)− 1

∣∣∣ > ε
)
≤M−c logM . (2.1.5)

Corollary 2.1.3. Let d ≥ 3 and p > pc. Then, for every k ∈ N, supN E[(dQN

dP )k] <∞.

Proof. For M ∈ N large enough, Proposition 2.1.2 implies

P
(dQN

dP
(ω) > 2(2M + 1)d

)
≤ P

( 1

(2M + 1)d

∑
x∈{−M,...,M}d

dQN

dP
(σ(x,n)ω) > 2

)
≤M−c logM ,

which implies the assertion.
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We equip Ω with the product topology and consider the Cesàro sequence

Q̃n :=
1

n

n−1∑
N=0

QN , n = 1, 2, . . . . (2.1.6)

Using Corollary 2.1.3 and the Cauchy-Schwarz inequality for some finite positive constant c̃ we have

E
[( 1
n

n−1∑
N=0

dQN

dP

)2]
=

1

n2

n−1∑
N,N ′=0

E
[dQN

dP
dQN ′

dP

]
≤ c̃. (2.1.7)

For ε > 0 let K ⊂ Ω be a compact subset such that P(Kc) < ε. Then by the Cauchy-Schwarz inequality we

obtain

Q̃n(K
c) =

∫
Ω

1Kc
dQ̃n

dP
dP ≤

√
c̃P(Kc)1/2 =

√
c̃ε.

Thus, the sequence (Q̃n)n is tight. In particular, there is a weakly converging subsequence, say (Q̃nk
)k, and

we set

Q := lim
k→∞

Q̃nk
. (2.1.8)

A standard argument shows that Q is invariant with respect to the point of view of the particle; see Propo-

sition 1.8 in [Lig85] for an abstract argument or the proof of Lemma 1 in [DR14] for the argument in the

case of random walks in random environments.

The proof of the following analogue of Proposition 2.1.2 for Q instead of Qn is given in Section 2.4.

Corollary 2.1.4. Recall the notation of Proposition 2.1.2 and let Q be the measure obtained as a limit in

(2.1.8). There exists a universal constant c > 0 so that for every ε > 0 there is M0 = M0(ε) ∈ N and for

every M ≥M0 we have

P
(∣∣∣ 1

|∆0(M)|
∑

x∈∆0(M)

dQ

dP
(σ(x,0)ω)− 1

∣∣∣ > ε
)
≤M−c logM . (2.1.9)

Proof of Theorem 1.2.3. By construction and shift invariance of P we haveQN ≪ P for everyN and therefore

Q̃n ≪ P for every n. Furthermore, by (2.1.7) the family of Radon-Nikodym derivatives (dQ̃n/dP)n=1,2,...

is uniformly integrable. These facts together imply that we also have Q ≪ P for any Q obtained as in

(2.1.8). The concentration property is the assertion of Corollary 2.1.4. For the question of uniqueness of Q

see Remark 2.1.6 below.

Remark 2.1.5. Using shift-invariance of P, it is easy to see that for QN from (2.1.4) a version of dQN/dP is

given by

φN (ω) =
∑
x∈Zd

P (−N,x)
ω (X0 = 0) (2.1.10)

(we have P
(0,0)
σ(−x,−N)ω(XN = x) = P

(−N,−x)
ω (X0 = 0), recall the notation introduced below (1.2.3)). This

formula is the analogue of [BS02, Proposition 1.2] in our context. In particular, φN is a local function of the

space-time values of ξ which themselves can be obtained as limits of local functions of ω. Thus, dQ/dP can

be considered as an almost sure limit of local functions of ω.
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Remark 2.1.6 (Uniqueness of invariant Q≪ P with concentration properties of the density).

A measure Q obtained as in (2.1.8) may in principle depend on a particular subsequence. In the proof of

Theorem 1.2.4 we will show that the density φ = dQ/dP of any measure Q satisfying the concentration

property (2.1.9) also satisfies (1.2.10). By Lemma 2.9.1 below, such a measure is unique. In particular, in

(2.1.8) we have weak convergence towards the unique Q along any subsequence and therefore we have weak

convergence of the Cesàro sequence (Q̃n)n∈N from (2.1.6) towards Q. However, we currently do not know

whether the sequence (QN )N∈N from (2.1.4) converges itself.

Using Lemma 2.11.1 and (2.1.10) from Remark 2.1.5 one can show that Q is concentrated on

Ω̃ =
{
ω ∈ Ω : ω contains a doubly infinite directed open path through (0, 0)

}
(2.1.11)

and thus Q is not equivalent to P because 0 < P(Ω̃) < 1. Note that Kozlov’s classical argument concerning

equivalence, see e.g. [DR14, Thm. 2.12], does not apply because our walks are not elliptic. We do not know

whether Q is equivalent to P( · |Ω̃).

To prove Theorem 1.2.4 we want to make use of the good control of the difference between the quenched

and annealed law on the level of boxes and various properties of the prefactor φ that we have formulated above

in Lemma 2.1.1 and Corollary 2.1.4. Furthermore, instead of comparing P(0,0)(XN ∈ ·) and P (0,0)
ω (XN ∈ ·)

directly, we compare both of these two measures with auxiliary “hybrid” measures which are introduced in

the following definition.

Definition 2.1.7. Let Q be the measure on Ω defined in (2.1.8), which by Theorem 1.2.3 and its proof is

invariant with respect to the point of view of the particle with Q≪ P. Let φ = dQ/dP be the corresponding

Radon-Nikodym derivative. For ω ∈ Ω and a given partition Π of Zd into boxes of a fixed side length we

define the following measures on Zd+1:

νann×pre
ω (x, n) := νann×pre

ω ({(x, n)}) := 1

Zω,n
P(0,0)(Xn = x)φ(σ(x,n)ω), (2.1.12)

νqueω (x, n) := νqueω ({(x, n)}) := P (0,0)
ω (Xn = x), (2.1.13)

νbox−que×pre
ω (x, n) := νbox−que×pre

ω ({(x, n)}) := P (0,0)
ω (Xn ∈ ∆x)

φ(σ(x,n)ω)∑
y∈∆x

φ(σ(y,n)ω)
. (2.1.14)

Here, Zω,n =
∑

x∈Zd P(0,0)(Xn = x)φ(σ(x,n)ω) is the normalizing constant in (2.1.12) and ∆x in (2.1.14) is

the unique d-dimensional box that contains x in the partition Π.

All of the measures introduced in the above definition are different measures of the random walk after

n steps: νann×pre
ω (·, n) is the annealed measure with a prefactor, νqueω (·, n) is the quenched measure and

νbox−que×pre
ω (·, n) is a “hybrid” measure, where the box is chosen according to the quenched measure but

then the point inside the box is chosen according to the (annealed) normalised prefactor. Of course the

measure νbox−que×pre
ω (·, n) does depend on the particular partition Π but it will be clear from the context

which partition is used.

First we study the behaviour of the normalizing constant in (2.1.12); see Section 2.5 for a proof of the

following result.

Proposition 2.1.8. For P-almost all ω ∈ Ω the normalizing constant Zω,n satisfies

lim
n→∞

Zω,n = 1. (2.1.15)
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The following proposition is the key result for the proof of Theorem 1.2.4. It states that for large n the

above introduced measures are close to each other in a suitable norm. To state this precisely, for ω ∈ Ω and

any two probability measures ν1ω and ν2ω on Zd × Z (more precisely these are transition kernels from Ω to

Zd × Z) let the L1 distance of ν1ω and ν2ω at time n ∈ Z be defined by∥∥ν1ω − ν2ω
∥∥
1,n

:=
∑
x∈Zd

|ν1ω(x, n)− ν2ω(x, n)|. (2.1.16)

Furthermore, for k ≤ n the space-time convolution of ν1ω and ν2ω is defined by

(ν1 ∗ ν2)ω,k(x, n) :=
∑
y∈Zd

ν1ω(y, n− k)ν2σ(y,n−k)ω
(x− y, k). (2.1.17)

We can interpret (2.1.17) as follows: A random walk takes n− k steps in the random medium ω according

to ν1ω, then re-centers the medium at its current position in space-time and takes the remaining k steps

according to ν2ω.

Proposition 2.1.9. Fix 0 < 2δ < ε < 1
4 , and for n ∈ N set k = ⌈nε⌉ and ℓ = ⌈nδ⌉. Let Π = Π(ℓ) be a

partition of Zd into boxes of side length ℓ. For P-almost every ω ∈ Ω the measures from Definition 2.1.7

satisfy

lim
n→∞

∥∥νann×pre
ω − (νann×pre ∗ νque)ω,k

∥∥
1,n

= 0, (L1)

lim
n→∞

∥∥(νann×pre ∗ νque)ω,k − (νbox−que×pre ∗ νque)ω,k

∥∥
1,n

= 0, (L2)

lim
n→∞

∥∥(νbox−que×pre ∗ νque)ω,k − (νque ∗ νque)ω,k

∥∥
1,n

= 0. (L3)

The proof of the above proposition is given in Section 2.6. With the results stated in the present section

we can give a proof of the quenched local limit theorem.

Proof of Theorem 1.2.4. Using the triangle inequality we have∑
x∈Zd

|P (0,0)
ω (Xn = x)− P(0,0)(Xn = x)φ(σ(x,n)ω)|

≤
∑
x∈Zd

|P (0,0)
ω (Xn = x)− (νbox−que×pre ∗ νque)ω,k(x, n)| (2.1.18)

+
∑
x∈Zd

|(νbox−que×pre ∗ νque)ω,k(x, n)− (νann×pre ∗ νque)ω,k(x, n)| (2.1.19)

+
∑
x∈Zd

|(νann×pre ∗ νque)ω,k(x, n)− νann×pre
ω (x, n)| (2.1.20)

+
∑
x∈Zd

|νann×pre
ω (x, n)− P(0,0)(Xn = x)φ(σ(x,n)ω)|. (2.1.21)

By Proposition 2.1.9 the terms in (2.1.18), (2.1.19) and (2.1.20) tend to 0 as n goes to infinity. In order to

compare (2.1.18) with (L3) literally note that we have P
(0,0)
ω (Xn = x) = νque∗νque)ω,k(x, n) by construction.

Finally, by definition of νann×pre
ω (x, n) the term in (2.1.21) can be written as∣∣∣ 1

Zω,n
− 1
∣∣∣ ∑
x∈Zd

P(0,0)(Xn = x)φ(σ(x,n)ω) =
∣∣∣ 1

Zω,n
− 1
∣∣∣Zω,n. (2.1.22)

By Proposition 2.1.8 it follows that the expression in (2.1.22) converges to 0 as n tends to infinity.
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2.2 Annealed estimates and the proof of Theorem 1.2.1

In this section we collect estimates for the annealed walk that will be needed later in the proofs, and present

a proof of Theorem 1.2.1.

Lemma 2.2.1 (Annealed derivative estimates). For d ≥ 3, j = 1, . . . , d, x, y ∈ Zd, m,n ∈ Z, m ∈ Z, n ∈ N
denoting by ej the j-th (canonical) unit vector we have

|P(y,m)(Xn+m = x)− P(y+ej ,m)(Xn+m = x)| ≤ Cn−(d+1)/2, (2.2.1)

|P(y,m)(Xn+m = x)− P(y,m+1)(Xn+m = x)| ≤ Cn−(d+1)/2, (2.2.2)

|P(y,m)(Xn+m = x)− P(y,m)(Xn+m = x+ ej)| ≤ Cn−(d+1)/2, (2.2.3)

|P(y,m)(Xn+m = x)− P(y,m)(Xn−1+m = x)| ≤ Cn−(d+1)/2. (2.2.4)

Proof. The estimates (2.2.1) and (2.2.2) are from [Ste17]; see Lemma 3.9 and its proof in Appendix A.2

there. By translation invariance we have

P(y+ej ,m)(Xn+m = x) = P(y,m)(Xn+m = x− ej)

and

P(y,m+1)(Xn+m = x) = P(y,m)(Xn−1+m = x).

Thus, the estimates (2.2.3) and (2.2.4) follow from (2.2.1) and (2.2.2).

We will also need the following generalization of the annealed derivate estimates in the previous lemma.

Lemma 2.2.2. Let ε > 0. For n ∈ N large enough and every partition Π
(ε)
n of Zd into boxes of side length

⌊nε⌋, we have ∑
∆∈Π

(ε)
n

∑
x∈∆

max
y∈∆

[
P(0,0)(Xn = y)− P(0,0)(Xn = x)

]
≤ Cn−

1
2+3dε. (2.2.5)

Proof. We consider the following set of boxes around the origin of Zd

Π̃(ε)
n := {∆ ∈ Π(ε)

n : ∆ ∩ [−
√
n log3 n,

√
n log3 n]d ̸= ∅}. (2.2.6)

With this notation we can write the sum on the left hand side of (2.2.5) as∑
∆∈Π̃

(ε)
n

∑
x∈∆

max
y∈∆

[
P(0,0)(Xn = y)− P(0,0)(Xn = x)

]
(2.2.7)

+
∑

∆∈Π
(ε)
n \Π̃(ε)

n

∑
x∈∆

max
y∈∆

[
P(0,0)(Xn = y)− P(0,0)(Xn = x)

]
. (2.2.8)

So, it is enough to prove suitable upper bounds for these two sums. By Lemma 3.6 from [Ste17] we have∑
∆∈Π

(ε)
n \Π̃(ε)

n

P(0,0)(Xn ∈ ∆) ≤ Cn−c logn (2.2.9)
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for some positive constants C and c. Thus, the double sum (2.2.8) is bounded from above by

∑
∆∈Π

(ε)
n \Π̃(ε)

n

∑
x∈∆

[
P(0,0)(Xn ∈ ∆)− P(0,0)(Xn = x)

]
=

∑
∆∈Π

(ε)
n \Π̃(ε)

n

(|∆| − 1)P(0,0)(Xn ∈ ∆) ≤ Cndεn−c logn ≤ C̃n−c̃ logn

for suitably chosen constants c̃ and C̃. Using annealed derivative estimates from Lemma 2.2.1 the double

sum (2.2.7) is bounded above by∑
∆∈Π̃

(ε)
n

∑
x∈∆

Cnεn−
d+1
2 ≤ C(nε +

√
n log3 n)dnεn−

d+1
2 ≤ Cn3dεn−1/2.

Combination of the last two displays completes the proof.

Proof of Theorem 1.2.1. Let ε, δ > 0 be small (they will later be tuned appropriately). Let Π
(ε)
n be a partition

of Zd in boxes of side length ⌈ε
√
n ⌉. Let Cδ > 0 be a constant such that P(0,0)(∥Xn∥ > Cδ

√
n) < δ; such

a constant exists by Lemma 3.6 from [Ste17]. Furthermore denote by Π
(ε,δ)
n the subset of boxes in Π

(ε)
n

intersecting {x ∈ Zd : ∥x∥ ≤ Cδ
√
n}. Then∑

x∈Zd

∣∣∣P(0,0)(Xn = x)− 1

(2πn)d/2
√
detΣ

exp
(
− 1

2n
xTΣ−1x

)∣∣∣
=

∑
∆∈Π

(ε)
n \Π(ε,δ)

n

∑
x∈∆

∣∣∣P(0,0)(Xn = x)− 1

(2πn)d/2
√
detΣ

exp
(
− 1

2n
xTΣ−1x

)∣∣∣ (2.2.10)

+
∑

∆∈Π
(ε,δ)
n

∑
x∈∆

∣∣∣P(0,0)(Xn = x)− 1

(2πn)d/2
√
detΣ

exp
(
− 1

2n
xTΣ−1x

)∣∣∣. (2.2.11)

We will show that ε can be chosen so small that the above sum is bounded by 4δ for large enough n. We

first find an upper bound for (2.2.10). By definition of Π
(ε,δ)
n if ∆ ∈ Π

(ε)
n \Π(ε,δ)

n then we have ∥x∥ > Cδ
√
n

for all x ∈ ∆. Thus, (2.2.10) is bounded from above by∑
x∈Zd

∥x∥>Cδ
√
n

(
P(0,0)(Xn = x) +

1

(2πn)d/2
√
detΣ

exp
(
− 1

2n
xTΣ−1x

))
≤ δ + C exp

(
− c
2
C2

δ

)
.

By choosing Cδ large enough we can ensure that (2.2.10) is bounded by 2δ.

Turning to (2.2.11) we first compare the two terms in | · | with the averages over appropriate boxes. First,

let x ∈ Zd be fixed and let ∆ ∈ Π
(ε)
n be the box containing x. Using annealed derivative estimates from

Lemma 3.9 in [Ste17] we obtain

|P(0,0)(Xn = x)− 1

⌈ε
√
n ⌉d

P(0,0)(Xn ∈ ∆)|

=
1

⌈ε
√
n ⌉d

∣∣∣∑
y∈∆

P(0,0)(Xn = x)− P(0,0)(Xn = y)
∣∣∣

≤ 1

⌈ε
√
n ⌉d

∑
y∈∆

∥x− y∥n−(d+1)/2 ≤ ⌈ε
√
n ⌉ · n−(d+1)/2 ≤ ε

nd/2
.
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Now consider ∆ ∈ Π
(ε,δ)
n . For every x ∈ ∆ we have∣∣∣exp(− 1

2n
xTΣ−1x

)
− 1

⌈ε
√
n ⌉d

∫
∆

exp
(
− 1

2n
yTΣ−1y

)
dy
∣∣∣

= exp
(
− 1

2n
xTΣ−1x

)∣∣∣1− 1

⌈ε
√
n ⌉d

∫
∆

exp
(
− 1

2n
(yTΣ−1y − xTΣ−1x)

)
dy
∣∣∣

≤ exp
(
− 1

2n
xTΣ−1x

) 1

⌈ε
√
n ⌉d

×
∫
∆

∣∣∣1− exp
(
− 1

2n
((y − x)TΣ−1(y − x) + 2xTΣ−1(y − x))

)∣∣∣ dy
≤ exp

(
− 1

2n
xTΣ−1x

) 1

⌈ε
√
n ⌉d

∫
∆

∣∣∣1− exp
(
− 1

2n
(Cε2n+ CCδεn)

)∣∣∣ dy
≤ exp

(
− 1

2n
xTΣ−1x

)
· Cε ≤ Cε,

where we have used ∥x− y∥ ≤ ε
√
n and ∥x∥ ≤ Cδ

√
n. Using first the triangle inequality and then combining

the last two estimates we see that each summand in (2.2.11) is bounded from above by

∣∣P(0,0)(Xn = x)− 1

⌈ε
√
n ⌉d

P(0,0)(Xn ∈ ∆)
∣∣

+
1

(2πn)d/2
√
detΣ

∣∣∣ exp(− 1

2n
xTΣ−1x

)
− 1

⌈ε
√
n ⌉d

∫
∆

exp
(
− 1

2n
yTΣ−1y

)
dy
∣∣∣

+
1

⌈ε
√
n ⌉d

∣∣∣P(0,0)(Xn ∈ ∆)− 1

(2πn)d/2
√
detΣ

∫
∆

exp
(
− 1

2n
yTΣ−1y

)
dy
∣∣∣

≤ Cε

nd/2
+

Cε

(2πn)d/2
√
detΣ

+
1

⌈ε
√
n ⌉d

∣∣∣P(0,0)(Xn ∈ ∆)− 1

(2πn)d/2
√
detΣ

∫
∆

exp
(
− 1

2n
yTΣ−1y

)
dy
∣∣∣.

(2.2.12)

The number of vertices summed over all ∆ ∈ Π
(ε,δ)
n is bounded by ((Cδ + ε)

√
n)d ≤ C(Cδ

√
n)d. Thus,∑

∆∈Π
(ε,δ)
n

∑
x∈∆

( Cε

nd/2
+

Cε

(2πn)d/2
√
detΣ

)
≤ C · Cd

δ ε. (2.2.13)

Summing the last line in (2.2.12) with the double sum
∑

∆∈Π
(ε,δ)
n

∑
x∈∆ gives

∑
∆∈Π

(ε,δ)
n

∣∣∣P(0,0)(Xn ∈ ∆)− 1

(2πn)d/2
√
detΣ

∫
∆

exp
(
− 1

2n
yTΣ−1y

)
dy
∣∣∣. (2.2.14)

By applying the annealed CLT from [BČDG13] (and approximating the indicator 1∆ appropriately by

continuous and bounded functions) and noting that for fixed ε and δ the set Π
(ε,δ)
n is finite implies that

(2.2.14) goes to zero as n tends to infinity. In particular it is smaller than δ for large enough n.

Combining the estimates above we obtain∑
x∈Zd

∣∣∣P(0,0)(Xn = x)− 1

(2πn)d/2
√
detΣ

exp
(
− 1

2n
xTΣ−1x

)∣∣∣ ≤ 2δ + C · Cd
δ ε+ δ < 4δ

for large enough n and choosing ε > 0 so that C · Cd
δ ε < δ. This concludes the proof.
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2.3 Proof of Lemma 2.1.1

For the proof of of Lemma 2.1.1 we follow closely the proof of Theorem 5.1 in [BCR16] and adapt their

arguments to our model. The general idea is to implement an iteration scheme that carries the annealed-

quenched comparison from Theorem 2.7.1 below along a sequence of more and more slowly growing box

scales.

Let us introduce some notation first. Let θ > 0 be a (small) constant to be determined in the proof. For

j ∈ N, we set nj := ⌊N
1

2j ⌋ and r(N) := ⌈log2(
logN)
θ logM )⌉. Note that r(N) is the smallest integer satisfying

nθr(N) ≤M . Furthermore we set

N0 := N −
r(N)∑
j=1

nj and Nk :=

k∑
j=1

nj +N0 = Nk−1 + nk, for all 1 ≤ k ≤ r(N). (2.3.1)

Finally, for 0 ≤ k ≤ r(N), abusing the notation and suppressing the dependence on θ and n we write for the

rest of this section Πk := Πnθ
k
and define

λk(ω) :=
∑

∆∈Πk

∣∣P (0,0)
ω (XNk

∈ ∆)− P(0,0)(XNk
∈ ∆)

∣∣. (2.3.2)

Note in particular that λr(N) is twice the total variation distance between the quenched and the annealed

measures on boxes of side length ≤ M , which is the term we wish to bound from above to show (2.1.1).

If one wishes to be slightly more precise, then one should replace Nr(N) by M , thus obtaining the total

variation for boxes of side length M exactly. This, however, does not influence the estimates to follow.

The proof of the following proposition is long and technical and will be given in Section 2.7.

Proposition 2.3.1. There exists constants C, c, α > 0 and events G(N), N ∈ N, with P(G(N)) ≥ 1 −
CN−c logN such that for all ω ∈ G(N) we have

λk ≤ λk−1 + Cn−α
k , ∀ 1 ≤ k ≤ r(N). (2.3.3)

In particular, λr(N) ≤ λ1 + C
∑r(N)

k=1 n
−α
k for ω ∈ G(N).

Proof of Lemma 2.1.1. The assertion is a consequence of Proposition 2.3.1 and can be proven analogously

to the argument in the last part of the proof of Theorem 5.1 in [BCR16], page 35.

2.4 Concentration from coupling: Proofs of Proposition 2.1.2 and

Corollary 2.1.4

In this section we prove some analogues of the results of Section 6 in [BCR16] and present proofs of Propo-

sition 2.1.2 and Corollary 2.1.4.

Lemma 2.4.1. There exists a constant c > 0 and set of environments K(N, c) satisfying

P(K(N, c)) ≥ 1−N−c logN (2.4.1)
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such that for every ω there exists a coupling Θω,N of P(0,0)(XN = ·) and P (0,0)
ω (XN = ·) with the property

Θω,N (Λ) > c for every ω ∈ K(N, c), (2.4.2)

where Λ := {(x, x) : x ∈ Zd}.

Proof. For ε > 0 and M ∈ N denote by K(N) = K(N,M, ε) the set of environments ω ∈ Ω satisfying∑
∆∈ΠM

|P (0,0)
ω (XN ∈ ∆)− P(0,0)(XN ∈ ∆)| < ε, (2.4.3)

where ΠM is a partition of Zd into d-dimensional boxes of side lengthM . By Lemma 2.1.1, for every ε ∈ (0, 1)

there exists a M ∈ N such that P(K(N)) ≥ 1−N−c logN . On the event K(N), the inequality (2.4.3) tells us

that twice the total variation distance between P(0,0)(XN ∈ ·) and P (0,0)
ω (XN ∈ ·) on ΠM is less than ε and

therefore there exists a coupling Θ̃ω,N,M of both measures on ΠM × ΠM such that Θ̃ω,N,M (ΛΠM
) > 1 − ε,

where ΛΠM
= {(∆,∆) : ∆ ∈ ΠM}.

Using the coupling Θ̃ we construct a new coupling of P(0,0)(XN = ·) and P
(0,0)
ω (XN = ·) on Zd × Zd

which puts positive probability on the diagonal Λ = {(x, x) : x ∈ Zd}. We define Θω,N on Zd × Zd by

Θω,N (x, y) :=
∑

∆,∆′∈ΠM

Θ̃ω,N−M,M (∆,∆′)

· P(0,0)(XN = x|XN−M ∈ ∆) · P (0,0)
ω (XN = y|XN−M ∈ ∆′). (2.4.4)

Since Θ̃ω,N−M,M is a coupling of P(0,0) and P
(0,0)
ω on ΠM × ΠM one can easily see that by the formula of

total probability Θω,N is indeed a coupling of P(0,0)(XN = ·) and P (0,0)
ω (XN = ·).

For x ∈ Zd, let ∆x be the unique cube which contains x in the partition ΠM . Since the side length of

each box in the partition ΠM is M it follows that the annealed random walk can reach x from each point in

the box ∆x in less than M steps.

Next we want to show that the coupling gives us a positive chance for the two walks to end up at the

same position. In [BCR16] this is done by showing that Θω,N (x, x) is bounded away from zero for all x ∈ Zd.

This is not true in our model because we do not have uniform ellipticity for the quenched measure. The idea

here is to show that for “typical” ω the measure Θω,N (x, x) is bounded away from zero for “many” x ∈ Zd.

To this end for given ω we define the set Πx
ω ⊂ ΠM as the set of boxes ∆ ∈ ΠM satisfying

P (0,0)
ω (XN = x|XN−M ∈ ∆) > 0. (2.4.5)

Note that if Πx
ω = ∅ for x and ω then we have Θω,N (x, x) = 0. Furthermore, by definition of P

(0,0)
ω (XN =

x|XN−1 = y) we have

P (0,0)
ω (XN = x|XN−M ∈ ∆) ≥

(
1

3d

)M

(2.4.6)

for all ∆ ∈ Πx
ω. Now using (2.4.4), (2.4.6) and uniform ellipticity of the annealed measure we obtain

Θω,N (x, x) =
∑

∆∈Πx
ω

Θ̃ω,N−M,M (∆,∆)

· P(0,0)(XN = x|XN−M ∈ ∆) · P (0,0)
ω (XN = x|XN−M ∈ ∆)

≥
∑

∆∈Πx
ω

Θ̃ω,N−M,M (∆,∆)ηM
(

1

3d

)M

,

38



where η ∈ (0, 1) is the “uniform ellipticity bound” of the annealed random walk. Now it suffices to show∑
x∈Zd

∑
∆∈Πx

ω

Θ̃ω,N−M,M (∆,∆) ≥
∑

∆∈ΠM

Θ̃ω,N−M,M (∆,∆). (2.4.7)

This follows immediately if we can show that for all ∆ ∈ ΠM \ ∪x∈ZdΠx
ω we have

Θ̃ω,N−M,M (∆,∆) = 0.

For that consider a box ∆ ∈ ΠM \ ∪x∈ZdΠx
ω, i.e. there is no x ∈ Zd with ∆ ∈ Πx

ω for the fixed ω. Thus, we

have P
(0,0)
ω (XN = x|XN−M ∈ ∆) = 0 for all x ∈ Zd. It follows that P

(0,0)
ω (XN−M ∈ ∆) = 0, because there

can be no infinitely long open path starting from ∆. We obtain

Θω,N (Λ) =
∑
x∈Zd

Θω,N (x, x) ≥
∑
x∈Zd

∑
∆∈Πx

ω

Θ̃ω,N−M,M (∆,∆)ηM
(

1

3d

)M

≥
∑

∆∈ΠM

Θ̃ω,N−M,M (∆,∆)ηM
(

1

3d

)M

≥ (1− ε)ηM
(

1

3d

)M
(2.4.8)

for every ω ∈ K(N).

Recall the definitions of PN and QN from (2.1.3) respectively (2.1.4). Note that for every N ∈ N the

measure PN is in fact the measure P since for every measurable event A ∈ Ω we have by translation invariance

PN (A) = E
[ ∑
x∈Zd

P(0,0)(XN = x)1{σ(x,N)ω∈A}

]
=
∑
x∈Zd

P(0,0)(XN = x)E[1{σ(x,N)ω∈A}]

=
∑
x∈Zd

P(0,0)(XN = x)P(σ(−x,−N)A) =
∑
x∈Zd

P(0,0)(XN = x)P(A) = P(A).
(2.4.9)

Definition 2.4.2. Given two environments ω, ω′ ∈ Ω we define their distance by

dist(ω, ω′) = inf
{
∥(x, n)∥ : ω′ = σ(x,n)ω

}
,

where the infimum over an empty set is defined to be infinity.

We denote by ΨN the coupling of PN and QN from Lemma 2.4.1 extended to Ω× Ω, that is,

ΨN (A) = E
[ ∑
x,y∈Zd

Θω,N (x, y)1{(σ(x,N)ω,σ(y,N)ω)∈A}

]
. (2.4.10)

The following result is an analogue to Lemma 6.6 in [BCR16].

Lemma 2.4.3. For M,N ∈ N let D
(1)
M,N : Ω → [0,∞] and D

(2)
M,N : Ω → [0,∞] be defined by

D
(i)
M,N (ωi) := EΨN

[1{dist(ω1,ω2)>M}|Fωi
](ωi), i = 1, 2,

where Fω1
, Fω2

are the σ-algebras generated by the first, respectively, second coordinate in Ω×Ω and ΨN is

defined in (2.4.10). For M ∈ N, there exists an event FM with the following properties:

(1) P(FM ) ≥ 1−M−c logM .
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(2) For every ε > 0 one can choose M =M(ε) large enough

max
{
D

(1)
M,N (ω),

dQN

dP
(ω)D

(2)
M,N (ω)

}
≤ ε1FM

(ω) + 1F C
M
(ω). (2.4.11)

Proof. Let

FM =
⋂

k>M/2

{
ω ∈ Ω : ∀x ∈ [−k, k]d ∩ Zd,∑

∆∈ΠM

|P(x,0)(Xk ∈ ∆)− P (x,0)
ω (Xk ∈ ∆)| ≤ C2

M c1
+
C2

kc1

}
where ΠM is a partition of Zd into boxes of side length M and C2, c1 are the (renamed) constants from

Lemma 2.1.1. Thus, P(FM ) ≥ 1 −M−c logM . Fix ε > 0. Then, by the definition of FM and the coupling

Θ̃ω,k,M constructed in the proof of Lemma 2.4.1, for every ω ∈ FM , every k > M/2 and every x ∈ [−k, k]d∩Zd

we have

Θ̃σ(x,k)ω,k,M (ΛΠM
) > 1− 2C2

M c1
> 1− ε (2.4.12)

for large enough M , where ΛΠM
= {(∆,∆) : ∆ ∈ ΠM}. Note that for k ≤M/2 the left hand side of (2.4.12)

is 1 and therefore (2.4.11) is trivially true for N ≤M/2.

Let us now verify the estimates (2.4.11) for D
(1)
M,N and dQN

dP D
(2)
M,N and N > M/2. Note that for P-almost

every environment ω ∈ Ω we have

D
(1)
M,N (ω) =

∑
x,y∈Zd

Θσ−(x,N)ω,N (x, y)1{∥x−y∥>M} (2.4.13)

and for QN -almost every ω we have

D
(2)
M,N (ω) =

(
dQN

dP
(ω)

)−1 ∑
x,y∈Zd

Θσ−(y,N)ω,N (x, y)1{∥x−y∥>M}. (2.4.14)

Using (2.4.10) we have for every measurable event A ⊂ Ω

EΨN
[1{(ω1,ω2)∈A×Ω}1{dist(ω1,ω2)>M}]

= ΨN (A× Ω ∩ {(ω1, ω2) : dist(ω1, ω2) > M})

= E
[ ∑
x,y∈Zd

Θω,N (x, y)1{(σ(x,N)ω,σ(y,N)ω)∈A×Ω}1{dist(σ(x,N)ω,σ(y,N)ω)>M}

]
=

∑
x,y∈Zd

E
[
Θω,N (x, y)1{σ(x,N)ω∈A}}1{∥x−y∥>M}

]
=

∑
x,y∈Zd

E
[
Θσ−(x,N)ω,N (x, y)1{ω∈A}}1{∥x−y∥>M}

]
,

where the last equality follows by translation invariance of P. Since ΨN is a coupling of PN = P and QN

the last term equals

EΨN

[
1{(ω,ω′)∈A×Ω}

∑
x,y∈Zd

Θσ−(x,N)ω,N (x, y)1{∥x−y∥>M}

]
,
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which implies (2.4.13).

For BN := {ω : dQN

dP (ω) ̸= 0} we have QN (BC
N ) = ΨN (Ω×BC

N ) = 0, and we get similarly

EΨN
[1{Ω×A}1{dist(ω1,ω2)>M}]

= EΨN
[1{Ω×A∩BN}1{dist(ω1,ω2)>M}]

= ΨN (Ω× (A ∩BN ) ∩ {(ω1, ω2) : dist(ω1, ω2) > M})

= E
[ ∑
x,y∈Zd

Θω,N (x, y)1{(σ(x,N)ω,σ(y,N)ω)∈Ω×A∩BN}1{dist(σ(x,N)ω,σ(y,N)ω)>M}

]
= E

[ ∑
x,y∈Zd

Θω,N (x, y)1{σ(y,N)ω∈A∩BN}1{∥x−y∥>M}

]
= E

[ ∑
x,y∈Zd

Θσ−(y,N)ω,N (x, y)1{ω∈A∩BN}1{∥x−y∥>M}

]
= EQN

[(dQN

dP

)−1

(ω)
∑

x,y∈Zd

Θσ−(y,N)ω,N (x, y)1{ω∈A∩BN}1{∥x−y∥>M}

]
= EΨN

[(dQN

dP

)−1

(ω2)
∑

x,y∈Zd

Θσ−(y,N)ω2,N (x, y)1{(ω1,ω2)∈Ω×(A∩BN )}1{∥x−y∥>M}

]
= EΨN

[(dQN

dP

)−1

(ω2)
∑

x,y∈Zd

Θσ−(y,N)ω2,N (x, y)1{(ω1,ω2)∈Ω×A}1{∥x−y∥>M}

]
,

which shows (2.4.14)

If Θσ−(x,N)ω,N (x, y) > 0 then necessarily x ∈ [−N,N ]d ∩ Zd because in N steps the annealed walk can

only reach points in this box. It follows that for large enough M , every ω ∈ FM and every N ≥M we have∑
x,y∈Zd

Θσ−(x,N)ω,N (x, y)1{∥x−y∥>M}

= 1−
∑

x,y∈Zd

Θσ−(x,N)ω,N (x, y)1{∥x−y∥≤M}

≤ 1− min
z∈[−N,N ]d∩Zd

∑
x,y∈Zd

Θσ−(z,N)ω,N (x, y)1{∥x−y∥≤M}

≤ 1− min
z∈[−N,N ]d∩Zd

∑
∆∈ΠM

∑
x,y∈∆

Θσ−(z,N)ω,N (x, y)

= 1− min
z∈[−N,N ]d∩Zd

∑
∆∈ΠM

Θ̃σ−(z,N)ω,N,M (∆,∆)

= 1− min
z∈[−N,N ]d∩Zd

Θ̃σ−(z,N)ω,N,M (ΛΠM
) < ε.

Thus,

D
(1)
M,N (ω) =

∑
x,y∈Zd

Θσ−(x,N)ω,N (x, y)1{∥x−y∥>M} ≤ ε1FM
(ω) + 1F C

M
(ω).

For ω ∈ FM ∩BN we have shown

dQN

dP
(ω)D

(2)
M,N (ω) =

∑
x,y∈Zd

Θσ−(y,N)ω,N1{∥x−y∥>M} ≤ ε
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whereas for ω ∈ FM ∩BC
N

dQN

dP
(ω)D

(2)
M,N (ω) = 0

and thus

dQN

dP
(ω)D

(2)
M,N (ω) ≤ ε1FM

(ω) + 1F C
M
(ω).

Proof of Proposition 2.1.2. We follow the ideas of the proof of Lemma 6.5 in [BCR16]. To this end, we

consider the events

B−
ε = {ω ∈ Ω :

1

|∆0|
∑
x∈∆0

dQN

dP
(σ(x,0)ω) < 1− ε}

B+
ε = {ω ∈ Ω :

1

|∆0|
∑
x∈∆0

dQN

dP
(σ(x,0)ω) > 1 + ε}.

First we consider B−
ε . We decompose this event into two events, first of which has probabilityM−c logM and

the second is a P null set. We assume without loss of generality that ∆0 is centred at the (spatial) origin,

set Mε =
ε

6d2M , define ∆−
0 = {x ∈ Zd : ∥x∥ < M −Mε} and

S−
ε = {ω ∈ B−

ε : σ(x,0)ω ∈ FMε ,∀x ∈ ∆0},

where FMε is the event from Lemma 2.4.3. Due to property (1) of FMε from Lemma 2.4.3

P(S−
ε ) ≥ P(B−

ε )− |∆0|P(FC
Mε

)

≥ P(B−
ε )−Md(Mε)

−c logMε ≥ P(B−
ε )−M−c̃ logM ,

where c̃ is a positive constant. Therefore it is enough to show that P(S−
ε ) = 0.

We claim that there exists an event K− ⊂ S−
ε such that

P(K−) ≥ P(S−
ε ) · ((4d)d|∆0|)−1 (2.4.15)

and

if ω, ω′ ∈ K−, ω ̸= ω′, then dist(ω, ω′) > 4M. (2.4.16)

For every (x, n) ∈ Zd × Z let U(x,n) be an independent (of everything else defined so far) random variable

uniformly distributed on [0, 1], and define

K− :=
{
ω ∈ S−

ε : ∀(x, n) ∈ 4∆0 if σ(x,n)ω ∈ B−
ε then U(x,n) < U(0,0)

}
.

This means informally, that from each family of environments whose distance is smaller than 4dM we choose

one uniformly. This implies that property (2.4.16) for K holds. Property (2.4.15) holds because due to

translation invariance of P we have

P(S−
ε ) ≤ P

( ⋃
x∈4d∆0

σ(x,0)K
−
)
≤

∑
x∈4d∆0

P
(
σ(x,0)K

−) = (4d)d|∆0|P(K−).
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Now, let

G =
⋃

x∈∆0

σ(x,0)K
− and G− =

⋃
x∈∆−

0

σ(x,0)K
−.

By property (2.4.16) of K− these are in both cases disjoint unions and therefore we have

P(G) =
∑
x∈∆0

P(σ(x,0)K−) = |∆0|P(K−) and

P(G−) = |∆−
0 |P(K−) = |∆0|

(
1− ε

6d2
)dP(K−) >

(
1− ε

6

)
P(G).

(2.4.17)

Going back to the definition of the event B−
ε and recalling that K− ⊂ S−

ε ⊂ B−
ε we obtain

QN (G) =

∫
G

dQN

dP
(ω) dP(ω) =

∑
x∈∆0

∫
σ(x,0)K−

dQN

dP
(ω) dP(ω) =

∫
K−

∑
x∈∆0

dQN

dP
(σ(x,0)ω) dP(ω)

≤
∫
K−

(1− ε)|∆0| dP(ω) = (1− ε)|∆0|P(K−) = (1− ε)P(G)

Combining this with (2.4.17), for small enough ε > 0 we obtain

QN (G) ≤ (1− ε)P(G) =
1− ε

1− ε/6

(
1− ε

6

)
P(G) <

1− ε

1− ε/6
P(G−) <

(
1− ε

3

)
P(G−). (2.4.18)

Let A− = {(ω, ω′) : ω ∈ G−, ω′ /∈ G}. Then by (2.4.17) and (2.4.18)

ΨN (A−) ≥ P(G−)−QN (G) ≥ P(G−)−
(
1− ε

3

)
P(G−)

≥ ε

3
P(G−) >

ε

3

(
1− ε

6

)
P(G) >

ε

4
P(G).

(2.4.19)

By construction of K−, for every (ω, ω′) ∈ A− we have dist(ω, ω′) > Mε and, therefore,∫
G

D
(1)
Mε,N

dP(ω) =
∫
G×Ω

D
(1)
Mε,N

dΨN (ω, ω′) ≥
∫
G−×Ω

D
(1)
Mε,N

dΨN (ω, ω′)

=

∫
Ω×Ω

EΨN
[1{dist(ω,ω′)>Mε} |Fω](ω)1{G−×Ω}(ω, ω

′) dΨN (ω, ω′)

=

∫
Ω×Ω

EΨN
[1{dist(ω,ω′)>Mε}1{G−×Ω}(ω, ω

′) |Fω](ω) dΨN (ω, ω′)

=

∫
Ω×Ω

1{dist(ω,ω′)>Mε}1{G−×Ω}(ω, ω
′) dΨN (ω, ω′)

≥
∫
Ω×Ω

1{dist(ω,ω′)>Mε}1{A−}(ω, ω
′) dΨN (ω, ω′)

=

∫
Ω×Ω

1A−(ω, ω′) dΨN (ω, ω′)

= ΨN (A−) >
ε

4
P(G).

(2.4.20)

Since G ⊂ FMε
by definition, using Lemma 2.4.3 with Mε and ε/5 instead of M and ε we obtain∫

G

D
(1)
Mε,N

(ω) dP(ω) ≤
∫
G

ε

5
1FMε

(ω) + 1F C
Mε

(ω) dP(ω) =
∫
G

ε

5
dP(ω) =

ε

5
P(G). (2.4.21)

Combining (2.4.20) and (2.4.21) we conclude that P(G) = 0 and, therefore P(K−) = 0. By property (2.4.15)

of K− this implies that P(S−
ε ) = 0 and finally P(B−

ε ) ≤M−c logM .
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Next we turn to the event B+
ε . As before we setMε =

ε
6d2M and assume that ∆0 is centred at the origin.

Define ∆+
0 := {x ∈ Zd : ∥x∥ < M +Mε} and let

S+
ε =

{
ω ∈ B+

ε : σ(x,0)ω ∈ FMε
,∀x ∈ ∆+

0

}
,

where FMε
is, as before, the event from Lemma 2.4.3. Due to property (1) of FMε

P(S+
ε ) ≥ P(B+

ε )− |∆+
0 |P(FC

Mε
) ≥ P(B+

ε )− (1 +
ε

6d2
)dMd(Mε)

−c logMε

≥ P(B+
ε )−M−c̃ logM

and again it is enough to show that P(S+
ε ) = 0. As for S−

ε we claim that there exists an event K+ ⊂ S+
ε

such that

P(K+) ≥ P(S+
ε ) · ((4d)d|∆+

0 |)−1 (2.4.22)

and

if ω, ω′ ∈ K+ with ω ̸= ω′, then dist(ω, ω′) > 4(M +Mε). (2.4.23)

Let

H =
⋃

x∈∆0

σ(x,0)K
+ and H+ =

⋃
x∈∆+

0

σ(x,0)K
+.

Both are, by property (2.4.23) of K+ disjoint unions. Therefore we have for ε > 0 small enough

P(H) = |∆0|P(K+) and

P(H+) = |∆+
0 |P(K+) =

(
1 +

ε

6d2

)d
|∆0|P(K+) <

(
1 +

ε

5

)
P(H).

(2.4.24)

From K+ ⊂ S+
ε ⊂ B+

ε we obtain

QN (H) =

∫
H

dQN

dP
(ω) dP(ω) =

∑
x∈∆0

∫
σ(x,0)K+

dQN

dP
(ω) dP(ω)

=

∫
K+

∑
x∈∆0

dQN

dP
(σ(x,0)ω) dP(ω)

>

∫
K+

|∆0|(1 + ε) dP(ω) = (1 + ε)|∆0|P(K+) = (1 + ε)P(H).

(2.4.25)

Combination of this with (2.4.24), for small enough ε > 0 then yields

QN (H) > (1 + ε)P(H) =
1 + ε

1 + ε/5

(
1 +

ε

5

)
P(H) >

1 + ε

1 + ε/5
P(H+) >

(
1 +

ε

3

)
P(H+). (2.4.26)

Let A+ := {(ω, ω′) : ω /∈ H+, ω′ ∈ H}. Then by (2.4.26)

ΨN (A+) ≥ QN (H)− P(H+) > QN (H)− 1

1 + ε/3
QN (H) =

ε/3

1 + ε/3
QN (H)

≥ ε

4
QN (H).

(2.4.27)
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By the construction of K+, for every (ω, ω′) ∈ A+ we have dist(ω, ω′) > Mε and, therefore,∫
H

D
(2)
Mε,N

(ω) dQN (ω) =

∫
Ω×H

D
(2)
Mε,N

(ω′) dΨN (ω, ω′)

=

∫
Ω×Ω

D
(2)
Mε,N

(ω′)1{Ω×H}(ω, ω
′) dΨN (ω, ω′)

=

∫
Ω×Ω

EΨN
[1{dist(ω,ω′)>Mε} |Fω′ ](ω′)1{Ω×H}(ω, ω

′) dΨN (ω, ω′)

=

∫
Ω×Ω

EΨN
[1{dist(ω,ω′)>Mε}1{Ω×H}(ω, ω

′) |Fω′ ](ω′) dΨN (ω, ω′)

=

∫
Ω×Ω

1{dist(ω,ω′)>Mε}1{Ω×H}(ω, ω
′) dΨN (ω, ω′)

≥
∫
Ω×Ω

1{dist(ω,ω′)>Mε}1A+(ω, ω′) dΨN (ω, ω′)

=

∫
Ω×Ω

1A+(ω, ω′) dΨN (ω, ω′)

= ΨN (A+) ≥ ε

4
QN (H).

(2.4.28)

Since H ⊂ FMε
by definition, P(H) ≤ QN (H) by (2.4.25), and using Lemma 2.4.3 with Mε and ε

5 instead of

M and ε we obtain∫
H

D
(2)
Mε,N

dQN (ω) ≤
∫
H∩BN

(dQN

dP

)−1[ε
5
1FMε∩BN

+ 1(FMε∩BN )C

]
dQN (ω)

=

∫
H∩BN

(dQN

dP

)−1[ε
5
1FMε∩BN

+ 1(FMε∩BN )C

]
dQN (ω)

=

∫
H∩BN

[ε
5
1FMε∩BN

+ 1(FMε∩BN )C

]
dP(ω)

=

∫
H∩BN

ε

5
dP(ω)

=
ε

5
P(H ∩BN ) ≤ ε

5
P(H) ≤ ε

5
QN (H),

(2.4.29)

where we recall from Lemma 2.4.3 that BN = {ω : dQN

dP (ω) ̸= 0} and note that BC
N is a QN null set.

Combining (2.4.28) and (2.4.29), we conclude that QN (H) = 0 and, therefore, by (2.4.25) we have P(H) = 0.

It follows that P(K+) = 0, which by property (2.4.22) of K+ implies that P(S+
ε ) = 0 and finally that (2.1.5)

holds.

Proof of Corollary 2.1.4. To show that Proposition 2.1.2 holds for Q as well we define Ψ as the weak limit

of { 1
n

∑n−1
N=0 ΨN}∞n=1 along any converging sub-sequence {nk}k≥1 (tightness of ΨN follows similarly to the

discussion below Corollary 2.1.3). Note that Ψ is a coupling of P and Q on Ω× Ω. Furthermore let

D
(i)
M (ωi) := EΨ[1dist(ω1,ω2)>dM | Fωi

](ωi), i = 1, 2.

Now we want to prove inequality (2.4.11) from Lemma 2.4.3 for D
(1)
M and D

(2)
M . It is enough to show that

along some sub-sequence {nℓ}l≥1 of {nk}k≥1

D
(1)
M (ω) = lim

ℓ→∞

1

nℓ

nℓ−1∑
N=0

D
(1)
M,N (ω) P-a.s. (2.4.30)
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and

D
(2)
M (ω) =

(dQ
dP

(ω)
)−1

lim
ℓ→∞

1

nℓ

nℓ−1∑
N=0

dQN

dP
(ω)D

(2)
M,N (ω) Q-a.s. (2.4.31)

In fact, if the above equalities hold, then for P-almost every ω we have

D
(1)
M (ω) = lim

ℓ→∞

1

nℓ

nℓ−1∑
N=0

D
(1)
M,N (ω)

= lim
ℓ→∞

1

nℓ

[M−1∑
N=0

D
(1)
M,N (ω) +

nℓ−1∑
N=M

D
(1)
M,N (ω)

]
≤ lim

ℓ→∞

1

nℓ

[
M +

nℓ−1∑
N=M

D
(1)
M,N (ω)

]
≤ lim

ℓ→∞

1

nℓ

[
M +

nℓ−1∑
N=M

(ε1FM
(ω) + 1F C

M
(ω))

]
= ε1FM

(ω) + 1F C
M
(ω).

In addition for D
(2)
M we have for Q almost all ω

dQ

dP
(ω)D

(2)
M (ω) = lim

ℓ→∞

1

nℓ

nℓ−1∑
N=0

dQN

dP
(ω)D

(2)
M,N (ω)

≤ lim
ℓ→∞

1

nℓ

[M−1∑
N=0

dQN

dP
(ω) +

nℓ−1∑
N=M

dQN

dP
(ω)D

(2)
M,N (ω)

]
≤ lim

ℓ→∞

1

nℓ

[M−1∑
N=0

dQN

dP
(ω) +

nℓ−1∑
N=M

(ε1FM
(ω) + 1F C

M
(ω))

]
≤ ε1FM

(ω) + 1F C
M
(ω).

Let us now prove (2.4.30) and (2.4.31). Starting with (2.4.30) let A ⊂ Ω be a measurable event. We have

E[D(1)
M (ω1)1A(ω1)]

= EΨ[1{dist(ω1,ω2)>dM}1A×Ω(ω1, ω2)]

= Ψ({(ω1, ω2) ∈ Ω× Ω : dist(ω1, ω2) > dM} ∩A× Ω)

= lim
ℓ→∞

1

nℓ

nℓ−1∑
N=0

ΨN ({(ω1, ω2) ∈ Ω× Ω : dist(ω1, ω2) > dM} ∩A× Ω)

= lim
ℓ→∞

1

nℓ
EΨN

[1{dist(ω1,ω2)>dM}1A×Ω(ω1, ω2)]

= lim
ℓ→∞

1

nℓ

nℓ−1∑
N=0

E[D(1)
M,N (ω1)1A(ω1)]

= lim
ℓ→∞

E
[ 1

nℓ

nℓ−1∑
N=0

D
(1)
M,N (ω1)1A(ω1)

]
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where we used the definitions of Ψ and of D
(1)
M,N as the conditional expectation. This implies convergence of

1
nℓ

∑nℓ−1
N=0 D

(1)
M,N to D

(1)
M in L1(P). Thus, by standard arguments we can choose a subsequence that converges

P-almost surely. For D
(2)
M we get in a similar way

EQ[D
(2)
M (ω)1A(ω2)]

= EΨ[1dist(ω1,ω2)>dM1Ω×A(ω1, ω2)]

= Ψ({dist(ω1, ω2) > dM} ∩ Ω×A)

= lim
ℓ→∞

1

nℓ

nℓ−1∑
N=0

ΨN ({dist(ω1, ω2) > dM} ∩ Ω×A)

= lim
ℓ→∞

1

nℓ

nℓ−1∑
N=0

EΨN
[1dist(ω1,ω2)>dM1Ω×A(ω1, ω2)]

= lim
ℓ→∞

1

nℓ

nℓ−1∑
N=0

EΨN
[D

(2)
M,N (ω2)1Ω×A(ω1, ω2)]

= lim
ℓ→∞

1

nℓ

nℓ−1∑
N=0

EQN
[D

(2)
M,N (ω2)1A(ω2)]

= lim
ℓ→∞

1

nℓ

nℓ−1∑
N=0

EQ

[(dQ
dP

(ω2)
)−1 · dQN

dP
(ω2) ·D(2)

M,N (ω2)1A(ω2)
]

= lim
ℓ→∞

EQ

[(dQ
dP

(ω2)
)−1 · 1

nℓ

nℓ−1∑
N=0

dQN

dP
(ω2) ·D(2)

M,N (ω2)1A(ω2)
]

Q-almost surely. Thus, Lemma 2.4.3 holds for D
(1)
M and D

(2)
M instead of D

(1)
M,N and D

(2)
M,N respectively.

Since the only tools we need for the proof of Proposition 2.1.2 are Lemma 2.1.1 and Lemma 2.4.3, we can

walk through the proof of Proposition 2.1.2 and repeat the same steps for dQ
dP to show Corollary 2.1.4.

The following proposition is an analogue to Proposition 7.1 from [BCR16]. Note that the assertion

expresses a general property of the density of a measure which is invariant for the point of view of the

particle in the setting of a random walk in random environment. It is not model-specific.

Proposition 2.4.4. For P-almost every ω, every n ∈ N0, every x ∈ Zd and all k ≤ n

φ(σ(x,n)ω) =
∑
y∈Zd

P (x+y,n−k)
ω (Xn = x)φ(σ(x+y,n−k)ω).

Proof. Let n ∈ N. First we consider the case k = 1. For every bounded measurable function h : Ω → R we
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have (recall the notation in (1.2.7) and (1.2.8))∫
Ω

h(ω)φ(σ(x,n)ω) dP(ω) =
∫
Ω

h(σ(−x,−n)ω)φ(ω) dP(ω)

=

∫
Ω

h(σ(−x,−n)ω) dQ(ω)

=

∫
Ω

Rh(σ(−x,−n)ω) dQ(ω)

=

∫
Ω

(Rh(σ(−x,−n)ω))φ(ω) dP(ω)

=

∫
Ω

∑
∥y∥≤1

g(ω, y)h(σ(−x+y,1−n)ω)φ(ω) dP(ω)

=

∫
Ω

∑
∥y∥≤1

g(σ(x−y,n−1)ω, y)h(ω)φ(σ(x−y,n−1)ω) dP(ω).

Thus

φ(σ(x,n)ω) =
∑

∥y∥≤1

g(σ(x−y,n−1)ω)φ(σ(x−y,n−1)ω)

=
∑

∥y∥≤1

P (0,0)
σ(x−y,n−1)ω

(X1 = y)φ(σ(x−y,n−1)ω)

=
∑

∥y∥≤1

P (x−y,n−1)
ω (X1 = x)φ(σ(x−y,n−1)ω)

=
∑
y∈Zd

P (x+y,n−1)
ω (X1 = x)φ(σ(x+y,n−1)ω).

By applying the operator R a second time we see that∫
Ω

h(ω)φ(σ(x,n)ω) dP =

∫
Ω

h(ω)
∑

∥y1∥≤1

P (x+y1,n−1)
ω (X1 = x)φ(σ(x+y1,n−1)ω) dP(ω)

=

∫
Ω

h(σ(−x−y1,−n+1)ω)
∑

∥y1∥≤1

P (x+y1,n−1)
σ(−x−y1,−n+1)ω

(X1 = x)φ(ω) dP(ω)

=

∫
Ω

[(
R(h(σ(−x−y1,−n+1)ω)

∑
∥y1∥≤1

P (x+y1,n−1)
σ(−x−y1,−n+1)ω

(X1 = x))
)]
φ(ω) dP(ω)

=

∫
Ω

∑
∥y2∥≤1

g(ω, y2)h(σ(−x−y1+y2,−n+2)ω)∑
∥y1∥≤1

P (x+y1,n−1)
σ(−x−y1+y2,−n+2)ω

(X1 = x)φ(ω) dP(ω)

=

∫
Ω

∑
∥y2∥≤1

g(σ(x+y1−y2,n−2)ω, y2)h(ω)∑
∥y1∥≤1

P (x+y1,n−1)
ω (X1 = x)φ(σ(x+y1−y2,n−2)ω) dP(ω)
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=

∫
Ω

∑
∥y2∥≤1

P (x+y1+y2,n−2)
ω (X1 = x+ y1)

∑
∥y1∥≤1

P (x+y1,n−1)
ω (X1 = x)h(ω)φ(σ(x+y1+y2,n−2)ω) dP(ω).

Thus,

φ(σ(x,n)ω) =
∑

∥y1∥≤1

∑
∥y2∥≤1

P (x+y1+y2,n−2)
ω (X1 = x+ y1)P

(x+y1,n−1)
ω (X1 = x)φ(σ(x+y1+y2,n−2)ω)

=
∑
y∈Zd

P x+y,n−2
ω (X2 = x)φ(σ(x+y,n−2)ω).

Inductively we obtain

φ(σ(x,n)ω) =
∑
y∈Zd

P (x+y,n−k)
ω (Xk = x)φ(σ(x+y,n−k)ω)

for all k ≤ n.

2.5 Proof of Proposition 2.1.8

Let Π be a partition of Zd into boxes of side length ⌊nδ⌋ with 0 < δ < 1
6d . Since P(0,0)(Xn = x) = 0 for

∥x∥ > n only boxes in Πn := {∆ ∈ Π : ∆ ∩ [−n, n]d ̸= ∅} have to be considered. We have

|Zω,n − 1| =
∣∣∣∑
x∈Zd

P(0,0)(Xn = x)[φ(σ(x,n)ω)− 1]
∣∣∣

=
∣∣∣ ∑
∆∈Πn

∑
x∈∆

P(0,0)(Xn = x)[φ(σ(x,n)ω)− 1]
∣∣∣. (2.5.1)

By the annealed CLT from [BČDG13] for any ε > 0 there exists a constant Cε > 0 such that

P(0,0)(∥Xn∥ ≥ Cε

√
n) < ε

We want to use this fact below and separate the sum in the last line of (2.5.1) into boxes in Π̂n = {∆ ∈ Πn :

∆ ∩ {x ∈ Zd : ∥x∥ ≤ Cε
√
n} ≠ ∅} and in Πn \ Π̂n. Using triangle inequality we obtain

|Zω,n − 1| ≤
∣∣∣ ∑
∆∈Πn\Π̂n

∑
x∈∆

P(0,0)(Xn = x)[φ(σ(x,n)ω)− 1]
∣∣∣ (2.5.2)

+
∣∣∣ ∑
∆∈Π̂n

∑
x∈∆

( 1

|∆|
∑
y∈∆

[P(0,0)(Xn = y)− P(0,0)(Xn = x)]
)
[φ(σ(x,n)ω)− 1]

∣∣∣ (2.5.3)

+
∣∣∣ ∑
∆∈Π̂n

∑
x∈∆

1

|∆|
∑
y∈∆

P(0,0)(Xn = y)[φ(σ(x,n)ω)− 1]
∣∣∣. (2.5.4)

We start with an upper bound of (2.5.2). By Corollary 2.1.4 there exists a constant C, such that, due

to translation invariance of P, with P probability of a least 1 − Cn−c logn for every ∆ ∈ Πn we have∑
y∈∆[φ(σ(y,n)ω) + 1] ≤ C|∆|. Under this event we can bound (2.5.2) from above by∑

∆∈Πn\Π̂n

∑
x∈∆

P(0,0)(Xn = x)[φ(σ(x,n)ω) + 1] ≤ C
∑

∆∈Πn\Π̂n

max
x∈∆

P(0,0)(Xn = x)|∆|.
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Using Lemma 2.2.2 with δ > 0 replacing ε there we see that (2.5.2) is bounded from above by

C
∑

∆∈Πn\Π̂n

∑
y∈∆

[
max
x∈∆

P(0,0)(Xn = x)− P(0,0)(Xn = y)
]
+ C

∑
∆∈Πn\Π̂n

∑
y∈∆

P(0,0)(Xn = y)

≤ Cε+ C
∑

∆∈Πn

∑
y∈∆

[
max
x∈∆

P(0,0)(Xn = x)− P(0,0)(Xn = y)
]

≤ Cε+ Cn−
1
2+3dδ.

Since δ < 1
6d it follows by the Borel–Cantelli lemma that

lim sup
n→∞

∣∣∣ ∑
∆∈Πn\Π̂n

∑
x∈∆

P(0,0)(Xn = x)[φ(σ(x,n)ω)− 1]
∣∣∣ ≤ Cε, P-a.s. (2.5.5)

Next we turn to (2.5.3). First note that by the annealed derivative estimates from Lemma 2.2.1 we have for

x, y ∈ ∆, ∆ ∈ Π̂n

|P(0,0)(Xn = x)− P(0,0)(Xn = y)| ≤ C ∥x− y∥n−
d+1
2 ≤ Cn−

d+1
2 +δ. (2.5.6)

By triangle inequality, (2.5.6) and again, as above, using Corollary 2.1.4 for the bound
∑

y∈∆[φ(σ(y,n)ω)+1] ≤
C|∆| the expression (2.5.3) is bounded from above by

∑
∆∈Π̂n

∑
x∈∆

1

|∆|
∑
y∈∆

|P(0,0)(Xn = y)− P(0,0)(Xn = x)||φ(σ(x,n)ω)− 1|

≤ Cn−
d+1
2 +δ

∑
∆∈Π̂n

∑
x∈∆

1

|∆|
∑
y∈∆

[
φ(σ(x,n)ω) + 1

]
≤ Cn−

d+1
2 +δ

∑
∆∈Π̂n

∑
y∈∆

C

≤ C̃(Cε

√
n)dn−

d+1
2 +δ ≤ Ĉεn

− 1
2+δ.

with probability at least 1−Cn−c logn. Thus, as n→ ∞, by the Borel–Cantelli lemma the expression (2.5.3)

tends to 0 P-almost surely.

Finally we consider (2.5.4). By triangle inequality and P(0,0)(Xn = y) ≤ Cn−d/2 for all y we have

∣∣∣ ∑
∆∈Π̂n

∑
x∈∆

1

|∆|
∑
y∈∆

P(0,0)(Xn = y)[φ(σ(x,n)ω)− 1]
∣∣∣

≤
∑

∆∈Π̂n

1

|∆|
∑
y∈∆

P(0,0)(Xn = y)
∣∣∣∑
x∈∆

[φ(σ(x,n)ω)− 1]
∣∣∣

≤ Cn−d/2
∑

∆∈Π̂n

∣∣∣∑
x∈∆

[φ(σ(x,n)ω)− 1]
∣∣∣

= Cn−d(1/2−δ)
∑

∆∈Π̂n

1

|∆|

∣∣∣∑
x∈∆

[φ(σ(x,n)ω)− 1]
∣∣∣.
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Using Corollary 2.1.4 we obtain

P
(
Cnd(1/2−δ)

∑
∆∈Π̂n

1

|∆|

∣∣∣∑
x∈∆

[φ(σ(x,n)ω)− 1]
∣∣∣ > ε

)
≤ P

(
∃∆ ∈ Π̂n :

∑
∆∈Π̂n

1

|∆|

∣∣∣∑
x∈∆

[φ(σ(x,n)ω)− 1]
∣∣∣ > ε

CCd
ε

)
≤ n−d(1/2−δ)P

( 1

|∆0|
|
∑
x∈∆0

[φ(σ(x,n)ω)− 1]| > ε

CCd
ε

)
≤ n−d(1/2−δ)n−cδ2 logn ≤ C̃n−c̃ logn,

where ∆0 ∈ Π̂n is an arbitrarily fixed box. Thus, for ε > 0 as n→ ∞ the lim sup of (2.5.4) is bounded from

above by ε P-almost surely. Combining all three bounds of (2.5.2)–(2.5.4), we see that there is a constant Ĉ

so that for all ε > 0

lim sup
n→∞

|Zω,n − 1| ≤ Ĉε, P-almost surely,

which concludes the proof.

2.6 Proof of Proposition 2.1.9

The following result is an essential tool to prove Proposition 2.1.9 and will be proven in Section 2.8.

Lemma 2.6.1. Let 0 < θ < 1/2 and b > 0. Define the set

D(n) :=
⋂

x,y∈Zd :

∥x∥,∥y∥≤nb,

∥x−y∥≤nθ

{∥∥∥P (x,0)
ω (Xn ∈ ·)− P (y,0)

ω (Xn ∈ ·)
∥∥∥
TV

≤ e−c log n
log log n

}
. (2.6.1)

Then there are constants C, c > 0 so that P(D(n)) ≥ 1− Cn−c logn.

Note that the restriction ∥x∥ , ∥y∥ ≤ nb in the definition of D(n) in (2.6.1) is necessary because with

probability 1 we have an environment where there exist (somewhere far out in space) two neighbouring

points x, y ∈ Zd so that the sites (x, 0) and (y, 0) are both connected to infinity but the respective clusters

do not intersect for the first n time steps.

Remark 2.6.2. The above lemma is the analogue of Lemma 7.7 from [BCR16] in our setting. Note that the

bound stated in Lemma 7.7 from [BCR16] is too optimistic to hold in general. However, its assertion can be

weakened and one obtains a bound which is still strong enough to prove Lemma 7.5 in [BCR16] by going a

similar route as in the proof of Lemma 2.6.1 here.

Proof of Proposition 2.1.9, (L1). For this part we make use of the fact that, due to the annealed derivative

estimates from Lemma 2.2.1 for |x − y| ≤ k, |P(0,0)(Xn = x) − P(0,0)(Xn−k = y)| ≤ Ck/(n − k)(d+1)/2 ≈
n−(d+1)/2+ε, since k = ⌈nε⌉ ≪ n. Furthermore we use the fact that by definition as a density of the

invariant measure of the environment with respect to the point of view of the particle, the prefactor can

be “transported” along the quenched transition probabilities; see Proposition 2.4.4. Finally we use the

concentration property of Corollary 2.1.4; see equation (2.1.9).
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We have to show

lim
n→∞

∑
x∈Zd

∣∣∣ 1

Zω,n
P(0,0)(Xn = x)φ(σ(x,n)ω)

− 1

Zω,n−k

∑
y∈Zd

P(0,0)(Xn−k = y)φ(σ(y,n−k)ω)P
(0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣ = 0. (2.6.2)

Note that the by the triangle inequality the sum on the left hand side is bounded from above by

∑
x∈Zd

∣∣∣ 1

Zω,n
− 1

Zω,n−k

∣∣∣P(0,0)(Xn = x)φ(σ(x,n)ω)

+
1

Zω,n−k

∑
x∈Zd

∣∣∣P(0,0)(Xn = x)φ(σ(x,n)ω)

−
∑
y∈Zd

P(0,0)(Xn−k = y)φ(σ(y,n−k)ω)P
(0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣.

By definition of Zω,n, recall from Definition 2.1.7, the first sum in the above display equals to

∣∣∣ 1

Zω,n
− 1

Zω,n−k

∣∣∣Zω,n,

which by Proposition 2.1.8 almost surely goes to 0 as n and n − k both tend to ∞. Thus, taking also into

account the trivial deterministic bound on the speed of the random walk, for (2.6.2) it suffices to show

lim
n→∞

∑
x∈Zd∩[−n,n]d

∣∣∣P(0,0)(Xn = x)φ(σ(x,n)ω)

−
∑

y∈Zd∩[−n,n]d

P(0,0)(Xn−k = y)φ(σ(y,n−k)ω)P
(0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣ = 0. (2.6.3)

Denoting by Bn = {x ∈ Zd : ∥x∥ ≤
√
n log3 n} and using the triangle inequality an upper bound of the sum

in (2.6.3) is given by

∑
x∈Bn

∣∣∣ ∑
y∈Zd∩[−n,n]d

[
P(0,0)(Xn = x)− P(0,0)(Xn−k = y)

]
(2.6.4)

× φ(σ(y,n−k)ω)P
(0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣

+
∑
x∈Bn

P(0,0)(Xn = x) (2.6.5)

×
∣∣∣φ(σ(x,n)ω)− ∑

y∈Zd∩[−n,n]d

φ(σ(y,n−k)ω)P
(0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣

+
∑

x∈Zd∩[−n,n]d\Bn

∣∣∣P(0,0)(Xn = x)φ(σ(x,n)ω) (2.6.6)

−
∑

y∈Zd∩[−n,n]d

P(0,0)(Xn−k = y)φ(σ(y,n−k)ω)P
(0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣.
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By the annealed derivative estimates (2.6.4) is bounded from above by∑
x∈Bn

∣∣∣ ∑
y∈Zd

∥x−y∥≤k

[
P(0,0)(Xn = x)− P(0,0)(Xn−k = y)

]

× φ(σ(y,n−k)ω)P
(0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣

≤ 2Ck

(n− k)(d+1)/2

∑
x∈Bn

∑
y∈Zd

∥x−y∥≤k

φ(σ(y,n−k)ω)P
(0,0)
σ(y,n−k)ω

(Xk = x− y)

≤ 2Ck(
√
n log3 n+ k)d

(n− k)(d+1)/2

1

(
√
n log3 n+ k)d

∑
y∈Zd

dist(y,Bn)≤k

φ(σ(y,n−k)ω).

Now using Corollary 2.1.4 and the fact that k = ⌈nε⌉ < n1/4 for P-almost every ω the last term tends to

zero as n tend to infinity.

Next we deal with (2.6.5). Recall that by Proposition 2.4.4 we have

φ(σ(x,n)ω) =
∑

y∈Zd∩[−n,n]d

φ(σ(x,n−k)ω)P
(y,n−k)
ω (Xk = x)

for every x ∈ Zd such that x+ [−k, k]d ∩ Zd ⊂ [−n, n]d ∩ Zd. This holds for every x ∈ Bn and therefore the

expression (2.6.5) equals 0.

Finally, for (2.6.6), using Lemma 3.6 from [Ste17], we have P(0,0)(Xn /∈ Bn) ≤ Cn−c logn. Recall that

k = ⌈nε⌉ and note that if P
(y,n−k)
ω (Xk = x) > 0 then ∥x− y∥ ≤ k. Thus, for x ∈ [−n, n]d ∩ Zd \ Bn and

large enough n

∥y∥ ≥ ∥x∥ − ∥x− y∥ ≥
√
n log3 n− k ≥ 1

2

√
n log3 n.

This implies, again due to Lemma 3.6 from [Ste17] that P(0,0)(Xn−k = y) ≤ Cn−c logn. Therefore, the

expression (2.6.6) is bounded from above by∑
x∈Zd∩[−n,n]d\Bn

P(0,0)(Xn = x)φ(σ(x,n)ω)

+
∑

x∈Zd∩[−n,n]d\Bn

∑
y∈Zd∩[−n,n]d

P(0,0)(Xn−k = y)φ(σ(y,n−k)ω)P
(y,n−k)
ω (Xk = x)

≤ Cn−c logn
∑

x∈Zd∩[−n,n]d\Bn

φ(σ(x,n)ω)

+ Cn−c logn
∑

x∈Zd∩[−n,n]d\Bn

∑
y∈Zd∩[−n,n]d

φ(σ(y,n−k)ω)P
(y,n−k)
ω (Xk = x)

≤ Cn−c logn
∑

x∈Zd∩[−n,n]d

φ(σ(x,n)ω) + Cn−c logn
∑

y∈Zd∩[−n,n]d

φ(σ(y,n−k)ω).

By Corollary 2.1.4 we have

P
( ∑
x∈Zd∩[−n,n]d

φ(σ(x,n)ω) ≤ 2nd
)
> 1− n−c logn,
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as well as

P
( ∑
y∈Zd∩[−n,n]d

φ(σ(y,n−k)ω) ≤ 2nd
)
> 1− Cn−c logn.

Thus, the probability of the event that (2.6.6) is bounded above by 4Cn−c lognnd converges to 1 super-

algebraically fast. Hence the expression (2.6.6) converges to 0 P-almost surely.

Proof of Proposition 2.1.9, (L2). First note that, it is enough to show that∥∥νann×pre
ω − νbox−que×pre

ω

∥∥
1,n−k

n→∞−−−−→ 0,

since the last k steps are according to the quenched law for both hybrid measures. Then, as the measure

νbox−que×pre suggests, we make use of the comparison between the quenched and the annealed laws on

the level of boxes we derived from Lemma 2.1.1. We also use the concentration properties of φ from

Corollary 2.1.4.

Let k ∈ {0, . . . , n} be fixed. Note that we have

∥∥(νann×pre ∗ νque)ω,k − (νbox−que×pre ∗ νque)ω,k

∥∥
1,n

≤
∥∥νann×pre

ω − νbox−que×pre
ω

∥∥
1,n−k

=
∑
x∈Zd

φ(σ(x,n−k)ω)
∣∣∣P(0,0)(Xn−k = x)

Zω,n−k
− P

(0,0)
ω (Xn−k ∈ ∆x)∑
y∈∆x

φ(σ(y,n−k)ω)

∣∣∣.
By Proposition 2.1.8 it is enough to show that P-almost surely

lim
n→∞

∑
x∈Zd

φ(σ(x,n−k)ω)
∣∣∣P(0,0)(Xn−k = x)− P

(0,0)
ω (Xn−k ∈ ∆x)∑
y∈∆x

φ(σ(y,n−k)ω)

∣∣∣ = 0. (2.6.7)

Let An = {x ∈ Zd : ∥x∥ ≤ Cε
√
n}, with Cε chosen so that P(0,0)(∥Xn−k∥ > Cε

2

√
n− k) < ε for n large

enough. Using the triangle inequality the sum in (2.6.7) is bounded by

∑
x∈Zd∩[−n,n]d\An

φ(σ(x,n−k)ω)
∣∣∣P(0,0)(Xn−k = x)− P

(0,0)
ω (Xn−k ∈ ∆x)∑
y∈∆x

φ(σ(y,n−k)ω)

∣∣∣ (2.6.8)

+
∑
x∈An

φ(σ(x,n−k)ω)
∣∣∣P(0,0)(Xn−k = x)− P(0,0)(Xn−k ∈ ∆x)

|∆x|

∣∣∣ (2.6.9)

+
∑
x∈An

φ(σ(x,n−k)ω)
∣∣∣ 1

|∆x|
P(0,0)(Xn−k ∈ ∆x)−

P(0,0)(Xn−k ∈ ∆x)∑
y∈∆x

φ(σ(y,n−k)ω)

∣∣∣ (2.6.10)

+
∑
x∈An

φ(σ(x,n−k)ω)
∣∣∣ P(0,0)(Xn−k ∈ ∆x)∑

y∈∆x
φ(σ(y,n−k)ω)

− P
(0,0)
ω (Xn−k ∈ ∆x)∑
y∈∆x

φ(σ(y,n−k)ω)

∣∣∣. (2.6.11)

Now we deal with the four terms separately. Expression (2.6.8) is bounded from above by∑
x∈Zd∩[−n,n]d\An

P(0,0)(Xn−k = x)φ(σ(x,n−k)ω) + P (0,0)
ω (∥Xn−k∥ > Cε

√
n).

The term
∑

x∈Zd∩[−n,n]d\An
P(0,0)(Xn−k = x)φ(σ(x,n−k)ω) goes to zero as n goes to infinity by the same

arguments used to bound (2.5.2) in the proof of Proposition 2.1.8. For the second term we can argue as in
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the proof of Claim 2.15 from [BCR16], to obtain that for a set of environments, with P probability > 1−
√
ε,

for large enough n

P (0,0)
ω (∥Xn−k∥ > Cε

√
n) ≤ P (0,0)

ω

(
∥Xn∥ >

Cε

2

√
n
)
≤

√
ε.

Since ε > 0 was arbitrary, this proves that (2.6.8) goes to zero as n goes to infinity.

Next we turn to (2.6.9). The annealed derivative estimates yield that it is bounded from above by∑
x∈An

φ(σ(x,n−k)ω)
1

|∆x|
∑
y∈∆x

|P(0,0)(Xn−k = x)− P(0,0)(Xn−k = y)|

≤ C
∑
x∈An

φ(σ(x,n−k)ω)
1

|∆x|
∑
y∈∆x

1

(n− k)(d+1)/2
∥x− y∥

≤ Cdnδ
1

(n− k)(d+1)/2

∑
x∈An

φ(σ(x,n−k)ω)

=
Cnδ+d/2

(n− k)(d+1)/2

( 1

nd/2

∑
x∈An

φ(σ(x,n−k)ω)
)

n→∞−−−−→ 0, P-a.s.,

where for the limit we use Proposition 2.1.2, the fact that k = ⌈nε⌉ and δ < ε < 1
4 .

Next we deal with (2.6.10). Writing Π̂n = {∆ ∈ Π : ∆ ∩ An ̸= ∅}, using annealed derivative estimates

and Corollary 2.1.4 we see that (2.6.10) is bound by∑
x∈An

φ(σ(x,n−k)ω)
1

|∆x|
P(0,0)(Xn−k ∈ ∆x)

∣∣∣1− 1
1

|∆x|
∑

y∈∆x
φ(σ(y,n−k)ω)

∣∣∣
≤ C

(n− k)d/2

∑
x∈An

φ(σ(x,n−k)ω)
∣∣∣1− 1

1
|∆x|

∑
y∈∆x

φ(σ(y,n−k)ω)

∣∣∣
≤ C

(n− k

n

)−d/2 1

nd/2

∑
∆∈Π̂n

∑
x∈∆

φ(σ(x,n−k)ω)
∣∣∣1− 1

1
|∆x|

∑
y∈∆x

φ(σ(y,n−k)ω)

∣∣∣
= C

(
1− k

n

)−d/2 1

nd/2

∑
∆∈Π̂n

∑
x∈∆

φ(σ(x,n−k)ω)|∆x|∑
y∈∆x

φ(σ(y,n−k)ω)

∣∣∣ 1

|∆x|
∑
y∈∆x

φ(σ(x,n−k)ω)− 1
∣∣∣

= C
(
1− k

n

)−d/2 1

n(d/2)(1−2δ)

∑
∆∈Π̂n

∣∣∣ 1

|∆|
∑
x∈∆

φ(σ(x,n−k)ω)− 1
∣∣∣.

Using the same argument that was used for (2.5.4), we get that by the Borel–Cantelli lemma the last term

goes to zero P-a.s.
Finally, we estimate (2.6.11). It is bounded from above by

∑
x∈An

φ(σ(x,n−k)ω)∑
y∈∆x

φ(σ(y,n−k)ω)
|P(0,0)(Xn−k ∈ ∆x)− P (0,0)

ω (Xn−k ∈ ∆x)|

=
∑

∆∈Π̂n

|P(0,0)(Xn−k ∈ ∆)− P (0,0)
ω (Xn−k ∈ ∆)|.

For the last term we can use Theorem 2.7.1 which implies that it is bounded by Cn−
1
3 δ for P-almost every

ω and large enough n. Therefore P almost surely it converges to zero as n tends to infinity.
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Proof of Proposition 2.1.9, (L3). Note that the first measure chooses, at time n− k, a box according to the

quenched law and a point in that box weighted by the prefactor, whereas the second measure chooses a box

and a point in that box according to the quenched law at time n − k. These points are then the starting

points for the quenched random walks for the remaining k steps. We use the fact that, given enough time

(much more than the square of the starting distance), the total variation distance for two quenched random

walks starting from any pair of sites in a box with side length ⌈nℓ⌉ is, given enough time, i.e. much more

than the square of the side length of the box, is small with high probability, see Lemma 2.6.1.

The proof follows along the same lines as in [BCR16]. We will highlight the point in the proof where we

deviate. We have∥∥(νbox−que×pre ∗ νque)ω,k − (νque ∗ νque)ω,k

∥∥
1,n

=
∑
x∈Zd

∣∣(νbox−que×pre ∗ νque)ω,k(x, n)− (νque ∗ νque)ω,k(x, n)
∣∣

=
∑
x∈Zd

∣∣∣∑
y∈Zd

P (0,0)
ω (Xn−k ∈ ∆y)

φ(σ(y,n−k)ω)∑
z∈∆y

φ(σ(z,n−k)ω)
P (0,0)
σ(y,n−k)ω

(Xk = x− y)

−
∑
y∈Zd

P (0,0)
ω (Xn−k = y)P (0,0)

σ(y,n−k)ω
(Xk = x− y)

∣∣∣
=
∑
x∈Zd

∣∣∣∑
∆∈Π

∑
y∈∆

P (y,n−k)
ω (Xk = x)P (0,0)

ω (Xn−k ∈ ∆)

·
( φ(σ(y,n−k)ω)∑

z∈∆ φ(σ(z,n−k)ω)
− P (0,0)

ω (Xn−k = y |Xn−k ∈ ∆)
)∣∣∣

≤
∑
x∈Zd

∑
∆∈Π

∣∣∣∑
y∈∆

P (y,n−k)
ω (Xk = x)P (0,0)

ω (Xn−k ∈ ∆)

·
( φ(σ(y,n−k)ω)∑

z∈∆ φ(σ(z,n−k)ω)
− P (0,0)

ω (Xn−k = y |Xn−k ∈ ∆)
)∣∣∣. (2.6.12)

Since for every ∆ ∈ Π and x ∈ Zd we have∑
y∈∆

1

|∆|
∑
v∈∆

P (v,n−k)
ω (Xk = x)

[ φ(σ(y,n−k)ω)∑
z∈∆ φ(σ(z,n−k)ω)

− P (0,0)
ω (Xn−k = y |Xn−k ∈ ∆)

]
= 0

it follows that (2.6.12) equals∑
x∈Zd

∑
∆∈Π

P (0,0)
ω (Xn−k ∈ ∆)

∣∣∣∑
y∈∆

[
P (y,n−k)
ω (Xk = x)−

( 1

|∆|
∑
w∈∆

P (w,n−k)
ω (Xk = x)

)]
( φ(σ(y,n−k)ω)∑

z∈∆ φ(σ(z,n−k)ω)
− P (0,0)

ω (Xn−k = y |Xn−k ∈ ∆)
)∣∣∣

=
∑
x∈Zd

∑
∆∈Π

P (0,0)
ω (Xn−k ∈ ∆)

∣∣∣ 1

|∆|
∑
y∈∆

∑
w∈∆

[
P (y,n−k)
ω (Xk = x)− P (w,n−k)

ω (Xk = x)
]

( φ(σ(y,n−k)ω)∑
z∈∆ φ(σ(z,n−k)ω)

− P (0,0)
ω (Xn−k = y |Xn−k ∈ ∆)

)∣∣∣
≤
∑
∆∈Π

∑
x∈Zd

P (0,0)
ω (Xn−k ∈ ∆)

∑
y∈∆

1

|∆|
∑
w∈∆

∣∣∣P (y,n−k)
ω (Xk = x)− P (w,n−k)

ω (Xk = x)
∣∣∣

∣∣∣ φ(σ(y,n−k)ω)∑
z∈∆ φ(σ(z,n−k)ω)

− P (0,0)
ω (Xn−k = y |Xn−k ∈ ∆)

∣∣∣ (2.6.13)
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Until this point the steps are basically the same as in [BCR16]. Here we deviate from their proof. Note that

P
(0,0)
ω (Xn−k ∈ ∆) = 0 if ∆ ∩ [−n + k, n − k]d = ∅. For ∆ ∩ [−n + k, n − k]d ̸= ∅ we have y, w ∈ ∆ implies

that ∥y∥ , ∥w∥ ≤ n = k1/ε and ∥y − w∥ ≤ nδ = kδ/ε.

Using Lemma 2.6.1 we see that (2.6.13) is bounded from above by

∑
∆∈Π

P (0,0)
ω (Xn−k ∈ ∆)

∑
y∈∆

∣∣∣ φ(σ(y,n−k)ω)∑
z∈∆ φ(σ(z,n−k)ω)

− P (0,0)
ω (Xn−k = y |Xn−k ∈ ∆)

∣∣∣
1

|∆|
∑
w∈∆

∑
x∈Zd

∣∣∣P (y,n−k)
ω (Xk = x)− P (w,n−k)

ω (Xk = x)
∣∣∣

≤ e−c log k
log log k

∑
∆∈Π

P (0,0)
ω (Xn−k ∈ ∆)

∑
y∈∆

∣∣∣ φ(σ(y,n−k)ω)∑
z∈∆ φ(σ(z,n−k)ω)

− P (0,0)
ω (Xn−k = y |Xn−k ∈ ∆)

∣∣∣
≤ 2e−c log k

log log k

∑
∆∈Π

P (0,0)
ω (Xn−k ∈ ∆) = 2e−c log k

log log k ≤ Ce−c̃ log n
log log n

since k = ⌈nε⌉. The right hand side goes to 0 for n→ ∞.

2.7 Proof of Proposition 2.3.1

The starting point is a result from [Ste17]. Define

P(N) :=
([

− 1

24

√
N log3N,

1

24

√
N log3N

]d
×
[
0,

1

3
N
])

∩ (Zd × Z). (2.7.1)

For θ ∈ (0, 1) and (x,m) ∈ P(N) let G′((x,m), N) denote the event that for every box ∆ ⊂ Zd of side length

Nθ/2 we have ∣∣P (x,m)
ω (Xm+N ∈ ∆)− P(x,m)(Xm+N ∈ ∆)

∣∣ ≤ CN−d(1−θ)/2− 1
6 θ. (2.7.2)

Furthermore set

G′(N) :=
⋂

(x,m)∈P(N)

(
G′((x,m), N

)
∪ {ξm(x) = 0}). (2.7.3)

Theorem 2.7.1 (Theorem 3.24 in [Ste17]). Let d ≥ 3. There exist positive constants c and C, such that for

all (x,m) ∈ P(N) we have

P(x,m)
(
G′((x,m), N)

)
≥ 1− CN−c logN (2.7.4)

and

P
(
G′(N)

)
≥ 1− CN−c logN . (2.7.5)

The following notion of good sites and good boxes will be needed in the proof of Proposition 2.3.1. On

such boxes the annealed and quenched laws are “close” to each other. Recall the process ξ = (ξn)n∈Z from

(1.1.4) and the definition of nk from the beginning of Section 2.3. Recall also that Πk is a partition of Zd

into the boxes of side length ⌊nθk⌋.
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Definition 2.7.2. For a given realisation ω ∈ Ω, we say that (x,m) ∈ Zd × Z is (k − 1, θ, ε)-good if either

ξm(x;ω) = 0 or ξm(x;ω) = 1 and the following two conditions are satisfied

sup
∆′∈Πk

∣∣P (x,m)
ω (Xm+nk

∈ ∆′)− P(x,m)(Xm+nk
∈ ∆′)

∣∣ ≤ n
θd− d

2−ε

k , (2.7.6)

P (x,m)
ω

(
max
s≤nk

∥Xm+s − x∥ >
√
nk log

3 nk

)
≤ Cn−c lognk

k . (2.7.7)

Otherwise the site is said to be (k − 1, θ, ε)-bad. We say that for ∆ ∈ Πk−1 and m ∈ Z the box ∆ × {m}
is (k − 1, θ, ε)-good if each (x,m) ∈ ∆ × {m} is (k − 1, θ, ε)-good. Otherwise we say that ∆ × {m} is

(k − 1, θ, ε)-bad.

The following lemma is a direct consequence of Theorem 2.7.1.

Lemma 2.7.3. For all ∆ ∈ Πk−1 there are positive constants C and c so that

P (∆ is (k − 1, θ, ε)-good) ≥ 1− Cn−c lognk

k . (2.7.8)

The assertion of Proposition 2.3.1 is the analogue of the inequality (5.1) in [BCR16]. The strategy of the

proof there is as follows. First, using the triangle inequality and the Markov property an upper bound of λk

is obtained which is given by a sum of four terms (5.2) – (5.5) in [BCR16]. Second, for each of these four

terms an upper bound is shown. Three of these upper bounds, the ones for (5.2), (5.4) and (5.5), are not

difficult and can be proven in the same way as in [BCR16]. For (5.3) Berger et. al use a notion of “good”

boxes and the fact that they are independent at a large but finite distance. The definition of those good

boxes translates to our Definition 2.7.2, where it is clear that the dependence on ξ prevents us from directly

using any argument hinging on independence at a finite distance. We circumvent this problem by defining a

new type of boxes for which we are able to work with independence, see the ideas below Proposition 2.7.4.

Using those boxes as an approximation for the good boxes we prove a lower bound on the probability of

hitting a good box in Proposition 2.7.4.

Proof of the analogue of an upper bound of (5.2) in [BCR16]. Consider∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P (u,Nk−1)
ω (XNk

∈ ∆)

×
[
P (0,0)
ω (XNk−1

= u)− P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)
]∣∣∣. (2.7.9)

To get an upper bound for (2.7.9) the arguments in [BCR16] do not require any specific properties of the

model and apply to our model as well. The steps are as follows: by the triangle inequality followed by

elementary computations (2.7.9) is bounded from above by∑
∆∈Πk

∑
∆′∈Πk−1

∑
u∈∆′

P (u,Nk−1)
ω (XNk

∈ ∆)

×
∣∣P (0,0)

ω (XNk−1
= u)− P(0,0)(XNk−1

∈ ∆′)P (0,0)
ω (XNk−1

= u|XNk−1
∈ ∆′)

∣∣
=

∑
∆′∈Πk−1

∑
u∈∆′

|P (0,0)
ω (XNk−1

= u)− P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)|

=
∑

∆′∈Πk−1

∑
u∈∆′

P (0,0)
ω (XNk−1

= u|XNk−1
∈ ∆′)|P (0,0)

ω (XNk−1
∈ ∆′)− P(0,0)(XNk−1

∈ ∆′)|

=
∑

∆′∈Πk−1

|P (0,0)
ω (XNk−1

∈ ∆′)− P(0,0)(XNk−1
∈ ∆′)| = λk−1.

(2.7.10)
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Proof of the analogue of an upper bound of (5.3) in [BCR16]. Consider∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)

× [P (u,Nk−1)
ω (XNk

∈ ∆)− P(u,Nk−1)(XNk
∈ ∆)]

∣∣∣. (2.7.11)

First, by the triangle inequality (2.7.11) is bounded from above by∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)

∑
∆∈Πk

∣∣P (u,Nk−1)
ω (XNk

∈ ∆)− P(u,Nk−1)(XNk
∈ ∆)

∣∣. (2.7.12)

Next we define Π1
k−1 as the set of boxes ∆′ ∈ Πk−1 with the property

∆′ ∩ {x ∈ Zd : ∥x∥ ≤
√
Nk−1 log

3Nk−1} ≠ ∅.

By Lemma 3.6 in [Ste17] it follows∑
∆′ /∈Π1

k−1

P(0,0)(XNk−1
∈ ∆′) ≤ CN

−c logNk−1

k−1 (2.7.13)

and consequently (2.7.11) is bounded from above by

CN
−c logNk−1

k−1 +
∑

∆′∈Π1
k−1

∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)

∑
∆∈Πk

∣∣P (u,Nk−1)
ω (XNk

∈ ∆)− P(u,Nk−1)(XNk
∈ ∆)

∣∣. (2.7.14)

Recall Definition 2.7.2. We will write “good” for (k − 1, θ, ε)-good to simplify the notation. By

Lemma 2.7.3 we have P
(
∆ is (k − 1, θ, ε)-good

)
≥ 1 − Cn−c lognk

k . For u ∈ Zd define by Π
(1,u)
k the set

of boxes ∆ ∈ Πk satisfying (note that E(u,0)[Xnk
] = u)

∆ ∩
{
x ∈ Zd :

∥∥x− u
∥∥ ≤

√
nk log

3 nk
}
̸= ∅. (2.7.15)

If a box ∆′ ∈ Π1
k−1 is (k − 1, θ, ε)-good, then for u ∈ ∆′∑

∆∈Πk

|P (u,Nk−1)
ω (XNk

∈ ∆)− P(u,Nk−1)(XNk
∈ ∆)|

=
∑

∆∈Π
(1,u)
k

|P (u,Nk−1)
ω (XNk

∈ ∆)− P(u,Nk−1)(XNk
∈ ∆)|

+
∑

∆∈Πk\Π(1,u)
k

|P (u,Nk−1)
ω (XNk

∈ ∆)− P(u,Nk−1)(XNk
∈ ∆)|

≤
∑

∆∈Π
(1,u)
k

|P (u,Nk−1)
ω (XNk

∈ ∆)− P(u,Nk−1)(XNk
∈ ∆)|+ Cn−c lognk

k

≤ |Π(1,u)
k |Cnθd−

d
2−ε

k + Cn−c lognk

k

≤ Cn
d
2−θd+θd− d

2−ε

k (log nk)
3d + Cn−c lognk

k

≤ C(n−ε
k (log nk)

3d + n−c lognk

k ) ≤ Cn
−ε/2
k ,

(2.7.16)
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where we used in the first inequality that by Lemma 3.6 from [Ste17]

P(0,0)
(
∥Xn∥ >

√
n log3 n

)
≤ Cn−c logn

and that |Π(1,u)
k | ≤ Cn

d/2−θd
k (log nk)

3d.

It follows that (2.7.11) is bounded from above by

CN
−c logNk−1

k−1 +
∑

∆′∈Π1
k−1

is good

∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)Cn
−ε/2
k

+
∑

∆′∈Π1
k−1

is bad

∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)

×
∑

∆∈Πk

|P (u,Nk−1)
ω (XNk

∈ ∆)− P(u,Nk−1)(XNk
∈ ∆)|

≤ CN
−c logNk−1

k−1 + Cn
−ε/2
k + C

∑
∆′∈Π1

k−1

is bad

P(0,0)(XNk−1
∈ ∆′).

(2.7.17)

Now we want to find an estimate for the probability of hitting a bad box. For some β > 0, to be chosen

later, we consider the following event

GN,nk−1
:=
{ ∑
∆∈Πk−1

1{∆ is(k−1,θ,ε)-good}P(0,0)
(
XNk−1

∈ ∆
)
≥ 1− C ′n−β

k

}
(2.7.18)

and define

GN :=

r(N)⋂
k=1

GN,nk
. (2.7.19)

We want to mimic the proof in [BCR16] and for that we need to define a new type of boxes to approximate

the density of bad boxes. The problem with following the proof in [BCR16] arises from the fact that our

environment is, due to the dependence on infinitely long open paths, not i.i.d. To overcome that problem

the idea is to exchange the environment ξ with a process that only has finite range dependencies. We will

use this idea to show in Proposition 2.7.4 below that

P(GN ) ≥ 1− CN−c log(N). (2.7.20)

Note that nk−1 = n2k. Thus, on GN the expression (2.7.11) is bounded from above by

CN
−c logNk−1

k−1 + Cn
−ε/2
k + C

∑
∆′∈Π1

k−1

is bad

P(0,0)(XNk−1
∈ ∆′)

≤ CN
−c logNk−1

k−1 + Cn
−ε/2
k + C ′n−β

k−1 ≤ C ′′n
−ε/4
k−1 .

(2.7.21)

As can be seen in the proof of Proposition 2.7.4 we can choose β ≥ ε/4 to obtain the last inequality in

(2.7.21).

Proof of the analogue of an upper bound of (5.4) in [BCR16]. Consider∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(u,Nk−1)(XNk
∈ ∆)

× [P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)− P(0,0)(XNk−1
= u)]. (2.7.22)

60



For any two probability measures µ and µ̃ on Zd we have∑
u∈∆′

f(u)µ(u)−
∑
u∈∆′

f(u)µ̃(u) ≤ max
u∈∆′

f(u)− min
u∈∆′

f(u).

Thus, the expression (2.7.22) can be bounded from above by∑
∆∈Πk

∑
∆′∈Πk−1

P(0,0)(XNk−1
∈ ∆′)

∣∣max
u∈∆′

P(u,Nk−1)(XNk
∈ ∆)− min

u∈∆′
P(u,Nk−1)(XNk

∈ ∆)
∣∣

≤
∑

∆′∈Πk−1

P(0,0)(XNk−1
∈ ∆′)

×
∑

∆∈Π
(1,u)
k

∣∣max
u∈∆′

P(u,Nk−1)(XNk
∈ ∆)− min

u∈∆′
P(u,Nk−1)(XNk

∈ ∆)
∣∣+ Cn−c lognk

k ,

(2.7.23)

where Π
(1,u)
k is the set defined above.

Using P(u,Nk−1)(XNk
∈ ∆) =

∑
v∈∆ P(u,Nk−1)(XNk

= v) we have

max
u∈∆′

P(u,Nk−1)(XNk
∈ ∆)− min

u∈∆′
P(u,Nk−1)(XNk

∈ ∆)

≤
∑
v∈∆

max
u∈∆′

P(u,Nk−1)(XNk
= v)− min

u∈∆′
P(u,Nk−1)(XNk

= v)

≤
∑
v∈∆

diam(∆′)
C

n
(d+1)/2
k

≤ (nθk)
dnθk−1

C

n
(d+1)/2
k

,

(2.7.24)

where the second to last inequality follows by the annealed derivative estimates from Lemma 3.9 in [Ste17].

Altogether the expression (2.7.22) is bounded from above by∑
∆′∈Πk−1

P(0,0)(XNk−1
∈ ∆′)

∑
∆∈Π1,u

(k)

(nθk)
dnθk−1

C

n
(d+1)/2
k

+ Cn−c lognk

k

≤ C
∑

∆′∈Πk−1

P(0,0)(XNk−1
∈ ∆′)

(dnθk−1

√
nk(log nk)

3

nθk

)d
(nθk)

dnθk−1

C

n
(d+1)/2
k

+ Cn−c lognk

k

≤ C(log nk)
3dn

θ
k−1

n
1/2
k

+ Cn−c lognk

k ≤ C
(log nk)

3d

n
1/2−2θ
k

+ Cn−c lognk

k .

(2.7.25)

Proof of the analogue of an upper bound of (5.5) in [BCR16]. Consider∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(0,0)(XNk−1
= u)P(u,Nk−1)(XNk

∈ ∆)− P(0,0)(XNk
∈ ∆, XNk−1

∈ ∆′)
∣∣∣. (2.7.26)

Recall the regeneration times introduced in [BČDG13]. There they are defined for a random walk on the

backbone of the oriented percolation cluster, whereas we allow the random walk to start outside the cluster.

In Remark 2.3 Birkner et. al note that the local construction, which they use to obtain the regeneration times,

can be extended to starting points outside the cluster. Let Bm,m̃ be the event that the first regeneration

time greater than m will happen before m + m̃β , for some small constant β > 0 to be tuned appropriately
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later. By Lemma 2.5 from [BČDG13] the distribution of the regeneration increments has exponential tail

bounds, and thus P(Bm,m̃) ≤ Ce−cmβ

. First, note that by the theorem of total probability and the triangle

inequality (2.7.26) is bounded from above by∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

|P(u,Nk−1)(XNk
∈ ∆)− P(0,0)(XNk

∈ ∆|XNk−1
= u)|

≤
∑

∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

×
∑

∆∈Πk

(∣∣P(u,Nk−1)(XNk
∈ ∆)− P(0,0)(XNk

∈ ∆, BNk−1,nk
|XNk−1

= u)
∣∣

+ P(0,0)(XNk
∈ ∆, BC

Nk−1,nk
|XNk−1

= u)
)

(2.7.27)

First note that∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

P(0,0)(XNk
∈ ∆, BC

Nk−1,nk
|XNk−1

= u)

= P(BC
Nk−1,nk

) ≤ Ce−cnβ
k .

The remaining part of the right hand side of (2.7.27) is bounded from above by∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

(
P(u,Nk−1)(XNk

∈ ∆, BC
0,nk

)

+
∣∣P(u,Nk−1)(XNk

∈ ∆, B0,nk
)− P(0,0)(XNk

∈ ∆, BNk−1,nk
|XNk−1

= u)
∣∣).

Using the same arguments as above we obtain∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

P(u,Nk−1)(XNk
∈ ∆, BC

0,nk
) = P(BC

Nk−1,nk
) ≤ Ce−cnβ

k

and thus it remains to find a suitable upper bound for∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

∣∣P(u,Nk−1)(XNk
∈ ∆, B0,nk

)− P(0,0)(XNk
∈ ∆, BNk−1,nk

|XNk−1
= u)

∣∣
Let τ̃Nk−1

denote the first regeneration time greater than Nk−1. By splitting the probabilities above into

the sum over the possible times at which the regeneration can occur and the possible sites at which the

random walk can be at the time of the regeneration we see that the term in the above display equals to∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

×
∑

∆∈Πk

∣∣∣ ∑
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)P(u,Nk−1)(τ̃Nk−1

= t,Xτ̃Nk−1
= v)

−
∑

t∈[Nk−1,Nk−1+nβ
k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)P(0,0)(τ̃Nk−1

= t,Xτ̃Nk−1
= v|XNk−1

= u)
∣∣∣.

(2.7.28)
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The modulus in the last two lines of the above display is bounded from above by

∣∣∣ max
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)

∑
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(u,Nk−1)(τ̃Nk−1
= t,Xτ̃Nk−1

= v)

− min
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)

∑
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(0,0)(τ̃Nk−1
= t,Xτ̃Nk−1

= v|XNk−1
= u)

∣∣∣
≤
∣∣∣ max
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)− min

t∈[Nk−1,Nk−1+nβ
k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)

∣∣∣
+ max

t∈[Nk−1,Nk−1+nβ
k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)P(u,Nk−1)(τ̃Nk−1

> Nk−1 + nβk)

+ min
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)P(0,0)(τ̃Nk−1

> Nk−1 + nβk |XNk−1
= u)

(2.7.29)

Plugging that into the sums in (2.7.28) we obtain that an upper bound of (2.7.26) is given by

∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

∣∣∣ max
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)− min

t∈[Nk−1,Nk−1+nβ
k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)

∣∣∣
+

∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

max
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)P(u,Nk−1)(τ̃Nk−1

> Nk−1 + nβk)

+
∑

∆′∈Πk−1

∑
u∈∆′

∑
∆∈Πk

min
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)P(0,0)(τ̃Nk−1

> Nk−1 + nβk , XNk−1
= u)

+ Ce−cnβ
k .

(2.7.30)

Now define Π1,u,β
k as the set boxes ∆ ∈ Πk for which

∆ ∩
( ⋃

v : ∥v−u∥≤nβ
k

{x ∈ Zd : ∥x− v∥ ≤
√
nk log

3 nk}
)
̸= ∅. (2.7.31)

Using Lemma 3.6 from [Ste17] we obtain

∑
∆/∈Π1,u,β

k

P(v,0)(XNk−t ∈ ∆) ≤ P(v,0)
(
|XNk−t − v| >

√
Nk − t log3Nk − t

)
≤ Cn−c lognk

k
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for all v ∈ Zd with ∥v − u∥ ≤ nβk and all t ∈ [Nk−1, Nk−1 + nβk ]. Using this it follows∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

max
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:|u−v|≤nβ
k

P(v,t)(XNk
∈ ∆)P(u,Nk−1)(τ̃Nk−1

> Nk−1 + nβk)

≤ |Π1,u,β
k |P(0,0)(τ̃Nk−1

> Nk−1 + nβk) + Cn−c lognk

k

≤ nβdk n
d/2(1−2θ)
k (log nk)

3dCe−cnβ
k + Cn−c lognk

k ≤ Cn−c lognk

k ,

(2.7.32)

where we have used the fact that, by the definition of Π
(1,u)
k in (2.7.15), |Π1,u,β

k | ≤ nβdk |Π(1,u)
k |. Similarly∑

∆′∈Πk−1

∑
u∈∆′

∑
∆∈Πk

min
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:|u−v|≤nβ
k

P(v,t)(XNk
∈ ∆)P(0,0)(τ̃Nk−1

> Nk−1 + nβk , XNk−1
= u)

≤ |Π1,u,β
k |P(0,0)(τ̃Nk−1

> Nk−1 + nβk) + Cn−c lognk

k

≤ nβdk n
d/2(1−2θ)
k (log nk)

3dCe−cnβ
k + Cn−c lognk

k ≤ Cn−c lognk

k .

(2.7.33)

Altogether it follows that (2.7.26) is bounded from above by∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

×
∑

∆∈Π1,u,β
(k)

∣∣∣ max
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)− min

t∈[Nk−1,Nk−1+nβ
k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)

∣∣∣
+ Cn−c lognk

k + Ce−cnβ
k (2.7.34)

Using the annealed derivative estimates from Lemma 2.2.1 we obtain∣∣∣ max
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)− min

t∈[Nk−1,Nk−1+nβ
k ]

v∈Zd:∥u−v∥≤nβ
k

P(v,t)(XNk
∈ ∆)

∣∣∣
≤ |∆|

∣∣∣ max
t∈[Nk−1,Nk−1+nβ

k ]

v∈Zd:∥u−v∥≤nβ
k

x∈∆

P(v,t)(XNk
= x)− min

t∈[Nk−1,Nk−1+nβ
k ]

v∈Zd:∥u−v∥≤nβ
k

y∈∆

P(v,t)(XNk
= y)

∣∣∣
≤ |∆|C(4nβk + nθk)n

− d+1
2

≤ ndθk C(4n
β
k + nθk)n

− d+1
2

k . (2.7.35)

Now if we choose β = θ and θ small enough, we get that the above expression is smaller than Cn
− 2d+1

4

k .

Putting everything together we get the upper bound

Ce−cnθ
k + Cn−c lognk

k +
∑

∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Π1,u

k

n
− d

2−
1
4

k

≤ Ce−cnθ
k + Cn−c lognk

k +
∑

∆′∈Πk−1

P(0,0)(XNk−1
∈ ∆′)|Π1,u

k |n−
d
2−

1
4

k

≤ Ce−cnθ
k + Cn−c lognk

k + Cn
(1/2−θ)d
k (log nk)

3dn
− d

2−
1
4

k

= Ce−cnθ
k + Cn−c lognk

k + C(log nk)
3d2n

θ−1/4
k

64



Thus, recalling equation (2.7.26), we obtain∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(0,0)(XNk−1
= u)P(u,Nk−1)(XNk

∈ ∆)− P(0,0)(XNk
∈ ∆, XNk−1

∈ ∆′)
∣∣∣

≤ Cn−c
k (2.7.36)

for some constants C, c > 0.

Proof of Proposition 2.3.1. To prove Proposition 2.3.1 we need to show inequality (2.3.3) which we recall

here

λk ≤ λk−1 + Cn−α
k , ∀ 1 ≤ k ≤ r(N).

for some positive constants α and C on the event G(N) from (2.7.19).

Fix ω ∈ G(N). Recall the definition

λk =
∑

∆∈Πk

∣∣P (0,0)
ω (XNk

∈ ∆)− P(0,0)(XNk
∈ ∆)

∣∣
from equation (2.3.2). Furthermore, we recall (2.7.9), (2.7.11), (2.7.22) and (2.7.26) for which we just

estimated upper bounds.

(2.7.9) =
∑

∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P (u,Nk−1)
ω (XNk

∈ ∆)

×
[
P (0,0)
ω (XNk−1

= u)− P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)
]∣∣∣,

(2.7.11) =
∑

∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)

× [P (u,Nk−1)
ω (XNk

∈ ∆)− P(u,Nk−1)(XNk
∈ ∆)]

∣∣∣,
(2.7.22) =

∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(u,Nk−1)(XNk
∈ ∆)

× [P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)− P(0,0)(XNk−1
= u)],

(2.7.26) =
∑

∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(0,0)(XNk−1
= u)P(u,Nk−1)(XNk

∈ ∆) − P(0,0)(XNk
∈ ∆, XNk−1

∈ ∆′)
∣∣∣.

Note that for λk, by the triangle inequality, we obtain

λk ≤ (2.7.9) + (2.7.11) + (2.7.22) + (2.7.26).

Thus, using the proven estimates, (2.7.10), (2.7.21), (2.7.25) and (2.7.36), for each of the summands respec-

tively we gain

λk ≤ λk−1 + C ′′n
−ε/4
k−1 + C

(log nk)
3d

n
1/2−2θ
k

+ Cn−c lognk

k + Cn−c
k ≤ λk−1 + C̃n−α

k

for appropriate choices of α > 0 and C̃ > 0. The fact that P(GN ) ≥ 1 − CN−c logN is proved in Proposi-

tion 2.7.4.
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Proposition 2.7.4. For the events GN from (2.7.19) there exists N0 ∈ N such that, for all N ≥ N0 we have

that

P(GN ) ≥ 1− CN−c logN . (2.7.37)

Let β > 0 and put f(nk) = log2 nk. First we need another notion of good sites. Given a realization ω we

define for all (x, ℓ) ∈ Zd ×Z the set Cm(x, ℓ) as the set of sites at time ℓ+m ∈ Z which can be reached from

(x, ℓ) via an open path w.r.t. ω. We start by defining for k = 1, 2, . . . a field ξ̃k := (ξ̃kt (x))t∈Zd as follows

(i) ξ̃kt (x) = ξt(x) for all (x, t) ∈ Zd × {nk + f(nk), nk + f(nk) + 1, . . . }

(ii) For all (x, t) ∈ Zd × {. . . , nk + f(nk) − 2, nk + f(nk) − 1} we set ξ̃kt (x) = 1 if Cnk+f(nk)−t(x, t) ̸= ∅.
Otherwise we set ξ̃kt (x) = 0.

Note that ξ ≤ ξ̃k since for (x, t) with t < nk + f(nk) we set ξ̃t(x) = 1 if (x, t) has an open path of length at

least nk + f(nk)− t instead of requiring an infinite open path. For ξt(x) ̸= ξ̃kt (x) we necessarily must have

t < nk + f(nk) and there must exist an open path started at (x, t) whose length is at least nk + f(nk) − t

but the contact process started at (x, t) has to eventually die out, i.e. there is no infinite open path starting

in (x, t).

The following lemma gives us an upper bound on that probability. The result is well known in the

oriented percolation and contact process world. For a proof see for instance in Lemma A.1. in [BČDG13].

Lemma 2.7.5. For p > pc there exist C, c > 0 such that for all (x, t) ∈ Zd × Z

P
(
(x, t) →ω Zd × {t+ n} and (x, t) ↛ω Zd × {∞}

)
≤ Ce−cn, n ∈ N.

As a direct consequence we get the following corollary.

Corollary 2.7.6. For x ∈ Zd define

Dnk
(x) :=

(
x+ [−nθk−1 − nk, n

θ
k−1 + nk]

d × [0, nk]
)
∩ (Zd × Z).

For p > pc there exist constants C, c > 0 such that

P
(
ξ̃kt (y) = ξt(y) for all (y, t) ∈ Dnk

(x)
)
≥ 1− Ce−c log2 nk . (2.7.38)

Proof. Note that θ > 0 is a small constant and can be chosen such that we have nθk−1 = n2θk ≤ nk and

thus |Dnk
(x)| ≤ 2dnd+1

k . By definition of ξ̃k ξ̃kt (y) ̸= ξt(y) implies that there is at least one open but finite

paths whose length is larger that f(nk). Using Lemma 2.7.5 the assertion (2.7.38) follows by the choice of

f(nk) = log2 nk. (Here one can see that other choices of f(nk) are possible as well.)

Let (X̃) be a random walk in the environment ξ̃k with transition probabilities given by

Pω,ξ̃k(X̃n+1 = x | X̃n = y) =


|U(x, n) ∩ C̃k|−1 if (x, n) ∈ C̃k and (y, n+ 1) ∈ U(x, n) ∩ C̃k,

|U(x, n)|−1 if (x, n) /∈ C̃k and (y, n+ 1) ∈ U(x, n),

0 otherwise,

(2.7.39)

where C̃k := {(x, n) ∈ Zd × Z : ξ̃kn(x) = 1}.
Given a realisation ω, we say that (x,m) is (k− 1, θ, ε, ξ̃k)-good if it satisfies the conditions from Defini-

tion 2.7.2 with ξ replaced by ξ̃k and X replaced by X̃ in the quenched probabilities.
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Lemma 2.7.7. For all (x, t) ∈ Zd × Z we have that

P((x, t) is (k − 1, θ, ε, ξ̃k)-good) ≥ 1− Cn−c lognk

k . (2.7.40)

Proof. Due to Lemma 2.7.3 it suffices to show that with probability at least 1−Cn−c lognk

k we have ξ̃kt (y) =

ξt(y) for all (y, t) ∈ Dnk
(x). This exactly the assertion of Corollary 2.7.6. On that event (x, t) is (k−1, θ, ε)-

good iff (x, t) is (k − 1, θ, ε, ξ̃k)-good.

Proof of Proposition 2.7.4. Recall the definition of GN,nk−1
from (2.7.18). To estimate the probability of

hitting a bad box we can now mimic the proof in [BCR16] since we get a lower bound by estimating the

probability for the (k− 1, θ, ε, ξ̃k)-good boxes. By construction those boxes are independent of each other at

distance > 5nk. Define

Π
(0)
k−1 = {∆′ ∈ Π1

k−1 : dist(∆
′, 0) ≤

⌊√
Nk−1

⌋
} (2.7.41)

and for r ≥ 1 let

Π
(r)
k−1 = {∆′ ∈ Π1

k−1 :
⌊
2r−1

√
Nk−1

⌋
< dist(∆′, 0) ≤

⌊
2r
√
Nk−1

⌋
}. (2.7.42)

(Π
(r)
k−1)r≥0 is a partition of Π1

k−1 into disjoint subsets according to the distance of the boxes from the

origin which allows us to estimate the hitting probabilities of the bad boxes. Using the annealed local CLT

(Theorem 1.2.1), we have∑
∆′∈Π1

k−1

is bad

P̄(0,0)(XNk−1
∈ ∆′)

≤
⌈log2(logNk−1)

3⌉∑
r=0

|Π(r)
k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}|CN−d/2

k−1 e−cr2 (2.7.43)

holds for some constants C, c > 0 and P̄ is the measure for the changed environments ξ̃k.

In order to estimate the number of bad boxes in each Π
(r)
k−1 we define the event G̃N = G̃N (C) by

G̃N :=

r(N)⋂
k=1

⌈log2(logNk−1)
3⌉⋂

r=0

{
|Π(r)

k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}| ≤ C|Π(r)
k−1|n

−β
k−1

}
, (2.7.44)

where β > 0 is a constant to be tuned later. Let p̃k−1 be the probability for a box ∆′ ∈ Πk−1 to be

(k − 1, θ, ε, ξ̃k)-bad. Note that p̃k ∈ O(n−c lognk

k ) and on the event G̃N

∑
∆′∈Π1

k−1

is bad

P̄(0,0)(XNk−1
∈ ∆′) ≤

⌈log2(logNk−1)
3⌉∑

r=0

C|Π(r)
k−1|n

−β
k−1N

−d/2
k−1 e−cr2

≤
⌈log2(logNk−1)

3⌉∑
r=0

C2dr(
√
Nk−1/n

θ
k−1)

dN
−d/2
k−1 e−cr2n−β

k−1 ≤ Cn
−(β+θd)
k−1 . (2.7.45)

Now it suffices to show that P(G̃N (C)) ≥ 1−CN−c log(N) for some constant C > 0. To do so, fix k ≥ 1 and

note that boxes ∆′ ∈ Πk−1 at distance 5nk are, by construction of ξ̃k, good or bad independently of each
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other. To see this note that 2(nθk−1 + nk + f(nk)) < 5nk and recall that ξ̃kt (y) = 1 if there exists an open

path connecting (y, t) to Zd × {nk + f(nk)} and ξ̃kt (y) = 0 otherwise. Let (Πr,j
k−1)j be a partition of Π

(r)
k−1

into at most (5nk)
d subsets of boxes so that the distance between each pair of boxes in Πr,j

k−1 is bigger than

5nk, for every j, and the number of boxes in Πr,j
k−1 is between |Π(r)

k−1|/(2(5nk)d) and 2|Π(r)
k−1|/(5nk)d.

If the number of (k− 1, θ, ε, ξ̃k)-bad boxes in Π
(r)
k−1 is bigger than C|Π(r)

k−1|n
−β
k−1, then there exists at least

one j so that the number of bad boxes in Πr,j
k−1 is larger than C|Πr,j

k−1|n
−β
k−1. Since the boxes in Πr,j

k−1 are

good or bad independently of each other, their number is bounded and they are bad with probability p̃k−1,

it follows by Hoeffding’s inequality that

P̄(|Π(r)
k−1∩{(k − 1, θ, ε, ξ̃k)-bad boxes}| > C|Π(r)

k−1|n
−β
k−1)

≤ (5nk)
dP̄(|Πr,1

k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}| ≥ ⌈C|Π(r)
k−1|n

−β
k−1/(5nk)

d⌉)

≤ (5nk)
d exp(−(Cn−β

k−1 − p̃k−1)
2|Π(r)

k−1|/(5nk)
d)

≤ C̃(5nk)
d exp(−Cn−2β

k−1 |Π
(r)
k−1|/(5nk)

d)

≤ C̃(5nk)
d exp(−C2rdN

−2β

2k−1 + d
2−

dθ

2k−1 − d

2k )

= C̃(5nk)
d exp(−C2rdN

d
2−( 4β+2dθ+d

2k
)),

(2.7.46)

where the right hand side decays stretched exponentially in N for k ≥ 4 if β is small enough, e.g. β = 1

(which is still sufficient for the proof of (2.7.11)). For 1 ≤ k ≤ 3 notice that

P̄(|Π(r)
k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}| > C|Π(r)

k−1|n
−β
k−1)

≤ P̄({(k − 1, θ, ε, ξ̃k)-bad boxes} ≠ ∅)

≤ |Π(r)
k−1|p̃k−1 ≤ (

√
N log3(N))dp̃k−1 ≤ (

√
N log3(N))dN−c log(N) ≤ CN−c log(N).

(2.7.47)

Using the estimates above together with the definition of G̃N shows that

P̄(G̃C
N ) = P̄

(r(N)⋃
k=1

⌈log2(logNk−1)
3⌉⋃

r=0

{
|Π(r)

k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}| > C|Π(r)
k−1|n

−β
k−1

})

≤
r(N)∑
k=1

⌈log2(logNk−1)
3⌉∑

r=0

P̄
(
|Π(r)

k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}| > C|Π(r)
k−1|n

−β
k−1

)
≤ r(N)⌈log2(logNk−1)

3⌉CN−c log(N) ≤ C log log(N) · log(N)5/6N−c log(N)

≤ N−c̃ log(N).

(2.7.48)

Next we show that the number of (k − 1, θ, ε)-bad boxes in ξ is on the same order as the number of

(k − 1, θ, ε, ξ̃k)-bad boxes in ξ̃k with high probability. First we define, in a slight abuse of notation, the sets

Dnk
(∆) := {(x, t) ∈ Zd × Z : dist(x,∆) ≤ nk, t ∈ [0, nk]},

Ak,∆ := {ω ∈ Ω : ξt(x) = ξ̃kt (x) for all (x, t) ∈ Dnk
(∆)}

for all ∆ ∈ Π
(r)
k−1. Note that Dnk

(∆) is the same box as Dnk
(x) if x is the center of ∆. Using the above

defined partitions (Πr,j
k−1)j we see that for every choice of ∆,∆′ ∈ Πr,j

k−1 the events Ak,∆ and Ak,∆′ are

independent, since dist(∆,∆′) > 5nk. Since ξ ≤ ξ̃k the number of (k − 1, θ, ε)-good boxes in ξ is less or

equal to the number of (k − 1, θ, ε, ξ̃k)-bad boxes in ξ̃k.
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To shorten the notation we say for a box ∆ ∈ Π
(r)
k−1 that it is good in ξ if it is (k − 1, θ, ε)-good and

good in ξ̃k if it is (k − 1, θ, ε, ξ̃k)-good. A box can only be bad in ξ and good in ξ̃k for ω ∈ AC
k,∆. Using

Corollary 2.7.6 we get P(AC
k,∆) ≤ Cn−c lognk

k , and thus, again by Hoeffding’s inequality,

P
(
|Π(r)

k−1 ∩ {bad in ξ}| − |Π(r)
k−1 ∩ {bad in ξ̃k}| ≥ C|Π(r)

k−1|n
−β
k−1

)
≤ P

(
∃j s.t. |Πr,j

k−1 ∩ {bad in ξ}| − |Πr,j
k−1 ∩ {bad in ξ̃k}| ≥ C|Π(r)

k−1|n
−β
k−1

1

(5nk)d

)
≤ (5nk)

dP
(
|Πr,j

k−1 ∩ {bad in ξ}| − |Πr,j
k−1 ∩ {bad in ξ̃k}| ≥ C|Π(r)

k−1|n
−β
k−1

1

(5nk)d

)
≤ (5nk)

dP
( ∑

∆∈Πr,j
k−1

1AC
k,∆

≥ C|Π(r)
k−1|n

−β
k−1

1

(5nk)d

)
≤ C̃(5nk)

d exp
(
− C2rdN

d
2−( 4β+2dθ+d

2k
)
)
.

(2.7.49)

Again the right hand side decays stretched exponentially in N for k ≥ 4 for β > 0 small enough. For k ≤ 3 we

can repeat the ideas of (2.7.47). The reason we can prove an upper bound in the same way as in (2.7.46) and

(2.7.47) is that the probability for a box to be bad in ξ̃k is of the same order as P(AC
k,∆), namely n−c lognk

k .

Define

AN :=

r(N)⋂
k=1

⌈log2(logNk−1)
3⌉⋂

r=0

{
|Π(r)

k−1 ∩ {bad in ξ}| − |Π(r)
k−1 ∩ {bad in ξ̃k}| ≥ C|Π(r)

k−1|n
−β
k−1

}
(2.7.50)

then by the same arguments as above we also get

P(AC
N ) ≤ N−c logN . (2.7.51)

Since G̃N ∩AN ⊂ GN the claim follows.

2.8 Mixing properties of the quenched law: proof of Lemma 2.6.1

Definition 2.8.1. Let ΠM be a partition of Zd into boxes of side lengths M , let C > 0 and let ω be a

realisation of the environment. We call a box ∆ ∈ ΠM social with respect to ω at time N ∈ N, if for any pair

of points x, y ∈ ∆ there exists z ∈ Zd such that

P (x,N)
ω (XN+⌈CM⌉ = z) > 0, and P (y,N)

ω (XN+⌈CM⌉ = z) > 0.

Note that if P
(x,N)
ω (XN+⌈CM⌉ = z) > 0, then by construction P

(x,N)
ω (XN+⌈CM⌉ = z) ≥ (3−d)CM .

The next result shows that the density of social boxes is suitably high.

Lemma 2.8.2. For every ε > 0 there exists M0 ∈ N and constants c, C > 0 such that for all M ≥M0 there

exists a set of environments SM satisfying∑
∆∈ΠM

∆ is not social

P(x,0)(Xn ∈ ∆) < ε for all ω ∈ SM

and P(SM ) ≥ 1− Ce−c logn. (Recall that the property of ∆ being social depends on ω.)
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Corollary 2.8.3. For every ε > 0 there exists M0 ∈ N so that for all M > M0 there are environments S̄M

such that ∑
∆∈ΠM

∆ is not social

P (x,0)
ω (Xn ∈ ∆) < 2ε

for all ω ∈ S̄M and P(S̄M ) ≥ 1− Cn−c logn.

Proof. Combine Lemma 2.8.2 and Lemma 2.1.1.

Proof of Lemma 2.8.2. The proof idea is similar to the one we have used to prove the high density of good

boxes; see the proof of Proposition 2.7.4. We set

pM := P(∆ is not social).

As a direct consequence of Lemma 2.10.1 for every ∆ ∈ ΠM we have that pM ≤ Ce−cM for some positive

constants C, c. We define

SM :=

log2 log3 n⋂
r=0

{
|Π(r)

M ∩ {not social boxes}| < C|Π(r)
M |pM

}
, (2.8.1)

where

Π
(0)
M = {∆ ∈ ΠM : dist(∆, 0) ≤

√
n},

Π
(r)
M = {∆ ∈ ΠM : 2r−1

√
n < dist(∆, 0) ≤ 2r

√
n} for r ≥ 1.

By Lemma 3.6 from [Ste17] we have P(0,0)(∥Xn∥ ≥
√
n log3 n) ≤ Cn−c logn and so for ω ∈ SM (note that

being social depends on ω)

∑
∆∈ΠM

∆ is not social

P(0,0)(Xn ∈ ∆) ≤ Cn−c logn +

log2 log3 n∑
r=0

∑
∆∈Π

(r)
M

∆ is not social

P(0,0)(Xn ∈ ∆)

≤
log2 log3 n∑

r=0

C|Π(r)
M |pM

1

nd/2
exp

(
− 1

2n
(2r−1

√
n)2
)

≤ C

log2 log3 n∑
r=0

(
2r
√
n

M

)d
1

nd/2
exp(−cr2)pM

≤ CpM

log2 log3 n∑
r=0

1

Md
exp(−cr2 + rd log 2)

≤ C ′pM

where we used the annealed local CLT in the second inequality. It remains to show that P(0,0)(SM ) ≥
1− Ce−c logn. We have

P(0,0)(Sc
M ) = P(0,0)

(
∃r ≤ log2 log

3 n : |Π(r)
M ∩ {not social boxes| > C|Π(r)

M |pM
)

≤
log2 log3 n∑

r=0

P(0,0)
(
|Π(r)

M ∩ {not social boxes| > C|Π(r)
M |pM

)
.
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Next, let (Πr,j
M )j∈J be a further partition of Π

(r)
M so that for each j ∈ J the distance between any pair of

distinct boxes in Πr,j
M is bigger than 3CM and

|Π(r)
M |

2(3CM)d
≤ |Πr,j

M | ≤
2|Π(r)

M |
(3CM)d

.

Note that the index set J = J(M, r) is finite (in fact we have |J | ≤ 2(3CM)d) and that by construction the

boxes in Πr,j
M are social or not social independently of each other. If |Πr

M ∩ {not social boxes}| > C|Π(r)
M |pM

then there exists a j such that |Πr,j
M ∩{not social boxes}| > C|Π(r)

M |pM/(3CM)d. Using Hoeffding’s inequality

for r ≥ 1 we obtain

P(0,0)
(
|Π(r)

M ∩ {not social boxes| > C|Π(r)
M |pM

)
≤
∑
j∈J

P(0,0)
(
|Πr,j

M ∩ {not social boxes| >
C|Π(r)

M |pM
(3CM)d

)

=
∑
j∈J

P(0,0)
(
|Πr,j

M ∩ {not social boxes| − |Πr,j
M |pM >

( C|Π(r)
M |

(3CM)d
− |Πr,j

M |
)
pM

)

≤
∑
j∈J

exp
(
−2p2M

(
C

|Π(r)
M |

(3CM)d
− |Πr,j

M |
)2)

≤
∑
j∈J

exp
(
−2p2M (C − 2)

|Π(r)
M |2

(3CM)2d

)
≤ 2(3CM)d exp

(
−Cp2M

(2r−1
√
n)2d

(3CM)2d

)
.

Similarly for r = 0 we have

P(0,0)
(
|Π(0)

M ∩ {not social boxes| > C|Π(0)
M |pM

)
≤ 2(3CM)d exp

(
−Cp2M

√
n
2d

(3CM)2d

)
.

Using the above estimates we obtain

P(0,0)(Sc
M ) ≤ 2(3CM)d exp

(
−Cp2M

√
n
2d

(3CM)2d

)
+

log2 log3 n∑
r=1

2(3CM)d exp
(
−Cp2M

(2r−1
√
n)2d

(3CM)2d

)
≤ log2 log

3(n) · exp
(
−Cp2M

√
n
2d

(3CM)2d

)
≤ Cn−c logn.

Proof of Lemma 2.6.1. The proof relies on a construction of a suitable coupling of P
(x,0)
ω (Xn ∈ ·) and

P
(y,0)
ω (Xn ∈ ·). First we show that there is a coupling on the level of boxes with side length M , where M is

a constant. Let ΠM be a partition of Zd in boxes of side length M and fix x and y. Set

Fnθ :=
⋂

k≥nθ

{
ω : ∀z ∈ [−k, k]d ∩ Zd,∑

∆∈ΠM

|P(z,0)(Xk ∈ ∆)− P (z,0)
ω (Xk ∈ ∆)| ≤ C1

kc2
+

C1

M c2

}
.

71



and

F (x, y) :=
⋂

(x̃,m)∈Zd×N0

∥x̃−x∥≤n
m≤n

σ(x̃,m)Fnθ ∩
⋂

(ỹ,m)∈Zd×N0

∥ỹ−y∥≤n
m≤n

σ(ỹ,m)Fnθ

By Lemma 2.1.1 we have P(Fnθ ) ≥ 1 − n−c logn and thus P(F (x, y)) ≥ 1 − Cn−c logn. In the following we

assume that the indices of the random walks are integers, otherwise we take the integer part. Now choosing

M and n large enough for ∥x− y∥ ≤ nθ on the event F (x, y) we obtain∑
∆∈ΠM

|P (x,0)
ω (Xn2θ log8d nθ ∈ ∆)− P (y,0)

ω (Xn2θ log8d nθ ∈ ∆)|

≤
∑

∆∈ΠM

|P (x,0)
ω (Xn2θ log8d nθ ∈ ∆)− P(x,0)(Xn2θ log8d nθ ∈ ∆)|

+
∑

∆∈ΠM

|P (y,0)
ω (Xn2θ log8d nθ ∈ ∆)− P(y,0)(Xn2θ log8d nθ ∈ ∆)|

+
∑

∆∈ΠM

|P(x,0)(Xn2θ log8d nθ ∈ ∆)− P(y,0)(Xn2θ log8d nθ ∈ ∆)|

≤ 1

8
+

1

8
+
∑

∆∈ΠM

|P(x,0)(Xn2θ log8d nθ ∈ ∆)− P(y,0)(Xn2θ log8d nθ ∈ ∆)|

≤ 1

4
+

∑
∆∈Πx,y

M (n2θ log8d nθ)

|P(x,0)(Xn2θ log8d nθ ∈ ∆)− P(y,0)(Xn2θ log8d nθ ∈ ∆)|+ Cn−c logn

≤ 1

4
+ Cn−c logn + |Πx,y

M (n2θ log8d nθ)|dnθC(n2θ log8d nθ)−
d+1
2

≤ 1

4
+ Cn−c logn + 2

(
nθ log4d(nθ) log3(n2θ log8d nθ)

)d
dnθC(n2θ log8d nθ)−

d+1
2

=
1

4
+ Cn−c logn + C

(
log(n2θ log8d nθ)

)3d
log−4d(nθ)

<
1

2
,

for n large enough, where

Πx,y
M (m) :=

{
∆ ∈ ΠM : ∆ ∩ {z ∈ Zd : min(∥x− z∥ , ∥y − z∥) ≤

√
m log3m} ≠ ∅

}
and we used Lemma 3.6 from [Ste17] and the annealed derivative estimates (Lemma 3.9 from [Ste17]). The

number of steps we chose might seem a bit strange at first. The choice becomes more clear by looking at the

last inequality above. There we see that, with the methods we use, we need a bit more steps than the square

of the current distance. One can calculate that any additional factor logm(nθ) with m > 6d is enough to get

the estimate. So there exists a coupling Ξx,y

ω,n2θ log8d nθ of P
(x,0)
ω (Xn2θ log8d nθ ∈ ·) and P (y,0)

ω (Xn2θ log8d nθ ∈ ·)
on ΠM ×ΠM such that for ω ∈ F (x, y)

Ξx,y

ω,n2θ log8d nθ ({(∆,∆) : ∆ ∈ ΠM}) > 1

2
.

Recall S̄M from Corollary 2.8.3. We have for

ω ∈ H(x, y) := F (x, y) ∩
⋂

(x̃,m)Zd×N0

∥x̃−x∥≤n
m≤n

σ(x̃,m)S̄M ∩
⋂

(ỹ,m)Zd×N0

∥ỹ−y∥≤n
m≤n

σ(ỹ,m)S̄M
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that ∑
∆∈ΠM

∆ is social

Ξx,y

ω,n2θ log8d nθ (∆,∆) >
1

2
− ε(M) >

1

4
.

By Corollary 2.8.3 we obtain P(H(x, y)) ≥ 1 − Cn−c logn. Thus, by the definition of social boxes (Defini-

tion 2.8.1), we can construct a coupling Ξ̃x,y
ω,nθ of P

(x,0)
ω (Xn2θ log8d nθ+CM ∈ ·) and P (y,0)

ω (Xn2θ log8d nθ+CM ∈ ·)
satisfying Ξ̃x,y

ω,nθ ({(z, z) : z ∈ Zd}) > 1
4 (

1
3d
)2CM . If this coupling is successful, we let the random walks go

along the same path until time n. In case it isn’t, we try to couple from their current position. Note that

ω ∈ H(x, y) ensures, that we can repeat the coupling attempt at the new positions.

For the rest of the proof let nk := nθ logk(4d+3) n, k ∈ N0 and sk := n2k log
8d nk + CM . The nk will

represent the distance between the walkers at the start of an attempt at coupling and sk will be the number

of steps necessary for the attempt. Furthermore let Sk :=
∑k

i=0 si.

By Lemma 3.6 from [Ste17], we know that with probability of at least 1−Cn−c logn the distance between

the random walks will only be(
n2θ log8d nθ

)1/2
log3

(
n2θ log8d nθ

)
≤ nθ log4d(nθ) log3(n) ≤ nθ log4d+3 n = n1,

as long as 8d ≤ (1− 2θ) logn
log lognθ . This condition is not a restriction, since we will let n→ ∞.

Let us now iterate the coupling procedure. If the coupling in step k− 1 is not successful, i.e. if the walks

are not at the same point, we try to couple again starting from the current positions. This leads to an

iterative coupling Ξ̂ of the following form: Ξ̂x,y
ω,0 = Ξ̃x,y

ω,n0
= Ξ̃x,y

ω,nθ and for k ≥ 1

Ξ̂x,y
ω,k(z1, z2) =

∑
a,b∈Zd

Ξ̂x,y
ω,k−1(a, b) ·

[
1{a=b}1{z1=z2}P

(a,Sk−1)
ω (XSk

= z1)

+ 1{0<∥a−b∥≤nk}Ξ̃
a,b
ω,nk

(z1, z2)

+ 1{∥a−b∥>nk}P
(a,Sk−1)
ω (XSk

= z1)P
(b,Sk−1)
ω (XSk

= z2)
]
,

where Ξ̃a,b
ω,nk

is a coupling of P
(a,Sk−1)
ω (XSk

∈ ·) and P (b,Sk−1)
ω (XSk

∈ ·). The idea is that the random walks

will stay together once they are at the same site. We try to couple them via Ξ̃a,b
ω,nk

if their distance is not

too large and we let them evolve independently otherwise.

Since at distance nk for the next coupling we walk sk steps and with high probability have at most a

distance of s
1/2
k log3 sk, the above coupling will work as long as k ≤ (1−2θ) logn

(8d+6) log logn − 8d
8d+6 holds, which we

show below. We obtain

s
1/2
k log3 sk =

(
n2k log

8d nk + CM
)1/2

log3
(
n2k log

8d nk + CM
)
.

Now for k ≤ (1−2θ) logn
(4d+3) log logn and n large enough

n2k log
8d nk + CM ≤ n2k log

8d n

and

log4d nk = log4d
(
nθ logk(4d+3)(n)

)
≤ log4d n.
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Thus, we have

s
1/2
k log3 sk ≤ nk log

4d(n) log3
(
n2k log

8d n
)
.

Furthermore, if k ≤ (1−2θ) logn
(8d+6) log logn − 8d

8d+6 then

2 log nk + 8d log log n = 2 log
(
nθ logk(4d+3) n

)
+ 8d log log n

= 2θ log n+ k(8d+ 6) log log n+ 8d log log n ≤ log n

It follows that

s
1/2
k log3 sk ≤ 2nk log

4d n log3 n = 2nθ log(k+1)(4d+3)(n) = nk+1.

So after we try the k-th coupling we are, with high probability, at distance nk+1. The probability for each

try to be successful is bounded from below by 1
4 (

1
3d
)2CM and we have (1−2θ) logn

(8d+6) log logn − 1 attempts. So the

time we need for those attempts is

(1−2θ) log n
(8d+6) log log n

−1∑
k=0

sk =

(1−2θ) log n
(8d+6) log log n

−1∑
k=0

n2k log
8d nk + CM

≤

(1−2θ) log n
(8d+6) log log n

−1∑
k=0

n2θ logk(8d+6)(n) log8d(n) + CM

=
(1− 2θ) log n

(8d+ 6) log log n
CM + n2θ log8d(n)

(1−2θ) log n
(8d+6) log log n

−1∑
k=0

(
log(8d+6)(n)

)k
.

(2.8.2)

Note that

(log n)
(1−2θ) log n

(8d+6) log log n
(8d+6) = exp

(
(1− 2θ) log n

)
= n1−2θ

and therefore the right hand side of (2.8.2) is bounded from above by

(1− 2θ) log n

(8d+ 6) log log n
CM + n2θ log8d(n)

n1−2θ − 1

log(8d+6)(n)− 1
≤ (1− 2θ) log n

(8d+ 6) log log n
CM +

n

log5(n)

= n

(
(1− 2θ) log n

n(8d+ 6) log log n
CM +

1

log5 n

)
< n,

for n large enough. And the probability for the above coupling to fail is smaller than

(1− p∗)
(1−2θ) log n

(8d+6) log log n
−1 ≤ e−c log n

log log n

where p∗ = 1
4 (

1
3d
)2CM and c > 0 is a constant. So for a fixed pair of points x, y with ∥x− y∥ ≤ nθ we have∥∥∥P (x,0)

ω (Xn ∈ ·)− P (y,0)
ω (Xn ∈ ·)

∥∥∥
TV

≤ e−c log n
log log n

74



with probability at least 1− n−c logn. Thus we get for every b > 0

P(D(n)) = P

( ⋂
x,y∈Zd :

∥x∥,∥y∥≤nb,

∥x−y∥≤nθ

{∥∥∥P (x,0)
ω (Xn ∈ ·)− P (y,0)

ω (Xn ∈ ·)
∥∥∥
TV

≤ e−c log n
log log n

})

≥ 1−
∑

x,y∈Zd :

∥x∥,∥y∥≤nb,

∥x−y∥≤nθ

P
({∥∥∥P (x,0)

ω (Xn ∈ ·)− P (y,0)
ω (Xn ∈ ·)

∥∥∥
TV

> e−c log n
log log n

})

≥ 1− nd(b+θ)n−c logn ≥ 1− Cn−c′ logn.

Note that b > 0 can be chosen arbitrarily large, but the constants C and c′ will have to adjusted accordingly.

2.9 Uniqueness of the prefactor

With some minor adaptations of the ideas from [BCR16, Section 7.1] we can obtain the following result.

Lemma 2.9.1. Provided existence, the prefactor φ in (1.2.10) is unique.

Proof. Assume that there are functions f and g which both satisfy (1.2.10) and denote h = f − g. We will

check that E[|h|] = 0 and hence that h ≡ 0 holds P-a.s.
By the triangle inequality we have∑

x∈Zd

P(0,0)(Xn = x)|h(σ(x,n)ω)| ≤
∑
x∈Zd

|P (0,0)
ω (Xn = x)− P(0,0)(Xn = x)f(σ(x,n)ω)|

+
∑
x∈Zd

|P (0,0)
ω (Xn = x)− P(0,0)(Xn = x)g(σ(x,n)ω)|

(2.9.1)

which by (1.2.10) implies

lim
n→∞

∑
x∈Zd

P(0,0)(Xn = x)|h(σ(x,n)ω)| = 0 (2.9.2)

for P almost every ω. That means limn→∞ E(0,0)[|h(σ(Xn,n)ω)|] = 0 P-a.s. Assume that h ̸= 0, then there

exists a measurable subset A ⊂ Ω and a constant c > 0 such that P(A) > 0 and |h| > c on A. Thus, for

every n ∈ N, an elementary computation shows

E
[
E(0,0)[|h(σ(Xn,n)ω)|]

]
≥ E

[
E(0,0)[|h(σ(Xn,n)ω)|1{σ(Xn,n)ω∈A}]

]
≥ cE

[
E(0,0)[1{σ(Xn,n)ω∈A}]

]
= cP(A) > 0.

(2.9.3)

Since

E
[
E(0,0)[|h(σ(Xn,n)ω)|]

]
= E

[ ∑
y∈Zd

P(0,0)(Xn = y)|h(σ(y,n)ω)|
]

=
∑
y∈Zd

P(0,0)(Xn = y)E[|h(σ(y,n)ω)|]

=
∑
y∈Zd

P(0,0)(Xn = y)E[|h(ω)|] = E[|h(ω)|],

(2.9.4)
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the sequence {|h(σ(Xn,n)ω)|}n∈N is tight. Thus, (2.9.3) implies that for P almost all ω we have

limn→∞ E(0,0)[|h(σ(Xn,n)ω)|] > 0 which is a contradiction to (2.9.2).

2.10 Intersection of clusters of points connected to infinity

The following lemma is a quantification of Theorem 2 from [GH02] which was pointed out there without a

proof. We give a proof using a key result from [GM14].

Lemma 2.10.1. Let d ≥ 2, p > pc. Then there are positive constants M and C and c such that for all

x, y ∈ Zd with ∥x− y∥ ≤M

P
(
B(x, y;M,C)|(x, 0) → ∞, (y, 0) → ∞

)
≥ 1− exp(−cM), (2.10.1)

where B(x, y;M,C) is the set of all ω ∈ Ω for which there is z ∈ Zd satisfying

(x, 0)
ω−→ (z, CM), (y, 0)

ω−→ (z, CM) and (z, CM)
ω−→ ∞.

Proof. For A ⊂ Zd we put ηAt (x) = 1(y,0)→(x,t) for some y∈A (this is the discrete time contact process starting

from all sites in A infected at time 0). Write

B(x, t) :=
{
∃ z : ∥x− z∥ ≤ c1t and η

{x}
t (z) ̸= ηZ

d

t (z)
}

(2.10.2)

for the “bad” event that coupling in a ball around x has not occurred at time t. We obtain from [GM14,

Thm. 1, Formula (3)] that

P
(
B(x, t) ∩ {(x, 0) → ∞}

)
≤ Ce−ct (2.10.3)

for certain constants c1, C, c ∈ (0,∞) (which depend on d and on p > pc). Literally, the result in [GM14] is

proved for the continuous time version of the contact process, but we believe that the same holds in discrete

time.

Now consider x, y ∈ Zd with ∥x− y∥ ≤M . Pick C2 so large that

J := {z : ∥z − x∥ ≤ C2M and ∥z − y∥ ≤ C2M}

satisfies #J ≥Md. Applying (2.10.3) with t = C2M for x and for y gives

P
((
B(x,C2M) ∪B(y, C2M)

)
∩ {(x, 0) → ∞, (y, 0) → ∞}

)
≤ P

(
B(x,C2M) ∩ {(x, 0) → ∞}

)
+ P

(
B(y, C2M) ∩ {(y, 0) → ∞}

)
≤ 2Ce−cCM2 (2.10.4)

hence

P
(
η
{x}
C2M

(z) = ηZ
d

C2M (z) = η
{y}
C2M

(z) for all z ∈ J
∣∣∣ (x, 0) → ∞, (y, 0) → ∞

)
≥ 1− C ′e−cC2M . (2.10.5)

Furthermore

P
(
∃ z ∈ J : ηZ

d

C2M (z) = 1 and (z, C2M) → ∞
∣∣∣ (x, 0) → ∞, (y, 0) → ∞

)
≥ P

(
∃ z ∈ J : ηZ

d

C2M (z) = 1 and (z, C2M) → ∞
)
≥ 1− Ce−cMd

(2.10.6)
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where we used the FKG inequality in the first inequality. For the second inequality we use the fact that

extinction starting from A is exponentially unlikely in #A (see Theorem 2.30 (b) in [Lig99]) and the fact

that ηZ
d

C2M
dominates the upper invariant measure which itself dominates a product measure on {0, 1}Zd

with

some density ρ > 0 (see Corollary 4.1 in [LS06]).

Combining, we find

P
(
∃ z ∈ Zd : (x, 0) → (z, C2M), (y, 0) → (z, C2M), (z, C2M) → ∞

∣∣∣ (x, 0) → ∞, (y, 0) → ∞
)

≥ 1− C ′e−cC2M − Ce−cMd

. (2.10.7)

2.11 Quenched random walk finds the cluster fast

Since we allow the quenched random walk to start outside the cluster we need some kind of control on the

time it needs to hit the cluster. The following lemma will yield exactly that.

Lemma 2.11.1. Let d ≥ 1 and define the set An = An(C
′, c′) := {ω ∈ Ω : P

(0,0)
ω (ξi(Xi) = 0, i = 1, . . . , n) ≤

C ′e−c′n}. There exist constants C, c > 0, so that for every p > pc(d) and small enough C ′ and c′ we have

P(AC
n) ≤ Ce−cn for all n = 1, 2, . . . .

Proof. Note that by our definition of the quenched law, see equation (1.2.2), the quenched random walk

performs a simple random walk until it hits the cluster C. Thus, on the event that the random walk doesn’t

hit the cluster, we can switch the random walk with a simple random walk (Yn)n that is independent of the

environment. Using Lemma 2.11 from [BČD16] it follows

P(0,0)
(
ξ0(X0) = · · · = ξn(Xn) = 0

)
=

∑
x1,...,xn

P(0,0)
(
(X1, . . . , Xn) = (x1, . . . , xn), ξ0(0) = · · · = ξn(xn) = 0

)
=

∑
x1,...,xn

P(0,0)
(
(Y1, . . . , Yn) = (x1, . . . , xn), ξ0(0) = · · · = ξn(xn) = 0

)
=

∑
x1,...,xn

P(0,0)
(
(Y1, . . . , Yn) = (x1, . . . , xn)

)
P
(
ξ0(0) = · · · = ξn(xn) = 0

)
≤ C̃e−c̃n,

where C̃ and c̃ are certain constants depending only on p and d.

Using the definition of the annealed law we get

P(0,0)
(
ξ0(X0) = · · · = ξn(Xn) = 0

)
=

∫
An

P (0,0)
ω (ξi(Xi) = 0, i = 1, . . . , n) dP(ω) +

∫
AC

n

P (0,0)
ω (ξi(Xi) = 0, i = 1, . . . , n) dP(ω)

≥
∫
AC

n

P (0,0)
ω (ξi(Xi) = 0, i = 1, . . . , n) dP(ω)

> P(AC
n)C

′e−c′n
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and since ∫
AC

n

P (0,0)
ω (ξi(Xi) = 0, i = 1 . . . , n) dP(ω) ≤ C̃e−c̃n

we obtain that P(AC
n) ≤ Ce−cn with c = c̃− c′ > 0 by choosing c′ < c̃.
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Chapter 3

Quenched central limit theorem for

random walks in oriented percolation

In this chapter we will prove Theorem 1.3.5, a quenched CLT for a random walk in a dynamic random

environment, that is given by oriented percolation. Contrary to Chapter 2 the random walk does not have to

stay on the cluster. Instead we make assumptions, e.g. finite range and local dependence on the environment,

that allow for a more general class of random walks. We start by construction suitable regeneration times

at which two random walks in a joint environment regenerate simultaneously. This construction is inspired

by [BČD16], where they define regeneration times for a single random walk. Then we will compare two

random walks (X,X ′) evolving in a joint environment with two random walks (Y, Y ′) evolving in independent

environments along their respective simultaneous regeneration times. It turns out that, as long as the initial

distance of X and X ′ is large, they behave as Y and Y ′ with high probability.

3.1 Regeneration Construction

Let X := (Xn)n and X ′ := (X ′
n)n be two random walks in the same environment. We introduce a sequence

of regeneration times T1 < T2, . . . , at which both X and X ′ regenerate. The construction of the regeneration

times extends the corresponding construction from [BČD16] for a single random walk.

The goal is to isolate the part of the environment that the two random walks explore until they regenerate

from the rest of the environment. This isolation will be achieved by certain cones in which the two random

walks will move. Let us recall the definitions of cones and cone shells from equations (2.25) and (2.27) in

[BČD16].

For positive b, s, h and xbas ∈ Zd we set

cone(xbas; b, s, h) :=
{
(x, n) ∈ Zd × Z+ : ∥xbas − x∥2 ≤ b+ sn, 0 ≤ n ≤ h

}
. (3.1.1)

for a (truncated upside-down) cone with base radius b, slope s, height h and base point (xbas, 0). Furthermore

for

binn ≤ bout and sinn < sout, (3.1.2)
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we define the conical shell with inner base radius binn, inner slope sinn, outer base radius bout, outer slope

sout, and height h ∈ N ∪ {∞} by

cs(xbas; binn, bout, sinn, sout, h)

:=
{
(x, n) ∈ Zd × Z : binn + sinnn ≤ ∥xbas − x∥2 ≤ bout + soutn, 0 < n ≤ h

}
. (3.1.3)

The conical shell can be thought of as a difference of the outer cone cone(xbas; bout, sout, h) and the inner

cone cone(xbas; binn, sinn, h) with all boundaries except the bottom boundary of that difference included. To

shorten notation for fixed parameters for radii and slopes as in (3.1.2), we write cs(xbas;h) for the cone shell

as defined in (3.1.3).

For the proof of Theorem 1.3.5 we will follow the ideas from [BČDG13]. We now expand the cone

construction for the regeneration times from [BČD16] to two cones and we define the so called double cone

shell to isolate the area of the environment that two random walks have explored from the rest.

Consider two random walks X and X ′ located at time n at positions xbas and x′bas respectively, i.e.

Xn = xbas and X
′
n = x′bas. A first attempt would be to just take the union of both cone shells cs(xbas;h) and

cs(x′bas;h) with base points xbas and x
′
bas. The problem with this attempt is that the cone shell cs(xbas;h)

would grow into the interior cone(x′bas; binn, sinn, h) of cs(x′bas;h) and vice versa and in particular into the

region which we want to isolate. Instead we take the union of the cone shells without the elements of the

inner cones and define the double cone shell

dcs(xbas, x
′
bas;h)

:= (cs(xbas;h) ∪ cs(x′bas;h)) \ (cone(xbas; binn, sinn, h) ∪ cone(x′bas; binn, sinn, h)) . (3.1.4)

Note that we again omitted the base radii binn, bout and slopes sinn, sout. Of course the double cone shell

dcs(xbas, x
′
bas;h) = dcs(xbas, x

′
bas; binn, bout, sinn, sout, h) depends on these parameters as well. We also write

cone(xbas) = cone(xbas;∞) and dcs(xbas, x
′
bas) = dcs(xbas, x

′
bas;∞) if we consider the cone or cone shell with

infinite height.

For the case d = 2 the double cone with the double cone shell is illustrated in Figure 3.1. For d = 1 we will

use a slightly different double cone shell definition. It will make the arguments in the proof of Lemma 3.1.2

more streamlined and the difference of the definitions is explained in the proof. For the case d = 1 the double

cone with the double cone shell is illustrated in Figure 3.3.

Remark 3.1.1. For notational convenience we assume all cones to be based at time t = 0. Obviously we can

shift the cone to be based at an arbitrarily chosen space-time point in Zd × Z.

We follow the ideas of the proof of Lemma 2.13 from [BČD16]. For d ≥ 2 we define a subset M ⊂ Zd×Z
of the double cone shell with the following three properties:

1. Every path crossing from the outside to the inside has to hit a point in M.

2. There exist small constants δ > 0 and δ̃ > 0 such that for every (x, n) ∈ M we have Bδ̃n(x)×{n−δn} ⊂
dcs(xbas, x

′
bas;∞), where Br(y) is the ball of radius r centred around y.

Note that the number of elements in M∩Zd × [0, n] ⊂ dcs(xbas, x
′
bas;n) grows polynomially in n. Such a set

is given, for instance, by the “middle tube” of the double cone shell which we will now define more precisely.
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n

x2

x1

Figure 3.1: Double cone with a double cone shell (grey), a time slice of the middle tube (blue), and a path

of a random walk crossing the double cone shell from outside to inside (red).

Let

d(n) :=
1

2

(
n(sout + sinn) + bout + binn

)
be the radius to the middle of the cone shell at time n and define

Mn := {x ∈ Zd : ∥x− xbas∥2 ∈ [d(n), d(n) + 2d]},

M ′
n := {x ∈ Zd : ∥x− x′bas∥2 ∈ [d(n), d(n) + 2d]}

(3.1.5)

the middle tubes for the single cones at time n. We define the middle tube in such a way, “thickening” it

by 2d, so that we can ensure that a nearest neighbour path crossing the cone shell has to hit a site in the

middle tube and cannot jump over it. Note that we define nearest neighbours according to the sup-norm,

that is y is a nearest neighbour of x if and only if ∥x− y∥∞ ≤ 1. Furthermore we define the middle tube for

the double cone shell at time n by

Mdcs
n :=

(
Mn ∪M ′

n

)
\
{
x ∈ Zd : min{∥x− xbas∥2 , ∥x− x′bas∥2} ≤ d(n)

}
(3.1.6)

and set M =
⋃

n(M
dcs
n × {n}); see Figure 3.2 for an illustration.

Let ηdcs := (ηdcsn )n=0,1,... be the contact process restricted to the infinite double cone shell dcs(xbas, x
′
bas;∞)

with initial condition ηdcs0 (x) = 1dcs(xbas,x′
bas;0)

((x, 0)) and

ηdcsn+1(x) =


1 if (x, n+ 1) ∈ dcs(xbas, x

′
bas;∞), ω(x, n+ 1) = 1

and ηdcsn (y) = 1 for some y ∈ Zd with ∥x− y∥ ≤ 1,

0 otherwise.
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n

x1

Figure 3.2: A cross section of the cone shell including the middle tube M (blue) and a path γ (red) crossing

the cone shell from the outside to the inside of the double cone and hitting at least one point in M (blue

dot).

We think of ηdcs as a version of the contact process where all ω’s outside dcs(xbas, x
′
bas;∞) have been set to

0. For a directed nearest neighbour path

γ = ((xm,m), (xm+1,m+ 1), . . . , (xn, n)) , m ≤ n, xi ∈ Zd with ∥xi−1 − xi∥ ≤ 1 (3.1.7)

with starting position xm at time m and final position xn at time n we say that γ crosses the double cone

shell dcs(xbas, x
′
bas;∞) from the outside to the inside if the following three conditions are fulfilled:

(i) the starting position lies outside the double cone shell, i.e., ∥xm − xbas∥2 > bout+msout and ∥xm − x′bas∥2 >
bout +msout,

(ii) the terminal point lies inside one of the inner cones, i.e., ∥xn − xbas∥2 < binn +nsinn or ∥xn − x′bas∥2 <
binn + nsinn,

(iii) all the remaining points lie inside the shell, i.e., (xi, i) ∈ dcs(xbas, x
′
bas;∞) for i = m+ 1, . . . , n− 1.

We say that γ (from (3.1.7)) intersects ηdcs if there exists i ∈ {m+ 1, . . . , n− 1} with ηdcsi (xi) = 1. Finally

we say that γ is open in dcs(xbas, x
′
bas;∞) if ω(xi, i) = 1 for all i = m+ 1, . . . , n− 1.

Lemma 3.1.2 (2-cone analogue of Lemma 2.13 from [BČD16]). Assume that the relations in (3.1.2) hold

and consider the events

G1 := {ηdcs survives},

G2 := {every open path γ that crosses dcs(xbas, x
′
bas;∞) intersects ηdcs}.
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For any ε > 0 and 0 ≤ sinn < sout < 1 one can choose p sufficiently close to 1 and binn < bout sufficiently

large so that

P(G1 ∩G2) ≥ 1− ε.

Remark 3.1.3. Note that in this preparation section we base the cones at time 0. Later on they will be based

at the current space-time position of the random walk but all results here hold for the shifted constructions

as well due to translation invariance. Furthermore, with the properties we impose on M on the event G1∩G2

any site inside the inner cones which is connected to Zd ×{0} via a path that crosses the cone shell also has

a connection to Zd × {0} inside the double cone shell. Thus, on the event G1 ∩G2 we isolate all the sites in

the inner cone from the information on the environment outside the outer cone in the sense that the value

of η inside the double cone can be determined using the values of ω’s inside the double cone.

Proof of Lemma 3.1.2. The analogous result for the single cone shell is Lemma 2.13 in [BČD16]. We will use

similar arguments but, as already pointed out before, an additional complication arises from the overlapping

parts of the cones. Throughout the proof for r > 0 and x ∈ Zd we denote by Br(x) the closed ℓ2 ball of

radius r around x. We will write cs(xbas) and cs(x′bas) as an abbreviation for cs(xbas; binn, bout, sinn, sout,∞)

and cs(x′bas; binn, bout, sinn, sout,∞) respectively.

We split the proof in two cases according to d = 1 or d ≥ 2. We will reuse some arguments from the case

d = 1 for higher dimensions and thus begin with the case d = 1.

Case d = 1. Without loss of generality we may assume xbas < x′bas. We will focus on the differences to the

version of this lemma with only one cone. For that we distinguish according to the distance of the bases of

the cones.

First let ∥x′bas − xbas∥2 ≤ 2bout. Since, in this case, the bases of the two outer cones already overlap, it is

impossible for any path γ to cross dcs(xbas, x
′
bas;∞) from between xbas and x

′
bas without hitting one of the

bases. (It easy to see how the picture in Figure 3.3 changes in this case.) In this case we can use the same

arguments as in [BČD16], since we can combine the two cones to a single larger cone with the cone shell

being

dcs(xbas, x
′
bas) := {(x, n) ∈ Z× Z+ : xbas − bout − nsout ≤ x ≤ xbas − binn − nsinn}

∪ {(x, n) ∈ Z× Z+ : x′bas + binn + nsinn ≤ x ≤ x′bas + bout + nsout} .

Now let ∥x′bas − xbas∥2 > 2bout. In particular, the two cones do not overlap at time t = 0. The two cone

shells are each made up of two wedges

c1ℓ := {(x, n) ∈ Z× Z+ : xbas − bout − nsout ≤ x ≤ xbas − binn − nsinn} ,

c1r := {(x, n) ∈ Z× Z+ : xbas + binn + nsinn ≤ x ≤ xbas + bout + nsout} ,

c2ℓ := {(x, n) ∈ Z× Z+ : x′bas − bout − nsout ≤ x ≤ x′bas − binn − nsinn} ,

c2r := {(x, n) ∈ Z× Z+ : x′bas + binn + nsinn ≤ x ≤ x′bas + bout + nsout} .

We build the cone shell for the double cone using the above wedges. We have to isolate the inner cones

using the double cone shell and need to make sure, that the cone shell doesn’t evolve into any inner cone.

Obviously this isn’t a problem for c1ℓ and c2r since these two wedges both evolve away from the other cone.
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n

x

xbas x′bas

t∗

Figure 3.3: Double cone and double cone shell in case d = 1

It remains to find a suitable hight at which we cut and merge c1r and c2ℓ to avoid their propagation into the

inner cones. Given the parameters of the cones let

t∗ :=
(x′bas − xbas)− bout − binn

sout + sinn
(3.1.8)

be the time at which the inner cones meet the respective outer cones of the other double cone. Then the

cone shell is the following set

dcs(xbas, x
′
bas) := c1ℓ ∪ c2r ∪

(
c1r ∩ Z× [0, ⌈t∗⌉]

)
∪
(
c2ℓ ∩ Z× [0, ⌈t∗⌉]

)
.

A sketch of this cone shell can be seen in Figure 3.3. The cone shell is thus made up of four wedges and in

Claim 2.15 from [BČD16] it was shown that for any ε′ > 0, by tuning the parameters correctly, the contact

process ηc
1
ℓ restricted to the wedge c1ℓ survives with probability at least 1− ε′. The same holds for the other

wedges and therefore ηdcs survives in every wedge with probability at least 1− 4ε′. For the outer wedges c1ℓ
and c2r every path crossing the cone shell has to hit the contact process if it survives. For the inner wedges

we have to argue a bit more carefully since we cut them at a certain height. It is theoretically possible that

the contact process survives up until that point in time in both wedges but evolves in such a way that the

clusters of points visited (infected) by the contact process do not intersect. Then there exists a path which

crosses the cone shell but doesn’t hit the contact process ηdcs.

Theorem 2 from [CMS10] tells us that, if we condition on the event

B :=
{
η
c1r
t ̸= 0,∀t ≥ 0

}
∩
{
η
c2ℓ
t ̸= 0,∀t ≥ 0

}
,
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then the rightmost particle of the contact process is close to the right border of the wedge. It follows, for

every ε̃ > 0 there exists T > 0 such that for every n ≥ T

P
(
max{x : η

c1r
n (x) = 1} ≤ 1

2
(binn + bout + t(sinn + sout))

∣∣∣B) < 1− ε̃.

An analogous bound holds for the left most particle in the wedge c2ℓ . So ηc
1
r and ηc

2
ℓ , if they both survive,

they will eventually meet. Note that we in fact only need the contact process to survive until we cut the

inner wedges which happens at the time t∗ from (3.1.8). The probability of this joint survival event is greater

than 1− ε′.

By (3.1.8) we get this by increasing the base bout of the outer cones. Furthermore, conditioned on the

event B, the contact processes ηc
1
r and ηc

2
ℓ will survive and meet each other with probability at least 1− 2ε̃.

Thus any path crossing the cone shell has to hit the contact process ηdcs at some point with probability at

least 1− ε for some ε > 0. So using the same arguments as in [BČD16] we obtain the claim for d = 1.

Case d > 1. Recall the definition of Mdcs
n in (3.1.6). Note that for every path

γ = ((xm,m), (xm+1,m+ 1), . . . , (xm′ ,m′))

crossing dcs(xbas, x
′
bas) there exists i ∈ [m,m′] with xi ∈ Mdcs

i , i.e. every path will hit at least one point in

M. Without loss of generality let n be the time at which the path hits M. By Lemma 2.9 from [BČD16]

it follows that with high probability after n steps the contact process started from a single site will coincide

with the contact process started from the upper invariant measure in a ball of radius nscoupl around the

starting site.

Let ρ > 0 be a small constant such that for every x ∈Mdcs
n we have

Bnρscoupl
(x)× {⌊(1− ρ)n⌋} ⊂ dcs(xbas, x

′
bas).

To get into the setting of [BČD16] we need to find unit vectors v̂i ∈ Rd, 1 ≤ i ≤ N̂ , with N̂ sufficiently large

so that we can “cover” the middle tubes Mdcs
n in the following sense: For every x ∈ Mdcs

n there exists an

i ≤ N̂ such that for ρ small there is δ = δ(ρ) > 0 with the property

the length of the intersection of the half-line {tv̂i : t ≥ 0} with the (real) ball

{y ∈ Rd : ∥x− y∥2 ≤ nρscoupl} is at least δn.
(3.1.9)

Following the idea in [BČD16] we can choose such vectors for the single cone shells cs(xbas) and cs(x′bas)

respectively. The union {vi : i = 1, . . . , N} ∪ {v′,i : i = 1, . . . , N ′} of those two sets of vectors has the above

property for the double cone shell dcs(xbas, x
′
bas). Now we approximate the half-line {tvi : t ≥ 0} with a

self-avoiding nearest neighbour path in Zd αi = (αi(j))j∈N given by

(a) αi
0 = xbas,

(b) αi makes steps only in direction of vi,

(c) αi stays close to tvi, that is {αi
j : j ∈ N} ⊂ {tvi + z : t ≥ 0, z ∈ Rd, ∥z∥ ≤ d}.

Analogously we define α′,i in direction of v′,i for 1 ≤ i ≤ N ′. Next we define contact processes η(i) restricted

to the set Wi := (αi×Z+)∩dcs(xbas, x′bas) and analogous η′,(i) restricted to W ′,i := (α′,i×Z+)∩dcs(xbas, x′bas)
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and started from 1Wi∩(Zd×{0}) and 1W′,i∩(Zd×{0}) respectively. By the definition of dcs(xbas, x
′
bas) we avoid

the problem of having any of the η(i) or η′,(i) evolving into the inner double cone.

Let N∗ = N + N ′ be the total number of vectors above and {η̂(i) : i ≤ N∗} the collection of contact

processes defined. Define S := {η̂(i) survives for every i ≤ N∗}. Given ε > 0, choose ε∗ so that (1− ε∗)N
∗ ≥

1− ε/2. Given that we get

P(S) ≥ 1− ε/2. (3.1.10)

The rest follows exactly as in the proof of Lemma 2.13 from [BČD16].

With Lemma 3.1.2 we have a tool to separate the information inside the inner cone from the outside of

the outer cone, which gives us a certain space-time isolation of the environment around the random walk.

Another important ingredient for the renewal times is to locally explore the reasons for 0’s of η along the

paths of the random walks. This allows to stop in such a way that the distribution of the environment

viewed relative to the stopped particle dominates the a priori law of the environment; see equation (3.1.16)

in Lemma 3.1.4 below.

To that end we define stopping times at which the reasons for negative information, i.e. reasons for η = 0,

for both walkers X and X ′ are explored. For (x, n) ∈ Zd × Z, let ℓ(x, n) be length of the longest directed

open path starting in (x, n) with the convention ℓ(x, n) = −1 if ω(x, n) = 0 and ℓ(x, n) = ∞ if ηn(x) = 1.

As in [BČD16] we define

Dn := n+max{ℓ(y,−n) + 2 : ∥Xn − y∥ ≤ Rloc, ℓ(y,−n) <∞}.

Note that Dn is the time, for the walk, at which the reasons for η−n(y) = 0 for all y from the Rloc-

neighbourhood of Xn are explored by inspecting all the determining triangles

D(x, n) :=

∅, if ηn(x) = 1,

{(y,m) : ∥y − x∥ ≤ (n−m), n− ℓ(x, n)− 1 ≤ m ≤ n}, if ηn(x) = 0
(3.1.11)

with base points in BRloc
(Xn). We aim to build the regeneration times on exactly the stopping times at

which we explored all reasons for 0’s of η along the paths and define

σ0 := 0, σi := min

{
m > σi−1 : max

σi−1≤n≤m
Dn ≤ m

}
, i ≥ 1.

Let (σ′
i)i≥0 be defined analogously for X ′. Now the times at which we jointly explored the reasons for 0’s of

η along the paths of X and X ′ are given by the sequence (σsim
ℓ )ℓ≥0 defined by

σsim
0 = 0, σsim

ℓ = σi = σ′
j , ℓ ≥ 1, (3.1.12)

where i and j are the first times with respect to the corresponding sequences so that |{σ0, . . . , σi} ∩
{σ′

0, . . . , σ
′
j}| = ℓ. Note that σsim are exactly the times when we have no “negative” influence on the

environment in the future of the paths of both random walks.

Again as in [BČD16] we define

tuben := {(y,−k) : 0 ≤ k ≤ n, ∥y −Xk∥ ≤ Rloc} (3.1.13)
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and

dtuben =
⋃

(y,k)∈tuben

D(y, k). (3.1.14)

Similarly we define tube′n and dtube′n by using X ′ instead of X. Let the filtration F sim = (F sim
n )n be defined

by

F sim
n := σ(Xj : 0 ≤ j ≤ n) ∨ σ(ηj(y), ω(y, j) : (y, j) ∈ tuben) ∨ σ(ω(y, j) : (y, j) ∈ dtuben)

∨ σ(X ′
j : 0 ≤ j ≤ n) ∨ σ(ηj(y), ω(y, j) : (y, j) ∈ tube′n) ∨ σ(ω(y, j) : (y, j) ∈ dtube′n).

In particular F sim
n is the filtration that contains all the information about the environment that the random

walks gather until time σsim
n . This information includes the values of ω and η in their Rloc-vicinity and the

determining triangles.

Lemma 3.1.4 (Analogue of Lemma 2.17 from [BČD16]). When p is sufficiently close to 1, then there exist

finite positive constants c and C so that

sup
x,x′

Px,x′(σsim
i+1 − σsim

i > n|F sim
σsim
i

) ≤ Ce−cn for all n = 1, 2, . . . , i = 0, 1, . . . a.s., (3.1.15)

in particular, all σsim
i are a.s. finite. Furthermore, we have

L (ω(·,−j − σsim
i )j=0,1,... |F sim

σsim
i

) ≽ L (ω(·,−j)j=0,1,...) for all i = 0, 1, . . . a.s., (3.1.16)

where ‘≽’ denotes stochastic domination.

Remark 3.1.5. Note that σsim
i+1−σsim

i depends on the positions of the random walkers at time σsim
i . We omit

writing this explicitly with every σ since it would lead to an overload of notation.

Proof. The proof is basically the same as for Lemma 2.17 of [BČD16] with only a few minor differences.

In order to verify (3.1.16) note that at stopping times σsim
i all the reasons for zeros along the path of the

random walks have been explored and are contained in F sim
σsim
i

. On the other hand the knowledge of ones of

η enforces the existence of certain open paths for the ω’s. Thus, (3.1.16) follows from the FKG inequality

for the ω’s.

For the proof of (3.1.15) we consider first the case i = 0. We write R̂κ := (2Rκ+1)d and R̂loc := (2Rloc+1)d

for the number of elements of a ball with radius Rκ or Rloc respectively. The event {σsim
1 > n} enforces that

there are space-time points (yj ,−j) with η−j(yj) = 0 for j = 0, 1, . . . , n in the Rloc-vicinity of the paths of

the two random walks X and X ′. Here, it is enough to have such a point in only one of the two Rloc-vicinities.

By Lemma 2.11 from [BČD16] the probability that η−j(yj) = 0 for a fixed choice of y0, . . . , yn is bounded

from above by ε(p)n+1.

Now we prove an upper bound for the number of relevant vectors (y0, y1, . . . , yn) ∈ (Zd)n+1. Each of

the two random walks has R̂n
κ possible n-step paths. Thus, the two walks together have at most R̂2n

κ

possible n-step paths. Assume that at exactly k times, 0 ≤ m1 < m2 < · · · < mk ≤ n, for sites

(ymi
,−mi) ∈ BRloc

(Xmi
) × {−mi} ∪ BRloc

(X ′
mi

) × {−mi} we have η−mi
(ymi

) = 0 and hence the corre-

sponding “determining” triangle D(ymi
,−mi) is not empty.

Set mk+1 = n. Then the height of D(ymi
,−mi) is bounded from below by mi+1 − mi, because the

triangles have to overlap until time n to enforce σsim
1 > n. For a fixed n-step path of (X,X ′) and fixed
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m1 < m2 < · · · < mk, there are at most (2R̂loc)
k many choices for the ymi , i = 1, . . . , k. Here we have 2R̂loc

choices for every ymi since those points are in BRloc
(Xmi) ∪ BRloc

(X ′
mi

). And inside D(ymi ,−mi) we have

at most R̂
mi+1−mi−1
κ choices to pick ymi+1, ymi+2, . . . , ymi+1−1 (start with ymi , then follow the longest open

path which is not connected to Zd × {−∞}, these sites are necessarily zeros of η). Thus, there are at most

R̂2n
κ

n∑
k=1

∑
m1<m2<···<mk≤mk+1=n

(2R̂loc)
k

k∏
i=1

R̂mi+1−mi−1
κ

= R̂2n
κ

n∑
k=1

(
n

k

)
(2R̂loc)

kR̂n−k
κ ≤ R̂2n

κ (2R̂loc + R̂κ)
n

possible choices of (y0, y1, . . . , yn) and hence we have

Px,x′(σsim
1 > n) ≤ (R̂2

κ(2R̂loc + R̂κ)ε(p))
n.

The right hand side decays exponentially when p is close to 1. The general case i > 0 in (3.1.15) follows by

employing (3.1.16) and the argument for i = 0.

Corollary 3.1.6 (Analogue of Corollary 2.18 from [BČD16]). For p large enough there exists ε(p) ∈ (0, 1]

satisfying limp↑1 ε(p) = 0 such that for all V = {(x1, t1), . . . , (xk, tk)} and V ′ = {(x′1, t′1), . . . , (x′ℓ, t′ℓ)}, subsets
of Zd × N with t1 < · · · < tk, t

′
1 < · · · < t′ℓ, we have

sup
x0,x′

0

Px0,x′
0

(
η−t−σsim

i
(x+Xσsim

i
) = 0 for all (x, t) ∈ V | F sim

σsim
i

)
≤ ε(p)k (3.1.17)

and

sup
x0,x′

0

Px0,x′
0

(
η−t′−σsim

i
(x′ +X ′

σsim
i

) = 0 for all (x′, t′) ∈ V ′ | F sim
σsim
i

)
≤ ε(p)ℓ. (3.1.18)

Proof. With ε(p) as in Lemma 2.11 of [BČD16] the assertion follows from that lemma and (3.1.16); cf also

Corollary 2.18 in [BČD16].

For t ∈ N we define Rt := inf{i ∈ Z+ : σsim
i ≥ t} and for m = 1, 2, . . . we put

τ̃ simm (t) :=

σsim
Rt−m+1 − σsim

Rt−m if m ≤ Rt,

0 else.
(3.1.19)

In particular τ̃ sim1 (t) is the length of the interval (σsim
i−1, σ

sim
i ] which contains t.

Lemma 3.1.7 (Analogue of Lemma 2.19 from [BČD16]). When p is sufficiently close to 1 then there exist

finite positive constants c and C so that for all i, n = 0, 1, . . .

sup
x,x′

Px,x′
(
τ̃ sim1 (t) ≥ n | F sim

σsim
i

)
≤ Ce−cn a.s. on {σsim

i < t}, (3.1.20)

and generally

sup
x,x′

Px,x′(Rt ≥ i+m, τ̃ simm (t) ≥ n | F sim
σsim
i

) ≤ Cm2e−cn for m = 1, 2, . . . a.s. on {σsim
i < t}. (3.1.21)
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Proof. We start with the proof of (3.1.20). We have, writing P = Px,x′

P(τ̃ sim1 (t) ≥ n | F sim
σsim
i

)

= P(σsim
i+1 ≥ t ∨ (n+ σsim

i ) | F sim
σsim
i

) +
∑
j>i

t−1∑
ℓ=σsim

i +1

P(σsim
j = ℓ, σsim

j+1 ≥ t ∨ (ℓ+ n) | F sim
σsim
i

)

≤ Ce−cn +

t−1∑
ℓ=σsim

i +1

Ce−c((t−ℓ)∨n)P(∃j > i : σsim
j = ℓ | F sim

σsim
i

)

≤ Ce−cn + 1{σsim
i ≤t−n−2}

t−n−1∑
ℓ=σsim

i +1

Ce−c(t−ℓ) + 1{n+1≤t}

t−1∑
ℓ=t−n

Ce−cn

≤ C(1 +
e−c

1− e−c
+ n)e−cn

where we used Lemma 3.1.4 and

P
(
σsim
j = ℓ, σsim

j+1 ≥ t ∨ (ℓ+ n) | F sim
σsim
i

)
= E

[
1{σsim

j =ℓ}P(σsim
j+1 − σsim

j ≥ (t− ℓ) ∨ n | F sim
σsim
j

)|F sim
σsim
i

]
in the first inequality.

To prove (3.1.21) we assume σsim
i ≤ t− n−m− 1 since otherwise the conditional probability appearing

in that display equals 0. We have

P(Rt ≥ i+m, τ̃ simm (t) ≥ n | F sim
σsim
i

)

= P(Rt = i+m, τ̃ simm (t) ≥ n | F sim
σsim
i

) + P(Rt > i+m, τ̃ simm (t) ≥ n | F sim
σsim
i

)

= P(σsim
i+1 − σsim

i ≥ n,Rt = i+m | F sim
σsim
i

) + P(Rt > i+m, τ̃ simm (t) ≥ n | F sim
σsim
i

)

≤ Ce−cn +
∑
j>i

t−m−n∑
k=σsim

i +1

t−m+1∑
ℓ=k+n

P(σsim
j = k, σsim

j+1 = l, σsim
j+m−1 < t, σsim

j+m ≥ t | F sim
σsim
i

)

≤ Ce−cn +
∑
j>i

t−m−n∑
k=σsim

i +1

t−m+1∑
ℓ=k+n

P(σsim
j = k, σsim

j+1 = l | F sim
σsim
i

)× (m− 1)Ce−c(t−ℓ)/(m−1)

≤ Ce−cn + C(m− 1)

t−m−n∑
k=σsim

i +1

t−m+1∑
ℓ=k+n

e−c(t−ℓ)/(m−1)
∑
j>i

P(σsim
j = k | F sim

σsim
i

)× Ce−c(ℓ−k)

≤ Ce−cn + C2(m− 1)

t−m−n∑
k=σsim

i +1

eck−ct/(m−1)
t−m+1∑
ℓ=k+n

exp
(
−cm− 2

m− 1
l
)

(3.1.22)

where we used in the second inequality that

{σsim
j+1 = ℓ, σsim

j+m−1 < t, σsim
j+m > t} ⊂

j+m⋃
r=j+2

{σsim
r − σsim

r−1 ≥ t− ℓ

m− 1
}

together with Lemma 3.1.4. For m = 2 the inequality proven in (3.1.22) yields

P(Rt ≥ i+ 2, τ̃ simm (t) ≥ n | F sim
σsim
i

) ≤ Ce−cn + C2
t−n∑

k=σsim
i +1

(t− k − n)e−c(t−k) ≤ C ′e−cn
∞∑
ℓ=0

ℓe−cℓ
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whereas for m > 2 we obtain

P(Rt ≥ i+m,τ̃ simm (t) ≥ n | F sim
σsim
i

)

≤ Ce−cn + C2(m− 1)

t−m−n∑
k=σsim

i +1

eck−ct/(m−1)
exp(−cm−2

m−1 (k + n))

1− exp(−cm−2
m−1 )

= Ce−cn + C2(m− 1)
exp(−cm−2

m−1n− c t
m−1 )

1− exp(−cm−2
m−1 )

t−m−n∑
k=σsim

i +1

eck/(m−1)

≤ Ce−cn +
C2(m− 1)

1− exp(−cm−2
m−1 )

exp(−cm− 2

m− 1
n− c

t

m− 1
)

ec
t−n
m−1

ec/(m−1) − 1

= Ce−cn +
C2(m− 1)

1− exp(−cm−2
m−1 )

e−cn

ec/(m−1) − 1
≤ C ′m2e−cn.

where we note that 1−exp(−cm−2
m−1 ) ≥ 1−exp(c/2) and exp(c/(m−1))−1 = c

m+1

∑∞
k=0

(c/(m−1))k

(k+1)! > c
m−1 .

Lemma 3.1.8 (Analogue of Lemma 2.20 in [BČD16]). When p is sufficiently close to 1, then for all ε > 0

there exist finite positive constants c = c(ε) and C = C(ε) so that for all finite F sim-stopping times T with

the property that almost surely T ∈ {σsim
i : i ∈ N} and for all k, ℓ ∈ N

sup
x0,x′

0

Px0,x′
0
(∥Xk −XT ∥ > smax(k − T ) | F sim

T ) ≤ Ce−c(k−T ) a.s. on {T < k}, (3.1.23)

sup
x0,x′

0

Px0,x′
0
(∥X ′

ℓ −X ′
T ∥ > smax(ℓ− T ) | F sim

T ) ≤ Ce−c(ℓ−T ) a.s. on {T < ℓ} (3.1.24)

and for j < k, ℓ

sup
x0,x′

0

Px0,x′
0
(∥Xk −Xj∥ > (1 + ε)smax(k − j) | F sim

T ) ≤ Ce−c(k−j) a.s. on {T ≤ j}, (3.1.25)

sup
x0,x′

0

Px0,x′
0
(
∥∥X ′

ℓ −X ′
j

∥∥ > (1 + ε)smax(ℓ− j) | F sim
T ) ≤ Ce−c(ℓ−j) a.s. on {T ≤ j} (3.1.26)

with smax as in Lemma 2.16 of [BČD16].

Proof. By Lemma A.1 of [BČD16], we may assume that T = σsim
ℓ for some ℓ ∈ N. For (3.1.23) we combine

Corollary 3.1.6 with the proof of Lemma 2.16 of [BČD16]. Since the proof is analogous to the proof of

Lemma 2.20 in [BČD16], we briefly show the part of the proof that differs. Let Γn be the set of all n-step

paths γ on Zd starting from γ0 = XT with the restriction ∥γi − γi−1∥ ≤ Rκ, i = 1, . . . , n, where Rκ is the

range of the kernels κn from Assumption 1.3.4. For γ ∈ Γk−T and T ≤ i1 < i2 < · · · < im ≤ k we define

Dγ
i1,...,im

:= {η−ℓ(γℓ) = 0 for all ℓ ∈ {i1, . . . , im}},

W γ
i1,...,im

:= {η−ℓ(γℓ) = 1 for all ℓ ∈ {T, . . . , k} \ {i1, . . . , im}}.

Let Hn := #{T ≤ i ≤ n : η−i(Xi) = 0} be the number of sites with zeros the walker visits from time T up

to time n and set K := maxx∈Zd{κref(x)}+ εref . It follows that

P(Hk = m | F sim
T ) =

∑
T≤i1<···<im≤k

∑
γ∈Γk−T

P((XT , . . . , Xk) = γ,W γ
i1,...,im

, Dγ
i1,...,im

| F sim
T ). (3.1.27)
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Note that if im < k we get

P((XT , . . . , Xk) = γ,W γ
i1,...,im

, Dγ
i1,...,im

| F sim
T )

= E
[
1{(XT ,...,Xim−1)=(γT ,...,γim−1)}1W

γ|im−1
i1,...,im−1

E[1{(Xim ,...,Xk)=(γim ,...,γk)}1{η−ℓ(γℓ)=1,im+1≤l≤k}1Dγ
i1,...,im

| F sim
im−1] | F sim

T

]
where γ|t = (γ1, . . . , γt) is the path γ restricted to the first t components. By conditioning on Fk−1, . . . ,Fim

successively we get

P((XT , . . . , Xk) = γ,W γ
i1,...,im

, Dγ
i1,...,im

| F sim
T )

≤ E[1{(XT ,...,Xim−1)=(γT ,...,γim−1)}1W
γ|im−1
i1,...,im−1

Kk−im−1E[1Dγ
i1,...,im

| F sim
im−1] | F sim

T ]

because the path will only hit ones of η for the steps after im. If we repeat the same argument for every ij

we obtain

P(Hk = m | F sim
T ) ≤

∑
T≤i1<···<im≤k

∑
γ∈Γk−T

Kk−T−mP(Dγ
i1,...,im

| F sim
T )

≤
∑

T≤i1<···<im≤k

Rd(k−T )
κ Kk−T−mε(p)m =

(
k − T

m

)
Rd(k−T )

κ Kk−T−mε(p)m,

where we used Corollary 3.1.6 in the second inequality. From this point the rest of the proof consists of the

same calculations as in the proof of Lemma 2.16 of [BČD16], where the walk is compared with the reference

walk for steps from sites on which η equals 1 and one uses the a priori bound, Assumption 1.3.4, for step

sizes from (the few) other sites. This proves (3.1.23). Since L (Xk − XT ) = L (X ′
k − X ′

T ) if the random

walks are started from the same position we also obtain (3.1.24).

For (3.1.25) define T ′ := inf({σsim
i : i ∈ N} ∩ [j,∞)) the first σsim

i after j. Inequality (3.1.20) shows that

P(T ′ − j > ε(k − j) | F sim
T ) is exponentially small in k − j. Using (3.1.23) we obtain

P(∥Xk −Xj∥ > (1 + ε)smax(k − j), T ′ − j ≤ εsmax

Rκ
(k − j) | F sim

T )

≤ P(∥Xk −XT ′∥+ ∥XT ′ −Xj∥ > (1 + ε)smax(k − j), T ′ − j ≤ εsmax

Rκ
(k − j) | F sim

T )

≤ P(∥Xk −XT ′∥+ εsmax(k − j) > (1 + ε)smax(k − j), T ′ − j ≤ εsmax

Rκ
(k − j) | F sim

T )

≤ P(∥Xk −XT ′∥ > smax(k − j), T ′ − j ≤ εsmax

Rκ
(k − j) | F sim

T )

≤ E[1{T ′−j≤ εsmax
Rκ

(k−j)}P(∥Xk −XT ′∥ > smax(k − j) | F sim
T ′ ) | F sim

T ]

≤ E[1{T ′−j≤ εsmax
Rκ

(k−j)}Ce
−c(k−T ′) | F sim

T ]

≤ E[1{T ′−j≤ εsmax
Rκ

(k−j)}Ce
−c(k−j)+c εsmax

Rκ
(k−j) | F sim

T ]

≤ Ce−c(k−j)+c εsmax
Rκ

(k−j).
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This yields

P(∥Xk −Xj∥ > (1 + ε)smax(k − j) | F sim
T )

= P(∥Xk −Xj∥ > (1 + ε)smax(k − j), T ′ − j >
εsmax

Rκ
(k − j) | F sim

T )

+ P(∥Xk −Xj∥ > (1 + ε)smax(k − j), T ′ − j ≤ εsmax

Rκ
(k − j) | F sim

T )

≤ Ce−c εsmax
Rκ

(k−j) + Ce−c(k−j)+c εsmax
Rκ

(k−j)

≤ Ce−c′(k−j),

where we used (3.1.20) of Lemma 3.1.7 for the first inequality. Finally, (3.1.26) follows by the same arguments.

Next recall from [BČD16] the definition for a cone time point for the decorated path; see equation (2.56)

and in particular Figure 4 there. For m < n we say that n is a (b, s)-cone time point for the decorated path

of X beyond m if, recall definitions (3.1.13) and (3.1.14),

(tuben ∪dtuben) ∩ (Zd × {−n,−n+ 1, . . . ,−m})

⊂ {(x,−j) : m ≤ j ≤ n, ∥x−Xn∥ ≤ b+ s(n− j)}
(3.1.28)

and for X ′ if

(tube′n ∪dtube′n) ∩ (Zd × {−n,−n+ 1, . . . ,−m})

⊂ {(x,−j) : m ≤ j ≤ n, ∥x−X ′
n∥ ≤ b+ s(n− j)}.

(3.1.29)

Thus, n is a cone time point for the decorated path of X beyond m if the space-time path (Xj ,−j)j=m,...,n

together with its Rloc-tube and determining triangles is contained in cone(b, s, n − m) shifted to the base

point (Xn,−n).

Lemma 3.1.9 (Analogue to [BČD16] Lemma 2.21). For ε > 0, when p is sufficiently close to 1, there exist

b > 0 and s > smax such that for all finite F sim-stopping times T with T ∈ {σsim
i : i ∈ N} a.s. and all k ∈ N,

with T ′ := inf{σsim
i : σsim

i ≥ k}

P(T ′ is a (b, s)-cone time point for the decorated path of X and X ′ beyond T | F sim
T )

≥ 1− ε, (3.1.30)

a.s. on {T < k}. Furthermore 0 < s− smax ≪ 1 can be chosen small.

Proof. By Lemma 2.21 from [BČD16] one can tune the parameters such that a.s. on {T < k} we have

P(T ′ is a (b, s)-cone time point for the decorated path of X beyond T | F sim
T ) ≥ 1− ε/2,

and the analogous inequality with X ′ instead of X holds as well. From these estimates (3.1.30) follows easily.

The assertion that 0 < s − smax ≪ 1 can be chosen small is also a direct consequence of Lemma 2.21 from

[BČD16].

Remark 3.1.10. Note that, since both inner cones are subsets of the double inner cone, T ′ from Lemma 3.1.9

is a (b, s)-“double cone time point” for the decorated path of (X,X ′) beyond T if it is a (b, s)-cone time

point for X and X ′ beyond T which is in accordance to our setting up the simultaneous regeneration times.
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As a part of the construction of the regeneration times we define the set of ‘good’ ω-configurations in the

double cone shell. Let

Gx,x′(binn, bout, sinn, sout, h) ⊂ {0, 1}dcs(x,x
′,binn,bout,sinn,sout,h) (3.1.31)

be the set of all ω-configurations with the property

∀η0, η′0 ∈ {0, 1}Z
d

with η0|Bbout (x)∪Bbout (x
′) = η′0|Bbout (x)∪Bbout (x

′) ≡ 1 and

ω ∈ {0, 1}Z
d×{1,...,h} with ω|dcs(x,x′,binn,bout,sinn,sout,h) ∈ Gx,x′(binn, bout, sinn, sout, h) :

ηn(y) = η′n(y) for all (y, n) ∈ cone(x; binn, sinn, h) ∪ cone(x′; binn, sinn, h),

(3.1.32)

where η and η′ are both constructed from (1.1.1) with the same ω but using possibly different initial condi-

tions. In words this means, when there are 1’s at the bottom of the outer cones, i.e. cone(x; bout, sout, h) and

cone(x′; bout, sout, h), a configuration from Gx,x′(binn, bout, sinn, sout, h) guarantees successful coupling inside

the inner double cone irrespective of what happens outside the outer cones.

Lemma 3.1.11. For parameters p, binn, bout, sinn, sout as in Lemma 3.1.2,

P(ω|dcs(x,x′,binn,bout,sinn,sout,h) ∈ Gx,x′(binn, bout, sinn, sout, h)) ≥ 1− ε, (3.1.33)

uniformly in h ∈ N and x, x′ ∈ Zd.

Proof. This lemma is a direct consequence of Lemma 3.1.2 because for ω ∈ G1 ∩G2 we have

ω|dcs(x,x′,binn,bout,sinn,sout,h) ∈ Gx,x′(binn, bout, sinn, sout, h).

We denote a space-time shift of subsets of Zd × Z by Θ(x,n), i.e.

Θ(x,n)(A) := {(y + x,m+ n) : (y,m) ∈ A} for A ⊂ Zd × Z. (3.1.34)

From [BČD16], see there the discussion around (2.62), we know that there exists a deterministic sequence

tℓ ↗ ∞ with the property that for ℓ ∈ N and ∥xbas − y∥ ≤ smaxtℓ+1

Θ(0,−tℓ)
(
cone(xbas, tℓsmax + bout, sout, tℓ)

)
⊂ Θ(y,−tℓ+1)

(
cone(xbas, binn, sinn, tℓ+1)

)
. (3.1.35)

We will describe a possible choice in (3.1.42) below. The same sequence can be used for the double cone, since

the larger cones will overlap with each other before they can hit the smaller cones. Thus, for ∥xbas − y∥ ≤
smaxtℓ+1 and ∥x′bas − y′∥ ≤ smaxtℓ+1 we have

Θ(0,−tℓ)
(
cone(xbas, tℓsmax + bout, sout, tℓ)

)
∪Θ(0,−tℓ)

(
cone(x′bas, tℓsmax + bout, sout, tℓ)

)
⊂ Θ(y,−tℓ+1)

(
cone(xbas, binn, sinn, tℓ+1)

)
∪Θ(y′,−tℓ+1)

(
cone(x′bas, binn, sinn, tℓ+1)

) (3.1.36)

and the sequence satisfies

tℓ+1sinn + binn − tℓ+1smax > tℓsmax + bout + tℓsout, for all ℓ. (3.1.37)

Note that necessarily the sequence (tℓ) must grow exponentially in ℓ; cf. the discussion around (3.1.43).
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Construction 3.1.12 (Regeneration times). The regeneration times will be constructed analogously to the

construction in [BČD16]. Let X0 = x and X ′
0 = x′ be the starting positions of the two random walks. For

the sequence (σsim
n )n=1,2,... from (3.1.12) and a sequence (tℓ)ℓ=1,2,... satisfying (3.1.34) we define the sequence

(σ̃sim
n )n=1,2,... by

σ̃sim
ℓ := inf{σsim

i ∈ {σsim} : σsim
i ≥ tℓ}, (3.1.38)

i.e. be σ̃sim
ℓ is the first element in the sequence σsim after the time tℓ. The sequence (σ̃sim

n )n=1,2,... is the

sequence along which we look for regeneration times.

For the first regeneration time we check the following criteria:

(i) Go to σ̃sim
1 and check if σ̃sim

1 < t2, η in the bout-neighbourhood of (Xσ̃sim
1
,−σ̃sim

1 ) and (X ′
σ̃sim
1
,−σ̃sim

1 )

equals ≡ 1, the paths (together with their tubes and decorations) stayed inside the interior of the

corresponding double cone based at the current space-time positions of the two random walks and ω

in the respective conical shells is in the good set defined in (3.1.31) and (3.1.32). If these events occur,

we have found the first regeneration time T1 = σ̃sim
1 .

(ii) If the above attempt in (i) fails, we must try again. We successively check at times t2, t3, etc.: If not

previously successful up to time tℓ−1, at the ℓ-th step we check if σ̃sim
ℓ < tℓ+1, if σ̃

sim
ℓ is a cone point

for the decorated path beyond tℓ−1 with

max
{∥∥∥Xσ̃sim

ℓ
− x
∥∥∥ ,∥∥∥X ′

σ̃sim
ℓ

− x′
∥∥∥} ≤ smaxσ̃

sim
ℓ ,

if η ≡ 1 in the bout-neighbourhood of (Xσ̃sim
ℓ
,−σ̃sim

ℓ ) and (X ′
σ̃sim
ℓ
,−σ̃sim

ℓ ), if ω’s in the corresponding

conical shells are in the good set defined in (3.1.31) and (3.1.32) and if the paths (with tubes and

decorations) up to time tℓ−1 are each contained in a box of diameter souttℓ−1 + bout and height tℓ−1.

If this all holds, we have found the first regeneration time T1.

Remark 3.1.13. Construction 3.1.12 defines the regeneration times for two random walks X and X ′ evolving

in the same environment ω. Later on we want to compare this pair of random walks on a joint environment

with another pair of random walks which individually evolve in independent environments ω and ω′. Thus,

for these independent random walks we also need simultaneous regeneration times. We construct them as

described in Construction 3.1.12 where we use the same sequences (tℓ) with the deciding difference being

that X ′ evolves in the environment η′ generated by ω′ analogously to (1.1.1). Thus, we check the values of

ω′ and η′ in the Rloc-neighbourhood of X ′ along the path. Since ω and ω′ are independent we do not use the

double cone but instead two single cones and each of them has to satisfy the conditions of the construction.

Note that as long as the bases of the cones are far apart compared to their heights the double cone

shell and the two single cone shells constitute the same geometric objects. This will be used extensively to

compare the constructions in the same and in the independent environments when the initial separation of

the two walks is large.

Following this construction we obtain a series of random variables (Tn)n with T0 := 0, where Tn is the

n-th simultaneous regeneration of the two random walks X and X ′. Formally the regeneration times depend

on the position of the two random walks, i.e. Tn = Tn(x, x
′) if (XTn−1 , X

′
Tn−1

) = (x, x′). If they start close to

each other the two cones containing the paths of the random walks will overlap and there exist some parts
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of the environment that both random walks explore. On the other hand, if they start very far away from

each other, they explore disjoint parts of the environment.

To be more precise we have two sequences of regeneration times: one for two random walks evolving in

the same environment, this sequence will be denoted by (T joint
n )n=0,1,...; the other one for two random walks

evolving in two independent environments, this sequence will be denoted by (T ind
n )n=0,1,.... The construction

for (T ind
n )n=0,1,... follows the same principle but since the random walks evolve in two independent envi-

ronments, the information obtained about the environment along each random walk is independent of the

respective other random walk. Therefore one can think of building two cones and checking the conditions

above for each cone separately, which will then be independent of each other.

Remark 3.1.14. We want to note that all results obtained above about σsim hold in the case of independent

environments as well, since we don’t have to carefully check whether the two random walks are close to each

other in space.

Furthermore we denote by

Pjoint
x,x′ and Pind

x,x′ (3.1.39)

the laws of (X,X ′) evolving in the same (joint) environment respectively in two independent environments

starting from (X0, X
′
0) = (x, x′). We use the following notation somewhat interchangeably depending on the

situation

Pjoint
x,x′ (T1 = ·) = Px,x′(T joint

1 = ·) = P(T joint
1 (x, x′) = ·)

and

Pind
x,x′(T1 = ·) = Px,x′(T ind

1 = ·) = P(T ind
1 (x, x′) = ·).

Moreover, since we are interested in the behaviour along the simultaneous regeneration times, we need to

introduce some more notation. Let X̂ := (X̂n)n be a random walk starting in X̂0 = x0 along the simultaneous

regeneration times described above, i.e. X̂n = XTn
and X̂ ′

n = X ′
Tn

. For random walks along the regeneration

times in the joint and independent environments we write X̂ joint
n := XT joint

n
and X̂ ind

n := XT ind
n

, and for X̂ ′

analogously.

Essential tools for the proof of the quenched CLT will be good comparison results between these two

different dynamics. Note that (X̂, X̂ ′) is in both cases a Markov chain due to the respective regeneration

constructions. In the case of independent environments for the two copies of the walk the increments

(X̂ ind
n − X̂ ind

n−1, X̂
′,ind
n − X̂

′,ind
n−1 )n are in fact i.i.d. random variables.

Lemma 3.1.15 (Joint regeneration times). Denote by T1 the first simultaneous regeneration time, then

there are positive constants C and β so that

sup
x0,x′

0

Pjoint
x0,x′

0
(T1 > t) ≤ Ct−β and sup

x0,x′
0

Pind
x0,x′

0
(T1 > t) ≤ Ct−β . (3.1.40)

Furthermore, β can be chosen arbitrarily large if p is suitably close to 1 and εref is sufficiently small.

The fact that β can be chosen large will be used throughout the rest of the paper. Also note that for

Pind the random walks evolve in independent environments and the construction of the regeneration times

and their tails are then even independent of the positions of the random walks.
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Remark 3.1.16. In contrast to Birkner et al. in [BČDG13] we do not have a literal connection (in the sense

of being a subsequence) between the simultaneous regeneration times defined here and the regeneration

times for a single random walk defined in [BČD16]. For that reason we directly will work here with the

simultaneous regeneration times.

Proof of Lemma 3.1.15. Let us first prove the first inequality in (3.1.40). We fix x0, x
′
0 and write P for Pjoint

x0,x′
0

for the rest of the proof to shorten the notation. Recall Construction 3.1.12 and the notation introduced

there. For any m ≥ 2, to be chosen appropriately later, we have

P(T1 > t) =

∞∑
ℓ=1

P(T1 = σ̃sim
ℓ , σ̃sim

ℓ > t) ≤
m−1∑
ℓ=1

P(σ̃sim
ℓ > t) +

∞∑
ℓ=m

P(T1 = σ̃sim
ℓ ). (3.1.41)

Let t1 = 1 and define

tℓ+1 =
⌈ tℓsmax + bout + tℓsout − binn

sinn − smax

⌉
+ 1, for all ℓ = 1, 2, . . . . (3.1.42)

Then the sequence (tℓ)ℓ=1,2,... satisfies the condition (3.1.37). Furthermore for any ρ with

ρ >
sout + smax

sinn − smax
(3.1.43)

we have tℓ ≤ ⌈ρℓ⌉ for all ℓ ≥ ℓ∗, where ℓ∗ = ℓ∗(ρ) < ∞ is the smallest index such that tℓ ≤ ⌈ρℓ⌉. Since

we need to check the statement of the lemma only for large t, assume that ⌈ρℓ∗⌉ ≤
√
t. For such t we have

choosing m = ⌈log(t)/(2 log(ρ))⌉ and using σ̃sim
0 = 0

m−1∑
i=1

P(σ̃sim
i > t) ≤

m−1∑
i=1

P(σ̃sim
i − σ̃sim

i−1 > t− ti)

≤ C(m− 1)e−c(t−tm−1) ≤ C(m− 1)e−c(t−
√
t).

(3.1.44)

Obviously we have m <
√
t. Thus, the right hand side is bounded by Ct−β for any β > 0.

For the second sum on the right hand side of (3.1.41) we first show that there is a uniform, positive lower

bound for the probability of a successful regeneration (i.e. conditions in Construction 3.1.12 (ii) do hold) at

the ℓ-th attempt for all ℓ ≥ 2.

By Lemma 3.1.7 we know that for large ℓ the probability of σ̃ℓ > tℓ+1 is very small. The condition for the

environment ω, restricted to the respective cone shell, to be a good configuration is independent for different

ℓ since we check different parts of ω for each ℓ. For the path containment by Lemma 2.16 in [BČD16] we

have

P(∃n ≤ tℓ : ∥Xn − x0∥ >
1

2
smaxtℓ + nsout or ∃n ≤ tℓ : ∥X ′

n − x′0∥ >
1

2
smaxtℓ + nsout)

≤ P(∃n ≤ tℓ : ∥Xn − x0∥ >
1

2
smaxtℓ + nsout) + P(∃n ≤ tℓ : ∥X ′

n − x′0∥ >
1

2
smaxtℓ + nsout)

≤
tℓ∑

⌈ tℓsmax
2Rκ

⌉

P(∥Xn − x0∥ > smaxn) +

tℓ∑
⌈ tℓsmax

2Rκ
⌉

P(∥X ′
n − x′0∥ > smaxn)

≤ Ce−ctℓ .
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Since tℓ grows exponentially in ℓ, the right hand side is summable in ℓ. Thus, from some time ℓ0 on, we have

supn≤tℓ
∥Xn − x0∥ ≤ smaxtℓ and supn≤tℓ

∥X ′
n − x′0∥ ≤ smaxtℓ for all ℓ ≥ ℓ0 a.s.

Next we bound the size of the decorations by showing that we only have finitely many large increments

σsim
i+1 − σsim

i in the sequence σsim. For iℓ := inf{i : σsim
i ≥ tℓ} we have by Lemma 3.1.4

P(∃ i ≤ iℓ : σ
sim
i − σsim

i−1 > k) ≤ P(∃ i ≤ tℓ : σ
sim
i − σsim

i−1 > k)

≤
tℓ∑
i=1

P(σsim
i − σsim

i−1 > k) ≤ Ctℓe
−ck.

Now if ∥Xn − x∥ ≤ tℓsmax for all n ≤ tℓ and σsim
i − σsim

i−1 ≤ tℓ(sout − smax)/2 for all i ≤ iℓ, then the path

including the decorations is contained in the box (x, 0) + [−bout − tℓsout, bout + tℓsout]
d × [0, tℓ]. Note that

Ctℓe
−ck is summable for the choice k = tℓ(sout − smax)/2. So we only have finitely many times where one of

the random walks moves “too fast” or the decorations are “too large”. Combining the above it follows that

a.s. there exists ℓ′ so that the path containment property holds for all ℓ ≥ ℓ′.

Assertion (3.1.16) from Lemma 3.1.4 guarantees the existence of open paths in the future direction of

the random walks and thus yields a uniform lower bound on the event that η = 1 in the Rloc-neighbourhood

of the random walks at σ̃sim
ℓ . Therefore there exists a uniform lower bound in ℓ on the probability of a

successful regeneration at ℓth attempt. Let δ0 be that uniform lower bound. Note that δ0 → 1 for p → 1

since the probability for all three conditions goes to 1 for p→ 1.

By plugging in the definition of m the second partial sum on the right hand side of (3.1.41) has the upper

bound

∞∑
i=m

P(T1 = σ̃sim
i ) ≤

∞∑
i=m

δ0(1− δ0)
i = (1− δ0)

m+1 ≤ t
ln(1−δ0)

2 ln(ρ) . (3.1.45)

The condition on ρ suggests that we can choose ρ close to 1 if smax is close to 0. This can be achieved

for p close to 1, as is mentioned in Lemma 2.16 from [BČD16]. This way we obtain − ln(1−δ0)
2 ln(ρ) > β and that

concludes the proof. Note that in the proof we have a dependence between t and ρ, since we choose t large

enough such that ρℓ
∗ ≤

√
t, this results in the constant C being dependent on the choice of ρ, and thus b, as

well. However this is not a problem since the condition ρℓ
∗ ≤

√
t holds for smaller t if we choose ρ closer to

1. This proves the first inequality in (3.1.40).

The second inequality in (3.1.40) follows directly by the above arguments and the fact that the two

environments ω and ω′, that the random walks explore, are independent.

Remark 3.1.17. One can be a bit more precise for which ℓ the relation tℓ ≤ ρℓ is true. This obviously depends

on the choice of ρ and yields that there exists ℓ∗ = ℓ∗(ρ) such that

ρ >

(
bout − binn

2smax + sout − sinn

) 1
ℓ∗ sout + smax

sinn − smax
, (3.1.46)

and we have tℓ ≤ ρℓ for all ℓ ≥ ℓ∗.

As a direct consequence of Lemma 3.1.15 we obtain

Corollary 3.1.18. There exist positive constants C and β > 0 so that

sup
x0,x′

0

Pjoint
x0,x′

0
(∥X̂1 − x0∥+ ∥X̂ ′

1 − x′0∥ > m) ≤ C ′m−β
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and

sup
x0,x′

0

Pjoint
x0,x′

0
(∃n ≤ N : ∥X̂n − X̂n−1∥+ ∥X̂ ′

n − X̂ ′
n−1∥ > N b6) ≤ N ·N−b·b6 .

Analogous estimates hold for Pind.

Proof. By Assumption 1.3.4 the random walks X and X ′ both have finite range for their transitions and

thus the claim follows by Lemma 3.1.15.

3.2 Auxiliary results

In this section we will collect some useful results for all dimension d ≥ 1.

The following lemma allows us to compare the laws Pind and Pjoint from (3.1.39). The idea is to use the

fact that for large initial distance of the starting positions, the laws are similar. The reason for this is, that

then the cone construction will result in overlapping cones only, if the regeneration time is very large.

Lemma 3.2.1. There are constants 0 < c, β <∞, so that for all x, x′ ∈ Zd we have∥∥Pind
x,x′

(
(X̂1, X̂

′
1) ∈ ·

)
− Pjoint

x,x′

(
(X̂1, X̂

′
1) ∈ ·

)∥∥
TV

≤ c ∥x− x′∥−β
, (3.2.1)

where the constant β is from Lemma 3.1.15 and can be chosen large.

Proof. To simplify the notation throughout the proof we fix a positive even integer m and without loss of

generality we prove the assertion for starting positions x = (−m/2, 0, . . . , 0) and x′ = (m/2, 0, . . . , 0) in Zd.

We can do this since for the proof only the distance between the starting positions is going to be relevant,

not the exact positions.

Every environment is defined by a configuration ω ∈ {0, 1}Zd×Z and dynamics of the random walks are

then given by the family of transition kernels κ = {κn(x, ·) : n ∈ Z, x ∈ Zd}. Let

Ωi := {(ωi(z, n) : (z, n) ∈ Zd × Z}, i = 1, 2 (3.2.2)

be two independent families of random variables, where the random variable ωi(z, n) are i.i.d. Bernoulli

distributed with parameter p > pc. We introduce a composite environment Ω3 := {ω3(z, n) : (z, n) ∈ Zd×Z},
where ω3 is constructed using ω1 and ω2 and defined by

ω3(z, n) :=

ω1(z, n) : z1 ≤ 0,

ω2(z, n) : z1 > 0,

where z1 is the first coordinate of z. Define

B :=
{
(z, n) ∈ Zd × Z : ∥z − x∥ ≤ m

10
+ bout +

m

10Rκ
sout, n ∈

{
0, . . . ,− m

10Rκ

}}
,

B′ :=
{
(z, n) ∈ Zd × Z : ∥z − x′∥ ≤ m

10
+ bout +

m

10Rκ
sout, n ∈

{
0, . . . ,− m

10Rκ

}}
.

These boxes will contain the random walks and cones constructed for the first regeneration if it happens

before time m
10Rκ

. This also means that the Rloc-vicinity of the random walks is inside these boxes and thus

up until time m/(10Rκ) the random walks in (Ω1,Ω2) and (Ω3,Ω3) will behave the same as long as the
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values of η inside B and B′ are the same in both environments (this means, by Assumption 1.3.1, that the

transition kernels κn(x, ·) are the same).

Define T1,2 = T1(Ω1,Ω2) and T3,3 = T1(Ω3,Ω3) as the first simultaneous regeneration times using Ω1,Ω2

and Ω3 respectively. Note that T3,3 = T joint
1 and T1,2 = T ind

1 and we have already shown in Lemma 3.1.15

that

P(T3,3 > r) ≤ Cr−β (3.2.3)

and

P(T1,2 > r) ≤ Cr−β . (3.2.4)

Now if ηn(z,Ω1) = ηn(z,Ω3) for all (z, n) ∈ B and ηn(z,Ω2) = ηn(z,Ω3) for all (z, n) ∈ B′ we can couple

the two random walks at their first regeneration time in (Ω1,Ω2) with the two in (Ω3,Ω3) until time m
10Rκ

,

since the values of ω and η in the parts of the environment that the random walks explore are equal in both

cases and therefore their distribution is equal. To that end we define the sets

D1 := {for all (z, n) ∈ B : ηn(z,Ω1) = ηn(z,Ω3)} ∩ {for all (z, n) ∈ B′ : ηn(z,Ω2) = ηn(z,Ω3)},

D2 := {T1,2 ≤ m

10Rκ
, T3,3 ≤ m

10Rκ
}.

On D1 ∩D2 we have T1,2 = T3,3 and since T1,2 ≤ m
10Rκ

the random walks are still in the box and thus have

the same distribution for their position at the first regeneration in both cases. That means

Px,x′(XT1,2
= y,X ′

T1,2
= y′) = Px,x′(XT3,3

= y,X ′
T3,3

= y′)

on D1 ∩D2. With Lemma 3.1.15 we get an upper bound for the probability of Dc
2. On Dc

1 there needs to

exist a space-time site (z, n) in B with ηn(z,Ω1) ̸= ηn(z,Ω3) or (z
′, n′) in B′ with ηn′(z′,Ω2) ̸= ηn′(z′,Ω3).

Assume there exists such a site (z, n) ∈ B with ηn(z,Ω1) ̸= ηn(z,Ω3). There are two cases in which that can

occur. First, ηn(z,Ω1) = 1 and ηn(z,Ω3) = 0. That is (z, n) is connected to −∞ in Ω1 but not in Ω3. This

means that by changing the values of ω in the positive half plane Z+ ×Zd−1 ×Z we cut of all infinitely long

open paths starting from (z, n). Thus the only open paths connecting (z, n) to −∞ are via the half plane

Z+×Zd−1×Z and in Ω3 the contact process started from (z, n) lives for at least m̃ = m
2 − m

10−bout−
m

10Rκ
sout

steps, since that is the distance of B and the positive half plane, but dies out eventually. By Lemma 1.3

from [Ste17]

P(η{(z,n)}m̃ ̸= 0 and η{(z,n)} eventually dies out) ≤ Ce−c̃m̃ ≤ Ce−cm.

The case where ηn(z,Ω1) = 0 and ηn(z,Ω3) = 1 follows the same arguments as above. We now know that the

only open paths connecting (z, n) to −∞ in Ω3 have to be cut off in Ω1, which again has probability less than

Ce−cm. Analogous arguments can be made for sites in B′. Since |B ∪B′| = 2(m10 + bout +
m

10Rκ
sout)

d · m
10Rκ

we obtain P(Dc
1) ≤ Ce−cm. Since Px,x′(XT1,2

= y,X ′
T1,2

= y′) = Pind
x,x′(X̂1 = y, X̂ ′

1 = y′) and Px,x′(XT3,3
=

y,X ′
T3,3

= y′) = Pjoint
x,x′ (X̂1 = y, X̂ ′

1 = y′) we conclude

1

2

∑
(y,y′)∈Zd×Zd

|Pind
x,x′(X̂1 = y, X̂ ′

1 = y′)− Pjoint
x,x′ (X̂1 = y, X̂ ′

1 = y′)|

≤ P(Dc
1) + P(Dc

2) ≤ Ce−cm + Cm−β ≤ Cm−β (3.2.5)
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Looking at the regeneration times T joint
n (x, x′) and T ind

n (x, x′) we need to consider a second “dummy”

random walk, to study the random walk X̂ = (X̂n)n. Nevertheless, as we have shown above in Lemma 3.1.15

the distributions of T joint
1 (x, x′) and T ind

1 (x, x′) have sufficiently fast decaying tails such that even along these

simultaneous regeneration times an annealed CLT for (X̂n)n holds.

Proposition 3.2.2. There exists c > 0 and a non-trivial centered d-dimensional normal law Φ̃ such that

for f : Rd → R bounded and Lipschitz we have

E
[(
Eω[f(X̂

joint
m /

√
m)]− Φ̃(f)

)2]
≤ Cfm

−c. (3.2.6)

For the proof we will need some auxiliary results and it will be given on page 110.

Lemma 3.2.3 (Analogue to [BČDG13] Lemma 3.6). Write for r > 0

h(r) := inf{k ∈ Z+ :
∥∥∥X̂k − X̂ ′

k

∥∥∥
2
≤ r}

H(r) := inf{k ∈ Z+ :
∥∥∥X̂k − X̂ ′

k

∥∥∥
2
≥ r}

(3.2.7)

where ∥·∥2 denotes the Euclidean norm on Zd, and set for r1 < r < r2

fd(r; r1, r2) =


r−r1
r2−r1

, when d = 1,

log r−log r1
log r2−log r1

, when d = 2,

r2−d
1 −r2−d

r2−d
1 −r2−d

2

, when d ≥ 3.

(3.2.8)

For every ε > 0 there are (large) R and R̃ such that for all r2 > r1 > R with r2 − r1 > R̃ and x, y ∈ Zd

satisfying r1 < r = ∥x− y∥2 < r2

(1− ε)fd(r; r1, r2) ≤ Pind
x,y(H(r2) < h(r1)) ≤ (1 + ε)fd(r; r1, r2). (3.2.9)

Proof sketch. Let X̂n = XT ind
n (0,0). It is sufficient to show that (X̂n − X̂ ′

n)n satisfies an annealed invariance

principle. To show that an invariance principle holds it is sufficient to show that

Eind[X̂1 − X̂ ′
1] = 0

Eind[
∥∥∥X̂1 − X̂ ′

1

∥∥∥2] <∞.

By Assumption 1.3.3 we have for the annealed expectation

E[X1] = 0, (3.2.10)

from which follows

Eind[X̂1] = Eind[X̂ ′
1] = 0, (3.2.11)

as well as

Eind[X̂1 − X̂ ′
1] = 0. (3.2.12)
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So we have centered (at least in the annealed sense) random variables. To get the other condition we use

the fact that Pind(T1 > n) ≤ n−β , with arbitrarily large β if we choose p close to 1. First we observe that in

dimension d the following holds

#{x ∈ Zd : ∥x∥q ≤ n} ≤ nd, (3.2.13)

for 1 ≤ q ≤ ∞. Now to get to a point with ∥·∥ = n we need at least n/Rκ steps, where Rκ is the range of

the transition kernels κ from Assumption 1.3.4. To reach such a point the regeneration attempt has to fail

often enough. Recall the sequence (tℓ)ℓ and, for ℓ large, tℓ ≈ ρℓ for some ρ > 1. There exists a unique ℓn

with ρℓn−1 < n ≤ ρℓn . From that we obtain that the lower bound for the number of times the regeneration

attempt has to fail is ℓn ≥ log(n)/ log(ρ). If δ is the probability for a successful attempt at regenerating,

then the probability to fail often enough such that T1 ≥ n is bound from above by

(1− δ)log(n)/log(ρ)δ = nlog(1−δ)/ log(ρ)δ. (3.2.14)

Since 1− δ < 1 and we can get ρ > 1 close to 1 we can get the exponent of n arbitrarily large. That yields

an upper bound for the second moment

Eind
[ ∥∥∥X̂1

∥∥∥2
q

]
≤

∞∑
n=1

ndn2nlog(1−λ)/ log(ρ)λ <∞, (3.2.15)

if we choose ρ close enough to 1. Now this holds as well for X̂ ′ and with that also for (X̂n − X̂ ′
n)n.

3.3 Proof of Theorem 1.3.5 in d ≥ 2

The rest of this section is concerned with the case d ≥ 2. We want to prove a separation lemma similar to

Lemma 3.8 in [BČDG13] for the model from [BČD16].

Lemma 3.3.1 (Separation lemma). Let d ≥ 2. For any x0, x
′
0 ∈ Zd and for all small enough δ > 0 there is

b2 ∈ (0, 1/2) and C, c > 0 so that

Pjoint
x0,x′

0

(
H(nδ) > nb2

)
≤ exp(−Cnc). (3.3.1)

Proof. We will adapt the idea and the structure of the proof of Lemma 3.8 in [BČDG13] which consists of 4

Steps. Adapting Steps 1–3 is straight forward but Step 4 will require a bit more work and some “new ideas”.

Step 1. We want to show that there exists a small ε1 > 0 and b4 ∈ (0, 1/2), b5 > 0 such that

Pjoint
x,y

(
H(ε1 log n) > nb4

)
≤ cn−b5 , (3.3.2)

uniformly in x, y ∈ Zd.

To that end we construct suitable “corridors” to guide the random walks to a certain distance within the

first steps. First have a closer look at a possible configuration of the environment that yields a suitable lower

bound for the probability to reach a distance of ε1 log n in ε1 log n steps. To that we recall the dynamics

of the random walks whenever they are on a site with η = 1, see assumption 1.3.2. Since the reference

transition kernel κref is non degenerate we can assume that there exists a possible step k ∈ Zd such that

the first coordinate k1 is greater than 0 and set δ1 := κref(k). Then on any site (y,−m) ∈ Zd × Z with
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η−m(y) = 1 the random walk can jump a distance of k1 in the first coordinate. Thus, if we ensure that the

random walks hit only sites where η = 1, the distance increases by at least 2k1 with probability at least

δ2 := δ1 − εref > 0. Recall Construction 3.1.12. If the two random walks just regenerated they can do so at

the next step if the values of η in the bout-vicinity of their next positions are only 1’s. This happens with a

uniform lower bound (since a successful attempt at regenerating has a uniform lower bound as shown in the

proof of Lemma 3.1.15) which we denote by δ3 > 0. Therefore, if η = 1 in the bout-vicinity of both random

walks along the path, they will regenerate at every such step.

Consequently, for every step, the probability that the distance between the random walks increases by

at least 2k1 is

Pjoint
x,y

(∥∥∥X̂i − X̂ ′
i

∥∥∥ ≥ 2k1 +
∥∥∥X̂i−1 − X̂ ′

i−1

∥∥∥) > δ22δ3 > 0

and iteratively

Pjoint
x,y

(∥∥∥X̂j − X̂ ′
j

∥∥∥ ≥ 2jk1

)
≥ δ̂j , (3.3.3)

for some δ̂ > 0. And as in the proof in [BČDG13] we conclude

Pjoint
x,y (H(ε1 log n) > mε1 log n) ≤

(
1− n−ε1 log(1/δ̂)

)m
≤ exp

(
−mn−ε1 log(1/δ̂)

)
. (3.3.4)

If we choose ε1 so small that −ε1 log(δ̂) ∈ (0, 1/2), and choose b4 ∈ (−ε1 log(δ̂), 1/2), b5 > 0 and set

m = b5n
ε1 log(1/δ̂) log n we have shown (3.3.2) since mε1 log n ≤ nb4 if n is large.

Step 2. Next we show that for any K2 > 0 there exists δ2 ∈ (0, 1) such that for all x, y ∈ Zd with

ε1 log n ≤ ∥x− y∥ < K2 log n and n large enough

Pjoint
x,y

(
H(K2 log n) < h(

1

2
ε1 log n) ∧ (K2 log n)

3
)
≥ δ2, (3.3.5)

where h(m) := inf{k :
∥∥∥X̂k − X̂ ′

k

∥∥∥ ≤ m}. To this end we couple Pind
x,y with Pjoint

x,y . As mentioned above the

probability that the coupling fails will decay algebraically in the distance of the starting positions of the

random walks. Thus, the left-hand side of (3.3.5) is bounded from below by

Pind
x,y

(
H(K2 log n) < h(

1

2
ε1 log n) ∧ (K2 log n)

3
)
− C(K2 log n)

3(
1

2
ε1 log n)

−β , (3.3.6)

where β > 0 is from Lemma 3.2.1 and can be chosen arbitrarily large so that the second term will go to 0 as

n tends to infinity. Under Pind the process (X̂n − X̂ ′
n)n has i.d.d. increments and we can use Lemma 3.2.3.

Therefore we can obtain a lower bound for d ≥ 3 for the left term in (3.3.6) by combining

Pind
x,y

(
H(K2 log n) < h(

1

2
ε1 log n)

)
≥ (1− ε)

( ε12 log n)2−d − (ε1 log n)
2−d

( ε12 log n)2−d − (K2 log n)2−d

= (1− ε)
(2d−2 − 1)ε2−d

1

2d−2ε2−d
1 −K2−d

2

(3.3.7)
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and the fact that due to Donsker’s invariance principle we have

Pind
x,y

(
H(K2 log n) ≥ (K2 log n)

3
)
= Pind

x,y

(
inf{k ≤ n :

∥∥∥X̂k − X̂ ′
k

∥∥∥ > K2 log n} > (K2 log n)
3
)

= Pind
x,y

(
inf
{
k ≤ n :

∥∥∥X̂k − X̂ ′
k

∥∥∥
√
n

>
K2 log n√

n

}
> (K2 log n)

3
)

≈ P
(
inf
{
t ∈ [0, 1] : ∥Bt∥ >

K2 log n√
n

}
>

(K2 log n)
3

n

)
≤ n

(K2 log n)3
(K2 log n)

2

dn

where B = (Bt)t is a centred d-dimensional Brownian motion. The last line follows by the Markov inequality

and the fact that the expected time for B to exit a ball of radius r is r2/d. Thus, we have

Pind
x,y

(
H(K2 log n) < h(

1

2
ε1 log n) ∧ (K2 log n)

3
)

≥ (1− ε)
(2d−2 − 1)ε2−d

1

2d−2ε2−d
1 −K2−d

2

− n

(K2 log n)3
(K2 log n)

2

dn

and the right hand side is bounded away from 0 since the last term tends to 0 as n→ ∞.

For d = 2 we can use the same arguments with a slightly different lower bound when using Lemma 3.2.3

similar to (3.3.7). Here we have

Pind
x,y

(
H(K2 log n) < h(

1

2
ε1 log n)

)
≥ (1− ε)

log(ε1 log n)− log( 12ε1 log n)

log(K2 log n)− log( 12ε1 log n)

= (1− ε)
log 2

logK2 − log(ε1/2)
.

Combining the above estimates for d = 2 and d ≥ 3 with (3.3.6) we obtain a uniform lower bound in (3.3.5)

for all d ≥ 2.

Step 3. Combining the previous steps we see, that we can choose a large K3, and b6 ∈ (b4, 1/2) such that

uniformly in x, y ∈ Zd we have

Pjoint
x,y

(
H(K3 log n) ≤ nb6

)
≥ δ3 > 0 for n large enough. (3.3.8)

At this point this proof here will divert from the corresponding proof in [BČDG13] since Step 4 there

does not hold for our model. They were able, due to the exponential decay of the total variation distance of

Pind
x,y and Pjoint

x,y , to jump from a distance of log n directly to nb2 , whereas we need to iterate through smaller

distances. We first go to a distance of log2 n. For that we use the same arguments we used in Step 2 with

starting positions x, y ∈ Zd such that K3 log n ≤ ∥x− y∥ ≤ log2 n. So we want to obtain a lower bound for

Pjoint
x,y

(
H(log2 n) < h(ε1 log n) ∧ log8 n

)
. (3.3.9)

We can bound that probability from below by using the steps from Step 2 and get the lower bound

Pind
x,y

(
H(log2 n) < h(ε1 log n) ∧ log8 n

)
− log8 n(ε1 log n)

−β . (3.3.10)
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Since we can choose β > 8 the right-hand side will go to 0 as n tends to infinity. Again we use Lemma 3.2.3.

For dimension d ≥ 3

Pind
x,y

(
H(log2 n) < h(ε1 log n)

)
≥ (1− ε)

ε2−d
1 −K2−d

3

ε2−d
1 − (log2 n)2−d

= (1− ε)
(
1− K2−d

3 − (log n)2−d

ε2−d
1 − (log n)2−d

) (3.3.11)

and for d = 2 note that log1/2 n < ε1 log n holds for large n and we get

Pind
x,y(H(log2 n) < h(log1/2 n)) ≥ (1− ε)

log(K3 log n)− log(log1/2 n)

log(log2 n)− log(log1/2 n)
≥ 1− ε

3
(3.3.12)

which are both bounded from below for n large enough. For the lower bound in d = 2 we need to switch

from ε1 log n to log1/2 n since the lower bound estimate with the ε1 log n will tend to 0 for n → ∞. The

estimate for a failed coupling will still tend to 0 since we can choose β > 0 large. If we do the same for the

step from log2 n to log4 n we get

Pjoint
x,y

(
H(log4 n) < h(K3 log n) ∧ log16 n

)
≥ δ4 > 0. (3.3.13)

with the coupling we can use the same arguments by choosing β accordingly. The invariance principle will

yield a bound that goes to 0 if n tends to infinity and we have for d = 3

Pind
x,y(H(log4 n) < h(K3 log n)) ≥ (1− ε)

(K3 log n)
2−d − (log2 n)2−d

(K3 log n)2−d − (log4 n)2−d

= (1− ε)
K2−d

3 − (log n)2−d

K2−d
3 − (log3 n)2−d

,

(3.3.14)

and for d = 2

Pind
x,y(H(log4 n) < h(K3 log n)) ≥ (1− ε)

log log n− logK3

3 log log n− logK3
≥ (1− ε)

4
(3.3.15)

which as well are bounded from below by a positive constant. So we have for d ≥ 2 and n large enough

Pjoint
x,y

(
H(log4 n) < h(ε1 log n) ∧ log16 n

)
≥ δ5 > 0 (3.3.16)

Now we can combine this with Step 1 and step 2 to get, in a similar way to step 3,

Pjoint
x,y

(
H(log4 n) ≤ nb6

)
≥ δ6 > 0 for n large enough. (3.3.17)

Next we will go from log4n to log8n and then to log16n and so on. So we go from log2
i

n to log2
i+1

n

until we reach nb2 . If we could do that in a number of times that doesn’t depend on n the proof would be

completed. Instead we have to show, that if n tends to infinity, the product over the probabilities for all

those steps is still bounded from below by a small constant away from 0.

From here on out we can write the steps in a more general way and handle the remaining part of the

proof with that. Say we are at a distance of log2
j

n and want to get to log2
j+1

n. We will do that in the same

way as in Step 2. For that we split the next step in cases d ≥ 3 and d = 2
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Step 4 (d ≥ 3). We start with d ≥ 3 and want to bound

Pjoint
x,y

(
H(log2

j+1

n) < h(log2
j−1

n) ∧ log2
j+3

n
)
, (3.3.18)

where log2
j

n ≤ ∥x− y∥ < log2
j+1

n. If we couple with Pind
x,y we get the lower bound

Pind
x,y

(
H(log2

j+1

n) < h(log2
j−1

n) ∧ log2
j+3

n
)
− log2

j+3

n · (log n)−2j−1β . (3.3.19)

If β > 8 the second term will go to zero. For the first term we get a lower bound in a similar way to Step 2.

We first observe

Pind
x,y

(
H(log2

j+1

n) < h(log2
j−1

n) ∧ log2
j+3

n
)

≥ Pind
x,y

(
H(log2

j+1

n) < h(log2
j−1

n)
)
− Pind

x,y

(
H(log2

j+1

n) ≥ log2
j+3

n
)

(3.3.20)

Now due to the invariance principle we get

Pind
x,y

(
inf
{
k :
∥∥∥X̂k − X̂ ′

k

∥∥∥ ≥ log2
j+1

n
}
≥ log2

j+3

n
)
≤ c

1

log2
j+2

n
, (3.3.21)

and with Lemma 3.2.3

Pind
x,y

(
H(log2

j+1

n) < h(log2
j−1

n)
)
≥ (1− ε)

(log2
j−1

n)2−d − (log2
j

n)2−d

(log2
j−1

n)2−d − (log2
j+1

n)2−d

= (1− ε)
(log n)−2j−1(2−d) − 1

(log n)−2j−1(2−d) − (log n)2j(2−d)

= (1− ε)(1− 1− (log n)2
j(2−d)

(log n)−2j−1(2−d) − (log n)2j(2−d)

≥ (1− ε)(1− 2

(log n)−2j−1(2−d)
)

(3.3.22)

for n large enough, because for d ≥ 3

(log n)2
j(2−d) n→∞−−−−→ 0 and (log n)−2j−1(2−d) n→∞−−−−→ ∞.

Combining equations (3.3.19), (3.3.21) and (3.3.22) we conclude

Pjoint
x,y

(
H(log2

j+1

n) < h(log2
j−1

n) ∧ log2
j+3

n
)

≥ 1− ε− (log n)2
j+3

· (log n)−2j−1β − 2(log n)2
j−1(2−d) (3.3.23)

Step 4 (d = 2). Next we want to get a lower bound for the case d = 2. So we again have log2
j

n ≤ ∥x− y∥ ≤
log2

j+1

n and want to bound

Pjoint
x,y

(
H(log2

j+1

n) < h(log2
j−1

n) ∧ log2
j+3

n
)
. (3.3.24)

The difference to the case d ≥ 3 lies in the application of Lemma 3.2.3 so we will concentrate on those

differences.

Pind
x,y

(
H(log2

j+1

n) < h(log2
j−1

n)
)
≥ (1− ε)

log(log2
j

n)− log(log2
j−1

n)

log(log2
j+1

n)− log(log2
j−1

n)

= (1− ε)
2j − 2j−1

2j+1 − 2j−1
=

(1− ε)

3

(3.3.25)
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With this we get a lower bound for the left hand side of (3.3.23) in d = 2 that is bounded away from 0.

Step 5. Now we bring the previous steps together. (3.3.17) we can get to a distance of log4 n in at most nb6

steps, where b6 ∈ (0, 1/2). From there we can iterate Step 4. We want to get to a distance of nδ. So we can

compute how often we need to iterate Step 4

log2
j

n = nδ ⇔ 2j log log n = δ log n

⇔ j log(2) + log log log n = log(δ) + log log n

so we need j∗n := 1
log 2 (log δ+log log n− log log log n) many iterations. Following this construction the number

of steps we need to get to nδ is the number of steps to get to log4 n and then the iterations of step 2’

nb6 +

j∗n∑
i=1

log2
i+3

n = nb6 +

j∗n∑
i=1

(log2
i

n)8

≤ nb6 + c log(log n)n8δ

≤ nb6 + cn10δ

(3.3.26)

for n large enough, where we used j∗n ≤ c log log n for a positive constant c > 0. Obviously since δ is small we

can assume that there is b2 ∈ (0, 1/2) such that 10δ < b2. So now we only need to show that the probability

to make it to a distance of nδ in that time is positive. Then we can use the Markov property and have shown

the claim. To show that we just multiply the above estimated probabilities. That gives us the following

product for d = 3

Pjoint
x0,x′

0

(∥∥∥X̂nb6+cn10δ − X̂ ′
nb6+cn10δ

∥∥∥ ≥ nδ
)

≥ δ6 ·
c log logn∏

i=2

(
1− ε− (log n)2

i+1−2i−1β − 2(log n)2
j−1(2−d)

)
.

(3.3.27)

The probability that all this works in “one go” is at least

(1− ε′)c log logn ≈ (log n)−cε′ .

For d = 2 it is easy to see that we also get a lower bound of the same sort by taking the product over the

right hand side of (3.3.25). Thus, we will need approximately (log n)cε
′
many attempts. By (3.3.26), each

of the attempts takes c1n
c2 steps for some constants c1 > 0 and c2 < b2. So we have nα attempts where

α = b2 − c2 and thus

Pjoint
x0,x′

0
(H(nδ) > nb2) ≤

(
1− (log n)c log(1−ε′)

)nα

≤ exp
(
− c

nα

logc̃ n

)
which shows (3.3.1) and concludes the proof of the lemma.

Lemma 3.3.2 (Analogue to [BČDG13] Lemma 3.9). Let d ≥ 2 there are constants 0 < b1 < 1/2 and c > 0

so that for arbitrary x0, x
′
0

Pjoint
x0,x′

0
(at most N b1 uncoupled steps before time N) ≥ 1−N−c. (3.3.28)
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Proof. We need to split the proof in a part for d ≥ 3 where we can estimate in a more straight forward way

and d = 2 where we have to be more careful. Also note that if we can prove the lemma for x0 = x′0, it holds

for any choice of starting positions since the coupling has a higher probability to fail if the random walks

are close to each other. So let x0 = x′0 = 0 and, to avoid too much notation, we write Pjoint
0,0 = Pjoint.

Starting with d ≥ 3, let A be the event that H(Nδ) ≤ N b2 with the parameters from Lemma 3.3.1 and

let Y joint
n = X̂ joint

1,n − X̂ joint
2,n = X̂ joint

n − X̂
′,joint
n and Y ind

n be defined analogously.

On A we try to couple the random walks X̂ joint
1 = (X̂ joint

1,n )n=0,1,... and X̂ joint
2 = (X̂ joint

2,n )n=0,1,... (on

the same environment) with random walks X̂ ind
1 = (X̂ ind

1,n)n=0,1,... and X̂
ind
2 = (X̂ ind

2,n)n=0,1,... on independent

copies of the environment, starting at time n = H(Nδ).

Let B be the event that during the time interval from H(Nδ) to N the process Y ind
n = X̂ ind

1,n − X̂ ind
2,n hits

the ball BNδ/2(0). Then by Green function argument, see Corollary 3.19 in [MP10], we have

P(B) ≤ P(Y ind ever hits BNδ/2(0)
∣∣ ∥∥Y ind

0

∥∥ = Nδ) ≤ C
( Nδ

Nδ/2

)2−d

(3.3.29)

Thus

P(Bc ∩ coupling fails in {H(Nδ), . . . , N}) ≤ N(Nδ/2)−β (3.3.30)

Therefore we also get, using Lemma 3.2.1,

P(Y joint hits BNδ/2(0) before time N |
∥∥∥Y joint

0

∥∥∥ = Nδ)

=

N∑
k=1

P(Y joint hits BNδ/2(0) at time k |
∥∥∥Y joint

0

∥∥∥ = Nδ)

≤
N∑

k=1

P(Y ind hits BNδ/2(0) at time k |
∥∥Y ind

0

∥∥ = Nδ) + kN−βδ/2

≤ CN2N−βδ/2 + P(Y ind hits BNδ/2(0) before time N |
∥∥Y ind

0

∥∥ = Nδ)

(3.3.31)

Let E be the event that there more that N b2 uncoupled steps before time N . Then we have

Pjoint
x0,x′

0
(E) ≤ Pjoint

x0,x′
0
(Ac) + Pjoint

x0,x′
0
(A ∩B) + Pjoint

x0,x′
0
(E ∩A ∩Bc)

≤ exp(−CN c) + CN2N−βδ/2 +
( Nδ

Nδ/2

)2−d

+N(Nδ/2)−β .

Here we have used the estimates from (3.3.1), (3.3.31) combined with (3.3.29) and (3.3.30). We note that β

can be chosen arbitrarily large by choosing p close to 1. Therefore, for d ≥ 3, (3.3.28) holds with b1 ≥ b2.

For d = 2 we need another approach. Here the event BC has a low probability and we need to decompose the

trajectory of (X joint
1,n , X joint

2,n )n into excursions. For a large constant K ′, to be tuned later, we define stopping

times Ri,Di and U by R0 = 0 and, for i ≥ 1 and small 0 < α < δ,

Di = inf{k ≥ Ri−1 :
∥∥∥X̂ joint

1,k − X̂ joint
2,k

∥∥∥ ≥ Nδ},

Ri = inf{k ≥ Di :
∥∥∥X̂ joint

1,k − X̂ joint
2,k

∥∥∥ ≤ Nα},

U = inf{k ≥ 0:
∥∥∥X̂ joint

1,k − X̂ joint
2,k

∥∥∥ ≥ K ′N}.
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Furthermore let J be the unique integer such that DJ ≤ U ≤ RJ . Looking at J we see that starting with

Y0 = Nδ, writing Pjoint
r for the distribution of Y joint starting from Y joint

0 = r and adapting arguments from

Step 2 in the proof of Lemma 3.3.1, we obtain

Pjoint
Nδ (H(K ′N) < h(Nα)) ≥ Pjoint

Nδ (H(K ′N) < h(Nα) ∧ (K ′N)3)

≥ Pind
Nδ (H(K ′N) < h(Nα) ∧ (K ′N)3)− (K ′N)3N−αβ

≥ Pind
Nδ (H(K ′N) < h(Nα))− CP

(
inf{t : ∥Bt∥ ≥ K ′N√

N
} > (K ′N)3

N

)
− (K ′N)3N−αβ

≥ Pind
Nδ (H(K ′N) < h(Nα))− C

N

(K ′N)3
(K ′N)2

Nd
− (K ′N)3N−αβ

≥ (1− ε)
logNδ − logNα

log(K ′N)− logNα
− CN−1 − CN3−αβ

≥ (1− ε)
δ − α

1− α− logK′

logN

− CN−1 − CN3−αβ

≥ 1

2

δ − α

1− α

for N large enough and 3/α < β. Thus J has geometric distribution with parameter greater than 1
2
δ−α
1−α as

N → ∞. Therefore, Pjoint(J ≥ logN) ≤ N−c for some c > 0. Applying the separation lemma, Lemma 3.3.1,

we get

Pjoint(Di −Ri−1 ≥ N b2) ≤ exp(−b3N b4) (3.3.32)

for constants b2 ∈ (0, 1/2) and b3, b4 > 0. Combining these we obtain

Pjoint
( J∑

i=1

Di −Ri−1 ≥ N b2 logN
)
≤ N−c′ . (3.3.33)

Using Lemma 3.2.1 to compare Pjoint and Pind and large deviation estimates for sums of independent, heavy

tailed random variables,

Pind
(
∃k ∈

J⋃
i=1

{Di, . . . ,Ri} ∩ {1, . . . , N} : ∥Yk∥ ≥ K ′N − 2RlocN
b2 logN

)
≤ Pind

(
TN ≥ K ′N − 2RlocN

b2 logN

4Rloc

)
≤ Pind

(
TN ≥ K ′N

8Rloc

)
≤ CN1−β
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for K ′ large enough, e.g. K ′ > 8RlocEind[T1]. Using that

Pjoint(U ≤ N) ≤ Pjoint(∃k ≤ N : ∥Yk∥ ≥ K ′N,

J∑
i=1

Di −Ri−1 ≤ N b2 logN
)

+ Pjoint
( J∑

i=1

Di −Ri−1 ≥ N b2 logN
)

≤ Pjoint
(
∃k ∈

J⋃
i=1

{Di, . . . ,Ri} ∩ {1, . . . , N} : ∥Yk∥ ≥ K ′N − 2RlocN
b2 logN,

J∑
i=1

Di −Ri−1 ≤ N b2 logN
)
+N−c

≤ Pind
(
∃k ∈

J⋃
i=1

{Di, . . . ,Ri} ∩ {1, . . . , N} : ∥Yk∥ ≥ K ′N − 2RlocN
b2 logN

)
+N ·N−αβ +N−c

≤ CN1−β +N1−αβ +N−c′

and thus Pjoint(U ≤ N) ≤ N−c for some c > 0. Combining this and (3.3.33)

Pjoint
(
#{k ≤ N :

∥∥∥X̂ joint
1,k − X̂ joint

2,k

∥∥∥ ≤ Nα} ≥ N b2 logN
)

≤ Pjoint
( ∑

i : Ri−1≤N

Di −Ri−1 ≥ N b2 logN
)
≤ N−c. (3.3.34)

If the event #{k ≤ N :
∥∥∥X̂ joint

1,k − X̂ joint
2,k

∥∥∥ ≤ Nα} ≥ N b2 logN does not occur, we can with probability at

least 1−N−c couple Pind and Pjoint for all k satisfying Di ≤ k ≤ Ri−1 for some i. Taking b2 < b1 < 1/2 we

proved (3.3.28) for d = 2, since N b2 logN ≤ N b1 for large N .

Lemma 3.3.3 (Analogue to Lemma 3.10 in [BČDG13]). Let d ≥ 2. Then, there exist a,C > 0 such that

for every pair of bounded Lipschitz functions f, g : Rd → R

|Ejoint
0,0 [f(X̂n/

√
n)g(X̂ ′

n/
√
n)]− Eind

0,0 [f(X̂n/
√
n)g(X̂ ′

n/
√
n)]|

≤ C(1 + ∥f∥∞ Lf )(1 + ∥g∥∞ Lg)n
−a,

(3.3.35)

where Lf := supx ̸=y |f(y)− f(x)|/ ∥x− y∥ and Lg are the Lipschitz constants of f and g.

Proof. We define the set of all steps before n at which the coupling between Pind and Pjoint is successful

I := {k ≤ n : the coupling is successful for the k-th step},

its complement IC := {1, . . . , n} \ I and the sets

Bjoint :=
{∑
k∈IC

T joint
k (0, 0)− T joint

k−1 (0, 0) ≤ Knb1+ε
}
,

Bind :=
{∑
k∈IC

T ind
k (0, 0)− T ind

k−1(0, 0) ≤ Knb1+ε
}
,
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where b1 is from Lemma 3.3.2 and ε > 0 is chosen such that b1+ε < 1/2. By Lemma 3.3.2 P(|IC| > nb1) ≤ n−c

and due to Lemma 3.1.15 we get

P
(
BC

joint ∩ {|IC| ≤ nb1}
)
= P

( ∑
k∈IC

T joint
k (0, 0)− T joint

k−1 (0, 0) > Knb1+ε, |IC| ≤ nb1
)

= E
[
P(∃k ∈ IC : T joint

k (0, 0)− T joint
k−1 (0, 0) > Knε, |IC| ≤ nb1 | IC)

]
≤ E

[
1{|IC|≤nb1}

∑
k∈IC

P
(
T joint
k (0, 0)− T joint

k−1 (0, 0) > Knε | IC
)
]

≤ Cnb1n−εβ .

Analogously we obtain P(BC
ind ∩ {|IC| ≤ nb1}) ≤ Cnb1−εβ . On the event A = {|IC| ≤ nb1} ∩Bjoint ∩Bind we

have, due to Assumption 1.3.4, ∥∥∥XT joint
n (0,0) −XT ind

n (0,0)

∥∥∥ ≤ Cnb1+ε,∥∥∥X ′
T joint
n (0,0)

−X ′
T ind
n (0,0)

∥∥∥ ≤ Cnb1+ε.
(3.3.36)

Thus, abbreviating T joint
n = T joint

n (0, 0), T ind
n = T ind

n (0, 0),∣∣∣E[f(XT joint
n

/
√
n)g(X ′

T joint
n

/
√
n)]− E[f(XT ind

n
/
√
n)g(X ′

T ind
n
/
√
n)]
∣∣∣

≤
∣∣∣E[f(XT joint

n
/
√
n)g(X ′

T joint
n

/
√
n)1A]− E[f(XT ind

n
/
√
n)g(X ′

T ind
n
/
√
n)1A]

∣∣∣
+ 2 ∥f∥∞ ∥g∥∞

(
P(|IC| > nb1) + P

(
BC

joint, |IC| ≤ nb1
)
+ P

(
BC

ind, |IC| ≤ nb1
))

.

Lastly, observe that

|f(x)g(y)− f(x′)g(y′)| ≤ ∥g∥∞ Lf ∥x− x′∥+ ∥f∥∞ Lg ∥y − y′∥

and therefore, combining this with (3.3.36) and the last equation yields∣∣∣E[f(XT joint
n

/
√
n)g(X ′

T joint
n

/
√
n)]− E[f(XT ind

n
/
√
n)g(X ′

T ind
n
/
√
n)]
∣∣∣

≤ C ∥g∥∞ Lfn
b1+ε−1/2 + C ∥f∥∞ Lgn

b1+ε−1/2 + C(n−c + nb1−εβ)

which, by choice of b1 and ε completes the proof.

Proof of Proposition 3.2.2. The proof follows with Lemma 3.3.3 and Berry-Esseen estimates. First note that

E[Eω[f(X̂m/
√
m)]Eω[f(X̂

′
m/

√
m)]] = Ejoint[f(X̂m/

√
m)f(X̂ ′

m/
√
m)].

With that we have

E
[(
Eω[f(X̂m/

√
m)]− Φ̃(f)

)2]
≤
∣∣∣Ejoint[f(X̂m/

√
m)f(X̂ ′

m/
√
m)]− Eind[f(X̂m/

√
m)f(X̂ ′

m/
√
m)]
∣∣∣

+
∣∣∣Eind[f(X̂m/

√
m)f(X̂ ′

m/
√
m)]− Φ̃(f)2

∣∣∣
+ 2|Φ̃(f)| ·

∣∣∣Eind
[
f(X̂m/

√
m)
]
− Ejoint

[
f(X̂m/

√
m)
]∣∣∣

+ 2|Φ̃(f)| ·
∣∣∣Φ̃(f)− Eind

[
f(X̂m/

√
m)
]∣∣∣

≤ 2Cfm
−a + Cm−1/2 ≤ Cfm

−c
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for a suitable c > 0, where we used Lemma 3.3.3 and Berry-Esseen type bounds, since X̂n has bounded third

moments under Pind for β large enough, in the last line.

Lemma 3.3.4 (Analogue to Lemma 3.12 in [BČDG13]). Assume that for some c > 1, and any bounded

Lipschitz function f : Rd → R

Eω[f(XT joint
kc (0,0)/k

c/2)] −→
k→∞

Φ̃(f) for a.a. ω, (3.3.37)

where Φ̃ is some non-trivial centred d-dimensional normal law. Then we have for any bounded Lipschitz

function f

Eω[f(XT joint
m (0,0)/m

1/2)] −→
m→∞

Φ̃(f) for a.a. ω.

Proof. We abbreviate X̂n = XT joint
n (0,0). Since the distribution of {X̂i − X̂i−1} does not have exponential

tails we do not have E[exp(λ(X̂i − X̂i−1))] < ∞. Therefore we need to calculate more carefully than in

[BČDG13] and control the probabilities via large deviations for heavy tailed distributions. First we get a

summable upper bound on the probability

P0,0

(
max

kc≤ℓ≤(k+1)c

|X̂ joint
ℓ − X̂ joint

kc |
kc/2

≥ δ

)
. (3.3.38)

Because of the heavy tails we won’t get an exponential decay in k for the upper bound. We need to work

around the fact that, along the joint regeneration times T joint, the increments of the random walk are not

independent. Define ℓ̂ := min{n ∈ N : T ind
n ≥ T joint

ℓ } and the following sets

Aℓ :=
{
T joint
ℓ ≤ T ind

kc−1+ε

}
,

Bk :=
{
T ind
i − T ind

i−1 ≤ kα for all i = 1, . . . , kc−1+ε
}
,

Cℓ :=

{∥∥∥X̂ ind
ℓ

∥∥∥ ≤ 1

2
δkc/2

}
,

Dℓ :=

{
T ind
ℓ̂

− T joint
ℓ <

1

2Rκ
δkc/2

}
.

We get the following upper bounds for above: starting with AC
ℓ

Px,x′(AC
ℓ ) ≤ Px,x′(T joint

ℓ > kc−1+ε)

≤ Px,x′

(
∃i ≤ ℓ such that T joint

i − T joint
i−1 >

kc+ε

ℓ

)
≤

ℓ∑
i=1

Px,x′

(
T joint
i − T joint

i−1 >
kc−1+ε

ℓ

)
≤

ℓ∑
i=1

(kc−1+ε

ℓ

)−β

≤ ℓ1+βk−β(c−1+ε),

for BC
k , by Lemma 3.1.15, we obtain

Px,x′(BC
k ) = Px,x′(∃i ≤ kc−1+ε such that T ind

i − T ind
i−1 > kα)

≤ kc−1+εk−βα,
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for CC
ℓ using Azuma’s inequality on every coordinate, we have

Px,x′(CC
ℓ |Bk) = Px,x′

(∥∥∥∥∥
ℓ∑

i=1

X̂ ind
i − X̂ ind

i−1

∥∥∥∥∥ > 1

2
δkc/2 |Bk

)
≤

d∑
j=1

Px,x′

(∥∥∥∥∥
ℓ∑

i=1

X̂ ind
i (j)− X̂ ind

i−1(j)

∥∥∥∥∥ > 1

2
δkc/2 |Bk

)
≤ 2d exp

(
− δ2kc

8ℓRκk2α

)
and consequently for ℓ ≤ kc−1+ε

Px,x′(CC
ℓ ) ≤ 2d exp

(
− C(δ,Rκ)k

1−ε−2α
)
+ kc−1+εk−βα.

Lastly, for DC
ℓ , we have

Px,x′(DC
ℓ ) ≤ Px,x′

(
T ind
ℓ̂

− T ind
ℓ̂−1

≥ 1

2Rκ
δkc/2

)
≤
( 1

2Rκ
δkc/2

)−β

.

Now we combine the proved upper bounds and the fact that for c > 1 we have (k + 1)c − kc ≤ c(k + 1)c−1

to obtain

P0,0

(
max

kc≤ℓ≤(k+1)c

|X̂ joint
ℓ − X̂ joint

kc |
kc/2

≥ δ

)
=
∑
x,x′

Pjoint
0,0

(
max

kc≤ℓ≤(k+1)c
|X̂ℓ − X̂kc | ≥ δkc/2 | X̂kc = x, X̂ ′

kc = x′
)
Pjoint
0,0 (X̂kc = x, X̂ ′

kc = x′)

≤ sup
x,x′

Pjoint
x,x′ ( max

ℓ∈{1,...,ckc−1}
|X̂ℓ| > δkc/2)

≤
ckc−1∑
ℓ=1

sup
x,x′

Pjoint
x,x′ (|X̂ℓ| > δkc/2) (3.3.39)

≤
ckc−1∑
ℓ=1

sup
x,x′

Px,x′(|X̂ joint
ℓ | > δkc/2, Aℓ, Cℓ̂, Dℓ) + Px,x′(AC

ℓ ) + Px,x′(CC
ℓ̂
) + Px,x′(DC

ℓ ).

Note that the events Aℓ∩Cℓ̂∩Dℓ and {|X̂ joint
ℓ | > δkc/2} are disjoint and thus, noting that ℓ̂ ≤ kc−1+ε on Aℓ

(3.3.38) ≤
ckc−1∑
ℓ=1

sup
x,x′

Px,x′(AC
ℓ ) + Px,x′(CC

ℓ̂
) + Px,x′(DC

ℓ )

≤
ckc−1∑
ℓ=1

(
ℓ1+βk−β(c−1+ε) + k2(c−1+ε)k−βα

+ kc−1+ε exp
(
− C(δ,Rκ)k

1−ε−2α
)
+
( 1

2Rκ
δkc/2

)−β
)
.

For β large enough the upper bound for (3.3.38) given above is summable in k and thus

lim sup
k→∞

max
kc≤ℓ≤(k+1)c

|X̂ joint
ℓ − X̂ joint

kc |
kc/2

= 0, for-a.a. ω.
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From that it follows for kc ≤ m ≤ (k + 1)c

|Eω[f(XT joint
m (0,0)/m

1/2)]− Φ̃(f)|

≤ Lf

∥∥∥∥∥X̂ joint
m√
m

−
X̂ joint

k

kc/2

∥∥∥∥∥+ |Eω[f(XT joint
k (0,0)/k

c/2)]− Φ̃(f)|

≤ Lf

∥∥∥∥∥X̂ joint
m√
m

−
X̂ joint

kc√
m

∥∥∥∥∥+ Lf

∥∥∥∥∥X̂ joint
kc√
m

−
X̂ joint

kc

kc/2

∥∥∥∥∥+ |Eω[f(XT joint
k (0,0)/k

c/2)]− Φ̃(f)|

≤ Lf

∥∥∥X̂ joint
m − X̂ joint

kc

∥∥∥
kc/2

+ Lf

∥∥∥X̂ joint
kc

∥∥∥
kc/2

(kc/2√
m

− 1
)
+ |Eω[f(XT joint

k (0,0)/k
c/2)]− Φ̃(f)|.

The calculations above show that the first term goes to 0 a.s. and we can extract the same result for the

second term since equation (3.3.39) yields an upper bound for it. Therefore

|Eω[f(XT joint
m (0,0)/m

1/2)]− Φ̃(f)| → 0 for a.a. ω.

Proof of Theorem 1.3.5. Let f : Rd → R be bounded and Lipschitz, c′ > 1/c ∧ 1 with c from Proposition

3.2.2. By (3.2.6) and Markov’s inequality, abbreviating X̂m = X̂ joint
m ,

P
(
|Eω[f(X̂[nc′ ]/

√
[nc′ ])]]− Φ̂(f)| > ε

)
≤

E
[(
Eω[f(X̂[nc′ ]/

√
[nc′ ])]− Φ̂(f)

)2]
ε2

≤ Cfn
−c′cε2,

(3.3.40)

which is summable and hence by Borel-Cantelli

Eω[f(X̂[nc′ ]/
√
[nc′ ])] → Φ̃(f) a.s. as n→ ∞. (3.3.41)

Now Lemma 3.3.4 yields

Eω[f(X̂m/
√
m)] −→

m→∞
Φ̃(f) for a.a. ω. (3.3.42)

Set τm := T joint
m (0, 0)−T joint

m−1(0, 0). Next we only need to control the behaviour of the random walk between

the regeneration times. To that end let Vn := max{m ∈ Z+ : T joint
m (0, 0) ≤ n}. We have Vn/n→ 1/E[τ2] a.s.

as n→ ∞ and in fact

lim sup
n→∞

|Vn − n/E[τ2]|√
n log log n

<∞ a.s. (3.3.43)

For α > 0

P(max
j≤n

{j − TVj > cnα}) ≤ P(there exists i ∈ {1, . . . , Vn} such that τi > cnα)

≤ nP(τ2 > cnα) + P(τ1 > cnα)

≤ C(n+ 1)n−βα
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which is summable if 1− βα < −1, so we obtain

Pω(max
j≤n

{j − TVj} > cnα) −→ 0 a.s. (3.3.44)

for an appropriate choice of α and β. Since we can choose β arbitrarily large it is possible to have the above

probability small for any choice of α. Since XTVn
= XT joint

Vn
(0,0) = X̂Vn

we have

Pω

(∥∥∥Xn − X̂Vn

∥∥∥ ≥ log(n)cnα
)

= Pω

(∥∥∥Xn − X̂Vn

∥∥∥ ≥ log(n)cnα,max
j≤n

{j − TVj
} ≤ cnα

)
+ Pω

(∥∥∥Xn − X̂Vn

∥∥∥ ≥ log(n)cnα,max
j≤n

{j − TVj
} > cnα

)
≤ Pω

(∥∥∥Xn − X̂Vn

∥∥∥ ≥ log(n)cnα,max
j≤n

{j − TVj
} ≤ cnα

)
+ Pω

(
max
j≤n

{j − TVj
} > cnα

)
(3.3.45)

and

Pω

(∥∥∥Xn − X̂Vn

∥∥∥ ≥ log(n)cnα,max
j≤n

{j − TVj} ≤ cnα
)

= Pω

(
log(n)cnα ≤

∥∥∥Xn − X̂Vn

∥∥∥ ≤ Rκ(n− TVn
),max

j≤n
{j − TVj

} ≤ cnα
)

≤ Pω

(
log(n)cnα ≤

∥∥∥Xn − X̂Vn

∥∥∥ ≤ Rκcn
α
)
−→ 0 a.s.,

(3.3.46)

consequently

Pω

(∥∥∥Xn − X̂Vn

∥∥∥ ≥ log(n)cnα
)
−→ 0 a.s. (3.3.47)

By (3.3.43) for any ε > 0

Pω(|Vn − n/E[τ2]| ≥ n1/2+ε) → 0 a.s. (3.3.48)

Note that there exist δ ∈ (1/2, 1) and γ ∈ (δ/2, 1/2) such that for any θ ≥ 0

P

(
sup

|k−[θn]|≤nδ

|X̂k − X̂[θn]| > εnγ

)

≤ P

(
sup

[θn]−k≤nδ

|X̂k − X̂[θn]| > εnγ

)
+ P

(
sup

k−[θn]≤nδ

|X̂k − X̂[θn]| > εnγ

)
≤ ε−6n−6γ

(
E[|X̂[θn] − X̂[θn]−nδ |6] + E[|X̂[θn]+nδ − X̂[θn]|6]

)
≤ Cε−6n−6γn3δ = Cε−6n3δ−6γ

(3.3.49)

where we used Doob’s L6-inequality and the fact that E[∥Sk∥6] ≤ Ck3 for a random walk (Sk) whose

increments are centred and have bounded 6th moments. Thus we can choose δ and γ sufficiently close to

1/2 so that 3δ − 6γ < −1 and the right-hand side becomes summable in n. Using Borel-Cantelli that yields

lim sup
n→∞

sup
|k−[θn]|≤nδ

|X̂k − X̂[θn]|
nγ

→ 0 a.s. (3.3.50)
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Writing Xn/
√
n in terms that we can bound by what we showed above

Xn√
n
=
Xn − X̂Vn√

n
+
X̂Vn − X̂[n/E[τ2]]√

n
+
X̂[n/E[τ2]]√
n/E[τ2]

√
1/E[τ2] (3.3.51)

and let Φ be defined by Φ(f) := Φ̃(f((E[τ2]−1/2)·)), i.e. Φ is the image measure of Φ̃ under x → x/
√
E[τ2].

Then, defining the sets

An := {|Xn − X̂Vn | ≥ nα log n},

Bn := {|Vn − n/E[τ2]| ≥ nε+1/2},

Cn := { sup
|x−n/E[τ2]|≤n1/2+ε

|X̂k − X̂[n/E[τ2]]| > nγ},

Dn := Ac
n ∩Bc

n ∩ Cc
n,

we conclude

|Eω[f(Xn/
√
n)]− Φ(f)|

≤ |Eω[1Dn
f(Xn/

√
n)]− Φ(f)|+ ∥f∥∞Eω[1Dc

n
],

(3.3.52)

where on Dn we get

|Eω[1Dn
f(Xn/

√
n)]− Φ(f)|

≤ CLf

(
nα log n√

n
+ nγ−1/2

)
+

∣∣∣∣∣Eω

[
f

(
X̂[n/E[τ2]]√
n/E[τ2]

√
1/E[τ2]

)]
− Φ(f)

∣∣∣∣∣
→ 0 a.s. as n→ ∞,

(3.3.53)

by (3.3.42), γ < 1/2 and the fact that α > 0 can be chosen close to 0 if the parameters of the model are

tuned correctly, i.e. p close to 1, sinn close to sout and sout much larger than the a priori bound smax from

lemma 2.16 of [BČD16]. Additionally by (3.3.47), (3.3.48) and (3.3.50)

Eω[1Dc
n
] ≤ Pω(An) + Pω(Bn) + Pω(Cn) → 0 a.s.. (3.3.54)

This proves convergence for bounded Lipschitz functions which, by the Portmanteau-theorem, is sufficient

to prove the weak convergence in Theorem 1.3.5.

3.4 Proof of Theorem 1.3.5 for d = 1

The reason we needed to split the proof for d = 1 is that in this case the random walks meet often and

single excursions away from each other will not be long. Therefore we will need to calculate more carefully

and consider the time for an excursion as well as the number of excursions before time n. It turns out that,

although a single excursion will not take up much time, the random walks will split fast enough such that

the total time spent close to each other up until time n will be of order o(n) in probability. The idea now is

to follow the proof in [BČDG13] with a few adjustments, where the main problem stems from the fact that

our bound on the total variation distance between Pind
x,x′ and Pjoint

x,x′ only has polynomial decay in the distance

of the starting points x and x′. Therefore we will introduce so called black box intervals where the random

115



walks are close to each other and a coupling using Lemma 3.2.1 will not be possible. While the random

walks are not in a black box interval however, we can make use of Lemma 3.2.1.

Let (X̂ joint
n , X̂

′,joint
n )n be a pair of random walks in d = 1 in the same environment observed along the

simultaneous renewal times with transition probabilities Ψ̂joint((x, x′), (y, y′)), i.e.

Ψ̂joint((x, x′), (y, y′)) = Pjoint(X̂n = y, X̂ ′
n = y′ | X̂n−1 = x, X̂ ′

n−1 = x′)

and similarly for random walks in independent environments

Ψ̂ind((x, x′), (y, y′)) = Pind(X̂n = y, X̂ ′
n = y′ | X̂n−1 = x, X̂ ′

n−1 = x′).

This section will mostly be about (X̂ joint
n , X̂

′,joint
n )n. We therefore abbreviate (X̂n, X̂

′
n)n = (X̂ joint

n , X̂
′,joint
n )n

and will specify when we mean X̂ ind and X̂
′ind. Write F̂n := σ(X̂i, X̂

′
i, 0 ≤ i ≤ n) for the canonical filtration

of (X̂n, X̂
′
n)n.

Set

ϕ1(x, x
′) :=

∑
y,y′

(y − x)Ψ̂joint((x, x′), (y, y′))

ϕ2(x, x
′) :=

∑
y,y′

(y′ − x′)Ψ̂joint((x, x′), (y, y′))

ϕ11(x, x
′) :=

∑
y,y′

(y − x− ϕ1(x, x
′))2Ψ̂joint((x, x′), (y, y′))

ϕ22(x, x
′) :=

∑
y,y′

(y′ − x′ − ϕ2(x, x
′))2Ψ̂joint((x, x′), (y, y′))

ϕ12(x, x
′) :=

∑
y,y′

(y − x− ϕ1(x, x
′))(y′ − x′ − ϕ2(x, x

′))Ψ̂joint((x, x′), (y, y′)).

By Lemma 3.1.15 these are bounded,

Cϕ := ∥ϕ1∥∞ ∨ ∥ϕ2∥∞ ∨ ∥ϕ11∥∞ ∨ ∥ϕ22∥∞ ∨ ∥ϕ12∥∞ <∞. (3.4.1)

Define

A(1)
n :=

n−1∑
j=0

ϕ1(X̂j , X̂
′
j), A(2)

n :=

n−1∑
j=0

ϕ2(X̂j , X̂
′
j), (3.4.2)

A(11)
n :=

n−1∑
j=0

ϕ11(X̂j , X̂
′
j), A(22)

n :=

n−1∑
j=0

ϕ22(X̂j , X̂
′
j), A(12)

n :=

n−1∑
j=0

ϕ12(X̂j , X̂
′
j), (3.4.3)

Mn := X̂n −A(1)
n , M ′

n := X̂ ′
n −A(2)

n . (3.4.4)

Now (Mn), (M
′
n), (M

2
n − A

(11)
n ), (M ′

n
2 − A

(22)
n ) and (MnM

′
n − A

(12)
n ) are martingales and by Lemma 3.1.15

the distribution of their increments has polynomial tails.

We write σ̂2 :=
∑

y,y′ y2Ψ̂ind((0, 0), (y, y′)) for the variance of a single increment under Ψ̂ind.

By Lemma 3.1.15 there exist C1, a > 0 such that for x, x′ ∈ Z with |x− x′| ≥ na

|ϕ1(x, x′)|, |ϕ2(x, x′)|, |ϕ12(x, x′)| ≤
C1

n2
, (3.4.5)

|ϕ11(x, x′)− σ̂2|, |ϕ22(x, x′)− σ̂2| ≤ C1

n2
. (3.4.6)
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Here we can choose the a arbitrarily small by Lemma 3.2.1 if we tune the parameters right, e.g. β ≥ 2+2/a

with β of said Lemma. See for example, noting that Eind
0,x′ [X̂1] = 0,

|ϕ1(x, x′)| = |
∑
(y,y′)

(y − x)Ψ̂joint((x, x′), (y, y′))|

= |
∑
y,y′

|y−x|≥na

(y − x)Ψ̂joint((x, x′), (y, y′)) +
∑
y,y′

|y−x|<na

(y − x)Ψ̂joint((x, x′), (y, y′))|

≤ Ejoint
0,x′ [|X̂1|1|X̂|≥na ] + Eind

0,x′ [|X̂1|1|X̂|≥na ]

+ |
∑
y,y′

|y−x|<na

(y − x)(Ψ̂joint((x, x′), (y, y′))− Ψ̂ind((x, x′), (y, y′)))|

≤ C(β)na(2−β) + 2na|x− x′|−β ≤ C(β)(na(2−β) + na(1−β)) ≤ C(β)na(2−β)

now for β ≥ 2 + 2/a we have a(2− β) ≤ −2. The other estimates can be shown analogously.

Let

Rn := #{0 ≤ j ≤ n : |X̂j − X̂ ′
j | ≤ na} (3.4.7)

be the time that the random walks spend close to each other until time n. Next we want to prove a moment

condition for Rn and that the predictable processes (A
(1)
n )n and (A

(2)
n )n are small on the diffusive scale

Lemma 3.4.1. 1. There exist 0 ≤ δR ≤ 1/2, cR <∞ such that for all x0, x
′
0 ∈ Z

Ejoint
x0,x′

0
[R3/2

n ] ≤ cRn
1+δR for all n. (3.4.8)

2. There exist δC > 0, cC <∞ such that for all x0, x
′
0 ∈ Z

Ejoint
x0,x′

0

[
|A(1)

n |√
n

]
,Ejoint

x0,x′
0

[
|A(2)

n |√
n

]
≤ cC
nδC

for all n. (3.4.9)

For that we will introduce some new notation: Set Rn,0 := 0 for n ∈ N and for i ∈ N

Dn,i := min{m > Rn,i−1 : |X̂m − X̂ ′
m| ≥ nb

′
}, (3.4.10)

Rn,i := min{m > Dn,i : |X̂m − X̂ ′
m| ≤ na}, (3.4.11)

with b′ ∈ (0, 1/2) and 0 < a≪ b′. We call [Rn,i−1,Dn,i) the i-th black box interval. With this definition Rn

is the time spent in a black box interval until time n. Note that we can not make use of the coupling result

from Lemma 3.2.1 in those intervals.

We differentiate between four possible types of black box intervals, depending on the relative positions

of X̂ and X̂ ′ at the beginning and end of the interval:

Wn,i :=



1 if X̂Rn,i−1
> X̂ ′

Rn,i−1
, X̂Dn,i

< X̂ ′
Dn,i

,

2 if X̂Rn,i−1
> X̂ ′

Rn,i−1
, X̂Dn,i

> X̂ ′
Dn,i

,

3 if X̂Rn,i−1 < X̂ ′
Rn,i−1

, X̂Dn,i > X̂ ′
Dn,i

,

4 if X̂Rn,i−1
< X̂ ′

Rn,i−1
, X̂Dn,i

< X̂ ′
Dn,i

.

(3.4.12)
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By construction and the strong Markov property of (X̂m, X̂
′
m)m we have that: For each n ∈ N, (Rn,i −

Dn,i)i=1,2,... is an i.i.d. sequence, and (Wn,i,Dn,i − Rn,i−1)i=2,3,... is a Markov chain. In addition the two

objects are independent, the transition probabilities of the second chain depend only on the first coordinate

and the following separation lemma, similar to Lemma 3.3.1 in d ≥ 2, holds.

Lemma 3.4.2. For any x0, x
′
0 ∈ Z and all small enough, positive δ there exist 0 < b2 < 1/8 and C, c > 0

such that

Pjoint
x0,x′

0
(H(nδ) ≥ nb2) ≤ exp(−Cnc), n ∈ N. (3.4.13)

Furthermore, there exists ε > 0 such that uniformly in n

Pjoint(Wn,2 = w′ |Wn,1 = w) ≥ ε (3.4.14)

for all pairs (w,w′) ∈ {1, 2, 3, 4}2 where a transition is “logically possible”.

Note that as a consequence of (3.4.14) (Wn,i)i is exponentially mixing.

Proof. To prove (3.4.13) the steps are analogous to Lemma 3.3.1. The only difference is that we use the

harmonic function for d = 1 from Lemma 3.2.3

r − r1
r2 − r1

(3.4.15)

for the proof. The steps will be the same so we will only highlight the change:

Assume that we start with x0 = x′0. This will yield an upper bound on the other starting pairs since

we have no starting distance. By the same arguments as in the proof of Lemma 3.3.1 we obtain for some

δ0 > 0, by constructing suitable corridors, the lower bound

Pjoint
x0,x′

0
(H(ε1 log n) ≤ ε1 log n) ≥ δε1 logn

0 = nε1 log δ0

and for some large constant K ≫ ε1 and |x− x′| ≥ ε1 log n

Pjoint
x,x′

(
H(K log n) < h

(1
2
ε1 log n

)
∧ (K log n)3

)
≥ Pind

x,x′

(
H(K log n) < h

(1
2
ε1 log n

)
∧ (K log n)3

)
− (K log n)3

(1
2
ε1 log n

)−β

≥ Pind
x,x′

(
H(K log n) < h

(1
2
ε1 log n

))
− C(K log n)−1 − (K log n)3

(1
2
ε1 log n

)−β

≥ (1− ε)
1

(2K/ε1)− 1
− C(K log n)−1 − (K log n)3

(1
2
ε1 log n

)−β

≥ 1

4

ε1
K

for n and β large enough. Combining these with probability greater than nε1 log δ0 ε1
4K we need at most

ε1 log n+ (K log n)3 many steps to reach a distance of at least K log n.

If the random walks are already at distance K log n we want to start the iteration of Step 2 and the

following from the proof of Lemma 3.3.1. Therefore we need a lower bound in d = 1, when starting from a

distance of ∥x− x′∥ ≥ K log n, for

Pind
x,x′(H(log2 n) < h(1/2K log n)) (3.4.16)
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and starting from a distance of ∥x− x′∥ ≥ logk n we want to find a lower bound for

Pind
x,x′(H(logk+1 n) < h(1/2 logk n)). (3.4.17)

Here we need to make smaller steps since our previous approximations are not sufficient. For (3.4.16) we get

the lower bound (note that here ∥x− x′∥ ≥ K log n)

Pind
x,x′(H(log2 n) < h(1/2K log n)) ≥ (1− ε)

K

2 log n−K
(3.4.18)

and for (3.4.17) (note that here ∥x− x′∥ ≥ logk n)

Pind
x,x′(H(logk+1 n) < h(1/2 logk n)) ≥ (1− ε)

1

2 log n− 1
. (3.4.19)

That means for one step, starting from ∥x− x′∥ ≥ logk n,

Pjoint
x,x′ (H(log(k+1) n) < h(1/2 logk n))

≥ Pjoint
x,x′ (H(log(k+1) n) < h(1/2 logk n) ∧ (logk+1 n)3)

≥ Pind
x,x′(H(log(k+1) n) < h(1/2 logk n) ∧ (logk+1 n)3)− C(logk+1 n)3(1/2 logk n)−β

≥ Pind
x,x′(H(log(k+1) n) < h(1/2 logk n))− (log n)−(k+1) − C(logk+1 n)3(1/2 logk n)−β

≥ (1− ε)
1

2
(log n)−1 − (log n)−(k+1) − C(logk+1 n)3(1/2 logk n)−β

≥ 1

4
(log n)−1

for large n and β > 0 large enough, where we again use the invariance principle, Lemma 3.2.3 and

Lemma 3.2.1.

Now we need b′ log n/ log log n steps in the iteration to reach a distance of nb
′
, with the k-th step taking

at most time (logk+1 n)3. Consequently, we need at most
∑b′ logn/ log logn

k=2 (log n)3k time for one such attempt

from distance K log n to nb
′
and therefore from x = x′ we need at most

ε1 log n+ (K log n)3 +

b′ logn/ log logn∑
k=2

(log n)3k ≤ n4b
′

for n large enough. We obtain a lower bound on the probability to make the whole distance in a single

attempt

nε1 log δ0
ε1
4K

b′ logn/ log logn∏
k=2

1

4 log n

≥ nε1 log δ0
ε1
4K

exp
(
− b′ log n

log log n4

log log n

)
≥ ε1

4K
n−2b′+ε1 log δ0

It is easy to see that for any b′ > 0 small enough there exist a 0 < b2 < 1/8 and ε1 small enough such that

α := b2 − 4b′ > 2b′ − ε1 log δ0 and with that

Pjoint
x,x′ (H(nb

′
) ≥ nb2)

≤ (1− n−2b′+ε1 log δ0)n
α

≤ exp(−n−2b′+ε1 log δ0+α)
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where the last term will tend to 0 as n→ ∞.

For (3.4.14) we need to show that there exists a uniform lower bound in n away from zero for the random

walks to change their positions after they come close to each other before they reach a distance of nb
′
. So

let’s say at time m := Rn,i we have X̂m > X̂ ′
m. More precisely, write Dj := X̂j − X̂ ′

j and pick a small ε > 0

to be tuned later. Using the same methods as in the proof of (3.4.13) we can show a suitable uniform lower

bound on the probability that D reaches (−∞, 0] before nb
′
. By the same arguments as above and noting

that

Pind
(
h(logk−1 n) < H(logk+1 n) |D0 = logk n

)
≥ (1− ε̃)

logk+1 n− logk n

logk+1 n− logk−1 n
,

we obtain for k ∈ N

Pjoint
(
h(logk−1 n) < H(logk+1 n) |D0 = logk n

)
≥ c

logk+1 n− logk n

logk+1 n− logk−1 n

= c
(
1− log n− 1

log2 n− 1

)
.

(3.4.20)

And similarly

Pjoint(h(na) < H(nb
′
) |D0 = na log n) ≥ c

nb
′−a − na log n

nb′−a − na

= c
(
1− log n− 1

nb′−a − 1

)
.

Therefore we have, with positive probability, nb′−a

logn many tries for the process D to reach (−∞, 0] before it

hits nb
′
. By the Markov property and using (3.4.20) we need a log n/ log log n iterations for D to reach ε log n.

From ε log n we build corridors, as in Step 1 in the proof of Lemma 3.3.1, to achieve D < 0. The probability

for such a corridor to exist is exp(−cε log n). Thus, for one attempt to reach (−∞, 0], the probability to be

successful is greater than nca logn/ log lognn−cε and we have nb′−a

logn such attempts with positive probability.

Combining those two facts, we obtain a uniform lower bound on the probability for D to reach (−∞, 0] away

from zero. Which concludes the proof.

As a corollary to equation (3.4.13) from Lemma 3.4.2 we obtain

Corollary 3.4.3. We can choose 0 < b2 < 1/8 and C, c > 0 such that for any choice of x0, x
′
0 ∈ Z

Pjoint
x0,x′

0
(Dn,i −Rn,i−1 ≥ nb2 |Wn,i = w) ≤ exp(−Cnc), w ∈ {1, 2, 3, 4}, n ∈ N. (3.4.21)

Proof. This is a direct consequence of the fact that nb
′ −K log n > nb

′ − na.

By construction we have, due to symmetry,

Pjoint(Wn,j = 1) = Pjoint(Wn,j = 3) and Pjoint(Wn,j = 2) = Pjoint(Wn,j = 4) for all j, n. (3.4.22)

Proof of Lemma 3.4.1. We can follow the proof of the analogous Lemma 3.14 from [BČD16] since we have

all necessary ingredients for our model. In that spirit let Y have the distribution

P(Y ≥ ℓ) = Ψ̂ind
(
inf{m ≥ 0 : X̂m < X̂ ′

m} ≥ ℓ | (X̂0, X̂
′
0) = (1, 0)

)
, ℓ ∈ N (3.4.23)
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and let V be an independent Bernoulli(1−1/n)-distributed random variable. A coupling based on Lemma 3.2.1

shows that Rn,1 −Dn,1 is stochastically larger than ((1− V ) + V Y ) ∧ n, since the distance between X̂Dn−1

and X̂ ′
Dn−1

is nb
′
and nb

′ − na ≫ 1 and we can choose a and β in such a way that the probability for the

coupling between Ψ̂ind and Ψ̂joint fails during the first n steps is less than 1/n. By well known estimates of

one-dimensional random walks (e.g. see Theorem 8.16 in [Kal02] and Theorem 1.a. in [Fel71] on page 415),

there exist c > 0 and cY > 0 such that uniformly in n ≥ 2,

E[e−λ((1−V )+V Y )] ≤ exp(−cY
√
λ), λ ≥ 0 and (3.4.24)

Pjoint
x0,x′

0
(Rn,1 −Dn,1 ≥ ℓ) ≥ c√

ℓ
, ℓ = 1, . . . , n. (3.4.25)

Inequality (3.4.24) is trivial for λ ≥ 1 and λ = 0, for λ ∈ (0, 1) we have, using Theorem 8.16 from [Kal02]

with u = 0 and s = e−λ,

E[e−λ((1−V )+V Y )] =
1

n
e−λ +

n− 1

n
E[e−λY ]

≤ 1

n
e−λ +

n− 1

n

(
1− exp

{
− cY

2

∞∑
m=1

e−λm

m

})
≤ 1

n
e−λ +

n− 1

n

(
1− exp

{cY
2

log(1− e−λ)
})

=
1

n
e−λ +

n− 1

n

(
1− (1− e−λ)

cY
2

)
.

Note that by Theorem 8.16 we obtain cY ≤ 1 and thus we have

1− exp(−cY
√
λ) ≤ (1− exp(−λ)) 1

2 cY

for all λ ∈ (0, 1), by combining

1− exp(−cY
√
λ) ≤

(
1− exp(−

√
λ)
)cY

and

1− exp(−
√
λ) ≤

(
1− exp(−λ)

)1/2
.

Furthermore we have

1

n
e−λ ≤ exp(−cY

√
λ) (3.4.26)

if

−λ− log(n) ≤ −cY
√
λ,

where both sides are equal if λ = cY
2 ±

√
c2Y
4 − log(n). For log(n) >

c2Y
4 there exist no real valued solution,

combining that with the fact that the inequality in (3.4.26) holds for λ = 0 and λ = 1, we get (3.4.26) for

all λ ∈ (0, 1) if log(n) >
c2Y
4 , which holds for all n ≥ 2, since cY ≤ 1. And thus (3.4.24) holds uniformly in

n ≥ 2. Let In := max{i : Rn,i ≤ n} be the number of “black boxes” that we see up to time n. By equation

(3.4.25) we have In = O(
√
n) in probability and in fact

Ejoint
x0,x′

0
[I2n] ≤ Cn. (3.4.27)
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This can be proven by using the lower bounds of equation (3.4.25). Note that since In is a N0-valued random

variable

Ejoint
x0,x′

0
[I2n] =

∞∑
ℓ=1

Pjoint
x0,x′

0
(I2n ≥ ℓ) =

∞∑
ℓ=1

Pjoint
x0,x′

0
(In ≥

√
ℓ) =

∞∑
ℓ=1

Pjoint
x0,x′

0
(Rn,

√
ℓ ≤ n)

≤
∞∑
ℓ=1

Pjoint
x0,x′

0

( √
ℓ∑

i=1

Rn,i −Dn,i ≤ n
)

≤
∞∑
ℓ=1

Pjoint
x0,x′

0

(
for all i ≤

√
ℓ : Rn,i −Dn,i ≤ n

)
≤

∞∑
ℓ=1

Pjoint
x0,x′

0

(
Rn,1 −Dn,1 ≤ n

)√ℓ

≤
∞∑
ℓ=1

(
1− c√

n

)√
ℓ

≤ n

∞∑
k=1

exp(−c
√
k − 1) ≤ Cn.

The last line follows by grouping the first n summands, the second n summands and so forth and bounding

them together. For example for kn ≤ ℓ ≤ (k + 1)n we have(
1− c√

n

)√
ℓ

≤
(
1− c√

n

)√
kn

≤ exp(−c
√
k).

More quantitatively, there exists c > 0 such that for 1 ≤ k ≤ n

Pjoint
x0,x′

0
(In ≥ k) ≤ exp(−ck2/n) (3.4.28)

and so in particular

Ejoint
x0,x′

0
[In1In≥n3/4 ] =

n∑
k=⌈n3/4⌉

Pjoint
x0,x′

0
(In ≥ k) ≤ ne−c

√
n. (3.4.29)

The inequality in (3.4.28) can be obtained by the following arguments. Let Y1, Y2, . . . be i.i.d. copies of(
(1− V ) + V Y

)
defined above in (3.4.23), then

P
((

(1− V ) + V Y
)
∧ n ≥ ℓ

)
≤ Pjoint

x0,x′
0
(Rn,1 −Dn,1 ≥ ℓ)

and thus

P
( ℓ∑

i=1

(Yi ∧ n) ≤ n

)
≥ Pjoint

x0,x′
0

( ℓ∑
i=1

Rn,i −Dn,i ≤ n

)
≥ Pjoint

x0,x′
0

(
Rn,ℓ ≤ n

)
= Pjoint

x0,x′
0
(In ≥ ℓ).

Combining the two we obtain by (3.4.24) for λ > 0

Pjoint
x0,x′

0
(In ≥ ℓ) ≤ P

( ℓ∑
i=1

(Yi ∧ n) ≤ n

)
= P(Y1 + · · ·+ Yℓ ≤ n)

≤ eλnE
[
exp

(
− λY1

)]ℓ
≤ eλn−cY

√
λℓ.
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Choosing λ = (cY k/n)
2 we see that (3.4.28) holds.

Note that

Rn ≤
In+1∑
j=1

(Dn,j −Rn,j−1), (3.4.30)

and using (3.4.21) we get Rn = o(n) in probability. Now using (3.4.27) together with (3.4.30) and (3.4.21)

implies (3.4.8):

Ejoint
x0,x′

0
[R2

n] = Ejoint
x0,x′

0
[R2

n1{∃j≤n:Dn,j+1−Rn,j≥nb2}] + Ejoint
x0,x′

0
[R2

n1{∀j≤n:Dn,j+1−Rn,j<nb2}]

≤ n2Pjoint
x0,x′

0
(∃j ≤ n : Dn,j+1 −Rn,j ≥ nb2) + n2b2Ejoint

x0,x′
0
[I2n+1]

≤ Cn1+2b2 (3.4.31)

and Ejoint
x0,x′

0
[R

3/2
n ] ≤ (Ejoint

x0,x′
0
[R2

n])
3/4.

For (3.4.9) we define

Dn,m := A
(1)
Dn,m

−A
(1)
Rn,m−1

, D′
n,m := A

(2)
Dn,m

−A
(2)
Rn,m−1

.

By symmetry we have

Ejoint[Dn,j ] = 0,Ejoint[Dn,j |Wn,j = 1] = −Ejoint[Dn,j |Wn,j = 3], (3.4.32)

Ejoint[Dn,j |Wn,j = 2] = −Ejoint[Dn,j |Wn,j = 4], (3.4.33)

by (3.4.21) and (3.4.1) we get that for some C <∞ and b > 0 uniformly in j, n ∈ N, for w ∈ {1, 2, 3, 4}

Ejoint
x0,x′

0
[|Dn,j | |Wn,j = w]

= Ejoint
x0,x′

0

[
|

Dn,j−1∑
i=Rn,j−1

ϕ1(X̂i, X̂
′
i)|
∣∣∣Wn,j = w

]

≤ CϕEjoint
x0,x′

0

[
(Dn,j −Rn,j−1) |Wn,j = w

]
≤ Cϕn

b2 + Cϕ

∞∑
ℓ=2

nb2ℓPjoint
x0,x′

0
(Dn,j −Rn,j−1 ≥ n(ℓ−1)b2 |Wn,j = w)

≤ Cnb2 (3.4.34)

and analogously for D′
n,j . Set Gj := F̂Dn,j

(the σ-field of the Dn,j-past) for j ∈ N and for j ≤ 0 let Gj be the

trivial σ-algebra. Note that Dn,j and D′
n,j are Gj-adapted for j ∈ N. For k < m we have

Ejoint
x0,x′

0
[Dn,m | Gk] = Ejoint

x0,x′
0

[
E[Dn,m |Wn,m] | Gk

]
by construction and (Wn,j)j is (uniformly in n) exponentially mixing, thus, observing (3.4.32), (3.4.22), and

(3.4.34)

Ejoint
x0,x′

0

[
(E[Dn,m | Gm−j ])

2
]
≤ Cn2b2e−cj , m, j ∈ N, n ∈ N (3.4.35)
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for some C, c ∈ (0,∞) and analogous bounds for D′
n,m. Indeed, abbreviating E = Ejoint

x0,x′
0
,

E
[
(E[Dn,m | Gm−j ])

2
]
= E

[
(E[E[Dn,m |Wn,m] | Gm−j ])

2
]

= E

[(
E
[ 4∑

i=1

1{Wn,m=i}E[Dn,m |Wn,m = i] | Gm−j

])2]

=

4∑
ℓ,i=1

E[Dn,m |Wn,m = i]E[Dn,m |Wn,m = ℓ]

× E
[
P(Wn,m = i | Gm−j)P(Wn,m = ℓ | Gm−j)

]
≤

4∑
ℓ,i=1

|E[Dn,m |Wn,m = i]E[Dn,m |Wn,m = ℓ]|

× (P(Wn,m = i) + e−cj)(P(Wn,m = ℓ) + e−cj)

=

4∑
ℓ,i=1

|E[Dn,m |Wn,m = i]E[Dn,m |Wn,m = ℓ]|e−2cj

≤ Cn2b2e−2cj

Let Sn,m :=
∑m

j=1Dn,j and S′
n,m :=

∑m
j=1D

′
n,j then for each n ∈ N, (Sn,m)m is a mixingale; see [HH80],

p. 19.

Using McLeish’s analogue of Doobs L2-inequality for mixingales, we get

Ejoint
x0,x′

0

[
max

m=1,...,n3/4
S2
n,m

]
≤ K

n3/4∑
i=1

n2b2 ≤ Kn
3
4+

3
2 b2 , (3.4.36)

and thus

Ejoint
x0,x′

0

[
|Sn,In |√

n
1{In≤n3/4}

]
≤ 1√

n

(
Ejoint
x0,x′

0

[
max

m=1,...,n3/4
S2
n,m

])1/2

≤ K1/2n−
1
8+

3
4 b2 . (3.4.37)

Note that b2 comes from Corollary 3.4.3 and can be chosen smaller than 1/8 which results in the right hand

side converging to zero for n→ ∞. By (3.4.5) we have

A(1)
n =

n−1∑
j=0

ϕ1(X̂j , X̂
′
j)

=

In∑
j=1

Dn,j +

In+1∑
j=1

Rn,j∧n∑
i=Dn,j∧n

ϕ1(X̂i, X̂
′
i)

≤
In∑
j=1

Dn,j +

In+1∑
j=1

(
(Rn,j ∧ n)− (Dn,j ∧ n)

)C1

n2

≤
In∑
j=1

Dn,j +
C1

n
,
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and so

Ejoint
x0,x′

0

[
|A(1)

n |√
n

]
≤ c√

n
+

1√
n
Ejoint
x0,x′

0

[
|Sn,In |1{In≤n3/4}

]
+

1√
n
Ejoint
x0,x′

0

[
|Sn,In |1{In>n3/4}

]
≤ c√

n
+

1√
n
Ejoint
x0,x′

0

[
|Sn,In |1{In≤n3/4}

]
+

1√
n
Cnb2Ejoint

x0,x′
0

[
In1{In>n3/4}

]
+

1√
n
CnPjoint

x0,x′
0
(∃j ≤ n : Dn,j −Rn,j−1 ≥ nb2).

Using (3.4.37), (3.4.29) and (3.4.21) respectively on the last three terms on the right hand side yields (3.4.9)

for A
(1)
n and analogous calculations for D′ instead of D yield (3.4.9) for A

(2)
n .

Write σ̂2 :=
∑

y,y′ y2Ψ̂ind((0, 0), (y, y′)) for the variance of a single increment under Ψ̂.

Lemma 3.4.4. There exist C > 0, b̃ ∈ (0, 1/4) such that for all bounded Lipschitz continuous f : R2 → R
and all x0, x

′
0Z ∣∣∣Ejoint

x0,x′
0

[
f

(
X̂n

σ̂
√
n
,
X̂ ′

n

σ̂
√
n

)]
− E

[
f(Z)

]∣∣∣ ≤ Lf
C

nb̃
(3.4.38)

where Z is two-dimensional standard normal and Lf the Lipschitz constant of f .

Since, as has been shown above, Rn = o(n) (with Rn from (3.4.7)) in probability, we obtain, using the

bounds from (3.4.5) and (3.4.6),

A
(11)
n

n
→ σ̂2,

A
(22)
n

n
→ σ̂2,

A
(12)
n

n
→ 0 (3.4.39)

in probability as n → ∞. Since X̂n = Mn + A
(1)
n and X̂ ′

n = M ′
n + A

(2)
n we make use of the convergence of

(Mn/
√
n,M ′

n/
√
n) and the bounds in (3.4.9) to prove Lemma 3.4.4. To prepare that, for n ∈ N, let

Qn :=

(
ϕ11(X̂n−1, X̂n−1) ϕ12(X̂n−1, X̂n−1)

ϕ12(X̂n−1, X̂n−1) ϕ22(X̂n−1, X̂n−1)

)
(3.4.40)

be the conditional covariance matrix given F̂n−1 of the random variable (Mn −Mn−1,M
′
n −M ′

n−1) and let

λn,1 ≥ λn,2 ≥ 0 be its eigenvalues. Equations (3.4.5), (3.4.6) and (3.4.1) yield bounds on the entries of Qn

and thus, by stability properties for the eigenvalues of symmetric matrices,

|λj+1,1 − σ̂2|+ |λj+1,2 − σ̂2| ≤ C21{|X̂j−X̂′
j |≤na} +

C2

n2
1{|X̂j−X̂′

j |>na} (3.4.41)

for some constant C2 <∞, see [FF63].

In particular,

2∑
i=1

|nσ̂2 −
n∑

j=1

λj,i| ≤ C2Rn +
C2

n
(3.4.42)
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because for i = 1, 2 with Bn := {j ≤ n : |X̂j−1 − X̂ ′
j−1| ≤ na}

|nσ̂2 −
n∑

j=1

λj,i| ≤
n∑

j=1

|σ̂2 − λj,i|

=
∑
j∈Bn

|σ̂2 − λj,i|+
∑
j /∈Bn

|σ̂2 − λj,i|

≤ RnC2 + (n−Rn)
C2

n2

≤ RnC2 +
C2

n
.

Proof of Lemma 3.4.4. Let f : Rd → R be a bounded Lipschitz continuous function with Lipschitz constant

Lf and Z two-dimensional standard normal. Using (3.4.42) and (3.4.8) and Corollary 1.3 in [Rac95] we

conclude that ∣∣∣∣∣Ejoint
x0,x′

0

[
f
( Mn

σ̂
√
n
,
M ′

n

σ̂
√
n

)]
− E

[
f(Z)

]∣∣∣∣∣ ≤ Lf
C

nb∗
for all n (3.4.43)

for some C < ∞ and b∗ = 1
3 (

1
2 − δR). For the use of Corollary 1.3 in [Rac95] we read Xk =

(
(Mk −

Mk−1)/
√
σ̂2n, (M ′

k −M ′
k−1)/

√
σ̂2n

)
which leads to a covariance matrix with eigenvalues λ̃k,i = λk,i/(σ̂

2n)

for i = 1, 2. Moreover note that due to the tail bounds on the regeneration times from Lemma 3.1.15, by

tuning the parameters right, we obtain supk E
[ ∥∥(Mk −Mk−1,M

′
k −M ′

k−1)
∥∥3 ] < ∞. We briefly want to

show the calculation for the second expectation from the first part of Corollary 1.3 in [Rac95].

Ejoint
x0,x′

0

[( 2∑
i=1

|1−
n∑

k=1

λ̃2k,i|
)3/2]

= (σ̂2n)−3/2Ejoint
x0,x′

0

[( 2∑
i=1

|σ̂2n−
n∑

k=1

λ2k,i|
)3/2]

≤ (σ̂2n)−3/2CEjoint
x0,x′

0

[(
Rn +

1

n

)3/2]
from which we can conclude (3.4.43). Then, combining (3.4.43) and (3.4.9) yields∣∣∣∣Ejoint

x0,x′
0

[
f
( X̂n

σ̂
√
n
,
X̂ ′

n

σ̂
√
n

)]
− E[f(Z)]

∣∣∣∣
≤
∣∣∣∣Ejoint

x0,x′
0

[
f
( M̂n

σ̂
√
n
,
M̂ ′

n

σ̂
√
n

)]
− E[f(Z)]

∣∣∣∣+ CLfEjoint
x0,x′

0

[
|A(1)

n |√
n

+
|A(2)

n |√
n

]
≤ Lf

C

nb∗
+ Lf

C

nδC
(3.4.44)

Now we can prove Proposition 3.2.2 for d = 1.

Proof of Proposition 3.2.2 for d = 1. Recall that we want to show

E
[(
Eω[f(X̂

joint
m /

√
m)]− Φ̃(f)

)2]
≤ Cfm

−c.
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Note that

E
[(
Eω[f(X̂

joint
m /

√
m)]− Φ̃(f)

)2]
= Ejoint[f(X̂m/

√
m)f(X̂ ′

m/
√
m)]

− 2Ejoint[f(X̂m/
√
m)]Φ̃(f) + Φ̃(f)2

=
(
Ejoint[f(X̂m/

√
m)f(X̂ ′

m/
√
m)]− Φ̃(f)2

)
+ 2Φ̃(f)

(
Φ̃(f)− Ejoint[f(X̂m/

√
m)]
)
.

Since a product of bounded Lipschitz continuous functions is again bounded and Lipschitz continuous we

can use Lemma 3.4.4 to get

|Ejoint[f(X̂m/
√
m)f(X̂ ′

m/
√
m)]− Φ̃(f)2| ≤ Lf

C

mb̃

and

|Φ̃(f)− Ejoint[f(X̂m/
√
m)]| ≤ Lf

C

mb̃
,

which concludes the proof.

Theorem 1.3.5 for d = 1 follows then by the same arguments as in the case of d ≥ 2 since we now have

Proposition 3.2.2 expanded to dimension d = 1.
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