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Abstract

In this thesis we will consider two models of random walks in random environment. The first one is a directed
random walk on the backbone of oriented percolation generated by the contact process. In Chapter 2 we
prove a comparison result between the quenched and the annealed law on the level of constant boxes and use
this to prove the existence of a measure ) on the environments that is invariant with respect to the point
of view of the particle and absolutely continuous with respect to the a priori measure P. We show that ¢,
the Radon-Nikodym derivative of @) with respect to P, satisfies a certain concentration property and prove a
quenched local limit theorem comparing the quenched law with the annealed law times ¢. Additionally we

prove an annealed local central limit theorem.

This model was introduced by Birkner et al. | ] and therein a quenched central limit theorem
(CLT) proven. In | ] Steiber improved on these results and proved estimates on the differences be-
tween quenched and annealed hitting probabilities of boxes of different sizes which are still growing in N,

the number of steps.

The main difficulty stems from the fact that our environment is not i.i.d. and the random walk not uniformly
elliptic, in fact not even elliptic. Uniform ellipticity would ensure that a quenched random walk can visit
any site. Once it hits the backbone of oriented percolation our quenched random walk is unable to visit sites
that lie outside. We overcome this difficulty by introducing so called “social” boxes which guarantee that
two random walks starting in the same box can meet in some finite time depending on the size of the box.
Furthermore, to deal with the correlation in the environment, we use the fact that the probability for the
contact process started from a single site to die out after surviving for n steps falls exponentially in n. This
allows us, with high probability, to approximate the original environment with one, where the correlations
only have finite range. We can show that the density of “good” boxes is high with high probability. To show
the existence of ( we consider the quenched law of the environment as seen from the particle after N steps.
We then obtain @ as a weak limit of their Cesaro means along a subsequence. This has the advantage that
Q is then invariant with respect to the point of view of the particle by construction. To prove the quenched
local limit theorem we introduce hybrid measures and use space-time convolutions of these measures and

the quenched law.

The second model is a class of random walks in an environment given by oriented percolation, where we make
more general assumptions on the dynamics of the random walk and was introduced in | ]. Here the
random walk does not have to stay on the percolation cluster but rather its transition probabilities depend
on the environment locally in some general way. Furthermore we assume the transitions to have finite range
and, while on the cluster, the transition kernels are suitably close to a deterministic symmetric transition

kernel. Lastly we have a symmetry assumption that leads to the annealed mean being 0.

In Chapter 3 we prove a quenched central limit theorem in the regime where the parameter p of the underlying
Bernoulli-field, on which the percolation cluster is build, is close to 1. To prove the quenched CLT we
control the the square of the quenched average under Lipschitz test functions. To that end we consider the
dynamics of two random walks evolving in the same environment and therefore define a suitable regeneration
construction for two random walks evolving in the same environment, as well as in independent environments.
We use these regeneration times to compare the two different pairs of random walks. It turns out that,

although the correlations in the environment have infinite range, they decay exponentially with distance and
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we can prove that two random walks in a joint environment, that are far from each other, are behaving
like they are in independent environments with high probability. To make use of this we show that two
random walks in a joint environment separate fast and spend enough time apart such that we can couple
them with two in independent environments for at least N — N of the first N steps, where 0 < b; < 1/2.
Our approach to prove the quenched CLT requires us to split the proofs in dimensions d > 2 and d = 1. This
is necessary because in d = 1 the random walks meet too often and we therefore need to control the time
they spend while close to each other. Furthermore, for d = 1, we make use of a martingale decomposition
for the dynamics of the two random walks evolving in a joint environment and show that cancellations in
the predictable process of this decomposition, during the time at which the random walks are close to each

other, lead to vanishing error terms.
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Chapter 1

Introduction

The models considered in this thesis both fall under the broad umbrella of random walk in random envi-
ronment (RWRE). In general RWRE describe the movement of particles in a disordered or inhomogeneous
medium.

RWRE can be used to model a wide variety of processes occurring in physics and biology. We give some
examples of those to give a more intuitive access to the topic. We begin with examples from physics such as
disordered solids where atoms are placed at random points in the space R? and thus the potential becomes
random. In that case the positions of the atoms constitute a random environment and electrons moving in
the solid are the random walks, see | ]. Other examples include crystal growth, see [ ], electrical
lines of random conductances, see [ ] or transport processes, see | ], among a host of possible
applications in physics.

Continuing with Biology, every population evolving in an environment where the individual’s fitness
depends on the spatial position or other factors such as age or size, see | ] or | ], can be
modeled as a random environment. This is the case whenever individuals compete for resources, which
results in a higher fitness for individuals in sparsely populated areas and a lower fitness in densely populated
areas.

By studying the ancestral lineages of a population we can study, among other interesting things, the
spatial distribution, the distribution of types and movement of ancestors of a sample of individuals | ].
This is the main motivation behind the models we will introduce later and we will therefore discuss it in a
bit more detail.

As discussed in | ], we can extract a vast amount of information about a population from its pedigree.
Ancestry can be used to identify relatives of a given individual, e.g. by finding the most recent common
ancestor of a group of individuals. The ancestral lineages are random walks in random environment, where
the environment is given by the population and its evolution over time. The dynamics of the ancestral

lineages are then given by the dynamics of the population, i.e. migration and birth or death of individuals.

As a possible application consider ancestral lineages in a haploid stepping stone model. In the stepping
stone model the population is arranged on a discrete array, e.g. Z, of colonies of fixed size N. During each

generation the old individuals are completely replaced by new individuals and we assign a new individual
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in colony = a parent in colony y with probability p(z,y) = p(y — x), where p(-) is symmetric. Children
assume the types of their parent and then independently of everything else mutate with probability u to a
completely new type. Let ¢(z,y) be the probability, in equilibrium, that two individuals randomly drawn
from colonies = and y have the same type. Using the fact that ancestral lineages are random walks we can

calculate

N 2 _ _ o e (= w)* (2, y)
V(z,y) = 1;(1 —u) kP(M =k[Xo=2Yy=y) = NJrkziil(l — )%y (0,0)

where X and Y are random walks moving according to p with starting positions X, and Yy, M is the
meeting time of X and Y and py, is the k-step transition kernel, see e.g. | ] for more details. Now X
and Y are the ancestral lineages of the two drawn individuals and M is the time that the first common
ancestor is found. For the two individuals to have the same type there can not be any mutations along the
ancestral lineages until the first common ancestor. Therefore we get the factor (1 —u)2*, that is no mutation
for k generations for both ancestral lineages. Any mutation before the ancestral lineages meet would lead
to different types. To summarize, we can use the behaviour of the ancestral lineages as random walks to

determine the probability for two sampled individuals to have the same type.

In this thesis we will dedicate ourself to studying the long time behaviour of ancestral lineages in two models
and derive results on the spatial distribution of the ancestors. Note that the evolution of the ancestral
lineage depends on the modeling of the population since it depends on the dynamics of the evolution of the
population. In the scope of this work we will focus on models with no selection nor mutation but add a

spatial component for the individuals and thus introduce migration.

1.1 Discrete time contact process and its relation to oriented per-

colation

One vital ingredient for the models considered in this work is the discrete time contact process n := (1, )nez,

since it will be the environment in which the random walks evolve.

It was first introduced in its continuous time version (7;);>¢ by Harris in | ], where 7; is a random
map taking values in {0, I}Zd that assigns every site x € Z% the value 1 or 0. Harris interpreted 7 as the
spread of an infection. In that context we say that an individual at position x is infected at time ¢ if n:(z) = 1
and healthy if n;(z) = 0. An infected individual can recover at rate 1 and become healthy, while a healthy
individual can be infected by its nearest neighbours (according to the supremum norm) at rate A > 0 for

each infected neighbour, i.e. this yields the rate

1, if e (2) =

1
Ay ezt flo —yllo =1,me(y) = 1}, if m(z) =0.

)

(e, T) =

at which the state of 1, at site z € Z% is flipped.



Since we think of ancestral lineages we call a site (x, n) inhabited if n, () = 1 and uninhabited if n,, (x) = 0.
Similar to the continuous time contact process, in discrete time an uninhabited site will be inhabited in the
next generation with probability p if there exits a site in its nearest neighbourhood that is inhabited. And
an inhabited site will be uninhabited in the next generation with probability 1 — p. In this section we will
give a precise definition and introduce some known results for the discrete time contact process we will need
later on.

The discrete time contact process will be build on an i.i.d. family of Bernoulli random variables for every
space-time point (x,n) € Z% x 7, where we refer to z € Z% as the spatial component and n € Z as the time.
We start with w := {w(z,n): (z,n) € Z9*1} a family of i.i.d Bernoulli random variables with w(x,n) ~ Ber,
and p € [0, 1] on some probability space (2, F,P). Thus w € {0, I}ZdJrl and Pow™! is a probability measure

on {0, 1}Zd+1. Now we call a site (x,n) € Z%*! open if w(x,n) = 1 and closed otherwise.

Definition 1.1.1 (Directed open path). Let (z,m), (y,n) € Z9*! be two sites and m < n. Given a realization

of an environment w we call a space-time sequence (z,,,m), ..., (z,,n) € Z41 a directed open path starting
at (z,m) and ending in (y,n) if x,, = x, x, =y, ||zx —xp_1|| < 1forall k=m+1,...,n and w(xg, k) =1
for all k =m,...,n. In that case we write (x,m) = (y,n).

A directed open path consists of nearest neighbour jumps, according to the supremum norm, on only
open sites. For x € Z4 we set U(x) = {y € Z*: |l — y|| < 1}, i.e. U(z) is the neighbourhood of & according
to the sup-norm. With that, given an environment w, for a set A C Z¢, we define 4™ := (nH™),>,, =

(n25™),,5m (w) as the discrete time contact process starting at time m € Z from the set A as

mw™(y) = Laly),  yeZ,
and then iteratively for n > m

Am 1 ifw(z,n+1)=1and n2™(y) =1 for some y € Z with ||z —y|| < 1,
nit () = . (1.1.1)
0 otherwise,

i.e. ™ (y) = 1 if and only if there exists a directed open path starting from some (z,m) € A x {m} and
ending in (y, n), or in short (z,m) —* (y,n). The process n"™ starts from the configuration w(z, m) = 1 4(z)
for all z € Z4, while for n > m and y € Z? the w(y,n) are again i.i.d. Bernoulli. Note that n™ depends on
w but to shorten the notation we refrain from writing that dependency explicitly every time. Similar to the
continuous version we call that a site (x,n) infected or inhabited if 4 (x) = 1 and healthy or uninhabited

n
Am as a population process, where an individual lives at site

otherwise. In light of that we can interpret n
(z,n), i.e. n™(x) = 1, if there exists a possible parent in the previous generation, i.e. nf’_ﬁf(y) = 1 for some

y € Z¢ with ||z — y|| < 1. Sometimes we want to identify 7™ with the set of inhabited sites at time n > m.

We define 74 := inf{n > m: /™ = @}, the time at which the contact process started from A x {m} dies
out. Theorem 1 from | ] tells us that there exists a critical value p. € (0, 1) for the success probability

such that, the contact process survives with positive probability if and only if p > p..
Theorem 1.1.2. Ford > 1 and p > p. we have P(14™ = c0) > 0.
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We define 74 := inf{n > 0 : n/%° = @} and in particular for A = {0} we write 70 = 71910 and get
P(7° = co) > 0. For the rest of this thesis assume p > p. and if we require more, say p close to 1, we will

specify that. For two sets A, B C Z¢ with A C B we obtain, by construction of the contact process
n64’0 cng® and A0 cpBO for all n € N.

Let p,, be the distribution of n%d’o, then, by the above monotonicity of the contact process and the Markov
property, p, < po, i.e. po stochastically dominates pu, and by attractiveness pin4m < pn for all m € N.
Therefore, by compactness of the set of probability measures on {0, 1}20[7 there exists a unique weak limit
v = nl;n;o tn- This limit is non-trivial since p > p. and v is called the upper invariant measure. This is a

well known result; see Chapter IV and Theorem 2.3 in Chapter III from | ] for the definition therein

. d . . .
and existence. Thus for n2"™, taking m — —oo, we obtain a stationary process

d
1N := (Mn)nez = (77% Jnez (1.1.2)

where for a given realization of w we have 7, (z) = 1 if and only if for every m < n there exists some y € Z%
such that (y,m) =% (z,n). That means n, (z) = 1 if there exists an infinitely long open path backwards in
time starting from (z,n). In Chapter 2, for notational convenience, we consider the process & = (£,), on
{0, 1}Zd7 defined by &, (z) = 1iff (z,n) — oo, i.e. there exists an infinite directed open path connecting (z,n)
to 0o, and &, (x) = 0 otherwise. Note that L((&n)n) = L((—n)n), since n_,(z) = 1 iff there exists an open
path (x,—n) — oo which, in the time-reversed picture, translates to (z,n) — oo and §,(z) = 1. Therefore
the process £ can be interpreted as the time reversal of the stationary discrete time contact process n defined
in (1.1.2). In particular, for any n € Z the random field &,(-) is distributed according to the upper invariant
measure v of the discrete time contact process, which is non-trivial in the case p > p..
We define by

C:={(z,n) €Z* X Z: (z,n) < oo} (1.1.3)

the backbone of the space-time cluster of oriented percolation, i.e. the set of all space-time sites which are
connected to “time +o00” by an open directed path, see 1.1.1. Note that C depends on w and that we have

P(|C| = o0) =1 for p > p.. The process & := (&, )ncz satisfies

n(z) = 1c((z,n)). (1.1.4)

Furthermore for a measure p on {0, l}Zd we write n*™ for the contact process started with initial
configuration distributed according to p at time m.
Lastly we want to mention a useful relation between the upper invariant measure v and a Bernoulli product

measure.

Lemma 1.1.3. The upper invariant measure of the contact process stochastically dominates a Bernoulli

d
product measure Bergz for some p' > 0.

Lemma 1.1.3 was proven for the continuous time contact process in | ] Theorem 1.1.

1.1.1 Connection to oriented percolation

We stick to a short definition that demonstrates a comparison between the discrete time contact process and

oriented site percolation. A more detailed description of oriented site percolation and some results can be
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found in [ ]. We define oriented site percolation as a discrete time Markov chain A,, of subsets of Z?
with percolation parameter p € [0,1]. The evolution of this process is defined by: conditioned on the past of

the process Ag, Ay, ..., Ay, for x € Z%, the events {z € A, .1} are independent and

p, A, NU(z)#0,

Pz € Apy1| Ao, Ar,. .., Ap) =
0, ifA,NU@) =0,

where U(z) again is the neighbourhood of z. With the interpretation that a site x is occupied at time n if
x € A, and empty if x ¢ A,,. Comparing oriented percolation with the contact process from equation (1.1.1)

the similarities are obvious even in the definitions.

Since we consider two different models in chapters 2 and 3 respectively we present the required results about

the contact process for each chapter in the two subsections in Section 1.5.

1.2 Directed random walk on the backbone of oriented percolation

The results presented in this section and the related proofs in Chapter 2 were obtained in a joint article
[ | with Stein Andreas Bethuelsen, Matthias Birkner and Andrej Depperschmidt.

Our goal is to study the directed random walk on the cluster C. This random walk was studied in
[ | in the case that the initial point of the random walk belongs to the cluster. Here we want to
compare the annealed and quenched laws for starting points without checking whether they are on the cluster
or not. Thus, we define the random walk here differently: It behaves as a simple random walk (which jumps
uniformly to one of the sites in the unit ball around the present site) as long as it is not on the cluster and
once it hits the cluster it will behave as the random walk from [ ]. For a site (z,n) € Z¢ x Z we
define its neighbourhood at time (n + 1) by

Ulz,n) ={(y,n+1): [lz -yl <1} (1.2.1)

Since we mainly consider the sup-norm we set ||-|| := ||-||, for rest of this thesis. Given w and therefore the
random cluster C and (y,m) € Z% x Z we consider here random walks (Xn)n=m,m+1,... with initial position

X,» = y and transition probabilities for n > m given by
|U(z,n)NC|~ if (z,n) € Cand (2,n+ 1) € U(x,n)NC,
P(Xpt1 =2 Xn=2,w0) =40 if (x,n) € C and (z2,n+1) ¢ U(xz,n) NC, (1.2.2)
U(z,n)|~* if (z,n) ¢ C.

We will write P,, for the conditional law of P given w and E,, for the corresponding expectation. In particular,

for the transition probabilities we have

P,(Xpt1=2|Xn=2)=P(Xpt1 = 2| X» = z,w). (1.2.3)
For the above random walk we denote by Pu(f”m) its quenched law and by ES’ ™) the corresponding expec-

tation. The annealed (or averaged) law of that random walk is denoted by P(¥™ and its expectation by
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E®™) . Note that for any A € 0(X,, :n=m,m+1,...) we have
PE™) (A) = /P(Ey’m) (A) dP(w). (1.2.4)

Annealed and quenched CLT for the random walk defined in (1.2.2) were obtained in [ | which
in particular shows that the quenched and annealed laws after IV steps are comparable on the level of boxes
of side length N'/2. These results were refined in [ , Chapter 3]. In particular (and relevant for our
purposes here), he obtained a comparison result between the quenched and annealed laws after N steps on
the level of boxes of side length N?/2 for 6 € (0,1). We recall this result here in Theorem 2.7.1 below. In
fact in | , Section 3.4] he also studied such comparisons on boxes which grow on even slower scales.

In Theorem 1.1 in [ ] it is shown that the random walk (X,,) starting in 0 € Z? at time 0 satisfies
an annealed central limit theorem and the limiting law is a non-trivial centred isotropic d-dimensional normal
law. In particular its covariance matrix ¥ is of the form 021, for a positive constant o and the d-dimensional
identity matrix I;. Recall that in | ] it is assumed that the space-time origin is contained in C so
that the random walk starts and stays on C. This is not a big constraint because the time a random walk
needs to hit the cluster C has exponentially decaying tails; see Lemma 2.11.1.

The annealed CLT from | ] can be strengthened to an annealed local CLT. For a proof of the

following theorem we refer to Section 2.2.

Theorem 1.2.1 (Annealed local CLT). Ford > 1 and ¥ as above we have

1 1
lim WMWX':xf———————fw f—mﬁr%‘zu 1.2.5
n—oco Z (Xn ) (27rn)d/2\/deﬁ p( 2n ) ( )

TE€Z

The main goal is to strengthen this further and prove a quenched local limit theorem which is an analogue
of Theorem 1.2.1. In order to state the precise result, we need to introduce some notation. First, for

(y,m) € Z% x Z, we define the space-time shift operator o on Q by
O (ymw(z,n) = w(T +y,n+m) (1.2.6)

and we write &, (y; w) for &,,(y) read off from a given realization w as in (1.1.3) and (1.1.4). We define the

transition kernel for the environment seen from the particle (compare this with (1.2.2)) by

Rfw) =Y gly;w)f(og.nw) (1.2.7)

llyll<1
acting on bounded measurable functions f :  — R, where

. ﬁl(y;w) 1
g(y;w) = ]l{znzHSI gl(z;w)>o,w(o,o):l}—EH o (5 w) + ]l{zuz”Sl €1(2w)=0 or w(0,0)=0} 33 (1.2.8)

Definition 1.2.2. A measure Q on Q is called invariant with respect to the point of view of the particle if

for every bounded continuous function f:Q — R

/%mwmm:/ﬂmmw» (12.9)
Q Q

Theorem 1.2.3. Let d > 3 and p € (p.,1]. Then there exists a unique measure Q on 2 which is invariant

with respect to the point of view of the particle satisfying Q@ < P and the concentration property (2.1.9) below.
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The concentration property tells us that on large boxes [—M, M]%, with high probability (depending on
M), the average of the Radon-Nikodym derivative d@Q/dP evaluated for all possible shifts x € [~M, M]?¢ of
the environment is close to 1.

The main result of Chapter 2 is a quenched local limit theorem which is an analogue of Theorem 1.11 in

[ ] in the case of our model.

Theorem 1.2.4 (Quenched local limit theorem). Let d > 3 and p € (pe, 1], let Q be the measure from
Theorem 1.2.3 and denote by ¢ = dQ/dP € Li(P) the Radon—Nikodym derivative of Q with respect to P.

Then for P almost every w we have

lim POO(x, =2)—POY(X, = z)p(c zn)w)| = 0. 1.2.10
mgzjdlw ( ) ( )P(0 (0 )| (1.2.10)
Remark 1.2.5 (Uniqueness of ). It will be proven in Lemma 2.9.1 that the function ¢ in (1.2.10) is P almost
surely unique. Furthermore, it will follow from the arguments in the proofs (cf. also Remark 2.1.6) that if
a measure (' on (2 is invariant with respect to the point of view of the particle and satisfies Q' < P and
(1.2.10) with ¢’ = d@Q’/dP then this measure @ satisfies the concentration property (2.1.9) as well and thus

in particular agrees with Q.

Outlook and open questions While we do exhibit a measure () which is invariant with respect to
the point of view of the particle and absolutely continuous with respect to P, we can currently establish
uniqueness only in the class of such measures satisfying the additional property (2.1.9), see Remark 1.2.5.
Furthermore, because of non-ellipticity, @ is not equivalent to P, see the discussion in Remark 2.1.6 below.
We leave open the questions whether property (2.1.9) is necessary for uniqueness and whether @ is equivalent
to P when restricted to the set Q from (2.1.11) in Remark 2.1.6.

We restrict our analysis to the case d > 3. This is essentially owed to the fact that Theorem 2.7.1,
which we quote from | , Thm. 3.24], is presently only available under this assumption. It was proved
there using an environment exposure technique from | ], which was also used by | ], and the proof
exploited the fact that in dimension at least 3, two independent random walks will almost surely meet only
finitely often, irrespective of the number N of steps they take. In spatial dimension d = 2, two independent
walks will meet infinitely often, but the number of intersections up to time N grows quite slowly (of order
log N). It is conceivable that with substantial technical effort, the proof of | , Thm. 3.24] and also the
results of the present investigation could be adapted to cover the case d = 2. We leave this question for
future research. For our model, simulations suggest that Theorem 1.2.4 should hold even in spatial dimension
d = 1. However, it seems that a rigorous analysis of the case d = 1 would require a completely new approach.

We prove in Theorem 1.2.4 a quenched local limit theorem for a very specific model of a non-elliptic
random walk in a non-trivial dynamic random environment, and our proofs do exploit specific properties
of this environment, namely the oriented percolation cluster. However, we think that this environment is
prototypical for a large class of dynamic environments which can be “mapped” to it by suitable coarse-
graining procedures, see | ], Section 3 and the concrete example in Section 4 there. It seems quite
possible that given substantial technical effort, our approach to Theorem 1.2.4 could be extended to the class

of environments from | ]. We leave this for future work.
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Regeneration times

We recall the regeneration times for this model constructed in | ]. Recall that we think of the random
walks as ancestral lineages. At this point we want to return to that interpretation. Since it is a priori not
known which sites are on the cluster, the ancestral lineages are constructed locally with the aim to find times
at which the local construction finds a “real” ancestor. For that we introduce new random variables that
decide at which possible site the parent lived in the previous generation. For (z,n) € Z? let &(x,n) be a
uniformly chosen permutation of U(z,n) == {(y,n + 1) € Z¢ x Z: ||z —y|| < 1} the neighbourhood of z at
time n + 1, independent of everything else. Let @ be the family of all these permutations. Conditioned on

(x,n

the event that (x,n) € C and given a starting site (z,n), k, w and @, we define a path =, ) of length k via

(x,n), if =0,

7};’")(]‘) _ oG — 1)1 ifApp(j)=0and j=1,...,k—1
O(ve(j — 1) min(Ank(5))]  if App(j) #0and j=1,... k-1
(e — 1), ifj=rk

where here v, (j) = ’y,gx’n)(j) and A, (j) = {i: @(y(j — 1))[i] = Z% x {n+k —1}} is the set of all sites in
U(v,(j —1)) that are, in w, connected to some site at time n+k — 1. That means the path starts at position
(z,n) and then chooses the first of the neighbouring sites in the previous generation, so a site in U(z,n),
that appears first in the permutation @(z,n) if none of them are connected to Z¢ x {n + k — 1}. As soon
as there is a site that is connected to Z¢ x {n + k — 1} we restrict our choice in the previous generation to
those and choose the first one of them according to @. Note that once the path finds a site that is connected
to Z x {n + k — 1} it will stay on such sites. This is iterated for every step replacing (x,n) with its current

(z,n)

position until j = k, where 7y just chooses the first coordinate of the permutation. Note that ~ only

depends on values of w(y, m) and &(y, m) for (y,m) € Z¢ x {n,...,n + k — 1} which means we can decide
the position of the path without observing all of the environment w. We interpret 'y,(f’n)(k) as a “potential”
ancestor of (z,n) from k generations ago.
A few properties of ’y,(f’n) are discussed in Lemma 2.1 and Remark 2.2 in | ]. Due to those properties
we can couple the random walk (X, k) started in (z,n) with w and @ by setting

(X, k) = lim 75 (k).

There exist times at which the random walk and the path obtained from the local construction coincide. Let

TQ = 07
Ty =inf{k > T, 1: €M (R) =1}, j>1

with a slight abuse of notation in £(y,m) = &, (y) for (y,m) € Z% x Z. The T}’s are exactly those times
and thus the local construction finds a “real” ancestor of (z,n). We call those times regeneration times. In
Figure 1.1 we illustrate how the construction finds the regeneration times using only local information about
the environment. Let

n="T,—-T,—1 and Y;:=Xp, —Xr,_,,

then we have the following lemma from | ]
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Figure 1.1: The left-hand picture shows how the construction discovers the trajectory of the random walk
and the respective regeneration times 13,75, ..., T, locally. We restrict the paths and random walk to steps
in U = {-1,1}. On the right-hand side we zoom in on the environment between T and T;. There are two
sites at which there exist two possibilities for the path to continue. At those sites we drew the first choice,

according to w, with a solid arrow and the second choice with a dashed arrow.

Lemma 1.2.6. Conditioned on the event B, ) := {w: (z,n) € C} the sequence ((Yi, 7;))i>1 is i.i.d. and Y1

is symmetrically distributed. Furthermore, there exist constants C,c € (0,00), such that
P(|Y1]| > n|Bgn)) < Ce™™  and  P(11 >n|Bn) < Ce™ "

Note that, as was mentioned above, the random walk introduced in | ] is a random walk on the
the cluster C and thus its initial position has to be on the cluster. Birkner et. al already mention in Remark
2.3 that this can be expanded to a random walk not starting on C. Using the fact that the random walk in
our model hits the cluster fast, see Lemma 2.11.1, the same bounds on analogous regeneration times hold

for our model.

1.3 A more general class of random walks in oriented percolation

The results presented in this section and the related proofs in Chapter 3 were obtained while working on an

upcoming article with Matthias Birkner and Andrej Depperschmidt.

In this section we recall the auxiliary model from [ ] and present our main result. We aim to apply this
result via coarse graining to the more general class of models that was introduced in Section 3 in | ]

This will be included in the upcoming article with M. Birkner and A. Depperschmidt.

The model is a natural generalization of the model introduced above and in | ]. We will allow the
random walks to step on 0’s of the contact process and impose more general assumption on the transitions,
e.g. finite range instead of only allowing nearest neighbour jumps. These assumptions also make sense for

populations. We allow migration with a bounded range, where the movement is only depended locally on the
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environment, e.g. available resources and competition. We aim to prove a quenched CLT and the main tool
will be to define appropriate regeneration times. In | | Birkner et al. introduced regeneration times for a
single random walk and proved an annealed LLN and CLT. We expand on their idea to define simultaneous
regeneration times for two random walks to apply the strategies used in [ ] to prove a quenched
CLT. For that we will consider two random walks evolving in the same environment and compare them to
two random walks evolving in independent environments. It turns out that, although the environment has
correlations with infinite range, these two pairs of random walks will behave almost equally as long as the

starting distance (within each pair respectively) is large, see Lemma 3.2.1.

Recall the definition of the discrete time contact process n from (1.1.2) and let p > p.. To define a random

walk in the random environment generated by 7, or more precisely by its time-reversal, let
k= {kn(z,y) :n €L, z,y € L (1.3.1)

be a family of random transition kernels defined on the same probability space as 7, in particular &, (z, -) >0
and ZyGZd #in(2,y) = 1 holds for all n € Z and = € Z¢. Given k, we consider a Z%valued random walk

X = (Xn)n=01... with Xy = 0 and transition probabilities given by
P(Xn+1 =y | Xn = l‘,/ﬁ) = Hn(xay)v (132)

that is, the random walk at time n takes a step according to the kernel &, (z, -) if x is its position at time
n. We impose the following four assumptions on the distribution of x. Recall that &, which we used above,
is the time-reversal of 7, i.e. n_,(-) = &,(-). Since we aim to apply the results obtained in Chapter 3 to a
more general class of models and in there might not exist a time-reversal equivalent to 7 in those, we will

stick with 7.

Assumption 1.3.1 (Locality). The transition kernels in the family x depend locally on the time-reversal

of n, that is for some fixed Rjo. € N
fin(,-) depends only on {w(y, —n),n_n(y) : |2 — y|| < Rioc}- (1.3.3)

Assumption 1.3.2 (Closeness to a symmetric reference measure on 1_,(z) = 1). There is a deterministic
symmetric probability measure ks on Z¢ with finite range Rief € N, that is kye(z) = 0 if ||z|| > Ryer, and

a suitably small e,.¢ > 0 such that
lkn(z, 2+ ) = Fret (- )|y < €rer  Whenever n_p(x) = 1. (1.3.4)
Here || - || denotes the total variation norm.

Assumption 1.3.3 (Space-time shift invariance and spatial point reflection invariance). The kernels in the

family & are shift-invariant on Z¢ x Z, that is, using notation
*"w(, ) =w(z+ -, m+ ),
we have

K (2, ) (W) = Bpgm(z + 2,y + 2) (7" w). (1.3.5)
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Moreover, if o is the spatial point reflection operator acting on w, i.e., pw(x,n) = w(—x,n) for any n € Z
and z € Z%, then

Fin(0,9)(w) = £in(0, —y)(ew). (1.3.6)
Assumption 1.3.4 (Finite range). There is R, € N such that a.s.
kn(z,y) =0 whenever |y — x| > Rs. (1.3.7)

As the main result we obtain the following quenched CLT.

Theorem 1.3.5 (Quenched CLT). For anyd > 1 one can choose 0 < erot sufficiently small and p sufficiently
close to 1, so that if k satisfies Assumptions 1.5.1-1.3./ then X satisfies a quenched central limit theorem
with non-trivial covariance matriz, i.e. for all bounded, continuous functions f

lim E, {f(Xn/\/ﬁ)} =d(f), for almost all w, (1.3.8)

n— oo

where ® is non-trivial normal law.

At first glance it seems unsatisfying that we obtain Theorem 1.3.5 only for .o sufficiently small and p
close to 1. A natural question arises: What do we gain with this theorem if we have such strict requirements
on the parameters? The true value is shown by applying it through a coarse graining argument to a more

general class of models.

Under certain assumptions on the environment and random walks, which allow us to compare the environ-
ment to oriented percolation on suitably large space-time scales via a coarse-graining construction, we can
transfer our result for the random walks in an environment given by oriented percolation to a more abstract
setting. This will be done in an upcoming article together with M. Birkner and A. Depperschmidt, but to
show where this is roughly going we will present the assumptions. It is not necessary to read this upcoming
part to understand the rest of this thesis, but we hope that the similarities to the percolation model can be
seen.

These assumptions were stated in [ ], where they proved an annealed CLT and transferred this
result to a more general class of models and we will state some of them to illustrate the abstract setting.
In essence we want the environment to behave similar to oriented percolation when we zoom out, i.e. on a

box-level.

Note that the following notation somewhat overlaps with the previous. The objects introduced here are just
to illustrate where we aim to go and will not be used in the rest of this thesis. Starting with some notation

to formulate the assumptions, let

U:={U(x,n): 2 €Z%ncZ}

be an i.i.d. random field with U(0,0) taking values in some Polish space Ey, e.g. in our model here this
would mean Ey = {0,1}. Furthermore for R, € N let Br, C Z% be the ball of radius R, around the origin
with respect to the sup-norm. Let

p: ZER" X EgR" =/

be a measurable function. Now we can state the first assumption.
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Assumption 1.3.6 (Markovian, local dynamics, flow construction). We assume that 1 = (9,)nez is a
Markov chain with values in Z_Zﬁ whose evolution is local in the sense that 7,+1(x) depends only on n,(y)

for y in a finite ball around z. In particular we assume that n can be realised using the driving noise U as
M1 (@) = (O Nl ,0°U(n+ Dlpy ), @€ Zn €L (13.9)

Here 6% denotes the spatial shift by z, i.e. 00, (-) = nn(-+2) and U (-,n+1) = U(-+x,n+1). Furthermore

071, | Bg, and 0°U (,n+1) B, are the respective restrictions to the ball Bg, .

The second assumption is what allows us the comparison between n and supercritical oriented percolation.
By observing 1 on the level of space-time boxes we want good configurations to propagate. Furthermore if
we have two good configurations at the bottom of a box then good noise inside the box produces a coupled
region at the top.

In notation this reads, for (#,7) € Z x Z let

block,, (#,7) == {(y, k) € Z x Z: ||y — L&|| < mLs,nL; <k < (A + 1)L},

i.e. block,,(Z,n) is a space-time box placed on (L:Z,nL;), where we think of L, > L, > R,. Furthermore
for A € Z9 x Z let U| 4 be the restriction of the random field U to A.

Assumption 1.3.7 (“Good” noise configurations and propagation of coupling). There exist a finite set

of “good” local configurations G, C Zf““"(o) and a set of “good” local realisations of the driving noise
Gy C Eg“S(O)X{m"'"Lt} with the following properties:

e For a suitably small ey we have

]P<U|block4(o,o) € GU) >1—ey.

e For any (%,7) € Z¢ x Z and any configurations 7z, , Nar, € Z_Zf at time 7Ly,

NiLe|Bar, (Le#)s MiL, | Bor, (£.7) € Gy and Ulplock,(z,) € Gu
= N1 L (Y) = Magyz, (y)  for all y with [ly — L&|| < 3L,
and  N(as1)L,|Bay, (L.(348)) € Gy for all € with [|&]| <1,
and
MiLe|Bor, (L.7) = Mar,|Bar, (L.3) = Me(y) = 0 (y) for all (y, k) € block(,7),

where nn = (n,) and ' = (n),) are given by (1.3.9) with the same noise U but possibly different initial

conditions.
e There is a fixed reference configuration n*f € Z_de such that n’6f|Bst(Lsi) € G, for all & € Z4.

For the random walk we ask the following assumptions. Let X = (Xj)r be the random walk in the
random environment generated by . Moreover let U == (U(x,k): z € Z%,k € Z,) be an independent i.i.d.

space-time field of random variables uniformly distributed on (0,1) and let
ox: TV X Z7™X % (0,1) = By
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be a measurable function, where Rx € N is the range of the jumps the random walk X as well as the range

of the dependence. Given 7, we define
Xk-‘rl = Xk + Yx (Han—k|BRX ) 9Xk77—k—1|BRX ) ﬁ(Xk?a k))v k= 07 17 LR

with Xy = 0. For the random walk we again assume it to be close to a simple random walk whenever it

starts at a good box, i.e. a box with a good starting configuration and good noise.

1.4 Random walks in random environment

In this section we want to introduce the general concept of RWRE. Since the results and methods used in
Chapter 2 are inspired by Berger et. al | | we want to highlight their model as an example for RWRE
in this section. This serves two purposes, firstly we introduce a more general class of RWRE that has been
well researched and can provide a good entry to RWRE, secondly we can emphasize the differences that
required additional work for adjusting their approach to the model we consider later on in Chapter 2. For
the proofs of the results in this subsection we refer mostly to Berger et. al | ] and a review of the field
by Drewitz and Ramirez | ]

Broadly speaking a random walk in random environment is a random experiment with two steps:
1. Choose an environment according to some probability measure.
2. Let a random walk evolve in the chosen environment.

The transition probabilities of a random walk depend on the environment.

We will only consider random walks on Z?. To illustrate the concept we recall the model introduced by
Berger et. al in | ]. Sticking to their notation, let M4 denote the space of all probability measures on
Eq = {Fe;}4 |, the unit vectors, and define Q) = (Md)Zd. We call an element w €  an environment. Then,
for x € Z% and e € &z, we identify with w(x,e) the probability that w(x) gives e. Often we are interested in

probability measures P on ) with the following two properties:
(IID) We call an environment i.i.d. if the coordinate maps on the product space Q are i.i.d. under P.
(UE) We call an environment uniformly elliptic if there exits a constant § > 0 such that for all x € Z<

P(w(xz,e) >0 for alle € &) = 1.

Note that, if the environment is i.i.d., the property (UE) can be reduced to P(w(0,e) > § for all e € &) = 1.
These two properties are the key differences between this model and our models in Chapter 2 and Chapter 3.
To deal with them in Chapter 2, we construct tools which enable us to be able to develop the ideas in the
proofs from | ]. For this section we assume P has the above properties.

Given an environment w the quenched random walk is a Markov chain on Z%. Let 2 € Z¢, then the transition

probabilities of the so called quenched random walk are
P (Xnp1=y+e|Xn=y) =w(ye), yeZlecéy

and its starting position is z, i.e. PZ(Xy = z) = 1. Whenever we fix an environment and consider a random

walk in this environment, we call it quenched random walk and its distribution quenched law. Alongside the
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quenched law, there is also the so called annealed law. We define the annealed law of the random walk with

starting position x as
P() = [ PIC) PG,

One process that is of particular interest is the environment viewed from the particle. For z € Z¢ let o,

be the shift of w in direction z, i.e. o,w(y, ) = w(z +y,-) for every y € Z.

Definition 1.4.1. Let (X,), be a RWRE. We define the environment viewed from the particle as the
discrete time process

Wp =0Xx, W,

n

for n > 0, with state space Q.

Even under the annealed measure this process is Markovian, which was shown by Sznitman | ] in

the following result.

Proposition 1.4.2. Consider a RWRE in an environment with law P. Then, under P°, the process (@n)n

is Markovian with state space ), initial law P, and transition kernel

Rg(w) = Z w<03 e)g(gew)a

e€&y

defined for g bounded measurable on 2.
Proof. For the proof we refer to Proposition 1 in | Jor [ ] O

Having defined (@, ), we can ask about properties of this process. One interesting object to study is the

invariant measure for this process.

Definition 1.4.3. A probability measure @ on ), endowed with some topology (e.g. for Q = {0, 1}Zd we
will choose the product topology), is said to be invariant with respect to the point of view of the particle, if

for every bounded continuous function g:  — R

/Rmmwwz/mwmwy (14.1)
Q

Q

Furthermore we define the measure QR by the identity

/mmwmmmz/memw» (1.4.2)
Q Q

One possible way to construct a measure that is invariant with respect to the point of view of the particle
is given in the following lemma from | ]. This is also the method used in Chapter 2 to construct such a

measure for the model studied there, as well as what Berger et. al used in | ]

Lemma 1.4.4. Consider a RWRE and the corresponding environmental process (op)n. Then, if Q is any

probability measure on §, there exists at least one limit measure of the Césaro means

1 N
- k
N+1]§)QR'

Furthermore, every limit measure of these Césaro means is an invariant probability measure for the Markov

chain (&n)n -
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Proof. We use the fact that the space of probability measures defined on €2 is compact under the topology
of weak convergence. Therefore we can find a subsequence of the Césaro means that has a limit measure.
Since by definition of QR in (1.4.2)

[ roater = [ga@re)

we only get a shift inside the sum of the Césaro mean. This does not change the limit and we obtain (1.4.1).

For more details see the proof of Lemma 1 in | ]. O

A measure Q that is invariant with respect to the point of view of the particle is particularly useful when
it is equivalent to the original measure of the environment P. If such a measure exists, it can be used to

prove a law of large numbers, see Corollary 1 in | ]

In the case that the measure P of the environments is elliptic and ergodic there is the following useful theorem
by Kozlov | ] that can be employed to show, among other things, equivalence of another measure v on

the environments and P.

Theorem 1.4.5 (Kozlov). Assume P is elliptic and ergodic with respect to the shift {04 }ycza. Assume there
exists an invariant probability measure v for the environment seen from the random walk which is absolutely

continuous with respect to P. Then the following hold:
(i) v is equivalent to P.
(i) The environment as seen from the random walk with initial law v is ergodic.

(iii) v is the unique invariant probability measure for the environment as seen from the particle which is

absolutely continuous with respect to P.
(iv) The Césaro means {ﬁ Eszo PRF} converge weakly to v.
Proof. See the proof of Theorem 3 in [ ] O
Next we want to introduce the concept of ballisticity.
Definition 1.4.6. We call a RWRE ballistic in a given direction | € $? := {z € R¢: ||z|, = 1} if P'-a.s.

X
lim inf M

n— 00 n

> 0.

Ballisticity ensures the existence of regeneration times for the random walk, see Theorem 2.8 in | 1,
which are a powerful tool to analyze the long time behaviour of the random walk and are often used to
prove laws of large numbers and central limit theorems. Constructing suitable regeneration times for two
random walks walking in the same environment will play a central part in Chapter 3. More specifically
we will consider directed random walks in random environment. We interpret the last coordinate as time
and the random walk will evolve in the positive (in Chapter 2) or negative (in Chapter 3) time direction.
Therefore ballisticity holds trivially. Despite this, since the environment is not i.i.d. the construction of

suitable regeneration times requires a bit more work.
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1.4.1 Random walks in dynamic random environment

In the special case where the environment itself changes over time, and thus the transition probabilities for
the random walks also change over time, we speak of random walks in dynamic random environment. This
is a subclass of RWRE but deserves its name because of the special role time plays in it. In this case the
random walk is ballistic by definition, since it evolves directed in the time direction.

The contact process plays a vital part in the models we will consider in Chapter 2 and Chapter 3. In
both chapters the environment in which the random walks evolve will be given by the contact process. As in
(1.1.1) can be seen, the last coordinate, which we interpret as time, plays a special role. The contact process
itself evolves over time and values at spatial sites can change, and therefore the environment changes over

time. Thus, we consider random walks in dynamic random environment in both models.

Random walks in static and dynamic random environments is a very active research area. For a review
of random walks in random environments and basic concepts and objects we refer the reader to | ]; for
a more recent review see | ].

The random walks that we consider here can be seen as a random walks in a dynamic random environment.
Comparing the random walk considered in Chapter 2 to random walks in dynamic random environments in
the literature we want to briefly mention some examples. In | ] the authors consider environments that
are “refreshed in each step”, i.e. time slices are i.i.d., which does not hold for the contact process (&,),. The
contact process (£,,), does not fulfil the uniform coupling conditions used in | ]. The main differences to
the model considered in | ] are that the random environment is not uniformly elliptic and is not i.i.d. In
fact the environment that we consider here even has infinite range dependencies, due to the fact that the steps
of the random walk are restricted to the backbone of the oriented percolation cluster once it hits the cluster.
The environment also does not satisfy mixing conditions such as (conditional) cone-mixing in contrast to the
model considered in [ ]. These differences extend to the setting in Chapter 3 since there we consider a
generalization of the model from Chapter 2. In | | a much weaker mixing assumption than cone-mixing
is introduced (literally for a continuous time model) and our models satisfy their assumption. However, they
only prove a LLN for a nearest neighbour random walk in d = 1. Furthermore, in contrast to the models
considered in [ I [ I, [ ] and | ], our models are special in that the random walks and
the random environment do not evolve in the same time direction, i.e. in our case forwards in time for the
walk means backwards in time for the environment. A comprehensive overview of the recent literature on
random walks in dynamic random environments can also be found in the introduction of | ]. See also
[ , Remark 1.1].

Results on quenched local limit theorems for random walks in random environments are very recent. Our
research in Chapter 2 is inspired by [ ] where a quenched local limit theorem was shown (in dimension
d > 4) for the case of an i.i.d. random environment and where the random walk satisfies a ballisticity criterion
and has uniformly elliptic transition probabilities. (Note that ballisticity is trivial in our models. Uniform
ellipticity and the i.i.d. property are not satisfied.)

Other results on local limit theorems in random environments that we are aware of are concerned with
specific models. In | ] the quenched local CLT is proven for random walks in a time-dependent balanced
random environment. In | ] and [ | quenched local limit theorems are obtained for random walks

in random environments on a strip. A different class of random walks in random media for which quenched
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local CLTs have been obtained are the so called random conductance models. In | ] and | ] the
authors proved local limit theorems for the random conductance model. In | ] and [ | a quenched
functional CLT was obtained for the static random conductance model and in | ] for the dynamic
random conductance model under ergodic degenerate conductances. For a recent work in this direction and

a more detailed overview of the literature see | | and references therein.

1.5 Collection of results for the contact process

This section aims to accumulate results for the contact process needed in the later chapters.

1.5.1 Relevant results for the contact process for Chapter 2

The objective of this subsection is to collect all results about the contact process that are necessary to
understand the proofs in Chapter 2. We want some form of control on the time at which the contact process
n10}0 started from single site, here the origin (0,0) € Z% x 7, evolved to look like the contact process started

from every site. The following lemma from | | gives us exactly that:

Lemma 1.5.1. There ezist positive constants C,c; and co such that

P(n{0 () # 120 (x) |70 = 00) < Cemrm (1.5.1)
for all ||z]| < can.
In | ] this was proved for the continuous time contact process but the methods can be adapted to
the discrete time version.
Proof. The proof is an adaption of the arguments in | ] for the proof of equation (34) therein. O

Lemma 1.5.2. For p > p, there exist C,~ € (0,00) such that

P(n < 7% < 00) < Ce™ ™ (1.5.2)
and
P(r4 < o0) < Ce I (1.5.3)
Proof. Equation (1.5.2) is Lemma A.1 in | ] and a proof can be found there.
For a proof of (1.5.3) in the continuous case we refer to [ ] Theorem 2.30. O

1.5.2 Relevant results for the contact process for Chapter 3

We want to establish some results about the contact process that are needed for Chapter 3. The first ones
being Theorem 1 and Theorem 2 from | ] for a contact process restricted to a “wedge” in d = 1.
There proven for the continuous time contact process the results can be adapted to the discrete time contact
process. We start with some notation.
For 0 < oy < a < 1 and M > 0 we define so called “wedges” with slopes o; and «, as well as base M as
W =W(w, a,, M) by

W= {(z,n) € ZxNg: ayn <z < M+ a,n}.
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Let "Y' = (n?Y)nen be the contact process restricted to the wedge W, i.e. starting with n}¥ = 10,10z and
forn>1land x € Z

1, ifz € agn, M + a,n],w(z.n) =1 and n?Y ,(y) =1 for some y € U(x)

) (x) =
0, otherwhise.

Theorem 1.5.3. Let p > p. and 0 < oy < o < 1, then, for W = W(ay, a,., M) and n}¥ = [0, M]NZ,
lim P(n)Y #0 for alln>0) =1 (1.5.4)
M —o0

Thus by increasing the base the probability for survival goes to 1. We can actually be a bit more precise.
If »"V survives it looks like ¥, the unrestricted contact process started from the upper invariant measure v.
Let

V= max{z: 0V (z) = 1},

W= min{z: nW(z) = 1}, (1.5.5)

be the rightmost and leftmost inhabited sites of "V at time n.

Theorem 1.5.4. Let p > p. and 0 < oy < a, < 1, W = W(ay, o, M) and nf¥ = [0, M] N Z. On the event

YV # 0 for alln >0},
w w

lim * =a, and lim 2 = o a.s. (1.5.6)
n—oo n n—oo n

Furthermore, nYY and n". can be coupled so that on the event {n)Y # 0 for all n > 0},
nY(x) = n¥(x) for all x € [I¥Y,r)V] for all large n a.s. (1.5.7)

Equation (1.5.6) tells us that the rightmost inhabited site is close to the right border of the wedge
(analogously for the leftmost), whereas equation (1.5.7) shows exactly that, after we let enough time pass,
the contact process restricted to the wedge looks like the contact process started from v in the area where
it “lives”.

Next we recall two Lemmas from | ]

Lemma 1.5.5. Let n{00 = (777{10}’0)”20 and let ¥ = (X)) n>0, where v is the upper invariant measure. For

p sufficiently close to 1 there exist constants Scoupt > 0,C < 00, ¢ > 0 such that
P(niH0(z) = ¥ (x) for all ||z]] < scoupin | 7iH0 #0) >1—Ce ", neN. (1.5.8)

Lemma 1.5.5 tells us that the contact process started from the origin can be coupled to the contact
process started from the upper invariant measure with high probability in a “small” box around the origin.

Small is here in quotation marks since the box grows linearly in the time passed but with a small constant

Scoupl-

Lemma 1.5.6. For p < 1 large enough there exists (p) € (0,1] satisfying lim, ~ e(p) = 0 such that for any
set V.= {(zs,t;): 1 <i <k} CZxZ with t; >ty > -+ > t},, we have

P(n(x) = 0 for all (z,t) € V) < e(p)*. (1.5.9)
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1.6 FKG inequality and Coupling

In this section we want to briefly introduce two useful tools that we will use later on. The first one being
the so called FKG inequality, a popular tool in random graphs and percolation theory. This inequality is a
correlation inequality that, informally, says that increasing events are positively correlated. We will provide
the FKG inequality adjusted to our setting. Let (Q, F,P) be a probability space. Let S = {0, 1}errl be
the state space of a random variable w on €2, where we think of x as the spatial coordinate and n the time
coordinate, and, for (z,n) € Z4*1, let w(z,n) be i.i.d. Bernoulli random variables with parameter p € (0, 1).

We introduce the partial order
w<W if w(z,n) <w'(x,n) forall (x,n) € 2.
We call an event A increasing if for w < '
Ta(w) < Taw).
The FKG inequality then states that for increasing events A and B we have

P(AN B) > P(A) - P(B).

Coupling is a very potent tool that we will make use of. Therefore we will give a short description on what
coupling is to help understand the respective parts where it comes into play. Coupling allows to compare two
random variables, more precisely their distributions, by creating a joint construction of them on a common
probability space. To be more precise, let X; and X5 be two random variables, each defined on probability
spaces (1, F1,P1) and (Qq, Fa,Ps) respectively. Then a coupling of X7 and Xs is a new probability space
(923, F3,P3) on which there exist two random variables Y; and Y3 such that X; =4 Y; and X, =9 V5.

At first glance this does not seem helpful, but this construction becomes particularly interesting if Y3
and Ys are not independent. One way we will make use of this is, that we will couple two random walks by
letting them evolve until they meet on a site and force them to stay together from that point on. This does

not change the distribution for each of the random walks but they are now highly dependent.

1.7 Outline

The purpose for this section is to give a good overview of Chapters 2 and 3. We will describe the main goals

for each section and reference the crucial points.

Outline Chapter 2 The proofs of the main results are long and quite technical. Let us describe the main
ideas of the proofs and explain how this chapter is organised: In Section 2.1 we first give several auxiliary

results which we then use for the proofs of Theorem 1.2.3 and of Theorem 1.2.4.

Annealed estimates: In Section 2.2 we prove several annealed derivative estimates which build on, and extend
somewhat, previous work by | ]. These estimates will be used for the proof of the annealed local CLT,
Theorem 1.2.1, also presented in Section 2.2. Starting with Section 2.3 the chapter is devoted to the proofs

of the auxiliary results from Section 2.1.
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Comparison of the quenched and annealed laws: Lemma 2.1.1, proven in Section 2.3, provides a comparison
between the quenched and annealed laws on the level of large (but finite) boxes. In particular it shows
that the total variation distance between P(Xy € -) and P,(Xxy € ) on the level of boxes of side length
M >> 1 is small with very high probability as N — oo in a suitably quantified way; see equation (2.1.1). The
starting point of the proof of Lemma 2.1.1 is | , Theorem 3.24], recalled in Theorem 2.7.1 below, which
gives an analogous result for boxes whose size grows like N?/2 with 0 < # < 1 as N — oo, and therefore
much slower than the diffusive scale N'/2. We augment this with an iteration scheme that is guided by the
proof of Theorem 5.1 in | ]. The main argument towards the proof of Lemma 2.1.1 is formulated as
Proposition 2.3.1. The proof of that proposition is long and relies to a large extent on ideas from | ]
and is postponed to Section 2.7. It requires a suitable control of the density of “good” boxes on which an
estimate as in equation (2.1.1) from Lemma 2.1.1 holds locally uniformly, see Definition 2.7.2. This deviates
from the set-up in | ] because our environment is not i.i.d. and in fact here the boxes are in principle

correlated over arbitrary lengths, albeit weakly.

Measure for the point of view of the particle: The function ¢ = dQ/dP from (1.2.10) is the density of a
measure ) which is invariant with respect to the point of view of the particle and absolutely continuous with
respect to IP. For the existence of such a measure () we consider the quenched laws () of the environment
seen from the particle after N steps of the walk; see (2.1.4). The measure @ is constructed as a weak limit
of the Cesaro average of the measures @)y along a subsequence; see (2.1.6) and (2.1.8). In Proposition 2.1.2
and Corollary 2.1.4 we show that averages of dQy/dP and dQ/dP over large boxes are close to one with
high probability depending on the size of the boxes. It will turn out that the measure ) which we obtain as
described above is unique, i.e. it does not depend on the particular subsequence; see Remark 2.1.6.

Proposition 2.1.2 and Corollary 2.1.4 are proven in Section 2.4. To this end we construct a coupling of
Qn and Py, the law of the environment viewed relative to the annealed walk (note that Py =P for all N).
Lemma 2.1.1 allows for a coupling which puts both walks in the same M-box with very high probability.
We strengthen this to a coupling which puts both walks at exactly the same spatial position with uniformly
non-vanishing probability; see the proof of Lemma 2.4.3.

Since we average over the environment in the definition of the annealed law of the random walk in
equation (1.2.4) it is clear that the annealed random walk does not see any specific environment. In contrast
to that the quenched random walk knows the exact environment it walks in. So, to compare the annealed and
quenched laws of the random walk, the annealed walk needs to see the environment of the quenched random
walk. This is done through reweighting by (. In particular, a consequence of multiplying the annealed law
with ¢ is that this product will be zero for all space-time point (z,n) € Z% x Z in which the contact process
¢ is 0 in the environment w.

In Proposition 2.1.8 we show that the annealed law of the random walk at time n reweighted with the
function ¢ converges for almost all w to a probability law on Z?. It is proven in Section 2.5.

In Lemma 2.9.1 we will see that a prefactor ¢ satisfying (1.2.10) is unique. A quite general proof of that

result is given in Section 2.9.

Hybrid measures: For the proof of Theorem 1.2.4, instead of comparing the quenched and annealed laws
directly, we use the triangle inequality, some “hybrid” measures and space-time convolutions of quenched-
annealed measures; see Definition 2.1.7. In Proposition 2.1.9, proven in Section 2.6, we show that the total

variation distance of some of these measures converges to 0 as n, the number of steps of the random walk,
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goes to infinity. An essential tool of the proof of Proposition 2.1.9 is Lemma 2.6.1 in which we study the total
variation distance of quenched laws of two random walks starting at different positions. The idea is to use
couplings with the annealed measures on the level of large (growing) boxes combined with annealed derivative
estimates in order to first ensure that the two walks are in the same box with probability bounded away
from 0. Using connectivity properties of the oriented percolation clusters (see below) the above described
procedure can be iterated to produce a literal coupling where the two walks coincide with high probability

after sufficiently many steps. Lemma 2.6.1 is proven in Section 2.8.

Oriented percolation results: In Section 2.10, we show that two infinite percolation clusters intersect with
high probability within a finite time. This result was pointed out in [ ], who proved that two infinite
clusters do intersect almost surely, but without the quantification of the time of intersection. Finally, in
Section 2.11, we show that the probability that a random walk started off the cluster does not hit the cluster

within time ¢ decays exponentially with ¢.

Outline of Chapter 3 To give a good overview of Chapter 3 we describe here the steps to proof Theo-

rem 1.3.5.

Regeneration construction: In Section 3.1 we provide a framework and the necessary auxiliary tools to

prove the quenched CLT. We follow the ideas used in | ] and expand the regeneration construction
introduced in | ] to two random walks. An essential tool in the construction of regeneration times of
a random walk in [ ] was a cone based at the current position of the random walk. This cone consists

of an inner and outer cone and the region between the inner and the outer cone is referred to as the cone
shell. This is needed in the construction because the cone shell separates the information collected by the
random walk on the random environment inside the inner cone and outside the outer cone.

The construction is expanded to a double cone (see Figure 3.1) and the cone shell is extended to a double
cone shell: we consider two cones based at the current respective positions of the two random walks, see
(3.1.4). This object is used for the definition of joint regeneration times of two random walks and to combine
ideas from | ] and | ]. Similarly to the case of the single walk, the double cone shell separates
the information collected by the two random walks together on the random environment inside the inner
cones and outside the outer cones of the double cone.

sim

Next we define a sequence of stopping times (o2

)n at which the reasons for 0’s of the contact process 1
in the vicinity of the two random walks are explored and thus no “negative correlation” carries over to the
future of the random walks. We prove that the increments of this sequence have exponential tails.

m

Intuitively the cone shell together with the sequence o™ isolate the part of the environment that the
random walks have explored from everything outside the shell and this is a central building block for the
construction of regeneration times.

Finally we define regeneration times and in Lemma 3.1.15 we show that their increments have polynomial
tails with exponent —3 < 0. Furthermore, g is large when p is close to 1 and e, is small. The details can

be found at the end of the proof of Lemma 3.1.15.

Auziliary results: In Section 3.2 we prove some auxiliary results that are useful for all dimensions and give

the main proposition, Proposition 3.2.2, that we use to prove Theorem 1.3.5.

The QCLT 1.3.5 in dimensions d > 2: In Section 3.3 we prove the quenched CLT, Theorem 1.3.5, for d > 2.

The reason we need to split the proof for dimension d = 1 essentially boils down to the fact that the random
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walks meet too often for d = 1 and thus we require more detailed calculations. The arguments are however
robust enough to treat the cases d = 2 and d > 3 together.

We prove a comparison result between two random walks in the same environment and in two independent
environments in Lemma 3.2.1. This lemma enables us to couple two random walks in the same environment
with two independent random walks as long as their starting positions have a large enough distance. The
main tool for the proof of the quenched CLT, Theorem 1.3.5, is Proposition 3.2.2, which proves a quenched
CLT along regeneration times and most of Section 3.3 is used to prove this proposition. Equation (3.2.6)
hints to the reason why we need to be able to control the behaviour of two random walks in the same
environment: expand the square in the expectation in order to see that once we can replace two walks in the
same environment by two walks in independent environments up to a small error term, we obtain bounds
on the variance of the quenched transition operator.

To ensure that we can effectively use the coupling argument provided by Lemma 3.2.1 the random walks
need to spend most of the time at enough distance to each other. Lemma 3.3.1 tells us, that the random
walks will separate “fast enough” to a suitable distance at which we can start the coupling argument. These
arguments are made more specific in Lemma 3.3.2 and its proof.

Lastly we need to make sure that the random walk behaves well between regeneration times and that

the convergence to a normal distribution carries over.

The special case for d = 1: Section 3.4 aims to fill in the gaps to prove Proposition 3.2.2 for d = 1. Note that
the proof of Theorem 1.3.5 then does not require any additional work for d = 1. The main difficulty arises
from the fact that two random walks will meet often in d = 1. Thus, we need to calculate the duration of
suitable “excursions of separation” during which the random walks have a certain minimal distance to each
other so that we can use the coupling argument via Lemma 3.2.1. We split the time axis into 2 alternating
“phases”, a “black box phase”, where the random walks are close to each other and we cannot use the
coupling argument and a “white box phase” where we know that the random walks have at least a certain
distance, see definitions (3.4.10) and (3.4.11). We show that the pair of random walks will spend most the
time in the “white box phase”, more precisely during n steps the number R,,, see (2.7.8), of steps spent in a
“black box” is of order o(n) and a certain moment condition holds, see Lemma 3.4.1. To prove convergence
to a normal law along the joint regeneration times we consider Doob decompositions of X and X’. Using
a quantitative version of a martingale CLT from | ] and Lemma 3.4.1 we obtain upper bounds on the
decompositions which are good enough to carry over the convergence to a normal distribution to X and X'

along joint regeneration times.

Contributions

Since both Chapter 2 and Chapter 3 are based on a joint work with other Authors, I want to point out my
own contributions. For Chapter 2 I adapted the results from | ] to our model working around the fact
that we do not have uniform ellipticity and i.i.d. environments. For Chapter 3 I expanded the construction
for the regeneration times to two random walks which allowed me to adapt the results from | ] to
the model from [ ] and to then go on and prove the QCLT.
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Chapter 2

Quenched local limit theorem for a
directed random walk on the

backbone of oriented percolation

This chapter is mainly concerned with proving equation (1.2.10), that is

, 00 (x — ) _ pOO)x _ _
Jim, 32 [P =) ~FO0 (X = 0] =0
S

from Theorem 1.2.4, a quenched local limit theorem for a directed random walk on directed percolation.
We show the existence of a measure ) on ) that is invariant with respect to the point of view of the
particle. Furthermore it is absolutely continuous with respect to P and the Radon-Nikodym derivative
dQ/dP satisfies a certain concentration property (2.1.9). Moreover we show that ¢ = dQ/dP is the unique
prefactor satisfying (1.2.10).
We start by refining a comparison between quenched and annealed law on slowly growing boxes, see

Theorem 3.24 in | ], to boxes of constant size.

2.1 Proofs of the main results

In this section we collect several important auxiliary results and present towards the end of this section how
to utilise them to prove Theorem 1.2.3 and Theorem 1.2.4. The proofs of the auxiliary results are postponed
to the subsequent sections.

Our starting point is a lemma which can be seen as an adaptation of Theorem 5.1 in | ] to our
setting. Recall between (1.2.3) and (1.2.4) the definitions of the quenched measure P

measure P(&™) for the random walk (Xn)n=m,m+1,... with X,,, = z. For any positive real number L we

™) and the annealed

denote by II;, a partition of Z¢ into boxes of side length |L].
Lemma 2.1.1. Letd > 3. For Ny M € N, ¢,C > 0 denote by K(N) := K(N, M, c,C) the set of environments
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w € Q such that for every x € Z2 satisfying ||z|| < N

> |PFO(Xy € A) = PEO(Xy € A)| < ]\3 + NQ (2.1.1)
A€l

If ¢ > 0 is small enough and C' < oo large enough, there are universal positive constants c, 5, for which we

have
P(K(N)) >1—CN=¢°sN  for all N. (2.1.2)

In words, Lemma 2.1.1 shows that the total variation distance between the annealed measure P(*0) (X y €
-) and the quenched measure Pu(,x’o)(X ~ € -) on the level of boxes of side length M >> 1 is small with very
high probability as N — oco. The proof of Lemma 2.1.1 is given in Section 2.3. It builds on a preliminary
result by Steiber | , Theorem 3.24] which we recall in Theorem 2.7.1 below. The latter gives an analogous
result to Lemma 2.1.1 for boxes of side length N2 with 0 < § < 1 for large N. In particular, for N — oo
the side length of these boxes grows much more slowly than the diffusive scale N/2.

Lemma 2.1.1 allows to construct a coupling of the quenched walk under Pu(fv’o) and the annealed walk
under P9 which puts both walks in the same M-box with very high probability. We strengthen this
coupling to a coupling which puts both walks at exactly the same spatial position with uniformly non-
vanishing probability; see Lemma 2.4.3 below. This, in turn, is essential for the next statement which
concerns the difference between the annealed and quenched law of the environment viewed relative to the
walk after IV steps, which we denote by Py and @y respectively. More precisely, for N € N, we define Qn
and Py by

Py(A) = E[ 3 POO(xy = x)]l{a(z,N)weA}} (2.1.3)
A
and
Qu(A) = E| > PLO(Xy =)L, ywen (2.1.4)
Py/A

Note that, in fact we have Py = P for all N; see (2.4.9).
The following proposition is proven in Section 2.4.

Proposition 2.1.2. For M € N let Ag(M) denote a d-dimensional cube of side length M in Z% centred at
the origin. There exists a universal constant ¢ > 0 so that for every e > 0 there is My = My(e) € N so that
for M > My and all N € N
1 dQN elog M
P(‘i N w—1’>5)§MC°g : 2.1.5
0D, 2, b 7o) (2:4:9)
wEAQ(M)

Corollary 2.1.3. Letd > 3 and p > p.. Then, for every k € N, supy IE[(ddQ—P{")k] < 00.

Proof. For M € N large enough, Proposition 2.1.2 implies

dQn d 1 dQn —clog M
Pl —— 22M + 1)) <P ——— — 2) < M™e°8
(G- > 22M + 1)) < ((2M+1)d > TR oeme) >2) < ’
ze{—M,...,M}d
which implies the assertion. O
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We equip €2 with the product topology and consider the Cesaro sequence
- 1t
Qn nNz::OQN, n=12,.... (2.1.6)
Using Corollary 2.1.3 and the Cauchy-Schwarz inequality for some finite positive constant ¢ we have

n—1 n—1
e ) = 2 el

N=0 N,N'=0

IN

é. (2.1.7)

For € > 0 let K C 2 be a compact subset such that P(K€) < e. Then by the Cauchy-Schwarz inequality we

obtain

Qn(K°) :/ 15 9 gp < VEP(K©)Y? = Vee.
0 O dP

Thus, the sequence (@n)n is tight. In particular, there is a weakly converging subsequence, say (@nk)k, and

we set
Q = lim Q,. (2.1.8)
k—o0

A standard argument shows that () is invariant with respect to the point of view of the particle; see Propo-
sition 1.8 in | | for an abstract argument or the proof of Lemma 1 in | ] for the argument in the

case of random walks in random environments.

The proof of the following analogue of Proposition 2.1.2 for @ instead of @Q,, is given in Section 2.4.

Corollary 2.1.4. Recall the notation of Proposition 2.1.2 and let Q@ be the measure obtained as a limit in
(2.1.8). There exists a universal constant ¢ > 0 so that for every € > 0 there is My = My(e) € N and for
every M > My we have
1 dQ
]P’(‘i 8 e w) — 1‘ > ) < MclogM. 2.1.9
|Z&0(A4)| j{: dHD(U(,OYU) €)= ( )
QCEA()(M)

Proof of Theorem 1.2.3. By construction and shift invariance of P we have @ y < P for every N and therefore
Q,, < P for every n. Furthermore, by (2.1.7) the family of Radon-Nikodym derivatives (d@n JdP)p=12,...
is uniformly integrable. These facts together imply that we also have Q <« P for any @ obtained as in

(2.1.8). The concentration property is the assertion of Corollary 2.1.4. For the question of uniqueness of @
see Remark 2.1.6 below. O

Remark 2.1.5. Using shift-invariance of PP, it is easy to see that for Qn from (2.1.4) a version of dQ y/dP is

given by
pn(w) =Y PINP(Xo =0) (2.1.10)
z€Z
(we have P§?;9)‘7N)M(XN =zx) = (=) (Xo = 0), recall the notation introduced below (1.2.3)). This
formula is the analogue of | , Proposition 1.2] in our context. In particular, ¢ is a local function of the

space-time values of £ which themselves can be obtained as limits of local functions of w. Thus, dQ/dP can

be considered as an almost sure limit of local functions of w.
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Remark 2.1.6 (Uniqueness of invariant @@ < P with concentration properties of the density).

A measure @ obtained as in (2.1.8) may in principle depend on a particular subsequence. In the proof of
Theorem 1.2.4 we will show that the density ¢ = dQ/dP of any measure @ satisfying the concentration
property (2.1.9) also satisfies (1.2.10). By Lemma 2.9.1 below, such a measure is unique. In particular, in
(2.1.8) we have weak convergence towards the unique @ along any subsequence and therefore we have weak
convergence of the Cesaro sequence (@n)neN from (2.1.6) towards Q). However, we currently do not know
whether the sequence (Qn)nen from (2.1.4) converges itself.

Using Lemma 2.11.1 and (2.1.10) from Remark 2.1.5 one can show that @ is concentrated on

Q= {w € Q: w contains a doubly infinite directed open path through (0,0)} (2.1.11)

and thus @ is not equivalent to P because 0 < P(2) < 1. Note that Kozlov’s classical argument concerning
equivalence, see e.g. | , Thm. 2.12], does not apply because our walks are not elliptic. We do not know
whether @ is equivalent to P( - |€2).

To prove Theorem 1.2.4 we want to make use of the good control of the difference between the quenched
and annealed law on the level of boxes and various properties of the prefactor ¢ that we have formulated above
in Lemma 2.1.1 and Corollary 2.1.4. Furthermore, instead of comparing P(%% (X € -) and PQ(,O’O)(XN €)
directly, we compare both of these two measures with auxiliary “hybrid” measures which are introduced in

the following definition.

Definition 2.1.7. Let @ be the measure on {2 defined in (2.1.8), which by Theorem 1.2.3 and its proof is
invariant with respect to the point of view of the particle with @ < P. Let ¢ = dQ/dP be the corresponding
Radon-Nikodym derivative. For w € © and a given partition II of Z¢ into boxes of a fixed side length we

define the following measures on Z4+1:

1
Vznnxprc($7n) — Vznnxpro({(x,n)}) — 7[@(070) (Xn = x)(p(g(m’n)w)’ (2.1_12)
i (z,n) = v2({(z,n)}) = PLO(X, = 2), (2.1.13)
@(a(a:,n)w)

VBoquuexpre(a%n) — Vboquuexpre({(x’n)}) — PUSO,O) (Xn e Aa:)

(2.1.14)

ZyEAm (P(U(y,n)w> .

Here, Zyn = > cpa POO(X, = 2)@(0(3,nw) is the normalizing constant in (2.1.12) and A, in (2.1.14) is

the unique d-dimensional box that contains x in the partition II.

All of the measures introduced in the above definition are different measures of the random walk after
n steps: v2"XPre(. n) is the annealed measure with a prefactor, v3"¢(-,n) is the quenched measure and
ybox—auexpre(. n) s a “hybrid” measure, where the box is chosen according to the quenched measure but
then the point inside the box is chosen according to the (annealed) normalised prefactor. Of course the
measure yPoX—auexpre(. n) does depend on the particular partition II but it will be clear from the context
which partition is used.

First we study the behaviour of the normalizing constant in (2.1.12); see Section 2.5 for a proof of the

following result.

Proposition 2.1.8. For P-almost all w € Q the normalizing constant Z,, ,, satisfies

lim Z,, = 1. (2.1.15)

n— 00
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The following proposition is the key result for the proof of Theorem 1.2.4. It states that for large n the
above introduced measures are close to each other in a suitable norm. To state this precisely, for w € Q and
any two probability measures v/} and 2 on Z? x Z (more precisely these are transition kernels from ) to
7% x 7) let the L' distance of v}, and 12 at time n € Z be defined by

w

Hyul) — VE)Hl,n = Z |1/‘})(x7n) - Vf,(x,n)| (2.1.16)

z€Z4
Furthermore, for k < n the space-time convolution of v} and 2 is defined by
(v n(z,n) = Z vl(y,n— k)l/g(yynik)w(x -y, k). (2.1.17)
yeL?

We can interpret (2.1.17) as follows: A random walk takes n — k steps in the random medium w according
to v}, then re-centers the medium at its current position in space-time and takes the remaining k steps

: 2
according to v/7.

Proposition 2.1.9. Fiz 0 < 25 <& < 1, and forn € N set k = [n°] and { = [n°]. Let Il = II(¢) be a

partition of Z% into boxes of side length £. For P-almost every w € 0 the measures from Definition 2.1.7

satisfy
nh_{%o HyznnXpre _ (Vannxpre " une)w’kHLn — 07 (Ll)
nli)n,olo H(Vannxpre % une)w,k _ (Vboquuexpre % une)w’kHLn — 0, (L2)
lim ||(Vbox7que><pre * une)w,k _ (une * une)w,kHl . = 0. (L3)
n— 00 s

The proof of the above proposition is given in Section 2.6. With the results stated in the present section

we can give a proof of the quenched local limit theorem.

Proof of Theorem 1.2.}. Using the triangle inequality we have

Do 1PPO(Xy = 2) = POV (X, = 2)p(0(0,nw)]

r€Z4
< 37 PRO(X, = x) — (PoxTauexmre ave) (2, n)] (2.1.18)
rcZd
+ Z |(Vboquue><pre % une)w,k(l'an) _ (Varmxpre % une)w,k(l'an” (2119)
r€Zd
DT s ) () — pERP (,)| (2.1.20)
rcZd
+ ) (g n) — POO(X, = 2)p(0pnw)]. (2.1.21)
rcZd

By Proposition 2.1.9 the terms in (2.1.18), (2.1.19) and (2.1.20) tend to 0 as n goes to infinity. In order to
compare (2.1.18) with (L3) literally note that we have PO (X, = @) = vIexpau®), 1 (z,n) by construction.
Finally, by definition of v2"™*P™(z, n) the term in (2.1.21) can be written as

1

1
7 Y X B0 = )eloe ) = | 5 — 1| Zun. (2.1.22)
) EZd )
By Proposition 2.1.8 it follows that the expression in (2.1.22) converges to 0 as n tends to infinity. O
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2.2 Annealed estimates and the proof of Theorem 1.2.1

In this section we collect estimates for the annealed walk that will be needed later in the proofs, and present

a proof of Theorem 1.2.1.

Lemma 2.2.1 (Annealed derivative estimates). Ford >3, j=1,....d, 2,y € Z*, m,n € Z, m € Z, n € N

denoting by e; the j-th (canonical) unit vector we have

IPE™ (X = 3) — POFTE™(X, 0 = 3)| < O (@FD/2, (2.2.1)
|]P)(y’m) (Xnym =) — P m+1)(X +m =) < Cni(d+1)/2a (2.2.2)
“P)(y}m) (Xner = CU) - ]P(% )(Xn+m = ])| < Cni(d+l)/2v (223)
POM (X, = 7) — PO (X, 1y, = 7)) < Cr=(@HD/2, (2.2.4)
Proof. The estimates (2.2.1) and (2.2.2) are from | ]; see Lemma 3.9 and its proof in Appendix A.2
there. By translation invariance we have
PO+rer ™ (X, =2) = PU™ (X, = 7 — €;)
and
POmHD (X, = 2) = PO™ (X, 14, = ).
Thus, the estimates (2.2.3) and (2.2.4) follow from (2.2.1) and (2.2.2). O

We will also need the following generalization of the annealed derivate estimates in the previous lemma.

Lemma 2.2.2. Let € > 0. For n € N large enough and every partition Hgf) of Z% into boxes of side length

[n€], we have

Z maX[IP’(O (X, =y) -POO (X, = z)] < Cn~3+3de, (2.2.5)
ATt T€A vea

Proof. We consider the following set of boxes around the origin of Z?
&) = {A eI : AN [—/nlog®n,v/nlog®n] # 0} (2.2.6)

With this notation we can write the sum on the left hand side of (2.2.5) as

>y max [POO(X, =y) - PO (X, =a)] (2.2.7)
Acfil® zen !
+ oy > max (X, =y) - POO(X, = )] (2.2.8)
AN zen Y
So, it is enough to prove suitable upper bounds for these two sums. By Lemma 3.6 from | ] we have
> POO(X, eA) < CnolEn (2.2.9)
AeTI{O\TE)
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for some positive constants C' and ¢. Thus, the double sum (2.2.8) is bounded from above by

S SO )R, —a)
AT €A
= Z (|A| _ 1)[@(0,0) (Xn c A) < C'ndep—clogn < 5«n—510gn
INSIRAV TS

for suitably chosen constants ¢ and C. Using annealed derivative estimates from Lemma 2.2.1 the double
sum (2.2.7) is bounded above by

Z Z Cnn=% < C(nf + vnlog® n)inn= % < Cn®%n1/2.

Aeﬁf) TEA

Combination of the last two displays completes the proof. O

Proof of Theorem 1.2.1. Let €, > 0 be small (they will later be tuned appropriately). Let Hgf) be a partition
of Z% in boxes of side length [ey/n]. Let Cs > 0 be a constant such that P9 (|| X, || > Cs/n) < §; such
a constant exists by Lemma 3.6 from [ ]. Furthermore denote by II 15 the subset of boxes in I
intersecting {x € Z¢ : ||z|| < Cs/n}. Then

1 1
POO)(X, = z) — _ 2 Tyl ’
Z ‘ ( @) (27n)4/2v/det X exp( 2" x>

€72

- Y ¥ ‘]P’(O’O) (X, =) — W exp(—%g:Tzflx)’ (2.2.10)

A\ z€A

1 1
+ ’IP’(O’O) X,=2)— —————exp(——2aT2 "z ‘ 2.2.11
Z Z ( ) (27n)4/2v/det 2 p( 2n ) ( )

Aenﬁﬁ‘” T€EA

We will show that € can be chosen so small that the above sum is bounded by 46 for large enough n. We
first find an upper bound for (2.2.10). By definition of & if A e M) \Hﬁf"” then we have ||z|| > Csv/n
for all x € A. Thus, (2.2.10) is bounded from above by

1 1 .
lzll>Csv/n

By choosing Cjy large enough we can ensure that (2.2.10) is bounded by 24.
Turning to (2.2.11) we first compare the two terms in |- | with the averages over appropriate boxes. First,
let © € Z¢ be fixed and let A € Hgf) be the box containing x. Using annealed derivative estimates from

Lemma 3.9 in [ ] we obtain

1
fev/n ]

1
_ P(0,0) X, = _ p0,0) X, =
Eﬁ | > PO = a) POV (X =)

|IP>(070) (Xn = q;) — IP(()’O) (Xn € A)|

S
< e 2 eyl < ey < 2
yeEA
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Now consider A € Hgf %) For every x € A we have

BRI U N S 1y ’
‘exp( m” > x) fe\/ﬁ]d/AeXp< on? > y) dy
1 _ 1 1 _ _
= oxp(— 5" 1f)\1‘W/AeXP(—%<yTE =TS )) dy)

1
< exp(—Q—xTZ_lx>
n

1
BYGE
<[ —exp(—i«y—xfz—l(y—x) £ 278 (y — ) | dy

< exp(—ixTE_l eXp (052n + 005571)) ‘ dy

2n [sf}d / ‘1
< exp(—%xTE’ x) -Ce < Ck,

where we have used ||z — y|| < ey/n and ||z < Csy/n. Using first the triangle inequality and then combining

the last two estimates we see that each summand in (2.2.11) is bounded from above by

1
PONX, =2) - —==POO(X, e A
PO (X, = 2 T (X, € )
LTy 1 / L ore
(27rn)d/2\/det ‘ ( > ) Tey/n1d exp( on? > y) dy‘
(0,0) Lo
" (Ex/ﬁwd‘lp (&n € &)~ (27m)d/2\/det / y > y) dy‘ (2.2.12)
Ce Ce
< +
T nd2 " (27n)d/2\/det T
(0,0) I
(5\/>1d‘P (En € d) - (27m)d/2\/det / y > y)dy‘

The number of vertices summed over all A € I is bounded by ((Cs + £)/n)? < C(Csy/n)?. Thus,

c
> Z(nd/2 27Tn)d/2€\/M) <C-Cfe. (2.2.13)

AeTr(s®) T€A

Summing the last line in (2.2.12) with the double sum >, .5 D cn glves

POO (X, € A / Tyt )d ‘ 2.2.14

ZM] ( ) - (m)d/zm YTy dy (2.2.14)
A€lly,”

By applying the annealed CLT from | | (and approximating the indicator 1A appropriately by

9) s finite implies that

continuous and bounded functions) and noting that for fixed € and § the set e
(2.2.14) goes to zero as n tends to infinity. In particular it is smaller than § for large enough n.

Combining the estimates above we obtain

1 1
POO(X, =2) - ———————ex (——xTZ_lx)‘ <204+C-Cle+5<45
z%Z:d ‘ ( ) (27n)4/2v/det 2 P\ on - ’
for large enough n and choosing £ > 0 so that C' - C¢e < §. This concludes the proof. O
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2.3 Proof of Lemma 2.1.1

For the proof of of Lemma 2.1.1 we follow closely the proof of Theorem 5.1 in | ] and adapt their
arguments to our model. The general idea is to implement an iteration scheme that carries the annealed-
quenched comparison from Theorem 2.7.1 below along a sequence of more and more slowly growing box
scales.

Let us introduce some notation first. Let # > 0 be a (small) constant to be determined in the proof. For
Jj €N, we set n; = LNz%j and r(N) = [log,(26Y) )] Note that r(NN) is the smallest integer satisfying

0log M
nf( N) < M. Furthermore we set
r(N) k
Nog: =N — an and Ny ::an—FNO = Np_1+ng, forall 1 <k <r(N). (2.3.1)
j=1 =1

Finally, for 0 < k < r(NV), abusing the notation and suppressing the dependence on 6 and n we write for the

rest of this section Il := II,,s and define

Ae(w) = > [PPO(Xy, € A) PO (Xy, €A (2.3.2)
A€l

Note in particular that A,y is twice the total variation distance between the quenched and the annealed
measures on boxes of side length < M, which is the term we wish to bound from above to show (2.1.1).
If one wishes to be slightly more precise, then one should replace N,y by M, thus obtaining the total

variation for boxes of side length M exactly. This, however, does not influence the estimates to follow.

The proof of the following proposition is long and technical and will be given in Section 2.7.

Proposition 2.3.1. There exists constants C,c,ac > 0 and events G(N),N € N, with P(G(N)) > 1 —
CN—cloeN sych that for all w € G(N) we have

e S X1 +Cn*, V1I<k<r(N). (2.3.3)
In particular, A(ny < A1+ C’ZZ(:AP n, " for w e G(N).

Proof of Lemma 2.1.1. The assertion is a consequence of Proposition 2.3.1 and can be proven analogously

to the argument in the last part of the proof of Theorem 5.1 in | ], page 35. O

2.4 Concentration from coupling: Proofs of Proposition 2.1.2 and
Corollary 2.1.4

In this section we prove some analogues of the results of Section 6 in | ] and present proofs of Propo-
sition 2.1.2 and Corollary 2.1.4.

Lemma 2.4.1. There exists a constant ¢ > 0 and set of environments K(N,c) satisfying

P(K(N,c)) >1— N—clos¥ (2.4.1)
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such that for every w there exists a coupling O, n of PO (Xy =) and pY (Xn =) with the property
Ou.N(A) > ¢ for every w € K(N,¢), (2.4.2)
where A = {(z,z) : v € Z}.
Proof. For e > 0 and M € N denote by K(N) = K(N, M,e) the set of environments w € ) satisfying
> PP (Xy € A) PO (Xy € A)| <, (2.4.3)
A€Tly

where II,/ is a partition of Z¢ into d-dimensional boxes of side length M. By Lemma 2.1.1, for every € € (0, 1)
there exists a M € N such that P(K(N)) > 1 — N—¢¢N_On the event K (N), the inequality (2.4.3) tells us
that twice the total variation distance between P(%0) (X € -) and P“(,O’O)(XN € -) on IIj; is less than € and
therefore there exists a coupling (:)w’N,M of both measures on II;; x II;; such that éw,N,M(AnM) >1—¢,
where A, = {(A,A): A elly}.
Using the coupling © we construct a new coupling of PO9(Xy = -) and PL>”(Xy = -) on Z? x Z4
which puts positive probability on the diagonal A = {(z,z) : x € Z¢}. We define O, x on Z? x Z¢ by
Oun(m,y) = Y. Oun-wu(AA)
AA €Ty
. P(O’O) (XN = LL‘lXN,]V[ € A) . PUSO’O) (XN = y|XN7M S A/) (244)
Since (:)w,N,M_,M is a coupling of P(%-9) and PU(JO’O)

total probability O, x is indeed a coupling of P(O:0)(Xy =) and PUSO’O)(XN =)
For z € Z¢, let A, be the unique cube which contains z in the partition IIj;. Since the side length of

on IIy; x IIp; one can easily see that by the formula of

each box in the partition II; is M it follows that the annealed random walk can reach x from each point in
the box A, in less than M steps.

Next we want to show that the coupling gives us a positive chance for the two walks to end up at the
same position. In [ ] this is done by showing that ©,, y(z,z) is bounded away from zero for all x € Z<.
This is not true in our model because we do not have uniform ellipticity for the quenched measure. The idea
here is to show that for “typical” w the measure O, y(z, ) is bounded away from zero for “many” = € Z<.

To this end for given w we define the set II7, C Il as the set of boxes A € I, satisfying
PO Xy =2 Xy_a € A) > 0. (2.4.5)
Note that if IT%, = () for « and w then we have O, n(z,z) = 0. Furthermore, by definition of PLO’O)(XN =
z|Xn—1 =1y) we have
1\ M
POO(Xy = 2| Xy € A) > (3d> (2.4.6)
for all A € TI*. Now using (2.4.4), (2.4.6) and uniform ellipticity of the annealed measure we obtain

Oun(z,2) = > Oun-am(AA)

Aelz,

PO Xy =Xy pr € A)- POOYXy =2|Xy_p € A)

_ 1 M
Z Z ew,N—M,M(AaA)T]M ( ) )

3d
N
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where 1 € (0,1) is the “uniform ellipticity bound” of the annealed random walk. Now it suffices to show

Z Z éw,NfM,M(AaA)Z Z éw,Nflw,M(A7A)- (2.4.7)

r€Zd A€l A€eIly

This follows immediately if we can show that for all A € IIj; \ U,ezaII% we have

OuN—m.m(A,A)=0.

For that consider a box A € Ijs \ UyezaIl?, ice. there is no z € Z¢ with A € II% for the fixed w. Thus, we
have P? (Xy = 2|Xny_am € A) =0 for all z € Z4. Tt follows that pi0 (Xn—m € A) =0, because there
can be no infinitely long open path starting from A. We obtain

~ 1 M
Ou,n(A) = Z Oy n(z,x) > Z Z Gw,N—M,]\/[(A,A)’l]M (3(1>

z€Z? zeZd Aell?

> 3 oA, A (Bld)M > (1—e)m <1d>M

3
A€l

(2.4.8)

for every w € K(N). O

Recall the definitions of Py and Qn from (2.1.3) respectively (2.1.4). Note that for every N € N the

measure Py is in fact the measure P since for every measurable event A € € we have by translation invariance

Py(A) = E[ 3 POO(Xy = x)n{(,(myN)weA}} = 3 PO Xy = 2)E[L (. wen)]

€L €74

=Y POYNXy =2)P(0(_s-mA) = Y PO (Xy = 2)P(A) = P(A).

z€Z z€Zd

(2.4.9)

Definition 2.4.2. Given two environments w,w’ € Q we define their distance by
dist(w,w") = inf{||(z,n)|| : W' = oz mw},
where the infimum over an empty set is defined to be infinity.

We denote by ¥y the coupling of Py and @y from Lemma 2.4.1 extended to ) x €, that is,

\IJN(A) = E[ Z Gw,N(‘ra y)]]-{(O'(I,N)w,a(y,N)w)EA}} . (2410)

x,ycZd

The following result is an analogue to Lemma 6.6 in | ]
Lemma 2.4.3. For M, N € N let DE\}I)JV : Q0 — [0,00] and DJ(\?N : Q — [0, 00] be defined by
D} (i) = By [List(or o> a3 Fus) (@), i=12,

where Fu, , Sw, are the o-algebras generated by the first, respectively, second coordinate in Q x Q and ¥y is

defined in (2.4.10). For M € N, there exists an event Fy; with the following properties:
(1) P(Fa) > 1 — M—clos M,
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(2) For every e > 0 one can choose M = M (e) large enough

max{Dg}{N(w), %(M)DQN(@} < elp,, (w) + Lpe (). (2.4.11)

Proof. Let

Fy = ﬂ {weQ:Vxe[—k,k]dﬁZd,

k>M/2 c c
2 2
Z PEO (X, € A) — PEO (X, € A)| < et kq}

A€l

where II); is a partition of Z?¢ into boxes of side length M and Cy,c; are the (renamed) constants from
Lemma 2.1.1. Thus, P(Fy) > 1 — M~¢°¢M_ TFix ¢ > 0. Then, by the definition of F; and the coupling
éw,k,M constructed in the proof of Lemma 2.4.1, for every w € Fy, every k > M /2 and every = € [—k, k]?NZ?

we have

= 20,
Ooe bt (Amy ) > 1= 2 > 1= (2.4.12)

for large enough M, where Ar,, = {(A,A) : A € I }. Note that for k& < M/2 the left hand side of (2.4.12)
is 1 and therefore (2.4.11) is trivially true for N < M/2.

Let us now verify the estimates (2.4.11) for DE\}[))N and %DE@?N and N > M/2. Note that for P-almost

every environment w € ) we have

DE\}I),N(U‘)): Z @U—(I,N)W,N(‘r7y)]l{\|1*y|\>M} (2.4.13)

z,yeZq
and for Q) y-almost every w we have
2 dQn .\
Dyl () = ( dP <w)) > Oy N (@ W) Loy >0y (2.4.14)
z,y€Z4
Using (2.4.10) we have for every measurable event A C Q
By [L{(w1,w2)eAx0} Lidist(wr ,ws)> M}
=Un(Ax QN {(w1,ws) : dist(wy,ws) > M})

= E[ Z @w,N(-Ty y)]l{(a(myN)w,a(yﬁN)w)GAXQ}l{dist(a(LN)w,a(wa)w)>]VI}:|

z,ycZq
= Z E[Gw,N(fL’ay)l{a(I,N)weA}}1{|\x—yH>M}]
z,y€Z4
= D E[Os e (@y) Liweay Lije—yi> i)
z,y€Z4

where the last equality follows by translation invariance of P. Since Wy is a coupling of Py = P and Qx

the last term equals

Ey, [1{(w,w’)eAxQ} Z @a,mmw,N(%y)l{\|x—y|\>M}},

z,yeZd

40



which implies (2.4.13).
For By = {w: dQ—N( ) # 0} we have Qn(B$) = Un (2 x BS) =0, and we get similarly

E‘IJN[]]‘{QXA}]]‘{diSt(w17w2)>M}}
= By [L{oxanBy} Lidist(w:,ws)>M}]
=Un(Qx (AN By)N{(wy,ws) : dist(w,ws) > M})

= E|: Z @w7N(x7y)]1{(0(%1\;)&),0(%1\[)0.))69XAOBN}ﬂ{dist(a(m,N)w,a(%N)w)>M}
z,yeZ

:E[ Z @w,N(%y)]l{a(y,N)weAmBN}]1{|\x—y||>M}]

z,y€Zd

E{ > @U_(y‘mw,zv(%y)ﬂ{weAmsN}ﬂ{uwmbM}}

z,yeZd
[(dQn\ 1
= Eqx (W) (w) Y 60_(y7N)w,N(xay)]l{wEAﬂBN}]l{foyH>M}:|
) z,y€Z4
= Buy (T> @2) D2 Oo_yen N (09 L myenrxann) Lo yli>ar) |
x,y€L?
dQn
:E\I/N (dilP’) wZ) Z 607(y,N)wz,N(x7y)]]-{(wl,wz)eﬁxA}I]-{Hx—y|\>M}:|a
x,y€L?

which shows (2.4.14)
If ©5_(, xyw,N(%,y) > 0 then necessarily = € [N, N]? N Z% because in N steps the annealed walk can
only reach points in this box. It follows that for large enough M, every w € Fj; and every N > M we have

Y O o (@, 9) L a5y

xz,y€Z4

Y O e N (@Y L yi<m
z,y€Zd

=1 ze[—lr\fr}}\rflldmZd ze:Zd Oo_ e myw.N (%5 Y) Loy <M1}

<1- O, w,
- z€[— NN]dﬁZd Z Z (z,N) N x y)

A€lly z,yeA

= ]_ —_ min Z (:jo',(zyN)w,N,M(A’ A)

_NNd Zd
z€[—N,N]4N A

€lln
=1- ze[—llg\lflldmzd Oo_cmwnnr (A ) <.
Thus,
1
DEW)N Z Oo_ (o my N (T Y) Lz —yli> 1y < ELpy (W) + Lpg ().
z,ycZd
For w € F); N By we have shown
dQn 2
5 @D @) = Y OowunLijayiay <€
z,y€Zd
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whereas for w € Fyy N B

dQn 2
W( )Dgw),N(W) =0
and thus
dQn 2
—5 @Dy (w) < €lpy () + Lpg, ().
O
Proof of Proposition 2.1.2. We follow the ideas of the proof of Lemma 6.5 in [ ]. To this end, we

consider the events

- 1 dQn
B ={weQ: ] > —p C@ow) <1-c}
€A

1

dQn
Bf ={weQ: — ——(0@,0w) > 1+e¢}.

First we consider BZ. We decompose this event into two events, first of which has probability M ~¢1°eM and
the second is a P null set. We assume without loss of generality that Ag is centred at the (spatial) origin,
set M, = 5 M, define Ay = {z € Z%: ||z|| < M — M.} and

S; ={we B 00w € Fiy,, Vo € Ao},
where F)y. is the event from Lemma 2.4.3. Due to property (1) of Fys. from Lemma 2.4.3

P(S) > P(BD) — |Ao[P(Fy.)

(BT) — MA(M.)~clog M= > p(B=) — M—¢loe M

where ¢ is a positive constant. Therefore it is enough to show that P(S;) = 0.
We claim that there exists an event K~ C S7 such that

P(K™) > P(S2) - ((4d)?|Ag|) (2.4.15)
and
if w,w' € K™, w# w, then dist(w,w’) > 4M. (2.4.16)

For every (z,n) € Z x Z let U(z,n) be an independent (of everything else defined so far) random variable

uniformly distributed on [0, 1], and define
K™ = {w €57 :V(x,n) € 4 if oy pyw € B then Uy, < U(070)}.

This means informally, that from each family of environments whose distance is smaller than 4dM we choose
one uniformly. This implies that property (2.4.16) for K holds. Property (2.4.15) holds because due to

translation invariance of P we have

B <P( U owok )< Y Powok™) = (4d) APk ).

r€4dAg r€4dAg
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Now, let

G = U U(w,O)Ki and G~ = U O'(w)o)Ki.

T€AQ €A,

By property (2.4.16) of K~ these are in both cases disjoint unions and therefore we have

P(G)= > P(o@oK ) =|AP(K™) and

w€ A0 (2.4.17)
_ - _ € \d _ €
P(GT) = A5 [P(K ™) = [Aol (1= £3) "B(K™) > (1= S)P(G).
Going back to the definition of the event B and recalling that K~ C S C B we obtain
< [ (=)ol dPw) = (1 - I A0[P(K ) = (1 - IB(G)
Combining this with (2.4.17), for small enough £ > 0 we obtain
1-¢ € 1-¢ €
<(1- =—F(1—+ —— B 1—-)P(G7). 24.1
Qn(G) < (1= )F(G) = 7 (1- §) BIO) < T—_5P(G7) < (1- 5) B(G) (2:4.18)

Let A= ={(w,w) :w € G, ¢ G}. Then by (2.4.17) and (2.4.18)
Un(47) 2 B(GT) = Qn(G) = B(GT) - (1- 2 )B(GT)

> %IP(G‘) > 5(1 - 6)ﬂw(c) > ZIP(G).

(2.4.19)

By construction of K, for every (w,w’) € A~ we have dist(w,w’) > M. and, therefore,

[ o D it 2 [ DUyt
N GxXO € G xQ <

:/Q QE\IJN[]l{dist(w,w/)>M5}‘Sw}(w)l{G*xQ}(waw/) AV (w,w")
X

= By y [Ldist(ww)> .3 Lia-xap (W, w) | §o] (W) d¥ § (w, ")
QxQ

:/ L{dist(w,w)> M.} (G- x0} (W, w") d¥ N (w,w’) (2.4.20)
QxQ

v

/ ]]-{dist(w,w’)>M5}]]-{A*}(w7w/) d\I’N(waw/)
QxQ

Th- (w,w)d¥y(w,w)
QxQ

Uy(A7) > ZIP’(G).

Since G C Fy. by definition, using Lemma 2.4.3 with M. and ¢/5 instead of M and € we obtain

/DME, dP(w )S/GgﬂpMs (@) + 1 pg, () d]P’(w):/ngIP’(w):%IP(G). (2.4.21)

Combining (2.4.20) and (2.4.21) we conclude that P(G) = 0 and, therefore P(K~) = 0. By property (2.4.15)
of K~ this implies that P(S-) = 0 and finally P(B.) < M ¢l M,
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Next we turn to the event BX. As before we set M, = 5z M and assume that Ag is centred at the origin.

Define Af = {z € Z*: ||lz|| < M + M.} and let
S ={we B ouowe Fu., Vo € Af},

where F. is, as before, the event from Lemma 2.4.3. Due to property (1) of Fiy,

€

P(SH) > P(BY) - IA{B(FS,) = P(BD) - (L+ o5

)de(ME)7C1Og M,

> ]P)(B+) _ M*ElogM

— €

and again it is enough to show that P(SF) = 0. As for S- we claim that there exists an event K+ C St

such that
P(K™) > P(ST) - (4d)|Ag]) ™
and
if w,w’ € KT with w # w’, then dist(w,w’) > 4(M + M,).
Let

H= U ookt and HY = U ookt

FISYANG) wEAS’

Both are, by property (2.4.23) of KT disjoint unions. Therefore we have for € > 0 small enough

P(H) = |Ao|P(KT) and

P(H?) = [AJP(K) = (1+ %)d BofP(K) < (1+ ) ().

From K™ C SF C B} we obtain

awtn = [ T =3 [ T

€A

dQn
_ /K ) EXA: EL (00 0p) dP(w)
> / 10|(1+ &) dP(w) = (1 + £)|Ag[P(K) = (1 + &)P(H).
K+

Combination of this with (2.4.24), for small enough € > 0 then yields

Qn(H) > (Lt 2B(H) = — 0 (14 2) B > = m(t) > (14 2) B,

T 1+¢e/5 5 1+¢/5 3

Let A" = {(w,w’) :w ¢ H",w' € H}. Then by (2.4.26)

1 €/3

Un (A7) 2 Qu(H) = BUHY) > Qu(H) = 2 On () = 173

Qn(H)

>

Qn (H).
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(2.4.22)

(2.4.23)

(2.4.24)

(2.4.25)

(2.4.26)

(2.4.27)



By the construction of K, for every (w,w’) € A* we have dist(w,w’) > M, and, therefore,
D(2) ( d _ (2) / /
M., N w)dQn(w) = DME,N(W ) d¥ N (w,w')
H

= QD&?Mw')mm}(w,w')dww,w’)
Qx

= By [Ldist(ww)> .} | Tl (@) Lok (w,w') d¥ n (w, ')
QxQ

By [Ldgistww)>m. } Loxay (W, @) | §ur] (W) d¥ n (w, w')
%9 (2.4.28)

1dist(w,w)> M.} Laxay (W, w") d¥ v (w,w')

2

X

v

I
S— — 55—

X
2

Il-{dist(w,w’)>M5} Ta+ (wv wl) d\IlN(wa W/)

Tas(w, ") d¥ N (w,w)
x

N(AT) 2 QN (H).

P>

Since H C Fyy, by definition, P(H) < Qn(H) by (2.4.25), and using Lemma 2.4.3 with M. and £ instead of
M and ¢ we obtain

dQn\"1re
/ DE\Z,N dQn(w) < / (TN) [g]lFMEﬂBN + ]I(FMEQBN)C] dQn ()
H HNBN

Iy ST P
HNByn

€
= / [gllFMEnBN + ]l(FMEﬂBN)C] dP(w) (2.4.29)
HNBy

P(H N By) < £P(H) < SQx(H),

where we recall from Lemma 2.4.3 that By = {w : d?—ﬂ,{v(w) # 0} and note that B is a Qn null set.
Combining (2.4.28) and (2.4.29), we conclude that Qn (H) = 0 and, therefore, by (2.4.25) we have P(H) = 0.

It follows that P(K ™) = 0, which by property (2.4.22) of K* implies that P(SF) = 0 and finally that (2.1.5)
holds. O

Proof of Corollary 2.1.4. To show that Proposition 2.1.2 holds for @ as well we define ¥ as the weak limit
of {1 ZTI;_:IO U202, along any converging sub-sequence {ng}r>1 (tightness of ¥y follows similarly to the
discussion below Corollary 2.1.3). Note that ¥ is a coupling of P and @ on © x Q. Furthermore let

DE\Q (wi) = Ev[Laist(w; ws)>dm | Ful(Wi), 1=1,2.
Now we want to prove inequality (2.4.11) from Lemma 2.4.3 for DE\}[) and Dﬁ). It is enough to show that
along some sub-sequence {n,};>1 of {ng}r>1

1 neg—1

DW(w) = lim — D P-a.s. 2.4.
(W) Zggomé vy(w) P-as (2.4.30)
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and

d ne— 1d
D = (o) Jim > LXWDE @) Qas (24.31)
N=0

In fact, if the above equalities hold, then for P-almost every w we have

neg—1
1)
Dar @) _elggon? Z Diy
~ W o)
= lim — D D
Pt e { 220 (W) + szl:w MN(W)}
LS
<1 —[M D ]
< jm " + N;w v (W)
ne—1
< Jim o [M + N;J(e]lpM (W) + Lpc (w))}

In addition for DE\Z) we have for @ almost all w

9@ D) = Jim L3 Wy p@) (o)

£—00 Ny N=0 dP !
M-—1 ne—1
.1 dQN dQN (@)
< lim — — = —X(w)D
< A, nZ{NZ:O @ ;4 7 (DN ()]

Let us now prove (2.4.30) and (2.4.31). Starting with (2.4.30) let A C 2 be a measurable event. We have

E[Djy (w1)La(w1)]
= Byl {dist(w; ws)>dm} Laxa(wr, w2)]
= U({(wy,w2) € Q x Q:dist(wy,wz) >dM}NAx Q)

’ngfl
= lim — E Uy ({(wr,w2) € 2 xQ:dist(wy,we) >dM}NAXQ)
£—00 Ny N—o

1
= lim —Ey [1{qist(w; ws)>anm} Laxa(wi, wa)]

L—00 Ny
ne—1
~tim 23 DY () Lalen)]
{—00 Ny N—o M.N

= lim E[W Z D (w1 ]lA(wl)}

£— 00
N=0
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where we used the definitions of ¥ and of DE\}[) ~ as the conditional expectation. This implies convergence of

n% TI;’;OI nglf) N to D](\? in L'(P). Thus, by standard arguments we can choose a subsequence that converges

P-almost surely. For D](\Z) we get in a similar way

Eq[D}7 (w)La(ws)]
= E\I/[]]-dist(w17w2)>dM]]-Q><A(wlyWQ)]
= U({dist(wy,wz) > dM}NQ x A)

1 ngfl
= lim — > Up({dist(wr,wp) > dM} N Q x A)
£—r00 Ny N—o
ng—1
= lim — E 1g; 1
Zi{{)lo ne NZZO \I/N[ dist(wy,w2)>dM QXA(W17W2)]
ne—1
. 2
=Jm 2 By D)y (w2) Lo a(wr,w2)]
ne—1
_ (
= lim " NX::O Eqy[Dy/ n(w2)1a(w2)]

= tim 3" B [(% ) ™ T ) DRy ()1 a(0)]
N

= Jim Bo[(B2(w) ™ T3 T ) D) ()1
N=0

Q-almost surely. Thus, Lemma 2.4.3 holds for DE\}[) and Dg\? instead of Dg\}[) N and DE&I) N Tespectively.

Since the only tools we need for the proof of Proposition 2.1.2 are Lemma 2.1.1 and Lemma 2.4.3, we can

walk through the proof of Proposition 2.1.2 and repeat the same steps for ‘2—% to show Corollary 2.1.4. [J

The following proposition is an analogue to Proposition 7.1 from | ]. Note that the assertion
expresses a general property of the density of a measure which is invariant for the point of view of the

particle in the setting of a random walk in random environment. It is not model-specific.

Proposition 2.4.4. For P-almost every w, every n € Ng, every € Z% and all k < n

‘P(U(z,n)w) = Z PLE;I-H/’”_M (X = x)‘ﬂ(a(m+y,nfk)w)-
yezd

Proof. Let n € N. First we consider the case £k = 1. For every bounded measurable function b : 2 — R we
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have (recall the notation in (1.2.7) and (1.2.8))

/ h()p(0 0 y0) dP(w) = / B0 —my)plw) ()
Q Q
- / B0 my) dQ(w)
Q
— [ Rb(o( ) dQ)
Q
/ (R0 (o)) () dP(w)
/ Z W y U( z4y,1— n)w) ( )dP(w)

llyll<t

/ Z U(ﬂc y,n—1)W, y)h( )(p(o—(x—y,n—l)w) dP(w)

llyll<t

Thus

@(U(x,n)w) = Z g(a(x—y,n—1)w)¢(a(m—y,n—1)w)

llyll<1

= Z U(m yn— 1)w X1 = y)‘)p(o'(xfymfl)w)
llyll<t

= Z Pugz_ym_l)(Xl = x)@(g(zfy,nfl)w)

llyll<t

— Z P‘Ea:-&-y,n—l)(Xl — -’L‘)SD(U(:Der,TL*l)w)
yeL?

By applying the operator R a second time we see that

/ () (0 oy dP = / hw) S PEHD (X, = 2)p(0 (04 nnyw) dP)

llyall<1

= [ o) 3 PETI (X = a)pl) dP()

llyall<t

= [ (B oy mmin) T P LK = ) ele) Pl

ly1lI<1
/ OJ y2 U( z—y1+y2,—n+2)W )
ly2(I<1
D B e (K = 2)p(w) dP(w)
llylI<1
:/ Z 9(0(x+y1—y2,n—2)wvy2)h(W)
ly21I<1

S0 PEHETTI(X = 2)0(0 (0o @) dP(w)

llyall<t
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/ Z P(L+y1+y277l 2)(X — {)3+y1)

lly=ll<1

Z Pu(;w-i_yhn_l)(Xl = x)h(w)¢(o(z+y1+y2,n—2)w) dP(w)'

ly1 <1
Thus,

= > X0 PR = o) BT = )00 a2 )
lyall<1llyz(I<1

=) PIT(Xy = 2)p(0 oy n-2)w)-
y€Ld

Inductively we obtain

Po@mw) = D PEHO (X = 2)p(0(atyn-ryw)
yEeZ?

for all £ <n. O

2.5 Proof of Proposition 2.1.8

Let II be a partition of Z? into boxes of side length [n°] with 0 < § < g5. Since POO(X, =) =0 for
|lz|| > n only boxes in II,, :== {A € I : AN [—n,n]? # 0} have to be considered. We have

Zum =11 = | 3 POOX, = 2)p(0(pmw) — 1]

€74

(2.5.1)
— [ PO (X = )l - 1]
A€ll, zeA
By the annealed CLT from | | for any € > 0 there exists a constant C, > 0 such that

PO (| X,|| = Covn) < €

We want to use this fact below and separate the sum in the last line of (2.5.1) into boxes in II,, = {A € II,,
An{z ez |z| < C.\/n} # 0} and in II, \ II,,. Using triangle inequality we obtain

Zom — 1] < ] Y S POO (X, = 2) (0 nw) - 1]‘ (2.5.2)
A€l \1I, z€A
+ ’ Z Z ( Z PO (X, =y) - PO (X, = x)]) [o(0(mw) — 1] (2.5.3)
Aell, z€A
H XX X PO = lieloen) — 1] (2.5.4)
Aefl, IEA yeA

We start with an upper bound of (2.5.2). By Corollary 2.1.4 there exists a constant C, such that, due
to translation invariance of P, with P probability of a least 1 — Cn=¢l°8™ for every A € II, we have
> yealp(oynyw) +1] < CJA|. Under this event we can bound (2.5.2) from above by

Z Z POO(X, = z)[p(oEnw) +1] < C Z max P00 (X, = z)|A|.

=N TEA
Acll,\1I, €A Aell,\1,
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Using Lemma 2.2.2 with § > 0 replacing ¢ there we see that (2.5.2) is bounded from above by

c 3y ¥ [r;leagﬁl’(o O(Xy =2) ~PONX, =p)| +C Y P POO(X, =)

Acll,\1I, yea Acll,\1I, yeA

<CetC 3 Y [maPOO(X, = )~ BOO(X, = y)]
A€ll, yeA

< Ce 4 Cp~2+3ds,

Since ¢ < g5 it follows by the Borel-Cantelli lemma that

lim sup Z Z PO (X, = 2)[p(0(@nyw) — 1]| < Cé, P-a.s. (2.5.5)
n—roo ~
A€Il, N\, TEA

Next we turn to (2.5.3). First note that by the annealed derivative estimates from Lemma 2.2.1 we have for
J;yG‘A,Aezﬁn

[POO(X, = 2) = PO (X, = )| < Cllo —yn~F < Cn= 57, (2.5.6)

By triangle inequality, (2.5.6) and again, as above, using Corollary 2.1.4 for the bound , - A [¢(0(ynyw)+1] <
CA| the expression (2.5.3) is bounded from above by

Z Z ‘A‘ Z ‘P(Oﬁ) (Xn = y) - IP(O,O)(XTL = $)||Q0(O'(I’n)(U) - 1‘

Acll,, z€EA yEA
_dn
Acil, TEA yEA
_dt1
Y, ) 0
Aefl, yeA

< O(Ce/n)in= 5+ < Con =39,

with probability at least 1 —Cn~=¢°8", Thus, as n — oo, by the Borel-Cantelli lemma the expression (2.5.3)

tends to 0 P-almost surely.

Finally we consider (2.5.4). By triangle inequality and P(%-0)(X,, = y) < Cn~%? for all y we have

‘Z Z ZP(OO (Xn =y)lp (U(x,nw)—ll‘

i xGA yGA

<y ] A| > POO(X, = )| D e mw) - 1]‘

Aeil, yEA €A

<O 2 37 |3 [plome) — 1]

Acll,, 2€A



Using Corollary 2.1.4 we obtain

(Cn (1/2-3) Z IAIIZ 1]‘ > 5)

Acll,

< IP’(HA ell, : Z ‘%" Z[w(d(z,n)w) - 1]‘ > cicg)

< n~d1/2=0)p (|AO | Z a(w n)w 1]| > %)
z€Ao €

2 -
< n—d(1/2—5)n—05 logn < C«n—clogn7

where Ag € ﬁn is an arbitrarily fixed box. Thus, for £ > 0 as n — oo the limsup of (2.5.4) is bounded from
above by € P-almost surely. Combining all three bounds of (2.5.2)—(2.5.4), we see that there is a constant C
so that for all e > 0

limsup|Z, , — 1] < 66, P-almost surely,

n—roo

which concludes the proof. [

2.6 Proof of Proposition 2.1.9

The following result is an essential tool to prove Proposition 2.1.9 and will be proven in Section 2.8.

Lemma 2.6.1. Let 0 < 6 < 1/2 and b > 0. Define the set

D)= {Hpogw(xn €)— PUO(X, e -)HTV < et} (2.6.1)

;c,yeZd:
Izl llyll<n®,
le—yll<n

Then there are constants C,c > 0 so that P(D(n)) > 1 — Cn—¢logn,

Note that the restriction ||z||, [|y]| < n® in the definition of D(n) in (2.6.1) is necessary because with
probability 1 we have an environment where there exist (somewhere far out in space) two neighbouring
points z,y € Z? so that the sites (z,0) and (y,0) are both connected to infinity but the respective clusters

do not intersect for the first n time steps.

Remark 2.6.2. The above lemma is the analogue of Lemma 7.7 from | ] in our setting. Note that the
bound stated in Lemma 7.7 from | ] is too optimistic to hold in general. However, its assertion can be
weakened and one obtains a bound which is still strong enough to prove Lemma 7.5 in | | by going a

similar route as in the proof of Lemma 2.6.1 here.

Proof of Proposition 2.1.9, (L.1). For this part we make use of the fact that, due to the annealed derivative
estimates from Lemma 2.2.1 for |z — y| < k, [POO(X,, = z) — POO(X, _, = y)| < Ck/(n — k)(¢HD/2 x
n~@+D/24e gince k = [nf] < m. Furthermore we use the fact that by definition as a density of the
invariant measure of the environment with respect to the point of view of the particle, the prefactor can
be “transported” along the quenched transition probabilities; see Proposition 2.4.4. Finally we use the

concentration property of Corollary 2.1.4; see equation (2.1.9).
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We have to show

i (0,0) —
lim Z ‘ PO (X, = 2)p(0(4n)w)
1
- Zw ek Z IP(O’O) (anlc = y)(p(a(y,n—k)w)ch?;?,)L,k)w(Xk =T — y) =0. (262)

A

Note that the by the triangle inequality the sum on the left hand side is bounded from above by

Zlz.-

PO (X, = D)p(osme)
w n—k

1

* Zw,nfk

‘P(OVO) (Xn = x)gp(a(w,n)w)
TEZ

N Z PO (X, y = ?J)‘P(U(y,n*k)w)Pzg?ﬁ)b_k)w(Xk =z -y
yeZa

By definition of Z,, ,, recall from Definition 2.1.7, the first sum in the above display equals to

1 1
— |\ Zun
‘ Zw,n Zw,n—k o
which by Proposition 2.1.8 almost surely goes to 0 as n and n — k both tend to co. Thus, taking also into
account the trivial deterministic bound on the speed of the random walk, for (2.6.2) it suffices to show

: (0,0) —
S [t =t

z€ZN[—n,n]?

= Y POYXak = )p(onn@) P e (X =z - )| = 0. (26.3)

yEZIN[—n,n]¢

Denoting by B, = {z € Z¢: ||z|| < \/nlog® n} and using the triangle inequality an upper bound of the sum
in (2.6.3) is given by

SO PO =2) PO (X, = )] (2.64)

z€B, yeZIN[—n,n]¢

X Py @) PO (X =2~ )|

O(y,n—k)W

+ > POOX, =1) (2.6.5)
r€eB,
X ‘@(U(m,n)w) - Z @(U(y,n—k)W)ch?;YOT)L,k)w(Xk =T — y)
yezZin[—n,n]d
n 3 ’IP’“)’O) (X = 2)0(0 (00)w) (2.6.6)

TE€ZN[—n,n]\ B,

- Y POYX, = y)p(ogmnw) P (X =2 —y)|.

yEZIN[—n,n]¢
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By the annealed derivative estimates (2.6.4) is bounded from above by

S| T =) - PO X, = )]

€8y yez?

lz—yl| <k
< 0P (X = =)
2Ck oo
S mpEE 2 o) P (X =7 —y)
zeB, yeZd
lz—ylI<k
2Ck \/ﬁlog?’n—kk)d 1
= ( > elon-rw)-

(n—k)@+D/2 (/nlog® n + k)d gt
dist@,Bn)gk
Now using Corollary 2.1.4 and the fact that k = [n°] < n'/* for P-almost every w the last term tends to

zero as n tend to infinity.

Next we deal with (2.6.5). Recall that by Proposition 2.4.4 we have

POenw) = > @O@niw)PY" (X =)
yezZan[—n,n]4
for every z € Z% such that x + [k, k]Y N Z? C [-n,n]? N Z<. This holds for every x € B,, and therefore the
expression (2.6.5) equals 0.
Finally, for (2.6.6), using Lemma 3.6 from | ], we have POO(X, ¢ B,) < Cn=°¢l°8™. Recall that
k = [n°] and note that if PY"" " (X}, = 2) > 0 then ||z — y|| < k. Thus, for z € [-n,n]? N Z%\ B, and

large enough n
1
Iyl > ] = llz =yl > Vnlog®n —k > Sv/nlog”n.

This implies, again due to Lemma 3.6 from | ] that POO(X,,_, = y) < Cn=°¢1%8". Therefore, the

expression (2.6.6) is bounded from above by

Z ]P)(QO) (X" = x)W(U(r,n)w)

z€ZAN[—n,n]?\ B,

+ > Y. POYXyk = 9)e(o(ynnw) PPV (X = x)

z€Z4N[—n,n]4\ B, y€ZiN[—n,n]?

< Cnfclogn Z @(J(x,n)w)

z€ZIN[—n,n]d\B,

+ Cnfclogn Z Z @(U(y,n—k)w)PLgy’nik) (Xk = l’)

z€ZAN[—n,n]¢\B,, yeZIN[—n,n]¢

<Cn B N p(0@mw) + OB Y (o W)

z€ZN[—n,n]? y€ZiN[—n,n]¢

By Corollary 2.1.4 we have

P( Z (p(o'(w’n)w) < 2n‘i) >1— n*Clogn,

z€Z%N[—n,n]?
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as well as

P( Z (0 (y,n—ryw) < 2nd) >1— Cnclosgn,

y€ZIN[—n,n]¢

Thus, the probability of the event that (2.6.6) is bounded above by 4Cn~¢!°¢"nd converges to 1 super-

algebraically fast. Hence the expression (2.6.6) converges to 0 P-almost surely. O

Proof of Proposition 2.1.9, (1.2). First note that, it is enough to show that

n—oo

—0,

annxpre _ . box—queXpre H
HVUJ Vo 1,n—k

since the last k steps are according to the quenched law for both hybrid measures. Then, as the measure
pbox—auexpre quooasts we make use of the comparison between the quenched and the annealed laws on
the level of boxes we derived from Lemma 2.1.1. We also use the concentration properties of ¢ from
Corollary 2.1.4.

Let k € {0,...,n} be fixed. Note that we have

H(Vannxprc % l/quc)ng _ (l/boquucxprc * unc w k“l < ||yann><prc _ VBoquchprcHl e
p(0,0) (Xn—k _ .’L‘) Pu()():U) (ank c Aw)
= Z L)0(0-(1’,71716)9‘))‘ 7 - .
zezd w,n—k ZyeAz (0 (y,n—r)w)

By Proposition 2.1.8 it is enough to show that P-almost surely

Pu(JO’O) (Xn—k S Az)

=0. (2.6.7)
ZyeAw ‘P(O—(y,n—k)w)

nh_)rr;o Z @(a(m’n,k)w)‘P(O’O)(Xn_k =z)—

TEZ

Let A, = {z € Z? : ||z < C./n}, with C. chosen so that PO (|| X, || > Svn—k) < ¢ for n large
enough. Using the triangle inequality the sum in (2.6.7) is bounded by

POO(X, €A,
Y ) POV (X = ) - e Knk €8] (2.68)
T €ZAN[—n,n]4\ A, ZyGAI 90(0‘(%71*16)("))
p(0,0) Xk € A,
+ ) 0(O@niw) PO (X =) — ( A "“ ) (2.6.9)
TEA, T
POO(X,_ € A)
+ Ttomiw)| PO (X, € A,) — ‘ (2.6.10)
IGZA ) |A | EyEAI W(U(ya"*k)w)
]P(O7O) an AI PUE'O’O) an Az
+ 3 (0 rw) (Xnk €8a) (Xn—t € Az) ’ (2.6.11)
Yyen, POGn-nw)  Xyen, P0G n—kw)

TEA,

Now we deal with the four terms separately. Expression (2.6.8) is bounded from above by

> POO(X,, = 2)p(0 (2 n_t)w) + PO (|| Xn—g|| > Cov/n).
z€ZeN[—n,n]d\ A,

The term ZxEZdﬂ[—n,n]d\An POO(X, , = 2)P(0(z,n—k)w) goes to zero as n goes to infinity by the same

arguments used to bound (2.5.2) in the proof of Proposition 2.1.8. For the second term we can argue as in
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the proof of Claim 2.15 from | |, to obtain that for a set of environments, with P probability > 1— /e,

for large enough n

C.
PLO (| Xn-ill > Cov/m) < PLO (Xl > Sv) < V2.
Since € > 0 was arbitrary, this proves that (2.6.8) goes to zero as n goes to infinity.
Next we turn to (2.6.9). The annealed derivative estimates yield that it is bounded from above by

1
2. P03 T > POO(X g =) = POO(X,_, = )|

€A, ¥ YyEA,

1 1
<C Z (0 (zn—k)w) A, ‘ Z (0= )@z [l — yll

z€A,

< Cdn’ (n— (d+1)/2 Y PO@ntw

T€EA,

Cn5+d/2 1 oo
O (G X o) 2250, Pas,
TEAL

where for the limit we use Proposition 2.1.2, the fact that k = [n°] and § < e < 1.

Next we deal with (2.6.10). Writing II,, = {A € IT : AN A,, # 0}, using annealed derivative estimates
and Corollary 2.1.4 we see that (2.6.10) is bound by

1 0,0) 1
(0 (wmiyw) PO (X, € A1 ’
Z R o SPI= oy
1
g kYW ’1 ‘
n d/2 ng: (z,n—k) |A1 ‘ ZyeA @(U(U,nik)w)
n — d/2 1 1
=C > 2 PO ‘ ‘
= d/2 zn— 1
( " ) ni/? Acil, €A TAL] ZyEA ‘p(a(y,n—k)w)
k —d/2 1 (z,n— k |A |
(- LG Y S i 2 ot 1
n nd/2 o ZUEA OOy -ty w) || Ay |
kN\—d/2 1
= C(l - ﬁ) W AZ ‘m ;A<P(0(x,n—k)w) - 1’.
e, x

Using the same argument that was used for (2.5.4), we get that by the Borel-Cantelli lemma the last term
goes to zero P-a.s.

Finally, we estimate (2.6.11). It is bounded from above by

L)0(0’(1:,71716)‘*‘))

POO(X, . eA,)—POY(X, €A,
2yea, @(U(y,n—k)w)‘ (Xt ) = By (X )|

T€EA,
= > [POOX, € A) - POO(X, k€ A)|.
Aeﬁn

For the last term we can use Theorem 2.7.1 which implies that it is bounded by Cn~39 for P-almost every

w and large enough n. Therefore P almost surely it converges to zero as n tends to infinity. O
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Proof of Proposition 2.1.9, (L3). Note that the first measure chooses, at time n — k, a box according to the
quenched law and a point in that box weighted by the prefactor, whereas the second measure chooses a box
and a point in that box according to the quenched law at time n — k. These points are then the starting
points for the quenched random walks for the remaining k steps. We use the fact that, given enough time
(much more than the square of the starting distance), the total variation distance for two quenched random
walks starting from any pair of sites in a box with side length [nf] is, given enough time, i.e. much more
than the square of the side length of the box, is small with high probability, see Lemma 2.6.1.

The proof follows along the same lines as in | ]. We will highlight the point in the proof where we

deviate. We have

O S S

— Z |(Vboquue><pre % une)w,k(a:,n) _ (une * une)ka(x’ n)|

z€Z?

(0 n—=k W)
= L e s e X = =)

2€Zd yezd 2EA, w(o-(zn k)W )

- Z PLEJO’O) (Xn—k = y)Pé?yO,z k)w(Xk =T — y)’
yeZ

= ‘ > PEmR(Xy = 2) PO (X € A)
cezd Aellyeh
. ( P(0(y,n—r)w)
> cen POz n—k)w)

<Y Y PP (X = ) PP (X € A)

r€Zd A€l yeA

- PL‘(}()}O) (Xn—k =Y | Xn—k € A)) ‘

SO(J n—k UJ)
' (Z S(Oy(o( ) W) PO G =y Xy € A)) ) (26.12)
2EA zZ,n—

Since for every A € II and z € Z% we have

P v,n—k) X _ (U(y ”_k)w) _ P(O’O) Xy = X, Al =
yze; A vEZA )[ZzeA Eemmn BECEE )
it follows that (2.6.12) equals

> PPO(Kk € )| Yo [P (X = ) <|A| > R =2))]

€7 AEIL yEA

P(0(yn—k)w) (0,0)
~POO(X, =y | Xy € A) ‘
(s v ( | )

= Z Z POOY(X, e A)’ |i| Z Z [ pyn—k) — z) — PR (X, = x)}

reZd A€l yEA wWEA
P(0(yn—k)w) (0,0)
— PO,k =y | Xu k€ D))
(ZZGA (p(a(zn k) ) ' "

<Y Y A e )Y ko [P H= a) - PP (0 = )

A€Il xe7d yeA weA

T(y,n—k)@) (0,0)
—POO(X, =y | Xn € A)‘ (2.6.13)
’ZZEAQD O(zn k) )
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Until this point the steps are basically the same as in | |. Here we deviate from their proof. Note that
PQ(JO’O)(XH,;c €A)=0if AN[-n+kn—k]4=0. For AN[-n+k,n—k]¢+# 0 we have y,w € A implies
that [|y[, [lw]] < n = k"< and |y —w| < n® = k%=

Using Lemma 2.6.1 we see that (2.6.13) is bounded from above by

O' n—
S RO (X, € 8) 3| AT p(x, =y X, € )
A€l yeA LuzEA 0(0(zn—r)w)
LS S ot He )
wWEA zeZd
< ool S POO(X, € A) Z‘ (0 (y,n—1yw) POO(X, =y | Xy € A)‘
Acll yeA ZZEA('O I(zn—k)% w)
< Qe CToterT 3 POO(X, € A) = 2o ChEleE < CoChiion
Aell
since k = [n®]. The right hand side goes to 0 for n — . O

2.7 Proof of Proposition 2.3.1
The starting point is a result from [ ]. Define
P(N) = ({—i\/ﬁlog‘?N 1 /N iog? N}d X [0 1N]) N (z% x 7). (2.7.1)
24 "24 '3

For # € (0,1) and (z,m) € P(N) let G’((x,m), N) denote the event that for every box A C Z% of side length
N2 we have

|P&™ (X i n € A) = PE™ (X, v € A)| < ON~41=0/2750, (2.7.2)
Furthermore set
GN)= () (G(zm),N)U{&n(x)=0}). (2.7.3)
(z,m)eP(N)
Theorem 2.7.1 (Theorem 3.24 in | D). Let d > 3. There exist positive constants ¢ and C, such that for

all (x,m) € P(N) we have
P (G ((2,m), N)) > 1 — CN—cleN (2.7.4)
and
P(G'(N)) > 1— CN—cleN, (2.7.5)

The following notion of good sites and good boxes will be needed in the proof of Proposition 2.3.1. On
such boxes the annealed and quenched laws are “close” to each other. Recall the process £ = (&, )ncz from
(1.1.4) and the definition of ny from the beginning of Section 2.3. Recall also that II} is a partition of Z<
into the boxes of side length [n].
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Definition 2.7.2. For a given realisation w € Q, we say that (z,m) € Z? x Z is (k — 1,0, ¢)-good if either

Em(z;w) =0 or &, (z;w) =1 and the following two conditions are satisfied

_d_
sup |PS"™ (Xiny, € A) = PE™ (X iy, € A)| < nzd CE (2.7.6)
A’€Ily,
P@m™ (IIéaX | Xmss — z|| > /1 log® nk> < COny 18, (2.7.7)
SSNg

Otherwise the site is said to be (k — 1,0, ¢)-bad. We say that for A € II;_; and m € Z the box A x {m}
is (k —1,0,¢e)-good if each (x,m) € A x {m} is (k — 1,0,¢)-good. Otherwise we say that A x {m} is
(k—1,0,¢)-bad.

The following lemma is a direct consequence of Theorem 2.7.1.
Lemma 2.7.3. For all A € II;_, there are positive constants C and ¢ so that
P (A is (k- 1,6,¢)-good) > 1 — Cnj ©1%8 ™. (2.7.8)

The assertion of Proposition 2.3.1 is the analogue of the inequality (5.1) in | ]. The strategy of the
proof there is as follows. First, using the triangle inequality and the Markov property an upper bound of Ay
is obtained which is given by a sum of four terms (5.2) — (5.5) in | ]. Second, for each of these four
terms an upper bound is shown. Three of these upper bounds, the ones for (5.2), (5.4) and (5.5), are not
difficult and can be proven in the same way as in | ]. For (5.3) Berger et. al use a notion of “good”
boxes and the fact that they are independent at a large but finite distance. The definition of those good
boxes translates to our Definition 2.7.2, where it is clear that the dependence on £ prevents us from directly
using any argument hinging on independence at a finite distance. We circumvent this problem by defining a
new type of boxes for which we are able to work with independence, see the ideas below Proposition 2.7.4.
Using those boxes as an approximation for the good boxes we prove a lower bound on the probability of

hitting a good box in Proposition 2.7.4.

Proof of the analogue of an upper bound of (5.2) in [ /. Consider
>3 |3 R e )
A€, A’ETl_1 u€eA’
x [P (Xy, , =u) —POO(Xy,_, € )PP (Xy, , =ulXy, , € A)] ’ (2.7.9)
To get an upper bound for (2.7.9) the arguments in | ] do not require any specific properties of the

model and apply to our model as well. The steps are as follows: by the triangle inequality followed by

elementary computations (2.7.9) is bounded from above by

Y D PeNe)(Xy, € 4)

A€l A€l 1 ueA’
X |P£0’O)(XN1C71 = ’LL) - ]P)(O’O)(XNJC71 € A/)P(E)O’O)(XNIC—I = u|XNk71 € A/)|

= Z Z |PAEJO’O)(XN1€71 = u) - P(O’O)(XNk—l € AI)PQ(JO,O)(XNk—l = u|XNk—1 € A/)|
Arelly—1 ueA’ (2710)

= > Y POXy,, =ulXy,_, € A)PPO(Xy,_, € A)—POO Xy, , €A
A€l _1 ueA’

= Z |PLEJO7O) (XNk—l € Al) - P(070)(XNk—1 € A/)| = Ag—1-
A€l
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Proof of the analogue of an upper bound of (5.8) in [ /. Consider
> | Y PO X, € AP (X, = ulX, €A
A€, A’ETl_1 u€eA’
% [Pu()u,Nka)(XNk €A) _Ip:(u,qu)(XNk cA)|. (2.7.11)
First, by the triangle inequality (2.7.11) is bounded from above by
Z Z ]P)(O’O)(XNIC—I € A/)P(E)O’O)(XNIC—I = u|XNk—1 € A/)
A’EM,_; uEA’

| PSeNe) (X, € A) = PONe)(Xy, € A)]. (2.7.12)
A€l

Next we define I}, as the set of boxes A’ € II,_; with the property
A n{zeZ: ||z| < /Np_1log® Nj_1} # 0.

By Lemma 3.6 in | ] it follows

S POO(Xy, , €A) <ONEN (2.7.13)
ATEI
and consequently (2.7.11) is bounded from above by
CNZEEN e 30 Y PO (X, € AP (X, = ulXy, , € A)
A’EIl} | ueA!

S |PSeNe) (X, € A) = PONeD(Xy, € A)]L (2.7.14)
AETTy

Recall Definition 2.7.2. We will write “good” for (k — 1,0,¢)-good to simplify the notation. By
Lemma 2.7.3 we have P(Ais (k — 1,6,¢)-good) > 1 — Cng°'8™ . For u € 2% define by H,(cl’") the set
of boxes A € TIj, satisfying (note that E9[X,, | = u)

An{ze VAR HJ; — uH < /ny log? ni} # 0. (2.7.15)
If a box A’ € II}_, is (k—1,60,¢)-good, then for u € A/
D PN (X, € A) — PN (X, € A))

A€l
= 3 PN (Xy, € A) - PONe)(Xy, € A))
Aemtw
+ Y PN (X, € A) PN (X, € A
o (2.7.16)
< N PMNeD (X, € A) = PN (X, € A)| + Cny o108
Aen(t)

0d—g— — .
< I On TR0 4 Omy e loE

d d
—9d+0d—§—s(

< Cn} log ng )3 + Cn,;dog"’“

< Cng*(logng)™ +ny '8 ™) < Cny %,
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where we used in the first inequality that by Lemma 3.6 from | ]
POO(|1X,|| > v/nlog®n) < Cn=cloen

and that \H,(:’u)| < CnZ/Q_ed(log n )34
It follows that (2.7.11) is bounded from above by

ONENr e S ST POO(Xy, , € AYPOO(Xy, |, = ulXn, , € A)Cny

1
A’el‘[k71 ucA’
is good

+ Z Z ]P(O’O)(XNk71 € A/)Pu()O’O)(XNkfl = U|XNk—1 € A/)
A’e]‘[}c71 ueAN’

is bad (2.7.17)
x Y PN (X, € A) = PN (X, € A))
A€Ily
<ONSEN T on P Y POY(Xy, e ).
!

Now we want to find an estimate for the probability of hitting a bad box. For some 8 > 0, to be chosen
later, we consider the following event
GNy_y = { > L ish-1.0,0)0-g00} PO (Xn,_, €A) > 1= C'n” } (2.7.18)
A€

and define
r(N)
= ﬂ GNony - (2.7.19)

We want to mimic the proof in | ] and for that we need to define a new type of boxes to approximate
the density of bad boxes. The problem with following the proof in [ | arises from the fact that our
environment is, due to the dependence on infinitely long open paths, not i.i.d. To overcome that problem
the idea is to exchange the environment £ with a process that only has finite range dependencies. We will

use this idea to show in Proposition 2.7.4 below that
P(Gy) > 1— CN—clos), (2.7.20)
Note that ny_1 = n3. Thus, on Gy the expression (2.7.11) is bounded from above by

CNZPEN om0 YD PO (Xy, , € A)

Aelly,_,

S (2.7.21)

< C,Nk—_cllogNk71 —I-C?’L]: +Cl ,8 < O'"n 76/4.

As can be seen in the proof of Proposition 2.7.4 we can choose 8 > £/4 to obtain the last inequality in
(2.7.21). O

Proof of the analogue of an upper bound of (5.4) in [ /. Consider

> Y | X ey, e a)

A€, A’ETl_1 u€eA’

x [POO(Xy, € AYPON Xy, , =ulXy,_, € A)—POO(Xy, | =u). (2.7.22)
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For any two probability measures  and fi on Z? we have

Y fnlu) = Y fu)i(u) < max f(u) — min f(u).

u€A’ u€A’ uea’ ues’
Thus, the expression (2.7.22) can be bounded from above by

S5 ety 4]tk €8) i P € )
A€l ATeTl,_, e ue

< Z ]P(QO)(XNk—l € A/)

=i (2.7.23)
(u,Nk—1) o (u,Nk—1) —clogny
X Z ’ﬁ%]}” (Xn, € 4) 1£IEHAH’P (XN, € A)|+Cny ,
NG i
where H,(Cl’u) is the set defined above.
Using P(»NVe-1) (X, € A) = Y vea P(Ne-1) (X, = v) we have
(u,Ng—1) — min P@Nk-1)
LréaAgIP (Xn, € 4) 51%1&1,19’ (Xn, €4)
< 75%% P(u,qu)(XNk — 1}) _ EGHAD/ P(H’Nk’l)(XNk — U)
vEA
C (2.7.24)
. ’
S Z dlam(A )W
vEA Ny
C
< (nf)"nf

k=1""(d+1)/2"
n’(€+)/

where the second to last inequality follows by the annealed derivative estimates from Lemma 3.9 in [ ]

Altogether the expression (2.7.22) is bounded from above by
0 C

—clogn
> POOXy,, ea) Y (“z)d”kAW‘FC”k B
k

’ . 1,
A€l _q Ae]‘[(k“)i

dnf | /mx(l 3\ d
<C Z P(O’O)(XNk_l EA/)( N1 nk(ognk) ) (nZ)dnG L_i_cn;clognk (2.7.25)

0 k=1""(d+1)/2
A’ell,_, "k nl(c !
n? 1 3d
< Cltogme) ™t 1 omeiosms < ¢UBTIE 4 g etosm,
Ty, Ty,
O
Proof of the analogue of an upper bound of (5.5) in [ /. Consider
SO | PO, = PN (X, € A) ~ POV (Xy, € A, Xy, , €4)]. (2726)
A€, A’Ell_1 ueA’
Recall the regeneration times introduced in | ]. There they are defined for a random walk on the

backbone of the oriented percolation cluster, whereas we allow the random walk to start outside the cluster.
In Remark 2.3 Birkner et. al note that the local construction, which they use to obtain the regeneration times,
can be extended to starting points outside the cluster. Let B, be the event that the first regeneration

time greater than m will happen before m + m?, for some small constant 5 > 0 to be tuned appropriately
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later. By Lemma 2.5 from | ] the distribution of the regeneration increments has exponential tail
bounds, and thus P(By, m) < Ce—cm” First, note that by the theorem of total probability and the triangle
inequality (2.7.26) is bounded from above by

Yo S PO Xy, =u) Y PENeD (X, € A) - POO(Xy, € AlXy,_, =)

A’ETT, 1 uEA AETly,
< 2 2 PN, =
A€Ml _1 ueA’ (2.7.27)
X Z (’P(1L7Nk71)(XNk € A) - ]P)(OVO)(XNIC € A’BNk—l,nk|XNk—l = u)|
A€,

+ P(QO) (XNk € Aa B](\:fk_l,nk|XNk—1 = u))

First note that

> Y POYXn, =w) Y PO Xy, € ABY, 0 XN, =)
A€M 1 u€l’ A€l

—P(BS, ,,.) < Ce .

The remaining part of the right hand side of (2.7.27) is bounded from above by

Do D FOOMy, =u) Y (PN (X, € ALBS,,)

A€l 1 uel’ A€l

+ |P(U’Nk71)(XNk € AvBOynk) - P(O)O)(XNJC € A’BNk—hnk‘XNk—l = u)|)

Using the same arguments as above we obtain
s

Z Z P(()’O)(XNk,l =) Z P(u,qu)(XNk c AvBOC,nk) = ]P)(B](ifk—lxnk) < Ce
A€l ueA’ A€TT,

and thus it remains to find a suitable upper bound for

Z Z ]P)(O’O)(XNk—l = u)

A'ETT 1 ueA/
Z ’P(uﬁNkil)(XNk € AvBOJLk) - P(070)(XNk €A, BNk—hnk'XNk—l = u)’
A€y
Let 7y, _, denote the first regeneration time greater than NN;_;. By splitting the probabilities above into
the sum over the possible times at which the regeneration can occur and the possible sites at which the

random walk can be at the time of the regeneration we see that the term in the above display equals to

Z Z P(OVO)(XNkfl = u)

A€l 1 ueA’

CT| L RO, € ANy, <0 X, =0
A€y te[Ny_1,Ne_1+n?] 2.7.28
vezdznu—vugnfk (27.28)
- > PO (Xy, € APOO 7y, =t Xz, =0|Xy,_, =u)]|.

t€[Nk—1,N—1+n}]
UGZd:HuvaSni
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The modulus in the last two lines of the above display is bounded from above by

max PO (Xy € A PN (7 =1t X =
N (Xn, €4) > (FNe_s ey =)

tE€[Np—1,Nk— B
veZd:|lu—v[|<n? €[Ng—1,Np_14ny]

d. B
vEZY: ||lu—v||<n)

~ min PO (X, € A) > PO (Fy, | =1, Xz,
t€[Ni—1,Ni—1+n?] -
'uEZd:Huf'uHSnf

= /U|XN1«—1 = U)

te[Nk—l,Nk—lJrni]
vEZd:Hu—vHSnf

< max PO (Xy, € A) — min POD(Xy, € A) (2.7.29)
t€[Nk_1,Nj_1+nl] t€[Nk_1,Nj_1+n]
vezds|lu—v)|<n} vezs:Ju—v||<ny
+ max PO (X, € A)PEN-1) (7 > Ny + )

t€[Ni—1,Np—1+n}]
’UEZdZHU7’UH§n£

+ min P(U’t) (XNk S A)]P(O’O) (%Nk—l > Np_1+ n£|XNk71 = u)

tE[Nkfl,Nk71+n§]
UEZd:|\u—U\|§n£

Plugging that into the sums in (2.7.28) we obtain that an upper bound of (2.7.26) is given by

Y ROy, =)

AVelp 1 uel’

max POY (X, € A) — min POY( Xy, € A)
Aetl, | tEWNE—1,Nk—1+n]] €[Nk _1,Ng 140}
veZd:Hu—vHSni vEZd:Hu—vHSnf

+ Z Z IE”(O’O)(XN,«_1 =u)

A€l 1 uEA!

(2.7.30)
max ]P)(U’t)()(]\[,C S A)P(U’N’“’l)<7~']\7k71 > Np_1+ ’I’L[]z)
A€, tE[Nk—17Nk—1+n§]
veZ:[lu—v||<nf
+ Y Y Y min POO(Xy, € APOO(Fy, > N+, Xy, =)
ATETT,_y wens Acly LENe—1Ni—1ng
UGZd:HuvaSnf
+ Ceemi,
Now define H,lc’“ﬁ as the set boxes A € Il for which
AN ( U {xeZ: |z —v| < /nglog nk}> # 0. (2.7.31)

B

vi [lo—ul[<nf

Using Lemma 3.6 from [Stel7] we obtain

> PUO(Xy, € A) <PUO(| XN, —v| > /Ny, — tlog® Ny, — t) < O ©8 "™
AgriP
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for all v € Z¢ with |lv — ul| < nf and all ¢ € [N_1, Nj_1 + nf} Using this it follows
SEDIELIE N
A'€Tli 1 uel’
max , P(”’t)(XNk € A)IE”(“’N’“—l)(%N,cf1 > Np_1+ ng)
N 156[1\/%71,N)cfr‘rn;[C (2 7 32)
UGZd:\u—v\Sni o

< I PPOO (Fyy > Ny + i) + O 787

S ngan/2(1720) (log nk):idce—cnf + Cn’:clognk S Cvnk—:clog’nk7
where we have used the fact that, by the definition of H,(:’u) in (2.7.15), |H,1€’“’B| < niﬂﬂg’u) |. Similarly

Z Z Z min P(U7t)(XNk € A)P(Oﬁo)(%]\fk—l > Nig—1+ nZ7XNk—1 = u)
A€l _1 ueEA’ A€, t€[Nk—1,Ni—1+ny]
veZt:ju—v|<nf (2.7.33)
< |H11€,u,5|]P>(O,O)(7~_Nk71 > Ny, +n£) +CTL;CIOgnk e
< ngan/Z(l—ZQ) (log nk)?)dcefcn’z + C«n;clogn;C < Cn;CIOgnk.
Altogether it follows that (2.7.26) is bounded from above by

>, D P =uw

A€M _1 u€A’

X max PO ( Xy, € A) — min POD(Xy, € A)
Acrrl w8 t€[Np—1,Ni_1+n}] t€[Nj_1,Np_1+n}]
(k) vEZd:\|u—v\|§nZ UEZd:|\u—U\|§nZ

+ Cnp 8™ 4 Cemem (2.7.34)

Using the annealed derivative estimates from Lemma 2.2.1 we obtain

‘ max POD(Xy, € A) — min PO (Xy, € A)’
tE[Nk717Nk71+nf.] tE[Nk—hNk—l"l‘ni
UGZd:HuvaSnﬁ vGZd:HuvaSnf
<|A] max PO ( Xy, =) — min PO (X, = y)‘
te[Nk—lka,—1+n£] te[Nk—l,Nk—lJrni] )
veZ:||lu—v|<nf veZ%:[lu—v|<nf
TEA YyEA

d+1

< |A|C@An] +nf)n~

d+1

<nP@C@nl +nl)n, * . (2.7.35)

2d+1
4

Now if we choose 3 = 6 and 6 small enough, we get that the above expression is smaller than Cn,

Putting everything together we get the upper bound

_d_1
Coort g onpE Y Y B0 = Y

A'€llp 1 u€l’ AEHi’“

1
< Ce M 4 Oy clo8™ 4 Z PO (X, , € AL |ny 2
Arelly—1

1

ay —d_
< Ce i 4 Cny °lo8™ 4 Cn,gl/Q_e)d(log ng)?in, 2 7

— Ce ™ + Cn,:dog"k + C(log nk)3d2nzfl/4
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Thus, recalling equation (2.7.26), we obtain
S | X PO X, = wP Y (X, € 8) = POV (X, € A, X, € A)
A€, A’ETl_1 u€eA’

< Cn;¢ (2.7.36)
for some constants C,c > 0. O

Proof of Proposition 2.3.1. To prove Proposition 2.3.1 we need to show inequality (2.3.3) which we recall

here
Ak < Ae—1 +Cni®, V1<k<r(N).

for some positive constants o and C on the event G(N) from (2.7.19).
Fix w € G(N). Recall the definition

A= 3 |PLO(Xy, € A) —POO(Xy, €A
AETTy

from equation (2.3.2). Furthermore, we recall (2.7.9), (2.7.11), (2.7.22) and (2.7.26) for which we just

estimated upper bounds.
79)=3 3 | > PENI(Xy, €4)
A€lly A’ell_1 uceA’

X [Pu(JO7O) (XNk—l = u) - P(070) (XNk—l € A/)PLE)O’O)(XNk—l = U‘XNk—l € A/)] "

eI = Y 3|3 POO(Xy,, € AVPOO (X, , = ulXy,, € A)

A€l A’ell_1 ueA’

X [PLN) (X, € A) = PN (X, € A)],

(2722)= Y Y ‘ZWN“XN € A)

AEHk A’EHk 1 ueA’

X [P(070)(XN1¢—1 € A/)PL«()O7O) (XNk—l = u|XNk—1 € A/) - ]P)(QO) (XNk—l = u)],

2r26)= Y 3 ) 3 POO (X, , = w)PEN)(Xy, € A) - POO(Xy, € A Xy, , € A)|.
A€l A’ETl—1 u€eA’

Note that for A\, by the triangle inequality, we obtain
A <(2.7.9) 4+ (2.7.11) + (2.7.22) + (2.7.26).

Thus, using the proven estimates, (2.7.10), (2.7.21), (2.7.25) and (2.7.36), for each of the summands respec-
tively we gain
_ 1 3d
Mo < M + ety o108 )

1/2—20
T,

+Cny “8™ 4 Ong® < At + Cng @

for appropriate choices of @ > 0 and C > 0. The fact that P(Gyx) > 1 — CN~¢"°8 N is proved in Proposi-
tion 2.7.4. O
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Proposition 2.7.4. For the events Gy from (2.7.19) there exists Ny € N such that, for all N > Ny we have
that

P(Gy) >1— CN—cleN, (2.7.37)

Let 8 > 0 and put f(ng) = log® ny,. First we need another notion of good sites. Given a realization w we
define for all (z,¢) € Z¢ x Z the set C,,(x, ) as the set of sites at time £+ m € Z which can be reached from
(z,£) via an open path w.r.t. w. We start by defining for k = 1,2,... a field £¥ == (£F(x)),ezq as follows

(i) & (2) = &(x) for all (w,t) € Z% x {n + f(ng),ne + fln) +1,...}

(i) For all (z,t) € Z¢ x {...,np + f(ng) — 2,np + f(ng) — 1} we set £F(z) = 1 if Crpt fng)—t(z,1) # 0.
Otherwise we set £F(x) = 0.

Note that & < &* since for (z,t) with t < ny + f(ng) we set & () = 1 if (z,t) has an open path of length at
least ny + f(ng) — t instead of requiring an infinite open path. For & (z) # éf(x) we necessarily must have
t < ng + f(ng) and there must exist an open path started at (z,t) whose length is at least ny + f(ng) — ¢
but the contact process started at (z,t) has to eventually die out, i.e. there is no infinite open path starting
in (z,t).

The following lemma gives us an upper bound on that probability. The result is well known in the

oriented percolation and contact process world. For a proof see for instance in Lemma A.1. in | ].
Lemma 2.7.5. For p > p. there exist C,c > 0 such that for all (z,t) € Z¢ x Z
]P’((x,t) =9 78 x {t +n} and (z,t) »* 7 x {oo}) <Ce ™, mneN.
As a direct consequence we get the following corollary.
Corollary 2.7.6. For x € Z% define
Dy, (z) = (z + [-nf_1 — ng,np_y +ni]? x [0,n4]) N (2% x Z).
For p > p. there exist constants C,c > 0 such that
P(fff(y) = &(y) for all (y,t) € Dy, (x)) > 1 Qe clos" (2.7.38)

Proof. Note that 6§ > 0 is a small constant and can be chosen such that we have nz_l = nie < ny and
thus | D, ()| < 2%n{™. By definition of £¥ £F(y) # &(y) implies that there is at least one open but finite
paths whose length is larger that f(ng). Using Lemma 2.7.5 the assertion (2.7.38) follows by the choice of
f(ng) = log? nyg. (Here one can see that other choices of f(ny) are possible as well.) O

Let (X ) be a random walk in the environment €% with transition probabilities given by
U(z,n)NCk[~Y if (z,n) € C* and (y,n+1) € U(z,n)NC,

P, & (Xn-‘rl =z| X, = y) =1 |U(x,n)|~? if (z,n) ¢ C* and (y,n+1) € U(x,n), (2.7.39)
0 otherwise,

where C* == {(x,n) € Z¢ x Z: £ (x) = 1}.
Given a realisation w, we say that (z,m) is (k—1,0,¢, gk)—good if it satisfies the conditions from Defini-
tion 2.7.2 with £ replaced by ék and X replaced by X in the quenched probabilities.
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Lemma 2.7.7. For all (v,t) € Z% x 7 we have that
P((x,t) is (k — 1,6,¢,E")-good) > 1 — Cn; 18", (2.7.40)

Proof. Due to Lemma 2.7.3 it suffices to show that with probability at least 1 — C’n,zdog " we have £F(y) =
& (y) for all (y,t) € Dy, (). This exactly the assertion of Corollary 2.7.6. On that event (z,t) is (k— 1,6, ¢)-
good iff (x,t) is (k — 1, 9,5,§~k)—g00d. O

Proof of Proposition 2.7.4. Recall the definition of Gy p,_, from (2.7.18). To estimate the probability of
hitting a bad box we can now mimic the proof in | | since we get a lower bound by estimating the
probability for the (k—1,6,¢, &k )-good boxes. By construction those boxes are independent of each other at
distance > 5ny. Define

n = (A eI}, : dist(A,0) < {MJ} (2.7.41)
and for r > 1 let
M, = (A" e Ty [277y/N | < dist(A7,0) < |27 Y/Ni |} (2.7.42)

(H;(Ql)rzo is a partition of II}_,; into disjoint subsets according to the distance of the boxes from the
origin which allows us to estimate the hitting probabilities of the bad boxes. Using the annealed local CLT
(Theorem 1.2.1), we have

> POO(Xy, , ed)

A'elly_,y
is bad
Mog, (log Nip—1)®] ~ )
< 3 " N {(k —1,6,,%)-bad boxes}|CN, “%e~"  (2.7.43)
r=0

holds for some constants C, ¢ > 0 and P is the measure for the changed environments &¥.

In order to estimate the number of bad boxes in each 1’[,(:_)1 we define the event éN = CN}'N(C) by

_ r(N) [log,(log Nk _1)3] ~
Gy = N {|n§;21 N {(k - 1,0, €)-bad boxes}| < CIH,(QlIn;i} : (2.7.44)
k=1 r=0

where 8 > 0 is a constant to be tuned later. Let p,_1 be the probability for a box A’ € II;_; to be
(k —1,0,¢,&%)-bad. Note that fr € O(n; “'°8™) and on the event Gy

[og, (log Ni.—1)*]

> POOXy_ea)< T Ot N e
A’EH,lc_l r=0
is bad

[og, (log Ni—1)*1 o ) o
< > C2% (/Ny_1 /nf_ )N YPe="n B < Oon T (2.7.45)
r=0

Now it suffices to show that P(Gx(C)) > 1 — CN—<e(™) for some constant C' > 0. To do so, fix k > 1 and
note that boxes A’ € II;_; at distance 5ny are, by construction of gk , good or bad independently of each
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other. To see this note that 2(nf_, + ny + f(ny)) < 5ny and recall that £F(y) = 1 if there exists an open
path connecting (y,t) to Z% x {ny + f(nx)} and £¥(y) = 0 otherwise. Let (H};Zl) be a partition of H(T)
into at most (5n1,)% subsets of boxes so that the distance between each pair of boxes in II;7 | is bigger than
5ny, for every j, and the number of boxes in IT}7 | is between |H§Ql|/(2(5nk)d) and 2\H§€Q1|/(5nk)d.

If the number of (k—1,6,&,£%)-bad boxes in H(T)1 is bigger than C’|H,: 1 In,.”,, then there exists at least
one j so that the number of bad boxes in II}7 | is larger than C|II[7,|n,”,. Since the boxes in II}7 | are
good or bad independently of each other, their number is bounded and they are bad with probability pp_1,
it follows by Hoeffding’s inequality that

PO n{(k — 1,6, ,*)-bad boxes}| > C|I1", |n 7))
< (5np) BT N {(k — 1,6,¢,£%)-bad boxes}| > [C|H |n 1/ (5nx) %)
< (5m) exp(—(Cni ) — pe-1)* I 1/ (5r)?)

5ni)? exp(—Cny 2207 |/ (5ny,) %) (2.7.46)

d

(
< O(5ny)* exp(—C2riN zF=THE T 5k
C( );

where the right hand side decays stretched exponentially in N for k > 4 if 8 is small enough, e.g. § =1
(which is still sufficient for the proof of (2.7.11)). For 1 < k < 3 notice that

48+2d0+d
,_(M)

5ny)% exp(—C2"¢N

PO, N {(k — 1,6,¢,&")-bad boxes}| > C[I"” [ni?))
< P({(k—1,0,¢,£)-bad boxes} # 0) (2.7.47)
< [0, k-1 < (VN log*(N))fr_1 < (VN log?(N))IN—¢1oeN) < oy —elosN),
Using the estimates above together with the definition of G ~ shows that
r(N) [log, (log Nx_1)3]

P(éjcv) = [f”( U U {|1'[,(Q1 N{(k—1,0,¢,")-bad boxes}| > C|H,(:)1n;61}>

k=1 r=0
< B (I, 1 {(k — 1,6,2,€)-bad boxes}| > CII{" |n, ", ) (2.7.48)

< r(N)[logy(log Nk71)3]CN—clog(N) < C'loglog(N) _log(N)5/6N—clog(N)

Next we show that the number of (k — 1,6,¢)-bad boxes in £ is on the same order as the number of
(k—1,0,¢, ék)—bad boxes in ék with high probability. First we define, in a slight abuse of notation, the sets

Dy, (A) = {(z,t) € Z¢ x Z : dist(x, A) < ny, t € [0,n4]},
Apan={weQ:&(x) = gf(sc) for all (x,t) € Dy, (A)}
for all A € H,(Ql. Note that D, (A) is the same box as Dy, (z) if x is the center of A. Using the above
defined partitions (H;{l)j we see that for every choice of A, A’ € H;{l the events Ay Ao and Ay A are

independent, since dist(A,A’) > 5ng. Since & < €% the number of (k —1,0,¢)-good boxes in & is less or
equal to the number of (k — 1,0, ¢, gk)—bad boxes in &£F.
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To shorten the notation we say for a box A € HEQl that it is good in & if it is (k — 1,0, ¢)-good and
good in &F if it is (k — 1,9,57§~k)—g00d. A box can only be bad in € and good in £* for w € A%,A' Using
Corollary 2.7.6 we get ]P’(Ai’A) < C’n,;ClOg " and thus, again by Hoeffding’s inequality,

P(Jf”, 1 {bad in €} — 11}, 1 {bad in €} > O, n, 7, )

_ , - o g 1
< IP’(EIj st. [I7, N {bad in €}| — [T, N {bad in €}| > O, [ni?, )

(5nk)d
T,J . r,j .z r _ 1
< (5n) P (|7, 0 {bad in €} = |11}, 0 {bad in €] > NI, |n,”, (5nk)d) (2.7.49)

r _ 1
< (5”k)dP< > L, 2 C‘ch—)1|nk—ﬁlW)
Aelp?

< C«(5nk)d exp ( _ CZMN%_ 4ﬂ+§]¢:9+d)>.
Again the right hand side decays stretched exponentially in N for k > 4 for 8 > 0 small enough. For k < 3 we
can repeat the ideas of (2.7.47). The reason we can prove an upper bound in the same way as in (2.7.46) and

(2.7.47) is that the probability for a box to be bad in £* is of the same order as P(A§ A), namely n;, ¢ 108k,
Define

7(N) [logy (log Nk —1)*] }
Av =) N {|H,(;2 N {bad in €}| — [, N {bad in }| > O 1|n,;fl} (2.7.50)
k=1 r=0

then by the same arguments as above we also get
P(AS) < N—clos N, (2.7.51)

Since CN}’N N Ay C Gy the claim follows. O

2.8 Mixing properties of the quenched law: proof of Lemma 2.6.1

Definition 2.8.1. Let II;; be a partition of Z? into boxes of side lengths M, let C' > 0 and let w be a
realisation of the environment. We call a box A € 11, social with respect to w at time N € N, if for any pair

of points =,y € A there exists z € Z% such that
PUSI’N)(XN+(CM] = Z) > O, and P(Ey’N) (XN-l-(CM] = Z) > 0.
Note that if PU(JI’N)(XNHCM] = z) > 0, then by construction PUSE’N)(XNHCM] =2z) > (37H)M,
The next result shows that the density of social boxes is suitably high.

Lemma 2.8.2. For every € > 0 there exists My € N and constants ¢,C > 0 such that for all M > My there

exists a set of environments Sy satisfying

Z PEO(X, € A)<e forallw e Sy

A€l
A is not social

and P(Syr) > 1 — Ce=cl°8n . (Recall that the property of A being social depends on w.)
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Corollary 2.8.3. For every e > 0 there exists My € N so that for all M > My there are environments Sy
such that

> PYOX,eA) <2

ANS 15V
A is not social

for allw € Sy and P(Syr) > 1 — Cn—clogn,
Proof. Combine Lemma 2.8.2 and Lemma 2.1.1. 0

Proof of Lemma 2.8.2. The proof idea is similar to the one we have used to prove the high density of good
boxes; see the proof of Proposition 2.7.4. We set

pum = P(A is not social).

As a direct consequence of Lemma 2.10.1 for every A € II; we have that py; < Ce™*M for some positive

constants C, c. We define

log, log®n
Sy o= ﬂ {|HS\Z) N {not social boxes}| < C’\HS\Z) \pM} ) (2.8.1)
r=0

where

() = {A eIy : dist(A,0) < V),

() = {A €I : 271/ < dist(A,0) < 2"v/n}  for r > 1.
By Lemma 3.6 from | ] we have PO (||X,,|| > /nlog®n) < Cn=c°8" and so for w € Sy (note that
being social depends on w)

log, log3 n
> POOX, ey <CnEEm 4 Y > POYX, en)
A isAneolt-[]s\‘./é)cial =0 AEHE)

A is not social

log, log® n " 1 o )
< ; C|IT}; IpMW exp <_2n(2 Vn) )
log, log® n d
<C ; (23\\4/ﬁ> # exp(—cr?)pa
log, log® n
< Cpu ; e exp(—cr?® 4 rdlog 2)
< C'pu

where we used the annealed local CLT in the second inequality. It remains to show that P(0:0)(S;,) >
1 — Cecle" We have

PO (S5,) = PO (Ir < log, log® n : 117 N {not social boxes| > C|TI{) lpn)
log, log® n

< Z P(O’O)(|HS\Z) N {not social boxes| > C|H§\? lpar)-

r=0
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Next, let (H}VI]) jes be a further partition of HS\C[) so that for each j € J the distance between any pair of
distinct boxes in Hg’f is bigger than 3C' M and

2|H(7”)|
(3CM)

VIR
2(3CM)d =

Note that the index set J = J(M,r) is finite (in fact we have |.J| < 2(3CM)9) and that by construction the
boxes in I/ are social or not social independently of each other If |IT}, N {not social boxes}| > C \H \pM
then there exists a j such that [T}/ N{not social boxes}| > C|H |pM/ 3CM)%. Using Hoeffding’s inequality
for r > 1 we obtain

P©-0) (|HS&) N {not social boxes| > C|H§(/}) Ipar)

o) |pM)
(3C M)

CH(T”) i
par > (0Ll ), )

< ZIP’(O’O) (\H;wj N {not social boxes| >
jeJ

= Z]P’(O’O) (\H’;\j N {not social boxes| — [T}/

b (3CM)
(r)
11 i 2
ey
jeJ
LSl
<Zexp( wu(C— 2)(SCM)2d)
jeJ
27”71 n 2d

Similarly for » = 0 we have

\/7712(1 )

Pp(0-0) (|H§&) N {not social boxes| > C|TI{Y lpar) < 2(3C’M)dexp(—0p?wW .

Using the above estimates we obtain

2d log, log® n r—1 2d
(0.0)(ge \ < d e VT e (27NN)
PO.0)(5¢ ) < 2(3C M) exp( P, (30M)2d)+ Z 2(3CM)? exp( P e )
2d
< 3(n) - exo—Cp2, Y
_10g210g (’I’L) eXp( CpM(3OM>2d)

< Cn—clogn
O

Proof of Lemma 2.6.1. The proof relies on a construction of a suitable coupling of Pugm’o)(Xn € -) and
Po(f”o) (X, € -). First we show that there is a coupling on the level of boxes with side length M, where M is
a constant. Let IIj; be a partition of Z¢ in boxes of side length M and fix x and y. Set

Fpo= ) {w;vZ € [k, K]* N Z¢,

k>nf
> PEO(Xy € A) = PEO(X € A))| < G J\(;lz}

A€l
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and

Fle,y)= ()  o@mFen (]  @mFw
(%,m)€Z*xNgy (§,m)€Zx Ny
lZ—z|<n lg—yll<n
m<n m<n

By Lemma 2.1.1 we have P(F,0) > 1 — n=¢1°8" and thus P(F(z,y)) > 1 — Cn=¢°8"_ In the following we
assume that the indices of the random walks are integers, otherwise we take the integer part. Now choosing
M and n large enough for ||z — y|| < n’ on the event F(x,y) we obtain
S PO (X0 st o € A) = POV (X 20 i o € A))
A€Tly
< 0 1P (Ko sogsa o € A) — BOO (X a0 s o € )|

A€y
+ Z |Pbgy’0) (X,,20 log8d nt € A) — P (X 20 log8d no € A)
A€
+ ) PO (X 2010050 o € A) = PUO (X 20 180 0 € A
A€y
1 1
< 8 + = 3 + Z “P(x 0) (an log84 n? c A) P(y,O) (Xn'ze log8d no < A)l
A€
1
< Z Z |P(m’0) (Xn29 log®? n® € A) - P(y’O) (Xn29 log84 nf € A)| + Cniclogn

AEI;Y (2 log®? n?)

IN

1
Z_i_Cn—clogn_’_|1—[]I\j/(n2010g8d 0 |dn00< 2010g8d 0)

1
Z_|_C«n—clogn_|_2(”6’10g4d(n€)logi’)( 2910g8d 9)) dnGC«( 2910g8d 9)
1 3d

_ Z+C7’L7610gn+C(10g(n2010g8d’ﬂ0)) log—4d(n0)

1

9’

for n large enough, where

IN

<

37 (m) = {A €l : An{zeZ: min(||z — 2|, ||y — z||) < vVmlog®m} # (Z)}

and we used Lemma 3.6 from | ] and the annealed derivative estimates (Lemma 3.9 from | ). The
number of steps we chose might seem a bit strange at first. The choice becomes more clear by looking at the
last inequality above. There we see that, with the methods we use, we need a bit more steps than the square
of the current distance. One can calculate that any additional factor log™ (n?) with m > 6d is enough to get
the estimate. So there exists a coupling = sa 0 Of P (X260 1084 o € ) and Py (X260 10g84 o € °)
on ITp; x IIps such that for w € F(x,y)

w, n29 log

B n20 10gsa no ({(A,8) 1 A € Ty }) >

w,n29 log8d

MM—A

Recall Sy from Corollary 2.8.3. We have for

w EH(JL‘,y) = F(a:,y)ﬁ m U(i’m)gMﬂ ﬂ U(g}m)gM

(:f:,zn)ZdXNo (g,vjz)Zd'xNo
|£—z|[<n lg—yll<n
m<n m<n
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that

|

= 1
D Bl g e (B 8) > 5 — (M) >
A€elly
A is social

By Corollary 2.8.3 we obtain P(H(z,y)) > 1 — Cn=¢1°¢". Thus, by the definition of social boxes (Defini-
tion 2.8.1),~we can construct a coupling Ef}ie of P (X260 10884 oo € °) and Pu(,y’o)(ane log®@ o+ € °)
satisfying Ezie ({(z,2) : z € Z%}) > ;(57)?“M. If this coupling is successful, we let the random walks go
along the same path until time n. In case it isn’t, we try to couple from their current position. Note that
w € H(zx,y) ensures, that we can repeat the coupling attempt at the new positions.

k(4d+3) n, k € Ng and s; = n% logsd ng + CM. The n; will

represent the distance between the walkers at the start of an attempt at coupling and s will be the number

For the rest of the proof let nj = n’log

of steps necessary for the attempt. Furthermore let Sy := Zf:o Si.
By Lemma 3.6 from [ ], we know that with probability of at least 1 — Cn~¢1°8" the distance between

the random walks will only be

(nza long ne)l/z log3 (nze 1og8d ne) <n? log4d(n9)log3(n) <n? 1og4d+3n =ny,

as long as 8d < (1 — 26) loé‘if;ng. This condition is not a restriction, since we will let n — oo.
Let us now iterate the coupling procedure. If the coupling in step k£ — 1 is not successful, i.e. if the walks
are not at the same point, we try to couple again starting from the current positions. This leads to an

i i ing = i S ETY _ Zwy B0
iterative coupling = of the following form: =5 = E%, = Z ", and for k > 1

—

5:;’}11(217 22) = Z gi,,?ljc—l(av b) : [l{a:b}1{21222}P£a,Sk71)(XSk = Zl)
a,beZd

+ 1{0<Hafb|\§nk}5$’,l%k (21,22)
+ Ljacpfsne} PS5 (Xg, = 21) PPSF- (X, = 22)},

where 2% s a coupling of P“(,a’s’“’l)(XSk € -) and Pu()b’s’“’l)(Xs

—w,ng

€ ). The idea is that the random walks

will stay together once they are at the same site. We try to couple them via Zab if their distance is not

“w,ng

k

too large and we let them evolve independently otherwise.

Since at distance nj for the next coupling we walk s steps and with high probability have at most a

distance of s,lc/ 2 log® si,, the above coupling will work as long as k < (83;62)91)0:5) gn — 8516 holds, which we

show below. We obtain
1/2
3,16/2 log® s), = (ni log® ny, + C’M) log® (ni log® ny, + C’M).
Now for k < M% and n large enough
n2log® ny, + CM < n2log®n

and

log?® ny, = log*? (ne Jogh(4d+3) (n)) < log*¥ n.
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Thus, we have
si/Z log® s < ny, 10g4d(n) log® (n% log®? n) .

(1—20)logn 8d

(8d+6)loglogn ~ 8d+6 then

Furthermore, if k <

2log ny, + 8dloglogn = 2 log(ne logk(4d+3) n) + 8dloglogn
= 20logn + k(8d + 6) loglogn + 8dloglogn < logn

It follows that

s,lc/2 log® si, < 2ny log?*® nlog® n = 2n? log(k+1)(4d+3) (n) = ngy1-

So after we try the k-th coupling we are, with high probability, at distance ny41. The probability for each

2CM and we have C U-26)loen__ 1 attempts. So the

try to be successful is bounded from below by i(g%) (870) Toglogm

time we need for those attempts is

(1—26)logn 1 (1—26)logn 1
(8d+6) loglogn (8d+6) loglog n
Z Sk = Z ni longnk +CM
k=0 k=0
(1-20)logn 4
(8d+6) log log
< Z 1% 10g* B4 (n) 10g®(n) + CM (28.2)
k=0
(1—20)logn
(8d+6) loglogn
(1—20)logn 207 . 8d (8d+6) k
= CM +n“lo n (10 n ) .
(Bd+6)loglogn_ M T log™(n) kZ:O g )
Note that

(1—20)logn
(log n) a6y Toglogm (8416) _ exp((l — 29) log n) —pl-2

and therefore the right hand side of (2.8.2) is bounded from above by

(1 —20)logn 201 8d nt=20 1 (1 —-20)logn
M 1 <
(85 6)loglognC L T log™(n) log®0 () —1 ~ (8d + 6)loglogn log® (n)
(1 —-20)logn 1
= M
" (n(8d+ 6) loglognc * log® n =

for n large enough. And the probability for the above coupling to fail is smaller than

(1-20)logn . logn
(]_ fp*) (8d+6) loglog 1 <e Cloglogn

Ly2eM

3a and ¢ > 0 is a constant. So for a fixed pair of points z,y with ||z — y|| < n% we have

where p* = 1(

PO (X, € ) — PUO(X, e .)HTV < o CTEteEn
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with probability at least 1 — n=¢!°8™ Thus we get for every b > 0

P _ (,0) 3 — pwo) H < o CToibEw
(D(n)) P( N {|Pe e ) - PeOx €| <emomfing
m,yEZd:
|l iyl <n®,
lz—yl<n’

logn
R R AL W)
> 0 (X € ) =PI (X, € )| > el
z,yGZd:
lzll, Iyl <n®,
lz—yll<n®

>1— nd(b+0)nfclogn >1— Cnfc' logn'

Note that b > 0 can be chosen arbitrarily large, but the constants C' and ¢’ will have to adjusted accordingly.
O

2.9 Uniqueness of the prefactor

With some minor adaptations of the ideas from [ , Section 7.1] we can obtain the following result.
Lemma 2.9.1. Provided existence, the prefactor ¢ in (1.2.10) is unique.

Proof. Assume that there are functions f and g which both satisfy (1.2.10) and denote h = f — g. We will
check that E[|h|] = 0 and hence that h = 0 holds P-a.s.
By the triangle inequality we have
> POOX = a)h(o@umw)] < Y IPPO (X, = 2) = PO (X, = 2) f(0(0,0w)]

zezd z€Zd

(2.9.1)
+ Z |P<£0’O) (Xn = 1‘) - P(O’O) (Xn = x)g(a(w,n)w”
z€Z?
which by (1.2.10) implies
i (0,0) — —
nh_}rr;o Z POY(X,, = 2)|h(0(zmw)| = 0 (2.9.2)
zeZd

for P almost every w. That means lim, oo ECY[|h(o(x, ,w)|] = 0 P-a.s. Assume that h # 0, then there

exists a measurable subset A C Q and a constant ¢ > 0 such that P(A) > 0 and |h| > ¢ on A. Thus, for

every n € N, an elementary computation shows
E[ECO |0, m@)l)] 2 E[ECOIh(0(x, m@) Loy, pwea]]
> ¢E {IE(O’O)[]I (e A}]] (2.9.3)
= cP(A) > 0.
Since

E ]E(O’O)[Ih(cr(xn,mw)lﬂ = ]E{ > PO = y>|h(0(yv”)w)|}

yeLd
= 3~ POV (K = PE[h(o(m)] (204
yeZ4
= 3" POO(X, = y)E[|hw)]] = E[h(w)]]
yeZ4
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the sequence {|h(0(x, n)w)|}nen is tight. Thus, (2.9.3) implies that for P> almost all w we have
lim, 00 ECO[|h(0(x, nyw)|] > 0 which is a contradiction to (2.9.2). O

2.10 Intersection of clusters of points connected to infinity

The following lemma is a quantification of Theorem 2 from | ] which was pointed out there without a

proof. We give a proof using a key result from [ ]

Lemma 2.10.1. Let d > 2, p > p.. Then there are positive constants M and C and c such that for all
z,y € Z% with ||z —y|| < M

P(B(x,y; M, C)|(x,0) = oo, (y,0) — oo) >1—exp(—cM), (2.10.1)
where B(x,y; M, C) is the set of all w € Q for which there is z € Z¢ satisfying
(x,0) % (2,CM), (y,0) % (2,CM) and (2,CM) - .

Proof. For A C Z% we put nf*(z) = 1(y,0)—(2,) for some yea (this is the discrete time contact process starting

from all sites in A infected at time 0). Write
T d
B(xz,t):={3z : |z — 2| < 1t and 7775{ Yz) # ne (2)} (2.10.2)

for the “bad” event that coupling in a ball around z has not occurred at time t. We obtain from | ,
Thm. 1, Formula (3)] that

P(B(z,t) N{(z,0) — oco}) < Ce™* (2.10.3)

for certain constants ¢1,C, ¢ € (0,00) (which depend on d and on p > p.). Literally, the result in | ] is
proved for the continuous time version of the contact process, but we believe that the same holds in discrete
time.

Now consider z,y € Z% with ||z — y|| < M. Pick Cs so large that

Jo={zt |z — ol < CoM and |z — || < CoM)
satisfies #.J > M9, Applying (2.10.3) with ¢t = CyM for z and for y gives
P((B(x,C2M) U B(y, CaM)) N {(2,0) o0, (y,0) = oc})
< P(B(z,CoM) N {(z,0) = oo}) + P(B(y, CoM) N {(y,0) — co}) < 2Ce <> (2.10.4)
hence
P(ngﬁw(z) = n%ZM(z) = n{CZ}M(z) forall z € J ’ (x,0) = o0, (y,0) — oo) >1—(Cle M, (2.10.5)
Furthermore
IP’(EIZ eJ: n%ZM(z) =1and (2,CoM) — o0 ’(x,O) — 00, (y,0) — oo)

> IF’(EIZ €J i y(z) =1 and (2, CoM) — oo) >1— CeM" (2.10.6)
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where we used the FKG inequality in the first inequality. For the second inequality we use the fact that
extinction starting from A is exponentially unlikely in #A (see Theorem 2.30 (b) in [ ]) and the fact
that 77%2 s dominates the upper invariant measure which itself dominates a product measure on {0, 1}Zd with
some density p > 0 (see Corollary 4.1 in [ D-

Combining, we find
P(Hz €74 (2,0) = (2,CoaM), (y,0) = (2, CaM), (2, CoaM) — 00 | (2,0) = oo, (y,0) — oo)
>1—Cle oM _ oM, (2.10.7)

O

2.11 Quenched random walk finds the cluster fast

Since we allow the quenched random walk to start outside the cluster we need some kind of control on the

time it needs to hit the cluster. The following lemma will yield exactly that.

Lemma 2.11.1. Let d > 1 and define the set A, = A, (C',¢) ={w e N: PDSO’O)(&(XZ-) =0,i=1,...,n) <
C'e*C/”}. There exist constants C,c > 0, so that for every p > p.(d) and small enough C' and ¢’ we have

P(AS) < Ce™™ foralln=1,2,....

Proof. Note that by our definition of the quenched law, see equation (1.2.2), the quenched random walk
performs a simple random walk until it hits the cluster C. Thus, on the event that the random walk doesn’t

hit the cluster, we can switch the random walk with a simple random walk (Y},),, that is independent of the

environment. Using Lemma 2.11 from | ] it follows
p(0.0) (é0(Xo) =+ =& (X,) = 0)
S EO (e o) = k0= = (2 =)
_ Z WIP(OvO)((Yl, oY) = (@1, @), 60(0) = - = Eu(a) = 0)
S BOO (Y Vi) (01re ) P(E0(0) = -+ = (o) — )
s

b

where C and ¢ are certain constants depending only on p and d.

Using the definition of the annealed law we get

p(0,0) (§o(Xo) = =§,(X,)= O)

= [ POOGD) = 0= L) @)+ [ POV = 00 = L) dB()
Ay,

n

> [ POOE(X) =0,i=1,...,n)dP(w)
Ag

> P(AS)C'e™
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and since

PO (X)) =0,i=1...,n)dPw) < Ce ™
AL

we obtain that P(AS) < Ce™" with ¢ = ¢ — ¢/ > 0 by choosing ¢’ < ¢.
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Chapter 3

Quenched central limit theorem for

random walks in oriented percolation

In this chapter we will prove Theorem 1.3.5, a quenched CLT for a random walk in a dynamic random
environment, that is given by oriented percolation. Contrary to Chapter 2 the random walk does not have to
stay on the cluster. Instead we make assumptions, e.g. finite range and local dependence on the environment,
that allow for a more general class of random walks. We start by construction suitable regeneration times
at which two random walks in a joint environment regenerate simultaneously. This construction is inspired
by [ ], where they define regeneration times for a single random walk. Then we will compare two
random walks (X, X’) evolving in a joint environment with two random walks (Y, Y”) evolving in independent
environments along their respective simultaneous regeneration times. It turns out that, as long as the initial
distance of X and X’ is large, they behave as Y and Y’ with high probability.

3.1 Regeneration Construction

Let X = (X,,), and X' := (X)), be two random walks in the same environment. We introduce a sequence
of regeneration times Ty < Tb, ..., at which both X and X’ regenerate. The construction of the regeneration
times extends the corresponding construction from | ] for a single random walk.

The goal is to isolate the part of the environment that the two random walks explore until they regenerate
from the rest of the environment. This isolation will be achieved by certain cones in which the two random
walks will move. Let us recall the definitions of cones and cone shells from equations (2.25) and (2.27) in

[ J

For positive b, s, h and zpas € Z¢ we set
cone(wpas; b, s, h) = {(z,n) € ZEX Ly o ||bas — ]|y <D+ sn,0< n < h}. (3.1.1)

for a (truncated upside-down) cone with base radius b, slope s, height h and base point (2pas, 0). Furthermore

for

binn S bout and Sinn < Sout; (312)
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we define the conical shell with inner base radius biny, inner slope sj,,, outer base radius byyt, outer slope
Sout, and height h € NU {oo} by

Cs(xbas; binn, bout s Sinn, Sout h)

= {(x,n) € Z X Z : bigy + Sinnn < || Tbas — z||y < bous + Sout?, 0 < n < h} (3.1.3)

The conical shell can be thought of as a difference of the outer cone cone(zpas; bout, Sout, k) and the inner
cone cone(Tpas; binn, Sinn, #) with all boundaries except the bottom boundary of that difference included. To
shorten notation for fixed parameters for radii and slopes as in (3.1.2), we write cs(xpas; k) for the cone shell
as defined in (3.1.3).

For the proof of Theorem 1.3.5 we will follow the ideas from | ]. We now expand the cone
construction for the regeneration times from [ ] to two cones and we define the so called double cone
shell to isolate the area of the environment that two random walks have explored from the rest.

Consider two random walks X and X’ located at time n at positions zp,s and xp,, respectively, i.e.
X, = Tpas and X, = .. A first attempt would be to just take the union of both cone shells cs(zpas; 2) and
cs(x,; h) with base points xp,s and zf,,. The problem with this attempt is that the cone shell cs(xpas; h)
would grow into the interior cone(zi,; binn; Sinn, 1) of cs(xf,;h) and vice versa and in particular into the
region which we want to isolate. Instead we take the union of the cone shells without the elements of the

inner cones and define the double cone shell

des(Tpas, Thas; P

= (cs(pas; h) U cs(p,q; 7)) \ (cone(Zpas; binn, Sinns ) U cone(h,¢; binn, Sinn, 1)) - (3.1.4)

Note that we again omitted the base radii iy, bout and slopes Sijnn, Sout- Of course the double cone shell
des(@pas, Thag; h) = des(Zbas, T, binns bout s Sinn, Sout, 1) depends on these parameters as well. We also write
cone(Tpas) = cone(Tpas; 00) and des(Tpas, T,s) = dCS(Tpas, Th,s; 00) if we consider the cone or cone shell with
infinite height.

For the case d = 2 the double cone with the double cone shell is illustrated in Figure 3.1. For d = 1 we will
use a slightly different double cone shell definition. It will make the arguments in the proof of Lemma 3.1.2
more streamlined and the difference of the definitions is explained in the proof. For the case d = 1 the double

cone with the double cone shell is illustrated in Figure 3.3.

Remark 3.1.1. For notational convenience we assume all cones to be based at time ¢ = 0. Obviously we can

shift the cone to be based at an arbitrarily chosen space-time point in Z% x Z.

We follow the ideas of the proof of Lemma 2.13 from | ]. For d > 2 we define a subset M C Z¢ x Z
of the double cone shell with the following three properties:

1. Every path crossing from the outside to the inside has to hit a point in M.

2. There exist small constants § > 0 and ¢ > 0 such that for every (z,n) € M we have B;, (z)x{n—dn} C

des(@bas, Th,g; 00), where B,.(y) is the ball of radius r centred around y.

Note that the number of elements in M NZ? x [0,n] C dcs(@pas, Th,.; 1) grows polynomially in n. Such a set

is given, for instance, by the “middle tube” of the double cone shell which we will now define more precisely.
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Figure 3.1: Double cone with a double cone shell (grey), a time slice of the middle tube (blue), and a path

of a random walk crossing the double cone shell from outside to inside (red).

Let
1
d(?’l) = 5 (n<50ut + Sinn) + bout + binn)

be the radius to the middle of the cone shell at time n and define
M, ={z € 74 |z — @pas||y € [d(n),d(n) + 2d]},

’ d / (3.1.5)
Mn = {.CL’ S/ ||(E - xbas||2 € [d(n)ad(n) + Zd]}

the middle tubes for the single cones at time n. We define the middle tube in such a way, “thickening” it
by 2d, so that we can ensure that a nearest neighbour path crossing the cone shell has to hit a site in the
middle tube and cannot jump over it. Note that we define nearest neighbours according to the sup-norm,
that is y is a nearest neighbour of = if and only if ||z — y||, < 1. Furthermore we define the middle tube for
the double cone shell at time n by

ME® = (M, UM}) \ {m € Z%: min{||z — @basly , |7 — Thaslly} < d(n)} (3.1.6)

and set M = |, (M2 x {n}); see Figure 3.2 for an illustration.
Let 19 := (nd®),,—0.1.... be the contact process restricted to the infinite double cone shell des(zpas, 7},,; 00)

with initial condition 74 (z) = Ldes(apm 2l ;0) ((7,0)) and

1 if (z,n+ 1) € des(@pas, Th,e; 0), w(z,n+1) =1

dcs

nie, () = and 79 (y) = 1 for some y € Z¢ with ||z —y|| < 1,

0 otherwise.
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€1

Figure 3.2: A cross section of the cone shell including the middle tube M (blue) and a path « (red) crossing
the cone shell from the outside to the inside of the double cone and hitting at least one point in M (blue
dot).

We think of ndcs as a version of the contact process where all w’s outside dcs(Zpas, m{)as; o0) have been set to

0. For a directed nearest neighbour path
v = ((Zm,m), @mir,m+1),...,(zn,n), m<n,z; €723 with ||z;_; — 2] < 1 (3.1.7)

with starting position x,, at time m and final position z,, at time n we say that - crosses the double cone

shell des(@pas, Zp,s; 00) from the outside to the inside if the following three conditions are fulfilled:

(i) the starting position lies outside the double cone shell, i.e., ||Zm, — Tbas|ly > bout+MSout and ||y, — Tyl >

bouts + MSout,

(ii) the terminal point lies inside one of the inner cones, i.e., ||y — Tbaslly < binn + NSinn OF [|Tn — 2p,l]l, <

binn + NSinn,
(iii) all the remaining points lie inside the shell, i.e., (x;,7) € dcs(Tpas, Tp,; 00) for i =m+1,...,n — 1.

We say that « (from (3.1.7)) intersects 79 if there exists i € {m + 1,...,n — 1} with 7(x;) = 1. Finally

K3

we say that v is open in des(Zpas, 21, 00) if w(x;, i) =1foralli=m+1,...,n— 1.

Lemma 3.1.2 (2-cone analogue of Lemma 2.13 from | ). Assume that the relations in (3.1.2) hold

and consider the events

G1 = {n® survives},

Gy == {every open path y that crosses dcs(2pas, Th,s; 00) intersects n°}.
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For any e >0 and 0 < Sijnn < Sout < 1 one can choose p sufficiently close to 1 and by, < bous Sufficiently
large so that

]P(Gl ﬁGg) Z 1—e.

Remark 3.1.3. Note that in this preparation section we base the cones at time 0. Later on they will be based
at the current space-time position of the random walk but all results here hold for the shifted constructions
as well due to translation invariance. Furthermore, with the properties we impose on M on the event G1NG>
any site inside the inner cones which is connected to Z? x {0} via a path that crosses the cone shell also has
a connection to Z¢ x {0} inside the double cone shell. Thus, on the event G; N G we isolate all the sites in
the inner cone from the information on the environment outside the outer cone in the sense that the value

of 1 inside the double cone can be determined using the values of w’s inside the double cone.

Proof of Lemma 3.1.2. The analogous result for the single cone shell is Lemma 2.13 in | ]. We will use
similar arguments but, as already pointed out before, an additional complication arises from the overlapping
parts of the cones. Throughout the proof for r > 0 and = € Z? we denote by B,(x) the closed ¢2 ball of
radius r around . We will write cs(zpas) and cs(zj,,) as an abbreviation for ¢s(Zbas; binn, bouts Sinns Sout, )
and cs(2,5; Dinn, Dout > Sinns Sous, 00) respectively.

We split the proof in two cases according to d = 1 or d > 2. We will reuse some arguments from the case

d =1 for higher dimensions and thus begin with the case d = 1.

Case d = 1. Without loss of generality we may assume zp,s < y,.. We will focus on the differences to the
version of this lemma with only one cone. For that we distinguish according to the distance of the bases of
the cones.

First let ||2,; — Tbas|ly < 20out- Since, in this case, the bases of the two outer cones already overlap, it is
impossible for any path v to cross des(Zpas, Zp,e; 00) from between xpas and zp,, without hitting one of the
bases. (It easy to see how the picture in Figure 3.3 changes in this case.) In this case we can use the same
arguments as in | ], since we can combine the two cones to a single larger cone with the cone shell

being

dcs(xbasa xi)as) = {(x,n) €7 x Z+ * Tpas — bout — NSout S z § Tbas — binn - nsinn}

U{(z,n) € Z x Zy : 2{ ¢ + binn + NSinn < T < Thoe + bout + NSout | -

Now let ||2y,s — Tbas|ly > 2bous- In particular, the two cones do not overlap at time ¢ = 0. The two cone

shells are each made up of two wedges

c; ={(x,n) EZ X Zy : Thas — bout — NSout < T < Thas — binn — NSinn }
¢y ={(#,n) € Z X Zy : Tbas + binn + NSinn < T < Tpas + bout + NSout } »
2 ={(x,n) EZXZy : f . — bout — NSout < T < Th.o — binn — NSinn } ,
2 ={(x,n) €EZ X Zy : T} s + binn + NSinn < = < Thoo + bout + NSout ) -

We build the cone shell for the double cone using the above wedges. We have to isolate the inner cones
using the double cone shell and need to make sure, that the cone shell doesn’t evolve into any inner cone.

Obviously this isn’t a problem for ¢; and c? since these two wedges both evolve away from the other cone.
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Tbas Thas

~

Figure 3.3: Double cone and double cone shell in case d = 1

It remains to find a suitable hight at which we cut and merge ¢! and ¢ to avoid their propagation into the

inner cones. Given the parameters of the cones let

/
(xbas - xbas) — bout — binn
Sout + Sinn

t* =

(3.1.8)

be the time at which the inner cones meet the respective outer cones of the other double cone. Then the

cone shell is the following set
des(Tbas, Ths) = cg Uz U (cr NZ x [0, [t*]]) U (¢; NZ x [0, [t*]]).

A sketch of this cone shell can be seen in Figure 3.3. The cone shell is thus made up of four wedges and in
Claim 2.15 from [BCD16] it was shown that for any &’ > 0, by tuning the parameters correctly, the contact
process 175!} restricted to the wedge c} survives with probability at least 1 —¢&’. The same holds for the other

des survives in every wedge with probability at least 1 — 4¢’. For the outer wedges c}

wedges and therefore 7
and 2 every path crossing the cone shell has to 