
BRIEF COMMUNICATION

A teaching tool about the fickle p value and other statistical
principles based on real-life data

Salem Alawbathani1,2 & Mehreen Batool1,3 & Jan Fleckhaus1,4 & Sarkawt Hamad1,5,6
& Floyd Hassenrück1,7,11 &

Yanhong Hou1,8,9
& Xia Li1,10 & Jon Salmanton-García1,7,11 & Sami Ullah1,10

& Frederique Wieters1,12 &

Martin C. Michel13

Received: 28 August 2020 /Accepted: 20 December 2020
# The Author(s) 2021

Abstract
A poor understanding of statistical analysis has been proposed as a key reason for lack of replicability of many studies in
experimental biomedicine. While several authors have demonstrated the fickleness of calculated p values based on simulations,
we have experienced that such simulations are difficult to understand for many biomedical scientists and often do not lead to a
sound understanding of the role of variability between random samples in statistical analysis. Therefore, we as trainees and
trainers in a course of statistics for biomedical scientists have used real data from a large published study to develop a tool that
allows scientists to directly experience the fickleness of p values. A tool based on a commonly used software package was
developed that allows using random samples from real data. The tool is described and together with the underlying database is
made available. The tool has been tested successfully in multiple other groups of biomedical scientists. It can also let trainees
experience the impact of randomness, sample sizes and choice of specific statistical test on measured p values. We propose that
live exercises based on real data will be more impactful in the training of biomedical scientists on statistical concepts.
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Introduction

An alarmingly high fraction of published research in experi-
mental biomedicine has been found not to be reproducible or

replicable (Freedman et al. 2015). Other than biases at the
level of study planning and conduct, data analysis, and
reporting (Szafir 2018; Erdogan et al. 2020; Vollert et al.
2020), a poor understanding and inappropriate use of
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statistical analysis is a prevalent cause of poor reproducibility
of findings in the experimental life sciences (Colquhoun 2019;
Wasserstein et al. 2019; Michel et al. 2020). As highlighted
very recently, inappropriate use of statistical approaches could
even lead to the invalidation of issued patents (Curfman et al.
2020). Accordingly, more than 800 experts cosigned an edi-
torial proposing to no longer rely on statistical significance
and p values (Amrhein et al. 2019).

Firstly, a p value does not tell us whether a finding is true, but
only what the probability is that a difference of this or a greater
magnitude would have been found by chance if no difference
exists between the underlying populations. Thus, even when a
difference is statistically significant, it is untrue in many cases—
a phenomenon predicted a long time ago (Ioannidis 2005) and
later termed “false discovery rate” (Colquhoun 2014). Second, a
group difference or association may have a small p value but the
effect size is so small that it is of doubtful biological or medical
relevance, for instance when the sample size is large and/or
variability within the sample is low. On the other hand, a p value
may be large but associatedwith an effect size that, if true, would
be biologically or medically important, for instance when the
sample size is low and/or variability within the sample is high.
Thus, a fixed mathematical relationship exists between effect
size, variability, sample size, and p value within any data set.
Biologically important is the effect size, but the calculated p
value is in part dependent on variability and sample size.
Third, a calculated p value depends on the assumption that the
samples being analyzed have been taken randomly from the
underlying populations, i.e., biases at the level of study design
and conduct have beenminimized as far as possible, for instance
by randomization and blinding (Macleod et al. 2015).

A fourth problem is that random sampling of data sets from
the same populations causes a wide variability in observed
pvalues—a phenomenon called the “fickle” p value (Halsey
e t a l . 2015) . The human bra in i s notor ious for
underappreciating such fickleness, i.e., the degree of variabil-
ity of p values based on samples coming from the same pop-
ulations (Bishop 2020). Extensive simulations have demon-
strated how fickle a p value is (Halsey et al. 2015; Van Calster
et al. 2018; Bishop 2020). However, it has been our experi-
ence that this concept is difficult to communicate because
many biomedical scientists are not familiar with such simula-
tions. As participants and trainers of a course of statistics for
graduate students in experimental biomedicine, we have de-
veloped a tool that turns abstract simulations into a personal
experience. The key idea is to use real data from a single
population, which means that in theory, multiple samples
from this population should differ neither in their means nor
in their variability (standard deviation). The tool has mean-
while been used in additional statistics courses for biomedical
graduate students in three countries (Germany, Portugal,
Turkey) and consistently found to be very helpful by the par-
ticipants. Therefore, we wish to share it with a wider audience.

Methods

We have used a dataset comprised of baseline micturition
frequency of 1335 patients seeking treatment for overactive
bladder syndrome from a published study (Amiri et al. 2020);
this dataset is made available as an Excel file (Online
Supplement I). Whereas a micturition frequency of less than
8 times a day is considered normal, this patient database in-
cludes subjects with a frequency ranging from 4 to 50. As the
definition of the overactive bladder syndrome is based on the
presence of urgency and not on frequency (Abrams et al.
2002), it is not unexpected that some subjects in the database
have a normal micturition frequency. In the overactive bladder
syndrome field, a group difference of 1.5 episodes per 24 h is
considered medically meaningful because meta-analysis of
many clinical studies has shown that the true difference be-
tween standard of care and placebo is no more than 1.5 epi-
sodes per 24 h (Reynolds et al. 2015).

Any statistical software package can be used to perform the
exercise based on the data in Online Supplement I, but we
have used the Prism software (www.graphpad.com). While
full use of Prism requires a commercial license, the company
makes a free temporary version available for teaching courses
upon request. A Prism file we use and can be used by others is
provided as Online Supplement II.

During the exercise, each course participant picks (prefer-
entially random) numbers between 1 and 1335. Our example
uses 40 numbers, but the exercise can be performed with any
sample size. Each of these numbers corresponds to a patient
ID in the Excel sheet or in the “database” data table of the
Prism file (Online Supplement II). Participants then look up
the measured values of the patients they have picked based on
their numbers. In our example, measured values from patients
1–4 and 5–8 are then entered into the data table “n = 4” as
groups A and B, respectively, 9–14 and 15–20 as groups A
and B into the data table “n = 6” and 11–30 and 31–40 into the
data table “n = 10” (those data tables are filled with dummy
data in the Online Supplement II). These sample sizes were
chosen because they are typical for those used in non-clinical
research in biomedicine. Each of these three data tables is
linked to a statistical analysis consisting of a descriptive anal-
ysis, of an unpaired t test and of a Mann-Whitney test (both
two-tailed). The participants can easily see how outcomes
differ by statistical test being applied and by sample size.
They can also modify assumptions, for instance on unequal
standard deviation in both groups. The participants report their
results to the group and collate observed estimates of means or
medians, group differences, and their 95% confidence inter-
vals and calculated p values (see results). A flow-chart of
tasks, particularly for those using statistical software packages
other than Prism, is provided as Fig. 1. Examples based on a
course with 20 participants will be presented in the “Results”
section.
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Results

In our example, 20-course participants filled in the Prism sheet
(Online Supplement II) for two random samples each
consisting of 4, 6, or 10 subjects according to the instructions
given in Methods and summarized in Fig. 1. The following is
based on the data for the n = 10 groups; results for the n = 4
and n = 6 groups are shown in Online Supplement III. The
combined group means (20 participants with 2 groups of
n = 10) ranged from 9 to 17.7, standard deviation from 0.4
to 10.9, and the difference between groups A and B within a
participant from − 4 to 4.9; associated p values from an un-
paired, two-tailedt test ranged from 0.0002 to 0.9999 (Fig. 2).
Corresponding values for the groups based on n = 4 and n = 6
are shown in the Online Supplement III. For comparison, the
underlying population is characterized by a median of 13 (in-
terquartile range 11; 16) and a mean ± SD of 13.65 ± 4.51 (see
Online Supplement II).

Discussion

The fickleness of p values has repeatedly been demonstrated
based on simulations (Halsey et al. 2015; Van Calster et al.

2018; Bishop 2020). As expected by any professional statis-
tician, p values vary widely between random samples drawn
from the same population. As most biomedical researchers
find it difficult to understand simulated data, we as trainees
and trainers experienced it challenging to learn or teach about
the fickleness of p values. Nonetheless, we and others
(Colquhoun 2019; Wasserstein et al. 2019; Michel et al.
2020) feel that a sound understanding of what p values do
and do not mean is crucial for reproducible, replicable, and
robust studies and their interpretation. Therefore, we make
available a large database from a real study and have devel-
oped a tool that uses them to allow scientists to experience
how random choice of samples, sample sizes and choice of
statistical test affect calculated p values. This tool was origi-
nally developed in the context of a course held at the
University of Cologne but has meanwhile been tested in inde-
pendent statistics courses in several other universities in
Germany, Portugal, and Turkey with overwhelmingly posi-
tive feedback from the participants.

When performing experiments, we typically have little a
priori knowledge about the true distribution of the variable of
interest in the underlying population. We often start with a
small sample (pilot experiment) and infer what the true popu-
lation mean is and which variability it exhibits. What these true
values are depends on the parameter of interest and the popu-
lation being studied; the data being used here are just one ex-
ample. However, this example illustrates based on real data
how misleading a small sample can be. Ideally, more robust
estimates of variability and biologically relevant effect sizes
should exist before a study is done; in agreement with recent
guidelines (Michel et al. 2020), we consider evidence-based
power calculations important for hypothesis-testing research.
As such estimates are often not feasible based on pilot experi-
ments, we consider it good advice that research projects should
be considered exploratory when meaningful sample size and
power calculations are impossible due to lack of knowledge
of variability and effect sizes in the underlying populations.

Fig. 1 Flowchart of steps in the fickleness exercise (for details see the
“Methods” section)

Fig. 2 Twenty course participants had picked twice 10 random numbers
and entered corresponding measured patient values as groups A and B
into a Prism data table. For each sample means of groups A and B, their
difference and the associated p value from an unpaired, two-tailed t test

were calculated. As expected based on regression to the mean in the
presence of a true null hypothesis, the mean difference was close to 0
(0.365 [95% confidence interval − 0.832; 1.562]). Each data point shows
the values obtained by one participant
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The example from participants of one statistics course lets
participants experience howwidely findings can vary between
two random samples generated by the same person and be-
tween samples obtained by different people. Of note, all sam-
ples come from a single population, which means that there is
no true difference, i.e., the null hypothesis is true.
Experiencing this first-hand caused “wow”-effects among
participants. These “wow” effects were even greater when
participants learned that the group differences in number of
micturitions in the random samples ranged from − 4 to 4.9
(based on the n = 10 examples), whereas the difference be-
tween the standard of care and placebo in the overactive blad-
der syndrome field (from which the samples are drawn) is less
than 1.5 according to meta-analysis of micturition frequency
data (Reynolds et al. 2015). Therefore, typical placebo-
controlled studies in the field of overactive bladder syndrome
typically include several hundred patients in each study arm
(Reynolds et al. 2015). Thus, a sample size of n = 10 generally
is accepted as being too low for the parameter for which the
data were provided. However, in most cases in the experimen-
tal life sciences, we simply have no a priori knowledge on the
true variability within the population for our parameter of
interest. Thus, this example serves as a warning that even with
n = 10 (representing a large sample size as compared to most
experimental life science papers) does not necessarily protect
from random sampling error of effect size estimates.
However, the sample size is not expected to affect the distri-
bution of p values under the null hypothesis. While some have
argued that a minimum sample size of n = 5 applies to any
statistical comparison of group effects (Curtis et al. 2018),
we have argued against this and proposed that adequate sam-
ple sizes depend on assumptions of expected effect sizes and
variability; while we agree that sample sizes of less than 5 are
rarely meaningful for statistical analysis, there are examples
with very large effect sizes, for instance, induction of expres-
sion of certain cytokines where smaller sample sizes are ac-
ceptable (Motulsky and Michel 2018).

Based on previous simulations (Halsey et al. 2015; Van
Calster et al. 2018), our findings are entirely expected.
However, the major difference is twofold: the exercise and
tool are based on real data from real patients; and experiencing
first-hand how different random samples can lead to different
outcomes regularly surprises participants as the human brain
is notorious for underestimating the variability between ran-
dom samples (Bishop 2020).

The database and tool we have developed have several
additional benefits: firstly, trainees can use them to “experi-
ment” with various aspects of statistical data analysis to see
how minor modifications either in statistical approach or in
random sampling error affect outcomes of statistical tests; this
can be done individually also by those who are not part of a
formal course. Second, it allows users to experience the im-
pact of the choice of statistical test (here: parametric unpaired

t-test vs. non-parametric Mann-Whitney test). It also allows
them to introduce further manipulations within the analysis
options offered by Prism such as switching from tests assum-
ing equal standard deviation to those that do not. Of note, this
does not depend on the Prism software but can be applied to
any statistical software package based on Online Supplement
I. Third, the tool can easily be adapted if users wish for in-
stance to work based on different sample sizes. This explicitly
includes the option to introduce a “true” difference, for in-
stance by splitting it into two databases (from sample 1–667
and 668–1335) and then adding 1 to each sample of the sec-
ond group. If a true difference between groups exists (null
hypothesis untrue), the distribution of p values will change
depending on chosen sample size, which it does not if the null
hypothesis is true. Fourth, as in most real-life studies and
experiments, despite 1335 patients in the database only 1309
havemeasured values. If one of the participants coincidentally
had picked a number that corresponded to a missing value,
this typically sparked vivid discussions on the topic of han-
dling missing data, another relevant aspect of generating re-
producible data. Fifth, as reported in the primary publication,
the clinical dataset serving as basis for the tool (Amiri et al.
2020), the underlying data deviate from a normal distribution
(see graph histogram of database in Online Supplement I).
This allows users to also work on other aspects such as nor-
mality testing based on real data. Sixth, using this real exam-
ple can also be helpful in teaching the emphasis on reporting
effect sizes with their confidence intervals rather than relying
on p values. Finally, the database and tool are freely accessible
as Online Supplements I and II of this open-access publica-
tion. We hope that this database and tool will be useful to
many of our colleagues for training purposes. We explicitly
encourage colleagues to modify the tool according to their
needs. For instance, our course is typically run as a block of
2 days and the exercise is performed as pre-course assignment.
Therefore, we encouraged participants to apply for random
numbers but did not mandate that. However, if the tool is used
in a course of multiple 1–2 h lessons spread over a term, it
could be applied after randomization has been taught; in that
setting, formal randomization could be used.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00210-020-02045-3.

Acknowledgments The clinical database serving as a basis for the study
(Amiri et al. 2020) is derived from a study funded by Apogepha.
Apogepha permitted use of the published baseline data of the study for
the purpose of this manuscript but was not involved in the design or
writing of the manuscript. We thank the patients and physicians partici-
pating in the study.

Authors’ contributions All authors jointly developed the concept under-
lying the project. All authors exceptMCMparticipated in data generation.
All authors participated in data analysis. MCM drafted the manuscript.
All authors have commented on the manuscript draft and approved the

1318 Naunyn-Schmiedeberg's Arch Pharmacol (2021) 394:1315–1319

https://doi.org/10.1007/s00210-020-02045-3


final version. The authors declare that all data were generated in-house
and that no paper mill was used.

Funding Open Access funding enabled and organized by Projekt DEAL.
The course from which the tool and this manuscript evolved had been
organized and funded by the Center for Molecular Medicine Cologne
(CMMC). Work related to the reproducibility and robustness of experi-
mental data in the lab of MCM is supported by EQIPD project of the
Innovative Medicines Initiative 2 Joint Undertaking (grant agreement no.
777364); this Joint Undertaking receives support from the European
Union’s Horizon 2020 research and innovation program and EFPIA.

Data availability All data are made available in the “Supplementary in-
formation” section.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes weremade. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, van
Kerrebroeck P, Victor A, Wein A (2002) The standardisation of
terminology of lower urinary tract function: report from the
standardisation sub-committee of the International Continence
Society. Neurourol Urodyn 21: 167–178. DOI https://doi.org/10.
1002/nau.10052

Amiri M, Murgas S, Stang A, Michel MC (2020) Do overactive bladder
symptoms and their treatment-associated changes exhibit a normal
distribution? Implications for analysis and reporting. Neurourol
Urodyn 39:754–761. https://doi.org/10.1002/nau.24275

Amrhein V, Greenland S, McShane B (2019) Scientists rise up against
statistical significance. Nature 567:305–307. https://doi.org/10.
1038/d41586-019-00857-9

Bishop D (2020) How scientists can stop fooling themselves. Nature 584:
9. https://doi.org/10.1038/d41586-020-02275-8

Colquhoun D (2014) An investigation of the false discovery rate and the
misinterpretation of p-values. R Soc Open Sci 1:140216. https://doi.
org/10.1098/rsos.140216

Colquhoun D (2019) The false positive risk: a proposal concerning what
to do about p-values. Am Stat 73(Suppl 1):192–201. https://doi.org/
10.1080/00031305.2018.1529622

Curfman G, Bhatt DL, Pencina M (2020) Federal judge invalidates
icosapent ethyl patents — but on the basis of a common statistical
mistake. Nat Biotechnol 38:939–941. https://doi.org/10.1038/
s41587-020-0616-y

Curtis MJ, Ashton JC, Moon LDF, Ahluwalia A (2018) Clarification of
the basis for the selection of requirements for publication in the
British Journal of Pharmacology. Br J Pharmacol 175: 3633–3635.
DOI https://doi.org/10.1111/bph.14443

Erdogan BR, Vollert J, Michel MC (2020) Choice of y-axis can mislead
readers. Naunyn Schmiedeberg's Arch Pharmacol 393:1769–1772.
https://doi.org/10.1007/s00210-020-01926-x

Freedman LP, Cockburn IM, Simcoe TS (2015) The economics of repro-
ducibility in preclinical research. PLoS Biol 13:e1002165. https://
doi.org/10.1371/journal.pbio.1002165

Halsey LG, Curran-Everett D, Vowler SL, Drummond GB (2015) The
fickle P value generates irreproducible results. Nat Med 12:179–
185. https://doi.org/10.1111/j.1476-5381.2012.01931.x

Ioannidis JPA (2005) Why most published research findings are false.
PLoS Med 2:e124. https://doi.org/10.1371/journal.pmed.0020124

Macleod MR, Lawson McLean A, Kyriakopoulou A, Serghiou S, de
Wilde A, Sherratt N, Hirst T, Hemblade R, Bahor Z, Nunes-
Fonseca C, Potluru A, Thomson A, Baginskitae J, Egan K,
Vesterinen H, Currie GL, Churilov L, Howells DW, Sena ES
(2015) Risk of bias in reports of in vivo research: a focus for im-
provement. PLoS Biol 13:e1002273. https://doi.org/10.1371/
journal.pbio.1002273

Michel MC, Murphy TJ, Motulsky HJ (2020) New author guidelines for
displaying data and reporting data analysis and statistical methods in
experimental biology. Mol Pharmacol 97:49–60. https://doi.org/10.
1124/mol.119.118927

Motulsky HJ, Michel MC (2018) Commentary on the BJP's new statisti-
cal reporting guidelines. Br J Pharmacol 175:3636–3637. https://doi.
org/10.1111/bph.14441

ReynoldsWS, McPheeters M, Blume J, Surawicz T, Worley K, Wang L,
Hartmann K (2015) Comparative effectiveness of anticholinergic
therapy for overactive bladder in women. A systematic review and
meta-analysis. Obstet Gynecol 125: 1423–1432. DOI https://doi.
org/10.1097/AOG.0000000000000851

Szafir DA (2018) The good, the bad, and the biased. Five ways
visulaization can mislead (and how to fix them). Interactions 25:
26–33. DOI https://doi.org/10.1145/3231772

Van Calster B, Steyerberg EW, Collins GS, Smits T (2018)
Consequences of relying on statistical significance: some illustra-
tions. Eur J Clin Investig 48:e12912. https://doi.org/10.1111/eci.
12912

Vollert J, Schenker E, Macleod M, Bespalov A, Wuerbel H, Michel M,
Dirnagl U, Potschka H, Waldron A-M, Wever K, Steckler T, van de
Casteele T, Altevogt B, Sil A, Rice ASC (2020) Systematic review
of guidelines for internal validity in the design, conduct and analysis
of preclinical biomedical experiments involving laboratory animals.
BMJ Open Science 4:e100046. https://doi.org/10.1136/bmjos-
2019-100046

Wasserstein RL, SchirmAL, Lazar NA (2019)Moving to a world beyond
“p < 0.05”. Am Stat 73:1–19. https://doi.org/10.1080/00031305.
2019.1583913

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1319Naunyn-Schmiedeberg's Arch Pharmacol (2021) 394:1315–1319

https://doi.org/
https://doi.org/10.1002/nau.10052
https://doi.org/10.1002/nau.10052
https://doi.org/10.1002/nau.24275
https://doi.org/10.1038/d41586-019-00857-9
https://doi.org/10.1038/d41586-019-00857-9
https://doi.org/10.1038/d41586-020-02275-8
https://doi.org/10.1098/rsos.140216
https://doi.org/10.1098/rsos.140216
https://doi.org/10.1080/00031305.2018.1529622
https://doi.org/10.1080/00031305.2018.1529622
https://doi.org/10.1038/s41587-0616-
https://doi.org/10.1038/s41587-0616-
https://doi.org/10.1111/bph.14443
https://doi.org/10.1007/s00210-020-01926-x
https://doi.org/10.1371/journal.pbio.1002165
https://doi.org/10.1371/journal.pbio.1002165
https://doi.org/10.1111/j.1476-5381.2012.01931.x
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pbio.1002273
https://doi.org/10.1371/journal.pbio.1002273
https://doi.org/10.1124/mol.119.118927
https://doi.org/10.1124/mol.119.118927
https://doi.org/10.1111/bph.14441
https://doi.org/10.1111/bph.14441
https://doi.org/10.1097/AOG.0000000000000851
https://doi.org/10.1097/AOG.0000000000000851
https://doi.org/10.1145/3231772
https://doi.org/10.1111/eci.12912
https://doi.org/10.1111/eci.12912
https://doi.org/10.1136/bmjos-2019-100046
https://doi.org/10.1136/bmjos-2019-100046
https://doi.org/10.1080/00031305.2019.1583913
https://doi.org/10.1080/00031305.2019.1583913

	A teaching tool about the fickle p value and other statistical principles based on real-life data
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References


