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A B S T R A C T

This work investigates algorithms for digital assembly sequence planning. The focus
here is on finding feasible assembly sequences for a real-world data set from the
automotive industry. Flexible fastening elements that have to be deformed when being
disassembled, a large workspace in which the components are located and a very high
number of assembled parts push conventional assembly sequence algorithms to their
technical and temporal limits when it comes to real-world data. In three consecutive
chapters of this work, we investigate how to push these boundaries into the feasible
range, meaning that we are conducting pioneering research into the calculation of
feasible assembly sequences for real-world data.

The first part of this thesis presents an approximation of a general Voronoi diagram
which subdivides the workspace at the maximum clearance. We combine a common
voxel propagation algorithm with a novel memory-saving data structure. We then
discuss different ways to extract a general Voronoi diagram graph. This graph is
a roadmap which provides a roughly estimated translational disassembly path for
assembled parts, called Voronoi path. The second part of this work introduces our
new path planner Expansive Voronoi Tree (EVT). For a given part, the EVT searches
along the according Voronoi path for a collision-free disassembly path, consisting of
arbitrary translations and rotations. Our experiments show that the EVT finds shorter
paths more reliably within shorter calculation time than conventional path planning
algorithms. In the third part, we present our framework for finding feasible assembly
sequences. We are the first to calculate feasible assembly sequences for a real-world
data set. By using two new algorithms, we detect parts that are still enclosed, which
significantly reduces the number of path planning requests and, in turn, calculation
time. Our framework divides the disassembly process for an assembled part into a
NEAR- and FAR planning phase. Using the path planner from Hegewald et al. (2022)
which is designed for deformable fasteners, we unlock parts in the NEAR range and
then, in the FAR planning phase, navigate them to a nearby goal position using our
EVT. The disassembly paths found are then presented in our new, informative and
easy-to-read Assembly Priority Graph. Compared to other representation methods our
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graph is compact but also shows a high number of feasible assembly sequences. This
graph is the result of the interplay of all previously mentioned findings and thus the
final result of this work.



Z U S A M M E N FA S S U N G

In dieser Arbeit werden Algorithmen zur virtuellen Montageplanung untersucht. Der
Fokus liegt hierbei auf dem Finden von zulässigen Montagereihenfolgen für einen Real-
datensatz aus der Automobilbranche. Flexible Befestigungselemente, welche während
des Ausbauprozesses deformiert werden müssen, ein großer Arbeitsraum, in dem sich die
Bauteile befinden sowie die sehr große Anzahl von Montageteilen bringen die gängigen
Montagesequenz-Algorithmen bei Realdaten an ihre technischen und zeitlichen Gren-
zen. In dieser Arbeit werden diese Grenzen in drei aufeinander aufbauenden Kapiteln
zum Machbaren hin verschoben, so dass wir als Erste zulässige Montagesequenzen für
Realdaten berechnen können.

Im ersten Teil der Arbeit wird die Approximation eines general Voronoi diagrams vor-
gestellt, welches den Arbeitsraum an den Stellen mit maximalem Freiraum unterteilt.
Der Voxel-propagierende Algorithmus arbeitet auf unserer neuartigen, Arbeitsspeicher
sparenden Datenstruktur. Anschließend diskutieren wir verschiedene Möglichkeiten
einen general Voronoi diagram graph zu extrahieren. Dieser Graph wird als Straßennetz
interpretiert, welches einen grob geschätzten, translatorischen Ausbaupfad (sogenann-
ter Voronoi Pfad) für montierte Bauteile liefert. Der zweite Teil der Arbeit stellt
unseren neuartigen Pfadplaner Expansive Voronoi Tree (EVT) vor. Dieser sucht für
ein Bauteil anhand seines Voronoi Pfades nach einem kollisionsfreien Ausbaupfad,
welcher aus beliebigen Translationen und Rotationen besteht. Unsere Experimente
zeigen, dass der EVT schneller und zuverlässiger kürzere Pfade findet als gängige
Pfadplanungsalgorithmen. Im dritten Teil stellen wir unser Framework zum Finden
von zulässigen Montagesequenzen vor. Wir sind die Ersten, die für einen Realdatensatz
zulässige Montagesequenzen berechnen können. Wir erkennen mit zwei neuartigen
Algorithmen aktuell noch eingeschlossene Bauteile, verringern somit die Anzahl von
Pfadplanungsanfragen und folglich die Berechnungsdauer enorm. Unser Framework
unterteilt den Demontagevorgang von einem montierten Bauteil in einen Nah- und
Fernbereich. Wir lösen mit dem für deformierbare Befestigungselemente ausgelegten
Pfadplaner von Hegewald u. a. (2022) Bauteile im Nahbereich und navigieren diese
anschließend mittels unserem EVT im Fernbereich zu einer nahegelegenen Zielposition.
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Die gefundenen Ausbaupfade werden anschließend in unserem neuartigen, aussage-
kräftigen und leicht zu lesenden Assembly Priority Graph präsentiert. Verglichen mit
gängigen Darstellungsmethoden ist unser Graph kompakt, beinhaltet aber dennoch
eine Vielzahl von unterschiedlichen Montagesequenzen. Dieser Graph ist das Resultat
vom Zusammenspiel aller erwähnten Ergebnisse und somit das finale Ergebnis dieser
Arbeit.
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1

I N T R O D U C T I O N

The production process describes all the tasks and processes that are needed to produce
a technical product. This process consists of many highly complex sub-processes. As
shown in Figure 1, these include the fabrication of each individual part, the assembly
process of these parts and the final quality check. This thesis focuses on the assembly
process. This process describes the complete procedure of turning a set of individual
parts into one product - i.e. when should which part be assembled, and how? This
gives rise to the following questions, for example: Should a part be assembled by a
robot or a mechanic? What force should be applied in order to tighten a specific screw?
How many assembly lines are needed? Can two parts be assembled in parallel? Which
tools (e.g. hammers, wrenches, etc.) are needed? Are the ergonomic requirements
for the mechanics met? These detailed questions should ideally be answered with a
view to ensuring that the assembly process is as fast, cost-effective and ergonomic as
possible.

Fig. 1: Production and some of the sub-processes.
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2 introduction

a1 a2

a4a3

a1a2a3a4

a1a2a4a3

a1a3a2a4

a1a3a4a2

a2a1a3a4

a2a1a4a3

a2a4a1a3

a2a4a3a1

Fig. 2: Left: A two-dimensional assembly with parts a1, a2, a3, a4. Right: All feasible assembly
sequences.

An essential part of the assembly process is the assembly sequence which describes
the order in which each part is to be assembled. A possible assembly sequence for the
two-dimensional example shown in Figure 2 is a4 → a3 → a2 → a1. However, this
simple example comprising only four parts has as many as eight different sequences.
The assembly sequence a1 → a3 → a4 → a2 is much more complicated since a3 has to
be navigated after a1 is in its final position. Passing this narrow passage takes more
time and requires more concentration on the part of the mechanic. In addition, a
mechanic may need special tools to navigate a3 around the corner at the end.

The procedure for determining assembly sequences, is as follows: First, check which
parts are not yet assembled. Second, assemble one of these parts if possible; then go
back to the first step. The procedure ends when all parts are assembled. To determine
whether a part can be assembled, an assembly path needs to be found. A geometrically
feasible assembly path navigates a part from its start position to a goal position. The
term ”feasible” in this context means that a part does not collide with other parts.
Consequently, finding such a path is crucial for finding assembly sequences. The process
of calculating feasible paths is part of the research field of motion planning.

In summary, a well-chosen assembly sequence with appropriate assembly paths is
crucial for the overarching objective - namely, the assembly process is ergonomic and
cost-effective.

A major challenge occurs in the aforementioned second step, in which a part is added
to the assembly. An assembled part might blocks subsequent parts. Therefore, if
a1 and a2 are assembled, for example, it is not possible to assemble a3 and a4. The
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Fig. 3: The data represents a subset of the Mercedes-Benz A-Class. The surrounding orange squares
are the goal positions for the assembled parts. The dashed arrows show possible feasible disassembly
paths for the blue-highlighted covering part. This covering part is fastened with the red-marked
flexible clips shown on the right.

conventional assembly-by-disassembly technique solves this problem. It starts with the
assembled state and iteratively disassembles one part after another. To perform the
assembly sequence, the found disassembly sequence and disassembly paths are reversed.
Therefore, we change the point of view from assembly to disassembly. Furthermore,
a disassembly sequence is also used for repairing or replacing a broken part. Here, a
disassembly (sub-)sequence for the parts that need to be removed first is needed. The
fewer parts need to be disassembled, the faster repairs can be performed.

In addition to major challenge of finding a disassembly sequence that yields the
most cost-effective assembly process, however, each disassembly sequence must fulfill
the basic property of geometric feasibility. The term ”geometrically feasible” in this
context means that each part can be disassembled along the corresponding path without
colliding with components that are still assembled. The research field assembly sequence
planning (ASP) addresses how to find a geometrically feasible disassembly sequence.
In general, the number of possible disassembly sequences increases exponentially with
the number of assembled parts. It is therefore not possible to search for all disassembly
sequences, even for small examples. The minimum requirement is to find at least one
disassembly sequence. Nevertheless, for this sequence to be used in practice, it and the
associated paths should be meaningful and realistic so that the sequence found can be
used in an assembly process that is ergonomically and economically satisfactory, if not
optimal.
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Conventional ASP frameworks proceed as follows: A main loop iterates over every
still-assembled part and makes a rigid body motion planning attempt until each part is
successfully disassembled. This procedure is long known and well-studied for academic
examples (Mello and Sanderson, 1988), (Hadj et al., 2018), (Ebinger et al., 2018).

However, real-world data - as shown in Figure 3 - presents a number of unresolved
problems for the research field of ASP. No framework currently exists that is capable
of performing ASP for complex real-world data. We categorize these problems into the
following four points (i) - (iv). In addition, we derive from these problems a range of
requirements for an ASP framework.

Flexible fastening elements (i): In addition to screws and nuts, clips in all their
varieties are among the most common fastening elements. As shown in the zoomed
image section in Figure 3, clips are modeled in a relaxed state. This means that in
order to find a feasible disassembly path, the clips need to be deformed. These clips will
otherwise inevitably cause collisions, which previous algorithms are generally incapable
of handling.

Requirement (i): Addresses the problem of flexible fastening elements during motion
planning.

Large workspace (ii): A complex data set such as the vehicle shown has a large
workspace. This large workspace provides a multitude of possibilities for navigating
a part to a goal position. Each dashed arrow shows a possible disassembly path for
the blue-highlighted part. However, they differ significantly in terms of length and
practical manageability. For example, navigating the blue highlighted part through
the windshield is much more complex than simply navigating it through the rear-left
door.

Requirement (ii): Find appropriate disassembly paths.

Numerous assembled parts (iii): The data set shown consists of more than 800 parts.
The aforementioned main loop from ASP frameworks generally requires, depending on
the number of parts, a quadratic number of motion planning attempts. A complicated
motion planning attempt like this can take up to a few minutes. This makes the
calculation times for large data sets such as this very long and therefore impracticable.

Requirement (iii): Speed up the ASP framework; specifically reduce the number of
motion planning attempts.
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Table 1: The requirements for the NEAR- and FAR planning phases.
planning
phase

flexible
parts

optimized
path

NEAR ✓ x
FAR x ✓

Difficult presentation of the assembly sequences (iv): As mentioned above, the
number of disassembly sequences increases exponentially depending on the number of
components. Even if only a subset is calculated, the quantity of disassembly sequences
is difficult to represent. Therefore, a representation is required that is much more
compact than the one shown in Figure 2.

Requirement (iv): Find a compact and meaningful representation for the found disas-
sembly sequences and disassembly paths.

Our contribution: Our main contribution with this thesis is an ASP framework that
fulfills requirements (i) - (iv). To achieve this, we present new scientific contributions
to the requirements (ii) - (iv). To solve (i) in the context of ASP, we use an existing
work and integrate it in our framework.

We will now analyze problems (i) - (iv) and outline our main approaches to solving
these problems.

(i) + (ii): Without taking into account the deformation of flexible fastening elements
it is not possible to unlock them. Once unlocked, however, the clips do not need
to undergo any further deformation. The slight deformation of the clips is relevant
only near the special counterpart to which the clip is attached. This deformation is
negligible for navigation in large workspaces. Assembled parts have so little clearance
in their immediate environment that the disassembly paths near the installed position
do not vary to any great extent, i.e. they are all very similar. Once the part is unlocked,
however, there are a number of ways that i can be navigated to a goal position (as
shown in Figure 3). We can conclude, therefore, that different requirements apply
to different disassembly phases. We call the unlocking phase the NEAR planning
phase and subsequent navigation in the large workspace the FAR planning phase. The
subdivision of the motion planning process was first developed by Masan (2015). The
planning phases are disjoint and have different requirements which are summarized in
Table 1. This is why our framework uses a different motion planner for each planning
phase.
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(i): For the NEAR planning phase, we use the Iterative Mesh Modification Planner
(IMMP) from Hegewald et al. (2022). In a preprocessing step with a geometry-based
heuristic, this motion planner detects flexible fastening elements and shrinks them. It
then uses a sampling-based strategy to search for a feasible disassembly path NEAR
the installed position.

(ii): Next, we describe our thoughts and observations regarding the FAR planning
phase. Finding optimized paths is a well-known and long-standing problem in the
research field of motion planning. Motion planning in the context of ASP, however, has
a special characteristic: The workspace is the same for all assembled parts at a certain
point in time. In addition, the workspace changes only slightly when a part has been
removed. As an example, two neighboring screws can use the same disassembly path
in the FAR planning phase. It therefore makes sense to determine possible disassembly
paths that can be used by all parts as a basis.

For this purpose, we subdivide the entire workspace using the general Voronoi diagram
(GVD) (see Figure 4, left), which belongs to the research field of computational geometry.
The GVD subdivides the workspace at the points that have maximal clearance with
respect to their surroundings. From the GVD, we extract a motion planning roadmap,
the general Voronoi diagram graph (GVDG). Since it is promising to disassemble a
part along a path with the maximum clearance with respect to its surroundings, we use
the GVDG for the FAR planning phase as a rough estimate of the translational part of
a disassembly path. However, approximating the GVD for complex real-world data
is a challenging task. A common approach for achieving this is to voxelize the scene.
These voxels then propagate iteratively to their neighbors. If two voxels with different
starting voxels meet, a GVD voxel is created. However, the underlying data structure
needed for this propagation process is a three-dimensional grid. The cubic memory
needed for this grid exceeds the existing memory for fine voxelizations. We present our
novel data structure Voronoi voxel history, which stores only the current wavefront and
not the entire three-dimensional grid. Memory usage, therefore, is roughly quadratic
rather than cubic, which we demonstrate in our experiments.

After a successful NEAR planning phase, the FAR planning phase takes over. We search
within the GVDG for a short estimated translational disassembly path, a Voronoi
path (VP). Figure 4 right, shows VPs for assembled parts to a goal position. Finally,
using our novel Expanisve Voronoi Tree (EVT) motion planner, we search along the
VP for a feasible disassembly path. It is possible that the disassembly path that is
to be found along a VP contains narrow passages. Our EVT is therefore based on
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Fig. 4: The data set is a subset from Figure 3. Left: The corresponding general Voronoi diagram.
Right: Extracted Voronoi paths along the GVD.

the ’Expansive Spaces Tree (EST)’ (Hsu et al., 1997) which is optimized for narrow
passages. The disadvantage of the EST is that it explores the space only very slowly.
We can overcome this problem by pushing our EVT sampling in the forward direction
of the VP. In this way, our EVT inherits the capability to overcome narrow passages
from the EST and is speeded up by sampling the translational part along the VP.

In summary, the combination of the IMMP from Hegewald et al. (2022) for the NEAR
planning phase and our novel EVT for the FAR planning phase results in an overall
motion planning process that fulfills requirements (i) and (ii).

(iii): The motion planning attempts require almost the entire computation time of
an ASP framework. Reducing the number of motion planning attempts is crucial for
speeding up an ASP framework. We developed two different algorithms that reduce the
number of motion planning attempts. The first algorithm is based on the GVDG. The
GVDG does not provide a VP for each assembled part. We analyze the reasons for this
and conclude that if the GVDG cannot provide a VP for an assembled part, the part
is enclosed by its surroundings, meaning that no feasible disassembly path for the part
currently exists. As a result, no motion planning attempts are performed for parts that
do not have a VP. Our second algorithm stores all parts with the part to be removed
during the motion planning attempt. We now assume that our motion planners in
the NEAR- and FAR planning phase find a path, if one exists. If a part cannot be
disassembled, a motion planning attempt must be made to disassemble the part only
when one of the parts in collision already has been removed. Our experiments show
that the combination of these two algorithms speeds up our framework by a factor of 3.
This is how we fulfill requirement (iii).

(iv): A number of ways to represent disassembly sequences have been identified,
e.g. AND/OR-graphs, Petri-nets or Diamond graphs (Michniewicz, 2019). The



8 introduction

aforementioned representations need storage capacity that is linear with respect to
the number of disassembly sequences. However, the number of disassembly sequences
is generally exponential with respect to the number of parts. These representations
are therefore not useful for a data set containing hundreds of parts. We extend the
common blocking graph (Wilson, 1992) and create the assembly priority graph (APG).
For all parts and disassembly paths, the APG represents the parts which need to
be removed first. The representation is easy to read and does not require significant
storage capacity. Thus, the APG fulfills the last requirement (iv).

We combine all the aforementioned algorithms in our own ASP framework. We want
to emphasize that our benchmark data set is an almost complete car. This car has
761 parts which consist of over 6 million triangles. This data set is therefore much
more complex and comprehensive than the data used so far in the literature. Our
experiments for the data set from Figure 3 show that these algorithms are capable
of handling complex data. Finally, we show that we are the first to calculate and
represent the disassembly sequences identified for a complex, real-world scenario from
the automotive industry. For this, we use our APG, which is meaningful, easy to read
and extendable.

In summary, this thesis offers new contributions to the research fields of computational
geometry (Dorn et al., 2020), motion planning (Dorn et al., 2021) and assembly sequence
planning (Dorn et al., 2022). Each one of our novel algorithms operates in isolation,
but their full potential is unleashed when deployed in combination in the context of
our ASP framework.

1.1 Structure

Our work is subdivided into six chapters. Our main aim is to enable ASP for real-world
data. Following this introduction, therefore, we discuss the special requirements and
properties for real-world CAD data in the context of ASP. In the third chapter, we
introduce the GVD and propose our propagation algorithm with its novel RAM-saving
data structure. The chapter also contains a detailed discussion of the different ways to
create the GVDG. The fourth chapter introduces the motion planning problem and
explains why we subdivide the motion planning process into the NEAR- and FAR
planning phases. We present our novel EVT motion planner for the FAR planning
phase. The fifth chapter looks at ASP. We first introduce our novel assembly priority
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graph, after which we present our assembly sequence planning framework, the first one
capable of handling a real-world CAD data set from the automotive industry. Our
framework makes extensive use of the results from the two previous chapters. Finally,
we summarize our findings and outline a range of proposals concerning future works in
the field of assembly sequence planning. Despite the interdependence between Chapters
3, 4 and 5, all three chapters can be read as standalone contributions.



2

T E S T D ATA A N D B A C K G R O U N D

2.1 Test Data

The main contribution of this dissertation is assembly sequence planning for real-world
CAD data. Compared with examples from academia, real-world scenarios - such as
our data from the automotive industry - come with a range of special requirements
and challenges. The main differences between real-world data and academic data sets
are the high number of parts that are positioned in a large workspace, multiple goal
points and flexible fastening elements. We present these in detail below.

2.1.1 Data Size

We evaluate our algorithms based on two subsets of a representative real-world data
set which contains a high number of complex parts in different positions. A graphical
representation can be found in Figure 5. The attributes of the data are listed in Table 2.
Column “#parts” gives the number of parts comprising the body shell and all assembled
parts, whereby each part is represented as a three-dimensional triangulated mesh.
“#triangles” shows the number of triangles in the assembly as a whole (bodyshell and
assembled parts). The dimensions of the oriented bounding box containing the assembly
are shown in “OBB size”. With 761 parts comprising more than 12 million triangles,
data set b) contains the most parts of a complete vehicle. We excluded the doors,
bonnet and tailgate because these parts need to be closed and opened many times
during the assembly process, which significantly complicates the assembly process.
The wheels are not included either because they are not part of the standard CAD

10
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Table 2: The attributes of the data sets.
Test
Data #parts #triangles OBB size [mm]

data set body
shell

assembled
parts assembly x y z

a) 50 137 885,000 2,623 1,786 1,292
b) 100 661 6,135,050 4,617 1,991 1,317

a) b)

Fig. 5: The test data represent two different subsets of the Mercedes-Benz A-Class. The grey sites
belong to the body shell and the different-colored ones are the assembled sites.

data set. The engine block is confidential and so not included either. Table 3 shows a
classification of the assembled parts. The major parts are ’fasteners’, followed by the
’normal parts’ and the minor parts are ’others’. The boundaries between the classes are
fluid, of course, but this table provides an overview of the rough composition of the
parts. To provide more information about the data set, Figure 6 shows two fasteners
and four normal parts with the number of triangles that represent the appropriate part.
Some parts classified as ’others’ are shown in the separate Section 2.1.3.

Data set a) is a subset of b) and is used to show the scalability of our algorithms. In
addition, the slimmed-down version a) is less densely packed and some algorithms can

Table 3: A classification of the 661 assembled parts from data set b).

class description count
# %

’fasteners’ screws, nuts, bolts, clips 396 60

’normal parts’ steel sheets, covering plates,
wheels, seats 165 25

’others’ wires, foamed material, rubber seal 100 15
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410 548

3, 823

10, 940

28, 310

3, 064

Fig. 6: Two ’fasteners’ in the top-left corner and four ’normal parts’. The number next to the parts
indicates the number of triangles. The parts are not shown to scale.

be better presented visually. Both data sets have significantly more parts than the
data sets used in comparable works for ASP (Aguinaga et al., 2008), (Ebinger et al.,
2018), (Ou and Xui, 2013), (Yu and Wang, 2013), (Jiménez, 2013), (Hadj et al., 2018).
These data sets include, for example, different kinds of puzzles (< 20 parts), a drill (22
parts), toy plane (32 parts), engine (57 parts), petrol engine (18 parts), and die cutter
(29 parts). In our scenario, the body shell can be considered as a fixed part on which a
set of parts are assembled. For the rest of this work, we define the assembly as follows
Definition 1.
Definition 1 (Assembly)
An assembly Ā := (O, A) consists of the body shell O and the assembled parts
A := {a1, ..., an}. The body shell and each assembled part are represented as a
triangulated mesh.

Definition 2 (Mesh)
A three-dimensional triangulated mesh m := (V , T ) is defined with its finite set of nodes
V ⊂ R3 and the finite set of triples of indices T := {(t1

1, t2
1, t3

1), ..., (t1
m, t2

m, t3
m)|1 ≤ tj

i ≤
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|V |} which indicates with the indices of V the set of triangles. Another representation
of m can be done with m := {△1, ...,△n} where each triangle is defined as △ :=
{vi, vj , vk|vi, vj , vk ∈ R3}.
In this work, we define that a point pm is an element of m if it lies on the surface of m:
pm ∈ m⇔ ∃△ ∈ m pm ∈ △.

Collision checks:

We perform the collision check for two meshes using the indexed bounding volume
hierarchy (IBVH) (Gottschalk et al., 1996). The IBVH of a mesh is a tree and is
created as follows: The root is an oriented bounding box (OBB) which contains the
complete geometry. This OBB is subdivided into two smaller OBBs which contain the
corresponding sub-geometry. This procedure is performed iteratively until an OBB
contains only a few triangles. The IBVH is calculated once when the mesh is loaded.

Two meshes are now checked for collision using their IBVH as follows: A check is first
performed to determine whether, two root OBBs are in collision. If, the two children
octrees are then checked pairwise for collision. Perform these steps iteratively until the
leaves are reached and then check the triangles for collision.

2.1.2 Goal Points

Finding a disassembly path for assembled parts is one of the major challenges in
ASP. An assembled part starts in an initial position and is disassembled if a certain
condition is fulfilled. In rigid motion planning, this condition is usually if the robot’s
and obstacles’ OBBs are disjoint or if the robot has reached a specific goal point. In
real-world scenarios, not every OBBs disjoining feasible position is useful, e.g. a goal
position on top of a car is unfavorable for the assembly process. In our work, therefore,
we define a set of standardized goal positions, so called body-in-white points (BIWP),
around our car (see Figure 7). The BIWP is a set of pre-defined positions from which a
worker could potentially start an assembly process. A disassembly process is therefore
successful if the assembled part to be disassembled reaches one of the BIWP.
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Fig. 7: The orange dots surrounding the car represent the body-in-white points.

2.1.3 Flexible Parts and Initial Collisions

Real-world scenarios involve numerous fastening parts. Screws and nuts are the most
common fastening elements. Due to mesh-simplification threads are not modeled in
detail. The thread of a screw is therefore modeled as a cylinder and the internal thread
of a nut as a normal hole. A cylinder that is too big is therefore stuck in a hole that is
too small which results in initial collisions.

In addition to screws and nuts, clips are also common fastening elements. Clips come in
various shapes and forms (see Figure 8), but what all clips have in common is that they
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Fig. 8: Eight different types of clips. All of them needs to be deformed during the disassembly process.

a) b) c) d)

Fig. 9: Four flexible parts that are part of our test data: a) cable, b) hose, c) sealing, d) fabric
covering.

need to be deformed during the disassembly process. In addition, clips are modeled in
the relaxed state, which can also cause initial collisions.

Clips contain flexible subparts which need to undergo ‘minor’ deformation in order for
a disassembly path to be found. Some parts, however, are ‘completely’ deformable, e.g.
cables, hoses, sealings and fabric coverings. See Figure 9 for some examples of completely
flexible parts. All these parts are characterized by their very high deformability, a
feature that is extremely challenging and time-consuming to simulate.

2.1.4 Test Setup

All results and experiments are benchmarked on a laptop with an Intel i7-6820HQ
(2.70GHz) processor, 32 GB of RAM and an NVIDIA Quadro M2000M graphics card.
The software (64bit binary) is written in C++ and compiled with MS Visual C++
15.9. All algorithms use floating precision and are executed - with the exception of
certain renderingsteps - on a single core of the CPU.
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G E N E R A L V O R O N O I D I A G R A M ( G R A P H )

This chapter focuses on the approximation of the general Voronoi diagram (GVD),
the extracting of the general Voronoi diagram graph (GVDG) and how we use it for
assembly sequence planning.

We start by introducing the well-known ordinary Voronoi diagram (VD), along with
the medial axis (MA) and describe how we generalize the VD to define the GVD.
We present a voxel-based propagation algorithm that approximates the GVD. This
algorithm can work with two different underlying data structures: (i) a complete
three-dimensional distance field: (ii) our novel hash-table-based data structure, the so
called Voronoi voxel history (VVH). The VVH requires roughly only a bit more than
quadratic memory usage and the complete distance field cubic memory usage with
respect to grid resolution. However, this reduced RAM usage comes with the cost of a
longer running time. The experiments on our test data quantify the calculation time
and memory storage required for both data structures.

Finally, we introduce the general Voronoi diagram graph (GVDG). The GVDG is a
graph-based roadmap for subsequent motion planning, which is covered in Chapter 4.
The analysis of the structure shows that the GVDG can contain isolated sites. An
isolated site is an assembled part for which the GVDG does not provide a connection
to a BIWP. The occurrence of an isolated site, however, arises depends on how the
GVDG is generated. We present and discuss three different approaches for generating
the GVDG. Our novel outside-to-inside (OTI) propagation algorithm ensures that
isolated sites occur only if no feasible disassembly path exists. This is useful for when
consider a later ASP framework (see Chapter 5) because it allows assembled parts to
be detected that cannot currently be removed. This significantly reduces the number
of unsuccessful motion planning attempts and. in turn, the calculation time.

16
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3.1 General Voronoi Diagram (GVD)

The ordinary Voronoi diagram (VD) is an important geometric data structure with
numerous applications (Okabe et al., 2000) such as illustrating the influence area of
schools, hospitals or shops, i.e. the Voronoi region indicates the households which are
nearest to the respective school building. For a given set of sites S ⊂ R2, the VD
partitions the plane into Voronoi regions V R where every point in a region has the
same nearest input site s ∈ S. In the ordinary case, sites are points and the metric
used is the Euclidean distance. An example of an ordinary VD is shown in Figure 10.
The VD is defined as follows (Descartes, 1644):
Definition 3 (Voronoi diagram)
Given S ⊂ R2 a finite set of points.
The Voronoi region V R of a site s ∈ S is defined as V R(s, S) := {p ∈ R2|d(s, p) <

d(s′, p) ∀s′ ∈ S \ {s}} where V R(S) := ∪s∈SV R(s, S) defines the union of all Voronoi
regions.
The Voronoi edge V E of two sites s1, s2 ∈ S is defined as V E(s1, s2, S) := {p ∈
R2|d(s1, p) = d(s2, p) ∧ d(s1, p) < d(s′, p) ∀s′ ∈ S \ {s1, s2}}.
The Voronoi node V N of three sites s1, s2, s3 ∈ S is defined as V N(s1, s2, s3, S) :=
{p ∈ R2|d(s1, p) = d(s2, p) = d(s3, p) ∧ d(s1, p) ≤ d(s′, p) ∀s′ ∈ S \ {s1, s2, s3}}.
The VD is then given as V D(S) := R2 \ V R(S).

The VD is also the union of all Voronoi edges and Voronoi nodes.

The ordinary VD can be generalized in many different ways. For example, arbitrary
input sites S which are placed in higher dimensional spaces than simply points in the
plane, can be considered. In addition, the underlying distance metric can be arbitrary.
We generalize the VD in the way that we consider three-dimensional meshes as input
sites. We therefore need to transfer the above definition. In the three-dimensional
space, three sites are needed for defining a Voronoi edge and four sites for defining
a Voronoi node. Two sites define a Voronoi face. In addition, we store the medial
axis (MA) (see Figure 11 for a two-dimensional example), also called skeleton, in our
GVD. The MA is basically the (G)VD of a part itself. In a three-dimensional scenario,
it allows us to navigate through parts with holes. The GVD is therefore defined as
follows:
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Fig. 10: The black dots represent the input sites S, the white areas the Voronoi regions and the red
lines the Voronoi diagram.

Definition 4 (General Voronoi diagram)
Given the input data S := {s1, ..., sn} which consists of n three-dimensional meshes. We
define the distance d from a point p ∈ R3 to a mesh s as d(p, s) := minps∈s ∥ps − p∥2.
The Voronoi region V R of a site s ∈ S is defined as V R(s, S) := {p ∈ R3|d(s, p) <

d(s′, p) ∀s′ ∈ S \ {s}} where V R(S) := ∪s∈SV R(s, S) defines the union of all Voronoi
regions.
The Voronoi cell V C of a site s ∈ S is defined as the boundary of its Voronoi region.
We broaden our GVD by the medial axis MA(S) := ∪s∈SMA(s, S). The medial
axis MA of a site s ∈ S is defined as MA(s, S) := {p ∈ R3|(∃ps, qs ∈ s, ps ̸=
qs, d(s, p) = d(ps, p) = d(qs, p) ∧ d(ps, qs) ≥ δMA ∧ (d(s, p) < d(s′, p) ∀s′ ∈ S \ {s})}
with δMA ≥ 0.
The Voronoi face V F of sites s1, s2 ∈ S is defined as V F (s1, s2, S) := {p ∈
R3|d(s1, p) = d(s2, p) ∧ d(s1, p) < d(s′, p) ∀s′ ∈ S \ {s1, s2}}.
The Voronoi edge V E of sites s1, s2, s3 ∈ S is defined as V E(s1, s2, s3, S) := {p ∈
R3|d(s1, p) = d(s2, p) = d(s3, p) ∧ d(s1, p) < d(s′, p) ∀s′ ∈ S \ {s1, s2, s3}}.
The Voronoi node V N of sites s1, s2, s3, s4 ∈ S is defined as V N(s1, s2, s3, s4, S) :=
{p ∈ R3|d(s1, p) = d(s2, p) = d(s3, p) = d(s4, p) ∧ d(s1, p) ≤ d(s′, p) ∀s′ ∈ S \
{s1, s2, s3, s4}}.
The GVD is then given as GV D(S) := R3 \ (V R(S) \MA(S)).
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Fig. 11: The black lines represent an input site, the red lines are the corresponding medial axis MA.

Definition 5 (Degree δ)
We define the degree δ of a point p ∈ V D which indicates the number of adjacent
Voronoi cells. Thus:

δ(p)

= 2, if p ∈ V E

≥ 3, if p ∈ V N .

And correspondingly for p ∈ GV D

δ(p)



= 1, if p ∈MA

= 2, if p ∈ V F

= 3, if p ∈ V E

≥ 4, if p ∈ V N .

The GVD is also the union over all medial axes, Voronoi faces, Voronoi edges and
Voronoi nodes. The additional criterion d(ps, qs) ≥ δMA results in a ’coarser’ MA
surface. Due to an ’uneven’ surface - i.e. we mean with an uneven surface that the
surface has a small and fine contour - too small δMA values result in an overflooded
MA. Overflooded means that the GVD contains too many superfluous MA points,
which makes it less meaningful. See Section 3.1.5 for a more detailed explanation and
a formal discussion.

The ordinary VD can be computed efficiently, for example with a sweep line algo-
rithm (Fortune, 1987). This generally does not hold for the GVD (Boissonnat and
Teillaud, 2006). Since we are focusing on industrial data with millions of triangles,
we consider its approximation. The main criteria with regard to practicability are
calculation time and memory usage.
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Fig. 12: The two-dimensional distance field shows for each point the minimal distance to the yellow-
highlighted input data. The white hatched voxels represent the approximated VD.

The state-of-the-art algorithms for approximating the GVD can be divided into two
main classes. The algorithms in the first class work with the exact input data but
approximate the GVD. We can subclassify this in render- and octree-based algorithms.
The second class approximates the input data with voxels and calculates the distance
field (DF) that implicitly produces the GVD. Therefore, we briefly introduce distance
fields.

3.1.1 Distance Field (DF)

For each point in a gird, a discrete distance field (DF) stores the nearest distance
to a given input data (see Figure 12 for a two-dimensional example). The common
underlying data structure for the DF is a two-dimensional array. A common strategy
for calculating the distance field is the wavefront propagation (Ragnemalm, 1992). The
algorithm starts with the input data and distance 0. The algorithm then recursively
propagates the new distance to its neighbors. The VD can be obtained when different
wavefronts meet each other. Approximating the VD with a DF approach is fast, but a
DF requires cubic memory usage in the three-dimensional case.
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3.1.2 Rendering and Octrees

Octree

The main idea starts with one octree, which includes the whole scene (Lavender et al.,
1992). The octree recursively subdivides itself into eight descendant octrees if it includes
more than one site or a neighboring octree has a different nearest site. The reason is
the following: if a cuboid c of the octree includes only one site and all neighbor cuboids
have the same nearest site as c a finer representation of c with more octrees will not
result in a finer GVD. Therefore, the octree subdivides only if it results in an improved
resolution. This proceeding terminates if the desired resolution is achieved. It results
in a finer resolution at the Voronoi boundaries and a coarser one inside the Voronoi
cells. The octree represents the GVD with all leafs which have more than one nearest
site. Whenever an octree is subdivided into eight smaller ones, however, the nearest
site must be calculated for each descendant. This results in numerous distance queries,
which makes this approach too slow for large input data.

Rendering

Render-based approximation algorithms divide the scene into equidistant 2D slices,
calculate the GVD for each slice and stitch them together to create the three-dimensional
GVD (Hoff et al., 1999). The GVD for one slice is calculated as follows: For each
triangle of each input mesh, render the uniquely colored graph of a specific distance
function that is a hyperbolic function for a point, a cone for a line and a plane for the
inner triangle (see Figure 13 for a graphical representation). The appearance of the
functions depends on the distance between the site (point, line or inner triangle) and
slice. So if a point lies on the current slice, the distance is 0, which means that the
hyperbolic distance function is a cone. As the distance between the point and slice
increases, the hyperbolic function becomes wider. Now render all the distance functions
(see Figure 14 for a graphical representation). The GVD for the slice is extracted as
follows: The distance functions of the same mesh have the same coloring and distance
functions from different meshes have a different color. Therefore, the Voronoi regions
of each mesh can be seen in the rendered image - as shown in Figure 14. However,
rendering the graph of one of the distance functions requires a facetted version of this
graph. This makes the approach too time-consuming for input containing millions of
triangles.
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Fig. 13: A point (left) and the corresponding hyperbolic distance function (right) (Hoff et al., 1999).
The current slice is visualized via the plane.

Fig. 14: The rendered distance functions of four points, a line, a triangle and one freehand line. (Hoff
et al., 1999).

3.1.3 Related Work

Over the past few decades, many approaches for approximating the GVD have been
presented. We would now like to provide a comprehensive analysis of the related works
covering the aforementioned render-, octree- and distance field-based approaches.

The render-based approach from Hoff et al. (1999) is used for many motion planning
algorithms (Foskey et al., 2001), (Garber and Lin, 2002), (Geraerts, 2010). Based on
this work, the authors from Strzodka and Telea (2004) present an approximation for
the distance field using arbitrary metrics for 2D data. Hsieh and Tai (2005) offers a
number of optimizations for the GVD visualization. However, these works cannot solve
the problem of the massive increase in runtime for complex input data.

An extension of the basic work from Lavender et al. (1992) on octrees is presented
in Baston and Celes (2008). With the calculated octree, they create a polyhedral
representation of the approximated GVD. In each propagation step, the algorithm
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links neighboring octrees that are part of the GVD. A polyhedral representation of the
GVD can therefore easily be obtained via the linked leaves of the octree. However, it
can still take a long time to calculate the octree because the nearest neighbor query
at each subdividing step is time-consuming. The focus in Edwards et al. (2015) is on
computing the GVD for closely spaced objects. The octree data structure is optimized
for this situation and works on arbitrary 3D meshes. This approach cannot overcome
the problem of excessive runtime associated with the nearest neighbor query at each
subdividing step.

For the related work on distance fields up to 2006, we refer to the extensive survey
conducted by Jones et al. (2006). The main techniques use distance templates, space
scanning (Danielsson, 1980) and different voxel propagation methods (Ragnemalm,
1992).

Another propagation algorithm for calculating generalized distance fields is the fast
marching algorithm (Tsitsiklis, 1995). The fast marching algorithm is a numerical
method which was designed to approximate the boundary value problem of the Eikonal
equation |∇u(x)| = 1/f(x) with u(x) = 0 for x ∈ ∂Ω. This can be interpreted as time
that different spreading sources (wich are on the boundary ∂Ω) need in order to reach
certain points, e.g. light and sound. We indicate this time for a voxel v as tv and the
source point that reaches v after time tv as the starting voxel from v. The spreading
speed of the sources can be described with different arbitrary functions f , i.e. each
source has its own spreading function. The fast marching algorithm acts as described
in the following: The starting voxels at time 0 propagate to all the neighbors, which
are stored in a priority queue Q. Q orders all neighbors by their time t. If a voxel v

propagates to a neighbor n, the followings steps are performed. Using the spreading
function f , calculate the time that the starting voxel from v needs to propagate to n.
If n was already visited, update the minimal time tn of n. If the starting voxel from v

delivers a smaller tn than the current one, therefore update tn and inherit the starting
voxel from v to n. In addition, update the position from n in the priority queue. If n

was not already visited, set the time needed tn and the starting voxel and insert n in
the priority queue q according to time tn. If v has propagated to all neighbors, remove
v from Q. Continue with the neighbor in Q that has the smallest t. The algorithm
terminates if Q is empty. The fast marching algorithm calculates a common distance
field by setting the spreading speed to all sources equally and constantly, i.e. all
distance functions are the Euclidean distance function. However, inserting or updating
a neighbor in the priority queue always needs logarithmic time. The fast marching
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algorithm therefore has O(N log N) calculation time, with N indicating the number of
voxels in the grid. In summary, this method is not useful for our case because we do
not need to consider arbitrary spreading functions f and the time is with O(N log N)

slower than our approach which has O(N).

Following the aforementioned survey, a number of GPU-based propagation methods
were introduced (Rong and Tan, 2006), (Guo et al., 2011), (Schneider et al., 2009),
allowing propagation be performed in parallel, which significantly increases speed.
The authors from Cao et al. (2010) present a divide-and-conquer algorithm on the
GPU. A CPU-based propagation algorithm also exists that focuses on fewer distance
calculations (Velic et al., 2009). All of the presented algorithms, however, still store
the entire distance field. Yuan et al. (2011) present a memory-saving version of the
Jump Flooding Algorithm (Rong and Tan, 2006). In the distance field, only the nearest
site is stored as a short integer instead of a pointer to the nearest site. This yields a
memory-saving factor of 6. However, this depends on the programming language and
still cannot eliminate the cubic memory usage of distance fields.

3.1.4 Calculating the GVD

Main idea

The main idea behind our solution is to use the speed advantage of a propagation method
without storing the complete distance field. The basic task during the propagation
process is to find and check neighbors. In a complete distance field with a 3D array
representation, this can be performed with a simple index shift. To compensate for the
lack of a complete 3D array, we introduce our new data structure Voronoi voxel history
(VVH). The VVH stores the voxels from the last few propagation steps in multiple
hash tables. The access time of a 3D array is constant, which generally also holds for
the VVH.

Preliminaries

The center of a voxel v is positioned at v.pos in a Z3 grid. We use the Euclidean metric
and define the neighborhood N(v) of a voxel v as the union of the 26-neighborhood
and the voxel itself. The discrete distance d : R3 ×R3 → N0 between two vectors
a, b ∈ R3 is defined as d(a, b) := ⌈∥a− b∥2⌉ and the discrete distance of two voxels
v1, v2 as d(v1, v2) := d(v1.pos, v2.pos).
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The algorithm

Our algorithm works in two steps. In the first step we use the technique from Fang
and Chen (2000) to voxelize the scene with a voxel resolution of λ > 0. We render
the scene in 2D slices, each of width λ, and interpret each colored pixel as a voxel
that belongs to a site. Different colors represent the different input sites. We call the
colored voxels startingVoxels. These are stored in a first hash table.

The second step is the propagation algorithm. We start with the startingVoxels and
radius 0 and propagate the voxels in discrete, radius-increasing steps to their neighbors
(for a graphical representation see Figure 15 and on page 34 Figure 20). This means
that the radius r is both distance (measured in voxel size λ) and time step. When a
neighbor is visited for the first time the propagating voxel forwards the information
about its starting voxel (voxel.start), the distance (voxel.dist) to its starting voxel
and the nearest site to which it belongs (voxel.site) to the neighbor. If the neighbor
was already visited it is a candidate for the GVD.

We will now provide a detailed description of the procedure. The pseudocode also
needs to be considered.

Class 1 VoronoiVoxelHistory
1: Queue<HashTable<Voxel>> data

2: function void updateVVH
3: data.dequeue() ▷ delete oldest voxels
4: data.enqueue() ▷ add empty neighborVoxels
5: function Voxel findVoxel(x, y, z)
6: for 1 ≤ i ≤ 5 do
7: if voxel(x, y, z) ∈ data[i][hashkey(x, y, z)] then ▷ search in hash table
8: return voxel

9: return NULL ▷ voxel is not stored

Voronoi voxel history (VVH): Class 1 is our voxel-managing data structure. The
variable data is a queue of 5 hash tables (see Theorem 1). The hash table at position
1 ≤ i ≤ 5 stores for a given radius r ∈N0 all voxels with distance r + i− 4. We call the
hash table at index i = 4 currentVoxels and the hash table at index i = 5 neighborVoxels
(for a graphical representation see Figure 15 a)). The hash tables use separate chaining
for collision resolution. A hash key for a voxel at position (x, y, z) ∈ Z3 which, among
others, worked well for our application is (x3 + y2 + z + xyz) mod hashTable.size().



26 general voronoi diagram (graph)

a)

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

AA

A AA

A

A A A

A

A

A

A

AA

A startingV oxel

discardedV oxels

hashtable(r− 3)
hashtable(r− 2)
hashtable(r− 1)
currentV oxels

neighborV oxels

b)

A

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

AA

A AA

A

A A A

A

A

A

A

A

BB

B

B B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

A

A

A

A

A

AAA

A

GVDvoxels

GVDintersection

Fig. 15: a) An illustration of the data structure VVH. The A/B in the lower right corner of the
voxels symbolizes the starting voxel (voxel.start). The discardedV oxels are not stored anymore and
the neighborV oxels are stored after the propagation step. b) The VVH data structure after the
propagation step from the currentV oxels. The neighborV oxels are now stored in the VVH. The
GVDvoxels result from voxels with different starting voxels (A and B) meeting during the propagation.
The dashed line GVDintersection between the GVDvoxels represents the non-volumetric boundary
of the Voronoi cells.

At the end of one propagation step, the updateVVH function (lines 2 - 4) clears
the latest voxels (line 3), i.e. the voxels with distance r − 3, and inserts a new
neighborV oxels hash table (line 4). This represents an “aging” of 1 for all hash tables.
The findVoxel(x, y, z) function searches for the voxel with the input coordinates (x, y, z)

in the 5 hash tables of data and returns it. If the voxel is not stored yet it returns
NULL.

calculateGVD: Algorithm 1 takes the startingV oxels from the voxelization step
as its input. We initialize the VVH and the GVD(line 1, 2), set the currentV oxels

to the startingV oxels and the radius to r = 0 (lines 3, 4). The computation of the
GVD is complete when there are no more currentV oxels in the VVH. The size of the
hash table neighborV oxels is set to the number of voxels contained in currentV oxels

(line 6). Since a current voxel has at most 27 neighbors, this ensures a constant average
query time for the new hash table. The following loop (lines 7, 8) propagates every
voxel in currentV oxels, filling the neighborV oxels hash table. When the propagation
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stops, propagation step r is complete, and we update r and the VVH for the next step
(lines 9, 10). Finally, we return the GVD in line 11.

Algorithm 1 GVD calculateGVD(startingV oxels)
1: GV D ← new GVD
2: vvh← new VoronoiVoxelHistory
3: vvh.currentV oxels← startingV oxels

4: r ← 0 ▷ Initialize the radius
5: while vvh.currentV oxels.size() > 0 do
6: vvh.setNeighborV oxelsSize()

7: for all voxel← vvh.currentV oxels do
8: propagateV oxel(GV D, vvh, voxel, r)

9: r ← r + 1
10: vvh.updateV V H()

11: return GV D

Algorithm 2 void propagateVoxel(GV D, vvh, voxel, r)
1: if d(voxel, voxel.start) > r then ▷ Check if the voxel would propagate too early
2: vvh.addNeighbor(voxel) ▷ Add the voxel to neighbors
3: return
4: for all (∆x, ∆y, ∆z) ∈ {−1, 0, 1}3 do
5: nPos← voxel.pos + (∆x, ∆y, ∆z)

6: if d(nPos, voxel.start.pos) < r + 1 then ▷ Check if nPos was visited before
7: continue
8: n← vvh.findV oxel(nPos)

9: handleNeighbor(GV D, vvh, voxel, n, nPos)

propagateVoxel: Algorithm 2 propagates a voxel to its neighbors. In lines 1 - 3, we
fix the overpropagation. To ensure that all nearest sites are set correctly, it can may
be the case that a neighbor is inserted into neighborV oxels too early. See the next
paragraph for a detailed explanation of the overpropagation. If the propagating voxel
has a greater distance to its starting voxel (it was overpropagated) than the current
propagation step r (line 1), we add the voxel to the neighbors (line 2), so that the voxel
can propagate in the next step, and return (line 3). Otherwise, the propagation loop
in line 4 goes ahead. The position nPos of the neighbor is set in line 5. If the distance
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Fig. 16: A two-dimensional example showing the need for the overpropagation. The black voxels
v1, v2, v3 are starting voxels. Voxels n1, n2, n3 are voxels that have not yet been visited.

d from the neighbor position nPos to its starting voxel (voxel.start) is smaller than
r + 1, this means that we already visited this neighbor. We thus discard this neighbor
(lines 6, 7). Otherwise we search for the neighbor n at position nPos in data and call
handleNeighbor (lines 8, 9).

overpropagation: In each propagation step all, we add new neighbors to the
neighborV oxels. This ensures, that each voxel has the nearest assigned starting
voxel. It is possible, however, that a neighbor n has a distance to its starting voxel that
is greater than r+ 1. Consequently, in the next propagation step (r+ 1), n is part of the
currentV oxels but its distance does not match the time step r+ 1. We explain this case
using the two-dimensional example from Figure 16. The nearest voxel of n3 is v2 with
the distance d(n3, v2) =

√
2. If v2 propagates in the first step (r = 0) to n3 the correct

nearest voxel is set. However, the integer distance is d(n3, v2) =
⌈√

2
⌉
= 2 = r + 2.

Therefore, the voxel n3 should not propagate in the next step r + 1 = 1. After explain-
ing why a neighbor can be inserted in neighborV oxels too early we explain why it is
necessary to perform this procedure for a correct propagation process. Let’s assume
that we ignore the voxel n3 in the first propagation step. Depending on the voxel
propagation order it is possible that we have n1.start = v1 and n2.start = v3. This
means that in the next propagation step, we obtain n3.start = v1 or n3.start = v3,
which are not the nearest voxels.

Algorithm 3 void handleNeighbor(GV D, vvh, voxel, n, nPos)
1: if n == NULL then ▷ the neighbor was not already visited
2: vvh.addNeighbor(voxel.start, nPos)

3: else if voxel.site ̸= n.site∨ δMA < d(voxel.start, n.start) then
4: GV D ← GV D ∪ {voxel, n}
5: n.start← arg min

v∈{voxel.start,n.start}
∥n.pos− v.pos∥2 ▷ update the nearest startingVoxel

handleNeighbor: We first check whether the neighbor was already visited (line 1). If
it was, create it and insert it in the neighborV oxels hash table of the VVH (line 2).
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Fig. 17: a) Graphical representation of the voxel v which propagates to its neighbor n. b) The result
of the render-based voxelization in +x direction with voxel size λ. There are 4 slices with width λ
and 4 pixels per slice, where each slice is visualized by a vertical line and the pixels by the arrows. If
an arrow hits the mesh, the corresponding pixel is colored accordingly.

If it was not, two options are available. First, if the nearest sites of the voxel and its
neighbor differ (first condition in line 3) the condition for a GVD voxel is satisfied and
we add both voxels to the GVD (line 4). Second, if the nearest sites (voxel.start.site,
neighbor.start.site) are equal and the distance of their starting voxels is greater than
a given parameter (second condition in line 3), we broaden the GVD by also adding
the two voxels lying on the medial axis of the (large) input site. Finally, we update the
nearest starting voxel n.start of n (line 5).

From the approximate GVD obtained in this way we can at the end derive a more
specific approximation of the GVD by considering the intersections (see the dotted line
GVDintersection in Figure 15 b), which can be squares, lines or points in 3D) of all
the added voxel pairs voxel and n.

Analysis

It is important to ensure that the propagation waves from different starting voxels (as
shown in Figure 15 b) for the 2D case) do not propagate through each other. We show
in Theorem 1 that the VVH stores all the voxels needed for this. A visual representation
is shown in Figure 17 a).
Theorem 1
The VVH needs 5 hash tables for a correct propagation process.

Proof : Let r ∈N0 be the current propagation step and v a current voxel with v.start = A

that propagates to its neighbor n. This means that d(A, v) = r and d(A, n) = r + 1. Now
assume that n was already visited with n.start = B.

We want to prove that the information that n was already visited is still stored in the VVH.
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Since v has A as its nearest starting voxel it follows that d(B, v) > r− 1. This leads to

r− 1 < d(B, v) ≤ d(B, n) + d(v, n) ≤ d(B, n) +
⌈√

3
⌉

.

We derive d(B, n) > r− 3.

Under the assumption that we could compute the numerically correct distance between voxels
it would be sufficient to store the neighborV oxels (r + 1), the currentV oxels (r) and the
two previous hash tables r− 1 and r− 2. To properly handle numerical inaccuracies, the
hash table r− 3 also needs to be stored.

Next, we prove the error-bound for the approximation of our GVD. We assume that
the voxel size λ is sufficiently small so that every site and substantial subgeometry is
intersected by the rasterization.

Theorem 2
Let λ > 0 be the voxel size. Then the approximation of the GVD has an error of at
most 2.232λ.

Proof : With a voxel size of λ and the render process in different directions (as described in
Fang and Chen (2000)) we can guarantee that the voxelization produces an error of at most
λ/2 (for a graphical representation see Figure 17 b)).

Let a, b ∈ GVD be two neighbored voxels with different starting voxels. We guarantee
in Algorithm 2 (lines 1 - 3) that no voxel propagates too early. In addition, every voxel
propagates to all its neighbors (Algorithm 2 line 6) its nearest starting voxel (Algorithm 3
line 5). Therefore, the discrete steps respect the Euclidean metric. So the exact GVD of
the starting voxels a.start and b.start passes somewhere through the union of the voxels a

and b. By setting the approximate GVD to the intersection of a and b (see the dotted line
GVDintersection in Figure 15 b)) and with a space diagonal of length

√
3λ for a voxel we

have an error of at most
√

3λ.

This yields an overall error of at most (1/2 +
√

3)λ ≈ 2.232λ.
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d

Fig. 18: The black lines represent an input site. The yellow lines represent the flooded and the red
lines the ‘important’ MA outside of the input site. For simplicity we did not draw the MA inside of
the site.

3.1.5 Experiments

In this section, we evaluate the medial axis for different δMA values looks like. In
addition, we analyze the GVD for different voxel sizes λ. The focus for the GVD is
on runtime and memory consumption. We compare the number of voxels used in our
approach with the ones used by a complete distance field.

Medial axis

We discuss our modification d(ps, qs) ≥ δMA of the MA in Definition 4. The mod-
ification requires for a MA point that the distance between the two corresponding
points ps, qs is greater or equal as δMA. The original definition from Blum (1967) has
no distance constraint d for the points ps and qs, i.e. our modification becomes the
original definition by setting δMA = 0. This works for simple shapes like those shown
in the example in Figure 11. However, ’uneven’ surfaces flood the MA as shown by
way of example in Figure 18. Considering the background, that later parts should be
disassembled along the MA, we call the yellow-highlighted flooded points unnecessary
because these points cannot be used for successful motion planning. Furthermore, a
worker who assembles the part also needs a minimum clearance during the assembly
process because their hands must also pass the workspace along the disassembly path.
Nevertheless, each value δMA that is greater than 0 can prevent useful parts of the MA.
One example is the following (see Figure 30 on page 48 for a graphical representation):
A screw can be inserted a few millimeters into a hole. A worker can easily assemble this
screw, although the clearance is only a few millimeters. The unnecessary MA points
disappear in the example shown when δMA = d + ϵ and only the red lines remain.
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a) b)

c) d)

Fig. 19: The MA of the input site, seen in a), for different values δMA. b) δMA = 0, c) δMA = 30,
d) δMA = 50.

However, setting δMA too high will result in an empty MA. Depending on the data set,
therefore, it is important to set a suitable value for δMA.

Our experiments with different δMA values for the given test data (see Figure 19 a))
revealed that 30 millimeters (c)) delivers the desired result - i.e. an MA that is slim
and does not miss important surfaces for the subsequent motion planning phase. The
MA for δMA = 0, shown in b), is extremely flooded. The MA for δMA = 50, shown
in d), is too sparse. However, the right value for δMA and the optimal MA cannot be
determined mathematically. We can therefore only choose a ’good’ value for δMA in
order to obtain a ’good’ MA.

General Voronoi diagram

The results of the tests for the GVD calculation are for both data sets and with the
different voxel sizes presented in Table 4. The needed voxels of our VVH grows generally
more than just quadratically. This is because we need to store the voxels from the
voxelized parts. The number of voxels for thin parts can increase cubically as shown
in example Figure 21. Mid: The part is thinner than the resolution and therefore
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Table 4: The evaluation of the GVD calculation.
data
set λ [mm] GVD DF ratio

#voxelst [s] #voxels t [s] #voxels

a)

20 8 490,000 1.5 750,000 1.54
10 72 2,280,000 9 6,050,000 2.65
5 525 13,580,000 67 48,420,000 3.56
2 11,687 68,478,000 841 756,575,000 11.04

b)
20 25 1,080,000 6 1,510,000 1.39
10 160 7,050,000 28 12,100,000 1.71
5 1245 40,210,000 141 96,840,000 2.40

both wands are represented with the same voxel. Right: Each wand is represented
by seperate voxels. Therefore, the number of voxels increase unproportional. This
circumstance increases the number of needed voxels, i.e. in the three dimensional case
one voxel gets subdivided into eight voxels which is a cubic increase of the number of
voxels.

Figure 20 shows the propagation steps for data set a). We set the parameter δMA for
the medial axis condition in line 3 of Algorithm 3 to 30 mm. Column “t” contains the
overall running time of our implementation for voxelizing the scene and calculating
the GVD. The voxelization step needs only a small percentage (<5%) of the overall
calculation time. We can compute the GVD for the almost complete car in dataset b)
with a high resolution of λ = 5 mm in less than 25 minutes. Furthermore, the test on
data set a) with λ = 20 mm and t = 8 seconds shows that our approach is downscalable.
Our algorithm focuses on very large and complex data sets but it can also be used for
smaller data sets or coarser grids where the focus is on a fast calculation time.

The following two columns show the number of voxels needed by our GVD and the
complete distance field (DF). Regarding the space consumption of a single voxel, a voxel
in the VVH needs to store its position (voxel.pos). This is due to the unstructured
ordering in the hash table and is not necessary for a distance field. But since in
our application the GVD or DF computation is only a preprocessing step for the
subsequent GVDG calculation, it is recommended to store for each voxel its starting
voxel (voxel.start), position (voxel.pos), clearance (voxel.dist) and a list of neighboring
voxels with different nearest sites. This means that the space consumption of a single
voxel is almost identical for both data structures.

Therefore, the presented number of voxels for different resolutions in Table 4 shows
the memory growth of our approach compared with the cubic growth of a complete
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Fig. 20: The voxel propagation process with a voxel size of λ = 10 mm for data set a) from Figure 5.
The chronological sequence is shown from the top left to bottom right.

Fig. 21: A two-dimensional example of a voxelized part with two different resolutions. The arrows
represent the render rays and the dashed boxes the voxels. Left: The part; Mid: The voxelized part;
Right: The voxelized part with a resolution which is double that fine as from ’Mid’.

distance field. As a result, the “ratio” between the number of voxels for a complete
distance field and for our approach increases as the voxels become finer. The need for a
voxel-saving approach becomes apparent for data set a) with a voxel size of λ = 2 mm.
Here the voxel ratio is already 11.04. Comparing the time required for both underlying
data structures it can be seen, that the ratio between the VVH and DF increases as λ

becomes finer. Using the VVH for λ = 10 mm takes 8 times longer than a calculation
with a DF. In summary, the RAM-saving property of the VVH comes at the cost of a
longer calculation time. If the required memory usage exceeds the given memory usage,
however, the less memory-usage intensive variant should be used.
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3.2 General Voronoi Diagram Graph (GVDG)

As shown in Geraerts (2010), finding a disassembly path on a GVD-based roadmap,
called general Voronoi diagram graph (GVDG), is runtime-effective for finding short
paths with sufficient clearance. We define the GVDG as follows.
Definition 6 (General Voronoi diagram graph)
Given S := {s1, ..., sn} the input data which consists of n three-dimensional meshes
and the corresponding GVD. We define the general Voronoi diagram graph GV DG :=
(V , E) as an undirected graph where the set of nodes V as well as the edges E are
part of the GVD.
An edge e ∈ E is defined as a set of ordered voxels e := {v1, ..., vn}. We define the
clearance c of an edge e as c(e) := minv∈e{d(v, v.start)}.

In the two-dimensional ordinary case (Definition 3) the Voronoi diagram graph (VDG)
is the VD itself. The nodes V are the set of Voronoi nodes V N and the edges E are
the Voronoi edges V E (see Figure 10). A point robot has no dilation and so moving a
point robot along the VDG ensures a collision-free navigation. Based on this VDG, an
optimal disassembly path for a point robot - e.g. the shortest disassembly path along
the maximal clearance - can now easily be found with a Dijkstra query.

In our scenario, however, the GVDG does not generally deliver feasible disassembly
paths (see Chapter 4 for a formal definition) for three-dimensional meshes but it
provides estimated translational disassembly paths, so called Voronoi paths (VPs),
which can be sued to find feasible disassembly paths. Later (see Section 4.5), we use
the VP as a translational basis for our ‘Expansive Voronoi Tree’ which samples along
the Voronoi path and finds fast feasible disassembly paths.

Extracting a GVDG from a GVD is a complex task. The straightforward approach
from Foskey et al. (2001) defines the GVDG as follows: Set the GVDG equal to the
Voronoi nodes V N and Voronoi edges V E, i.e. GV DG := (V N , V E). However, this
approach leads to isolated sites which are defined as follows.
Definition 7 (Isolated site)
Given GV DG := (V , E) a general Voronoi diagram graph and a set of input sites S.
Then a site s ∈ S is isolated if the GVDG does not provide a path from the Voronoi
cell V C(s) to a body-in-white point. We say that a site s is represented in the GVDG
if a voxel from the Voronoi cell V C(s) is part of the nodes V .
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s
v1v2

Fig. 22: A two-dimensional assembly that shows four sites and the corresponding GVD. The solid
line represents the boundary of the Voronoi cells and the dotted line the medial axis. The voxels v1
and v2 have after Definition 5 degree δ(v2) = 2 and δ(v1) = 3.

A true isolated site is isolated and there exists no feasible disassembly path for s

to a body-in-white point. A false isolated site is isolated but there exists a feasible
disassembly path to a body-in-white point.

Using the GVDG as a basis for motion planning in the context of assembly sequence
planning is better than improving only the motion planning process itself. If the GVDG
can guarantee that there are no false isolated sites, all isolated sites are truly isolated.
Therefore, no disassembly path exists for any of the isolated sites. For all these isolated
sites, therefore, motion planning queries that will be inevitably unsuccessful can be
saved, which greatly improves the runtime (see also Section 5.4 on page 89). This is
why we broaden the requirement regarding a GVDG such that it should not contain
false isolated sites.

To eliminate false isolated sites we analyze in which cases true and false isolated sites
occur. A typical true isolated site is geometrically enclosed, e.g. if all doors and
coverings in a car are closed, no inner part can be disassembled. The reasons for false
isolated sites depend on how the GVDG is calculated. First, we analyze false isolated
sites if the GV DG := (V N , V E) is calculated with the aforementioned straightforward
approach. For a graphical representation of an isolated site in the two-dimensional case
with arbitrary input sites, see Figure 22. In the example shown, the Voronoi cell of s is
isolated for two reasons: First, s has only one neighbor that borders on its Voronoi cell:
second, there is no Voronoi node n on the Voronoi cell V N(s) that could represent s

in the GVDG, i.e. there is no V N on the boundary of the Voronoi cell V C(s). Even
assuming that a Voronoi node (e.g. v2) exists there is only an MA edge but no Voronoi
edge that connects the Voronoi cell with v1. Therefore, two cases can be derived: (i)
Not every Voronoi cell has a Voronoi node; (ii) considering only the Voronoi edges V E

for connecting nodes, one misses important edges which are part of the Voronoi faces
and medial axes.
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a) b) c)

Fig. 23: The test data with the body in white (grey) and the assembled seat belt clip (green) is shown
in a). The V C(seat belt clip) (green) is shown in b) and in addition the MA(body in white) in c).

A three-dimensional isolated site with the same issues as the two-dimensional example
is shown in Figure 23. The Voronoi cell for the seat belt clips (see a)) has no Voronoi
node, nor is there a Voronoi edge connecting the Voronoi cell to the outside (see b)).
Thus, the straightforward approach could not deliver a Voronoi path for the seat belt
clip. The medial axis of the body-in-white connects the Voronoi cell to all directions of
the space (see c)). In this case, the medial axis of the body-in-white could provide an
edge that connects the Voronoi cell and a body-in-white point.

As shown in Section 3.1.5, however, the medial axes need to be coarsened by setting the
value δMA > 0, which means that some parts of the MA are prevented. These parts of
the MA that have been prevented may contain possible edges, so a site can be isolated
even if there is a node and the MA is considered. This happens in real-world scenarios,
e.g. for inserted screws and nuts. Summarized, taking into account the medial axes
and Voronoi faces for the edges E only partially solves the issue of false isolated sites,
because there are still cases where these approaches fail.

In the following, we present two novel approaches for calculating the GVDG and
compare them with each other. Both approaches are propagation algorithms that start
with a defined set of nodes V and propagate along the GVD to create edges. The two
approaches differ primarily in terms of the choice of the nodes V . One approach starts
with voxels on the Voronoi cells and propagates to the body-in-white points while the
other approach starts with the body in white points which propagate into the inside
of the GVD. Roughly said, one approach propagates from the inside to the outside
and the other one vice versa. We will therefore first describe the general propagation
algorithm, which is technically the same for both algorithms. As described, dealing
with the problem of missing nodes (i) and taking into account Voronoi faces and medial
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Table 5: The three different approaches for calculating the GV DG := (V , E): Straight forward
approach (SF), inside to outsight (ITO) and outside to inside (OTI). The underlying GV D :=
(V N , V E) and the body-in-white points (BIWP) are the basis for the different approaches. The sets
R1 and R2 each represent a set of nodes extracted from the respective approach.

criteria SF ITO OTI
use prop algorithm x ✓ ✓
startingV oxels x V N ∪R1 BIWP
V V N∪ BIWP V N∪ BIWP∪R1 BIWP∪R2
E V E propagation propagation

axes (ii) can still result in false isolated sites. After describing the two propagation
methods, therefore, we will then look at a handleFalseIsolatedSites algorithm that
‘connects’ the remaining false isolated sites.

Table 5 provides an overview of the straightforward approach and the two approaches
that are presented in the following subsections. The ITO and OTI approaches use
the same propagation algorithm and differ only in how the startingV oxels for the
underlying propagation algorithm and the nodes V are chosen. The edges result from
the propagation algorithm. The SF approach has no further calculation: it uses only
the Voronoi nodes V N and the Voronoi edges V E for its GVDG. This table is designed
to provide only a brief overview. How the specific variables are set and how the
propagation algorithm works are described in the following.

3.2.1 GVDG Propagation Algorithm

In this subsection, we describe our GVDG voxel propagation algorithm. The algorithm
propagates along a given GVD to create nodes and edges of the GVDG. However, the
algorithm described is not yet complete, in the sense that it directly computes a GVDG.
It is not determined how the startingV oxels are set and under which circumstances an
edge is created. In Section 3.2.2 and Section 3.2.3, we present two different approaches;
the inner to outer (ITO)- and the outer to inner (OTI) propagation algorithm. They use
the propagation algorithm from this subsection but the startingV oxels and the edges
are different. This subsection is therefore the basis for the following two subsections.

The algorithm for the GVD calculation on page 27 can be roughly structured as follows:
(i) Voxelize the input sites and use them as startingV oxels; (ii) use a metric-respecting
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neighbor propagation in the three-dimensional grid; (iii) insert two voxels in the GVD
if these voxels encounter one another.

The propagation algorithm for the GVDG works with the same basic steps, only with
some minor changes: (i) The startingV oxels are pre-defined nodes; (ii) change the
feasible underlying propagation space from the complete three-dimensional grid to the
GVD; (iii) create an edge via backpropagation between two nodes if the corresponding
propagating voxels encounter one another.

In Section 3.2.2 and Section 3.2.3, we show two applications of the GVDG propagation
algorithm. They mainly differ in the choice of the startingV oxels and the existEdge

function. However, this results in significantly different GVDGs.

To realize the backpropagation for the GVDG calculation, each voxel v ∈ GVD stores
the voxel that propagated to it (v.previous) and its startingNode (v.startNodeGV D)
from the GVDG propagation process. Both are NULL by default. For each starting
voxel, we set v.previous = NULL and v.startNodeGV D = v. The propagation
algorithm for calculating the GVD needs just some minor changes which are described
below. Therefore, the description is high-level and we point out only the changes. For
a graphical representation of the propagation algorithm, see Figure 24. We marked the
elements that have been changed or are new. The changes are discussed in the squared
brackets and also shown as black text in the pseudocode, i.e. the unchanged parts are
light gray.

Algorithm 4 GVDG calculateGVDG(V , GV D)
1: GV DG ← new GVDG
2: vvh← new VoronoiVoxelHistory
3: vvh.currentV oxels← V
4: r ← 0 ▷ Initialize the radius
5: while vvh.currentV oxels.size() > 0 do
6: vvh.setNeighborV oxelsSize()
7: for all voxel← vvh.currentV oxels do
8: propagateV oxelAlongGV D(GV DG, GV D, vvh, voxel, r)

9: r ← r + 1
10: vvh.updateV V H()

11: return GV DG

calculateGVDG: Changed: [Algorithm 4 gets some nodes V as input instead of the
startingV oxels from the voxelization step]. It initializes the [GVDG] and the VVH in
lines 1 - 3. The main loop in line 5 terminates when there are no more voxels that can
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propagate to their neighbors. The size of the current neighbors’ voxels hash table is set
in line 6. Each voxel then propagates to its neighbors (lines 7, 8) [which are part of the
GVD]. At the end of each iteration of the while loop, the radius increases and the hash
table indices are shifted (lines 9, 10). [In the end, we return the calculated GVDG.]

Algorithm 5 void propagateVoxelAlongGVD(GV DG, GV D, vvh, voxel, r)
1: if d(voxel, voxel.start) > r then ▷ Check if the voxel would propagate too early
2: vvh.addNeighbor(voxel) ▷ Add the voxel to neighbors
3: return
4: for all (∆x, ∆y, ∆z) ∈ {−1, 0, 1}3 do
5: nPos← voxel.pos + (∆x, ∆y, ∆z)
6: if d(nPos, voxel.start.pos) < r + 1 then ▷ Check if nPos was visited before
7: continue
8: n← gvd.findV oxel(nPos)
9: handleNeighborGV DG(GV DG, vvh, voxel, n, nPos)

propagateVoxelAlongGVD: Algorithm 5 propagates a voxel to its neighbors. If the
to propagating voxel has a greater distance to its starting voxel than the current propaga-
tion step r (line 1) we add the voxel to the neighbors (line 2), so the voxel can propagate
in the next step, and return (line 3). Otherwise, the propagation loop in line 4 goes ahead.
The position nPos of the neighbor is set in line 5. If the distance d from the neighbor
position nPos to its starting voxel (voxel.start) is smaller than r + 1, this means that
we already visited this neighbor and so we discard this neighbor (lines 6, 7). Changed:
[Line 8 changes from n← vvh.findV oxel(nPos) to n← gvd.findV oxel(nPos). With
respect to the underlying data structure gvd.findV oxel(nPos) searches in a three-
dimensional distance field or in a hash table for the voxel at position nPos. This means,
that n is NULL, if the GVD does not have any voxels stored at the respective position.
Line 9 calls the new handleNeighborGVDG function which is described next.]

Algorithm 6 void handleNeighborGVDG(GV DG, vvh, voxel, n, nPos)
1: if n == NULL then ▷ Check if n ∈ GVD
2: return
3: if n.startNodeGV D == NULL then ▷ Propagate to n
4: n.previous = voxel
5: n.startNodeGV D ← voxel.startNodeGV D
6: if !existEdge(voxel, n) then
7: E ← E ∪ createEdge(voxel, n)

handleNeighborGVDG: The handleNeighborGVD function from Algorithm 3 is
replaced by handleNeighborGVDG in Algorithm 6. [If neighbor n is not part of the
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Fig. 24: A subset of a GVD is shown in a). The exemplary nodes v1, v2, v3, v4 in b) are black
highlighted. The propagation process along the GVD is shown in c) - g). The resulting, red highlighted
edges which connects the nodes are shown in h).

GVD (line 1) the function returns (line 2). If n was not already visited (line 3), voxel

propagates and inherits the propagation information to n (line 4, 5). In line 6, check if
an edge already exists. If not, the edge is created via backpropagation (line 7). Note:
The existEdge function depends on the underlying propagation algorithm and so is
described later in more detail.]

3.2.2 Inside-to-outside propagation (ITO)

We describe our intuitive extension of the described straightforward approach, the
inner-to-outer propagation (ITO), where we also consider Voronoi faces and medial
axes as part of the edges. A graphical representation of the Voronoi nodes and the
propagation process is shown in Figure 25. This approach is an application of the
propagation algorithm in Section 3.2.1, i.e. we use the propagation algorithm and
explain how it behaves if we set the nodes as follows. Set the nodes V , just like in
the straightforward approach, so that they are equal to the Voronoi nodes from the
GVD. For each site s that has no Voronoi node, insert a random voxel from its Voronoi
cell V C(s) to V . In this way, we ensure that each site has a representing voxel in the
nodes V . With the nodes V , start the aforementioned, modified GVDG propagation
from Algorithm 1. The existEdge function in Algorithm 7 excludes loops (lines 1, 2)
and multiple edges between the same starting nodes (lines 3, 4).

The ITO approach is an improvement on the straightforward approach in two ways:
First, it ensures that each site has a voxel from its Voronoi cell in the nodes V . Thus,
each site is represented by the GVDG. The use of the aforementioned GVD-based
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Fig. 25: The OTI propagation along the GVD. The black-highlighted voxels in the first image show
the starting nodes. The black-highlighted voxels in the other images represent the current wavefront.

Algorithm 7 bool existEdge(voxel, neighbor)
1: if voxel.startingNodeGV DG == neighbor.startingNodeGV DG then
2: return true
3: if (voxel.startingNodeGV DG, neighbor.startingNodeGV DG) ∈ E then
4: return true
5: return false

propagation algorithm means that Voronoi faces and medial axes are also considered
for calculating the edges. Due to the propagation algorithm, which also considers
Voronoi faces and medial axes for calculating the edges E the GVDG has significantly
more edges than a GVDG created with the straightforward approach (see Figure 29).
These edges also connect before unconnected body-in-white points which results in a
significantly more varied and meaningful GVDG.

Although each component is represented by a node, it may be the case that this repre-
sentation is not well suited and later results in suboptimal Voronoi paths. According to
Definition 4, a Voronoi node arises if it has at least a degree δ of 4. Thus, an appropriate
representation of nodes on the complete Voronoi cell is highly dependent on the number
of sites in the neighborhood of a site. For example, a large Voronoi cell needs more
than one Voronoi node for a good representation. The Voronoi nodes shown in the
example in Figure 26 on the left do not properly represent the Voronoi cell. There are
no nodes that are positioned in the direction of the rear end. A subsequent Dijkstra
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Fig. 26: The blue-highlighted part and its Voronoi nodes (red squares) on the left. Voronoi path
lengths: left, 2000 mm; right, 1700 mm.

query, therefore, delivers the shown Voronoi path as the shortest path. However, the
Voronoi path shown on the right, which is extracted with the OTI GVDG algorithm
(presented in Section 3.2.3), is shorter.

Another minor disadvantage of the edges created is that a Voronoi path from a node
to a body-in-white point has a zig-zag pattern, making the Voronoi path longer than it
should be. This occurs because every node has only a straight connecting edge to the
nodes that it reaches with the propagation algorithm, e.g. nodes v1 and v4 have no
direct connection in the example in Figure 24, page 41. Thus, a connection between v1

and v4 requires a the detour via v2 or v3.

In summary, this approach is superior to the straightforward approach. It can still
be further optimized in some ways, but it delivers a solid GVDG that is suitable as a
basis for a subsequent Dijkstra query for finding a Voronoi path optimized with respect
to path length and clearance.

3.2.3 Outside-to-inside propagation (OTI)

As described in Section 3.2.2 the ITO algorithm still has some problems with the chosen
nodes V . The main problem with setting the nodes V to the Voronoi nodes V N is that
the Voronoi nodes are highly dependent on the environment of a site s. Furthermore,
the choice of the nodes is the basis for the GVDG and, in turn, for Voronoi paths. A
suboptimal representation of a Voronoi cell by the Voronoi nodes, therefore, leads to
suboptimal Voronoi paths and, in turn, to suboptimal disassembly paths. The nodes
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Fig. 27: The OTI propagation along the GVD. The black highlighted voxels represent the current
wavefront.

should represent the Voronoi cell such that a subsequent Dijkstra query can determine
the best Voronoi path to all body-in-white points (BIWPs). However, choosing the
nodes that best fulfill this requirement is a hard task.

We therefore introduce the outer-to-inner propagation (OTI), which works in the
opposite direction. See Figure 27 for a visual representation of the propagation process.
Instead of defining the start nodes from the Voronoi cells and propagating to the
BIWPs, the OTI starts with the BIWPs and propagates to the inside of the GVD. The
BIWPs are not part of the GVD. We define that each voxel from the GVD that is
positioned at the boundary of the GVD (all black voxels in the first representation in
Figure 27) is neighbored with its nearest BIWP. When the BIWPs start its propagation,
therefore, the propagation jumps from the BIWP to the GVD. If a node propagates
to a Voronoi cell and there is still no edge between the corresponding BIWP and the
Voronoi cell, the edge is created and the voxel is added to the nodes V of the GVDG.
This procedure has the advantage that the shortest Voronoi path between the BIWP
and all Voronoi cells is set automatically because the metric respecting propagation
process starts at the BIWPs and so inevitably hits the nearest voxel of a Voronoi cell
first.

The OTI algorithm is described below. The GVDG propagation algorithm from
Section 3.2.1 starts with all BIWPs as startingV oxels which propagates as described
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Algorithm 8 bool existEdge(voxel, neighbor)
1: vc← V C(neighbor.site)
2: if ∃v ∈ vc ((v, voxel.startNodeGV DG) ∈ E) then
3: return true
4: return false

Fig. 28: The GVDG calculated with the OTI algorithm.

in Section 3.2.1 along the GVD. The calculateGV DG and propagateV oxelGV DG

functions are unchanged. The existEdge function, which is called in Algorithm 6, is
different to the function from the ITO algorithm and is therefore shown in Algorithm 8.
In line 1 it sets the corresponding Voronoi cell vc to which neighbor belongs. To
prevent flooding with very similar edges, the algorithm permits only one edge from one
Voronoi cell to the same BIWP (lines 2, 3). If the edge is created in Algorithm 6 line 7
the createEdge function also adds the voxel n to the nodes V .

The resulting GVDG in this approach has a different form than the ITO GVDG. The
structure of the ITO GVDG has many nodes with a lot of short edges. A Dijkstra
query, therefore, navigates in short steps through a highly connected graph from node
to node and ends at a BIWP. The OTI GVDG has only edges that connect a node
on a Voronoi cell with a BIWP. The OTI GVDG therefore consists only of straight,
non-zig-zagging Voronoi paths. For a detailed evaluation of the approaches presented,
see Section 3.2.4. This circumstance results in short VPs which also means that a
Dijkstra query is not necessary.
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Table 6: The properties of the GVDGs for the three different approaches: straightforward approach
(SF), inside to outside (ITO) and outside to inside (OTI). Tested on the data set (137 assembled
parts) which is shown in Figure 29.

criterion GVDG approach
SF ITO OTI

parts with
an VP 67 74 94

average VP
path length 1400 1444 1279

3.2.4 Evaluation

In this subsection, we evaluate the three different GVDG approaches presented: straight-
forward approach, ITO and OTI. The evaluation includes the number of isolated sites
and average VP length. The three GVDGs created with the straightforward approach,
ITO and OTI are shown in Figure 29. Our tests which are shown in Table 6 verify the
theoretical considerations. The straightforward approach (SF) has the most isolated
sites. The ITO approach also takes into account Voronoi faces and the medial axes and
so, is more flexible and has fewer isolated sites (see Section 3.2.5 for a discussion why
still some false isolated sites can occur). The OTI approach has not only the fewest
isolated sites but also the shortest VPs.

3.2.5 Handle false isolated sites (HFIS)

As mentioned in Section 3.2, due to the crucial parameter δMA it is still possible that
false isolated sites occur. See Figure 30 for an example. The medial axis (dotted
line) is prevented for d < δMA. Unfortunately, due to the lack of a medial axis, the
GVDG is not connected and so isolates the screw even though the screw can be easily
disassembled. The following propagation algorithm handles all cases of false isolated
sites, i.e. it ‘connects’ these sites with the GVDG and subsequently finds a Voronoi
path. We will not describe the handleFalseIsolatedSites (HFIS) algorithm in detail
because it is merely a variant of the presented propagation GVD Algorithm 1 and
GVDG Algorithm 4. We will therefore only describe the high-level procedure. The
HFIS function is called after the ITO/OTI propagation algorithm from Section 3.2.1.
First, we determine all the parts that are isolated, e.g. a1 in Figure 31 a). Second, we



3.2 general voronoi diagram graph (gvdg) 47

Fig. 29: Comparison of the resulting GVDGs: top - straightforward approach, mid - ITO and bottom
- OTI.

delete the corresponding Voronoi cell V C(a1) b). Then we start a GVD propagation
algorithm c), d). The starting nodes are are the voxels that represent the part (as
shown in c)). If a voxel propagates to another Voronoi cell V C e) the voxel from
the Voronoi cell V C is now a connector, i.e. a1 is connected to the voxel. In other
words, the red voxels in f) are now also part of the Voronoi cell of a1. Subsequently,
we start the GVDG propagation algorithm from Algorithm 4 again, only this case each
connector also represents each connected part. In detail, we start the OTI algorithm
with the BIWP and propagate to the inside of the GVD. If the propagation algorithm



48 general voronoi diagram (graph)

d

Fig. 30: Left: A screw that fastens the two different hatched parts. The dashed line represents the
GVD between the screw and the hatched part. The dotted line represents the medial axis of the
hatched part. Right: Some isolated nuts (highlighted in blue) in our real-world data set.

now reaches one of the connector voxels (red voxels in f)) it detects that a1 is connected
with these voxels and creates an edge in the GVDG from the BIWP to the connector
voxel. It is not always certain that the isolated part can reach the connector voxel.

In addition to the 94 parts that have received a VP through the OTI approach, 37
others have been given a VP by the HFIS function. The remaining 6 parts from the
137 assembled parts are now truly isolated. This means that it is guaranteed that there
is no feasible disassembly path in the current assembly state.
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a1

a) b) c)

d) e) f)

Fig. 31: Our handleFalseIsolatedSites algorithm shown in a simple two-dimensional example. The
black-highlighted parts and a1 are assembled parts. The dashed lines represent the GVD. The
red-highlighted voxels are the connectors for a1.
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M O T I O N P L A N N I N G

In this chapter, we will focus on motion planning and how we use it for assembly
sequence planning. After introducing the motion planning problem, we provide an
overview of the specific requirements in the context of ASP. To accommodate these
requirements, we subdivide the motion planning task into two disjoint phases: the
NEAR- and FAR planning phases (Masan, 2015). The NEAR planning phase describes
the unlocking of fastened parts. The FAR planning phase describes the navigation
from an unlocked position to a goal position. A special feature of the unlocking process
is that the part to be disassembled may initially collide with its surroundings which
fundamentally contradicts the definition of a feasible disassembly path. However, we
broaden the original definition in this case and discuss state-of-the-art motion planners
that are designed to still find a reasonable disassembly path for the NEAR planning
phase. An appropriate motion planner for the FAR planning phase should quickly find
a short disassembly path to one of the goal positions.

Next, we present the main contribution of this chapter: our novel Expansive Voronoi
Tree (EVT) motion planner, an optimized motion planner for the FAR planning phase
in the context of ASP. The EVT samples along a VP, which is extracted from the
GVDG. Our experiments show that the EVT finds short disassembly paths faster than
state-of-the-art motion planners. The ability to find short disassembly paths more
quickly comes with the high runtime costs of the GVDG calculation. However, the
runtime calculation of the GVDG is distributed across all assembled parts and so
negligible. In summary, in the context of ASP, the EVT is a better motion planner
than state-of-the-art algorithms in terms of runtime and path quality.

50
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4.1 Motion planning problem

The motion planning problem, also known as the path planning problem, concerns the
process of finding a connected sequence of configurations, a so called disassembly path,
for a robot to be moved. The disassembly path must navigate the robot from the
starting point to a goal position such that the robot does not collide with a given set
of static obstacles. Next, we define the problem formally.
Definition 8 (Configuration space and workspace)
Given a mesh m. Then the configuration space

C :=

A|A =

 R t

01×3 1

 ∈ R4×4, R ∈ R3×3, t ∈ R3, RT R = RRT = I, det(R) = 1
 ,

describes all motions of m in the space R3. With ct we indicate the translation t and
with cR the rotation R of a configuration c ∈ C. We indicate the mesh m′ that results
after applying a configuration c to m as c(m).
Given a set of obstacles O, where each obstacle o ∈ O is represented via a triangulated
mesh. We then define the set of collision-free configurations Cfree ⊂ C as the set of
configurations for which c ∈ Cfree applied to m has no collision and is not fully enclosed
by any of the obstacles o ∈ O. The set of configurations that leads to a collision or an
enclosure is defined as Cobst := C \Cfree. We define the start configuration of m as
cinit and assume cinit ∈ Cfree.
In addition, with the workspace ⊂ R3, we define the space in which the meshes are
positioned.

Definition 9 (Disassembly path I )
Given a triangulated mesh m with its initial configuration cinit ∈ Cfree, a set of
obstacles O and a set of possible goal points B ⊂ R3. Then a feasible disassembly
path

dp :=
{
cinit, c1, ..., cn, cgoal|cinit, cgoal, ci ∈ Cfree∀1 ≤ i ≤ n,∃b ∈ B (cinitt + cgoalt = b)

}
is a discrete sequence of configurations such that m is navigated from its initial config-
uration to one of the goal points B. The distance between two following configurations
of dp is sufficiently small.
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Fig. 32: The piano in its initial (left) and goal position (right) (Schneider, 2017).

Note: The term ’sufficiently small’ depends on the size of the robot and the scene.

Definition 10 (Motion planning problem I )
Given a dynamic object m, also called robot, with its initial configuration cinit ∈ Cfree,
a set of obstacles O and a set of possible goal points B ⊂ R3. The motion planning
problem here is to find a feasible disassembly path dp for m.

In our definition, we generalized the motion planning to a set of possible goal points
B.

Figure 32 shows the famous ’piano movers problem’. In this example, a search is
performed for a disassembly path so that the piano moves from the initial position to
the goal position such that the piano does not collide with its environment (highlighted
in yellow).

The common approach to solving complex motion planning problems - i.e. feasible
disassembly paths consisting of multiple translations and rotations, is done with so
called sampling-based motion planners. Those algorithms use an underlying data
structure for the configurations, start with the given start configuration cinit ∈ Cfree

and try with samples to extend this data structure. The aim is to describe the free
space Cfree with the configurations in the data structure and to find, with a sufficient
number of configurations within it, a feasible disassembly path to one of the goal
positions B. We subdivide the sampling-based motion planners into three different
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categories - graph-, tree- and GVD-based motion planners and will now provide an
overview of related work.

4.1.1 Related Work

Motion planning is an extremely broad field with extensive research. For a detailed
overview of motion planning, we refer to the survey from Yang et al. (2016). There are
reams of works that tackle different requirements such as navigating narrow passages
in the configuration space (Hsu et al., 1997), maximizing the clearance (Denny et al.,
2014) or finding optimized paths (Karaman and Frazzoli, 2011). We will now provide
an overview of the general state-of-the-art techniques.

Graph-based:

One pioneering work for sampling-based motion planners is the ’Probabilistic Roadmap’
(PRM) (Kavraki et al., 1996). This is a graph-based algorithm that consists of a
construction and query phase. In the construction phase, the roadmap (graph) is
created. The algorithm samples random configurations and connects them with the
neighbored configurations. In the query phase, once the start and goal configurations
have been successfully connected to the graph, a shortest-path algorithm delivers the
path with an optimized condition such as path length or clearance (Wilmarth et al.,
1999), (Holleman and Kavraki, 2000). The process of creating the roadmap is extremely
time-consuming, however, and varies from one robot-obstacle configuration to the next,
which means that it is not suitable in the context of ASP.

Tree-based:

Algorithm 9 bool findPath(robot, obstacles, cinit, B, maxTime)
1: configTree.insert(cinit)
2: while elapsedTime < maxTime do
3: crand ← randomConfig
4: configTree.extend(crand)
5: if goalPointReached(robot, crand, B) then
6: return true
7: return false

Tree-based motion planners generally involve the following procedure which, is shown
in Algorithm 9. They set cinit as the root of the tree (line 1). Next, they sample
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Fig. 33: The steps from Algorithm 9 lines 3 - 6 for the ordinary RRT algorithm.

and create a new configuration and connect it with the tree (line 3, 4). The while
loop terminates when the algorithm finds a feasible disassembly path (line 5, 6) or the
maximum time limit is reached (line 2). The biggest difference among various motion
planners lies in how they sample and create new configurations. Next, we describe
some common sampling-based approaches.

The most widely used approach with many variations is the ’Rapidly-Exploring Random
Tree’ (RRT) from Lavalle (1998). See Figure 33 for a visualization of the steps which
are described below. The RRT uses the starting configuration as its root. It then
uniformly samples a random configuration crand in the configuration space and attempts
to connect crand with the nearest configuration cnear of configTree (Figure 33, 2). For
crand ∈ Cobst the RRT adds the furthest possible configuration c̄rand ∈ Cfree to the
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Fig. 34: The steps from Algorithm 9 lines 3 - 6 for the ordinary EST algorithm.

configTree and discards crand (Figure 33, 3). The connecting process of crand works
as follows: Start at cnear and gradually approach crand. Add the feasible configurations
from each step to the tree. Stop, if a configuration is no longer feasible. The last
feasible configuration is c̄rand. After each sampling step, the RRT attempts to connect
the last configuration with the goal position cgoal. The advantage of this sampling
strategy is that the RRT explores the entire space very effectively. It terminates as
soon as a feasible path for the robot is found. In its pure form, however, the uniform
sampling approach means that it does not work well for narrow passages and does not
return an optimized path.

The extension RRT* (Karaman and Frazzoli, 2011) returns a path that optimizes a user-
defined criterion such as path length. The RRT* does not terminate as soon as it finds
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a feasible path but attempts to optimize the path by further sampling configurations
until a given time limit is reached. After each sampling step, the algorithm rewires
the configurations in the neighborhood of the sampled configuration, attempting to
optimize the criterion. The RRT* algorithm is much slower than the RRT because
rewiring the tree is a time-consuming task. Since the sampling strategies are identical,
the RRT* has the same problems with narrow passages as the RRT.

The ’Expansive Spaces Tree’ (EST) (Hsu et al., 1997) is a tree-based planner with a
sampling strategy that is optimized for narrow passages. The EST sampling behavior
is shown in Figure 34. The EST extends the configuration with the fewest neighbors
within the radius nnrad. Around this configuration, the EST samples within the
radius samplerad a new configuration crand and attempts to connect the sampled
configuration with the configuration around which sampling was performed. If the
sampled configuration is in the obstacle, i.e. crand ∈ Cobst, the EST just like the
RRT adds the furthest possible configuration to the configTree and discards crand

(see Figure 33, 3). The attempt to connect the last configuration of the configTree

with cgoal is shown in Figure 34, 4. In this example, the connection shown is not
feasible and the EST continues with the while loop. The fact that the EST extends the
configuration with the fewest neighbors means that this strategy focuses on exploring
narrow passages. However, this comes to the cost that the EST needs more time for a
coarse exploration of the complete configuration space as a whole.

For tree-based planners with a specified goal position, the ’connect’ version (Kuffner
and LaValle, 2000) can always be used. The ’connect’ version expands an additional
tree at the goal configuration and attempts repeatedly to connect both trees.

GVD-based:

A number of works address the GVD (medial axis) in the configuration space (Wilmarth
et al., 1999), (Denny et al., 2014). These planners attempt to find a path with maximal
clearance in the configuration space. They optimize the clearance of each configuration,
which makes these motion planners even more time-intensive than the aforementioned
tree-based planners.

Most approaches that use the GVD in the workspace take into account only point
robots (Seda, 2007), (Seda and Pich, 2008), (Wang et al., 2011) for which no rotation
needs to be calculated. General objects are studied by Hoff et al. (2000). The robot’s
center is placed on the path VP derived from the GVD and pushed forward. The robot
is translated and rotated according to geometry and position within the distance field.
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However, calculating the distance field forces on the robot for every motion planning
step the time-consuming evaluation of every point of the robot within the distance
field.

Foskey et al. (2001) presents a hybrid GVD- and EST-based motion planner. The
robot’s center is placed on the VP and pushed forward. The robot’s rotation is deduced
from the calculation of a difference quotient. All positions on the VP are marked as
unfeasible bridges where the robot is in collision with an obstacle. The algorithm then
attempts to connect these bridges with an EST-connect algorithm. But, there are cases
where every position on the VP is in collision, meaning that the entire path needs to
be bridged. In these cases, the hybrid approach in Foskey et al. (2001) is simply the
EST-connect. Our GVD-based planner, which uses the VP for the EST-sampling itself,
is the more general approach and has a faster reliable runtime.

Motion planning in the context of ASP with real-world CAD data entails a range of
special challenges. As mentioned in Section 2.1.3 real-world CAD data consists of
flexible parts that have an initial collision near its installed position. In reality, they can
be ’unfastened’ only if they are deformed. In addition, far from the installed position,
the large workspace for complex real-world scenarios permits many different feasible
disassembly paths for each assembled part. These different disassembly paths differ in
terms of length and clearance. An ASP framework should therefore also be capable of
determining optimized disassembly paths. To address both these different requirements,
we subdivide the motion planning process into two disjoint phases: the NEAR- and
FAR planning phase (Masan, 2015). Roughly speaking, the NEAR planning phase
describes the ’unlocking’ of an assembled part, while the FAR planning phase describes
the ’navigating’ to a nearby goal position.

4.2 NEAR planning phase

The NEAR planning phase describes the ’unlocking’ of an assembled part. For our
test data, we define that the NEAR planning phase ends when the assembled part has
traveled at least 50 mm from cinit and is not in collision. As mentioned in Section 2.1.3,
assembled parts need to pass narrow passages in their immediate environment. It is
possible that subparts are in an initially collision and need to be deformed during the
disassembly process. Simulating the exact deformation is a very challenging task. The
algorithm needs to know which parts are deformable and how exactly they behave when
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subjected to force. If the material properties are known, this can be simulated with
’finite elements method’ (FEM). More precisely, a physical simulation is needed for
accuracy. Our test data, however, consists only of meshes, but even for small examples,
the FEM simulation process takes a few hours and so is not suitable in the context
of ASP where hundreds of parts need to be disassembled. We will therefore look at
pure geometrical algorithms that approximate the physical simulation. The following
describes the existing algorithms that find a disassembly path for the NEAR planning
phase for components with flexible parts. They are not as accurate as FEM but a lot
faster. In the NEAR planning phase, we do not assume that cinit ∈ Cfree or even the
configurations of the disassembly path can be part of Cobst. Nevertheless, the existing
works presented here still ensure that the disassembly path is plausible.

4.2.1 Related Work

Schneider (2017) presents a motion planner that finds feasible disassembly paths for
parts that have flexible (sub)parts. The motion planner first detects flexible (sub)parts
using Position Based Dynamics (Müller et al., 2007) and, for these (sub)parts, in
subsequent motion planning a specific local intersection volume. The computed
disassembly paths can consist of arbitrary translations and rotations. However, the
algorithm requires for each part an individual parameter that specifies the permitted
local intersection volume.

The Iterative Mesh Modification Planner (IMMP) from Hegewald et al. (2022) is
an alternating method of controlled mesh deformations and planning attempts that
are performed until a maximum number of iterations is reached or a path is found.
With the mesh deformations, the method is capable of eliminating any unavoidable
collisions caused by flexible fastening elements and overpressure of components. For
the deformation of fastening elements, the method relies on the computation of a
saliency map (Hegewald et al., 2021) of the robot that extracts the fastening elements
as salient regions. By eliminating any unavoidable collisions, the method is capable
of applying the conventional Expansive Spaces Tree (EST) (Hsu et al., 1997) motion
planner to compute a collision-free disassembly path. The delivered disassembly paths
are reasonable and can be computed very quickly compared with exact simulations.
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Fig. 35: The dashed arrows show possible feasible disassembly paths for the blue-highlighted floor
plate in the trunk.

4.3 FAR planning phase

The FAR planning phase describes the ’navigating’ of an assembled part from the end
of the NEAR planning phase to a goal position B. We assume therefore that the part
to be disassembled was successfully disassembled during the NEAR planning phase
and so it has a collision-free initial configuration cinit ∈ Cfree at the beginning of the
FAR planning phase. We discuss the requirements that motion planners must fulfill for
the FAR planning phase in the context of ASP.

As shown in Figure 35, complex real-world scenarios are characterized by a large
installation space that with numerous assembled parts and for many of them, feasible
disassembly paths to multiple goal positions. Furthermore, due to a constricted
installation space and the geometry of the part to be disassembled, the path may
contain narrow passages in between. On one hand, therefore, a motion planner must
explore the entire scene globally, especially if certain criteria such as path length and
clearance are to be optimized: on the other hand, it must overcome narrow passages
locally.

Furthermore, a motion planner with a fast running time is crucial for efficient ASP. The
most obvious reason is that a high number of assembled parts leads to multiple motion
planning attempts. The other reason is the following: An ASP algorithm always needs
to decide for which assembled part the next motion planning query will be started.
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Due to the complex design of the assembly, the algorithm will inevitably often choose
an assembled part that cannot be disassembled in the current state because other
assembled parts need to be disassembled first. The usual procedure is that the motion
planner attempts to find a feasible disassembly path until a given time limit tmax is
reached, whereby, an ideal value for tmax must be as small as possible to allow a good
running time for these impossible disassembly queries (IDQ) but large enough to ensure
that for every single possible query the motion planner still finds a disassembly path
with a high probability p. We can say, that a motion planner has a reliable running
time t(p) if the planner for each part that can be disassembled finds a path with a
probability of at least p within the time bound t(p).

Summarized, the following requirements are placed on a motion planner in the context
of ASP for the FAR range planning phase:

(i) Explore the complete scene coarsely but also overcome narrow passages,

(ii) find a path that is short and ideally has enough clearance,

(iii) find the path within a short reliable runtime t(p) for a high pathfinding probabil-
ity p.

We show that our novel Expansive Voronoi Tree (EVT) motion planner fulfills all the
aforementioned requirements for motion planning in the context of ASP. It also works
in the configuration space but its translational sampling is based on the approximated
GVD from Chapter 3 in the workspace. The property of the GVD is that it delivers
disassembly paths with maximal clearance for point robots. This is not generally true
for arbitrary robots, but we extract an estimated disassembly path (VP) from the
GVDG which is calculated with the OTI propagation method from Section 3.2.3. Our
approach is now as follows: We look for a valid disassembly path close to the VP. A
search is performed for the translational part near the VP and the rotational part is
randomly sampled.

One advantage of GVD-based planning for a subsequent ASP is that the GVD calculated
once for one assembly situation is the same for all assembled parts. The runtime
bottleneck of GVD-based path planning, the calculation of the GVD, is therefore
distributed across all assembled parts to be disassembled in the current assembly
state.
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4.4 NEAR- and FAR planning phase

As mentioned in Section 4.2, the ability to handle real-world data requires broadening
of the original definition of a disassembly path such that the ’controlled’ collision of
fastening elements is still feasible in the highly constricted environment of the assembled
part. We thus broaden our definitions so that they also apply to real-world data.

Definition 11 (Disassembly path II )
Given a triangulated mesh m with its initial configuration cinit ∈ C, a set of obstacles
O and a set of possible goal points B ⊂ R3. A feasible disassembly path dp is therefore
the union of the disassembly path for the NEAR- and FAR planning phase

dp := dpnear ∪ dpfar

where we allow for the NEAR planning phase configurations out of Cobst

dpnear := {cinit, c1, ..., cn, cnearend
| ∥cinit − cnearend

∥2 ≤ d, cnearend
∈ Cfree}

and the FAR planning stays the original defintion

dpfar :=
{
cnearend

, c1, ..., cn, cgoal|∃b ∈ B (cinitt + cgoalt = b)
}
⊂ Cfree.

The distance between two following configurations of dp is considered to be sufficiently
small. Furthermore, the amount of permitted collision during the NEAR planning
phase must be controlled and reasonable, i.e. the permitted collision should contribute
only to the plausible disassembly of flexible fasteners.

Note: The term ’sufficiently small’ depends on the size of the robot and the scene.

Definition 12 (Motion planning problem II )
Given a dynamic object m, also called robot, with its initial configuration cinit, a set of
obstacles O and a set of possible goal points B ⊂ R3. The motion planning problem is
therefore to find a feasible disassembly path dp according to Definition 11 for m.
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4.5 Expansive Voronoi Tree

In the following, we present our new EVT motion planning algorithm. First, we use
the GVDG from Section 3.2.3 and search for a VP. Next, we sample along this Voronoi
path. The basis of our sampling strategy is the EST motion planner which is optimized
for narrow passages. We change the translational sampling of the classical EST such
that it adapts to the clearance situation and goes in the forward direction of the
Voronoi path V P . In addition, the Voronoi path acts as a magnet that attracts the
configurations back to itself.

We will now provide a detailed description of our algorithm, also taking into account the
pseudocode. For the chosen parameters we refer to the experiments in Section 4.6.

Algorithm 10 bool EVTfindPath(robot, obstacles, V P )
1: setSamplingAndSearchRadii(robot.size)
2: goalAchieved← false
3: while !goalAchieved∧ !timeLimitReached do
4: goalAchieved← expandTree(V P )
5: return goalAchieved

EVTfindPath is our main method, and it receives the robot, obstacles and a Voronoi
path VP as input. The VP was extracted with the OTI approach presented in
Section 3.2.3. In line 1, we set - as a function of depending on the size of the robot
- the nearest neighbor search radius nnRad, translational sampling radius transRad

and rotational sampling radius rotRad. We define the size of a robot as the length
of the diagonal of the OBB. Once the goalAchieved condition initial is set to false
(line 2), our tree-expanding main loop is executed (lines 3 - 4). This loop terminates
when the goal of V P is achieved or the given time limit is reached.

Algorithm 11 bool ExpandTree(V P )
1: c← getConfigWithLeastNeighbors(nnRad)
2: c̄← sampleNextConfig(c, V P )
3: connectSuccessful← connectConfigs(c, c̄)
4: if connectSuccessful ∧ c̄.v == V P .last() then
5: return true
6: return false

ExpandTree attempts to expand the EVT along the Voronoi path V P in each step.
First (line 1), we choose from the EVT the configuration c that has the fewest neighbor
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Fig. 36: A schematic presentation of the translational sampling. The dotted line represents the VP.
The shift ∆ defines the distance vector from c.t to its nearest voxel c.v. The next translation will be
sampled within a sphere with center c̄.tm := v̄ + α∆ and radius c̄.tr. We retract new samples with
the factor 0 < α < 1 back to the VP.

configurations within the search radius nnRad. This is similar to the procedure in
the EST algorithm. Next, based on c, we sample a new configuration c̄ (line 2) in
SampleNextConfig. We attempt to connect c̄ with c (line 3). If c̄ has the goal
position as the nearest voxel on V P , this means that a feasible disassembly path was
found and we return true (lines 4 - 5). Otherwise, false is returned (line 6).

Algorithm 12 Configuration SampleNextConfig(c, V P )
1: c̄← new Configuration()
2: v̄ ← getReferenceVoxel(V P , c.v, robot.size)
3: c̄.t← sampleTranslation(c.t, transRad, v̄)
4: c̄.r ← sampleRotation(c.r, rotRad, v̄)
5: v̄.samplings ++
6: c̄.v ← getNearestVoxel(V P , c̄.t)
7: return c̄

SampleNextConfig samples a new configuration c̄ with respect to the configuration
c in the forward direction of V P .

Line 1: Our algorithm instantiates the new configuration c̄.

Line 2: We search for the so called reference voxel v̄ ∈ V P (see Figure 36 for a graphical
representation): The nearest voxel of c is c.v. As reference voxel v̄ of c we choose the
first voxel in forward direction of V P for which s(c.v, v̄) > robot.size/4 holds. Where
s(vi, vj) :=

∑j−1
k=i d(vi, vi+1) describes the path length from vi to vj . By sampling in

forward direction of V P we can quickly pass by passages with ample clearance. In
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wide open regions the algorithm instantly finds a feasible configuration in the sampling
step described below and moves forward with one sampling step robot.size/4.

We will now provide an intuitive description of why the EVT performs well in narrow
passages even if we have the big step robot.size/4 in the translational sampling. The
connectConfigs function from Algorithm 11 in line 3 works like the aforementioned
tree-based motion planners (see Figure 33 3) on page 54). This means that the tree
is expanded in small steps from the original configuration c to c̄ until a configuration
is in collision (as shown in Figure 33 3) with c̄rand). Under the assumption that the
forward direction of the VP is correct we still expand the tree in the right direction
even if the new sampled configuration c̄ is too far away and results in a collision.

Line 3: We sample the translation c̄.t of our new configuration c̄, extending c. Refer
again to Figure 36. The configuration c has a translational shift ∆ := c.t− c.v to
its nearest voxel c.v. The shift ∆ indicates that it was most likely the case that no
collision-free configuration was found that is closer to the Voronoi path V P than ∆.
We set the center c̄.tm of the sphere, in which we want to sample the translation c̄.t, of
the new configuration c̄ as c̄.tm := v̄ + α∆. We thus sample in the forward direction
of V P , still taking into account the previous shift ∆. By multiplying the shift ∆ with
α ∈ (0, 1) we retract the new configuration back to the Voronoi path V P . The sample
radius is defined as c̄.tr := f(v̄.sampling) · transRad.

We hereby define f : N0 → [0, 1] as a strictly increasing function. This function takes
the number of sample attempts v̄.samplings around the voxel v̄ ∈ V P as its argument.
This number indicates how difficult it was for the EVT to find a feasible configuration
near v̄. The function f(x) := min{x/50, 1} worked well in our tests. By multiplying
f(v̄.samplings) to the sample radius transRad, we ensure that the radius increases
only up to transRad if needed.

For a detailed explanation of how we determine a sampling point within a sphere read
the following Section 4.5.1.

Line 4: Each rotation is represented as a point on the unit sphere. We sample c̄.r
on the unit sphere around the point c.r but consider only configurations that have at
most the distance f(v̄.sampling) · rotRad to c̄.r. In other words, distance(c̄.r, c.r) ≤
f(v̄.sampling) · rotRad where it is the distance on the surface on the unit sphere.

Line 5: Increase the counter v̄.samplings that counts how many times we sampled
around the voxel c̄.v.
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Line 6: We set c̄.v to the nearest voxel of c̄ on V P . For a large sampling radius
this nearest voxel c̄.v is not necessarily equal to the reference voxel v̄, refer again
Figure 36.

4.5.1 Analysis

We theoretically evaluate how different distribution functions for our iterative transla-
tional sampling (SampleNextConfig line 3) affect the workspace-exploring property
of our EVT.

For simplicity, let’s assume that all voxels of the Voronoi path V P are arranged along
a straight line. By sampling in each step within a sphere with a radius of at most
transRad, e.g. with a uniform distribution, the maximum distance we can move away
from vPath in one sampling step is transRad. The algorithm maximizes the distance to
vPath by always sampling in the same direction orthogonally to vPath. The distance
is therefore d1 = transRad in the first step, d2 = α · transRad + transRad in the
second and

di =
i−1∑
k=0

transRad · αk

for sampling step i. For i → ∞ the sum converges from below toward d =

transRad/(1− α). Thus, with sampling only inside the sphere the EVT algorithm is
not capable of exploring the entire configuration space because the distance from the
sampled configurations to the VP is bounded.

Therefore we sample Gauss distributed around the sampling center c̄.tm with variance
transRad. Since the Gauss distribution is not bounded by the surface of the sphere,
the translational sampling has a small probability to explore the complete workspace.
Most of the samples are nonetheless near V P , but the EVT can expand to the entire
scene. It therefore explores the configuration space over the long term like a normal
EST.
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Fig. 37: The blue-highlighted parts show our test data: a) seat belt clip (3,275 triangles), b) trunk
ground plate (8,429 triangles), c) display (40,176 triangles), d) hat rack (17,743 triangles), e) ventilator
(70,036 triangles), f) covering plate (2,365 triangles).

4.6 Experiments

4.6.1 Implementation and test details

We test and compare our EVT against the following algorithms which we have reimple-
mented: RRT (Lavalle, 1998), RRT* (Karaman and Frazzoli, 2011), EST (Hsu et al.,
1997) and EST-connect (Kuffner and LaValle, 2000). For each part to be disassembled
we executed 100 runs for every algorithm and each run for at most 120 seconds. For
all delivered disassembly paths we used a path-smoothing algorithm with a runtime
of 1 second. We performed these extensive tests for the six parts shown in Figure 37.
We also compared our EVT against the RRT for all parts but for only one run for the
data set which is shown in Figure 38.

The comparison does not include the aforementioned hybrid motion planner (Foskey
et al., 2001) because it is a pure EST-connect in situations where the center of the
robot has to leave the Voronoi path. This is quite often the case, for example for the
parts b), d), e) in Figure 37.

The RRT, RRT* and EST motion planners are implemented as multi-goal planners to
all surrounding goal positions B, i.e. the motion planners attempt to connect the last
collision-free configuration with all goal positions B that are closer than 1500 mm. Our
EVT and the EST-connect algorithm attempt to find a disassembly path to the goal
position of vPath. The EST-connect therefore grows a second tree starting from the
goal position. Our parameter tests showed that the following sampling parameters are
optimal for the EVT, EST and EST-connect: transRad = 0.5 · robot.size, rotRad = 0.1
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Fig. 38: The sampling behavior of the motion planners EVT, RRT/RRT*, EST and EST-connect for
the assembled part in Figure 37 b): The red dots are translational sampling points, while the blue line
shows the translational part of the computed disassembly path. The yellow line for the EVT shows
vPath.

and nnRad = 0.15 · robot.size. We set the retracting parameter α to 0.8. For RRT
and RRT* we set the growth step ∆q to 100% of the scene size. This delivered faster
results and only slightly longer paths than a smaller value for ∆q.

4.6.2 Evaluation

Sampling strategy: For a comparison of the different sampling strategies we show by
way of example the points that are sampled in one single run of the algorithms for the
trunk ground plate, test data b). In Figure 38, it can be seen that the algorithms find
several possible disassembly paths to different goal positions. The shortest disassembly
path has a narrow passage in the middle and is found reliably only by the EVT and
EST. The RRT/RRT* covers the entire configuration space with a uniform sampling
and so as in this run - rarely finds the shortest path through the narrow passage. It
can be seen that the EST found the narrow passage in this run, also tends to cover
the large free space inside the car or to find a disassembly path through a door. This
behavior can be seen to a greater extent with the EST-connect, which in principle has
the same sampling strategy as the EST and did not find the correct path in this run.
Since our EVT always performs dense sampling only at the narrow passages, it fulfills



68 motion planning

Fig. 39: The found disassembly path is shown in discrete steps for the blue-highlighted part. Reading
order is from top left (initial position) to bottom right (goal position).

requirement (i). A disassembly path found for the part from Figure 37 b) is shown in
Figure 39.

Path length: Next we measure the path lengths obtained by the different algorithms,
see Figure 40-top for a graphical evaluation via a box plot. Our EVT algorithm
delivered for all parts - except example b) - the shortest median length. Even in
example b) the EVT had the shortest 75 quantile length. The low variance among
the different path lengths from the EVT for all parts is testament to its stability. In
our experiments, the RRT*’s path lengths were only negligibly shorter than the path
lengths from the RRT. Since the EVT always delivered short paths and it is based
on the GVD, it fulfills the requirement (ii) regarding path length and clearance. The
superiority of our EVT algorithm compared with the state-of-the-art algorithms can be
explained as follows: If a part is assembled ’inside’ of the car, there are many different
paths it can take to the ’outside’, e.g. through the windshield, doors or trunk. Due to
random sampling each motion planner has a probability to find a disassembly path
through one of the aforementioned ways. The different ways through the different exits
differ in terms of length, so the motion planner sometimes - but not always - finds the
shortest disassembly path. All the motion planners used have this problem in common.
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Fig. 40: Top: Computed path lengths for EVT, EST, EST-connect, RRT. The bar height is the
median value, the spikes below/above represent the 25/75 quantile. Bottom: The time t(p) to ensure
a given pathfinding probability p = (0.35, 0.75, 0.85, 0.9).

They differ only in terms of which way will likely be found. The RRT will likely find
an easy to find disasembly path; the EST will find a diassembly path with narrow
passages, and so on. Our EVT searches only near the VP which is at least a very good
estimation for the shortest disassembly path. Consequently, the EVT can only find a
very short disassembly path. This results in short disassembly paths with a very small
variance in the path length.

Reliable running time: In our last experiment (see Figure 40-bottom), we consider
different probabilities p. For every algorithm we measure for each part the time bound
t for which p% of the runs found a feasible path. The measured overall reliable running
time t(p) of the algorithm is therefore the maximum across all these time bounds. We
explain this in more detail using the example of the RRT, whereby Figure 41 shows how
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Fig. 41: The ordered run times that the RRT needed for the example in b). The reliable runtimes for
p = (0.35, 0.75, 0.85, 0.9) are represented with the colors from Figure 40.

we calculated the reliable running time t(p). For each run (x-axis), the diagram shows
the time (y-axis) when the RRT found a feasible disassembly path. The RRT found
a feasible disassembly path in 99 of the 100 runs. The reliable running time t(0.85)
for part b) is 42 seconds because, in 85 out of 100 runs, the RRT needed at most 42
seconds to find a feasible disassembly path. The overall reliable running time for a
possibility p is now the maximum time needed across all examples a) - f). The overall
reliable running time is important in the context of ASP because a framework must set
a maximum time limit for a motion planner until it terminates - even without finding a
feasible disassembly path. Consequently, an ASP framework needs the maximum time
limit for each assembled part that cannot yet be disassembled. Therefore, a motion
planner is needed that, for each assembled part, finds a feasible disassembly path with
a high probability and in a short time.

Our EVT has a reliable running time of t(0.85) = 20 seconds because it delivered a path
for each part in at least 85 out of the 100 runs within 20 seconds. This demonstrates
the robustness of the EVT for finding a disassembly path for different robot-obstacle
scenarios reliably and in a short period of time. Neither the EST nor the EST-connect
is reliable at all because, for part e), neither were capable of finding a path. The very
poor performance of these two motion planners can be explained by the many narrow
passages in many different directions. However, only one direction includes a feasible
disassembly path. Thus, the EST/EST-connect wastes most of its time exploring
narrow passages that do not offer any disassembly paths. Even disregarding this fact,
EST/EST-connect already have, for a low probability value, a high reliable running
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Table 7: A detailed comparison of the FAR planning phase from Table 10 for the two motion planners
EVT and RRT.

tier suc. queries time [s] ∅ path length
EVT RRT EVT RRT EVT RRT

0 357 354 736 1,320 1,876 2,106
1 69 64 123 281 1,990 2,627
2 47 45 117 200 1,663 2,120
3 55 55 110 72 1,870 1,832
4 25 26 45 75 1,776 2,350
5 26 26 87 164 2,011 1,856
6 26 26 69 32 2,275 2,352
7 8 10 52 41 2,006 2,243∑ 617 610 1,420 2,185 1,892 2,163

time t(0.35) of more than 100 seconds. The RRT achieved a reliable running time of
t(0.75) = 105 seconds. The RRT* was run for 120 seconds for all parts and, within
this time bound, could ensure only a pathfinding probability of 0.35. This is because
the RRT* generally behaves like the RRT. However, it takes a long time to rewire the
tree. The RRT* thus generally needs more time to find a feasible disassembly path
than the RRT. All in all the EVT had by far the best reliable running time for the
high pathfinding probability p = 0.85, fulfilling requirement (iii).

All parts: In addition, we compared the EVT with the RRT for all assembled parts:
this is shown in Table 7. We discuss this table in detail later in the evaluation of our
ASP framework (Section 5.4). However, the basic conclusion of the experiment with
all assembled parts is clear: Our EVT algorithm finds a feasible disassembly path
for more parts, is faster and delivers shorter disassembly paths than the RRT. We
compared the EVT only with the RRT because, as already stated, the RRT was the
best state-of-the-art motion planner.
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A S S E M B LY S E Q U E N C E P L A N N I N G

This chapter, focuses on our main topic: assembly sequence planning (ASP) for real-
world CAD data. We will first formally introduce ASP and discuss the various special
requirements in relation to complex real-world CAD data. We discuss the representation
of the disassembly sequences found for the assembled parts. Common representations
like AND/OR-graphs need exponential storage and so are not practical for big data
sets. We solve this problem with our novel assembly priority graph (APG). The APG
is a compact, meaningful, easy-to-read and extendable blocking graph capable of
representing numerous disassembly sequences. We will then present the state-of-the-
art frameworks and discuss their shortcomings for real-world data. Finally, we will
introduce our ASP framework, the first one capable of handling real-world data in
the context of ASP. Our framework builds on the two previous chapters. We will
therefore describe in detail how we use the GVD (Chapter 3) and EVT motion planner
(Chapter 4) for our framework. The outstanding properties of our ASP framework
are:

(i) handling of flexible (sub)parts in the NEAR planning phase,

(ii) finding of short paths in the FAR planning phase,

(iii) reducing the number of impossible disassembly queries (IDQ) which gives a huge
speed up

(iv) and the meaningful and easy to read representation with our APG.

Our experiments show that our framework is capable of handling the test data from
Chapter 2. In addition, the experiments show that common ASP frameworks are not
capable of handling our real-world data set.

72
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a1 a2

a4

a3
a5 a6

Fig. 42: A two-dimensional example of an assembly. The grey-highlighted parts indicate the body
shell; the six colored parts a1, ..., a6 indicate the assembled parts.

5.1 Assembly Sequence Planning Problem

The aim of ASP is to find at least one feasible assembly sequence if one exists. A
feasible assembly sequence is a list indicating a sequence in which all components can
be assembled collision-free via a specific assembly path. In our case, we subdivide the
given assembly into parts to be assembled and parts to remain in the assembly, the
body-in-white. A common way of finding feasible assembly sequences is the assembly-by-
disassembly approach (Mello and Sanderson, 1988) whereby the assembly is disassembled
and the resulting disassembly sequence is reverted. Thus, the terms ’assembly’ and
’disassembly’ are used equivalently, i.e. we search for disassembly sequences and
disassembly paths. The advantages of the assembly-by-disassembly approach are
described in the following.

The two-dimensional example in Figure 42 shows an assembly that consists of the
body-in-white and six assembled parts. One possible feasible disassembly sequence is
a4 → a5 → a6 → a3 → a2 → a1 and the corresponding feasible assembly sequence is
a1 → a2 → a3 → a6 → a5 → a4. This shows the advantage of disassembly because
each assembled part that is successfully disassembled cannot lead to ’dead-ends´ later
on. i.e. each part which gets disassembled brings the disassembly process forward.
If one starts only with the body shell and assembles one part each after another an
assembled part might later block the path for parts that have not yet been assembled.
Consider the following (sub) assembly order to be assembled in the body-in-white:
a2 → a6 → a4. The parts can be assembled in this order without collision up to this
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point, but, it now blocks the other parts and prevents them from being assembled. This
results in a time-consuming brute-force algorithm. For the rest of this work, therefore,
we use the disassembly process and simply reverse the disassembly sequence to obtain
the assembly sequence.

In addition, we assume the following properties: The assembly can be disassembled
monotonous, i.e. it is possible to disassemble one part after another without moving
another part in between or to disassemble a set of parts as a subassembly. A car
contradicts this assumption; the doors, the bonnet and the boot lid need to be opened
and closed several times during the assembly process. We therefore removed this parts
in our data set. Subassemblies play a significant role in the industrial assembly process
because they allow parallel assembly steps. However, we have not seen any cases in
our data set where subassembly detection is needed. We refer to section 6.2 where we
discuss some ideas for non-monotonous disassembling.

The aforementioned disassembly sequence is just one of many. An assembly precedence
graph represents all feasible disassembly sequences. Michniewicz (2019) shows a
number of representations for the assembly precedence graph such as the AND/OR
graph and diamond graph. With respect to the number of assembled parts, the
assembly precedence graph generally consists of an exponentially high number of many
disassembly sequences (Jiménez, 2013). The respective disassembly precedence graph
for the example in Figure 42 is shown in Figure 43. Every path from the root a4 to
a leaf is a feasible disassembly sequence. The disassembly precedence graph shown
therefore consists of ten different disassembly sequences. Even for mid-sized data sets,
the calculation time for an assembly precedence graph can increase by several orders of
magnitude. Therefore, the minimum requirement for solving the ASP task is to find at
least one feasible disassembly sequence. The more disassembly sequences are found,
the more meaningful the solution.

We calculated the aforementioned assembly sequence by looking at the still assembled
parts and then removing them one by one whenever the respective part can be removed
without collisions. So, we calculated a disassembly path for each assembled part (see
Definition 9). To ensure that an assembled part can be disassembled in any given
state, an ASP framework needs to calculate a disassembly path at some point for each
assembled part. Next, we define the ASP problem.
Definition 13 (Disassembly Sequence I )
Given an assembly Ā := (O, A) which consists of the body shell O and all assembled
parts A and a set of goal points B. Then a disassembly sequence seq for the assembled
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Fig. 43: The disassembly precedence graph for the example from Figure 42.

parts A is an ordered list seq(A) := {a′
1, ..., a′

n|a′
i ∈ A ∀i ∈ {1, ..., n}} of all assembled

parts A such that there exists for each part ai ∈ seq(A), i ∈ {1, ..., n} a disassembly
path for the following motion planning problem (see Definition 10): the dynamic object
is ai and the set of obstacles is Ō := {O} ∪ {aj ∈ seq(A)|j ∈ {i + 1, ..., n}} and the
set of goal points is B.

Definition 14 (Assembly Sequence Planning Problem I )
Given an assembly Ā. Then the ASP problem is to find at least one feasible disassembly
sequence for the assembled parts A.
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This formal definition works for academic examples. However, as mentioned in Sec-
tion 4.2, the definition of a feasible disassembly path in the close environment of
an assembled part needs to be broadened. Therefore, we broadened the definition
of motion planning (Definition 11 and Definition 12) such that they are suitable for
real-world data. Consequently, we can now broaden the ASP definitions such that they
are also suitable for real-world data sets, i.e. we use the broadened motion planning
definitions for our ASP definitions as well. Definition 15 differs only from Definition 13
by the used motion planning problem definition, i.e. we use now the motion planning
Definition 12 which allows some controlled collision in the NEAR planning phase.
Definition 15 (Disassembly Sequence II )
Given an assembly Ā and a set of goal points B. Then a disassembly sequence seq for
the assembled parts A is an ordered list seq(A) := {ā1, ..., ān|āi ∈ A ∀i ∈ {1, ..., n}} of
all assembled parts A such that there exists for each part ai ∈ seq(A), i ∈ {1, ..., n}
a disassembly path for the following motion planning problem (see Definition 12):
the dynamic object is ai and the set of obstacles is Ō := {O} ∪ {aj ∈ seq(A)|j ∈
{i + 1, ..., n}} and the set of goal points is B.

Definition 16 (Assembly Sequence Planning Problem II )
Given an assembly Ā. Then the ASP problem is to find at least one feasible disassembly
sequence after Definition 15 for the assembled parts A.

5.1.1 Assembly Priority Graph

One reason that the assembly precedence graph explodes is that the number of dis-
assembly sequences increases exponentially with the number of parts that can be
disassembled independently of each other. Consider here the parts a1, a2, a3 and a5, a6

from the example shown in Figure 42. If a4 is disassembled, the two subgroups a1, a2, a3

and a5, a6 can be disassembled independently of each other, i.e. it is irrelevant for
a5 and a6 whether or not some of the parts a1, a2, a3 are still assembled. However,
each permutation of the disassembly order between the subgroups a1, a2, a3 and a5, a6

results in a new disassembly sequence which needs its own representation in common
graphs like that shown in Figure 42. Thus, the single piece of information that these
two subgroups can be disassembled independently of each other implies that many
disassembly sequences are possible. Summarized, the main problem with represen-
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tations that list all disassembly sequences is that even for one disassembly path per
assembled part the number of possible disassembly sequences explodes. Therefore,
indicating only the parts that need to be disassembled in order for an assembled part to
be disassembled along a specific disassembly path contains all the required information
about possible disassembly sequences. The representation of the parts that need to be
disassembled first along a disassembly path is very slim. For example, a blocking graph
represents - depending on the underlying disassembly path for a3 - the information
that a3 can not be disassembled if a4 is still disassembled. This is the general idea of
blocking graphs (Wilson, 1992). However, the blocking graph in its original definition
cannot represent the blocking information for different disassembly paths in one graph.
We can solve this problem thanks to our novel assembly priority graph (APG), which
represents all disassembly blocking relationships for all parts and all disassembly paths
in one compact graph. We also show that the size of the APG grows only quadratically
with respect to the number of assembled parts and linearly with respect to the number
of disassembly paths that are represented. Our APG is therefore a combined graph
containing the same information as the exponentially growing assembly precedence
graphs.

For each assembled part and the different disassembly paths, our assembly priority
graph (APG) indicates all parts that need to be disassembled first. More precisely, our
APG is a directed hypergraph HG := (V , E) (Ausiello and Laura, 2017) where each
part defines a node. A hyperedge hdp := (astart, {aend1 , ..., aendn}) represents for a
given disassembly path dp the priority relationship of the components that must already
be removed for collision-free disassembly. So, astart can be successfully disassembled
along dp if aend1 , ..., aendn are disassembled. For the disassembly paths which are
shown in Figure 44 see Figure 45 for the corresponding APG. The APG represents
both disassembly paths for a1. The dashed disassembly path is represented with the
directed dashed hyperedge (a1, {a2, a3, a4}) and the continuous disassembly path with
the continuous hyperedge (a1, {a2, a3, a5, a6}). The loop-edge at a4 indicates, that a4

has no collisions if disassembled along the corresponding disassembly path. Another
alternative to the loop-edge is to draw an empty edge, i.e. just draw no edge. However,
the loop-edge is needed if two or more different disassembly paths are available: one
with no collisions and another one with collision. Then, the empty edge cannot be
read out from the APG. We therefore define the hypergraph and our APG as described
below.
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Fig. 44: A two-dimensional example of an assembly. The grey-highlighted parts indicate the body
shell, the six colored parts indicate the assembled parts. The (dashed) arrows represent possible
disassembly paths.
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Fig. 45: The disassembly precedence graph for the example from Figure 44.

Definition 17 (Hypergraph)
A directed hypergraph HG := (V , E) is an ordered tuple, where V indicates the set of
vertices and E the set of directed hyperedges. A directed hyperedge (astart, aEnd) =: e ∈
E with astart ∈ V , aEnd ⊆ V indicates the directed edges (astart, aend) ∀aend ∈ aEnd.
A directed hyperedge therefore has one starting vertex and up to |V | end vertices.

Definition 18 (Assembly Priority Graph)
Given an assembly Ā := (O, A) which consists of the body shell O and all assembled
parts A and for each assembled part a ∈ A a set of disassembly paths. Then the
APG := (V , E) is a directed hypergraph where the set of nodes V := A is equal to the
assembled parts. For each disassembly path, the APG contains one hyperedge e. Let
dp := dpnear ∪ dpfear be a disassembly path (see Definition 11) for a ∈ A. Furthermore,
let aEnd ⊆ A \ {a} be the set of assembled parts with which a collides if disassembled
along dp, except that assembled parts which collide with a only within the tolerated
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collision in the NEAR planning phase. If |aEnd| = 0 we set e := (a, {a}) otherwise
e := (a, aEnd).

Next, we analyze the size of our APG.
Theorem 3
Let Ā be an assembly and APG := (V , E) a corresponding assembly priority graph.
Assume that each assembled part a ∈ A has at most n different disassembly paths.
Then the size of the assembly priority graph size(APG) := |V | + ∑

e∈E |e| with
|e| := 1 + |aEnd| is at most |A|+ n|A|2.

Proof : Each assembled part a is represented with one vertex. So it is |V | = |A|.

A hyperedge e := (astart, aEnd) indicates with the set aEnd which parts have to be removed
for a collision-free removal along the associated disassembly path. It is not possible for
a part to have to remove itself first. Thus, we conclude |aEnd| ≤ |A| − 1 and therefore
|e| ≤ 1 + (|A| − 1) = |A|. By assumption each assembled part a has at most n disassembly
paths and therefore each vertex has at most n outgoing directed hyperedges. Thus, |E| ≤
n|V | = n|A|. So it is

∑
e∈E |e| ≤ |E| · |A| ≤ n|A| · |A| = n|A|2 which leads to size(APG) =

|V |+
∑

e∈E |e| ≤ |A|+ n|A|2.

Theorem 3 shows that the size of the APG is with respect to the number of disassembly
paths found for each part quadratically bounded. The size of the representations that
list all disassembly sequences, e.g. an AND/OR-graph, is generally exponential. This
result shows that our APG is superior compared to common assembly precedence
graphs.

5.2 ASP Frameworks

5.2.1 Overview

An ASP framework receives an assembly as its input and delivers at least one feasible
disassembly sequence as its output. A conventional solution (Ebinger et al., 2018), (Yu
and Wang, 2013), (Kardos and Váncza, 2017), (Zhang et al., 2017) is the following:
A loop always iterates across all assembled parts and attempts to find a feasible
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Fig. 46: The data represents a subset of the Mercedes-Benz A-Class. The light-grey parts belong
to the body shell, while the other colors represent the assembled parts. The surrounding orange
squares represent goal positions. The dashed arrows show possible feasible disassembly paths for the
blue-highlighted covering part. This covering part is fastened with the red-highlighted flexible clips
shown on the right.

disassembly path for each assembled part until all parts are disassembled. In general,
depending on the number of assembled parts, the loop executes a quadratic number of
disassembly queries. Each part can be disassembled only once, however, which means
that the majority of motion planning attempts are unsuccessful because a part to be
checked is blocked by other still assembled parts and so cannot yet be removed. We call
these impossible disassembly queries (IDQ). The quadratic runtime of this brute-force
loop is too slow for a large number of assembled parts. So for an approach that is
viable in practice, the number of IDQ needs to be significantly reduced. We present two
algorithms that quickly filter out many of those IDQ. Reducing the IDQ is beneficial for
another reason. Motion planning queries for parts that cannot yet be disassembled are
more time-consuming than motion planning queries with a successful outcome. This is
because if no disassembly path exists, the motion planner used terminates only after
exceeding the given maximum time limit. Each IDQ therefore requires the maximum
time available. Motion planning queries with a positive outcome require by definition
less time.

As already mentioned, the actual computation of a disassembly path for a part is a
(rigid body) motion planning task. Here, most ASP works address only linear paths (Ou
and Xui, 2013), (Su, 2006), (Yu and Wang, 2013). Since this is very often not sufficient
in real-world scenarios, some works (Ebinger et al., 2018), (Aguinaga et al., 2008) use
the sampling-based motion planner ‘Rapidly-exploring random tree’ (RRT) (Lavalle,



5.2 asp frameworks 81

1998) for finding feasible disassembly paths. All previous works for ASP are tested
on small and, in most cases, only in an academic context. When it comes to complex
real-world scenarios, two main difficulties occur. First, as shown in the example in
Figure 46, it is often impossible to find feasible disassembly paths without addressing
flexible (sub)parts like fastening elements. Fastening elements (e.g. clips) almost always
cause collisions with the surrounding geometry near the installed position. In reality,
they can be ‘unfastened’ only if they are deformed. Second, far from the installed
position, the large workspace in complex real-world scenarios permits many different
feasible disassembly paths for each assembled part. These disassembly paths differ
in terms of length and clearance. Therefore, an ASP framework should be capable
of determining optimized disassembly paths. To cover both these requirements, we
subdivide the motion planning process into two disjoint phases: the NEAR- and FAR
planning phase (see also Section 4.2 and Section 4.3).

We summarize the requirements for an ASP framework for complex real-world scenarios
as follows:

(i) treat flexible (sub)parts like clips in the NEAR planning phase,

(ii) quickly find optimized paths in the FAR planning phase,

(iii) keep the number of IDQ low,

(iv) extract a meaningful representation of the disassembly sequences.

5.2.2 Related Work

One of the first works (Mello and Sanderson, 1988) covering ASP introduced the
theoretical basis. Among the main tasks are the definition of ASP and the representation
of assembly precedence graphs. A number of works cover the combinatorial and
geometric perspective (Jiménez, 2013), (Kavraki et al., 1993), (Ghandi and Masehian,
2015). They show that ASP involves many NP-hard tasks such as motion planning
and subassembly detection. It is also shown, that the combinatorial explosion of the
assembly precedence graph is not manageable in practice even for mid-sized examples.
Next, we provide an overview of the current state-of-the-art regarding requirements (i)
- (iv).
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Most ASP frameworks consider only linear disassembly paths (Ou and Xui, 2013), (Su,
2006), (Yu and Wang, 2013), (Kardos and Váncza, 2017), (Zhang et al., 2017), (Hadj et
al., 2018), (Pintzos et al., 2016). However, some works (Ebinger et al., 2018), (Aguinaga
et al., 2008) use the sampling-based motion planner ‘Rapidly-exploring random
tree’ (RRT) (Lavalle, 1998). An RRT is capable of computing arbitrary motions
including rotations. Nevertheless, the RRT cannot handle flexible (sub)parts (i) and
does not deliver optimized paths (ii). Masehian and Gahndi (2021) tackle the problem
of flexible subparts by creating an Assembly Stress Matrix which indicates the stress
on a part during the disassembly process. However, they need the material properties
and consider only the disassembly directions along the x, y, and z-axes. Moreover, they
use the FEM software AbaqusT M (AbaqusT M n.d.) to simulate the deformation, which
is extremely time-consuming. In summary, no ASP framework exists that fulfills the
motion planning requirements (i) and (ii).

However, algorithms exist outside the context of ASP that deal with problems (i)
and (ii). See Section 4.1.1 and Section 4.2.1 for a general discussion of related work in
the field of motion planning.

Finding an optimized path is already widely discussed in the context of motion planning.
The extension RRT* (Karaman and Frazzoli, 2011) of the RRT returns a path that
optimizes a user-defined criterion such as path length and so generally fulfills (ii).
However, the RRT* algorithm is much slower than the RRT. Our ‘Expansive Voronoi
Tree’ (EVT) from Section 4.5 is very fast and also delivers optimized paths. However,
the EVT requires a runtime-intensive general Voronoi diagram of the complete scene for
these benefits. In the context of ASP, however, the runtime costs for the general Voronoi
diagram are distributed across all assembled parts. We can therefore demonstrate, that
the EVT motion planner is ideally suited for the FAR planning phase.

Only a few works exist that focus on reducing the number of disassembly queries within
an ASP process (iii). The authors of Hadj et al. (2018) assume that fasteners can
always be disassembled and so they search only for disassembly paths for non-fastener
parts. However, they need preliminary information about which part is a fastener and
the assumption that fasteners can be disassembled in every shoring situation is generally
not correct. For example, a screw may be longer than the required clearance allows,
i.e. the screw hits the back/top during the screwing process. Another work (Popescu
and Iacob, 2013) presents an approach that first searches for a disassembly path for
assembled parts that are assembled on the ’outside’. However, it is generally not the
case that parts on the outside have to be removed before those on the inside.
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The structuring or meaningful representation of the disassembly paths found in an
ASP framework (iv) is discussed by Pintzos et al. (2016). They present the so called
search strategy by tiers. This strategy starts with the complete assembly and in each
step removes all parts that can be disassembled independently of each other for the
actual shoring state. This proceeding groups all parts in hierarchical tiers which results
in a meaningful and easy-to-interpret disassembly order. Our APG also divides the
assembled parts into hierarchical tiers.

Like our APG,Wilson’s blocking graph (Wilson, 1992) contains a node for each assembled
part and indicates with its edges the parts that collide for a given disassembly motion
with a part. Each blocking graph represents only one disassembly motion, however,
which is why many graphs are needed to represent all the different disassembly paths.

5.3 Our Framework

5.3.1 Overview

We will first provide a rough overview of how our ASP framework works, followed by
a detailed explanation. The framework can be described with three algorithms (see
also the pseudocode). The main-loop (Algorithm 13) iterates over all still assembled
parts and at the start of each iteration, calculates the GVDG. It then, uses the GVDG
and our novel collision perceiving algorithm to decide if a part should be checked
for disassembly (Algorithm 14). When the check is executed (Algorithm 15), it first
searches for the disassembly path in the NEAR planning phase and then, if successful,
on the basis of the associated VPs for disassembly paths for FAR planning. All the
parts that are disassembled in the same iteration step are categorized in the same tier.
This means that these parts can be disassembled independently from each tier and the
following tiers. A detailed explanation of the specific steps is provided below.
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Algorithm 13 APG calculateAPG(A, O)
1: assParts← A

2: while assParts ̸= ∅ do
3: calculateGV DG(assParts, O)

4: for all part ∈ assParts do
5: if disassemblyPossible(part) then
6: findDisassemblyPath(part)

7: removeAllDisassembledParts(assParts)

8: return createAPG(A)

5.3.2 calculateAPG

Algorithm 13 shows the main function calculateAPG. It receives all assembled parts A

and the body shell O as its input. First, we assign all assembled parts A to the set of
still assembled parts assParts. The while-loop terminates when all assembled parts
are disassembled (line 2). At the beginning of each iteration, we calculate the general
Voronoi diagram (GVD) for the body shell and all still assembled parts and extract the
general Voronoi diagram graph (GVDG) from this (line 3). We calculate the GVDG
with the OTI approach from Section 3.2.3. We search for each still assembled part up
to two VPs, one path leading to a front/back goal position and another to a lateral
goal position (see Figure 47 for a visualization of the VPs). Setting two different VPs
increases the probability of finding a feasible disassembly path for the FAR planning
phase and, if both VPs lead to a feasible disassembly path, it increases the variety of
the APG.

The for-loop (line 4) checks for all still assembled parts, to see whether a feasible
disassembly path can be found (line 5 and Algorithm 14). If a disassembly path exists
in principle, we search for a disassembly path (line 6 and Algorithm 15). After the for-
loop, all disassembled parts are removed from the still assembled parts assParts (line 7).
Our procedure groups all the disassembled parts in this step into one hierarchical tier,
following the procedure of Pintzos et al. (2016). This results in a simple but meaningful
interpretation of assembly precedence relations: All parts assigned to one tier can be
removed independently of all parts contained in the same or a subsequent tier. Finally,
the APG (see Section 5.1.1) is created and returned.
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Fig. 47: Our test data with VPs for assembled parts that lead to the orange goal positions B.

We will now describe how we determine a hyperedge hdp := (a, aEnd) for a part
a that is disassembled via the disassembly path dp. In short, we push the part a

along dp and collect all the parts that collide with a. A detailed explanation is
provided below. Given an assembly Ā := (O, A) with its body shell O and the
assembled parts A. Let a ∈ A be a part with a corresponding disassembly path
dp := dpnear ∪ dpfar := {cinit, c1, ..., cn, cgoal}. Assume that a is in tier i ∈ N0 and
the parts that are in tier j < i are already disassembled. Then the hyperedge hdp is
determined as follows. We apply all configurations of dp to a and check which parts of
A′ collide with a. The set of parts A′ := {a′ ∈ A|tier of a′ < i} consists of all parts
that are still disassembled. It is important to use the set A′ instead of all assembled
parts A because in the NEAR planning phase, we allowed some controlled collision.
This controlled collision should be ignored from the hyperedge, i.e. the parts that cause
the controlled collision must not be disassembled first. So, the set of outgoing nodes
of hdp is aEnd = {a′ ∈ A′|∃c ∈ dp(c(m) collides with a′)}. For aEnd = ∅ we set the
self-loop aEnd = {a} to indicate that no parts are in collision.
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Algorithm 14 bool disassemblyPossibly(assPart)
1: if assPart.voronoiPath == NULL then
2: return false
3: for all collPart ∈ assPart.collisionParts do
4: if collPart /∈ assParts then
5: return true
6: if assPart.collisionParts == ∅ then
7: return true
8: return false

5.3.3 disassemblyPossible

Algorithm 14 shows the disassemblyPossible function. Motion planning queries for
which no feasible disassembly path exists are extremely time-consuming, which is
why, this function performs a check using two new heuristics to determine whether
a disassembly path exists for an assembled part. As shown in our experiments in
Section 5.4, this significantly speeds up the running time. The time-consuming search
for a feasible disassembly path is performed in Algorithm 15.

Voronoi path existence (lines 1, 2): The GVDG does not always provide a VP
for an assembled part. We will analyze why this happens and explain the resulting
conclusion. We differentiate between three different cases, as illustrated in Figure 48.
In each example a), b) and c), the assembled part a1 is to be disassembled. In the first
case a), the GVDG connects the Voronoi cell of a1 with the surrounding and thus a
VP for a1 can be found. Furthermore, Algorithm 15 then finds a disassembly path for
a1. In b), the GVDG also provides a VP for a1. However, Algorithm 15 will not find
a disassembly path for a1 because the gap between O and a2 is too narrow. In the
last case c), the assembled part a1 is completely enclosed by its surrounding parts O

and a2. Therefore, the Voronoi cell of a1 does not have a connection to the outside
and cannot deliver a VP to a goal position. In this case assPart.V P == NULL and
Algorithm 15 is not called at all because if no VP exists, no disassembly path exists.
We therefore check to determine whether the part to be disassembled has a VP (line 1)
and return false (line 2) if no VP and, in turn, no disassembly path exists (case c)).
We use this method to filter out all enclosed assembled parts.
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Fig. 48: Three different assembly states are shown in a), b) and c). The assemblies consist of the body
shell O and assembled parts a1, a2. The corresponding GVDGs are represented with the dotted line.

Collision perceiving (lines 3 - 7): The case shown in Figure 48 b), that a VP but
not a disassembly path exists, occurs inevitably in complex scenarios. However, in this
case, a motion planner in Algorithm 15 attempts in vain to find a feasible disassembly
path. The motion planner starts its sampling procedure and terminates after a given
time limit. Requiring the full time available without identifying a feasible disassembly
path is a very time-critical aspect for an ASP framework. During this sampling process,
the assPart collides with its surroundings. We store each assembled part that collides
with the assPart during this sampling process in the list assPart.collidingParts. We
now assume the following: If the motion planner has not found a disassembly path
after a given time limit, this means that no disassembly path exists in the current
assembly state. The part is therefore enclosed by other assembled parts (in b) by a2)
and can be disassembled only when at least one of these colliding parts is disassembled.
We therefore check all colliding parts in assPart.collidingParts from the previous
disassembly attempt (line 3) and attempt to execute Algorithm 15 for assPart again
only if at least one of these assembled and colliding parts has since been disassembled
(line 4, 5). If there are no colliding parts in assPart.collidingParts this means that
no previous disassembly attempt was made and we also return true (lines 6, 7).
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Algorithm 15 void findDisassemblyPath(assPart)
1: assParts.collisionParts← ∅
2: if !findNEARdisPath(assPart) then
3: return
4: for V P ∈ assPart.V P do
5: findFARdisPath(assPart, V P )

5.3.4 findDisassemblyPath

Algorithm 15 searches for a disassembly path for each associated VP of the assembled
part assPart.

First, we clear the collision parts assParts.collisionParts (line 1) from the previous
disassembly attempt.

Next, we search for a disassembly path for the NEAR planning phase (line 2). We
define the end of the NEAR planning phase as the point at which the assembled part
has been moved translationally at least 50 millimeters from its initial position. If no
disassembly path was found in the NEAR planning phase, we stop motion planning at
this point (line 3). If the part is 50 millimeters away from the initial position, NEAR
range planning is considered successful and then we perform FAR range planning,
searching for a disassembly path for up to two VPs (lines 4, 5). We will now provide
a brief overview of how these motion planners work. See Chapter 4 for a detailed
discussion of motion planning.

NEAR motion planning: For the NEAR planning phase, we use the Iterative
Mesh Modification Planner (IMMP) (Hegewald et al., 2022). This is an alternating
method whereby controlled mesh deformations and planning attempts are performed
until a maximum number of iterations is reached or a path is found. With the mesh
deformations, the method is capable of eliminating any unavoidable collisions due to
flexible fastening elements and overpressure on components. For the deformation of
fastening elements, the method involves the computation of a saliency map (Hegewald
et al., 2021) of the robot that extracts the fastening elements as salient regions.
By eliminating any unavoidable collisions, the method is capable of applying the
conventional Expansive Spaces Tree (EST) (Hsu et al., 1997) motion planner to compute
a collision-free disassembly path.
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Table 8: Three frameworks with different motion planners for the NEAR- and FAR planning phase.
Framework NEAR FAR
1⃝ IMMP EVT
2⃝ IMMP RRT
3⃝ RRT RRT

FAR motion planning: For the entire FAR planning phase, we use our Expansive
Voronoi Tree (EVT) motion planner, which is described in Section 4.5. The main idea
behind the EVT is that it samples along the given VP. The basis of the sampling
strategy is the EST motion planner which is suitable for narrow passages. The EVT
changes the translational sampling of the conventional EST such that it adapts to
the clearance situation and goes in the forward direction of the VP. In addition, the
VP acts as a magnet that attracts the configurations back to itself. The rotation is
randomly sampled. This motion planner finds shorter paths and is faster than common
motion planners such as the RRT and EST as shown in Section 4.6.2.

The runtime bottleneck of the EVT, the calculation of the GVD, is distributed across
all assembled parts. In the context of ASP, therefore, the EVT is superior to common
motion planners such as the RRT in terms of runtime, path quality and path length.

We expanded both motion planners so that they store the colliding parts in
assParts.collisionParts for the collision perceiving check.

5.4 Experiments

In this section, we evaluate the ASP framework that we presented and compare it with
the common ASP frameworks (Ebinger et al., 2018), (Aguinaga et al., 2008) which
use an RRT. We compare three different frameworks 1⃝, 2⃝ and 3⃝ against each other.
See Table 8 for an overview. The three frameworks differ only in the used motion
planner for the NEAR- and the FAR planning phase. Below, we will name the specific
framework by its number, e.g. 1⃝. These experiments focuses on demonstrating that
our ASP framework 1⃝ can be used for complex 3D real-world CAD data, which in our
case is a representative data set from the automotive industry (see Figure 46). The
data set is composed as follows: The body shell consists of 100 parts, on which 661
parts are assembled. Our framework starts with the complete data set and calculates
iteratively the individual tiers.
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Fig. 49: Our test data surrounded by the blue-highlighted parts from the first tier. The red lines
represent the VPs and the blue lines the translational part of the final disassembly paths.

Due to the evaluation from section 4.6, we give the EVT and RRT 20 seconds to find a
feasible disassembly path. We allowed the NEAR motion planner IMMP 5 cycles of
shrinking and again the subsequent motion planning process to search for a feasible
path terminates after 20 seconds. However, the aforementioned shrinking process has
no time limit, which means that the IMMP motion planner as a whole has no time
limit.

Table 9 and Table 10 show the experimental results of our framework 1⃝. First, we
will provide a brief overview of all the results, which are discussed in detail afterward.
The 661 assembled parts (column b) were disassembled after the calculation of 8 tiers
(column a), which took 105,653 seconds ≈ 30 hours (Table 10 d). See also Figure 49
for a visualization of the first tier tier0 and Figure 50 for all 8 tiers. We will then
discuss the results in terms of calculation time, impossible disassembly queries (IDQ),
manually disassembled parts, motion planning and assembly priority graph (APG).

Calculation time 1⃝ (Table 10): Most of the time (94%) was spent on the NEAR
planning phase (Table 10 f and g), of which the majority (84%) was spent on unsuccessful
disassembly queries (Table 10 g). With just 3.5% of the overall calculation time, the
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Fig. 50: All found tiers are shown. Starting with the complete assembly (top left), right up to the
naked body shell (bottom right).
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Table 9: Experiment results of our framework 1⃝ for the data set shown in Figure 48.
a b c d e f g

tier #still ass.
parts

#detected imp. dis. queries #parts
in tier

#manually
disass. parts

#dis. parts
only RRT 3⃝VP existence coll. perceiving

0 661 120 0 357 0 13
1 304 79 84 78 9 10
2 226 58 99 52 5 6
3 174 36 73 56 1 7
4 118 26 48 39 14 0
5 79 15 21 41 15 4
6 38 2 4 26 0 10
7 12 0 0 12 5 0∑ - 340 334 661 48 50

Table 10: Experiment results of our framework 1⃝ for the data set shown in Figure 48.
a b c d e f g h

tier #still ass.
parts

#parts
in tier

tier calc.
time [s]

GVDG
time [s]

NEAR time [s] FAR
time [s]suc fail

0 661 357 50,995 58 5,433 42,159 2,020
1 304 78 33,359 62 1,438 31,139 435
2 226 52 7,033 59 1,068 5,520 483
3 174 56 5,047 67 818 3,895 191
4 118 39 3,578 76 765 2545 114
5 79 41 2,826 78 745 1740 164
6 38 26 2,257 91 404 1622 105
7 12 12 558 83 38 254 139∑ - 661 105,653 574 10,709 88,874 3,651

FAR range planning (Table 10 h) had minimal impact. The time taken to calculate
the GVDG is insignificant compared with the overall calculation time (Table 10 e).

IDQ 1⃝ (Table 9 c and d): The evaluation of the calculation time demonstrates why
it is important to reduce the IDQ. The VP existence and the collision perceiving
algorithms together detected 674 (340 + 334) IDQ. One unsuccessful disassembly query
needed an average of ≈ 340 seconds. Therefore, both algorithms combined shortened
the calculation time by approximately 229,160 seconds ≈ 63 hours which is 67% of the
overall calculation time.

Manually disassembled parts 1⃝ (Table 9 k): In general, the IMMP NEAR planner is
capable of disassembling flexible (sub)parts. However, it has problems with ’completely’
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Fig. 51: Two assembled parts where the IMMP motion planner could not find a feasible disassembly
path for the NEAR planning phase.

flexible parts such as cables and fabric covers (see Figure 52). Another reason why
the IMMP motion planner cannot find a feasible disassembly path for a rigid part is
that another part needs to be deformed, i.e. a cover sheet needs to be pushed away
slightly to allow a cover plate can pass. This case is shown in Figure 51 top. The two
wheelhouses, which laterally enclose the blue-highlighted part need to be deformed
slightly. In addition, it is a randomized motion planner that offers no guarantee of
quickly finding feasible disassembly paths for parts that have to pass through very
narrow passages. This is the case for the blue-highlighted part in Figure 51 (bottom).
After each tier calculation, therefore, we added the corresponding parts manually to
the current tier and marked them as ’disassembled’. As shown in ’#manually disass.
parts’, our framework could not find a feasible disassembly path for 48 (7%) assembled
parts even if one exists.

Motion planning 3⃝ (Table 9 g): Table 9 g ’#disass. parts only RRT’ shows how
effectively common ASP frameworks (Ebinger et al., 2018), (Aguinaga et al., 2008) that
use an RRT for the NEAR- and FAR planning phases perform on our data set. The
column shows for how many parts in the respective tier an RRT found a disassembly
path from its installed position to one of the goal positions. In summary, an RRT
3⃝ found a feasible disassembly path for only 50 of the 661 assembled parts (7.5%).

The reason for this poor result is that the RRT does not specifically address flexible
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Fig. 52: The three blue-highlighted parts are ’completely’ deformable: hose, seal (foam), footmat
(fabric).

Table 11: A detailed comparison of the FAR planning phase from Table 10 for the two frameworks 1⃝
(EVT) and 2⃝ (RRT).

tier suc. queries time [s] ∅ path length
EVT RRT EVT RRT EVT RRT

0 357 354 736 1,320 1,876 2,106
1 69 64 123 281 1,990 2,627
2 47 45 117 200 1,663 2,120
3 55 55 110 72 1,870 1,832
4 25 26 45 75 1,776 2,350
5 26 26 87 164 2,011 1,856
6 26 26 69 32 2,275 2,352
7 8 10 52 41 2,006 2,243∑ 617 610 1,420 2,185 1,892 2,163

fastening elements. This highlights the importance of a specialized motion planner for
the NEAR planning phase.

We compare the two frameworks 1⃝ and 2⃝, i.e. the chosen EVT motion planner with
an RRT in the FAR range planning phase. In ’suc. queries’ Table 11 shows that the
EVT found 7 more disassembly paths than the RRT and needed significantly less
calculation time for this. Furthermore, the paths which are found by the EVT are 12.5%
shorter than the paths from the RRT. Note: The calculation times from Table 10 h
’FAR time [s]’ show the time needed for up to two disassembly paths, while the times
in Table 11 ’time [s]’ show only the calculation time needed until one disassembly path
was found.
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APG: Our extracted APG consists of 661 nodes, with 784 hyperedges each representing
a disassembly path. The APG represents with its small size of size(APG) = |V |+
|E| = 661 + 1542 = 2203 at least 101021 different assembly sequences. This is a lower
bound for the number of different assembly sequences which we obtain by assuming
that each tier must be assembled one after another and the order of the parts within
each tier is arbitrary. This means, that there are |tieri|! many sub-assembly sequences
for assembling each tier, with |tieri| := |{a ∈ A|a is in tier i}|. By combining the
independent tiers we obtain ∏7

i=0 |tieri|! ≈ 101021 different assembly sequences. The
calculation of the APG took 165 seconds, which is therefore negligible compared against
the overall run time of 30 hours.

In summary, our framework 1⃝ is capable of computing an APG for our complex
real-world CAD data set quickly and reliably. The experiments highlight the need for
two different motion planners for the NEAR and FAR planning phase. The runtime
intensive NEAR planning for parts that cannot be disassembled in the current shoring
state demonstrates the importance of reducing the number of IDQ, which we did with
our two algorithms VP existence and collision perceiving.



6

C O N C L U S I O N

6.1 Summary

In the previous chapters, we tackled assembly sequence planning (ASP) for complex
real-world data. The main challenge is to find and represent disassembly sequences. We
explained the differences between academic examples and real-world data in Chapter 2.
These are mainly: flexible (sub)parts, many more assembled parts and a large workspace
that, for each part, provides different disassembly paths that differ in terms of length.
The main contribution of this thesis is our ASP framework from Chapter 5 which
is the first one capable of handling real-world data such as our vehicle from the
automotive industry. Our framework is based on the general Voronoi diagram (GVD)
from Chapter 3 and our novel Expansive Voronoi Tree (EVT) from Chapter 4. In the
following, we quantify and discuss the contributions of each chapter.

6.1.1 General Voronoi Diagram (GVD)

We started with the definition of the ordinary Voronoi diagram. We then broadened
this definition such that the resulting GVD is suitable for three-dimensional meshes.
In addition, we added the medial axis (MA) to the GVD. We showed that the MA
in its original definition heavily floods the GVD so we introduced a constraint that
thins out the MA but still contains the important surfaces. This results in a more
meaningful GVD. The main contribution of this section was our voxel-propagation
algorithm which approximates the GVD. Our novel Voronoi voxel history (VVH) is
RAM-saving but it requires more calculation time. The common three-dimensional

96
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grid as the underlying data structure has the opposite properties; more RAM usage
but faster calculation time. We tested and compared our propagation algorithm on our
real-world data sets.

The second part of this chapter covered the general Voronoi diagram graph (GVDG).
Extracting a GVDG from the GVD and using it as a basis for path planning is the
current state-of-the-art. However, no extensive research has been conducted into
how to extract a GVDG from a three-dimensional GVD. We discussed and analyzed
three different approaches. The main observation is that the GVDG may consist of
non-connected components. This can result in isolated sites. For these isolated sites,
the GVDG does not provide a so called Voronoi path (VP) from the corresponding
Voronoi cell along the GVD to a goal position. However, our presented outside-to-inside
(OTI) propagation algorithm in combination with the handleFalseIsolatedSites function
ensures that the GVDG provides a VP for each part that can be disassembled in the
current state. This means that there is no need to search for an isolated site for a
feasible disassembly path. In addition, the OTI approach delivers short VPs, which
are an ideal basis for our Expansive Voronoi Tree motion planner. Summarized, we
discussed the methods of extracting a GVDG from a GVD and with our OTI approach,
presented a GVDG that is useful for the motion planning process itself and an assembly
sequence planning framework.

6.1.2 Motion Planning

Chapter 4 covered the research field of motion planning. After introducing the common
motion planning problem, we analyzed motion planning in the context of ASP for
real-world data. Flexible (sub)parts may initially collide with their neighbors. In
addition, to find a collision-free disassembly path these (sub)parts need to be deformed
during the disassembly process. Simulating this physical deformation is excessively
time-consuming, so we allowed a degree of collision for flexible (sub)parts. This is
only necessary, however, until a part is unlocked. The subsequent requirement is to
find a short disassembly path in the large workspace, so we subdivided the motion
planning phase into the NEAR- and FAR planning phase (Masan, 2015). The original
definition of the motion planning problem was broadened for the NEAR planning
phase in such a way, that controlled and reasonable collisions are allowed. It was thus
possible to reasonably unlock flexible (sub)parts. We then discussed both planning
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phases separately. While we did not provide a contribution for the NEAR planning
phase, we did discuss related works and chose the Iterative Mesh Modification Planner
(IMMP) from Hegewald et al. (2022) as a suitable motion planner for this task.

The novel Expansive Voronoi Tree (EVT) motion planner, which we presented here,
fulfills all the requirements of the FAR planning phase: To be reliably fast; to be
capable of passing through narrow passages; and to find short disassembly paths. This
motion planner uses the GVDG as a basis and samples along a VP. Roughly speaking,
the EVT always knows the right forward direction which results in the aforementioned
benefits. In addition, we proved that the EVT inherits the probabilistic completeness
from the EST motion planner. We showed that, in the context of ASP, our EVT is
superior to the state-of-the-art planners RRT, RRT*, EST and EST-connect. The
runtime bottleneck of the EVT is the calculation of the GVDG. However, in the context
of ASP the GVDG approximation runtime is distributed across all assembled parts
and therefore negligible. Summarized, our proposed EVT motion planner is ideal in
the context of ASP.

6.1.3 Assembly Sequence Planning (ASP)

The primary focus of this thesis is ASP for real-world data, which is covered in this
chapter. The basis is the definition of the original ASP problem. Like in the previous
chapters, we broadened the definitions such that they are suitable for real-world data.
This means, that disassembly paths for the assembled parts are permitted to contain a
controlled and reasonable amount of collision in the NEAR planning phase. We defined
the goal of the ASP problem as follows: At least one feasible disassembly sequence
must be found. The discussion of the assembly precedence graph showed that such
presentations for the disassembly sequences found become excessively large for big
data sets. We therefore introduced our assembly priority graph (APG), which, for all
assembled parts, represents the set of parts that need to be disassembled first. We
proved that the size of this directed hypergraph grows quadratically only with respect to
the number of assembled parts and linearly with respect to the number of disassembly
paths. This means that our APG does not require much storage usage, even for a many
assembled parts and many different disassembly paths for each assembled part.

Next, we presented our ASP framework. This framework heavily benefits from the
previous two chapters. After elaborating the requirements for an ASP framework
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capable of handling real-world data, we presented the ideas behind our framework. We
used the aforementioned NEAR- and FAR planning phases for the motion planning
process. We used the work from Hegewald et al. (2022) for the NEAR planning phase
and our EVT for the FAR planning phase. This results in a motion planning process
that treats flexible fastening elements and quickly finds short disassembly paths. We
presented two novel heuristics to detect enclosed assembled parts. The first algorithm
is based on the observations of our GVDG. If the GVDG does not provide a VP, this
means that no feasible disassembly path exists. Furthermore, if a motion planning
attempt was unsuccessful, we store all the parts that collided during the sampling
process of the motion planners with this part. Our framework performs a renewed
search for a disassembly path for this part only, when at least one of the parts in
collision is disassembled. These two heuristics speed up our framework significantly.

The experiments showed that our framework is capable of solving the ASP problem for
real-world data such as our vehicle from the automotive industry. Summarized, this
framework is the first one that is capable of handling (i) flexible fastening elements;
(ii) finds short paths; (iii) is fast; and (iv) offers a practicable way to represent the
disassembly paths found.

6.2 Future Work

6.2.1 General Voronoi Diagram

Since the calculation time of the GVD is negligible in the context of ASP, our ASP
framework would not benefit from being any faster. When it comes to computational
geometry, however, greater speed is obviously important. As mentioned in the related
work section, many attempts have been made to parallelize wavefront propagations. A
parallelized divide-and-conquer algorithm could speed up the propagation algorithm
by a constant factor. The algorithm works as follows: The three-dimensional grid is
subdivided into disjoint subgrids. The sub-grids are calculated in parallel and then the
boundaries are merged.

As shown above, due to our thinning-out parameter δMA, the GVD can consist of
multiple independent components. The handleFalseIsolatedSites function connects
the false isolated sites such that a VP can be found for these parts. However, creating
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Fig. 53: A screw that fastens the two different hatched parts. The dashed line represents the GVD
between the screw and the hatched part. The dotted line represents the medial axis of the hatched
part.

a GVD that consists of one component and is not flooded is a more elegant and
streamlined method. A potential solution that needs to be evaluated is the following.
Consider the MA in Figure 53 which is represented with the dotted line. By setting
δMA > d the MA is prevented. It can be allowed that a voxel becomes an MA voxel
even for δMA > d if there is a GVD or MA voxel in the neighborhood of these voxels.
We can therefore ensure that the MA can grow out of a Voronoi cell. However, it
still needs to be determined whether there are cases where the MA can still flood the
GVD.

6.2.2 Motion Planning

Motion planning is a very extensive field in which a great deal of research has been
conducted. However, planning of a three-dimensional part along a GVD is little
analyzed. We presented an approach whereby we extract a GVDG from the GVD and
a VP from the GVDG. This assumes that a feasible disassembly path exists for the
robot along the VP. We estimate this by the size of the oriented bounding box of the
part and the clearance of the VP. Obviously, this estimation may not always be entirely
accurate. A more generalized way of searching for a feasible disassembly path along a
GVD is the following: Instead of sampling along a VP, a conventional motion planner
such as the RRT or EST can be used and the sampled configurations are pushed to
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the GVD. This procedure still has the advantage that the sampled configurations are
positioned close to the GVD and so close to the maximum clearance in the workspace.
In addition, it has the freedom to explore in all directions. However, this is offset by the
fact that there is no leading direction as there is with a VP. This therefore constitutes
a hybrid version between a completely unguided RRT/EST and our strongly guided
EVT.

The IMMP motion planner from Hegewald et al. (2022) handles flexible fastening
elements and delivers, in most of all cases, a reasonable disassembly path. However,
this motion planner cannot handle completely flexible parts such as hoses, seals or
foot mats made of fabric. The task of finding fast reasonable motion planners for
completely flexible parts therefore still requires further research. An improvement for
the IMMP could be the detection of flexible fastening elements with an AI approach.
However, AI methods present the usual difficulties: A high volume of training data is
needed and the data set needs to be labeled. How should the mesh be represented? If
enough labeled data could be provided, however, an AI approach could efficiently detect
flexible fastening elements or classify each part. Subsequent motion planning could
then be performed with different motion planners for each class (rigid part, part with
flexible fastening elements, completely flexible, etc.). For each class of parts, therefore,
a special motion planner is available that addresses the various special requirements
regarding different, for example, the different time limits after which a motion planner
terminates.

6.2.3 Assembly Sequence Planning

Classifying each part into multiple groups (e.g. flexible part, fastening element, rigid
part, completely flexible part, covering part, etc.) could offer a number of advantages.
We will now present our thoughts about how such information could be applied. Assume,
therefore, for the rest of this subsection that each part belongs to multiple classes
such as (’flexibility = flexible’, ’fastener = true’, ’enclosed = false’). We subdivide the
possible future work into two subgroups: calculation time and quality.

Calculation time: Solving the ASP problem for real-world data is a very time-
consuming task, which is why much faster speed ups will always improve an ASP
framework.
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As already mentioned, motion planning accounts for most of the calculation time.
Speeding up motion planning, therefore, is the best way to deliver a measurable
increase in speed. On the one hand, the speed of the motion planners themselves can
be improved. That said, research into motion planning has a long and well-known
history and no significant increase in the speed of current motion planners can be
expected. On the other hand, most motion planning attempts are made for parts that
cannot be disassembled in the current state. These motion planning attempts are
known as impossible disassembly queries (IDQ). First, most motion planning attempts
are IDQ; and second, these are even more time-consuming than attempts with a
successful outcome. The reason for this is that if no disassembly path exists, the motion
planners terminate only after the given maximum time limit. Therefore, reducing the
number of IDQ is an easy way to significantly reduce the calculation time of an ASP
framework. On the basis of the knowledge of the aforementioned part categories, a
fastener - fastened part relationship, as it is described in Adesso et al. (2022), can be
employed. First, check which fasteners are neighbored to which fastened parts and
then disassemble the parts in the following alternating steps: Attempt to disassemble
the set of fasteners and subsequently the set of fastened parts.

All parts that are in the same tier can be disassembled independently of each other
allowing the motion planning attempts to be parallelized. This should significantly
speed up the framework.

Quality: We will first describe how the process of finding disassembly paths can be
improved, i.e. handling more parts and reducing errors in motion planning.

This thesis demonstrated that motion planning is one of the main issues in ASP. The
ability to handle completely flexible parts in an adequate time is therefore crucial
for a fully automated disassembly simulation. However, the problem of simulating
completely flexible parts such as wires is long-standing and so an easy solution is
unlikely to be found any time soon.

We assumed that the assembly can be disassembled monotonous, i.e. it is possible to
disassemble one part after another without moving another part in between. However,
this is not always the case for real-world data. For example, we excluded the doors,
bonnet and tailgate because these parts often need to be opened and closed during the
assembly process. In addition, non-monotone disassembly is rare but can occur. If the
disassembly process terminates at a local point and a non-monotonous disassembly
process is assumed we suggest the following procedure: Let Ã ⊆ A be the set of local
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parts where the disassembly process stopped and that are still assembled. Let a ∈ Ã be
the part to be disassembled. Now remove another part b ∈ Ã \ {a} and make a motion
planning attempt for a. If this attempt was successful, insert b again and attempt to
move b such that a can pass b without collision. If the attempt was unsuccessful, change
the part b that was removed. If no disassembly path can be found for a repeat this
procedure for another part of Ã. This procedure needs quadratically many disassembly
attempts depending on |Ã|.

The ability to detect subassemblies is useful. If multiple parts can be grouped into
one subassembly, the number of motion planning attempts required is reduced. More-
over, subassemblies are of great practical interest. Assembling a subassembly can be
performed parallel to the main assembly process, which helps to speed up the overall
assembly process.

To find a good VP, we used only the length of a path as a criterion. Disassembly paths
can also be evaluated in terms of ergonomic.

Our assembly priority graph is an excellent method of representing the disassembly
paths found. However, the APG does not evaluate the different disassembly sequences.
The process of evaluating a disassembly sequence and subsequently finding the optimal
one is still a task that requires further investigation.
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