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Abstract

QCD-motivated models for hadrons predict a wide variety of exotic hadrons,
with structures more complex than the quark-antiquark mesons and the three-
quark baryons of the ordinary hadron classification. Among these, one of the
most intriguing cases refers to the H dibaryon, an elusive six-quark state with the
quark content of two Λ baryons first suggested by R. L. Jaffe in 1977. The search
for a stable double strange hexaquark, which, in recent years, was put forward
to also be a dark matter candidate, is part of the Belle II physics program. In
the coming years, a fraction of the Belle II data taking period will be dedicated
to run at the energy of the Υ(3S) resonance. This bb̄ resonance decays primarily
via three gluons, in which ss̄ quark pairs are produced with roughly the same
probability as uū and dd̄ pairs, making it particularly well suited for searches for
multiquark states with nonzero strangeness.

This thesis describes a feasibility study for the search for a stable double
strange six-quark state S produced in Υ(3S) decays, Υ(3S) → SΛΛnπs (with
n = 0,2, 4, 6, and 8). The predictions obtained for the channel with n=0 are
compared with an existing result from the BaBar collaboration, while the other
channels represent a novel measurement. In order to obtain optimal results, an
integral part of the work is the optimization of the Belle II tracking package for
displaced vertices with a focus on Λ baryon reconstruction, a key element in the
stable hexaquark analysis. After the optimization, the algorithms and selections
developed for Λ baryons were extensively tested using Belle II data collected at
the Υ(4S) resonance. Finally, a look at the future is taken. Given that the beam
background level measured at Belle II in the first data taking periods turned out
to be higher than initial estimates, the possible effect of increased background
on performance deterioration, both on tracking in general and on the hexaquark
analysis in particular, is assessed and discussed in detail.

The work presented in this thesis is intended to prepare a measurement where
the tools and the analysis procedures developed, as well as the critical points
observed, will be used on the Υ(3S) Belle II data to set a new limit on the
possible observation of such an exotic state.
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Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.

(Consider your origin:
you were not made to live as brutes,
but to follow virtue and knowledge.)

Dante Alighieri

1
Preface

Since ancient times, curiosity and thirst for knowledge have always been charac-
teristics of the human species. In all spheres of culture, from art to literature, as
well as philosophy and science, the ability to wonder, the thirst for knowledge,
and the courage to challenge the unknown have driven mankind to overcome the
limits set by convention and always push towards new horizons. Many discov-
eries in science, technology, and medicine in the past centuries have completely
revolutionized our understanding of the world and our lifestyle.

For much of the history of the natural sciences people have contemplated the
true nature of matter. In this context, this thirst for knowledge has been the
thread that led mankind over the centuries from the original concept of atom
as a fundamental, indestructible particle (Democritus, 5th century BC) to the
postulation of the Standard Model as we know it today (mid-1970s). All everyday
objects that can be touched are ultimately composed of atoms in their modern
meaning, i.e. the smallest unit of ordinary matter that forms a chemical element
— which are not indivisible but composed of various subatomic particles. To
date, our knowledge on the subject is all but complete, and there are numerous
questions still waiting to be answered.

Until few years ago, despite being no obvious reason for composite subatomic
particles to be confined solely to the states in which they commonly occur, namely

1



2 1. Preface

standard mesons and baryons, there was no experimental evidence for exotic
states, i.e. hadrons with an unusual number or species of components. The dis-
covery of these exotic particles, particularly successful in the last few years [1–3],
together with the measurement of their properties, continues to provide impor-
tant information for testing the limits of the model we use to describe our world
and, once more, pushes our knowledge towards new horizons. This thesis is em-
bedded in this framework: the search for an exotic state, an hexaquark, i.e. a
hypothetical particle composed of six quarks, in the context of the particle physics
experiment Belle II. The work can be divided in two main parts: the optimiza-
tion of the Belle II tracking package for displaced vertices with a focus on Λ

baryon reconstruction; and the subsequent sensitivity studies for the search for
a stable double strange six-quark state using these improved tools. The Λ play
a key role in the stable hexaquark analysis. This work is intended to prepare a
measurement where the tools and the analysis procedures developed, as well as
the critical points observed, will be used on the Belle II data to set a new limit
on the possible observation of such an exotic state.

After a general introduction focusing on strongly interacting systems and
hadron classification in Chapter 2, Chapter 3 presents a review — both from a
theoretical and an experimental point of view — on the main topic of the thesis,
the exotic double strange six-quark state uuddss. Chapter 4 describes the Belle II
experiment. Chapter 5 provides details about the Belle II tracking software and
the reconstruction of charged tracks, introducing the challenges it has to deal
with and its performance in simulation. The first part of Chapter 6 describes
the algorithm for the reconstruction of displaced vertices and its performance,
while the second part is devoted to the description of an optimized selection
for Λ baryons. Chapter 7 represents the central part of the thesis: it presents
a sensitivity study for the search of a stable double strange six-quark at the
Belle II experiment. Chapter 8 is devoted to test the displaced vertices (more
specifically Λ baryons) reconstruction performance in data. Chapter 9 attempts
to project the hexaquark analysis into the future, describing possible challenges
and perspectives once the needed dataset will be collected. Finally, Chapter 10
summarizes the procedures and the results presented in the dissertation.



2
Strongly interacting systems

The strong interaction is one of the four known fundamental forces, the others
being the electromagnetic, the weak, and the gravitational forces. It is respon-
sible for binding together quarks, fundamental constituents of matter, within a
nucleon; on a larger scale, the same interaction is responsible for the formation of
atomic nuclei, binding together protons and neutrons. This latter effect, known
as nuclear force or residual strong force, is nothing other than the residuum from
the strong interaction between quarks and the elementary particles acting as ex-
change particles between them, gluons.

In the broader depiction of all the fundamental constituents of nature and
their interactions, the strong force expounded by Quantum ChromoDynamics
(QCD) is described together with the electroweak interaction in the Standard
Model (SM). After a brief overview of the SM in Section 2.1, the rest of the
chapter will be devoted to introducing some key concepts of QCD (Section 2.2). A
general introduction to the theory will be given in Section 2.2.1; Section 2.2.2 will
summarize existing nonperturbative QCD approaches, briefly presenting methods
that will be used in the rest of the dissertation. Finally, Section 2.2.3 will be
devoted to present the classification of strongly interacting particles.

In this chapter the natural units ~ = c = 1 are used for convenience. The
value of charge is indicated in units of e, the elementary charge.

3



4 2. Strongly interacting systems

2.1 Introduction to the Standard Model

The SM of elementary particles is the theory that currently best describes the
fundamental constituents of matter and their interactions. It includes three of
the four fundamental forces that govern the universe, leaving out gravity from the
picture. Although it has demonstrated huge successes in providing experimental
predictions, it leaves some phenomena unexplained — such as dark matter or
the baryon asymmetry — and thus it falls short when it comes to be a complete
theory of fundamental interactions.

According to the SM, matter is composed of fermions, spin-1
2
particles satisfy-

ing the Fermi-Dirac statistics [4,5] and the Pauli exclusion principle [6]. Fermions
are further classified as leptons and quarks. Charged leptons (electron e, muon µ,
and tau τ) interact both electromagnetically and weakly, while neutral leptons,
called neutrinos (νe, νµ, ντ ) interact only weakly. In total there are six types of
leptons that can be organized in three generations of charged-neutral doublets:(

e

νe

)
,

(
µ

νµ

)
,

(
τ

ντ

)
. (2.1)

Quarks are the fundamental constituents of hadrons, the strongly interacting
particles. Unlike leptons, they carry color charge, which causes them to engage
in the strong interaction as well. As in the case for leptons, there are a total of
six quark types (also known as flavors) divided in up-type (u, c, t), with electric
charge equal to 2

3
, and down-type (d, s, b), with electric charge equal to −1

3
. Also

in the case of quarks, a natural classification in doublets is possible:(
u

d

)
,

(
c

s

)
,

(
t

b

)
. (2.2)

The value of the mass increases among generations from left to right in Eq. (2.1)
and Eq. (2.2) for both leptons and quarks. For every fermion in the SM there
is a corresponding antiparticle. Antileptons and antiquarks differ from the cor-
responding leptons and quarks only in some of the quantum numbers that have
equal magnitude but opposite sign.

Interactions between particles are modeled as the exchange of gauge bosons
of the theory. In the SM the gauge bosons, having spin equal to 1, are vector
bosons, and obey to the Bose-Einstein statistics [7]. There are four types of
gauge bosons: photon, Z, W, and gluons. The photon (γ), is the massless boson
that mediates the electromagnetic force. It interacts with all charged particles.
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Figure 2.1: Elementary particles of the SM [10]. For each particle, mass, charge,
spin, and name are given. For fermions, the mass hierarchy goes from left (lighter
particles) to right (heavier particles).

Photons themselves do not carry electric charge, so they do not self-interact.
W+, W− and Z0 are the three massive bosons mediating the weak interaction.
Gluons (g) are massless bosons that mediate the strong interaction, and they
exist in 8 different color states. Gluons carry color charge, so unlike photons they
can interact with themselves. All the massive particles in the SM acquire mass
through a spontaneous symmetry breaking and the interaction with the spin-
0 Higgs boson, the only scalar boson provided for in the SM [8, 9]. Figure 2.1
represents the 17 fundamental particles just described (12 fermions and 5 bosons)
that constitute the SM, and reports their main properties as well: mass, charge,
and spin.

Mathematically speaking, the SM is a non-abelian Quantum Field Theory
(QFT) based on the gauge group of symmetry:

U(1)Y ⊗ SU(2)L ⊗ SU(3)c, (2.3)

where Y denotes the hypercharge, L the chiral component and c the color charge.
The model includes a unified description of electromagnetic and weak interactions
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within the electroweak theory, which possesses the symmetry group U(1)Y ⊗ SU(2)L,
and the theory of QCD, describing the strong interaction phenomena and pos-
sessing symmetry group SU(3)c. The U(1)Y ⊗ SU(2)L subgroup gets broken
down to the U(1)EM subgroup of Quantum ElectroDynamics (QED) thanks to
the Higgs mechanism, leading to the massive W and Z bosons mediating the weak
interaction.

A comprehensive review of the SM can be found in Ref. [11].

2.2 Quantum ChromoDynamics

2.2.1 Basic concepts

QCD is the gauge field theory that describes the strong interactions of colored
quarks and gluons, and it is based on the gauge group SU(3)c, the Special Unitary
group in 3 complex dimensions. The three degrees of freedom of the symmetry
group were historically labeled as color charge in analogy to the three colors used
in the RGB additive color model: red, green, and blue.

Each flavor of quark belongs to the fundamental representation (3) and con-
tains a triplet of fields, ψ. The antiquark field belongs to the complex conjugate
representation (3̄) and contains as well a triplet of fields, ψ̄. The two fields can
be written as:

ψ =

ψ1

ψ2

ψ3

 , ψ̄ =

ψ̄
∗
1

ψ̄∗
2

ψ̄∗
3

 . (2.4)

The gauge boson of the theory, the gluon, contains an octet of fields and belongs
to the adjoint representation (8). A common way to represent it is making use
of the Gell-Mann matrices λa:

Aµ = Aa
µλa. (2.5)

The color charge of each of these fields is fully specified by their representations.
Quarks can assume one of the three values or color charges (red, green, or blue);
antiquarks can take one of the three anticolors (antired, antigreen, or antiblue).
Gluons belong to the octet obtained combining one color and one anticolor charge,
in a superposition of states given by the Gell-Mann matrices. No singlet gluon
exists, being QCD based on SU(3)c.

The QCD lagrangian, determining the dynamics of quarks and gluons, can be
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Figure 2.2: The three physical QCD interaction vertices: a quark may emit/ab-
sorb a gluon; a gluon may emit/absorb a gluon; two gluons may directly interact.
The solid lines represent quarks, and the curly lines represent gluons.

written as:

LQCD =
∑

quarks

ψ̄a
i

[
i (γµDµ)

ab
ij −mδijδ

ab
]
ψb
j −

1

4
Ga

µνG
µν
a , (2.6)

where γµ are the Dirac matrices, Dµ represents the gauge covariant derivative, and
Ga

µν represents the gauge invariant gluon field strength tensor. In the notation
used here, the color charge is represented by roman indices a, b, c, while i, j
represent the Dirac spin indexes. In QCD, the gauge covariant derivative is
defined as:

Dµ := ∂µ − i
gs
2
Gα

µ λα, (2.7)

where gs is the coupling constant of the strong interaction. It is common in QCD,
in analogy to QED, to use the following notation:

αs(Q2) ≡ g2s(Q2)

4π
, (2.8)

defining the strong coupling constant αs, dependent on the momentum transfer
Q. The gluon field strength tensor is given by:

Ga
µν = ∂µAa

ν − ∂νAa
µ + gsf

abcAb
µAc

ν , (2.9)

with fabc being the structure constants of SU(3).
According to the rules of QFT, and the associated Feynman diagrams, the

QCD Lagrangian in Eq. (2.6) gives rise to three physical 1 interaction vertices,
shown in Fig. 2.2: a quark may emit (or absorb) a gluon, a gluon may emit (or
absorb) a gluon, and two gluons may directly interact. The associated interaction
terms are all controlled by the coupling parameter of the theory: the three-line
vertices are proportional to gs, while the four-lines vertex is proportional to g2s.

1In this context, Faddeev–Popov ghost fields [12] and their effects are not taken into account.
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Despite its fairly simple structure, the QCD lagrangian in Eq. (2.6) has a very
rich dynamical content. In particular, the non-abelian character of the color field
has profound consequences for the strong force: it becomes strong at low energy
(or equivalently at long distance), and weak at high energy (or short distance).
Such behavior gives rise to the two outstanding properties of QCD: asymptotic
freedom and color confinement. The weakness of the color force at high energy
is the responsible for asymptotic freedom, or in other words for the interactions
between quarks and gluons to become asymptotically weaker as the energy scale
increases, and provides an explanation for the quasi-free behavior of strongly
interacting particles in the parton model of hadrons. Naively, asymptotic free-
dom can be understood as the net result of two opposite effects in the vacuum:
color charge screening, carried out by virtual quark-antiquark pairs, and color
charge anti-screening, carried out by virtual gluons. It is possible to demonstrate
that the main contribution among these two depends on the number of different
quark flavors Nf and on the number of different colors Nc accounted for in the
theory. For QCD, the prevalence of anti-screening effect is established as long as
11Nc > 2Nf [9]; according to present knowledge there exist three colors and six
quark flavors, providing a justification for the asymptotic freedom. The strength
of the color force at low energy leads to the confinement of quarks and gluons, the
phenomenon due to which color-charged particles cannot be isolated and directly
observed. Thanks to this property, as two color charges are pulled apart, at some
point it becomes energetically favorable for a new quark–antiquark pair to appear,
rather than producing an isolated color charge. This is profoundly different to
what happens in QED, where the electric field between electrically charged parti-
cles decreases rapidly as those particles are separated. In contrast to asymptotic
freedom, that can be demonstrated exactly, because of the strongly non-linear
nature of the color field, quark confinement is difficult to prove mathematically.

2.2.2 Non-perturbative QCD approaches at a glance

The dependence of αs(Q2) — defined in Eq. (2.8) — on the momentum transfer
Q encodes the underlying dynamics of hadron physics, from color confinement
to asymptotic freedom. QCD does not provide a single approximation method
which is applicable to all length scales. Instead, the most suitable theoretical
frameworks for QCD predictions depend on the energy scale of the phenomenon
that one wants to study. For hard processes, with a large momentum transfer,
the coupling αs is small and they can be successfully described using pertur-
bation theories; for soft processes, with a small momentum transfer, this is no
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longer true, and different solutions need to be employed in this so-called non-
perturbative regime. Probing the internal structure of hadrons falls into this
latter category. Among the different methods to address such processes, it is
common to find phenomenological approaches, Effective Field Theories (EFTs),
and Lattice Quantum ChromoDynamics (LQCD).

Phenomenological approaches: one viable option is to assume a function
describing the potential based on phenomenological arguments such as available
data or lattice computations. Since they rely on an assumed potential, phe-
nomenological models are not a systematic approach. Nevertheless, they can
be useful especially in particular regimes. One example where potential models
are widely used is the computation of the mass of quarkonium states, namely
flavorless mesons composed of a heavy quark and its own antiquark. More pre-
cisely, the word quarkonium refers to charmonium (cc̄ states) and bottomonium
(bb̄ states) 2, leaving out from the definition lighter quark–antiquark states. The
assumption in this case is that, because of their heavy masses, the motion of the
quarks that comprise the quarkonium state is non-relativistic, making possible a
description in terms of a static potential.

Effective Field Theories: EFTs are approximations relying on the idea of
separate physics at different scales. The philosophy and basic principles of this
approach are very generic, and EFTs represent a widely used method in many dif-
ferent areas of physics [13,14]. In a certain approximation, physics at scales much
different from the one of interest becomes irrelevant and can be neglected; EFTs
can be built by leveraging hierarchies between these quantities. An EFT includes
the appropriate degrees of freedom to describe physical phenomena occurring
at a chosen length scale, while ignoring substructure and degrees of freedom at
shorter distances. Short-distance quantum fluctuations associated with much
smaller length scales are absorbed into the coefficients of the various operators
in the EFT. From this point of view, it is perceivable that EFTs work best when
the separation between the length scale of interest and the length scale of the
underlying dynamics is large. In general, EFTs are a good description of some
regimes of interest in QCD, but they cannot describe or make predictions beyond
those specific regimes.

Lattice QCD: LQCD is a systematically-improvable non-perturbative formu-
lation of QCD [11, 15]. It considers spacetime as a finite, discretized, Euclidean

2The mass of the top quark t is too high to allow the formation of a tt̄ bound state.
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grid, called indeed lattice. In this formulation, fields representing quarks are de-
fined at lattice sites, while the gluon fields are defined on the links connecting
neighboring sites. When taking the lattice space infinitely large and reducing the
spacing between its sites to zero, continuum QCD is recovered. LQCD is based
on complex numerical algorithms derived from a mathematical analogy between
Feynman paths in Quantum Mechanics (QM) and steps in the Markov Chain
Monte Carlo algorithm [16]. Although in principle it provides a way to solve
the theory to the desire precision without any assumption, as the lattice spacing
decreases the required computational cost increases dramatically. The typical
outcomes of LQCD computations are predictions about properties of composite
particles (such as their masses and lifetimes). These properties, when computed
for experimentally well-known states, have to match data in order to support
further predictions.

2.2.3 Hadron classification

In particle physics, the term hadron refers to all composite subatomic particles
that experience the strong interaction. Hadrons are bound states of quark and
gluon fields. Since gluons carry color charge as their only quantum number, the
total quantum numbers of strongly interacting particles result exclusively from
those of their constituent quarks (also known as valence quarks). The classifica-
tion scheme for hadrons in terms of their quantum numbers is based on the quark
model [17, 18].

As already mentioned in Section 2.1, quarks and their antiparticles are fermions
with spin-1

2
. By convention, quarks are assigned positive parity P = +1 and ad-

ditive baryon number B = +1
3
, while antiquarks are assigned negative parity P

= -1 and baryon number B = -1
3
. All the additive quark quantum numbers are

reported in Table 2.1. By convention, the quark flavor (Iz, S, C, B, or T) has
the same sign as its charge Q; in this way antiquarks have opposite flavor sign
with respect to quarks. The quark’s additive quantum numbers are related to its
charge via the generalized Gell-Mann-Nishijima formula [11]:

Q = Iz +
B + S+ C+ B+ T

2
. (2.10)

Although quarks carry color charge, as a consequence of color confinement
(see Section 2.1) the only states that occur macroscopically — hadrons — are
the singlets of SU(3)c; in other words all hadrons are color neutral states, thus
have zero total color charge. One natural classification for hadrons is to divide
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Table 2.1: Additive quantum numbers for the three generations of quarks.

d u s c b t

Q electric charge -1/3 +2/3 -1/3 +2/3 -1/3 +2/3

B baryon number +1/3 +1/3 +1/3 +1/3 +1/3 +1/3

I isospin 1/2 1/2 0 0 0 0
Iz isospin (z-component) +1/2 -1/2 0 0 0 0

S strangeness 0 0 -1 0 0 0
C charm 0 0 0 +1 0 0
B bottomness 0 0 0 0 -1 0
T topness 0 0 0 0 0 +1

them into integer and half-integer spin particles. Mesons, hadrons composed of
qq̄ pairs, represent the first group; baryons, hadrons made of an odd number of
quarks, with a minimum of three, represent the latter.

2.2.3.1 Ordinary hadrons

When the quark model was first postulated in the 1960s, it was meant to be a way
to organize the known states in a meaningful way. It was originally built on the
assumption of three quark flavors. In this scenario, quarks lie in the fundamental
representation (3) of flavor SU(3)f , and antiquarks lie in the complex conjugate
representation (3̄). The scheme obtained with this representation was sufficient
to fit all composite bosons and fermions known back then. Furthermore, the
discovery of new states predicted by such a model contributed to its success.
Despite the introduction of more quark flavors, from three to six, the model did
not lose its validity, and still today it is widely used to describe ordinary mesons
and baryons.

Mesons: In the simplest possible configuration, mesons are bound states of
a quark and an antiquark (qq̄); they are bosons with baryon number B = 0.
Figure 2.3 shows the meson nonets obtained when considering three flavors (u, d,
s), for the two spin configurations J = 0 and J = 1. Mesons are classified in JP

(or 3 JPC) multiplets. In this notation, P represents the meson parity and C its
charge conjugation. The meson spin is given by the relation |l− s| ≤ J ≤ |l+ s|,
with l being the orbital angular momentum of the qq̄ state and s being equal either

3C is defined only for mesons made of a quark and its own antiquark.
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S = +1

S = 0

S = -1

Q = -1 Q = 0 Q = +1

S = +1

S = 0

S = -1

Q = -1 Q = 0 Q = +1

π0
π+π- η

η'

K-

K+K0

K0 K*-

K*+K*0

K*0

ρ- ρ+ρ0

φ
ω

Figure 2.3: Meson nonets for J = 0 (on the left) and J = 1 (on the right) in
the case of three quark flavors (u, d, s). In these schemes, mesons are arranged
according to their charge Q and strangeness S.

to 0 (antiparallel quark spins) or 1 (parallel quark spins). The meson parity is
given by the relation P = (-1)l+1; its charge conjugation, when defined, is given
by C = (-1)l+s. In the quark model, some JPC configurations are forbidden for
mesons. As an example, states with parity P = (-1)J (also referred as natural spin
parity), according to the previous rules must have s = 1, and hence, CP must be
equal to +1. Thus, mesons with natural spin parity and CP = −1 are forbidden
in such model. They may still exist, but will not find a collocation in the model
itself and therefore fall into the category of exotic states. Some examples of such
configuration are: 0+−, 1−+, 2+−, 3−+.

Baryons: Baryons are fermions with baryon number B = ±1, composed of
three quarks (qqq) or three antiquarks (q̄q̄q̄). Figure 2.4 shows the baryon octet,
arranging spin-1

2
baryons, and decuplet, arranging spin-3

2
baryons, in the three

quark flavors (u, d, s) scenario SU(3)f . Baryons, as well as mesons, can be
classified in JP multiplets. Consisting of three quarks, baryons spin vectors can
add to a vector of length s = 1/2 (with two relative projections: sz = +1

2
, -1

2
)

or s = 3
2
(with four relative projections: sz = +3

2
, +1

2
, -1

2
, -3

2
). As in the case of

mesons, the total angular momentum J is given by the combination of the spin s
and the orbital angular momentum l by the relation |l− s| ≤ J ≤ |l+ s|, and the
parity P is given by P = (−1)l+1. Baryons obey the Pauli exclusion principle.
Since the color-related part of the baryon wave function must be a SU(3)c singlet,
the remaining parts have to be completely symmetric:

| qqq 〉A = | color 〉A | space, spin, flavor 〉S. (2.11)
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S = 0

S = -1

S = -2

Σ0 Σ+Σ- Λ

Ξ-

pn

Ξ0

S = 0

S = -1

S = -2

S = -3

Q = +2

Δ++Δ+Δ0Δ-

Σ*- Σ*0 Σ*+

Ξ*- Ξ*0

Ω-

Q = +1

Q = 0

Q = -1

Q = -1 Q = 0 Q = +1

Figure 2.4: Baryon octet (on the left) and decuplet (on the right) in the case of
three quark flavors (u, d, s). In the octet spin-1

2
baryons find their collocation,

while in the decuplet spin-3
2
baryons. In these schemes, baryons are arranged

according to their charge Q and strangeness S.

2.2.3.2 Exotic hadrons

As QCD developed, and essentially absorbed the quark model, it became apparent
that there was no obvious reason to have only quark-antiquark and three-quark
combinations: as long as the final configuration is color-neutral, there is no addi-
tional QCD-driven limit to the number of quarks constituting one hadron 4. The
adjective exotic is nowadays used when referring to hadrons consisting of more
than three valence quarks, or with explicit valence gluon content. Analogous to
ordinary hadrons, exotic hadrons are classified as being either bosons, like ordi-
nary mesons, or fermions, like ordinary baryons; thus it is possible in literature
to come across the more specific terms exotic mesons and exotic baryons.

In the absence of a rigorous analytical method for making first-principle calcu-
lations of the spectrum of non-standard hadrons, simplified models — motivated
by the color structure and other general features of QCD — have been devel-
oped and are commonly used to explore the exotic sector. In this section some of
these phenomenological approaches are introduced. The color structure of QCD
suggests the existence of different categories of non-standard hadronic particles,
that can be grouped in two main classes: multiquark states and structures with
valence gluons. Figure 2.5 shows a graphical representation of the most com-
mon scenarios for exotics. Each of these scenarios would deserve a chapter by
itself, but it would go far beyond the scope of this dissertation. In the follow-

4It is actually fair to note that Gell-Mann proposed the existence of multiquark states already
in 1964, when introducing for the first time his classification model for mesons and baryons [17].
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Figure 2.5: Graphical representation of common exotic hadrons. Upper case
QQ̄ inside the Hadroquarkonium (top left sketch) represents its quarkonium core
composed of heavy quarks (cc̄ or bb̄ quarks).

ing paragraphs a small introduction is given, together with specific references for
each topic. Comprehensive reviews of exotic states in general can be found in
Refs. [19–21].

Multiquark hadrons: Hadrons made of more than three valence quarks belong
to the exotic family. According to the actual number of constituent quarks it is
possible to distinguish several multiquark groups; the most common among them
are tetraquarks (from Greek tetra-, four) composed of four quarks, pentaquarks
(from Greek penta-, five) made from five quarks and hexaquark (from Greek hexa-
, six) composed of six quarks. A priori, a system consisting of more than three
valence quarks is a complicated object, and it is unclear whether or not any kind of
clustering occurs in it. One way to approach this problem is to focus on possible
substructures and investigate their implications. In this perspective, existing
multiquarks models include hadroquarkonia [22,23], compact multiquarks [24,25]
and hadronic molecules [26].

Hadroquarkonium consists of a compact quarkonium core surrounded by an
excited light-quark cloud. The model was triggered by experimental observations:
many heavy exotic candidates (such as ψ(4360), ψ(4660), or Zc(4430) [27–29])
contain in the final state a quarkonium and light quarks. In such a hadroquarko-
nium scenario, a force analogous to the Van der Waals force could be responsible
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for the binding of the core with the cloud.
Compact multiquarks refer to multiquark states that contain as building

blocks diquarks and/or antidiquarks. Diquarks [30] are quark-quark pairs qq
clustering together and forming colored-states 5. Two or more of these states can
then combine to form color-neutral hadrons, with more than three valence quarks
and thus exotics [31].

Hadronic molecules are aggregate states of two hadrons. The basic idea behind
this description is a generalization of nuclei with the replacement of nucleons with
mesons and baryons. Exploiting the similarities with light nuclei it is possible to
derive some properties of such states.

Structures with active gluons: Because of its non-abelian structure, and the
peculiarity of gluons to couple among themselves, QCD predicts the existence of
isoscalar mesons which contain only gluons, the glueballs [32].

When allowing constituent gluons — together with constituent quarks and
antiquarks — the quark model can be extended with the introduction of hybrids.
The term hybrid conventionally refers to quark-antiquark mesons with excited
gluonic degrees of freedom. In this framework, different theories have been pro-
posed, with substantial differences among them. Two examples of models involv-
ing hybrids are the flux tube model [33] and the constituent gluon model [34].

5In SU(3)c qq states can be either in the 3̄ or in the 6 representation.





3
uuddss hexaquark

Among the plethora of exotic states that have been predicted exploiting the
properties of the quark model, one of the most advertised cases refers to the six-
quark state uuddss. Its very long history dates back to 1977, when R. L. Jaffe first
predicted the existence of an object with the quark content of two Λ baryons and
called it H dibaryon [35]. Despite the absence of any experimental evidence so
far, the H dibaryon is still today an appealing topic, mainly thanks to a renewed
theoretical effort [36,37] and recent LQCD results [38–40]. From the experimental
point of view there are still open possibilities to be explored, together with the
opportunity to improve the current upper limits on its existence. Apart from its
historical importance, being one of the first six-quark states suggested and so far
not yet discovered or ruled out, the H dibaryon could represent an excellent Dark
Matter (DM) candidate [37]. The central part of this dissertation will focus on a
search for this double strange particle to be performed at the Belle II experiment,
and on the expected sensitivity that could be reached with the future data sample
to be collected at the bb̄ resonances below the BB̄ threshold (Υ(nS) with n = 1,
2, 3). These narrow bb̄ resonances decay primarily via three gluons [11], in which
ss̄ quark pairs are produced with roughly the same probability as uū and dd̄

pairs. This characteristic makes such states particularly well suited for searches
for multiquark states with nonzero strangeness.

17
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Figure 3.1: Graphical representation of the uuddss dibaryon.

Technically speaking, the term dibaryon denotes any object with baryon num-
ber B = 2. From a constituent point of view, the requirement is that the difference
between the number of valence quarks and antiquarks must be equal to six. In
principle, as discussed in Section 2.2.3.2, the structure of a multiquark state may
have different configurations: a dibaryon may be of molecular type or being a
spatially compact object. The models that will be considered and expanded on
in this chapter describe the uuddss dibaryon as a spatially compact object. Along
the lines of Fig. 2.5, Fig. 3.1 shows a pictorial representation of such a multiquark
structure.

In this chapter, a review of the uuddss hexaquark — both from a theoret-
ical and an experimental point of view — will be given. The theoretical part
(Section 3.1) will focus specifically on three substantially different models and
their implications (Sections 3.1.1 to 3.1.3); for each of them, references to related
theories will be provided as well. To conclude the first half of the chapter, an
entire subsection will then be devoted to LQCD results (Section 3.1.4). In the
experimental part (Section 3.2) a summary on searches and their results will be
given.

3.1 Theoretical review

3.1.1 Jaffe’s dibaryon

In 1977 R. L. Jaffe, making use of the quark bag model [41] (today often referred
as MIT bag model), predicted the existence of a stable, spin and isospin sin-
glet I (JP ) = 0 (0+), double strange S = −2 six-quark state with quark content
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uuddss, and named it H [35]. According to Jaffe’s calculations, the hyperfine
interaction of such a state should be larger than the same quantity for two sepa-
rated baryons, and for this reason it should exist. The model predicted the mass
of the H dibaryon, MH , to be in the range MH ∈ [2055, 2230] MeV/c2. The lower
limit MH,min can be written as the sum of a proton (mp), an electron (me), and
a Λ baryon (mΛ) mass (MH,min = mp +me +mΛ = 2055 MeV/c2), thus making
the H dibaryon a non-stable object. Moreover, the upper limit MH,max can be
written as twice the mass of a Λ baryon (MH,max = 2mΛ = 2230 MeV/c2), for-
bidding the H dibaryon to decay strongly into two Λ baryons. As a result, the
H dibaryon predicted by Jaffe would decay predominantly by non-leptonic weak
decay. Jaffe’s work initiated an era of many theoretical predictions involving the
existence of dibaryons, not solely limited to double strangeness content [42–55].
Two interesting reviews about the history of search for dibaryons can be found
in Refs. [56, 57].

Jaffe’s prediction was based on simplified symmetry considerations, with the
assumption of a color-magnetic interaction Vc−m between quarks generating a
hyperfine-splitting [35]:

Vc−m = −
∑
i>j

(λi · λj) (σi · σj)M(miR, mjR), (3.1)

where λi(j) and σi(j) represent the color and the spin operator of the i(j)-th quark,
respectively, andM(miR, mjR) denotes a short range spatial interaction between
quarks i and j, that conserves the flavor.

The main limitation of models based on Eq. (3.1) is the assumption of un-
broken SU(3)f symmetry. After Jaffe’s work, other theorists provided different
calculations based on various models, often including more realistic considera-
tions. In particular, accounting for SU(3)f symmetry breaking introduces a severe
reduction of the resulting binding energy [58–60]. More generally, the develop-
ment of different models led to very different predictions about the H dibaryon
mass, extending from deeply bound states (below Jaffe’s original lower limit) to
unbound states, in some cases refuting the possible existence of such a stable
state [49, 61–64].

It is worth noting that Jaffe returned several times to the H dibaryon subject
in his work after the very famous first manuscript from 1977. In 1995, together
with G. Baym et al. [65], he suggested a metastable H dibaryon (with MH <

mp + mΛ) as possible cygnet, a neutral particle originating from the condensed
star in Cygnus X-3 and responsible for initiating high energy muon showers [66].
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In 1997, together with S. V. Bashinsky [67], he considered an unbound six-quark
H dibaryon (with MH > 2mΛ), trying to link its possible manifestation with a
description to the interplay between quark states and hadronic thresholds, and
elaborating about promising reactions to be studied for a search in such a scenario.
Making use of the P -matrix formalism [68], the conclusion they drew was to rely
on quasi-elastic secondary scattering 1 as most promising reactions in the search
for such a state, in the case ofMH situated very close to one two-baryon threshold
(like, for example, ΛΛ, Ξ−p, Ξ0n, Σ0Σ0, or Σ+Σ−).

3.1.2 Kochelev’s stable dibaryon

In 1999 N. I. Kochelev revived and elaborated on the idea of a stableH dibaryon [69].
In such a work it is argued that, in the context of theH dibaryon mass calculation,
it is crucial to take into account the instanton interaction between quarks [70].
Despite few authors before him accounted for such effects [61, 71], his argument
is that in these cases the mass of the H dibaryon was overestimated. Consider-
ing the instanton-induced interaction in the simple quark constituent model, any
hadron mass mh can be written as [69]:

mh = NUU +NSS +∆minst. (3.2)

In Eq. (3.2), NU(S) and U(S) represent the number of light (strange) quarks and
their constituent masses, respectively, and ∆minst the contribution to the hadron
mass induced by instanton interactions. As can be deduced from Eq. (3.2), a
strong interaction with vacuum (and so a large attraction between quarks) could
lead to a large reduction of the hadron mass. In the case of the H dibaryon,
taking advantage of its wave function dissociation [71] and of a previous study
on baryons mass splitting induced by instantons [72], Kochelov determined the
instanton contribution to the H dibaryon mass to be:

∆mH,inst = −1048 MeV/c2, (3.3)

leading to a H dibaryon mass value of:

MH = 1718 MeV/c2. (3.4)

The so-obtained massMH is smaller than the sum of two nucleon masses (2mN =

1876MeV/c2), thus making the H dibaryon an absolutely stable particle. Accord-
1For example, producing a NΞ pair and then observing it scattering into two Λ.
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ing to the author, the existence of such a stable H dibaryon could have crucial
consequences in cosmology, providing an explanation for ultra-high energy cosmic
ray events [73] observed above the GZK cut-off [73,74]. Admitting the existence
of some sort of ultra-high energy cosmic H dibaryons source, their interaction
with nuclei in the Earth’s atmosphere, and their subsequent photodisintegration
into two Λ baryons, would be a natural explanation of the anomalous events
observed above the GZK cut-off.

3.1.3 Farrar’s dibaryon

Along the lines of a deeply bound hexaquark, G. R. Farrar — for the first time
in 2003 and a few years later in a more mature paper — noted that an absolute
stable H dibaryon is a potentially optimal DM candidate [36, 75]. The disagree-
ment with Kochelov’s interpretation of a deeply bound H as possible messenger
particle accounting for ultra-high energy cosmic rays is unmistakable [75]. In-
stead, the idea suggested in the manuscripts is that a possible DM candidate
may be provided by QCD itself (therefore not requiring physics beyond the SM),
in the form of a stable uuddss six-quark state. Such a state was renamed S by
the author 2, standing for Sexaquark, Singlet, Scalar, Strong, and Stable [36].
Assuming a scenario with DM composed of approximately equal numbers of u,
d, and s quarks, the measured ratio of dark matter to ordinary matter could be
explained with the Boltzmann distribution in the quark gluon plasma with a few
other assumptions. These considerations, applied to a stable and compact H
dibaryon with mass MH ∈ [1860, 1880] MeV/c2, lead to an agreement between
prediction and measurement within its 15% uncertainty [76]. In this scenario,
the SU(3)f singlet H dibaryon size is much smaller with respect to octet baryons
(rH ≈ 0.15−0.4 fm compared to rN = 0.9 fm), and consequently does not bind to
nuclei. Depending on its mass MH , a deeply bound H would be absolutely stable
if MH < 2(me+mp) ' 1878 MeV/c2 (as a consequence of baryon number conser-
vation), or metastable if MH < (me+mp+mΛ) ' 2055 MeV/c2, with its lifetime
being longer than the age of the universe [77]. As observed by the author, the
case of a very light H dibaryon, light enough to be produced with a pion, seems to
be ruled out: rare occurrences of pion production from nucleon fusion processes
like 3 {nn} → H π0 or {p n} → H π+ should have been already observed by the
Super-Kamiokande experiment [78]. This last consideration suggests a possible
lower limit on the H mass MH & 2mN −mπ ' 1.7 GeV/c2 [36]. As a matter of

2For consistency, in the rest of the chapter it will also be referred as H dibaryon.
3Curly brackets denote that protons p and neutrons n are inside a nucleus.



22 3. uuddss hexaquark

fact, such a stable state would have eluded detection in the various experiments
carried out in the years prior to Farrar’s publication [36]. Before that, no exper-
iment specifically searched for a stable and compact H, mostly assuming the H
to be a loosely bound state, while experiments directly searching for long-lived
neutral states explicitly excluded the region below 2 GeV/c2 because of neutron-
induced background [79] (for an exhaustive review of the experiments searching
for H dibaryon please refer to Section 3.2). In Farrar’s work [36], two strategies
are suggested for the possible discovery of a stable H dibaryon, targeting different
existing experiments:

• the study of the exclusive Υ decay reactions:
Υ [→ gluons] → H Λ̄ Λ̄ or H̄ ΛΛ (+ πs and/or γs);

• the search for characteristic decay chains after H annihilation on beam pipe
or detector material:
H̄ +N → Ξ̄0 (+) +X, H̄ +N → Λ̄ +K0 (+) +X.

The common approach is to search for final states with apparent baryon number
and strangeness violation (∆B 6= 0 and ∆S 6= 0). In both cases, there is no direct
observation of the H (or H̄), but the mass MH should possibly be measurable
via missing mass in the former case, and via energy-momentum conservation in
the latter.

The cosmological implications of a possible stable six-quark state are not
universally accepted. C. Gross et al. argue that, for the model to reproduce
the cosmological DM abundance, the H mass should be equal to 1.2 GeV/c2; as
already noted, though, the nuclear stability forbids dibaryon mass values MH .

1.7 GeV/c2 [80]. According to E. W. Kolb and M. S. Turner, a possible stable H
dibaryon in the mass range MH ∈ [1860, 1890] MeV/c2, where nuclear stability is
ensured, could explain only a fraction of DM, since its abundance would not be
enough [81]. Finally, S. D. McDermott, S. Reddy, and S. Sen., studying a possible
stable H dibaryon in the context of proto-neutron stars, concluded that such a
state is incompatible with the stability of neutron stars and with the observed
supernova explosions [82].

3.1.4 uuddss dibaryon in LQCD

Trying to establish whether the existence of the H dibaryon is a prediction of
QCD has always been a fertile ground for LQCD. Early lattice studies — that
compared to the more recent times suffered from finite-size effects, relatively large
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values of unphysical quark masses, and low statistics — produced inconclusive
and contradicting results on this topic: while some claimed the existence of a
bound state [83–85], others ruled out this possibility providing evidence for an
unbound H dibaryon state [86–89].

In more recent times, LQCD calculations with regard to the H dibaryon
made use of two different formalisms, both common in LQCD when it comes
to studying two-baryon systems: the Luscher’s method [90, 91] and the HAL
QCD method [92–94]. Results on the H dibaryon based on the first approach
were obtained by the NPLQCD collaboration [40, 95–97], and by the Mainz
group [38, 98]. The alternative approach has been employed by the HAL QCD
collaboration [39, 99–101]. Depending on the methodology and/or the value of
the pion mass employed in the calculations, the results for the binding energy
BH vary considerably, with estimates ranging from a few MeV up to 75 MeV.
Among the most recent results, in 2020 the HAL QCD collaboration studied the
ΛΛ interaction close to the physical point (mπ = 146 MeV/c2 and mK = 525

MeV/c2), using Nf = 2+1 flavors [39]. Such a system, according to their result,
is only weakly attractive and does not sustain a bound or resonant dihyperon.
In 2021 the Mainz group, using the Luscher’s method, suggested the existence of
a weakly bound H dibaryon, with binding energy BH = 3.97± 1.16stat ± 0.86syst

MeV [38]. Such a value of binding energy is substantially lower with respect to
previous lattice calculations [40, 95–101]. One common limit of both results is
that the lattice simulation was not performed exactly at the physical point. For
this and other reasons both these calculations are not yet conclusive, and some
omitted effects still remain to be addressed in the future.

3.2 Experimental review

As it is often the case in physics, interest in the possible existence of the H
dibaryon did not only excite the theoretical community, but almost immediately
after its original formulation, it expanded into the experimental field. Since then
numerous experiments have been carried out hunting for such a state.

When searching for an hypothetical particle, one needs to consider the pos-
sible decay channels of such an object. In case of the H dibaryon, its binding
energy — and thus its mass with respect to the ΛΛ threshold — plays a fun-
damental role. A bound H dibaryon, with MH < 2mΛ, could only decay via
weak interaction; the dominant decay channel would then be H → ΛNπ, with
a narrow resonance structure. An H dibaryon above the ΛΛ threshold would
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decay strongly, predominantly via H → ΛΛ, and the width of such a candidate
is expected to be broad. In general, the broader a resonance is, the harder it
is to uniquely identify it in experiments, being more difficult to distinguish the
resonance from non-resonant background processes. Finally, a stable H dibaryon
— being neutral and indeed stable — would escape any detection, and in such a
case its existence could manifest itself as a peak around its mass in the missing
mass spectrum of a fully exclusive measurement.

Especially in the early stage of the experimental hunt for the H dibaryon,
many of the searches have been performed in nuclear reactions in which the H is
expected to be produced in nuclei. After an early period of controversial claims
about its existence 4 — none of which withstood critical examinations — the first
important experimental result on the H dibaryon arose from the observation of
the so-called “NAGARA” event [103, 104], which exhibits the unambiguous sig-
nature of the double-Λ hypernucleus 6

ΛΛHe produced via Ξ− capture in emulsion.
The existence of double-Λ hypernuclei is intimately related to the existence of the
H dibaryon, and in particular with the upper limit of its mass. In fact, a possible
H dibaryon with a mass MH less than twice the Λ hyperon mass in a nucleus is
expected to be formed from two Λ hyperons in the nucleus. As a consequence,
the existence of a double-Λ hypernucleus with binding energy in the nucleus BΛΛ

can be interpreted as a lower limit for the mass of the H dibaryon, according
to [103]:

MH > 2mΛ −BΛΛ. (3.5)

From the analysis of the NAGARA event, BΛΛ was found to be BΛΛ = 6.93 ±
0.16 MeV, leading to a lower limit for the mass of the H dibaryon, in the bound
scenario, of MH > 2224 MeV/c2 at a 90% Confidence Level (CL).

In 1998, the KEK-PS E224 collaboration searched for a possible H dibaryon
in the (K−,K+) reaction with a nuclear target [105]. Studying the reaction 12C
(K−, K+)ΛΛX, they reported an enhancement in the ΛΛ invariant mass spectrum
at the ΛΛ threshold. The same result was confirmed a few years later with
a follow-up experiment — with improved statistics — by the KEK-PS E522
collaboration [106]. Nonetheless, it was not possible for them to determine with
certainty if such a threshold enhancement was a signal of the existence of the H
dibaryon or if it could simply be explained by the ΛΛ final state interaction. The
BNL E836 collaboration performed a search for H dibaryon on a different target
(a liquid helium target), using the reaction 3He (K−, K+)Hn [107]. No evidence
for H production was found and cross section limits were established in binding

4For a complete review of early experiments see Ref. [102].
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Figure 3.2: Branching-fraction upper limits (UL B) at 90% CL for
B(Υ(1S, 2S) → HX) for a narrow H dibaryon as a function of MH − 2mΛ,
obtained by the Belle collaboration [109]. The vertical dotted red line indicates
the MH = 2mΛ threshold. The limits below this threshold are for the decay
channel H → Λpπ, those above are for H → ΛΛ. For each mass bin, the upper
limit is shown as solid horizontal bars, while the +1σ (+2σ) value from the fitted
signal yield is shown as dotted (dashed) bar. For some bins these assume negative
values and are not shown in the plot. The horizontal dotted black line indicates
the average PDG value for B(Υ(1S, 2S) → d̄X).

energy range BH ∈ [50, 380] MeV.
Apart from nuclear reactions, other interesting possibilities for H dibaryon

searches are available at B-Factories [108] running at narrow Υ resonances. As
briefly mentioned in this chapter’s introduction, decays of narrow bb̄ resonances
are in fact well suited for searches for multiquark states with non-zero strangeness.
In 2013, the Belle collaboration performed a search for H dibaryon production in
inclusive Υ(1S) and Υ(2S) decays [109]. An 80 MeV/c2 -wide region around the
2mΛ threshold was scanned in two decay channels: H → Λ p π− (below threshold)
and H → ΛΛ (above threshold). No indication of a H dibaryon was found, and
upper limits for the branching fraction in the order of 10−6 with 90% CL were
set. Figure 3.2 shows the resulting 90% upper limits as function of MH − 2mΛ

for the decay channels H → Λpπ− and H → ΛΛ. If compared to the measured
branching fractions for inclusive Υ(1S) and Υ(2S) decays to antideuterons (d̄) 5,
these H dibaryon limits are located more than an order of magnitude below them.

5B(Υ(1S) → d̄ X) = (2.9± 0.3)× 10−5, B(Υ(2S) → d̄ X) = (3.4± 0.6)× 10−5 [110,111].
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Figure 3.3: The 90% CL upper limits on the Υ(2S, 3S) → HΛ̄Λ̄ branching frac-
tion for the Υ(2S) and Υ(3S) datasets, as well as the combined sample, obtained
by the BaBar collaboration [112]. On both axis labels, S refers to the H dibaryon.

The deuteron is itself a six-quark state with rather low binging energy, and being
composed of a proton and a neutron it could be seen as the H dibaryon’s non-
strange twin. This comparison with antideuterons suggests that, if a H dibaryon
exists in such a mass range, its dynamical properties have to be very different
when compared to deuterons; also, below the ΛΛ threshold a possible Λpπ− decay
mode of the H dibaryon is strongly suppressed.

In a recent paper, the BaBar collaboration published the result of the first
search for a stable hexaquark [112], following the theoretical model from Farrar
(see Section 3.1.3). Using Υ(2S) and Υ(3S) events, they probed the whole
stable mass region MH ∈ [0, 2.05] GeV/c2 for a possible H dibaryon produced in
narrow Υ decays in combination with two Λ baryons by searching for a bump in
the recoil mass squared against the ΛΛ system. No evidence of such events was
observed and a 90% confidence level limit on the combined Υ(2S, 3S) → HΛ̄Λ̄

branching fraction in the order of 10−7 was set. The results obtained by the
BaBar collaboration are shown in Fig. 3.3 for the Υ(2S) and Υ(3S) datasets
separately, as well as for the combined sample.

An alternative method to access hadron-hadron interactions is offered by
heavy-ion collisions. Thanks to the large number of hyperons produced in such
interactions — achieved by hadronization from the quark-gluon plasma— they of-
fer the possibility to study ΛΛ correlation and allow to search for the H dibaryon.
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In such experiments, the stability of possible resonances (and thus the binding
energy B) is expressed in terms of the sign of the scattering length a0. A possi-
ble ΛΛ bound state would exhibit a positive a0 value (a0 > 0); on the contrary,
a0 < 0 would imply the absence of a bound state.

The ΛΛ correlation, the scattering length aΛΛ and the effective range rΛΛ have
been studied at RHIC in Au-Au collisions at 200 GeV [113, 114]. An improved
analysis [114] gave different results from those in the original paper [113], report-
ing a slightly attractive interaction and thus excluding the existence of a bound
state in the ΛΛ system. However, because of some feed-down corrections related
to Σ0 decays, these results are not sufficient to completely exclude the existence
of a bound state [115]. The ALICE collaboration searched for the H dibaryon
in the decay channel H → Λpπ− in the mass region MH ∈ [2.200, 2.231] GeV/c2,
using central Pb-Pb collisions at √

sNN = 2.76 TeV [116]. In this analysis no
significant signal in the invariant mass distribution has been observed and an
upper limit was estimated with the assumption of a binding energy of 1 MeV.

In conclusion, despite a huge effort from the experimental community, to date
no hard evidence, able to undoubtedly prove the existence of a H dibaryon, has
been found. On the other hand, notwithstanding that stringent upper limits for
its production in various processes exist, no experiment performed so far has been
able to completely rule out the possibility of its existence.





4
The Belle II experiment

The Belle II experiment [117] represents the only next-generation B Factory in
operation to date. After the huge success of the first generation B Factories —
namely its predecessor Belle [118] and the BaBar experiment [119] — and their
extraordinary contribution to many sectors of particle physics [108], following an
initial commissioning phase the Belle II experiment has finally started to collect
data on its journey towards and possibly beyond the SM frontiers. A key element
in achieving these ambitious goals is to collect much higher luminosities with
respect to the existing datasets. This requires upgrades to both the accelerator
and the detector.

In this chapter a general overview of the SuperKEKB accelerator and of the
Belle II detector with its relative subsystems will be given. Because of their
relevance to the subjects covered in this dissertation, the tracking related subde-
tectors are described in more details. Except where explicitly stated otherwise,
the information presented in this chapter is taken from Refs. [120, 121], and an
in-depth description of every specific subsystem can be found there.

29
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Figure 4.1: Schematic view of the SuperKEKB collider. The Belle II detector
is located in the experimental cave named Tsukuba, around the only interaction
point of the electron and positron beams. Figure taken from Ref. [122].

4.1 SuperKEKB

SuperKEKB is a double-ring asymmetric e+e− collider, located at the KEK (High
Energy Accelerator Research Organization) laboratory [123] in Tsukuba, Japan.
The accelerator is designed to collide beams of electrons and positrons at the
center-of-mass energy in the region of the Υ resonances. The allowed center-
of-mass energy (

√
s) ranges from 9.46 GeV, just below the Υ(1S) resonance, to

11.24 GeV, just above the Υ(6S) resonance. As for the previous B factories, the
vast majority of the data will be collected at the Υ(4S) — located just above
the BB̄ threshold and thus decaying more than 90% of the time in a pair of B
mesons [11]. A fraction of the data taking will be devoted, in addition, to different
energies. It is foreseen to collect data at higher (Υ(5, 6S)) as well as lower energies
(Υ(3S)) [124]. In particular, the three narrow resonances Υ(nS, n ≤ 3) represent
a fertile ground for studying bottomonium transitions, physics beyond the SM,
and searches for exotic states, and the central part of this dissertation falls into
the latter category.

The design instantaneous luminosity of SuperKEKB is 8 × 1035 cm2 s−1, 40
times larger than the recorded peak luminosity of its predecessor KEKB [125].
This challenging goal motivated a substantial upgrade to the accelerator complex.
Figure 4.1 shows a schematic view of SuperKEKB. The collider complex consists
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Table 4.1: KEKB’s machine parameters compared to SuperKEKB’s. The listed
parameters are, in order: the beam energies (E), twice the collision angle (2φ),
the vertical beam–beam parameters (ξx,y), the vertical beta function (β∗

y), the
beam currents (I), the beam sizes (σ∗

x,y), and the design instantaneous luminosity
(L). All parameters refer to the IP. Values taken from Ref. [122].

KEKB
LER (e+) / HER (e−)

SuperKEKB
LER (e+) / HER (e−)

E [GeV] 3.5 / 8.0 4.0 / 7.0
2φ [mrad] 22 83

ξx 0.127 / 0.102 0.0028 / 0.0012
ξy 0.129 / 0.090 0.088 / 0.081
β∗
y 5.9 / 5.9 0.27 / 0.30

I [A] 1.64 / 1.19 3.60 / 2.60
σ∗
x [µm] 147 / 170 10.1 / 10.7
σ∗
y [nm] 940 / 940 48 / 62

L [1035 cm−2 s−1] 0.211 8

of a 7 GeV High-Energy Ring (HER) for electrons, a 4 GeV Low-Energy Ring
(LER) for positrons, and an injector linear accelerator (linac) with a 1.1 GeV
positron Damping Ring (DR). SuperKEKB has only one Interaction Point (IP),
where the two beams collide at a finite angle φ of ±41.5 mrad. The method to
increase the luminosity of SuperKEKB is based on a design known as nano beam
scheme, first suggested by P. Raimondi for SuperB, a proposed high-luminosity
electron-position collider near Rome (Italy) that never saw the light [126].

4.1.1 Nano beam scheme

The essential elements in the nano beam scheme — and thus in the SuperKEKB’s
luminosity increase with respect to KEKB — are a reduction in the beta function
at the IP and an increase in the beam currents.

For a collider, the luminosity L can be written as [122]:

L =
γ±
2ere

(
1 +

σ∗
y

σ∗
x

)(
I±ξy±
β∗
y

)(
RL

Rξy

)
. (4.1)

In this equation γ± represents the Lorentz factor, e and re the electron charge and
classical radius, respectively, and σ∗

x,y the horizontal and vertical beam sizes at the
IP; I± represents the beam current, while ξy± and β∗

y are the vertical beam–beam
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Figure 4.2: Schematic view of KEKB (left panel) and SuperKEKB collision
scheme, also referred to as nano beam scheme (right panel). Note that the axes
scales for the two panels are different. Figure taken from Ref. [127].

parameters and the vertical beta function at the IP, respectively. The suffix ±
distinguishes the positron (+) from the electron (−) beam. Finally, RL and Rξy

are a luminosity and a vertical beam-beam correction factor, respectively, that
account for geometrical losses, and whose ratio can be approximately considered
equal to 1. In SuperKEKB, the vertical beta function at the IP β∗

y is reduced
by a factor of 20 with respect to KEKB, while the current I is increased by a
factor of 2 both for the electron and the positron beam. This can be inferred
from Table 4.1, where the main parameters of the two accelerator complexes are
summarized. A schematic view of the old collision scheme of KEKB and the new
nano beam scheme of SuperKEKB is shown in Fig. 4.2.

As an inevitable price to pay for the increase in luminosity, the background
level in the Belle II detector is expected to increase as well. This motivated
upgrades to the existing Belle detector, that will be introduced in the next section
(Section 4.2). Because of its strong impact on track finding, the topic of beam-
induced background will be further explored in the next chapter (Section 5.1.1).

4.1.2 SuperKEKB commissioning and running phases

The beam commissioning of SuperKEKB took place in three phases, phase 1,
phase 2 and phase 3. In phase 1, carried out in 2016, no final focusing system
and no Belle II detector were installed. In this phase no beam collisions were
performed. The main goals of this first period were to monitor the beam back-
ground levels in order to ensure that they were safe to install Belle II and to
provide a first feedback for the optimization of the accelerator parameters. To
achieve these goals the BEAST II detector system was used [128]. During phase
2, that took place in 2018, both the final focusing and the positron damping ring
were in place. As for the Belle II detector, it was installed with the exception
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of the vertex detectors (pixel and silicon detectors, which will be described in
detail in the next section). Special detectors for background measurements were
installed in their place close to the interaction region. The main goals of this
phase were to measure beam background during collisions and to ensure the radi-
ation safety of Belle II to run at higher luminosity with the final vertex detectors
installed, without damaging them. Phase 3 officially started in march 2019, with
the vertex detectors installed. Due to a delay in the production of the pixel de-
tector, currently only half of its design setup is installed. The installation of the
missing part is foreseen during the next long shutdown of the experiment.

The design peak luminosity of SuperKEKB (8 × 1035 cm2 s−1) is a goal to
be achieved over time through the gradual increase of beam currents and the
optimization of the accelerator parameters [124], and currently has not yet been
reached. Later in this thesis a distinction is made between early phase 3 and nom-
inal phase 3. Early phase 3 refers to the current experiment conditions, with the
pixel detector only partially installed and an instantaneous luminosity lower than
the design value. Nominal phase 3 refers to future experiment conditions, with
the full installation of the pixel detector and the designed value of instantaneous
luminosity.

4.2 The Belle II detector

The Belle II detector is a general purpose spectrometer built around the only
IP of SuperKEKB. Due to the accelerator upgrade, a major upgrade took place
with the detector when compared to its predecessor Belle [129] as well. Some
major components — and in particular the outermost ones — were kept from
the previous experiment, with only modifications to the electronics and readout
systems, while some subdetectors were newly developed. The choice of keeping
the outermost components determined the space for the design of the new devices.
The challenge of the detector upgrade was to maintain — and possibly improve
— the good performance of the Belle detector in a new experimental environment
with higher physics rate and much higher background levels.

Belle II has an approximate cylindrical symmetry around the z-axis 1, while it
has a significant forward (FW) / backward (BW) asymmetry to improve the solid
angle acceptance in the boost (FW) direction. In its new design, it is composed
of the following subdetectors (listed from the innermost to the outermost):

1By convention the z-axis is set along the bisector of the angle between the direction of the
electron beam and the reverse direction of the positron beam.
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Figure 4.3: Schematic view of the Belle II detector. The red box on the bottom
left is an enlargement of the central region, showing a more detailed view of the
two innermost detectors, PXD and SVD, together referred to as VXD. Figure
adapted from Ref. [117].

• a PiXel Detector (PXD),

• a Silicon Vertex Detector (SVD),

• a Central Drift Chamber (CDC),

• a Time Of Propagation (TOP) counter,

• an Aerogel Ring-Imaging CHerenkov (ARICH),

• an Electromagnetic CaLorimeter (ECL),

• a KL and Muon detector (KLM).

The two innermost subsystems, PXD and SVD, together are often referred to
as VerteX Detector (VXD). A schematic view of the Belle II detector is given
in Fig. 4.3.

4.2.1 Tracking detectors

In Belle II, there are three dedicated subdetectors used for the reconstruction
of charged tracks: PXD, SVD, and CDC. Their polar angle acceptance is θ ∈
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[17◦, 155◦]. One of the key points of the experiment is that tracks from B meson
decays need to be reconstructed with sufficient precision. In order to compensate
for the smaller boost of SuperKEKB compared to KEKB (βγ = 0.28 instead
of 0.42), the impact parameter resolution needs an improvement of a factor 2.
Furthermore, the inner detector must be sufficiently radiation hard (because of
the high track density of the environment) while its material budget is kept to a
minimum (in order to reduce multiple scattering). Such requirements influenced
the final choice of the VXD design and technology.

PXD: the PXD is a pixel detector based on the DEPleted Field Effect Tran-
sistor (DEPFET) concept [130]. Such technology allows for very thin sensors
(in principle down to ∼ 50µm 2), with the readout electronics located outside
the acceptance region, and thus not contributing to the material budget. The
DEPFET sensors are organized into ladders, planar modules which compose the
two PXD layers. In its final concept, the PXD consists of two cylindrical active
detector layers, coaxial with the beam line. An overlapping in φ of the modules
composing each layer (8 modules for the first layer, 12 for the second) ensures an
overall coverage of nearly 100% within the acceptance. The inner layer (L1) is
placed very close to the beam line, at a radius of 14 mm, while the second layer
(L2) is at a radius of 22 mm. The size of the single pixels varies according to their
position. For L1 it was chosen to be 50×55 µm2 for the 256 pixels closest to the
IP, 50×60 µm2 for the those further out. For L2, instead, the pixels dimensions
are 50×70 µm2 and 50×85 µm2, respectively [131]. The choice of installing two
PXD layers instead of only using silicon strips was driven by the fact that the
latter cannot be operated too close to the IP (∼ 20 mm) because of the high oc-
cupancy — which translates to fake hits due to combinatorics. With their much
finer segmentation, pixel detectors naturally have a smaller occupancy. Given a
readout time of 20 µs at final luminosity, the occupancy is expected to be less
than ∼ 3%. If this value is exceeded, PXD data has to be truncated due to data
transfer limitations. Regarding the radiation hardness, the PXD modules are
designed to withstand the expected 20 Mrad radiation dose during 10 years of
operation of the experiment. Unfortunately, at the beginning of Belle II physics
data taking (March 2019), because of technical problems in the ladder assembly,
only half of the planned PXD was installed: the full L1 layer and two ladders of
L2 layer. The full installation is expected to take place during the first long shut
down of the experiment. A schematic view of the detector is shown in Fig. 4.4.

2In Belle II the thickness of the PXD active region is 75 µm.
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Figure 4.4: Schematic view of the PXD. In the left panel, the position of the 40
PXD modules (20 ladders) in the beam direction (xy plane) is shown. Currently
only the colored modules are installed. In the right panel, a CAD rendering of
the two PXD layers is shown. The light gray surfaces represent the sensitive
DEPFET pixels. Figures taken from Refs. [121, 132].

Its main specifications are summarized in Table 4.2.

Table 4.2: Specifications of the Belle II PXD [133].

Layer Radius
(mm)

Ladders Sensors Pixels/Sensor
rφ × z

Pitch
rφ× z (µm ×µm)

1 14 8 16 250× 768 50×(55 to 60)
2 22 12 24 250× 768 50×(70 to 85)

Sum 20 40 7 680 000

SVD: the Belle II silicon strip detector comprises of four layers of Double-sided
Silicon Strip Detectors (DSSDs), located at radii of 39 mm (L3), 80 mm (L4),
104 mm (L5), and 135 mm (L6). Each layer is made of several ladders (the exact
numbers are quoted in Table 4.3). These, in turn, are composed of two (L3) to
five (L6) modules. A module is the union of the silicon sensor, a hybrid circuit
to host the readout chips, and a pitch adapter (which brings the signal from the
sensor to the chips). Various types of sensors, characterized by different shapes
and strip pitches, are employed to achieve the best performance. For the same
reason, the most forward sensors of L4, L5, and L6 are slanted towards the z-axis.
As in the case of the PXD, the detector design provides for a partial overlap of
adjacent sensors — 8 to 10%, depending on the layer — to improve the coverage.
One key feature to suppress background hits is the usage of a readout chip with a
fast shaping time, in the order of 50 ns. For this, the SVD inherited the APV25
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Figure 4.5: Schematic view of the SVD. In the left panel the xy view is shown.
In the right panel the longitudinal cross section (r-z plane) is shown. The slanted
forward sensors of L4, L5, and L6 are depicted in magenta. In both panels the
two PXD layers are shown, as well. Figure taken from Ref. [121].

chips [134] — first used in the tracker of the CMS experiment [135] — equipped
with 128 channels each and a shaping time of 50 ns. By design, the APV25
chips are radiation hard up to an integrated dose in excess of 30 Mrad. Their
multi-peak operational mode, where six (or three) consecutive samples along the
shaping curve are recorded with each trigger, ensures a time resolution of the
order of 3 ns. In Fig. 4.5 a schematic view of the detector is shown.

Table 4.3: Specifications of the Belle II SVD [133].

Layer Radius
(mm)

Ladders Sensors Strips/Sensor
rφ, z

Pitch
rφ, z (µm, µm)

3 39 7 14 768, 768 50, 160
4 80 10 30 768, 512 75 to 50, 240
5 104 12 48 768, 512 75 to 50, 240
6 135 16 80 768, 512 75 to 50, 240

Sum 35 172 132 096, 91 648

CDC: the central tracking device is a wire drift chamber surrounding the VXD.
Conceptually, it follows the design if its successful predecessor in Belle, employ-
ing the same structure, material, and gas mixture (50% helium He, 50% ethane
C2H6). In total, the CDC counts over 14 000 sense wires arranged in 56 lay-
ers (which, in turn, are organized in 9 superlayers), with two different orienta-
tions: axial, namely aligned with the solenoidal magnetic field, and stereo, namely
skewed with respect to the axial wires. The combination of the information com-
ing from both axial and stereo wires makes it possible to reconstruct a full 3D
helix track. Apart from its obvious main role in charged tracks reconstruction
and momentum measurement, two other key tasks are being performed by the
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Figure 4.6: Schematic view of the CDC. The small left panel shows the layers
configuration in the xy plane. In the main panel the r-z plane is depicted. All
measurements are in mm. Figure taken from Ref. [121].

CDC: firstly, it provides Particle IDentification (PID) information exploiting the
energy loss dE

dx
within its gas volume [11] (in particular, PID of low momentum

tracks, which do not reach outermost detectors, relies solely on it). Secondly, it
provides reliable trigger signals for events with charged particles.

The main differences with respect to the Belle CDC concern the readout elec-
tronics, the cylinder radii, and the addition of three-dimensional trigger informa-
tion. The readout electronics is required to be much faster than in Belle because
of the higher trigger rates. Both the innermost (160 mm) and the outermost
(1130 mm) CDC radii are larger than in Belle (77 mm and 880 mm, respec-
tively). These changes are driven by the higher background rates, which would
make the chamber unusable at smaller radius, and by the upgraded thinner PID
detectors in the central region (barrel) of the experiment (see Section 4.2.2). In
addition, a 3D charged tracks trigger is expected to be a robust approach against
high beam background, and has the advantage of not requiring additional mate-
rial. In Fig. 4.6 a schematic view of the detector is shown. Its main specifications
are summarized in Table 4.4.

Table 4.4: Specifications of the Belle II CDC [133].

Layer sense wires r
(mm)

# of wires Drift Cell Size
(cm)

Average Resolution
(µm)

1 to 56 168 to 1111.4 160 to 384 ∼1 to ∼2 120
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4.2.2 Particle identification subsystems

PID is a crucial aspect of the experiment since it allows to distinguish between
final state hadrons and leptons. Two subdetectors are specifically 3 devoted to
PID: the TOP counter in the barrel region of the detector, and the ARICH
situated in the FW endcap. Both subsystems exploit the Cherenkov effect [11]
to distinguish between different charged particles.

TOP: as central PID device for Belle II, the TOP counter [136] measures the
time of propagation of Cherenkov photons internally reflected inside quartz radia-
tors. The Cherenkov image is fully reconstructed thanks to the three-dimensional
information provided by two-dimensional space information (x, y) and precise
timing information. The latter is determined using Micro-Channel Plate (MCP)
PhotoMultiplier Tubes (PMTs) situated at the BW surface of each quartz radi-
ator. A mirror placed at the FW end surface reflects back the photons emitted
in such a direction, which are then also eventually collected by the PMTs. A
focusing system is included in the design in order to minimize chromatic effects
responsible for broadening the time resolution. The TOP counter is composed
of 16 detector modules — each of which consists of two quartz radiators glued
together and is in total 2500 mm long, 450 mm wide, and 20 mm thick. The
detector angular acceptance is θ ∈ [31◦, 128◦], covering, as mentioned, only the
barrel region.

ARICH: the ARICH is a proximity focusing ring-imaging detector, which uses
aerogel tiles as radiator and provides PID information in the FW endcap region of
the experiment. The emitted Cherenkov photons propagate through 20 cm of ex-
pansion volume before hitting the Hybrid Avalanche Photo-Detectors (HAPDs),
and thus creating the well known ring-like images. To improve the performance,
and in particular to increase the number of emitted photons without paying the
price of degrading the Cherenkov angle resolution, two aerogel layers with slightly
different refraction indices (n1 = 1.045 upstream, n2 = 1.055 downstream) are
used. Each of the two aerogel layers has a thickness of 2 cm. Such a combination
of layers with appropriately tuned refractive indices gives rise to overlapping rings
and reduces the spread due to the emission point uncertainty.

3As already mentioned, also the CDC provides PID information, but this is not its solely
purpose.
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4.2.3 Outermost structures

Together with the above-mentioned tracking and PID devices, two other subsys-
tems complete the Belle II design: a calorimeter that plays a fundamental role for
neutral particle detection, the ECL, and a neutral long-lived kaon KL and muon
(µ) detector, the KLM. Also extremely important, a superconducting solenoid
located between these two subdetectors provides a homogeneous magnetic field
of 1.5 T, parallel to the beam direction. The return yoke for the magnetic field
is provided by the iron structure of the KLM.

ECL: the ECL is a homogeneous highly-segmented array of thallium-doped
caesium iodide CsI(Tl) crystals, covering all three regions of the detector (barrel,
FW and BW endcaps). Its main purpose is the detection of photons from B

meson decays with high efficiency and good energy and position resolutions. The
detector consists of over 8700 crystals that cover about 90% of the solid angle
in the center-of-mass system. The average surface and length of the crystals are
∼ 6 × 6 cm2 and 30 cm (16.1 radiation lengths X0), respectively. The polar
angle acceptance is θ ∈ [12.4◦, 155.1◦], with the exception of two gaps ∼ 1◦

wide between the barrel and each endcap [137]. Each crystal has a tower-like
shape and is arranged so that it points almost to the IP. While the crystals, the
supporting structure, and the preamplifiers remained the same as for Belle, the
readout electronics has been replaced: the photo-sensors are now equipped with
wave-form-sampling readout electronics. Such a choice was dictated by the need
to cope with an increased background rate and larger pile-up noise. The intrinsic
energy resolution of the ECL, as measured using a prototype [121, 138], can be
approximated as:

σE
E

=

√(
0.066%

E

)2

+

(
0.81%

4
√
E

)2

+ (1.34%)2 , (4.2)

where E is the energy in GeV.

KLM: the KLM consists of alternating layers of iron plates and active detec-
tor elements, and it is located outside the superconducting coil. As the name
suggests, the task of such a detector is to reconstruct KL mesons and identify
muons (µ). The iron plates are each 4.7 cm thick and serve as magnetic flux
return for the solenoid. In addition, they provide the material budget for 3.9
nuclear interaction lengths (λ0) — while the ECL provides 0.8 λ0 — allowing KL

to hadronically shower in its volume. The KLM covers all three regions of the
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detector, with a total polar angle acceptance of θ ∈ [20◦, 155]◦. Differently from
Belle, in some of the detector areas — both endcap regions and the two innermost
barrel layers — the former Resistive Plate Chambers (RPCs) have been replaced
by layers of scintillator strips with wavelength shifting fibers read out by Silicon
PhotoMultipliers (SiPMs) as light sensors. This is because the dead time of RPCs
is too long to sustain the background rate expected in these regions.

There are several aspects where the Belle II detector, thanks to its new design
and technology, is expected to offer considerably better performance with respect
to Belle. In particular, being of more interest for the topic discussed in this
dissertation, three things can be stated about improvement in tracking-related
matters: the vertex resolution benefits from the position of the innermost VXD
layers (closer to the IP), the Ks reconstruction efficiency takes advantage of the
considerably larger radius of the VXD outermost layers, and the tracking volume
is extended thanks to the larger CDC radius.





5
Tracking at Belle II

A fundamental feature of all high energy experiments is to supplement high per-
formance detectors with dedicated software in order to fully exploit their capabil-
ities. The functions of the software are numerous, ranging from the selection of
interesting events (trigger) to the conversion of the different subdetector signals
into particles with physical properties, providing the analyst with a description
of the physical events (event reconstruction). Of particular interest to this dis-
sertation is the tracking reconstruction chain, the part that takes care of finding
and fitting charged tracks starting from the hit-level information provided by the
three main tracking detectors (PXD, SVD, and CDC).

In this chapter, the tracking algorithms of Belle II will be described. After a
description of the tracking challenges and the role played by the beam background
here (Section 5.1), the track parametrization will be introduced (Section 5.2),
followed by a description of the tracking algorithms relative to pattern recognition
(Section 5.3) and track fitting (Section 5.4). The last part of the chapter will be
devoted to show the tracking performance in Monte Carlo (MC) (Section 5.5). For
an in-depth description of the tracking algorithms used in the Belle II experiment
one should refer to [133].

43
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Figure 5.1: Characteristics of Υ(4S) → BB̄ events. In the left panel the relative
abundance of the long-lived charged particles is shown, while in the right panel
their momentum spectra are shown. Each curve in the right panel is normalized
to the total number of tracks from the respective type. Both figures were obtained
from a MC simulation, generating 105 events with the EvtGen package [139].

5.1 Tracking challenges

As already mentioned, most of the Belle II physics program relies on events in
which the annihilation of an electron-positron pair produces a Υ(4S) resonance.
In more than 96% of the cases, the Υ(4S) resonance decays promptly into a pair of
B mesons [11]. On average, such BB̄ events are characterized in the final state by
approximately 11 charged tracks with quite soft momentum spectra. Figure 5.1
shows the relative abundance of the long-lived charged particles produced in
these events (left panel) and their momentum spectra (right panel). The plots
were obtained from a MC simulation, generating 105 Υ(4S) → BB̄ events with
the EvtGen package [139].

As it can be seen in Fig. 5.1, most of the long-lived charged particles have
momenta well below 1 GeV/c. Low momentum particles represent a challenge
from a track finding point of view: the trajectories of particles with momentum
below 200 MeV/c are heavily affected by multiple scattering and energy loss in
the material, and in such a low momentum region most of the tracks do not
reach the CDC, and the only available hit information for their reconstruction
comes from the VXD layers. Soft momentum tracks reaching the CDC represent
a challenge as well: particles with momentum below 300 MeV/c can loop several
times within the subdetector volume, creating hundreds of hits.

On top of such challenges arising from the event topology, the occupancy
due to beam background is expected to be very high [128]: SuperKEKB’s high
beam currents, small emittances, and large beam-beam tune shifts — key fea-
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Figure 5.2: Simulated beam background in the CDC, assuming the nominal in-
stantaneous luminosity. Figure adapted from Ref. [133].

tures to reach the design luminosity — contribute to increasing the rate of beam
background hits.

5.1.1 Beam background sources

“Beam background” is an umbrella term encompassing background particles gen-
erated by the accelerator, both by single-beam and luminosity-dependent pro-
cesses. There are five main beam background sources at SuperKEKB: Touschek
scattering, beam-gas scattering, synchrotron radiation, radiative Bhabha scatter-
ing, and two-photon process. The first three are single-beam processes, while the
last two are luminosity-dependent processes.

Touschek scattering: it arises from an intrabunch scattering process, where
the Coulomb scattering of two particles in the same beam bunch changes the
particles’ energies. One of the particles ends up with a higher energy, the other
with a lower energy, both deviating from the nominal energy and from the stable
beam. The scattered particles are usually lost at the beam pipe inner wall during
the propagation through the ring, thus if the loss happens close to the IP the
detector might be hit by the so-originating shower. Such an effect depends on the
third power of the beam energy and it is inversely proportional to the beam size.
The expected rate at SuperKEKB, obtained with a simple extrapolation based
on beam sizes, is ∼ 20 times higher compared to KEKB. Movable collimators
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(both horizontal and vertical) and metal shields are used to mitigate it.

Beam-gas scattering: it arises from the scattering of beam particles by resid-
ual gas molecules in the beam pipe, that can occur either via Coulomb scattering
(process that changes the direction of the beam particle) or Bremsstrahlung scat-
tering (process that decreases the energy of the beam particle through photon
emission), with the former being the dominant component. Its rate is expected
to be a factor of ∼ 100 higher in SuperKEKB with respect to KEKB, as a con-
sequence of the reduced beam pipe radius. The same countermeasures used for
Touschek background — movable collimators and heavy-metal shields — are also
effective at reducing beam-gas background, though with special considerations
for the width of vertical collimators [128].

Synchrotron radiation: the synchrotron radiation emitted by the beam, con-
sisting of accelerated particles, is another source of beam background. The ra-
diation power is proportional to the square of the magnetic field strength and of
the beam energy. It follows that the HER beam is the primary source of such a
background. The synchrotron radiation spectrum spans from few keV to tens of
keV and, as demonstrated by past experience 1, it may severely damage the inner
detectors. To mitigate this effect, the beam pipe in the interaction region has a
special design including ridge structures — in order to avoid direct synchrotron
radiation reaching the inner detectors — and its inner wall is laminated with a
gold layer which absorbs photons propagating in the direction of the innermost
detectors.

Radiative Bhabha scattering: it arises from photons produced by the radia-
tive Bhabha process that propagate along the beam axis direction and interact
with the iron of the accelerator magnets. As a consequence of these interactions,
low energy gamma rays and neutrons are produced abundantly. Low energy gam-
mas represent a source of background mainly for the CDC and the TOP, while
neutrons represent the main background source for the KLM. The production
rate for radiative Bhabha scattering is proportional to the luminosity, so this
background is expected to be ∼ 40 times higher than at KEKB. To stop these
neutrons, a dedicated neutron shielding in the accelerator tunnel is required.
Furthermore, in SuperKEKB two separated final focus quadrupole magnets are

1During early running of KEKB the inner layer of the Belle SVD was severely damaged by
X-rays with E ∼ 2 keV from the HER.
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used to center the beams and to mitigate the beam losses due to the radiative
scattering.

Two-photon process: this background source originates from low momentum
electron-positron pairs resulting from two-photon processes e+e− → e+e−e+e−.
With their soft momentum, such pairs can spiral in the solenoid field and leave
many hits in the inner detectors.

At the planned instantaneous luminosity the number of background hits is
expected to exceed the signal hits by two orders of magnitude, posing a very
challenging task for the tracking detectors and for the software reconstruction.
Figure 5.2 shows an example of beam background hits in the CDC assuming
nominal phase 3 instantaneous luminosity.

5.2 Track parametrization

Generally speaking, the trajectory of a particle in empty space is determined —
in Cartesian coordinates — by its position ~x and momentum ~p at some given
time. For charged particles moving in a magnetic field generated by a solenoid,
these trajectories can be parametrized with five-parameter helices. In Belle II it
was chosen to use a perigee-parametrized helix: the helix is defined at its Point
Of Closest Approach (POCA) to the origin of the coordinate system, namely the
perigee.

The five parameters stored for each track are:

• d0 ∈ [−∞,+∞]: signed distance of the POCA with respect to the z-axis;

• z0 ∈ [−∞,+∞]: z coordinate of the POCA;

• φ0 ∈ [−π,+π]: angle defined by the transverse momentum at the POCA
and the x-axis;

• ω ∈ [−∞,+∞]: inverse of the radius of curvature signed with the particle’s
charge;

• tanλ ∈ [−∞,+∞]: tangent of the angle defined by the momentum at the
POCA and the xy-plane.

A depiction of the helix and of the parameters listed above can be seen
in Fig. 5.3. The relation between Cartesian and perigee coordinates can be found
in Appendix A.
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Figure 5.3: Perigee parametrization of the track helix. A description of the
parameters can be found in the text. Figure taken from Ref. [140].

5.3 Track finding

The track finding, or pattern recognition, is the part of the software responsible
for transforming the hit information coming from the tracking detectors into track
candidates, sorting the hits belonging to a single charged particle and discarding
those originating from background. Thanks to the modularity of the Belle II
analysis software framework [141], the tracking chain can be adapted to differ-
ent background levels and detector performance simply by switching the order
in which the individual modules are executed. The first steps of the pattern
recognition rely on SVD and CDC hits only. In order to optimize the final per-
formance, the tracking chain alternates stages of pattern recognition and fitting,
and different finding algorithms are exploited for each subdetector: standalone
CDC track finding, standalone SVD track finding, and inter-detector hit finding
based on a Combinatorial Kalman Filter (CKF) [142]. For the various fitting
steps a Deterministic Annealing Filter (DAF) is employed [143]. In its current
design, the tracking chain workflow starts from a standalone CDC track finding.
The obtained CDC track candidates are then fitted and extrapolated inwards to
attach SVD hits. The unused SVD hits are employed for a standalone SVD track
finding, and the resulting tracks, after a fitting step, are extrapolated outwards
to attach CDC hits. Finally, after merging CDC and SVD tracks, they are ex-
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Figure 5.4: Schematic representation of the Belle II tracking chain. Figure taken
from Ref. [133].

trapolated inwards to attach PXD hits before the final step of track fitting. PXD
hits are added as a last step of the pattern recognition to improve the quality of
the tracks. Figure 5.4 shows a schematic representation of the Belle II tracking
chain in its current design.

CDC track finding: it represents the first building block of the tracking chain.
Two distinct algorithms are used for the pattern recognition in the CDC: a global
one, based on the Legendre transformation [144], and a local one, based on the
cellular automaton concept [145]. Being executed first, the primary algorithm
is — currently — the global one. Such an algorithm, however, comes with the
downside of assuming that each track originates from the IP, therefore the local
algorithm helps with reconstructing displaced tracks which originate far away
from it. In order to exploit their specific benefits, both algorithms get as input
the full set of CDC hits. The final collection of standalone CDC track candidates
is then obtained thanks to a multivariate approach, based on a Fast Boosted
Decision Tree (FastBDT) [146], that adds the local track candidates to the global
ones. Such FastBDT is trained using simulated events.

SVD track finding: the SVD standalone pattern recognition is called VXDTF2.
In the 4 SVD layers the number of possible 3D hit (SpacePoint) combinations is
huge. In order to reduce it, the concept of SectorMaps is introduced: each SVD
sensor is divided into M×N sectors. Possible combinations of SpacePoints are
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searched only on friend sectors, where such “friendship relations” are established
using MC simulation during a dedicated training of the SectorMaps. Finally, the
resulting compatible SpacePoint combinations are used to build the final collec-
tion of SVD track candidates exploiting a cellular automaton algorithm.

Combinatorial Kalman Filter: the CKF is an iterative local algorithm ca-
pable of producing high-purity tracks also in environments characterized by high
hit densities. Starting with a seed estimation of the track parameters with uncer-
tainties, the track candidate is extrapolated into the detector volume, iteratively
adding to it the compatible hit candidates. The algorithm offers the possibility of
including non-uniform magnetic field, energy loss and multiple scattering effects.
The CKF is widely used in the Belle II tracking package: CDC track candidates
are extrapolated inwards to the SVD, SVD track candidates are extrapolated out-
wards to the CDC, and CDC+SVD track candidates are extrapolated inwards
to the PXD. The possibility to extrapolate CDC tracks outwards to the ECL is
contemplated, even though at the moment it is not part of the standard recon-
struction chain. In particular, attaching PXD hits to the tracks improves the
resolution of the track parameters d0 and z0 by a factor of two and more [140],
which is a key requirement for precision measurements.

5.4 Track fitting

The final step of the tracking chain, after the track finding block, consists of a final
track fitting using the DAF algorithm provided by the GENFIT2 package [143].
In order to correctly calculate the energy loss and the material effects, a specific
particle hypothesis has to be assumed. The strategy of Belle II is to fit all
reconstructed tracks with three different particle hypotheses — pion (π), kaon
(K), and proton (p) — and to store all three track fit results. This allows the
analysts to use the best hypothesis, once the PID information is available.

5.5 Evaluating Tracking Performance

The most immediate way to evaluate the tracking performance is to use MC
samples: having the exact knowledge of what was generated and analyzing the
reconstructed particles can tell us how well the algorithms work. The obvious
drawback of using MC is that it considers only the simulated detector response,
which is somewhat idealized. Studies to evaluate the tracking performance using
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data are currently ongoing in the Belle II tracking group. However, they are not
subject of this thesis and will not be discussed here.

In order to evaluate the tracking performance in this context, four different
Figure Of Merits (FOMs) has been used: efficiency, purity, clone rate, and fake
rate. The efficiency measures the fraction of reconstructed MC particles. A MC
particle is defined as reconstructed when it has an associated track candidate, in
this context referred to as RecoTrack (RT). Only primary MC particles inside the
detector acceptance are considered, so those for which there should be hits left in
the detector and the reconstruction should be possible. Formally, the efficiency
is defined as the ratio between the number of MC particles with an associated
RT and the total number of MC particles:

Efficiency =
# MC particles with an associated RT

# MC particles
. (5.1)

In order to understand the other three FOMs, a classification for RTs should be
introduced. A RT can be matched, clone, or fake. A RT is matched when it
contains a high contribution from only one MC particle and it is the best among
all RTs describing that same MC particle. A clone is a RT that contains a high
contribution from only one MC particle, but it is not the best that exists, i.e.
there is another RT containing an even higher contribution from that same MC
particle. A fake is a RT which is not matched nor clone. On this basis, the purity
evaluates the fraction of matched RTs:

Purity =
# matched RT

# RT
. (5.2)

The clone rate evaluates the fraction of clone RT:

Clone Rate = # clone RT
# RT

. (5.3)

Finally, the fake rate evaluates the fraction of fake RT:

Fake Rate = # fake RT
# RT

. (5.4)

The tracking performance shown in this section was obtained using a total
of 2 × 105 simulated Υ(4S) → BB̄ events, of which 105 Υ(4S) → B+B− events
and 105 Υ(4S) → B0B̄0 events. In order to reproduce realistic conditions sim-
ulated beam background was used as well. As discussed at the beginning of
the chapter, the beam background composition strongly depends on the assumed
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Figure 5.5: Tracking efficiency. The panel on the left shows the efficiency as a
function of the particle momentum, while the panel on the right shows the effi-
ciency as a function of the cosine of its polar angle. In each panel two different
samples are shown: one without (green curves) and one with (blue curves) sim-
ulated beam background. The definition of efficiency is given in Eq. (5.1). The
overall efficiency is higher than 95% for both samples.

beam conditions and, therefore, on the data taking period. The level of simulated
background used for the studies presented in this and in the following chapters is
labeled as “eph3 BGx1” (early phase 3, background x1), namely the background
level expected in the first period of the data taking. As a comparison, in this
chapter a sample without beam background, labeled as “eph3 BGx0”, is used as
well. Later in this dissertation, the effect of different background levels on the
performance will be presented and discussed (Chapter 8).

Figure 5.5 shows the tracking efficiency (defined in Eq. (5.1)), both as a func-
tion of the particle momentum (left panel) and of the cosine of its polar angle
(right panel). In both panels the efficiency profile is shown for the two different
samples, without (eph3 BGx0) and with simulated background (eph3 BGx1). The
overall efficiency is higher than 95% for both samples, and the difference between
the two is less than 0.4%, which demonstrates the excellent tracking performance
in the early data taking background scenario. Looking at the figure it is evident
how the most difficult tracks to reconstruct are those with low momentum and
in the most FW and BW regions of the detector.

Figure 5.6 shows the tracking purity (Eq. (5.2)), clone rate (Eq. (5.3)), and
fake rate (Eq. (5.4)), both as a function of the particle momentum (left panel) and
the cosine of its polar angle (right panel). In this case, only the MC sample with
simulated background, the most realistic configuration, is shown. As can be seen
from the distributions, the clone and fake rates are higher at low momentum, as



5.5. Evaluating Tracking Performance 53

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
p [GeV/c]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pu

rit
y

Cl
on

e 
ra

te
Fa

ke
 ra

te

eph3 BGx1
matched
clone
fake

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
cos

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pu
rit

y
Cl

on
e 

ra
te

Fa
ke

 ra
te

eph3 BGx1
matched
clone
fake

Figure 5.6: Tracking purity (matched), clone rate, and fake rate. The panel on
the left shows these quantities as a function of the particle momentum, while the
panel on the right shows them as a function of the cosine of the particle polar
angle. Their definitions are given in Eqs. (5.2) to (5.4), respectively. In this figure
only the sample with beam background (eph3 BGx1) is shown.

Table 5.1: Overall tracking performance evaluated both using a MC sample with-
out (eph3 BGx0) and with (eph3 BGx1) simulated background.

efficiency (%) purity (%) clone rate (%) fake rate (%)

eph3 BGx0 95.48 ± 0.03 91.38 ± 0.04 5.88 ± 0.03 2.74 ± 0.02

eph3 BGx1 95.09 ± 0.03 90.87 ± 0.04 5.52 ± 0.03 3.61 ± 0.03

opposed to the purity. An enhancement (drop) in the clone rate (purity) is visible
for cosθ ∼ 0, which is the direction perpendicular to the beam. A summary of
the overall tracking performance, both for the sample without and with beam
background, can be found in Table 5.1.

Finally, the effect of using three different particle hypotheses in the track
fitting — described in Section 5.4 — is shown in Fig. 5.7. Also in this case
the plots were obtained using the sample with simulated background. The left
panel shows the momentum resolution of a MC pion sample fitted with pion
(green), kaon (blue), and proton (red) hypothesis. The central panel shows the
momentum resolution of a MC kaon sample fitted with pion (green), kaon (blue),
and proton (red) hypothesis. The right panel shows the momentum resolution
of a MC proton sample fitted with pion (green), kaon (blue), and proton (red)
hypothesis. In all cases, the best resolution is obtained when using the hypothesis
corresponding to the generated particle for the fit. This resolution improvement
is more evident for low momentum particles (see Fig. B.1).

This chapter presented the various aspects of tracking at Belle II, which rep-
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Figure 5.7: Momentum resolution of tracks fitted with different hypotheses. In
the top left (top right/bottom) panel, generated pions (kaons/protons) were fitted
with pion (green), kaon (blue), and proton (red) hypothesis. In all cases the best
resolution is given by fit hypothesis corresponding to the generated particle.
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resents the building block for the reconstruction of all decays involving charged
tracks. In particular, in the second part of the chapter its excellent performance
in the early data taking background scenario were shown. The kinematics regions
where the performance is worst turn out to be the low momentum region and the
regions at the limits of the angular acceptance. As we shall see in the next chap-
ter, the low momentum region will play an important role in the reconstruction
of Λ baryons decaying into pπ, whose pion has a fairly soft momentum spectrum.





6
Displaced vertices and Λ

reconstruction

The reconstruction of charged tracks — extensively described in the previous
chapter — plays a fundamental role in the identification of a special category
of objects, so called V0s. These are neutral particles with mean proper decay
length cτ in the order of a few centimeters decaying into pairs of charged tracks.
The term “V0” primarily refers to Ks and Λ and has historical origins [147]: in
a bubble chamber, two charged particles originating from a neutral one leave a
“V” shape as a trace.

Of particular interest for this dissertation are Λ baryons, since they are in-
volved in most of the possible decay channels of the double strange hexaquark.
For ease of understanding, “Λ” will refer to both Λ0 and its antiparticle Λ̄0, un-
less explicitly stated otherwise. After an introduction on the reconstruction of
generic decays at Belle II (Section 6.1), the reconstruction of V0 particles will
be described and its performance using MC will be shown (Section 6.2). The
last part of the chapter will be devoted to describing an optimized selection for Λ
baryons and its performance (Section 6.3). This selection is then going to be used
for the double strange hexaquark search sensitivity studies described in the next
chapter (Chapter 7). Part of this work is also described in an internal Belle II
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note, written by the author of the thesis herself [148].

6.1 Reconstruction of generic decays

The reconstruction of final state particles represents the building block for the
reconstruction of all unstable particles and, more generally, all decay chains. The
reconstruction of charged tracks was extensively described in the previous chapter.
The reconstruction of neutral particles, the other key element in a general decay
reconstruction, is not relevant for this thesis and is therefore not described here.
More information about it can be found in Ref. [121]. In Belle II, unstable
particles are reconstructed, by specifying their decay mode, via the combination
of final state particles collected in particle lists. All possible combinations are
created, and, among them, those who pass some specified selections are saved to a
new particle list. Once created, each particle list can be used in the reconstruction
of the next decay. In case of decay chains, one must start with the final state
particles and proceed upstream with the reconstruction algorithm. Depending
on the decay considered, the simple combination of particles can be followed by a
vertex fit or other requirements to be met in order to improve the reconstruction.
As a basic example — useful for the arguments discussed in this thesis — one
can consider the decay of a Λ baryon in two charged tracks, Λ → pπ−. In this
case, the Λ candidates are reconstructed starting from two lists of charged tracks,
a list of protons and a list of pions. Each particle in the two lists carries the
information about its track parameters, but no hit-level information. A common
selection criterion in such a case is the requirement that the invariant mass of the
new particle lies in a range centered around the Λ nominal mass value: all the
candidates that fulfill this requirement are saved in a new list of Λ particles.

6.2 V0 reconstruction

In the Belle II analysis framework, V0s represent a particular class of particles
for which a special treatment is reserved. From a practical point of view they are
nothing else than pairs of charged tracks with a common vertex that is usually
displaced from the IP. If for charged particles originating close to the IP the track
parameters extrapolated at the POCA (described in Section 5.2) provide a very
good approximation, a two-track vertex fit far from the IP can really benefit from
the whole hit pattern information of the two tracks. While saving hundreds of hits
for each track, instead of just five parameters, is out of question from a resource
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usage point of view, for V0 candidates the hits information is fully exploited in
a preliminary vertex fit during the event reconstruction phase, before being lost.
For this purpose, a dedicated module is executed as part of the standard tracking
chain: a vertex fit is performed for each possible V0, i.e. each pair of track
candidates with opposite charge sign, and every time it succeeds a V0 object is
stored to be available to analysts at a later stage. Such an object consists of the
two charged tracks with modified track parameters, that for displaced vertices
result more accurate than the original ones. No V0 with a vertex inside the
beam pipe is saved at this stage, but they are recovered in a following step. As
a matter of fact, the standard method used to reconstruct generic decays and
the specific reconstruction for V0s are not meant to be mutually exclusive but
rather to complement each other. At analysis level, the analyst interested in
Ks or Λ uses a particle list resulting from merging together two lists obtained
with the two methods. In case the same candidate is found in both lists, only
one of the two is kept. No selection other than a successful vertex fit and a
loose mass cut (MKs ∈ [0.45, 0.55] GeV/c2, MΛ ∈ [1.10, 1.13] GeV/c2) is applied
to such merged lists, keeping the samples very inclusive. Figure 6.1 shows the
invariant mass peaks of Ks candidates (left panel) and Λ candidates (right panel),
obtained with the procedure just explained. The background contamination is
rather high, especially in the case of Λ. A candidate selection is needed but this
is left to analysts and depends on the specific requirements of the analyses.

6.2.1 Performance

The figure of merit used to evaluate the V0 performance is the V0 reconstruction
efficiency (εV 0), namely the fraction of correctly reconstructed V0s. This effi-
ciency definition is naturally different from that of tracking efficiency illustrated
in Eq. (5.1). In this case εV 0 is defined as the ratio between the number of MC
V0s whose two MC daughters both have a track associated and the total number
of MC V0s. For the MC V0s entering the definition, only those decaying into two
charged tracks are considered, and both of the daughters are required to leave
a signal in at least one of the main tracking detectors (SVD and CDC). In the
definition, they are referred to as “visual MC V0s”:

εV 0 =
# visual MC V0s w/ two associated tracks

# visual MC V0s
. (6.1)

The V0 performance shown in the following was evaluated using simulated
Υ(4S) → BB̄ events, as for the tracking performance in the previous chapter.
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Figure 6.1: V0 candidates invariant mass distribution. The panel on the left
shows the (π+ π−) invariant mass distribution of Ks candidates, while the panel
on the right shows the (pπ) mass distribution of the Λ candidates. The very
inclusive V0 list construction has the consequence of retaining a high background
component, and a candidate selection is needed in the analysis step.

In this case a Belle II centrally produced Υ(4S) MC sample was used 1. The
overall V0 reconstruction efficiency is higher for Ks than for Λ: εKs = (82.412 ±
0.004)% and εΛ = (65.73 ± 0.02)%. This difference is mostly due to the different
kinematics, and in particular to the difference in momentum distribution of their
respective daughters. The momentum distribution both for Ks and Λ daughters
in the Υ(4S) → BB̄ events is shown in Fig. 6.2. As it can be seen from the
figure, the momentum spectrum of the two Ks daughters is very similar. On the
contrary, in the Λ decay the proton tends to carry the largest momentum fraction,
while the pion is on average very slow and consequently difficult to reconstruct (as
discussed in Section 5.5). Figure 6.3 shows the V0 reconstruction efficiency, both
for Ks and Λ, as a function of the V0 flight distance in the transverse plane (left
panel) and of the V0 momentum 2 (right panel). In the left panel, one can notice
how the efficiency is highest near the IP, it decreases until the second SVD layer
(L4), and then stabilizes at an approximately constant value. Looking at the Λ

efficiency profile (blue curve) one can notice, as well, small drops corresponding
to the last SVD layers (L5 and L6) and the CDC walls. The position of the six
VXD layers is shown as vertical dashed lines. In the right panel, the most striking

1The MC sample used is from Belle II internal MC13 campaign.
2Both variables here refer to the actual V0 particle (Ks or Λ) reconstructed from the original

two charged tracks.
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Figure 6.2: Momentum distribution of Ks (left panel) and Λ (right panel) daugh-
ters. In the left panel, the blue distribution represents the momentum of the π+,
while the red one represents that of the π−. The momentum spectrum of the
two Ks daughters is very similar, and the two distributions overlap. In the right
panel, the blue distribution represents the momentum of the p, while the red one
represents that of the π. In this case the two distributions are different. The p
from the Λ decay carries in average the largest momentum fraction, while the π
is on average very slow.

0 5 10 15 20 25 30
xy flight distance [cm]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fic

ie
nc

y

L1 L2 L3 L4 L5 L6

Belle II simulation

(4S) B B

KS

0.0 0.5 1.0 1.5 2.0 2.5
pV0 [GeV/c]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fic

ie
nc

y

Belle II simulation

(4S) B B

KS

Figure 6.3: V0 efficiency for Ks (green curves) and Λ (blue curves). The panel on
the left shows the V0 efficiency as a function of the flight distance in the transverse
plane, while the panel on the right shows the V0 efficiency as a function of the
V0 momentum. The dashed lines in the left panel show the position of the six
VXD layers. The definition of V0 efficiency is given in Eq. (6.1).
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Figure 6.4: 2D V0 efficiency as a function of the V0 momentum (x-axis) and of
the lowest momentum among those of the two daughters (y-axis). The left panel
shows the 2D V0 efficiency for Ks, while the panel on the right shows it for Λ.

difference between Ks and Λ efficiencies is in the low momentum region: while
the Ks reconstruction efficiency is highest at low momentum, the Λ efficiency in
the same region is very low. Such a difference is a consequence of kinematics, as
well. This can be seen in Fig. 6.4, representing the 2D V0 efficiency as a function
of the V0 momentum (x-axis) and the lowest momentum among those of the two
daughters (y-axis), for Ks in the left panel and Λ in the right panel. From these
plots it can be noticed that for low momentum Λ the lowest of the two daughters’
momenta is almost always below 100 MeV/c, making its reconstruction next to
impossible. For low momentum Ks instead, this value is higher and thus their
reconstruction is easier. In these plots the background color of the panels has
been set to gray in order to distinguish it from very low efficiency regions, shown
in white.

6.3 Optimization of Λ selection

As already mentioned, the V0 lists provided to analysts are very inclusive and,
thus, they contain a large amount of combinatorial background candidates. In the
context of the sensitivity study for the double strange hexaquark search, described
in detail in the next chapter, the Λ selection needs to be optimized. Since the
analysis is targeting a data sample to be collected at the beam energy of theΥ(3S)

resonance, the Λ selection has been optimized using a generic Υ(3S) MC sample
corresponding to a luminosity of 1 fb−1. For the purposes of the study, the MC
truth matching was performed. When used, this returns a variable, isSignal, that
assumes the value 1 in case the candidate was correctly reconstructed, otherwise 0.
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Figure 6.5: Number of SVD hits of the Λ daughters. The panel on the left shows
such a variable for the proton, while the panel on the right shows it for the pion
daughter. The samples are divided in matched (blue) and non-matched (orange)
candidates. Note that in both panels the y-axis is represented in logarithmic
scale. For the proton, no signal candidates are found to have more than 12 SVD
hits, justifying the cut applied in the selection nSV DHits, p < 13.

In the following, matched candidates (namely candidates for which isSignal = 1)
are also referred to as signal, and non-matched candidates (isSignal = 0) as
background.

A quite common procedure in Belle II analyses is to clean up the list of
available tracks with cuts on the track parameters d0 and z0, restricting them to
small regions around the IP. This is indeed a good way to get clean tracks coming
from the IP, but it is not ideal in the case of displaced vertices. Instead, for the Λ
selection a cut is applied on the number of hits of each daughter track: the pion is
required to have at least 1 hit in the CDC (nCDCHits, π > 0), while the proton
is required to have more than 20 hits in the CDC and less than 13 hits in the SVD
(nCDCHits, p > 20 and nSV DHits, p < 13). Generally speaking, requiring the
presence of CDC hits implies the rejection of tracks with VXD only information,
and a cut on the maximum number of SVD hits removes curlers. Being the SVD
a double-sided detector (Section 4.2.1), a track crossing one of its layers leaves
a signal on both sides of the layer itself, and, as a consequence, the number of
SVD hits of a track is almost always an even number. A track crossing the four
SVD layers without curling leave eight hits, while a higher number of hits is an
indication of a curler track. In case of protons originating from Λ, the requirement
on a maximum number of SVD hits helps in rejecting background. This is shown
in Fig. 6.5, representing the number of SVD hits of the Λ daughters, both for
matched (blue histogram) and non-matched (orange histogram) Λ candidates.
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Figure 6.6: Distribution of the ratio between proton and Λ momenta, both for
signal (blue histogram) and background candidates (orange histogram). The his-
tograms are normalized to the total number of signal and background candidates,
respectively. More than 97% of the signal candidates are located in the range [0.6,
1.0].

None of the protons coming from matched candidates turns out to have more
than 12 SVD hits (left panel of Fig. 6.5). On the other hand, this is not the case
for the pions (right panel of Fig. 6.5). As further conditions, the proton track
is required to match the proton hypothesis (see Section 5.4), and the fraction of
proton momentum with respect to that of the Λ is required to range from 0.6 to
1.0 (0.6 < pp

pΛ
< 1.0). The latter requirement is a consequence of the different

kinematics of the two Λ daughters, with the proton carrying in average the largest
momentum fraction (see Fig. 6.2). The cut value can be understood looking
at Fig. 6.6, representing the distribution of such a quantity both for signal (blue
histogram) and background (orange histogram) candidates. The histograms are
normalized to the total number of signal and background candidates, respectively.
More than 97% of the signal candidates are located in the selected range.

The effect of this first selection step can be seen in Fig. 6.7, showing the frac-
tion of signal (blue curve) and background (orange curve) candidates surviving
after applying it, as a function of the Λ flight distance in the transverse plane (left
panel) and of the Λ momentum (right panel). In order to obtain these curves,
the number of signal (background) candidates surviving the cuts is normalized
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Figure 6.7: Fraction of signal (blue curve) and background (orange curve) candi-
dates surviving the first step of the Λ selection. In the left panel these fractions
are represented as a function of the flight distance in the transverse plane, while
in the right panel as a function of the Λ candidate momentum. To obtain these
fractions, the number of signal (background) candidates surviving the selection
was normalized to the number of signal (background) candidates contained in the
initial Λ list.

to the number of signal (background) candidates contained in the initial list.

After this first selection step, a momentum-dependent optimization was in-
troduced in order to gain as much as possible in terms of signal retention and
background reduction. Seven bins of Λ momentum were defined:

pΛ = [(0.0, 0.4), (0.4, 1.0), (1.0, 1.5), (1.5, 2.0),

(2.0, 3.0), (3.0, 4.0), (4.0, 6.0)] GeV/c.
(6.2)

Two variables were considered at this stage: flight significance, namely the Λ

flight distance in units of its uncertainty, and protonID, namely the probability
of the proton candidate to actually be a proton. It should be noted that the latter
variable is defined using PID information as the ratio between the likelihood of
the track to be a proton and the sum of likelihoods of it being an electron,
muon, pion, kaon, proton, and a deuteron, and it is not related to the particle
hypothesis used for the fit. These two variables were chosen because of their high
separation power between signal and background. The distribution of the Λ flight
significance, both for signal and background candidates, is shown in Fig. 6.8. The
two histograms are very different, making it an ideal variable on which to cut.
As for the protonID, it has been shown that the relative abundance of protons in
Υ(4S) events is low (Fig. 5.1), so in this case using PID information could really
be a game changer. This variable can take a value from 0 to 1, representing
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Figure 6.8: Distribution of the Λ flight significance, both for signal (blue his-
togram) and background candidates (orange histogram). The histograms are
normalized to the total number of signal and background candidates, respec-
tively.

the probability that the particle identified as a proton is actually a proton. For
each momentum bin pΛ,i, a 2D FOM was computed as a function of these two
variables. In this context the FOM is defined as:

FOM =
S√
S +B

, (6.3)

where S represents the number of matched and B the number of non-matched
Λ candidates. Each of the 2D FOMs was computed assigning 15 different values
to the lower cut on the flight significance — equidistantly spaced in the range
(-5.0, 32.5) — and 10 different values to the lower cut on the protonID — equidis-
tantly spaced in the range (0.0, 1.0). One example of such a FOM computation is
shown in Fig. 6.9. In this example Λ candidates with momentum pΛ ranging from
1.0 to 1.5 GeV/c are considered. The FOM of all seven momentum bins can be
found in Appendix C. For each momentum bin the pair of cut values maximizing
the 2D FOM were selected. Such values were then plotted — separately for the
flight significance and protonID variables — as a function of the Λ momentum
itself, and the resulting distributions were fitted using phenomenological func-
tions. The choice fell on a 4th order polynomial function in the case of the Λ
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Figure 6.9: Example of 2D FOM computation for Λ candidates with momentum
pΛ ∈ (1.0, 1.5) GeV/c. On the x-axis the lower cut values assigned to the Λ
flight significance are shown, while on the y-axis the lower cut values assigned to
the protonID are shown. The z-axis represents the computed FOM values. Blue
regions have a lower FOM, yellow regions have a higher FOM.
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Figure 6.10: Distribution of the the flight significance (left panel) and protonID
(right panel) cut values maximizing the FOM as a function of the Λ momentum.
The functions used for the fits are purely phenomenological and they are defined
in Eqs. (6.4) and (6.5), respectively, and the parameters extracted are summarized
in Table 6.1. The errors on the points were taken as the width of the bins in which
the flight significance and the protonID were divided, respectively. The gray band
in both panels represents the region excluded by the cut on the Λ momentum,
pΛ > 0.4 GeV/c.

Table 6.1: Parameters extracted from the fits to the cut values of Λ flight signif-
icance and protonID as a function of the Λ momentum. The functions used for
the fit are defined in Eqs. (6.4) and (6.5).

f1 fit parameters f2 fit parameters

par. a b c d g h

value 0.59 9.23 -3.63 0.39 5.48 0.12

error 0.76 0.22 0.15 0.03 2.94 0.05

flight significance:
f1(pΛ) = a+ bpΛ + cp2Λ + dp3Λ , (6.4)

and on an exponential function in the case of the protonID:

f2(pΛ) = g−pΛ + h , (6.5)

where in both Eqs. (6.4) and (6.5) pΛ refers to the momentum of the Λ candidate,
and a, b, c, d, g, and h are the free fit parameters. The distributions and the
corresponding fitting functions are shown in Fig. 6.10. The values of the param-
eters extracted from the fits are reported in Table 6.1. As it can be noticed from
the right panel of Fig. 6.10, the f2(pΛ) fit function does not look to be ideal for
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Figure 6.11: Cosine of the angle between the Λ momentum and the vector con-
necting the IP and the fitted vertex (cosα). The panel on the left shows its original
distribution, without applying any selection to the sample, both for signal (blue
curve) and background (orange curve) candidates. The two distributions are nor-
malized to the total number of signal and background candidates, respectively.
The panel on the right shows the cosα distribution after applying the selection
described in the text. No candidate with cosα < 0 survives after the cut on the
flight significance. In both panels the ordinate is represented in logarithmic scale.

low momentum values. A further cut on the Λ momentum was then introduced,
pΛ > 0.4 GeV/c. Since the fraction of Λ candidates with momentum lower than
0.4 GeV/c is quite small, this additional selection does not have a severe impact
on signal reduction. The optimization just described results in the introduction
of two momentum-dependent cuts in the Λ selection, that can be written as flight
significance > f1(pΛ) and protonID > f2(pΛ).

Finally, in order to further reduce the background contamination, a final re-
quirement is introduced: the cosine of the angle between the Λ momentum and
the vector connecting the IP and the fitted vertex (cosα) is required to be close
to 1 (cosα > 0.99). Indeed, for Λ baryons cosα is a rather powerful variables to
disentangle between signal and background candidates. The left panel of Fig. 6.11
shows its distribution both for signal (blue curve) and background (orange curve)
candidates for the original Λ sample, with no selection applied. These two distri-
butions are normalized to the total number of signal and background candidates,
respectively. As one can notice from this plot most of the signal is located in the
very backward and forward regions. In the right panel of the same figure, the
cosα distribution is shown after applying up to the second set of cuts. At this
stage, the negative values of cosα are already excluded by the cut applied on the
flight significance (flight significance > f1(pΛ)).

The performance of each selection step just described is summarized in Ta-
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Table 6.2: Effect of the cuts described in the section both on signal and back-
ground candidates. The first row refers to the initial Λ list. The second row
refers to the first selection step with track-based cuts. The third row refers to the
introduction of the two momentum-based cuts: flight significance > f1(pΛ) and
protonID > f2(pΛ). The last row refers to the final set of cuts after introducing
a minimum value for the Λ momentum (pΛ > 0.4 GeV/c) and the cut on cosα
(cosα > 0.99).

# S
candidates

fraction S
surviving cut

# B
candidates

fraction B
surviving cut

no cuts 321699 1.0 9124062 1.0

after 1st set of cuts 257990 0.802 5096146 0.559

after 2nd set of cuts 218087 0.678 84016 0.009

after final selection 209489 0.651 33171 0.004
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Figure 6.12: Number of Λ candidates as a function of the Λ momentum after each
selection step. The panel on the left shows only matched candidates, while the
right panel shows only non-matched Λ candidates. In both panels, the ordinate
is represented in logarithmic scale.
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Figure 6.13: Normalized fraction of signal and background candidates of each
selection step.

ble 6.2 both for signal and background candidates. The same information is
depicted in Fig. 6.12, representing the number of candidates of the original Λ list
and after each selection step as a function of the Λ momentum. The performance
is shown separately for matched (left panel of Fig. 6.12) and non-matched (right
panel of Fig. 6.12) candidates. Figure 6.13 shows, for each of the selection steps,
the composition of the Λ sample, in the form of signal and background fractions.
A summary of all the selection criteria can be found in Table 6.3.

The net result of the final selection is a very pure Λ sample, containing about
the 65% of the matched candidates available in the initial Λ list and only about
0.4% of the non-matched candidates. In this final sample, about 86% of candi-
dates are matched and 14% are non-matched Λ candidates. The fraction of signal
and background candidates surviving the final selection is shown in Fig. 6.14, both
as a function of the flight distance in the transverse plane (left panel) and as a
function of the Λ momentum (right panel). As in the case of Fig. 6.7, the number
of surviving candidates is normalized to the number of candidates contained in
the initial Λ list. Matched candidates and non-matched candidates are treated
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Table 6.3: Final Λ selection criteria. PDG(tFH, p) is the PDG code used for
the proton track fit hypothesis and is required to be equal to the proton PDG
code [11]. fS indicates the flight Significance of the Λ candidate.

Final selection criteria (I) Final selection criteria (II)

Variable Cut Variable Cut

nCDCHits, π > 0 fS > f1(pΛ)

nCDCHits, p > 20 protonID > f2(pΛ)

nSV DHits, p < 13 pΛ [GeV/c] > 0.4

PDG(tFH, p) == 2212 cosα > 0.99

pp/pΛ ∈ [0.6, 1.0]

separately and shown in blue and orange, respectively.
Figure 6.15 shows the pπ invariant mass distribution of the Λ candidates once

the final selection is applied. Matched (blue histogram) and non-matched (orange
histogram) candidates are kept separate, and the two resulting histograms are
plotted stacked one on top of the other.
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Figure 6.14: Fraction of signal (blue curve) and background (orange curve) can-
didates surviving the final Λ selection. In the left panel these fractions are rep-
resented as a function of the flight distance in the transverse plane, while in the
right panel as a function of the Λ candidate momentum. To obtain these frac-
tions, the number of signal (background) candidates surviving the selection was
normalized to the number of signal (background) candidates contained in the
initial Λ list.
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Figure 6.15: Λ invariant mass distribution after the final selection. The selection
criteria applied are described in the text. Matched (blue histogram) and non-
matched (orange histogram) candidates are kept separate, and the two resulting
histograms are plotted stacked one on top of the other. The fraction of back-
ground over the total number of candidates in the final sample is in the order of
14%. With regards to the original sample, it has been reduced to the 0.4%.



7
Stable hexaquarks at Belle II

The excellent performance of the Belle II detector and its reconstruction software
— described in detail in the previous chapters — underpin the whole physics
program of Belle II. This chapter represents the central part of this dissertation,
and describes a sensitivity study for the search for a stable, double strange six-
quark state produced in Υ(3S) decays at the Belle II experiment. As already
discussed in Chapter 3, a previous study in this direction, searching for a double
strange stable six-quark state, was published by the BaBar collaboration a few
years ago [112]. The main difference between this work and the BaBar analysis
is represented by the investigation of various decay channels, accounting for the
possible production of pairs of charged pions in the final state (with a maximum of
four pairs). In this context, such pion pairs — originating directly from the Υ(3S)

—will be referred to as primary pions to distinguish them from the secondary ones
originating from Λ decays. Furthermore, even for the channel already investigated
by the BaBar collaboration, an increase of the collected luminosity would make it
possible to improve the existing upper limits (ULs). In Section 7.3, where the UL
extraction is discussed, the BaBar result is compared with the Belle II prediction.

In the sensitivity study presented here, a total of five decay channels is con-
sidered:

Υ(3S) → S ΛΛnπs (with n = 0, 2, 4, 6, and 8) , (7.1)

75
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where S, following the naming convention introduced by Farrar [36], refers to
the stable hexaquark, and nπs indicates the number of primary charged pions
present in the final state. The full mass range compatible with a stable state,
0 < MS < 2.055 GeV/c2, was considered. The study presented here is performed
using a MC sample equivalent to a luminosity L = 300 fb−1. The chapter is
divided into three main parts: a description of the MC samples used (Section 7.1),
a description of the event selection applied and its optimization (Section 7.2), and
a description of the UL extraction for the different channels (Section 7.3). This
part of the work is also described in an internal Belle II note, written by the
author of the thesis herself [149].

7.1 Monte Carlo samples

Generally speaking, when talking about the MC samples used for an analysis,
it is important to distinguish between signal MC, mimicking the signature of
the searched channel(s), and background MC, mimicking all other possible event
types stemming from the considered reaction at the given energy.

In this analysis, background events are represented by all the generic decays
of the Υ(3S) and by continuum events (e+e− → q q̄) at the same

√
s; as for the

employed background MC, Belle II centrally produced generic and continuum MC
samples at the Υ(3S) resonance equivalent to a luminosity of 300 fb−1 were used
with early phase 3 geometry and early data taking background conditions (eph3
BG×1) — the same as introduced in Section 5.5. Details about the used MC
campaign are given in Appendix D (Section D.1). The MC signal samples were
produced locally instead. In order to simulate the hexaquark S, a new neutral
particle with width and spin equal to zero was added to the event generator
EvtGen [139]. Due to its zero-width, the hexaquark is assumed to be stable
by Geant4 [150], the detector simulation package, and therefore it is ignored in
the signal simulation. For each signal channel, the Υ(3S) was forced to decay
following a generic m-body phase space model, with m depending on the number
of pions in the final state. The resulting signature is a bump in the distribution
of the mass squared recoiling against the two Λ baryons and the n pions, peaking
around the square of the value of the hexaquark mass M2

S.
With the hexaquark mass obviously unknown, multiple samples — each with

a different value assigned to the hexaquark mass — were generated. An initial
study was performed in order to establish exactly how many and which mass
values were to be generated. At this stage only the final state without pri-
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Figure 7.1: Distribution of the invariant mass squared of the system recoiling
against the two (anti)baryons for two of the preliminary MC samples. The
left panel shows the channel Υ(3S) → SΛΛ, with generated hexaquark mass
MS = 0.4 GeV/c2. The right panel shows the channel Υ(3S) → SΛ̄Λ̄, with
generated hexaquark mass MS = 1.6 GeV/c2. The pulls shown in the bottom
part of both panels are defined as the difference between the experimental points
and the fit function divided by the error. The orange bands represent the ±1, 2,
and 3σ region from less to more faded, respectively.

mary pions was considered, and the simulation was performed without including
beam background. For the generation itself, the final states with two Λ and two
Λ̄ baryons were kept separate, and the hexaquark mass values were arbitrarily
chosen. Specifically, 50 × 103 events for 21 different mass values, ranging from
MS = 0.2 GeV/c2 to MS = 2.2 GeV/c2, in steps of 100 MeV/c2 were generated
for the Υ(3S) → SΛΛ channel, together with 50 × 103 events for three different
mass values for the Υ(3S) → SΛ̄Λ̄ channel (MS = 0.4, 1.6, and 2.055 GeV/c2).
For each of these samples, the recoil mass squared was plotted and the obtained
distributions fitted using a Breit-Wigner function, defined as following:

BW (x) = N
1

(x− µ)2 + 1
4
ω2

. (7.2)

The three free parameters N , µ, and ω are related to the height, the mean,
and the width of the peak, respectively. For a Breit-Wigner distribution, ω is
equivalent to the Full Width Half Maximum (FWHM). Figure 7.1 shows the
square of the recoil mass distribution for two of the samples. The parameters
obtained from all the fits are reported in Appendix D (Section D.2). As a test,
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Figure 7.2: Distribution of the fit parameters µ (left panel) and 1
2
FWHM (right

panel) as a function of the generated hexaquark mass squared. In the left panel,
the obtained distribution was fitted with a first order polynomial, and the ob-
tained fit function, as well as the parameters, are reported on the plot itself.

the values of µ obtained from the fit were plotted as a function of the square of
the generated hexaquark mass M2

S, and the obtained points were fitted with a
first order polynomial, as shown in the left panel of Fig. 7.2. In this plot the
fit function and its parameters are reported on the figure itself. The right panel
of Fig. 7.2 shows the distribution of the fit parameter 1

2
FWHM as a function of

the square of the generated hexaquark mass M2
S, instead.

The minimum value among the fit parameters 1
2
FWHM was chosen to be the

pitch, in the recoil mass squared space, between each consecutive value of the
hexaquark masses MS,i to be generated in the final sample:

pitch = min (1/2 FWHM) = 0.218 GeV2/c4 . (7.3)

In other words, starting from the maximum value consideredMS,max = 2.055 GeV/c2,
and proceeding until the mass value become negative, each preceding valueMS,i−1

in the list of considered values was defined using the following equations:

MS,i−1 =
√
M2

S,i − pitch . (7.4)

Using such a definition, 20 different hexaquark mass values were established to
be generated for the subsequent part of the study:

MS = {0.285, 0.547, 0.719, 0.857, 0.976, 1.082, 1.179, (7.5)

1.268, 1.351, 1.429, 1.504, 1.574, 1.642, 1.707,

1.770, 1.831, 1.889, 1.946, 2.001, 2.055} GeV/c2 .
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Figure 7.3: Distribution of the invariant mass squared of the system recoiling
against the two Λ candidates and the primary pions nπs. Moving from the left-
most to the rightmost panel, n = 0, 2 ,4, 6, and 8, respectively. In this example,
the generated hexaquark mass is MS = 1.179 GeV/c2.

For each of the 20 mass values, the five different channels introduced in Eq. (7.1)
were considered. The difference between each channel lies — as already mentioned
— in the number of primary pion pairs in the final state. Each channel was
generated keeping the final states with two Λ and two Λ̄ baryons separate, thus
doubling the number of generated channels. For each of the 20× 5× 2 MC signal
samples, 75×103 events were generated, and early data taking beam background
was used during the simulation, reproducing the same conditions of the MC
background sample.

As expected, the introduction of beam background in the simulation and of
pion pairs in the final state give rise to a more complex scenario. When increasing
the number of tracks in the final state, the number of combinatorial possibilities
increases as well, often leading to the presence of multiple hexaquark candidates
in a single event. Figure 7.3 shows an example of the distribution of the mass
squared recoiling against the two Λ baryons and nπs for the five different channels.
In this specific example, MS = 1.179 GeV/c2 and two Λ baryons were considered
in the final state. In all the panels it is possible to observe the presence of a
tail to larger mass values. The contribution of such a tail becomes more and
more important with the increment of primary pion pairs in the final state (i.e.
it is minimum in the leftmost panel and maximum in the rightmost panel of the
figure). The multiple-candidates problem will be addressed in the next section,
after applying a first set of basic selection cuts to the samples.

A fundamental information in any analysis — in order to determine the re-
construction efficiency of each single channel — is the number of correctly re-
constructed events. In this analysis, a correctly reconstructed event (signal) is
required to fulfill all the following requirements:

• for each Λ, the PDG code of its mother must be equal to that of the Υ(3S);
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• both Λ baryons should be correctly reconstructed (isSignal == 1);

• for each Λ, the PDG code of its first sister must be the same as that of the
hexaquark;

• the PDG code of the first Υ(3S)’s daughter must be the same as that of
the hexaquark;

• for each π in the final state, its mother’s PDG code must be equal to that
of the Υ(3S).

The PDG code of the hexaquark is a unique value, different from the existing
entries in the MC particle numbering scheme [11], that was arbitrarily chosen at
the generation time and kept constant throughout the whole analysis. Wrongly
reconstructed signal events will be also referred to as !signal throughout the
chapter.

7.2 Event selection

The event selection is a key step in any analysis: a series of cuts is introduced in
order to discard unwanted events while keeping the investigated channel only.

7.2.1 Track-based cuts

The selection of good Λ candidates — one of the most important steps for the
analysis — was largely described in the previous chapter (Section 6.3). Addition-
ally, some track-based requirements were introduced for each primary pion, for
those channels involving them:

• pionID,π > kaonID,π ;

• nSVDHits,π > 0 ;

• nCDCHits,π > 0 .

The first condition is a loose requirement on the PID of each candidate, asking
that its probability of being a pion is larger than that of being a kaon. As for the
second condition, since the primary pions originate directly from the Υ(3S), and
thus close to the IP, the presence of at least one hit in the SVD is a reasonable
assumption. Finally, SVD-only tracks (i.e. tracks with no associated CDC hits)
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Figure 7.4: Distribution of the number of SVD (left column) and CDC (right
column) hits for correctly (top row) and wrongly reconstructed events (bottom
row). In each panel, the color blue and red have been used for positive (π+) and
negative (π−) charged pions, respectively.

are excluded because of a higher fake-rate fraction with respect to SVD+CDC
tracks 1.

Figure 7.4 illustrates the effect of the described track-based requirements for
one specific signal channel: two primary pions in the final state for a generated
hexaquark massMS = 1.179 GeV/c2. The distribution of the number of SVD (left
column) and CDC (right column) hits for the two primary pions is shown, both
in the case of correctly (top row) and wrongly (bottom row) reconstructed signal
events. The contributions of positive (blue) and negative (red) charged pions are
plotted as stacked histograms. From these panels it is apparent that the fraction
of wrongly reconstructed signal events with no SVD nor CDC hits is larger than
that of correctly reconstructed ones. The relative results on the very same signal
sample are summarized in Table 7.1, reporting both the number of correctly and
wrongly reconstructed events, before and after applying the selection. Additional

1This statement is based on the result of MC-based performance studies that compare the
full tracking chain with a SVD-only tracking chain, done with release-04.
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Table 7.1: Number of events before and after the track-based selection applied
to the final state pions, both for correctly (signal) and wrongly (!signal) re-
constructed events. The results were obtained for the sample as in Fig. 7.4,
MS = 1.179 GeV/c2. More detailed tables can be found in Section D.3.

n events nSVDHits >0 nCDCHits >0 both % left

signal 5572 5516 5301 5251 94.24

!signal 4759 1982 4163 1551 32.59
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Figure 7.5: Distribution of the number of hexaquark candidates per event for a
given hexaquark mass value. Moving from left to right, the number of pions in
the final state increases. In this example, the generated hexaquark mass is MS

= 1.179 GeV/c2. Note the logarithmic scale of the y-axis.

tables, summarizing the results for all generated hexaquark masses, can be found
in Section D.3 (Tables D.4 and D.5).

7.2.2 Best Candidate selection

It is important to stress that, in Belle II, analyses performed within the standard
configuration are candidate-based. This results for many analyses, in particular
in searches for rare events, in the necessity of implementing some sort of Best
Candidate (BC) selection in case multiple signal candidates per event are found.
Figure 7.5 shows the number of candidates per event, after applying the selections
on Λ and primary pions described in Section 6.3 and Section 7.2.1, respectively.
As it might be expected, the number of candidates per event is higher for the
channels with primary pion pairs in the final state, but nevertheless events with
multiple candidates are present also in the channel with only Λ baryons in the
final state. In order to guarantee the presence of one single hexaquark candidate
S per event, a BC selection was implemented. Different variables were considered
and tested as possible BC variable. Based on the overall efficiency of the selection,
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the final choice fell on best Λs, namely the best Lambda pair, defined as:

bestΛs = min
{ ∑

i=1,2

∆Λi

}
,

∆Λi = |Mi,Λ −MPDG,Λ|.
(7.6)

In this equation, i = 1, 2 indicates the two Λ candidates of the event; Mi,Λ refers
to the reconstructed mass value, while MPDG,Λ refers to the Λmass value reported
by the PDG [11], MPDG,Λ = 1115.683 MeV/c2. The BC efficiency is defined as
the ratio between the number of signal events surviving the BC selection and the
number of events with (at least) one correctly reconstructed hexaquark before
the BC selection:

εBC =
# correctly reconstructed signal events after BC

# events w/ ≥ 1 correctly reconstructed hexaquark before BC
. (7.7)

As shown in Fig. 7.6, the efficiency of this selection is very high. It depends on
the number of primary pion pairs in the final state, but it is nevertheless always
higher than 93%.
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Figure 7.6: Efficiency of the BC selection as a function of the generated hexaquark
mass. The definition of BC efficiency is given in Eq. (7.7). In the left panel, the
channels with two Λ baryons in the final state are shown, while in the right panel
those with two Λ̄ baryons are shown. On the bottom left of the canvas, the
average BC efficiency value ε̄ for each channel is reported as well. The average
BC efficiency is higher than 93% for all channels.

7.2.3 Rest Of Event

After optimizing and applying the selection on particles directly involved in the
decay channels, one possibility to further reduce the background is to introduce
a selection on the Rest Of Event (ROE), namely everything not directly involved
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in the signal decay chain. In an ideal world, a signal event should contain no
additional charged nor neutral particles other than those coming from the signal
channel itself. Evidently, in reality things are more complicated than that, and it
is likely for a signal event to be contaminated by additional tracks and/or neutral
clusters, whose origin is due to beam background. In this analysis, this problem
was addressed by studying the distribution of two ROE variables, nROE_Charged
(i.e. the number of charged tracks in the ROE) and nROE_Photons (i.e. the
number of photons in the ROE), both for signal and background events. Notice
that, from this section on, the channels with either two Λ or two Λ̄ candidates
are treated simultaneously as one single channel. A cut on both ROE variables
was optimized using the Punzi FOM [151]. The Punzi FOM is defined as:

Punzi FOM =
ε(S)

a
2
+
√
B
, (7.8)

where ε(S) represents the signal efficiency, B represents the number of back-
ground events and a represents the number of σ corresponding to a one-sided
Gaussian test at significance level α. In this context it was assigned to be a = 5,
corresponding to the accepted threshold for a new particle discovery. For each
mass value, both ε(S) and B were evaluated in a symmetric window around the
recoil mass squared, [M2

recoil − 1
2
FWHM, M2

recoil +
1
2
FWHM]. Such a window was

chosen to be different for each generated hexaquark mass, and in particular the
value of 1

2
FWHM was extracted from a fit to the signal channel. After apply-

ing the selection described in the previous sections on Λ candidates and primary
pions, and similarly to what is described in Section 7.1, the distribution of the re-
coil mass squared was fitted for each hexaquark mass value using a Breit-Wigner
function, previously defined in Eq. (7.2). Figure 7.7 shows the values of µ and
1
2
FWHM extracted from each fit as a function of the generated hexaquark mass

squared. In particular, the right panel shows that the values of 1
2
FWHM obtained

from the fit are different for each channel, and moreover they get smaller when
increasing the number of primary pion pairs in the final state. This suggests that,
when performing the scan for the UL extractions, a larger number of hexaquark
masses should be considered than the original 20 values listed in Eq. (7.5). This
concern will be addressed in the next section. Furthermore, these distributions
can be fitted using a second order polynomial, thus converting the discrete values
of 1

2
FWHM into a continuous function of M2

S. The parameters obtained from the
fits to the five considered signal channels are reported on the plot itself.

Once the definition of the FOM to be used for the optimization is established
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Figure 7.7: Distribution of the fit parameters µ (left panel) and 1
2
FWHM (right

panel) obtained by fitting the square of the recoil mass distribution of the hex-
aquark candidates with a Breith-Wigner as a function of the generated hexaquark
mass squared. As a sanity check, the points in the left panel were fitted with a
first order polynomial, and the fit functions are represented as solid lines. In the
right panel, the points were fitted with a second order polynomial. The obtained
functions are represented as solid lines, and the fit parameters are reported in the
top right corner of the panel.

(Eq. (7.8)), let us go back to the ROE variables themselves. These variables were
treated with a common general strategy (any small differences will be introduced
at a later stage): the cut value was left free to vary from channel to channel —
allowing different cut values for channels with different number of primary pion
pairs — but it was required to be constant for all the generated hexaquark mass
values of a specific signal channel. In particular, for each channel it was decided
to chose the cut value maximizing the largest number of masses.

Concerning the number of tracks in the ROE, nROE_Charged, not all the
remaining tracks in the event were included in such a list but only those surviving
some basic selections on the transverse (dr) and z distance (dz) of the POCA
with respect to the IP. A selection on these variables around zero is a way to
exclude tracks originating from beam background, that do not come from the IP
but from further away. Specifically it was required |dr| < 2 cm and |dz| < 5 cm,
where the chosen cut values are quite standard for Belle II analyses. The five
panels of Fig. 7.8 show the Punzi FOM trend as a function of the exclusive cut
imposed on the number of tracks in the ROE, one for each signal channels. In
each of them, the Punzi FOM trend is shown for all the generated hexaquark
masses. Four different cut values were tried: nROE_Charged < x, with x = 0,
1, 2, 3. In the plots the x-axis reports the values to which the exclusive cut
was applied, namely nROE_Charged < x for every x value. The first cut value,
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Figure 7.8: Punzi FOM trend as a function of the cut imposed on the number of
tracks in the ROE for the five different channels Υ → SΛΛnπs. From left to right
and from top to bottom n = 0, 2, 4, 6, and 8 can be observed, respectively. In
each plot, the trend for each mass value is shown. The x-axis reports the values
to which an exclusive cut was applied, namely nROE_Charged < x for every x
value. The boxes in the upper right corner of each canvas represent a zoom in
the region within the grey square (lower left corner).
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x = 0, represents just a cross check: as expected, requiring nROE_Charged < 0
returns 0 events both for signal and background, and the Punzi FOM in that case
is always 0. Based on the results obtained, the following selections were applied:

• nROE_Charged < 2 for Υ(3S) → S ΛΛ;

• nROE_Charged < 1 for Υ(3S) → S ΛΛ2πs;

• nROE_Charged < 1 for Υ(3S) → S ΛΛ4πs;

• nROE_Charged < 1 for Υ(3S) → S ΛΛ6πs;

• nROE_Charged < 1 for Υ(3S) → S ΛΛ8πs.

In other words, in the channel with no primary pion pairs up to one track is al-
lowed to be found in the ROE. For all the other channels, instead, the requirement
is to find no tracks in the ROE.

Concerning the number of photons in the ROE, nROE_Photons, a slightly
more advanced approach was needed. The definition of a “standard” selection
for photons, always in the context of Belle II analyses, is a bit more tricky and
less general than for tracks. Therefore, in order to decide which photons to be
included in the ROE variable construction, different configurations were tested.
Each of the considered configurations was built starting from two photon-related
variables: E, the energy of the particle, and clusterZernikeMVA (in this context
referred to as Z), a multivariate shower-shape classifier that uses multiple Zernike
moments [152]. Specifically, the clusterZernikeMVA variable returns a value be-
tween 0 and 1, the output of a MVA built using eleven Zernike moments of an ECL
cluster. In total, 24 different configurations were built, obtained by combining
6× 4 different selections on the two mentioned photon-related variables:

• E ≥ Ecut, with Ecut = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3] GeV ;

• Z ≥ Zcut, with Zcut = [0.0, 0.2, 0.5, 0.8].

As a convention, each configuration is labeled with the suffix “_EXZY ” in the
text, where X and Y are replaced by an integer index corresponding to a specific
E and Z cut, respectively. The list of cuts with their corresponding X or Y
indices can be found in Table 7.2.

For this variable, the final configuration to be used and its cut value were
left free to vary from channel to channel, but they were required to remain the
same for all the generated hexaquark masses of a specific channel. For each
configuration, four possible cuts on the number of ROE photons were tested:
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Table 7.2: Explanation of the convention used for the different nROE_Photons
configurations. Each configuration is labeled with the suffix _EXZY, and the cut
corresponding to each X and Y value is reported here.

EX
Ecut [GeV] 0.05 0.10 0.15 0.20 0.25 0.30

X 0 1 2 3 4 5

ZY
Zcut 0.0 0.2 0.5 0.8
Y 0 1 2 3

nROE_Photons_EXZY < x, with x = 0, 1, 2, 3. As before, the first cut value (x
= 0) represents only a cross check. Because of the high number of combinations
(20 masses × 24 configurations × 4 cut values), for this variable it was decided
to keep the cut value equal to 1 (i.e. not allowing the presence of any photon in
the ROE), and, under such a condition, to pick the best configuration.

Figures 7.9 to 7.13 show the Punzi curve trend as a function of the exclusive
cut imposed on the number of photons in the ROE, for each of the 24 considered
configurations. In each panel, the Punzi FOM trend is shown for all the generated
hexaquark masses. Also in this case in the plots the x-axis reports the values to
which the exclusive cut was applied, namely nROE_Photons_EXZY < x for
every x value. For each channel it was decided to chose configuration that, when
considering the cut value equal to 1 (nROE_Photons_EXZY < 1), maximized
the Punzi FOM for the largest number of masses. Based on the results obtained,
the following selections were applied:

• nROE_Photons_E5Z3 < 1 for Υ(3S) → S ΛΛ;

• nROE_Photons_E2Z3 < 1 for Υ(3S) → S ΛΛ2πs;

• nROE_Photons_E3Z1 < 1 for Υ(3S) → S ΛΛ4πs;

• nROE_Photons_E3Z1 < 1 for Υ(3S) → S ΛΛ6πs;

• nROE_Photons_E4Z2 < 1 for Υ(3S) → S ΛΛ8πs.

7.3 Upper limit extraction

After applying the event selection described in the previous sections both on
signal and background samples, it is possible to estimate the expected UL on the
different channels.
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Figure 7.9: Punzi FOM trend as a function of the cut imposed on the number of
ROE photons for the channel Υ(3S) → SΛΛ. Each of the 24 canvases represents a
specific configuration, and shows all generated mass values. The x-axes report the
values to which the exclusive cut was applied, namely nROE_Photons_EXZY < x
for every x value. The boxes in the upper right corner of each plot represent a
zoom in the region within the grey square (lower left corner).
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Figure 7.10: Punzi FOM trend as a function of the cut imposed on the number
of ROE photons for the channel Υ(3S) → SΛΛ2πs. Each of the 24 canvases rep-
resents a specific configuration, and shows all generated mass values. The x-axes
report the values to which the exclusive cut was applied, namely nROE_Pho-
tons_EXZY < x for every x value. The boxes in the upper right corner of each
plot represent a zoom in the region within the grey square (lower left corner).
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Figure 7.11: Punzi FOM trend as a function of the cut imposed on the number
of ROE photons for the channel Υ(3S) → SΛΛ4πs. Each of the 24 canvases rep-
resents a specific configuration, and shows all generated mass values. The x-axes
report the values to which the exclusive cut was applied, namely nROE_Pho-
tons_EXZY < x for every x value. The boxes in the upper right corner of each
plot represent a zoom in the region within the grey square (lower left corner).
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Figure 7.12: Punzi FOM trend as a function of the cut imposed on the number
of ROE photons for the channel Υ(3S) → SΛΛ6πs. Each of the 24 canvases rep-
resents a specific configuration, and shows all generated mass values. The x-axes
report the values to which the exclusive cut was applied, namely nROE_Pho-
tons_EXZY < x for every x value. The boxes in the upper right corner of each
plot represent a zoom in the region within the grey square (lower left corner).
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Figure 7.13: Punzi FOM trend as a function of the cut imposed on the number
of ROE photons for the channel Υ(3S) → SΛΛ8πs. Each of the 24 canvases rep-
resents a specific configuration, and shows all generated mass values. The x-axes
report the values to which the exclusive cut was applied, namely nROE_Pho-
tons_EXZY < x for every x value. The boxes in the upper right corner of each
plot represent a zoom in the region within the grey square (lower left corner).
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Figure 7.14: Events left in the background sample after applying all the selections.
The upper panel shows a very large range in M2

recoil, while the lower panel is a
zoom in the interesting region for the analysis.

Figure 7.14 shows — for all the different channels — the distribution of the
events from the background sample surviving the selection as a function of the
square of the mass recoiling against the two Λ baryons and the primary pions,
both in a very large range (upper panel) and in the interesting region for the
analysis (lower panel). In particular, from the lower panel one can see that, re-
gardless of the considered channel, only very few background events survive the
selection procedure in the interesting mass region. Figure 7.15 shows an example
of the distribution of the recoil mass squared of one signal MC sample (MS =
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Figure 7.15: Distributions of the invariant mass squared of the system recoiling
against the two Λ candidates and nπs after applying all the selections. Moving
from left to right, n = 0, 2, 4, 6, and 8, respectively. The generated hexaquark
mass used in this example is MS = 1.179 GeV/c2.
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Figure 7.16: Signal efficiency as a function of the hexaquark mass squared, after
applying the selections. The definition of signal efficiency is given in Eq. (7.9). For
each channel, the points were fitted with a first order polynomial. The obtained
functions are represented as solid lines, and the fit parameters are reported in the
top right corner of the canvas. The colored bands show the statistical error on
the efficiency extrapolations.

1.179 GeV/c2) for the different channels, after applying all the selections. Fig-
ure 7.16 shows the signal efficiency as a function of the hexaquark mass squared.
For each mass value, the efficiency is defined as:

εS(MS) =
# correctly reconstructed events after selection

Ngen

, (7.9)

where the definition of “correctly reconstructed events” is the same as discussed
in Section 7.1, and Ngen = 150×103 is the number of generated hexaquarks for
each mass value (75×103 events with two Λ baryons and 75×103 events with two
Λ̄ baryons). For each channel, the efficiency distribution as a function of M2

S was
fitted with a first order polynomial. In such a way, the discrete values of ε(S)
were converted into a continuous function ofM2

S. The fit parameters are reported
in Fig. 7.16, as well. For the UL extraction, the null hypothesis assumption is that
no signal events are present in the data sample. In this way, one can estimate an
UL on the signal strength within a certain CL. Under the assumption of a Poisson
counting experiment with average number of background events F , an upper limit
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Sup on the number of signal events within a certain Credibility Interval (CI) can
be constructed as [153]:

CI =

∫ Sup

0

[
(S + F ) e−(S+F )/n!

]
P (S)dS∫∞

0
[(S + F ) e−(S+F )/n!]P (S)dS

. (7.10)

In this equation, P (S) represents the prior probability for S, and n represents
the number of events actually observed in the experiment. Under the assumption
that P (S) is constant for each S, Eq. (7.10) becomes:

1− CI = e−Sup

∑n
m=0(Sup + F )m/m!∑n

m=0 F
m/m!

. (7.11)

Equations (7.10) and (7.11) are derived using a Bayesian assumption, resulting
in the impossibility for the number of background events to be larger than the
total number of events observed in the experiment. In this light, Sup can be
interpreted as the upper limit on the average number of signal events that makes
the integrated probability of observing n events not larger than CI, when on
average F background events are present. In this specific case the null hypothesis
implies n = F , meaning that all the events found originate from background.

Assuming the null hypothesis, the UL for the channel branching ratio at a
given mass MS can be written as:

UL(MS) =
Sup(F (MS), CI)

NΥ(3S) εS(MS)
. (7.12)

To solve the equation, Sup is derived from Eq. (7.11) with a numerical evaluation.
In this case, F represents the number of background events found in a window
around the considered mass squared, [M2

S - 1
2
FWHM, M2

S + 1
2
FWHM], εS(MS)

represents the signal efficiency, and NΥ(3S) is the number of Υ(3S) present in the
sample. NΥ(3S) depends on the cross section e+e− → Υ(3S) and on the collected
luminosity:

NΥ(3S) = LΥ(3S) σ(e
+e− → Υ(3S)). (7.13)

For the results shown here, we set σ(e+e− → Υ(3S)) = 4.2 nb [11, 154].

As already mentioned in Section 7.2.3, the values of 1
2
FWHM obtained from

the fit to the signal sample after applying the selections (see in particular the
right panel of Fig. 7.7) suggest that the 20 mass values are not the best choice
for the scan in the recoil mass squared. The same concept is shown in Fig. 7.17.
Here the range covered using the 20 mass values, when using as a scan window
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Figure 7.17: Ranges covered using the 20 mass values when performing a scan in
windows [M2

S - 1
2
FWHM, M2

S + 1
2
FWHM]. In the channels with primary pion

pairs in the final state, with this approach various region are left uncovered.

[M2
S − 1

2
FWHM, M2

S + 1
2
FWHM] is shown. Since various regions are left

uncovered it is evident that — in case of primary pion pairs in the final state
— this is not an optimal approach. To avoid this problem, five new sets of
masses were defined, one for each channel, and used to fine-tune the scan. For
the definition, an equation similar to Eq. (7.4) was used, but in this case instead
of a constant pitch the value of 1

2
FWHM(M2

S) coming from the fit (showed in the
right panel of Fig. 7.7) was used:

MS,i−1 =

√
M2

S,i −
1

2
FWHM(MS) (7.14)

As a final result, the new sets of masses contain 26, 59, 83, 99, and 111 values,
respectively. Figure 7.18 shows the upper limit estimation for the five channels,
when setting the CI to be 90%, for an integrated luminosity L = 300 fb−1. In the
plots, the ±1σ, ±2σ, ±3σ bands represent the quantiles evaluated at (0.32, 0.68),
(0.05, 0.95), and (0.01, 0.99), respectively, when performing 104 extrapolations
of the UL. For these 104 tests, the number of background events F for each mass
scan was randomly sampled following a Poissonian distribution. As a parameter
of the distribution (λ), the average number of events expected in each interval
was used:

λ = Number of events expected per GeV2/c4 × width of MS
2 window . (7.15)

For each channel, the number of events expected per GeV 2/c4 is evaluated as the
number of events found in the whole signal region divided by the width of the
region itself. In this context, the signal region was fixed to [0.0, 5.0] GeV2/c4.

Finally, the evolution of the UL as a function of the integrated luminosity was
evaluated, and it is shown in Fig. 7.19 for the five different final states.



98 7. Stable hexaquarks at Belle II

Figure 7.18: Estimation of the UL as a function of the hexaquark mass MS,
with CI=90%. In each plot, the colored bands represent ±1σ, ±2σ, ±3σ regions
from the lower to the higher transparency, respectively. In the top left panel,
corresponding to the channel with no primary pion pairs in the final state, the
existing UL set by BaBar [112] is represented as well.
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Figure 7.19: Estimation of the UL as a function of the integrated luminosity,
with CI=90%. In each plot, the colored bands represent ±1σ, ±2σ, ±3σ regions
from the lower to the higher transparency, respectively. In the upper left panel,
corresponding to the channel with no primary pion pairs in the final state, the
existing UL set by BaBar [112] is represented as well.





8
Benchmark studies

After an initial commissioning phase and early data taking without the VXD, on
March 25th, 2019 the first collisions of the actual Belle II physics program were
detected, and the experiment is collecting data since then. So far, almost all data
were collected at the energy of the Υ(4S) resonance 1. However, the search for a
stable hexaquark will require to analyze data collected at the Υ(3S) energy, and
everything shown so far was based on MC only. Yet, there are some aspects of
the planned analysis that can be benchmarked using the available data sample
collected up to now. Such a dataset can be used to compare results with those
obtained using MC, in order to check whether the simulation is in agreement
with the experimental observations, and — when needed — to work towards its
improvement.

This chapter will introduce some performance studies focused on Λ baryons
carried out using the Υ(4S) dataset collected up to the summer 2021, correspond-
ing to an integrated luminosity of 189.88 fb−1. As for the MC, an official Belle II
MC campaign, corresponding to an integrated luminosity of 200 fb−1, has been
used. The difference in luminosity between the data and MC samples is addressed

1A small amount of data was collected off-resonance. Also, at the end of 2021 a special scan
was collected around Υ(10750).
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by the introduction of a normalization factor kL for the MC sample:

kL =
Ldata

LMC

=
189.88 fb−1

200.00 fb−1 = 0.95 . (8.1)

Two different Λ channels have been explored: an exclusive Λ sample coming
from the Λc decay Λ+

c → Λ0π+ (Section 8.1), and an inclusive Λ sample (Sec-
tion 8.2). In both cases the selection applied in order to select good Λ candidates
is the same as described in Section 6.3. The two samples are to some extent
complementary: if the exclusive sample provides information on Λ truly coming
from physics events, but with a specific kinematics and limited statistics, the in-
clusive sample offers huge statistics to be analyzed, but is prone to include many
more fake candidates (this concept will be taken up later in the chapter). Part
of this work is also described in an internal Belle II note, whose sections about Λ
baryons were written by the author of the thesis herself [155].

The comparison between MC and data is done considering some relevant kine-
matics variables and plotting the data-MC ratio as their function. For samples
with the same luminosity, an ideal agreement between data and MC would lead
to a constant ratio of 1. In order to count the number of signal candidates a
sideband subtraction approach was used. This kind of approach is justified in
the presence of linear behavior of the background. The definitions of mass region
and sidebands are related to the width σ68 of the pπ invariant mass distribution,
defined using quantiles Q. More precisely, σ68 is defined as half of the difference
between Q[0.84] and Q[0.16]:

σ68 =
Q[0.84]−Q[0.16]

2
. (8.2)

The mass region (MR) is limited by the two values:

MR ∈ (MΛ − σ68, MΛ + σ68) , (8.3)

while the left (SL) and right (SR) sidebands:

SL ∈ (MΛ − 6σ68, MΛ − 5σ68), SR ∈ (MΛ + 5σ68, MΛ + 6σ68) . (8.4)

In both Eqs. (8.3) and (8.4), MΛ is set to MΛ = 1115.68 MeV/c2, and refers to the
nominal Λmass value [11]. The choice of 5σ68 and 6σ68 in the sidebands definition
is arbitrary, but ensures to be enough far away from the mass region. The specific
numerical values used for σ68, MR, SL, and SR are sample-dependent and they
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are reported in Appendix E. Unless otherwise specified, all the plots presented in
the next sections are obtained after the sideband subtraction.

8.1 Λ from Λ+
c → Λ0 π+

The first Λ sample benchmarked is an exclusive sample deriving from the decay
of the charmed hyperon Λ+

c → Λ0 π+. In addition to the selection imposed on Λ,
described in Section 8.2, some cuts were applied to the final state π and to the
mother particle Λc. Concerning the π, since it is expected to originate somewhere
close to the IP, the absolute distance of the track’s POCA in the r-φ plane (|d0|)
and in the z plane (|z0|) were required to be |d0| < 0.5 cm and |z0| < 3.0 cm,
respectively. Concerning the Λc candidate, its momentum in the center-of-mass
frame pCMS was required to be 2.7 < pCMS < 5.0 GeV/c, and the invariant mass
of the Λπ system was required to lie in the interval 2.12 < M(Λπ) < 2.45 GeV/c2,
being the Λc nominal mass value MΛc = 2.286 GeV/c2 [11]. Finally, a vertex fit
— with CL set to 0.0 — was performed. Unlike the cut values used for the Λ

sample, these additional requirements were not optimized, but rather adapted
from a Belle II internal note [156].

Figure 8.1 shows the invariant mass distribution of the Λπ system. The black
points represent data, while the blue points represent MC. The MC sample is
normalized using the factor kL defined in Eq. (8.1). As one can see from the
figure, the shape of the data and normalized MC is similar, but there seems to
be an overall shift between the two distributions. In order to match them, an
additional factor (ε) should be introduced, obtained as the ratio between the
number of signal events inside the Λc mass region in data and in the luminosity-
scaled MC:

ε =
# events in mass region, data sample

# events in mass region, lumi-scaled MC sample
= 0.816 . (8.5)

The factor ε could be interpreted as an overall difference in performance between
MC and data, with MC overestimating the performance. For the definition of
mass region, both the data and the MC sample were fitted using a double Gaus-
sian (fa) and a first order polynomial (fb). The double Gaussian fa was defined
as:

fa = N

f e
−(x−µ1)

2

2σ2
1

σ1
√
2π

+ (1− f)
e

−(x−µ2)
2

2σ2
2

σ2
√
2π

 , (8.6)
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Figure 8.1: Λπ invariant mass peak, both for the MC sample (blue points) and
the data sample (black points). The MC sample is normalized using the factor
kL, introduced in Eq. (8.1), that takes into account the different luminosities of
the two samples.
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with
µ2 = µ1 +∆µ , (8.7)

and
σ2 =

√
σ2
1 + σ2

tail . (8.8)

The presence of the second Gaussian allows the fit to take into account and
describe possible small shifts and tails in the distribution. The mass region was
taken to be ±2σc around the nominal Λc mass value, where σc is the weighted
sum of σ1 and σ2 from the double Gaussian:

σc =
√
σ2
1 + σ2

2 . (8.9)

As for the first order polynomial fb, it was defined simply as:

fb = a + bx . (8.10)

The result of the fit on the invariant mass of the Λπ system, both for the MC
(left panel) and the data (right panel) sample, is shown in Fig. 8.2. The values
of the parameters extracted from the fits can be found in Appendix E.

The result of weighting the MC sample with the additional factor ε is shown
in Fig. 8.3, where the newly obtained histogram (green) is drawn on top of the
points already shown in Fig. 8.1. In the bottom panel the pulls are shown,
namely the difference — bin per bin — between the data and the normalized MC
distribution (green histogram) divided by the error:

Pulls = # data−#MC√
σ2
data + σ2

MC

, (8.11)

where σdata (σMC) is the square root of the counts in each bin of the data (MC)
histogram. The orange band represents the ±3σ region in the data-MC difference.
As one can see, the introduction of a weight ε for the MC sample leads to a better
overall agreement between data and MC, with almost all the pulls contained in
the ±3σ region.

Similarly, Fig. 8.4 shows the invariant mass distribution of the pπ system —
namely the Λ candidates — both for MC and data. Only candidates inside the Λc

signal region were considered. As in Fig. 8.3, also here the MC sample is shown
with the two different normalizations discussed (blue points and green histogram).
Black points represent data. In the bottom panel the pulls distribution is shown,
with the relative ±3σ region highlighted (orange band). Also in this case, the
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Figure 8.2: Fit to the Λπ invariant mass peak, both for the MC sample (left panel)
and the data sample (right panel). The fit function used is a double Gaussian
and a first order polynomial. Its precise definition can be found in the text, and
the values of the parameters extracted from the fits are reported in Appendix E.
The pulls shown in the bottom panels are defined as the difference between the
experimental points and the fit function divided by the error, and the orange
bands represent the ±3σ region.
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Figure 8.3: Λπ invariant mass peak, both for the MC and the data sample. With
respect to Fig. 8.1, an additional green histogram — resulting after weighting the
MC sample with the factor ε (see Eq. (8.5)) — has been added. In the bottom
panel the pulls distribution, namely the difference between data and normalized
MC (green histogram) divided by the error, is shown. The exact definition of
pulls is given in Eq. (8.11). The orange band represents the ± 3σ region.
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Figure 8.4: pπ invariant mass peak, both for the MC and the data sample. Two
different normalizations for the MC sample are used, resulting in the blue points
and the green histogram. Only Λ candidates in the Λc mass region are considered.
In the bottom panel the pulls distribution, namely the difference between data
and normalized MC (green histogram) divided by the error, is shown. The exact
definition of pulls is given in Eq. (8.11). The orange band represents the ± 3σ
region.
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introduction of ε is enough to match the invariant mass distributions in data and
MC.

Even if an overall factor can, at first glance, account for the difference be-
tween data and MC, this very simplistic approach is not fully justified, and such
a difference should be further investigated. Generally speaking, interesting quan-
tities to monitor, and to be checked both in MC and data, are the mean value
µ50 and the width σ68 of the pπ invariant mass peak. A possible difference in
resolution between data and MC could point to problems of various kind, both
in simulation or reconstruction. More specifically, it may prove useful to monitor
such quantities in bins of relevant variables, and in the case of Λ baryons the
natural candidate is their flight distance. Figure 8.5 shows µ50 and σ68 as a func-
tion of the Λ flight distance in the transverse plane (xy-distance). The mean µ50,
shown in the left panel of Fig. 8.5, is obtained as the quantile Q[0.50] of the mass
distribution in each transverse distance bin, in blue for MC and in black for data.
The error bands are estimated as the region between the quantiles Q[0.48] and
Q[0.52]. At the bottom of the canvas the ratio between data and MC is shown,
as well. The mean value µ50, both for data and MC, within the VXD volume is
close to the nominal mass value [11], represented in the figure as a dashed red
line. Moving further away from the IP one starts to notice some differences, but
they are limited to less than 2 MeV/c2. In the right panel, the width σ68 — de-
fined in Eq. (8.2) — is shown, both for MC (blue points) and data (black points).
Also in this case, at the bottom of the canvas the ratio between data and MC
is plotted. At low distances the width is similar when comparing data and MC,
while the difference increases when moving away from the IP. The width does
not show an overall dependence on the flight distance in the transverse plane.
In both panels, some structures are visible near the different layers of the VXD,
represented in the plot as vertical dashed lines. In most cases, however, such
structures are present both in data and MC, and they are not a feature of only
one of the two samples.

The distribution itself of the Λ flight distance in the transverse plane, when
comparing data and MC, contains some interesting information. The left panel
of Fig. 8.6 shows such a distribution, both for data (black points) and MC (blue
points). In the right panel the ratio between data and MC is shown, as a function
of the same variable. This specific plot is the one that carries the most interesting
information: close to the IP the ratio takes on a value approximately equal to
one, and then it decreases when moving away from the origin. Looking closely,
one can see some feature of the distribution corresponding to the VXD layers,



110 8. Benchmark studies

1.11552

1.11556

1.11560

1.11564

1.11568

1.11572

1.11576

1.11580

1.11584
50

 [G
eV

/c
2 ]

L3 L4 L5 L6L2L1

data, L dt

MC, L dt × kL

0 5 10 15 20 25 30

 xy-distance [cm]

0.9997
1.0000
1.0003

da
ta

/M
C

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

68
 [G

eV
/c

2 ]

×10 3

L3 L4 L5 L6L2L1

data, L dt

MC, L dt × kL

0 5 10 15 20 25 30

 xy-distance [cm]
0

1

2

da
ta

/M
C

Figure 8.5: Mean value µ50 (left panel) and width σ68 (right panel) of the M(pπ)
peak as a function of the flight distance in the transverse plane. The dashed red
line in the left panel represents the nominal value of the Λ mass [11]. The exact
definition of these two quantities (µ50 and σ68) can be found in the text. In both
panels, blue points represent the MC sample and black points represent the data
sample. Vertical dashed lines are drawn corresponding to the six VXD layers.

represented in the panels as vertical dashed lines, and pointing to some effects
of interaction with the material not fully reproduced in the simulation. This
observation motivated the choice of considering the 3D flight distance rather
than its flight distance in the transverse plane, where the effect is milder.

Figure 8.7 shows the distribution of the Λ flight distance (left panel) and the
ratio between data and MC as a function of the same variable. The trend of
the ratio, similarly to the right panel of Fig. 8.6, assumes a value close to one
near the IP, and then it decreases when moving away from it. The points have
been fitted with a straight line, and the fit function is reported on the plot. The
linear dependence of the data-MC ratio as a function of the flight distance points
to a degradation of the performance in data with respect to MC for Λ decaying
far from the IP. This observation is attributed to background contributions that
affect tracking in the CDC and that are not yet perfectly modeled in MC. As it
will be shown in the next chapter, the background conditions strongly influence
the tracking performance, in particular in the case of the CDC.

Another piece of information, with different implications, can be extracted
from the Λ momentum. Figure 8.8 shows its distribution (left panel) and the
ratio between data and MC as a function of the same variable (right panel).
The irregular shape of the ratio, increasing for low momentum baryons (below
∼2 GeV/c) and decreasing for high momentum baryons (above ∼2 GeV/c) points
to an incorrect reproduction of the Λ kinematics in MC. The distribution itself
results from the superposition of two main components, one with low and one
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Figure 8.6: Distribution of the Λ flight distance in the transverse plane (left
panel) and data-MC ratio as a function of the same variable (right panel). In
the left panel, blue points represent MC, while black points represent data. The
vertical dashed lines show the position of the VXD layers.
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distribution of the ratio is fitted with a straight line, and the fit function is
reported on the plot itself.
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Figure 8.9: Distribution of the Λ polar angle (left panel) and data-MC ratio as a
function of the same variable (right panel). In the left panel, blue points represent
MC, while black points represent data.

with high average momentum, that — in different ways — are not correctly
reproduced in MC. The problem, in this case, is to be sought in the MC event
generator used and in the wrong tuning of some of its parameters.

Finally, Fig. 8.9 shows the distribution of the Λ polar angle (left panel) and the
ratio between data and MC as a function of the same variable (right panel). In this
case, when looking at the data-MC ratio, it does not show an overall dependency
on this variable. Possible interplays between these variables were checked by
plotting the data-MC ratio as a function of two variables simultaneously in the
form of 2D plots. These distribution can be found in Appendix E (Section E.1).
No particular structure was revealed, and the same message already inferred
from the 1D distributions was confirmed: a mis-modeling of the Λ momentum
spectrum and a deterioration in performance of data with respect to MC for Λ
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decaying far from the IP.

8.2 Inclusive Λ sample

The second sample benchmarked is an inclusive Λ sample, consisting of all can-
didates reconstructed from one proton and one pion which pass the selections
described in Section 6.3. Figure 8.10 shows the invariant mass distribution of
the resulting p π system. The black points represent data, while the blue points
represent the MC sample, normalized using the factor kL (see Eq. (8.1)). The
green histogram, following the procedure already described in the previous sec-
tion, represents also the MC sample, with an additional factor ε2 considered for
the normalization. As for the exclusive Λ sample, also in this case ε2 was obtained
empirically by comparing data and MC. It was defined as the ratio between the
number of signal events in data and in the luminosity-scaled MC:

ε2 =
# signal events in data sample

# signal events in lumi-scaled MC sample
= 0.841. (8.12)

In this case, “signal events” refers to the number of events in the signal region
after the sideband subtraction. The definition of mass region and sidebands uses
quantiles, and the exact numbers can be found in Section E.2. Already from this
plot it can be seen that the situation is more complex than with the exclusive
sample. The introduction of the overall factor ε2 is not enough to make the
data (black points) and MC (green histogram) distributions match: even after
applying it there appears to be a lack of data in the mass region and an excess in
the sidebands. This is clear when looking at the pulls distribution shown in the
bottom panel of Fig. 8.10. Also in this case the orange band represents the ±3σ

region, and almost all the pulls lie outside it.
As in the case of the exclusive sample, the mean µ50 and width σ68 of the

invariant mass peak as a function of the flight distance in the transverse plane
has been investigated. The two distributions are shown in Fig. 8.11. The mean
µ50, shown in the left panel of the figure, is obtained as the quantile Q[0.50] of the
mass distribution in each transverse distance bin, in blue for MC and black for
data. The error bands contain values included between the quantiles Q[0.48] and
Q[0.52]. At the bottom of the canvas the ratio between data and MC is shown as
well. The trend, both for data and MC, increases with the transverse distance.
It is smaller with respect to the nominal mass value [11] — represented in the
figure as a dashed red line — for vertices inside the VXD, and then gradually
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Figure 8.10: pπ invariant mass peak, both for the MC and the data sample. Two
different normalizations for the MC sample — described in details in the text —
are used, resulting in the blue points and the green histogram. In the bottom
panel the pulls distribution, namely the difference between data and normalized
MC (green histogram) divided by the error, is shown. The exact definition of
pulls is given in Eq. (8.11). The orange band represents the ± 3σ region. To be
noted is that the pulls y-scale is ten times wider than the ones in the previous
section.
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Figure 8.11: Mean value µ50 (left panel) and width σ68 (right panel) of the pπ
invariant mass peak as a function of the flight distance in the transverse plane
for the Λ inclusive sample. The dashed red line in the left panel represents the
nominal value of the Λ mass [11]. The exact definition of these two quantities
(µ50 and σ68) can be found in the text. In both panels, blue points represent the
MC sample and black points represent the data sample. Vertical dashed lines are
drawn corresponding to the six VXD layers.

approaches the nominal value (and in case of data it crosses it). The difference
between data and MC is more pronounced at large distances. Despite a generally
smooth trend, three sharp peaks are visible corresponding to three of the SVD
layers (L3, L4, and L5), both in data and MC. This effect points to a problem in
the reconstruction in the proximity of this detector material, affecting both data
and MC. In the right panel, the width σ68 — defined in Eq. (8.2) — is shown,
both for MC (blue points) and data (black points). Also in this case, the ratio
between data and MC is plotted at the bottom of the canvas. For this inclusive
Λ sample, the width in data is systematically wider than that in MC. At low
distances the width appears to be similar when comparing data and MC, while
the difference increases when moving away from the IP. Unlike the case of the
exclusive sample (see Fig. 8.5 for comparison), the width does show an overall
dependence on the flight distance in the transverse plane, with a deterioration
towards high values of such a variable. Also in this case, corresponding to the
three SVD layers L3, L4, and L5 there are some structures visible, both in data
and MC.

Both Figs. 8.10 and 8.11 hint to the conclusion that the inclusive sample
considered here is not entirely suitable for the sideband subtraction approach.
Because of its few selection criteria, it is particularly sensitive to the background
conditions, and such conditions have proven to be not yet reliable in MC with
respect to data (as it will be further explained in the next chapter). In particular,
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Figure 8.12: 2D data-MC ratio. In the left panel, the ratio is shown as a function
of the Λ polar angle (y-axis) and its transverse flight distance (x-axis). In the
right panel, the ratio is shown as a function of the Λ polar angle (y-axis) and its
momentum (x-axis). Red regions of the panels correspond to areas where there
is an excess of data with respect to MC. Blue regions correspond to those where
there is a lack of data with respect to MC. White regions correspond to those
where the data-MC ratio is close to the unity. The background color of the panels
has been set to gray in order to distinguish it from the white regions.

higher background conditions increase the number of tracks, and in the proximity
of material the number of vertices. Most of these vertices are badly reconstructed
and end up in the sidebands of the Λ mass peak, causing a difference between
data and MC which cannot be entirely explained in terms of tracking performance.
This can be better understood when looking at 2D data-MC ratio plots. In these
plots, red regions of the panels correspond to areas where there is an excess of
data with respect to MC. Blue regions correspond to areas where there is a lack of
data with respect to MC. White regions correspond to areas where the data-MC
ratio is close to the unity. The background color of the panels has been set to gray
in order to distinguish it from proper white regions. In the left panel of Fig. 8.12,
the ratio between data and MC is shown as a function of the Λ polar angle (y-
axis) and its transverse flight distance (x-axis). The position of the six VXD
layers is shown as vertical dashed lines. The excess of data with respect to MC
is localized at the acceptance limits and at backward angles in proximity of the
SVD layers. In the right panel, the ratio between data and MC is shown as a
function of the Λ polar angle (y-axis) and its transverse momentum (x-axis). The
excess of data with respect to MC at backward angles is not localized along a
specific momentum region, even though it seems to be more pronounced at high
momentum — where the statistics is poor.

The key information is revealed when looking at the same kind of distri-
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Figure 8.13: 2D data-MC ratio in the sidebands. In the left panel, the ratio is
shown as a function of the Λ polar angle (y-axis) and its transverse flight distance
(x-axis). In the right panel, the ratio is shown as a function of the Λ polar angle
(y-axis) and its momentum (x-axis). Red regions of the panels correspond to areas
where there is an excess of data with respect to MC. Blue regions correspond to
those where there is a lack of data with respect to MC. White regions correspond
to those where the data-MC ratio is close to the unity. The background color of
the panels has been set to gray in order to distinguish it from the white regions.

butions, but focusing in the sideband regions only. The resulting picture is
shown in Fig. 8.13. Overall, one can notice almost everywhere an excess of data
with respect to MC. In particular, the red regions at backward angles observed
in Fig. 8.12 are reproduced in Fig. 8.13 as well. On the contrary, when look-
ing at the same distributions but considering the mass region only, there are
almost no structures visible, as can be seen in Fig. 8.14. This points to a problem
in reproducing the sidebands in MC, and on a deeper level, in reproducing the
background conditions in simulation.

In this chapter several limitations of the current simulation have been shown.
It has been also shown how the role of background may be a game changer in
different ways. The current limitations in the simulation turn out to be especially
important when considering inclusive samples, where minimal selection criteria
may not be enough to get rid of all contributions not strictly deriving from physics
channels. Monitor the background level and improve its simulation is therefore
a very important task for the success of the experiment, and many efforts in
this direction are ongoing in the collaboration. In particular, recent studies show
that including in the simulation more realistic shapes for the collimators greatly
improves the agreement of simulated background with data [157]. However, the
background simulation and its problems is not the subject of this thesis, so it
will not be further discussed here. The next chapter will be dedicated instead
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Figure 8.14: 2D data-MC ratio in the mass region. In the left panel, the ratio is
shown as a function of the Λ polar angle (y-axis) and its transverse flight distance
(x-axis). In the right panel, the ratio is shown as a function of the Λ polar angle
(y-axis) and its momentum (x-axis). Red regions of the panels correspond to areas
where there is an excess of data with respect to MC. Blue regions correspond to
those where there is a lack of data with respect to MC. White regions correspond
to those where the data-MC ratio is close to the unity. The background color of
the panels has been set to gray in order to distinguish it from the white regions.

to understand how tracking performance is affected by a background level higher
than expected with respect to the standard simulation, and how such levels in
data could be measured and monitored, in order to provide precise information
for its improved simulation in MC.



9
Future challenges

Beam background is a reality that all accelerator-based particle physics experi-
ments have to deal with. It is very important to keep it as low as possible, but it
is practically impossible to eliminate it completely. To build a successfully experi-
ment, having a comprehensive knowledge of its beam background is essential, and
some of the key factors are having it under control, being able to reliably simulate
it, and tune the software algorithms to get the best possible performance.

In the previous chapter it was observed that the background level of the
Belle II experiment is currently not well reproduced in the simulation. This
chapter will be devoted to elaborate on this statement and give an overview of
the current situation. In Section 9.1 it will be shown how this difference can
be noticed by monitoring specific variables. In Section 9.2 it will be shown how
a worse background affects tracking performance, and Section 9.3 will highlight
some of the possible impacts on the hexaquark search.

9.1 Background level in data

In the Belle II experiment, as in every physics experiment, the simulation of the
background level is a delicate and very complicated process. The sources of beam
background were described in Section 5.1.1. Their correct simulation imply an
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Figure 9.1: Distribution of the event-based variable nExtraCDCHits, representing
the number of CDC hits not assigned to any track in an event. The blue and green
distributions both represent MC, with the two different normalization introduced
in Section 8.2. The black histogram represents data. Such a variable is strictly
related to the beam background level, and the difference between its distribution
in data and MC points to a difference in the beam background conditions for
data and MC, in particular to an underestimation of the background level on the
simulation side.

in-depth knowledge of the accelerator and beam conditions, and a advanced level
of monitoring and control which is very difficult to achieve, particularly in the
initial stage of the data taking with a new accelerator. The beam conditions used
to simulate the standard background level — those used for the studies presented
so far in this thesis and labeled as “eph3 BG×1” in Section 5.5 — turned out
to be partially inconsistent with the real situation, in particular resulting in an
underestimation of the beam background.

An effective way to demonstrate this difference is to compare variables that
are dependent on the beam background level in MC and data. In this respect, a
notably useful variable is nExtraCDCHits, an event-based variable that — event
by event — counts the number of CDC hits that are not assigned to any track.



9.1. Background level in data 121

400 600 800 1000 1200 1400

nExtraCDCHits
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 lo
ng

/s
ho

rt
 from c  data

MC

400 600 800 1000 1200 1400

nExtraCDCHits
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 lo
ng

/s
ho

rt

 inclusive data
MC

Figure 9.2: Long-short Λ ratio as a function of the number of extra CDC hits
in the event. The left panel shows these quantities for Λ coming from the decay
Λc → Λπ. The right panel shows these quantities for an inclusive Λ sample. The
two Λ samples are those introduced in Chapter 8. In both panels, blue points
represent the MC sample, while black points represent data.

Intuitively, this variable is strictly related to the background level: in a clean
environment there will be no (or few) hits not associated with any track. In
contrast, the higher the background level, the higher the value that this variable
will assume. Figure 9.1 shows the distribution of the number of extra CDC hits
both in data and MC. The samples are the same as introduced and used in the
previous chapter when considering the inclusive Λ sample (Section 8.2), and for
the MC both normalizations introduced there are shown. The data and MC
distributions are extremely different, both in shape and in the peak position,
pointing to a difference in the beam background conditions between data and
MC. In particular, since the mean value of the distribution is higher in data, the
beam background itself is also higher in data than in the simulation.

The same information about background level is carried by Λ baryons (or more
generally by displaced vertices), and — to some extent — it can be monitored
while performing analyses involving displaced vertices. The way to do so is to
divide the V0 signal sample in two categories, long V0s and short V0s, and then
compute the ratio of long to short signal candidates. The definition of these
categories is related to the Λ flight distance in the transverse plane, and weather
it is before or after the innermost CDC wall. In particular, long candidates
are required to have a xy-distance ≥ 15 cm, while short candidates xy-distance
< 15 cm. When plotting the long-short ratio as a function of the number of extra
CDC hits in the event a dependence between the two variables can be noticed.
This is shown in Fig. 9.2 for both Λ samples introduced in the previous chapter.

This dependence can be explained by the assumption that the deterioration in
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Figure 9.3: Background-dependent variables as a function of the experiment num-
ber. The left panel shows the number of extra CDC hits as a function of the
experiment number. Each point is obtained as the average number of nExtraCD-
CHits in each experiment. The right panel shows the Λ long-short ratio as a
function of the same variable. The ratio is evaluated dividing the total num-
ber of long and short Λ obtained after the sidebands subtraction, experiment by
experiment. In both panels, black points represent the exclusive Λ sample (Λ
from Λc → Λπ), while gray points represent the inclusive Λ sample. The vertical
dashed line in both panels divides the experiments into two groups, with the left
one having generally lower background than the right one.

performance following any background increase is responsible for a degradation
of the reconstruction of long V0, i.e. those that decay away from the IP, which
are generally more difficult to reconstruct (as shown in the left panel of Fig. 6.3).
In the inclusive sample the MC and data points do not have the same distribu-
tion, with the ratio decreasing faster in MC. This difference makes it difficult to
quantify the background level given the long-short ratio, but it does not preclude
the possibility to monitor possible changes over time.

Figure 9.3 shows the two background-dependent variables introduced above
as a function of the experiment number, where different experiment numbers
represent different data taking periods (higher experiment number corresponds
to more recent data). The left panel shows the number of extra CDC hits as
a function of the experiment number for both the exclusive and the inclusive Λ

samples. The right panel, instead, shows the long-short ratio as a function of the
same variable, once again for both the exclusive and the inclusive Λ samples.
Given the dependence on the experiment number, no simulation is currently
available for these plots 1. The trend is visible in both panels of Fig. 9.3. In

1Run-dependent MC samples, i.e. with luminosity and beam background level extracted
from the corresponding data samples, are under preparation and will be available soon. It is
known that the background level has fluctuated over time — a lot of tuning took place and is
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Table 9.1: MC samples used to evaluate the tracking performance. As for the
detector configuration, early (eph3) refers to the missing part of PXD L2, while
nominal (nph3) refers to the full PXD installation. The different PXD geometry
has a negligible effect on the beam background composition, but the parameters
used for the simulation of “BG×1” samples are different between eph3 and nph3.
The different beam conditions used to generate the various background sample
are summarized in Table B.1.

Detector configuration Background rate factor

eph3 BG×0 early × 0

eph3 BG×1 early × 1

nph3 BG×1 nominal × 1

nph3 BG×2 nominal × 2

nph3 BG×5 nominal × 5

particular, when comparing the two groups of three experiments each (left and
right of the dashed line), it can be seen that exp10, exp12, and exp14 have a
generally lower background (i.e. lower number of extra CDC hits) compared to
exp16, exp17, and exp18. Consistently, the first group of experiments has a higher
long-short ratio compared to the latter one, thus pointing to the same conclusions
(being the two variables inversely proportional). This confirms the assumption
that, to some extent, the background level can be monitored using displaced
vertices, although its precise assessment with this technique is challenging and
anyway not possible without run-dependent MC samples.

9.2 Tracking performance in high background
scenarios

As already mentioned, the background simulation is a very complicated process.
Considerable effort within the collaboration is currently devoted to this task, but
this goes beyond the scope of this thesis. What is important for the purposes of
this dissertation is the impact that a higher background level (with respect to the
one originally considered, eph3 BG×1) can have on tracking performance and
consequently on the hexaquark analysis. This can be estimated by simulating
different levels of beam background and study the reconstruction performance.
In particular, for the studies presented in this section, five different MC sam-

still ongoing from the accelerator side, in order to find the best machine conditions.
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Figure 9.4: Tracking efficiency for different beam background conditions. The
panel on the left shows the efficiency as a function of the particle momentum,
while the panel on the right shows the efficiency as a function of the particle polar
angle. The definition of efficiency is given in Eq. (5.1). The legend is explained
in Table 9.1.

ples were used which are summarized in Table 9.1. The two samples labeled as
“eph3 BG×1” and “nph3 BG×1” differ in two aspects: the PXD-related geometry
and the beam conditions used in the simulation (despite being both labelled as
“BG×1”). As for the geometry, “eph3” stands for “early” and refers to the miss-
ing part of PXD L2, while “nph3” stands for “nominal” and refers to the full PXD
installation (see Section 4.1.2 for more details). The PXD geometry has a negligi-
ble impact on tracking, and the different performance is driven by the parameters
used in the background simulation. A detailed list of the beam conditions used
to generate the different backgrounds can be found in Table B.1. For each of the
MC samples a total of 2×105 events were generated: 105 Υ(4S) → B+B− events
and 105 Υ(4S) → B0B̄0 events. The uncertainties represented in the plots arise
from statistics only.

Figure 9.4 shows the tracking efficiency, both as a function of the particle mo-
mentum (left panel) and polar angle (right panel), for the different MC samples.
These are the same kind of plots introduced in Section 5.5, with the definition of
efficiency given in Eq. (5.1). The average efficiency depends clearly on the beam
background level. In general it is higher than 80% for all but the sample with
extreme beam background conditions (nph3 BG×5), where the efficiency drops
to ∼30%.

Figure 9.5 shows the tracking purity, clone, and fake rates for the three samples
with higher beam background conditions: nph3 BG×1, nph3 BG×2, and nph3
BG×5 from top to bottom row, respectively. In each row these quantities, whose
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Figure 9.5: Tracking purity (matched), clone rate, and fake rate for different
background conditions. In the first row the sample nph3 BG×1 is shown. In the
second row the sample nph3 BG×2 is shown. In the third row the sample nph3
BG×5 is shown. The left column shows the quantities as a function of the particle
momentum, while the right column shows them as a function of the particle polar
angle. Purity, clone rate, and fake rate definitions are given in Eqs. (5.2) to (5.4),
respectively.
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Table 9.2: Average tracking performance evaluated using the five MC samples
with different background conditions introduced in Table 9.1.

efficiency (%) purity (%) clone rate (%) fake rate (%)

eph3 BG×0 95.48 ± 0.03 91.38 ± 0.04 5.88 ± 0.03 2.74 ± 0.02

eph3 BG×1 95.09 ± 0.03 90.87 ± 0.04 5.52 ± 0.03 3.61 ± 0.03

nph3 BG×1 92.16 ± 0.04 82.40 ± 0.05 4.62 ± 0.03 12.97 ± 0.05

nph3 BG×2 83.50 ± 0.06 62.48 ± 0.06 3.34 ± 0.02 34.17 ± 0.06

nph3 BG×5 24.60 ± 0.07 25.92 ± 0.07 0.25 ± 0.01 73.83 ± 0.07

definitions were given in Eqs. (5.2) to (5.4), are plotted as a function of the particle
momentum (left column) and polar angle (right column). The same distributions
for the early background condition (eph3 BG×1) were shown in Fig. 5.6. As it can
be seen from Fig. 9.5, when focusing on the panels of one of the two columns, the
same structures are present, just more pronounced moving from top to bottom.
The clone and fake rates are higher at low momentum, as opposed to the purity.
The enhancement (drop) in the clone rate (purity) — already noticed in Fig. 5.6
— is visible for cosθ ∼ 0 (right column), which is the direction perpendicular to
the beam.

The average values of efficiency, purity, clone, and fake rate, integrated over
the whole momentum and angle ranges, are summarized in Table 9.2 for the five
MC samples. The highest background scenario considered here, nph3 BG×5, is
of course a very extreme condition, but it provides important information. In
case it were to become reality the performance would deteriorate too much, and
a modification of the tracking algorithms will be needed. Preliminary studies
showed that a different order in the tracking chain (i.e. executing the SVD
standalone track finding before the CDC standalone track finding) would already
improve the performance in case of high background, but this needs to be further
studied.

9.3 Background impact on the hexaquark search

In Section 9.1 it was shown how, with the current conditions, the standard beam
background level (eph3 BG×1) is underestimated in simulation. As a rough
estimate, the current background level is somewhere between the eph3 BG×1
and nph3 BG×1 cases. To date, repeating the entire hexaquark analysis with a
different MC is not a priority. Once a decision will be made on data taking at the
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energy of theΥ(3S) resonance, the choice of the correct sample will be crucial, and
the analysis will be repeated with better tuned MC. The purpose of this section
is to highlight some of the possible consequences of a higher background level,
and to give initial hints about possible opportunities for improvement. For these
studies only the MC sample nph3 BG×1 has been used. As already mentioned,
this represents a slight overestimation of the current beam background level as
found in the data. Also, the study was performed only on the channel without
pions in the final state, Υ(3S) → ΛΛ.

Figure 9.6 shows the comparison between the pre-selection signal efficiency in
standard (eph3 BG×1, left panel) and higher (nph3 BG×1, right panel) back-
ground conditions, as a function of the generated hexaquark mass squared M2

S.
In this case the efficiency is computed before applying any selection to the signal
sample 2, simply dividing the number of MC-matched reconstructed events by the
number of generated hexaquark events. In the higher beam background scenario
the overall pre-selection efficiency drops from ∼12% to ∼4%, making the analysis
more challenging.

For some parts of the analysis it is practically impossible to make predictions
that can be useful without precise information on the background level and a
reliable simulation. This is the case, for example, for the ROE selection, whose
variables strongly depend on it. In this case it will be necessary to check the
selection criteria and, in case, to re-optimize them once the dataset relevant for
the analysis and the corresponding MC will be available. The need for checking
and validating cuts and selections with the final dataset is a true statement in
general, but for specific parts of this analysis it is possible to provide qualitative
information even in the absence of precise knowledge of the background. One
prominent example is the BC selection (introduced in Section 7.2.2). A better
variable in such a scenario is max nHits, namely the maximum number of hits,
defined as:

max nHits = max
{ 4∑

i=1

nHitsi
}
,

nHitsi = nCDCHitsi + nSVDHitsi.
(9.1)

The index i runs over the four charged tracks coming from the two Λ baryons
of the event. Figure 9.7 shows the efficiency of the BC selection as a function of
the generated hexaquark mass, both for the standard background scenario (eph3
BG×1, left panel) and the higher background scenario (nph3 BG×1, right panel).
In each panel are represented the two BC variables bestΛs (defined in Eq. (7.6))

2Note that this is different from what was shown in Fig. 7.16, where the curves were obtained
after applying the analysis selections.
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Figure 9.6: Hexaquark signal efficiency as a function of the generated hexaquark
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S in two different background scenarios: standard background
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Figure 9.7: Efficiency of the BC selection as a function of the generated hexaquark
mass in different background scenarios. The left panel shows the BC efficiency
in the standard background scenario (eph3 BG×1), while the right panel shows
it in a higher background scenario (nph3 BG×1). The definition of BC effi-
ciency is given in Eq. (7.7). In both panels two BC variables are plotted, bestΛs

(see Eq. (7.6)) and max nHits (see Eq. (9.1)).
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and max nHits (defined in Eq. (9.1)). The definition of BC efficiency is given
in Eq. (7.7). From the figure one can notice how the BC efficiency is very high in
all cases (above ∼98%). However, while in the standard background conditions
a selection on bestΛs outperforms with respect to max nHits, the situation is the
opposite in higher background conditions, where a BC selection on max nHits
performs better. The gain is not huge, but it is worth monitoring both variables
and deciding on the best performance, especially in the case of high background.

Finally, one can estimate the possible effect of the background degradation
on the final UL calculation. In order to get to a qualitative estimate without
repeating the whole analysis one needs to make some assumptions. The signal
efficiency εS(MS) entering in Eq. (7.12) can be thought of as the product between
the channel reconstruction efficiency and the selection efficiency, εS = εre × εse.
The first term is exactly the signal efficiency we derived earlier in the section,
εre = 0.038 (see Fig. 9.6, nph3 BG×1). Two distinct UL were computed, starting
from two different assumptions for εse. In the first scenario εse,1 is assumed to be
exactly 1, i.e. the selection efficiency is assumed to be perfect, capable of retaining
all the signal events and cutting out all background. This assumption leads to
a signal efficiency εS,1 = 0.038. Despite being too optimistic, this case provides
an insight into the impact of the background on the UL by removing any effects
due to further analysis steps. In the second scenario the selection efficiency is
assumed to be the same as that resulting from the hexaquark analysis described
in Chapter 7, εse,2 = 0.585. This assumption leads to a signal efficiency εS,2 =

0.022. Both εS,1 and εS,2 were assumed to be independent from the generated
hexaquark mass. Furthermore, it was assumed not to find any background events
in the signal region, which translates into setting F equal to 0 in Eq. (7.12).
Figure 9.8 shows the UL estimation for these two cases, as well as the results
obtained in Section 7.3 assuming early background conditions (eph3 BG×1). In
the left panel the UL estimation is shown as a function of the hexaquark mass,
with CL=90%. In the right panel the UL estimation is shown as a function of
the integrated luminosity, again with CL=90%. The horizontal lines on the plot
represent the limits put by the BaBar collaboration on the same channel [112],
and the intersections of the curves with those give an indication of the necessary
luminosity to be collected in order for the Belle II experiment to be competitive
with the existing analysis. The data taking plan at the Υ(3S) resonance is to
collect a dataset larger than 200 fb−1 [124], thus making this channel competitive
also in such a higher background scenario.

Comparing the new results (solid and dashed lines) to those obtained with
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Figure 9.8: UL estimation in a higher background scenarios. In the left panel the
estimation is plotted as a function of the hexaquark mass MS. In the right panel
the UL estimation is shown as a function of the integrated luminosity. Here the
two horizontal lines represent the existing limits set by the BaBar collaboration
on the same channel [112]. The solid and the dashed lines in each plot represent
two different starting assumptions about the signal efficiency εS. The dotted
curve shows the result obtained in Section 7.3 with early background conditions
(eph3 BG×1). In all cases CL=90%. A description of the method used to derive
the limits can be found in Section 7.3.

early background conditions (eph3 BG×1, dotted line) one can notice the severe
impact that beam background can have on this analysis. In the best case sce-
nario, assuming a perfect selection (εse = 1), the UL value increases by a factor
∼1.7 with respect to the complete analysis, going from the original 2.8 × 10−8

to 4.8 × 10−8. In the second more realistic scenario considered, with εse=0.585,
the UL mean value increases by a factor ∼3, becoming 8.5 × 10−8. This deteri-
oration in performance naturally drives a requirement on the necessary statistics
to be collected at the Υ(3S) resonance in order for the Belle II experiment to
reach the existing limits from the BaBar collaboration: the luminosity required
increases from

∫
Ldt ∼ 50 fb−1 to ∼100-200 fb−1, depending on the considered

scenario. The Belle II plan of collecting a dataset larger than 200 fb−1 at the
Υ(3S) resonance [124] would ensure the competitiveness of the analysis even in
the worst-case background scenario here considered.



E quindi uscimmo a riveder le stelle.

(Thence we came forth to rebehold the stars.)

Dante Alighieri

10
Summary

This thesis presents a sensitivity study for the future search for a stable six-
quark state S with the Belle II experiment considering a hexaquark mass range
0 < MS < 2.055 GeV/c2. The search for a double strange state is particularly well
suited at narrow bb̄ resonances — Υ(nS) with n ≤ 3 — because of their promi-
nent decay channel in three gluons thus producing ss̄ pairs with roughly the same
probability as uū and dd̄ pairs. The Belle II experiment started collecting data
in 2019, and so far almost all data were collected at the Υ(4S) resonance, with
no data collected at narrow resonances yet. In preparation for such a measure-
ment, the thesis focuses on improving the Belle II reconstruction algorithms for
displaced vertices and on in-depth work on Λ baryons, from the optimization of
their reconstruction to the evaluation of the performance, both using MC and the
available Υ(4S) data. The most considerable part of the work has been devoted
to the subsequent sensitivity studies for the search for a double strange six quark
state using the improved tools.

For the sensitivity analysis the S hexaquark was assumed to be produced in
Υ(3S) decays together with a pair of Λ baryons: Υ(3S) → S ΛΛnπ. A total
of five channels was considered, that differ from each other in the number of
additional pions produced in the final state (n = 0, 2, 4, 6, or 8). The event
selection was optimized via the maximization of the Punzi FOM using a Υ(3S)
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MC sample. A set of ULs was extracted and they represent the main result of
the thesis (Figs. 7.18 and 7.19). When collecting an integrated luminosity of∫
Ldt = 300 fb−1 at the Υ(3S) resonance, the existing UL — a result from the

BaBar collaboration based on the final state with n=0 [112] — could be improved
by a factor of ∼5, moving from the current (1.2-1.4) × 10−7 to 2.8 × 10−8. The
minimum luminosity to be collected at the Υ(3S) resonance in order to reach
the limit set by BaBar corresponds to

∫
Ldt ∼ 50 fb−1. For the channels with

additional pions in the final state there are no existing ULs, and therefore a
future Belle II result would represent a novel measurement. The final part of
the thesis was devoted to critically review the sensitivity study in light of the
difficulties being experienced in terms of beam background level by the Belle II
experiment. Even if the current goal of the collaboration is to be able to better
understand the accelerator and to reduce the background via fine tuning of the
machine parameters, a few sets of ULs were estimated for less favorable scenarios
(Fig. 9.8). As expected the performance deteriorates, and when collecting an
integrated luminosity of

∫
Ldt = 300 fb−1 the UL moves somewhere around (4.8-

8.5) × 10−8, depending on the initial assumptions. In this case the minimum
luminosity to be collected in order to reach the limit set by BaBar corresponds
to
∫
Ldt ∼ 100-200 fb−1. However, these estimates are rather qualitative and a

more critical review has to be done once the dataset will be collected and the
actual background conditions will be known. This work is intended to pave the
way for a future measurement, and the tools and analysis procedures developed,
as well as the critical points observed, to be used on the collected Υ(3S) data
to set world-leading ULs on the possible observation of a stable, double strange
six-quark state.



A
Helix coordinates VS Cartesian

coordinates

The Belle II helix representation is based on five parameters h5, whose definitions
are given in Chapter 5:

h5 = (d0, z0, φ0, ω, tanλ). (A.1)

Six coordinates c6 are commonly used to describe a trajectory in the cartesian
system:

c6 = (x, y, z, px, py, pz). (A.2)

c6 can be expressed in terms of h5 as following:

c6 = F(h5), F : R5 → R6 :



x = +d0 sinφ0

y = −d0 cosφ0

z = z0

px = qBz

ω
cosφ0

py =
qBz

ω
sinφ0

pz =
qBz

ω
tanλ

. (A.3)
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B
Tracking performances, additional

material

B.1 Beam conditions for background simulation

Table B.1: Beam conditions used to simulate the beam background. The beam
background samples are provided to the user by the Belle II data production
group.

eph3
LER (e+) / HER (e−)

nph3
LER (e+) / HER (e−)

Beam current [A] 1.2 / 1.0 3.6 / 2.6

Number of bunches 1576 / 1576 2500 / 2500

Bunch current [A] 0.761 / 0.635 1.44 / 1.04

Vertical beam size 37.3 / 35.7 23.9 / 9.4

Emittance ratio 0.01 / 001 0.0027 / 0.0028

Coulomb IR losses [MHz] 56.84 / 4.85 191.64 / 49.78

Brems IR losses [MHz] 4.78 / 0.53 8.29 / 4.28

Touschek IR losses [MHz] 32.29 / 29.17 119.41 / 1686.07

Coulomb lifetime [min] 26 / 266 19.06 / 37.21

Brems lifetime [min] 1525 / 7552 2929.74 / 2556.38

Touschek lifetime [min] 7 / 59 7.18 / 15.77
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B.2 Track fitting with different hypotheses
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Figure B.1: Momentum dependence of tracks fitted with different hypotheses.
As it can be inferred by the figure, using the correct particle hypothesis (top-left
to bottom-right diagonal set of panels, with red titles) helps in improving the
momentum resolution especially at low momentum.
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2D FOM for Λ selection

optimization
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Figure C.1: 2D FOM computation for all the seven Λ momentum bins defined
in Eq. (6.2). The definition of the FOM is given in Eq. (6.3). On the x-axis the
lower cut values assigned to the Λ flight significance are shown, while on the y-axis
the lower cut values assigned to the protonID are shown. The z-axis represents
the computed FOM values. Blue regions have lower FOM, yellow regions have
higher FOM.



D
Stable hexaquark, MC samples

D.1 Background MC

Table D.1: Summary of the official Belle II MC sample used as background for the
stable hexaquark analysis. The sample is equivalent to a luminosity L = 300 fb−1.

Mode MC Campaign prodID Events [× 106]

generic MC13a 15054 1200.00

uubar MC13a 13266 504.22

ddbar MC13a 13268 125.27

ssbar MC13a 13270 119.00

ccbar MC13a 13272 407.13

D.2 Preliminary signal MC

Table D.2: Fit results obtained with the preliminary Υ(3S) → S Λ̄ Λ̄MC samples.

Υ(3S) → S Λ̄ Λ̄

MS [GeV/c2] µ [GeV2/c4] ω[GeV2/c4] N 0.5 × FWHM

0.4 0.161 ± 0.002 0.446 ± 0.004 36.241 ± 0.438 0.223 ± 0.002

1.6 2.560 ± 0.002 0.464 ± 0.004 38.416 ± 0.453 0.232 ± 0.002

2.2 4.223 ± 0.002 0.452 ± 0.004 37.655 ± 0.442 0.226 ± 0.002
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Table D.3: Fit results obtained with the preliminary Υ(3S) → S ΛΛMC samples.

Υ(3S) → S ΛΛ

MS [GeV/c2] µ [GeV2/c4] ω [GeV2/c4] N 0.5 × FWHM

0.2 0.036 ± 0.002 0.444 ± 0.004 35.844 ± 0.438 0.222 ± 0.002

0.3 0.083 ± 0.002 0.435 ± 0.004 35.283 ± 0.427 0.218 ± 0.002

0.4 0.157 ± 0.002 0.439 ± 0.004 35.417 ± 0.430 0.220 ± 0.002

0.5 0.245 ± 0.002 0.448 ± 0.004 36.402 ± 0.446 0.224 ± 0.002

0.6 0.354 ± 0.002 0.441 ± 0.004 35.489 ± 0.428 0.221 ± 0.002

0.7 0.487 ± 0.002 0.442 ± 0.004 35.828 ± 0.433 0.221 ± 0.002

0.8 0.637 ± 0.002 0.455 ± 0.004 37.141 ± 0.447 0.227 ± 0.002

0.9 0.805 ± 0.002 0.450 ± 0.004 36.781 ± 0.447 0.225 ± 0.002

1.0 0.993 ± 0.002 0.448 ± 0.004 36.316 ± 0.440 0.224 ± 0.002

1.1 1.208 ± 0.002 0.456 ± 0.004 37.428 ± 0.447 0.228 ± 0.002

1.2 1.433 ± 0.002 0.460 ± 0.004 37.923 ± 0.452 0.230 ± 0.002

1.3 1.684 ± 0.002 0.451 ± 0.004 36.568 ± 0.442 0.226 ± 0.002

1.4 1.956 ± 0.002 0.447 ± 0.004 36.760 ± 0.441 0.223 ± 0.002

1.5 2.249 ± 0.002 0.452 ± 0.004 37.450 ± 0.441 0.226 ± 0.002

1.6 2.553 ± 0.002 0.447 ± 0.004 36.746 ± 0.454 0.224 ± 0.002

1.7 2.886 ± 0.002 0.455 ± 0.004 37.713 ± 0.444 0.227 ± 0.002

1.8 3.236 ± 0.002 0.455 ± 0.004 37.737 ± 0.448 0.227 ± 0.002

1.9 3.609 ± 0.002 0.440 ± 0.004 36.733 ± 0.432 0.220 ± 0.002

2.0 3.997 ± 0.002 0.444 ± 0.004 36.922 ± 0.434 0.222 ± 0.002

2.1 4.405 ± 0.002 0.439 ± 0.004 36.342 ± 0.430 0.219 ± 0.002

2.2 4.405 ± 0.002 0.444 ± 0.004 36.869 ± 0.434 0.222 ± 0.002
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D.3 Checks with 2π sample

Table D.4: Number of events before and after the track-based requirements on
the additional πs, both for correctly (signal) and wrongly (bkg) reconstructed
signal events, for all the generated hexaquark masses. In this case, the channel
considered is Υ(3S) → S ΛΛ π+π−.

Υ(3S) → S ΛΛ π+π−

MS [GeV/C2] # signal before # signal after % signal left # bkg before # bkg after % bkg left

0.285 5772 5455 0.95 4857 1582 0.33

0.547 5609 5284 0.94 4899 1612 0.33

0.719 5732 5348 0.93 4590 1424 0.31

0.857 5707 5410 0.95 4615 1507 0.33

0.976 5723 5388 0.94 4606 1501 0.33

1.082 5573 5274 0.95 4783 1596 0.33

1.179 5572 5251 0.94 4759 1551 0.33

1.268 5717 5393 0.94 5156 1745 0.34

1.351 5601 5229 0.93 4680 1544 0.33

1.429 5692 5309 0.93 4474 1343 0.3

1.504 5705 5346 0.94 5132 1689 0.33

1.574 5490 5174 0.94 4741 1437 0.3

1.642 5570 5224 0.94 4707 1446 0.31

1.707 5639 5294 0.94 4718 1497 0.32

1.77 5538 5173 0.93 4668 1510 0.32

1.831 5666 5299 0.94 4523 1383 0.31

1.889 5593 5261 0.94 4835 1499 0.31

1.946 5653 5257 0.93 5192 1741 0.34

2.001 5548 5220 0.94 4835 1488 0.31

2.055 5452 5093 0.93 4505 1491 0.33
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Table D.5: Number of events before and after the track-based requirements on
the additional πs, both for correctly (signal) and wrongly (bkg) reconstructed
signal events, for all the generated hexaquark masses. In this case, the channel
considered is Υ(3S) → S Λ̄ Λ̄ π+π−.

Υ(3S) → S Λ̄ Λ̄ π+π−

MS [GeV/C2] # signal before # signal after % signal left # bkg before # bkg after % bkg left

0.285 4966 4691 0.94 4502 1261 0.28

0.547 4908 4631 0.94 4523 1304 0.29

0.719 5008 4737 0.95 4763 1290 0.27

0.857 4983 4726 0.95 4543 1295 0.29

0.976 4921 4613 0.94 4752 1241 0.26

1.082 4860 4559 0.94 4591 1206 0.26

1.179 4940 4670 0.95 4659 1214 0.26

1.268 4844 4542 0.94 4720 1243 0.26

1.351 4825 4549 0.94 5041 1412 0.28

1.429 4864 4578 0.94 4958 1321 0.27

1.504 4795 4502 0.94 4612 1265 0.27

1.574 4863 4613 0.95 4806 1292 0.27

1.642 4926 4640 0.94 4628 1239 0.27

1.707 4791 4490 0.94 4636 1221 0.26

1.77 4895 4594 0.94 4535 1260 0.28

1.831 4891 4536 0.93 4715 1262 0.27

1.889 4868 4586 0.94 5117 1442 0.28

1.946 4913 4611 0.94 5207 1387 0.27

2.001 4881 4559 0.93 4580 1170 0.26

2.055 4823 4475 0.93 4970 1337 0.27



E
Λ samples, additional information

E.1 Λ from Λ+
c → Λ0π+

The fit function for the Λc mass peak is define as a double Gaussian (fa) + first
order polynomial (fb):

fa = N

f e
−(x−µ1)

2

2σ2
1

σ1
√
2π

+ (1− f)
e

−(x−µ2)
2

2σ2
2

σ2
√
2π

 , (E.1)

with
µ2 = µ1 +∆µ; (E.2)

σ2 =
√
σ2
1 + σ2

tail; (E.3)

fb = a + bx. (E.4)

The σc used to defined signal region and sidebands is the sum in quadrature of
the two σ:

σc =
√
σ2
1 + σ2

2 (E.5)

The results from the fit to both MC and data are reported in the table below.
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Table E.1: Fit results for the Λ from Λc → Λπ sample, obtained both with the
MC sample and with data.

MC sample Data sample

N 34.72 ± 0.37 29.36 ± 0.32

f 0.64 ± 0.03 0.61 ± 0.03

µ [MeV/c2] 2.28658 ± 0.00004 2.28649 ± 0.00005

σ [MeV/c2] 0.00323 ± 0.00007 0.00358 ± 0.00009

∆µ [MeV/c2] -0.00051 ± 0.00021 0.00013 ± 0.00022

σtail [MeV/c2] 0.0071 ± 0.0005 0.0073 ± 0.0005

σc [MeV/c2] 0.00785 ± 0.0003 0.00811 ± 0.00003

a 69.87 ± 0.40 48.49 ± 0.35

b -0.197 ± 0.012 -0.189 ± 0.015

Table E.2: Width (σ68), mass region (MR) and sidebands (SL, SR), both for MC
and data, obtained from the pπ invariant mass distributions, and used for the Λ
candidates sideband subtraction in Section 8.1.

MC sample

σ68 [MeV/c2] MR [MeV/c2] SL [MeV/c2] SR [MeV/c2]

9.02 (1114.78, 1116.58) (1110.27, 1111.17) (1120.19, 1121.09)

Data sample

σ68 [MeV/c2] MR [MeV/c2] SL [MeV/c2] SR [MeV/c2]

10.00 (1114.68, 1116.68) (1109.68, 1110.68) (1120.68, 1121.68)
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Figure E.1: 2D data-MC ratio. In the left panel, the ratio is shown as a function
of the Λ polar angle (y-axis) and its transverse flight distance (x-axis). In the
right panel, the ratio is shown as a function of the Λ polar angle (y-axis) and its
momentum (x-axis). Red regions of the panels correspond to areas where there
is an excess of data with respect to MC. Blue regions correspond to those where
there is a lack of data with respect to MC. White regions correspond to those
where the data-MC ratio is close to the unity. The background color of the panels
has been set to gray in order to distinguish it from the white regions.

E.2 Inclusive Λ sample

Table E.3: Width (σ68), mass region (MR) and sidebands (SL, SR), both for MC
and data, obtained from the pπ invariant mass distributions, and used for the Λ
candidates sideband subtraction in Section 8.2.

MC sample

σ68 [MeV/c2] MR [MeV/c2] SL [MeV/c2] SR [MeV/c2]

12.97 (1114.39, 1116.98) (1107.90, 1109.20) (1122.17, 1123.46)

Data sample

σ68 [MeV/c2] MR [MeV/c2] SL [MeV/c2] SR [MeV/c2]

15.78 (1114.11, 1117.26) (1106.22, 1107.80) (1123.57, 1125.15)
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