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SUMMARY:

A bead-spring off-lattice model of a polymer chain with repulsive interactions among repeating
units confined into straight tubes of various cross sections, DZT, is studied by Monte Carlo
simulation. We are also varying the chain length from N = 16 to 128 and the strength of a short-
range attractive interaction between the repeating units and the walls of the tube. Longitudinal
and perpendicular static linear dimensions of the chains are analyzed, as well as the density profile
of repeating units across the tube. These data are interpreted in terms of scaling concepts
describing the crossover between three-dimensional and quasi-one-dimensional chain
conformations and the adsorption transition of chains at flat infinite walls, respectively. We also
study the time-dependent mean-square displacements of repeating units and obtain various
relaxation times. It is shown that both relaxation times scaling proportional to N 2 and to N3 play
a role in the reptative motion of the chain in these tubes.

1. Introduction

The properties of flexible polymer chains moving in porous structures are relevant
for applications such as filtration, gel permeation chromatography, oil recovery
etc. 2 This is also an exciting problem of statistical physics, since the conformation
of the macromolecule in such a tube in a porous material may be very severely distorted
in comparison to the conformations that the polymer takes in bulk solution. This
distortion of the polymer geometry may have two rather different sources: if the cross
section D2 of the narrow tube in which the polymer moves is smaller than the mean-
square radius of gyration (R2 )y, that the polymer takes in bulk solution, there isa
purely geometric constraining effect due to the excluded-volume interaction between
the repeating units of the polymer and the walls of the tube. As a result, one expects
the random coil in a straight tube to be deformed into a long cigar-shaped object, such
that (R2, | ) is of order Df and hence fits into the tube, while (RS, |> now is much
larger than the bulk radius square, (Rgzy,)bulk. The resulting crossover of the polymer
coil conformation from three-dimensional to quasi-one-dimensional has been studied
both by scaling considerations»? and simulations>®. The second reason for a
distortion of the polymer conformation is that in many cases there will also be an
attractive interaction between the repeating units and the walls of the tube. While much
work was devoted to the adsorption of polymers from solutions to planar walls in semi-
infinite geometry (e. g. refs.*~'?9), we are not aware of related studies of adsorbing
tubes. While for a purely repulsive excluded-volume interaction between repeating units
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and the walls it is most favorable for the chain — from the point of view of
configurational entropy — to stay off the walls as much as possible, the attractive
interaction which likes to adsorb the units at the wall may balance or overrule this
tendency. Obviously, we thus have to expect a delicate competition between entropic
forces — which want to localize the chain in the center of the tube, away from the walls
— and the enthalpic forces, which try the contrary. A first exploration of these
interesting effects is the aim of the present paper. Particularly interesting are also the
consequences of this behavior on dynamic properties of the chains, since most
applications mentioned above involve transport of the polymers through the porous
medium, and motions of chains in constrained geometries pose interesting theoretical
problems, such as exemplifying reptation''~'¥, anomalous diffusion'?, entropic
traps'% 17 etc.

In the next section we now define the off-lattice model of polymers that is studied
by Monte Carlo simulations here. In a previous work '® the bulk properties of this
model in dilute and concentrated solutions have been exhaustively studied. Since the
equilibrium of long polymer chains in computer simulations is a delicate
problem '*-29 it is necessary to choose both the coarse-grained polymer model and the
constraining geometry such that a very efficient Monte Carlo algorithm becomes
feasible. Sec. 3 presents then the average geometric characteristics of the chains
(longitudinal and transverse components of the squared gyration radius), and studies
them as function of three parameters: tube cross section, chain length and strength of
the attractive interaction between repeating units and the wall. Wherever possible we
compare the data to theoretical predictions’*>2:22, Sec. 4 presents data on the
monomer density profiles across the tube. Evidence for a transition from non-adsorbed
chains (localized in the center of the tube) to adsorbed chains (localized at the walls
of the tube) is presented. Sec. 5 describes some results on mean-square displacements
of the repeating unit as function of time, both for longitudinal and transverse motions.
Various relaxation times are extracted and compared to predictions due to reptation
theory. Sec. 6 then summarizes our conclusions.

2. The polymer model and the pore geometry

For a conclusive test of the theoretical ideas sketched in the introduction one needs
a polymer model that can be simulated very efficiently. Therefore, first simulations on
this problem have used a lattice model, representing the chain as a self-avoiding walk
on the diamond lattice¥. However, for chains in narrow tubes such a lattice model has
also disadvantages: large parts of the chain can be temporarily locked in and cannot
move at all until their environment has relaxed. There are also problems of principle
since almost always the algorithms are not strictly ergodic?32%,

Variations of the model (such as variable degree of chain stiffness, etc.) are often
difficult to introduce, at least if one does not wish to sacrifice most of the program
efficiency. Thus in the present work we use an off-lattice model of bead-spring type.
The effective monomeric units along the chain are coupled by a restricted harmonic
potential for the length of the bond between them
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UQ) = k(1 = 1g)* for iy <1 <lpg 6
U()= o for [=ly, or =l (2)

Choosing [, = 1 as the unit of length, we use'® I, = 0,7, Iy, = 0,4. We choose
the spring constant & in Eq. (1) rather stiff (by working at a temperature T such that
k/(kg-T) = 10), so that the cutoff at /p, and [, has little effect on the
configurations of the chains 18) As a non-bonded interaction, we use the repulsive part
of the Lennard-Jones-Potential'®,

V(r) = dep; ([(0r;/r)'2 = (o /n)°1 + 1} for r< 2 gy ?3)

Vir)=0 for r> e oLJ “

Here the range parameter o is chosen such that the cutoff coincides with /.y,
2/6g,; = 1, and the strength parameter &, is chosen weak (in comparison with
temperature), kg * 7/e;; = 10, so only the steeply varying part of V(r) and not the
region near the cutoff matters. With respect to bulk static and dynamic properties (?f
polymer chains described by this model, previous work '® has shown that asymptotic
properties are already reached for rather small chain length N, and a reasonable
description of the crossover from dilute to concentrated solutions (compatible with
related work on lattice models?®) did emerge. The Monte Carlo algorithm (where
repeating units attempt to jump to a randomly chosen position in a cube of unit length
centered around their old position) has a reasonably large acceptance rate (these rather
Jarge moves are typically accepted with probability of order 0,1) and allows to use the
link-cell method, as discussed below. In view of these properties, this model was found
to be nearly as efficient as comparable highly optimized lattice codes 2,

For an efficient performance of off-lattice Monte Carlo simulations of polymer
chains the use of the link-cell scheme is absolutely crucial, as lots of unnecessary
computation of distances to other repeating units are avoided. For the present
application, it was very desirable to preserve the features of this link-cell scheme as
much as possible. For this reason of computational efficiency we work with a straight
tube of square rather than circular cross section (Fig. 1). While at first sight this may
look rather artificial, we argue that both ideal straight tubes with square cross section
and with circular cross section are similarly artificial: in real porous materials, tubes
are not straight but contorted, their cross section fluctuates both in size and in shape,
and special effects may occur near the bifurcation points of the pore network 19 The
real tubes thus bring in one more qualitatively important feature of porous materials,
that is deliberately omitted here, namely “frozen in” statistical disorder. Here we
intentionally wish to eliminate many such aspects of real tubes in porous media, in
order to be able to bring out clearly two aspects which we feel are relevant for more
complicated problems, too: first of all, the chain confinement of the polymers moving
in a quasi-one-dimensional geometry, and secondly, the modification of chain
structure and dynamics due to the attractive interactions with the wall. Both aspects
are included in our model in a very simple way. As an illustration, a snapshot picture
of such a confined chain is displayed in Fig. 2. We also note that more ideal narrow
tubes occur in zeolithe crystals or other inclusion compounds®® — but there, of
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g}g. 1,. Sketch of the tube geometry used: the cross section of the tube is a square of linear
1crir_1en51.0n _DT, oriented allon_g the x and y axis, respectively. The linear dimension of the tube in
z direction is Dy (and periodic boundary conditions in z direction are used). At the walls of the

tube an attractive potential U (x; ich i i
: , ¥) acts, which is chosen as U =
while otherwise U(x, y) = 0 % S R L8 U

Fig. 2. Snapshot picture
of a chain with N = 16
repeating units confined in
a tube with Dy = 4 for
&/(kg+ T) = 0. A sphere
with radius r = 0,4 is
drawn around each
repeating unit (note that
the center of gravity of
each unit can come arbitra-
rily close to the walls, and
therefore the spheres can
intersect the walls although
the units — at the center of
the spheres — can never
cross the walls)

course, the precise geometry of the wall reflects the crystal symmetry and one also must
use a “corrugation potential” (periodic in z-direction along the tube) to reflect the
crystal structure rather than the structureless potentials used here that do not depend
on z. Of course, our study can be viewed as a first step that can be extended later into
all tl.'le'Se directions in an attempt to model materials and their properties in a more
specific way, but at the moment the effect of such complications is disregarded

The technical details of our simulations are as follows. We use tube linear dimen;ions
Dy = 1,2, and 4 (remember that /., = 1 is our unit of length) and D; = 64 and 128
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(two choices for D; have been studied only for the sake of verifying that the
dependence of our results on Dy can be neglected — indeed we are interested only in
the limiting behavior of D, — o). We use periodic boundary conditions in z-
direction. The chain lengths considered are N = 16, 32, 64 and 128, while wall energies
studied were &' = &/(kg-T) = 0, —0,5, —1, —2 and —3. Data for N < 64 have
always been taken for D; = 64 only, while data for N = 128 were taken for both
choices of D, . Unlike ref.® — where for a self-avoiding walk model tube diameters up
to Dy = 32 lattice spacings were studied and chain length up to N = 800 — our
interest here is not so much to establish what happens in the scaling limit (D = o,
N — o taken together in the suitably scaled combination) but rather to provide
qualitative insight into the behaviour of chains in very narrow tubes as they are
presumably prevailing in many materials.

For gaining statistics, many runs under otherwise identical conditions were taken and
averaged over. This number of runs ranged from n = 240 (for N = 16) to n = 100 (for
N = 64). Since these runs can be considered as statistically independent, they allow a
straightforward estimation of statistical errors of the various quantities of interest.
However, in the figures to follow statistical errors are not shown since in many figures
(particularly on static radii) they are smaller than the size of the symbols, while in other
figures (like the density histograms) they would confuse the picture and can be
estimated from the fluctuations seen in these plots.

3. Linear dimension of chains in tubes with variable strength of wall attraction

As is standard? we consider longitudinal (denoted by index 1) and transverse (t)
components of the mean-square end-to-end distance (R?Y and gyration radius (Rg),
respectively.

<[Zi il Zcm]2>

™Iz

(R =

«|- =l-

Alx; = Xe)? + i = Yem1*D )

=N

Il

(RZ)Y =
1
the center of mass vector being denoted as R., = (Xems Yem» Zem)- Fig. 3 shows a log-
log plot of (RZ)/N? ~ N21-9 ~ NO82 ysing v = 0,59'?. Apart from the case Dy
= 4,¢ = —2, aslope of 0,83 is found, irrespective of Dy and €', which is in excellent
agreement with the theoretical prediction. Thus while the precise value of Dy and
interaction strength & affect the prefactor in the relation ]/@ ~ N, the exponent
of the power law is universal and does not depend on such “details” of the model (or
on details of a real material, of course). This is once more an example for the usefulness
of scaling ideas for polymers'?. However, one cannot push all scaling concepts too
far: while the scaling theory for D = oo predicts'+?

(RD/N? = f(Dr/N") with flx < 1) ~ x27U o 4 6)

it is seen that data for Dy = 1, 2 and 4 do not yet scale in this form (Fig. 4). In
particular, the data points for Dy = 1 are quite off, but this must be expected since
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Fig. 3. Fig. 4.

F[1}g] 3.. L.og—.log plot of (Rgzl)/sz versus N for several choices of Dy and ¢'(¢' = 0 if not
otherwise indicated). The four upper dashed straight lines have all the same slope of about 0,83

Fig. 4. Scaling plot of (R2)/N2¥ 2 ;
sl & plot of (Rj1)/N=" (open symbols) and (REY/N? (full symbols) versus Dy /N?,

now the tube linear dimension is of the same order as the bond length, and thus scalin
must.break down. The exponent predicted in Eq. (6) is roughly see;l already for thi
gyration radius, although it is not seen for the end-to-end distance. But we expect that
both quantities would scale for Dy of order 10, as for the lattice model in ref. 3 Even
f.ror.n' the present work on Very narrow tubes one can already roughly estirr;ate the
hml.tmg behavior of very wide tubes from the scaling plot, inspired by Eq (6)

Fig. 5 shows the transverse part of the gyration radius and thereby elucidat‘es tI;e role
of the attractive wall interaction: while for & = 0 the chain wants to stay off the wall
and this implies all repeating units must be close to the center of the tube, for & : 8
the monomers tend to be adsorbed on the walls and therefore (R} is distir’lctly larger.

" o0 Dr=4, =0
= o Dr=2, =0
N A D‘]': i e=0
= ® Di=4, g=-2
v m Dr=2, £=-2

0.5
0.2 Fig. 5. Log-log plot of (Ré) vs. N for
3 several choices of Dy and &, as
’ indicated i i
10 20 50 100 200 Gie i
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It is also remarkable that much larger values of N are then needed to reach the
saturation values of (Rg";). We interpret this behavior by conformations where a
number of segments of the chain are adsorbed on one of the four walls and then a
number of segments follows which are adsorbed on another of these four walls etc.:
only if the chain has wound itself enough along all walls with approximately equal
numbers of repeating units adsorbed on each wall (Rgzl) will reach its saturation value.
This picture of a chain winding itself along the walls of the tube in an irregular screw-
like configuration (Fig. 6) also explains why now the longitudinal component (Fig. 3)
is distinctly shorter than for the case with no attractive interaction, where the chain is
rather nicely stretched out nearly linearly in the center of the tube. In this way we can
qualitatively understand the slow crossover in the case Dy = 4, ¢ = —2 in Fig. 5.

Fig. 6. Snapshot picture of a chain with N = 128 repeating units confined in a tube with Dy
= 2 for strong wall attraction (¢/(kg* T) = —3). The inner concentric tube with Dy = 1 has
only been drawn artificially in this figure for the sake of enhancement of the spatial view of the
chain and to demonstrate that the chain winds itself around along the walls, it has had no effect
in the actual simulation where there was no inner tube present

While with increasing interaction strength (R})/N decreases monotonically for Dy
= 2 (Fig. 7a), a pronounced minimum is found for D; = 4 (Fig. 7b). In contrast, the
behavior of (Rgzt) is monotonic for D = 4 (Fig. 8). Perhaps the interpretation of the
minimum in Fig. 7 then is that for &/(kg - T) = —2 the chains still have enough room
near the walls to take zig-zag-like conformations, while for &/(kg-T) = —3 where
more repeating units are close to the walls entropy requires the chains to stretch out
more. So the minimum could correspond to conformations containing “bridging” of
the chain between opposite walls, while for &/(ky - T) = —3 these “bridges” have
disappeared. A detailed investigation of local structure in the chains is clearly required
for full clarification of that point.
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Fig. 7. a) (Rgzl)/N vs. &/(kg * T) for Dy = 2. Different symbols denote the various choices of N,
as indicated in the figure. Curves are guides to the eye only. b) Same as (@) but for Dy = 4

-

A
N
o
@
v

3.0

157 \\0 Fig. 8. (R3)vs. &/(k - T) for Dy = 4. Different

symbols denote the various choices of N, as

D=4 indicated in the figure. Curves are guides to the eye
0 . . only
-4 -3 -2 4 0
e/lkg- T)

4. Monomer density profiles in the tube

We have divided the square cross section Dr X Drinto a fine grid. By counting how
often a grid square (centered at x, »)is occupied by the center of gravity of a repeating
unit, we obtain a histogram of the repeating unit density p(x, y) inside the tube. Since
the square symmetry implies that all relevant information is already contained in one
quarter 1/2Dy x 1/2Dy of the square, Figs. 9 and 10 display only the histogram of
the lower left quarter of the tube in the xy-plane.

As expected, for ¢’ = 0 the density of repeating units near the walls is zero, and there
is a flat maximum in the middle. But already for ¢ = —0,5 (Fig. 9b) we see a slight
but steep increase of the density in the region near the wall. This square-well attractive
wall potential then leads to a step in the density near the wall region. While for & =

—1and Dy = 2 (Fig. 9b) the density maximum in the center of the tube and at the
walls are of about equal height, fore’ = —2 (Fig. 9¢) the density maximum in the center
of the tube has completely disappeared. It can also be clearly recognized that the
density near the walls is no constant but gets reduced again near the corners of the
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Fig. 9. Density histogram
for N = 128, Dy = 2 and "
g =0(@), —0,5(b), —1(c)

and —2 (d). Only one quar-
ter of the cross section is
shown (x and y run from 0
to Dy/2 = 1 as indicated).

Note that the z-axis emanates i‘ 0,0007
from a corner point of the S 0.0005
cross section in (a) and (b),

while for clarity of the 0.0003
display the perspective is 0,0001
rotated in (c) and (d), so the

z-axis emanates from a mid-

point at the boundary of the

cross section then

square cross section of the tube. Obviously, it is entropically rathe.r unfavor.able for
repeating units to get into these edges of the tube, and thus the d.ensny reduction near
these edges is no surprise. It is also found that different chain lengths do beha\'/e
extremely similarly, as far as the density profiles for ¢ = 0 is concerned, no.sy.stema.txc
difference between different choices of N can be detected and also the variation with
&' for different choices of N does not give rise to any remarkable differences (cf.
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Flg 9c—d with Fig. 10a—b). More quantitative conclusions on this problem
.dlfflcult due to the noise in these density profile data. However, the general conclu 'are
1s clear and in agreement with the findings of sec. 3: the attract’ive interaction enfosrlon
a conformational change such that the chain which for | & | < 1is more or ICes
unbound in the central region of the tube for | & | = 1 gets strongly bound t elfs
walls of the tube and winds itself along all four walls. R
‘ I.n.the limit where one considers adsorption of a single chain on one flat wall of
mfm.lt?: extent it is well known that a sharp phase transition occurs for N — oo ¥ wh'(;
for fm.lte N the transition is rounded. We suspect that for finite D there is an additio : ?
rounding of this adsorption transition, analogous to the finite-size rounding of cri 'nal
phe-nomena”). Depending on which length is smaller — (R2 }!/2 or D E(;hcr;'tl(f?
chain length rounding® or the finite cross section rouiycrlir?gkof thTe adsjrpltrilzni

sition dOIlllnateS A more detall y ll()WeVeI 1 [e“ (o]
transiti . ed anal S1S Of thlS S]tuatlon,
, 1S t
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< 0,0003
0,0002
0,0001

0,002

plx, y)

0,001

Fig. 10. Same as Fig. 9 but
10015 f?rDT:4,N=32and
0 e = 15" &= -1(@), -2 ()

5. Brownian motion of polymer chains in tubes with attractive walls

Asin our previous work ** %:29 we have found it useful to characterize the motions
of the chains in terms of mean-square displacements of both repeating units in th
center of the ChaiI.lS and at the chain ends, as well as by their center of mass of motione
Of course, now it is necessary to distinguish between longitudinal displacement.
(parallel to the tube axis) and transverse ones (perpendicular to the tube axis). Thus th:

quangt-le.s on which we focus attention in the following are defined as (cf. Fig. 1 for
a definition of the coordinate axes x, 3, z) :
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Here the position of the i’th repeating unit along the chain at time ¢ is denoted as
r() = (x;®), y;@), z;(1)), and the center of mass is Roy (1) = Xem (), Yem (@),
Zcow(®)). InEgs. (7 and 8) we average over 4 units near the center {and in Eq. (11) over
4 units near the two free ends, respectively} simply in order to improve the statistics.

Typical data for the time-dependence of these mean-square displacements (for
&/(kg+ T) = 0) are shown in Figs. 11 and 12. Data for Dy = 2 have also been
obtained. Their behavior is intermediate between the cases Dy = { and D; = 4 and
they are omitted here. Apart from very late times, where these data sometimes suffer
from insufficient length of the runs, the data are compatible with a simple diffusive

behavior of the chains,
gy(t) = 2Dyt 12)

D, being the diffusion constant of the chains. Thus no transient regime of anomalous
diffusion {g5(t) ~ ¢* with a < 1}is found here, consistent with the previous lattice
model study of chains confined into tubes?, but distinct from the behavior of chains
in models for bulk concentrated solutions amd melts'® 25, The resulting dependence
of the diffusion constant D, as function of chain length and tube linear dimension Dy
is analyzed in Fig. 13. It is seen that simple Rouse behavior is observed (D ~ 1/N)
but the scaling with Dy is rather poor, as expected since Dy is too small to be in the
scaling regime (cf. Fig. 4).

The quantities g, (¢), gx(t) and g5 (¢) are seen to saturate at finite values. As
expected, g, (¢ = o) is independent of chain length and of the same order as (Rg2[>. In
(Rgz!> all repeating units and not only inner units are included, of course, and since
chain ends are more repelled from the walls of the tube than inner monomers are, the
behavior of these two quantities is not identical, of course. E.g., for Dy = 4 we have
(Rg2[> ~ 1,6 (for N = 128) while g, (t = ») = 2,9. Consistent with this interpretation
is the fact that (R2) distinctly increases with increasing N (RH N1 = 1,43).

In contrast, both g, (¢ = o) and g5 (¢ = o0) have saturation values that increase
roughly linear with N (Fig. 14). Of course, since Fig. 3 implies (R}y ~ N? this result
simply says that, due to density fluctuations along the cigar-shaped polymer, the inner
unit of the chain makes excursions relative to the center of mass of a relative distance
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Fig. 11.  Log-log plot of mean-square displacements &n@®), g,: (1), g5 (2), 831 (?) and g, (¢) versus
tfore/(kg-T) = 0, Dt = 1 and chain lengths N = 16 (a), 32 (b), 64 (c) and 128 (d). Time ¢ is
measured in attempted moves per repeating unit. Different symbols characterize various types of
displacements as indicated in the figure.

| AZqy | /1/(—135 ~ 1/ N, which is expected from Gaussian fluctuations. The mean-
square excursions of the ends relative to the center of mass follow the same law but with
a larger prefactor.

We now summarize the main predictions of the scaling theory of ref.? concerning
the dynamic behavior of the displacements, defining a rate W that characterizes the
time-dependence of repeating unit displacements in the good-solvent limit. For times

IS Wt s Wty = (Dr/d2y12)20+1/@) gne expects Rouse relaxation essentially
independent of Dy, i.e.

&u(®) ~ g, (t) ~ gy(t) ~ g51(t) ~ 2y(WT)1+1/C0) 4

where prefactors of order unity are always omitted. Of course, for the time ¢ — Liibe
the perpendicular displacement is of the order of Dy, and hence the tube constraint
is strongly felt. In fact, inspection of Fig. 12 shows that the time where &1, (t) reaches
a plateau is about f,, =~ 4000, independent of N. For times ¢ > tupe the
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Fig. 12. Same as Fig. 11 but for Dy = 4
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perpendicular motions are essentially equilibrated and the dynamics is determined by
3)
individual motions along the tube. One then expects

where the generalized Rouse time ¢,

1/Q2v))
gn(t) ~ gu(t) ~ gg(t) ~Di - (Wr)'/2- (I%)/2/ D)1/

twbe

» 2
INE W*l '(DT-<12>I/2)2 I/UN

<R 'L g

(14

(15)

is the time needed to equilibrate density fluctuations along the chain. It is seen that

1/v
<12>1/2
2, 2 231=1/2 2 2y—1-1/(2v) 2
&> (lN) ~ DT.N.(DT/U >/ )I A U)(DT/<[ >/ ) = DT N <

Dy

i.e. a mean-square displacement proportional to N (a}s found in Fig. 14!)112s jse;;:hefda.l
Note also that g, (z,) crosses over to the gyration radius square of order ¢ .) o A
free chain if the tube gets of this size (D = (?)!/? N¥). Of course, th.1s Smoo
crossover is nothing but a consistency check of the crossover scaling description.
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Fig. 13. Log-log plot of the diffusion constant Dy versus N for different choices of Dy as
indicated (a), and scaling plot NDy /(A4 <! 2y) versus Dy /N? (b). Here Dy is normalized by the
acceptance rate of the moves, A, and the mean-square bond length ¢/ 2y. Note that the relative
error of Dy is about 10%, and thus the irregular behavior of part (b) is to some extent due to
statistical errors
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Fig. 14. Log-log of the saturation values
g4 (t = =) fopen symbols} and g5 (£ = o)
{full symbols} versus chain length. Straight
lines indicate slopes 1,0 and 0,9, respectively.
Circles: Dy = 4; squares: Dy = 2; triangles:
Dy =1
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For times ¢ > t,, both g,(t) and g4(¢) have settled down at their respective
saturation values, while g,;(¢) continues to increase and crosses over to a diffusive
behavior,

gnt) ~ Dyt >ty (16)
From the condition that the crossovers between Egs. (14) and (16) for ¢t = ¢, are
smooth one can estimate the chain diffusion constant as

Dy ~ W{?Y/N 1mn

i.e. in the scaling limit D, should not depend on the tube size Dy. It must be noted,
though, that Eq. (15) is not the longest characteristic time of the system: obviously it
makes sense to introduce a diffusion time 7}, that is needed for a chain to diffuse its
own size. Using {cf. Eq. (6)} (R3Y ~ (/*YN?- ((*)"?/D1)¥*~* we find

th ~ D' (REY = WIN3 - (D2 Y (18)
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As pointed out in ref. ¥ this time ¢, shows up as the maximum relaxation time in the
coherent scattering function from such a diffusing chain in the tube.

Of course, there is some ambiguity in defining these times ¢, , ¢, and 7, precisely,
in view of the omitted prefactors of order unity in all the above equations (which also
are not known explicitly!). In order to avoid ambiguities we follow the spirit of
refs. %29 to define relaxation times 7}, 753, 7} from the following equations for the
time-dependent mean-square displacements:

g =1 = RH (19)

ilh =k = e @ = vhs) 20)
1 2 2

gyt =13)= ?(Rgl) 1)

As an example, the times 7} and 7}, are shown in Fig. 15 on a log-log plots vs. N.
We expect th, to be proportional to ¢y, and 7} to be proportional to #,, and the
respective power laws are indeed nicely seen. Also the dependence on Dy is not far
from the scaling prediction.

While Figs. 11 —15 all refer to the athermal case, extensive data of a very similar
character have also been generated for the case of attractive interaction with the walls.
Figs. 16 and 17 give selected examples. Essentially the main effect is a decrease of the
acceptance rate (Fig. 16a) of the moves as more and more repeating units get adsorbed
to the wall. The relaxation times show roughly Arrhenius behavior — but clearly the
relaxation time 71 can be estimated only rather roughly, as expected because it is very
difficult to measure such large relaxation times accurately. But it is rather clear from
our data that the same power laws with chain length hold as in the athermal case (Fig.
17). This fact emphasizes that the predictions of Egs. (15) and (18) are fairly universal
and independent of details of the model such as the parameter &/(kg * T) — the latter
affects only the rate prefactor W ~!. Since one could have expected that an adsorbed
chain might become essentially immobile and frozen, this is a rather surprising result.

6. Conclusions

In the present work computer simulations have been presented which had the aim
to elucidate the static and dynamic behavior of polymer chains confined to narrow
pores. We have modelled in a crude way the two principal effects that arise in this
situation, in distinction to polymers in solution or melt: confinement of polymers due
to the restricted geometry inside a tube, and adsorption at the walls of the pore due to
an attractive interaction between the pore walls and the repeating units forming the
chain. In this first exploratory study, we have strongly idealized the situation, by taking
the pore strictly straight with constant diameter along the z-direction, disregarding thus
both the roughness of the walls of real pores and fluctuations in pore diameter, as well
as branching of the pore geometry, etc. It is clear, however, that such complications will
arise in reality and deserve separate study. In addition, we have made several crude
simplifications which were merely dictated by the need to make our simulation
algorithm as fast and efficient as possible: choice of a square rather than circular pore
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Fig. 15. Log-log plot of the
relaxation times ré3 (a) and r% (b)
versus N, for the athermal case
(¢/(kg*T) = 0)and Dy = 1, 2 and
4 as indicated. Straight lines indicate
the expected power laws. Part (c)
shows a log-log plot of 113 vs. Dy for
three choices of N. Straight lines
indicate effective exponents (the
exponent expected in the scaling
limitis 2(1 — 1/v) = —4/3. Parts
(d) and (e) show scaling plots
motivated by Eqgs. (15) and (18)
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° = 2 and three choices of N. Straight lines would
simply correspond to Arrhenius behavior, 73; ~
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Fig. 17. Log-log plot of the relaxation times 153 (a) and r3l (b) versus N for Dy = 2 and several
choices of &/(kg - T). Straight lines indicate the expected power laws

diameter, choice of a very short square-well potential describing the wall-monomer
interaction, and last but not least, choice of a coarse-grained bead-spring type model
for the polymer chain. Due to these various simplifying assumptions, our results clearly
have a somewhat qualitative character, but they also have a more definite bearing on
such aspects of the problem which refer to universal scaling properties of the chains.
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In principle, such scaling descriptions are a priori expected to hold only if the pore
diameter Dy is much larger than the characteristic linear dimension of effective
monomers, i.e. (in our choice of units) for Dy > 1. Thus it is no surprise that in our
scaling plots (Figs. 4, 13b, 15d and e) we find that data for D; = 1 typically fall off
the scaling curve, while already data for D; = 2 satisfy the scaling already to a
reasonable approximation. To our surprise, we have found that even for the case where
a chain is rather strongly adsorbed at the walls of the tube (such as depicted in Fig. 6)
the chain diffusion along the tube is not suppressed; there is only a reduction for the
acceptance rate of repeating unit motions (Fig. 16a) which also shows up in various
relaxation times as a kind of Arrhenius-like behavior (Figs. 16b, c). The chain self-
diffusion constant Dy is of the same order in chain length as results for purely
repulsive walls (Fig. 13). This relatively high mobility of chains in such pores, however,
is expected to be dramatically reduced if random obstacles are present. For many
applications, a reasonably high mobility of chains in pores is crucial, and thus our
study may be useful for the further development of such applications, too.

An important qualitative simplification of our model is the omission of any explicit
solvent molecules. As is well known, such solvent molecules mediate hydrodynamic
interactions among the repeating units (in dilute solution, the chain then is described
by the Zimm model rather than the Rouse model to which our simulation then reduces).
It would be interesting to consider this more realistic situation including solvent also,
which then would require the use of molecular dynamics methods?®. Thus, there are
many interesting directions into which the present work could be extended.

This research has been supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
No. 436-BUL 113/45. One of us (A. M.) thanks the Alexander von Humboldt Foundation for
a grant enabling the purchase of a personal computer. We are grateful to Prof. J. F. Joanny for
a stimulating discussion.

) M. Daoud, P. G. de Gennes, J. Phys. (Paris) 38, 85 (1977)

2 s, Wu, “Polymer Interfaces and Adhesion’, M. Dekker, New York 1982

3 K. Kremer, K. Binder, J. Chem. Phys. 81, 6381 (1984)

4 K. Binder, K. Kremer, in ‘‘Scaling Phenomena in Disordered Systems’, R. Pynn,
A. Skjeltorp, Eds., Plenum Publ. Corporation, New York 1985, p. 525

% B, Eisenriegler, K. Kremer, K. Binder, J. Chem. Phys. 77, 6296 (1982)

% A. Takahashi, M. Kawaguchi, Adv. Polym. Sci. 46, 1 (1982)

) P. G. de Gennes, Adv. Colloid Interface Sci, 27, 189 (1987)

9 W. G. Madden, J. Chem. Phys. 87, 1405 (1987); 88, 3934 (1988)

9 8. Lione, H. Meirovitch, J. Chem. Phys. 88, 4498 (1988); H. Meirovitch, S. Lione, J. Chem.
Phys. 88, 4507 (1988)

10 F. van Dieren, K. Kremer, Europhys. Lett. 4, 569 (1987)

') M. Doi, S. F. Edwards, ““The Theory of Polymer Dynamics”, Oxford University Press, Oxford
1986

2) P, G. de Gennes, “Scaling Concepts in Polymer Physics’, Cornell University Press, Ithaca
1979

'3 P. G. de Gennes, J. Chem. Phys. 55, 572 (1971)

Polymer chains confined into tubes with attractive walls .. . 323

'9) 1. Leger, P. G. de Gennes, Annu. Rev. Phys. Chem. 33, 49 (1982)

15 A. Baumgirtner, M. Muthukumar, J. Chem. Phys. 87, 3082 (1987)

') F. F. Ternovsky, I. A. Nyrkova, A. R. Khokhlov, Physica A (Amsterdam), 184A, 342 (1992)

17) S, F. Edwards, M. Muthukumar, J. Chem. Phys. 89, 2435 (1988)

18) I Gerroff, A. Milchev, K. Binder, W. Paul, J. Chem. Phys. 98, 6526 (1993)

19 K. Binder, Makromol. Chem., Macromol. Symp. 50, 1 (1991)

20) K. Binder, in “‘Computational Modeling of Polymers”, J. Bicerano, Ed., M. Dekker, New
York 1992, p. 221

1) S, Daoud, F. Brochard, Macromolecules 11, 75 (1978)

22) 1. Turban, J. Phys. (Paris) 45, 347 (1984)

23 N. Madras, A. D. Sokal, J. Stat. Phys. 47, 573 (1987)

24 K. Kremer, K. Binder, Comput. Phys. Rep. T, 259 (1988)

25) W. Paul, K. Binder, D. W. Heermann, K. Kremer, J. Phys. I 1, 37 (1991); J. Chem. Phys. 95,
7726 (1991)

26) A. E. Tonelli, Makromol. Chem., Macromol. Symp. 65, 133 (1993)

2Ny, Privman, Ed., ‘Finite Size Scaling and Numerical Simulation of Statistical Systems’’,
World Scientific, Singapore 1990

%) B. Diinweg, K. Kremer, Phys. Rev. Lett. 66, 2996 (1991)



