
Vol.:(0123456789)

Journal of Elliptic and Parabolic Equations (2021) 7:323–340
https://doi.org/10.1007/s41808-021-00116-x

1 3

On off‑diagonal decay properties of the generalized Stokes 
semigroup with bounded measurable coefficients

Patrick Tolksdorf1 

Received: 4 March 2021 / Accepted: 29 August 2021 / Published online: 18 September 2021 
© The Author(s) 2021

Abstract
We investigate off-diagonal decay properties of the generalized Stokes semigroup 
with bounded measurable coefficients on L2

�
(ℝd) . Such estimates are well-known 

for elliptic equations in the form of pointwise heat kernel bounds and for elliptic 
systems in the form of integrated off-diagonal estimates. On our way to unveil this 
off-diagonal behavior we prove resolvent estimates in Morrey spaces L2,�(ℝd) with 
0 ≤ 𝜈 < 2.

Keywords  Generalized Stokes semigroup · Stokes operator with bounded 
measurable coefficients · Off-diagonal estimates
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1  Introduction

In this note we study decay properties of the resolvent as well as the associated  
semigroup of the generalized Stokes operator A on L2

�
(ℝd) . This operator is formally 

given by

Here, the function u denotes a fluid velocity and � denotes the to the generalized 
Stokes equations associated pressure function. The matrix of coefficients is merely 
supposed to be essentially bounded and ellipticity is enforced by a Gårding type 
inequality.

If the elliptic counterpart Lu = −div(�∇u) is considered, then certain off-diag-
onal decay properties of the corresponding heat semigroup are well-known. For 

Au = −div(�∇u) + ∇�, div(u) = 0 in ℝ
d.
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example, if L represents an elliptic equation with real coefficients, then the kernel 
kt(⋅, ⋅) of the associated heat semigroup (e−tL)t≥0 satisfies heat kernel bounds

It is well-known that if L represents an elliptic system with real/complex coefficients 
these heat kernel bounds seize to be valid [4, 7, 9]. The natural substitute for heat 
kernel bounds for elliptic systems are so-called off-diagonal estimates. The simplest 
version are L2 off-diagonal estimates for the heat semigroup, its gradient, or also for 
L applied to the heat semigroup and are of the form

where E,F ⊂ ℝ
d are closed subsets and f ∈ L2(ℝd) has its support in E. Such esti-

mates build the foundation for many deep results in the harmonic analysis of elliptic 
operators with rough coefficients as can be seen, e.g., in the seminal works on the 
Kato square root problem [3] as well as on mapping properties of Riesz transforms 
on Lp-spaces [1] or the well-posedness results of Navier–Stokes like equations with 
initial data in BMO−1 [2] in the spirit of Koch and Tataru [8].

The spirit of how these off-diagonal estimates (1.1) are used is as follows. For exam-
ple, one might be interested in estimating an expression that involves e−tLf  in some 
sense. One then decomposes ℝd into carefully chosen disjoint sets, e.g., into annuli of 
the form Ck ∶= B(x0, 2

k+1r) ⧵ B(x0, 2
kr) , k ∈ ℕ , and C0 ∶= B(x0, 2r) . Then one would 

estimate by virtue of (1.1)

and proceed with the proof in a certain manner, depending on the particular 
situation.

The question, whose study we want to initiate here, is whether or not the general-
ized Stokes semigroup (e−tA)t≥0 satisfies off-diagonal decay estimates and if so, how 
they look like. The main problem is already, that in a calculation of the form (1.2) one 
multiplies f by a characteristic function. This in general destroys the solenoidality of the 
function f. Thus, if one wants to perform such an operation, one is urged to think about 
how to extend e−tA to all of L2(ℝd) . In many situations, the gold standard is to extend 
e−tA to all of L2(ℝd) by studying e−tAℙ , where ℙ denotes the Helmholtz projection on 
L2(ℝd) . Thus, in order to imitate the calculation performed in  (1.2) one would need 
that off-diagonal bounds for e−tAℙ are valid. However, estimates of the form

||kt(x, y)|| ≤ Ct
−

d

2 e
−c

|x−y|2
t .

(1.1)‖e−tLf‖L2(F) + t
1

2 ‖∇e−tLf‖L2(F) + t‖Le−tLf‖L2(F) ≤ Ce
−c

dist (E,F)2

t ‖f‖L2(E),

(1.2)

‖e−tLf‖L2(B(x0,r))
≤

∞�
k=0

‖e−tL�Ck
f‖L2(B(x0,r))

≤ C‖f‖L2(B(x0,2r))
+ C

∞�
k=0

e
−c

r2

t
22k‖f‖L2(B(x0,2

k+1r))
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with g ∶ [0,∞) → [0,∞) satisfying limx→∞ g(x) = 0 and f being supported in E are 
in general wrong. The reason is simple: fix any closed subset E ⊂ ℝ

d and let F ⊂ ℝ
d 

denote any other closed set that satisfies dist (E,F) > 0 . On the one hand, since 
(e−tA)t≥0 is strongly continuous on L2

�
(ℝd) with e−0Af = f  one has that

On the other hand (1.3) together with the condition on g implies that ‖ℙf‖L2(F) = 0 . 
This implies that supp (ℙf ) ⊂ E whenever f ∈ L2(ℝd) with supp (f ) ⊂ E . As a con-
sequence, the Helmholtz projection would be a local operator, which is known to be 
wrong.

Thus, in order to establish off-diagonal bounds for the generalized Stokes semi-
group, one either needs to find the correct extension of the generalized Stokes semi-
group to all of L2(ℝd) or one needs to avoid arguments that destroy the solenoidality 
of f. In particular, this rules out standard proofs of off-diagonal estimates that are 
used in the elliptic situation as, e.g., Davies’ trick [5].

The main result of this note is an estimate of the type (1.2). Let us introduce some 
notation to state this in a precise form:

Assumption 1.1  The coefficients � = (�
ij

��
)d
�,�,i,j=1

 with �ij

��
∈ L∞(ℝd;ℂ) for all 

1 ≤ �, �, i, j ≤ d satisfy for some 𝜇∙,𝜇
∙
> 0 the inequalities

and

The operator A is realized on L2
�
(ℝd) ∶= {f ∈ L2(ℝd;ℂd) ∶ div(f ) = 0} as fol-

lows. Let H1
�
(ℝd) ∶= {f ∈ H1(ℝd;ℂd) ∶ div(f ) = 0} . Define the sesquilinear form

and define the domain of A on L2
�
(ℝd) as

(1.3)‖e−tAℙf‖L2(F) ≤ g
�

dist (E,F)2

t

�
‖f‖L2(E)

lim
t→0

‖e−tAℙf‖L2(F) = ‖ℙf‖L2(F).

(1.4)Re

d�
�,�,i,j=1

�
ℝd

�
ij

��
�
�
uj��ui dx ≥ �∙‖∇u‖2L2

�
u ∈ H1(ℝd;ℂd)

�

(1.5)max
1≤i,j,�,�≤d

‖�ij

��
‖L∞ ≤ �

∙.

� ∶ H1
�

(
ℝ

d
)
× H1

�

(
ℝ

d
)
→ ℂ, (u, v) ↦

d∑
�,�,i,j=1

∫
ℝd

�
ij

��
�
�
uj��vi dx
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The main result of this note is the following theorem:

Theorem 1.2  Let d ≥ 2 and let � satisfy Assumption 1.1 with constants 𝜇∙,𝜇∙ > 0 . 
For all � ∈ (0, 2) there exists C > 0 such that for all x0 ∈ ℝ

d , r > 0 , t > 0 , and 
f ∈ L2

�
(ℝd) it holds

Moreover, for all F ∈ L2(ℝd;ℂd×d) it holds

In both estimates, the constant C only depends on �∙ , �∙ , d, and �.

As a corollary of Theorem 1.2 one derives the following off-diagonal estimates.

Corollary 1.3  Let d ≥ 2 and let � satisfy Assumption 1.1 with constants 𝜇∙,𝜇∙ > 0 . 
For all � ∈ (0, 2) there exists C > 0 such that for all x0 ∈ ℝ

d , r > 0 , k0 ∈ ℕ with 
k0 ≥ 2 , t > 0 , and f ∈ L2

�
(ℝd) with supp (f ) ⊂ B(x0, 2

k0r) ⧵ B(x0, 2
k0−1r) it holds

Moreover, for all F ∈ L2(ℝd;ℂd×d) with supp (F) ⊂ B(x0, 2
k0r) ⧵ B(x0, 2

k0−1r) it 
holds

In both estimates, the constant C only depends on �∙ , �∙ , d, and �.

This article is organized as follows. In Sect.  2 we study the generalized Stokes 
resolvent problem on the whole space and establish a non-local resolvent estimate. An 
immediate consequence of this is Corollary 2.4 which states a resolvent estimate in the 

D(A) ∶=

{
u ∈ H1

𝜎

(
ℝ

d
)
∶ ∃f ∈ L2

𝜎

(
ℝ

d
)
s.t. ∀v ∈ H1

𝜎

(
ℝ

d
)
it holds �(u, v) =

∫
ℝd

f ⋅ v̄dx

}
.

‖e−tAf‖L2(B(x0,r))
+ t‖Ae−tAf‖L2(B(x0,r))

≤ C‖f‖L2(B(x0,2r))
+ C

∞�
k=2

�
1 +

22kr2

t

�−
�

4 ‖f‖L2(B(x0,2
kr)).

t
1

2 ‖e−tAℙdiv(F)‖L2(B(x0,r))
≤ C‖F‖L2(B(x0,2r))

+ C

∞�
k=2

�
1 +

22kr2

t

�−
�

4 ‖F‖L2(B(x0,2
kr)).

‖e−tAf‖L2(B(x0,r))
+ t‖Ae−tAf‖L2(B(x0,r))

≤ C

�
1 +

22k0r2

t

�−
�

4 ‖f‖L2(B(x0,2
k0 r)⧵B(x0,2

k0−1r)).

t
1

2 ‖e−tAℙdiv(F)‖L2(B(x0,r))
≤ C

�
1 +

22k0r2

t

�−
�

4 ‖F‖L2(B(x0,2
k0 r)⧵B(x0,2

k0−1r)).
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Morrey space L2,� for 0 ≤ 𝜈 < 2 . Sect. 3 relies on this non-local resolvent analysis and 
presents non-local off-diagonal decay estimates for the generalized Stokes resolvent. 
These estimates are transferred in the final Sect. 4 to the generalized Stokes semigroup 
by using its representation via a Cauchy integral.

2 � A non‑local resolvent estimate

To establish Theorem 1.2 we prove analogous estimates for the resolvent of A. More 
precisely, we are going to estimate the solution u to the generalized Stokes resolvent 
problem

for � in some complex sector S
𝜔
∶= {z ∈ ℂ ⧵ {0} ∶ | arg(z)| < 𝜔} . Using Assump-

tion  1.1 together with the lemma of Lax–Milgram, one finds some � ∈ (�∕2,�) 
depending on �∙ , �∙ , and d such that (2.1) is uniquely solvable for all f ∈ L2

�
(ℝd) and 

all F ∈ L2(ℝd;ℂd×d) . In the following, let us denote the solution operator to (2.1) by 
(� + A)−1 . The solution u to (2.1) then lies in the space H1

�
(ℝd) and for all � ∈ (0,�) 

there exists C > 0 such that for all f ∈ L2
�
(ℝd) , F ∈ L2(ℝd;ℂd×d) , and all � ∈ S

�
 it 

satisfies the resolvent estimates

and

The next lemma was proven in [10, Lemma  5.3] and combines different types of 
Caccioppoli inequalities to account for the non-local pressure.

Lemma 2.1  Let � satisfy Assumption  1.1 with constants 𝜇∙,𝜇∙ > 0 . There exists 
� ∈ (�∕2,�) such that for all � ∈ (0,�) , f ∈ L2

�
(ℝd) , F ∈ L2(ℝd;ℂd×d) , and � ∈ S

�
 

the following holds: for u ∈ H1
�
(ℝd) defined by u ∶= (� + A)−1(f + ℙdiv(F)) and 

x0 ∈ ℝ
d and r0 > 0 there exists a decomposition of u of the form u = u1 + u2 with 

u1 ∈ H1(B(x0, r0);ℂ
d) satisfying div(u1) = 0 and u2 ≡ u in ℝd ⧵ B(x0, r0) and there 

exists �1 ∈ L2(B(x0, r0)) and C > 0 such that for any ball B ⊂ ℝ
d of radius r > 0 

with 2B ⊂ B(x0, r0) we have

(2.1)

{
�u − div(�∇u) + ∇� = f + ℙdiv(F) in ℝd,

div(u) = 0 in ℝd

(2.2)‖�(� + A)−1f‖L2 + ��� 1

2 ‖∇(� + A)−1f‖L2 + ‖A(� + A)−1f‖L2 ≤ C‖f‖L2

(2.3)��� 1

2 ‖(� + A)−1ℙdiv(F)‖L2 + ‖∇(� + A)−1ℙdiv(F)‖L2 ≤ C‖F‖L2 .
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Moreover, u1 and �1 satisfy for some C > 0

In both inequalities, the constant C only depends on d, � , �∙ , and �∙ . Moreover, � 
only depends on d, �∙ , and �∙.

This lemma can be used to prove the following non-local resolvent estimate.

Theorem  2.2  Let � satisfy Assumption  1.1 with constants 𝜇∙,𝜇∙ > 0 . There exists 
� ∈ (�∕2,�) such that for all � ∈ (0,�) and all � ∈ (0, 2) there exists a constant 
C > 0 such that for all � ∈ S

�
 , f ∈ L2

�
(ℝd) , and F ∈ L2(ℝd;ℂd×d) the unique solu-

tion u ∈ H1
�
(ℝd) to (2.1) satisfies

Here, the constant C only depends on d, � , � , �∙ , and �∙ and � only depends on d, �∙ , 
and �∙.

Proof  We use the decomposition of u from Lemma 2.1 as follows. Fix k ∈ ℕ0 and 
let �0 ∈ ℕ to be determined. Let u1,k , u2,k , and �1,k be the functions determined by 
Lemma 2.1 with r0 ∶= 2k+�0+1r . Now, we proceed by applying Hölder’s inequality, 
then increase the domain of integration, and use Sobolev’s embedding to obtain for 
q > 1 with

the inequalities

(2.4)

|�|3r2
�B

|u2|2 dx + |�|2r2
�B

|∇u2|2 dx

≤ C

{ ∞∑
�=0

2−�d−�
�2�B

(
|�u|2 + |f |2 + ||�| 1

2F|2
)
dx

+
�2B

|�u1|2 dx +
�2B

||�| 1

2�1|2 dx
}
.

(2.5)
���‖u1‖L2(B(x0,r0))

+ ��� 1

2 ‖∇u1‖L2(B(x0,r0))
+ ��� 1

2 ‖�1‖L2(B(x0,r0))

≤ C
�
‖f‖L2(B(x0,r0))

+ ��� 1

2 ‖F‖L2(B(x0,r0))

�
.

∞∑
k=0

2−�k
�B(x0,2

kr)

|�u|2 dx ≤ C

∞∑
k=0

2−�k
�B(x0,2

kr)

(
|f |2 + ||�| 1

2F|2
)
dx.

(2.6)
1

2
−

1

2q
≤

1

d
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Notice that the constant C > 0 in the previous estimate only depends on d and q. 
Now, use this estimate together with u2,k = u − u1,k and (2.4) and (2.5) to deduce

Now, multiply this inequality by 2−�k and sum with respect to k ∈ ℕ0 . This then 
delivers

�B(x0,2
kr)

|u2,k|2 dx

≤ |B(x0, 2kr)|1−
1

q

(
�B(x0,2

kr)

|u2,k|2q dx
) 1

q

≤
|B(x0, 2kr)|1−

1

q

|B(x0, 2k+�0r)|− 1

q

(
�B(x0,2

k+�0 r)

|u2,k|2q dx
) 1

q

≤ C
|B(x0, 2kr)|1−

1

q

|B(x0, 2k+�0r)|1− 1

q

{
�B(x0,2

k+�0 r)

|u2,k|2 dx + (2k+�0r)2
�B(x0,2

k+�0 r)

|∇u2,k|2 dx
}

= C2
−�0d(1−

1

q
)

{
�B(x0,2

k+�0 r)

|u2,k|2 dx + (2k+�0r)2
�B(x0,2

k+�0 r)

|∇u2,k|2 dx
}
.

�B(x0,2
kr)

|�u|2 dx

≤ 2
�B(x0,2

kr)

|�u1,k|2 dx + 2
�B(x0,2

kr)

|�u2,k|2 dx

≤ 2
�B(x0,2

kr)

|�u1,k|2 dx

+ |�|2C2−�0d(1−
1

q
)

{
�B(x0,2

k+�0 r)

|u2,k|2 dx + (2k+�0r)2
�B(x0,2

k+�0 r)

|∇u2,k|2 dx
}

≤ 2
�B(x0,2

kr)

|�u1,k|2 dx

+ |�|2C2−�0d(1−
1

q
)

�B(x0,2
k+�0 r)

|u − u1,k|2 dx

+ C2
−�0d(1−

1

q
)

{
∞∑
�=0

2−�d−�
�B(x0,2

k+�+�0 r)

(|�u|2 + |f |2 + ||�| 1

2F|2) dx

+
�B(x0,2

k+�0+1r)

|�u1,k|2 dx +
�B(x0,2

k+�0+1r)

||�| 1

2�1,k|2 dx
}

≤ C
�B(x0,2

k+�0+1r)

|f |2 dx + C2
−�0d(1−

1

q
)

�B(x0,2
k+�0 r)

|�u|2 dx

+ C2
−�0d(1−

1

q
)

∞∑
�=0

2−�d−�
�B(x0,2

k+�+�0 r)

(|�u|2 + |f |2 + ||�| 1

2F|2) dx.
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Now, in order to conclude that the exponent d − d

q
− � is positive, we need to require 

further restrictions to q. One immediately verifies that the positivity of this exponent 
as well as (2.6) are fulfilled, whenever q satisfies

Since 𝜈 < 2 , such a choice is possible. Thus, fixing q subject to  (2.7) allows to 
choose �0 large enough so as to absorb the �u-term on the right-hand side to the left-
hand side. Thus, there exists C > 0 such that

� □

As a corollary we get that the generalized Stokes operator satisfies resolvent 
estimates with respect to the Morrey space norm of L2,�(ℝd;ℂd) for all 0 ≤ 𝜈 < 2 . 
The definition of this Morrey space is the following:

Definition 2.3  Let 0 ≤ 𝜈 < d and m ∈ ℕ . Define the Morrey space L2,�(ℝd;ℂm) as 
the vector space of all functions u ∈ L2

loc
(ℝd;ℂm) with finite Morrey space norm

∞∑
k=0

2−�k
�B(x0,2

kr)

|�u|2 dx

≤ C2
−�0(d−

d

q
−�)

∞∑
k=0

2−�(k+�0)

�B(x0,2
k+�0 r)

|�u|2 dx

+ C2
−�0(d−

d

q
−�)

∞∑
�=0

2�(�−d−1)
∞∑
k=0

2−�(k+�+�0)

�B(x0,2
k+�+�0 r)

|�u|2 dx

+ C2�(�0+1)

∞∑
k=0

2−�(k+�0+1)

�B(x0,2
k+�0+1r)

|f |2 dx

+ C2
−�0(d−

d

q
−�)

∞∑
�=0

2�(�−d−1)
∞∑
k=0

2−�(k+�+�0)

�B(x0,2
k+�+�0 r)

(
|f |2 + ||�| 1

2F|2
)
dx

≤ C2
−�0(d−

d

q
−�)

∞∑
k=0

2−�k
�B(x0,2

kr)

|�u|2 dx

+ C

∞∑
k=0

2−�k
�B(x0,2

kr)

(
|f |2 + ||�| 1

2F|2
)
dx.

(2.7)1 −
2

d
≤

1

q
< 1 −

𝜈

d
.

∞∑
k=0

2−�k
�B(x0,2

kr)

|�u|2 dx ≤ C

∞∑
k=0

2−�k
�B(x0,2

kr)

(
|f |2 + ||�| 1

2F|2
)
dx.

‖u‖L2,𝜈 ∶= sup

x0 ∈ ℝ
d

r > 0

�
r−𝜈

∫B(x0,r)

�u�2 dx
� 1

2

.
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Corollary 2.4  Let � satisfy Assumption  1.1 with constants 𝜇∙,𝜇∙ > 0 . There 
exists � ∈ (�∕2,�) such that for all � ∈ (0,�) and all � ∈ [0, 2) there exists 
a constant C > 0 such that for all � ∈ S

�
 , f ∈ L2

�
(ℝd) ∩ L2,�(ℝd;ℂd) , and 

F ∈ L2(ℝd;ℂd×d) ∩ L2,�(ℝd;ℂd×d) the unique solution u ∈ H1
�
(ℝd) to (2.1) satisfies

Here, the constant C only depends on d, � , � , �∙ , and �∙ and � only depends on d, �∙ , 
and �∙.

Proof  Fix x0 ∈ ℝ
d and r > 0 . The estimate in Theorem 2.2 readily gives for some 

𝜈 < 𝜈
′
< 2

Division by r� then delivers the desired estimate. � □

3 � L2 off‑diagonal decay for the resolvent

This section is dedicated to prove a counterpart of Theorem 1.2 for the resolvent of 
A. For this purpose, we introduce another sesquilinear form, which is connected to 
the Stokes problem in a ball but with Neumann boundary conditions.

Let B ⊂ ℝ
d denote a ball and let

and

Now, define the sesquilinear form

We abuse the notation and denote the same sesquilinear form but with domain 
H1(B;ℂd) × H1(B;ℂd) again by �B.

An application of Assumption 1.1 and the lemma of Lax–Milgram implies the 
existence of � ∈ (�∕2,�) such that for all � ∈ S

�
 , f ∈ L

2
�
(B) , and F ∈ L2(B;ℂd×d) 

the equation

‖�u‖L2,� ≤ C
�
‖f‖L2,� + ��� 1

2 ‖F‖L2,�

�
.

�B(x0,r)

��u�2 dx ≤ C

∞�
k=0

2−�
�k

�B(x0,2
kr)

�
�f �2 + ���� 1

2F�2
�
dx

≤ Cr�
�
‖f‖2

L2,� + ���‖F‖2
L2,�

�
.

L
2
�
(B) ∶=

{
f ∈ L2(B;ℂd) ∶ div(f ) = 0 in the sense of distributions

}

H
1
�
(B) ∶=

{
f ∈ H1(B;ℂd) ∶ div(f ) = 0

}
.

�B ∶ H
1
�
(B) ×H

1
�
(B) → ℂ, (u, v) ↦

d∑
�,�,i,j=1

∫B

�
ij

��
�
�
uj��vi dx.
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is uniquely solvable for some u ∈ H
1
�
(B) . Moreover, by [10, Remark  5.2], there 

exists a pressure function � ∈ L2(B) such that

holds. Furthermore, for all � ∈ (0,�) there exists C > 0 depending only on d, � , �∙ , 
and �∙ such that for all � ∈ S

�
 , f ∈ L

2
�
(B) , and F ∈ L2(B;ℂd×d) it holds

To proceed, we cite some results from [10]. The first result is a non-local Cac-
cioppoli inequality for the generalized Stokes resolvent and can be found in [10, 
Thm. 1.2].

Theorem 3.1  Let � satisfy Assumption 1.1 for some constants 𝜇∙,𝜇
∙
> 0 . Then there 

exists � ∈ (�∕2,�) such that for all � ∈ (0,�) and all 0 < 𝜈 < d + 2 there exists 
C > 0 such that for all � ∈ S

�
 , f ∈ L2

�
(ℝd) , and F ∈ L2(ℝd;ℂd×d) the solution 

u ∈ H1
�
(ℝd) to

satisfies for all balls B = B(x0, r) and all sequences (ck)k∈ℕ0
 with ck ∈ ℂ

d

The constant � only depends on �∙ , �∙ , and d and C depends on �∙ , �∙ , d, � , and �.

The second result is an estimate on the pressure function � that appears in (2.1) 
and can be found in [10, Lemma  2.1]. To formulate this lemma, we adopt the 
notation Ck ∶= B(x0, 2

kr) ⧵ B(x0, 2
k−1r) for k ∈ ℕ and write �Ck

 for the mean value 
of � on the set Ck.

(3.1)�
∫B

u ⋅ v dx + �B(u, v) =
∫B

f ⋅ v dx −

d∑
�,�=1

∫B

F
��
�
�
v
�
dx

(
v ∈ H

1
�
(B)

)

(3.2)

�
∫B

u ⋅ v dx + �B(u, v) −
∫B

� div(v) dx

=
∫B

f ⋅ v dx −

d∑
�,�=1

∫B

F
��
�
�
v
�
dx

(
v ∈ H1(B;ℂd)

)

(3.3)‖�u‖L2(B) + ��� 1

2 ‖∇u‖L2(B) + ��� 1

2 ‖�‖L2(B) ≤ C
�‖f‖L2(B) + ��� 1

2 ‖F‖L2(B)

�
.

�
∫
ℝd

u ⋅ v dx + �(u, v) =
∫
ℝd

f ⋅ v dx −

d∑
�,�=1

∫
ℝd

F
��

�
�v

�
dx

(
v ∈ H1

�
(ℝd)

)

|�|
∞∑
k=0

2−�k
�B(x0,2kr)

|u|2 dx +
∞∑
k=0

2−�k
�B(x0,2kr)

|∇u|2 dx

≤
C

r2

∞∑
k=0

2−(�+2)k
�B(x0,2k+1r)

|u + ck|2 dx + |�|
∞∑
k=0

|ck|2−�k
�B(x0,2k+1r)

|u| dx

+
C

|�|
∞∑
k=0

2−�k
�B(x0,2k+1r)

|f |2 dx + C

∞∑
k=0

2−�k
�B(x0,2k+1r)

|F|2 dx.
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Lemma 3.2  Let � satisfy Assumption 1.1 for some constants 𝜇∙,𝜇
∙
> 0 . Let � ∈ ℂ 

and let for f ∈ L2
�
(ℝd) and F ∈ L2(ℝd;ℂd×d) the functions u ∈ H1

�
(ℝd) and 

� ∈ L2
loc
(ℝd) solve

in the sense of distributions. Let x0 ∈ ℝ
d and r > 0 and let C0 denote the ball 

B(x0, r) . Then there exists a constant C > 0 depending only on �∙ and d such that for 
all k ∈ ℕ we have

The final preparatory result we need is a local Caccioppoli inequality that 
includes the pressure function.

Lemma 3.3  Let � satisfy Assumption 1.1 for some constants 𝜇∙,𝜇
∙
> 0 . Then there 

exists � ∈ (�∕2,�) such that for all � ∈ (0,�) there exists C > 0 such that for all 
x0 ∈ ℝ

d , r > 0 , c ∈ ℂ , and all solutions u ∈ H
1
�
(B(x0, 2r)) and � ∈ L2(B(x0, 2r)) (in 

the sense of distributions) to

satisfy

The constant C only depends on d, � , �∙ , and �∙.

{
�u − div�∇u + ∇� = f + div(F) in ℝd,

div(u) = 0 in ℝ
d

�
�
Ck

�� − �Ck
�2 dx

� 1

2

≤ C

� k−2�
�=0

2
d

2
(�−k)

�
‖∇u‖L2(C

�
) + ‖F‖L2(C

�
)

�

+
�

� ∈ ℕ0�� − k� ≤ 1

�
‖∇u‖L2(C

�
) + ‖F‖L2(C

�
)

�

+

∞�
�=k+2

2(
d

2
+1)(k−�)

�
‖∇u‖L2(C

�
) + ‖F‖L2(C

�
)

��
.

{
�u − div�∇u + ∇� = 0 in B(x0, 2r),

div(u) = 0 in B(x0, 2r)

|�|
�B(x0,r)

|u|2 dx +
�B(x0,r)

|∇u|2 dx

≤
C

r2 �B(x0,2r)

|u|2 dx + C

|�|r2 �B(x0,2r)

|� − c|2 dx.
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Proof  Let � ∈ C∞
c
(B(x0, 2r)) with � ≡ 1 in B(x0, r) , 0 ≤ � ≤ 1 , and ‖∇�‖L∞ ≤ 2∕r . 

Applying [10, Lemma 5.1] with c1 = c and c2 = 0 implies that

Use Young’s inequality to estimate

The lemma follows by absorbing the u�-term to the left-hand side and by using the 
properties of � . Finally, we would like to mention that the proof of [10, Lemma 5.1] 
follows the standard proof that is used to establish the Caccioppoli inequality for 
elliptic systems and this is well-known.�  □

The following theorem presents L2 off-diagonal type estimates for the resol-
vent operators.

Theorem 3.4  There exists � ∈ (�∕2,�) such that for all � ∈ (0,�) and all � ∈ (0, 2) 
there exists a constant C > 0 such that for all x0 ∈ ℝ

d , r > 0 , � ∈ S
�
 , f ∈ L2

�
(ℝd) , 

and F ∈ L2(ℝd;ℂd×d) the unique solution u ∈ H1
�
(ℝd) to (2.1) satisfies

Here, the constant C only depends on d, � , � , �∙ , and �∙ and � only depends on d, �∙ , 
and �∙.

Proof  Fix f ∈ L2
�
(ℝd) , F ∈ L2(ℝd;ℂd×d) , and � ∈ S

�
 . Define 

u ∶= (� + A)−1(f + ℙdiv(F)) and let � ∈ L2
loc
(ℝd) be the associated pressure such 

that u and � solve (2.1). Let x0 ∈ ℝ
d and r > 0 . In the following, we consider two 

cases.
Let � and r be such that |�|r2 ≤ 1 . In this case, Theorem 2.2 yields the estimate

|�|
�B(x0,2r)

|u�|2 dx +
�B(x0,2r)

|∇[u�]|2 dx

≤
C

r2 �B(x0,2r)

|u|2 dx + 4

r

(
�B(x0,2r)⧵B(x0,r)

|� − c|2 dx
) 1

2
(
�B(x0,2r)

|u�|2 dx
) 1

2

.

4

r

(
�B(x0,2r)⧵B(x0,r)

|� − c|2 dx
) 1

2
(
�B(x0,2r)

|u�|2 dx
) 1

2

≤
8

|�|r2 �B(x0,2r)⧵B(x0,r)

|� − c|2 dx

+
|�|
2 �B(x0,2r)

|u�|2 dx.

�
B(x0,r)

|�u|2 dx +
�
B(x0,r)

||�| 1

2∇u|2 dx ≤ C
�
B(x0,2r)

(
|f |2 + ||�| 1

2F|2
)
dx

+ C

∞∑
k=2

(
1

1 + |�|22kr2
) �

2

�
B(x0,2

kr)

(
|f |2 + ||�| 1

2F|2
)
dx.
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Thus, it is left to consider the case |𝜆|r2 > 1 . In this case, define g ∶= f |B(x0,2r) and 
G ∶= F|B(x0,2r) . The definition of L2

�
(B(x0, 2r)) implies that g ∈ L

2
�
(B(x0, 2r)) . Then, 

there exists u1 ∈ H
1
�
(B(x0, 2r)) such that for all v ∈ H

1
�
(B(x0, 2r)) it holds

Let �1 ∈ L2(B(x0, 2r)) denote the associated pressure. By (3.3) we find that

Notice that the constant C > 0 only depends on d, � , �∙ , and �∙ . In particular, it does 
not depend on x0 and r.

Now, define u2 ∶= u − u1 and �2 ∶= � − �1 . Thus, to prove the desired result, we 
only have to control u2 in B(x0, r) . By definitions of all functions, we find that

 for all v ∈ H1
0

(
B(x0, 2r);ℂ

d
)
 , so that by virtue of Lemma 3.3 we have

Now, use that u2 = u − u1 and �2 = � − �1 followed by  (3.4), Lemma  3.2, and 
𝜈 < 2 < 2 + d to deduce that

�B(x0,r)

|�u|2 dx ≤ C

∞∑
k=0

2−�k
�B(x0,2kr)

(
|f |2 + ||�| 1

2F|2
)
dx

≤ 2
�

2C

∞∑
k=0

(
1

1 + |�|22kr2
) �

2

�B(x0,2kr)

(
|f |2 + ||�| 1

2F|2
)
dx.

�
∫B(x0,2r)

u1 ⋅ v dx + �B(x0,2r)(u1, v)

=
∫B(x0,2r)

g ⋅ v dx −

d∑
�,�=1

∫B(x0,2r)

G
��

⋅ �
�
v
�
dx.

(3.4)
‖�u1‖L2(B(x0,2r)) + ��� 1

2 ‖∇u1‖L2(B(x0,2r)) + ��� 1

2 ‖�1‖L2(B(x0,2r))

≤ C
�
‖f‖L2(B(x0,2r)) + ��� 1

2 ‖F‖L2(B(x0,2r))

�
.

�
∫B(x0,2r)

u2 ⋅ v dx + �B(x0,2r)(u2, v) − ∫B(x0,2r)

�2 div(v) dx = 0

�B(x0,r)

|�u2|2 dx +
�B(x0,r)

||�| 1

2∇u2|2 dx

≤
C|�|
r2 �B(x0,2r)

|u2|2 dx + C

r2 �B(x0,2r)⧵B(x0,r)

|�2 − �B(x0,2r)⧵B(x0,r)
|2 dx.
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Now, employ Theorem 3.1 to the second term on the right-hand side followed by the 
non-local resolvent estimate in Theorem 2.2 so as to get

Finally, using that |𝜆|r2 > 1 and 𝜈 < 2 , we get

� □

Remark 3.5  We just proved slightly more than stated in Theorem  3.4. Indeed, if 
|𝜆|r2 > 1 , we proved further estimates on ∇u that are given by

and

�B(x0,r)

|�u2|2 dx +
�B(x0,r)

||�| 1

2∇u2|2 dx

≤
C|�|
r2 �B(x0,2r)

|u2|2 dx + C

r2 �B(x0,2r)

|�1|2 dx

+
C

r2 �B(x0,2r)⧵B(x0,r)

|� − �B(x0,2r)⧵B(x0,r)
|2 dx

≤
C

|�|r2 �B(x0,2r)

(
|f |2 + ||�| 1

2F|2
)
dx +

C|�|
r2 �B(x0,2r)

|u|2 dx

+
C

r2 �B(x0,2r)⧵B(x0,r)

|� − �B(x0,2r)⧵B(x0,r)
|2 dx

≤
C

|�|r2 �B(x0,2r)

|f |2 dx + C

|�|r2
∞∑
k=0

2−�k
�B(x0,2

k+1r)

||�| 1

2F|2 dx

+ C

(
|�|
r2 �B(x0,2r)

|u|2 dx + 1

r2

∞∑
k=0

2−�k
�B(x0,2

k+1r)

|∇u|2 dx
)
.

�B(x0,r)

|�u2|2 dx +
�B(x0,r)

||�| 1

2∇u2|2 dx

≤
C

|�|r2 �B(x0,2r)

|f |2 dx + C

|�|2r4
∞∑
k=0

2−�k
�B(x0,2

k+1r)

(
|f |2 + ||�| 1

2F|2
)
dx

+
C

|�|r2
∞∑
k=0

2−�k
�B(x0,2

k+1r)

(
|f |2 + ||�| 1

2F|2
)
dx.

�B(x0,r)

|�u2|2 dx +
�B(x0,r)

||�| 1

2∇u2|2 dx

≤ C

∞∑
k=2

(
1

|�|22kr2
) �

2

�B(x0,2
kr)

(
|f |2 + ||�| 1

2F|2
)
dx.

��� 1

2 ‖∇(� + A)−1f‖L2(B(x0,2r))
≤ C‖f‖L2(B(x0,2r))

+ C

∞�
k=2

�
1

���22kr2
� �

4 ‖f‖L2(B(x0,2
kr))



337

1 3

On off‑diagonal decay properties of the generalized Stokes…

4 � Estimates on the generalized Stokes semigroup

Since A satisfies the resolvent estimates

for some � ∈ (�∕2,�) the generalized Stokes operator −A is the infinitesimal gen-
erator of a bounded analytic semigroup (e−tA)t≥0 which is represented via the Cauchy 
integral formula

Here, the path �t runs through �(B(0, t−1) ∪ S
�
) for some � ∈ (�∕2,�) in a coun-

terclockwise manner. This representation by the Cauchy integral formula allows to 
transfer estimates on the resolvent to estimates on the semigroup. For example, it is 
well-known that the estimates (2.2) and (2.3) used within (4.1) directly yield for all 
f ∈ L2

�
(ℝd) , F ∈ L2(ℝd;ℂd×d) , and t > 0 the semigroup estimates

and

The following proof of Theorem  1.2 shows that this transfer of estimates is also 
valid for the resolvent estimates established in Theorem 3.4.

Proof of Theorem 1.2  Let f ∈ L2
�
(ℝd) and F ∈ L2(ℝd;ℂd×d) . Combining the conclu-

sion of Theorem 3.4 with (4.1) directly yields for x0 ∈ ℝ
d and r > 0 that

‖∇(� + A)−1ℙdiv(F)‖L2(B(x0,2r))
≤ C‖F‖L2(B(x0,2r))

+ C

∞�
k=2

�
1

���22kr2
� �

4 ‖F‖L2(B(x0,2
kr)).

���‖(� + A)−1f‖L2 ≤ C‖f‖L2 (� ∈ S
�
),

(4.1)e−tA =
1

2𝜋i ∫
𝛾t

et𝜆(𝜆 + A)−1 d𝜆 (t > 0).

(4.2)‖e−tAf‖L2 + t
1

2 ‖∇e−tAf‖L2 + t‖Ae−tAf‖L2 ≤ C‖f‖L2

(4.3)t
1

2 ‖e−tAℙdiv(F)‖L2 + t‖∇e−tAℙdiv(F)‖L2 ≤ C‖F‖L2 .



338	 P. Tolksdorf 

1 3

Now, perform the substitution �t = � and use that for � ∈ �1 one has

This readily yields that

and thus already the desired estimate.
To estimate tAe−tA(f + ℙdiv(F)) , notice that

Now, the desired estimate follows analogously as above. � □

Remark 4.1  If we assume that r2∕t > 1 , then all � ∈ �t satisfy |𝜆|r2 > 1 so that in this 
case the estimates from Remark 3.5 together with the proof of Theorem 1.2 yield 
the following gradient estimate on the generalized Stokes semigroup: there exists a 
constant C > 0 such that for all f ∈ L2

�
(ℝd) , F ∈ L2(ℝd;ℂd×d) , and all t > 0 we have

and

���e
−tA(f + ℙdiv(F))

���L2(B(x0,r))

≤
1

2� �
�t

etRe(�)‖(� + A)−1(f + ℙdiv(F))‖L2(B(x0,r))
�d��

≤ C
�
�t

etRe(�)
�
‖f‖L2(B(x0,2r))

+ ‖��� 1

2F‖L2(B(x0,2r))

� �d��
���

+ C

∞�
k=2

�
�t

etRe(�)
�

1

1 + ���22kr2
� �

4
�
‖f‖L2(B(x0,2

kr)) + ‖��� 1

2F‖L2(B(x0,2
kr))

� �d��
��� .

1

1 +
|�|22kr2

t

≤
1

1 +
22kr2

t

.

���e
−tA(f + ℙdiv(F))

���L2(B(x0,r))

≤ C

∞�
k=0

⎛⎜⎜⎝
1

1 +
22kr2

t

⎞⎟⎟⎠

�

4

�
�1

eRe(�)
�
‖f‖L2(B(x0,2

kr)) + t
−

1

2 ‖��� 1

2F‖B(x0,2kr)
� �d��

���

Ae−tA =
1

2�i ∫
�t

et�A(� + A)−1 d� =
1

2�i ∫
�t

et�
(
Id − �(� + A)−1

)
d�

= −
1

2�i ∫
�t

�et�(� + A)−1 d�.

t
1

2
���∇e

−tAf
���L2(B(x0,r))

≤ C‖f‖L2(B(x0,2r))
+ C

∞�
k=2

�
22kr2

t

�−
�

4 ‖f‖L2(B(x0,2
kr))

���∇e
−tAF

���L2(B(x0,r))
≤ C‖F‖L2(B(x0,2r))

+ C

∞�
k=2

�
22kr2

t

�−
�

4 ‖F‖L2(B(x0,2
kr)).
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Proof of Corollary 1.3  We distinguish two cases. Assume first that 22k0r2∕t < 1 . Then 
by using the global L2-estimates (4.2), we find that

Now, assume that 22k0r2∕t ≥ 1 . Then Theorem 1.2 implies that

To estimate the terms involving e−tAℙdiv(F) proceed similarly, but by employ-
ing  (4.3) in the first case and Theorem  1.2 in the second case. We omit further 
details. � □

Remark 4.2  In this closing remark we shortly discuss optimality issues of the param-
eter � . This parameter emerges in Theorem 2.2 and a direct consequence is Corol-
lary 2.4. Notice that Hölder’s inequality implies that

Moreover, the function |x|−��B(0,1) is contained in L2,�(ℝd) if and only if 
� ≤ (d − �)∕2 . Similarly, |x|−��B(0,1) is contained in Lp(ℝd) if and only if p𝛼 < d . 
If p and � are related as in (4.4), this results in the similar condition 𝛼 < (d − 𝜈)∕2 . 
Thus, in this sense L2,�(ℝd) and Lp(ℝd) encode a similar singular behavior of 
functions.

Now, in the case d ≥ 3 and for elliptic operators in divergence form, it is known 
from the examples in [6, 7], that for each

there exist essentially bounded and elliptic coefficients � such that the elliptic oper-
ator −div(�∇⋅) does not satisfy resolvent bounds on Lp(ℝd;ℂd) . In particular, for 
p > 2d∕(d − 2) it is possible to find 2 < 𝜈 < d such that p = 2d∕(d − �) . As this 
Lp-space contains functions that exhibit a similar singular behavior as functions 
in L2,�(ℝd) this indicates — but only on philosophical grounds — that for each 
2 < 𝜈 < d resolvent bounds for elliptic operators might also fail on L2,�(ℝd) . Thus, 
the same conclusion might be true for the generalized Stokes system as well. This is 

‖e−tAf‖L2(B(x0,r))
+ t‖Ae−tAf‖L2(B(x0,r))

≤ C‖f‖L2(ℝd)

≤ 2
�

4

�
1 +

22k0r2

t

�−
�

4 ‖f‖L2(B(x0,2
k0 r)⧵B(x0,2

k0−1r)).

‖e−tAf‖L2(B(x0,r))
+ t‖Ae−tAf‖L2(B(x0,r))

≤ C

∞�
k=k0

�
1 +

22kr2

t

�−
�

4 ‖f‖L2(B(x0,2
k0 r)⧵B(x0,2

k0−1r))

≤ C

�
22k0r2

t

�−
�

4
∞�

k=k0

2−
�

2
(k−k0)‖f‖L2(B(x0,2

k0 r)⧵B(x0,2
k0−1r))

≤ C

�
1 +

22k0r2

t

�−
�

4 ‖f‖L2(B(x0,2
k0 r)⧵B(x0,2

k0−1r)).

(4.4)Lp(ℝd) ⊂ L2,𝜈(ℝd) for p =
2d

d − 𝜈

.

p ∉ [2d∕(d + 2), 2d∕(d − 2)]
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an indication, that the bound 𝜈 < 2 in Sect. 2 is optimal among the class of all L∞

-coefficients �.
In contrast to that, in Sects. 3 and 4 the condition 𝜈 < 2 seems to be of a technical 

nature and it is not clear to the author whether this condition is already optimal or 
could be improved any further. Another bound on � that appears in Theorem 3.1 is 
the bound 𝜈 < d + 2 . The author would hope that if one could find a proof of non-
local off-diagonal estimates without the use of Theorem 2.2, that then the bound on 
� could be improved to 𝜈 < d + 2 . However, this is unclear at the moment.
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