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Abstract
We introduce GPLS (Genetic Programming for Linear Systems) as a GP system 
that finds mathematical expressions defining an iteration matrix. Stationary iterative 
methods use this iteration matrix to solve a system of linear equations numerically. 
GPLS aims at finding iteration matrices with a low spectral radius and a high spar-
sity, since these properties ensure a fast error reduction of the numerical solution 
method and enable the efficient implementation of the methods on parallel computer 
architectures. We study GPLS for various types of system matrices and find that it 
easily outperforms classical approaches like the Gauss–Seidel and Jacobi methods. 
GPLS not only finds iteration matrices for linear systems with a much lower spec-
tral radius, but also iteration matrices for problems where classical approaches fail. 
Additionally, solutions found by GPLS for small problem instances show also good 
performance for larger instances of the same problem.
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1  Introduction

Numerical methods are used in various disciplines to solve problems where an 
analytical solution does not exist or is difficult to find. In computational science 
and engineering, for example, one tries to model physical phenomena and then 
to approximate these usually continuous mathematical models numerically. The 
computation of a numerical solution often requires solving a system of (non-)lin-
ear equations. Since the number of unknowns can be huge in numerous real-world 
applications, efficient and scalable solvers for such systems are necessary. Unfor-
tunately, the optimal solver method depends on the system of equations itself and 
therefore it is impossible to formulate a single algorithm for this purpose. How-
ever, over the past decades, several numerical solvers have been proposed in the 
field of applied mathematics, which are usually efficient for certain classes of sys-
tem matrices (the coefficient matrix of a linear system) [3, 21].

Genetic programming (GP) is an evolutionary computation technique that has 
been successfully applied to various real-world problems during the last decades 
[18]. Especially in the field of symbolic regression, where the aim is to find math-
ematical expressions solving a given problem, GP has been used to approximate 
even complex problems [12, 27]. This makes GP an interesting approach for find-
ing new iterative numerical methods as it can be used to find the required math-
ematical expressions to generate iteration matrices based on certain classes of 
given system matrices.

This paper applies a novel GP approach for linear systems (GPLS); an 
approach that finds an iteration matrix for a given linear system. To ensure that 
the resulting iterative numerical method can be executed efficiently on parallel 
computer architectures, we are interested in a low spectral radius and a high spar-
sity of the found iteration matrices. We evaluate the found methods on standard 
test problems and real-world use cases to demonstrate the human competitiveness 
of GPLS and to compare it with traditional methods.

GPLS uses certain elements (e.g., some functions and terminals) previously 
proposed in a short paper by Mahmoodabadi et  al. [15] in their presentation of 
a first prototype for solving linear systems with GP, and by Schmitt et  al. [22] 
who focus on special classes of sparse linear systems. The aim of GPLS is to find 
a good iteration matrix based on an input system matrix in general and not one 
that only serves special cases. The iteration matrix is the core component of all 
considered numerical methods. For GPLS, we define an objective function that 
measures the generated iteration matrices’ spectral radius and the sparsity, as well 
as the method’s complexity (size of the generated mathematical term equal to the 
number of tree nodes). The spectral radius is an indicator for the convergence of 
the generated method, high sparsity provides performance advantages in the cal-
culation and implementation of the method, and the complexity measure serves 
as bloat control.

Following this introduction, we present a background to iterative numeri-
cal methods and explain the relevant stationary iterative numerical methods in 
Sect. 2, describe the discretization of partial differential equations to systems of 
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linear equations in Sect. 3, introduce GPLS in detail in Sect. 4, and present our 
experiments and discuss the results in Sect. 5. Section 6 concludes the paper.

2 � Iterative numerical methods

The most fundamental problem within linear algebra is finding the solution of the 
linear system Ax = b , where A ∈ ℝ

m×n is the coefficient matrix, x ∈ ℝ
m the vector of 

unknowns, and b ∈ ℝ
m the right-hand side vector. If A is a squared nonsingular (or 

invertible) matrix, there exists a single unique solution x∗ of the system.
Most linear systems derived from science and engineering phenomena do possess 

certain special structures. The most eminent property of these systems is sparsity 
which means that the majority of the entries of the coefficient matrix A are zero 
while the number of nonzero entries is usually of order n. Sparsity significantly 
reduces the number of required elementary matrix operations when solving the lin-
ear problem. For instance, assuming that matrix A has �n nonzero entries, a matrix-
vector multiplication can be performed in O(�n) operations. Therefore, the design of 
efficient algorithms for solving these systems relies heavily on exploiting the spar-
sity of the coefficient matrix A.

In general, methods for solving linear systems can be classified either as direct 
or as iterative methods. Direct methods require only a finite number of steps. An 
example is Gaussian elimination, the standard textbook method for solving an arbi-
trary linear system of equations. The commonality of all direct methods is that 
they directly manipulate the individual entries of A and thus need to operate on an 
explicit representation of the matrix. Transformations applied within direct solvers 
such as Gaussian or Householder triangulation do not preserve the sparse structure 
of A [25].

In contrast, iterative methods perform successive approximations to a linear sys-
tem to obtain more accurate solutions. Typically, these approximations only require 
the calculation of matrix-vector products, where all matrices involved can be derived 
from the system matrix without destroying its sparsity. As a result, although special-
ized direct methods for solving sparse systems exist [5], the largest, currently con-
sidered systems are solved using iterative methods [2, 25].

The two main classes of iterative methods for solving systems of linear equations 
are stationary and non-stationary methods whereby most of the latter belong to the 
subclass of Krylov subspace methods. Stationary methods solve a linear system by 
repeatedly applying an iteration matrix, derived from the coefficient matrix A, to 
an initial guess for the vector of unknowns x, to get a series of approximations that 
converge to the actual solution of the system. Stationary methods have the advantage 
that they are easier to implement and to analyze than non-stationary methods. This 
paper focuses exclusively on stationary methods to automatically generate iterative 
solvers for sparse linear systems.

In the following, we provide a brief overview of the stationary iterative methods. 
For a more comprehensive overview of the iterative methods, including non-station-
ary methods, see [3, 7, 21], and [6].

Stationary iterative methods are expressed in the general form
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where G is the iteration matrix, x(k) the solution vector in iteration k (i.e. the current 
iterate), and f a vector that is obtained by transforming the right-hand side b. Neither 
G nor f depends on the iteration count. The standard iterative methods are Jacobi 
and Gauss–Seidel.

2.1 � The Jacobi method

To derive the Jacobi method we consider the equations of the linear system Ax = b 
in isolation, which leads to

By solving each of the equations for xi we obtain

If we assume that all entries except xi are fixed in every individual equation, the 
iterative scheme is defined by

This iteration is the scalar formulation of the Jacobi method in which x(k)
i

 corre-
sponds to the ith component of the solution vector in iteration k and aij to the entry 
of A in row i and column j. Since all equations are treated independently, the order 
of examination is irrelevant. In fact, x(k+1)

i
 can be computed simultaneously for all 

equations, which makes the Jacobi method easily parallelizable.
To provide a definition of the Jacobi method in matrix form, we first introduce 

the splitting

where D is the diagonal, L the strictly lower triangular and U the strictly upper trian-
gular part of A. The term strictly refers to the fact that the diagonal of A is excluded. 
We assume that all diagonal entries of A are nonzero. Using this splitting, the matrix 
form of the Jacobi method is obtained by

Note that the inverse of a diagonal matrix is a diagonal matrix with the original 
diagonal entries inverted. The iteration, in addition, corresponds to our basic formu-
lation of stationary iterative methods (see Eq. 2.1) with the iteration matrix

(2.1)x(k+1) = Gx(k) + f ,

n∑
j=1

aijxj = bi.

xi =

(
bi −

∑
j≠i

aijxj

)
∕aii.

x
(k+1)

i
=

(
bi −

∑
j≠i

aijx
(k)

j

)
∕aii.

A = D − L − U,

x(k+1) = D−1(L + U)x(k) + D−1b.
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and

2.2 � The Gauss–Seidel method

The Jacobi method can simultaneously compute the new iterate for all components of 
the solution vector. In contrast, the Gauss–Seidel method examines them in sequence, 
such that already computed components are taken into account:

The computation of each new component depends on the previously computed com-
ponents and cannot be performed simultaneously. While this implies a serialization 
of the computation, the order can be varied. Different orders will inevitably lead 
to different values of the new iterate x(k+1) affecting the overall convergence of the 
method. Therefore, the Gauss–Seidel method’s serial nature in general prohibits a 
parallel computation. However, when the matrix A is sparse, not all components 
of the new iterate x(k+1) depend on the values of all components of the old iterate. 
Then, it is possible to define a partitioning of x such that there are no dependencies 
between the components in the same partition and consequently the Gauss–Seidel 
method can be applied to each partition in parallel. For a more detailed discussion of 
the parallelization of the Gauss–Seidel method, see [21]. The matrix formulation of 
the Gauss–Seidel method is defined by

Note that the iteration contains the computation of the inverse of (D − L) , which is a 
lower triangular matrix. A multiplication with the inverse of this matrix corresponds 
to solving a linear system via backward substitution and therefore does not require 
the explicit computation of the inverse. The Gauss–Seidel method can also be for-
mulated as a stationary iterative method (see Eq. 2.1) with the iteration matrix

and

G = D−1(L + U) = I − D−1A,

f = D−1b.

x
(k+1)

i
=

(
bi −

∑
j<i

aijx
(k+1)

j
−
∑
j>i

aijx
(k)

j

)
∕aii.

x(k+1) = (D − L)−1Ux(k) + (D − L)−1b.

G = (D − L)−1U = I − (D − L)−1A,

f = (D − L)−1b.
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2.3 � Successive over‑relaxation

The successive over-relaxation (SOR) method [29] extends the Gauss–Seidel 
method by applying a weighted average between the previous and the newly com-
puted iterate. It is defined by

The idea is to choose � in a way that accelerates the convergence of the method 
to the actual solution. Note that if � = 1 , SOR corresponds to the Gauss–Seidel 
method. SOR only converges for values of � ∈ (0, 2) [11]. In general it is not pos-
sible to estimate the optimal value of � a priori and therefore a heuristic is usu-
ally employed to choose an � . Like the Jacobi and Gauss–Seidel methods, the SOR 
method can also be defined in terms of matrices and vectors by the iteration

Similar to Gauss–Seidel, all inverted matrices are lower triangular matrices and the 
respective matrix vector products can be obtained via backward substitution without 
explicitly computing the inverse. For the complete derivation of SOR, see [29].

2.4 � Convergence of stationary methods

Both, the Jacobi method and the Gauss–Seidel method define a sequence of approxi-
mations of the basic form as defined in Eq. 2.1. In case convergence is reached, the 
limit x of this iteration satisfies

Essential for the convergence of stationary iterative methods is the spectral radius � 
of the iteration matrix G defined by

where �j(G) are the eigenvalues of G.

Theorem 1  Let G be a square matrix with spectral radius �(G) , then

if and only if 𝜌(G) < 1.

For a proof, see [21]. Equation 2.2 can be reformulated into the following system 
of linear equations:

x
(k+1)

i
= �x

(k+1)

i
+ (1 − �)x

(k)

i
.

x(k+1) = (D − �L)−1(�U + (1 − �)D)x(k) + �(D − �L)−1b.

(2.2)x = Gx + f .

(2.3)�(G) = max
1≤j≤n

|�j(G)|,

lim
k→∞

Gk = 0

(2.4)x − Gx = f ,
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Equation 2.5 has a unique solution x∗ if and only if (I − G) is a non-singular square 
matrix. Subtracting Eq.  2.2 from the basic iteration scheme presented in Eq.  2.1 
leads to

From Theorem 1 it follows that the sequence x(k+1) − x∗ = Gk+1(x0 − x∗) converges 
to zero. Therefore, we can conclude about the convergence of an arbitrary stationary 
iterative method:

Theorem 2  Let G be a square matrix with 𝜌(G) < 1 , then I − G is non-singular and 
the iteration presented in Eq. 2.1 converges for any f and x0 . Conversely, if the itera-
tion presented in Eq. 2.1 converges for any f and x0 , then 𝜌(G) < 1.

As Theorem 2 states, the convergence of any stationary iterative method solely 
depends on finding an iteration matrix with a spectral radius smaller than one. Fur-
thermore, the general convergence factor of an iterative method is equal to the spec-
tral radius of its iteration matrix [21]. Therefore, the design of an efficient iterative 
method is equivalent to finding an iteration matrix with a low (or even minimal) 
spectral radius.

Since the computation of the spectral radius is expensive, it is often not practi-
cal to compute it directly. For Jacobi, Gauss–Seidel and other well-studied methods 
there exist certain criteria for the system matrix A that ensure the convergence of 
these methods [7]. One possibility to estimate the spectral radius for arbitrary sta-
tionary iterative methods is the use of Local Fourier Analysis (LFA) [20, 28].

3 � Discretization of partial differential equations

Many problems in science and engineering can be mathematically modeled in the 
form of a partial differential equation (PDE). A classic example is the Navier–Stokes 
equation that describes the motion of a viscous fluid [24] and can be used to model 
a wide range of phenomena, with applications ranging from weather forecasting to 
aircraft design. Although there exists a rich theory about PDEs, only a few cases of 
analytical solutions for these equations are known. As a remedy, numerical methods 
can be applied to approximate the solution of a PDE at a finite number of points 
what transforms the problem of solving a PDE into a problem of solving a system 
of linear equations. This transformation is usually referred to as discretization. The 
most widely used methods of discretizing a PDE are the finite difference method 
(FDM), the finite volume method (FVM), and the finite element method (FEM). To 
provide a brief introduction to the discretization of PDEs, we focus on FDM. For 
more information on the numerical solutions of PDEs, see [1, 10, 17, 23], and [26].

One of the most basic but also quite common PDE is Poisson’s equation which is 
defined as

(2.5)(I − G)x = f .

x(k+1) − x∗ = G(x(k) − x∗) = … = Gk+1(x0 − x∗).
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where � is the Laplace operator, u and f are real or complex-valued functions. Typi-
cally, f is given and one wants to solve the equation for u. For u, f ∈ ℝ

2 it takes the 
form

If u is differentiable at a point x, we can create the Taylor expansion

in which ux and uy denote the first order partial derivatives of u with respect to x and 
y, respectively.

When stopping the Taylor expansion after the third term, the error that results from 
this approximation is of order O(h4) . Similarly, we can define

Adding Eq. 3.2 to Eq. 3.4 and Eq. 3.3 to Eq. 3.5 and dividing by h2 yield the follow-
ing approximation for the second order partial derivative of u:

In both cases, the approximation error is of order O(h2) . Although not covered 
here, the approximation of first or higher-order derivatives can be defined in a simi-
lar fashion. Equations 3.6 and 3.7 can now be used to define an approximation for 
the Laplace operator. This results in the discrete version of Poisson’s equation (see 
Eq. 3.1)

�u = f ,

(3.1)
(

�2

�x2
+

�2

�y2

)
u(x, y) = f (x, y).

(3.2)u(x + h, y) = u(x, y) + hux(x, y) +
h2

2
uxx(x, y) +

h3

6
uxxx(x, y) +O(h4)

(3.3)u(x, y + h) = u(x, y) + huy(x, y) +
h2

2
uyy(x, y) +

h3

6
uyyy(x, y) +O(h4),

ux(x, y) =
�

�x
u(x, y), uxx(x, y) =

�2

�x2
u(x, y),…

(3.4)u(x − h, y) = u(x, y) − hux(x, y) +
h2

2
uxx(x, y) −

h3

6
uxxx(x, y) +O(h4)

(3.5)u(x, y − h) = u(x, y) − huy(x, y) +
h2

2
uyy(x, y) −

h3

6
uyyy(x, y) +O(h4).

(3.6)�2

�x2
u(x, y) =

u(x + h, y) + u(x − h, y) − 2u(x, y)

h2
+O(h2)

(3.7)
�2

�y2
u(x, y) =

u(x, y + h) + u(x, y − h) − 2u(x, y)

h2
+O(h2)
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Consequently, to compute the solution of Poisson’s equation on an arbitrary two 
dimensional domain using a finite difference approximation, a system of linear equa-
tions must be solved, whereby the solution at each point is represented by an equa-
tion of the form of the discrete version of Poisson’s equation. A common decision is 
to choose a uniform h for the whole domain, such that the individual equations are 
independent of its value.

In order to solve the system, an additional set of equations must be defined 
that defines how the system behaves at the boundaries of the domain. These 
boundary conditions usually come in three types:

–	 Dirichlet condition: u(x) = �(x)

–	 Neumann condition: �
�n
u(x) = 0

–	 Cauchy condition: �
�n

+ �(x)u(x) = �(x)

The vector n refers to a unit vector normal to the domain and directed outwards. 
In many cases, boundary conditions are of mixed type, which means that at 
different parts of the boundary different conditions are defined. As we do not 
explicitly treat boundary conditions in this work, we assume that the boundary 
conditions are contained in the right-hand side vector b. Thus, our derivation 
results in a linear system of the form

We present an example and assume a 5x5 grid with 9 interior grid points, Dirichlet 
conditions at all boundaries, and a natural ordering of the grid points. This problem 
can, for instance, result in a linear system with the matrix A and right-hand side b:

fij and uij denote the values of u and f at position (ih, jh) within the domain. Note that 
A is a sparse band matrix. Therefore, we expect an iterative solver to preserve this 
property when computing an approximate solution for the system. Approximating 
Poisson’s equation with finite differences in one or three dimensions can be per-
formed in a similar manner, which also results in linear systems of the form Ax = b 
with a band matrix A.

1

h2
(u(x + h, y) + u(x − h, y) + u(x, y + h) + u(x, y − h) − 4u(x, y)) = f .

Ax = b.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

0 0 0 −1 0 0 4 −1 0

0 0 0 0 −1 0 −1 4 −1

0 0 0 0 0 −1 0 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h2f22 + u12 + u21
−h2f32 + u31

−h2f42 + u52 + u41
−h2f23 + u13

−h2f33
−h2f43 + u53

−h2f24 + u14 + u25
−h2f34 + u35

−h2f44 + u54 + u45

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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4 � GPLS: genetic programming for linear systems

GPLS is a standard GP approach which aims to find mathematical expressions 
that define an iteration matrix. It uses the system matrix A of a linear system 
as input. In contrast to classical regression approaches [13, 14], the solutions of 
GPLS are iteration matrices G and we have no training points given. Our aim is 
to find iteration matrices G with a low spectral radius �(G) . When obtaining such 
an iteration matrix G, we can use it with iterative methods to find an approximate 
solution for a linear system.

4.1 � Representation of iteration matrices

We use a tree-based representation to describe an iteration matrix by a mathemat-
ical term. The result of this term is the iteration matrix. We use a function and 
terminal set that allow the application of well-known iterative numerical methods 
[3]. Accordingly, the function set is defined as

The terminal set contains multiple variations of the system matrix A, which can be 
calculated offline before the start of a GP run. For our experiments, we use

where A is the system matrix, D is the diagonal matrix of A, L is the strictly lower 
triangular part of A, and U is the strictly upper triangular part of A.

We do not use the right hand side vector b in the terminal set because it is not 
necessary for the convergence of the used iterative method as defined in Theo-
rem 2 [21]. Furthermore, the omission of the vector b allows us to work exclu-
sively on square matrices, so it is not required to use a strongly typed GP (STGP) 
[16] with custom addition and subtraction operations for matrices and vectors.

Figure 1 shows an example tree representation for a candidate iteration matrix 
described by the term (A − D) + D−1(D−1 + U) . The leaves contain the terminals 
which are the system matrix A and pre-calculated variations of A (the tree’s low-
est level in Fig. 1 depicts this for an example system matrix).

4.2 � Objective function

The spectral radius of the iteration matrix G determines the convergence behavior 
of stationary methods (Eq. 2.3). Iterative methods converge if 0 < 𝜌(G) < 1 holds 
and G is not a diagonal matrix [21], which makes the spectral radius the most 
important part of the objective function. In addition, we want to increase the spar-
sity of the iteration matrix. Therefore, our objective function rewards a high num-
ber of zeros in the iteration matrix. Finally, we also want to keep the complexity 

{+,−, ∗}.

{A,D,D−1, (A − D), (L + D), (L + D)−1,U},
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of the mathematical term under control. We combine these three goals into a sin-
gle objective function and obtain

where s is the spectral radius � of the candidate iteration matrix, z is the number of 
non-zero entries in the considered candidate iteration matrix, and c is the number of 
nodes in the tree representing the candidate iteration matrix. smax, zmax and cmax are 
the largest observed values. wcc∕cmax measures the number of nodes (complexity) of 
the expression’s parse tree and serves as bloat control. This kind of bloat control is 
a variant of the well-known parsimony pressure [4, 19]. We assume a minimization 
problem. The coefficients ws , wz , and wc are real-valued weights in the interval [0, 1] 
such that ws + wz + wc = 1 . As mentioned before, for the convergence of the itera-
tive methods, we must, in addition to a low spectral radius, ensure that �(G) ≠ 0 and 
G is not a diagonal matrix. Individuals that violate these conditions are penalized by 
setting s∕smax = 1.

As the calculation of the spectral radius � is the component that determines the 
computational effort of the fitness function and consequently also of an entire GP 
run, we measure the run-time in milliseconds required for the calculation of the 
spectral radius � for random square matrices for increasing problem sizes n. Figure 2 
shows box-plots of the time in milliseconds required to calculate the spectral radius 
� over problem size n. We use Python’s Numpy module to calculate the spectral 
radius � and measure the run-times using an AMD Ryzen Threadripper 3990X (4.3 
GHz maximum boost clock) with 64 cores. For every problem size n, we report 100 

(4.1)

f (s, c, z) =

{
wss∕smax + wzz∕zmax + wcc∕cmax if 𝜌(G) > 0 ∧ G ∉ diag(ℝN×N)

ws + wzz + wcc else
,

Fig. 1   An example tree representation for a candidate iteration matrix described by the term 
(A − D) + D

−1(D−1 + U)
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time measurements. The plots show that the required run-time to calculate the spec-
tral radius � increases notably with the problem size n. However, even for matrices 
of size 1000 × 1000 , the median run-time is still lower than one second.

5 � Experiments and results

We study the performance of GPLS and the resulting iterative methods on various 
standard test problems with randomly generated dense system matrices, different 
types of randomly generated band matrices, and real-world applications.

For comparability, we use the same settings for our GP approach in all experi-
ments. The individuals in the first generation ( i = 0 ) are generated by the ramped-
half-and-half method. As variation operators, we use standard subtree-crossover 
with a crossover probability of pc = 0.8 and standard subtree-mutation with a muta-
tion probability of pm = 0.05 . For selection, we use tournament selection of size 3. 
The population size is set to 1, 500 and we stop a GP run after 30 generations.

The weights for the objective function were determined based on some manual 
parameter tuning. We set the weight for the spectral radius to ws = 0.8997 , the 
weight for the non-zero values to wz = 0.1 , and method’s complexity weight (nodes 
in the parse tree) to wc = 0.0003 . The largest value is assigned to ws because we 
require 𝜌(G) < 1 to guarantee convergence of the iterative method. To favor small 
solutions, we assign a very low value to wc.

5.1 � Performance of GPLS for random system matrices

The main application of the iterative methods found by GPLS is the solution of 
a linear system discretized from PDEs. However, for a first analysis of the GP 
performance we use randomly generated system matrices as input. We study 
the change of the three components of the objective function—spectral radius, 

Fig. 2   Box-plots of the time in milliseconds required to calculate the spectral radius � over problem size n 
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non-zero values, and the number of nodes in the parse tree—for the best individ-
ual over time in a GP run on randomly generated system matrices of increasing 
size. To generate a random system matrix, for a given matrix size we fill the ele-
ments with equally distributed integer values ranging from −10 to 10.

Figure 3 shows the median spectral radius 𝜌̃ of 100 GP runs over the number 
of generations. As input we use a randomly generated 100 × 100 dense system 
matrix. We find that the average median of the spectral radius decreases from 
about 11 (at the beginning of the runs) to about 3e−14 at the end of the runs.

For the same randomly generated 100 × 100 system matrix used as input, 
Figs. 4 and 5 show the median non-zero entries z̃ and median number of nodes 
c̃ , respectively. We find that the number of non-zero entries decrease over the 
run with a strong reduction between generations 10 and 15. The median number 
of nodes increases slightly over a run starting with about seven tree nodes and 
increasing to 13 nodes. Due to the low weight wc for parsimony pressure, the 
number of nodes slightly increases while still allowing GPLS to improve on the 
spectral radius and sparsity. This is reflected by the choice of the weights in the 
objective function, where spectral radius and sparsity are more important than the 
size of the resulting iterative numerical method ( ws,wz > wc).

Fig. 3   Spectral radius over iterations for a 100 × 100 matrix

Fig. 4   Non-zero values over 
iterations for a 100 × 100 matrix
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Table 1 extends the analysis and presents results for the spectral radius, the num-
ber of non-zero entries, and the number of nodes in the parse tree for random prob-
lems of size 10 × 10 to 100 × 100 . For each problem size, we perform 100 runs with 
a random system matrix. We show the median as well as the interquartile range 
(IQR; in parentheses) of the best solution in the initial ( i = 0 ) and last generation 
( i = 29 ). We use the IQR as a proxy for the variance of the results. It is defined as 
the difference between the 75th and the 25th percentile. Best median results of a 

Fig. 5   Complexity over itera-
tions for a 100 × 100 matrix

Table 1   Median and interquartile range of spectral radius, number of non-zero entries, and number of 
nodes in the parse tree (method’s complexity) in first ( i = 0 ) and last ( i = 29 ) generation. We present 
results for different problem sizes

Problem size Spectral radius s̃ Non-zero entries z̃ Number of 
nodes c̃

i = 0 i = 29 i = 0 i = 29 i = 0 i = 29

10 × 10 9.0
(0.111)

0.333
(0.333)

53
(7)

46
(42)

1
(6)

7
(12)

20 × 20 9.95
(89.099)

1.776e−15
(0.999)

191
(12)

65
(119.25)

7
(4)

15
(14)

30 × 30 9.945
(9.0)

1.776e−15
(0.999)

432
(14)

168
(290.25)

7
(2)

15
(10)

40 × 40 10
(89.099)

8.881e−16
(0.528)

692.5
(93)

120
(389.75)

7
(2)

17
(12)

50 × 50 10
(89.347)

0.75
(0.999)

1147.5
(73)

194
(1013.75)

7
(2)

15
(12)

60 × 60 10.95
(89.099)

1.191e−15
(0.999)

1657
(133)

235
(991)

7
(6.5)

15
(8.5)

70 × 70 10
(100)

0.187
(9.899)

2191.5
(225)

1076
(1885)

7
(4)

15
(10)

80 × 80 10
(90.092)

0.328
(0.992)

2962
(276)

735
(2386.5)

7
(2)

13
(8.5)

90 × 90 10.9
(90.092)

1.139e−14
(0.999)

3745
(168)

538
(1772.25)

7
(3)

15
(8)

100 × 100 11
(100)

3.554e−14
(0.999)

4617
(148.25)

632.5
(4005)

7
(2)

13
(10)
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run are printed in bold. All differences between the first and last generations were 
tested for significance with a Wilcoxon rank-sum test ( p < 0.001).

We find that GPLS reliably finds solutions with low spectral radius (median spec-
tral radius 𝜌̃ < 1.0 for all studied problem instances). For some problem sizes, we 
observe a quite large IQR because the search space is complex and GPLS does not 
always find a successful solution (where 𝜌 < 1.0 ). However, this is not a problem 
for the practical use of GPLS, since we can simply check the found solution for its 
suitability (calculate the spectral radius) and, if necessary, restart the GPLS run. In 
addition to the spectral radius, the GP approach also improves the sparsity of the 
found iteration matrices for all problem sizes. Only the number of nodes increase 
during a GP run. This is expected as the weight wc is chosen very low to work only 
as slight bloat control, as a median size of 15 nodes is acceptable (comparable to the 
Gauss–Seidel and the Jacobi methods).

5.2 � Generalization of iteration matrices found by GPLS

A direct comparison of GPLS and classical stationary iterative methods is difficult 
as GPLS’ main effort comes from the search for a suitable term that builds an itera-
tion matrix from a system matrix. This effort is high, especially if the considered 
linear systems are very large. In contrast, classical stationary iterative methods like 
Gauss–Seidel do not require any search process but are directly applicable.

A relevant question is whether GPLS finds iteration matrices that are general 
and can (analogously to classical stationary iterative methods) be applied to a wide 
range of different problems. When searching for such generalizable expressions, 
we can utilize the fact that linear systems discretized from PDEs often have similar 
structures and characteristics independently of their degree of detail and size. We 
can take advantage of this and evolve iteration matrices with GPLS for small linear 
systems and subsequently use the found solutions on larger systems with a similar 
structure, based on the assumption that the found solutions for the small systems 
also yield satisfactory results for the larger systems.

We study the generalization of the found solutions with a set of diagonal n × n 
band matrices used as system matrices, which are also relevant for real-world prob-
lems (see tridiagonal Toeplitz matrices [8]). A band matrix is a sparse matrix with 
a main diagonal and additional diagonals on both sides of the main diagonal con-
taining non-zero values [7]. We use diagonal matrices in 1D and 2D with addi-
tional diagonals on the upper side and on the lower side of the main diagonal [9]. 
The structure of these matrices is independent of the node size n because, for each 
matrix, we use consistent values for the diagonals.

In our experiments, we randomly generate 100 system matrices of low size ( n = 5 
and n = 9 ). For each of the problems, GPLS determines an iteration matrix. In a 
next step, for each of the 100 system matrices (for each considered problem type) we 
generate appropriate system matrices with larger n. The larger system matrices are 
also diagonal matrices. We apply the solution that has been found by GPLS for the 
low value of n to the larger system matrices and evaluate the corresponding spectral 
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radii � of the iteration matrices. Our hope is that the solutions found for small n are 
general and also work well for larger n.

Figure 6 shows box-plots of the spectral radius � over the problem size n of the 
n × n system matrices. Each box-plot contains the spectral radius of 100 iteration 
matrices. The dashed line shows a spectral radius of 1.0. In this experiment, GPLS 
was only applied to diagonally dominant and diagonal system matrices in 1D of size 
5 × 5 . Thus, only the spectral radii of the iteration matrices in the first box-plot are 
a direct result of GPLS. And for this first box-plot, we considered only found itera-
tion matrices with a spectral radius 𝜌 < 1.0 . For the larger system matrices, we did 
not apply GPLS anew but re-used the iterative methods evolved for the small system 
matrices ( n = 5).

As expected, the spectral radii become larger with increasing n. Nevertheless, the 
median spectral radius is always lower than 1.0 for the analyzed matrix sizes. For 
n = 5 , GPLS finds solutions with a median spectral radius � = 9.23e − 6 . Apply-
ing these solutions to a problem with n = 1000 still yields a median spectral radius 
𝜌̃ < 1.0.

Figure  7 shows the same analysis, but this time we start from 9 × 9 diagonal 
system matrices in 2D. Again, the median spectral radius is always lower than 1.0. 
However, with an increasing problem size n, we see an increase of the number of 
outliers with a spectral radius 𝜌 > 1.0.

In summary, on the analyzed problems, the iterative methods found by GPLS for 
small system matrices are generalizable and can be re-used for larger n, if the basic 
structure of the problem stays the same.

5.3 � GPLS overcomes limitations of existing stationary iterative methods

The well-known Gauss–Seidel method converges if the system matrix A is either 
symmetric positive definite or strictly diagonally dominant. If this is not the case, 
there is no guarantee that the Gauss–Seidel method will find an appropriate iteration 

Fig. 6   Box-plots of the spectral radius � of diagonal 1D matrices over problem size n (starting with n = 5)
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matrix G [7, 21]. To address such cases is a good challenge for GPLS because GP 
can search the whole space of potential methods and maybe come up with solutions 
for problems where the Gauss–Seidel method fails.

Consequently, we generate typical random system matrices where the Gauss–Sei-
del method cannot find an appropriate iteration matrix and study the properties of 
iteration matrices generated by GPLS. We use heat maps for the visual inspection 
of system and iteration matrices, which are graphical representations of the numeri-
cal elements in a matrix. Heat maps make it easier to see structural characteristics 
like diagonals and the sparsity of a matrix, as each entry/value is represented by a 
specific color.

Figure  8 shows a randomly generated dense system matrix of size 25 × 25 . For 
this example, we filled the matrix with equally distributed integer values rang-
ing from −10 to 10. The Gauss–Seidel method only finds an iteration matrix 
with a spectral radius of around 28,000. Hence, the Gauss–Seidel method can-
not be used. In contrast, GPLS finds a solution for this example described by 
the term (((AD) + ((U + D) + (L + D))) − (((D−1 + U) + (((L + D)−1 − U)−

(D−1 + (L + D)−1))) + ((AD) + ((U + D) + (L + D))))) . Figure 9 shows the resulting 

Fig. 7   Box-plots of the spectral radius � of diagonal 2D matrices over problem size n (starting with n = 9)

Fig. 8   Randomly generated 
dense system matrix



270	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

iteration matrix. The matrix has a spectral radius of 2.22e−16 as well as high spar-
sity. The few non-zero values are concentrated in the upper triangular area because the 
found term is dominated by the terminals L + D and U.

A second example is a randomly generated tridiagonal band matrix of size 25 × 25 
as system matrix. For each diagonal, we used an equally distributed random integer 
value from the interval [−10, 10] . Thus, the band matrix is not diagonally dominant. 
Figure 10 shows the heat map for this system matrix. The spectral radius of the itera-
tion matrix found by the Gauss–Seidel method is 6.0. Thus, the Gauss–Seidel method 
is not usable in this case.

In contrast, GPLS again finds an expression that is able to solve the problem. The 
term found by GPLS is U + D−1 . The resulting iteration matrix (see Fig. 11) has a spec-
tral radius of 0.2 and is similar to the system matrix but has one diagonal less.

5.4 � Convergence analysis of iteration matrices found by GPLS

This section studies the convergence speed of the iterative numerical methods found 
by GPLS for two types of dominant band matrices. We compare the solutions found by 
GPLS with those of the Jacobi, Gauss–Seidel, and SOR methods. For this purpose, we 
consider linear systems of the form

(5.1)Ax = 0.

Fig. 9   Corresponding iteration 
matrix found by GPLS

Fig. 10   Randomly generated 
not diagonally dominant band 
matrix as system matrix
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5.4.1 � Sparse diagonally dominant band matrices

In a first set of experiments, we study the convergence behavior for linear equations 
that arise from the discretization of PDEs. In particular, we consider Poisson’s equa-
tion in 1D, 2D, and 3D with the following boundary condition (Dirichlet):

We transform the PDEs into a system of linear equations (compare Sect. 3) using 
FDM, which leads to a system of the form of Eq. 5.1. In all three cases (1D, 2D, and 
3D), the resulting system matrices are sparse diagonally dominant band matrices, 
for which, e.g., Jacobi and Gauss–Seidel are guaranteed to converge. GPLS evolved 
the following terms to calculate the iteration matrix G:

–	 1D: (D−1)13((L + D)−1)2U6(D−1 + U)3

–	 2D: (D−1)4(U − D−1)

–	 3D: U + D−1

Table  2 compares the spectral radii of the iteration matrices of the Jacobi, 
Gauss–Seidel, SOR and GPLS method for all three cases of the discretized Poisson 
equation. For SOR, we set the relaxation parameter � = 0.8 [we tested values from 
the interval (0,2) with step size 0.1]. As expected � is lowest for iteration matrices 
found by GPLS. The spectral radii of iteration matrices constructed by the Jacobi or 
Gauss–Seidel method are only slightly lower than one.

To study the convergence behavior of the resulting iterative methods more 
closely, we employ the iteration scheme

u(x) = 0.

Fig. 11   Corresponding iteration 
matrix found by GPLS

Table 2   Spectral radii of the iteration matrices for the discretized Poisson equations

Case Matrix size Jacobi Gauss–Seidel SOR ( � = 0.8) GPLS

1D 175 × 175 0.99984 0.99968 0.23022 1.03204e − 7

2D 196 × 196 0.97815 0.95677 0.2 0.00098
3D 216 × 216 0.90097 0.81174 0.2 0.16666
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where x(i) is the current solution and G the iteration matrix. As initial guess x(0) for 
the solution of the system we use

with n as the number of discretization points. As we know that the solution of the 
system defined in Eq. 5.1 is 0, the absolute error � is equal to the current approxima-
tion x(i) during each iteration i:

Figures 12, 13, and 14 plot the L2-norm of the error � over the number of itera-
tions for the Jacobi, Gauss–Seidel, SOR, and GPLS-evolved iteration methods for 
the solution of Poisson’s equation in 1D, 2D, and 3D, respectively. As expected, 
all three iteration schemes converge to the solution of the system, although—as 
reflected in the lower spectral radius of its iteration matrix—the iteration schemes 

x(i+1) = Gx(i),

x
(0)

j
= 1 ∀j = 1,… n,

� = x(i) − 0 = x(i).

Fig. 12   Error over iterations for 1D Poisson

Fig. 13   Error over iterations for 
2D Poisson
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evolved by GPLS converge much faster than Gauss–Seidel and Jacobi. For exam-
ple, in the 1D and 2D case convergence can be achieved with GPLS in only a few 
iterations. In the 3D case there is an increase of the error in the first few itera-
tions followed by a fast decrease of the error. In all three instances, the conver-
gence speed of SOR is similar to that of GPLS. However, the convergence speed 
strongly depends on the choice of the right relaxation parameter �.

Being surprised by the extremely fast convergence of the iterative numeri-
cal methods evolved by GPLS (especially for the 1D case of Poisson’s equation), 
we study whether GPLS has found as iteration matrix G the inverse of the system 
matrix A or a matrix that is very similar. If this is the case, the fast convergence 
behavior would be inevitable. Consequently, Fig. 15 shows the heat map of the prod-
uct of A and the iteration matrix G found by GPLS. If the product would be the 
identity matrix I, then GPLS would have found A−1 . However, the figure shows that 
AG ≠ I , because we have four diagonals in the upper triangular part of the matrix 
and no main diagonal.

5.4.2 � Non‑diagonally dominant band matrices

As a second and more challenging test case, we consider the class of non-diagonally 
dominant band matrices. For this class of matrices, e.g., the Jacobi and Gauss–Sei-
del methods are not guaranteed to converge in the general case. Thus, it is uncertain 
if a stationary iterative method that converges to the solution of an arbitrary linear 
system with a non-diagonally dominant system matrix can be evolved. To generate a 

Fig. 14   Error over iterations for 
3D Poisson

Fig. 15   Product of system 
matrix A and iteration matrix G 
for 1D Poisson
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suitable instance of this class of matrices, we randomly generate a tridiagonal matrix 
of the form

that satisfies |a| < |b| + |c| . As a test case, we randomly choose the values a = 4 , 
b = 8 , and c = 2 . We assume that this matrix corresponds to a one-dimensional 
problem. Thus, we can generate higher-dimensional problems of the same instance 
by computing the Kronecker sum of the matrix with itself:

The resulting system matrices are also non-diagonally dominant.
Table 3 shows the spectral radii of the resulting Jacobi, Gauss–Seidel, and SOR 

iteration matrices, as well as of the iteration matrices evolved by GPLS. For SOR, 
we set the relaxation parameter � = 0.6 [again, we tested values from the interval 
(0,2) with step size 0.1]. The spectral radii of the iteration matrices generated by 
Jacobi and Gauss–Seidel are all larger than one. Thus, convergence cannot be guar-
anteed. In contrast, SOR and GPLS can evolve iteration matrices with a spectral 
radius smaller than one. For the band matrices in 1D, 2D, and 3D, GPLS evolved the 
following terms to calculate the iteration matrix G:

–	 1D: (D−1)2(D−1U(D − A) + D)

–	 2D: D−1 + U

–	 3D: D−1 + U

Analogous to the Poisson case, we study the convergence of the resulting itera-
tive methods by solving the system defined in Eq. 5.1, using the same initial guess 
x(0) = 1 . Again, we measure the L2 norm of the error � compared to the exact solu-
tion 0 during each iteration.

Figures 16, 17, and 18 plot the error over the number of iterations. As expected, 
the Jacobi and Gauss–Seidel methods do not converge in any of the three cases, 

A1 =

⎡
⎢⎢⎢⎢⎣

a b

c a b

c ⋱ ⋱

⋱ ⋱ b

c a

⎤
⎥⎥⎥⎥⎦
,

A
2
= A

1
⊕ A

1
,

A
3
= A

2
⊕ A

1
.

Table 3   Spectral radii of the iteration matrices for a non-diagonally dominant band matrix

Case Matrix size Jacobi Gauss–Seidel SOR ( � = 0.6) GPLS

A
1

175 × 175 1.99949 3.99873 0.57392 0.25
A
2

196 × 196 1.9563 3.82709 0.4 0.125
A
3

125 × 125 1.73205 3.0 0.4 0.08333
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but the error increases further during each iteration. In contrast, GPLS was able to 
evolve an iteration matrix that leads to convergence in all three cases. The conver-
gence speed is on a level similar to the SOR method (in all three studied instances).

If we compare the convergence behavior of GPLS of non-diagonally dominant 
band matrices to the Poisson case (see Figs. 12, 13, and 14), we find that the evolved 
schemes on average require more iterations and that convergence is only achieved 
after an initial stagnation or even an increase of the error. Nevertheless, the evolved 
iteration matrices always lead to low errors in less than 100 iterations. The initial 
error increase can be explained by the fact that within a stationary iterative method, 

Fig. 16   Error over iterations for a non-diagonally dominant band matrix in 1D

Fig. 17   Error over iterations for 
a non-diagonally dominant band 
matrix in 2D

Fig. 18   Error over iterations for 
a non-diagonally dominant band 
matrix in 3D
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not all error components can be eliminated simultaneously. Consequently, the reduc-
tion of certain error components can cause an increase in the remaining ones and, 
thus, lead to the observed overall growth of the approximation error. However, after 
this initial error increase, the total error quickly decreases (with GPLS and SOR), 
which means that after particular error components are eliminated within the first 
few iterations, the remaining ones are efficiently reducible.

6 � Conclusions

Numerical methods are used to solve problems where no analytical solutions exist 
or are difficult to find. In many real-world applications, the number of unknowns 
is huge which makes efficient and scalable solvers for such systems necessary. As 
GP is known for finding human-competitive results for many real-world problems 
[18], its combination with domain knowledge from the classical numerical methods 
allows us to come up with iteration matrices that beat existing iterative numerical 
methods.

This paper proposed GPLS, a GP-based approach that searches for mathemati-
cal expressions that define iteration matrices for given linear systems. The found 
iteration matrices are used by stationary iterative methods which numerically solve 
the system of linear equations. GPLS makes use of the elements of existing meth-
ods – like variations of the system matrix—to find iteration matrices that lead to a 
fast and reliable convergence of iterative numerical methods. Additionally, GPLS 
finds iteration matrices that are sparse in its structure such that the resulting iterative 
numerical methods can be executed efficiently on parallel computer architectures.

The results show that GPLS finds iteration matrices with a low spectral radius 
for both, dense and also sparse diagonal system matrices. Furthermore, the found 
iteration matrices are of high sparsity and the mathematical term describing these 
matrices is often of low complexity (small parse tree). The found solutions are often 
generalizable to larger dimensions in the sense that solutions found for small prob-
lems also work well for larger system matrices. We showed this for two classes of 
band matrices as the terms found by GPLS for small system matrices ( n ≤ 9 ) can be 
often used to compute high quality iteration matrices with a spectral radius 𝜌 < 1.0 , 
even for larger problem instances (up to n = 1000).

We also found that GPLS can find solutions where the classical iterative methods 
(the Gauss–Seidel and the Jacobi methods) fail to find appropriate iteration matrices. 
Furthermore, the iterative methods found by GPLS converge much faster compared 
to the Gauss–Seidel and Jacobi methods on the studied test problems and perform 
like the SOR method but without the need of an additional relaxation parameter.

7 � Future work

In this work, we demonstrated that GPLS can evolve effective stationary iterative 
methods for solving different sparse linear systems. Another direction is the use 
of these methods for the preconditioning of Krylov subspace methods [21]. In this 
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case, the goal is not to directly solve a sparse linear system but, instead, to use a 
stationary iterative method to compute an approximation for the inverse of a pre-
conditioning matrix P. This approximation is then applied to the original system A, 
for instance, to obtain a right-preconditioned system AP−1u = b , which is easier to 
solve than the original system Ax = b.

So in future work, we will study the ability of GPLS to evolve optimal stationary 
iterative methods to solve systems of the form Px = u , where the solution x repre-
sents an approximation for P−1u . The evolved method can then easily be integrated 
into an existing solver for the resulting preconditioned system, such as a Krylov sub-
space method, to evaluate its effectiveness on different test cases.

Additionally, we will further analyze the scalability/generalizability of solutions 
found by GPLS and study ways to approximate the spectral radius—as a quality 
indicator for iteration matrices—and find other problem representations to enable an 
even faster computation.
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