
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2022) 23:253–278
https://doi.org/10.1007/s10710-021-09425-5

1 3

Genetic programming for iterative numerical methods

Dominik Sobania1  · Jonas Schmitt2  · Harald Köstler2  · Franz Rothlauf1 

Received: 3 December 2020 / Revised: 15 September 2021 / Accepted: 25 September 2021 /
Published online: 25 November 2021
© The Author(s) 2021

Abstract
We introduce GPLS (Genetic Programming for Linear Systems) as a GP system
that finds mathematical expressions defining an iteration matrix. Stationary iterative
methods use this iteration matrix to solve a system of linear equations numerically.
GPLS aims at finding iteration matrices with a low spectral radius and a high spar-
sity, since these properties ensure a fast error reduction of the numerical solution
method and enable the efficient implementation of the methods on parallel computer
architectures. We study GPLS for various types of system matrices and find that it
easily outperforms classical approaches like the Gauss–Seidel and Jacobi methods.
GPLS not only finds iteration matrices for linear systems with a much lower spec-
tral radius, but also iteration matrices for problems where classical approaches fail.
Additionally, solutions found by GPLS for small problem instances show also good
performance for larger instances of the same problem.

Keywords  Genetic programming · Iterative numerical methods · Linear systems ·
Sparse linear algebra

 *	 Dominik Sobania
	 dsobania@uni-mainz.de

	 Jonas Schmitt
	 jonas.schmitt@fau.de

	 Harald Köstler
	 harald.koestler@fau.de

	 Franz Rothlauf
	 rothlauf@uni-mainz.de

1	 Johannes Gutenberg University Mainz, Mainz, Germany
2	 Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany

http://orcid.org/0000-0001-8873-7143
http://orcid.org/0000-0002-8891-0046
http://orcid.org/0000-0002-6992-2690
http://orcid.org/0000-0003-3376-427X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-021-09425-5&domain=pdf

254	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

1  Introduction

Numerical methods are used in various disciplines to solve problems where an
analytical solution does not exist or is difficult to find. In computational science
and engineering, for example, one tries to model physical phenomena and then
to approximate these usually continuous mathematical models numerically. The
computation of a numerical solution often requires solving a system of (non-)lin-
ear equations. Since the number of unknowns can be huge in numerous real-world
applications, efficient and scalable solvers for such systems are necessary. Unfor-
tunately, the optimal solver method depends on the system of equations itself and
therefore it is impossible to formulate a single algorithm for this purpose. How-
ever, over the past decades, several numerical solvers have been proposed in the
field of applied mathematics, which are usually efficient for certain classes of sys-
tem matrices (the coefficient matrix of a linear system) [3, 21].

Genetic programming (GP) is an evolutionary computation technique that has
been successfully applied to various real-world problems during the last decades
[18]. Especially in the field of symbolic regression, where the aim is to find math-
ematical expressions solving a given problem, GP has been used to approximate
even complex problems [12, 27]. This makes GP an interesting approach for find-
ing new iterative numerical methods as it can be used to find the required math-
ematical expressions to generate iteration matrices based on certain classes of
given system matrices.

This paper applies a novel GP approach for linear systems (GPLS); an
approach that finds an iteration matrix for a given linear system. To ensure that
the resulting iterative numerical method can be executed efficiently on parallel
computer architectures, we are interested in a low spectral radius and a high spar-
sity of the found iteration matrices. We evaluate the found methods on standard
test problems and real-world use cases to demonstrate the human competitiveness
of GPLS and to compare it with traditional methods.

GPLS uses certain elements (e.g., some functions and terminals) previously
proposed in a short paper by Mahmoodabadi et al. [15] in their presentation of
a first prototype for solving linear systems with GP, and by Schmitt et al. [22]
who focus on special classes of sparse linear systems. The aim of GPLS is to find
a good iteration matrix based on an input system matrix in general and not one
that only serves special cases. The iteration matrix is the core component of all
considered numerical methods. For GPLS, we define an objective function that
measures the generated iteration matrices’ spectral radius and the sparsity, as well
as the method’s complexity (size of the generated mathematical term equal to the
number of tree nodes). The spectral radius is an indicator for the convergence of
the generated method, high sparsity provides performance advantages in the cal-
culation and implementation of the method, and the complexity measure serves
as bloat control.

Following this introduction, we present a background to iterative numeri-
cal methods and explain the relevant stationary iterative numerical methods in
Sect. 2, describe the discretization of partial differential equations to systems of

255

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

linear equations in Sect. 3, introduce GPLS in detail in Sect. 4, and present our
experiments and discuss the results in Sect. 5. Section 6 concludes the paper.

2 � Iterative numerical methods

The most fundamental problem within linear algebra is finding the solution of the
linear system Ax = b , where A ∈ ℝ

m×n is the coefficient matrix, x ∈ ℝ
m the vector of

unknowns, and b ∈ ℝ
m the right-hand side vector. If A is a squared nonsingular (or

invertible) matrix, there exists a single unique solution x∗ of the system.
Most linear systems derived from science and engineering phenomena do possess

certain special structures. The most eminent property of these systems is sparsity
which means that the majority of the entries of the coefficient matrix A are zero
while the number of nonzero entries is usually of order n. Sparsity significantly
reduces the number of required elementary matrix operations when solving the lin-
ear problem. For instance, assuming that matrix A has �n nonzero entries, a matrix-
vector multiplication can be performed in O(�n) operations. Therefore, the design of
efficient algorithms for solving these systems relies heavily on exploiting the spar-
sity of the coefficient matrix A.

In general, methods for solving linear systems can be classified either as direct
or as iterative methods. Direct methods require only a finite number of steps. An
example is Gaussian elimination, the standard textbook method for solving an arbi-
trary linear system of equations. The commonality of all direct methods is that
they directly manipulate the individual entries of A and thus need to operate on an
explicit representation of the matrix. Transformations applied within direct solvers
such as Gaussian or Householder triangulation do not preserve the sparse structure
of A [25].

In contrast, iterative methods perform successive approximations to a linear sys-
tem to obtain more accurate solutions. Typically, these approximations only require
the calculation of matrix-vector products, where all matrices involved can be derived
from the system matrix without destroying its sparsity. As a result, although special-
ized direct methods for solving sparse systems exist [5], the largest, currently con-
sidered systems are solved using iterative methods [2, 25].

The two main classes of iterative methods for solving systems of linear equations
are stationary and non-stationary methods whereby most of the latter belong to the
subclass of Krylov subspace methods. Stationary methods solve a linear system by
repeatedly applying an iteration matrix, derived from the coefficient matrix A, to
an initial guess for the vector of unknowns x, to get a series of approximations that
converge to the actual solution of the system. Stationary methods have the advantage
that they are easier to implement and to analyze than non-stationary methods. This
paper focuses exclusively on stationary methods to automatically generate iterative
solvers for sparse linear systems.

In the following, we provide a brief overview of the stationary iterative methods.
For a more comprehensive overview of the iterative methods, including non-station-
ary methods, see [3, 7, 21], and [6].

Stationary iterative methods are expressed in the general form

256	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

where G is the iteration matrix, x(k) the solution vector in iteration k (i.e. the current
iterate), and f a vector that is obtained by transforming the right-hand side b. Neither
G nor f depends on the iteration count. The standard iterative methods are Jacobi
and Gauss–Seidel.

2.1 � The Jacobi method

To derive the Jacobi method we consider the equations of the linear system Ax = b
in isolation, which leads to

By solving each of the equations for xi we obtain

If we assume that all entries except xi are fixed in every individual equation, the
iterative scheme is defined by

This iteration is the scalar formulation of the Jacobi method in which x(k)
i

 corre-
sponds to the ith component of the solution vector in iteration k and aij to the entry
of A in row i and column j. Since all equations are treated independently, the order
of examination is irrelevant. In fact, x(k+1)

i
 can be computed simultaneously for all

equations, which makes the Jacobi method easily parallelizable.
To provide a definition of the Jacobi method in matrix form, we first introduce

the splitting

where D is the diagonal, L the strictly lower triangular and U the strictly upper trian-
gular part of A. The term strictly refers to the fact that the diagonal of A is excluded.
We assume that all diagonal entries of A are nonzero. Using this splitting, the matrix
form of the Jacobi method is obtained by

Note that the inverse of a diagonal matrix is a diagonal matrix with the original
diagonal entries inverted. The iteration, in addition, corresponds to our basic formu-
lation of stationary iterative methods (see Eq. 2.1) with the iteration matrix

(2.1)x(k+1) = Gx(k) + f ,

n∑
j=1

aijxj = bi.

xi =

(
bi −

∑
j≠i

aijxj

)
∕aii.

x
(k+1)

i
=

(
bi −

∑
j≠i

aijx
(k)

j

)
∕aii.

A = D − L − U,

x(k+1) = D−1(L + U)x(k) + D−1b.

257

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

and

2.2 � The Gauss–Seidel method

The Jacobi method can simultaneously compute the new iterate for all components of
the solution vector. In contrast, the Gauss–Seidel method examines them in sequence,
such that already computed components are taken into account:

The computation of each new component depends on the previously computed com-
ponents and cannot be performed simultaneously. While this implies a serialization
of the computation, the order can be varied. Different orders will inevitably lead
to different values of the new iterate x(k+1) affecting the overall convergence of the
method. Therefore, the Gauss–Seidel method’s serial nature in general prohibits a
parallel computation. However, when the matrix A is sparse, not all components
of the new iterate x(k+1) depend on the values of all components of the old iterate.
Then, it is possible to define a partitioning of x such that there are no dependencies
between the components in the same partition and consequently the Gauss–Seidel
method can be applied to each partition in parallel. For a more detailed discussion of
the parallelization of the Gauss–Seidel method, see [21]. The matrix formulation of
the Gauss–Seidel method is defined by

Note that the iteration contains the computation of the inverse of (D − L) , which is a
lower triangular matrix. A multiplication with the inverse of this matrix corresponds
to solving a linear system via backward substitution and therefore does not require
the explicit computation of the inverse. The Gauss–Seidel method can also be for-
mulated as a stationary iterative method (see Eq. 2.1) with the iteration matrix

and

G = D−1(L + U) = I − D−1A,

f = D−1b.

x
(k+1)

i
=

(
bi −

∑
j<i

aijx
(k+1)

j
−
∑
j>i

aijx
(k)

j

)
∕aii.

x(k+1) = (D − L)−1Ux(k) + (D − L)−1b.

G = (D − L)−1U = I − (D − L)−1A,

f = (D − L)−1b.

258	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

2.3 � Successive over‑relaxation

The successive over-relaxation (SOR) method [29] extends the Gauss–Seidel
method by applying a weighted average between the previous and the newly com-
puted iterate. It is defined by

The idea is to choose � in a way that accelerates the convergence of the method
to the actual solution. Note that if � = 1 , SOR corresponds to the Gauss–Seidel
method. SOR only converges for values of � ∈ (0, 2) [11]. In general it is not pos-
sible to estimate the optimal value of � a priori and therefore a heuristic is usu-
ally employed to choose an � . Like the Jacobi and Gauss–Seidel methods, the SOR
method can also be defined in terms of matrices and vectors by the iteration

Similar to Gauss–Seidel, all inverted matrices are lower triangular matrices and the
respective matrix vector products can be obtained via backward substitution without
explicitly computing the inverse. For the complete derivation of SOR, see [29].

2.4 � Convergence of stationary methods

Both, the Jacobi method and the Gauss–Seidel method define a sequence of approxi-
mations of the basic form as defined in Eq. 2.1. In case convergence is reached, the
limit x of this iteration satisfies

Essential for the convergence of stationary iterative methods is the spectral radius �
of the iteration matrix G defined by

where �j(G) are the eigenvalues of G.

Theorem 1  Let G be a square matrix with spectral radius �(G) , then

if and only if 𝜌(G) < 1.

For a proof, see [21]. Equation 2.2 can be reformulated into the following system
of linear equations:

x
(k+1)

i
= �x

(k+1)

i
+ (1 − �)x

(k)

i
.

x(k+1) = (D − �L)−1(�U + (1 − �)D)x(k) + �(D − �L)−1b.

(2.2)x = Gx + f .

(2.3)�(G) = max
1≤j≤n

|�j(G)|,

lim
k→∞

Gk = 0

(2.4)x − Gx = f ,

259

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

Equation 2.5 has a unique solution x∗ if and only if (I − G) is a non-singular square
matrix. Subtracting Eq. 2.2 from the basic iteration scheme presented in Eq. 2.1
leads to

From Theorem 1 it follows that the sequence x(k+1) − x∗ = Gk+1(x0 − x∗) converges
to zero. Therefore, we can conclude about the convergence of an arbitrary stationary
iterative method:

Theorem 2  Let G be a square matrix with 𝜌(G) < 1 , then I − G is non-singular and
the iteration presented in Eq. 2.1 converges for any f and x0 . Conversely, if the itera-
tion presented in Eq. 2.1 converges for any f and x0 , then 𝜌(G) < 1.

As Theorem 2 states, the convergence of any stationary iterative method solely
depends on finding an iteration matrix with a spectral radius smaller than one. Fur-
thermore, the general convergence factor of an iterative method is equal to the spec-
tral radius of its iteration matrix [21]. Therefore, the design of an efficient iterative
method is equivalent to finding an iteration matrix with a low (or even minimal)
spectral radius.

Since the computation of the spectral radius is expensive, it is often not practi-
cal to compute it directly. For Jacobi, Gauss–Seidel and other well-studied methods
there exist certain criteria for the system matrix A that ensure the convergence of
these methods [7]. One possibility to estimate the spectral radius for arbitrary sta-
tionary iterative methods is the use of Local Fourier Analysis (LFA) [20, 28].

3 � Discretization of partial differential equations

Many problems in science and engineering can be mathematically modeled in the
form of a partial differential equation (PDE). A classic example is the Navier–Stokes
equation that describes the motion of a viscous fluid [24] and can be used to model
a wide range of phenomena, with applications ranging from weather forecasting to
aircraft design. Although there exists a rich theory about PDEs, only a few cases of
analytical solutions for these equations are known. As a remedy, numerical methods
can be applied to approximate the solution of a PDE at a finite number of points
what transforms the problem of solving a PDE into a problem of solving a system
of linear equations. This transformation is usually referred to as discretization. The
most widely used methods of discretizing a PDE are the finite difference method
(FDM), the finite volume method (FVM), and the finite element method (FEM). To
provide a brief introduction to the discretization of PDEs, we focus on FDM. For
more information on the numerical solutions of PDEs, see [1, 10, 17, 23], and [26].

One of the most basic but also quite common PDE is Poisson’s equation which is
defined as

(2.5)(I − G)x = f .

x(k+1) − x∗ = G(x(k) − x∗) = … = Gk+1(x0 − x∗).

260	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

where � is the Laplace operator, u and f are real or complex-valued functions. Typi-
cally, f is given and one wants to solve the equation for u. For u, f ∈ ℝ

2 it takes the
form

If u is differentiable at a point x, we can create the Taylor expansion

in which ux and uy denote the first order partial derivatives of u with respect to x and
y, respectively.

When stopping the Taylor expansion after the third term, the error that results from
this approximation is of order O(h4) . Similarly, we can define

Adding Eq. 3.2 to Eq. 3.4 and Eq. 3.3 to Eq. 3.5 and dividing by h2 yield the follow-
ing approximation for the second order partial derivative of u:

In both cases, the approximation error is of order O(h2) . Although not covered
here, the approximation of first or higher-order derivatives can be defined in a simi-
lar fashion. Equations 3.6 and 3.7 can now be used to define an approximation for
the Laplace operator. This results in the discrete version of Poisson’s equation (see
Eq. 3.1)

�u = f ,

(3.1)
(

�2

�x2
+

�2

�y2

)
u(x, y) = f (x, y).

(3.2)u(x + h, y) = u(x, y) + hux(x, y) +
h2

2
uxx(x, y) +

h3

6
uxxx(x, y) +O(h4)

(3.3)u(x, y + h) = u(x, y) + huy(x, y) +
h2

2
uyy(x, y) +

h3

6
uyyy(x, y) +O(h4),

ux(x, y) =
�

�x
u(x, y), uxx(x, y) =

�2

�x2
u(x, y),…

(3.4)u(x − h, y) = u(x, y) − hux(x, y) +
h2

2
uxx(x, y) −

h3

6
uxxx(x, y) +O(h4)

(3.5)u(x, y − h) = u(x, y) − huy(x, y) +
h2

2
uyy(x, y) −

h3

6
uyyy(x, y) +O(h4).

(3.6)�2

�x2
u(x, y) =

u(x + h, y) + u(x − h, y) − 2u(x, y)

h2
+O(h2)

(3.7)
�2

�y2
u(x, y) =

u(x, y + h) + u(x, y − h) − 2u(x, y)

h2
+O(h2)

261

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

Consequently, to compute the solution of Poisson’s equation on an arbitrary two
dimensional domain using a finite difference approximation, a system of linear equa-
tions must be solved, whereby the solution at each point is represented by an equa-
tion of the form of the discrete version of Poisson’s equation. A common decision is
to choose a uniform h for the whole domain, such that the individual equations are
independent of its value.

In order to solve the system, an additional set of equations must be defined
that defines how the system behaves at the boundaries of the domain. These
boundary conditions usually come in three types:

–	 Dirichlet condition: u(x) = �(x)

–	 Neumann condition: �
�n
u(x) = 0

–	 Cauchy condition: �
�n

+ �(x)u(x) = �(x)

The vector n refers to a unit vector normal to the domain and directed outwards.
In many cases, boundary conditions are of mixed type, which means that at
different parts of the boundary different conditions are defined. As we do not
explicitly treat boundary conditions in this work, we assume that the boundary
conditions are contained in the right-hand side vector b. Thus, our derivation
results in a linear system of the form

We present an example and assume a 5x5 grid with 9 interior grid points, Dirichlet
conditions at all boundaries, and a natural ordering of the grid points. This problem
can, for instance, result in a linear system with the matrix A and right-hand side b:

fij and uij denote the values of u and f at position (ih, jh) within the domain. Note that
A is a sparse band matrix. Therefore, we expect an iterative solver to preserve this
property when computing an approximate solution for the system. Approximating
Poisson’s equation with finite differences in one or three dimensions can be per-
formed in a similar manner, which also results in linear systems of the form Ax = b
with a band matrix A.

1

h2
(u(x + h, y) + u(x − h, y) + u(x, y + h) + u(x, y − h) − 4u(x, y)) = f .

Ax = b.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

0 0 0 −1 0 0 4 −1 0

0 0 0 0 −1 0 −1 4 −1

0 0 0 0 0 −1 0 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h2f22 + u12 + u21
−h2f32 + u31

−h2f42 + u52 + u41
−h2f23 + u13

−h2f33
−h2f43 + u53

−h2f24 + u14 + u25
−h2f34 + u35

−h2f44 + u54 + u45

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

262	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

4 � GPLS: genetic programming for linear systems

GPLS is a standard GP approach which aims to find mathematical expressions
that define an iteration matrix. It uses the system matrix A of a linear system
as input. In contrast to classical regression approaches [13, 14], the solutions of
GPLS are iteration matrices G and we have no training points given. Our aim is
to find iteration matrices G with a low spectral radius �(G) . When obtaining such
an iteration matrix G, we can use it with iterative methods to find an approximate
solution for a linear system.

4.1 � Representation of iteration matrices

We use a tree-based representation to describe an iteration matrix by a mathemat-
ical term. The result of this term is the iteration matrix. We use a function and
terminal set that allow the application of well-known iterative numerical methods
[3]. Accordingly, the function set is defined as

The terminal set contains multiple variations of the system matrix A, which can be
calculated offline before the start of a GP run. For our experiments, we use

where A is the system matrix, D is the diagonal matrix of A, L is the strictly lower
triangular part of A, and U is the strictly upper triangular part of A.

We do not use the right hand side vector b in the terminal set because it is not
necessary for the convergence of the used iterative method as defined in Theo-
rem 2 [21]. Furthermore, the omission of the vector b allows us to work exclu-
sively on square matrices, so it is not required to use a strongly typed GP (STGP)
[16] with custom addition and subtraction operations for matrices and vectors.

Figure 1 shows an example tree representation for a candidate iteration matrix
described by the term (A − D) + D−1(D−1 + U) . The leaves contain the terminals
which are the system matrix A and pre-calculated variations of A (the tree’s low-
est level in Fig. 1 depicts this for an example system matrix).

4.2 � Objective function

The spectral radius of the iteration matrix G determines the convergence behavior
of stationary methods (Eq. 2.3). Iterative methods converge if 0 < 𝜌(G) < 1 holds
and G is not a diagonal matrix [21], which makes the spectral radius the most
important part of the objective function. In addition, we want to increase the spar-
sity of the iteration matrix. Therefore, our objective function rewards a high num-
ber of zeros in the iteration matrix. Finally, we also want to keep the complexity

{+,−, ∗}.

{A,D,D−1, (A − D), (L + D), (L + D)−1,U},

263

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

of the mathematical term under control. We combine these three goals into a sin-
gle objective function and obtain

where s is the spectral radius � of the candidate iteration matrix, z is the number of
non-zero entries in the considered candidate iteration matrix, and c is the number of
nodes in the tree representing the candidate iteration matrix. smax, zmax and cmax are
the largest observed values. wcc∕cmax measures the number of nodes (complexity) of
the expression’s parse tree and serves as bloat control. This kind of bloat control is
a variant of the well-known parsimony pressure [4, 19]. We assume a minimization
problem. The coefficients ws , wz , and wc are real-valued weights in the interval [0, 1]
such that ws + wz + wc = 1 . As mentioned before, for the convergence of the itera-
tive methods, we must, in addition to a low spectral radius, ensure that �(G) ≠ 0 and
G is not a diagonal matrix. Individuals that violate these conditions are penalized by
setting s∕smax = 1.

As the calculation of the spectral radius � is the component that determines the
computational effort of the fitness function and consequently also of an entire GP
run, we measure the run-time in milliseconds required for the calculation of the
spectral radius � for random square matrices for increasing problem sizes n. Figure 2
shows box-plots of the time in milliseconds required to calculate the spectral radius
� over problem size n. We use Python’s Numpy module to calculate the spectral
radius � and measure the run-times using an AMD Ryzen Threadripper 3990X (4.3
GHz maximum boost clock) with 64 cores. For every problem size n, we report 100

(4.1)

f (s, c, z) =

{
wss∕smax + wzz∕zmax + wcc∕cmax if 𝜌(G) > 0 ∧ G ∉ diag(ℝN×N)

ws + wzz + wcc else
,

Fig. 1   An example tree representation for a candidate iteration matrix described by the term
(A − D) + D

−1(D−1 + U)

264	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

time measurements. The plots show that the required run-time to calculate the spec-
tral radius � increases notably with the problem size n. However, even for matrices
of size 1000 × 1000 , the median run-time is still lower than one second.

5 � Experiments and results

We study the performance of GPLS and the resulting iterative methods on various
standard test problems with randomly generated dense system matrices, different
types of randomly generated band matrices, and real-world applications.

For comparability, we use the same settings for our GP approach in all experi-
ments. The individuals in the first generation ( i = 0 ) are generated by the ramped-
half-and-half method. As variation operators, we use standard subtree-crossover
with a crossover probability of pc = 0.8 and standard subtree-mutation with a muta-
tion probability of pm = 0.05 . For selection, we use tournament selection of size 3.
The population size is set to 1, 500 and we stop a GP run after 30 generations.

The weights for the objective function were determined based on some manual
parameter tuning. We set the weight for the spectral radius to ws = 0.8997 , the
weight for the non-zero values to wz = 0.1 , and method’s complexity weight (nodes
in the parse tree) to wc = 0.0003 . The largest value is assigned to ws because we
require 𝜌(G) < 1 to guarantee convergence of the iterative method. To favor small
solutions, we assign a very low value to wc.

5.1 � Performance of GPLS for random system matrices

The main application of the iterative methods found by GPLS is the solution of
a linear system discretized from PDEs. However, for a first analysis of the GP
performance we use randomly generated system matrices as input. We study
the change of the three components of the objective function—spectral radius,

Fig. 2   Box-plots of the time in milliseconds required to calculate the spectral radius � over problem size n 

265

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

non-zero values, and the number of nodes in the parse tree—for the best individ-
ual over time in a GP run on randomly generated system matrices of increasing
size. To generate a random system matrix, for a given matrix size we fill the ele-
ments with equally distributed integer values ranging from −10 to 10.

Figure 3 shows the median spectral radius 𝜌̃ of 100 GP runs over the number
of generations. As input we use a randomly generated 100 × 100 dense system
matrix. We find that the average median of the spectral radius decreases from
about 11 (at the beginning of the runs) to about 3e−14 at the end of the runs.

For the same randomly generated 100 × 100 system matrix used as input,
Figs. 4 and 5 show the median non-zero entries z̃ and median number of nodes
c̃ , respectively. We find that the number of non-zero entries decrease over the
run with a strong reduction between generations 10 and 15. The median number
of nodes increases slightly over a run starting with about seven tree nodes and
increasing to 13 nodes. Due to the low weight wc for parsimony pressure, the
number of nodes slightly increases while still allowing GPLS to improve on the
spectral radius and sparsity. This is reflected by the choice of the weights in the
objective function, where spectral radius and sparsity are more important than the
size of the resulting iterative numerical method ( ws,wz > wc).

Fig. 3   Spectral radius over iterations for a 100 × 100 matrix

Fig. 4   Non-zero values over
iterations for a 100 × 100 matrix

266	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

Table 1 extends the analysis and presents results for the spectral radius, the num-
ber of non-zero entries, and the number of nodes in the parse tree for random prob-
lems of size 10 × 10 to 100 × 100 . For each problem size, we perform 100 runs with
a random system matrix. We show the median as well as the interquartile range
(IQR; in parentheses) of the best solution in the initial ( i = 0 ) and last generation
( i = 29 ). We use the IQR as a proxy for the variance of the results. It is defined as
the difference between the 75th and the 25th percentile. Best median results of a

Fig. 5   Complexity over itera-
tions for a 100 × 100 matrix

Table 1   Median and interquartile range of spectral radius, number of non-zero entries, and number of
nodes in the parse tree (method’s complexity) in first ( i = 0 ) and last ( i = 29 ) generation. We present
results for different problem sizes

Problem size Spectral radius s̃ Non-zero entries z̃ Number of
nodes c̃

i = 0 i = 29 i = 0 i = 29 i = 0 i = 29

10 × 10 9.0
(0.111)

0.333
(0.333)

53
(7)

46
(42)

1
(6)

7
(12)

20 × 20 9.95
(89.099)

1.776e−15
(0.999)

191
(12)

65
(119.25)

7
(4)

15
(14)

30 × 30 9.945
(9.0)

1.776e−15
(0.999)

432
(14)

168
(290.25)

7
(2)

15
(10)

40 × 40 10
(89.099)

8.881e−16
(0.528)

692.5
(93)

120
(389.75)

7
(2)

17
(12)

50 × 50 10
(89.347)

0.75
(0.999)

1147.5
(73)

194
(1013.75)

7
(2)

15
(12)

60 × 60 10.95
(89.099)

1.191e−15
(0.999)

1657
(133)

235
(991)

7
(6.5)

15
(8.5)

70 × 70 10
(100)

0.187
(9.899)

2191.5
(225)

1076
(1885)

7
(4)

15
(10)

80 × 80 10
(90.092)

0.328
(0.992)

2962
(276)

735
(2386.5)

7
(2)

13
(8.5)

90 × 90 10.9
(90.092)

1.139e−14
(0.999)

3745
(168)

538
(1772.25)

7
(3)

15
(8)

100 × 100 11
(100)

3.554e−14
(0.999)

4617
(148.25)

632.5
(4005)

7
(2)

13
(10)

267

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

run are printed in bold. All differences between the first and last generations were
tested for significance with a Wilcoxon rank-sum test ( p < 0.001).

We find that GPLS reliably finds solutions with low spectral radius (median spec-
tral radius 𝜌̃ < 1.0 for all studied problem instances). For some problem sizes, we
observe a quite large IQR because the search space is complex and GPLS does not
always find a successful solution (where 𝜌 < 1.0 ). However, this is not a problem
for the practical use of GPLS, since we can simply check the found solution for its
suitability (calculate the spectral radius) and, if necessary, restart the GPLS run. In
addition to the spectral radius, the GP approach also improves the sparsity of the
found iteration matrices for all problem sizes. Only the number of nodes increase
during a GP run. This is expected as the weight wc is chosen very low to work only
as slight bloat control, as a median size of 15 nodes is acceptable (comparable to the
Gauss–Seidel and the Jacobi methods).

5.2 � Generalization of iteration matrices found by GPLS

A direct comparison of GPLS and classical stationary iterative methods is difficult
as GPLS’ main effort comes from the search for a suitable term that builds an itera-
tion matrix from a system matrix. This effort is high, especially if the considered
linear systems are very large. In contrast, classical stationary iterative methods like
Gauss–Seidel do not require any search process but are directly applicable.

A relevant question is whether GPLS finds iteration matrices that are general
and can (analogously to classical stationary iterative methods) be applied to a wide
range of different problems. When searching for such generalizable expressions,
we can utilize the fact that linear systems discretized from PDEs often have similar
structures and characteristics independently of their degree of detail and size. We
can take advantage of this and evolve iteration matrices with GPLS for small linear
systems and subsequently use the found solutions on larger systems with a similar
structure, based on the assumption that the found solutions for the small systems
also yield satisfactory results for the larger systems.

We study the generalization of the found solutions with a set of diagonal n × n
band matrices used as system matrices, which are also relevant for real-world prob-
lems (see tridiagonal Toeplitz matrices [8]). A band matrix is a sparse matrix with
a main diagonal and additional diagonals on both sides of the main diagonal con-
taining non-zero values [7]. We use diagonal matrices in 1D and 2D with addi-
tional diagonals on the upper side and on the lower side of the main diagonal [9].
The structure of these matrices is independent of the node size n because, for each
matrix, we use consistent values for the diagonals.

In our experiments, we randomly generate 100 system matrices of low size ( n = 5
and n = 9 ). For each of the problems, GPLS determines an iteration matrix. In a
next step, for each of the 100 system matrices (for each considered problem type) we
generate appropriate system matrices with larger n. The larger system matrices are
also diagonal matrices. We apply the solution that has been found by GPLS for the
low value of n to the larger system matrices and evaluate the corresponding spectral

268	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

radii � of the iteration matrices. Our hope is that the solutions found for small n are
general and also work well for larger n.

Figure 6 shows box-plots of the spectral radius � over the problem size n of the
n × n system matrices. Each box-plot contains the spectral radius of 100 iteration
matrices. The dashed line shows a spectral radius of 1.0. In this experiment, GPLS
was only applied to diagonally dominant and diagonal system matrices in 1D of size
5 × 5 . Thus, only the spectral radii of the iteration matrices in the first box-plot are
a direct result of GPLS. And for this first box-plot, we considered only found itera-
tion matrices with a spectral radius 𝜌 < 1.0 . For the larger system matrices, we did
not apply GPLS anew but re-used the iterative methods evolved for the small system
matrices ( n = 5).

As expected, the spectral radii become larger with increasing n. Nevertheless, the
median spectral radius is always lower than 1.0 for the analyzed matrix sizes. For
n = 5 , GPLS finds solutions with a median spectral radius � = 9.23e − 6 . Apply-
ing these solutions to a problem with n = 1000 still yields a median spectral radius
𝜌̃ < 1.0.

Figure 7 shows the same analysis, but this time we start from 9 × 9 diagonal
system matrices in 2D. Again, the median spectral radius is always lower than 1.0.
However, with an increasing problem size n, we see an increase of the number of
outliers with a spectral radius 𝜌 > 1.0.

In summary, on the analyzed problems, the iterative methods found by GPLS for
small system matrices are generalizable and can be re-used for larger n, if the basic
structure of the problem stays the same.

5.3 � GPLS overcomes limitations of existing stationary iterative methods

The well-known Gauss–Seidel method converges if the system matrix A is either
symmetric positive definite or strictly diagonally dominant. If this is not the case,
there is no guarantee that the Gauss–Seidel method will find an appropriate iteration

Fig. 6   Box-plots of the spectral radius � of diagonal 1D matrices over problem size n (starting with n = 5)

269

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

matrix G [7, 21]. To address such cases is a good challenge for GPLS because GP
can search the whole space of potential methods and maybe come up with solutions
for problems where the Gauss–Seidel method fails.

Consequently, we generate typical random system matrices where the Gauss–Sei-
del method cannot find an appropriate iteration matrix and study the properties of
iteration matrices generated by GPLS. We use heat maps for the visual inspection
of system and iteration matrices, which are graphical representations of the numeri-
cal elements in a matrix. Heat maps make it easier to see structural characteristics
like diagonals and the sparsity of a matrix, as each entry/value is represented by a
specific color.

Figure 8 shows a randomly generated dense system matrix of size 25 × 25 . For
this example, we filled the matrix with equally distributed integer values rang-
ing from −10 to 10. The Gauss–Seidel method only finds an iteration matrix
with a spectral radius of around 28,000. Hence, the Gauss–Seidel method can-
not be used. In contrast, GPLS finds a solution for this example described by
the term (((AD) + ((U + D) + (L + D))) − (((D−1 + U) + (((L + D)−1 − U)−

(D−1 + (L + D)−1))) + ((AD) + ((U + D) + (L + D))))) . Figure 9 shows the resulting

Fig. 7   Box-plots of the spectral radius � of diagonal 2D matrices over problem size n (starting with n = 9)

Fig. 8   Randomly generated
dense system matrix

270	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

iteration matrix. The matrix has a spectral radius of 2.22e−16 as well as high spar-
sity. The few non-zero values are concentrated in the upper triangular area because the
found term is dominated by the terminals L + D and U.

A second example is a randomly generated tridiagonal band matrix of size 25 × 25
as system matrix. For each diagonal, we used an equally distributed random integer
value from the interval [−10, 10] . Thus, the band matrix is not diagonally dominant.
Figure 10 shows the heat map for this system matrix. The spectral radius of the itera-
tion matrix found by the Gauss–Seidel method is 6.0. Thus, the Gauss–Seidel method
is not usable in this case.

In contrast, GPLS again finds an expression that is able to solve the problem. The
term found by GPLS is U + D−1 . The resulting iteration matrix (see Fig. 11) has a spec-
tral radius of 0.2 and is similar to the system matrix but has one diagonal less.

5.4 � Convergence analysis of iteration matrices found by GPLS

This section studies the convergence speed of the iterative numerical methods found
by GPLS for two types of dominant band matrices. We compare the solutions found by
GPLS with those of the Jacobi, Gauss–Seidel, and SOR methods. For this purpose, we
consider linear systems of the form

(5.1)Ax = 0.

Fig. 9   Corresponding iteration
matrix found by GPLS

Fig. 10   Randomly generated
not diagonally dominant band
matrix as system matrix

271

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

5.4.1 � Sparse diagonally dominant band matrices

In a first set of experiments, we study the convergence behavior for linear equations
that arise from the discretization of PDEs. In particular, we consider Poisson’s equa-
tion in 1D, 2D, and 3D with the following boundary condition (Dirichlet):

We transform the PDEs into a system of linear equations (compare Sect. 3) using
FDM, which leads to a system of the form of Eq. 5.1. In all three cases (1D, 2D, and
3D), the resulting system matrices are sparse diagonally dominant band matrices,
for which, e.g., Jacobi and Gauss–Seidel are guaranteed to converge. GPLS evolved
the following terms to calculate the iteration matrix G:

–	 1D: (D−1)13((L + D)−1)2U6(D−1 + U)3

–	 2D: (D−1)4(U − D−1)

–	 3D: U + D−1

Table 2 compares the spectral radii of the iteration matrices of the Jacobi,
Gauss–Seidel, SOR and GPLS method for all three cases of the discretized Poisson
equation. For SOR, we set the relaxation parameter � = 0.8 [we tested values from
the interval (0,2) with step size 0.1]. As expected � is lowest for iteration matrices
found by GPLS. The spectral radii of iteration matrices constructed by the Jacobi or
Gauss–Seidel method are only slightly lower than one.

To study the convergence behavior of the resulting iterative methods more
closely, we employ the iteration scheme

u(x) = 0.

Fig. 11   Corresponding iteration
matrix found by GPLS

Table 2   Spectral radii of the iteration matrices for the discretized Poisson equations

Case Matrix size Jacobi Gauss–Seidel SOR ( � = 0.8) GPLS

1D 175 × 175 0.99984 0.99968 0.23022 1.03204e − 7

2D 196 × 196 0.97815 0.95677 0.2 0.00098
3D 216 × 216 0.90097 0.81174 0.2 0.16666

272	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

where x(i) is the current solution and G the iteration matrix. As initial guess x(0) for
the solution of the system we use

with n as the number of discretization points. As we know that the solution of the
system defined in Eq. 5.1 is 0, the absolute error � is equal to the current approxima-
tion x(i) during each iteration i:

Figures 12, 13, and 14 plot the L2-norm of the error � over the number of itera-
tions for the Jacobi, Gauss–Seidel, SOR, and GPLS-evolved iteration methods for
the solution of Poisson’s equation in 1D, 2D, and 3D, respectively. As expected,
all three iteration schemes converge to the solution of the system, although—as
reflected in the lower spectral radius of its iteration matrix—the iteration schemes

x(i+1) = Gx(i),

x
(0)

j
= 1 ∀j = 1,… n,

� = x(i) − 0 = x(i).

Fig. 12   Error over iterations for 1D Poisson

Fig. 13   Error over iterations for
2D Poisson

273

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

evolved by GPLS converge much faster than Gauss–Seidel and Jacobi. For exam-
ple, in the 1D and 2D case convergence can be achieved with GPLS in only a few
iterations. In the 3D case there is an increase of the error in the first few itera-
tions followed by a fast decrease of the error. In all three instances, the conver-
gence speed of SOR is similar to that of GPLS. However, the convergence speed
strongly depends on the choice of the right relaxation parameter �.

Being surprised by the extremely fast convergence of the iterative numeri-
cal methods evolved by GPLS (especially for the 1D case of Poisson’s equation),
we study whether GPLS has found as iteration matrix G the inverse of the system
matrix A or a matrix that is very similar. If this is the case, the fast convergence
behavior would be inevitable. Consequently, Fig. 15 shows the heat map of the prod-
uct of A and the iteration matrix G found by GPLS. If the product would be the
identity matrix I, then GPLS would have found A−1 . However, the figure shows that
AG ≠ I , because we have four diagonals in the upper triangular part of the matrix
and no main diagonal.

5.4.2 � Non‑diagonally dominant band matrices

As a second and more challenging test case, we consider the class of non-diagonally
dominant band matrices. For this class of matrices, e.g., the Jacobi and Gauss–Sei-
del methods are not guaranteed to converge in the general case. Thus, it is uncertain
if a stationary iterative method that converges to the solution of an arbitrary linear
system with a non-diagonally dominant system matrix can be evolved. To generate a

Fig. 14   Error over iterations for
3D Poisson

Fig. 15   Product of system
matrix A and iteration matrix G
for 1D Poisson

274	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

suitable instance of this class of matrices, we randomly generate a tridiagonal matrix
of the form

that satisfies |a| < |b| + |c| . As a test case, we randomly choose the values a = 4 ,
b = 8 , and c = 2 . We assume that this matrix corresponds to a one-dimensional
problem. Thus, we can generate higher-dimensional problems of the same instance
by computing the Kronecker sum of the matrix with itself:

The resulting system matrices are also non-diagonally dominant.
Table 3 shows the spectral radii of the resulting Jacobi, Gauss–Seidel, and SOR

iteration matrices, as well as of the iteration matrices evolved by GPLS. For SOR,
we set the relaxation parameter � = 0.6 [again, we tested values from the interval
(0,2) with step size 0.1]. The spectral radii of the iteration matrices generated by
Jacobi and Gauss–Seidel are all larger than one. Thus, convergence cannot be guar-
anteed. In contrast, SOR and GPLS can evolve iteration matrices with a spectral
radius smaller than one. For the band matrices in 1D, 2D, and 3D, GPLS evolved the
following terms to calculate the iteration matrix G:

–	 1D: (D−1)2(D−1U(D − A) + D)

–	 2D: D−1 + U

–	 3D: D−1 + U

Analogous to the Poisson case, we study the convergence of the resulting itera-
tive methods by solving the system defined in Eq. 5.1, using the same initial guess
x(0) = 1 . Again, we measure the L2 norm of the error � compared to the exact solu-
tion 0 during each iteration.

Figures 16, 17, and 18 plot the error over the number of iterations. As expected,
the Jacobi and Gauss–Seidel methods do not converge in any of the three cases,

A1 =

⎡
⎢⎢⎢⎢⎣

a b

c a b

c ⋱ ⋱

⋱ ⋱ b

c a

⎤
⎥⎥⎥⎥⎦
,

A
2
= A

1
⊕ A

1
,

A
3
= A

2
⊕ A

1
.

Table 3   Spectral radii of the iteration matrices for a non-diagonally dominant band matrix

Case Matrix size Jacobi Gauss–Seidel SOR ( � = 0.6) GPLS

A
1

175 × 175 1.99949 3.99873 0.57392 0.25
A
2

196 × 196 1.9563 3.82709 0.4 0.125
A
3

125 × 125 1.73205 3.0 0.4 0.08333

275

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

but the error increases further during each iteration. In contrast, GPLS was able to
evolve an iteration matrix that leads to convergence in all three cases. The conver-
gence speed is on a level similar to the SOR method (in all three studied instances).

If we compare the convergence behavior of GPLS of non-diagonally dominant
band matrices to the Poisson case (see Figs. 12, 13, and 14), we find that the evolved
schemes on average require more iterations and that convergence is only achieved
after an initial stagnation or even an increase of the error. Nevertheless, the evolved
iteration matrices always lead to low errors in less than 100 iterations. The initial
error increase can be explained by the fact that within a stationary iterative method,

Fig. 16   Error over iterations for a non-diagonally dominant band matrix in 1D

Fig. 17   Error over iterations for
a non-diagonally dominant band
matrix in 2D

Fig. 18   Error over iterations for
a non-diagonally dominant band
matrix in 3D

276	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

not all error components can be eliminated simultaneously. Consequently, the reduc-
tion of certain error components can cause an increase in the remaining ones and,
thus, lead to the observed overall growth of the approximation error. However, after
this initial error increase, the total error quickly decreases (with GPLS and SOR),
which means that after particular error components are eliminated within the first
few iterations, the remaining ones are efficiently reducible.

6 � Conclusions

Numerical methods are used to solve problems where no analytical solutions exist
or are difficult to find. In many real-world applications, the number of unknowns
is huge which makes efficient and scalable solvers for such systems necessary. As
GP is known for finding human-competitive results for many real-world problems
[18], its combination with domain knowledge from the classical numerical methods
allows us to come up with iteration matrices that beat existing iterative numerical
methods.

This paper proposed GPLS, a GP-based approach that searches for mathemati-
cal expressions that define iteration matrices for given linear systems. The found
iteration matrices are used by stationary iterative methods which numerically solve
the system of linear equations. GPLS makes use of the elements of existing meth-
ods – like variations of the system matrix—to find iteration matrices that lead to a
fast and reliable convergence of iterative numerical methods. Additionally, GPLS
finds iteration matrices that are sparse in its structure such that the resulting iterative
numerical methods can be executed efficiently on parallel computer architectures.

The results show that GPLS finds iteration matrices with a low spectral radius
for both, dense and also sparse diagonal system matrices. Furthermore, the found
iteration matrices are of high sparsity and the mathematical term describing these
matrices is often of low complexity (small parse tree). The found solutions are often
generalizable to larger dimensions in the sense that solutions found for small prob-
lems also work well for larger system matrices. We showed this for two classes of
band matrices as the terms found by GPLS for small system matrices ( n ≤ 9 ) can be
often used to compute high quality iteration matrices with a spectral radius 𝜌 < 1.0 ,
even for larger problem instances (up to n = 1000).

We also found that GPLS can find solutions where the classical iterative methods
(the Gauss–Seidel and the Jacobi methods) fail to find appropriate iteration matrices.
Furthermore, the iterative methods found by GPLS converge much faster compared
to the Gauss–Seidel and Jacobi methods on the studied test problems and perform
like the SOR method but without the need of an additional relaxation parameter.

7 � Future work

In this work, we demonstrated that GPLS can evolve effective stationary iterative
methods for solving different sparse linear systems. Another direction is the use
of these methods for the preconditioning of Krylov subspace methods [21]. In this

277

1 3

Genetic Programming and Evolvable Machines (2022) 23:253–278	

case, the goal is not to directly solve a sparse linear system but, instead, to use a
stationary iterative method to compute an approximation for the inverse of a pre-
conditioning matrix P. This approximation is then applied to the original system A,
for instance, to obtain a right-preconditioned system AP−1u = b , which is easier to
solve than the original system Ax = b.

So in future work, we will study the ability of GPLS to evolve optimal stationary
iterative methods to solve systems of the form Px = u , where the solution x repre-
sents an approximation for P−1u . The evolved method can then easily be integrated
into an existing solver for the resulting preconditioned system, such as a Krylov sub-
space method, to evaluate its effectiveness on different test cases.

Additionally, we will further analyze the scalability/generalizability of solutions
found by GPLS and study ways to approximate the spectral radius—as a quality
indicator for iteration matrices—and find other problem representations to enable an
even faster computation.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 W.F. Ames, Numerical Methods for Partial Differential Equations (Academic press, 2014)
	 2.	 A. Amritkar et al., Recycling Krylov subspaces for CFD applications and a new hybrid recycling

solver. J. Comput. Phys. 303, 222–237 (2015)
	 3.	 R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Meth-

ods, Vol. 43 (SIAM, 1994)
	 4.	 D.S. Burke et al., Putting more genetics into genetic algorithms, in Evolutionary Computation 6.4

(1998), pp. 387–410
	 5.	 T.A. Davis, Direct Methods for Sparse Linear Systems, Vol. 2 (Society of Industrial and Applied

Mathematics, 2006)
	 6.	 J.W. Demmel, Applied Numerical Linear Algebra, Vol. 56 (Society of Industrial and Applied Math-

ematics, 1997)
	 7.	 G.H. Golub, C.F. Van Loan, Matrix Computations, Vol. 3. (HU Press, 2012)
	 8.	 R.M. Gray, in Toeplitz and circulant matrices: a review (2006)
	 9.	 R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge,

2012)
	10.	 C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method

(Courier Corporation, 2012)
	11.	 W.M. Kahan, in Gauss–Seidel methods of solving large systems of linear equations (2002)
	12.	 M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling, in European

Conference on Genetic Programming (Springer, 2003), pp. 70–82

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

278	 Genetic Programming and Evolvable Machines (2022) 23:253–278

1 3

	13.	 J.R. Koza, Genetic Programming Ii: Automatic Discovery of Reusable Programs (MIT Press, 1994)
	14.	 J.R Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection

(MIT Press, 1992)
	15.	 R.G. Mahmoodabadi, H. Köstler, Genetic Programming Meets Linear Algebra: How Genetic Pro-

gramming Can Be Used to Find Improved Iterative Numerical Methods, in Proceedings of the
Genetic and Evolutionary Computation Conference Companion. GECCO ’17. Berlin, Germany:
ACM (2017), pp. 1403–1406

	16.	 D.J. Montana, Strongly typed genetic programming, in Evolutionary computation 3.2 (1995), pp.
199–230

	17.	 K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction
(Cambridge university press, 2005)

	18.	 R. Poli, W.B. Langdon, Nicholas Freitag McPhee. A field guide to genetic programming. (With con-
tributions by J. R. Koza). Published via http://lulu.com (2008)

	19.	 R. Poli, Nicholas Freitag McPhee. Parsimony Pressure Made Easy, in Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Computation. GECCO ’08. Atlanta, GA, USA:
ACM (2008), pp. 1267–1274

	20.	 H. Rittich, Extending and Automating Fourier Analysis for Multigrid Methods. Ph.D. thesis, Uni-
versity of Wuppertal, June (2017)

	21.	 Y. Saad, Iterative Methods for Sparse Linear Systems, Vol. 82 (Society of Industrial and Applied
Mathematics, 2003)

	22.	 J. Schmitt, S. Kuckuk, H. Köstler, Constructing Efficient Multigrid Solvers with Genetic Program-
ming, in Proceedings of the 2020 Genetic and Evolutionary Computation Conference. GECCO ’20.
Cancún, Mexico: ACM (2020), pp. 1012–1020

	23.	 G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods
(Oxford university press, 1985)

	24.	 R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, Vol. 343 (American Math-
ematical Soc., 2001)

	25.	 L.N. Trefethen, D. Bau III, Numerical Linear Algebra, Vol. 50 (Society of Industrial and Applied
Mathematics, 1997)

	26.	 H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite
Volume Method (Pearson Education, 2007)

	27.	 E.J. Vladislavleva, G.F. Smits, D.D. Hertog, Order of nonlinearity as a complexity measure for
models generated by symbolic regression via pareto genetic programming, in IEEE Transactions on
Evolutionary Computation 13.2 (2008), pp. 333–349

	28.	 R. Wienands, W. Joppich, Practical Fourier Analysis for Multigrid Methods (CRC Press, 2004)
	29.	 D.M. Young, Iterative Solution of Large Linear Systems (Elsevier, 2014)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Genetic programming for iterative numerical methods
	Abstract
	1 Introduction
	2 Iterative numerical methods
	2.1 The Jacobi method
	2.2 The Gauss–Seidel method
	2.3 Successive over-relaxation
	2.4 Convergence of stationary methods

	3 Discretization of partial differential equations
	4 GPLS: genetic programming for linear systems
	4.1 Representation of iteration matrices
	4.2 Objective function

	5 Experiments and results
	5.1 Performance of GPLS for random system matrices
	5.2 Generalization of iteration matrices found by GPLS
	5.3 GPLS overcomes limitations of existing stationary iterative methods
	5.4 Convergence analysis of iteration matrices found by GPLS
	5.4.1 Sparse diagonally dominant band matrices
	5.4.2 Non-diagonally dominant band matrices

	6 Conclusions
	7 Future work
	References

