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Cognitive and neural mechanisms of adaptive behavior in a psychophysical decision task 

with asymmetric reinforcement 

 

1. INTRODUCTION 

 

All living organisms are constantly in the position to make decisions. Depending on the num-

ber and character of different alternatives, some situations are easier, some are harder to 

manage. Furthermore, amongst others, the final decision is a complex result of current exter-

nal and internal stimuli, environment, and earlier experiences in life. In the end, all of these 

multiple factors lead to adaptive reaction patterns that finally form individual behavior.  

 

The following work will therefore focus on the fundamental question, firstly, how well a ver-

tebrate’s brain produces goal-directed, adaptive behavior in adaptive choice tasks, and in a 

second step, what cortical areas and neural processes are involved in making perceptual de-

cisions with and without dynamically changing reinforcement contingencies. 

 

First, the Literary Debate will lead into the scientific matter of signal detectability and intro-

duce scientific theories to the over-arching question of this work. The main focus will be 

placed on the Signal Detection Theory (SDT) to examine whether its principles best fit to ex-

plain adaptive behavior in contrast to other models, especially to the competing threshold 

theories (TT).  

Further, the methods of the training and testing procedures will be shown as well as the ma-

terials used for brain surgery and the experimental set-up.  

Finally, the results of the behavioral and neural experiments will be presented, before these 

outcomes will be contextualized with important scientific findings of that research field.  

Finally, conclusions about adaptive behavior in signal detection tasks will be summarized.  
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2. LITERARY DEBATE 

 

This chapter is divided into five sections: firstly, the general research project will be introduced 

through a practical example of a security officer’s everyday life problem leading over to the 

theoretical background of the conducted task procedure. Secondly, the TT will be explained 

as important competing model to SDT. Thirdly, the latter will be discussed thoroughly as being 

the main theoretic fundament for the conducted experiments; and fourthly, former and cur-

rent research in the field of signal detectability will be presented. The last and fifth section will 

deal with scientific insights of the prefrontal cortex (PFC) concerning its role for signal detec-

tion and discrimination.  

 

 

2.1. The fundamental decision problem  

 

At the beginning, to give a better understanding about the theoretic background, a security 

officers working experience figuratively represents what stands for the fundamental question 

of this work (cf.(Wolfe et al., 2005, Domjan, 2010). A security officer’s daily job is to detect 

weapons (e.g. knives) in the luggage of thousands of flight passengers. In order to do so, an 

apparatus of a digital screening program helps him to discriminate between harmless tools 

and weapons. Nonetheless, the filtered selection of possibly dangerous items still requires a 

critical and watchful scanning by the officer himself. Also, the consequences of one or the 

other decision must be kept in mind: a strict performance through a time-consuming opening 

of the bags may lead to a higher detection rate but is not practical at crowded airports; how-

ever, not detecting the knife surely leads to even worse outcomes. So the enormous quantity 

of different items that can be mixed up with the knife still asks for a certain strategy to increase 

the chances of success. So how will he encounter that responsible task? Besides a good train-

ing, he could adopt a certain search pattern like distinguishing between different forms or 

sizes, paying attention to special locations of the bag, or considering certain colors on the 

computer screen. In the end, the officer needs to detect a rarely existing knife within thou-

sands of distractive items (in scientific terms, to separate “signal” from “noise”2). Yet, from 
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the officer’s perspective there are two mutually exclusive states1: the existence or absence of 

a knife. But in order to evaluate his success rate, four possible outcomes need to be consid-

ered: 1. The luggage contains a knife and the inspector correctly detects the knife (=”hit”, 

Table 1). 2. The luggage again contains a knife, but the officer falsely misses it (=”miss”, Table 

1). 3. The bag does not carry a knife and the inspector correctly classifies the bag being harm-

less (=”correct rejection”, Table 1). 4. The bag does not contain a knife, but the officer falsely 

presumes the existence of a knife and instructs the bag to be opened (=”false alarm”, Table 

1). Thus, in relation to this example the question is what parameters lead to one or the other 

decision. Or in different words, what parameters are the result of a yes- (=knife present) or 

no- (=knife absent) choice, and further, what theoretical principles give the most adequate 

answers to those fundamental decision problems? 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now transferring the given example to a laboratory task, the experimental set-up was reduced 

to essential components in order to scientifically analyze decision making. As mentioned be-

fore, Yes/No (YN) tasks are a simple way to better understand detection problems. In the cur-

rent study a modified YN task was established with signals and noise2 trials occurring at the 

 

1Comparable with SDT (see chapter 2.3.) 
2In sensory experiments “noise” subsumes all external and internal factors which affect the evidence variable 
describing the whole bandwidth of sensory perceptions that is perceived at the same time and distracts from a 
key stimulus (e.g. in auditory experiments the whole bandwidth of a sound, in visual testing procedures a series 
of different shades of light/colors). 

-Table 1- 
 

 Knife present Knife absent 

Officer claims knife is 

present 

Hit False alarm 

Officer claims knife is ab-

sent 

Miss Correct rejection 

 
Four possible outcomes exist in a decision task. Referring to the example given (see text) the scan-
ning of a weapon can lead to four different states:  
The bag contains a knife: 1. Correct detection (=hit); 2. Missing out on the knife (=miss) 
The bag does not carry a knife: 3. Correct classification of a harmless bag (=correct rejection); 4. 
Falsely presuming the existence of a knife (=false alarm).  
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same frequency. In an auditory decision task the subject had to decide between sound-pre-

sent and sound-absent trials. Similar to the example of an officer’s daily decision problem, also 

in a YN task four possible outcomes exist. In one condition the sound occurs, so the subject 

will either detect the sound correctly, or it will miss it. In a second condition, the sound does 

not occur, and the subject will either correctly reject it, or it will falsely claim it has occurred 

(Table 2); “On signal trials, yes responses are correct and are termed hits. On noise trials, yes 

responses are incorrect and are termed false alarms. The hit rate (the probability of respond-

ing yes on signal trials) and the false-alarm rate (the probability of responding yes on noise-

trials) fully describe performance on a yes/no task.” (Stanislaw and Todorov, 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

In a modified version, the study described in this thesis deals with a very similar decision prob-

lem. Instead for a YN task like a sound/no-sound task, two signals (S1=sound of low frequency, 

S2=sound with high frequency) needed to be distinguished. Also in this experimental set-up 

the four outcomes to the task were possible (cf. Table 1, Table 2), whereby the subject could 

respond in two ways: Presuming S1 was shown, it responded with R1 (response1), assuming 

S2 was presented, it responded with R2 (response2).  

 

Regardless whether one looks at the illustrative example of the beginning or rather focuses 

on the laboratory task, the question of what parameters lead to one or the other decision 

-Table 2- 
 

 Sound present Sound absent 

Subject claims sound 

present 

Hit False alarm  

Subject claims sound ab-

sent 

Miss Correct rejection 

 
On the basis of the SDT1, there are four possible outcomes to a typical single-stimulus decision 
trial: in scientific terminology: 

- first condition: Sound occurs: 1. correct choice (=hit), 2. false choice (=miss) 
- second condition: Sound does not occur: 3. correct choice (=correct rejection), 4. false 

choice (=false alarm) 
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stays the same: what internal parameters are the result of a yes- (=signal present) or no- (=sig-

nal absent) choice, and further, what theoretical principles give the most adequate answers 

to the fundamental decision problem? 

 

Yet, earlier scientists struggled with similar problems trying to simplify the testing procedure 

in order to find answers to their questions. They used strictly controlled psychophysical clinical 

studies with young and trained test persons (Goldstein, 1997) in order to allow a highly quali-

fied and comparable testing procedure. Using Goldstein’s reviews of his own and other scien-

tists’ studies, also the practical example of the airport officer gives evidence to assume that 

every subject has a certain sensory threshold enabling him to decide for “signal present” or 

“signal absent”. Thus, the officer says “yes, knife present” when his scanning procedure 

passed an individual threshold, or he will say “no, knife absent”, if the targeting of the knife 

stays below a certain internal boundary.  

Many investigators, however, critically scrutinized the general idea of a threshold at all, or at 

least, as the only decision parameter in choice tasks (Goldstein, 1997). Critics about the TT as 

well as SDT will be thoroughly discussed later on.  

 

In order to better understand the structure of the current experimental task procedure, again 

a YN task in the form of a tone-detection task is introduced to explain some important issues 

concerning signal detection. In a YN task, the subject can either claim the sound was presented 

(“yes, sound present”), or the subject feels the tone did not exist (“no, sound absent”). Im-

portant for this example is that the existence and absence of the tone happen equally often, 

and in purpose of comparison, two different subjects (A and B) tackle the task.  

From the first sight, the task, or rather the interpretation seems to be clear enough: as the 

sound passed their internal threshold, both subjects will go for “yes, sound present”. Oppo-

sitely, they will not react, if the threshold level is not met (=”no, sound absent”). On second 

sight, however, the sensitivity3 of both subjects could be very similar, whereby their way to 

solve the task may vary (Goldstein, 1997). For instance, the lax subject A wants to be very sure 

not to miss out on the given sound, so it often goes for “yes, sound present” even then when 

 

3Individual ability to detect and discriminate different stimuli  
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there is just a very slight evidence for the signal. Oppositely, the second rather strict subject B 

only reacts as it is absolutely positive that the tone was presented.  

Thus, although their sensitivity might be equal, subject A approaches the task rather liberally, 

while the latter follows a stricter reaction pattern (Goldstein, 1997). In psychophysical terms, 

the former test subject yields a lot of hits for the high frequency of “yes” choices, while at the 

same time the number of false alarms consequently also increases. Oppositely to observer B 

that gains a smaller portion of hits along with fewer false alarms (Table 1,2). It is therefore 

obvious that not only the detectability plays a role in decision tasks, but that many individual 

factors confronting a subject might influence its choice.  

 

Furthermore, many studies showed that independent from a subject’s detectability and also 

independent from individual factors, reinforcing4 correct choices and punishing incorrect 

choices to different extents influence the test subjects’ reactions and lead to a changing be-

havior. So introducing a certain payoff schedule for a yes-response or a no-response in a YN 

task showed that subjects tend to one or the other alternative. Imagine that both subjects 

would be additionally rewarded for correctly detecting the stimulus, or oppositely they would 

be additionally rewarded for correctly claiming the tone was not presented (Table 3, cf. Table 

1).  

 

 

 

 

 

 

 

 

 

 

 

 

4 In behavioral science, reinforcement is a technical term for intensifying favorable behavioral patterns, 
whereby punishing serves to diminish or even eliminate certain behavioral patterns. In scientific experiments, 
reinforcement can be money for human beings or water for water-restricted animals. Punishment can e.g. be 
provided through painful electric shocks or air puffs. 

 
 
-Table 3- 

1. Reward schedule favoring “yes” re-

sponses 

2. Reward schedule favoring “no” re-

sponses 

Hit   +50 Euro 

Correct rejection +5 Euro 

False alarm  -5 Euro 

Miss   -50 Euro 

Hit   +5 Euro 

Correct rejection +50 Euro 

False alarm   -50 Euro 

Miss   -5 Euro  

 
Two different reward schedules are depicted. The left chart (1. Reward schedule) shows a situation 
when hits are highly reinforced and misses lead to a great loss of rewards. In the right panel (2. Re-
ward schedule) correct rejections are reinforced to a great extent and false alarms mean loss of 
rewards. Therefore varying reward schedules influence an individual’s behavior depending on the 
reinforcement schedule (Goldstein, 1997). 
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In the first schedule, hits provide a significantly higher gain than false alarms cost. Moreover, 

subjects will lose more money in missed trials than they can gain for correct rejections. To-

gether, the payoff schedule will drive subjects to respond “yes” more often, even when not 

fully certain. Henceforth, independent from their detectability and individual factors, both of-

ficers will relatively more often go for “yes, knife present” in order not to miss out on any 

knife. The opposite behavior will be observed, if the second schedule is employed. In the latter 

situation, both officers rather tend to “no, knife not present” since firstly a correct rejection 

yields a higher gain, and secondly the incorrectly opening of a bag (=false alarm) costs ten 

times more than hits yield.  

On the whole, this simple example stands for any possible experimental condition within be-

havioral studies demonstrating that multiple environmental factors influence the test object’s 

behavior; cf. (Busse et al., 2011), (Stüttgen et al., 2011a).  

 

Referring back to the fundamental question, even by now, it is quite clear that studying deci-

sion making and behavioral adaptation therefore are complex processes, and only a deeper 

insight in the neural basis of behavior can sufficiently give answers to the beginning questions 

of how exactly a decision problem is solved and what interior parameters lead to certain re-

action patterns.  

 

To address these and other important factors, first the TT will be introduced and later on it 

will be compared with SDT as main fundament to all modern theories coping with behavior 

and decision making.  
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2.2. The Threshold Theory  

 

In the mid 19th century, Theodor Gustav Fechner, one of the earliest students of psychophys-

ics, published his work “Elements of Psychophysics” (FECHNER, 1860) offering first ideas how 

signal detection could possibly function. For that he developed multiple experiments that he 

mainly conducted by himself using the human visual and auditory faculty, the human sense of 

sensibility (he often cited EH Weber`s studies (Weber, 1996) concerning two-point discrimi-

nation) or just different weights. With that he was eager to find out what it needed that two 

stimuli could be detected apart from each other. For instance, over months he followed a 

schedule in which he lifted weights that minimally differed in heaviness, just to find out how 

many grams of weight and seconds of lifting were necessary to make a difference. Finally, he 

defined that “the boundary point, exactly when a stimuli [was] just recognizable or [faded] 

away, [was] called threshold including any sensation and sensation differences…that [could] 

be perceived from that boundary point onward” (FECHNER, 1860). 

About 100 years after Fechner’s experiments, and although being a harsh critic of non-contin-

uous theories (cf. “Is There a Sensory Threshold?”(Swets, 1961)), John A. Swets still gave cred-

its to Fechner’s detailed approach of what ”…energy [was] required for a stimulus to be just 

detectable, or the difference between two stimuli necessary for the two to be just noticeably 

different” and Swets simply described the threshold “…as a barrier that must be overcome” 

(Swets, 1961). Another recent definition came from a current group of European and Ameri-

can scientists stating that “…[threshold models] postulated two distinct mental states – ‘‘de-

tection’’ and ‘‘no detection’’ – which were separated by a fixed sensory threshold…”(David 

Kellen, 2016).  

Remarkably, Fechner already understood that perception itself was hard to be measured as 

he stated that generally applicable methods to measure differences of stimuli sensations did 

not exist since they were influenced by the experimental set-up and the individual perfor-

mance (FECHNER, 1860). To be more precise, he realized that the individual outcomes, even 

for trials of the same subject, resulted from interior (subject-related) and exterior (related to 

the experimental set-up) factors that could not be completely eliminated. Over 150 years later 

Stüttgen et al. therefore concluded that while being successful at making outer psychophysics 

the cornerstone of the evolving science of psychology, physiological methods at this time were 
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not developed enough to allow direct investigation of inner psychophysics, and Fechner was 

well aware of this limitation (Stüttgen et al., 2011a).  

On top of that, Fechner was quite sure that no experiment could determine the “true” thresh-

old, but described it as the current best estimate of a certain experiment. He concluded that 

by then the best outcome must be seen as upper boundary, whereas the true threshold was 

located below that value, which was of main concern and could only be reached through op-

timal interior and exterior circumstances (FECHNER, 1860). Interesting was that he described 

perceivable stimuli as those that became conscious, whilst others that could not be perceived 

lay beyond human consciousness and meant to be “negative sensations”; the latter term be-

ing heavily debated from that time onwards (cf. (Cheesman and Merikle, 1986, Barry H. 

Kantowitz, 2015).  

From Fechner’s first model onwards, many scientists within the psychophysical field tried to 

develop the idea of a certain sensory threshold shaping the human being’s decision making 

process. In the following, three of the multiple scientific developments will shortly be intro-

duced:  

Almost 100 years after Fechner’s influential work, 1953 H.R. Blackwell further developed the 

idea of sensory limits and with his studies the term was coined for a “High Threshold Theory” 

(HTT) in his originally unpublished work “Threshold psychophysical measurements” (Blackwell 

and Institute, 1953). Even in our days, Kingdom et al. felt that this term was perfectly appro-

priate, since “this threshold [was] assumed to be sufficiently high that it [was] only very rarely 

surpassed by the system’s internal noise on its own” (Kingdom et al., 2015). In terms of signal 

detection the threshold was set high enough that the observer was very sure about the exist-

ence of the signal, so that false alarms (2.1. Table 1) did hardly play a role. However, the ob-

server did not recognize signals with less evidence. Looking at Gaussian distribution functions, 

this meant that for the observer a great perception of stimulus intensity was necessary that 

the signal was detected among white noise. Henceforth, in standard HTT, the threshold was 

not variable but fixed. So when subjects are given incentives to respond “yes” more often, 

they cannot lower their decision threshold but will simply say “yes” randomly on some fraction 

of trials when no stimulus is perceived. Swets later reflected Blackwell’s intention saying 

“…that, whereas the observer [might] be lead to say “yes” when noise alone [was] presented, 

only very infrequently [was] his threshold exceeded by the sensory excitation arising from 

noise – so frequently, in fact, that these instances [could] be ignored”(Swets, 1961).  
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Figure 1 shows graphically what the assumption of the HTT in a YN-task really means. Again, 

giving a task where to detect a sound (of a certain sound pressure) within white noise (the 

latter will be thoroughly explained in the next chapter) four conditions are possible: the signal 

is presented and the subject says “yes, sound present” or it goes for “no, sound absent”. The 

same options occur for a trial when the sound was not presented. The sensory evidence can 

therefore be depicted as Gaussian distribution for N- and SN-stimuli (Fig. 1). In HTT the thresh-

old (T) lies at the very end of the N-distribution, so that this internal noise rarely surpasses the 

threshold and becomes conscious. However, weaker stimuli of less sensory evidence (left part 

of the SN-distribution) neither pass the threshold, which means that the subject will not detect 

sounds with a low sound pressure. . 
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Meanwhile, R.D. Luce presented an alternative model of signal detection cf.(David Kellen, 

2016, Atkinson and Juola, 1974). He postulated a certain “lower” barrier that lead to a “yes” 

or “no” response after a given stimulus. In contrast to the HTT, however, his “low” threshold 

was not set at a point when only signals of high evidence could be detected by the sensory 

system, a lower threshold allowed the observer to respond “yes” even then when a signal with 

a very low evidence was presented (Fig. 2). With that, Luce incorporated other non-sensory 

states like reactions favorable concerning the task’s pay-off or memory-associated behavioral 

patterns (cf. chapter 5) (David Kellen, 2016). Since Luce’s theory allowed to say “yes” for less 

evidential signals and to say “no” for highly evidential stimuli that were not only dependent 

on the stimuli intensity but subjective and objective influences, so that “individuals [could] 

         

-Figure 1-  

In a YN task, two responses are possible: “yes” for an existing signal and “no” for an absent signal. 
The x-axis shows the sensory evidence of a certain stimulus and the ordinate the probability for a 
sound to occur. Two Gaussian distribution curves of N- and SN-functions are depicted (in detail ex-
plained in 2.3.2.) and, the red straight line (T) shows the location of the “high” threshold. Accord-
ing to HTT, the threshold is located at the upper end of the noise distribution, such that internal 
noise (e.g., stemming from spontaneous neural activity fluctuations) only rarely surpass the thresh-
old and become conscious. A weak stimulus may for the same reason (noisy neural processing) 
yield different perceptions of intensity from one trial to the next, which is described by a Gaussian 
distribution). Only when the internal (neural) response surpasses the threshold, the subject is be-
lieved to consciously perceive the stimulus. 
Modified from (Birdsall, 1955).  
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express a “liberal” or “conservative” response strategy…” (David Kellen, 2016). But although 

Luce’s theory tried to incorporate non-sensory states, like certain internal and external factors 

that influence decision making, later investigations showed that also Luce’s idea was not com-

plex enough. Further explanations to that will be discussed in following chapters. Nonetheless, 

Luce’s experiments lead the way to a deeper scientific research of the human and non-human 

complex sensory system.  

Figure 2 illustrates what has been said before: comparing the location of the threshold in both 

theories, in the LTT the threshold is shifted to less evidential signals. Whilst in the HTT, noise 

stimuli hardly overcame the threshold and mostly stayed unconscious, in the LTT more signals 

with low evidence are detected.  

 

 

 

 

-Figure 2-  

Again, a YN is employed comparable with Fig. 1 (cf. panel description). In comparison to the high 
threshold model, the red bold line shows a possible location of the “low” threshold (T) within 
Gaussian distribution curves. Comparing with the HTT, the low threshold is located to rather 
neutral parameters leading to a greater decision corridor which leaves room for more subjective 
and objective influences. Modified from (Swets, 1961)  
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In the late 1950s a third idea was brought up by D.M. Green. At first sight his “Two-threshold 

Theory” seemed to be only an advancement to the LTT and the HTT, but Green accomplished 

to further point out the complexity of decision making. He thought of two thresholds, ”… a 

lower threshold, below which lies true rejection, and an upper threshold, above which lies 

true detection” (Swets, 1961). Henceforth, he developed a three-category model along with a 

more detailed gradation in sensory excitation. That meant for the task procedure that the 

subject could give answers to the different categories depending on the strength of each stim-

ulus and, what was undoubtedly clear back then, other subjective and objective influences. 

Speaking in terms of any threshold-category model, each new category lead to a more accu-

rate description of the subject’s stimulus perception. It was obvious, that the more categories 

a task offered, the more detailed was the analyzation of the test subject decision behavior. 

Without forestalling what will be discussed later, it was quite clear that the more categories 

and the more thresholds existed, the more the fitted threshold would approach the best fit-

ting curve to the subject’s individual task response (see section 2.3.5.).  

Again, Figure 3 graphically reflects what has been described before: The two Gaussian distri-

bution curves depict where both thresholds (T) are located in accordance to the S and SN 

distribution curves. So instead of just one threshold, the subject can categorize a stimulus in 

three different gradings of “true rejection”, “true detection”(Swets, 1961), and an indifferent 

state depending on its perceived sensory evidence.  
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Finally, having provided the key principles of a basic threshold model by Fechner as well as the 

developed advancements, the following chapter will explain SDT as a fundamentally different 

model trying to give answers of how signal detection functions in human and non-human an-

imals. Later on, former and current research about signal detection will give word to critical 

opinions about SDT and the main competing TT.  

 

 

 

 

 

 

    

-Figure 3-  

Comparing this figure with the two upper graphs (Fig.1,2, see panel description), the red bold lines 
show possible locations for the two thresholds (TL, TH) within Gaussian distribution curves in a 
general forced choice task. Modified from (Swets, 1961)  
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2.3. Signal Detection Theory 

 

2.3.1. Historic background  

Firstly mentioned in World War II, signal detectability became necessary when one single of-

ficer at the southern coast of Great Britain was in charge of the whole radar operating system, 

obliged to identify hostile fighter aircrafts. It is thoroughly investigated that the radar tech-

nique was developed poorly at that time, so radar points on the computer screen were not 

always caused by the presence of hostile aircrafts, but also other environmental factors (e.g. 

weather conditions). So how would the officer know whether a specific dot on the screen 

(“signal”) was caused by weather changes (“noise2”, cf. 2.3.2.), or actually indicated the pres-

ence of an enemy plane? (Reading, 2003, Johnson et al., 2017). 

 

“As a statistical model, SDT rests on a set of assumptions. These include the premises that (1) 

events to be detected (signals) are always embedded in a background of irrelevant sensory 

information (noise); (2) the distributions of noise and signal-plus-noise are of normal form and 

equal variance; (3) observers are both sensors and decision makers, and they adopt a criterion 

of sensory magnitude for deciding whether a given event is a signal or a non signal; and (4) 

measures of perceptual sensitivity [e.g., d’] can be treated as if they were independent of 

measures of response bias….” (Bohil et al., 2015). 

These four assumptions give a concise overview about the theoretical fundament of SDT. In 

the following, these basic principles will be explained in order to understand SDT that became 

“…one of the most prominent scientific developments in psychology of the past 60 years” 

(Bohil et al., 2015, Estes, 2002).  
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2.3.2. Signal and noise  

It was mentioned before that SDT is based on experiments with a subject participating in a 

decision task of many trials on which a signal is either present or not (cf. a YN task explained 

in section 2.1.), whereby noise-alone (N) and signal-plus-noise (SN) trials are equiprobable. As 

the observer tries to detect the specific signal, it perceives a sequence of other distracting 

background stimuli. Again, this distraction from the real signal is called “noise” (i.e. dots on 

the radar screen could not only be caused by foreign marines, but also by certain weather 

conditions). Consequently, two states exist that need to be distinguished: signal-plus-noise 

(SN)5 or noise-alone (N)(Fig. 4), whereby the occurrence of N and SN on a specific trial is de-

termined by the experimenter.  

 

 

5Stimulus-plus noise (SN): a receiver does not only perceive the key stimulus, but all surrounding sensory inputs 
presented at the same time.  

             

-Figure 4- 
In an auditory decision task the subject has to decide whether a signal is presented on any given 
trial or not. The x-axis describes the sensory evidence of a certain stimulus, and the y-axis the 
probability of a signal to occur. Subjectively, two stimuli (e.g. x and x+2) differ in their perception 
of stimulus intensity. Consequently, a tone x+2 on the ordinate has a stronger subjective sensory 
evidence than a sound of x., which enables the subject to distinguish between different stimuli 
(see further text and 2.3.3.). 



17  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

In SDT, N- and SN-probability density functions are assumed to follow Gaussian distributions 

along an axis of perceivable stimuli with different sensory evidence. It is important to know 

that in a signal detection task the tone of interest, speaking of auditory stimuli, has the same 

physical intensity throughout the experiment, while the subjective impression of its intensity 

is different from trial to trial. SDT does not specify the source of this variability, but it is con-

ceivable that fluctuations in attention of noisy transmission in the auditory pathway are crucial 

contributors (Goldstein, 1997). 

 

So how is signal detection possible? Correct detection of SN is only possible because the sen-

sory evidence differs between N and SN. If the subject perceives a certain stimulus having a 

stronger sensory evidence (e.g. x+2, Fig. 4), this perception is more likely to occur in SN trials 

than in N trials. Vice versa, a low perceived intensity (such as x in Fig. 4) has a higher likeli-

hood to occur on N trials. For a YN task, SDT therefore postulates that a single value drawn 

from either the SN or the N distribution is the only data point the observer can base his deci-

sion on, and it does so by comparing the magnitude of that value to an internal decision cri-

terion; “If the decision variable is sufficiently high during a given trial, the subject responds 

yes (a signal was presented); otherwise, the subject responds no (no signal was presented). 

The value that defines sufficiently high is called the criterion6” (Stanislaw and Todorov, 

1999). 

To cut it short, the ability of a subject to distinguish between two stimuli of N and SN Gaussian 

distribution functions participating in a decision task of many trials on which a signal of a cer-

tain sensory evidence (e.g. x, x+1, x+2,… Fig.4), is either present or not, depends on the relative 

distance of these two distribution functions (more to this in section 2.3.4.).  

 

 

 

 

 

 

 

 

6The role of the decision criterion for SDT will be explained separately in section 2.3.3  



18  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

 

 

2.3.3. The criterion 

The previous subsection made clear that signal detection depends on stimuli with subjective 

sensory evidences drawn from the N or SN distribution functions. Speaking in terms of SDT, 

the observer relies on a certain decision-making tool, called “criterion” (c). There are two pos-

sible conditions: in the first condition, the sensory evidence is stronger than c, comparable 

with a “yes, signal is present” trial in a YN task, so the subject decides for SN (correctly or not). 

In the second condition, a stimulus of lower intensity than the internal criterion is presented 

(cf. YN task with “no, stimulus is not present”, 2.1), and the observer chooses N. Hence, in SDT 

a subject to solve a signal detection task develops an interior boundary called “criterion” that 

helps the test object to decide between N and SN. 

                                          
-Figure 5-  
This figure illustrates SDT’s conception of signal detection for three different positions of the decision 
criterion. Again, the x-axis contains the subjective sensory evidence of a stimulus. The y-axis depicts 
the probability for the occurrence of a signal. The red lines show different criterion settings: a lax cri-
terion (L), a neutral criterion (N), and a conservative criterion setting (S). All stimuli with a perceived 
sensory evidence stronger than the criterion are accepted as SN-stimuli, whereas stimuli with an evi-
dence falling below the criterion are seen as N-stimuli.  
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Additionally, it is necessary to understand that criterion setting depends on different factors, 

i.e. the observer’s individual characteristics (like fluctuations in attention) or special sur-

rounding conditions (Stanislaw and Todorov, 1999, McNicol, 2005).  

Being more precise, the very beginning example (section 2.1.) demonstrated that in certain 

situations the security officer showed different response behaviors independent of his sensi-

tivity.  

In Figure 5, the red straight lines show three conceivable criterion placements: L stands for 

liberal criterion setting (resulting in a large fraction of hits but also false alarms), N shows a 

neutral criterion (equating the fractions of false alarms and misses), and S stands for a con-

servative criterion setting (yielding few hits but even fewer false alarms). Transferring the sub-

jects’ behavior onto the N- and SN- distribution in Figure 5, and employing the reward sched-

ule 1 (Table 3), the officer would rather “liberally” respond (gaining more rewards by finding 

the knife) shifting c to the left side of the abscissa (Fig. 5, red straight line L). Under these 

circumstances, the whole distribution function of SN and also the majority of the N-distribu-

tion lie above the decision criterion. Hence, a liberally acting receiver will detect all SN-stimuli 

correctly (=hits, Table 1), but will also falsely respond “yes” on null trials (N) in >50% of trials 

(=false alarms, Table 1)(Goldstein, 1997). In contrast, employing reward schedule 2, when cor-

rect rejections (correct “no” responses) yield a lot more rewards than correct hits (correct 

“yes” responses), henceforth shifting c towards higher values of x (criterion S), so no portion 

of the N-distribution and only a small part of the SN-distribution lies above the criterion, going 

along with less hits and no false alarms (Fig. 5, red straight line S).  

 

In general, criterion setting can be influenced through experimental manipulations. For in-

stance, if the experimenter manipulates the schedule so that SN trials occur more often, the 

subject will shift c to lower values of x (thereby increasing the percentage of hit trials as well 

as false alarms, while increasing overall percentage of correct choices) (Macmillan and C 

Creelman, 2004).  

Referring to the beginning of this chapter, also reinforcement and punishment are sufficient 

tools to alter behavior in a specific manner (Feng et al., 2009, Stoilova et al., 2019). The exper-

iments described in this thesis will therefore be a way to investigate adaptive behavior under 

changing reinforcer contingencies and derive a model that sufficiently describes the outcome.  
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To wrap it up, in SDT c is assigned great importance within the decision making process. In a 

simple way, Figure 6 reflects how choice allocation proceeds showing that besides stimulus 

perception the criterion setting has a major impact on the final decision. Nonetheless, c itself 

is highly variable and dependent on numerous interior and exterior factors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Figure 6-  
SDT describes how signals are detected in background noise. First, the subject perceives a stimulus, 
N or SN. Then, depending on the sensory evidence, the subject will eventually decide for either N or 
SN. As shown in the panel, the decision making process also relies on the decision criterion that is 
influenced by many different factors (see text).  
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2.3.4. The d’-value 

By now, having discussed important parts of signal detection, it is quite clear that the hypo-

thetical two officers may even have the same sensitivity for the stimuli, but their way to solve 

the task could individually be different (cf. 2.1., 2.3.3.). The detailed discussion of the last sec-

tion supports the idea that decision making is influenced by factors asking the subject to shift 

c in order to choose the correct alternative and to maximize trade-off.  

Besides a shifting of c due to changing environmental conditions (as varying payoff matrices 

and stimulus presentation probabilities) every subject has a different sensitivity to the given 

stimulus. So before the intensity of adaption process is measured through c, it is of great con-

cern how well the observer solves the given decision task independent of the adaption process 

and the shifting of c. Henceforth, SDT tries to independently address two main components 

that are responsible for decision making: first, the analyzation of a subject’s sensitivity, and 

second the analyzation of its reactions to changing environmental conditions measured by c. 

The separation of sensitivity and response bias, along with the provision of quantitative indi-

ces, are considered to be the major contributions of SDT to psychology (cf. (Stanislaw and 

Todorov, 1999, Luo and Maunsell, 2018, Macmillan and C Creelman, 2004, Bashinski and 

Bacharach, 1980, Downing, 1988, Wyart et al., 2012)).  

 

Whilst c was explained earlier (see section 2.3.3.), in SDT sensitivity is measured through d’ 

(pronounced: “d-prime”)7. The d’-value equals the absolute distance between the N-and the 

SN-Gaussian distribution curve (Fig. 7), or being more accurate in algebraic terms: (µSN–µN) / 

σ, where µSN and µN denote the means of the signal and the noise distributions, respectively, 

and σ represents the standard deviation. Practically, d’ = 0 means that the means of the two 

distributions are identical. Thus, the subject fails to distinguish the stimuli at all (its perfor-

mance8 equals chance level). Yet, for an unbiased observer in a YN task, d’=1 corresponds to 

69%, d’=2 to 84%, d’=3 to 93% correct responses. The maximum value of d’ is infinity, the 

minimum value is negative infinity (Stanislaw and Todorov, 1999).  

 

7d’-value: the value of d’ is expressed in Arabic numerals. d’ = 1.0 equals a distance of 1 standard deviation to 
either side from the center of the two distributions; d’= 2.0 equals a distance of 2 standard deviations to either 
side from the center of the two distributions; d’ = 0 means that both stimuli functions are congruent (s. text for 
more detail).  
8performance (hits, misses etc.) depends on a) sensitivity and b) bias (criterion placement) 
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The following paragraph will graphically depict how sensitivity levels between test objects, 

given by d’, can be distinguished from individual responding behavior represented by individ-

ual criterion setting.  
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           A 

 

           B   

              
 
-Figure 7-  
For depiction of the ordinate and abscissa see earlier panel descriptions (cf. fig. 4). 7A and B show 
Gaussian distribution curves for N and SN (s. paragraph 2.3.2). The d’-value equals the distance be-
tween the peak of the N- and SN-distribution in units of their common standard deviation. d’ is an 
appropriate measure for the subject’s performance, since it illustrates how well it is able to distin-
guish between N- and SN-trials – the higher d’, the higher the subject’s sensitivity (compare panels A 
and B). The outcome is especially meaningful when comparing the test subjects’ percentage of hits 
and false alarms. In 7A the subject often responds correctly (= high probability of hits, red-striped 
area), but the probability of false alarms is still relevant (orange-striped area) The outcome in 7B re-
sults from the same testing procedure, the two curves only differ in the subject’s ability to distinguish 
the stimuli: e.g. this time the subject to Fig. 7B has a probability of almost 100% hits (red-striped) and 
a very small probability of false alarms (orange-striped area).  
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2.3.5. The ROC 

The receiver operation characteristic (ROC) curve is a graph showing a subject’s detection per-

formance (hits and false alarms) as a function of individual criterion setting for a given sensi-

tivity to the stimulus (cf. (Luo and Maunsell, 2018).  

 

Subject A                                                                      

Subject B                  

       

-Figure 8-  

The upper and the lower panel both depict ROC curves that originate from different perfor-
mances of subject A (upper panel) and subject B (lower panel) in a decision task. In both panels 
the x-axis contains the false alarm rate, the y-axis depicts the hit rate. Comparing two subjects’ 
neutral criteria NA and NB, the former (upper panel) creates more hits and fewer false alarms re-
sulting in a steeper rising ROC curve. If two subjects have an equal sensitivity to N- and SN, but 
obtain a different responding behavior (=c differs), their coordinates will lie on the same ROC-
curve: the outcome by obtaining a strict (criterion S), a lax (criterion L), or rather neutral (criterion 
N) responding behavior creates the same ROC curve. The data was taken from two of the four ex-
perimental subject used for the studies of this paper.  
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Generally, the ROC-curve plots the hit rate on the ordinate and the false alarm rate on the 

abscissa. As illustrated above (Fig. 7), both parameters together determine an observer’s per-

formance. 

 

Whilst in Figure 7 the subject’s performance is depicted by the absolute distance between the 

peaks of the two Gaussian normal distribution functions (= stimulus sensitivity = d’) and by the 

placement of c on the x-axis, Figure 8 demonstrates another graphical alternative to show a 

subject’s performance in a detection task: subjects with equal sensitivity, but different crite-

rion placement, have the same ROC (the lax subject’s outcome corresponds with the blue 

cross “L” on the bold black line; the stricter test object shows a more conservative responding 

behavior corresponding with the orange cross “S” (Fig. 8)). Thus, different stimuli sensitivities 

create different ROCs, while criterion placement is represented along the curve.  

Assuming both subjects have a neutral c (Fig. 8, red circles NA and NB), the test subject with 

cNB is less sensitive than the observer with cNA. Henceforth, the subject with cNB shows a 

worse distinguishability going along with a smaller d’ (s. 2.2.3. and fig. 6). 

 

Finally, having provided the key principles and terms about SDT, the following section will 

draw the attention to former and current research about signal detection giving word to crit-

ical opinions about SDT and the main competing TT.  
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2.4. Studies about and around The Signal Detection Theory - past research on criterion setting 

in perceptual choice tasks 

 

In the 19th century when Fechner and Weber introduced the idea of a sensory threshold (cf. 

2.2.), only a few years later groups of scientists started their research with human and non-

human animals in the field of signal detection (cf. (Killeen, 2015) for a concise modern over-

view of SDT)). However, many years later in 1954 Peterson, Birdsall, and Fox published “The 

theory of signal detectability”(Peterson et al., 1954), the groundwork for the classical SDT. 

Many of these former (and still current) authors’ common intention was to primary investigate 

whether animals were “ideal observers”9, and if so, which algorithm was underlying the ani-

mals’ performance in decision tasks.  

As mentioned before, they did not believe that decision making exclusively depended on stim-

uli threshold, but that there were further factors that lead to a person’s final choice allocation 

(s. 2.1. “The fundamental decision problem”). “A key insight by the pioneering researchers 

was that errors of commission in perception tasks are not necessarily the result of guessing, 

as assumed by threshold theories (Tanner Jr and Swets, 1954, Bohil et al., 2015). 

Generally speaking, early scientists developed a simple behavioral experiment (cf. YN, 2.1.), 

which is similarly used today and comparable to my outline in 2.3.2. “Signal and Noise”, in 

which the observer was confronted with two different states: stimulus-and-noise, SN, or 

noise-alone, N (Fig. 4). Then, the observer had to decide which of the two alternatives was 

presented.  

In early research protocols, the experimenters started out listing up the observer’s response 

for each stimulus alternative (Craven, 1992). With this effort, Peterson et al. (1954) intended 

to find the ideal observer that, belonging to a theoretic model, knew about the given stimuli, 

their Gaussian distributions, and how many different stimuli were presented. Yet, the ob-

server did not know when each stimulus alternative was presented (McNicol, 2005, Stüttgen 

et al., 2011b).  

 

9 The ideal observer:  “is a hypothetical entity [in which an ideal observer has] full knowledge of the stimulus 
distributions and the values and costs of each possible outcome who places the decision criterion as to maxim-
ize a certain decision goal…” STÜTTGEN, M. C., YILDIZ, A. & GUNTURKUN, O. 2011b. Adaptive criterion setting 
in perceptual decision making. J Exp Anal Behav, 96, 155-76. 
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Hence, “the chief conclusion obtained from the general theory of signal detectability…[was] 

that a receiver that calculates the likelihood10 ratio11 for each receiver input is the optimum  

receiver for detecting signals in noise” (Peterson et al., 1954). Their first assumptions brought 

forth important parameters within SDT like sensitivity to a stimulus or the shifting of c (cf. 

2.3.3., 2.3.4.). Thus, the most relevant parameters to understand and resolve problems of 

signal detectability were early discovered when scientists started out to become interested 

about the theoretical backgrounds to proper signal detection. Since then, advancements have 

been added little by little, and still today scientists conduct experiments to further develop 

the scientific theory of signal detectability. The primary question whether human and non-

human animals yield “optimal” signal detection is not resolved yet, and there also exist 

theories that encounter the belief of optimality in human and non-human animals at all. The 

following paragraphs will therefore serve to outline scientific outcomes from the mid-19th 

century onwards that addressed the field of signal detectability either supporting or 

condradicting optimal behavior.  

 

In the past, scientists have been interested to understand whether and how animals adjust 

their behavior to changing reinforcement schedules (remember the different payoff matrices 

of the beginning example; in fact, the two subjects adjusted their behavior as certain re-

sponses were rewarded or punished; s. 2.1. “The fundamental decision problem”). How the 

programmed decision task influences the bias12 of the animal will be thoroughly explained 

later. First, the research project is put into the context of the broad field of signal detection, 

presenting recent works of scientists that addressed similar questions about adaptive behav-

ior in non-human animals. 

 

Recent scientists studying adaptive behavior of vertebrates were part of M. C. Stüttgen’s la-

boratory team that conducted experiments that were similar to the basic laboratory YN task 

(cf. 2.1.). In a visual experiment, pigeons had to differentiate between six different shades of 

grey (the design of the experiment was comparable with their later conducted experiments in 

 

10 Likelihood: shows how likely an outcome is under a certain hypothesis is (e.g. hypothesis H1= SN occurs or 
hypothesis H0 = N occurs)  
11Likelihood ratio: shows the relative likelihood of two different hypotheses (e.g. SN over N, see below) 
12Bias, here: a subject favors one choice over another for whatever reasons (e.g., because one choice yields 
more rewards) 
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2013, cf. Fig. 10). The three darker shades constituted category S1; the three lighter grey 

shades constituted category S213. In short, each stimulus appeared with a probability of 1/6, 

and there was a chance of 3/6 for either a S1-stimulus (accounting for the three darker shades) 

or for a S2-stimulus (the three lighter shades of grey), respectively. Before asymmetrical rein-

force ratios were established to find out more about adaptive behavior to changing reinforce 

conditions, many scientists only coped with equal reinforce ratios (cf. (Lea, 1979, Feng et al., 

2009). Therefore, Stüttgen et al. questioned whether SDT would also give reasonable answers 

to signal detection behavior under changes in reinforcement contingencies (Stüttgen et al., 

2011b), so instead of equal reward ratios for correct responses (e.g. 0.5 for both, S1 and S2), 

they employed asymmetrical reward ratios for correct responses ranging from 0.2 to 0.6. After 

fitting their data to a SDT-based model they could show that the subjects shifted an internal 

decision criterion in order to maximize payoff, and finally, in terms of SDT, their performance 

nearly reached optimality (Stüttgen et al., 2011b). Figure 9 illustrates their results: on the y-

axis is the proportion of left responses (S2), on the abscissa is the presented stimulus intensity 

(gray value). Filled rectangles and triangles show the response to S2-stimuli with a higher 

reinforcement rate, framed rectangles and triangles show the proportion of S2-stimuli with 

lower reinforcement probability. The psychometric functions of individual birds (the last 5 

sessions of each of the six conditions were used) show that overall a larger reinforcer 

probability for S2 lead to a higher proportion of S2 responses (in Fig. 9 only birds nr.720 was 

depicted). In terms of SDT, that observation again went along with a subject shifting an 

internal criterion to maximize payoff what they demonstrated by comparing the task results 

of an empirical subject (in their case a pigeon) with the results of an ideal observer given by 

SDT (Fig. 11) (cf. (Stüttgen et al., 2011b)).  

 

 

 

 

 

 

 

 

13Comparable with a single-interval forced choice task with only-noise(N)- and signal-and-noise(SN)-stimuli 
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In Figure 10 the abscissa shows the session number, the y-axis plots the pigeon’s criterion 

value. In comparison to the thin horizontal lines that highlight the position of the optimal cri-

terion in each experimental condition, the thick line (“empirical” function) reflects the actual 

behavior of the animal dependent on the changing reward condition. Additionally, the objec-

tive reward function (ORF)14 (cf. (Maddox, 2002) for each condition is indicated by the shaded 

background (see right scale). Referring back to the authors’ assumption, the shifting of c for 

reward maximization corresponds with the changing reinforcement rate (Fig. 10). So they con-

cluded that after a certain time of training, the experimental subjects nearly perfectly adapted 

to the changing conditions, even though this brought about hardly more rewards (Fig. 9 and 

10) (Stüttgen et al., 2011b).  

 

 

14Objective reward function: specifies the expected reward as a function of criterion placement for a subject 
with a certain d‘. 
 

                                     

 

-Figure 9-  

In their 2011 conducted experiment, Stüttgen et al. could show the dependence of reward proba-
bility and proportion of S2-responses (here: exemplarily bird nr.720). During the task session the 
subjects were presented 6 different shades of grey color and they had to distinguish between S1 
(=3 darker shades of grey) and S2 (=3 lighter grey values). The x-axis depicts the intensity of the 
grey color value, the y-axis shows the proportion of left (=S2 responses). As the 3 lighter grey val-
ues (=S2) were greater reinforced (=bold squares and triangles of the attached table), the birds 
more often responded with a left choice. (Stüttgen et al., 2011b) 
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The results of Stüttgen’s 2011 paper gave more evidence for adaptive behavior through chang-

ing reinforcer conditions like postulated in SDT. In their following paper “signal detection the-

oretical model and predictions for criterion placement” (Stuttgen et al., 2013) they therefore 

tried to understand the mechanisms of criterion placement for an ideal observer maximizing 

the amount of reward during a certain task session. 

In a visual experiment the pigeons had to differentiate between six different shades of grey 

(cf. experimental design like their previous set-up in 2011; Fig. 11). In Figure 11, the x-axis 

covers the perceived stimulus intensity, the y-axis contains the reward probability for correct 

responses ([E(RfS1) + E(RfS2)] = correct S1-stimuli and S2-stimuli (the maximum reward prob-

ability was 0.5 and could be achieved only when correct all the time). Figure 11A shows the 

ORF for the case when each stimulus is reinforced equally (= symmetric reinforcement15, here 

 

15Reinforcement: in a decision task correct choices are either rewarded equally (=symmetric), or correct 
choices are rewarded unequally (=asymmetric, one choice yields reinforcement more often than the other) 

 

-Figure 10-  

Besides the interdependence of reinforcement rate and response rate, Stüttgen et al. also demonstrated 
with the given figure the dependence of criterion setting from varying reinforcement probabilities. The ab-
scissa shows the session number, the ordinate the criterion placement. The thick bold line depicts the pi-
geon’s real (“empirical”) criterion setting depending on the probability ratio (exemplarily of bird nr. 720). 
The thin straight line gives an orientation for optimal criterion setting as to maximize payoff. The shaded 
background (see also table on the right) represents the ORF (cf. section 2.3.5.) graded in reward probability 
for each criterion position. (Stüttgen et al., 2011b) 
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with a reinforcement rate of 0.5), along with Gaussian distributions for all six stimuli. In a sym-

metrically rewarded choice task, it is quite reasonable that the optimal c (the vertical dark 

grey line) lies in the middle of S1 and S2, so the animal should not be biased to either side. 

From the cumulative functions in Fig. 11B follows that the peak of the ORF (thick black line) 

represents optimal criterion setting as to receive most rewards for the most extreme stimuli 

(1 and 6), simply because they are easiest to classify (furthest from the arbitrary category 

boundary between stimuli 3 and 4).  

Figure 11B shows the same situation as depicted in panel A, except that the light gray lines 

represent the expected number of rewards per trial for each stimulus separately, as a function 

of criterion placement along the x-axis. Stüttgen et al. predicted that a test subject would per-

form differently with asymmetric reinforcement contingencies, more specifically, when one 

of the six stimuli (conditions E1-E6, Fig. 11) was not reinforced anymore. Panels C, D, and E 

show how the position of the optimal criterion and the ORFs change for experimental condi-

tions E1, E2, and E3. If condition E1 was not rewarded anymore, the peak of the ORF would 

decrease slightly, and its peak (coinciding with the optimal criterion position) would subtly 

shift (hardly visible in panel C). Because E1 was the darkest condition, the pigeon could easily 

classify it as an S1-stimulus. Holding back rewards for stimulus 1, however, should only slightly 

affected the shifting of the criterion and the peak of the ORF for an ideal observer in condition 

E1 (fig. 11, dashed line). By contrast, omitting reinforcement for stimuli 2 and 3 in conditions 

E2 and E3, respectively, more substantially influence the position of the optimal criterion. That 

time, the optimal c moved from the neutral position farther to the left side as the subject 

received more rewards for E4-E6 conditions in relation to E1-E3 conditions. These observa-

tions will be similar for conditions E4, E5, and E6 (ORF and the position of c will alter in the 

opposite way).  
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-Figure 11- 
Predictions for criterion setting on the basis of SDT. Panel A shows 6 distributions according to 6 
different shades of grey the subjects were presented. The 3 left distributions correspond with 
stimulus S1, the 3 right distributions belong to the stimulus S2. The x-axis therefore depicts the 
perceived stimulus of grey value (as well as the criterion position), the y-axis represents the ex-
pected reinforcement for a given stimulus. The thick bold line is the ORF standing for optimal cri-
terion setting as to maximize reinforcement. Panel B is similar to A, yet the grey lines stand for 
each condition separately, together with its expected reward. Panels C – E demonstrate, in terms 
of SDT, optimal shifting of c (black vertical line) when one of the 6 grey values is not reinforced 
anymore (here only conditions E1-E3 are shown, see right column), compared with an unbiased 
criterion placement (dashed vertical line). Also, the changing ORF for the different conditions is 
presented (its peak coincides with the optimal criterion position according with the highest ex-
pected reward). (Stüttgen et al., 2013) 
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Figure 12 shows exemplarily the outcome of bird nr.920. The x-axis contains the session num-

ber, the y-axis the proportion of S2-responses. During symmetric reinforcement (on average, 

every other correct response is rewarded regardless of a given S1- or S2-stimulus) the graph 

oscillates around a horizontal line at a probability rate of 0.5 for S2-responses. This is expect-

able as both stimuli, S1 and S2, are reinforced equally. The foregoing predictions about the 

optimal c in a signal detection task, however, would expect that the deviations from the hori-

zontal line would be most extreme in conditions E3 and E4 right after changing the condition 

of reinforcement as the optimal c is significantly shifted away from the neutral c, and least 

extreme for conditions E1 and E6. Therefore, the optimization model postulates that the num-

ber of S2 responses would follow the pattern E3 > E2 > E1 > E6 > E5 > E4 (Stuttgen et al., 2013). 

Though, the results say otherwise: the pigeons number 720 and 920 show a strong deviation 

from optimality for omitted reinforcement in condition E1 and E6, and a rather small abrupt 

deviation for E3 and E4 (Fig. 12). Hence, correcting for these observations would lead to the 

consideration the frequency of S2-responses correlates with E1 > E2 > E3 > E4 > E5 > E6.  

 

To sum up, Stüttgen et al. assumed that SDT was a valid description of choice processes and, 

through their experiments, they tried to get behind the algorithm underlying criterion setting, 

which SDT is silent about. Hence, SDT aimed to describe the decision process and allowed one 

to calculate optimal performance for a given reinforcement contingency and a given d’, and 

further, it allowed one to compare obtained performance to that theoretical optimal. None-

theless, since SDT had been debated about, many scientists still questioned optimization as 

well as SDT as only reasonable theory behind signal detection. Stüttgen’s outcome from his 

2013 studies gave every reason to also consider non-optimizing theories as best representa-

tion for human and non-human decision making. The following paragraphs will therefore 

serve to shortly outline possible non-optimization theories that could explain the former pre-

sented studies as further imaginable models explaining signal detection (besides SDT’s main 

competing model, namely the TT).  
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Firstly, Stüttgen himself introduced the income-based model as possible non-optimizing the-

ory describing the outcome of their pigeon studies of 2013 (Stüttgen et al., 2013). The income-

based model assumes Gaussian distribution functions representing a certain stimulus. Hence, 

in Stüttgen’s experiments, the six different shades of grey were represented as six equal-var-

iance Gaussian distribution curves, comparable with SDT. Also, decision making is, amongst 

other factors, dependent on a certain decision criterion that varies from trial to trial within a 

task session. So, the shifting of c is influenced by the probability of stimulus reinforcement. 

The more likely a certain stimulus is reinforced, the rather c shifts to either side that makes 

the reinforced alternative more likely (cf. (Stüttgen et al., 2013)). So in other words, all rein-

forcements for correct responses are allocated individually determining the shifting of the cri-

terion to one or the other side after every trial (Kac, 1969, Dorfman and Biderman, 1971). 

Henceforth, the income-based model assumes that a subject learns only from reinforced trials 

(Stoilova et al., 2019, submitted ).  

                                                  

-Figure 12-  
The outcome of Stüttgen’s 2013 experiments showed an overestimated behavior to changing reinforce 
conditions compared with predictions of optimality in SDT. The abscissa depicts the session numbers, 
the ordinate represents the quantity of S2 responses. The dashed lines separate the different reinforcer 
conditions (E1 – E6). Exemplary for all tested subjects, bird nr. 920 showed the most pronounced over-
shooting behavior (=most intense reaction bias) for condition E1 and E6 (when the most extreme grey 
value were not reinforced).  
The quasi-optimal behavior seen in Stüttgen’s 2011 conducted decision task did not meet the outcome 
of 2013. In fact, all birds showed most extreme reactions for conditions E1 and E6, however, SDT would 
expect the strongest peak for condition E3 and E4; for further information see text (Stuttgen et al., 
2013) 
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In the income-based model, c therefore complies with a leaky integration of the difference 

of “incomes” (=reinforcers) gained on either side: 

c(t+1) = γ x c(t) + δ x [RfsS1(t) – RfsS2(t)]16 

c(t+1) stands for the c of the next trial. γ is a leak factor describing a discount rate that repre-

sents the average c-value weighted over the last trials (ranging from 0 to 1). So if the subject 

is unbiased, γ takes on the value 0, however, the further the integration window goes back 

the past, γ approaches the value 1. On top of this, δ stands for the learning rate that increases 

for correct S1 choices and decreases for correct S2 choices. RfsS1 and RfsS2 

represent the reinforcement for correct responses of S1 or S2 (1 if reinforced, else 0). 

 

Figure 13 offers a comparison of Stüttgen’s 2013 results when demonstrated through optimal 

criterion setting vs. income-based criterion order. Relating to the pattern of optimal signal 

detection and non-optimization, the correlation of missing reinforcements for the conditions 

E1-E6 (x-axis, Fig. 13) and correct S2-response proportion (y-axis, Fig. 13) favors the income-

based model over the theory of optimality. To clarify this, both theories would expect a mon-

otonic decrease of P(S2)17 on the y-axis with conditions arranged from left to right. One can 

easily see that this prediction is mostly met in the left column of Figure 13 (income-based 

model) but not in the right column (optimality-based criterion setting).  

 

 

 

 

 
17 Probability for correct S2 responses  



36  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

 

 

Interesting about these findings is that Stüttgen’s team observed different behavioral patterns 

in experimental analysis two years earlier. While the more recent results of 2013 favored a 

non-optimizing theory (cf. the income-based model), in 2011 Stüttgen et al. conducted a sim-

ilar experiment with the same pigeons that rather tended to optimal detection abilities (see 

above). Yet, in both experiments the animal adjusted its behavior; whilst in the 2011 paper 

                                              

-Figure 13-  
In each panel the x-axis shows the testing conditions E1 – E6. The y-axis represents the proportion 
of S2 responses. Both columns depict the outcome for birds no. 720, 919, and 920, whereby two 
theories are compared, optimal criterion setting in SDT and a non-optimal income based criterion 
model. SDT expects that S2 responses would be most extreme for not reinforcing E3 (central grey 
value of the darker shaded grey signals) and less extreme for condition E4. Therefore, in the left 
column one would expect a diagonal line from the left side of the panel to the right. Obviously, 
this is not the case. The income based model (see text) assumes the most S2 responses for condi-
tion E1 and the least S2 reactions for E6 forming a diagonal from left to right. Thus, the data 
pretty well fits to the predictions of the income based learning model. (Stuttgen et al., 2013) 
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reward probabilities were changed for the entire category of stimuli, in 2013 reward proba-

bility was manipulated for one stimulus at a time.  

Altogether, the same birds were tested in a similar decision task in 2011 and 2013, but showed 

slightly different behavior (optimal criterion location in the 2011 study and a non-optimal lo-

cation in the 2013 study). Interestingly, a reanalysis of the data from 2011 confirmed that the 

income-based model was able to fit both data sets reasonably well (Stüttgen et al., 2013). 

Finally, the authors compared the pigeons’ behavior also to unbiased reaction: Interesting is 

that the animals performed nearly optimal, although unbiased behavior would have led to 

almost the same amount of reinforcement. 

As a side-effect, in both studies the birds showed an early overshooting reaction towards the 

side of higher reward frequency and a following re-approaching towards a steady-state (an 

observed behavior which will be further discussed later on).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

2.5. The prefrontal cortex  

 

As mentioned above, the goal of this study is to get a deeper inside of how well non-human 

animals perform in adaptive behavior and goal-directed patterns. It is well known that sensory 

cortices are responsible to filter neural activity of millions of neural inputs to correctly detect, 

discriminate, localize, and recognize neural stimuli (Stuttgen and Schwarz, 2018). Whilst past 

studies showed that the prefrontal cortex has a great impact on these executive functions 

(Chudasama, 2011), this study will mainly examine the medial prefrontal cortex (mPFC) and 

its role for adaptive behavior (as to maximize reinforcement) in changing environments. The 

mPFC contains the prelimbic cortex and the anterior cingulate.  

The process of decision making in human and non-human animals is constructed of a complex 

network of neural mechanisms (Kennerley et al., 2006, Rudebeck et al., 2006, de Wit et al., 

2009); first within the peripheral and central nervous system that needed to be perfectly co-

ordinated, second as inter-hemispheric and inter-cortical functionality, and third on a single-

to-single neural level (Carmichael and Price, 1995, Ghashghaei and Barbas, 2002, Chudasama, 

2011). Up until today, this continuous stream of millions of neural interconnections has yet 

not been understood and is part of current intense investigation. Fortunately, from the begin-

ning on, men have always been interested in the human mind and were therefore eager to 

find out about the cortical functions and their locations. Ultimately, there was sufficient evi-

dence that the prefrontal cortex played a remarkable role for social cognition and a function-

ing decision process in human behaviors (Ko, 2017, Dolan, 2002, Bicks et al., 2015). Studies 

with clinical patients showed that the impairment of the ventromedial cortex lead to poor 

decisions, missing of proper behavioral adaption, and generally meant a loss in maximizing 

reward (Chudasama, 2011, Bechara et al., 1994). Nonetheless, as mentioned above, many sci-

entist found out that specific decision tasks are not only represented by one cerebral region, 

but that they need the interaction between many different neural regions (Kennerley et al., 

2006). The goal of this paper is therefore to find out more about the importance of the mPFC 

for its role in adapting to changing reinforcer conditions. Adaption processes, like reversal 

learning18, yet asking a subject to adapt to new conditions, seems to be greatly controlled by 

 

18 Task procedure in which a subject learns that a correct response (R1) to a certain stimulus (S1) yields reward 
while another response (R2) to the stimulus (S1) misses reward. Then, the task procedure changes and re-
sponse R2 leads to reinforcement of S1 
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the mPFC (Izquierdo and Murray, 2005). The PFC seems to be also involved in updating the 

internal value for an expected reward, scientifically called reinforcer devaluation, which is the 

ability to adjust to changes in reward value (Chudasama, 2011). In example, Holland and 

Rescorla could show that the response to a stimulus of expected food became less attractive 

for rats when this was paired with illness. (Holland and Rescorla, 1975, Gallagher et al., 1999). 

On top of this, former groups of scientists examined the specific trait of delay discounting. 

Overall they found out that human as well as non-human animals prefer sooner smaller re-

wards before later larger rewards; and they examined, if oppositely to this general observa-

tion, which cerebral region was responsible for this adaption process in decision making. Delay 

discounting must not only been seen as abstract decision trait, but became apparent having a 

huge impact for drug addiction and other psychiatric disorders like ADHS (Chudasama, 2011, 

Clark et al., 2004). Additionally, Maroun could show that the plasticity of the mPFC is im-

portant for mediating fear regulation and extinction (Maroun, 2013). Ultimately, they showed 

that the PFC seems to play an enormous role for various fields of decision making. (Bechara 

and Van Der Linden, 2005, Evenden and Ryan, 1999). Though, likewise with all detailed steps 

necessary to take a final decision, also delay discounting seems to be represented by many 

different subregions of the PFC, and scientist can still not exactly identify how many and which 

exact regions are involved (Berlin et al., 2004). The general consent between different scien-

tists therefore is that decision making is highly dependent on the PFC, though, they are also 

sure that specific traits within the process of choice taking are represented by different sub-

regions to a higher or lower percentage (Rushworth et al., 2004, Roberts et al., 1998). Obvi-

ously, many scientists still continued to find out more about the distinct functions of the PFC’s 

subregions. Some evidence exists that the ventral part of the mPFC is rather responsible for 

functions that are related with attention, and the dorso-medial PFC is responsible for memo-

rizing motor responses and the processing of received information. The orbitofrontal cortex 

seems to be greatly involved in reversal learning and delay discounting (Dalley et al., 2004).  

Despite this fact, only a few studies examined non-human animals concerning the impact of 

the prefrontal cortex within the complex process of decision making and its direct role in op-

timal signal detection (Ko, 2017, Yizhar et al., 2011, Yizhar, 2012). Additionally, only a few 

research projects really examined the animals’ behavior before and after knocking out exactly 

one cortical region, although animal models and specifically pharmaceutical manipulation of 

specific cortices have proven to be a proper tool to get a deeper inside in certain behavior 
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patterns (Chudasama and Robbins, 2006). So the focus of this study was to go down to the 

neural level by blocking the neural function of the mPFC through the inhibition of its neurons 

by muscimol infusion. Together with the technique of neurometric recordings (spike trains of 

single sensory neurons; cf. (Stoilova et al., 2019, Stoilova et al., 2019, submitted ), the goal 

was to receive a better understanding about the function and neural location of signal detec-

tion and adaptability, “…realiz[ing] Fechner’s early dream of ‘inner psychophysics’–relating 

neuro physiological activity to sensation”; cf. (Stüttgen et al., 2011a, Mountcastle et al., 1990). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

3. MATERIAL AND METHODS  

 

3.1. Subjects 

 

At the beginning of the research project, four male Long-Evans rats of the same offspring 

born eight weeks ahead of training with a weight between 200 and 250g (breeding company 

Janvier Labs) were trained to successfully participate in a psychophysical decision tasks. The 

experimental task procedures were controlled by local authorities, “The National Investiga-

tion of the state of Rhineland-Palatinate”, Germany. The training was conducted on week 

days, Monday to Friday, during the dark phase of a 12 h light/dark cycle (lights off at 8:00 am 

– 8:00 pm). Water was restricted throughout and only given during testing and ad libitum on 

weekends when they were held in a rats’ cabinet (Bioscape GmbH) with a constant tempera-

ture of 23°C and with a humidity at <50%.  

 

3.2. Training 

 

Besides the training steps, three primary days of handling were included to acquaint the ani-

mals to the experimenter. A standard rat behavioral chamber (“Skinner box”; ENV-008, Med 

Associates Georgia, VT, USA) and further technical devices (amplifier by Cambridge Electronic 

Design Ldt, UK) were used during the whole training procedure. The training was recorded 

and evaluated by the computer program Spike 2, Version 7 (Cambridge Electronic Design Ldt., 

Cambridge, UK). The experimenter weighted the rats before and after each session. In the first 

step of the training procedure, the animals learned to poke any of the three ports. Poking the 

center or side ports (=left and right response ports) was associated with reinforcement by 

collecting water. In each case, 30µl of water was provided at the t the center, right, or left port 

by activating the water pump for 0.5s respectively. At the same time, poking the left or the 

right port (=response ports) produced a corresponding sound (left port: low frequent sound 

of 4,096 kHz; right port: high frequent sound of 16,384 kHz; sound duration of 0.07s). How-

ever, random activation of the left and right water pump prevented the animals from exploit-

ing only one of the two ports. Additionally, the experimenter could manually provide or re-

strict water at a certain port to accelerate the learning process. At the sixth day of training, 

the second practice step was introduced. Specifically, trial initiation at the center port elicited 
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a low or a high frequent stimulus, while water was delivered only after the animal poked in 

the associated reward port (= right or left response port). Furthermore, a response was re-

quired within 4s after trial initiation; however, poking into the wrong reward port did not ter-

minate the ongoing trial. On the following day, the rodents continued with training step 3, 

which was identical to step 2, but a delay of 0.1 s from center nose poke to stimulus presen-

tation was added. From the eighth training day onwards, step 4 of the program requested a 

full single-interval forced choice task, so the rat was only rewarded after a correct response; 

incorrect responses yielded a time-out punishment, meaning that the subject could not initi-

ate another trial for the next 4s. Furthermore, the introduction of a penalizing sound19 served 

as a sensitization for the delay to stimulus presentation.  

The results of the first training days showed that two of the rats struggled choosing the correct 

side after sound delivery, and at least two of them had a strong bias either to the left or the 

right port. As a consequence, from the twelfth training day onwards, each time the rat chose 

the wrong port four seconds of time-out (the rat could not activate another trial) hindered the 

animal from obtaining positive reinforcement. Although all rats slowly increased in perfor-

mance, on the twenty-second training day correction trials were implemented to accelerate 

task learning. In fact, for every wrong choice the animal had to correct its responding before 

the next trial could be activated. As a result, the rodents did not receive as many rewards and 

were therefore increasingly motivated to choose the right port.  

Three of the four rodents behaved as expected and improved their performance. Interestingly, 

rat number 2 deteriorated in its performance during the repeating trials, so correction trials 

were stopped after six sessions. In between, rat 1 and 3 moved on to the fifth training step 

implementing a delay to sound stimulus presentation in steps of 0.1s > 0.25s > 0.4s. Due to a 

quick performance increase of the three other rats (their d’ was close to 2.0 at that time; c.f. 

section 2.3.4.) correction trials were discontinued after ten days. At the same time, the per-

formance level of rat 1 and 3 justified to continue with the sixth training step establishing a 

broader bandwidth to the sound. Three and four days later, subject 2 and 4 also continued 

with the sixth training step. In discrimination and adaption tasks, the broadening of the sound 

bandwidth was to implement a noisy background in an experimental procedure. So in the fol-

lowing three weeks the rats learned to correctly discriminate the high and low frequent sound 

 

19Incidentally the panelizing sound showed not to be an intelligible learning module 
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within a noisy background. Finally, during the 12th week of training the rats were acquainted 

to less reward for correct trials (step 7), as with reduced reward rates the animals received 

less water per unit time and therefore also performed more trials per session The probability 

rate for rewards was decreased from 1.0 to 0.5. Finally, after about 14 weeks of training the 

rats were ready to begin with their behavioral experiments. The following chart outlines all 

training steps.  

 

 

 

 

 

 

 

 

 

-Table 4- 
 

Training steps 

Step 1              

Get animals to poke and collect water (pump active for 0.5 s; 30ul); in each trial, either a center or a 
correct side poke will yield reward; side pokes are accompanied by corresponding sounds (low fre-
quent sound: 4096kHz; high frequent sound: 16384kHz; duration: 0.07s; 80dB; band widths: 0.4); left 
and right water pumps are activated in random sequence to prevent animals from exploiting only 
one of the two; experimenter may manually provide water now and then; session length 30 minutes 

Step 2 

Trial initiation in center port elicits a stimulus presentation; water is delivered only after animal 
pokes in the appropriate reward port; required response within 4s after trial initiation; poking else-
where does not terminate the trial 

Step 3 
Introduction of a delay of 0.1s from center nose poke to stimulus presentation; response required 
within 4s after trial initiation; poking elsewhere does not terminate the trial 

Step 4 

Full single-interval forced choice task; reward only after correct response (correction forbidden); in-
troduction of a penalizing sound if the rat does not respect the delay (0.1s) while poking center port; 
after 7 days of training according to script 4, introduction of a time-out punishment (4s)  

Step 5  e.g. 0.1s → 0.25s → 0.4s; move on when animal aborts less than 20% of trials 

Step 6 
Change stimulus composition by broadening its bandwidth; move on when rat performs correctly in 
>85% of trials across both categories 

Step 7 Reduce reward probability to 0.5 
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-Figure 14-  
 
Sketch of behavioral paradigm. The trial begins when the rat initiates stimulus presentation (S1 or S2) 
by poking into the center port (1). Depending on the sound presented and the rat’s perception, the lat-
ter responds by going to port 1 or 2 (P1 or P2). If the rat reacts correctly, it will be reinforced with wa-
ter applied at the correct port. False responses, however, lead to withdrawal of water.  
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3.2. Behavioral testing  

 

3.2.1. Controlled reinforcer ratio  

The first experiment dealt with a controlled reinforcer ratio (CRR), meaning that the activation 

of one of the two alternatives had to go along with hitting the correct response port (Stubbs 

and Pliskoff, 1969): activating stimulus S1 requested response R1, activating stimulus S2 re-

quested response R2. Henceforth, only the correct sequence of stimulus and response allowed 

the subject to finish up the current trial and to begin a new trial. In other words, every time 

the rat triggered the high- or low-pitched sound the reward was assigned to its particular port 

(left for the high-pitched sound, right for the low-pitched sound). In this case, the programmed 

reward contingency matched what the rat obtained (programmed = obtained; c.f. Fig. 15). So 

the programmed response reinforcer ratio schedule could not deviate from the experienced 

reinforcer ratio schedule. Additionally, a variable ratio contingency was included to examine 

the effect of overall reinforcement density. For this, two different variable ratios (VR) were 

implemented, VR2 and VR6. In VR2, on average reward was provided after every second cor-

rect choice. In VR6 the average reward probability was one out of 6 correct responses. Hence, 

the reinforcement density was three times higher for VR2 than VR6 (c.f. subsection 4.1.1. Fig. 

17).  

 

 

 

 

 

 

 

 

 

 

 

 

-Figure 15- 

A                                   response                                                                       reinforcement 

 

 

B                                   response                                                                       reinforcement 

 

- A- Controlled reinforcer ratio (CRR), association of response and reinforcement 

- B- Uncontrolled reinforcer ratio (URR), interdependence of response and reinforcement       

(c.f. 3.2.2)  
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3.2.2. Uncontrolled reinforcer ratio  

The second experiment served to analyze the rats’ behavior in an uncontrolled reinforcer ratio 

(URR) schedule. With URR, the specified reinforcer ratio could deviate from the actual (=ex-

perienced) reinforcer ratio. This is what CRR could control (see above).  

  

In contrast to the first experiment (subsection 3.2.1.), the subject was not forced to collect the 

reward from the assigned response port before a new trial could be activated. Instead the rat 

could initiate a new trial and with that a new reward allocation to one of the ports. Further-

more, the URR schedule allowed the subject to exploit one of the response ports, e.g. during 

asymmetric reinforcement (meaning that a correct detection of one of the two stimuli went 

along with a higher reward magnitude). Hence, in an URR scenario, and for instance due to 

unequal reward magnitudes for correct responses to different choice alternatives, the animal 

could favor one response port leading to an extreme bias to either side, c.f. (Stubbs and 

Pliskoff, 1969).  

In other words, the rat behaved in a closed loop as behavioral allocation directly determined 

reward allocation. As one of the two response port lead to relatively more rewards for a given 

choice, the subject was motivated to decide for the associated choice alternative more often. 

Over time, this behavior was a self-supporting system as the more given responses to one of 

the reward ports subjectively meant a higher reinforcement, and again the rewarding influ-

enced the rat to detect the associated stimuli to this specific reward port (Fig. 19).  

 

 

3.2.3. Statistical analysis 

All analyses were either performed with Excel (Microsoft Office 2010), or Matlab, R2018b (The 

Mathworks, Natick, MA, USA). Firstly, results were demonstrated via graphs depicting the 

probability of correct responses to a certain stimulus over more than 20 task sessions, sec-

ondly, via t-tests outlining sensitivity and criterion setting, and thirdly via objective reward 

functions. Optimal response criteria and objective reward functions were calculated and plot-

ted by the supervisor of the project, Maik Stüttgen. The symmetric and asymmetric experi-

ments under muscimol were evaluated through Wilcoxon rank-sum tests. Furthermore, linear 

regression was used for the purpose of comparison in the discussion part.  
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3.3. Surgery 

 

Before the surgery, the experimenter cared for a clean cage with stretched out paper towels 

on the bottom of the cage and a heating pat underneath (plus optionally a heating lamp) to 

ensure a good post-operative environment for the animal. Additionally, the surgery protocol 

was filled out with necessary information about the rat’s physical status (sex, weight, age), 

and the type and dosage of medication20: 1. Analgesia: Rimadyl (4mg kg-1); 2. The triple-com-

bination anesthesia: Fentanyl (0.005mg kg-1, Medetomidin (0.15mg.kg-1), Midazolam (2,0 mg 

kg-1 plus a supplementary dose as pain reflex is positive); 3. The antibiotics: Baytril (2.5ml 2.5% 

given pre-operative with the drinking water).  

 

Finally, Bregma21(B) was determined. It helped to locate the coordinates of the later implanted  

cannulas (C315G, PlasticsOne, Roanoke, VA, USA, diameter 0.5 mm) in the prefrontal cortex 

(the following coordinates were chosen: +3.0 mm from Bregma (anteroposterior); mediola-

teral (ML), ±0.6 mm from the midline, dorsoventral (DV) -3.1 mm below the dural surface. 

Cannulas were implanted at an outwards angle of 10°.one tube on each cortical side, s. Figure 

16A/B, PFC) and the auditory cortex (one double-holed tube on each cortical side, s. Fig. 16B 

AC; for further scientific results about the functions of the auditory cortex see Stoilova et al., 

2019, submitted).  

 

When all preconditions were met the surgeon was ready to start out with the main surgical 

process: the rat was fastened in a stereotaxic frame (Parallel Rail Stereotaxic Instrument; 

Stoelting, Dublin, Ireland) and fixed using atraumatic ear bars. Then, the rat was anesthetized 

through the application of isoflurane 5% solved in pure O2. Later its head was shaved spa-

ciously, and finally the animal was anesthetized by a triple-combination anesthesia (see 

above). During the whole surgery the rat was kept warm by a small heating pat, and its tem-

perature was continuously controlled. Its eyes were covered with ocular lubricant. Eventually, 

 

20Medication: 1. Rimadyl is a NSAID (pharmaceutical ingredient of Caprofen) with an antiphlogistic, analgetic 
and antipyretic effect; 2. Fentanyl, Medetomidin, Midazolam are pain killers belonging to the group of Opiats 
(Fentanyl), α2-Agonists, and Bencodiacepines; 3. Baytril is an antibiotic medication containing Enrofloxacin 
(Flourchinolon)  
21Bregma: is the anatomical point on the skull at which the coronal suture is intersected perpendicularly by the 
sagittal suture WIKIPEDIA 2016. Bregma. 
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a negative pain reflex allowed the surgeon to open up the rat’s scalp, apply sore cream (Be-

taisodona) and clean it with saline afterwards. Then, the calculated coordinates for the can-

nulas were marked and five or six additional points were selected for stabilization, all being 

helpful landmarks for the drilling of the holes into the bone. For the purpose of stabilization, 

little screws were drilled into the skull and glued onto the bone with dental cement. Later the 

cannulas were inserted into the prefrontal cortex and auditory cortex22, and also glued onto 

the bone with dental cement. Before the scalp was sewed together, Betaisodona was spread 

out and the antagonizing medication Atipamezol (0.75 mg kg-1), Flumazenil (0.20 mg kg-1) and 

Naloxon (0.12 mg kg-1) was applied, before the rat was carefully transported to the prepared 

cage.  

 

After surgery, the rat’s body temperature was carefully controlled, and water and food was 

provided ad libitum. Rimadyl was provided for two more days, glucose (5%, 5ml i.p.) was given 

if needed. For recovery purpose, the training was paused for 7 days.  

One of the rats died after surgery so that the pharmaceutical experiments were conducted 

with three of the originally four testing subjects (death of rat (AD2): 08/18/16). 

 

22Cannulas were implanted for additional tests which were however not part of the current work, and results 
are therefore not described; for further scientific results about the functions of the auditory cortex see Stoilova 
et al., 2019, submitted.  
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3.4. Application of pharmaceuticals  

 

The third experiment will provide new information about the role of the PFC concerning signal 

detectability. In order to analyze the rats’ performance during the blockage of different brain 

areas23, the latter are either manipulated with saline or muscimol (Sigma-Aldrich, St. Louis, 

MO, USA). While saline does not affect the neural processes, muscimol, naturally obtained 

from the fly agaric mushroom, is a GABA-A-receptor agonist that activates the inhibitory brain 

systems ((Krupa et al., 1999). Since one found out about the inhibitory effect on the functions 

of cortical brain areas, Muscimol has often been used to study behavioral patterns as it is able 

 

23Both, the auditory and the prefrontal cortices were bilaterally and unilaterally manipulated  

                                                

A                                                                                               B    

             
-Figure 16- Location of cannulas  
 
- A (Paxinos and Watson, 1998) skull diagram of a rodent  
- B rough implantation plan  
For implantation of the cannulas Bregma (B)21 was determined first, then one tube was im-
planted in the left and right prefrontal cortex (PFC), respectively. A double-holed cannula was im-
planted in each auditory cortex (AC), left and right. 

B

PFC

AC
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to specifically block neural activity in cortical areas of interest. In the current study it was used 

to unilaterally and bilaterally block the PFC. The necessary apparatus (Pump 11 Elite, Harvard 

Apparatus, Holliston, MA, USA).) is a syringe pump that offers the clamping of two 22 or 23 

gauge glass-syringes ( 10µl of volume each), which are connected to very small plastic tubes. 

These plastic tubes in turn are hooked onto small adapters that are later inserted into the rat’s 

implanted cannulas.  

To start out, 70%-ethanol is drawn into a 5ml-syringe. Firstly, the tubes with the hooked adapt-

ers are connected to the syringe and flushed until they are completely bubble-free. Then, the 

glass-syringes are filled with ethanol before they are bound to the tubes. Now the 10µl of 

ethanol are discarded and 0.5µl of air are drawn in. In the following step the syringe is filled 

up either with saline or muscimol, so that the small air bubble separates the liquid vehicle and 

the pharmaceutical (either saline or muscimol). To ensure that the correct amount of either 

0.25, 0.5 or 1µl saline/muscimol is applied, the first 1µl is discarded. Finally, the syringes are 

put into the syringe pump and the adapters are inserted into the rat’s cannulas. Then, 0.25 

(0.5, 1) µl of saline or muscimol is applied. To ensure that 1µl is correctly injected into the 

specific cortical area, the experimenter waits about 1 minute (min) before the tubes are re-

moved. After 45 min of resting, the rat starts out with the testing procedure.  

 

 

3.5. Testing under muscimol 

 

The third and last experiments dealt with the neural mechanisms of reinforced behavior. To 

investigate the neural function of the mPFC concerning signal detection, the subject`s behav-

ior was observed under muscimol application that inhibited neural activity in covered brain 

areas. In order to do so, the rats’ outcome under muscimol application (brain function was 

blocked) was compared with that under saline-control (brain function was kept active). The 

main goal was to analyze the role of the mPFC concerning adaptive behavior for long-term 

memory through changing stimulus-reward contingencies.  

 

On the whole, the rats were tested under asymmetrical reinforcer schedules first, and later 

under symmetrical reinforcement contingencies. On top of this, the subjects were analyzed 

separately under unilateral and bilateral saline and muscimol application.  
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4. RESULTS  

 

As outlined in the introduction, the main goal of this work was, in a first step, to get a deeper 

understanding how well non-human animals adapt to changing reinforcer conditions and 

which theoretical model best reflects the given data. In a second step, the mPFC was examined 

to get more inside concerning its role for decision making. Therefore, section 4.1. will first 

characterize the subjects’ task performance in two behavioral experiments under changing 

reinforce conditions. In section 4.2. similar behavioral experiments will be combined with 

pharmacological tests in order to check the mPFC for its role in adaptive behavior. The follow-

ing table shortly outlines the task schedules and procedures of the behavioral and pharma-

ceutical experiments (see also the description of the task structure in section 3.2.).  

 

-Table 5-. 

Short outline about the conducted experiments, the procedures, and tasks schedules 

 

1. Controlled reinforcer ratio schedule (CRR) 

Procedure:  

- the subjects are reinforced for every second/ every sixth correct response like in a variable  

              ratio schedule 

- correct S1/S2 responses are alternating reinforced with a probability of 0.25I0.75 

Task schedule:  

 Fig. 17: depiction of S2 responses depending on the reward probability (example given  

             by of one of the four subjects) 

 Fig. 18: One-sample-t-Test for all four subjects to check their deviation of correct S2   

             responses and criterion setting from this of an ideal observer 

2. Uncontrolled reinforcer ratio schedule (URR) 

Procedure: Correct S1/S2 responses are alternating reinforced with a probability of   

                       0.1I0.5 or 0.5I0.9 

Task schedule :  

- Fig. 19: depiction of S2 responses depending on the reward probability (example given by 

of one of the four subjects)  

- Fig. 20: One-sample-t-Test for all four subjects to check their deviation of correct S2 re-

sponses and criterion setting from this of an ideal observer 



52  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

- Fig. 21: comparison of  the empirical (the subjects’) criterion shift with that of an ideal ob-

server (according to the ORF)  

3. Function of the mPFC 

Procedure: Blocking of the mPFC via muscimol 

Task schedule:  

- Fig. 24/25/26: Bilateral blocking of the mPFC with asymmetric reward schedules (task per-

formance was compared under different muscimol amounts: 0,25/0,5/1μgμl-1) 

- Fig. 27: Unilateral blocking of the mPFC during a balanced reward schedule 

 

 

4.1. Behavioral experiments -How well did rats adapt to changing reinforcement contingen-

cies? 

 

Both behavioral experiments investigated whether vertebrates were able to optimally inte-

grate incoming sensory evidence as part of stimulus-reward contingencies, and finally pro-

duced goal-directed, adaptive behavior in binary choice tasks. Without anticipating too much 

beforehand, the following experimental results will show that non-human animals quite opti-

mally integrate incoming sensory evidence as part of stimulus-reward contingencies.  

 

4.1.1. Controlled reinforcer ratio 

The following subsection will therefore firstly demonstrate exemplarily through the data of 

just one rat why optimal behavior in rodents was plausible. Afterwards a second illustration 

and the comparison with the ORF (see 2.3.) will give evidence that all four subjects tended 

towards optimal behavior.  

The first behavioral experiment therefore dealt with asymmetric reinforcer ratios (except for 

every first and last couple of sessions that included symmetric reinforcer contingencies to pre-

vent any biasing (Fig. 17).) In a variable ratio scenario the subject had to learn that stimuli S1 

and S2 were alternating reinforced with a probability ratio 0.25 and 0.75 (for a detailed task 

description see 3.2.).  
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Exemplarily for all four subjects, Figure 17 shows the reaction pattern of one rodent to chang-

ing reinforcer conditions. In sessions 3 to 7 and 13 to 17 the S2 stimulus (=left response port, 

high-pitched sound) was rewarded more often than the S1 stimulus (instructed a response to 

the right response port), and corresponding with the reinforcer ratio, the subject moved to 

the left reward port more frequently. A similar behavior was shown when S1 lead to a higher 

reward probability (Fig. 17, sessions 8 to 12 and 18 to 22); then the animal reacted with a 

higher frequency of right responses (Fig. 17). Henceforth, the subject varied its behavior de-

pending on the reinforcer ratio.  

Remarkably, the subject favored the port with a higher reinforcer ratio during the whole test-

ing procedure; even though the program incorporated a variable ratio schedule. So the rat 

was not rewarded every time it correctly detected the signal, but depending on the specific 

 

-Figure 17-  
In Figure 17 the abscissa contains the session numbers, the ordinate reflects the probability of left 
(=S2) choices depending on the reward probability provided. The specific reward probability is given 
on top of the diagram (e.g. 0.5I0.5 for a balanced ratio). The first and last sessions contained a bal-
anced reward schedule (S1 and S2 were equally reinforced) to prevent biased behavior at the begin-
ning and at the end of each testing module. Besides the changing reinforcer ratio, a variable ratio con-
tingency was included (VR2: on average, every second correct choice was rewarded; VR6: on average, 
every sixth correct choice was rewarded). 
Except for the first and last two sessions, asymmetric reinforcement influenced the rat to adapt its be-
havior. While in sessions 3 to 7 and 13 to 17 the left (=S2) stimulus was rewarded more often, in ses-
sions 8 to 12 and 18 to 22 the right (=S1) stimulus provided more rewards. Exemplarily for all test sub-
jects, the results of the depicted vertebrate obviously adapted its behavior to either side depending 
on the reward probabilities.  
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variable ratio exemplarily, on average after every second (V2) or sixth correct choice (V6). For 

that, in the first two testing blocks the subject was rewarded in one out of two correct re-

sponses (VR2). In the last two blocks, it only received water in one out of six correct responses 

(VR6). Ultimately, the variable ratio schedule did not hinder the subject from proper adaption 

to asymmetric reinforcement as expected from SDT; even though the rat gained generally 

more rewards for correct answers in two of the four sessions (in other words, the absolute 

reward amount was higher for V2 than V6). In comparison with the second behavioral exper-

iment an overshooting behavior (associated with a rapidly shifting curve towards extremer 

values), particularly at reinforcer ratio changes, could hardly be observed (for more see sub-

section 4.1.2).  

 

Additionally, one of the goals was to find out whether the animal behaved optimally referring 

to SDT. In order to do so, the One-sample-t-Test was used to mathematically check whether 

and how extreme the mean of the empirical observers’ outcome deviated from that of an 

optimal observer (subsection 2.3.): for that, the relative response ratios for S2 (=p [choose 

S2]) of all test objects (rats AD1 to AD4) of the last two sessions were compared with the 

perfect observer’s optimal p [choose S2] rate for all four changing contingencies. That is shown 

in Figure 18A, whereby the x-axis reflects the deviating probability of S2 responses across all 

four subjects from the perfectly allocated responses (dashed red line defined “optimal”) of an 

optimal subject in a discrimination task. The y-axis shows how often and in which direction 

from the optimal allocation the rats tended to one or the other alternative. Over the whole 

task and across all rats, the graphical outcome of panel 22A demonstrates that the rats’ choice 

allocation deviated from 0 by -0.1 and maximally by +0.1. The mean deviation from the perfect 

observer over all sessions and across all rats was -0.010. The results of the Wilcoxon-Sign-

Rank-Test with T(19)= 1.5 and p= 0.263 showed that there was no significant difference be-

tween a perfect observer`s performance and the vertebrates’ outcome of this study.  

To evaluate how well the subjects adapted their behavior in order to maximize reward, em-

pirical criterion setting was compared with that of an ideal observer (SDT allows to exactly 

determine optimal criterion setting in order to maximize reward under changing reinforce 

conditions). Figure 18B shows that the rats deviated from the ideal observer’s outcome by 

minimally -0.5 and maximally by +0.5. The mean deviation of the animals’ criterion setting 

compared with an optimal subject deviated by 0.0! The Wilcoxon-Sign-Rank-Test confirmed 
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with T(19)= -1.4 and p = 0.167 that there existed no major difference between a perfect sub-

ject’s adaption process and this of four trained rodents.  

In general, in both graphs (Fig. 18A and B) to classify a response to a certain unit, first the 

deviation of responses compared with this of a perfect subject was evaluated. Then equal 

units were established to categorize each response. The taller a bar was, the more often a 

response was classified to the specific unit.  
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-18A- Comparison of the subjects’ (AD1-AD4) p [choose S2] and p [choose S2]-optimal  

     

 
-18B- Comparison of the subjects’ (AD1-AD4) p[c] and p[c]-optimal  
 
-Figure 18-  
In 18A the horizontal axis shows the rats’ deviation of p [choose S2] from the optimal probability of S2 
choices given by an optimal observer (dashed red line). The vertical axis reflects the absolute number 
of sessions, collapsed across all four rats. In general, the rats showed differences in their choice alloca-
tion by minimally -0.1 and maximally by +0.1. Similarly, panel B compares the rats’ criterion setting 
(blue bars) with that of an optimal observer (dashed red line). The rats’ outcome only deviated by min-
imally and maximally +0.5 and -0.5. The Wilcoxon-Sign-Rank-Tests for both data groups confirmed that 
there was no major difference between a perfect observer’s responses and these of trained animals.  



57  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

4.1.2. Uncontrolled reinforcer ratio 

The general question of the second behavioral experiment was identical to the first testing 

procedure (subsection 4.1.1.) as its main function was to further investigate whether non-

human animals, in terms of SDT, optimally react to incoming sensory stimuli in changing stim-

ulus-reward-contingencies. However, the testing procedure was slightly rearranged, so that 

this time the reward was not assigned to a special response port and even after an incorrect 

response a new trial could be initiated (for more information, see 3.2.2.) 

 

The first graph again reflects on the basis of just one experimental subject (AD4), the reaction 

to changing reinforcement conditions of all four subjects. Later on, the outcome will be further 

verified by comparing the subjects’ outcome to that of an ideal observer and in correspond-

ence to the ORF (subsection 2.3.)  

 

Figure 19 shows the session numbers on the x-axis and the probability of correct left (=S2) 

choices on the y-axis. Since the experiment dealt with asymmetric reinforcer ratios the specific 

reward probabilities for S1 (=right, low-pitched)-stimuli and S2 (=left, high-pitched)-stimuli are 

plotted on top of the diagram. The first and last sessions were conducted with symmetric re-

inforcement (Fig. 19, 0.5I0.5), however, the main focus was on the four groups of asymmetri-

cally reinforced sessions in order to analyze the rat’s (AD4, Fig. 19) behavior under different 

reinforcer contingencies.  

Similar to the first behavioral experiment, during sessions 3 to 7 and 13 to 17 S2-stimuli (=left, 

high-pitched sounds) were rewarded more often than S1-stimuli (right, low-pitched sounds), 

and corresponding with the reinforcer ratio, the rat moved to the left side more frequently. A 

similar behavior was shown when S1-stimuli lead to a higher reward probability (Fig. 19, ses-

sions 8 to 12 and 18 to 22); then the subject answered with a higher frequency of right re-

sponses (Fig. 19). Similar to what could be seen in the first experiment, also in the second 

procedure adaptive behavior could be observed depending on the reinforcer ratio. Besides a 

favorite choice allocation on the side of higher reward probability, all of the rats reacted with 

overshooting behavior at the beginning of ratio changes and later tented towards unbiased 

reactions, similar to what Stüttgen et al. noticed in their studies (cf. subsection 2.4.). Interest-

ing was that the intensity of the overshooting behavior changed according to the relative re-

ward ratio (Fig. 19; 0.1I0.5/0.5I0.1 or 0.5I0.9/0.9I0.5). In both situations, the absolute contrast  
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between reward levels was identical, but the relative reward rate and the reward density dif-

fered. 

Comparable with the illustrations to the CRR experiments, besides adaptive behavior, the 

main interest was to analyze the rats’ ability to react nearly optimally in terms of SDT. Again, 

the One-sample-t-Test was used to check whether and how extreme the mean of the empirical 

observers deviated from “optimal”. As with CRR, the rats’ probability rates for S2 (=p [choose 

S2], Fig. 20) and their criterion setting (Fig. 21) was comparable to the perfect observer’s op-

timal S2-responses as well as criterion shifting for all four changing contingencies. Over the 

 

-Figure 19-  
The horizontal line contains the number of sessions; the vertical line shows the probability of S2 re-
sponses. On the whole, rat AD4 started and ended the experiment with two sessions of a balanced re-
ward probability for stimulus 1 (S1, right, low-pitched sound) and stimulus 2 (S2, left, high-pitched 
sound). The specific reward probability is given on the top of the diagram (e.g. 0.5I0.5 for a balanced 
ratio). Except for the first and last two sessions asymmetric reinforcement influenced the rat to adapt 
its behavior. While in sessions 3 to 7 and 13 to 17 S2 was rewarded more often, in sessions 8 to 12 and 
18 to 22 S1 provided more rewards. Exemplarily for all task subjects, the rat adapted its behavior to 
either side depending on the reward probabilities. 
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whole task and across all rats, the outcome of the Wilcoxon-Sign-Rank-Test with T(19)=0.0 

and p= 0.601 showed that the rats’ choice allocation did not significantly deviated from that 

of the optimal observer. Additionally, the graphical data demonstrated that their performance 

differed by minimally -0.18 and maximally by +0.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, also the criterion setting for URR was observed and compared with an optimal 

observer, again to check whether the adaption process corresponds towards a maximization 

of overall reinforcement. Figure 21 shows the deviation of a perfect criterion setting across all 

reinforcer contingencies, which differed from an optimal observer only by minimally/maxi-

mally -/+ 0.7. The outcome of the Wilcoxon-Sign-Rank-Test was T(19)=-0.3 and p= 0.7369.  

 

 

 

 

 

-Figure 20-  
The horizontal axis shows the rats’ deviation of p [choose S2] from the optimal probability 
of S2 choices given by a theoretical perfect observer (dashed red line). The vertical axis 
reflects the absolute number of sessions, collapsed across all four rats. In general, the rats 
showed differences in their choice allocation by minimally -0.18 and maximally by 
+0.18.The Wilcoxon-Sign-Rank Test showed that there was no major difference in the out-
come of an optimal observer and a trained individual.  
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According with the first experimental procedure, to find out more about optimal signal detec-

tion, the rats’ given answers were compared with the ORF (Maddox, 2002) and a perfect sub-

ject maximizing the amount of reward during a certain task session (subsection 2.3.). In Figure 

22 the x-axis depicts the criterion values for an ideal observer (thin blue curve) and for rat AD4 

(thin reddish circle) depending on the reinforcer ratio for S1 and S2 (above the graph). The y-

axis contained the expected reward depending on the reinforcer ratio and the criterion set-

ting. The rat therefore obtained most rewards for setting its criterion at the peak of the ORF.  

In the first panel S1 and S2 were reinforced equally (Fig. 22, panel 1, reinforcer ratio [0.5I0.5]), 

in this case, criterion setting for an optimal observer coincides with the peak of the ORF at 0. 

Now, as S1 was reinforced more often than S2 (Fig. 23, panel 2, [0.5I0.1], the criterion value 

was shifted to the right (in the direction of high-pitched sounds) as the rat gained more re-

wards for low-pitched stimuli (Fig. 23, dashed green line). The dashed green line represented 

the shifting of criterion associated with asymmetric reinforcement, while a higher reward ratio 

leads to a shifting in the opposite direction (Fig. 22, panel 2 and 3).  

 

-Figure 21- 
The x-axis shows the rats’ deviation from the optimal criterion setting of an optimal observer 
(dashed red line). The y-axis contains the absolute number of sessions, collapsed across all four 
rats. The subject minimally and maximally deviated their criteria by -/+ 0.7. As before, the data 
showed that trained subjects of this study behaved equally well as a perfect observer.  
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According with the relative reinforcer ratio, not only the response rate differed, but also opti-

mal criterion setting (compare c for the relative reward rates 0.1I0.5/0.5I0.1 and 

0.5I0.9/0.9I0.5, Fig. 22). In panels 3 and 4 the ORF shows a clear peak indicating the maximal 

reward for optimal criterion setting. In panels 2 and 5, however, the ORF for the greatest gain 

of rewards is less striking indicating that in terms of SDT adaption towards optimal criterion 

hardly gains more rewards than unbiased behavior. Nonetheless, even at shallow parts of the 

ORF the rat optimally shifted its criterion (Fig. 22, panel 2 and 5, compare ORF and blue circle).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

-Figure 22-  
In all graphs the x-axis contains the criterion value (subsection 2.3.3.), the y-axis is the probability for the 
expected reward. The blue curve shows depending on the reinforcer ratio the optimal criterion value for 
the highest amount of rewards. The small reddish circle shows the criterion setting of AD4 for the last two 
sessions of each contingency (see text for detailed description). In the first graph the objective reward func-
tion shows that equal rewarding (0.5I0.5) for S1 and S2 optimally leads to an unbiased behavior that corre-
sponds with the rat’s outcome. The second and third graph, however, demonstrate criterion shifting due to 
asymmetric reinforcement. The small box to the right shows the criterion shift depending on the probabil-
ity of a given S1/S2 signal as hypothesized by SDT: higher rewarding for S1 stimuli lead to criterion shifting 
in the opposite direction ( to a positive c values), and more rewards for S2 lead to a negative criterion shift-
ing. Ultimately, the subject behaves nearly optimal compared to an ideal observer.  
 

pS1>pS2: + c 
pS2>pS1: - c 



62  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

 

 

We can therefore conclude that in both behavioral decision tasks all four subjects adapted 

their behavior according to changing reinforcer conditions (cf. Fig. 17, 19) and, talking about 

SDT, they showed nearly optimal behavior under asymmetric reinforcement (Fig. 18, 20, 21, 

22). It is especially remarkable that the subjects adapted their behavior according to SDT even 

when this brought about barely more rewards (cf. shallow parts of the ORF in Fig. 23).  

 

 

 

 

 

-Figure 23-  
Overview of all vertebrates’ (AD1 to AD4) outcome about criterion setting in an asymmetric reinforcement 
task. The x-axis contains the range of criterion values, the y-axis shows the expected reward probability de-
pending on the reinforcer ratio for S1 and S2. For the panel description see Fig. 23.  
Generally, all rats nearly optimally arranged their internal criterion (thin reddish circle) as their shifting of 
criterion almost matched this of an ideal observer’s outcome, represented by the maximum value of the 
ORF (ORF=thin blue curve). The differences to the optimal criterion values range between -0.3 to + 0.3. 
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4.2. Neural mechanisms of choice behavior in a psychophysical decision task based on the 

prefrontal cortex 

 

The final experiments dealt with the neural mechanisms of reinforced behavior. To investigate 

the neural effects of the mPFC on signal detection, during the testing procedure the subjects’ 

behavior was compared under muscimol24 application that inhibited neural activity in covered 

brain areas, and with that under saline-control (cf. 3.3.-3.5.). By doing so, the role of the mPFC 

concerning adaptive behavior could be analyzed for varying stimulus reward contingencies.  

 

On the whole, the laboratory animals were tested four weeks in partly symmetrical and partly 

asymmetrical reinforcement schedules. Additionally, both hemispheres were tested under 

unilateral and bilateral muscimol doses: in the first three weeks the subjects’ behavioral pat-

terns were analyzed under different bilateral muscimol doses, in the last week of testing uni-

lateral blocking was intended to examine whether adaptability can be undertaken by just one 

hemisphere.  

 

4.2.1. Psychophysical decision task with asymmetric reinforcement  

At first, the rats were tested with a dose of 1µgµl-1 muscimol during an asymmetrically reward 

schedule of the following probability ratio: 0.5I0.5 – 0.05I0.95/0.95I0.05 – 0.5I0.5 (Fig. 24). 

All three subjects (as mentioned before, one testing object unfortunately died after surgery, 

cf. 3.3.) showed a similar outcome: they were not able to distinguish SN and N, but were ex-

tremely biased to one side (to receive water, they exploited only one water port without 

adapting to the specific reinforcer ratio). One testing object did hardly react at all. Their d’ (see 

2.3.4) dropped to 0.5 (Fig. 24) and the subjects’ criterion setting, optimally being about 0 for 

balanced reinforce ratios, or optimally shifting to the opposite side of the reinforced stimulus 

in asymmetric reinforcer contingencies, was not perfectly shifted in accordance to SDT.  

As expected, the same dose of saline did not change the rats’ behavior: they reacted as usual 

and recognized SN and N with a satisfactory sensitivity (d’~1.6).  

 

 

 

24Muscimol is a GABA-A-receptor agonist that activates the inhibitory brain systems. It blocks the neural activity 
of specific cortical areas.  
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The Wilcoxon-Ranksum-Test for d’ with the following data sets  

x = [1.7199,1.6091,1.3407] 

y = [0.51,1.294,0.29024,-0.0080544,0.21263],  

whereby x stands for the subjects’ performance under saline-control, and y stands for the 

subjects’ performance under muscimol influence. The ranksum [W] was p = 0.0357 meaning 

that the 0-hypothesis could be rejected with α=0.05, which clearly showed that the perfor-

mance under 1ugul-1muscimol was much worse than under saline influence.  

The Wilcoxon-Ranksum-Test for c with the following data  

x= [0.130559324,0.037077556,0.217556278] 

y= [-2.3,-1.139132833,0.253375101,-1.319337021,0.213639764] 

gave W=16 and p = 0.5714 meaning that statistically there was no major difference in the 

vertebrates’ behavior under saline or muscimol.  

 

 

               

 
-Figure 24-  
Bilateral blocking of the mPFC with 1µgµl-1 muscimol. The diagram shows the absolute values of 
d’ and c’ under saline control (sal) or muscimol (musc). Also, the mean values for all subjects to-
gether are marked. Comparing the average d’ under saline-control and muscimol (1µgµl-1), the 
rats’ performance clearly dropped as they lost their ability to distinguish SN and N.  
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4.2.2. Psychophysical decision task with symmetric reinforcement  

In the second week the subjects’ behavior was observed under the influence of 0.25 µgµl-1 

muscimol in a symmetrical reinforcement schedule (0.5I0.5 for either side port). In compari-

son to the same dose of saline, the rats’ sensitivity (d’ (sal) ~ 1.7; d’ (musc) ~ 1.4) and criterion 

setting (Fig. 25) was nearly identical for muscimol and saline injection as the calculations of 

the Wilcoxon-Ranksum-Test confirmed (W[d’]=46, p[d’]=0.310; and W[c]=36, p[c]=0.699) 

showing that the sensitivity as well as the criterion setting under saline and muscimol did 

hardly differ.  

Noticeably, this outcome contradicts with what Lagler et al. describe in their recent paper 

(Divisions of Identified Parvalbumin-Expressing Basket Cells during Working Memory-Guided 

Decision Making, (Lagler et al., 2016) concerning muscimol injections. Although they bilater-

ally injected just 0.125 µgµl-1 muscimol into the rats’ cortex they reported, “prelimbic cortex 

reversibly impaired task performance” (Lagler et al., 2016). Also, Stoilova et al. found incon-

sistent doses concerning the blocking of the mPFC (Stoilova et al., 2019). Possible individual 

influences of muscimol amounts or other reasons of the described inconsistent reactions to 

muscimol doses will be discussed later.  
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Lastly, a bilateral amount of 0.5µgµl-1 muscimol was injected for the last symmetrical rein-

forcer schedule (0.5I0.5 for either side). Interestingly, all three rats showed different behav-

iors. One rat performed similar to the saline application (Fig.26, AD1), one behaved slightly 

worse than under saline application (Fig.26, AD3), the third rat could not distinguish the two 

alternative stimuli at all (Fig.26, AD4). The Wilcoxon-Ranksum-Test, however, demonstrated 

that the average sensitivity and criterion setting of all vertebrates was similar under saline or 

muscimol influence (W[d’]=17, p[d’]=0.393; W[c]=23 p[c]=0.556).  

Adding up all of the rats’ sessions, a tendency of performance and bias is still recognizable: 

under the influence of saline the rats performed with an average d’ of 1.6; the application of 

muscimol lowered the great-point average of d’ to 0.9. Additionally, muscimol biased the rats 

more to the left side compared to saline injection (c(musc) ~ -0.6,   c(sal) ~ 0.2; Fig. 26).  

               

 

-Figure 25-  
Bilateral blocking of the mPFC with 0,25 µgµl-1 muscimol (cf. Fig. 24 for the description of the dia-
gram). Obviously the dosage of 0.25 µgµl-1 muscimol caused no major effect on the subjects’ sen-
sitivity as well as criterion setting compared with saline injection (d’ (sal) ~ 1.7; d’ (musc) ~ 1.4).  
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Finally, choice behavior was studied under unilateral injection of 0.5µgµl-1 in a symmetrical 

reinforcer schedule (0.5I0.5 for either side). Unilateral injection either on the right or left pre-

frontal cortex lead to a similar reaction under saline or muscimol infusion. In both cases, they 

showed a satisfactory outcome of d’ ~1.4 and they were hardly biased to either side (W[d’ 

right]=15 p[d’ right]=1; W[c right]=23 and p[c right]= 0.556). A similar outcome was seen when 

only the left mPFC was blocked: W[d’ left]=39 p[d’ left]=1; and W[c left]=38 p[c left]=0.937.  

         

 
 
-Figure 26-  
Bilateral blocking of the mPFC with 0.5 µgµl-1 muscimol (cf. Fig. 24 for the description of the dia-
gram). Remarkably, the dose of 0.5µgµl-1 muscimol seemed to block neural mechanisms of the 
mPFC with an intensity between the higher (1µgµl-1) and the lower (0.25µgµl-1) dosage. The me-
dium d’ dropped down from 1.6 under saline infusion to a great-point average of 0.9 under mus-
cimol application. Additionally, muscimol caused a stronger bias than under saline-control ((musc) 
~ 0.6, c(sal) ~0.2). As mentioned above, all tree vertebrates showed a different behavior to the 
same amount of muscimol.  
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A) Unilateral blocking right 

 

          

B) Unilateral blocking left 

 

-Figure 27-  
Unilateral blocking of the mPFC with 0.5 µgµl-1 muscimol (cf. Fig. 24 for the description of the dia-
gram). Overall, unilateral blocking seemed to have no major effect on sensitivity (d’) and criterion 
setting: performance under saline control and muscimol barely differed. 
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Referring back to the main questions of this work, the outcome of the behavioral experiments 

produces more evidence that non-human animals are very well capable to almost optimally 

react to changing reward conditions and, in the long term, adapt their behavior in order to 

gain the greatest amount of reinforcement. Additionally, the blocking procedures of the mPFC 

provide further indications about its major role for the integration of sensory evidence as well 

as adaptive behavior during stimulus reward contingencies. The following section will there-

fore discuss the current findings about non-human detectability in terms of SDT and the TT.  
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5. DISCUSSION       

 

The present research project underlay the goal to find out more about adaptive behavior un-

der changing reinforcer contingencies. In practice, rats functioned as experimental subjects to 

get a better idea how human and non-human animals generally adapt their behavior to 

changes in their environment in order to optimize everyday life necessities as foraging or mat-

ing to preserve homeostasis; cf. (Stüttgen et al., 2011b, Keramati and Gutkin, 2014). In 1980 

Graham H. Pyke, amongst other scientists, showed through his detailed observations in bum-

blebees that animals adapted their behavior for optimal foraging (Pyke, 1980), while M. 

Keramati and B. Gutkin stressed that for these homeostatic conditions “two brain circuits”, 

“the hypothalamic homeostatic regulation system” and “the cortico-basal ganglia reinforce-

ment learning mechanism”, must work in concert (Keramati and Gutkin, 2014), cf. (Mowrer, 

1960, Yeo and Heisler, 2012). One of the most plausible theories describing adaptive behavior 

is SDT, which was therefore examined in depths by this paper. Just lately, Bohil et al. clarified 

its meaning up until today: “The techniques provided by SDT have found wide application, 

including domains such as radiology, assessment of memory in clinical populations, and many 

kinds of monitoring tasks. In general, any categorical decision or diagnostic task can be evalu-

ated using SDT…” (Bohil et al., 2015).  

Although, the main purpose of this paper was not to get a deeper insight into the human 

behavioral mechanisms, throughout its completion it was still striking to understand the sim-

ilarity of adaptation processes in humans and vertebrates (Alsop, 1998): in both situations the 

subjects managed a two alternative forced choice task with auditory stimuli. So the initial sit-

uation and the task of distinguishing two different alternatives were comparable. Ultimately, 

also the fundamental question was the same for both, human and non-human animals, when 

talking about signal detection: how did subjects accomplish to solve decision problems, and 

which theory would explain it best. Primarily for practical reasons and a broad agreement 

about the similarity of vertebral and human sensory systems the use of non-human animals 

were generally favored (cf. (Alsop, 1998).  

For that, the subjects’ task performance was observed under changing reinforcer contingen-

cies in order to derive a model that described best whether and how experimental objects 

adapted their behavior due to changing reward conditions (Sutton and Barto, 1998). The Lit-

erary debate served to introduce possible theories to explain human and non-human animals’ 



71  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

behavior in adaptive choice tasks. This chapter will therefore serve to examine which of these 

theories best described the outcome of the experimental results with a primary focus on SDT 

as key model for optimization and a detailed comparison to the competing TT. 

 

Considering optimization – discussion about continuous and discrete theoretical models to 

best describe adaptive behavior in vertebrates 

In the first place, the main question was whether optimization could be considered at all. A 

quite simple way to get an initial assessment was to graphically compare the current outcome 

with those given by scientists favoring SDT. The beginning chapters thoroughly explained how 

performance could be measured in terms of signal detectability. A good way to do so was the 

ROC that graphically reflected the subject`s performance depending on correct responses 

(hits) and false responses (false alarms) (s. Fig. 8 of chapter 2.3.5. The ROC comprised the 

effect of an individual’s performance through d’ and the shifting of criterion as reaction to 

changing reinforcement (s. 2.3.3., 2.3.4.). Practically, the better the performance, the higher 

was d’, the steeper was the ROC, and the better was the subject’s distinguishability of two 

different signals. Whilst differences in performance levels created two separate ROC-curves 

(Fig. 8), equal performance levels but changes in criterion setting (Fig.8 yellow cross “S” for a 

strict criterion and blue cross “L” for a lax criterion) resulted in the same ROC. Hence, the 

individual performance level as well as a changing environment was depicted by the ROC with 

its curvilinear shape as John T. Wixted shortly summed up in his paper comparing SDT with a 

dual-process detection model (Wixted, 2007), oppositely to a linear curve favoring principles 

of the TT (Wixted, 2007). Henceforth, Wixted highlighted the differences to the classical 

threshold model with a discrete and fixed line that neither varied from trial to trial nor did it 

incorporate environmental changes during the testing session. In the 1960s when SDT was 

heavily debated amongst scientists in the field of neuropsychological processes, in his paper 

“Is there a Sensory Threshold” John A. Swets pointed out “…that sensory excitation varies 

continuously and that an apparent threshold cut in the continuum results simply from restrict-

ing the observer to two categories of response” (Swets, 1961), see subchapter 2.2. In the same 

paper he introduced the classical TT and further advancements as the HTT, the LTT, and the 

Two-Threshold Theory (subchapter 2.2.). The quintessence of his complex projects were his 

comments concerning rating experiments that consisted of a yes-no procedure while the ob-

server additionally had to specify how likely the stimulus was, given a six category likelihood 
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scale (Swets, 1961)). Interesting was that the human subject was at least capable of distin-

guishing six different categories of sensory excitation (Birdsall, 1955) contradictory to any lim-

itary threshold model of less than at least six categories. On top of that, there was enough 

evidence that not even a limit of six categories correctly reflected the human capacity of dis-

tinguishability, hence favoring a continuous sensory theory like SDT. In the same paper Swets 

further examined Green’s idea of a Two-Threshold Theory with three categories (see subchap-

ter 2.2.). Swets agreed that three categories better fitted to the observer’s outcome than the 

classical threshold line. Nonetheless, even back then he was quite sure that “…a three-cate-

gory theory…is inconsistent with the six categories of sensory excitation indicated by the rat-

ing data” (Swets, 1961).  

 

SDT vs. TT - the given results support SDT as best fitting theory for adaptive behavior in verte-

brates 

In the current study, all of the four subjects’ session points formed slightly different ROCs (two 

of the four ROCs are shown in Fig.28). Of course, it was quite expectable beforehand that each 

individual would show a different performance level, since they all differed in performance 

level and individual adaptability. However, with only a few exceptions, all four test objects 

showed nearly perfect behavior as their outcomes resulted in steeply rising curvilinear ROCs 

depicting what Wixted’s described as a graded, instead of discrete, sensory ability. In detail, 

Figure 28 shows the data of rat AD2 and AD4 (each orange dot stands for the result of one 

experimental session) demonstrating their decent performance, whereby rat AD4 performed 

even better than rat AD2, resulting in a steeper rising ROC. The dashed black curve showed a 

curvilinear ROC by principles of the SDT, whereas for comparable purposes, the red line stands 

for a typical threshold line and the green curve depicts only a non-mathematical approxima-

tion of a discrete Two-Threshold assumption. At least the graphical comparison of Figure 28 

between a signal detection and threshold models clearly favored SDT as best fitting approach 

of adaptive decision making. Only a quick glance on the different ROCs therefore gave a first 

hint to further follow the optimization track as possible theory behind adaptive behavior.  
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Experiment 1: subject AD 2 

 

                    

Experiment 1: subject AD 4 

- Figure 28-  
Outcome of experimental sessions under CRR for subject AD2 (panel at the top) and AD4 (panel 
at the bottom). Each orange dot stands for the outcome of one session. In both graphs, false 
alarms are plotted on the abscissa and the hits are plotted on the ordinate. The orange dots 
stand for the results of each conducted session. The dashed black curve shows the ROC under 
SDT, whereas the red line depicts a classical threshold (=linear regression of x/y values) to the 
conducted experiment and the green linear line shows a theoretical approximation of a Two-
Threshold Theory (c.f. “Is there a Sensory Threshold”, Swets, 1961, Fig. 6). Even the graphical 
comparison shows quite impressively that the ROC under SDT gives a very good approach to the 
single results of each session, while both other theories less fit the rat’s individual data.  
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Now, coming to the behavioral experiments in detail, it was to analyze both behavioral exper-

iments individually to check the rats’ adaptability through changing reinforcer contingencies 

and deduct the most fitting theory to the outcomes of all conducted experiments. In fact, 

besides two different behavioral set-ups, changing reinforcer schedules (cf. chapter 3.2.) were 

used to explicitly study the association of given stimuli, varying payoff matrices, and the final 

given choice; cf. (Feng et al., 2009).  

Besides the ROC, the main question was whether human and non-human sensory distinguish-

ability was generally rather graded or discrete. Whilst proponents of the TT favored a discrete 

model for sensory detection, supporters of SDT were convinced that sensory perception could 

be best portrayed as continuous Gaussian distribution function, whereas stimuli detection de-

pended not only on signal strength but on internal and external influences, theoretically rep-

resented by a varying c (see 2.3.3) as contrasting tool to the threshold line of TT. In the first 

experiment, the subjects followed a CRR (see 3.2.1.) with asymmetric reinforcement (ratio of 

S1 and S2: 0.25I0.75 and 0.75I.0.25). Figure 17 impressively showed that the rat favored the 

side port of higher reward probability in all four blocks of ratio changes. The latter observation 

could be supported by Feng’s experiments with monkeys that obviously avoided the side with 

increased punishments (Feng et al., 2009). As mentioned before, not even the variable ratio 

schedule influenced the observer to give up perfect side movement in asymmetric reinforce-

ment, although the variable ratio schedule implied that the subject was only rewarded every 

second correct answer or even just after every sixth correctly given choice (see 3.2.1. and 

4.1.1. VR 2 and VR6). To strengthen the first assumption of optimal adaption ability in verte-

brates, in the same chapter the One-sample-t-Test was used to compare the rats’ outcome of 

c and p[choose S2] with an ideal observer. The results presented in Figure 18 could clearly 

underline that the subjects’ performances did not significantly differ to that of an ideal ob-

server. The minimal deviations to optimal behavior therefore allowed to further pursue the 

theory of optimal adaptive behavior to asymmetric response tasks in vertebrates and to sup-

port the low evidence base on asymmetric response studies Stüttgen mentioned in 2011; 

“While most research employing SDT employs balanced payoff matrices, equal reinforce-

ment…for correct answers is the exception rather than the rule in natural environments…” 

(Stüttgen et al., 2011b); cf. (Feng et al., 2009). Giving credit to Stüttgen’s research activities 

concerning adaption processes under asymmetric reinforcement, the outcomes of his pigeon 
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studies very much reflected the results of the experiments of this study. Whilst Stüttgen’s 

experiments of 2013 rather suggested non-optimizing theories (see subchapter 2.4.) the ma-

jority of his studies clearly supported optimal behavior in terms of SDT, which will soon be 

discussed.  

Before that, the second URR experiment served to further check whether SDT also held truth 

for a second and different decision task. While in the first “controlled” experiment the reward 

was always assigned to one port making it easier to follow the programmed task; in the second 

uncontrolled procedure after each trial the reward was newly allocated and the subject was 

therefore not forced to the programmed side port (see 3.2.2.). Nonetheless, also in the second 

behavioral experiment the subjects adjusted their side movements according to the probabil-

ity ratio: when the reinforcer rate was higher for the left port, the object moved more often 

to the corresponding side and vice versa (Fig. 19, Fig. 23). Even more remarkable was their 

nearly optimal criterion setting, even in trials when unbiased criterion shifting lead to slightly 

more payoffs, which further suggests the principles of SDT. Namely, not only the graphical 

data confirmed ideas of SDT (Fig.19, 20), also for the second uncontrolled task the One-sam-

ple-t-Test was conducted to statistically check whether non-human subjects tended towards 

perfect behavior. Indeed, the comparison for criterion shifting and correct side movement 

with dependence on asymmetric probability changes supported the first experiment’s out-

come of perfect signal detection.  

A central parameter of this paper and difference of the two competing theoretical models was 

the static criterion as for the TT and a continuous criterion shifting for SDT. Henceforth, it was 

interesting to have a closer look on criterion movement in order to give further proof to one 

or the other model. So the experiments served to evaluate what Stüttgen et al. saw in their 

pigeon studies and strengthen the theory about a continuously shifting criterion as to optimize 

rewarding during asymmetric reinforcement; cf. “Shifting the decision criterion in a signal de-

tection or discrimination task from a neutral location can be beneficial when the payoff matrix 

is asymmetrical [see introduction]. Exact placement of the optimal decision criterion depends 

on the ratio of reinforcement for the two alternatives and can be derived from a SDT-based 

model fitted to individual birds’ data.”(Stüttgen et al., 2011b). Stoilova et al. could also show 

in their latest study that criterion setting depending on the asymmetric reinforcer schedule 
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helped the vertebrates gaining >97% rewards. Additionally, they gave more evidence that cri-

terion updating was rather influenced by reinforcement than negative feedback in error trials 

(Stoilova et al., 2019, submitted).  

Despite critics like Killeen et al. that questioned whether criterion setting due to asymmetric 

reinforcement could be seen as optimal, (They rather suggested “this deviation is explained in 

terms of a simplistic error-correction (EC) heuristic by subjects. The payoff matrix is adjusted 

to permit EC as a sensible…tactic. A closed form approximation of the equilibrium location of 

the criterion is shown to predict the systematic deviations (conservative adjustment of bias) 

found in the data, based solely on the detectability index, d’” (Killeen et al., 2018)), having a 

closer look at Stüttgen’s and this study’s outcome leading to an even stronger support for the 

theory of nearly-optimality in non-human animals.  

 

Talking about the results demonstrated in chapter 4, the example of AD4 stood for nearly 

perfect reactions of all four animals. Rat AD4’s performance showed how optimally the rat 

altered its criterion in order to gain the maximum rewards. The ORF (Fig. 23, Fig.29A blue bold 

line) graphically represented optimal shifting of criterion, as its peak meant the optimal crite-

rion set point to receive the most rewards for a certain reinforcer contingency. So the closer 

the blue circle (standing for the rat’s individual criterion shift) matched the ORF’s peak, the 

better was the subject’s performance. It was especially remarkable that all four testing objects 

adapted their behavior nearly optimally, even at shallow parts of the ORF when criterion set-

ting to extremer values would hardly cause missing rewards (Fig. 23); cf. “the pigeons, after a 

period of adjustment, distributed their choices quasi-optimally even though this brought 

about only a small number of additional reinforcers” (Stüttgen et al., 2011b). Likewise with 

Stüttgen’s outcomes of 2011 similar conclusions could be drawn: first, the pigeons in his ex-

periment also shifted c (Fig. 10, Fig. 29C, bold black line) nearly optimally relating to the ORF 

(thin black line); second, as mentioned before, the overshooting behavior was larger for ex-

tremer reinforcer ratios (see paragraph below). Furthermore, Stoilova el al. could show that 

the testing subjects were capable of successfully reacting to high frequency of changing rein-

forcer contingencies as their performance did not significantly differ when reinforcer changes 

occurred after 20 or 180 min (Stoilova et al., 2019). 
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Possible limitations of SDT  

Killeen, Taylor, and Trevino however criticized that in some of the typical signal detection tasks 

“punishment for an incorrect response [was] simply omitted reinforcement or a brief time-

out. For some animals this [was] negligible, leading…to superstitious responding and persis-

tent unnecessary…responding” (Killeen et al., 2018). Moreover, Stahlman and Blaisdell found 

that a higher reward magnitude, reward probability, or reward quality resulted in a reduced 

spatiotemporal behavior25 (Stahlman and Blaisdell, 2011, Stahlman et al., 2010). Zentall there-

fore concluded that non-human animals seem to adjust their behavior rather along with suc-

cesses than with errors (Zentall, 2016), which goes hand in hand with the main statement of 

the income based model (cf. 2.4.). Indeed, Gigerenzer et al. argued that these observations 

might generally question a complex explanation for signal detection, but instead considered 

a trial-and-error model for non-human animals; “Decision making under uncertainty may be 

more parsimoniously, accurately, and informatively predicted by simple processes—heuristics 

such as “titrate against errors”—than by global optimization models” (Killeen et al., 2018); cf. 

(Gigerenzer and Brighton, 2009), (Gigerenzer and Selten, 2001).  

Contrarily with their postulations were the presented results of this study as the subjects 

quickly adjusted to the changing reinforcer ratios during the whole session (cf. (Treisman and 

Williams, 1984). Unlike a simple trial-and-error reaction, the current results clearly demon-

strated that the effect of side movement seemed to be dependent on the absolute reinforcer 

ratio as the bias to one side increased when the ratio was 0.1I0.5 compared with 0.5I0.9 (see 

chapter 4.1.2.).  

Contradictory to the current outcomes, amongst others, Jäkel and Wichmann, could show that 

the applicability of principles stated by SDT highly depended on the overall scientific question 

as well as situational circumstances. In laboratory settings and the possibility to work with 

highly trained non-human animals, the original idea, restated by Blackwell (Blackwell, 1952), 

to most efficiently and adequately compare the subjects outcomes with the ideal observer in 

two-interval-forced-choice26(2IFC) tasks should be re-questioned for rather untrained task 

subjects. Particularly, Jäkel and Wichman could show that naïve objects had the lowest thresh-

 

25 Observed behavior relating to both, space and time: The experimental subjects’ shown behavior within their 
training surroundings in a given time period.  
26 Two-interval-forced-choice task: task procedure of two intervals, whereby the subject has to decide whether 
the signal was presented in the first or second interval  
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old for four-alternative-forced-choice (4AFC) tasks; “Naive observers…performed worst dur-

ing 2-IFC, in terms of both reliability and sensory determinacy, and they performed best for 

spatial 4-AFC” (Jakel and Wichmann, 2006). In general, Yeshurun et al. collected published 

data about the IFC tasks and could show that some of the early stated principles of SDT about 

forced choice tasks, i.e. ruling out bias for interval-forced-choice jprocedures in order to elim-

inate the role of the individual decision criterion (Green and Swets, 1966), did not account for 

many of the re-analyzed studies as well as their own conducted experiment; “In conclusion, 

we [found] large interval biases in all of these studies. Across studies we found biases that 

favored either the first or the second interval” (Yeshurun et al., 2008), cf. (Frund et al., 2011). 

Although, many scientists based their research on the original ideas of SDT Jäkel’s, Wich-

mann’s, and Yeshurun’s findings showed that it is justifiable to re-question some of the origi-

nally stated factors. Stüttgen briefly summarized their detailed analysis: “…their data [did] not 

allow a clear interpretation of how the psychometric functions from the different tasks relate 

to each other, the authors speculate that extra-sensory factors, like sensory memory and spa-

tial attention,[had] different effects in different tasks. It is noteworthy that these extra-sen-

sory effects[were] ignored in SDT” (Stüttgen et al., 2011a). In fact, more recent studies of 

Frund et al., M. Lages, M. Treisman, and T.C. Williams focused on these extra-sensory factors 

concerning the influence of behavioral improvement through learning and the influence of 

motivation and attention throughout a task session (cf. (Frund et al., 2011);(Lages and 

Treisman, 1998); (Treisman and Williams, 1984)) as well as reward expectations highlighted 

by Stoilova et al. (Stoilova et al., 2019, submitted).  

Frund and his colleagues found out that for drawing correct psychometric functions in SDT 

extra-sensory factors happing throughout each trial and session need to be considered, “we 

performed a large number of simulations to investigate the effects of non-stationary behavior 

on estimation of psychometric functions. The effects of non-stationarity on the estimated 

credible intervals could not be neglected” (Frund et al., 2011). On the whole, they criticized 

that too often, both, in single-interval tasks and also in forced-choice tasks, stationary cogni-

tive performance was assumed and used for the fitting of psychometric functions, although 

their own complex studies showed non-stationary cognitive conditions in experimental sub-

jects and therefore an underestimation of psychometric data sets. In fact, they presented ev-

idence that a large amount of trials could not correct that bias; “we performed a large number 
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of simulations to investigate the effects of non-stationary behavior on estimation of psycho-

metric functions. The effects of non-stationarity on the estimated credible intervals could not 

be neglected. When psychometric functions were estimated from non-stationary data, the 

credible intervals for threshold as well as width were much too small. Even worse, the typical 

strategy that is used to deal with corrupted data is to simply collect more data. This strategy 

does not work here: More bad data will not lead to good inference.(Frund et al., 2011). Also 

Bohil et al. criticized that “even stimuli known to vary along multiple dimensions are fre-

quently collapsed onto a single evidence axis” (Bohil et al., 2015, Swets, 1995) suggesting to 

extend the classical signal detection model to a multidimensional model that allowed to 

choose from stimulus dimensions instead of particular signals (cf. “general recognition theory” 

(Ashby and Townsend, 1986). Similarly, Parasuraman, Masalonis, and Hancock developed a 

model that allowed one event to be represented in both categories, even though to different 

degrees (cf. “fuzzy signal detection theory” (Parasuraman et al., 2000). For the sake of com-

pleteness, it must be said that despite these extensions to the classical SDT, the outcomes of 

all these experiments showed similar results concerning the key factors of d’ and c (Stafford 

et al., 2003). 

Nonetheless, recent studies of Harris et al. further limited some of the principles of SDT as 

they showed the significance for decision making of inter-stimulus-intervals in forced-choice 

tasks. The longer the interval between two stimuli the more decrease in performance could 

be observed; “One stimulus can be accurately compared with the memory of a previous stim-

ulus if they engage overlapping representations, but activation of the common cortical terri-

tory by an interpolated stimulus can disrupt the memory trace” (Harris et al., 2001). While 

most authors admit that extra-sensory effects play a role in signal detection, some, as earlier 

mentioned, demonstrated that long-term experiences influenced the subject’s behavior, oth-

ers, like Stewart et al. obtained evidence for a direct impact of previous stimuli in decision 

making; cf. (Stewart et al., 2005). Generally, Wolfe et al. gave evidence that many detection 

theories reached limits for rarely presented stimuli, “Heuristics that produce acceptable per-

formance over a wide range of target prevalence may betray us at low prevalence” (Wolfe et 

al., 2005).  

Overall, amongst many others, Frund et al. Treue and Martinez (cf. (Treue and Martinez 

Trujillo, 1999)), as well as Stüttgen et al. admitted that extra-sensory factors as motivation and 
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attention manipulated data in terms of SDT, therefore suggesting to control these fluctuations 

by establishing correction factors.  

 

Further observed fine behavioral patterns whilst testing for optimization 

Similar to the overshooting behavior, more current scientists started out to address fine be-

havioral patterns. Amongst them were Teichert and Ferrera who tested for optimal criterion 

shift for asymmetric reward likelihoods instead of reward magnitude. Firstly, they found that 

for the latter condition criterion shifting was not optimal in terms of SDT; secondly, instead of 

over-adjustment the subjects showed under-compensation in asymmetric reward likelihoods, 

„In the magnitude bias condition subjects shift their decision criterion too far, i.e., they over-

compensate. In contrast, they do not shift their decision criterion far enough in the likelihood 

bias condition, i.e., they under-compensate.“ (Teichert and Ferrera, 2010). Remarkably, these 

observations contradicted what was seen in human beings before. For non-human objects 

they therefore postulated „that differences in reward magnitude [were] more salient than 

differences in reward likelihood: reward size is experienced immediately while reward proba-

bility emerges over multiple trials” (Teichert and Ferrera, 2010). In contrast to SDT, Bohil et al. 

postulated that vertebrates might be able to “learn within one trial”, since they over-esti-

mated one category at the beginning of reinforcer ratio changes and later narrowing down to 

neutral responding (Bohil et al., 2015, Hoffman and Fiore, 2007). Other observations were 

made by Stoilova et al. that response bias was less extreme than required for optimal perfor-

mance (Stoilova et al., 2019, submitted).  

Having mentioned them before, Killeen, Taylor, and Trevino (Killeen et al., 2018) conducted 

experiments to find out more about fine behavioral patterns during signal detection tasks. 

Amongst other detailed behavioral patterns, they could show that behavioral variability and 

also response errors increased as the reward probabilities or magnitude decreased (cf. 

(Capaldi et al., 1997, Rose et al., 2009). 

 

Overshooting behavior – a newly found phenomenon 

Remarkably, the described observations went hand in hand with what Stüttgen et al. saw in 

their 2011 conducted pigeon studies (Stüttgen et al., 2011b). Even the mentioned stronger 

overshooting effect for extreme probability ratios as well as the return to shallow parts were 
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comparable; „changes in choice allocation [were] more pronounced for the more extreme re-

inforcement contingencies” (Stüttgen et al., 2011b). In fact, why the subjects showed this 

overshooting reaction has not been understood so far and needs more investigation. Gener-

ally, the phenomenon of overshooting reactions in vertebrates was a new observation of 

Stüttgen and a few more scientists in the field of adaptive behavior. Presumably, earlier re-

search rather focused on steady-state behavior or just shorter task periods missing out the 

over-adaption; cf. (Stüttgen et al., 2011b). For example, Corrado et al. set up relative reward-

baiting probabilities with only a constant length of 50 to 300 trials reporting about a “…[quick 

adaption] to changes in the environment at block boundaries.”(Corrado et al., 2005), not men-

tioning a strong over-reaction as currently seen, similarly to further experimental set ups with 

a shorter block period of constant probability ratios; cf. 50 trials per condition in (Davison and 

Baum, 2000), 121/125 trials per block in (Lau and Glimcher, 2005).  

Nonetheless, the reason for an overshooting behavior seen in the current study as well as 

Stüttgen’s and a few other studies (Feng et al., 2009, Killeen et al., 2018)) need to be further 

examined (cf. (Teichert and Ferrera, 2010) “In the asymmetric reward magnitude condition, 

monkeys over-adjusted their decision criterion such that they chose the highly rewarded al-

ternative far more often than was optimal”)). One possible explanation could be that as soon 

as the probability ratio changed to either side, the vertebrates tried to gain as many rewards 

as possible in a short time period, however, as the session block continued they realized that 

although rewards were mainly allocated to one side, they would lose rewards by completely 

missing out the contrary port. Stüttgen himself suggested “[a] potential reason for this over-

shoot may be that the differential choice allocation to options differing in reinforcement den-

sity is dependent on the discriminability of these reinforcement densities—in effect, a psycho-

physical problem: the discrimination of marginally different reinforcement frequencies for the 

two options.” (Stüttgen et al., 2011b). Teichert and Ferrera could show that the over-adjust-

ment was not due to a lower discriminability for biased conditions as similar effects were also 

shown for neutral reward ratios, “… the observed overcompensation cannot be attributed to 

reduced stimulus discriminability in the biased condition.” (Teichert and Ferrera, 2010). How-

ever, in their experiments the subjects lost more rewards due to the over-shooting behavior 

(on average 6%) than reported in earlier studies (1-2%, cf. (Feng et al., 2009)) (Teichert and 

Ferrera, 2010). Additionally, they found out that human and non-human animals seem to re-

act differently when maximizing pay-off. Their experimental outcome justified the question 
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whether different utility functions27 led to different behavioral patterns. Like Kahneman and 

Tversky (Kahneman and Tversky, 1979) as well as McCoy and Platt (McCoy and Platt, 2005) 

they had evidence that “…humans rather tended to concave and non-human animals to con-

vex utility functions…” value[ing] big rewards relatively less, and the shift which optimizes ex-

pected utility [being] smaller than the one that optimizes expected reward” (Teichert and 

Ferrera, 2010). Nonetheless, so far the overshooting behavior cannot be explained through 

SDT or any optimization theory and needs more investigation.  

 

Summarizing assessment and further ideas 

Having contrasted two major theories in the context of adaptive behavior, SDT and the TT, 

recent scientists, amongst them was David Kellen, looked again closer at former variations to 

the classical threshold models focusing on Luce’s in 1963 postulated one-category LTM (cf. 

2.2.). Kellen and similar minded scientists did not only question a truly continuous model as 

SDT for the subjective representation of stimuli, they were eager to incorporate non-sensory 

states to their examinations; “…even though the model [LTM] only assumes two sensory 

states, other non-sensory states affect their disposition toward each of the available response 

options, enabling their occurrence with some probability. Presumably the non-sensory states 

are independent of whatever states are relevant for the decision to be made, and therefore 

influence the performance in recognition memory tasks in the same manner as in sensory 

tasks.” (David Kellen, 2016). Since Luce believed in non-sensory influences, i.e. motivation and 

experience, that lead to decision making, the model allowed the subject to decide for “yes”, 

stimuli present, when the signal was not detected. However, as mentioned in the beginning, 

even Luce admitted that “the most obvious misfit of the LTM to the data comes from the 

predicted ‘corner’…of the two ROC segments” (David Kellen, 2016). Figure 28 demonstrated 

that one-category threshold models as well as multiple-category threshold models at least did 

not fit to the collected data of the present study. For the sake of completeness, the same 

would account for high threshold models belonging to two-category models demonstrated in 

chapter 2.2. (cf. (Nachmias, 1981, Laming, 2013)).  

Although most scientists in the field of signal detection showed in their conducted experi-

ments that SDT gave the most fitting explanations for their data, followers of the multiple 

 

27 Utility functions help to determine preferences according to a set of different alternatives  
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threshold models still argued that in many studies threshold models equally fitted to the same 

scientific results (Dube et al., 2012). Even scientists favoring optimization had to admit that 

certain threshold models they used for comparison reflected their data almost as well, “Con-

sistent with this assumption, the fit results showed that both models fit the group data closely, 

with a slight edge for the SDT model” and “One interpretation of these results is that both 

models perform adequately”; cf.(Kellen and Klauer, 2014, Broder and Schutz, 2009), (A. 

Chechile, 2013), (Province and Rouder, 2012, David Kellen, 2016). Independent of the present 

study and the outlining of the multiple ideas for the best fitting model to signal detection 

tasks, many scientists agreed that threshold theories encountered their limits in “conditions 

in which performance is virtually perfect” (David Kellen, 2016), already mentioned by D.H. 

Krantz in 1969 as “super-detection state…in which the individual is absolutely certain that the 

item was previously studied” (Krantz, 1969).  

As mentioned at the beginning of this chapter, both behavioral experiments investigated 

whether non-human animals were able to optimally integrate incoming sensory evidence as 

part of stimulus-reward contingencies in their long-term memory.  

Despite the ongoing discussion about the most fitting theoretical model concerning signal de-

tection, SDT describing nearly optimal reactions to changing stimulus-reward contingencies, 

gave a reasonable approach to the outcome of both studies (the current study as well as 

Stüttgen et al’s study in 2011). In fact, both tasks dealt with asymmetric reinforcement; how-

ever, setting up two different task procedures gave an even stronger evidence for one or an-

other theory in adaptive choice behavior. Nonetheless, as thoroughly discussed in section 2.4., 

even Stüttgen and his colleagues later had to admit that other non-optimizing theories, as the 

income based model, better fit to their data as what previously expected by SDT (Stuttgen et 

al., 2013) (cf. 2.4).  

Henceforth, only considering SDT or the TT would not be sufficient enough to explain the 

broad process of decision making and the adaption to changing life events. As discussed ear-

lier, the threshold model reduces decision making to a small possible number of fixed states 

(cf. section 2.2.) that would not wholly represent human and non-human animal’s capacity of 

distinguishing between at least six different categories (cf. see upper paragraph of this sec-

tion). Nonetheless, also SDT theory lacks certain circumstances that would fully describe how 

non-human animals react to changing life events, i.e. non-sensory states; also it cannot be  
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A Uncontrolled reinforcer ratio (URR), p [choose S2] 

 

 

B Uncontrolled reinforcer ratio (URR), p [choose S2] 

         

C Outcome of Stüttgen’s pigeon studies in 2011 (Stüttgen et al., 2011b)  

- Figure 29 –  
Comparison of Stüttgen’s pigeon experiments with outcomes of this study. For panel description 
see sections 3.2.2. (panel A, B) and 2.4. (panel C). Responding behavior of rat AD4 (panel A and B) 
and pigeons 720/920 (C) emphasized the approach of SDT: first, the subjects clearly adapted their 
behavior to changing reinforcer ratios, represented by the shifting of c (panel A: the empirical cri-
terion setting, red circle, matches the peak of the ORF, blue thin line; panel C: criterion setting fol-
lows this of an optimal observer, black thin line). Second, as they reacted to changing reinforcer 
conditions the probability of reward maximization increased (panel B). Additionally, the over-
shooting behavior was evident in both studies.  



85  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

applied to untrained, naïve observers in unknown situations; and many more, (cf. upper par-

agraphs). 

 

The mPFC – as one component for proper decision making in a complex nervous system 

After receiving more information about how non-human animals tackle decision tasks, the  

final challenge was to examine which brain areas mostly organize and control the ability for 

almost perfect decision making. In this study the prefrontal cortex was primarily studied while 

my colleague in a later experimental set-up focused on the auditory system (Stoilova et al. 

2019, submitted). Besides the mPFC the PFC contained the orbitofrontal cortex, the dorsolat-

eral PFC, and the ventrolateral PFC.  

It was well known that the process of decision making in human and non-human animals was 

constructed of a complex network of neural mechanisms; first within the peripheral and cen-

tral nervous system that needed to be perfectly coordinated, second as inter-hemispheric and 

inter-cortical functionality, and third on a single-to-single neural level. Fortunately from the 

beginning on, men have always been interested in the human mind and were therefore eager 

to find out about the cortical functions and their locations. Ultimately, there was sufficient 

evidence that the prefrontal cortex played a remarkable role for a functioning decision pro-

cess; “Notably, the mPFC has emerged as a crucial neural substrate of social cognition and 

behaviors in humans (Ko, 2017, Dolan, 2002, Bicks et al., 2015), as well as cognitive flexibility 

like reversal learning as Stoilova et al. could show in their recent paper (Stoilova et al., 2019). 

Despite this fact, only a few studies examined non-human animals concerning the impact of 

the prefrontal cortex within the complex process of decision making and its direct role in op-

timal signal detection (Ko, 2017, Yizhar et al., 2011, Yizhar, 2012). Additionally, only a few 

research projects really examined the animals’ behavior before and after knocking out exactly 

one cortical region. So the focus of this study was to go down to the neural level by blocking 

the neural function of the prefrontal cortex through the inhibition of its neurons by muscimol 

infusion (Stoilova et al., 2019). Together with the relatively new technique of neurometric re-

cordings (spike trains of single sensory neurons) the goal was to receive a better understand-

ing about the function and neural location of signal detection, “…realiz[ing] Fechner’s dream 

of ‘inner psychophysics’–relating neuro physiological activity to sensation”; cf. (Stüttgen et al., 

2011a, Mountcastle et al., 1990).  
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As mentioned before, in the past many scientists could show that the mPFC played a crucial 

role for decision making (section 2.5.). This study concentrated on a specific field within deci-

sion making, namely the role of the mPFC for the adaption to changing surroundings via vary-

ing reinforcer ratios. For that, unilateral and bilateral blocking of the mPFC was intended to 

give answers to this question. Furthermore, the following outline will show that decision mak-

ing and specifically adaptation cannot be reduced to one single cortex, but a whole sensory 

system. Because of this, the intention was to describe the function of the mPFC as well as its 

broader intercortical role for adaption processes. 

 

Despite the importance of a single neuron’s power that can be analyzed by neurometric re-

cordings, this study mainly examined the role of one complete cortex for signal detectability. 

In the first experiment the prefrontal cortex of both hemispheres was blocked with 1µgµl-1 

and the subject had to follow an asymmetric reinforcer ratio schedule (0.5I0.5 – 

0.05I0.95/0.95I0.05 – 0.5I0.5). As mentioned before, the rats were not able to optimally re-

spond in order to gain most rewards compared with their reaction during saline infusion. More 

important, in the direct comparison to saline infusion, it was obvious that the blockage of the 

prefrontal cortices hindered the subjects from optimally adapting their behavior to changing 

environments. Importantly, not only in experimental procedures with time-out punishments, 

Stoilova et al. could show that punished responses (through foot-shocks as punishing instru-

ment) significantly decreased during saline infusion (Stoilova et al., 2019). Interesting was that 

the dosage of muscimol seemed to have an important impact of how well the objects per-

formed. Bilateral blocking with 1µgµl-1 muscimol wholly prevented any satisfying reaction as 

the vertebrates were strongly biased to one side of the water ports. These results go hand in 

hand with the observations made by Yong Sang Jo and Sheri J.Y. Mizumori in their recently 

published study “Prefrontal Regulation of Neuronal Activity in the Ventral Tegmental Area”, 

(Jo and Mizumori, 2016). Their rats were trained to use either arm of a T-maze set-up. After 

the bilateral injection of 1µgµl-1 muscimol, however, they consistently ran up to only one of 

the arms.  

The second and third experiment gave more evidence for the dosage-dependent behavioral 

performance. The subjects were tested in a symmetric reinforcer ratio schedule (0.5I0.5) for 

both side ports whilst the muscimol dose was firstly reduced to 0.25µgµl-1 and later increased 

to 0.5µgµl-1.  



87  Andrea Christina Dietl 

  Doctoral dissertation 
  11/21/2021 

Whilst the lower dosage of 0.25µgµl-1 muscimol did not have a great effect on the subjects’ 

performances (d’ and c did not significantly differ (see subchapter 4.2 and Fig. 25)), the higher 

muscimol dosage of 0.5µgµl-1 impaired the rats in different ways. Figure 26 demonstrated that 

all three subjects showed different performances under the medial dosage of 0.5µgµl-1 mus-

cimol leaving the question whether the dosage of muscimol was highly individual in the case 

of neural impairment. At least, Lagler and his colleagues used as part of their recent paper 

(“Divisions of Identified Parvalbumin-Expressing Basket Cells during Working Memory-Guided 

Decision Making” (Lagler et al., 2016)) a bilateral amount of 0.125µgµl-1 muscimol and re-

ported that this dosage, oppositely to the current study’s dosage, already hindered the sub-

jects from optimal decision making (Lagler et al., 2016). Lagler’s observation went hand in 

hand with Krupa et al. who reported about a dosage of 0.150µgµl-1 abolishing neural activa-

tion, cf. (Krupa et al., 1999). Nonetheless, more studies under muscimol would be needed to 

find out whether muscimol infusion lead to a rather similar or individual reactions in verte-

brates (Stoilova et al., 2019).  

In the last neural experiment unilateral blocking of one of the two hemispheres did not have 

an effect on the rats’ performances (Fig.27). On the whole, this outcome supported what most 

former studies postulated: optimal behavior was possible with the function of one hemi-

spheric mPFC. Though, due to their analyzation, some scientists speculated that the right and 

left mPFC might be in charge of slightly different behavioral functions(Lee et al., 2016). 

Overall, referring to the introductive goals, the results of this work gave additional evidence 

that the mPFC had a major role in adaptive behavior during stimulus-reward contingencies 

(“…inactivation of medial prefrontal cortex with muscimol strongly affected both discrimina-

tion performance and criterion setting, Stoilova et al., 2019, submitted). So its known function 

of integrating sensory evidence and putting it to long term memory could be supported 

through my pharmaceutical experiments.  

 

Over decades, many scientists understood that the pure focus on one single cortex was not 

sufficient to describe decision making; not even the adaption process was fully represented 

by just one brain cortex. Although, it had so far been difficult to precisely associate certain 

sensory functions with particular brain areas, it could be undoubtedly stated that sensory in-

formation was restored, connected, and encoded within a complex network amongst multiple 
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brain areas; “both the normal encoding of tactile information and the process of injury-de-

pendent plastic reorganization depend on system-wide interactions that involve many brain 

structures and can only be fully reconstructed (or decoded) by examining the simultaneous 

dynamic interactions between populations of cortical and subcortical neurons” (Krupa et al., 

1999). For instance, Krupa et al. studied cortico-thalamic feedback mechanisms to find out 

that an inactivation of the somatosensory cortex lead to an immediate change of the ven-

troposterior medial thalamic neural activation (cf. (Krupa et al., 1999, Kaas et al., 1984, 

Merzenich et al., 1983)) as well as further subcortical levels (cf. (Nicolelis et al., 1993, Faggin 

et al., 1997)). Consequently, the present study’s results of the mPFC having an impact within 

the broad process of sensory integration, analyzation, and encoding can be seen as one fur-

ther element in order to understand the complex sensory network.  

Similar with the present study, Rorie et al. drew their attention to the location of brain areas 

responsible for decision making. Electrophysiology helped them to find out that “single neu-

rons in cortical area of the Lateral Intraparietal Cortex (LIP) [were] known to carry information 

relevant to both sensory and value-based decisions that [were] reported by eye movement“ 

(Rorie et al., 2010), cf. (Roitman and Shadlen, 2002, Huk and Shadlen, 2005). Other scientists 

found out that LIP neurons were further necessary to interconnect between the broad sensory 

network in order to understand stimulus probability or rewarding, cf. (Gold and Shadlen, 2001, 

Gold and Shadlen, 2007) for optimal decision making. A rather new detection within the LIP 

was its most likely neural role as “salience map” ((Rorie et al., 2010, Gottlieb et al., 

2009),(Goldberg et al., 2006, Ipata et al., 2009) for new, unknown, or sudden stimuli.  

However, so far research had mainly shown that the sensory system was a huge system of 

interconnecting pathways, whereby very similar sensory functions seemed to even overlap in 

different brain areas; cf. (Rorie et al., 2010), (Platt and Glimcher, 1999, Lau and Glimcher, 

2005, Kiani and Shadlen, 2009, Klein et al., 2008). The outcome of the present pharmacological 

experiments with muscimol gave strong evidence that also the mPFC played a major role in 

many of the mentioned sensory functions. The results clearly showed that proper decision 

making was not possible while blocking the mPFC of both hemispheres. Consistent with the 

function of the mPFC, also Rorie et al. and .Feng et al. (Feng et al., 2009) demonstrated that 

the LIP was responsible for optimal decision making in terms of SDT during asymmetric reward 

contingencies. Besides these observations, Rorie et al. also reported about changing reactions 

to asymmetric reinforcement as earlier discussed: in their experimental studies, asymmetric 
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reward rates lead to strong bias toward the higher reinforced stimulus while they, consistent 

with the recent outcome of the present study, observed some kind of overshooting behavior 

what they reported as “mechanistic effect of biasing the starting point of the motion integra-

tion process“ and “as the motion epoch developed, however, the representation of both rel-

ative and absolute value faded” (Rorie et al., 2010). In former scientific data, the two-staged 

behavioral reaction for asymmetric reward contingencies, the overshoot at the beginning, and 

the balancing out over time, was described by Dietrich and Busemeyer as “two-stage pro-

cessing hypothesis” (Diederich and Busemeyer, 2006) what they associated with an accumu-

lation of signal input at the beginning of signal presentation and a ceasing of accumulation 

when the accumulator reaches a stationary boundary (Rorie et al., 2010). In general, the later 

noted that studies about behavioral adjustment to asymmetric reward contingencies might 

have a longer history than always believed. Earlier scientific reports dealt with similar prob-

lems, however grouping it to rubrics of attention (Maunsell, 2004). So it would be useful to 

investigate former literature about that topic to gain further evidence of behavioral adjust-

ment and optimization to asymmetric reward tasks. The overshooting aspect was discussed in 

earlier paragraphs of this chapter, and since the reason for this overreaction has not been 

understood so far, its neural cortical representation would be pure speculation. 

 

Besides the LIP, Thomas Z. Luo and John H.R. Maunsell found out that also the Lateral Prefron-

tal Cortex (LPFC) had a major impact for proper signal detection. To get a deeper understand-

ing about the main tools of SDT, they were eager to get a deeper understanding whether the 

LPFC influenced both, sensitivity and criterion setting in signal detection “the distinction be-

tween criterion and sensitivity [was] crucial because [as explained in the beginning parts of 

this work] any improvement in an observer’s hit rate [could] be equivalently brought about by 

a decrease in c or an increase in d’” (Luo and Maunsell, 2018). Luo and Maunsell themselves 

(Luo and Maunsell, 2015) recognized that some cerebral regions might be only engaged with 

sensitivity (i.e. the visual cortical area V4), and others primarily with criterion setting (cf. 

(Sridharan et al., 2017, Cavanaugh and Wurtz, 2004, Zénon and Krauzlis, 2012) like the supe-

rior colliculus. Their most recent paper, however, revealed that the LPFC seemed to have an 

impact for both, sensitivity and criterion setting; “firing rate modulations related to the two 

behavioral changes were highly correlated on a cell-by-cell basis. This finding suggests that ∆c- 

and ∆d’-related modulations arrive in a common signal in LPFC. However, it is also possible 
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that ∆c- and ∆d’-related signals have separate origins, and that a mechanism within LPFC re-

stricts the extent to which individual cells are modulated by either signal. “ (Luo and Maunsell, 

2018). In general, they finally considered whether any of the examined regions were really 

just responsible for one or the other tool of SDT or whether all of these cerebral structures 

had at least a small impact in signal sensitivity and criterion setting, “…it [was) possible that 

that no brain structure [was] entirely associated with only criterion changes” (Luo and 

Maunsell, 2018). Luo and Maunsell summed up that among other engaged cerebral regions, 

i.e. the superior colliculus and thalamus (cf. (Goldberg and Wurtz, 1972, Briggs et al., 2013, 

McAlonan et al., 2008), sensory attention was represented by the visual, parietal, and pre-

frontal cortex (cf. (Luo and Maunsell, 2018, Lynch et al., 1977, Moran and Desimone, 1985). 

 

The outcomes of this paper supported the more recent perceptions that tools of SDT, both c 

and d’, were controlled by neurons of the mPFC (amongst neurons of many other cortical re-

gions). Additionally, just lately Liang and his colleagues discovered “Neuroligin-2 [as] an inhib-

itory synapse-specific cell-adhesion molecule that was recently implicated in synaptic inhibi-

tion in the mPFC… [that was] essential for the long-term maintenance and reconfiguration of 

inhibitory synapses in the mPFC”. The authors hypothesized that the behavioral phenotype 

was produced by dysfunction of a peculiarly plastic subpopulation of inhibitory synapses in 

neuroligin-2-KO mice. These studies illustrate the idea that various synaptic signaling and ad-

hesion pathways operating in the mPFC contribute to the initiation, maintenance, and/or 

modulation of social behaviors (Liang et al., 2015, Ko, 2017). It appeared that the current sci-

entific discussions were just the starting point for a more detailed view on social behavior and 

its cortical representation and origin. The knock-out experiments for this work therefore 

served to approve existing assumptions about the key role of the mPFC within social adapta-

tion in non-human animals.  

 

Limitations of knock-out experiments  

At last, a limiting factor about the knock-out experiments was that the neural function and 

mechanisms could not be observed and measured during activation but that two states of 

consciousness – neural activation and knocking-off – were directly compared, therefore favor-

ing neurometric recordings for direct neural deduction (Parker and Newsome, 1998). Addi-

tionally, the neurometric recordings gave evidence about the great power of single neurons 
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of vertebral sensory systems, and revived older psychophysical threshold theories as the 

Lower Envelope model (LEM) questioning whether stimulus detection was represented by one 

single neuron. “Sensory thresholds are set by the class of sensory unit that has the lowest 

threshold for the particular stimulus used and are little influenced by the presence or absence 

of responses in the enormous number of other neurons that are less sensitive to that stimu-

lus” (Barlow, 1995). Together with the knowledge about SDT, scientists in the field of neuro-

metric psychology believed that one neuron or a small neural unit could stand behind the 

detection of stimuli, depending on further internal and external circumstances the subject was 

exposed to. “They employed signal detection theory to compute the minimal detectable in-

crement in contrast or spatial frequency that could be signaled reliably by V1 neurons across 

a range of base contrasts and spatial frequencies. These increment thresholds were then com-

pared to the increment thresholds of human and monkey observers measured psychophysi-

cally across the same ranges of contrasts and spatial frequencies. Their plots showed that the 

best V1 neurons matched psychophysical performance closely, consistent with the lower en-

velope principle for relating neural activity to behavior” (Parker and Newsome, 1998), cf. 

(Geisler and Albrecht, 1997). 

Furthermore, it needs to be noticed that the responsible laboratory technician falsely pre-

pared the vertebrates’ brain slices in order to confirm the correct placement of the brain tubes 

for the knocking-out experiments. However, since the experimental tests and more important, 

the surgical procedures, were conducted in the same laboratory and with equal standards as 

those of Stoilova et al. (Stoilova et al., 2019), correct location of the brain tubes can be as-

sumed.  
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6. CONCLUSION 

 

Firstly, this work’s intention was to find answers about how well non-human animals adapt to  

changing environments by implementing asymmetric reinforcement to adaptive choice tasks, 

and secondly, get answers about which cortical areas are involved in doing so. Until now, many 

scientists used principles of SDT (Signal Detection Theory) or TT (Threshold Theory) to explain 

perceptual decision making. The current intention was to compare both theories and finally 

give a tendency which postulations are more plausible representing the outcome of this work.  

The first question about non-human animals’ performance concerning adaptive behavior 

could be quite easily answered: likewise with former scientists, this work showed that rats 

were well capable of reacting to asymmetric reinforcement, and even more, their perfor-

mance almost matched that of ideal observers. In two experiments featuring different sets of 

reinforcement contingencies, the animals showed nearly optimal behavior, leading over to 

the question what theoretic background could best describe the shown behavior. While the 

literary debate described in detail that SDT stood for a continued shifting of criterion inde-

pendent of a subject’s sensitivity to a signal, the TT was represented by static thresholds lim-

ited by the idea of one or more thresholds as e.g. postulated by LTT (low threshold theories) 

or HTT (high threshold theory). The results of this study showed that the subjects’ continu-

ously shifting of criterion together with their almost perfect sensitivity to the given stimuli 

meant a maximization of rewards going along with what SDT postulated, and disagreeing with 

the idea of a static threshold as favored by TT. Nonetheless, current studies suggest that other 

non-sensory factors have to be further examined to wholly describe adaptive behavior. 

Finally, the pharmacological experiments clearly showed that the mPFC (medial Prefrontal 

Cortex) played a major role in this task, however, there is more and more evidence that corti-

cal areas do not solely represent certain behavioral traits, but that adaptive behavior is the 

outcome of many interconnecting neural systems and cortical regions. Therefore, much effort 

is needed to really get behind the fine neural networks representing the diversity of behavior, 

if yet possible. 
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Zusammenfassung  

 

Diese Dissertationsschrift wurde verfasst, um erstens das Anpassungsverhalten von Ver-

suchstieren bei asymmetrischem Belohnungsverteilung zu untersuchen, und desweiteren In-

formationen über die kortikale Repräsentation dieses adaptiven Verhaltens zu erhalten.  

Im Rahmen der Literaturrecherche zeigte sich, dass bis dato zwei wesentliche Theorien ge-

nutzt wurden, um zielgerichtetes Verhalten in perzeptuellen Entscheidungsaufgaben zu er-

klären: einerseits die Signalentdeckungstheorie und andererseits die Schwellentheorie. Es 

machte also Sinn beide Theorien zu vergleichen und die wesentlichen Unterschiede heraus-

zuarbeiten, um dann anhand der Versuchsergebnisse des im weiteren Sinne „Ja/Nein-Aufga-

bentyps“ eine Tendenz über das theoretische Modell hinter adaptiven Verhaltens aufzuzei-

gen. Diese Versuchsergebnisse bestätigten die in kürzerer Vergangenheit durchgeführten 

Studien mehrerer auf diesem Forschungsgebiet tätigen Wissenschaftler, nämlich das durch-

weg sehr gute Anpassungsverhalten der Versuchstiere auf asymmetrische Belohnungsvertei-

lungen. Schaute man sich die Reaktionen der Tiere genauer an, fiel auf, dass diese im Sinne 

der Signalentdeckungstheorie ihr Entscheidungskriterium je nach Belohnungsverteilung kon-

tinuierlich veränderten, ihr Verhalten also nicht nach Schwellenwerten ausrichteten. Dies 

wiederum führte dann auch zu der in der Signalentdeckungstheorie beschriebenen Beloh-

nungsmaximierung. Auch wenn die Ergebnisauswertung dieser Dissertation zur Signalentde-

ckungstheorie tendiert, konnte diese nicht alle beobachteten Verhaltensweisen der Ver-

suchstiere erklären (z.B. das „Overshooting“ Verhalten, s. Text). Es ist also davon auszuge-

hen, dass weitere, nicht-sensorische Faktoren, wie z.B. Motivation, für adaptives Verhalten 

mit verantwortlich sind.  

Die zweite Fragestellung beschäftigte sich mit der kortikalen Repräsentanz adaptiven Verhal-

tens. Mithilfe von Muscimol, einem GABA-A-Rezeptor Agonist, konnte die Funktion des me-

dialen präfrontalen Kortex selektiv geblockt und so dessen Rolle im Hinblick auf adaptives 

Verhalten näher beleuchtet werden. Hierbei zeigte sich, dass der mediale präfrontale Kortex 

das Anpassungsverhalten der Versuchstiere durchaus beeinflusst. Aktuelle Studien machen 

allerdings deutlich, dass Verhaltenseigenschaften immer durch mehrere Kortizes – nicht nur 

durch einen einzigen - abgebildet werden. Es bedarf also eingehender Forschungen, um die 

komplexen Zusammenhänge tierischen Anpassungsverhaltens grundsätzlich zu verstehen.  
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