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Abstract

When binary mixtures (4B) are quenched from the one-phase region into tl?e ungtable
part of their miscibility gap, phase separation starts by spontaneous amphﬁcgtlon of
concentration fluctuations (“spinodal decomposition”). This growth of A—rlch.and
B-rich domains and their morphology is distinctly modified when one consxdelrs
mixtures confined in thin film geometry between planar parallellwalls, or confined in
cylindrical geometry in pores. The boundary effects created by this conﬁnemert‘t on the
mixture can imply formation of a layered structure parallel_ to'the Walls ( surfgce
directed spinodal decomposition”) and can also involve an intricate interplay with
wetting phenomena. In porous media the randomness of the pore structure presents an
additional complication.

This review presents a tutorial introduction tq these phenomena, cqmparing them giso
to spinodal decomposition and coarsening in the. bulk. Emphams is on theoret_sca]
concepts and on numerical simulations, but perqnent experiments are also briefly
mentioned, and a discussion of open problems is given.

1. Introduction and Overview

In the industrial processing of materials it is very common thzf.t bya _change of ex‘.[ernal
control parameters (temperature T, pressure p, etc.) one can br.mg a binary (AB) rmxt_ure
(or a multi-component mixture, respectively) from a state in the lone-phasc region,
where the system is homogeneously miscible not only on macroscopic h.angth scales but
even down to molecular scales, to a state inside a mlsc1b1]1ty. gap in the (‘Fhermal
equilibrium) phase diagram of the system. Then thermal equlll{brlum requires the
coexistence of (tnacroscopic) domains of the various phases, and it is of great interest to
consider the kinetic pathways how the considered system d‘ev.elops from 1t_s initial, now
unstable, state, which is homogeneous apart fr‘om‘ sta_tlstlcal fluctuations, to this
macroscopically inhomogeneous concentration distribution.
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Fig. 1: Schematic description of a quenching experiment that leads to spinodal decomposition of
abinary mixture: one starts at a temperature T; such that the system is in thermal equilibrium for
times t < 0 at the chosen average concentration ¢ of one species (say, 4). At time t = 0, the system
is suddenly cooled to a temperature T underneath the coexistence curve (consisting of two
branches ¢!l , ¢! that merge at a critical point T, ¢__, ). If the state point (¢, T) lies inside of the
spinedal curve ¢ (T}, then the linear theory [1, 2] predlcts that in the bulk of the system long
wavelength concentration fluctuations (exceeding a critical wavelength 1) are unstable, and

grow spontaneously in time (maximum growth rate occurs initially for 4, —\/2/ ). This is
schcmatlcally indicated in the figure, where a growth of a single cuncentrat[on wave in the
x-direction is shown.

Figure 1 depicts one of the basic ideas [1-7] that has emerged for such processes.
Introducing an effective (coarse-grained) free energy of locally homogeneous states
F'(c) inside the miscibility gap, one can distinguish between metastable states {for
which §2F'(c)/dc? > 0} and unstable states {for which 8*F’(c)/8c* < 0}, separated by
the “spinodal curve”, ¢, (T), for which 0%F (c)/acz\c‘c S = 0. It is thought that the
decay of metastable states is started by the spontaneous nucleation of “heterophase
fluctuations”, i.e. droplets of the minority phase are growing in the background of the
majority phase [3-11]. In the unstable regime, in contrast, it is thought that random
long wavelength concentration fluctuations get amplified as the time after the quench
passes. In the simplest linearized version of the theory [1,2], all concentration waves
whose wavelength 1 exceeds a critical wavelength 4, grow exponentially with time,
independent of each other. Now it is well-known [3, 5, 8, 12, 13, 14, 15] that the sharp
spinodal curve in the phase diagram in Figure 1 is a somewhat ill-defined concept (e.g.
becausein the two-phase region the coarse-grained free energy F'(c) depends somewhat
[13] on the length scale over which the coarse-graining is performed). This is true for
most systems (notable exceptions are systems with forces of sufficiently long range so
nucleation gets suppressed and mean-field theory gets strictly valid [12] or equivalent
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problems such as polymer mixtures in the limit where the molecular weights tend to
infinity [15]). Thus, the critical singularities associated with ¢, (T'), namely both 4, — co
as c—c,(T) from the unstable side [1, 2] while the critical droplet radius R — o0 as
¢ — ¢, (T) from the metastable side [16, 17], are rounded off: ¢, (T) is smeared out from
asharp line into a fuzzy region where a gradual transition from nucleation and growth
(on the metastable side) to (nonlinear) spinodal decomposition and coarsening (on the
unstable side) occurs [3, 5, 10, 15]. This nonlinear spinodal decomposition mechanism
means that already the initial amplitudes of the concentration waves in Figure 1 are so
large that these waves are strongly interacting. As a result, there is no exponential
growth of the scattering intensity (which is proportional to the mean square amplitude
of the concentration waves) at a fixed wavelength 4,, of maximum growth, but rather
the maximum scattering intensity occurs at wavelengths 4,,(t) which shift to larger and
larger length scales as time passes, 4,,(f = co) — c0. Only for polymer mixtures with
large enough molecular weights has it been possible to observe an initial stage of
exponential growth at constant 4, before the coarsening due to the nonlinear effects
sets in [18, 19]. Thus, “spinodal decomposition” in its original meaning [1, 2] (i.e., the
behavior of the linearized theory emphasized in Fig. 1) is rarely observed, rather one
understands by spinodal decomposition now the continuous growth of the phase
separated structure from mesoscopic scales {where the growth starts immediately after
the quench, 4,,(0)} to macroscopic scales. Understanding this behavior in quantitative
detail still is a problem [3-7]: while it has been suggested long ago that thereis a simple
dynamicscaling of the structure factor [20,21] {q is the wavenumber of the scattering, d
the dimensionality of the system}

(g, 1) = [4(0)1*8{a2,(®)}, (M

development of a quantative theory for both the scaling function § and the character-
stic length scale 4,,(¢) is difficult, though there are various simple arguments yielding
that asymptotically for large times ¢ 1,,(t) should be a power law in time. E.g., for
vanishing volume fraction of the minority phase the Lifshitz-Slezov [22, 23] evapor-
ation-condensation mechanism predicts

A,.(t) cc t*?, independent of d [24]. (2)

For fluids, however, the droplet diffusion-coagulation mechanism (also called
“Brownian coalescence”) predicts [20]

A (tyoc t1e, (3

and mechanisms invoking hydrodynamic flow of interconnected structures imply [25,
261, in the so-called “viscous hydrodynamic” regime [7]

A oct, d =3 (Ref. 25), 4,,(t) ¢ t1/2, d = 2[Ref. 26]. )

Finally, in the so-called “inertial hydrodynamic” regime [7, 27] {where A(t) «#?/pe
where 7 is the viscosity, p the density and ¢ the interfacial tension} one predlcts

A, (t)oc t*3, independent of 4. (%)
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While equation (2) can also be obtained from the (purely diffusive) nonlinear Cahn-
Hilliard equation [28], the extension of the Lifshitz-Slezov theory to nonzero volume
fraction ¢ of the minority phase {in order to understand how the prefactor in equation
(2) depends on ¢} despite many attempts is an unsolved problem [7], and one cannot
describe accurately the nonasymptotic approach to these presumably universal power
laws yet, nor possible crossovers between them, and the accurate prediction of scaling
functions § is even more difficult [7, 297 and possibly has to rely on numerical
techniques [30, 31]. It should be noted that these numerical techniques (in particular
the molecular dynamics method where one simply integrates Newton’s laws for all the
particles in the model system [32]) may suffer from accuracy problems [33], and thus a
number of recent estimates of growth exponents in the literature are probably not
meaningful [33]. Also the experimental study of equations (1)—(4) is still a matter of
current debate [34-39]. Solid mixtures—for which the concept of spinodal decompo-
sition originally [1, 2] was introduced!—pose particular problems, since elastic
interactions may lead to pinning effects in the growth [36], shape transitions of the
growing precipitations (e.g. from spherical to cubic shape [37]) or to precipitate
“rafting” [38] (i.e., directional coarsening). Fluid mixtures also are delicate if the two
fluids have very different viscosities, e.g. in polymer solutions [39] or polymer blends
where one constituent is close to a glass transition [40], the slow component may form
a sponge-like network which supports stress and thus eliminates the velocity field and
the hydrodynamic growth mechanism based on it, leading again to a ¢/ growth law.
It also is of great interest to correlate the time evolution of the structure factor with
the evolution of the interconnected interfaces in the system, which can be visualized
by laser scanning confocal microscopy [41]. Finally we emphasize that one is not
only interested in the phase separation kinetics for a fluid at rest but also for fluids
exposed to (shear) flow [42, 437, All these problems are beyond the scope of the present
article.

The fact that due to these problems (role of hydrodynamic or elastic long range
interactions, effects of strong dynamic asymmetry between the constituents of a
mixture, slow transient approach to asymptotic power laws, etc.) spinodal decomposi-
tion in the bulk is still incompletely understood must be kept in mind when one
considers phase separation in confined geometry. The first effect that needs consider-
ation is that the phase diagram of a confined system, e.g. a thin film, differs from the
bulk [44-50]. This change of the thermodynamic equilibrium conditions, which one
needs to understand because they act as driving forces for the phase separation kinetics,
results from an interplay of surface effects [50~57] and finite size effects [45, 51, 58, 59,
60, 61]. Depending on the surface effects due to the two boundaries of a film, rather
different equilibrium conditions may result, as sketched in Figure 2. We here do allow
for the general situation that the two surfaces confining the film differ in their nature,
e.g. the upper surface is simply a free surface against air, or a solid wall which may differ
in chemical nature from the substrate providing the lower surface, Truly long-range
concentration correlations can then develop only in the directions parallel to the walls,
and hence sharp phase transitions involve lateral phase separation, with interfaces
oriented perpendicular to the walls {cases (a), (b), (e)}. The different cases sketched in
Figure 2 distinguish whether the surfaces are wetted by the phases that are energetically
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Fig. 2: Schematic description of the equilibrium structure of unmixed binary mixtures (4B) in
thin film geometry, assuming that the lower surface is provided by a solid substrate, the upper
surface being air or (in general) a different type of solid wall than the substrate. Cases (a)—(c) refer
to the case that the B-rich phaseis energetically preferred by both surfaces, while cases (d), (e) refer
to the case where the B-rich phase is preferred by the upper surface only, while the substrate
prefers the A-rich phase. Note that cases (c), (d) describe the one-phase region of the thin film also,
simply the interfaces between A-rich and B-rich “phases™ are very diffuse anc_i s}mrpen only
gradually (by a smeared-out, rounded transition in the vicinity of the bulk tranistion tempera-
ture) when one brings the system inside the coexistence curve of the bulk. Sharp phase transitions
in the film then involve lateral phase separation, i.e. a transition {rom case (c) to case (a) or (b}, or
from case (d) to case (¢). For further explanations see text. From Binder et al. [49].

preferred or not. Cases (a)—(c) assume that both walls prefer the B-rich phase. Below the
wetting transition [51-57, 62] temperature T, (which we assume to be the same for
both walls, for simplicity) the interface which is perpendicular to the wallsin the interior
of the film meets the walls under a nonzero contact angle 0, while above the wetting
temperature T,, the contact angle is zero, and hence the interface bends gradually over,
since the A-rich phase is coated with a “wetting layer” {or surface-enrichment layer of
the B-rich phase, respectively: note that in thin films with finite thickness D the
transition from case (a) to case (b) is not sharp, but also rounded [49, 507, since a sharp
wetting transition ideally involves formation of a macroscopically thick wetting layer,
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interaction parameter 3~ ! (for polymer blends y is called the Flory-Huggins parameter [50])and
average relative concentration ¢ of 4 in the system. Assuming a symmetric mixture in the bulk
(D — oo), the critical concentration b =1/2,and for y = <y~ ! the concentrations ¢p(2) | ¢(2)
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of the two coexisting phases are related by the symmetry relation ¢ 2}, = 1 — ¢ () . Assuming a
preferential attraction of one species (B) by the walls, this symmetry is broken, andboth the
critical concentration ¢, (D) and the concentration atthe A-rich branch of the coexistence curve
¢!2) (D) are shifted towards smaller concentration, as compared to the bulk, With short range
forces at the wall, and unchanged pairwise interactions between atoms of the mixture near the
wall, one expects a second-order wetting transition at a temperature T, < T, in the semi-infinite
system, but this transition is rounded in the thin film geometry. (b) Schematic description of a
state of the thin film for a concentration ¢ inside of the coexistence cupve,p!L) (D) < d <@ (D)
(e.g- the point marked by a cross in the phase diagram, part (a)). Then the film is inhomogeneous
in the x, y-directions parallel to the walls, the A-rich part of the film in equilibrium being
separated [rom the B-rich part by a single A-B interface running perpendicular to the film. The
relative amounts of A-rich (x} and B-rich (1 — x) phases are simply given by the lever rule,
$=xp2 (D) + (1= x)p'L) (D), with 0 < x < 1. Here we assume that the film thickness D is
much larger than the interfacial thickness w and so the A-rich phase has enrichment layers of the
B-rich phase “coating” the walls of the thin film. (c) Concentration profile ¢(z) in the (2)-direction
across the film in the A-rich phase. Here the shaded area denotes the surface excess ¢, (d) Same as
(c) but for the B-rich phase. From Flebbe ef al. [48].
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which does not fit into the thin film, of course}. Cases (d), () refer to the case _where the
upper surface prefers the B-rich phase while the lower surface prefers. the A-rich phase,
and thus an A-B-interface parallel to the walls is stabilized in the thin film. Th; phase
transition at T;(D) then can be viewed as an interface binding—u_n.bingling transition, for
T> T.(D) the interface is unbound from the walls, freely fluctuating in the center of tk_xe
film [46, 47] (case (d)), while for T< T,(D)it is bound to the walls {case (¢)}. Note thatin
the limit of very thick films (D — co) this transition temperature T.(D) does not converge
to the critical temperature T, of bulk phase separation but rather to the wetting

| transition temperature T,, [46,47]. In contrast, the transition for symmetric walls from

state (c) above T,(D) to state (b) below T.(D) does converge to the bulk transition
temperature for thick films, T,(D — o0) - T;;.

Of course, the sharp 4 — B interfaces in Figure 2 should not be .taken literally
—actually one expects smooth-concentration profiles across the film, E1gure 3, and the
concentration near the walls always is inhomogeneous. If the energetic preference for
the B-components at the walls is not very strong, the incompatibillity is rgduced at the
walls in both phases, due to the “missing neighbour” effect. Even if the mixture would
be perfectly symmetric in the bulk, the energetic prcference of the walls for one
component breaks this symmetry, and hence there is no mirror symmetry between the
profiles of the coexisting A-rich and B-rich phases in the thin film. (_Zt_msequcnt]y, thf:re
is also a shift of the critical concentration ¢, (D) relative to the critical concentration
¢y, in the bulk, in addition to the shift of the critical temperature T,(D). Typically,
confinement enhances the compatibility of the components, and so T(D) < T, (for a

mixture with an upper consolute point).

Surface enrichment of the preferred component at the walls then also has a pronounced
effect on the dynamics of phase separation in thin films [50, 63-101]. Figure 4 sths
typical experimental observations [ 74], and Figure 5 shows related results_of numerical
simulations [83]. While in the bulk the wavevectors of the fluctuation that are
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Fig. 4: (a) Volume fraction of deuterated poly (ethylencpropylenc),ﬂPE‘P (fu
na%ed ]iEP (open circles) versus depth, for a degree of polymcnzatmn_ N 22300 for both
constituents, after a 4 h quench to T= 294K (T, = 365K). Profiles _arelobtamed with the time pl"
flight forward recoil spectroscopy (TOF-FRES). The dashed line indicates the surfaclegomam
thickness [(t). (b) Plot showing the growth of the surface domain thickness /(t) as '/*. From
Krausch et al. [74]
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Dy (Z,T)

(b)

Fig. 5: (a) Snapshot pictures of the time evolution from one discrete Euler i i i

AX = ].'5’ At = 0.05) of the partial differential equation describing nDn]jgzéngfrﬁZ%%ggng}
sition (i.e., Eq. (19) below). A square lattice in a D x L geometry is chosen, with L= 600 ffnd
D = 60. TI?:_: snapshots refer to scaled times (from left to right) = = 50, 100 .’,200 500, 1000 and
4000. Pnsn‘lve valu'cs of the order parameter ¢( X, 1) = 20(X,7)—1, \;vheré c(f 1) i’s the local
concentration at time 7, are shown in black while negative values are not, marked. The
parameters describing the boundary condition at the surface (Eq. (42) below) are chosen as'y =4,
g= —4,and h, =4, corresponding to an incompletely wet static equilibrium in 2 semi-infinite
geometry. (b) Averaged order parameter profiles ¢ (Z, ) plotted vs. the dimensionless distance
Z from the first wall for four different scaled times as'indicated, for the same choice of parameters

as in (a). Data are obtained as an average over 2000 inde initi i :
and Binder [83] g pendent initial conditions. From Puri

arr_lphﬁed during the initial stages of phase separation after the quench are randomly
orlen}ted, giving rise to the characteristic interconnected seaweed-like structure of the
growing QOmams, near the walls wavevectors are oriented perpendicular to the walls
and amphtudes are chosen such that the boundary conditions at the walls are fulfilled
[63]. Since the characteristic layered structure of thess surface-directed concentration
waves have been detected in first experiments [66], a lot of activity has been devoted
towards a closer investigation of these phenomena [50,63-101]. Most of experimental
studies were performed for polymeric systems, since the large characteristic lengths of
thelatter are convenient for several techniques of investigation; but related phenomena
are expected for small molecular mixtures, too. In this context we draw attention to
the pon:lt that many elements that do not form miscible solid alloys in the bulk can
form mixed two-dimensional alloys confined to a surface layer [102], while in mis-

Ei]l?)lg:lmetallic alloys it often happens that one component segregates to the surface

As a last topic of this section, we discuss phase separation in porous media [104-120]
The. first approaches [104-107] stressed the randomness of the pore structuré
,(typlca]ly one may bring the binary mixture in a porous material like Vycor glass or
various ae_rogels [106, 108, 109, 1107) and qualitatively a description of the phase
transition in terms of the random field Ising model [121, 122] was attempted. Thus,
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the two components (4, B) of the binary mixture are represented by the two orienta-
tions of an Ising spin [3, 5], and the random surface of the porous material (which
again will energetically prefer one component) is described by a randomly quenched,
uncorrelated random field acting on the Ising spins. Obviously, such a description can
make sense only if one considers length scales of concentration correlations which
are much larger than the typical diameters of the pores in the network, and thus one
might expect that this description will be useful only in the immediate neighborhood of
the critical point (which is shifted both in temperature and composition relative to
the bulk phase diagram without the porous material [108]). The opposite view
concentrates on the wetting behavior on the walls inside of a single straight cylindrical
pore [113-119]. Ultimately it is clear that a full understanding must combine the
behavior of such straight single pores with a realistic description of the random
structure of the pore network in the porous material [119, 120], but one is still far from
a full solution to that problem. A particularly interesting situation occurs also for the
phaseseparation of He® — He* mixtures inside pores [110, 111, 112], remembering that
in bulk He* — He* mixtures one phase is a normal fluid and the other phase is a
superfluid. It has been predicted [111] that in the porous material the phase diagram
gets substantially modified, the tricritical point disappears and phase separation occurs
entirely within the superfluid phase. This system will remain outside of our further
considerations, however.

When one considers a single cylindrical pore (or the related problem of a single
two-dimensional strip of width D bounded by two one-dimensional “walls” [123]) one
must take into account the specific effects of quasi-one-dimensional systems as soon as
the domain linear dimension [(f) has grown to the diameter D of the pore (or strip,
respectively), see Figure 6. One-dimensional systems do not have phase transitions with
short range forces, and therefore phase separation ultimately must stop when the
domain size reaches the finite equilibrium value of the correlation length £, to the walls
of the pore (or strip, respectively) [124]. This length is controlled by the interfacial
tension f;,, between the A-rich and B-rich domains, i.e.

& oo DV2exp( f, D/kpT), d =2, (6)

£, ccexp(finD? 4k, T), d = 3. (7)

Since in the intermediate stage of growth in Figure 6 the flat domain walls can be rather
metastable (this state is called “plug phase” or “capsules” if the walls are wetted [113]),
one needs two walls to meet by diffusion in order to annihilate the domain enclosed by
them, this stage of domain growth is expected to be very slow, if the system behaves
purely diffusive. However, in fluid mixtures in this quasi-one dimensional geometry
hydrodynamic mechanisms again seem to be very important [116].

After this broad survey over the phenomena discussed in this article, we now treata few
aspects in more detail: in Section 2 we recall the basic aspects of spinodal decomposi-
tion in the bulk, while in Section 3 we discuss the theoretical modelling of the surface
effects. In Section 4 we summarize the main findings obtained for surface-directed
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Fig. 6: Schematic description of domain growth of a binary (4, B) mixture in a cylindrical pore of
diameter L, assuming essentially “neutral” walls of the pore (no energetic preference for one
component), and a volume fraction ¢ , of A near 50%. The system decomposes for T « T, intwo
types of domains, B-rich (shaded) and A-rich (white). Domain walls are indicated by thin solid
lines. Three stages of domain growth are indicated: in the first stage (left part), the typical linear
dimension of domains ! () is much smaller than L. The process of domain growth is similar to
standard (nonlinear) spinedal decomposition in this stage. In the second stage, I(t) is larger than
L but smaller than the correlation length £, in the thermal equilibrium (middle part). In the last
stage (right part), the domain size /(¢) in the direction parallel to the walls of the pore saturates at
its equilibrium value ¢, From Albano et al. [123]

spinodal decomposition from the numerical modelling so far. Section 5 gives some
more details on the work devoted to spinodal decomposition in straight pores, while
Section 6 gives some final discussion including comparison with experiment.

2. The Cahn-Hilliard-Cook Nonlinear Diffusion Equation

We first consider a macroscopic volume ¥, disregarding any surface effects and
introduce a (coarse-grained) concentration field ¢(X), which is obtained by averaging
the local concentration (which is unity or zero on the atomistic scale, depending on
whether we encounter an A-atom or B-atom) overa length scale large in comparison to
atomic diameters but small in comparison to the correlation length &, of concentration
fluctuations in bulk equilibrium. The point % is the center of gravity of the volume
region over which this averaging is performed. One expects that then the microscopic

(i.e. atomistic) Hamiltonian of the mixture can be replaced by an effective free energy
functional

AF{c(% ) ! s
‘fﬁ“ﬂtjyddX{'ﬂﬂ[c{x)]/knTﬁ‘z&r [Ve(2)]2), "
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wheref,,(c) is the coarse-grained free energy density, normalized with the temperature,
and the term -z%rz [Ve(%)]? accounts for the free energy cost of inhomogeneous

concentration distributions. Being interested in slowly varying concentrgtilon fields,
higher order gradient terms are omitted from the start. Consideripg atomistic models
for mixtures explicitly, one can interpret r as the range of the effective interactions that
drive the unmixing [3, 125]. Since equation (8) makes only sense if &, is much lgrger
than interatomic distances, we have to consider the vicinity of the bulk critical
temperature T ,, where ¢(X) does deviate only a little from the critical concentration
Corie @0d then one can assume the Landau expansion for f, (c),

1 1
f)=fo+ EA le— ) fdu+ ZB(C ~ @) I )
where f;, B > 0 are constants, while A oc(T/ T, — 1) <0 for Toc T,, and changes sign at
Ty
We now turn to the dynamics of the concentration field ¢(X, t), assuming the s_impiest
case (appropriate for solid mixtures only) where the only processes to consider are
purely diffusive (in fluids the velocity field #(x, t) needs to be mcludcdl as a second
variable [126, 127]!). Since in the total volume ¥the average concentration

E=(1/V)J dXc(%, t) (10)
14

is conserved, the time-dependent concentration field ¢(X, t) satisfies a continuity
equation,

dc(Z 1)/ ot + V(% )=0, (11)

where j( X, t} is the concentration current density. In the spirit of standard uqnequilib-
rium thermodynamics [128], (%, t) is assumed to be proportional to the gradient of the
local chemical potential difference u(%, t),

J(Z )= —MVuR 1), (12)
M being a mobility.

In thermal equilibrium the chemical potential difference is given as a partial derivative
of the free energy of mixing, F(c, T),

u=(0F/dc)y. (13)
Remember that the condition for two-phase coexistence is the equality of chemical
potential differences in both phases,

Hy =(6Ff'ac)'r|c(1) =,112=(5F/56)T\C(2, ’ (14)

coex coex

We generalize equation (13) to an inhomogeneous nonstationary situation f_ar fr0r_1:1
equilibrium, where both ¢( X, t) and u( X, t) depend on space a.nd time, _by defining p( X,
t) as a functional derivative of the free energy functional AF in equation (8)
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WX, )= d[AF{c(R, 1)}]/dc(Z 1). (15)
Using equation (8) in equation (15) yields
= 1
ux 1) =(6,)‘&(0)/50%ﬁarszTVZC(SE, 1), (16)

and using this result in equdtions (11), (12) one obtains the Cahn-Hilliard [1, 2]
nonlinear diffusion equation,

L(; D VZ{(———aﬂg[Cé:' L ])T - érzfcg TV¢(R, r)}. 17

Using equation (9) and defining (¢( %, t) — ¢,,,)/c.,., = ¥(%, ) as order parameter of the
transition, one obtains the conserved version of the time dependent Ginzburg-Landau
equation

—@'}%’Q:kn?"Mvz{Awi )+ By3 (R, t}—érzvzu‘/(;‘é, r)}, , (18)

By suitable rescaling of the scales of time, space and the order parameter one can
absorb all constants M, 4, B, r*k, T in the scales of the scaled time 7, scaled position X,
and scaled order parameter ¢(V now means derivates with respect to X)

WD s s -Lred o) )

This rescaling is achieved by measuring lengths in terms of twice the correlation length

;% of bulk concentration fluctuations at the coexistence curve, remembering 4 < 0
for T< T

cb?

G =rf/(=2d4), X =%/(28p%), (20)
the order parameter is measured in terms of its value 1, at the coexistence curve,

=y —4/B. $(X,1)=Y(Z, 0)/d, (21)
and the time is rescaled by a characteristic relaxation time Lo

L =(—A)/[4ky 'TM(rf,ﬁ"“")2 1 T=1t, (22)

One immediately obvious drawback of the nonlinear Cahn-Hilliard equation is its
completely deterministic character, which implies that random statistical fluctuations
are disregarded (except from fluctuations included in the initial condition, the state at
temperature T, where the quench starts). This problem can be remedied [129] by
adding a random force term #,(X, t) to equation (17)

i

S5 1 . I NE7. VZ{(—Q—M [Cgf' L ]) - %rzkn TV (%, z)} ndEe. @)
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Here n,(X, t) is assumed to be a delta-correlated Gaussian noise, and its mean square
amplitude {#2 > is then linked to the mobility M via a fluctuation-dissipation relation
[126]

e (Z, ) np(X ) p = (3> p V(R = X1)(t — 1), (24)
(nE>p =2k TM. (25)

Equations (23)—(25) are the basic starting point for the theoretical delscription of
spinodal decomposition, including both statistical fluctuations and _non]mcar effects.
However, coupling to other dynamic variables (solid alloys: atomic displacement field;
fluids: velocity field; polymers: conformational degrees of freedom; etc.) is disregarded
throughout. Note also that in taking the step from equations (11), (12) to cquatiot_l ([7)
we have neglected any possible concentration dependence of the mobility M, Wthl:l is
also not true in general but should be reasonable near T,, where the concentration
differences of interest are small since Y, = (¢ g0 — Cors)/ Corie < 1.

Despite these many simplifying assumptions, equations (23)-(25) wi_thstand any ana-
Iytic solution. Here we shall neither discuss the large body of numerical work, (?ealmg
with equations (23)—(25)[3, 4, 5, 7, 30, 130] nor related models like the Kawasak.s [131]
spin-exchange kinetic Ising model [132]. Rather we emphasize only th.e mmplesft
approach, namely the Cahn [1, 2] linearized theory. Despite the fact Fhat this theory is
rarely accurate, as emphasized already in the introduction, it provides a useful first
orientation. Thus we assume that in the initial stages of unmixing the fluctuation
around the average concentration ¢

de(X, )=e(X t)—¢ (26)

is small everywhere in the system. This assumption typically is not true since_ c(X, t)is
obtained from averaging over a volume that is small in comparison with £f, as
mentioned above. If we make this assumption nevertheless, we obtain from equation
(17) by expanding df,,/dc to first order in dc

%5(;(55, £)= MVl{(@zﬁg(c)/‘@cz)-p‘cﬁ——t—lirzkg TVZ}(SC(;C, t). (27)

For simplicity, here also the random force term has been neglected. Introducing
Fourier transforms

degt)= .[d"i' exp(ig - X)de(X, t), (28)

equation (27) becomes

L . qu{(al F:(©/86%) g o+ érlk}, qu}acé( ). (29)

a1
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Equation (27) is solved by a simple exponential relaxation
d¢y{t) = b, (0)exp[R(F)t] (30)
with the rate factor R(7) given as
2
R(4)= —knTqul:(ﬁz cg(c)/acz}/kBT+%q2:|. (31

The equal-time structure factor §(, ) at time  after the quench, a quantity experimen-

tally accessible via the small angle scattering of neutrons, X-rays or light [4, 6], then
becomes

(G, t)=<c_ 4(1)dey()yr = Sy,(§)exp[2R(F)t ], (32)

whe.rg t'he prefactor S,.(g) simply is the equal-time structure factor in thermal
equilibrium at the temperature T, before the quench,

Sn(‘_f)z<5C—’(O)5c§{0)>r=<5C—*5C+§>T;- (33)

Note that R(q) is positive for 0 < ¢ < g,, with R(q) = ky TMq®r*(q2 —q?)/d, and
_2n_ 4082 2 2 1/2
qcﬁi—c—[- (0 feg/ ™) 1, = o /PPy T) T2, (34

Using equation (9), as an example, we obtain

(azﬁg/acz)'r,cﬁ': Ac i +3Be (e — Con)=C it B[3(6— C )

erit
— iy 2 1 ~ £y
(cconx - (’cril) ] <0 if | c— Ci < [csp  Cerit I = lcmex ~ Corit ‘/\/3
This is the behavior anticipated in Figure 1.

As a next step, we discuss the effect of statistical fluctuations in the framework of the
linearized theory [3, 5, 129]. Equations (23)—(25) can be cast into the form

° (-
ES( G4 t)=—2Mky Ty*{[8°f,,/0c*) cae/ky T+ r2q?/d]5(G, t) — 1L (39

Equation_(35) is useful for describing relaxation phenomena in the stable and meta-
stable region of the phase diagram, where (% f,4/0¢*)1,.—¢>0and S(g,t— o) tends to
an equilibrium structure factor of Ornstein-Zernike form

Sp(q)= [(az.f;g/acz)'r,ng/knT] _1/(1 + qzifJ, (36)

wl_lere &= r/\/d(affw/ac )r.c=s/kg T is the correlation length of concentration flucty-
atlons_ {at th_e @ex:stcnce curve this expression reduces to equation (20), of course, if
equation (9) is invoked}. Then equation (35) simply leads to an exponential relaxation
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from one Ornstein-Zernike structure factor STN(E) in the initial state to the other,

8(4, t)=S,(§)exp[2R(q)t] + S7(4) {1 —exp[2R(F)1]}, (37)

since R(g) then is negative. Inside of the spinodal curve, where R(g) is positive,
equation (37) still is a solution of equation (35) if S .(§ } is re-interpreted as the so-called
“virtual structure factor” S;.(g) = [(6°f,,/0¢*)7 .= :/ks T1~* /(1 — q*/q?), which clear-
ly is singular at q,. However, neither this singularity nor the exponential growth of the
initial fluctuations (described by S; (g)) are physically meaningful, since the nonlinear
terms eliminate this pathological behavior completely. Thus a well-defined critical
wavenumber g, does not exist, apart from the case of long range interactions (r — o)
[14, 15]. This last remark can be verified from an extension of the Ginzburg criterion
[133], a selfconsistency criterion for the accuracy of mean field theory, to spinodal
decomposition [14]. One argues that the linear theory presented in Equations (27)—(37)
is valid if the meansquare amplitude of concentration fluctuations in a coarse-graining
cell of linear dimension Lis small in comparison with the concentration difference
squares in the system over which relevant nonlinear effects are felt,

([8e(X, )5 g < <[e—c,(T)]? (38)

{remember that (52fcg/602)]- changes sign at the spinodal, we have
(0 g/ 0c®)p 6 L1 B(C — ¢ (T)) (¢ (T) —€yy) . Now  we  estimate  {[dc(,
01%>r . as

([Be(X, 0)]*>rL~ ([6e(Z, 0)]* )7 Lexp[2R (g, 1], (39)

= qB/\/—2— being the wavenumber where the growth rate R(q) (eq. (31)) is maximal.
Now for L< &, the factor {[dc(X, 0)]2)“_ is estimated [14] to be of the order of
a’*"?L!, and taking the maximum self-consistent choice for L, which is L~ 1, one
obtains that equation (38) is equivalent to (in d = 3 dimensions)

exp[2R(g,)t] < <(r/a)*(1 — T/ T,)" 2 [¢/c,,(T) — 11772, (40)

a being the interatomic distance. Obviously, equation (40) can be satisfied at all only if
#/a > > 1, since the other factors on the right hand side are less than unity. Even then
the range of times over which exponential growth of fluctuations (with negligible
coarsening behavior) occurs is rather restricted: the time where nonlinear effects set in
(to be estimated roughly from equation (40) by reading this equation as an equality
rather than an inequality) increases only with In r. Conversely, for short range systems
nonlinear effects are present already in the very early stages of phase separation, and
equations (27)-(37) do not have a quantitative validity at all, though they still yield
qualitatively reasonable predictions for the initial growth rate R(q, t = 0) and the scale
of g,, where initially maximum growth occurs [134].

3. Surface effects on épinodal decomposition: Linear analysis

We now consider first semi-infinite geometry, assuming that the mixture can exist only
for Z > 0, and is bound by a hard wall at Z = 0, and hence in our (rescaled) coordinate
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)z (eq. (20)) we distinguish coordinates parallel (R) and perpendicular (Z) to this wall,
X =(R, Z). Now an obvious constraint is that there canpot be any concentration
current across the wall, ie. j (%, t)= — Mou(x, 1)/0z|, -y =0, which then vields
(taking steps analogous to eq- (15)-(19)) [70]

d = = 1 =
a7 [P(R Z, 1)~ ¢%(R, Z, V+5V2H(R, Z,7)],.0=0 (41)

However, equation (41)is not the only boundary condition that is needed: this is clear
both from mathematical reasong (eq. (41) would not fix the solution of eq. (19) uniquely

following boundary condition [67,70, 82, 101]
d9(R, 0, 7)
0

47

= R 1 |
@09+ ED L Lonog w

where hy, g, y and ' are phenomenological parameters which we will discuss below.
Equation (42) clearly has the effect that the order parameter right at the surface
rapidly relaxes to an equilibrium value dictated by the competition between the
“surface field” h, and the energy cost involved in order parameter gradients. Equation
{42) can also be derived by requiring that the system minimizes in thermal equilibrium

also its surface free energy, while Equation (19) leads to minimization of the bulk free
energy.

While boundary conditions such as equations (41), (42) can be derived from fairly
general considerations involving mostly symmetry principles [136], we follow here a
rather straightforward approach [67, 82] based on the consideration of a lattice mode]
foran alloy with a free surface (Fig. 7). We assume for the moment pairwise interactions
D44 (% X3), @ 45 (%, X;) and @, (%, x;) between atoms at sites X;, X} In terms of local
concentration variables {¢, = [ if site } js occupied by an 4-atom, ¢;=0ifit is occupied
byaB atom} the Hamiltonian of the System can then be written

H = [6160,4 o )+ 1 = ) 0,57, %)
(1= e)e; 04p (5 £) (1 — (1 — &) @5 (%, 7)1
+Z[UA(£‘;)C|' o Uﬁ{fi) (1 —c)] (43)

Here it is assumed that sums OVer pairs run over all pairs once, lattice sites exist in the
positive half space Z > 0 only, and », (x7) [vs(x;)] are forces exerted on A(B) atoms at
site x; due to the hard wall, In the following, we assume that these forces act in the first
layer adjacent to the wall (n=1) only, although the generalization to the case of long
range surface forces sometimes is necessary [55]. Similarly, although one must expect
that the surface breaks the translational symmetry of the system, and hence pairwise
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ites x,, X/ j their distance
interactions can depend on both sites x, X; scpa_rately agd not just on thei :
X,— X, only, we assume that all (nearest neighbor) interactions @, ,, Qpp @45
tlllrouglflout the system are the same, apart from the surface p]a_nc (n= _1) wllerf we
assume different interactions that we denote as ¢, ,, 0% and @}, if both sites <, Xx;are
in the layern=1.

Of course, Figure 7 is not meant as a “correct” description of atom.ist.:c de;mi,lllaul Ei Zatt[?:rll'
serves as a generic model to derivea reasonablclcontmuum d(.:scnptwn tha ;)3) i)
for a much larger class of systems. The ﬁrstlstep is the translathn of eq_ualtlor?g()/2 i
Ising pseudo-spin representation [51] via the transformatlon_ ¢ —h( 7131([15 4

§;= £ 1. In terms of the chemical potentials y,, u; of both species, this y

H—Yema—2l—edug=—YJ;S,S,—HYSi—H, ¥ S+#, (44
i i i i

ie1'layer

where 3, is a constant that only affects the energy scale, and hence is omitted. The
e .
pairwise “exchange” energy J,; is

1 1 (45)
Jy=J :EQ’)AB _Z(‘;DAA + Ppg);

S

@

@
LLEidiefddy u-'A il

or
o
w
-

o

Fig. 7: Schematic picture of the surface of a binary (AE? _allu]ay)at Zd= 0 (tell:: snh;gliq%golrnii]tcci?cstitc}:;?;
i i Different atoms (circles) and nearest- acti

this may represent an inert hard wall). : i e

different types of lines. For a dis i b
between them (and the wall) are indicated by pes of ok e

i tive integer n, while in the co
lanes parallel to the surfage are labeled b_y a posi onti

?etst:;?p]:ion co%rdinates parallel ( p) and perpendicular (z) to the surface are used as indicated.

From Puri and Binder [82].
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when at least one of the sites i, j is not in the surface layer, n = 1. If both sites are in the
surface layer, we have

1 1
Jy=J =504~ 7Pt @hs) (46)
The bulk “magnetic field” H is (for sites i not in the n = 1 layer)
1 1
H= E(ﬂB —fq)+ 5 2 (0, — Pzp) (47
Ji=0)

while for sites i in the first layer we have an additional “surface field” H,,

1
H+H1=§(#B*#A+UB_UA)

1
g '2'[ Z (954 — @3p) + Z ((PAA — @pg)]- (48)
Jel*layer Jjez™layer
A nonzero surface field arises even for the case where vy = v, =0 and interactions are

unchanged near the surface, i.e. Paa= @44 20d @}y = @y, as long as Vs~ Ppp 0.
This is a consequence of the “missing neighbours” of sites in the first layer.

The “bulk field” H in equation (44)is eliminated from the problem by fixing the average

concentration
E={1/N}Z<ci>, (49)

which also is the concentration ¢, in the bulk of this semi-infinite system. But the
additional surface field /f 1 femains as a parameterin the problem; as is well-known [51,

55], this term is responsible for surface enrichment and wetting phenomena in
mixtures.

We now associate dynamics to equation (44) via the spin exchange Kawasaki model
[131], allowing direct exchanges between nearest neighbours on the lattice. Again this
is not meant as a realistic description of solid alloys {which would require to consider a
vacancy mechanism of diffusion [137]), but serves to motivate the coarse-grained
continuum model. One obtains a set of coupled kinetic equations for the local
time-dependent mean magnetization on a lattice site, {S;(t))> =m,(p, ©), treating the
(exact) master equation [131] in mean field approximation [125]. As an example, we
quote here the equation for the surface layer [67] (z,is a constant setting the time scales
for the attempted spin exchanges, ¢ is the coordination number)

d 2 a2 25 - =
2t zmi (B, 0= —(q— my( B, 1)+ my( B, D+2m(B+Ap, 1)
Ap
o i J =
+[1 —my(p, )m,y(p, t)]tanhﬁ my(p, )+ H, /J
B
J 2 5 = 5
+752m1(p +Ap ) —my( B, ) —m, (B, 1)

Ap
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—Ym(p+ AP, x)}
Ap

5 & J
+ 5 [1—m (5, )my (5 +Ap, t)]tanhm,
A
<[ a5 047 S+ 87,0 mlF 4470
a7

%zm;(ﬁwﬁ'wﬁ, t)} (50)
Ap

HereApisa vector connecting site [ with one of its g — 2 nearest nelgh'boux;s n: scl?g:;].
Obviously, equation (50) is rather clumsy, and so are the 1_(1netlc equations for e
magnetizations in the second and further layers ]:67], whlch%hence are rllot rep?]) e
here. Still, when one linearizes these equations in the m,,(,c_), t), one still can fin i
solutions of this coupled set of equations exa'ctly. E._g., 1n_the case \ghere_tr;onlgs
homogeneity in lateral direction is considered, ie. m,(p, t) simply can be writte
m,(t), one can easily find the Laplace transform m,(s),

iy () = r exp( — ) [m (1) — m, ), B
0

m, being the equilibrium magnetization in the bulk. For states in the one-phase region
b .
of the mixture the result is [67]

i (5) = B.. (SJexp[ —n/£. (91 + B_(exp[ —n/¢_(5)1, &4

where the amplitudes B, (s), B_ (s) are expressed in terms of the tlaoundary cogditions at
the surface, and £, (s) are effective frequency-dependent correlation lengths given by the
equation [67]

1/2
sinh[1f2€i(s}]=%{—%(l 7 ) Lall - TR 25 Ts/JJ‘“} ()

[

For low frequency, s— 0 {i.e,, large times} the smaller length £_(s) converges to the

LT 4T, dhvos ice spaci ity, while
correlation length &, = —ﬁ<? — 1) , choosing the lattice spacing as unity,

the larger length behaves as
£ @)= Qe T/L) s/ T/T,— 1)1 12 (54)

This result shows that at large times ¢ the order pa.rame_tfl:’r2 profile m,,(t') EXh}l]blt:
structure at a “diffusion length” &, (1/¢)cc _[r( /T, e )]~ %, as one mig (ti.tia:ls
naively expected: the surface excess concentraftlop rcqmred by t_he bourf(l:llary ?‘t‘:)ln llatinon
is transported from the bulk to the surface via diffusion, creating a shallow ip n
zone” which spreads out more and more as time passes.af.tu?r the quench {rememt er 2

eqs. (51)—(54) refer to a quench in Figure 1 where both initial and final temperatures T,,
Tare still in the one-phase region).
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Apart from the possibility to solve equations such as equation (50) directly, one can use

them to derive boundary conditions to th illi
; e Cahn-Hilliard i is i
by transforming from differences to differentials, e.g. i e

mﬂ(ﬁ+Aﬁi [) =mﬂ(ﬁ’ t)+ (Ap'v")mn{ﬁ! t) +%(APVH)2mﬂ(ﬁ’ t)
1

1
+E(Ap-'v’,,)3mn(p, t)+§(Ap'V”)4m,‘(ﬁ, 0, (55)

and 31m11ar13_( the discrete im?ex m is transformed to a continuous coordinate z. In this
way one derives as an equation in the bulk a‘special case of equation (18), namely

J T 1
2t—m(p, z,)=V2{(1 -2 ]
5 (pz, )=V {(1 T)m+3m EVzm}, (56)
and the nontrivial boundary condition (equivalent to Eq. (42)) becomes [67]

a . H, [Tg~2—(g—
2. 9 _H @=-—(g-1J7
T, atm( 0, 0.1 KT = [————ks T Jm(p, 0, 1)

+[1 _la- 1)J]6m(b’),z,r|
kT 9z lz=o

1 i 2 R
*5{1 ‘[m(‘?“ 3”:«.7J } TSPV m(5.0.0+ -
' (57)

t\:vhere we-kep_t only th'e same lowest order terms as written in €quation (42)(see Ref.[67]
or a derivation of higher order corrections). Thus indeed h, is a (suitably rescaled)

surface magnetic field, in the Isin i i
g ] : ’ £ Spin notation, g can be related
Interactions in the surface layer, etc. Tl

We now discuss surface effects on spinodal decomposition in the framework of the

linearized theory, using in equation (19) ¢ (B ¢ 2
e q (19)¢* (R, Z, 7) ~ ¢3 + 30266 (R, Z, 1) s0 that the

8 1
Eéqb(ﬁ, Z, )= — V(1 - 342 + EV“)M{R, Z, 1), (58)
while the no-flux boundary condition becomes
i 1 3 2 1 2 |
=, I ¢D+§V 8¢(R, Z,7)|,_, =0, (59)

which has to be treated together with e
respect to the lateral coordinate &,

a¢,‘” (2,7)= f dRexp(ik, R)é¢ (R, Z, )

quation (42). Using Fourier transforms with

(60)
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yields a set of equations

65 Z, 7=k c 1-—3¢2 lk2 L o VA 61
o7 ¢’k"( ,T) = | T3z2 = Qbo_i u+§ﬁ (bkh( . 7), (61)

é oo Ml 10
%{[1—3‘1’0_5("1\ _ﬁ)]‘s‘?&k"(’zy T)}'z=o=0’ (62) _

d é
=00, (0,7) = by 8,0 + 800, (0, D)+ 12200 (Z, Dl

_%y'kfafp”(o, ) (63)

Note that although Puri and Binder [82] and Frisch et al. [96] included higher order
terms 62541),‘”(2, 1)/8Z%|,_, etc. in their treatment, they igonred the last term
- %y’k Hzéqb” (0, 7), although the microscopic theory [67] clearly shows that it is present
(see the term involving V; in equation (57)). As pointed out by Fischer et al. [101], this
term is crucial to obtain the dispersion relation for the lateral surface modes. Equations
(61)-(63) represent an inhomogeneous boundary value problem, with the inhomoge-
neity appearing only for k, =0.

We discuss briefly the solution of equations (61)-(63) next. The general solution can be
constructed as a superposition of a special solution of the inhomogeneous problem,
present for k, =0, and of the general solution of the homogeneous problem. The latter -
is solved attempting a solution

64),‘”(2, 1) :exp(wr)gaje_"iz, (64)

which implies for K; the condition

Ki=k —k% £iy/20— kG, o0

where km=m is the wavenumber of maximal growth of the bulk modes.
Physically sensible solutions require a; =0 if ReK; <0, and thus only two out of the
four solutions of equation (65) are meaningful. The boundary conditions equations
(62)—(63) then yield a homogeneous system of two linear equations for the remaining
amplitude a;. The condition that this system has a nontrivial solution then yields the
spectrum of allowed modes [101], w = w,(k,). It should be noted, however, that the
observability of such surface modes in general will be restricted to extremely short
times, since the mode 6¢,‘H:0(Z, 1) relaxes much faster and thus the homogeneous
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initig[ conc}ition assumed in the linearized theory disappears near the surface. the

5 £l
nonlinear interactions between the surface modes, equation (64), and the mode
6(15&“ =ofZ. 0) need to be considered. Using again Laplace transforms

_ 1 (=
u(Z, s)= §L exp(— sz/Z}éq‘)k" -o(Z,0)dz (66)

Equation (61) leads to the following equation (ua(Z) = d¢p, _o(Z, 0) is the initial
condition) "

st —ug= —2k26%0/0Z% — d*ii/6Z*, (67)

with the boundary conditions resulting from equations (62), (63)

2k 6u(Z, s)/DZizzo+631I(Z,s]/62312=0:O (68)
N . . o g- you(Z, s)
su(0, 5) uO(O}—h1/25+§u(O, s)+§—aZ——JZ:O (69)
which is solved by [96, 138]
U(Z, s) = up/s + C(s)e "*Zcos [ u(s) Z — ¢(s) ] (70)

where_ the inverse characteristic lengths u(s), v(s) are the solutions of the following
equations

B = 242 & /2 /35— ), ' )

1
Vv2(s) = o~ 2+ S % 35— ), (72)

where s 2 5, = k# is needed to ensure that both v*(s) and p?(s) are non-negative, For
§ = 5o we have v (so) = 0 while p?(s,) = kz. This finding implies that the characteristic
wavelength of spinodal decomposition in the bulk determines also the scale of the order
parameter at the surface. While the phase ¢(s) in equation (70) can also be found in
terms of u(s) and v(s), the amplitude C(s) then carries the information on the parameters
hy, g and y due to the boundary condition, equation (69), [96]. Figure 8 shows typical
results for the surface part N(Z, 5) = (2, 5) — /s obtained from this treatment. Since
the zeros of V(Z, s) are approximately independent of s, it is plausible that 8¢y o(Z,7)
also shows zeros at a distance 1, = 2n/k,, as is obvious from the numerical soiﬂt')ion’ of
the full nonlinear problem (Fig. 9).

4. Numerical results for surface-directed spinodal decomposition in the
framework of a nonlinear theory

Whil; _the rapid re_laxation of ¢(R, Z,7)nearthe wallat Z — 0 enforced by the boundary
condition, equation (42), stabilizes surface-directed concentration waves with a
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Fig. 8: Surface part V(Z,s) =u(Z,s) —uy/s of the Laplace transform, Eq. (70), plotted vs. the
scaled distance Z for the choice of parameters u, =0.025, ¢, =0,h, =4,y=4and g= — 4, ie.
a system where in equilibrium there is considerable surface enrichment, but the surface still is
nonwet. Four values of the scaled frequency s are shown, as indicated in the figure. From Frisch

et al. [96]
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Fig. 9: Averaged profiles ¢ (Z, t)as a function of the scaled distance Z from the surface, for four
scaled times 7 as indicated. Data were obtained from a discrete implementation of Egs. (19), (41),
{42)for the choice of parametersh, = 4,9 = — 4,7 =4,' = 0, using a lattice of size 150 x 300, and
aninitial condition with uniformly distributed random fluctuations of amplitudes + 0.025 about
a zero background, corresponding to a critical quench (¢, =0) from infinite temperature
(T, — oo in Fig. 1). Averaging is done laterally (in the X -direction parallel to the surface) and over
an ensemble of fifty independent initial conditions. Arrows indicate the predictions of the linear
theory for the first two zeros of ¢, (Z,17), namely k,Z" =n/4+ (2n+ n/2, n=0, 1.....
Numerical results were taken from Puri and Binder [82]. From Frisch et al. [96]

wavevector oriented along the z-axis, it is clear that the large amplitudes of these
concentration waves invalidate the linearized treatment of the previous section,
nonlinear effects will give rise to a coarsening as in the bulk (Sect. 2). However, since the
directions parallel and perpendicular to the walls are non-equivalent, it clearly is of
interest to consider not only the bulk length scale ,,(t) used to describe the coarsening
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in the bulk, equation (1), but to introduce length scales ,(Z, 1), 1, (Z, 1) characterizing
the growth of concentration fluctuations in the directions parallel and perpendicular to
the surface (due to the fact that the wall breaks the translational invariance in the
z-direction, these length scales may in fact depend on Z but for Z — o we expect [, (Z,
)= 1,(Z, 1) =1,(1), the suitably rescaled bulk length scale 1, (1)),

In order to give these length scales L(Z,7),1,(Z,v)a precise meaning, it is convenient to
introduce the order parameter correlation function [82]

G(R1 = Rz: Z,Z,17)= <¢(R1s Zy, T)‘Ib Rz: Z, 1))
- —<{$(R,, Z,, 1)) ($(R,, Z,, 1)), (73)

where our notation already indicates translational invariance in the directions parallel
to the wall only. Writing as an abbreviation (the overbar means a spherical average
over the direction of R, — R,)

G,(IR,—R,), 2, 1)=G(R,-R,, 2,2, 1), (74)

a practically convenient definition of L,(Z, 7) is then the distance over which G,has
decayed to half its maximum value [82],

G(l(Z,7),Z,7)= G0, Z,7)/2. (75)
A perpendicular length scale is defined similarly, i.e. [82]
G0,Z,Z+1,(Z,1),1)=G(0, Z, Z,7)/2. ’ (76)

A nontrivial behavior of these length scales is to be expected particular in cases where
an interplay between the growth of wetting layers at the surfaces and spinodal
decomposition in the bulk occurs [82, 100]. In Figure 10 we briefly recall the basic
aspects of wetting phenomena for binary fluid mixtures in therma equilibrium [ 54, 55,
56] denoting for the moment the volume fraction of species A (that is not attracted to
the walls) as ¢, in the bulk. Then wetting is described in terms of the surface excess

¢s=rd2[¢b —#(2)] (7

as one approaches phase coexistence at the B-rich side of the coexistence curve, ¢ If
¢, is considered as a function of ¢, at constant T, one can distinguish between
incomplete wetting (if ¢/ = ¢ (i, — Gok.) s finite) or complete wetting (' - o0, due
to the adsorption of a macroscopically thick B-rich enrichment layer at the wall). At a
temperature T, or alternatively an inverse interaction parameter ', we have a
wetting transition between a nonwet and a wet state, which can either be of first order
(as assumed in Fig. 10a) or of second order.

Now the boundary condition, equation (42), has been deliberately chosen such that it
can describe conditions of both wet and nonwet surfaces, and the full phase diagram of
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Fig 10: (a) Schematic phase diagram of a semi-finite mixture exhibiting a ﬁrst-oriier Wietttll?i%;
transition on the A-rich side of the coexistence curve fqr an interaction parameter = . tI}: -
case there exists a prewetting transition line in the A-rich one phase region, bt_ag_m?mg_ atl Tgrce
order wetting transition at the coexistence curve anq ending in a prewetting chmlc; point. i
paths (1), (2), (3) are indicated in the one-phase region, where one approaches \E‘ e_c:)_exlso e
curve at constant ¥ by reducing the bulk volume fraction ¢, of the tzlixwre:.l(l')) dana 1({);(:2) o
surface excess ¢, plotted vs. ¢, for the thr_ee paths (1), (2), _(3).”For Y% xw_ldn 51)1,,; coe e
surface excess reaches a finite limit ¢ (“incomplete w?}tlng ), while for x ™' o ?s i
excess diverges at phase coexistence (“complete wetting ). For ¢ :(‘215),,,5 a ﬁnlltx‘:ljump'ohe?;;the
#) 1o @) occurs (“17 order prewetting transition )(.zTha_SJunjE &, smoothly vams{_ e
pxi'ep\r;ettinsgpéritica] point is reached. (c) Variation 9{ Pl ’(‘i‘il-th x~ ' at phase (EOCXIS]tenCC(Z]Lg? i 0,,“_
keptat ¢2) (y)}. At the first order wetting traﬂsuwn,z()i)§ jumps from a finite v;due q‘)dw ]esltin

tinuouslyc%g infinity, while a critical divergence of ¢!* is encountered for the 2" order wetting

transition.

Figure 10 is reproduced. In fact, the free energy functional that describes the thermal
equilibrium associated with equations (19), (41) and (42) is [139]

AF SIS { s L Lﬂ_h =le z} (78)

i t the surface. As is well-
here ¢,(R)=¢(R, Z=0) is the local order parameter at the s _
gnownqbtile thermal equilibrium profile ¢, (Z) results from minimizing this free energy
functional, which yields an Euler-Lagrange equation

6u(2) = 03,(2)+57°6.42)/02* =0, 9
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with the boundary condition
hy +9¢Eq{2=0)+v5¢eq(2)/62iz=o=0- (80)

Obviously, if we look for a time—independant, stationary solution of equations (19), (41)
and (42), putting all time-derivatives equal to zero and seeking a solution that is

homogeneous in latera] directions, we recover equation (79) from equation (19), and
equation (80) from equation (41),

The surface phase diagram that results from equations (78)~(80) has been discussed
previously in detajl [139]. Here we only note that a second-order wetting transition

surface phase, which is Hi)g, )= —g, and the spinodal of the non-wet surface phase,
which is h{2(g, y) =y + 9*/(4y)). For h, < hyc(9,7) the surface is not-wet {(or incomplete-
ly wet, respectively), while for hi > hy (g, y) it is wet, Tt is Interesting to recall what this
means in terms of the profiles that result from equation (79); the solutions admitted by
equation (79) are the functions ¢(Z)=+ tanh(Z — Z ) and d"(Z)= + coth(Z - 2,).
In the incompletely wet case it is only ¢'(Z) that contributes; the constant Z, is
adjusted such that equation (80) is satisfied, which gives ¢, = 9/(2y) +

(9/29* +1+ h, /7. Choosing the sign such that ¢/(Z — w}= —1, we note that for
hy~h,, we obtain #:1>1, Zy—> o0, ie. the interface “unbinds” from the walls, as
expected for a wetting phenomena. In the wet case, the near-surface part of the profile
utilizes ¢"(Z), on the other hand, one first hasa decay from a value ¢1>1to¢, =1as
Z—0,and then a decay from ¢ = + 1 to ¢=—1viaa — tanh(Z — Z ) profile occurs
for Zy — oo (macroscopically thick wetting layer).

This behavior of the surface enrichment profiles ¢,,(Z) in equilibrium has its counter-
part in the profiles ®.,(Z, 7) that result from the numerical solution of equations (19),
(41) and (42) (here the subscript “av” stands for a lateral average over the coordinate B
in a system which is 300 length units long in lateral direction, applying periodic
boundary conditions, and for an average over 50 individual runs). Figure 11 gives an
example both foran Incompletely wet situation (=dh =4g=_ 4,y = 0: this case s
very close to the first-order wetting transition) and for a case deep in the wet phase
(r=4 h; =8 g=—4qg ¥ =0). While the results in Figures 5b, 9 employ the cell
dynamics method with a rather coarse discretization, the fine mesh size employed for
Figure 11 clearly reveals that the shape of ¢,(Z, 7) is not at all the simple sinusoidal
form yielded by the linearized theory, equation (70): rather Figure 11a suggests a

with an inflection point Z(z) that slowly moves away from the surface but presumably
saturates at a finite equilibrium distance 23" as T co. In contrast, for the case in the
wet region of the surface (Fig. 11b) one recognizes the characteristic two-step profile:
bl Z, 1) at Z =0 starts at a value larger than unity (ie., the order parameter at the
surface is enhanced beyond its value at the coexistence curve in the bulk), decays on a
scale of unity (ie., about the bulk correlation length, remembering the rescaling of
equation (20)) to unity, and then again a profile Gl Z, ) — tanh(Z — Z (7)) starts,
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Fig. 12: Perpendicular length scale [ .(Z,7) (a) and parallel length iczlcT.lﬁ (Zt;?h(obi)cé):c:)tg%:l avrs;

gf d ;imc for the choice of parameters y=4,9' =0,9=4 and.h1 =4. Thre el
Sﬁa;n in éach case, and the time evolution of a corresponding bulk systc]m 131(2 s
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including times for 7 > 1600 only. From Puri and Binder [82].

but how it is more plausible that Z,(t — w0} — o (thpugh tt}e growth oft;)e th;cs:k:fjsogf
this wetting layer is presumably only logarithmic in time, Z,(t) ocl ;1 91 i 2
consistent with the growth of wetting layers at the coexistence curve [139- s

This slow dynamics of the wetting layer also leads [82] to 211 ru'edl.tl}cltic];n ﬁ: tl;?g]ir;egtlhzicalls
i i i ith the length scale in the bulk, "
1,(Z, 1), equation (76) in comparison wi : _ il i e
ontr d in comparison with ().
t, the length scale L(Z, ) is enha.ncc
:gggt?(s)ns (2)—(5)gam analysis of these data in terms of power laws was attempted [82],

a (81)
IH (Zv T)OCTQ: IJ.(Z’ T)C{T ?
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where a is an “effective exponent” that may both depend on Z and on the time interval
that is fitted. It is seen that within the accuracy of the fit for L(Z, 7) one finds a close to
1/3, irrespective of Z. Note that it is rather typical for spinodal decomposition in the
bulk [3,4,5,6,7,28, 29, 30, 132] that the asymptotic Lifshitz-Slezov [22, 23] exponent
a=1/3 (eq. (2)) is only seen for extremely late times, and smaller effective exponents
between 1/4 and 1/3 are scen at not so late times. In contrast, for ! (Z, 1) and Z in the
surface region much smaller effective exponentslike a &~ 0.16 are seen, which may result
from the fact that the slowly growing wetting layer enforces near the wall a layered
structure (with a depletion layer following the enrichment layer, etc.) and thus the
growth of [, (Z, 1) is slowed down.

These findings are compatible with some experiments (e.g. Fig. 4b) and with numerous
related simulations of slightly different models which we discuss now [71, 75, 76, 80,
81]. Brown and Chakrabarti [71]included the noise term 1r{ X, 1) (eq. (23)~(25)) in their
model, unlike Puri and coworkers [70, 77, 82, 83] who omitted the noise term, which is
believed to be appropriate for the late stages of growth for which thermal fluctuations
should be irrelevant [7]. The advantage of keeping the thermal noise terms is that the
Initial stages of phase separation can also be described, but the disadvantage is that it is
much harder to obtain data of statistical quality comparable to those shown in Figure
12 in the same range of times. Brown and Chakrabarti [71] consider the case of rather
weak surface fields, where no wetting layer develops at the wall, but rather only
somewhat elongated domains form paralled to the wall, ie. L(Z,1) > 1,(Z,7) consistent
with what has been said above, They find that the length scale Z olt) Where ¢, (Z, 7) first
changes its sign behaves as Zy(r)oct'®, and suggest a simple scaling ¢, (Z,
©) = ¢(Z/Z,(1)). As is clear from the above discussion, the latter statement is not true
for strong surface fields, where Z(t) grows much slower with time (perhaps even only
logarithmic, Z(z)ocInz, for short range surface forces). For the case of “surface-
induced nucleation” Brown et al, [88] find a crossover from a law Zy(t)oct!? to
Zy(t)oc 718, however. In this study, a metastable binary mixture in contact with a wall
is considered, for a case where nucleation of the preferred phase at the surface is greatly
facilitated in comparison with the bulk.

A very complete study of surface effects on spinodal decomposition was attempted by
Marko [76], applying the same cell dynamics technique [130] as Puri et al, [70,77, 82,
100], but including a noise term similar to Brown and Chakrabarti [71], and
considering the crossover from large noise to small noise. Marko’s work [76] contains
both simulations and very interesting phenomenological discussions both on short
range and on long range surface forces, including even hydrodynamic flow. While most
ofhis numerical results are also compatible with a behavior 7) «c 7113, except in the case
of weak noise and strong surface fields where he finds the formation of a flat surface
enriched layer, of exactly the same type as presented in Figures 5, 9, 11, which Marko
[76] calls “plating” of the surface, where a much slower growth of the thickness of the
surface domains is predicted, in agreement with the results of Puri et al, [70, 77, 82]
presented in more detail above. It should be noted, however, that typically an average
over a few runs was only performed [76], unlike the large sample of at least 50 runs used

by Puri et al, [82], and hence the statistical accuracy of the data on I(z) is somewhat
uncertain.
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Apart from these studies of the coarse-grained cont_inuum model, equatlon.(l‘)}}th;(r};:,
have also been numerical studies of more microscopic mpdels ESO, 81]. Sagu; eta ﬁ[ o
presented a very interesting Monte Carlo study c?f an Ising lattice .rnodtel such ffts;h:n ;
in Figure 7 (or egs. (43)—(48), respectively), choosing the Kawasaki [131] spin ex g

- algorithm similar to Monte Carlo studies of spinodal decomposition in the bulk [132].

They extract a length scale [, (Z, 7} from a Fourier transform of the correlation funr}tin;ln
G, (eq. (74)) and find that for strong surface exchange (Js,{J = 10) the gro'\lx;tt_roh_tt e
erface domains is significantly faster, /,(Z —0, t) oc t*/?, while in the bulk still Lifshitz-

Slezov type growth {I,(z)cc '/} is observed.

While the study of Sagui et al. [80] possibly _coul.d modgl surface effects fzr a soll‘lc(i:l ?gr?gs,
Ma et al. [81] presented molecular dynamics simulations ofg bmgry . ennz ‘;rface_
fluid mixture phase separating in the presence of a wall. Thel_r study s owet [26] i
directed spinodal decomposition in qualitative agreement with experlmelt; ol e
the simulations of the coarse grained models [70, 71,. 76]. However, suc rrr.atative]

dynamics simulations are still technically too demanding [33] to allow quanti y

significant studies of growth laws yet. -
An important aspect of the coarsening behavior in spinodal decompos:!tlo?hls ng;sﬂlolﬁ
the growth law of the characteristic]engt'h scales (egs. (2)7(5),_(81)) buta_i sotl I:: ;:1 Sl
whether the structure factor exhibits a smplc scalmg behavior, as wr1t.tenf1 ct:|i0n or
(1). This scaling behavior is equivalent to a simple scaling of the correlation function,ie. .
in the bulk we have [3, 4, 5, 7]

Gy(X, 1) =< (X, 40,0 —<d(X, 0> (B(X, 0 =G {X/L0)}, (8D

and similarly we may assume in the presence of a surface [82]

G (83)
Gy(R, Z,7)= G\ {R/L|(Z,T)}.
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Fig. 13: Normalized correlation functions G"(}’{11 —(;:’,Z,;{))//f;fg;] v&;]}erezthcﬁn((;;?sgz;[_ioiazf(ﬁ.

= @, (0, Z,7) plotted vs. the scaling variable (X ; — ()/1,(Z,7)for Z = dZ =42(b),
;3; tNhe(:Ts)amSE:(l'loicert))prarameters asin Fig. 12. Five scaled times 7 are included and distinguished
by different symbols. From Puri and Binder [82].
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A test of equation (83) shows [82] (Fig. 13) that such a scaling in the surface region

works only approximately and the shape of the scaling function G, secms to differ
appreciably from G,

All the results described so far refer to short range surface forces which are fairly natural
in the context of alloy models such as shown in Figure 7, but less natural for fluids in
contact with walls where rather long range van der Waals forces are expected to occur
[53, 54, 55, 56, 57, 144]. Such forces have been included both in treatments of the
phenomenological Ginzburg-Landau equation (eq. (19)) [71, 76, 100] and in Monte
Carlo studies of microscopic models [145]. While in the case where these long range
forces are relatively weak, the behavior is not much different from the short range case
[71,76], the slow growth of the thickness of the wetting layer that was found for strong
surface forces [70, 82] is considerably speeded up in the long range case [100].
Choosing a surface potential V,(Z)ec Z~" with n =1, 2, 3, one finds [100] a growth of
the length scale R (1) oc ™ with a growth exponent x(n) that depends on n, Figure 14.
While for the growth of wetting layers in thermal equilibrium a qualitatively similar
behavior occurs [140, 141, 142] {x(n) = 1/4, 1/6 and 1/8 for n= 1, 2, 3 if the order
parameter is conserved [ 1417 while x(n) = 1/2, 1/3 and 1/4if it is not conserved [1407},
the results for x(n) shown in Figure 14 still lack any theoretical explanation. Another
puzzling feature is the apparent crossover of the growth of the length scale [, (Z, 1) from
alaw close to I,(Z, t)oc t'/ to [(Z, 7) oc 1"/ (Fig. 15). At the same time, L, (Z, 1) seems
to get pinned! An analytic understanding of these results would be very desirable.

As a final topic of this section we briefly discuss work where phase separation in thin
films with two equivalent walls is simulated [§3, 117]. It turns out that the behavior of
thelocal correlation functions G, (R, Z,7)is very similar to that of the semi-infinite case.

---- n=1(x=030)
won=2(xs0.21)
a[

= = n=3(x=0.186)
i
2[
1

In(R, ()

3 6 9
In(t)

Fig. 14: Log-log plot of the first zero R (1) of the profile ¢,,(Z,7) versus 7, for surface potentials

V(Z)=h,Z™" with n=1, 2, 3, h; =8, g=—4, y=4, y =0. The straight lines show fits
R, (t)oc 7", the exponents x(n) are quoted in the figure. From Puri et al. [100].
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Fig. 15: Log-log plot of L (Z,7)vs. 7 (a) and L (Z,7) vs 7 (b), for the case n
pa%amaters is shown in Fig‘.‘ 14. Straight lines with slope 1/3 (and slope 1/2 in case (':1_)) are shown
for comparison. Three values of Z are distinguished by different symbols. From Puri et al. [100].
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Fig. 16: Integrated correlations G"(X, — X, 1) [eq (84)], normalized b i i
n : ) 3 : , ed by their maximum values
N(t) = G™{0,1) plotted vs. (X, — X)/I"(z)for four different times 7. All data are for film thickness

%3:] 30, and parameters i, = 4, y=4,9= —4,7 =0. Full curve shows G, From Puri and Binder

Hovfrever, for a thin film of thickness D it also makes sense to consider quantities that
are integrated over the whole film, corresponding to experiments where one has a

lateral resolution only and averages in vertical direction, One defines such an integ-
rated correlation as [83]

: 1>
G™R 7= f Gi(R 2,04z : (84)

and again an integrated length scale can be defined in analogy with equation (75)
G™(I'™(z), 7) = G'™(0, 7)/2. (85)

Figure 16 s_hows that a scaling relation analogous to equation (83) seems to work rather
well for_ G™(R, 1), but the scaling function differs appreciably from G,, although for
D — oo itapproaches the latter. Another interesting consequence of the “wetting” layers
at the walls of the thin film is that the scaling function § (eq. (1); this is defined here for a
wavevector g oriented parallel to the walls) differs appreciably from the bulk as well, for
small D the minimum for ¢ —0 seems to be suppressed altogether [83].

5. Spinodal decomposition in cylindrical pores

Wc consider first the equilibrium structure of 2 binary mixture in a cylindrical tube of
diameter D and length L, > > D and assume that D is large enough so that ¢ (eq. (M) is
solargethat &, > > L), so that the absence of true phase transitions in one-diﬂ‘nensional
geometry can be ignored. If we are at temperatures where the wall of the pore wets the
B-rich phase of the mixture, we expect in equilibrium a tube-like configuration [113];
the walls of the pore are coated with a B-rich layer, and the interior of the pore contains
a (cylindrical) domain of the A-rich phase. Note that this state of the system develops
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smoothly (without any sharp phase transition) from the one phase region, as the
temperature is lowered. Qualitatively, a cross section of the system looks as Figure 2c,
However, as metastable states we may encounter “capsules” of length | < < L, which
slowly coarsen as time passes. Similarly, at conditions where the walls of the pore are
nonwet, thermal equilibrium would require (for T< T,) phase coexistence of two
domains inside the pore, say, an A-rich phase on the left separated from a B-rich phase
on the right by a single 4—B interface. Again one may expect a metastable state with
many much smaller cylindrical domains (called “plugs™) which all have diameter D
now, and also should slowly coarsen [113]. However, for certain conditions a stable
equilibrium can exist with a single elongated capsule in the system, whose radius then
differs from the radius of the tube (which simply is fixed in terms of the average
composition and the lever rule, if one can equate the compositions of the two coexisting
phases to their bulk values). Thus, in the equilibrium phase diagram one predicts
transitions from “plug” to “capsule”, “plug” to “tube”, and “capsule” to “plug™,
respectively. The details of this behavior clearly are sensitive to the balance between the
surface forces from the walls of the pore and the interfacial tension. Since in a finite pore
there is also some surface enrichment or depletion in the plug state, in the opinion of
this author the transition from “plug” to “capsule” should be rounded (and for L
the transition from “tube” to “plug” or “capsule” also is rounded, due to the existence of
a finite correlation length £,). However, based on Monte Carlo studies of Ising models
Liu and Grest [114] claim that all these transitions are sharp: the “capsule” to “tube”
transition is interpreted as an interfacial shape transition, the other transitions are
associated with the wetting transition of the semi-finite system. In view of the rather
large errors with which these transition are located from the Monte Carlo work [114]
supplementary analytic evidence would clearly be very desirable to clarify the question
of the sharpness of these transitions.

Dynamics of phase separation in this pore geometry has been treated by Monte Carlo
methods [115], simulation of the nonlinear Ginzburg Landau model including the
thermal noise term [117], and molecular dynamics simulations [118, 119]. These
studies gave evidence that metastable “plug” configurations are indeed formed, and
sometimes evidence of tubes also is reported. While the molecular dynamics method in
principle is superior, as it automatically includes all hydrodynamics effects, in practice
the results [118, 119] are only rather qualitative, since only rather small systems could
be studied, and at best an ensemble average over very few runs can be performed. Thus
all the reports on the values of the growth exponent for the various conditions have to
be taken with great precaution [146].

Of course, the cylindrical pore is mostly considered as a generic model for the pore
structure that occurs in real porous media such as Vycor glass. Such pores in real media
are contorted and fluctuate in.their diameter and have junctions etc. For two-
dimensional pores (with one-dimensional walls), Zhang and Chakrabarti [119] have
considered a few special geometries of this kind. In addition, simulations have been
carried out also for two-dimensional caricatures of the random Vycor-like geometry
[147]. 1t was found that the kinetics of domain growth dramatically slows down as the
average size of the domains becomes comparable to the average radius of the pores
[147].
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6. Concluding remarks

In this review, we have emphasized that spinodal decomposition in confined geometry
involves a delicate interplay between the wetting phenomena often induced by the
confining walls and the coarsening that would occur in the decomposing mixture also
in the bulk. Surface-directed spinodal waves, which are observed in the early stages of
the process [64, 66, 74] and are accessible to the theoretical modeling [70, 71, 76, 84,
96], have created much interest in the subject and hence have been emphasized here,
but really are only one facet out of many related puzzling phenomena. In the present

section, we draw attention to some problems which have been out of the main focus of
this article but which clearly are of great interest,

Oneimportant phenomenon is that in thin fluid films enclosed between plates there are

hydrodynamic mechanisms of spinodal decomposition leading to a much faster growth -

than in the bulk [68, 69, 91, 148, 149]. Wiltzius et al. [68, 69, 79] suggested an universal
growth law !(t) oc £*” for a surface domain growth which has found much theoretical
attention [76, 78, 81, 98] (notwithstanding the fact that there are also experimental
observations which find either [150] the conventional power law [(fyoct, or [151] no
power law behavior at all!) Troian [78] proposed a model in which the fast mode results
from the geometrical constraint of three-dimensional growth near a two-dimensional
surface coated by a wetting layer, increasing the exponent due to coalescence of
anisotropic domains. However, assumptions made in this treatment have been exposed
to various criticisms [ 76, 81, 98]. An interesting alternative explanation due to Tanaka
[98] proposes that this growth law I{t) oc £, which is faster than any growth law
discussed for the bulk (egs. (2)(5)) is due to the hydredynamic spreading of a more
wettable fluid phase on a two-dimensional solid surface via bicontinuous fluid tubes
[92]. Tanaka [98] also presents arguments that at very late times there should be a
crossover to a law I(f) oc ¢ again, as observed by Harrison et al. [149]. Thus, it could be
that this last regime corresponds to the observations of Guenoun et al. [150]. However,
studying phase separation in strictly two-dimensional fluid mixtures (this is possible by
considering binary mixtures of amphiphiles at the air-water interface that undergo

phase separation [152, 153]) evidence for a growth law I(f)oc t” with n =028 was

presented, for a situation where the volume fraction of the minority phase was ¢ ~ 0.25.

In the opinion of the present author, still more work is needed to clarify the role of
hydrodynamic mechanisms under confinement, considering the effects of boundary

conditions at the confining surfaces, volume fraction of the minority phase, ratio of
viscosities of the two phases, etc. Even for'strictly two-dimensional systems the effects

on hydrodynamics on the growth laws are controversial [26, 27, 33, 156, 157, 158], as
discussed above. :

Also in one-dimensional capillaries the hydrodynamic mechanisms have very interes-
ing effects. Tanaka [73, 87, 1 16] pointed out that the “tybe” configuration that initially
forms becomes unstable and eventually a stable bamboolike structure is formed,
implying that this final structure is determined kinetically, but not thermodynamically.

Even if the simple concepts emphasized in the present article are appropriate, namely
formation of surface-directed spinodal waves which later coarsen, in a thin film
geometry one has to worry about the interference of the patterns originating from both
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surfaces. While in the simulation presented in Figure 5 for the time range presented t?;s
was nota problem, experimentally conditions can be reached when this m.at.te?rsl; [6{4{‘ i I%
89]. And special effects may be created by a particular preparation of the initial sta ?.1
one starts with a multilayer structure, it may happen Fhat every second layer gets
dissolved and the structure coarsens by “period doublmg” _[8_6_] rather than by an-
uniform power-law type growth law; when one starts with an ?nltially unstable bl}[c}yf:l]
[154], one finds a decay via an inhomogeneous phasc qf gzowmg droplets but the fina
stay may be an inverted bilayer (“surface phase inversion” [154]).

We also emphasize that a systematic variation of bqth film thickness D‘ and voiume
fraction ¢ for the same model system would be }}lghly des1ra¥>]e. This ls‘ystemat.u:
variation, to our knowledge, has neither been done in the numerical 1_110de ing nor 11}
experiments; Krausch et al. [85] have presente_d a very comprehenstye varla.ltjlotndgd
¢ but did not vary the film thickness; Sung et aI: |_97]_changed the ﬁlm_thmk?essd_1;i i :
not investigate the change of phase diagram with thickness systemancall_y aréd 1 id no

vary the volume fraction. Krausch et al. [85] foun_d_ that the surfacc's‘pmo a wavcds
are shallower for the case of off-critical comp051t10ns than for critical one}i,l a;;l

they pointed out a characteristic syrface-mduced asymmetry of _gr%wt . the
wetting layer grows slower if the minority phase wets the surface than in the reverse

situation.

Particularly interesting are the claims of Sul?g et al. [96:! who.suggcst t.hat .they ff;
the crossover from three-dimensional coarsening to twg-d1mens1onal coarsening (w 1h
a growth exponent of 0.44 + 0.02 which needs explanation, however) as th;y redu;:c t ci
film thickness from D = 1000 A to D = 200 A (for a polystyren_c-polybuta_dlene po );mel
blend). An unexplained feature of their results, howevgr, is that thel'r power laws
are at best observed a decade in domain size and then pinning of the size suppressei
further growth. Note also that unlike numerical work discussed her_e this expet.ﬂmgn]
refers to a case where D is less than the wavelength of surface-induced spinoda
decomposition.

In conclusion, then, it can be said that for the purely diffusivq Cahn-Hilliard-type
model of spinodal decomposition, in the absence of tlxydfodynalnlc effects, aln§ assu}l‘n-
ing short range forces due to the walls, phase separation in confined geometry is rAa_t( ]cler
well understood: for weak surface fields, there is a u}uform coarsening of the 1mtmmy
appearing surface-induced spinodal waves according to a g'rowth law l(r)gcr i
parallel and perpendicular lengths scale in the same way. Despite the fact that in r;:a
fluid mixtures hydrodynamic effects to some extcntl alwgys are present and (?ned as
presumably long range surface effects, this bc?hawor is also broadly obe:Ihve_ 12
experiments [64, 74, 85] though there it clearly is not the wh_o]e story, as emp as-lﬁo
above. For strong surface fields, there is a strong concentration os_c]llat]on n?rnimwm
the surface and the slower growth of wetting layers creates an ar.ns_otrc;py of gro o
behavior [82, 83, 100] (the perpendicular length scallc Ilgr) exhibits s Ewer .gr(i)‘\f;ICd
rather than the parallel length scale /(7). Also such a situation may havel eent ulaa W10rk
experimentally [94]. But obviously both more Fheoretlcal andlexpgrlmenda ork
is needed to reach a full understanding of the mterplalyl of finite glzctl an tspr :
effects on structure formation during spinodal decomposition. A particular intriguing
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eneralization—di
g 1zation—disregarded here completely— is the possibility that lateral phase
with an upper free surface induces a roughenri)ng of

reproduce Figure 4,
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