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Abstract
Hemocyanin is the oxygen transport protein of most molluscs and represents an important physiological factor that has to 
be well-adapted to their environments because of the strong influences of abiotic factors on its oxygen affinity. Multiple 
independent gene duplications and intron gains have been reported for hemocyanin genes of Tectipleura (Heterobranchia) 
and the caenogastropod species Pomacea canaliculata, which contrast with the uniform gene architectures of hemocyanins 
in Vetigastropoda. The goal of this study was to analyze hemocyanin gene evolution within the diverse group of Caeno-
gastropoda in more detail. Our findings reveal multiple gene duplications and intron gains and imply that these represent 
general features of Apogastropoda hemocyanins. Whereas hemocyanin exon–intron structures are identical within different 
Tectipleura lineages, they differ strongly within Caenogastropoda among phylogenetic groups as well as between paralogous 
hemocyanin genes of the same species. Thus, intron accumulation took place more gradually within Caenogastropoda but 
finally led to a similar consequence, namely, a multitude of introns. Since both phenomena occurred independently within 
Heterobranchia and Caenogastropoda, the results support the hypothesis that introns may contribute to adaptive radiation 
by offering new opportunities for genetic variability (multiple paralogs that may evolve differently) and regulation (multi-
ple introns). Our study indicates that adaptation of hemocyanin genes may be one of several factors that contributed to the 
evolution of the large diversity of Apogastropoda. While questions remain, this hypothesis is presented as a starting point 
for the further study of hemocyanin genes and possible correlations between hemocyanin diversity and adaptive radiation.
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Background

Mollusca is the second largest animal phylum and includes 
over 82,000 extant species (for numbers cf. WoRMS Edi-
torial Board 2020). The great diversity of this phylum is 
represented best by the two large gastropod groups Het-
erobranchia and Caenogastropoda which together form the 
clade Apogastropoda. They comprise over 64,000 species 
living in various habitats including the sea, fresh waters 

and terrestrial ecosystems, as well as all kinds of intermedi-
ate environments. The numerous habitat shifts, which were 
undergone multiple times independently by different groups 
of Apogastropoda, were enabled by a multitude of adapta-
tions that resulted in enormous diversification. In addition 
to the evolution of a range of different lifestyles and mor-
phological adaptations, modifications of respiratory systems 
have been essential during habitat shifts. In addition to the 
evolution of new respiratory organs such as pneumostomes 
and lungs (Dayrat and Tillier 2002; Jörger et al. 2010; Kocot 
et al. 2013; Schrödl 2014), molecular adaptations that influ-
ence respiration have been detected, e.g., adaptations of 
mitochondrial complexes of Panpulmonata to increase met-
abolic efficiency (Romero et al. 2016b) or the evolution of 
multiple metabolic states using different levels of available 
oxygen (Schweizer et al. 2019).

Another very important factor of gastropod respiration 
that has to be adapted to environmental conditions is the 
oxygen transporter hemocyanin. Previous studies have 
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shown that oxygen affinity, which strongly influences the 
function of hemocyanin, is temperature dependent (Brix 
et al. 1989, 1995; Mangum 1990; Miller 1985; Miller and 
van Holde 1974). Thus, shifts to habitats with different 
temperatures must be accompanied by adaptations of these 
proteins to sustain a sufficient oxygen supply. In particu-
lar, environments with varying temperatures, e.g., land and 
intertidal zones in contrast to solely marine habitats, require 
well-adapted oxygen transport proteins. Different hemocya-
nin paralogs can have different oxygen affinities (Swerdlow 
et al. 1996), and differential expression helps to adapt to var-
ying oxygen conditions (e.g., low oxygen pressure in eggs of 
Sepia officinalis; Gutowska and Melzner 2009; Strobel et al. 
2012). We previously reported a multitude of hemocyanin 
gene duplications in different species of Tectipleura (Schäfer 
et al. 2018). This large group of Heterobranchia comprises 
very diverse snails that conquered land and freshwater sev-
eral times independently in different lineages (Dinapoli 
and Klussmann-Kolb 2010; Jörger et al. 2010; Kano et al. 
2016; Kocot et al. 2013; Romero et al. 2016a). Therefore, we 
hypothesized that hemocyanin duplications may have helped 
to increase genetic variability by leading to a multitude of 
hemocyanin paralogs with potentially different properties 
and/or varying expression patterns. Accordingly, they may 
represent one of many factors that have enabled the exploita-
tion of new habitats and extremely large adaptive radiation 
(Schäfer et al. 2018).

The overall shape of functional molluscan hemocyanin 
proteins is a partly hollow cylinder of 4 MDa formed by 
decamers of 35 nm in diameter which can assemble into 
di- or multidecamers (Fig. 1A). These large oxygen trans-
port molecules float freely within the hemolymph of most 
molluscs (van Holde and Miller 1995). The basic struc-
ture of a single 400 kDa polypeptide subunit encompasses 
eight paralogous domains called functional units a, b, …, h 
(FU-a to FU-h), which are connected by short linker regions 
(Fig. 1B). The FUs have similar tertiary structures forming 
45 to 50 kDa large globular substructures of the polypeptides 
and comprising one oxygen binding site each. Thus, one 
didecamer, which is the most common hemocyanin molecule 
in gastropods, encompasses 160 oxygen binding sites (basic 
structure reviewed in Markl 2013 and Kato et al. 2018). The 
basic composition of hemocyanin subunits, including mul-
tiple FU domains as well as the primary structures of these 
FUs are highly conserved across all different molluscan 
classes that have been analyzed thus far (overview in Markl 
2013).

The segmentation of molluscan hemocyanin subunits 
in multiple FU domains is also represented by the highly 
conserved basic exon–intron structure of their genes 
(Lieb et al. 2001). Gene segments that encode for dif-
ferent functional units are separated by phase 1 introns 
(Fig. 1B; intron phases 0/1/2 are defined as being located 

before the first/after the first/after the second nucleotide of 
a codon). Within all FUs of molluscan hemocyanins that 
have been analyzed so far, they lie at almost equivalent 
positions just upstream of linker peptide coding regions 
(Altenhein et al. 2002; Bergmann et al. 2006; Lieb et al. 
2001; Schäfer et al. 2021b). Accordingly, these introns 
are termed linker introns, while those lying within FU-
coding regions are termed internal introns. The numbers 
and positions of internal introns are less conserved and 
differ between hemocyanins of different molluscan line-
ages (Fig. 1B). Previous studies showed that the number of 
these internal introns varies greatly between Octopodoidea 
(5 internal introns) or Lepetellida (Vetigastropoda; 8 inter-
nal introns) and Tectipleura (Heterobranchia; 46 internal 
introns) but are conserved within these different groups 
of molluscs (Altenhein et al. 2000, 2002; Lieb et al. 2001; 
Yao et al. 2019).

Despite the strong conservation of the cylindrical hemo-
cyanin structure, their subunits and their genes, deviations 
from these basic structures have been described for several 
molluscan groups. These deviations mostly concern the 
number of functional units which changed due to domain 
duplications or losses, e.g., hemocyanins of Cephalopoda 
lack FU-h (van Holde and Miller 1995). While the basic 
structure of gastropod hemocyanins corresponds to the 
typical eight functional unit domains, multiple variations 
have been found for hemocyanins of Caenogastropoda and 
are discussed below.

Within the extremely large and diverse Cerithioidea 
(Cerithiida, Caenogastropoda), the so-called mega-hemo-
cyanin has been identified (Lieb et al. 2010). It represents 
a hemocyanin tridecamer that includes two typical decam-
ers built from 400 kDa subunits and additionally one larger 
decamer that is located between the two typical decam-
ers. This larger decamer is composed of subunits with a 
molecular mass of 550 kDa. These 550 kDa mega-hemo-
cyanin subunits lack FU-g and FU-h but encompass six 
additional functional units which are paralogous to FU-f 
(FU-f1, FU-f2 … FU-f6) (Gatsogiannis et al. 2015). These 
additional FUs reach within the center of the molecule 
and fill the mega-hemocyanin cylinders. Therefore, they 
increase the oxygen transport capacity. The viscosity and 
the colloid-osmotic pressure of the hemolymph, however, 
remain the same as in a typical hemocyanin tridecamer, 
thus, the oxygen transport efficiency is increased (Gatso-
giannis et al. 2015). The ability to differentially express 
the 400  kDa and 550  kDa hemocyanin subunits most 
likely facilitates variable ratios of typical hemocyanins 
and mega-hemocyanins. This may further help to adapt 
to different living conditions and may have accelerated 
the adaptive radiation of the extremely diverse group of 
Cerithioidea (Lieb et al. 2010).
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Recently, we reported an additional variation in one of 
the two hemocyanin subunits of Rapana venosa (RtH2 
derived from the synonym R. thomasiana) and Nucella 
lapillus (NlH2) (Schäfer et al. 2021a). Both species belong 
to Muricidae, which represents another main group of 
Caenogastropoda (Fig. 2). We identified 118 (in RtH2) and 
340 (in NlH2) highly hydrophilic amino acids within the 
N-terminal region of FU-g in addition to the highly con-
served amino acids within a typical molluscan hemocya-
nin. These additional amino acids seem to build an extra 

mass within the hemocyanin didecamer of up to 800 kDa 
and may influence the function of this hemocyanin mol-
ecule within these species (Schäfer et al. 2021a).

Chiumiento et  al. (2020) analyzed hemocyanins of 
Pomacea canaliculata, a species that belongs to Ampul-
lariida and represents a third main group of Caenogas-
tropoda (Fig. 2). They identified four hemocyanin subunits 
that correspond to the basic polypeptide structure of this 
oxygen transporter but encompass a remarkably larger 
number of introns than hemocyanins of Vetigastropoda 

(A)

(B)
side view top view side view collar

Tec�pleura (Heterobranchia)

Lepetellida (Ve�gastropoda)

Octopodoidea

Nau�lus 

FU-b FU-d FU-e FU-f FU-gFU-c FU-hFU-a

= linker intron; all in Phase 1 = internal intron; Phase 0, 1 and 2= linker pep�de

Fig. 1  Molluscan hemocyanin: molecules and genes. A Typical gas-
tropod hemocyanin didecamer and based on the 9 Å model of KLH1 
(Gatsogiannis and Markl 2009, PDB: 4BED). The wall (FU-a–
FU-f) is colored in dark blue. The collar is restricted to both sides 
of the didecamer and built by 10 FU-g (cyan) and 10 FU-h (light 
blue). Side and top views are depicted with one hemocyanin subu-
nit dimer highlighted in gold (wall) and gray/yellow (collar: FU-
g/h). B Exon–intron structure of molluscan hemocyanins. Shown 
are coding sequences of molluscan hemocyanins. Their genes typi-
cally contain ~ 10,200–10,300 nucleotides coding for the eight func-
tional units (FU-a, FU-b, …, FU-h) of one hemocyanin polypeptide 
subunit. FU-h is approximately 300 nucleotides longer than the other 

functional units. Hemocyanin genes in Cephalopoda do not contain 
FU-h. Large boxes represent functional units (FU-a, FU-b, …, FU-h), 
and small boxes between them represent linker peptides. Arrows 
symbolize intron positions in hemocyanin genes with respect to the 
coding sequences. Linker introns are conserved in phase 1 within all 
known hemocyanin genes (yellow arrows). Internal introns occur in 
all intron phases and are color-coded accordingly: located before the 
first (phase 0, white), after the first (phase 1, gray) or after the second 
(phase 2, black) nucleotide of a codon. Hemocyanin genes in Tecti-
pleura comprise a significantly larger number of internal introns than 
those in Lepetellida, Octopodoidea or Nautilus adapted from Schäfer 
et al. 2021a (Color figure online)
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or Cephalopoda (27–32 in P. canaliculata, only 9–15 in 
Vetigastropoda or Cephalopoda; Altenhein et al. 2002; 
Bergmann et al. 2006; Lieb et al. 2001; Yao et al. 2019). 
Since hemocyanin genes of Tectipleura include 53 introns 
each (Schäfer et al. 2021b), large numbers of introns in 
hemocyanin genes may be a feature of Apogastropoda 
in general. According to Chiumiento et al. (2020), the 
exon–intron architectures of the four hemocyanin genes of 
P. canaliculata differ from each other. This contrasts with 
the exon–intron structures of hemocyanins that have been 
analyzed for Vetigastropoda (Lepetellida), Heterobranchia 
(Tectipleura) and Octopodoidea, which are highly con-
served across different hemocyanin paralogs (Altenhein 
et al. 2002; Schäfer et al. 2021b).

Motivated by the above exceptions in the organization 
of caenogastropod hemocyanins, we analyzed the evolu-
tion of the genes coding for this oxygen transporter within 
Caenogastropoda in more detail. Therefore, we inferred 
the evolutionary background of caenogastropod hemocya-
nin genes by reconstructing phylogenetic trees and com-
pared their exon–intron structures. These results revealed 
a detailed, novel scenario of intron evolution in gastropod 
hemocyanins. Therefore, our analysis included the previ-
ously described hemocyanins of the Cerithioidea Mela-
noides tuberculata  [MtH400 and  MtH550 (Lieb et al. 2010), 
the Muricidae species R. venosa and N. lapillus (RtH and 
NlH; Gebauer et al. 1999; Schäfer et al. 2021b) and three 
hemocyanins of P. canaliculata (Ampullariida; Chiumiento 
et al. 2020)]. Additionally, we characterized hemocyanins 
from Littorina saxatilis, a species that belongs to the same 
large group of Hypsogastropoda as the Muricidae R. venosa 

and N. lapillus but does not belong to the siphonate clade 
(Fig. 2; Ponder et al. 2019).

Methods

Animal Sampling and DNA Isolation

One individual of M. tuberculata was taken from a fresh-
water aquarium at the Institute of Molecular Physiology in 
Mainz. Three specimens of N. lapillus were collected at the 
western Atlantic coast of Brittany, France (Schäfer et al. 
2021a). DNA of one individual of both species was iso-
lated from foot tissue using the E.Z.N.A.® Mollusc DNA 
Kit (Omega Bio-Tek, Norcross, GA, USA). Via a Nanodrop 
(Thermo Fisher Scientific, Waltham, MA, USA), the DNA 
was checked for purity and quantified. Subsequently, the 
DNA was sent to StarSeq in Mainz, Germany, for next-
generation sequencing (NGS, Illumina Next Seq500) and 
library preparation to subsequently enable the reconstruction 
of hemocyanin gene structures (see below).

In Silico Assembly of Hemocyanin cDNAs of L. 
saxatilis and P. canaliculata

Hemocyanin cDNA sequence assemblies were per-
formed with Geneious 9.1.8 (Kearse et  al. 2012) using 
publicly available transcriptomic raw data of L. saxatilis 
(SRR9651721, SRR9651722, SRR9651724) and P. canali-
culata (SRR6429145, SRR6429146, SRR6429153) to obtain 
hemocyanin coding sequences. Paired-end reads were set, 

Hypsogastropoda
Sorbeoconcha

Caenogastropoda
ApogastropodaCephalo-

poda
Gastropoda

= reannota�on of published gene structures
= newly derived gene structures

= already published gene structures

Fig. 2  Broad systematics of Gastropoda focusing on Caenogas-
tropoda. Despite a large number of phylogenetic studies on Caeno-
gastropoda, many phylogenetic relationships within that large group 
of gastropods remain unresolved. The depicted systematics are com-
bined from different studies by Ponder et al. (2019). Caenogastropoda 

species included in this study and their numbers of hemocyanin (Hc) 
paralogs are shown in brackets. Groups in which hemocyanin gene 
structures are newly derived in this study, reannotated or already pub-
lished are indicated
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sequencing adapters were removed, and transcriptomic raw 
reads were quality trimmed with Geneious 9.1.8 (Kearse 
et al. 2012). Processed reads of L. saxatilis were mapped 
to the previously published cDNA sequence of the 400 kDa 
hemocyanin of M. tuberculata (KC405575, overlap identity: 
70%). Those of P. canaliculata were mapped to the cDNA 
sequences that we deduced from the published hemocyanin 
gene structures (Chiumiento et al. 2020). Reads that mapped 
against the known references were used as references for 
iterative mappings of the remaining reads to elongate cDNA 
fragments and to obtain the full-length coding sequences 
[minimum overlap: 60 nucleotides; minimum overlap iden-
tity: 99%; maximum mismatches: 1%; using Geneious 9.1.8 
(Kearse et al. 2012)]. This mapping process was reiterated 
until the isolated fragments resulted in complete hemocyanin 
coding sequences.

The existence of multiple hemocyanin genes per species 
and the repetitive structure of their cDNAs, which con-
tain sequences coding for functional units that share some 
highly conserved amino acid motifs, may challenge correct 
assemblies. To preclude such misassemblies, we verified the 
sequences by (i) low sensitive mappings that enable misas-
sembly detection, (ii) analyzing the sequences for highly 
identical sections between hemocyanin sequences of a spe-
cies to enable manual double checking for correct assem-
blies and (iii) using paired-end reads. For a more detailed 
description of sequence assembly and verification, see 
Schäfer et al. 2021a.

Reconstructing Exon–Intron Structures 
of Hemocyanin Genes

For the reconstruction of gene architectures, we used 
Geneious 9.1.8 as a bioinformatic tool (Kearse et al. 2012) 
to map genomic NGS data to hemocyanin coding sequences. 
For M. tuberculata and N. lapillus, we used NGS data 
sequenced by StarSeq in Mainz, Germany (see above), 
which included 104,512,762 and 195,550,720 sequences, 
respectively. Public genomic NGS data were used for R. 
venosa (SRR5371534; 661,123,146 sequences) and L. saxa-
tilis (SRR7976330; 502,027,256 sequences). All genomic 
NGS data were processed as described for transcriptomic 

raw reads. Trimmed and paired-end reads were then mapped 
to coding sequences of R. venosa (BK014286, BK014287), 
N. lapillus (MT939254, MT939255), M. tuberculata 
(KC405575, KC405576) and L. saxatilis (obtained in this 
study, BK014376, BK014375). The mapping results showed 
that some parts of the cDNA sequences were not covered by 
genomic NGS data or showed inconsistencies. These sec-
tions were used to subdivide the cDNA sequences into dif-
ferent sections representing hypothetical exons. To obtain 
all splice sites, these sections were extended by repetitive 
mappings of genomic NGS data until their 3’ and 5’ ends 
deviated by at least ten base pairs from cDNA sequences 
(procedure explained in more detail in Schäfer et al. 2021b). 
In this way, we derived intron positions within hemocyanin 
genes. Therefore, our analyses did not include characteriza-
tion of intron lengths or sequences. The corrected cDNA 
sequences of P. canaliculata (BK014379, BK014378, 
BK014377) were compared with genomic sequences by 
Chiumiento et al. (2020; cf. https:// doi. org/ 10. 5061/ dryad. 
15nd8 v3) to deduce splice site positions.

Sequence Alignment and Phylogenetic Tree 
Generation

We used MEGA 7 (Kumar et al. 2016) to align amino acid 
sequences by applying the implemented Muscle algorithm 
and to determine LG + G + I + F as the best evolutionary 
model. This model was used to compute the maximum like-
lihood tree with branch supports based on 100 bootstrap rep-
licates using MEGA version 7 (Kumar et al. 2016). Hemo-
cyanin sequences of the Cephalopoda Nautilus pompilius 
and Enteroctopus dofleini were used as outgroups. We used 
MrBayes 3.2.6 (Huelsenbeck and Ronquist 2001), which 
is implemented in Geneious 9.1.8 (Kearse et al. 2012), to 
conduct Bayesian inference based on two parallel runs of 
four Monte Carlo Markov chains (MCMC) with one million 
generations, a subsampling frequency of 500 and a burn-in 
of 250,000.

Table 1  Hemocyanins of 
L. saxatilis (LisaH) and P. 
canaliculata (PcH)

Accession numbers; the lengths of coding sequences (CDS) in nucleotides (nt); the number of amino acids 
(aa) for the deduced primary structure of the polypeptides; and the calculated molecular weight in kDa are 
shown

LisaH1 LisaH2 PcH I PcH IIb PcH III

Accession number BK014376 BK014375 BK014379 BK014378 BK014377
CDS (nt) 10,308 10,278 10,278 10,287 10,272
Primary structure (aa) 3436 3426 3426 3429 3424
Deduced molecular mass (kDa) 392 391 391 391 390

https://doi.org/10.5061/dryad.15nd8v3
https://doi.org/10.5061/dryad.15nd8v3
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Results

To reveal relationships between different hemocyanin para-
logs and to identify hemocyanin gene duplication events 
within Caenogastropoda, we inferred the phylogeny of 
these proteins, including eleven hemocyanin sequences of 
over 10,000 nucleotides each from species that belong to 
four different main groups of Caenogastropoda. To further 
investigate the evolution of hemocyanin genes in Caenogas-
tropoda, we compiled exon–intron structures for all eleven 
caenogastropod hemocyanin genes. These analyses include 
the previously published hemocyanin cDNA sequences 
of the Muricidae species (siphonate Hypsogastropoda) N. 
lapillus (two hemocyanin paralogs: MT939254, MT939255) 
and R. venosa (two hemocyanin paralogs: BK014286, 
BK014287) and of the Cerithioidea species M. tuberculata 

(two hemocyanin paralogs: KC405575, KC405576). Addi-
tionally, we revised the hemocyanin sequences of the Amp-
ullariida species P. canaliculata (three hemocyanin paralogs: 
BK014379, BK014378, BK014377) and newly assembled 
the cDNA of the hemocyanins of L. saxatilis (two hemocya-
nin paralogs: BK014376, BK014375), which belongs to the 
asiphonate Hypsogastropoda (Fig. 2).

Canonical Hemocyanin Coding Sequences Identified 
for L. saxatilis and P. canaliculata

We obtained two complete hemocyanin coding sequences 
for L. saxatilis by assembling public transcriptomic NGS 
data (LisaH1, LisaH2). For P. canaliculata, four hemocy-
anin cDNAs were published by Chiumiento et al. (2020). 
As previously reported, these sequences contained some 

NlH1
RtH1

NlH2
RtH2

LisaH1
LisaH2

MtH400
MtH550 a-f
PcH I

PcH IIb
PcH III
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CaH alpD
HpH alpD

CaH alpN
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93/-
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Cerithiida
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(Vetigastropoda)

= hemocyanin gene duplications in Caenogastropoda / Tectipleura and Lepetellida/

Caeno-
gastropoda

Apogastropoda

Fig. 3  Maximum likelihood (ML) tree of gastropod hemocyanins. 
The phylogenetic tree is based on an amino acid sequence alignment 
and conducted with MUSCLE (Edgar 2004) implemented in MEGA7 
(Kumar et  al. 2016) using the LG + G + I + F model. Independ-
ent hemocyanin gene duplications (symbolized by orange arrows) 
occurred within all main groups of Caenogastropoda included in this 
study, namely, within Ampullariida, Cerithiida and Hypsogastropoda. 
Therefore, the tree includes hemocyanins from the following Cae-
nogastropoda: Pomacea canaliculata (PcH I + IIb + III), M. tubercu-
lata  (MtH400+550), Littorina saxatilis (LisaH1 + 2), Rapana venosa 
(RtH1 + 2) and Nucella lapillus (NlH1 + 2). It further encompasses 
hemocyanins from Tectipleura (Helix pomatia HpHαD + αN + β; 
Cornu aspersum CaHαD + αN + β; Lymnaea stagnalis LsH1 + 2) and 
Lepetellida (Haliotis tuberculata HtH1 + 2; Haliotis rubra HrH1 + 2; 

Megathura crenulata KLH1 + 2). Gene duplications within hemo-
cyanins from Tectipleura and Lepetellida are represented by gray 
arrows. The tree was rooted with hemocyanins of the Cephalopoda 
Nautilus pompilius (NpH) and Enteroctopus dofleini  (OdHA and 
 OdHG). Nodes are congruent with those obtained by Bayesian infer-
ence except for the position of LisaH2, which is grouped together 
with hemocyanins of Muricidae in the Bayesian analysis tree (Supple-
ment 1). Hemocyanin gene duplications in Caenogastropoda are not 
affected by the previously described deviations from maximum like-
lihood or Bayesian inference. Nodes are labeled with bootstrap (BS) 
percentages based on 100 replicates from ML analyses and posterior 
probabilities (PP) computed by MrBayes (BS/PP). Asterisks indicate 
nodes supported by BS ≥ 99%/PP ≥ 0.99
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inconsistencies (cf. Schäfer et al. 2021a). By assembling 
transcriptomic NGS data, we identified and corrected three 
of those hemocyanin cDNA sequences (PcH I, IIb, III). This 
facilitated comparative phylogenetic analyses and helped to 
elucidate the correct gene architectures (see below).

The obtained hemocyanin sequences of L. saxatilis and 
P. canaliculata include eight canonical FUs (a, b, …, h) 
and comprise approximately 10,250–10,300 nucleotides, as 
is typical for gastropod hemocyanins (cf. Lieb et al. 2000, 
2004; Schäfer et al. 2018). Accession numbers, lengths and 
molecular weights for all hemocyanin cDNA sequences and 
primary structures of L. saxatilis and P. canaliculata are 
shown in Table 1.

Phylogenetic Analyses Reveal Multiple Independent 
Gene Duplications in Different Caenogastropods

Molecular phylogenetic trees based on amino acid align-
ments of full-length protein sequences and inferred 
by maximum likelihood and Bayesian analyses are 

well-supported (Fig. 3, Supplement 1). These trees are 
largely congruent with each other and share the same 
nodes, except for minor differences in one hemocyanin 
from L. saxatilis (LisaH2), which is grouped with hemo-
cyanins from Muricidae in the Bayesian analysis. The 
obtained phylogenies of caenogastropod hemocyanins 
are in accordance with the currently accepted systematic 
relationships of the four groups Muricidae, Littorinida, 
Cerithiida and Ampullariida (Fig. 2; Bouchet et al. 2017; 
Ponder et al. 2019). The phylogenies obtained by maxi-
mum likelihood and MrBayes both reveal that the mul-
tiple hemocyanin genes from different analyzed species 
resulted from independent gene duplications that occurred 
after the diversification of Caenogastropoda into Ampul-
lariida, Cerithiida and Hypsogastropoda (orange arrows 
in Fig. 3). Although the position in the various phyloge-
netic trees of LisaH2 is uncertain within the hemocyanins 
of Hypsogastropoda, the results of maximum likelihood 
and Bayesian inferences both support multiple independ-
ent duplications. The gene duplication that led to the two 

Table 2  FU-internal introns of caenogastropod hemocyanins

Internal introns vary between hemocyanin genes of different Caenogastropoda groups and between different genes within the same caenogastro-
pod species. These results contrast with the highly conserved exon–intron structures of Tectipleura (Heterobranchia) and Lepetellida (Vetigas-
tropoda) represented in this table by the hemocyanins of Helix pomatia (HpH) and Haliotis tuberculata (HtH). The table shows the numbers of 
introns lying within the functional units of hemocyanins of R. venosa (RtH, two paralogs), N. lapillus (NlH, two paralogs), L. saxatilis (LisaH, 
two paralogs), M. tuberculata (MtH, two paralogs) and P. canaliculata (PcH, three paralogs). The numbers of internal introns are shown for 
the specific FUs and the signal peptide (sign.). Additionally, the table includes the sum of the internal introns of FU-a to FU-f (these FUs are 
included in all represented hemocyanins), as well as the total number of internal introns and the respective average number (Ø) of internal 
introns per functional unit in each hemocyanin

FU Hc

RtH1 NlH1 RtH2/NlH2 LisaH1 LisaH2 MtH400 MtH550 PcH I PcH IIb/ PcH III HpH HtH

Sign 2 2 2 2 2 2 2 2 2 1 2
-a 5 5 5 5 5 6 7 4 3 5 3
-b 4 4 4 4 5 6 4 4 3 6 0
-c 2 3 2 2 3 5 5 2 1 6 0
-d 6 6 4 5 5 7 5 1 1 5 0
-e 5 5 5 5 6 6 6 5 3 5 0
-f 3 3 3 4 4 6 5 4 4 5 1
-g 4 4 4 4 4 7 – 2 1 5 2
-h 5 5 4 5 4 9 – 3 3 7 0
-f1 – – – – – – 2 – – – –
-f2 – – – – – – 6 – – – –
-f3 – – – – – – 4 – – – –
-f4 – – – – – – 5 – – – –
-f5 – – – – – – 3 – – – –
-f6 – – – – – – 3 – – – –
Σ(total, incl. sign.) 36 37 33 36 38 54 57 27 21 45 8
Σ(a–f) 25 26 23 25 28 36 32 20 15 32 4
Σ(FUs) 34 35 31 34 36 52 55 25 19 44 6
Ø Intron
/FU

 ~ 4.3  ~ 4.4  ~ 3.9  ~ 4.3  ~ 4.5  ~ 6.5  ~ 4.6  ~ 3.1  ~ 2.4  ~ 5.5  ~ 0.8
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Muricidae Hc 1 NlH1, RtH1

Muricidae Hc 2 NlH2, RtH2

Nau�lus Hc NpH

Octopodoidea Hcs OdH, OvH, ObH

Lepetellida Hcs KLH,HdH, HrH, HtH

Tec�pleura Hcs (LsH, AcH, HpH, CaH)

Ampullariida Hc 2+3 PcH IIb, PcH III

Ampullariida Hc 1 PcH I

Cerithiida Hc550 kDa MtH500

Cerithiida Hc400 kDa MtH400

Li�orinida Hc 2 LisaH2

Li�orinida Hc 1 LisaH1

= internal intron
in Phase 0, 1 and 2= linker intron, all in Phase 1 = addi�onal intron in only one of

the represented gene structures

Caeno-
gastropoda

Hetero-
branchia

Ve-
gastropoda

Cephalo-
poda

Fig. 4  Hemocyanin gene structures of Caenogastropoda, Het-
erobranchia, Vetigastropoda and Cephalopoda. The comparison 
of exon–intron structures indicates that nine of the eleven analyzed 
hemocyanin genes in Caenogastropoda vary in their gene structures 
concerning the number and positions of internal introns. The cod-
ing sequences of hemocyanins (large boxes: functional units; small 
and gray boxes: linker peptides) are shown, and intron positions 
within their genes are represented by arrows (cf. alignment in Sup-
plement 2). To enable the comparability of gene structures, we did 
not enlarge the box representing the FU-g coding sequence of Muri-
cidae Hc2 despite 118 and 340 additional amino acids being iden-
tified for RtH2 and NlH2 (cf. Supplement 2, Schäfer et  al. 2021a). 
Instead, we included a violet triangular box on top of the box rep-
resenting the additional amino acids. Introns are divided into linker 
introns, which are highly conserved within all molluscan hemocya-
nins (bold yellow arrows), and internal introns, which differ between 
various genes (thin arrows in phase 0: white; phase 1: gray or phase 

2: black). Smaller arrows with a star on top represent internal introns 
that were obtained in only one hemocyanin from one structure type 
(one intron within NlH1, Muricidae; and one within LsH1, Tecti-
pleura). The comparison includes all of the hemocyanins analyzed 
in this study from the following Caenogastropoda species: Nucella 
lapillus (NlH1 + 2), Rapana venosa (RtH1 + 2), Littorina saxatilis 
(LisaH1 + 2), Melanoides tuberculata  (MtH400;  MtH550 FU-a–FU-f; 
exon–intron structures of the additional functional units  f1,  f2, …, 
 f6 of the mega-hemocyanin of M. tuberculata are shown in Supple-
ment 3) and P. canaliculata (PcH I + IIb + III). Additionally, con-
served gene structures are included for hemocyanins of Tectipleura 
(Lymnaea stagnalis LsH, Aplysia californica AcH, Helix pomatia 
HpH and Cornu aspersum), Lepetellida (Megathura crenulata KLH, 
Haliotis diversicolor HdH, Haliotis rubra HrH, Haliotis tuberculata 
HtH), Octopodoidea (Enteroctopus dofleini OdH, Octopus vulgaris 
OvH and O. bimaculoides ObH) and Nautilus pompilius NpH (Color 
figure online)
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hemocyanin paralogs of R. venosa and N. lapillus most 
likely took place in a common ancestor of both Muricidae 
species but after separation of siphonate and asiphonate 
Hypsogastropoda (Fig. 3).

High Variability of Hemocyanin Gene Architectures 
in Caenogastropoda

Characterization of the gene structures of hemocyanins 
in five Caenogastropoda (each species has 2–3 hemocya-
nin paralogs; Table 2) revealed that nine of the eleven 
hemocyanin genes differ in both the number and relative 
intragene positions of internal introns (Fig. 4). Therefore, 
we obtained exon–intron architectures for hemocyanin 
genes from different caenogastropod lineages (variations 
between Muricidae, Littorinida, Cerithioidea and Ampul-
lariida and between different hemocyanin paralogs within 
the same species, e.g., between RtH1 and RtH2 of R. 
venosa or LisaH1 and LisaH2 of L. saxatilis). Identical 
exon–intron structures are only present for hemocyanin 
gene 2 of the two Muricidae species (RtH2 and NlH2; 
RtH1 and NlH1 vary in one intron but differ strongly from 
RtH2 and NlH2) and for the hemocyanin genes PcH IIb 
and PcH III of P. canaliculata. 

The total numbers of internal introns of caenogastro-
pod hemocyanins vary between 21 and 57 (Table 2). The 
average numbers of internal introns per functional unit 
domain vary between 2.4 introns/FU (PcH IIb/III) and 6.5 
introns/FU  (MtH400). The comparison with known gas-
tropod hemocyanin genes shows that all analyzed hemo-
cyanins of Caenogastropoda contain a greater number of 
internal introns than those of Vetigastropoda (Altenhein 
et al. 2002; Lieb et al. 2001). Hemocyanins of Caenogas-
tropoda contain fewer internal introns per functional unit 
than those of Tectipleura (cf. HpH in Table 2 and Fig. 4; 
Schäfer et al. 2021b), with the exception of  MtH400 of M. 
tuberculata. Hemocyanin genes of this cerithioid encom-
pass the greatest number of internal introns that have been 
identified thus far.

Linker introns are highly conserved across all molluscan 
hemocyanins that have been analyzed thus far (Bergmann 
et al. 2006; Lieb et al. 2001; Schäfer et al. 2021b) and are 
also present in hemocyanins of Caenogastropoda (Fig. 4). 
However, we did not detect an intron within the linker pep-
tide-coding region between FU-f1 and FU-f2 of the mega-
hemocyanin gene in M. tuberculata (star in Supplement 3). 
Thus, the  MtH550 gene is not only the first mega-hemocyanin 
with a gene structure that has been analyzed but also the 
first hemocyanin gene that has been detected to lack a linker 
intron between two FU-coding regions. All other analyzed 
hemocyanin genes in Caenogastropoda include typical phase 
1 linker introns between all FU-coding regions (Fig. 3, 

Supplement 2 + 3), which are characteristic of molluscan 
hemocyanins (Lieb et al. 2001).

Discussion

Similar to most molluscs, Caenogastropoda use hemocya-
nin as an oxygen transporter. This respiratory protein has 
previously been identified within the Muricidae species 
R. venosa (Gebauer et al. 1999) and N. lapillus (Schäfer 
et al. 2021a), within the cerithioid M. tuberculata (Lieb 
et al. 2010) and within the apple snail P. canaliculata 
(Chiumiento et al. 2020). All of these Caenogastropoda 
species possess at least two hemocyanin genes like other 
Gastropoda (Gebauer et  al. 1999; Markl et  al. 1991; 
Schäfer et al. 2018). This gene system may enable differ-
ential expression of several hemocyanin genes as shown 
for Cephalopoda (Oellermann et al. 2015a, 2015b; Thonig 
et al. 2014). Similar regulatory mechanisms may help Cae-
nogastropoda to adapt to different living conditions by sus-
taining oxygen supply despite changes in partial oxygen 
pressure and temperature, as hypothesized for Tectipleura 
(further discussed below under “Evolutionary constraints 
on hemocyanin genes in Apogastropoda?” and in Schäfer 
et al. 2018). by analyzing public transcriptomic NGS data, 
we corrected inconsistencies within published hemocya-
nin cDNA sequences from P. canaliculata and obtained 
two hemocyanins from L. saxatilis, which belongs to the 
asiphonate Hypsogastropoda and thus represent another 
lineage of the large group of Caenogastropoda (Fig. 2). 
Finally, we conducted molecular phylogenies based on 
maximum likelihood (Fig. 3; Felsenstein 1981; Kumar 
et al. 2016) and MrBayes (Supplement 1; Huelsenbeck 
and Ronquist 2001; Mau and Newton 1997) and analyzed 
the hemocyanin gene structures of the following species: 
R. venosa, N. lapillus, L. saxatilis, M. tuberculata and 
P. canaliculata (Fig. 4). Our analyses revealed ongoing 
hemocyanin gene evolution within all major groups of 
Caenogastropoda that were analyzed within this study: 
siphonate and asiphonate Hypsogastropoda (Muricidae 
and Littorinida), Cerithiida and Ampullariida (Fig. 2). 
Since we analyzed only one or two species per group and 
basal groups as Cyclophorida and Viviparida were not 
included in the study (Fig. 2), our analysis will not provide 
a comprehensive overview of hemocyanin gene evolution 
within Caenogastropoda. Nevertheless, by including spe-
cies of various large groups of Caenogastropoda, our study 
gives a first insight into hemocyanin gene evolution within 
the diverse group of Caenogastropoda. Furthermore, the 
observed phenomenon is similar to that in their sister 
group Heterobranchia and thus will be discussed for the 
whole group of Apogastropoda.



648 Journal of Molecular Evolution (2021) 89:639–655

1 3

Multiple Independent Hemocyanin Gene 
Duplications: A Phenomenon of Apogastropoda

Both, maximum likelihood analysis and Bayesian phy-
logenetic inferences (Fig. 3, Supplement 1) revealed that 
multiple hemocyanin paralogs identified for P. canalicu-
lata, M. tuberculata, L. saxatilis and the two Muricidae 
species R. venosa and N. lapillus resulted from independ-
ent gene duplications. This result is similar to the multiple 

gene duplications in Tectipleura (Heterobranchia), which 
took place independently in different groups (e.g., Stylom-
matophora, Hygrophila, Anaspidea; Schäfer et al. 2018) 
and thus may be a general phenomenon for Apogastropoda. 
These multiple independent gene duplications contrast with 
the much more conserved hemocyanin genes 1 and 2 of 
Lepetellida analyzed within H. tuberculata, Haliotis diver-
sicolor and Megathura crenulata (Lieb and Markl 2004; Yao 
et al. 2019). These paralogous hemocyanin genes resulted 

Gastropoda

Ve�gastropoda
(Lepetellida)

Apogastropoda

Caenogastropoda
(in total: ~33,000 species)

Heterobranchia
(Tec�pleura: 26,000 species)

Ampullariida
(P. canaliculata)

Sorbeoconcha
(in total: ~29,000 species)

Cerithioidea
(M. tuberculata)

Hypsogastropoda
(in total: ~27,000 species)

asiphonate
(Li�orina saxa�lis)

siphonate
(Muricidae: 

1,863 species)

1 2 1 21 1 11122 2 2 121 2 1 12 2 12 21 1

121111 121 1

1 1

112 2 12

8

4

42–43  

12–13

3–11  

3–5

19–33

7–12

1–10

5–8
1 2 2 2 2221 1 1

1

= internal intron
in phase 0/1/2

= linker
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= intron in only one hc gene of one
species o	he represented group

1 = intron only presen�n hc gene
structure 1 or 2 o	he species

2= presence in ancestor cannot be
decided on parsimony principle

Fig. 5  Maximum parsimony scenario of exon–intron architecture 
evolution within gastropod hemocyanins. The phylogenetic tree on 
the left shows the relation of gastropod species with known hemo-
cyanin gene architectures (Ponder et al. 2019). For groups of Apogas-
tropoda, the number of included species according to the WoRMS 
Editorial Board (2020) is also shown. If gene structures are known 
for only one representative of a lineage, the specific species is given. 
On the right, hypothetical gene structures are shown for the common 
ancestors. These structures are based on the maximum parsimony 
principle, assuming that introns that are at the same position concern-
ing the coding sequences of hemocyanin genes of sister groups were 
already present in hemocyanin genes of a common ancestor. The 
same applies for intron losses if both descendants do not include a 
formerly present intron. The deduced model of gene structure evolu-
tion within gastropods shows a gradual gain of introns during the evo-
lution of Caenogastropoda. The level of intron gains varies between 
the different hemocyanin lineages and is numbered on the left side of 
the taxonomic tree. If the exact number of intron gains is uncertain, 

we indicated the range between the possible minimum and maximum. 
We were unable to exactly assess the origin of every intron because 
two independent intron gains within two descendant species represent 
the same number of evolutionary events as one gain within a com-
mon ancestor together with an intron loss within one gene of one of 
the descendants. We highlighted these cases with smaller arrows in 
the ancestor genes. In contrast to the hemocyanin gene structures in 
Tectipleura, those in Caenogastropoda vary not only between differ-
ent caenogastropod lineages but also within paralogous genes within 
the same species. We symbolized such introns that are present in the 
gene structure of only one hemocyanin gene of the same species with 
small arrows with the number of the gene in which it is located on 
top. Arrows with a star on top represent deviations from a conserved 
group-specific hemocyanin gene structure [e.g., additional Hygroph-
ila-specific intron, see Fig. 4 and cf. Schäfer et al. (2018)]. As in all 
other molluscan hemocyanins, linker introns are located at the same 
position within the sequences coding for linker peptides between all 
canonical functional units
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from one gene duplication that took place before the split of 
Lepetellida into Haliotoidea and Fissurelloidea ~ 343 million 
years ago (Lieb and Markl 2004) and has been maintained in 
both lineages. Thus, the comparison of hemocyanin genes of 
Apogastropoda and Vetigastropoda indicates strongly differ-
ent evolutionary dynamics of hemocyanin gene duplications 
during the evolution of these gastropod lineages.

Extensive Variability of Hemocyanin Gene 
Structures of Caenogastropoda Suggests a Higher 
Continuous Intron Gain Rate than that Identified 
in any other Molluscs

In addition to multiple independent gene duplications, our 
results on exon–intron architectures also reveal a high rate 
of evolutionary changes in hemocyanin genes in Caenogas-
tropoda. We have previously reported that hemocyanin genes 
of Tectipleura encompass a significantly larger number of 
FU-internal introns (on average 5.6 introns per FU; Schäfer 
et al. 2021b) than hemocyanin genes of Vetigastropoda or 
Cephalopoda (≤ 0.8 introns per FU). This study also iden-
tified a larger number of internal introns in hemocyanin 
genes of Caenogastropoda (2.4–6.5 introns per FU), the 
other branch of Apogastropoda (Fig. 4; Table 2). As typical 
for internal introns of molluscan hemocyanins, they vary in 
phases. Across all hemocyanin gene structures of Caeno-
gastropoda that we have analyzed, phase 0 was the most fre-
quent intron phase (≥ 50%). This result matches the results 
of Long & Deutsch (1999) and Fedorov et al. (1992) as well 
as the results for Tectipleura hemocyanins (Schäfer et al. 
2021b). Intron phases affect which exons may be spliced 
alternatively. Since we did not detect any splice variants, we 
did not focus on analyzing these intron phases in more detail. 
However, the color-coded phases in Fig. 4 accentuate the dif-
ferences, which will be described below. The distinct hemo-
cyanin genes of Caenogastropoda differ strongly from each 
other in terms of the number and position of internal introns. 
This phenomenon applies to hemocyanins of different cae-
nogastropod lineages (Muricidae, Littorinida, Cerithioidea 
and Ampullariida) as well as to paralogous genes within 
the same species (Fig. 4, Table 2). Large variations in gene 
architectures between paralogous hemocyanin genes within 
one molluscan species have not been reported before. To 
date, only for Hygrophila, a group of Tectipleura, have two 
paralogous hemocyanin genes been identified that vary in 
one of 45 or 46 introns. Specifically, hemocyanin gene 1 
from Lymnaea stagnalis, Radix balthica and Biomphalaria 
glabrata (LsH1, RbH1, and BgHcl-2, which are all ortholo-
gous to each other) has one additional intron along with 
those conserved within all other analyzed Tectipleura hemo-
cyanins, including hemocyanin gene 2 of those Hygrophila 
species (Fig. 4, arrow with star and Schäfer et al. 2021b).

To analyze the evolution of hemocyanin gene structures 
of Gastropoda in more detail, we derived the most parsi-
monious scenario of intron evolution within these genes 
(Fig. 5). This scenario is based on the parsimony principle 
(Rogozin et al. 2006), which assumes that an intron shared 
within a sister group was already present within their com-
mon ancestor. The same applies to missing introns detected 
within sister groups that are assumed to be lost in an ances-
tor. Intron sliding was not considered because this phenom-
enon is difficult to identify based on location alone if introns 
vary by more than one nucleotide (Rogozin et al. 2000). 
Positions of nearby FU-internal introns within the analyzed 
hemocyanin genes of Caenogastropoda vary by at least six 
nucleotides (Supplement 2). Furthermore, intron sliding 
most likely contributes little to gene structure evolution 
(Poverennaya et al. 2020; Stoltzfus et al. 1997). It should 
be noted that the presence of some introns within an ances-
tor cannot be assessed because the two possible scenarios 
would have taken the same number of evolutionary steps 
(smaller arrows in a hypothetical gene precursor, Fig. 5). 
Nevertheless, this model of intron evolution shows the most 
parsimonious explanation for the revealed exon–intron 
structures and clearly indicates that ongoing changes within 
hemocyanin gene structures during the evolution of differ-
ent Caenogastropoda are most likely. This scenario strongly 
suggests a gradual accumulation of introns, which led to 
gene structures with several internal introns, regardless of 
the exact origins of particular introns. Thus, our findings 
support the hypothesis that the accumulation of introns is a 
general phenomenon within hemocyanin genes of Apogas-
tropoda and contrasts with the hemocyanin gene evolution 
of Vetigastropoda and Cephalopoda (Chiumiento et al. 2020; 
Schäfer et al. 2021b).

Considered more closely, the presented model of 
intron evolution reveals four internal introns that are pre-
sent within all analyzed species of Tectipleura (Hetero-
branchia) and Caenogastropoda and thus within both major 
groups of Apogastropoda. Therefore, intron accumulation 
most likely started within a hemocyanin gene of a com-
mon ancestor, and ongoing accumulation subsequently 
led to various gene structures within different Apogas-
tropoda lineages. The model of intron evolution shows, for 
example, that 12 or 13 FU-internal introns and two introns 
within the signal peptide-coding sequences are likely to 
have evolved within a common ancestor of the analyzed 
Caenogastropoda groups and that accumulation most 
likely continued gradually throughout the evolution of 
Sorbeoconcha, Hypsogastropoda and Muricidae (Fig. 5).

We have previously shown that the high intron gain rate 
is specific to the hemocyanin gene within Apogastropoda 
(Schäfer et al. 2021b). Such lineage- and gene-specific evo-
lutionary rates have also been described for other genes 
(Carmel et al. 2007; Rogozin et al. 2003). A large number 
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of introns may be accompanied by regulatory advantages, 
which may cause this lineage- and gene-specific trend of 
intron accumulation in hemocyanins in Apogastropoda 
(Schäfer et al. 2021b).

The extensive variation of exon–intron structures of 
caenogastropod hemocyanin genes reported in this study 
contrasts with the highly conserved exon–intron structures 
that have been detected in hemocyanins in Tectipleura 
(Heterobranchia). Hemocyanin gene architectures in Tec-
tipleura evolved most likely within a common ancestor and 
thus before the multiple gene duplications that occurred in 
several Tectipleura groups. Subsequently, the exon–intron 
structure has remained mostly conserved within all ana-
lyzed species of this large group of gastropods (Schäfer et al. 
2021b). Hemocyanin gene structures of Caenogastropoda, in 
contrast, changed independently within the different lineages 
and within different paralogous genes.

Since the number of Tectipleura species corresponds 
to ~ 80% of the number of Caenogastropoda species and 
even ~ 96% of the number of Hypsogastropoda species 
(Fig. 5; WoRMS Editorial Board 2020), the higher num-
ber of differences within hemocyanin genes in Caenogas-
tropoda cannot be explained by the relatively higher num-
ber of species. Rather, we suggest that the intron gain rate 
decreased within Tectipleura quite early in evolution because 
their hemocyanin genes became saturated by introns more 
quickly than those of Caenogastropoda. Therefore, the 
large number of introns led to relatively small exon lengths, 
which may prevent further intron gains (Hawkins 1988; 
Hwang and Cohen 1997; Roy and Irimia 2009). Gene- and 
lineage-specific saturation of intron densities have already 
been described for plants (Basu et al. 2008) and mammals 
(Kordiš 2011). According to the most parsimonious scenario 
of intron evolution in gastropod hemocyanins (Fig. 5), 42 
introns were gained during the evolution from an Apogas-
tropoda ancestor to a precursor of Tectipleura and may have 
saturated the genes. This number is strikingly higher than 
that for intron gains during the evolution from an Apogas-
tropoda ancestor to the ancestors of Caenogastropoda 
(12–13 gains), Sorbeoconcha (15–18 gains) or Hypsogas-
tropoda (22–30 gains, Fig. 5). Schäfer et al. (2021b) identi-
fied conservation in the exon lengths within hemocyanin 
genes in Tectipleura. This phenomenon has been suggested 
to indicate evolutionary advantages (Davila-Velderrain 
et al. 2014; Fu and Lin 2012). Accordingly, our results 
showing conserved exon–intron structures may imply that 
the large number of introns and the regular distribution of 
exons within hemocyanin genes of Tectipleura may have 
evolutionary benefits, e.g., expanded possibilities of gene 
expression regulation (Schäfer et al. 2021b). More elaborate 
explanations of possible evolutionary advantages are further 
discussed below under “Evolutionary constraints on hemo-
cyanin genes in Apogastropoda?”. If a similar evolutionary 

constraint acts on hemocyanin genes in Caenogastropoda, 
this might explain the continuous accumulation of introns 
in these genes during the evolution of Caenogastropoda, as 
proposed in the maximum parsimony scenario (Fig. 5). The 
hemocyanin gene architectures suggested for the common 
ancestors of Caenogastropoda, Sorbeoconcha or Hypsogas-
tropoda include fewer introns than the gene structures of 
Tectipleura hemocyanins (Fig. 5). Therefore, such hemo-
cyanin genes comprise relatively large exons which may 
represent possible targets for intron insertion (Hawkins 
1988; Hwang and Cohen 1997; Roy and Irimia 2009). Due 
to lineage- and gene-specific intron gain/loss rates that may 
result from evolutionary constraints, the gene architectures 
of many hemocyanin genes may have accumulated introns 
during the evolution of Caenogastropoda until saturation is 
reached. This may be the reason for the continuous intron 
gains in hemocyanins in Caenogastropoda which contrasts 
with the conserved gene structure of Tectipleura hemocya-
nins. Although the rate of intron gains varies, intron accu-
mulation seems to be common within hemocyanins of both 
groups of Apogastropoda and may be caused by evolution-
ary constraints.

Evolutionary Constraints on Hemocyanin Genes 
in Apogastropoda?

Our results on the large number of gene duplications and 
the various intron gains identified for hemocyanin genes in 
Caenogastropoda support the hypothesis of high dynam-
ics within hemocyanin gene evolution in Apogastropoda 
(Schäfer et al. 2018, 2021b). Both Caenogastropoda and Het-
erobranchia represent the most diverse groups of the phylum 
Mollusca and together encompass over 64,000 extant species 
(WoRMS Editorial Board 2020) that live in nearly all kinds 
of habitats from the deep sea to deserts. The radiation that 
led to the high diversity of Apogastropoda involved a great 
number of adaptations, including the evolution of altered 
abilities for osmoregulation, novel respiratory organs (pneu-
mostomes and lungs) and reproductive behavioral strategies 
(Vermeij and Dudley 2000; Vermeij and Wesselingh 2002). 
As we have proposed previously, high evolutionary rates 
within hemocyanin genes may represent molecular adapta-
tions that have enabled multiple habitat shifts and species 
diversification within Apogastropoda (Schäfer et al. 2018, 
2021b). This hypothesis is developed from consideration of 
the strong temperature dependence of the oxygen affinity of 
hemocyanins (Brix et al. 1989; Burnett et al. 1988; Mangum 
1990). Various adaptations of this oxygen transport protein 
to different environmental conditions have been reported 
(González et al. 2017; Melzner et al. 2007; Oellermann et al. 
2015a, b; Strobel et al. 2012; Yesilyurt et al. 2008; Zielinski 
et al. 2001). These adaptations appear necessary to ensure 
a sufficient supply of oxygen and therefore are fundamental 
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for molluscs to survive. Consequently, they represent one 
essential precondition for habitat shifts between strongly dif-
ferent environments (e.g., from sea to land or freshwater). 
Strong variability, as previously identified for hemocyanin 
genes in Tectipleura and now verified for five groups of Cae-
nogastropoda, may accommodate these required adaptations 
(Schäfer et al. 2018, 2021b).

Gene duplications, as we have identified for hemocyanins 
in Tectipleura and Caenogastropoda (Fig. 3), play a major 
role in genomic complexity and evolution (Magadum et al. 
2013; Ohno 1970). They are a driving force in organismal 
diversity (Lynch and Conery 2000) and can promote adapta-
tion (Qian and Zhang 2014). Hemocyanin gene duplications 
could be followed by differential evolution of various genes 
and could eventually lead to hemocyanins with, for exam-
ple, different oxygen affinities, varying pH or temperature 
sensitivities or differential expression patterns. These dif-
ferences may represent the origin of genetic variability and 
adaptation, as has already been discovered for Cephalopoda 
(Oellermann et al. 2015a, b; Strobel et al. 2012; Thonig 
et al. 2014). The squid S. officinalis, for example, possesses 
multiple hemocyanin genes that underlie differential expres-
sion (Strobel et al. 2012; Thonig et al. 2014). Thonig et al. 
(2014) identified ontogeny-specific expression patterns 
of hemocyanin genes in this squid species. For example, 
one hemocyanin gene is highly expressed within the egg 
and may help to sustain an adequate oxygen supply despite 
hypoxic and hypercapnic conditions arising within the eggs 
during embryogenesis. After hatching, however, the expres-
sion of this gene is downregulated, whereas the expression 
of two other hemocyanin genes is upregulated (Thonig et al. 
2014). To examine whether the multitude of hemocyanin 
genes in Apogastropoda contributes to adaptive radiation 
and evolutionary benefits or if it has even led to neofunc-
tionalization of these proteins, further studies are needed 
to examine the biochemical properties and physiological 
implications of paralogous hemocyanins in Heterobranchia 
and Caenogastropoda.

In addition to gene duplications, our findings confirm 
that intron accumulation is a general phenomenon of hemo-
cyanin genes in Apogastropoda (Chiumiento et al. 2020; 
Schäfer et  al. 2021b). As already proposed, this result 
may indicate evolutionary constraints on a large number 
of introns in gene structures of Apogastropoda. Introns, in 
general, can increase species diversity (Calarco and Ellis 
2020) and thus may also contribute to adaptation. The exten-
sive number of internal introns found within hemocyanin 
genes of Apogastropoda may facilitate the regulation of 
differential expression (discussed in more detail in Schäfer 
et al. 2021b). Several regulatory mechanisms associated 
with introns have already been identified (e.g., Chorev and 

Carmel 2012; Rose 2008, 2018) and include, among others, 
temperature-dependent gene expression (Airoldi et al. 2015; 
Evantal et al. 2018; Gotic et al. 2016; James et al. 2018). 
Differential expression of hemocyanin genes could help to 
control the availability of different paralogs that harbor dif-
ferent properties (e.g., varying oxygen affinities at differ-
ent temperatures). Thus, the regulatory functions of introns 
could represent evolutionary advantages that promote intron 
accumulation in hemocyanin genes of Apogastropoda (for 
more details see Schäfer et al. 2021b). To analyze potential 
advantages of introns in hemocyanin genes, further studies 
should characterize their nucleotide sequences, investigate 
them for specific regulatory mechanisms and determine if 
there are differences in introns between paralogs within one 
species.

Our results show that the accumulation rate of introns 
maintained in hemocyanins in Caenogastropoda is differ-
ent within various lineages and highest within Cerithioidea 
(Fig. 5). In addition, the two paralogous hemocyanin genes 
from the cerithioid gastropod M. tuberculata exhibit the 
largest variations in exon–intron structures that have been 
found within one gastropod species (small arrows with num-
bers on top in Fig. 5, cf. also Supplement 3). Furthermore, 
the 550 kDa mega-hemocyanin subunit represents the only 
hemocyanin gene that lacks a linker intron between two dif-
ferent functional units. The loss of regions coding for FU-g 
and FU-h, as well as the gain of six FU-f-coding sequence 
sections, additionally led to strong variations in the protein 
structures which influence its physiological features (typi-
cal 400 kDa hemocyanin and 550 kDa mega-hemocyanin 
subunits that differ in their oxygen binding capacity, cf. 
introduction above and Lieb et al. 2010). These extensive 
differences at the gene and protein levels may represent 
combined adaptations of hemocyanins that enable Cerith-
ioidea to live in a variety of habitats. The members of this 
superfamily of Caenogastropoda are distributed in freshwa-
ter, brackish water and marine ecosystems in mostly warm 
temperate regions (for an overview, see Strong et al. 2011). 
Their habitats include some extreme biotopes, such as rocky 
intertidal shores, mudflats and mangrove forests, which 
include environmental conditions such as strongly changing 
temperatures, humidity differences and little oxygen avail-
ability. The fact that the strongest differences in paralogous 
hemocyanins (including the gene and protein levels) have 
been identified in a group of gastropods with such extremely 
diverse habitats may represent a further hint that the evolu-
tion of hemocyanin plays a major role in the evolution of 
molluscs. Since both genes can be expressed in different 
ratios (Lieb et al. 2010), they can help to adapt to different 
living conditions.
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Conclusions

The oxygen affinity of molluscan hemocyanins is strongly 
influenced by abiotic factors such as temperature (Mangum 
1990). A multitude of adaptations in these oxygen trans-
port proteins have already been described (e.g., Strobel 
et al. 2012) and seem to be indispensable for many mol-
luscan species to ensure a sufficient oxygen supply. Our 
findings reveal a strong diversity of hemocyanin genes of 
Caenogastropoda, including multiple independent gene 
duplications within different caenogastropod groups 
as well as a strong accumulation of FU-internal introns 
(21–57) within their genes. Since gene duplications and 
intron gains have also been discovered within hemocyanin 
genes of Tectipleura (Schäfer et al. 2018, 2021b), they 
most likely represent general phenomena of hemocyanin 
gene evolution within Apogastropoda. This contrasts with 
the hemocyanin evolution of Vetigastropoda and may sup-
port the hypothesis that diversity in this oxygen transporter 
may increase adaptation. Therefore, gene duplications may 
provide new genes to be adjusted by mutation and selec-
tion, and the accumulation of introns may contribute to 
regulatory opportunities. Although follow-up studies are 
required to analyze the biochemical and physiological 
properties of apogastropod hemocyanins (e.g., varying 
oxygen affinities and different temperature dependencies 
of hemocyanin paralogs and differential expression pat-
terns of their paralogous genes), our results indicate that 
the evolution of hemocyanins in Heterobranchia and Cae-
nogastropoda may be one of many influencing factors that 
enabled the large diversity of Apogastropoda by facilitat-
ing adaptive radiation.
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